
A. B. ChAudhuri

Flowchart and
algorithm Basics

The ArT of ProgrAmming

Flowchart and
algorithm Basics

a. B. chaudhuri

MERCURY
LEARNING

CHAUDHURI

This book is designed to equip the reader with all of the best
followed, efficient, well-structured program logics in the form

of flowcharts and algorithms. The basic purpose of flowcharting is
to create the sequence of steps for showing the solution to problems
through arithmetic and/or logical manipulations used to instruct
computers. The applied and illustrative examples from different
subject areas will definitely encourage readers to learn the logic
leading to solid programming basics.

FEATURES
• Uses flowcharts and algorithms to solve problems from everyday

applications, teaching the logic needed for the creation of
computer instructions

• Covers arrays, looping, file processing, etc.

BRIEF TABLE OF CONTENTS
1: Introduction to Programming. 2: Problems on Selection.
3: Problems on Looping. 4: Problems on Arrays. 5: The Art of
File Processing. Index.

ABOUT THE AUTHOR

A. B. Chaudhuri teaches
courses in computer
science and specializes
in data structures.

9253787816839

ISBN 9781683925378

54995

U.S. $49.95

22841 Quicksilver Drive | Dulles, VA 20166
www.merclearning.com | (800) 232-0223

All trademarks and service marks are the
property of their respective owners.

Cover Design: Simon and Sons

Printed in the United States of America

F
l

o
w

c
h

a
r

t a
n

d
 a

l
g

o
r

it
h

m
 B

a
s

ic
s

Flowchart

and

algorithm Basics

Flowchart-and-Algorithm-Basics_CH-00_FM.indd 1 6/12/2020 2:35:35 PM

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY
By purchasing or using this book (the “Work”), you agree that this license grants
permission to use the contents contained herein, but does not give you the right
of ownership to any of the textual content in the book or ownership to any of the
information or products contained in it. This license does not permit uploading of the
Work onto the Internet or on a network (of any kind) without the written consent of
the Publisher. Duplication or dissemination of any text, code, simulations, images,
etc. contained herein is limited to and subject to licensing terms for the respective
products, and permission must be obtained from the Publisher or the owner of the
content, etc., in order to reproduce or network any portion of the textual material (in
any media) that is contained in the Work.

Mercury Learning and inforMation (“MLI” or “the Publisher”) and anyone
involved in the creation, writing, or production of the companion disc, accompanying
algorithms, code, or computer programs (“the software”), and any accompanying Web
site or software of the Work, cannot and do not warrant the performance or results
that might be obtained by using the contents of the Work. The author, developers,
and the Publisher have used their best efforts to insure the accuracy and functionality
of the textual material and/or programs contained in this package; we, however,
make no warranty of any kind, express or implied, regarding the performance of
these contents or programs. The Work is sold “as is” without warranty (except for
defective materials used in manufacturing the book or due to faulty workmanship).

The author, developers, and the publisher of any accompanying content, and anyone
involved in the composition, production, and manufacturing of this work will not be
liable for damages of any kind arising out of the use of (or the inability to use) the
algorithms, source code, computer programs, or textual material contained in this
publication. This includes, but is not limited to, loss of revenue or profit, or other
incidental, physical, or consequential damages arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to replacement
of the book, and only at the discretion of the Publisher. The use of “implied warranty”
and certain “exclusions” vary from state to state, and might not apply to the purchaser
of this product.

Flowchart-and-Algorithm-Basics_CH-00_FM.indd 2 6/12/2020 2:35:36 PM

MERCURY LEARNING AND INFORMATION
Dulles, Virginia

Boston, Massachusetts
New Delhi

a. B. chaudhuri

Flowchart

and

algorithm Basics
The Art of Programming

Flowchart-and-Algorithm-Basics_CH-00_FM.indd 3 6/12/2020 2:35:37 PM

Copyright ©2020 by Mercury Learning and InforMation LLC. All rights reserved.
Reprinted and revised with permission.

Original title and copyright: The Art of Programming through Flowcharts & Algorithms, 2/E.
Copyright ©2018 by Firewall Media (An imprint of Laxmi Publications Pvt. Ltd. All rights reserved.)

This publication, portions of it, or any accompanying software may not be reproduced in any way,
stored in a retrieval system of any type, or transmitted by any means, media, electronic display
or mechanical display, including, but not limited to, photocopy, recording, Internet postings, or
scanning, without prior permission in writing from the publisher.

Publisher: David Pallai
Mercury Learning and inforMation

22841 Quicksilver Drive
Dulles, VA 20166
info@merclearning.com
www.merclearning.com
1-800-232-0223

A.B. Chaudhuri. Flowchart and Algorithm Basics: The Art of Programming.
ISBN: 978-1-68392-537-8

The publisher recognizes and respects all marks used by companies, manufacturers, and developers
as a means to distinguish their products. All brand names and product names mentioned in this book
are trademarks or service marks of their respective companies. Any omission or misuse (of any kind) of
service marks or trademarks, etc. is not an attempt to infringe on the property of others.

Library of Congress Control Number: 2020938815

202122321 Printed on acid-free paper in the United States of America.

Our titles are available for adoption, license, or bulk purchase by institutions, corporations, etc. For
additional information, please contact the Customer Service Dept. at 800-232-0223(toll free).

All of our titles are available in digital format at www.academiccourseware.com and other digital vendors.
The sole obligation of Mercury Learning and inforMation to the purchaser is to replace the book,
based on defective materials or faulty workmanship, but not based on the operation or functionality of
the product.

Flowchart-and-Algorithm-Basics_CH-00_FM.indd 4 6/12/2020 2:35:37 PM

CONTENTS

Preface vii

Chapter 1: Introduction to Programming 1
Introduction 1
Flowcharting and Algorithms 2
Exercises 17

Chapter 2: Problems Involving Selection 19
Introduction 19
Exercises 36

Chapter 3: Problems Involving Looping 39
Introduction 39
Exercises 115

Chapter 4: Problems Involving Arrays 119
Introduction 119
Exercises 144

Chapter 5: The Art of File Processing 147
Introduction 147
Indexed File Organization 178
Relative File Organization 178
Exercises 179

Index 183

Flowchart-and-Algorithm-Basics_CH-00_FM.indd 5 6/12/2020 2:35:37 PM

Flowchart-and-Algorithm-Basics_CH-00_FM.indd 6 6/12/2020 2:35:37 PM

PREFACE

The inspiration for this book came from my students, who asked that I write
such a book so that others can grasp the art of programming logic develop-
ment easily and quickly. This book is aimed at inculcating problem-solving
skills in beginners in computing science who might be ill-prepared to handle
the problem-solving aspects of the discipline.

Although no book can be claimed to be self-contained, an attempt
has been made to equip the readers with all the best, most efficient, and
well-structured programming logic in the form of flowcharts and algorithms.
The illustrative examples will definitely encourage and enable students to
solve the problems in the exercises (and they will enjoy the task). As the task
of logic development is an art, the same problem can be solved in a number
of ways. Self-starters may try different logical approaches to the solutions or
instructors may guide the readers to redevelop the solutions using different
approaches.

Suggestions for improvement of this work are greatly appreciated.

 A. B. Chaudhuri
 May 2020

Flowchart-and-Algorithm-Basics_CH-00_FM.indd 7 6/12/2020 2:35:37 PM

Flowchart-and-Algorithm-Basics_CH-00_FM.indd 8 6/12/2020 2:35:37 PM

C H A P T E R 1
INTRODUCTION TO
PROGRAMMING

INTRODUCTION

A computer program is a sequential set of instructions written in a computer
language that is used to direct the computer to perform a specific task of
computation.

Observe that the definition demands that any set of instructions must
be such that the tasks will usually be performed sequentially unless directed
otherwise. Each instruction in the set will express a unit of work that a com-
puter language can support. In general, high level languages, also known as
3GLs, support one human activity at a time. For example, if a computational
task involves the determination of the average of three numbers, then it will
require at least three human activities, viz., getting the numbers, obtaining
the sum of the numbers, and then obtaining the average. The process will
therefore require three instructions in a computer language. However, it can
be done using two instructions, also: first by obtaining the numbers and sec-
ond by obtaining the sum and the average.

The objective of programming is to solve problems using computers
quickly and accurately.

Flowchart-and-Algorithm-Basics_CH-01.indd 1 6/12/2020 2:36:27 PM

2 • Flowchart and algorithm Basics

FLOWCHARTING AND ALGORITHMS

A problem is something the result of which is not readily available. A set of
steps involving arithmetic computation and/or logical manipulation is required
to obtain the desired result. There is a law called the law of equifinality that
states that the same goal can be achieved through different courses of action
and a variety of paths, so the same result can be derived in a number of ways.
For example, consider the task of sending a message to one of your friends.
There are many ways in which this can be done. First, you can convey the
message over the phone if your friend possesses a phone. Second, you can
send it by post. Third, you can send it through a courier service. If the mes-
sage is urgent, then you can try to use the quickest means for sending it. If
it is not urgent, then you will choose to send it in the least expensive but
most reliable way of doing it. Depending upon the urgency, you will decide
the most effective way of doing it. This most effective way is called the opti-
mum way. The different ways of solving a problem are called solution strate-
gies. The optimum way of solving a problem to get the desired result can be
achieved by analyzing different strategies for the solution and then selecting
the way that can yield the result in the least time using the minimum amount
of resources. The selection process will depend on the efficiency of the person
and his/her understanding of the problem. He/she must also be familiar with
different problem-solving techniques. Determining the set of steps required
to solve a given problem is an art. It shows how well a person can arrange a
set of steps so that others can follow it. A type of analysis called task analysis
is required to reach the solution from a problem definition that states what is
to be achieved.

A set of steps that generates a finite sequence of elementary computational
operations leading to the solution of a given problem is called an algorithm.
An algorithm may be too verbose to follow. The textual description of an
algorithm may not be understood quickly and easily. This is why a pictorial
representation may be used as a substitute for an algorithm. Such a pictorial
representation is called a flowchart. Formally speaking, a flowchart is a dia-
grammatic representation of the steps of an algorithm. In a flowchart, boxes
of different shapes are used to denote different types of operations. These
boxes are then connected by lines with arrows denoting the flow or direction
to which one should proceed to know the next step. The connecting lines are
known as flow lines. Flowcharts may be classified into two categories:

(i) Program Flowchart (ii) System Flowchart

Flowchart-and-Algorithm-Basics_CH-01.indd 2 6/12/2020 2:36:27 PM

introduction to Programming • 3

Program flowcharts act like mirrors of computer programs in terms of
flowcharting symbols. They contain the steps of solving a problem unit for a
specific result.

System flowcharts contain the solutions of many problem units together
that are closely related to each other and interact with each other to achieve a
goal. We will first focus on program flowcharts.

A program flowchart is an extremely useful tool in program development.
First, any error or omission can be more easily detected from a program flow-
chart than it can be from a program because a program flowchart is a pictorial
representation of the logic of a program. Second, a program flowchart can be
followed easily and quickly. Third, it serves as a type of documentation, which
may be of great help if the need for program modification arises in future.

The following five rules should be followed while creating program
 flowcharts.

●● Only the standard symbols should be used in program flowcharts.
●● The program logic should depict the flow from top to bottom and from

left to right.
●● Each symbol used in a program flowchart should contain only one entry

point and one exit point, with the exception of the decision symbol. This
is known as the single rule.

●● The operations shown within a symbol of a program flowchart should be
expressed independently of any particular programming language.

●● All decision branches should be well-labeled.

The following are the standard symbols used in program flowcharts:

Terminal: used to show the beginning and end of
a set of computer-related processes

Input/Output: used to show any input/output
operation

Computer processing: used to show any process-
ing performed by a computer system

Predefined processing: used to indicate any
 process not specially defined in the flowchart

Flowchart-and-Algorithm-Basics_CH-01.indd 3 6/12/2020 2:36:28 PM

4 • Flowchart and algorithm Basics

Comment: used to write any explanatory state-
ment required to clarify something

Flow line: used to connect the symbols

Document Input/Output: used when input comes
from a document and output goes to a document.

Decision: used to show any point in the process
where a decision must be made to determine
further action

On-page connector: used to connect parts of a
flowchart continued on the same page

Off-page connector: used to connect parts of a
flowchart continued to separate pages

Flowcharts can be used to show the sequence of steps for doing any job.
A set of simple operations involving accepting inputs, performing arithme-
tic operation on the inputs, and showing them to the users demonstrate the
sequence logic structure of a program. The following flowchart shows the
steps in cooking rice and then utilizing the cooked rice.

The algorithm for the flowchart about cooking rice is as follows:

 Step 1. Take the rice to be cooked.
 Step 2. Procure the container.
 Step 3. Procure the water.
 Step 4. Wash the rice in the water.
 Step 5. Put the rice into the container.
 Step 6. Pour water into the container.
 Step 7. IF WATER LEVEL = 1 INCH ABOVE THE RICE
 THEN GOTO STEP 8
 ELSE GOTO STEP 6
 ENDIF

Flowchart-and-Algorithm-Basics_CH-01.indd 4 6/12/2020 2:36:28 PM

introduction to Programming • 5

START

Procure water

Take the rice to be cooked
Procure the container.

Wash the rice in water.

Put the rice in the container.

Inputs

Inputs

Pour on water into
the container.

Processing

Processing

Processing with
loop or repetition.

Is water
level

1 inch above
the rice?

Yes Light the burner of
the stove.

Put the container
on the stove.No

Is the
rice boiled?

Heat the
Container.

No
Turn off the flame.

Distribute the
cooked rice.

Move the container
off the stove.

STOP

Yes

Flowchart-and-Algorithm-Basics_CH-01.indd 5 6/12/2020 2:36:28 PM

6 • Flowchart and algorithm Basics

 Step 8. Light the burner on the stove.
 Step 9. IF THE RICE IS BOILED
 THEN GOTO STEP 12
 ELSE GOTO STEP 10
 ENDIF
 Step 10. Heat the container.
 Step 11. Go to step 9.
 Step 12. Turn off the flame.
 Step 13. Move the container off the stove.
 Step 14. Distribute the cooked rice.
 Step 15. STOP.

The main purpose of flowcharting is to discover/invent the sequence of
steps for showing the solution of a problem through arithmetic and/or log-
ical manipulations for which we can instruct computers. The problems for
flowcharting and algorithm development that we will consider here are based
primarily on computational procedures.

We now consider different problem definitions, followed by the task anal-
ysis, and then the desired flowchart. We denote the assignment operation
using an arrow sign. The direction of the arrow implies the destination of
the assignment. For example, “A ← B” means that the value contained in B
is assigned to A. This, however, does not mean that the value of B is lost in
A; it implies that the value contained in B is copied into A so that A and B
contain the same thing. We use the symbol * or x to indicate a multiplication
operation.

Let us consider a problem, the goal of which is to construct a flowchart to
show the procedure to obtain the sum of two given numbers.

This is a very simple task. To solve the problem, we require two num-
bers as inputs. The numbers can then be added together to derive the sum.
Observe that as a user of the procedure, you can provide any two numbers.
As we wish to construct a procedure, we should not specify any arbitrary pair
of numbers for the procedure. It is more convenient if we denote the input
values symbolically. Symbols represent the given numbers. A similar symbol
can be used to represent the sum. Another concept used during programming
is that of containers called variables. The symbols for representing input data
values or the output results may be treated as the containers of the values’

Flowchart-and-Algorithm-Basics_CH-01.indd 6 6/12/2020 2:36:29 PM

introduction to Programming • 7

input or output. Whatever they are, the data values are the contents of the
variables. Variables are symbolic representations of containers for holding
data or information. We follow the convention that a single word consisting
of one to any number of characters can be used as the name of a variable. A
variable is actually a named collection of one or more memory locations of a
computer treated as a single container. Its content may vary depending on a
user’s operation. The following discussion explains the following flowchart of
the desired procedure.

The program logic structure illustrated in the flowcharts of this chapter is
the sequence logic structure.

Problem 1.1. Draw a flowchart to show how the sum of two numbers can
be obtained.

START

INPUT A, B

S A+B�

PRINT S

STOP

A
B

represents the first number
represents the second number

S represents the sum
 of the given values

The following algorithm shows the desired procedure:

 Step 1. INPUT TO A, B
 Step 2. S ← A+B
 (Store the sum of the values in A and B in S)
 Step 3. PRINT S
 (Show the sum obtained in Step 2)
 Step 4. STOP

A sequence structure shows simple input, output, and process operations.

Flowchart-and-Algorithm-Basics_CH-01.indd 7 6/12/2020 2:36:29 PM

8 • Flowchart and algorithm Basics

Problem 1.2. Construct a flowchart to show the procedure for obtaining the
average of two given numbers.

START

INPUT A, B

S (A+B)�

PRINT AVG

STOP

A
B

represents the first number
represents the second number

S represents the sum

AVG S/2� AVG represents the average

Task Analysis. From the concept of determining the average of two given
numbers, we know that the given numbers must be added together to obtain
the sum first; the sum is then divided by 2 to obtain the average. The flow-
chart for Problem 1.2 illustrates this idea.

The algorithm corresponding to Problem 1.2 is shown below:

 Step 1. INPUT TO A, B
 Step 2. S ← A + B
 (Store the sum of the values in A and B and store in S)
 Step 3. AVG ← S/2
 (Compute the average)
 Step 4. PRINT AVG (Show the average)
 Step 5. STOP

Problem 1.3. Construct a flowchart to show how to obtain the volume of a
rectangular box.

Task Analysis. We know that the formula to determine the volume of a rect-
angular box is Volume = Length × Breadth × Height. To determine the vol-
ume of a rectangular box, we need to know the length, breadth, and height of
the box. When these values are multiplied together, the product represents
the desired volume.

Flowchart-and-Algorithm-Basics_CH-01.indd 8 6/12/2020 2:36:29 PM

introduction to Programming • 9

START

INPUT L, B, H

V � L�B�H

PRINT V

STOP

L
B

H

is the length
is the breadth

and is the height

The algorithm for the solution of Problem 1.3 is given below:

 Step 1. INPUT TO L, B, H
 Step 2. COMPUTE V ← L*B*H
 Step 3. PRINT V
 Step 4. STOP

Problem 1.4. Construct a flowchart to show how to obtain the daily wage of
a worker on the basis of the hours worked during the day.

Task Analysis. The daily wage depends on two factors: the hours worked and
hourly rate of pay. When the hours worked is multiplied by the rate of pay, the
product represents the wage of the worker.

START

INPUT H, R

PRINT W

W ��H�R

STOP

H
R

= Total hours worked on a day
= Rate of pay per hour

W is the wage

Flowchart-and-Algorithm-Basics_CH-01.indd 9 6/12/2020 2:36:30 PM

10 • Flowchart and algorithm Basics

The algorithm for the solution of Problem 1.4. is given below:

 Step 1. INPUT TO H, R
 Step 2. COMPUTE W ← H*R
 (Store the product of the values in H and R in W)
 Step 3. PRINT W
 Step 4. STOP

Problem 1.5. Construct a flowchart to show how to obtain the area of a tri-
angle on the basis of the base and height.

Task Analysis. We know that the formula to find out the area of a triangle is

Area = 1
2

 × base × height

The inputs required to obtain the area of a triangle are its base and height.
We can then put the values in the above formula to obtain the area.

START

INPUT B, H

Area � 1/2�B�H

Print Area

STOP

B
H

is the value for the base of the triangle.
is the value for the height of the triangle.

The algorithm corresponding to the above procedure is given below:

 Step 1. INPUT TO B, H
 (B is for the base and H is for the height of the triangle)

 Step 2. COMPUTE AREA ←
1
2

 *B*H

 Step 3. PRINT AREA
 Step 4. STOP

Flowchart-and-Algorithm-Basics_CH-01.indd 10 6/12/2020 2:36:30 PM

introduction to Programming • 11

Problem 1.6. Develop a flowchart to show the steps in finding the simple
interest on a given amount at a given rate of interest.

Task Analysis. We know that if P is the principal, R is the rate of interest,
and T is the term in years, then the simple interest I is given by the formula

I = P*R*T
100

. To determine the simple interest on a given amount, we need

the principal amount (P), the rate of interest (R), and the term in years (T).
By putting the values in the formula above, we get the desired simple interest.

START

INPUT P, R, T

I � P�R�T/100

Print I

STOP

P
R
T

is for the principal
is for the rate of interest
is for the term in years

The algorithm corresponding to the above logic is given below:

 Step 1. INPUT TO P, R, T
 Step 2. COMPUTE I ← P*R*T / 100
 Step 3. PRINT I
 Step 4. STOP

Problem 1.7. If P amount of money is invested for N years at an annual rate of
interest I, the money grows to an amount T, where T is given by T = P (1 + I/100)N.
Draw a flowchart to show how T is determined.

Task Analysis. The solution to this problem is very simple, and it is similar
to the preceding one. The inputs required are the values for P, I, and N. The
output T can then be obtained by putting the values in the formula.

Flowchart-and-Algorithm-Basics_CH-01.indd 11 6/12/2020 2:36:30 PM

12 • Flowchart and algorithm Basics

START

INPUT P, I, N

T ��P�(1+I/100)
N

Print T

STOP

The algorithm corresponding to Problem 1.7 is given below:

 Step 1. INPUT TO P, I, N

 Step 2. COMPUTE T P
I N

� � ��
�
�

�
�
�1

100
 Step 3. PRINT T
 Step 4. STOP

Problem 1.8. Construct a flowchart to show how a student’s registration
number and grades in 3 subjects, m1, m2, and m3, are displayed along with the
total average grade.

Task Analysis. The data supplied as inputs are the registration number and
grades obtained in three subjects. The registration number contributes noth-
ing to the process of deriving the desired output; it just identifies the person
about whom the total grade and the average grade are obtained. The total
grade can be obtained by taking the sum of the marks m1, m2, and m3, and the
average can be obtained by dividing the total by 3. The steps are illustrated
below.

The algorithm corresponding to the above problem is given below:

 Step 1. INPUT TO REGN-NO
 Step 2. INPUT TO M1, M2, M3
 (M1, M2, and M3 are for holding the grades in three subjects)
 Step 3. COMPUTE T ← M1 + M2 + M3
 Step 4. COMPUTE AVG ← T/3
 Step 5. PRINT REGN-NO, AVG
 Step 6. STOP.

Flowchart-and-Algorithm-Basics_CH-01.indd 12 6/12/2020 2:36:32 PM

introduction to Programming • 13

START

Print “Enter
Registration No”

Input REG-NO

Print “Enter grades
of three subjects”

Input m , m , m1 2 3

T m + m + m1 2 3

AVG T/3

Print “Average score is”, AVG,
“for student with regn. no.’’, REG-NO

STOP

The text within the quotes
prompts the user for a command

REG-NO represents the
registration number

Prompts the user for the grades

Problem 1.9. Draw a flowchart to accept the item’s code, stock on hand, and
the rate per unit of stock in a department store and display the stock value of
the store.

Task Analysis. The inputs required to determine the stock value of the store
are the stock on hand and the rate per unit of stock, which are multiplied
together to determine the stock value. The item’s code is used as the identi-
fication data.

The algorithm corresponding to the solution for Problem 1.9 is as follows:

 Step 1. INPUT TO I CODE
 Step 2. INPUT TO SOH (SOH stands for “stock on hand”)
 Step 3. INPUT TO RATE

Flowchart-and-Algorithm-Basics_CH-01.indd 13 6/12/2020 2:36:32 PM

14 • Flowchart and algorithm Basics

START

Print “Enter
item code”

INPUT ICODE

Print “Enter stock
on hand”

Input SOH

Print “Enter rate
per unit stock”

Input rate

Print “The stock value of item with
code”, ICODE, “IS”:, stock-value

STOP

ICODE is used to hold the
value of the item code

SOH is the value for the
stock on hand

Stock value
SOH Rate

�
�

 Step 4. COMPUTE STOCK-VALUE ← SOH*RATE
 Step 5. PRINT STOCK-VALUE, ICODE
 Step 6. STOP

Flowchart-and-Algorithm-Basics_CH-01.indd 14 6/12/2020 2:36:32 PM

introduction to Programming • 15

Problem 1.10. Draw a flowchart to determine the volume V2 of a certain
mass of gas at a pressure P2 if the initial volume is V1 at a pressure P1, keeping
the temperature constant.

Task Analysis. From Boyle’s law, we know that if the temperature remains
constant, the volume of a given mass of gas varies inversely with its pressure.
If V is a volume of a given mass of gas at a pressure P, then

V
P

∝
1

, at a constant temperature

i.e., PV = constant
 Hence, we can write P1V1 = P2V2.

If the initial pressure and volume are known and the final pressure is also
known for a given mass of gas, then the final volume V2 can be determined
from the formula.

V
P V
P2
1 1

2

= , the temperature being constant.

START

Print “Enter Initial Pressure,
Volume and Final pressure”

ACCEPT P1,V1,P2

V2 ��P1�V1/P2

Print “The volume will be”, V2

STOP

Flowchart-and-Algorithm-Basics_CH-01.indd 15 6/12/2020 2:36:35 PM

16 • Flowchart and algorithm Basics

Hence, the inputs are P1, V1, and P2, which gives us V2 with the above
formula.

The algorithm corresponding to Problem 1.10 is given below:

 Step 1. INPUT TO P1, V1, P2
 (P1 holds the value for the initial pressure, V1 holds the value of

the initial volume, and P2 holds the value of the final pressure.)
 Step 2. COMPUTE V2 ← P1*V1/P2
 Step 3. PRINT V2
 Step 4. STOP

Problem 1.11. Draw a flowchart to show how to interchange the values of
two variables.

Task Analysis. The task of interchanging the values of two variables implies
that the values contained by the variables are to be exchanged i.e., the data
value contained by the first variable should be contained by the second vari-
able and that by the second variable should be contained by the first variable.
If A and B are two variables, and if the values contained by them are 10 and
20 respectively, the problem is to make the contents of A and B, 20 and 10,
respectively. This can be done simply with the help of a third variable used as
an intermediate variable. The third variable holds the value of either A or B,

�

�

�

Flowchart-and-Algorithm-Basics_CH-01.indd 16 6/12/2020 2:36:35 PM

introduction to Programming • 17

so that if the value of one variable is assigned to the other, the assignee’s value
is not lost forever but is available in the intermediate variable. Hence, it can
then be assigned to the other variable.

The algorithm of the problem is as follows:

 Step 1. ACCEPT A,B
 Step 2. T ← A (Assign value in A to T)
 Step 3. A ← B (Assign value in B to A)
 Step 4. B ← T (Assign value in T to B)
 Step 5. PRINT A,B
 Step 6. STOP

EXERCISES

Construct flowcharts to show the steps involved to accomplish the
 following:

 (i) Find the product of two numbers.

 (ii) Find the remainder when one number is divided by the other.

 (iii) Find the area of a parallelogram.

 (iv) Find the area of the four walls of a rectangular room.

 (v) Find the area and perimeter of a circular plot.

 (vi) Find the area of a triangle based on the length of three sides.

 (vii) Find the area and perimeter of a square.

 (viii) Find the cost of fencing a rectangle at a given rate.

 (ix) Find the surface area of a cone.

 (x) Find the volume and surface area of a sphere.

 (xi) Convert meters to kilometers.

 (xii) Accept the rate for a dozen bananas and the quantity required to deter-
mine the cost.

 (xiii) Find the cost of a flat having the floor space of the following pattern:

Flowchart-and-Algorithm-Basics_CH-01.indd 17 6/12/2020 2:36:35 PM

18 • Flowchart and algorithm Basics

 (xiv) Determine the acceleration due to gravity (g), where g can be obtained
from the following formula:

T

g
� 2��

l

 where T = Time period of a simple pendulum

 and I = Effective length of the simple pendulum

 (xv) Obtain the equivalent Fahrenheit temperature of a temperature given
in Celsius where the relationship between the two scales of tempera-
ture is

C F
5

32
9

�
�

,

 where C = Temperature in Celsius

 F = Temperature in Fahrenheit

Flowchart-and-Algorithm-Basics_CH-01.indd 18 6/12/2020 2:36:38 PM

C H A P T E R 2
PROBLEMS INVOLVING
SELECTION

INTRODUCTION

This chapter deals with problems involving decision-making. This process of
decision-making is implemented through a logic structure called selection.
Here a predicate, also called a condition, is tested to see if it is true or false.
If it is true, a course of action is specified for it; if it is found to be false, an
alternative course of action is expressed. We can express this process using
flowchart notation.

IS
P

True
?

Action to be taken

Action to be taken

EXIT

Yes

No

Note that a course of action may involve one or more sequences of oper-
ations, and there should be a common meeting point to satisfy the single rule

Flowchart-and-Algorithm-Basics_CH-02.indd 19 6/12/2020 2:37:03 PM

20 • Flowchart and algorithm Basics

pointed to by the connector containing the word “Exit.” A flowchart may con-
tain any number of decision boxes depending on the processing requirements,
and the boxes may appear in any sequence depending on the program logic
decided. For example, a number of decision boxes may follow one another. The
following flowcharts provide an explanation of the logic to clarify this concept.

Problem 2.1. Develop a flowchart to show how the profit or loss for a sale
can be obtained.

Task Analysis. The profit or loss for a sale can be obtained if the cost price
and sale price are known. However, there is a need to make a decision here. If
the cost price is more than the sale price, then it indicates a loss in the process;
otherwise, there will be either zero profit (no profit or a loss) or some profit.

START

INPUT CP, SP CP
SP

holds the cost price
holds the sale price

IS
CP SP

?
�

IS
CP = SP

?

Print “No
Profit or Loss”

Yes Yes

L CP – SP� P SP – CP�

No No

Print “Loss
IS”, L

Print “Profit
IS”, P

STOP

The algorithm corresponding to Problem 2.1 is given below:

 Step 1. INPUT TO CP, SP
 Step 2. IF CP <= SP

Flowchart-and-Algorithm-Basics_CH-02.indd 20 6/12/2020 2:37:03 PM

ProBlems involving selection • 21

 THEN
 IF CP = SP
 PRINT “NO PROFIT OR LOSS”
 ELSE
 COMPUTE P ← SP – CP
 PRINT “PROFIT IS”; P
 END-IF
 ELSE
 COMPUTE L ← CP − SP
 PRINT “LOSS IS”; L
 END-IF
 Step 3. STOP

Problem 2.2. Construct a procedure to show how to determine the greater
of two given numbers.

Task Analysis. We must determine the larger of two numbers. The task is to
compare the given numbers to find the greater of them.

START

INPUT A, B A
B

represents the first number
represents the second number

IS
A > B ? G ��A

Yes

No

STOP

G holds the greater number

G ��B

Print G

Note: Here we have assumed that the given numbers are different numbers.

Flowchart-and-Algorithm-Basics_CH-02.indd 21 6/12/2020 2:37:04 PM

22 • Flowchart and algorithm Basics

The algorithm corresponding to Problem 2.2 is given below:

 Step 1. INPUT TO A, B
 Step 2. IF A > B
 THEN G ← A
 ELSE
 G ← B
 END-IF
 Step 3. PRINT G
 Step 4. STOP

Problem 2.3. Construct a flowchart to determine whether a given number
is even or odd.

Task Analysis. We know that a number is an even number if it is completely
divisible by 2. This means that if we perform integer division upon the given
number, then the remainder of the division will be zero. To construct the
flowchart, we accept a number as input, obtain the remainder of the integer
division by taking it as the divisor, and then check whether the remainder is
zero. If it is zero, then our conclusion will be that the number is an even num-
ber; otherwise, it will be an odd number.

START

INPUT A A represents the input number

R ��Remainder
of (A/2)

IS
R = 0 ?

PRINT “It is an
even number”

Yes

No

PRINT “It is an
odd number”

STOP

Flowchart-and-Algorithm-Basics_CH-02.indd 22 6/12/2020 2:37:04 PM

ProBlems involving selection • 23

The algorithm corresponding to Problem 2.3 is shown below:

 Step 1. INPUT TO A
 Step 2. COMPUTE R ← Remainder of (A/2)
 Step 3. IF R = 0
 THEN PRINT “It is an even number.”
 ELSE
 PRINT “It is an odd number.”
 END-IF
 Step 4. STOP

Problem 2.4. Determine the net payable amount on a sale. The net payable
amount consists of the sale price plus sales tax. The sales tax is decided as

a. 8% of the sale price for national items
b. 18% of the sale price for foreign items

Construct a flowchart to show how the net payable amount is determined.

START

INPUT SP SP represents the sale price

PRINT “ENTER ‘N’
For National ‘F’ for

Foreign”

INPUT CHOICE CHOICE holds either N or F

IS
CHOICE

= ‘N’ ?
ST=SP* .08

ST=SP* .18 NP=SP+ST PRINT NP

STOP

Yes

No

Flowchart-and-Algorithm-Basics_CH-02.indd 23 6/12/2020 2:37:04 PM

24 • Flowchart and algorithm Basics

Task Analysis. We need to calculate the sales tax first by taking one of the two
given rates. For this purpose, we require two inputs: the sale price of the item
under consideration and the origin of the item. Let us assume that we provide
“N” or “F” as the input to indicate “national” or “foreign,” respectively.

The algorithm corresponding to Problem 2.4 is shown below:

 Step 1. INPUT TO SP
 Step 2. INPUT TO CHOICE (“N” for national and “F” for foreign)
 Step 3. IF CHOICE = “N”
 THEN COMPUTE ST ← SP*.08
 ELSE
 COMPUTE ST ← SP*.18
 END-IF
 COMPUTE NP ← NP+ST
 Step 4. PRINT NP
 Step 5. STOP

Problem 2.5. An equation with the form ax2 + bx + c = 0 is known as a quad-
ratic equation. Draw a flowchart to show how to solve a quadratic equation.

Task Analysis. The values a, b, and c in the equation represent constant
 values. So 4x2 − 17x − 15 = 0 represents a quadratic equation where a = 4,
b = −17, and c = −15. The values of x that satisfy a particular quadratic equa-
tion are known as the roots of the equation. The roots may be calculated by
substituting the values of a, b, and c into the following two formulas:

x b b ac a

x b b ac a

1
2

2
2

4 2

4 2

� � � �

� � � �

() /

() /

The expression b2 − 4ac is called the determinant of the equation because
it determines the nature of the roots of the equation. If the value of the deter-
minant is less than zero, then the roots of the equation x1 and x2, are imaginary
(complex) numbers. To solve a quadratic equation, we should allow the user
to enter the values for a, b, and c. If the discriminant is less than zero, then
a message should be displayed stating that the roots are imaginary; other-
wise, the program should proceed to calculate and display the two roots of
the equation.

The algorithm corresponding to Problem 2.5 is as follows:

 Step 1. INPUT TO A, B, C
 Step 2. COMPUTE D ← (B*B − 4*A*C) (Calculate the value of the

discriminant) and store in D

Flowchart-and-Algorithm-Basics_CH-02.indd 24 6/12/2020 2:37:06 PM

ProBlems involving selection • 25

START

INPUT , ,a b c

D � b�b – 4�a�c

IS
D < 0 ?

a, b, & c are the constant
coefficients of the equation

PRINT “The roots are
imaginary” E

SD Square root of (D)

Yes

No

x b a
x b a

1

2

(– + SD)/2
(– – SD)/2

�
�

PRINT ,1 2x x

E

STOP

�

 Step 3. IF D < 0
 THEN PRINT “THE ROOTS ARE IMAGINARY”
 ELSE
 COMPUTE SD ← SQUARE-ROOT (D)
 END-IF
 Step 4. COMPUTE XI ← (− b + SD)/2*A
 Step 5. COMPUTE X2 ← (− b − SD)/2*A
 Step 6. PRINT XI, X2
 Step 7. STOP

Problem 2.6. Write a program to categorize the shape of a quadrilateral as
either a square, rhombus, rectangle, parallelogram, or irregular quadrilateral,
having input the lengths of the four sides and one internal angle.

Task Analysis. To make the decision about the shape of a quadrilateral, we
need to know the definitions of the quadrilaterals. A quadrilateral is called a
square if all the sides are of equal length and each of the internal angles is a
right angle. A quadrilateral is called a rhombus if the lengths of all sides are
the same and no angle is a right angle. If only one internal angle is given and
the sides are given, then in the case where all sides are of the same length
and the internal angle is not a right angle, then the quadrilateral must be a

Flowchart-and-Algorithm-Basics_CH-02.indd 25 6/12/2020 2:37:07 PM

26 • Flowchart and algorithm Basics

rhombus. If the internal angle is a right angle and the sides are of same length,
then it must be a square. If the opposite sides are of the same length and the
internal angle is a right angle, then it must be a rectangle; if the opposite sides
are of same length and the internal angle is not a right angle, then it must be
a parallelogram. If none of the above conditions are satisfied, then the quad-
rilateral is an irregular quadrilateral. The steps of the logic are shown in the
flowchart.

The algorithm corresponding to Problem 2.6 is given below.
AB, BC, CD, and DA are the lengths of the sides of a quadrilateral and I

is the measure of an internal angle. This algorithm decides the shape of the
quadrilateral.

 Step 1. ACCEPT AB, BC, CD, DA, I
 Step 2. IF AB = BC
 THEN IF AB = CD
 THEN IF BC = DA
 THEN IF I = 90
 THEN PRINT “IT’S A SQUARE”
 ELSE
 PRINT “IT’S A RHOMBUS”
 END-IF
 ELSE
 PRINT “IT’S AN IRREGULAR QUADRILATERAL”
 END-IF
 ELSE
 PRINT “IT’S AN IRREGULAR QUADRILATERAL”
 END-IF
 ELSE
 IF AB = CD
 THEN IF BC = DA
 THEN IF I = 90
 THEN PRINT “IT’S A RECTANGLE”
 ELSE
 PRINT “IT’S A PARALLELOGRAM”
 END-IF
 ELSE
 PRINT “IT’S AN IRREGULAR QUADRILATERAL”
 END-IF
 ELSE
 PRINT “IT’S AN IRREGULAR QUADRILATERAL”
 END-IF
 Step 3. STOP

Flowchart-and-Algorithm-Basics_CH-02.indd 26 6/12/2020 2:37:07 PM

ProBlems involving selection • 27

START

INPUT
AB, BC, CD, DA & I

AB, BC, CD, and DA are the
sides of a quadrilateral ABCD
and I is any internal angle

IS
AB =
BC ?

IS
AB =
CD ?

IS
BC =
DA ?

IS
I = 90°

?

PRINT
“It is a

rectangle”

No Yes Yes Yes

Yes No No No

Print “It is
an irregular

quadrilateral”

Print “It is a
parallelogram”

IS
BC =
CD ?

C

C

C

E

E E

No

Yes

IS
CD =
DA ?

IS
I =

90° ?

PRINT
“It is a

rhombus”

PRINT
“It is a

square”

STOP

C

E

E

Yes

No

Yes

No

A

Flowchart-and-Algorithm-Basics_CH-02.indd 27 6/12/2020 2:37:07 PM

28 • Flowchart and algorithm Basics

Problem 2.7. The grades in a certain class are determined by coursework
and a written examination. Both components of the assessment carry a maxi-
mum of 50 points.

START

INPUT MCW, MWE

TOT MCW + MWE�

MCW
MWE

is the grade for the coursework
is the grade for the written exam

TOT is the total score. This also represents
the percentage score of the total, 50 + 50, i.e., 100,
because each component is worth 50 points

IS
MCW >

20 ?

IS
MWE >

20 ?

IS
TOT >

45 ?
RESULT ‘PASS’�

Yes Yes Yes

IS
MWE >

20 ?

IS
TOT >

45 ?

IS
TOT =

44 ?

Yes No Yes
TOT 45�

Moderation
is being done

No No No
P

No

RESULT ‘FAIL’�

RESULT ‘FAIL’�

TOT 44�

Yes

No
RESULT ‘PASS’�

P

P

RESULT ‘TECHNICAL FAIL’�

PRINT TOT, RESULT

STOP

P

The following rules are applied by the examiners to determine whether a
student passes:

Flowchart-and-Algorithm-Basics_CH-02.indd 28 6/12/2020 2:37:07 PM

ProBlems involving selection • 29

(i) A student must score a total of 45% or more in order to pass
(ii) A total grade of 44% is moderated to 45%
(iii) Each component must be passed with a minimum of 20 points
(iv) If a student scores 45% or more, but does not achieve the minimum

grade in one component, he is given a technical fail of 44%, which
is not moderated to 45%.

Develop a flowchart showing how to input the grades for each component and
output the final grade and the result.

Task Analysis. The readily available facts about a student are the grades
obtained for the coursework and written examination. These can be supplied
as the input to obtain the desired output. The procedure includes finding
the total score and then checking to determine whether it is “pass,” “fail,”
or “technical fail.” A moderation, i.e., an increment, of the final score is also
done, if required, when a student obtains a total score of 44%. Our objective is
to show the solution interactively for one student at a time. No input is needed
to identify the student.

The algorithm corresponding to Problem 2.7 is given below:

 Step 1. INPUT TO MCW, MWE (Accept the grades of the coursework
and that of the written examination)

 Step 2. TOT ← MCW + MWE (Store the sum of MCW and MWE in TOT)
 Step 3. IF MCW > 20

THEN IF MWE > 20
 THEN IF TOT > 45

THEN RESULT ← “Pass”
 (Store “PASS” in RESULT)
 ELSE
 IF TOT = 44
 THEN RESULT ← 45
 (Moderation of 44 to make it 45)
 RESULT ← “PASS”
 ELSE
 RESULT ← “FAIL”
 END-IF
 END-IF
 ELSE
 IF TOT > 45
 THEN
 TOT ← 44

Flowchart-and-Algorithm-Basics_CH-02.indd 29 6/12/2020 2:37:07 PM

30 • Flowchart and algorithm Basics

 RESULT ← “TECHNICAL FAIL”
 END-IF
 END-IF
 ELSE
 IF MWE > 20
 THEN
 TOT ← 44
 RESULT ← “TECHNICAL FAIL”
 END-IF
 END-IF
 Step 4. PRINT TOT, RESULT
 Step 5. STOP

Problem 2.8. The following rules are used to calculate the bonus for the
employees of an organization.

(i) If the pay is more than $3,000, the bonus amount is fixed, and it is
equal to $300.

(ii) If the pay is more than $1,600, but less than or equal to $3,000, the
bonus will be 10% of the pay subject to a maximum of $240.

(iii) If the pay is less than or equal to $1,600, the bonus is 15% of pay,
subject to a minimum of $100.

Task Analysis. The input required here is the pay amount that an employee
gets. On the basis of the pay, we can determine the bonus amount. The “sub-
ject to maximum” or the “subject to minimum” clause implies that the calcu-
lated amount should be compared with the maximum or minimum limit. If
it is more than the maximum limit or less than the minimum limit, then the
maximum limit or the minimum limit will be treated as the legitimate value.

The algorithm corresponding to Problem 2.8 is given below:

 Step 1. INPUT TO PAY
 Step 2. IF PAY > 3000
 THEN BONUS ← 300
 ELSE
 IF PAY > 1600
 THEN BONUS ← PAY* 10/100
 IF BONUS > 240
 THEN
 BONUS ← 240
 END-IF
 ELSE

Flowchart-and-Algorithm-Basics_CH-02.indd 30 6/12/2020 2:37:07 PM

ProBlems involving selection • 31

 BONUS ← PAY* 15/100
 IF BONUS < 100
 BONUS ← 100
 END-IF
 END-IF
 END-IF
 Step 3. PRINT BONUS
 Step 4. STOP

START

INPUT PAY

IS
PAY >
3000 ?

Bonus 300�

IS
PAY >
1600 ?

Bonus PAY� 10/100�

Bonus PAY × 15/100�
IS

BONUS
> 240 ?

Bonus 240�

IS
BONUS
< 100 ?

Bonus 100�

PRINT BONUS

P

P

P

STOP

Yes

No

Yes

No
Yes

No
Yes

No

Yes

Flowchart-and-Algorithm-Basics_CH-02.indd 31 6/12/2020 2:37:07 PM

32 • Flowchart and algorithm Basics

Problem 2.9. A certain steel is graded according to the following conditions:

(i) Rockwell hardness > 50
(ii) Carbon content > 0.7
(iii) Tensile strength > 5600 kg/cm2

The steel is graded as follows:

a. Grade 10, if all the conditions are satisfied
b. Grade 9, if conditions (i) and (ii) are satisfied
c. Grade 8, if conditions (ii) and (iii) are satisfied
d. Grade 7, if conditions (i) and (iii) are satisfied
e. Grade 0, otherwise

START

INPUT RH, TS, CC

IS
RH >
50 ?

IS
TS >

5600 ?

IS
CC >

7 ?
GRADE 10�

RH = Rockwell Hardness
TS = Tensile Strength
CC = Carbon Content

Yes Yes Yes

IS
TS >

5600 ?

IS
CC >

7 ?

No

GRADE 7

No No No

Yes
GRADE 9

P

P

IS
CC >

7 ?

GRADE 0

P

a
No

No a

Yes

Yes

GRADE 8
P

PRINT GRADE

STOP

Flowchart-and-Algorithm-Basics_CH-02.indd 32 6/12/2020 2:37:08 PM

ProBlems involving selection • 33

Task Analysis. We must determine the grade of the steel on the basis of
the values of three characteristics, namely, the Rockwell hardness, carbon
content, and tensile strength. The values of these three features are the input.

The algorithm corresponding to Problem 2.9 is given below:

 Step 1. INPUT TO RH, TS, CC
 Step 2. IF RH > 50
 THEN IF TS > 5600
 THEN IF CC > 0.7
 THEN GRADE ← 10
 ELSE
 GRADE ← 7
 END-IF
 ELSE
 IF CC > 0.7
 THEN GRADE ← 9
 ELSE
 GRADE ← 0
 END-IF
 END-IF
 ELSE
 IF TS > 5600
 THEN IF CC > 0.7
 THEN GRADE ← 8
 ELSE
 GRADE ← 0
 END-IF
 ELSE
 GRADE ← 0
 END-IF
 Step 3. PRINT GRADE
 Step 4. STOP

Problem 2.10. Construct a flowchart to show how the greatest of the three
given numbers can be obtained.

Task Analysis. This problem is similar to the problem for finding the greater
of two given numbers. The only difference is that two successive comparisons
are needed because three numbers cannot be compared at a time.

Flowchart-and-Algorithm-Basics_CH-02.indd 33 6/12/2020 2:37:08 PM

34 • Flowchart and algorithm Basics

START

INPUT A, B, C
A, B, and C hold
the numbers

IS
A > B

?

IS
A > C

?
G A��

G holds the
greatest number

IS
B > C

?

G C��

G B��

PRINT G

Yes Yes

No No

No

Yes

STOP

The following algorithm shows the procedure to follow for Problem 2.10:

 Step 1. INPUT TO A, B, C
 (Accept three numbers for A, B, and C)
 Step 2. IF A > B
 THEN IF A > C
 THEN G ← A
 (G holds the desired number)
 ELSE
 G ← C
 END-IF
 ELSE
 IF B > C
 THEN G ← B
 ELSE
 G ← C
 END-IF

Flowchart-and-Algorithm-Basics_CH-02.indd 34 6/12/2020 2:37:08 PM

ProBlems involving selection • 35

 END-IF
 Step 3. PRINT “THE GREATEST OF THE GIVEN NUMBERS IS”, G
 Step 4. STOP

Problem 2.11. A bookseller offers two rates of commissions. If the price of a
book is below $100, the rate of commission is 12% of the price, otherwise, it is
18% of the price. Develop a procedure to determine the discount and the net
price of a book.

Task Analysis. The outputs required are the discount and net price of a book.
The only input required for this purpose is price of the book. The rates of the
discount are constants (fixed). These rates can be used to develop formulas to
calculate the discounts in the two different cases. The calculated discount can
then be subtracted from the price of the book to obtain the net price.

�

�

Note that the procedure suggests the printing of a message when some
absurd input is provided.

Flowchart-and-Algorithm-Basics_CH-02.indd 35 6/12/2020 2:37:08 PM

36 • Flowchart and algorithm Basics

The algorithm corresponding to Problem 2.11 is given below:

 Step 1. INPUT TO P
 (Accept the price of a book in P)
 Step 2. IF P <= 0
 THEN PRINT “INVALID PRICE”
 ELSE
 IF P < 100
 COMPUTE D ← P*0.12 (Store the calculated discount in D)
 ELSE
 COMPUTE D ← P*0.18
 END-IF
 END-IF
 Step 3. COMPUTE NET_PRICE ← P − D
 Step 4. PRINT D, NET_PRICE
 Step 5. STOP

EXERCISES

Construct flowcharts for the following problems:

 (i) Print a currency conversion table for pounds, francs, marks, and lire to
dollars.

 (ii) Find whether a given year is a leap year.

 Hint. A year is said to be a leap year if it is either divisible by 4 but not
by 100 or divisible by 400.

 (iii) Validate a given year.

 Hints. The year in the date must be greater than zero, the months
must lie between 1 and 12, and the days must lie between 1 and 31,
depending on the month numbers.

 (iv) Show the time required by an advertising agency for its advertising
program to run in Boston and on National Public Radio and to display
the amount to be paid by the agency for its advertisement.

Flowchart-and-Algorithm-Basics_CH-02.indd 36 6/12/2020 2:37:08 PM

ProBlems involving selection • 37

 (v) Calculate the commission of a salesman when sales and the region of
the sales are given as input. The commission is calculated with the rules
as follows:

 (a) No commission, if sales < $9,000 in Region A

 (b) 5.5% of sales < $7,000 in Region B and when sales < $13,000 in
Region A

 (c) 7.5% of sales when sales > = $14,000 in Region A and when sales >
= $13,000 in Region B.

 (vi) Accept three integers representing the angles of a triangle in degrees
to determine whether they form a valid set of angles of a triangle. If it
is not a valid set, then generate a message and terminate the process. If
it is a valid set, then the process determines whether it is equiangular
(all three angles are the same). It also determines if the triangle is right
angled (has one angle with 90 degrees), obtuse angled (one angle above
90), or acute angled (all three angles are below 90 degrees). Finally, it
shows conclusion about the triangle.

 (vii) Accept the lengths of the three sides of a triangle to validate whether
they can be the sides of a triangle and then classify the triangle as equi-
lateral (all three sides are equal), scalene (all three sides are different),
or isosceles (exactly two sides are equal), and then to see whether it is
a right angled triangle (the sum of the squares of two sides is equal to
the square of the third side.)

 Hint. Three numbers are valid as the sides of a triangle if each one is
positive and the sum of every two numbers is greater than the third.

 (viii) Allow the user to perform a simple task on a calculator on the basis of
a given choice as follows:

 +, −, ×, /, or % representing the arithmetic operators

 A Average of two numbers

 X Maximum of two numbers

 M Minimum of two numbers

 S Square of two numbers

 Q Quit

Flowchart-and-Algorithm-Basics_CH-02.indd 37 6/12/2020 2:37:08 PM

38 • Flowchart and algorithm Basics

 (ix) An electricity board charges the following rates to domestic users to
discourage large consumption of energy:

 for the first 100 units—$.85 per unit

 for the next 200 units—$1.45 per unit

 Beyond 300 units—$1.85 per unit

 All users are charged a minimum of $ 500.00. If the total cost is more
than $ 2,500.00, then an additional surcharge of 3% of the total cost is
added to the total cost to determine the final bill.

 (x) To determine and print the minimum number of currency notes of the
denominations: $1, $5, $10, $20, $50, $100, $500 and $1000 required
to pay any given amount.

Flowchart-and-Algorithm-Basics_CH-02.indd 38 6/12/2020 2:37:08 PM

C H A P T E R 3
PROBLEMS INVOLVING
LOOPING

INTRODUCTION

In the flowcharts of the preceding chapter, we demonstrated the sequence
and selection logic structures. We now move to the iteration logic structure.

The term iteration means repetition. Sometimes, a procedure should
be executed repeatedly. All procedures should be built so that they can be
repeated as many times as needed. We should not develop procedures to
execute only once. Otherwise, calculators could be sufficient to obtain the
results. An iterative logic structure is also known as a loop. Looping means
repeating a set of operations to obtain a result repeatedly.

An iteration may be implemented in two ways: a pre-test iteration and
post-test iteration. In case of a pre-test iteration, a predicate is tested to
decide whether a set of operations is to be performed or not. If the condition
implied by the predicate is true, then the desired operations are performed.
If it is false, then the iteration is terminated. This is shown in the following
diagram.

Flowchart-and-Algorithm-Basics_CH-03.indd 39 6/12/2020 2:37:29 PM

40 • Flowchart and algorithm Basics

Is
P true

?

Exit

R

R

For a post-test iteration, the predicate is tested after performing a set
of operations once to decide whether to repeat the set of operations or to
 terminate the repetition. If the condition happens to be true, then the set
of operations is repeated; otherwise, it is not repeated. The diagrammatic
 structure of this logic is as follows.

Is
P true

?

Exit

No

Yes

Note that the operations in the loop must be performed at least once in
the case of a post-test iteration.

Flowchart-and-Algorithm-Basics_CH-03.indd 40 6/12/2020 2:37:29 PM

ProBlems involving looPing • 41

The concept of looping is demonstrated in the following flowchart. Of
course, there should be a condition for normal termination. Let us assume
that the repetitive task of calculating the discounts and net prices is terminated
when we provide negative or zero as the price for the input. Such absurd
 values are justified for the termination of loops so that the procedure can
remain valid for any possible value of the price. We usually use out- connectors
and in-connectors with the same label to demonstrate the end point and start
point of a loop. These are shown in the flowchart of Problem 2.11.

The algorithm corresponding to the flowchart is below:

 Step 1. REPEAT STEPS 2 THROUGH 6 (Start Loop)
 Step 2. INPUT TO P
 Step 3. IF P ≤ 0 THEN EXIT (Stop Repetition, i.e., transfer the control

to STOP).

Flowchart-and-Algorithm-Basics_CH-03.indd 41 6/12/2020 2:37:29 PM

42 • Flowchart and algorithm Basics

 Step 4. If P < 100
 THEN COMPUTE D ← P*0.12
 ELSE COMPUTE D ← P*0.18
 END-IF
 Step 5. COMPUTE NET_PRICE ← P – D
 Step 6. PRINT D, NET_PRICE (End of loop)
 Step 7. STOP

Note that the out-connector R shows the end point of the loop and the
in-connector. R shows the start point of the loop. The operations start-
ing from the point of the accepting the input price up to the points of printing
the output discount and net price are within the loop. It could have been
demonstrated without using connectors.

However, we prefer the first flowchart to the following one, because if the
flowchart cannot be accommodated on a single page (or in a continuous struc-
ture on a single page), it would be difficult or impossible difficult to connect
the start point and the end point.

Flowchart-and-Algorithm-Basics_CH-03.indd 42 6/12/2020 2:37:31 PM

ProBlems involving looPing • 43

Problem 3.1. The salesmen of a sales firm are given a commission on sales
achieved, using the following rules:

 Sales Rate of commission
 <= 5,000 7% of sales
 > 5,000 but <= 10,000 9% of sales + $500
 > 10,000 but <= 20,000 11% of sales + $1,000
 > 20,000 but <= 25,000 13% of sales + $2,000
 > 25,000 15% of sales + $4,000

Devise a procedure to calculate the commission of the salesmen.

Task Analysis. The output required is the commission earned by a salesman.
The only input required is the amount of the sale. A number of decision- making
steps are involved, and the process is likely to be repeated a number of times.
Let us assume that the process can be terminated when the amount of the sale
is zero or negative. The procedure is illustrated in the following flowchart.

The algorithm corresponding to Problem 3.1 is given below:

 Step 1. REPEAT STEPS 2 THROUGH 5
 Step 2. INPUT TO S
 (Accept sales amount in S)
 Step 3. If S <= 0
 THEN EXIT
 END-IF
 Step 4. IF S <= 5000
 THEN COMPUTE COM ← S * .07
 ELSE
 IF S <= 10000
 THEN COMPUTE COM ← S * .09 + 500
 ELSE
 IF S <= 20000
 THEN COMPUTE COM ← S * 0.11 + 1000
 ELSE
 IF S <= 25000
 THEN COMPUTE COM ← S * 0.13 + 2000
 ELSE
 COMPUTE COM ← S * 0.15 + 4000
 END-IF
 END-IF
 END-IF
 END-IF
 Step 5. PRINT COM
 Step 6. STOP

Flowchart-and-Algorithm-Basics_CH-03.indd 43 6/12/2020 2:37:31 PM

44 • Flowchart and algorithm Basics

START

INPUT S

IS
S <= 0

?
STOP

Com S 0.07� �

Yes

Yes

Com S .15 + 4000� �

No

No

R

P

Com S 0.09 + 500� �Yes P

Com S 0.11 + 1000� �Yes P

Com S 0.13 + 2000� �Yes P

No

No

No

PRINT COM

R

P

IS
S <= 5000

?

IS
S <= 10000

?

IS
S <= 20000

?

IS
S <= 25000

?

S contains the sales amount

Flowchart-and-Algorithm-Basics_CH-03.indd 44 6/12/2020 2:37:32 PM

ProBlems involving looPing • 45

Problem 3.2. A sales organization offers a fixed salary and a percentage of
sales as a commission to determine the monthly remuneration of an employee
under the following conditions.

If the sales amount of an employee exceeds $5,000, then the commission is 12%
of the sales that exceed $5,000; otherwise, it is nil. Draw a flowchart to show
how the remuneration of an employee is decided.

Task Analysis. The remuneration of an employee consists of two parts: a
fixed salary part and a commission part that depends on the sales amount.
We use the fixed salary part and the sales amount as input to determine the
commission and hence, the remuneration.

START

Input FSAL, SAMT

IS
SAMT > 5000

?

Yes

Com 0�

REMU FSAL + COM�

PRINT REMU

No

FSAL = Fixed salary
SAMT = Sales amount

FINISH = “N”

R

Com (SAMT – 5000) .12� �

Com = Commission
REMU = Remuneration

PRINT “FINISH HERE ?(Y/N)” STOPINPUT TO FINISH
IS

FINISH =
“N”

Yes

R

No

Flowchart-and-Algorithm-Basics_CH-03.indd 45 6/12/2020 2:37:32 PM

46 • Flowchart and algorithm Basics

The algorithm corresponding to Problem 3.2 is given below:

 Step 1. FINISH ← “N”
 Step 2. REPEAT STEPS 3 THROUGH 9 WHILE FINISH = “N”
 Step 3. INPUT TO FSAL, SAMT
 Step 4. IF SAMT > 5000
 THEN COMPUTE COM ← (SAMT – 5000) ∗ .12
 ELSE
 COM ← 0
 END-IF
 Step 5. COMPUTE REMU ← FSAL + COM
 Step 6. PRINT “REMUNERATION IS”, REMU
 Step 7. PRINT “FINISH (Y/N)?”
 Step 8. INPUT TO FINISH
 Step 9. IF FINISH = “Y”
 THEN EXIT
 END-IF
 Step 10. STOP

Problem 3.3. A labor contractor pays the workers at the end of each week
according to the rules given below:

For the first 35 hours of work, the rate of pay is $15 per hour; for the next 25
hours, the rate of pay is $18 per hour; for the rest, the rate of pay is $26 per
hour. No worker is allowed to work for more than 80 hours in a week. Develop
a flowchart to show how the wages of the workers can be calculated on the
basis of valid inputs.

Task Analysis. The input required is the total number of hours worked. The
rates of payment depend on the different numbers of hours worked. The total
hours worked may be considered valid if the number lies in the range of 0
through 80. Our procedure for evaluating the wage consists of the (i) validation
of the hours worked, (ii) identifying the category to which the hours worked
pertain, and then (iii) applying different rates to calculate the wage. The pro-
cedure is shown within a loop, and it is terminated when zero or a negative
value is given as the input against hours worked.

The algorithm corresponding to Problem 3.3 is given below:

 Step 1. REPEAT STEPS 2 THROUGH 6
 Step 2. INPUT TO TH
 Step 3. IF TH <= 0
 THEN EXIT
 END-IF

Flowchart-and-Algorithm-Basics_CH-03.indd 46 6/12/2020 2:37:32 PM

ProBlems involving looPing • 47

START

INPUT TH

IS
TH ≤ 0

?

Yes

TH is the total hours
worked

R

STOP

IS
TH > 80

?

Yes
PRINT “INVALID HOURS” R

No

IS
TH 35

?
�

Yes
WAGE � TH�15 P

IS
TH 60

?
≤

Yes
WAGE � 35�15 + (TH – 35)�18 P

WAGE � 35�15 + 25�18 + (TH – 60)�25

PRINT WAGE

R

No

No

No

P

 Step 4. IF TH > 80
 THEN PRINT “INVALID HOURS”
 CONTINUE
 END-IF
 Step 5. IF TH <= 35
 THEN COMPUTE WAGE ← TH*15
 ELSE
 IF TH <= 60
 THEN COMPUTE WAGE ← 35*15 + (TH–35)*18

Flowchart-and-Algorithm-Basics_CH-03.indd 47 6/12/2020 2:37:33 PM

48 • Flowchart and algorithm Basics

 ELSE
 COMPUTE WAGE ← 35*15 + 25*18 + (TH–60)*25
 END-IF
 END-IF
 Step 6. PRINT “WAGE IS”, WAGE
 Step 7. STOP

Problem 3.4. In New Delhi, the telephone bill is calculated according to the
following rules for the first 300 calls, the bill is fixed and it is equal to Rs. 500;
for the next 65 calls, the rate per call is Re. 0.95; for the next 90 calls, the rate
per call is Rs. 1.50; for calls beyond that the rate per call is Rs. 2.25 per call.

Develop a flowchart to show how the telephone bill is calculated.

Task Analysis. The input required is the number of calls and the output
required is the total bill for the telephone calls. Note that the rates vary only
for the excess number of calls in a particular category. The following flowchart
demonstrates the formulas for calculating the bill.

The algorithm of the solution for Problem 3.4 is given below:

 Step 1. REPEAT STEPS 2 THROUGH 5 UNTIL CALLS < 0
 Step 2. INPUT TO CALLS
 Step 3. IF CALLS < 0 THEN EXIT
 Step 4. IF CALLS < = 300
 THEN BILL ← 500
 ELSE
 IF CALLS <= 365
 THEN COMPUTE BILL ← 500 + (CALLS – 300) * 0.95
 ELSE
 IF CALLS <= 455
 THEN COMPUTE BILL ← 500 + 65*0.95 + (CALLS –

365)*1.50
 ELSE
 COMPUTE BILL ← 500 + 65*0.95 + 90*1.50 + (CALLS –

455)*2.25
 END-IF
 END-IF
 END-IF
 Step 5. PRINT “THE TELEPHONE BILL IS”, BILL
 Step 6. STOP

Flowchart-and-Algorithm-Basics_CH-03.indd 48 6/12/2020 2:37:33 PM

ProBlems involving looPing • 49

Flowchart-and-Algorithm-Basics_CH-03.indd 49 6/12/2020 2:37:33 PM

50 • Flowchart and algorithm Basics

Problem 3.5. The cost of living (CL), the travel allowance (TA), and medical
allowance (MA) of the employees of a company are decided according to the
following rules:

CL = 123.75% of the Basic Pay, subject to a minimum of $2,000 and a
 maximum of $5,000.
TA = 57.5% of the Basic Pay, subject to a minimum of $300.
MA = 73.5% of the Basic Pay, subject to a maximum of $2,000.
Draw a flowchart to show how CL, TA, and MA are calculated.

Task Analysis. The allowances are based on the Basic Pay of an employee.
Our input will be the basic pay of the employee for whom the allowances are
to be determined. The statement “123.75% of the basic pay subject to a min-
imum of $2,000 and a maximum of $5,000” implies that 123.75% of the basic
bay is calculated first and then the calculated value is compared with 2,000;
if it is less than $2,000, then the company promises to pay $2,000; if it is not
less than $2,000 then it will be compared with $5,000; if it exceeds $5,000, the
company will not pay the excess amount, i.e., it agrees to pay, at most, $5,000:
If the calculated value lies in between the two given limits, then that amount
will be given as CL. Similarly, the other allowances will be determined. This
is demonstrated in the flowchart given on next page.

The algorithm corresponding to the above problem has been given below:

 Step 1. CH ← “Y”
 Step 2. REPEAT STEPS 3 THROUGH 14 WHILE CH = “Y”
 Step 3. INPUT TO BASIC
 Step 4. COMPUTE CL ← BASIC*123.75/100
 Step 5. IF CL < 2000
 THEN CL ← 2000
 ELSE
 IF CL > 5000
 THEN CL ← 5000
 END-IF
 END-IF
 Step 6. PRINT CL
 Step 7. COMPUTE TA ← BASIC*57.5/100
 Step 8. IF TA < 300
 THEN TA ← 300
 END-IF

Flowchart-and-Algorithm-Basics_CH-03.indd 50 6/12/2020 2:37:33 PM

ProBlems involving looPing • 51

START

INPUT BASIC

Yes

BASIC = Basic pay of
an employee

R

CL ��2000

Yes
P

No

IS
CL >
5000 ?

CL BASIC 123.75/100� �

CH “Y”�

IS
CL <
2000 ?

P

PRINT CL

TA BASIC 57.5/100� �

Yes
TA 300�

PRINT TA

C

IS
TA <
300 ?

No

No

P

CL ��5000

Flowchart-and-Algorithm-Basics_CH-03.indd 51 6/12/2020 2:37:33 PM

52 • Flowchart and algorithm Basics

C

MA BASIC 0.735� �

IS
MA >
2000 ?

Yes

Yes

MA 2000�

No

PRINT MA

PRINT “CONTINUE ? (Y/N)” INPUT TO CH

IS
CH =
‘N’ ?

STOP

No

R

 Step 9. COMPUTE MA ← BASIC*0.735
 Step 10. IF MA > 2000
 THEN MA ← 2000
 END-IF
 Step 11. PRINT MA
 Step 12. PRINT “CONTINUE? (Y/N)”
 Step 13. INPUT TO CH
 Step 14. IF CH = “N”
 THEN EXIT
 END-IF
 Step 15. STOP

Problem 3.6. Devise a procedure to find the sum of first n natural numbers,
where n is any given integer, without using a formula.

Task Analysis. Natural numbers are those numbers that are obtained through
sequential counting. The starting number here for the summation process
is 1, the next number is 2 and so on, until we reach n—the number of natural
numbers to be summed. The numbers to be added are known as inputs and

Flowchart-and-Algorithm-Basics_CH-03.indd 52 6/12/2020 2:37:34 PM

ProBlems involving looPing • 53

can be generated by instructing the computer. We assign the value 1 to a
variable to simulate the first natural number. We then add the value of the
variable to an accumulator. The accumulator must then contain some initial
value to make the summation process semantically correct, i.e., meaningful.
This initial value must be 0 in this case because we are adding the first num-
ber. We can then increase the value of the variable containing the first natural
number by 1. This next number, which is 2 in this case, can then be added
to the current value of the accumulator to obtain the sum of first two natural
numbers. In this way, we can continue the generation and summation process
until we add up all the natural numbers, including N, for some given value
of N. But we must also keep a count of the numbers that are being added;
otherwise we will not be able to decide whether we have added the desired
N numbers or not. A variable is used here as a counter. This counter must be
initialized to zero first, from which we can increment its value each time by 1
when we add some number to the value of the accumulator.

START

SUM 0
I 1

���
�����

INPUT N

SUM SUM + I��� A natural number is added that contains I

I I + 1��� Next natural number is generated

IS
I > N

?

Yes PRINT “SUM IS”, SUM

STOP

R

No

R

SUM is the accumulator for the total. I is the natural
number being added, and COUNT keeps count of
the numbers added.

Flowchart-and-Algorithm-Basics_CH-03.indd 53 6/12/2020 2:37:34 PM

54 • Flowchart and algorithm Basics

The algorithm corresponding to Problem 3.6 is shown below:

 Step 1. INPUT “ENTER NUMBER OF TERMS TO ADD” TO N
 Step 2. SUM ← 0 [INITIALIZATION]
 Step 3. I ← 1 [INITIALIZATION]
 Step 4. REPEAT STEPS 5 THROUGH 6 WHILE I <= N.
 Step 5. COMPUTE SUM ← SUM + I
 Step 6. COMPUTE I ← I + 1
 Step 7. PRINT “THE SUM IS”, SUM
 Step 8. STOP

Problem 3.7. Draw a flowchart to show how to obtain the sum of the first
30 natural numbers.

Task Analysis. This problem is similar to Problem 3.6. The only difference is
that the number of natural numbers to be added up is given as a constant (30).
We do not need input from the user.

START

SUM 0
I 1
COUNT 0

����
������

���
Initialization is complete

IS
COUNT =

30 ?

Yes
PRINT SUM

STOP

R

No

R

SUM SUM + I
COUNT COUNT +1

������
���

I I + 1�

Flowchart-and-Algorithm-Basics_CH-03.indd 54 6/12/2020 2:37:34 PM

ProBlems involving looPing • 55

The algorithm corresponding to Problem 3.7 is shown below:

 Step 1. SUM ← 0, I ← 1, COUNT ← 0
 [Initialize the variables required]
 Step 2. REPEAT STEPS 3 THROUGH 5 WHILE COUNT <= 30
 Step 3. COMPUTE SUM ← SUM + I
 Step 4. COMPUTE COUNT ← COUNT + 1
 Step 5. COMPUTE I ← I + 1
 Step 6. PRINT “THE SUM IS”, SUM
 Step 7. STOP

Problem 3.8. Draw a flowchart to show how to find the product of first 10
natural numbers.

START

PRODUCT 1
NUM 1
CNT 0

���
�����

������

PRODUCT is for the product number
NUM is the number to be multiplied
CNT keeps count

IS
CNT =

10 ?

Yes
PRINT PRODUCT

STOP

C

No

C

PRODUCT PRODUCT NUM
CNT CNT +1

�� �
�����

NUM NUM + 1��

The product is obtained with
the current value of NUM, CNT
is incremented by 1

The next number is
generated and stored
in NUM

Flowchart-and-Algorithm-Basics_CH-03.indd 55 6/12/2020 2:37:34 PM

56 • Flowchart and algorithm Basics

Task Analysis. We require the product of the first 10 natural numbers. The
natural numbers are defined in the task analysis of Problem 3.6, so the nat-
ural numbers can be generated similarly. To hold the product, we require a
location that is initialized with 1 so that we can specify how to obtain the new
product by multiplying the current product by the natural number currently
in use. This is because only the initial value 1 will keep the content of the
location for the product unchanged when the value of the product location is
multiplied by 1.

The algorithm showing solution to Problem 3.8 is as follows:

 Step 1. PRODUCT ← 1, NUM ← 1, CNT ← 0
 (Initialize the variables required)
 Step 2. REPEAT STEPS 3 THROUGH 5 WHILE CNT <= 10
 Step 3. COMPUTE PRODUCT ← PRODUCT*NUM
 Step 4. COMPUTE CNT ← CNT + 1
 (Increment the Counter)
 Step 5. COMPUTE NUM ← NUM + 1 (The next number is generated)
 Step 6. PRINT “THE PRODUCT IS”, PRODUCT
 Step 7. STOP

Problem 3.9. Draw a flowchart to find the sum of first 15 even natural
 numbers.

Task Analysis. We know that the first natural even number is 2 and the next
natural even number, i.e., the second even number, can be obtained by add-
ing 2 to the first natural number. The successive natural even numbers can be
obtained by adding 2 to the preceding natural even number. These even num-
bers can be accumulated in a location by adding the generated even number
each time to the accumulator, which contains zero.

A count of the numbers added will enable us to check whether first 15
even natural numbers have been added up or not. No input is required from
the user during the time of execution.

The algorithm showing the solution of Problem 3.9. is given below:

 Step 1. [Initialize the accumulator, counter and variable]
 SUMM ← 0, CNT ← 0, NUM ← 2
 Step 2. REPEAT STEPS 3 THROUGH 5 WHILE CNT < 15
 Step 3. COMPUTE SUMM ← SUMM + NUM
 Step 4. COMPUTE CNT ← CNT + 1
 Step 5. COMPUTE NUM ← NUM + 2
 Step 6. PRINT “THE DESIRED SUM IS”, SUMM
 Step 7. STOP

Flowchart-and-Algorithm-Basics_CH-03.indd 56 6/12/2020 2:37:34 PM

ProBlems involving looPing • 57

START

NUM 2
SUMM
CNT 0

0
����
�����

������

NUM is for the first natural even number
SUMM is the sum
CNT is the count

IS
CNT =

15 ?

Yes
PRINT SUMM

STOP

R

No

R

SUMM SUMM + NUM��

NUM NUM + 2��

The even number held in NUM is added
to the content of SUMM and stored in
SUMM again

CNT CNT + 1��
The value of the counter CNT is
increased by 1 and stored in CNT itself.

Problem 3.10. Construct a flowchart to show how consecutive even num-
bers starting from 2 are summed up until the sum just exceeds 1000 and then
show the sum and the number of even numbers added.

Task Analysis. The starting input is given as the first even number and we
are required to sum up the consecutive even numbers. These even numbers
can be generated by adding 2 each time to the preceding even number, as
shown earlier. The terminating condition is not a count, but the total of the
even numbers being summed up when the total exceeds 1000. A count of
the numbers added to make the sum exceeding 1000 is also required in the
output, so we need to maintain a counter also. As the input data values can be

Flowchart-and-Algorithm-Basics_CH-03.indd 57 6/12/2020 2:37:35 PM

58 • Flowchart and algorithm Basics

generated through a procedure easily, we need not accept any input from the
terminal during the time of execution.

The solution of Problem 3.10 is as follows:

 Step 1. [Initialize the required variables]
 SUMM ← 0, N ← 2, CNT ← 0
 Step 2. REPEAT STEPS 2 THROUGH 5 UNTIL SUMM > 1000
 Step 3. COMPUTE SUMM ← SUMM + N
 Step 4. COMPUTE CNT ← CNT + 1
 Step 5. COMPUTE N ← N + 2
 Step 6. STOP

START

SUMM 0
N 2
CNT 0

��
������
����

SUMM is the accumulator that holds the sum
N holds the even number to be added

IS
SUMM >

1000
?

Yes
PRINT SUMM, CNT

STOP

R

No

R

SUMM SUMM + N
CNT CNT +1

��
����

N N + 2��

The current even number held in N
is added to the current value of SUMM
and the sum is stored back in SUMM,
CNT is incremented by 1.

The next even number is generated by adding 2 to
current value of N and the sum is stored back
N now contains the next even number to be added.

the
in N.

Problem 3.11. Construct a flowchart to print the numbers below 100 that
are divisible by 7.

Task Analysis. The numbers below 100 divisible by 7 can be obtained in
two ways. First, they can be obtained using the multiples of 7 below 100, and

Flowchart-and-Algorithm-Basics_CH-03.indd 58 6/12/2020 2:37:35 PM

ProBlems involving looPing • 59

second, by taking the natural numbers from 1 to 100 and then by checking
whether the number is divisible by 7. A number will be called divisible by 7
if the integer division of the number by 7 gives no remainder. The flowchart
illustrated below is based on the second approach, where the natural numbers
are generated and then tested for the divisibility.

START

N ��������1

IS
N > 100

?

Yes
STOP

X

No

X

R Remainder of N/7�������

IS
R = 0

?

Yes
PRINT N

N N + 1��������

No
C

C

The solution of Problem 3.11 is shown in the following algorithm:

 Step 1. [Initialize the variable that will contain the number]
 N ← 1
 Step 2. REPEAT STEPS 3 THROUGH 5 WHILE N <= 100
 Step 3. COMPUTE R ← Remainder of (N/7)
 Step 4. IF R = 0
 THEN PRINT N
 END-IF
 Step 5. COMPUTE N ← N + 1
 (Increment the value of N)
 Step 6. STOP

Flowchart-and-Algorithm-Basics_CH-03.indd 59 6/12/2020 2:37:35 PM

60 • Flowchart and algorithm Basics

Problem 3.12. A used bicycle shop lends bicycles with the following rules:

A deposit of $150 must be made before taking any bicycle from the shop. The
charges for hiring depend on the month in which it is hired. If the number of
days of hire exceeds 15, a discount of 11% is offered. The hire-rate is deter-
mined as per the following rules:

 Month name Rate/day (in $)
 Jan. to Mar. 1.75
 April to June 1.65
 July to Sept. 1.50
 Oct. to Dec. 1.15

In case of multiple day hiring, the rate is same for all days as on the first day
of hiring. Develop a flowchart showing the logic to calculate the amount to be
paid before taking any bicycle from the shop.

Task Analysis. For the first three months of the year, that is, for the month
numbers less than or equal to three, the rate of charge is the same. For the
next three, but less than or equal to six, the rate of charge is the same. The
next three months and the last three months are at a similar rate. To deter-
mine the charge for taking a bicycle from the shop, we require two inputs:
the number of the month in which a request is made for hire and the number
of days for which the hire is effective. However, the month number given as
input should be validated first and then the number of days for hire should be
accepted as input. As the rates for the month numbers are given, the calcula-
tion of the charge of hiring after discount, if any, is very simple and is shown
in the flowchart for Problem 3.12.

The solution of Problem 3.12 is shown in the following algorithm:

 Step 1. REPEAT STEPS 2 THROUGH 9
 Step 2. INPUT TO MNO
 Step 3. IF MNO = 0
 THEN EXIT
 END-IF
 Step 4. IF MNO > 12
 THEN PRINT “INVALID MONTH NUMBER”
 CONTINUE
 END-IF
 Step 5. INPUT TO ND
 (Accept no. of days)

Flowchart-and-Algorithm-Basics_CH-03.indd 60 6/12/2020 2:37:35 PM

ProBlems involving looPing • 61

START

INPUT MNO

IS
MNO = 0

?

Yes
STOP

No

No

C

Yes
SHOW AN ERROR MESSAGE

INPUT ND

C

MNO is the number of the month

IS
MNO >

12 ?

Number of days

YesIS
MNO

3 ?
≤ CHG ND 1.75� � P

YesIS
MNO

6 ?
≤ CHG ND 1.65� � P

No

YesIS
MNO

9 ?
≤ CHG ND 1.50� � P

No

R

Flowchart-and-Algorithm-Basics_CH-03.indd 61 6/12/2020 2:37:35 PM

62 • Flowchart and algorithm Basics

R

CHG ND 1.15� �

P

IS
ND > 15

?

Yes D CHG .11� � Discount = D

D 0�

No

CHG 150 + CHG–D� DISPLAY CHG C

No

 Step 6. IF MNO <= 3
 THEN COMPUTE CHG ← ND*1.75
 ELSE
 IF MNO <= 6
 THEN COMPUTE CHG ← ND*1.65
 ELSE
 IF MNO <= 9
 THEN COMPUTE CHG ← ND*1.50
 ELSE
 COMPUTE CHG ← ND*1.15
 END-IF
 END-IF
 END-IF
 Step 7. IF ND > 15
 THEN COMPUTE D ← CHG∗.11
 ELSE
 D ← 0
 END-IF
 Step 8. COMPUTE CHG ← 150 + CHG – D
 Step 9. DISPLAY “THE CHARGE FOR HIRING”, CHG
 Step 10. STOP

Problem 3.13. Draw a flowchart for the following problem to determine
the grade. There are 3 tests for 3 different subjects. On the basis of grades in
the three subjects, M1, M2, and M3, a grade is awarded to each student as
per the following rules:

Flowchart-and-Algorithm-Basics_CH-03.indd 62 6/12/2020 2:37:35 PM

ProBlems involving looPing • 63

a. If the score in each subject is more than 80, and the total is more than
250, the grade is A +

b. If the score in each subject is more than 60, and the total is more than
200, the grade is A

c. If the score in any one or more subjects is less than 50, the grade is F
d. In all other cases, the grade is B.

Task Analysis. This problem involves the task of nested decision-making.
The inputs required are the grades for the three subjects. In addition, a stu-
dent identification number may be accepted as input. The procedure will
include calculation of the total grades obtained by a student and then com-
parison of the individual grades and the total grades according to the rules of
gradation to determine the grade.

START

INPUT STNO

IS
STNO = 0

?

Yes
STOP

No

C

INPUT M1, M2, M3

STNO is the student number

Grades for the first subject
Grades for the second subject
Grades for the third subject

YesIS
M1 < 50

?
GRADE “F”�� P

YesIS
M2 < 50

?
A

No

Yes
A

No

TOT M1 + M2 + M3��

A

IS
M3 < 50

?

TOT is to hold the
GRAND_TOTAL

R

No

Flowchart-and-Algorithm-Basics_CH-03.indd 63 6/12/2020 2:37:36 PM

64 • Flowchart and algorithm Basics

IS
M1 > 80

?

R

Yes
GRADE “A +”←

IS
M1 > 60

?

Yes

IS
M2 > 80

?

Yes

IS
M2 > 60

?

Yes

IS
M3 > 80

?

Yes

IS
M3 > 60

?

Yes TOT >
200 ?

TOT >
250 ?

P

GRADE “A”← P

No

No

No

No

No

No

No

No

GRADE “B”←

Print GRADE

P

C

The solution of Problem 3.13 is shown in the following algorithm:

 Step 1. FOR EACH STNO DO
 Step 2. INPUT TO STNO
 Step 3. IF STNO = 0 THEN EXIT
 END-IF
 Step 4. INPUT TO M1, M2, M3
 Step 5. IF M1 < 50 OR M2 < 50 OR M3 < 50
 THEN GRADE ← “F”
 END-IF
 Step 6. COMPUTE TOT ← M1 + M2 + M3
 Step 7. IF M1 > 80 AND M2 > 80 AND M3 > 80 AND TOT > 250
 THEN GRADE ← “A+”
 ELSE IF M1 > 60 AND M2 > 60 AND M3 > 60 AND TOT > 200
 THEN GRADE ← “A”
 ELSE
 GRADE ← “B”
 END-IF
 END-IF
 Step 8. PRINT GRADE
 Step 9. END-FOR
 Step 10. STOP

Flowchart-and-Algorithm-Basics_CH-03.indd 64 6/12/2020 2:37:36 PM

ProBlems involving looPing • 65

Problem 3.14. Construct a flowchart to show how to find the product of N
natural numbers.

Task Analysis. The natural numbers are obtained in the same way as we
found them earlier. The successive numbers are obtained through the con-
secutive addition of 1 to the previously obtained number and the product is
obtained through consecutive multiplication of the previous product and the
newly derived number. This is continued until the number of numbers mul-
tiplied equal N.

START

INPUT N

STOP

Yes
IS

NUMB
> N

?

PRINT PRODUCT

No

PRODUCT 1
NUMB 1

��
��

PRODUCT NUMB�� �PRODUCT

NUMB NUMB + 1��

The algorithm showing the solution of Problem 3.14 is given below:

 Step 1. INPUT TO N
 Step 2. [INITIALIZE VARIABLES REQUIRED]
 PRODUCT ← 1, NUMB ← 1
 Step 3. REPEAT WHILE NUMB <= N
 Step 4. COMPUTE PRODUCT ← PRODUCT*NUMB
 [CALCULATE PRODUCT]
 Step 5. COMPUTE NUMB ← NUMB + 1
 [INCREMENT NUMB]
 Step 6. END-WHILE
 Step 7. PRINT PRODUCT
 Step 8. STOP

Flowchart-and-Algorithm-Basics_CH-03.indd 65 6/12/2020 2:37:36 PM

66 • Flowchart and algorithm Basics

Problem 3.15. Draw a flowchart to show how to find all even natural
 numbers that are divisible by 7 in a given range.

Task Analysis. We require two numbers that can serve as boundary values
between all the desired numbers to be generated. If a number within the
given range is divisible by 7, then it is printed. As the range may include many
numbers, each of the numbers need not be accepted as input from the ter-
minal because it will slow down the whole process. We can generate natural
numbers one by one based on the lower range given, and then we test the
divisibility by 7. A number is said to be divisible by 7 if it leaves no remain-
der when divided by 7. The input is the numbers forming the lower and the
upper ranges between which we test all the numbers, including the numbers
forming the ranges. A loop is required to perform the same task of divisibility
checking with a newly generated number.

START

INPUT LR,UR

R Remainder of (LR/7)←

C

LR is the number of the lower range
UR is the number of the upper range

R is the remainder

Prints the number divisible
by 7 and goes to take the
next number

The next natural number is
generated by increasing
value of LR by 1

IS
R = 0

?

IS
LR > UR

?

PRINT LR

STOP

Yes

Yes

No

No

LR LR + 1←

C

The solution of Problem 3.15 is shown through the following algorithm:

 Step 1. INPUT TO LR, UR

Flowchart-and-Algorithm-Basics_CH-03.indd 66 6/12/2020 2:37:36 PM

ProBlems involving looPing • 67

 Step 2. REPEAT STEPS 3 THROUGH 5 UNTIL
 LR > UR
 Step 3. COMPUTE R ← REMAINDER OF (LR/7)
 Step 4. IF R = 0 THEN PRINT LR END-IF
 Step 5. COMPUTE LR ← LR + 1
 (INCREASE THE VALUE OF LR)
 Step 6. STOP

Problem 3.16. Construct a flowchart to find the sum of the squares of the
first 9 natural numbers that are divisible by 3.

Task Analysis. The problem requires the natural numbers divisible by 3 to
obtain their square values and then to accumulate 9 such consecutive square
values as the sum of the values.

Our procedure to obtain the sum should encompass generating natu-
ral numbers one by one, testing each for divisibility by 3. If one is found to
be divisible, we need to obtain the square of the number to determine the
desired sum.

START

N 1
S 0
C 1

��
��
��

Yes
IS

R = 0
?

R Remainder of (N/3)�

N contains the first natural number
S contains the sum
C holds the count of the desired numbers

I

S S + N�N
C C + 1
��
��

N satisfies the criteria
so its square is added to
the content of S

N N + 1�

Yes

No

IS
C = 9

?

I

PRINT S

STOP

Flowchart-and-Algorithm-Basics_CH-03.indd 67 6/12/2020 2:37:37 PM

68 • Flowchart and algorithm Basics

The solution of Problem 3.16 is shown in the following algorithm:

 Step 1. [INITIALIZE VARIABLES]
 N ← 1
 S ← 1
 C ← 1
 Step 2. REPEAT WHILE C <= 9
 Step 3. COMPUTE R ← REMAINDER OF (N/3)
 Step 4. IF R = 0
 THEN COMPUTE S ← S + N*N
 COMPUTE C ← C + 1
 END-IF
 Step 5. COMPUTE N ← N + 1
 Step 6. PRINT S
 Step 7. STOP

Problem 3.17. Construct a flowchart to show how to find the sum of all the
numbers that are divisible by P but not divisible by Q within a given range.

Task Analysis. We are required to test the natural numbers one by one that
fall within a given range and are divisible by some given number p, but not
divisible by another given number Q. We require four inputs from the user
of this procedure: the lower and upper ranges of the numbers to be checked,
P and Q. The natural numbers can be generated serially, as done earlier. We
have also seen how the divisibility can be checked.

The algorithm of Problem 3.17 is shown below:

 Step 1. INPUT TO LR, UR, P, Q
 Step 2. [INITIALIZE] N ← LR, S ← 0
 Step 3. REPEAT STEPS 4 TO 6 UNTIL N > UR
 Step 4. COMPUTE R1 ← N% P
 COMPUTE R2 ← N% Q
 Step 5. IF R1 = 0 AND R2 NOT = 0
 THEN COMPUTE S ← S + N
 END-IF
 Step 6. COMPUTE N ← N + 1
 Step 7. PRINT S
 Step 8. STOP

Flowchart-and-Algorithm-Basics_CH-03.indd 68 6/12/2020 2:37:37 PM

ProBlems involving looPing • 69

START

INPUT LR, UR, P, Q

N LR←

LR is for the lower range value
UR is for the upper range value
P and Q are defined in the problem against
which divisibility is to be checked.

X

R1 N%P
R2 N%Q

←
←

Yes
IS

R1 = 0
?

C

PRINT S

STOP

Initializing with the first natural number in the range.

S 0← Initializing location for holding the
sum of the desired numbers

R1 holds the remainder when N is divided by P
R1 holds the remainder when N is divided by Q,
% returns the remainder

No

No
IS

R2 = 0
?

C

Yes

S S + N←

N N + 1←

C

IS
N >
UR

?

X

No

Yes

Problem 3.18. Draw a flowchart to show how to obtain the HCF and LCM
of two numbers.

Task Analysis. We know that HCF (Highest Common Factor) of two num-
bers is the largest number that can divide the two numbers without leaving
any remainder and the LCM (Least Common Multiple) of two numbers is the
smaller number that is divisible by both the numbers. The best way to obtain
the HCF is the method of division in which one number is divided by another

Flowchart-and-Algorithm-Basics_CH-03.indd 69 6/12/2020 2:37:37 PM

70 • Flowchart and algorithm Basics

number to see if the remainder is zero. The divisor number is the HCF. If it is
other than zero, then the divisor is made the dividend, the remainder is made
the divisor, and the division is repeated to obtain the remainder again. This
change of dividend and divisor is done repeatedly until we get the divisor that
leaves zero as the remainder and the divisor in the last case is the HCF of the
given numbers.

The easiest way to find the LCM is to use the relationship between the
HCF and LCM. We know that the product of two numbers equals the prod-
uct of their HCF and LCM. The LCM can be obtained by dividing the prod-
uct of the given numbers by that HCF. This is shown below:

LCM HCFof twonumbers oductof the twonumbers

LCMof twonumbers

�� ��

��

Pr
PProductof the twonumbers

HCFof the twonumbers

We require two inputs only: the two numbers we use to determine the
HCF and LCM. The procedure described above is depicted in the flowchart.

START

INPUT A, B

P ��A�B

A and B represent the given number

Yes
IS

R = 0
?

R ��Remainder of (A ÷ B)

No

HCF B
LCM P/HCF

�
�

A B
B R
�
�

STOP

PRINT HCF, LCM

Flowchart-and-Algorithm-Basics_CH-03.indd 70 6/12/2020 2:37:38 PM

ProBlems involving looPing • 71

The solution of Problem 3.18 is shown through the following algorithm:

 Step 1. INPUT TO A, B
 Step 2. COMPUTE P ← A*B
 Step 3. [INITIALIZE] R ← 1
 Step 4. WHILE R NOT = 0 DO
 Step 5. COMPUTE R ← REMAINDER OF (A/B)
 Step 6. A ← B
 Step 7. B ← R
 Step 8. END-WHILE
 Step 9. HCF ← A
 Step 10. COMPUTE LCM ← P/HCF
 Step 11. PRINT “HCF IS”, HCF
 Step 12. PRINT “LCM IS”, LCM
 Step 13. STOP

Problem 3.19. Draw a flowchart to show how the sum of the digits of a given
number can be obtained.

Task Analysis. Observe that a number is stored in a location as integral
whole, so its digits cannot be obtained by reading them one by one. To obtain
the digits one by one, we can divide the number by 10 to obtain the remain-
der, and this remainder will always be the last digit of the number. This last
digit can be stored in some accumulator. The number can then be replaced
with its integral quotient to repeat the previous division; this will return the
digit left to the last one that can be added to the content of the accumula-
tor. The procedure can be repeated for obtaining the digits one by one and
then to obtain the sum until the dividend is reduced to zero. For example, if
the given number is 125, we obtain 5 as remainder when it is divided by 10,
which is the 3rd digit of the number. We then replace 125 with 12, as 12 is
the integral quotient of 125 divided by 10. When 12 is divided by 10 again, we
get 2 as remainder, which is the 2nd digit of the number; we then replace 12
with 1, which is the integral quotient of 12 divided by 10. This 1, when divided
by 10 again, leaves 1 as remainder, which is the first digit of the given num-
ber. The digits of any given whole number can be obtained serially from the
last to the first by using this procedure. Finally, we terminate the procedure
when the number after replacement with the integral quotient of the available
number divided by 10 becomes zero (here, the integer part of 1/10 = 0). The
remainders can be summed up each time it is obtained.

The only input required here is the number for which we want the sum of
the digits. This is shown in the following flowchart.

Flowchart-and-Algorithm-Basics_CH-03.indd 71 6/12/2020 2:37:39 PM

72 • Flowchart and algorithm Basics

START

INPUT N

S 0←

N holds the given whole number

R Remainder of (N/10)←

S is initialized to zero
It holds the sum of the digits

R is the remainder

Yes
IS

N = 0
?

STOPPRINT S

S S + R← The digit is accumulated

N Integer part of (N/10)← The right-most digit is trimmed off the number

No

The solution of Problem 3.19 is shown in the following algorithm:

 Step 1. INPUT TO N
 Step 2. [INITIALIZE] S ← 0
 Step 3. REPEAT STEPS 4 THROUGH 6 WHILE N > 0
 Step 4. COMPUTE R ← REMAINDER OF (N/10)
 (This is to obtain the right-most digit of the number)
 Step 5. COMPUTE S ← S + R
 Step 6. COMPUTE N ← INTEGER PART OF (N/10)
 (This is to get the number in N without the right-most digit)
 Step 7. PRINT “THE SUM OF THE DIGITS IS”, S
 Step 8. STOP

Problem 3.20. Draw a flowchart to show the logic of obtaining the reversed
form of a given whole number.

Task Analysis. To obtain the reversed form of any given whole number from
the last to the first, the digits can be shown one by one without changing the
line, which will place the digits in reversed sequence to give the appearance
of the number with the digits reversed. To obtain the digits of the numbers

Flowchart-and-Algorithm-Basics_CH-03.indd 72 6/12/2020 2:37:39 PM

ProBlems involving looPing • 73

one by one, we use identical logic to that of the preceding solution. However,
if the leading zeroes in the reversed form are ignored, then an alternative
procedure can be used to print the digits of the reversed number. This pro-
cedure involves a location initially containing zero; the remainder is added to
the value of the location multiplied by 10. The multiplication by 10 changes
nothing first and the remainder (i.e., the last digit) is stored there first. If the
process of determining the remainder and then adding the remainder to the
10 times of the value of the location is repeated, the last digit is shifted one
digit to the left. This continues for the reversed form of the number. Let us
illustrate the procedure described using an example. Suppose the given num-
ber is 125. Let the location to contain the reversed form contain 0 and let its
name be S. Let the name of the location containing 125 be N. The remainder
R obtained by dividing N by 10 contains 5 now. If we execute S ← S*10 +
R, then the value of R(5) is stored in S. Now, we replace the value of N with
the integer part of (N/10), i.e., 12. The remainder R this time becomes 2 and
if we execute S ← S*10 + R, S contains 52; we again replace N with integer
part of (N/10), i.e., with 1 and take the remainder, which is 1. We get 521 by
executing S. S*10 + R is the reversed form of the given number. The proce-
dure is terminated when we get the integer part of (N/10) to be 0. The second
procedure is demonstrated in the following flowchart.

The algorithm corresponding to Problem 3.20 is shown below:

 Step 1. INPUT TO N
 (ACCEPT THE GIVEN NUMBER IN N)
 Step 2. [INITIALIZE THE LOCATION TO CONTAIN
 THE REVERSED NUMBER]
 S ← 0
 Step 3. WHILE N > 0 DO
 (i) COMPUTE R ← REMAINDER (N/10)
 [Extract the right-most digit of the number being reversed]
 (ii) COMPUTE S ← S*10 + R
 [Increase the previously reversed integer representation S

by a factor 10 and add it to the most recently extracted digit
to obtain the current value of S]

 (iii) COMPUTE N ← integer part of (N/10)
 [Use the integer division by 10 to remove the right-most

digit from the number being reversed]
 Step 4. PRINT “THE REVERSED VALUE OF”, N, “IS”, S
 Step 5. STOP

Flowchart-and-Algorithm-Basics_CH-03.indd 73 6/12/2020 2:37:39 PM

74 • Flowchart and algorithm Basics

START

INPUT N

S 0�

N contains the given number

R Remainder of (N/10)�

Yes

IS
N = 0

?

STOP

S S 10 + R� �

N Integer part of (N/10)�

No

PRINT S

Problem 3.21. Construct a flowchart to show how the divisors of a given
number can be obtained.

Task Analysis. A number is called a divisor of another number if the divi-
sion of the latter by the former leaves zero as the remainder. Usually, the
whole numbers starting from 1 are used as divisors. Divisors are also known
as factors of the number. To obtain all the divisors of a number, we need to
start testing from 1 until we reach the half of the number after which only the
number itself remains as its divisor.

Flowchart-and-Algorithm-Basics_CH-03.indd 74 6/12/2020 2:37:39 PM

ProBlems involving looPing • 75

START

INPUT N

I 1�

N contains the given number

R Remainder of (N/I)�

Yes

IS
R = 0

?

IS
I >

N/2
?

STOP

No

PRINT N

Yes
PRINT I

Initialize I with the first assumed divisor

I I + 1�

No

I is found to be a divisor and
hence its value is printed

The value of I is increased by one to
obtain the next assumed divisor

The solution to Problem 3.21 is shown in the following algorithm:

 Step 1. INPUT TO N
 [ACCEPT the number the divisors of which are to be obtained

and store it in N]
 Step 2. [Set the initial value of the divisor]
 I ← 1
 Step 3. While I <= integer part of (N/2) DO
 (i) COMPUTE R ← REMAINDER OF (N/I)
 (ii) IF R = 0
 THEN PRINT I
 END-IF
 (iii) COMPUTE I ← I + 1
 [Increment the value of the divisor]

Flowchart-and-Algorithm-Basics_CH-03.indd 75 6/12/2020 2:37:39 PM

76 • Flowchart and algorithm Basics

 Step 4. PRINT N
 [This prints the last divisor]
 Step 5. STOP

Problem 3.22. Construct a flowchart to show how to determine whether a
given number is a perfect number.

Task Analysis. A number is said to be a perfect number if the sum of its
divisors (except itself) equals the number. To draw the desired conclusion
about the given number, we require the divisors of the number and the sum
of the divisors. The preceding procedure describes and shows how to obtain
the divisors.

START

I 1
S 0
��
��

Yes
IS

R = 0
?

R Remainder of (N/I)�

N holds the desired number

S S + I��

I I + 1�

IS
I >

N/2
?

INPUT N

Divisor I is initialized. S holds
the sum of the divisors

No

The next number is generated to
see whether it is a divisor

No

Yes

R

No

Flowchart-and-Algorithm-Basics_CH-03.indd 76 6/12/2020 2:37:39 PM

ProBlems involving looPing • 77

The following algorithm depicts the steps leading to the solution for Problem
3.22:

 Step 1. INPUT TO N
 [ACCEPT THE DESIRED INTEGER AND STORE IT]
 Step 2. [INITIALIZE THE DIVISOR LOCATION I & THE
 LOCATION S TO CONTAIN THE SUM OF
 THE DIVISORS]
 Step 3. WHILE I <= Integer part of (N/2) DO
 (i) COMPUTE R ← REMAINDER OF (N/I)
 (ii) IF R = 0
 THEN COMPUTE S ← S + I
 [ACCUMULATE THE DIVISOR OBTAINED]
 END-IF
 (iii) COMPUTE I ← I + 1
 [INCREMENT I TO SEE WHETHER IT IS THE
 NEXT DIVISOR]
 Step 4. If S = N
 THEN PRINT N, “IS A PERFECT NUMBER.”
 ELSE
 PRINT N, “IS NOT A PERFECT NUMBER.”
 END-IF
 Step 5. STOP

R

IS
S = N

?

Yes PRINT “PERFECT”, N

No

PRINT “NOT A PERFECT NUMBER.’’, N

STOP

Flowchart-and-Algorithm-Basics_CH-03.indd 77 6/12/2020 2:37:40 PM

78 • Flowchart and algorithm Basics

Problem 3.23. Construct a flowchart to show how you can decide if a given
number is prime or not.

Task Analysis. We know that a number can be called a prime number if,
and only if, it has no divisor or factor except itself and unity, i.e., 1. In order to
declare that a number is a prime number, we need to prove that the number
is not divisible by any number starting from 2 to the half of the given num-
ber because we have already seen that if a number has some divisor at all, it
must lie within the half of the number. A better, more efficient strategy is to
limit the checking within the integer part of the square root of the number.
For example, to check if the number 97 is a prime number, we need check
whether there exists some divisor of 97 within 2 to 48 (both inclusive). This
checking can be done from 2 to 9, because 9 is the integer part of the square
root of 97. The number of checking is decreased to a large extent. The divisors
can be generated automatically by changing the value of a variable location.
Assuming that the procedure for determining the square root of a number is
available, we can draw the flowchart for the task.

The following algorithm shows the steps leading to the solution for
 Problem 3.23:

 Step 1. INPUT TO N
 [ACCEPT THE NUMBER WHOSE SQUARE ROOT IS TO

BE FOUND]
 Step 2. COMPUTE SR ← SQUARE ROOT OF (N)
 Step 3. [INITIALIZE] I ← 2, FLAG ← 0
 [FLAG contains the divisibility status of the number]
 Step 4. WHILE I <= SR DO
 (i) COMPUTE R ← REMAINDER OF (N/I)
 (ii) IF R = 0
 THEN FLAG ← 1
 EXIT
 END-IF
 (iii) COMPUTE I ← I + 1

(Increment I to obtain the next divisor]
 Step 5. IF FLAG = 0
 THEN PRINT “It is a prime number.”
 ELSE
 PRINT “It is not a prime number.”
 END-IF
 Step 6. STOP

Flowchart-and-Algorithm-Basics_CH-03.indd 78 6/12/2020 2:37:40 PM

ProBlems involving looPing • 79

START

INPUT N

SR Square root of (N)
I 2

�
�

R Remainder of (N/I)�

No

IS
R = 0

?

IS
I > SR

?

Yes

I holds the assumed divisor for the test

I I + 1�

No

The value of FLAG is changed to 1 to
record that N is found to be divisible

FLAG 0� FLAG is a variable location containing 0

FLAG 1�

D

Yes

No

IS
Flag =

0 ?

Yes

D

PRINT “THE GIVEN NUMBER.
IS A PRIME NUMBER.”

PRINT “THE GIVEN
NUMBER. IS NOT PRIME”

STOP

Problem 3.24. Construct a flowchart to show the logic of printing the first
N Fibonacci numbers. Fibonacci numbers are obtained from the relationship
ti = ti–1 + ti–2, i = 2 to n where to = 0, t1 = 1.

Task Analysis. Any Fibonacci number can be obtained by taking the sum
of the preceding two numbers. For example, the third Fibonacci number is

Flowchart-and-Algorithm-Basics_CH-03.indd 79 6/12/2020 2:37:40 PM

80 • Flowchart and algorithm Basics

obtained by taking the sum of the first two, i.e., 0 + 1 = 1; the fourth Fibonacci
number is obtained by taking the sum of the 2nd and the 3rd number, i.e.,
1 + 1 = 2. Hence, a simple expression of the form C = A + B can be built and
used to generate the Fibonacci numbers, where A and B will initially repre-
sent the first two Fibonacci numbers and C the 3rd one. Having obtained the
3rd Fibonacci number, we can assign the value of B to A and that of C to B to
get the 2nd and the 3rd Fibonacci numbers in A and B, and then, using the
expression (i.e., C = A + B), we can derive the fourth Fibonacci number. This
procedure of assigning the value of B to A and C to B to get the next Fibonacci
number can be repeated any number times until the desired numbers are
obtained. A counter may be maintained to count the numbers printed. This is
shown in the flowchart.

START

INPUT N

T1 0
T2 1

←
←

No

IS
COUNT

= N ?
STOP

N contains the number of Fibonacci numbers required

Count Count + 1←

COUNT 1←

T1 contains the first Fibonacci number
T2 contains the second Fibonacci number

Yes

T T1 + T2←

Set up counter for counting

Print T1

The third Fibonacci number is generated

Print a Fibonacci number

T1 T2
T2 T

←
←

Changing the contents of T1 & T2

Counting the number

Flowchart-and-Algorithm-Basics_CH-03.indd 80 6/12/2020 2:37:40 PM

ProBlems involving looPing • 81

The algorithm below shows the solution of Problem 3.24.

 Step 1. INPUT TO N
 [Establish N, the number of FIBONACCI NUMBERS to
 be generated]
 Step 2. [INITIALIZE VARIABLES WITH THE FIRST TWO
 FIBONACCI NUMBERS]
 T1 ← 0, T2 ← 1
 Step 3. [INITIALIZE THE COUNTER VARIABLE]
 COUNT ← 0
 Step 4. WHILE COUNT <= N
 (i) COMPUTE T ← T1 + T2
 (ii) PRINT T1
 (iii) COMPUTE COUNT ← COUNT + 1
 (iv) T1 ← T2
 (v) T2 ← T
 Step 5. STOP

Problem 3.25. Construct a flowchart to show if a given year is leap year.

Task Analysis. A given year is said to be a leap year if it is a non-century year
(i.e., not like 1900, 1800, or 1600) and it is divisible by 4. In case it is a century
year, then it must be divisible by 400 to be a leap year. To determine whether
a given year is a leap year, we determine whether the year is divisible by 4
but not by 100 or if it is divisible by 400. The divisibility is tested again in the
way as we have seen earlier, i.e., by checking whether the remainder in the
division process is zero or not.

 Step 1. Y ← 1
 Step 2. REPEAT STEPS 2 TO 8 UNTIL Y = 0
 Step 3. INPUT TO Y
 [ACCEPT YEAR TO BE TESTED AND STORE IT IN Y]
 Step 4. IF Y = 0
 THEN EXIT
 END-IF
 Step 5. COMPUTE R1 ← REMAINDER OF (Y/400)
 Step 6. IF R1 = 0
 THEN PRINT “THE GIVEN YEAR IS A LEAP YEAR”
 END-IF

Flowchart-and-Algorithm-Basics_CH-03.indd 81 6/12/2020 2:37:40 PM

82 • Flowchart and algorithm Basics

START

INPUT Y

R1 Remainder of (Y/400)←

No

IS
R1 = 0

?

IS
R2 = 0

?

Yes

Y contains the given year

No

Yes

Yes

No

E

Print “LEAP YEAR”

R

PRINT “LEAP YEAR”

R2 Remainder of (Y/4)←

R3 Remainder of (Y/100)←

X X

IS
R3 = 0

?

R

E

Print “IT IS NOT
A LEAP YEAR”

X

E

 Step 7. COMPUTE R2 ← REMAINDER OF (Y/4)
 Step 8. COMPUTE R3 ← REMAINDER OF (Y/100)
 Step 9. IF R2 = 0 AND R3 NOT = 0
 THEN PRINT “THE GIVEN YEAR IS A LEAP YEAR”
 ELSE
 PRINT “THE GIVEN YEAR IS NOT A LEAP YEAR”
 END-IF
 Step 10. STOP

Problem 3.26. Construct a flowchart to show how the square root of a pos-
itive number is determined.

Task Analysis. The square root of a number can be obtained by using the
Newton Raphson Method. In this method, the square root of any positive
number is initially set to 1. Then the absolute value of the difference between

Flowchart-and-Algorithm-Basics_CH-03.indd 82 6/12/2020 2:37:40 PM

ProBlems involving looPing • 83

the square of the assumed square root and the given number is obtained. This
value is then compared with some predefined small positive number. This
small positive number is set in such a way that an error of magnitude less than
that is made acceptable. If the difference is less than the small positive num-
ber, the assumed square root is used as the desired square root. For perfect
squares, this difference becomes zero; for others, this difference is usually
found to be of magnitude less than .01, .001, or .0001, depending upon the
precision required. If the difference is greater than or equal to the small pos-
itive number like .001 or .0001, then the assumed value is increased to have a
better guess by using the formula

Guessed Value
Number

Guessed Value
�

�

�
�

�

�
� 2

The procedure is repeated until we get a guessed value satisfying the condi-
tion specified. Algorithmically, we can express the procedure as shown below.

Let X be the number whose square root is to be obtained.
1. Set Guess to 1.
2. If | GUESS*GUESS-X | < Epsilon
Then go to step 5
(Epsilon is a predefined small positive number)

3. Set Guess to Guess
X

Guess
��

�
�

�
�
� 2

4. Go to Step 2
5. Guess is the square root of X.
The flowchart corresponding to Problem 3.26 is shown in next page.
The algorithm for the solution of Problem 3.26 is given below:

 Step 1. INPUT TO X
 Step 2. [INITIALIZE] GUESS ← 1, EPSILON ← .001
 Step 3. WHILE absolute value of (GUESS*GUESS – X) <=
 EPSILON DO

COMPUTE GUESS GUESS

X
GUESS

� ��
�
�

�
�
� 2

 Step 4. PRINT “THE SQUARE ROOT IS”, GUESS
 Step 5. STOP

Flowchart-and-Algorithm-Basics_CH-03.indd 83 6/12/2020 2:37:44 PM

84 • Flowchart and algorithm Basics

START

INPUT X

GUESS 1
EPSILON .001

��
��

Yes

IS
Y >

EPSILON
?

X contains the number whose
square root is required

No PRINT GUESS

A

STOP

.001 lets us obtain a three-digit accuracy

.01 lets us obtain a two-digit accuracy

Y absolute value of
(GUESS GUESS – X)
�

�

GUESS GUESS + ———— 2� X
GUESS

A

Problem 3.27. The registration charge for a parcel is determined according
to the following rules:

For the 1st 10 oz., the charge is $12.75;
For the next every 8 oz. (or part thereof), the charge is $11.25.
Draw a flowchart to show how the registration charge is determined.

Task Analysis. Note that the input required here is the weight of the parcel
to be registered. The calculation of the charge requires determining whether
the weight lies is 10 oz. or less. If not, then the excess weight beyond 10 oz.
is computed and the number of 8 ounce intervals for the excess weight is
obtained for which the charge is calculated at $ 11.25 per interval. The num-
ber of 8 ounce intervals is computed by dividing the excess weight by 8. If the
division leaves no remainder, then the quotient will be the number of inter-
vals. If the division leaves some other remainder, then the number of intervals
will be the quotient plus 1. The calculation of the number of intervals can,
however, be done by using the following formula also: Number of intervals =
integer part of (Excess Weight – 1)/8 + 1.

Flowchart-and-Algorithm-Basics_CH-03.indd 84 6/12/2020 2:37:44 PM

ProBlems involving looPing • 85

START

INPUT W

IS
W = 0

?

W contains the weight of a letter

R

CHARGE 12.75 +
INV 11.25

�
�

Yes
STOP

IS
W 0

?
≤

Yes
CHARGE 12.75�

EW W-10� EW contains the excess weight

R Remainder of (EW/8)�

No

No

IS
R = 0

?

Yes INV INTEGER
PART OF EW/8

�
INV holds the
number of 8 oz.
intervals

No

INV INTEGER
PART OF (EW/8) + 1

�

P

P

PRINT CHARGE R

 Step 1. REPEAT STEPS 2 THROUGH 6
 Step 2. INPUT TO W
 Step 3. IF W = 0
 THEN EXIT
 END-IF

Flowchart-and-Algorithm-Basics_CH-03.indd 85 6/12/2020 2:37:44 PM

86 • Flowchart and algorithm Basics

 Step 4. IF W <= 10
 THEN CHARGE ← 12.75
 ELSE
 COMPUTE EW ← W – 10
 COMPUTE R ← REMAINDER OF (EW/8)
 IF R = 0
 THEN COMPUTE INV ← Integer part of (EW/8)
 ELSE
 COMPUTE INV ← Integer part of (EW/8) + 1
 END-IF
 END-IF
 Step 5. COMPUTE CHARGE ← 12.75 + INV*11.25
 Step 6. PRINT “THE CHARGE IS $”, CHARGE
 END-REPEAT
 Step 7. STOP

Problem 3.28. The charge for luggage on railways is calculated as shown
below:

For the first 40 kg. of weight, the charge is fixed at $5.75. For every additional
18 kg. (or part thereof), the charge is calculated at the rate of $ 3.88. If the
total weight is less than 500 g, for weight beyond 500 kg., the charge is calcu-
lated at the rate of $ 0.67 per kg. Develop a flowchart that will show the logic
for calculating the charge of transporting a piece of luggage.

Task Analysis. This problem is an extended form of the preceding problem.
The logic of the calculation will be of the same nature except that the calcu-
lation here will involve one of the three ways. First, we check whether the
weight is less than 40 kgs. If so, the determination of the charge is straightfor-
ward and needs no calculation. Next, we need to check whether it is less than
500 kgs. If it is under 500 kgs but more than 40 kgs, we have to calculate the
number of 18-kg intervals in the same way as we explained in the preceding
solution. If the weight is greater than 500 kg, then we have to calculate the
excess weight beyond 500 kgs and number of intervals for the weights less
than 500 (but greater than 40 kg). Here, we shall use the formula discussed in
the preceding solution. The solution to Problem 3.28 in the form of flowchart
is shown in next page:

Flowchart-and-Algorithm-Basics_CH-03.indd 86 6/12/2020 2:37:44 PM

ProBlems involving looPing • 87

START

INPUT W

IS
W <= 0

?

W is the weight

C

STOP

Yes
CHG 5.75�

No

CHG 5.75 + 26 3.88
+ (w-500) 0.67

� �
�

CHG is the charge

Yes
EW W–40� EW is the extra weight

P

No

PRINT CHG

P

C

INV INT(EW-1)/18 + 1� INV is the interval

CHG 5.75 + INV 3.88��

P

IS
W <= 40

?

IS
W <=
500 ?

The algorithm showing the solution for Problem 3.28 is shown below:

 Step 1. REPEAT STEPS 2 THROUGH 5 UNTIL USER SIGNALS
‘EXIT’

 Step 2. INPUT TO W
 (Accept the weight of the luggage and store it in W)
 Step 3. IF W <= 0
 THEN EXIT
 END-IF

Flowchart-and-Algorithm-Basics_CH-03.indd 87 6/12/2020 2:37:45 PM

88 • Flowchart and algorithm Basics

 Step 4. IF W <= 40
 THEN CHG ← 5.75
 ELSE IF W <= 500
 THEN COMPUTE EW ← W – 40

COMPUTE INV Integer part of

EW
�

��
�
�

�
�
� �

1
18

1

 COMPUTE CHG ← 5.75 + INV*3.88
 ELSE
 COMPUTE CHG ← 5.75 + 26*3.88 + (W – 500)*0.67
 END-IF
 END-IF
 Step 5. PRINT “THE CHARGE IS $”, CHG
 Step 6. STOP

Problem 3.29. Construct a flowchart for obtaining the sum of a given num-
ber of terms (N) for a given value of x in the following mathematical series:

X + X2/2 + X3/3 + upto N terms.

Task Analysis. We need to know the values of two unknown quantities as
input: the value of X and that of N, the number of terms. We must find a
general expression from which we can identify different terms. The expres-
sion X/I yields different terms for different values of I from 1 to N. We can
evaluate the expression for some given value of X and the obtained value can
be stored in some location, say S, that initially contains 0. Successive addition
of the evaluated values for all the terms to the content of S will give us the
desired sum. This is shown in the flowchart for Problem 3.29.

The algorithm leading to the solution of Problem 3.29 is shown below:

 Step 1. REPEAT STEPS 2 THROUGH 10 WHILE USER LIKES
 Step 2. INPUT TO X
 [ACCEPT THE VALUE OF THE UNKNOWN X FROM

THE TERMINAL AND STORE IT IN X]
 Step 3. IF X <= 0
 THEN STOP
 END-IF
 Step 4. INPUT TO N
 [ACCEPT THE NUMBER OF TERMS TO BE ADDED

AND STORE IT IN N]

Flowchart-and-Algorithm-Basics_CH-03.indd 88 6/12/2020 2:37:46 PM

ProBlems involving looPing • 89

START

INPUT X

IS
W = 0

?
≤

W is the weight

C

Yes
STOP

Yes
PRINT “INVALID NUMBER”

No

S 0
I 1
←
←

IS
N = 0

?
≤

C

S S + X /I←
I

R

INPUT N

I I + 1←

YesIS
I > N

?

No

R

C

Print S

 Step 5. IF N <= 0
 THEN PRINT “INVALID NUMBER”
 CONTINUE FROM STEP 2
 END-IF
 Step 6. [INITIALIZE REQUIRED LOCATIONS]
 S ← 0, I ← 1

Flowchart-and-Algorithm-Basics_CH-03.indd 89 6/12/2020 2:37:46 PM

90 • Flowchart and algorithm Basics

 Step 7. WHILE I <= N REPEAT STEPS 8 AND 9
 Step 8. [PERFORM ADDITION]

 COMPUTE S ← S +
X
I

I

 Step 9. COMPUTE I ← I + 1
 Step 10. PRINT “THE SUM IS”, S
 Step 11. STOP

Problem 3.30. The difference between two consecutive gas meter readings
gives the amount of gas used in cubic feet. The gas charge is calculated using
the following rules.

 No. of therms consumed Rate/therm (in $.)
 <= 75 1.05
 > 75 but <= 150 1.25
 > 150 but <= 250 1.50
 > 250 2.25

The number of therms consumed is calculated by multiplying the amount
of gas used by 1.06748. A meter rent of $15 is also charged with each bill.
The meters show 5-digit readings. Develop a program to print the gas bill for
consumers.

Task Analysis. The inputs required here are two consecutive meter readings.
The difference between the readings will generally give us the amount of gas
used, except in the extreme cases in which the previous reading becomes
greater than the present reading. This extreme case occurs because the 5 digit
meter resets when it reaches the reading of 100,000 (initially, the meter shows
00000 and it increases as the gas is consumed up to the largest value 99,999,
after which one more unit of consumption will reset the meter because the
meter does not possess the capacity to show 100,000). When the difference
is obtained, it can be multiplied by 1.06748 to derive the number of therms
consumed and then the calculation of the charge becomes straightforward.

The algorithm leading to the solution of Problem 3.30 is shown below:

 Step 1. [INITIALIZE] CHOICE ← “Y”
 Step 2. REPEAT STEPS 3 THROUGH 10 UNTIL CHOICE = “E”
 Step 3. INPUT PVR, PRR
 Step 4. IF PVR > PRR
 THEN COMPUTE D ← (100000 – PVR) + PRR
 ELSE COMPUTE D ← PRR – PVR
 END-IF
 Step 5. COMPUTE TH ← D*1.06748

Flowchart-and-Algorithm-Basics_CH-03.indd 90 6/12/2020 2:37:47 PM

ProBlems involving looPing • 91

START

INPUT PVR, PRR

IS
PVR >
PRR

?

PVR contains the previous meter reading
PRR contains the current meter reading

C

Yes
D (100000–PVR) + PRR�

D PRR–PVR�

TH D 1.06748� �

IS
TH <=

75
?

Yes
CHARGE TH 1.05 + 15� �

P

$15 is added
as the meter rent

IS
TH <=

150
?

Yes
CHARGE TH 1.25 + 15� � P

IS
TH <=

250
?

Yes
CHARGE TH 1.50 + 15� � P

No

No

No

CHARGE
TH 2.25 + 15

�
� C

PNo

PRINT
CHARGE

IS
CHOICE

= “E”
?
Yes

ACCEPT
CHOICE

No

STOP

 Step 6. IF TH <= 75
 THEN COMPUTE CHARGE ← TH*1.05 + 15
 ELSE IF TH <= 150
 THEN COMPUTE CHARGE ← TH*1.25 + 15

Flowchart-and-Algorithm-Basics_CH-03.indd 91 6/12/2020 2:37:47 PM

92 • Flowchart and algorithm Basics

 ELSE IF TH <= 250
 THEN COMPUTE CHARGE ← TH*1.50 + 15
 ELSE COMPUTE CHARGE ← TH*2.25 + 15
 END-IF
 END-IF
 END-IF
 Step 7. PRINT “THE CHARGE IS”, CHARGE
 Step 8. PRINT “TO TERMINATE ENTER ‘E,’ ELSE PRESS ANY

OTHER KEY”
 Step 9. ACCEPT CHOICE
 Step 10. IF CHOICE = “E” THEN EXIT
 END-IF
 Step 11. STOP

Problem 3.31. Develop a flowchart to show how the sum of the following
series can be obtained:

X
X X X X

up to n terms� � � �
3 5 7 9

3 5 7 9

Task Analysis. The inputs required are X and N. The general expression

for any term I can be given by tI

X
I

�
�2 1

 for I = 1 to N. The flowchart will

be same as that for the next problem except that the statement S S
X
I

I

� � is
replaced with

S S X
I
I

� �
�
�

2 1
2 1

Problem 3.32. Develop a flowchart to show how to find out the sum of the
following mathematical series:

X X X X up to n terms� � � � � � �
1
2

1
2

3
4

1
2

3
4

5
6

3 5 7

Task Analysis. The inputs required here are X and N. The coefficients in this

series bear a relationship with each other. The coefficient of the 2nd term is
1
2

,

that of the 3rd term is
1
2

3
4
⋅ , and that of the 4th term is

1
2

3
4

5
6

⋅ ⋅ . We observe

Flowchart-and-Algorithm-Basics_CH-03.indd 92 6/12/2020 2:37:56 PM

ProBlems involving looPing • 93

that each coefficient is a result of evaluating an expression of the form
2 1

2
I

I
−

for I = 1, 2, an expression that generates an odd number in the numera-
tor and an even number in the denominator. For I = 1, the coefficient is 1/2 if
it is stored somewhere and it is multiplied by the value of the expression next
time for I = 2, we get the 3rd coefficient; that is, we evaluate an expression of
the form C * (21 – 1)/2I for C = 1 initially. The successive values of I from 1 to
n – 1 will give the coefficients from the 2nd to the nth term. Again, if we take
C = – C * (2I – 1)/2I, we get the coefficients with sign positive or negative.
Now, multiplying the expression by X2I+1 for different values of I, we get the
successive terms, except for the 1st term. Now, if we initialize S with the value
of X and add the terms evaluated successively to the current value of S, we get
the desired sum of the series. The logic is shown in the flowchart.

START

INPUT X, N

S X
I 1
C 1
T 1

�
�
�
�

Initialization

C C�(2I–1)/2I�

T C�X�
2I + 1

STOP

The coefficient is evaluated

S S + T�

I I + 1�

IS
I <= N

?

Yes
PRINT S

No

Flowchart-and-Algorithm-Basics_CH-03.indd 93 6/12/2020 2:37:58 PM

94 • Flowchart and algorithm Basics

The algorithm leading to the solution of Problem 3.32 is as follows:

 Step 1. PRINT “ENTER VALUE OF X”
 Step 2. INPUT TO X
 Step 3. PRINT “ENTER NUMBER OF TERMS TO ADD”
 Step 4. INPUT TO N
 Step 5. [INITIALIZE SUM ACCUMULATOR, LOOP VARIABLE,

COEFFICIENT, & TERM VARIABLE]
 S ← X, I ← 1, C ← 1, T ← 1
 Step 6. REPEAT WHILE I <= N
 (a) COMPUTE C ← – C*(2*I – 1)/(2*I)

[Obtain the Ith COEFFICIENT]
 (b) COMPUTE T ← C*X2*I+1

[Obtain the Ith term]
 (c) COMPUTE S ← S + T

[Obtain the sum of the Ith term]
 (d) COMPUTE I ← I + 1

[Increment the loop counter]
 Step 7. PRINT “THE SUM IS”, S
 Step 8. STOP

Problem 3.33. Develop a flowchart to show how to evaluate the following
series:

X
X X X

up to N terms� � � �
3 5 7

3 5 7! ! !
.......... .

Task Analysis. To evaluate the series, we need two inputs: the values of X
and N. The different expressions of X can be generated easily. The expression
X2I+1 will yield different expressions of X for I = 1 to N. The generation of
 coefficients can be done by evaluating the expression (2I)(2I + 1) for differ-
ent values of I from 1 to N – 1, and then through cumulative multiplication,
as shown in the preceding flowchart. The steps of the calculations for
 Problem 3.33 are depicted in the following flowchart within an outer loop.

The algorithm leading to the solution of Problem 3.33 is given below:

 Step 1. [INITIALIZE LOOP VARIABLE]
 OPTION ← “Y”
 Step 2. REPEAT STEPS 3 THROUGH 8 WHILE OPTION = “Y”
 Step 3. PRINT “ENTER VALUE FOR X”

Flowchart-and-Algorithm-Basics_CH-03.indd 94 6/12/2020 2:37:59 PM

ProBlems involving looPing • 95

START

INPUT X, N

S X
I 1
C 1

�
�
�

S is the sum
I is the natural numbers from 1 to N–1
C is the cumulative products

C – C (2 I)(2 I + 1)� � � �

S S + X /C�
2I + 1

As S is initialized with the value of the
first term, we need to add the next N–1 terms

I I + 1�

IS
I > (N – 1)

?

Yes
PRINT S

No

IS
OPTION

= “Y”

OPTION = “Y”

Yes

STOP
No

PRINT “TO CONTINUE
PRESS ‘Y’ ELSE PRESS
ANY OTHER KEY”

INPUT TO OPTION R

R

 Step 4. ACCEPT X
 Step 5. PRINT “ENTER THE NUMBER OF TERMS TO
 BE ADDED”
 Step 6. ACCEPT N
 Step 7. [INITIALIZE SUM ACCUMULATOR, LOOP VARIABLE,

& COEFFICIENT VARIABLE]
 S ← X, I ← 1, C ← 1

Flowchart-and-Algorithm-Basics_CH-03.indd 95 6/12/2020 2:38:00 PM

96 • Flowchart and algorithm Basics

 Step 8. WHILE I <= N DO
 (a) COMPUTE C ← – C*(2*I)*(2*I + 1)

[Obtain the (I + 1)th COEFFICIENT]
 (b) COMPUTE S ← S + X(2*I + 1) /C

[Obtain sum of the (I + 1)th term]
 (c) COMPUTE I ← I + 1

[INCREMENT LOOP VARIABLE]
 Step 9. PRINT “THE SUM IS”, S
 Step 10. STOP

Problem 3.34. Construct a flowchart to find out the sum of first N terms of
the following series. 5 + 55 + 555 + 5555 + up to N terms.

Task Analysis. The only input required is the number of terms to be added.
The different terms can be obtained by evaluating the expression T = T*10 +
5, with 0 as the initial value of T.

START

INPUT N

S 0
T 0
I 1

�
�
�

N is the number of terms to be added

T T 10 + 5� �

S S + T�

S is the sum
T is the term to be added
I is the term number that is being added

I I + 1�

IS
I > N

?

Yes
PRINT S

No

N is the number of terms to be added

STOP

Flowchart-and-Algorithm-Basics_CH-03.indd 96 6/12/2020 2:38:00 PM

ProBlems involving looPing • 97

The algorithm corresponding to the solution of Problem 3.34 is shown
below:

 Step 1. PRINT “ENTER THE NUMBER OF TERMS TO ADD”
 Step 2. ACCEPT N
 Step 3. [INITIALIZE SUM ACCUMULATOR, TERM VARIABLE,

& LOOP VARIABLE]
 S ← 0, T ← 0, I ← 1
 Step 4. WHILE I <= N DO
 (a) COMPUTE T ← T*10 + 5
 [Obtain the term to be added]
 (b) COMPUTE S ← S + T
 [Accumulate the term]
 (c) COMPUTE I ← I + 1
 [Increment counter]
 END-DO
 Step 5. PRINT “THE SUM IS”, S
 Step 6. STOP

Problem 3.35. Develop a flowchart to show how to find all the perfect num-
bers under 10,000.

Task Analysis. We saw earlier how to determine perfect numbers. We need
to test all the natural numbers within 10,000 and print a number in the range
whenever it is found to be perfect. As we know that the first perfect number
is 6, we can start testing numbers from 6. The solution of this problem will
require a nested loop. The outer loop generates the numbers one by one, and
the inner loop finds the sum of the divisors of each of the generated numbers.
Having obtained the sum of the divisors, the number under consideration is
then compared with the resulting sum to decide whether the taken number
is perfect or not. If it is a perfect number, the task is to print it and then to
transfer the control back to the process of number generation to test the next
one unless the highest limit is reached.

The steps of the solution to Problem 3.35 are depicted in the following
flowchart.

The algorithm corresponding to Problem 3.35 is shown below:

 Step 1. [INITIALIZE N] N ← 6
 Step 2. REPEAT STEPS 3 TO 10 FOR N = 6 TO 10000
 Step 3. [INITIALIZE S FOR HOLDING THE SUM OF DIVISORS

AND I FOR DIVISOR BEING TAKEN]
 S ← 0
 I ← 1

Flowchart-and-Algorithm-Basics_CH-03.indd 97 6/12/2020 2:38:00 PM

98 • Flowchart and algorithm Basics

START

N 6�

S 0
I 1
�
�

S is the sum of the divisors
I holds the divisors

I I + 1�

IS
I > N/2

?

Yes

The first perfect number is used for testing

IS
N > 10000

?
STOP

Yes

IS
Remainder

of (N/I)
= 0 ?

S S + 1�
Yes

No

IS
S = N

?

Yes
PRINT N

No

N N + 1�

No

R

R
No

Flowchart-and-Algorithm-Basics_CH-03.indd 98 6/12/2020 2:38:00 PM

ProBlems involving looPing • 99

 Step 4. REPEAT STEPS 5 TO 8 WHILE I <= N/2
 Step 5. [OBTAIN THE INTEGER QUOTIENT] Q ← N/I
 Step 6. [OBTAIN THE REMAINDER] R ← N – Q*I
 Step 7. IF R = 0 [i.e., IF N IS DIVISIBLE BY I]
 THEN S ← S + R
 END-IF
 Step 8. [INCREMENT I TO TAKE THE NEXT NUMBER AS
 DIVISOR]
 I ← I + 1
 Step 9. IF S = N THEN PRINT N
 Step 10. [INCREMENT N TO TAKE THE NEXT NUMBER]
 N ← N + 1
 Step 11. STOP

Problem 3.36. Develop a flowchart to show how to determine all the 3-digit
Armstrong numbers. A number is called an Armstrong number if the sum
of the values of the digits each raised to the power equal to the number of
digits in the number equals the number. For example, 153 is an Armstrong
number, because 153 = 13 + 53 + 33.

Task Analysis. We need to test all the 3-digit numbers, from 100 to 999. A
loop is required to generate the numbers to be tested one by one. Next, each
of the generated numbers is to be broken down into its component digits to
obtain the sum of the cube of each. We saw earlier that digits making a number
can be separated if the number is divided by 10 and the remainder is obtained
repeatedly each time by replacing the number with the integer part of the
quotient. An iteration process is required for each of the numbers. Hence, in
the solution of this problem too we have to use a nested loop. The steps of the
computable process for Problem 3.36 are depicted in the flowchart.

This algorithm finds all 3-digit Armstrong numbers.

 Step 1. [INITIALIZE N WITH THE FIRST 3-DIGIT NUMBER]
 N ← 100
 Step 2. REPEAT STEPS 3 THROUGH 10 UNTIL N > 999
 Step 3. [INITIALIZE S, WHICH HOLDS THE SUM OR
 THE CUBES]
 S ← 0
 Step 4. M ← N [THIS IS TO MAKE A COPY OR N]
 Step 5. REPEAT STEP 6 THROUGH STEP 8 WHILE M > 0
 Step 6. COMPUTE REM ← REMAINDER OF (M/10)
 Step 7. COMPUTE S ← S + REM*REM*REM

Flowchart-and-Algorithm-Basics_CH-03.indd 99 6/12/2020 2:38:00 PM

100 • Flowchart and algorithm Basics

START

N 100�

S 0
M
�
��N

S is the sum of the cubes of the digits
M is assigned the value of N to separate the
digits of M

IS
M > 0

?

IS
N > 999

?

Yes

Yes

N is initialized with 100 for checking

STOP

R

No

C

IS
S = N

?

Yes
PRINT N

No

REM Remainder of (M/10)�

S S + REM�
3

M INTEGER PART of (M/10)�

C

The last digit of
N is separated

Cube of the separated digit is obtained and stored in S

N N + 1�

R

 Step 8. COMPUTE M ← INTEGER PART OF (M/10)
 Step 9. IF S = N
 THEN PRINT N
 END-IF
 Step 10. [INCREMENT N TO TAKE THE NEXT NUMBER]
 COMPUTE N ← N + 1
 END-REPEAT
 Step 11. END

Flowchart-and-Algorithm-Basics_CH-03.indd 100 6/12/2020 2:38:00 PM

ProBlems involving looPing • 101

Problem 3.37. Some three-digit numbers show the property that the sum of
the factorials of the digits equals the numbers, for example, 145 = 1 ! + 4 ! + 5 !.
Develop a flowchart to show how to determine all such numbers.

Task Analysis. In this problem, too, we do not require any input from the
terminal because we need to test all the three-digit numbers as in the preced-
ing problem that can be generated serially. This solution requires a nested
loop. The determination of the factorial was shown earlier. Here, the process
should be repeated for each of the digits. The following flowchart shows the
steps of the solution.

START

N 100�

S 0
M ��N
�

IS
N > 999

?

Yes

Yes

N is initialized with 100 for checking

STOP

C

No

REPEAT

FACT FACT D� �

S D – 1�

Fact is multiplied by the current value of
D and the product is stored in fact

D Remainder of (M/10)�

FACT 1�

IS
D > 1

?

No
S S + FACT�

M INTEGER
PART OF (M/10)

�

R

The value of D is decreased by 1

Flowchart-and-Algorithm-Basics_CH-03.indd 101 6/12/2020 2:38:01 PM

102 • Flowchart and algorithm Basics

IS
M > 0

?

Yes
REPEAT

No

R

IS
N = S

?

Yes
PRINT N

No

N N + 1←

C

This algorithm is to find out all the 3-digit numbers for which the sum of
the factorials of the digits equals the number.

 Step 1. [INITIALIZE N WITH THE FIRST 3-DIGIT NUMBER]
 N ← 100
 Step 2. REPEAT STEPS 3 THROUGH STEP 15 UNTIL N > 999
 Step 3. [INITIALIZE S, WHICH HOLDS THE SUM OR THE CUBES]
 S ← 0
 Step 4. [MAKE A COPY OF N] M ← N
 Step 5. REPEAT STEP 6 THROUGH STEP 13 WHILE M > 0
 Step 6. COMPUTE D ← REMAINDER OF (M/10)
 Step 7. [INITIALIZE] FACT ← 1
 Step 8. REPEAT WHILE D > 1
 Step 9. COMPUTE FACT ← FACT*D
 Step 10. COMPUTE D ← D – 1 [DECREMENT D]
 Step 11. END-WHILE
 Step 12. COMPUTE S ← S + FACT
 Step 13. COMPUTE M ← INTEGER PART OF (M/10)
 Step 14. IF N = S
 THEN PRINT N
 END-IF
 Step 15. [INCREMENT N TO TAKE THE NEXT 3-DIGIT NUMBER]
 COMPUTE N ← N + 1
 Step 16. END

Flowchart-and-Algorithm-Basics_CH-03.indd 102 6/12/2020 2:38:01 PM

ProBlems involving looPing • 103

Problem 3.38. Some two-digit numbers have the property that the sum of
the squares of the numbers equals the sum of the squares of the numbers with
reversed digits (for example, 482 + 522 + 632= 842 + 252 + 362). Construct a
flowchart to show how to determine all such two-digit numbers.

START

I 10�

J I + 1�

IS
I 97

?
≤

No
STOP

E

Yes

S I I + J J + K K� � � �

IS
K 99

?
≤

No

K J + 1�

IS
J 98

?
≤

No
I I + 1�

Yes

F

E

R

U I%10
T INTEGER PART OF (I/10)

�
�

RI U 10 + T
U J%10

� �
�

T INTEGER OF (J/10)
RJ 10 U + T
�
� �

F

RI contains the reverse form of I

RJ contains the reverse form of J

J J + 1�

Yes

C

Flowchart-and-Algorithm-Basics_CH-03.indd 103 6/12/2020 2:38:01 PM

104 • Flowchart and algorithm Basics

Task Analysis. The solution of this problem requires the checking of all
two-digit triplets such that the triplet satisfies the specified property with no
 number repeated. The repetition of a number can be prevented by establish-
ing three nested loops. The first loop generates numbers from 10 to 97. The
next inner loop generates the numbers from 11 to 98 and the next inner loop
generates the numbers from 12 to 99 such that the first triplet to be tested is
10, 11, 12 and the next triplet is 10.11, 13. The next task is to obtain the sum
of the squares of the numbers with the digits reversed. To obtain a number
with the digits reversed, we separate the digits of the unit’s place and that of
the ten’s place. Then we use the formula: the digit of the unit’s place * 10 +
digit of the ten’s place.

C

U K%10
T INTEGER PART OF (K/10)
�
�

RK U 10 + T� �

RS RI RI + RJ RJ + RK RK� � � �

IS
S = RS

?

Yes
PRINT I, J, K

No

K K + 1�

R

RK is the reversed number

Sum of squares of the numbers reversed

The algorithm corresponding to Problem 3.38 is as follows.:

 Step 1. [Initialize the Ist loop variable]
 I ← 10
 Step 2. REPEAT STEPS 3 TO 19 WHILE I <= 97
 Step 3. [Initialize the 2nd loop variable]
 J ← I + 1

Flowchart-and-Algorithm-Basics_CH-03.indd 104 6/12/2020 2:38:01 PM

ProBlems involving looPing • 105

 Step 4. REPEAT STEPS 5 TO 18 WHILE J <= 98
 Step 5. [Initialize the 3rd loop variable]
 K ← J + 1
 Step 6. REPEAT STEPS 7 TO 17 WHILE K <= 99
 Step 7. [CALCULATE SUM OF THE SQUARES OF THE 1ST 3

NUMBERS REPRESENTED BY THE LOOP VARIABLES]
 Step 8. COMPUTE S ← I2 + J2 + K2

 Step 9. [SEPARATE THE DIGITS OF THE UNIT’S & TEN’S
PLACE OF I]

 (a) COMPUTE U ← I% 10 [DIVIDE I BY 10 & COLLECT
THE REMAINDER]

 (b) COMPUTE T ← Integer part of (I/10)
 Step 10. [Obtain the reversed form of I] COMPUTE RI ← U*10 + T
 Step 11. [SEPARATE THE DIGITS OF UNIT’S & TEN’S PLACE

OF J]
 (a) COMPUTE U ← J% 10
 (b) COMPUTE T ← Integer part of (J/10)
 Step 12. [Obtain the reversed form of J] RJ ← U*10 + T
 Step 13. [SEPARATE THE DIGITS OF UNIT’S & TEN’S PLACE

OF K]
 (a) COMPUTE U ← K%10
 (b) COMPUTE T ← Integer part of (K/10)
 Step 14. COMPUTE RK ← U × 10 + T [REVERSED FORM OF K]
 Step 15. [Obtain the sum of the squares of the reversed numbers.]
 COMPUTE RS ← RI2 + RJ2 + RK2

 Step 16. IF R = RS
 THEN PRINT I, J, K
 END-IF
 Step 17. COMPUTE K ← K + 1
 Step 18. END-REPEAT K
 Step 19. END-REPEAT J
 Step 20. END-REPEAT I
 Step 21. END

Problem 3.39. Determine the difference between two given dates. Construct
a flowchart to show how to do it.

Task Analysis. The inputs required are the day, month, and year number of
two dates. The difference between the dates can then be computed by com-
paring the day numbers first and then by taking the difference; the month
numbers are then compared and the number of months in between is then

Flowchart-and-Algorithm-Basics_CH-03.indd 105 6/12/2020 2:38:01 PM

106 • Flowchart and algorithm Basics

obtained. Now, when the two day numbers are compared, the day number
of the smaller date may be larger than that of the greater date. To obtain the
number of days in the difference, we add 30 to the smaller day number and
subtract 1 from the corresponding month number. Otherwise, the number of
days in the difference can be obtained through outright subtraction. To obtain
the number of months in the difference, we compare the month number in
the larger date with that in the smaller date. If the month number in the larger
date is smaller than that of the smaller date, then 12 is added to the corre-
sponding month number and then the number of months in the difference
can be obtained through subtraction. One is subtracted from the year number
of the larger date. Otherwise, the number of months can be obtained through
straightforward subtraction.

There will be no such problem in obtaining the number of years because
the year in the larger date will always be larger than the year in the smaller
date. The procedure is depicted below through flowchart.

The algorithm corresponding to Problem 3.39 is stated below:

 Step 1. Set WISH to TRUE
 Step 2. Repeat steps 3 to 12 WHILE WISH
 Step 3. Accept the day (DD), month (MM), and year (YY) component

of the larger date
 Step 4. Accept the day (DD1), month (MM1), and year (YY1) compo-

nent of the smaller date
 Step 5. IF DD < DD1
 THEN COMPUTE DD ← DD + 30
 COMPUTE MM ← MM – 1
 END-IF
 Step 6. COMPUTE D ← DD – DD1
 Step 7. IF MM < MM1
 THEN COMPUTE MM ← MM + 12
 COMPUTE YY ← YY – 1
 END-IF
 Step 8. COMPUTE M ← MM – MM1
 Step 9. PRINT Y, “YEARS”, M, “MONTHS”, D, “DAYS”
 Step 10. PRINT “CONTINUE? (Y/N)”
 Step 11. INPUT TO CHOICE
 Step 12. IF C HOICE ! = “Y”

THEN Set WISH to FALSE
 END-IF
 Step 13. END-WHILE

Flowchart-and-Algorithm-Basics_CH-03.indd 106 6/12/2020 2:38:01 PM

ProBlems involving looPing • 107

START

WISH TRUE←
R

INPUT TO DD, MM, YY
INPUT TO DD1, MM1, YY1

IS
DD < DD1

?

Yes COMPUTE DD DD + 30
COMPUTE MM MM – 1

←
←

No

COMPUTE D DD – DD1←

IS
MM < MM1

?

Yes COMPUTE MM MM + 12
COMPUTE YY YY – 1

←
←

No

COMPUTE M MM – MM1←

COMPUTE Y YY – YY1←

PRINT Y, ‘‘YEARS’’, M, ‘‘MONTHS’’
D, ‘‘DAYS’’

INPUT TO CHOICE

IS
CHOICE

= ‘‘Y’’
?

Yes
R

STOP

No

Flowchart-and-Algorithm-Basics_CH-03.indd 107 6/12/2020 2:38:02 PM

108 • Flowchart and algorithm Basics

Problem 3.40. Develop a flowchart to show how to find out all the groups of
three successive numbers under 1000 that have the property that the square
of the middle number is greater by unity than the product of the other two
numbers (for example, 182 = 17 × 19 + 1).

START

L J J
M I K + 1
� �
� �

IS
L = M

?

Yes
PRINT I, J, K

I 1
J 2
K 3

�
�
�

R

I I + 1
J J + 1

K K + 1

�
�
�

IS
K >
998 ?

No
R

Exit

Yes

No

Task Analysis. We need to use the numbers up to 1000. As any set of three
successive numbers can satisfy the requirement, we may start checking from
the first three natural numbers, i.e., 1, 2, and 3, and terminate the process
when the largest of the numbers falls beyond 998. The procedure is as shown
above.

The algorithm corresponding to Problem 3.40 is stated below:

 Step 1. [INITIALIZE THREE VARIABLES FOR THE FIRST
THREE NUMBERS]

 I ← 1
 J ← 2
 K ← 3.
 Step 2. REPEAT STEPS 3 TO 6 UNTIL K > 998
 Step 3. [Obtain the square of the middle one]
 COMPUTE L ← J2

 Step 4. COMPUTE M ← I*K + 1

Flowchart-and-Algorithm-Basics_CH-03.indd 108 6/12/2020 2:38:02 PM

ProBlems involving looPing • 109

 Step 5. IF L = M
 THEN PRINT I, J, K
 END-IF
 Step 6. [INCREMENT EACH OF THE VARIABLES
 REPRESENTING THE NUMBERS]
 COMPUTE I ← I + 1
 COMPUTE J ← J + 1
 COMPUTE K ← K + 1
 Step 7. END-REPEAT
 Step 8. END

Problem 3.41. Construct a flowchart to show how number of elapsed days
between two dates.

Task Analysis. The problem is to determine the difference between two
dates in the number of days. For example, the number of days between July
12, 1985, and July 26, 1985, is 14. But in the determination of number of
days between two dates that differ widely, say, February 10, 1969 and July
21, 1988, the calculation is a bit more complex. Luckily, there is a formula
that can be used to calculate the number of days between two dates. This is
affected by computing the value of N for each of the two dates and then by
taking the difference, where N is calculated as follows:

N = 1461 × f (year, month)/4 + 153 × g (month)/5 + days
where

f (year, month) = year – 1, if month ≤ 2
 = year, otherwise
 g(month) = month + 13, if month ≤ 2
 = month + 1, otherwise

and all calculations are performed using integer arithmetic.
As an example of applying the formula, to calculate the number of days

between February 10, 1969 and July 21, 1988, we can calculate the values of
N1 and N2 by substituting the appropriate values into the above formula as
shown below.

 N1 = 1461 × f (1969,2)/4 + 153 × g (2)/5 + 10
 = (1461 × 1968)/4 + 153 × (2 + 13)/5 + 10
 = 2875248/4 + 2295/5 + 10
 = 718812 + 459 + 10
 = 719281
 N2 = 1461 × f (1988,7)/4 + 153 × g (7)/5 + 21
 = (1461 × 1988)/4 + (153 × 8)/5 + 21
 = 2904468/4 + 1224/5 + 21
 = 726117 + 244 + 21
 = 726382

Flowchart-and-Algorithm-Basics_CH-03.indd 109 6/12/2020 2:38:02 PM

110 • Flowchart and algorithm Basics

The number of elapsed days = N2 – N1 = 719281 – 726382 = 7101.
The number of days between the two dates is 7101. The above formula is

applicable for any date after March 1, 1900, (1 must be added to N for dates
from March 1, 1800 to February 28, 1900, and 2 must be added for dates
between March 1, 1700, and February 28, 1800, and so on). The steps of the
solution are shown in the flowchart.

The algorithm corresponding to the solution of Problem 3.41 is described
below:

 Step 1. WISH = “Y”
 Step 2. REPEAT Step 3 to Step 12 WHILE WISH = “Y”
 Step 3. ACCEPT DATE 1, DATE 2
 Step 4. [SEPARATE DAY, MONTH, AND YEAR]
 DD1 ← Day Number of DATE 1
 MM1 ← Month Number of DATE 1
 YY1 ← Year Number of DATE 1
 DD2 ← Day Number of DATE 2
 MM2 ← Month Number of DATE 2
 YY2 ← Year Number of DATE 2
 Step 5. IF MM1 <= 2
 THEN F1 ← YY1 – 1
 G1 ← MM1 + 13
 ELSE
 F1 ← YY1
 G1 ← MM1 + 1
 END-IF
 Step 6. IF MM2 <= 2
 THEN F2 ← YY2 – 1
 G2 ← MM2 + 13
 ELSE
 F2 ← YY2
 G2 ← MM2 + 13
 END-IF
 Step 7. [COMPUTE N1] N

F G
DD1 1461

1
4

153
1

5
� � � � �

 Step 8. COMPUTE N
F G

DD2 1461
2

4
153

2
5

� � � � �

 Step 9. [CALCULATE THE NUMBER OF DAYS IN BETWEEN]
 D ← N2 – N1
 Step 10. PRINT D
 Step 11. PRINT “WISH TO CONTINUE? (Y/N)”
 Step 12. INPUT TO WISH
 Step 13. END

Flowchart-and-Algorithm-Basics_CH-03.indd 110 6/12/2020 2:38:04 PM

ProBlems involving looPing • 111

START

INPUT DATE 1, DATE 2

IS
MM1 2

?
≤

Yes f yy1 – 1
g mm1 + 13
1

1

←
←

f yy2 – 1
g mm2 + 13
2

2

←
←

f yy2
g mm2 + 1
2

2

←
←

No

N 1461 × f /4 + 153 × g /5 + DD1
N 1461 × f /4 + 153 × g /5 + DD2

1 1 1

2 2 2

←
←

IS
MM2 2

?
≤

Yes

No

R

DD1 day no. of DATE1
MM1 month no. of DATE1
YY1 year no. of DATE1

←
←
←

DD2 day no. of DATE2
MM2 month no. of DATE2
YY2 year no. of DATE2

←
←
←

f yy1
g mm1 + 1
1

1

←
←

D N2–N1←

PRINT D

DATE1 holds the smaller date
DATE2 holds the larger date

Separate day, month, and year values

WISH = ‘‘Y’’

R

PRINT ‘‘WISH TO
CONTINUE? (Y/N)’’

INPUT
TO WISH

IS
WISH =

‘‘Y’’
?

No

STOP

Yes

Flowchart-and-Algorithm-Basics_CH-03.indd 111 6/12/2020 2:38:05 PM

112 • Flowchart and algorithm Basics

Problem 3.42. Construct a flowchart to show how to determine the name of
the starting day of any given year.

Task Analysis. The name of a year can be determined on the basis of a day-
code that varies from 0 to 6. The day-code value 0 implies “Sunday,” day-code
value 1 implies ”Monday,” and so on. The day-code of a year X can be deter-
mined by the following formula:

day code X- mod� �
��

��
�
��
�

��
��

�
��
�

��
��

�
��

�

��
�

��
x x x1

4
1

100
1

400
7

where [a] denotes the greatest integer less than or equal to a. For example
[5.6] is 5. This is also known as floor value. Mod 7 implies remainder after
division by 7.

The day-code value can also be computed by taking the value of N com-
puted in the preceding problem and then subtracting 621,049 from it and
then taking the result modulo 7. Here we use the previous procedure to con-
struct the following flowchart because that is true for any year.

The algorithm corresponding to the solution of Problem 3.42 is stated
below:

 Step 1. REPEAT step 2 through step 10
 Step 2. ACCEPT YEAR as input
 Step 3. IF YEAR = 0
 THEN STOP
 END-IF
 Step 4. COMPUTE Y1 ← Floor value of (Year – 1)/4
 Step 5. COMPUTE Y2 ← Floor value of (Year – 1)/100
 Step 6. COMPUTE Y3 ← Floor value of (Year – 1)/400
 Step 7. COMPUTE V ← YEAR + Y1 – Y2 + Y3
 Step 8. COMPUTE DAY-CODE ← REMAINDER OF (V/7)
 Step 9. IF DAY-CODE = 0
 THEN DAY-NAME ← “SUNDAY”
 ELSE
 IF DAY-CODE = 1
 THEN DAY-NAME ← “MONDAY”
 ELSE IF DAY-CODE = 2
 THEN DAY-NAME ← “TUESDAY”
 ELSE IF DAY-CODE = 3
 THEN DAY-NAME ← “WEDNESDAY”
 ELSE IF DAY-CODE = 4

Flowchart-and-Algorithm-Basics_CH-03.indd 112 6/12/2020 2:38:06 PM

ProBlems involving looPing • 113

 THEN DAY-NAME ← “THURSDAY”
 ELSE IF DAY-CODE = 5
 THEN DAY -NAME ← “FRIDAY”
 ELSE IF DAY-CODE = 6
 THEN DAY-NAME ← “SATURDAY”
 END-IF
 END-IF
 END-IF
 END-IF
 END-IF
 END-IF
 END-IF
 Step 10. PRINT DAY-NAME
 Step 11. STOP

←

←

←

←

←

Flowchart-and-Algorithm-Basics_CH-03.indd 113 6/12/2020 2:38:06 PM

114 • Flowchart and algorithm Basics

A

IS
day-code

= 0 ?

Yes day-name ‘Sunday’�

No

IS
day-code

= 1 ?

Yes day-name ‘Monday’�

No

IS
day-code

= 2 ?

Yes day-name ‘Tuesday’�

No

IS
day-code

= 3 ?

Yes day-name ‘Wednesday’�

No

IS
day-code

= 4 ?

Yes day-name ‘Thursday’�

No

P

P

P

P

P

IS
day-code

= 5 ?

Yes day-name ‘Friday’�

No P
day-name ‘Saturday’�

P

PRINT day-name

R

Flowchart-and-Algorithm-Basics_CH-03.indd 114 6/12/2020 2:38:07 PM

ProBlems involving looPing • 115

EXERCISES

Construct flowcharts to show the following:

 (i) Print multiplication tables from 1 to 5

 (ii) Sum the digits of a given number until it is reduced to a single digit

 (iii) Create a pyramid of numbers consisting of a given number of lines. For
example, if the given number is 5, then we should see the following:

1
1 2 1

1 2 3 2 1
1 2 3 4 3 2 1

1 2 3 4 5 4 3 2 1

 (iv) Sum the digits of a given number

 (v) A menu of fruits as given below that accepts the user’s option. Calculate
the cost of fruits and repeat the same until the user’s option is exited.
Display the cost of each item and the total amount to be paid by the
customer.

Fruits Menu
Fruits Cost per Pound. (in $)

1. Mango 5.00
2. Apple 3.00
3. Grapes 2.00
4. Exit

 (vi) The following patterns with flexible dimensions as supplied by the uses:

 (a)

 (b)

Flowchart-and-Algorithm-Basics_CH-03.indd 115 6/12/2020 2:38:07 PM

116 • Flowchart and algorithm Basics

 (c)

 (d)

 (e)

 (f)

 (vii) Read a six-digit positive integer. If the number is even, add up its digits.
Otherwise, multiply the individual digits and print the result.

 (viii) Obtain the decimal equivalent of a binary number

 (ix) Display all characters represented by the ASCII numbers from 25 to
100

 (x) Determine the value of an exponential expression of the form ax, where
a is any number and x is any integer

 (xi) Determine the HCF of n given numbers

 (xii) Determine the maximum and the minimum ones of n given numbers

Flowchart-and-Algorithm-Basics_CH-03.indd 116 6/12/2020 2:38:08 PM

ProBlems involving looPing • 117

 (xiii) Determine all the permutations of the numbers less than or equal to
some given number n.

 For example, if n = 123, then the permutations are:

 123

 321

 231

 132

 213

 312

 (xiv) Find a series of five consecutive numbers, the sum of the squares of the
first three of which is equal to the sum of the squares of the last two.
For example,

 (– 2)2 + (– 1)2 + 02 = 12 + 22

 (xv) Limit the checking within 1000, to show all the triad numbers within
10,000. A number is said to be a triad number if the double and triple
of the number contain all separate digits with no repetition of any one
of them.

 (xvi) Identify and show the integer values of x, y, and z that satisfy the
 equation: Z2 = X2 + y2

Flowchart-and-Algorithm-Basics_CH-03.indd 117 6/12/2020 2:38:08 PM

Flowchart-and-Algorithm-Basics_CH-03.indd 118 6/12/2020 2:38:08 PM

C H A P T E R 4
PROBLEMS INVOLVING
ARRAYS

INTRODUCTION

Think of a road with a row of houses on it. How would you get a unique
address for a house on that road? You would take the name of the road and the
house number of the lot. An array is similar to a road with a number of houses.
The name of the road can be thought of as the name of the array and the
number of the house can be thought of as the location number in the array.

Formally speaking, an array is a finite collection of homogeneous data
values usually stored in consecutive memory locations with a common name.
The term finite implies that the number of data values of an array must be
limited by its size. The term homogeneous means “having the same nature or
characteristic.” The term usually implies that arrays are almost always imple-
mented by using contiguous locations of the computer’s main memory in a
linearly ordered fashion, but not always. The common name assigned to a set
of adjacent memory locations to hold the data of a particular type is called
the name of the array. The different data values of an array are mentioned
by using the name of the array along with a subscript within brackets, such as
A[1], A(1), and A[2],or in general, A[i], where i must be an integer. The value
of i is the location. The subscript is also called an index. This is why an array
element such as A[i] is also called an indexed or subscripted variable. The
following are some examples of arrays:

1. The roll numbers of the students of a class stored in a computer’s main
memory in linear order

Flowchart-and-Algorithm-Basics_CH-04.indd 119 6/12/2020 2:38:29 PM

120 • Flowchart and algorithm Basics

2. The names of the students of a class stored in the computer’s main memory
in linear order

3. The maximum temperatures of different days of a month in a city stored
in the computer’s memory in linear order

All of the data stored together are of the same type, i.e., homogeneous.
For example, roll numbers are usually integers, names are usually strings of
characters, and temperatures are usually fractional or floating point numbers.
Hence, the first example is an array of integers, the second example is an
array of strings, and the third example is an array of floating point numbers.
Different computer languages use different notations to represent the array
elements. However, we will use just one notation. If A is an array of size n,
then we will point to an array element by the notation A(i), where the value
of i can vary from 1 to n.

Problem 4.1. The goal here is to show you how to construct an array.
The following algorithm will clarify the steps:

1. Decide the size of the array to be formed, say n.

2. Declare an array of size n with some desired name, say A.

START

Declare array A of size n

i ← 1

IS
>
?

i n
Yes

STOP

No

INPUT TO A()i

i i← + 1

n is any chosen integer,
such as 100 or 200

Flowchart-and-Algorithm-Basics_CH-04.indd 120 6/12/2020 2:38:30 PM

ProBlems involving arrays • 121

3. Initialize the variable or location that will be used as a subscript, say i, with
a statement like i ← 1.

4. Repeat Steps 5 and 6 until i > n.

5. Accept the data value for the array element A(i).

6. Increment the value of the subscript: i ← i + 1.

7. Stop.

In most of the programming languages, the first two Steps can be per-
formed in a single statement where the size n is predefined, such as int A[100],
which defines an array of integers of size 100.

However, mere construction of an array does not accomplish a goal. The
stored values of an array need to be manipulated. The manipulation may be
the simple viewing of the data stored or it may comprise some arithmetic or
logical operations on the stored data.

Problem 4.2. Let us define the objective of our array creation. We wish to
view the stored data values in the reverse sequence of inputs, i.e., we want
to see the last input value first and the first input value last and others in
that sequence. With this purpose in mind, we re-write the above algorithm as
 follows:

1. Decide the size of the array to be formed (n).

2. Declare an array of size n with some desired name (A).

3. Initialize the variable or location that will be used as a subscript, say i, with
a statement like i ← 1.

4. Repeat Steps 5 and 6 while i <= n.

5. Accept the data value for the array element A(i).

6. Increment the value of the subscript: i ← i + 1.

7. Set i ← n.

8. Repeat Steps 9 and 10 while i > = 1

9. Display A(i)

10. Set i ← i – 1.

11. Stop

Flowchart-and-Algorithm-Basics_CH-04.indd 121 6/12/2020 2:38:30 PM

122 • Flowchart and algorithm Basics

START

Declare array A of size n

i ← 1

IS
<=

?
i n

No
STOP

Yes

INPUT TO A()i

i i← + 1

n is any selected integer, say 50

i n←
IS

>= 1
?

i
No

Yes

PRINT A()i

i i← – 1

Problem 4.3. Construct a flowchart to show how to rearrange the elements
in an array so that they appear in reverse order.

Task Analysis. The problem is to move the elements of an array from one
place to another so that when the array is read sequentially from the begin-
ning, we get the last element first, the second to last element as the second
element, and so on. For example,

B O O K Before reversal

K O O B After reversal

We can do this simply by exchanging the values of two locations taken at a
time. We use two variables i and j. The value of i indicates the location on the
left, starting from the first location, and that of j indicates the location on the
right, starting from the last location. Now we can exchange the values of the
i th and the j th locations of the array. After each exchange of values, we increase
the value of i by 1 and decrease the value of j by 1 until i > j. Of course, the
initial value of i should be 0—one less than the index of the first location, and
that of j should be n + 1—one greater than the index of the last location.

Flowchart-and-Algorithm-Basics_CH-04.indd 122 6/12/2020 2:38:31 PM

ProBlems involving arrays • 123

START

Declare an array A of size N

I 1�

IS
I <= N

?

No

STOP

Yes

INPUT TO A(I)

I I + 1�

I 0
J N + 1
�
�

I I + 1
J J – 1
�
�

IS
I < J

?

No

Yes

Yes

I 1�

PRINT A(I)

R

I I + 1�

IS
I <= N

?

No

R

T A(I)
A(I) A(J)
A(J) T

�
�
�

The algorithm corresponding to Problem 4.3 is given below:

 Step 1. Declare the array A(1 ... N) of N elements to be reversed.
 Step 2. Repeat Step 3 for I = 1 to N.
 Step 3. Accept a data value at the Ith location.
 Step 4. Set I = 0, J = N + 1
 Step 5. Repeat steps 6 through 7 until I >= J
 Step 6. I ← I + 1, J = J – 1
 Step 7. T ← A (I)
 A(I) ← A(J)
 A(J) ← T

Flowchart-and-Algorithm-Basics_CH-04.indd 123 6/12/2020 2:38:31 PM

124 • Flowchart and algorithm Basics

 Step 8. Repeat step 9 for I = 1 to N
 Step 9. PRINT A(I)
 Step 10. STOP

Problem 4.4. Construct a flowchart to show how to determine the maximum
number in a set of n numbers.

START

Accept n

Declare A()n

I 1←

Input to A(I)

R

COMPUTE I I + 1←

IS
I >

?
n

Yes

No

MAX A(1)←

I 2←

R C

IS
A(I) > MAX

?

Yes
MAX A(I)←

I I + 1←

No

IS
I >

?
n

Yes
PRINT MAX

STOPNo

C

Flowchart-and-Algorithm-Basics_CH-04.indd 124 6/12/2020 2:38:32 PM

ProBlems involving arrays • 125

Task Analysis. The maximum number in a set of numbers is that number
which is greater than or equal to all other numbers in the set. The maximum
number may not be unique and it is only defined for sets of one or more
elements. The simplest, most systematic way to find the desired number is
achieved if we consider the first number as our temporary candidate for the
maximum and write it in a separate place, MAX. Then we scan the list from
the 2nd number through the last number of the list to find any number that is
greater than the number stored in MAX. If we find such a number, we store
it in MAX by removing the previously stored one. At the end of the scanning
process, we can declare that MAX contains the largest number in the given
set. The algorithm of the solution is given here.

 Step 1. Accept the size of the set, n.
 Step 2. Declare an array A(1 ... n) of n elements where n ≥ 1.
 Step 3. Repeat step 4 for I = 1, 2, ..., n.
 Step 4. Accept a number to A(I).
 Step 5. [Set temporary maximum MAX to first array element] MAX ←A(1).
 Step 6. Repeat step 7 for I = 2, 3, ..., n.
 Step 7. If A(I) > MAX,
 Then MAX ← A(I)
 End-if
 Step 8. Print MAX as the maximum for the array of n elements.
 Step 9. Stop.

Problem 4.5. Construct a flowchart to show how to store the first 100 natu-
ral numbers in an array and then show them in the reverse sequence.

Task Analysis. To solve the problem, we need an array of dimension 100.
The array can be filled with natural numbers automatically and once stored,
the numbers can be returned by pointing to the locations, starting from the
last location. The solution is shown in the flowchart of Problem 4.5.

The algorithm corresponding to Problem 4.5. is given below:

 Step 1. Declare an array of size 100 with any chosen name, say A.
 Step 2. Initialize the variable that will be used as a subscript, say I, with

a statement like I ← 1
 Step 3. REPEAT steps 5 and 6 UNTIL I > 100.
 Step 4. A(I) ← I
 Step 5. I ← I + 1
 Step 6. Initialize I again with the starting print location, I ← 100
 Step 7. REPEAT STEPS 9 & 10 UNTIL I < 1.

Flowchart-and-Algorithm-Basics_CH-04.indd 125 6/12/2020 2:38:32 PM

126 • Flowchart and algorithm Basics

 Step 8. PRINT A(I).
 Step 9. I ← I – 1
 Step 10. END.

START

Declare an array, A
of dimension 100

I 1←

A(I) I←

I I + 1←

IS
I > 100

?

Yes
I 100←

PRINT A(I)

I I – 1←

IS
I < 1

?

Yes
STOP

No

No

Problem 4.6. In a certain hospital, the weights of newborn babies are
recorded each month and then processed at the end of the month to determine
the following:

 (i) mean weight of the babies

 (ii) maximum of the weights

(iii) minimum of the weights

Flowchart-and-Algorithm-Basics_CH-04.indd 126 6/12/2020 2:38:32 PM

ProBlems involving arrays • 127

Construct a flowchart to show how the weights can be stored in the com-
puter’s memory first and then processed to determine the desired outputs.

Task Analysis. The solution includes the procedure for storing the weights
of the babies first. This requires an array. Let us suppose that the dimension
of the array can be given as the input during the execution of the procedure,
so that the array can be defined during the execution. (If it is not possible,
then an array of size 100 may be defined and then the requisite number of
locations can be used.) The next task is to determine the maximum of the
weights recorded. We assume that the weight stored in the first location is
the maximum one, and hence we store its value to some location, say MAX.
Next, we compare the values of the remaining locations one by one with the
value of the MAX; if it happens that some location contains a weight greater
than that of the MAX, then we store that weight in MAX by removing the
previous one so that at the end of the comparison, the location MAX will
contain the maximum of the weights. Similarly, the minimum of the weights
can be determined by defining a location, say MIN, with the initial value of
the first location and then comparing the value of MIN with the values of the
remaining locations to find the value lesser then the value contained in MIN.

The algorithm corresponding to Problem 4.6 is given below:

 Step 1. ACCEPT THE SIZE(N) OF THE ARRAY AS INPUT
 Step 2. DECLARE AN ARRAY W OF SIZE N.
 Step 3. I ← 1 [INITIALIZE THE VARIABLE I WITH 1 FOR USE

AS A SUBSCRIPT]
 Step 4. REPEAT STEPS 5 and 6 WHILE I < = N
 Step 5. INPUT TO W(I) [W(I) is to hold the weight of Ith baby given as

input]

START

INPUT N

Declare an array W
with dimension N

I 1←

INPUT W(I)

R

N contains the number of babies born

I indicates the array location to be accessed

Weight of baby number I

CONT

Flowchart-and-Algorithm-Basics_CH-04.indd 127 6/12/2020 2:38:32 PM

128 • Flowchart and algorithm Basics

IS
I > N

?

Yes
PRINT MEAN, MAX, MIN

I I + 1←

IS
W(I) <
MIN

?

Yes
MIN W(1)←

No

STOP
No

IS
I > N

?

Yes
S 0←

S S + W(I)←

IS
I > N

?

Yes

No

No

I I +1← I is incremented by one

R

I 1←
C

I I + 1←

MEAN S/N←

C

MAX W(1)
MIN W(1)

←
←

I 2←

IS
W(I) >
MAX

?

Yes MAX W(1)←

REPEAT

REPEAT

Initialize location S, which holds the sum of the weights

I is initialized again to point out the locations

Weight of the Ith baby is added to the value of S

CONT

No

Flowchart-and-Algorithm-Basics_CH-04.indd 128 6/12/2020 2:38:32 PM

ProBlems involving arrays • 129

 Step 6. COMPUTE I ← I + 1 [INCREMENT I]
 Step 7. S ← 0 [INITIALIZE S, which is the sum of the weights of the babies]
 Step 8. I ← 1
 Step 9. REPEAT STEPS 10 and 11 WHILE I <= N
 Step 10. COMPUTE S ← S + W(I)
 Step 11. COMPUTE I ← I + 1

 Step 12. COMPUTE MEAN ← S
N

 Step 13. MAX ← W(1) [Initialize MAX with the weight of the 1st baby]
 Step 14. MIN ← W(1) [Initialize MIN with the weight of the 1st baby]
 Step 15. I ← 2 [Set I to 2, to start comparison with the weight of the 2nd

baby onwards]
 Step 16. REPEAT STEPS 17 THROUGH 19 WHILE I <= N
 Step 17. IF W(I) > MAX
 THEN MAX ← W(I)
 END-IF
 Step 18. IF W(I) < MIN
 THEN MIN ← W(I)
 END-IF
 Step 19. COMPUTE I ← I + 1
 Step 20. PRINT MEAN, MAX, MIN
 Step 21. STOP

Problem 4.7. In a certain city, the maximum and the minimum tempera-
tures on each day are recorded each month to determine the following at the
end of the month:

 (i) mean maximum temperature in the month

 (ii) mean minimum temperature in the month

(iii) highest maximum temperature

 (iv) lowest minimum temperature

 (v) hottest day number of the month

 (vi) coldest day number of the month

Draw a flowchart to show how the desired result can be obtained.

Task Analysis. This problem is similar to the preceding one. Hence, the
solution will also be similar. Two arrays are required to store the two types
of data (maximum and minimum). The output includes two more things: the
hottest day number and the coldest day number of the month. These day

Flowchart-and-Algorithm-Basics_CH-04.indd 129 6/12/2020 2:38:32 PM

130 • Flowchart and algorithm Basics

numbers of the hottest day and that of the coldest day are stored in two vari-
ables named “HOTTEST” and “COLDEST,” respectively.

START

INPUT N

Declare two arrays with
names MAX and MIN
each with dimension N

I 1�

INPUT MAX(I), MIN(I)

R

N is the number of days in the month

MAX (I) holds the minimum temperature
of the Ith day
MIN (I) holds the minimum temperature
of the Ith day

I I + 1�

IS
I > N

?

No

R

S1 0
S2 0
I 1

�
�
�

S1 is the sum of the maximum temperatures
S2 is the sum of the minimum temperatures

S1 S1 + MAX(I)
S2 S2 + MIN(I)
I 1 + 1

�
�
�

IS
I > N

?

No

C

MAX-MEAN S1/N
MIN-MEAN S2/N

�
�

Yes

I 2
MAX-MAX MAX(1)

MIN-MIN MIN(1)

�
�
�

HOTTEST 1
COLDEST 1

�
�

Yes

C

CONT

Flowchart-and-Algorithm-Basics_CH-04.indd 130 6/12/2020 2:38:33 PM

ProBlems involving arrays • 131

MAX-MAX MAX(I)
HOTTEST I

←
←

IS
MAX(I)
> MAX
-MAX

?

Yes

IS
W(I) <

MIN-MIN
?

MIN-MIN W(I)
COLDEST I

←
←

IS
I > N

?

No

No

I I + 1←

PRINT MAX-MEAN,
MIN-MEAN, MAX-MAX,
MIN-MIN, HOTTEST, COLDEST

STOP

CONT

RP

RP
No Yes

The algorithm corresponding to Problem 4.7 is given below:

 Step 1. ACCEPT SIZE N OF THE ARRAY AS INPUT
 Step 2. DECLARE TWO ARRAYS WITH NAMES MAX and MIN
 Step 3. REPEAT FOR I = 1, 2, 3, ..., N
 (a) INPUT TO MAX (I)
 (b) INPUT TO MIN (I)

Flowchart-and-Algorithm-Basics_CH-04.indd 131 6/12/2020 2:38:33 PM

132 • Flowchart and algorithm Basics

 Step 4. S1 ← 0, S2 ← 0
 [Initialize S1 and S2, which are the sum of maximum and

 minimum temperatures, respectively]
 Step 5. REPEAT FOR I = 1, 2, 3, ..., N
 (a) COMPUTE S1 ← S1 + MAX (I)
 (b) COMPUTE S2 ← S2 + MIN(I)

 Step 6. COMPUTE MAX-MEAN ← S1
N

 Step 7. COMPUTE MIN-MEAN ← S2
N

 Step 8. MAX-MAX ← MAX (1) [Initialize with the 1st temperature of
the set]

 Step 9. MIN-MIN ← MIN (1) [Initialize with the 1st temperature of
the minimum set]

 Step 10. HOTTEST ← 1, COLDEST ← 1
 [Initialize with the 1st day number]
 Step 11. REPEAT FOR I = 2, 3, 4, ..., N
 IF MAX (I) > MAX-MAX
 THEN MAX-MAX ← MAX (I)
 HOTTEST ← I
 END-IF
 IF MIN (I) < MIN-MIN
 THEN MIN-MIN ← MIN (I)
 COLDEST ← I
 END-IF
 Step 12. PRINT MAX-MEAN, MIN-MEAN, MAX-MAX, MIN-MIN,

HOTTEST, AND COLDEST
 Step 13. END

Problem 4.8. Three tests are given, each one worth 50 points. The better
score of the first two tests is added to that of the third one to determine the
final score and a grade is assigned to each student on the percentage score as
per the following rules.

Percentage in Score Grade
> = 80 A
> = 70 but <80 B
> = 60 but <70 C
> = 50 but <60 D
< 50 F

Develop a flowchart to show how to accept the input data related to each
student and process them to print out a result sheet with the output in descend-
ing order of the percentage score.

Flowchart-and-Algorithm-Basics_CH-04.indd 132 6/12/2020 2:38:33 PM

ProBlems involving arrays • 133

Task Analysis. The inputs are the grades obtained by students on three tests.
To identify the student, the student roll-number and name of each student
are given as input. The final score of each student is obtained by determining
the greater score of the first two tests and then adding it to that of the third
test. The total score represents the percentage score because the total is based
on the marks of two tests, each of which carries a maximum grade of 50.

START

INPUT N N is the number of students

Declare arrays
T1(N), T2(N), F(N),

ROLL(N), NAME(N)

T1 is the grade of N students on test 1
T2 is the grade of N students on test 2
F(N) is the grade of N students on test 3
ROLL(N) contains the roll-number of N students
NAME(N) contains the name of N students

I 1←

INPUT T1(I), T2(I), F(I),
ROLL(I), NAME(I)

I I + 1←

IS
I > N

?

D

Yes PROCESS-
DATA

No

D

At this stage, we shall have the Roll Number, Name, and Percentage of
all the students. The next task is to sort the facts to get information about the
students in a descending sequence of percentages. To sort the facts, we take
the percentage of the first student and compare it with the percentage of all
the other remaining students and interchange the student’s data whenever
some student’s percentage is found to be less than the percentage of that of
the first student’s percentage. Similarly, we take the percentage of the second
student to compare it with the percentage of the third student to interchange
the facts, if needed. This type of comparison is continued until we compare
the percentage of the last two students.

Flowchart-and-Algorithm-Basics_CH-04.indd 133 6/12/2020 2:38:33 PM

134 • Flowchart and algorithm Basics

PROCESS-DATA

I 1←

IS
T1(I) > T2(I)

?

Yes F(I) F(I) + T1(I)←

No

No

F(I) F(I) + T2(I)←

I I + 1←

IS
I > N

?

Yes

I I←

J I + 1←

R

IS
F(I) < F(J)

?

Yes

No

No

No

J J + 1←

TN NAME(I)
NAME(I) NAME(J)
NAME(J) TS
T F(I)
F(I) F(J)
F(J) T
R ROLL(I)
ROLL(I) ROLL(J)
ROLL(J) R

←
←
←

←
←
←

←
←
←

Exchange the data values
of I and J studentsth th

IS
J > N

?

Yes
I I + 1←

IS
I > N – 1

?

Yes
GRADE & PRINT

R

Start of the sorting routine

Flowchart-and-Algorithm-Basics_CH-04.indd 134 6/12/2020 2:38:33 PM

ProBlems involving arrays • 135

During the interchange operations, the roll-number and the name of the
students must also be interchanged.

GRADE & PRINT

I 1←
P

IS
F(I) 80

?
≥

Yes
GRADE ‘A’←

No

IS
F(I) 70

?
≥

Yes
GRADE ‘B’←

No

IS
F(I) 60

?
≥

Yes
GRADE ‘C’←

No

IS
F(I) 50

?
≥

Yes
GRADE ‘D’←

No

GRADE ‘F’← CONT

The algorithm of Problem 4.8 is shown below:

 Step 1. ACCEPT THE NUMBER OF STUDENTS N
 Step 2. DECLARE FIVE ARRAYS: T1(I), T2(I), F(I), ROLL (I),

AND NAME (I) TO HOLD THE SCORES OF TEST 1,
TEST 2, TEST 3, THE ROLL NUMBER, AND NAME OF
THE STUDENTS, RESPECTIVELY.

CONT

PRINT ROLL(I), NAME(I),
F(I), GRADE

I I + 1←

IS
I > N

?

Yes
EXIT

P

No

Flowchart-and-Algorithm-Basics_CH-04.indd 135 6/12/2020 2:38:34 PM

136 • Flowchart and algorithm Basics

 Step 3. I ← 1 [INITIALIZE I]
 Step 4. REPEAT STEP 5 AND STEP 6 WHILE I <= N
 Step 5. INPUT TO T1(I), T2(I), F(I), ROLL (I), NAME (I)
 Step 6. COMPUTE I ← I + 1
 Step 7. I ← I
 Step 8. DO STEP 9 and STEP 10 WHILE I <= N
 Step 9. IF T1 (I) > T2 (I)
 THEN COMPUTE F(I) ← F(I) + T1(I)
 ELSE
 COMPUTE F(I) ← F(I) + T2 (I)
 END-IF
 Step 10. COMPUTE I ← I + 1
 Step 11. I ← 1
 Step 12. REPEAT STEP 13 THROUGH STEP 15 WHILE I <= N – 1
 Step 13. COMPUTE J ← I + 1
 Step 14. FOR J = I + 1 TO N DO
 IF F(I) < F(J)
 THEN T ← F(I)
 F(I) ← F(J)
 F(J) ← T
 R ← ROLL (I)
 ROLL (I) ← ROLL (J)
 ROLL (J) ← R
 TN ← NAME (I)
 NAME (I) ← NAME (J)
 NAME (J) ← TN
 END-IF
 Step 15. COMPUTE I ← I + 1
 Step 16. FOR I = 1, 2, 3, ..., N DO
 (i) IF F (I) ← 80
 THEN GRADE ← ‘A’
 ELSE IF F(I) ←70
 THEN GRADE ← ‘B’
 ELSE IF F(I) ← 60
 THEN GRADE ← ‘C’
 ELSE IF F(I) ←50
 THEN GRADE ← ‘D’
 ELSE
 GRADE ← ‘F’

Flowchart-and-Algorithm-Basics_CH-04.indd 136 6/12/2020 2:38:34 PM

ProBlems involving arrays • 137

 END-IF
 END-IF
 END-IF
 END-IF
 (ii) PRINT F(I), ROLL (I), NAME (I), GRADE
 Step 17. STOP

Problem 4.9. Construct a flowchart to show how a set of N numbers is stored
in memory and then stored in ascending order of their magnitude for display.

Task Analysis. Let us suppose that the list of numbers A(1), A(2),, A(N)
is in the memory. We use a bubble sort algorithm that works as follows:

 Step 1. We compare A(1) and A(2) and arrange them in the desired
order, so that A(1) < A(2). We next compare A(2) and A(3)
so that A(2) < A(3). We continue this way until we compare
A(N – 1) with A(N) and arrange them so that A(N – 1) < A(N).
These comparisons bring the largest element to the Nth
 position, i.e., the largest of the elements comes in A(N) after
these N – 1 comparisons.

 Step 2. As the largest element has been placed properly in Step 1, we
need not disturb the A(N) element. We repeat the comparisons
in Step 1 without A(N). This will bring up the second largest
element in A(N – 1).

START

Declare an array
A of dimension N

I 1←

Input to A(I)

Compute I I + 1←

IS
I <= N

?

Yes

No

X

Flowchart-and-Algorithm-Basics_CH-04.indd 137 6/12/2020 2:38:34 PM

138 • Flowchart and algorithm Basics

I 1←

J 1←

J J + 1←

T A(J)←

A(J) A(J + 1)←

A(J + 1) T←

IS
J N–I

?
≤

IS
A(J) >

A(J + 1)
?

Yes

No

C

R

R

C

L

E
No

Yes

X

I represents pass no.

E

COMPUTE I I + 1←

I I←

COMPUTE I I + 1←

I N – 1
?

≤

IS
I <= N

?

PRINT A(I)

STOP

Yes

M

M

L
Yes

No

No

Flowchart-and-Algorithm-Basics_CH-04.indd 138 6/12/2020 2:38:34 PM

ProBlems involving arrays • 139

We repeat these comparisons each time, considering one less element
than that in the preceding step. It can be observed that after (N – 1) steps, the
set of numbers will be in the sorted sequence.

The algorithm of the above process is stated below:

 Step 1. FOR I = 1 TO N
 Step 2. INPUT TO A(I)
 Step 3. END-FOR
 Step 4. FOR I = 1 TO N – 1
 Step 5. FOR J = 1 TO N – I
 Step 6. IF A(J) > A(J + 1)
 THEN T ← A(J)
 A(J) ← A(J + 1)
 A(J + 1) ← T
 END-IF
 Step 7. END-FOR–J
 Step 8. END-FOR–I
 Step 9. FOR I = 1 TO N
 Step 10. PRINT A(I)
 Step 11. END-FOR–I
 Step 12. STOP

Problem 4.10. Draw a flowchart to show how the product of two matrices
can be obtained.

Task Analysis. We know that a matrix is a two-dimensional array. The mul-
tiplication of two matrices is possible if the number of columns of the first
matrix is equal to the number of rows in the second matrix or if the number of
rows in the first matrix equals the number of columns of the second matrix. If
we consider the row-by-column multiplication of the two matrices, then each
element of a row is taken sequentially to multiply with the corresponding col-
umn elements, taking one at a time, and the sum of these products is taken as
an element of the resulting matrix. This is repeated for all the rows of the first
matrix. The reverse process is carried out for the column by row multiplica-
tion. To describe the process mathematically, let A = [aij] be an m × n matrix
and B = [bij] be an n × p matrix. Then the product A.B of these matrices is of
the order m × p say, C = [cij].
where cij = ai1 . b1j + ai2 . b2i + + ain . bnj

� � �
�
�c a bij ik kj
k

n

1

Flowchart-and-Algorithm-Basics_CH-04.indd 139 6/12/2020 2:38:38 PM

140 • Flowchart and algorithm Basics

START

Declare arrays
M1(5,5), M2(5,5), M3(5,5)

I 1←

J 1←

INPUT to M1(I, J), M2(I, J)

COMPUTE J J + 1←

COMPUTE I I + 1←

I 1←

J 1←

M3 (I, J) 0←

K 0←

COMPUTE K K + 1←

COMPUTE J J + 1←

COMPUTE M3(I, J) M3(I, J)
+ M1(I, K) * M2(K, J)

←

IS
J <=5

?

IS
I 5

?
≤

IS
K 5

?
≤

No

No

No

P

N

C

R

N

Y

L

R

C

Yes

Yes

Yes

P

IS
J 5

?
≤

IS
I 5

?
≤

IS
J 5

?
≤

IS
I 5

?

COMPUTE I I + 1←

I 1←

J 1←

COMPUTE J J + 1←

COMPUTE I I + 1←

PRINT M3(I, J)

STOP

Y

L

Q

T

No

No

No

No

Yes

Yes

Yes

Yes

T

Q

≤

Flowchart-and-Algorithm-Basics_CH-04.indd 140 6/12/2020 2:38:39 PM

ProBlems involving arrays • 141

The algorithm of Problem 4.10 is given below:

 Step 1. FOR I = 1 TO 5
 Step 2. FOR J = 1 TO 5
 Step 3. Input TO M1(I, J), M2 (I, J)
 Step 4. NEXT J
 Step 5. NEXT I
 Step 6. FOR I = 1 TO 5
 Step 7. FOR J = 1 TO 5
 Step 8. M 3 (I, J) = 0
 Step 9. FOR K = 1 TO 5
 Step 10. COMPUTE M3 (I, J) ←M3(I, J) + M1(I, K) * M2(K, J)
 Step 11. END-FOR-K
 Step 12. END-FOR-J
 Step 13. END-FOR-I
 Step 14. FOR I = 1 TO 5
 Step 15. FOR J = 1 TO 5
 Step 16. PRINT M3 (I, J)
 Step 17. END-FOR-J
 Step 18. END -FOR-I
 Step 19. STOP

Problem 4.11. A departmental store chain consists of 15 stores, each com-
prising 7 departments. The weekly sales totals of each department of the stores
are available for processing.

Develop a flowchart to show how the data are to be processed to deter-
mine the total Weekly Sales.

(i) Department (ii) Store

Task Analysis. We need three arrays: one two-dimensional array to hold
the sales values and two one-dimensional arrays, one to hold the department
totals and one to hold the store averages. The procedure involves the row-
wise addition of two-dimensional array values when the total for each store
is determined and column-wise addition of the two-dimensional array-values
when the total for each department is determined.

Flowchart-and-Algorithm-Basics_CH-04.indd 141 6/12/2020 2:38:39 PM

142 • Flowchart and algorithm Basics

START

Declare arrays SALES (15, 7)
DEPT_ (7), STORE_TOT (15)

& Initialize with zeroes
TOT

I 1←

J 1←

COMPUTE J J + 1←

COMPUTE I I + 1←

I 1←

J 1←

COMPUTE J J + 1←

COMPUTE STORE_TOT (I)
STORE_TOT (I) + SALES (I, J)

←

INPUT TO SALES (I, J)

IS
J <= 7

?

IS
I 15

?
≤

C

R

U

R

C

Yes

Yes

No

No

P

S

Flowchart-and-Algorithm-Basics_CH-04.indd 142 6/12/2020 2:38:39 PM

ProBlems involving arrays • 143

P

IS
J 7 ?≤

IS
J 15

?
≤

IS
I 7 ?≤

IS
I 15 ?≤

COMPUTE I I + 1←

I 1←

J 1←

COMPUTE J J + 1←

COMPUTE I I + 1←

COMPUTE DEPT_TOT (I)
DEPT_TOT (I) + SALES (J, I)

←

U

S

V

V

W

W

Z

Yes

Yes

No

No

No

No

Yes

Yes

Z

I I←

COMPUTE I I + 1←

COMPUTE I I + 1←

I 1←

PRINT STORE_TOT (I)

PRINT DEPT_TOT (I)

IS
I 15 ?≤

IS
I > 7 ?

Y

X

Y

STOP

No

Yes

X
Yes

No

The algorithm of Problem 4.11 is left for the reader as an exercise.

Flowchart-and-Algorithm-Basics_CH-04.indd 143 6/12/2020 2:38:39 PM

144 • Flowchart and algorithm Basics

EXERCISES

Construct flowcharts and algorithms for the following problems:

 1. Convert a decimal number into its equivalent binary, octal, or
 hexadecimal form according to the given option.

 2. Test whether a given string is a palindrome.

 3. Count the number of vowels, consonants, and special characters in a
given string.

 4. Unscramble a four-letter word.
 [Hint. Let abcd be the given four-character string. The process should

find out all the words by jumbling the characters, such as acbd and
adbc.]

 5. Convert a given Roman numeral into its decimal equivalent. The fol-
lowing table gives the Roman numerals and their decimal equivalents:

 Roman Decimal
 M 1000
 D 500
 C 100
 L 50
 X 10
 V 5
 I 1

 The algorithm for converting a Roman numeral

 R1, R2,Rn

 to a decimal is given below:

 1. I ← 1
 (I denotes the position of the symbol being scanned)
 2. DECIMAL ← 0
 DECIMAL is to hold the decimal value of the given Roman numeral)
 3. REPEAT steps 4 through 6 WHILE I < N.
 4. If the decimal value of Ri is greater than or equal to the decimal

value of Ri +1, add the decimal value of Ri to DECIMAL else subtract
the decimal value of Ri from DECIMAL.

 5. COMPUTE I ← I + 1.
 6. END-WHILE.

Flowchart-and-Algorithm-Basics_CH-04.indd 144 6/12/2020 2:38:39 PM

ProBlems involving arrays • 145

 7. ADD the decimal value of Rn to DECIMAL.
 8. PRINT DECIMAL.
 9. STOP.

 6. Convert a decimal number into its Roman equivalent.

 7. Show that Goldback’s conjecture in mathematics is true for all the
 positive even numbers under 500.

 (Goldback stated that every even integer greater than 2 can be expressed
as the sum of two prime numbers.)

 8. The maximum and the minimum temperatures on each day of a city
are collected over each month and then processed to determine

 (i) average minimum temperature of the month
 (ii) average maximum temperature of the month
 (iii) lowest temperature during the month and the day number on

which it occurred
 (iv) highest temperature during the month and the day number of the

month on which it occurred

 9. Obtain the sum and the difference of two matrices.

 10. A fishing fleet fishes in 10 different regions each consisting of 8 differ-
ent areas. The data about the fish caught in kilograms are available for
processing. Determine

 (i) region-wide average amount of fish caught
 (ii) area-wide average amount of fish caught
 (iii) the area of the region that yielded the highest catch
 (iv) the area of the region that yielded the lowest catch
 (v) grand total of the fish caught

 Show the data in a tabular format.

Flowchart-and-Algorithm-Basics_CH-04.indd 145 6/12/2020 2:38:39 PM

Flowchart-and-Algorithm-Basics_CH-04.indd 146 6/12/2020 2:38:39 PM

C H A P T E R 5
THE ART OF FILE PROCESSING

INTRODUCTION

A file may generally be defined as an organized collection of well-ordered,
well-related, and self-contained information held on a stable storage medium.
The information in a file is placed in a specific way and read back in a specific
way. The information must be kept together as a unit in the same sequence in
a well-organized way. The different units of information must bear some rela-
tionship with one another for collective consideration. A file is self- contained
in that it is complete in all respects. The stable storage medium may be a piece
of paper, a magnetic or optical disk, or a magnetic tape or any other medium
where the information can be kept for a long time for repeated use without
any special aid. Thus, the information bearing the characteristics mentioned
above stored in the main memory of a computer will not make a file because
the main memory of a computer can hold it only as long as electricity is sup-
plied to the main memory.

Depending on the nature of the information, files can be classified into
two basic types: the program file and the data file. A program file is a file
that contains a sequential set of instructions in a computer language that can
direct a computer in the performance of some specific task. A data file is a
collection of records about closely-related or similar entities. However, these
types of files should possess all the features stated in the generalized defi-
nition above. A record is an ordered collection of the attribute values of an
entity. An attribute is any characteristic or feature of an entity that tells some-
thing about the entity, where an entity is anything with a physical or concep-
tual existence. A fact is anything that is true about an entity. To collect facts

Flowchart-and-Algorithm-Basics_CH-05.indd 147 6/12/2020 2:38:57 PM

148 • Flowchart and algorithm Basics

about an entity, we first decide on some attributes of the entity and procure
facts on those attributes. We normally choose a group of entities called an
entity set, a collection of items that are considered together for some close
relationship. We next select some of the attributes common to all the entities
of the set and collect facts on those attributes in a predefined order to form a
record for each of them and put all such records together to form the desired
file. Let us consider a business enterprise, for instance. The employees of the
enterprise form a closely related set of entities. If we consider the attributes
 EMPLOYEE-CODE-NUMBER, EMPLOYEE-NAME, EMPLOYEE-AD-
DRESS, DESIGNATION, and SALARY for each of the employees, then the
values of these attributes in the mentioned order form a record of an employee
of the enterprise and the collection of all the records of the employees of the
enterprise forms the desired employee data file (if the records are kept on a
stable storage medium).

A file is typically considered a data file. The task of file processing is the
set of activities performed on the records of a file to generate some desired
information. Now depending on the organization of the records, the set of
operations will vary. We next consider a discussion on file organization. Basi-
cally, file organization can be classified into three categories:

(i) Sequential File Organization
(ii) Indexed File Organization
(iii) Hashed/Relative/Random File Organization

Sequential file organization is one in which records are kept in a file, one
after another, and processed in the same sequence in which they are written.
The term sequential means one after another, and hence the name bears the
nature of the organization of the file.

Indexed file organization is one in which sequentially organized records
are associated with an index for the purpose of direct access to the records. An
index is a special kind of file that contains records consisting of two attribute
values, one that is a unique identifying attribute of the records in the sequen-
tial file and the other that contains the address of the records in the main file.
The identifying attribute is also known as the key attribute or key field. The
records in the index are kept in the ascending order of the key field values.
When a user wishes to access a record from an indexed file, she initiates a
binary search in the index for some key field value and the record found in
the search process is then accessed to get the address of the desired record
in the main file. Thus, any record in an indexed file can be accessed without
reading the preceding or the following records in the file. This saves time and
increases the speed of processing, if the number of records to be accessed in

Flowchart-and-Algorithm-Basics_CH-05.indd 148 6/12/2020 2:38:57 PM

the art oF File Processing • 149

one processing run is less than one-fourth of the total number of records in
the file. The disadvantage of such a file organization is that it takes additional
disk space for the index, and hence the file organization is more expensive
than sequential file organization. The speed of accessing records also varies
depending on the organization of the records in the index. For more details
about the index file organization, please see any standard textbook on data-
bases or file management systems.

A hashed or relative file organization is also a direct access file organiza-
tion. In such a file organization, the key field or identifying attribute value is
hashed or converted to some location address in the file space relative to the
beginning of the file-record positions on the basis of some predefined func-
tion. The predefined function is called a hash routine and the method is called
hashing. As the hashing is done dynamically during the creation of the file, no
extra file space is needed for this purpose, rather, the records can be pointed
to directly later by using the same hash function. The only problem with this
type of organization is the proper selection of the hash function and its imple-
mentation through programming instructions. The programming efficiency of
the developers is considered when selecting one of the two direct access file
organizations. (The reader is again advised to read a textbook on file/database
management systems for further details.) We now study different problems on
file processing to illustrate the flowcharts and the algorithms corresponding to
their solutions. The following problems involve sequential file organization.

Problem 5.1. Construct a flowchart to show how the records of the students
in a computer training institution are kept in a file. Each record consists of

(i) STUDENT-ID (for unique identification of the students)
(ii) STUDENT-NAME
(iii) COURSE-NAME
(iv) COURSE-FEE
(v) FEES-PAID
(vi) DATE-OF-ADMISSION

Task Analysis. The logic of this problem is straightforward. Data is accepted
from the terminal for the attributes for one student at a time in the order of
their specification to form a student record and then the record is written in
the file space designated through the opening statement of a file until the
user signals there are no more records to be written in the file. The file space
is then delinked by writing a statement for closing the file. The user’s signal
for no more records to be written in the file can be indicated by inputting an
invalid data value for the first attribute of the record, say 0 for STUDENT-ID.

Flowchart-and-Algorithm-Basics_CH-05.indd 149 6/12/2020 2:38:57 PM

150 • Flowchart and algorithm Basics

START

OPEN STUDENT-FILE

ACCEPT STUDENT-ID

IS
STUDENT-ID

= 0 ?

Yes

STOP
No

ACCEPT STUDENT-NAME
COURSE-NAME
COURSE-FEE,

FEES-PAID

WRITE STUDENT-ID,
STUDENT-NAME,
COURSE-NAME,

COURSE-FEE,
FEES-PAID

R

R

CLOSE STUDENT-FILE

The algorithm corresponding to Problem 5.1 is as follows:

 Step 1. OPEN STUDENT-FILE
 Step 2. REPEAT STEPS 3 THROUGH 7
 Step 3. ACCEPT STUDENT-ID
 Step 4. IF STUDENT-ID = 0
 THEN
 (i) CLOSE STUDENT-FILE
 (ii) EXIT
 END-IF
 Step 5. ACCEPT STUDENT-NAME, COURSE-NAME, COURSE-

FEE, FEES-PAID

Flowchart-and-Algorithm-Basics_CH-05.indd 150 6/12/2020 2:38:58 PM

the art oF File Processing • 151

 Step 6. WRITE STUDENT-RECORD
 Step 7. END

Problem 5.2. Develop a flowchart to process the records of the
 STUDENT-FILE mentioned in Problem 5.1 to create another file contain-
ing records of the students having dues where each record will consist of
 STUDENT-ID, STUDENT-NAME, and DUE-AMOUNT.

Task Analysis. Two files must be used here. The first file, STUDENT-FILE,
contains the input records that are to be read one by one, and the second file,
DUES-FILE, contains the records of the students with dues. The student
with dues can be found if we see that fees paid by the student are less than
the course fee. The due amount can then be obtained by subtracting the fees
paid from the course fee of the student. This gives us the data values of the
records to be written in the output file named DUES-FILE. The process is
terminated as soon as we reach the end of STUDENT-FILE. We check the
end of a file against a logical value EOF. The EOF is defined in a variety of
ways in different programming languages.

START

OPEN STUDENT-FILE for input,
DUES-FILE for output

READ STUDENT-FILE

IS
EOF

?

Yes
STOP

No

WRITE STUDENT-ID, STUDENT-
NAME, DUE IN DUES-FILE

R

R

CLOSE STUDENT-FILE
DUES-FILE

IS
COURSE-

FEE
> FEES-PAID

?

Yes DUE COURSE-FEE
– FEES-PAID

←

R

Flowchart-and-Algorithm-Basics_CH-05.indd 151 6/12/2020 2:38:59 PM

152 • Flowchart and algorithm Basics

The algorithm corresponding to Problem 5.2 is shown below:

 Step 1. OPEN INPUT STUDENT-FILE, OUTPUT DUES-FILE
 Step 2. REPEAT STEPS 3 THROUGH 5
 Step 3. READ A RECORD FROM STUDENT-FILE
 Step 4. IF EOF OF STUDENT-FILE
 THEN
 (i) CLOSE STUDENT-FILE
 (ii) EXIT
 END-IF
 Step 5. IF COURSE-FEE > FEES-PAID
 THEN DUE ← COURSE-FEE – FEES-PAID
 WRITE STUDENT-ID, STUDENT-NAME, DUE
 IN DUES-FILE
 END-IF
 Step 6. STOP
 Step 7. END

Problem 5.3. A file named EMPFL contains the records of the employees
of an organization. Each record consists of data: EMP-CODE, EMP-NAME,
and BASIC-PAY. The gross salary of an employee is calculated by using the
following formula: Gross Salary = Basic Pay + DA + ADA + HRA + MA

where DA = 45% of Basic Pay
 ADA = 18% of Basic Pay subject to a minimum of $200 and
 a maximum of $1000.
 HRA = 25% of Basic Pay subject to a minimum of $500 and
 a maximum of $5000.
 MA = 10% of the Basic pay subject to a minimum of $100.
The net salary of an employee is calculated by the formula:

Net Salary = Gross Salary – Total Deduction
where Total Deduction = PF + PT
where PF = 12% of Basic Pay
 PT = 5% of Basic Pay subject to a maximum of $200.

Develop a flowchart and the algorithm to show how the salary for differ-
ent employees is calculated to generate the pay slips for the employees of the
organization.

Task Analysis. The problem here is to print the pay slip for each of the
employees whose records are contained in EMPFL. This can be done by
reading the records of the employees one at a time and then calculating the

Flowchart-and-Algorithm-Basics_CH-05.indd 152 6/12/2020 2:38:59 PM

the art oF File Processing • 153

DA, ADA, HRA, and MA values to determine the gross salary and then find-
ing out the amounts of PF and PT for determining the total deduction. The
net salary can then be obtained by subtracting the total deduction from the
gross salary. The ADA is 18% of Basic Pay, subject to a minimum of $200
and a maximum of $1,000. This implies that if the 18% of the Basic Pay value
happens to be less than $200, then $200 is the ADA amount; if, however, it
exceeds $1,000, then $1,000 is the ADA amount. The conditions for HRA,
MA, and PT can be handled in the same way.

START

OPEN EMPFL

SET EOF TO ‘NO’

READ-A-RECORD

R

IS
EOF = ‘NO’

?

Yes PROCESS-AND
-READ

No

CLOSE EMPFL

STOP

Main Logic START

READ-A-RECORD

IS
RECORD
FOUND

?

No

SET EOF TO ‘YES’
Yes

EXIT

READ-A-RECORD

R

Note that the flowchart has three modules: Main Logic, READ-A-
RECORD, and PROCESS-AND-READ. The flowchart of the last two
 modules is shown separately. In a programming language, these can be imple-
mented as distinct procedures or functions. The algorithm of Problem 5.3 is
shown below:

 Step 1. OPEN EMPFL
 Step 2. REPEAT STEPS 3 THROUGH 18
 Step 3. READ A RECORD
 Step 4. IF EOF IS TRUE
 THEN (i) CLOSE EMPFL
 (ii) EXIT

Flowchart-and-Algorithm-Basics_CH-05.indd 153 6/12/2020 2:38:59 PM

154 • Flowchart and algorithm Basics

 END-IF
 Step 5. COMPUTE DA ← BASIC-PAY * .45
 Step 6. COMPUTE ADA ← BASIC-PAY *.18
 Step 7. IF ADA > 1000
 THEN ADA ← 1000
 ELSE
 IF ADA < 200
 THEN ADA ← 200
 END-IF
 END-IF
 Step 8. COMPUTE HRA ← BASIC-PAY * .25
 Step 9. IF HRA < 500
 THEN HRA ← 5000
 ELSE
 IF HRA > 5000
 THEN HRA ← 5000
 END-IF
 END-IF
 Step 10. COMPUTE MA ← BASIC-PAY * .10
 Step 11. IF MA < 100
 THEN MA ← 100
 END-IF
 Step 12. COMPUTE PF ← BASIC-PAY * .12
 Step 13. COMPUTE PT ← BASIC PAY * .05
 Step 14. IF PT > 200
 THEN PT ← 200
 END-IF
 Step 15. COMPUTE GROSS-PAY ← BASIC-PAY + DA + ADA +

HRA + MA
 Step 16. COMPUTE TD ← PF + PT
 Step 17. COMPUTE NET-PAY ← GROSS-PAY – TD
 Step 18. PRINT EMPCODE,
 EMPNAME,
 GROSS-PAY, TD,
 NET-PAY
 Step 19. STOP

Flowchart-and-Algorithm-Basics_CH-05.indd 154 6/12/2020 2:38:59 PM

the art oF File Processing • 155

START

COMPUTE DA BASIC PAY*.45

IS
ADA > 1000

?

Yes
ADA 1000

No

PROCESS-AND
-READ

COMPUTE ADA BASIC-PAY*.18

C

IS
ADA < 200

?

Yes
ADA 200

C

COMPUTE HRA BASIC-PAY*.25

IS
HRA < 500

?

Yes
HRA 500

D

IS
HRA

> 5000
?

Yes
HRA 5000

D

No

No

COMPUTE MA BASIC-PAY*.10

IS
MA < 100

?

Yes
MA 100

No

E

E

PF BASIC-PAY*.12

PT BASIC-PAY*.05

IS
PT > 200

?
PT 200

GROSS-PAY BASIC-PAY +
DA + ADA + HRA + MA

TD PF + PT

NET-PAY GROSS-PAY-TD

PRINT ‘‘EMP CODE:’’, EMP-CODE

PRINT ‘‘EMP NAME:’’, EMP-NAME

PRINT ‘‘GROSS PAY:’’, GROSS-PAY

PRINT ‘‘TOTAL DEDUCTIONS:’’, TD

PRINT ‘‘NET PAY:’’, NET-PAY

READ-A-RECORD

EXIT

Flowchart-and-Algorithm-Basics_CH-05.indd 155 6/12/2020 2:38:59 PM

156 • Flowchart and algorithm Basics

Problem 5.4. A file named INVENT contains records of assets in the inven-
tory of a company for the computation and printing of the depreciation sched-
ule for each of them. Each record consists of the ASSET-MEMBER, ASSET-
VALUE, RATE, and YEARS, where RATE contains the rate of depreciation
and YEARS contains the life-span of the asset over which the asset will be
depreciated. The following table illustrates the desired form of the output for
an asset.

Asset 45678 Original Value
$1,000.00

Rate 0.20

Year Depreciation Accumulated
Depreciation

Book Value

1 $200.00 $200.00 $800.00

2 160.00 360.00 640.00

3 128.00 488.00 512.00

4 102.40 590.00 409.00

5 89.92 672.32 327.68

Construct a flowchart to show the processing logic of the problem. Develop
the algorithm of the solution.

Task Analysis. Depreciation is the monetary value by which the value of
some asset is reduced for each year of use. The calculation of depreciation is
straightforward here. The asset-value and the rate by which the asset-value is
to be reduced are both given in each record. We read each record and then
multiply the asset-value by the rate to obtain its current value of depreciation.
When an item is depreciated, its asset-value decreases, so to compute the next
year’s depreciation, the depreciation amount is subtracted from the current
asset-value to obtain its current face value (or book value). This calculation
is repeated to print the depreciation schedule of an asset over its life span.
HEADER-1 is the first line of text, along with values from the record read,
as shown in the illustration. The HEADER-2 is the second line of text, as
illustrated.

Flowchart-and-Algorithm-Basics_CH-05.indd 156 6/12/2020 2:39:00 PM

the art oF File Processing • 157

START Main Logic

OPEN INVENT

IS
END-OF

FILE ?

C

CLOSE INVENT

READ A RECORD

PROCESS-AND-PRINT

C

Yes

No

START PROCESS-AND-PRINT

PRINT HEADER-1

PRINT HEADER-2

Set COUNTER
to one

COUNTER is the count of the number
of years for which the depreciation values
have been computed

Set ACCUMULATOR
to zero

ACCUMULATOR is the accumulated
depreciation value

COMPUTE D
ASSET-VALUE * RATE

R

D is the depreciation value

COMPUTE ACCUMULATOR ACCUMULATOR + D

COMPUTE ASSET-VALUE ASSET-VALUE – D

PRINT COUNTER, D, ACCUMULATOR,
ASSET-VALUE UNDER HEADER-2

COMPUTE COUNTER COUNTER + 1

IS
COUNTER
= YEARS ?

Exit

R

Yes

No

Return to next step
of PROCESS-AND-PRINT

Flowchart-and-Algorithm-Basics_CH-05.indd 157 6/12/2020 2:39:00 PM

158 • Flowchart and algorithm Basics

The algorithm of Problem 5.4 is given below:

 Step 1. OPEN INVENT FILE
 Step 2. REPEAT STEPS 3 THROUGH 14 WHILE NOT END OF

FILE
 Step 3. READ A RECORD
 Step 4. PRINT ASSET-NUMBER, ORIGINAL-VALUE, RATE

WITH text as HEADER-1
 Step 5. PRINT “YEAR,” “DEPRECIATION,” “ACCUMULATED

DEPRECIATION” and “BOOK VALUE” as column headings
 Step 6. SET COUNTER TO 1
 Step 7. SET ACCUMULATOR TO 0
 Step 8. REPEAT STEPS 9 THRU 13 UNTIL COUNTER-YEARS
 Step 9. COMPUTE D ← ASSET-VALUE * RATE
 Step 10. COMPUTE ACCUMULATOR ← ACCUMULATOR + D
 Step 11. COMPUTE ASSET-VALUE ← ASSET-VALUE – D
 Step 12. PRINT COUNTER, D, ACCUMULATOR, ASSET-VALUE

under column headings
 Step 13. COMPUTE COUNTER ← COUNTER + 1
 Step 14. END-WHILE
 Step 15. CLOSE INVENT FILE
 Step 16. END

Problem 5.5. A sorted data file named RECEIVABLES contains records
about the accounts-receivable of a company. Construct a flowchart to show
how to generate a summary of the overdue and forthcoming receivables.
Assume that each record consists of ACCOUNT-NO, YEAR-DUE, DAY-
DUE, and AMOUNT-DUE.

Task Analysis. The datafile must be sorted in the ascending order of the
ACCOUNT-NO. We may assume that there is only one record per account.
To print the desired output, the current (today’s) date and year should be
accepted from the terminal or from the system. The sample output for this
problem is shown in the table.

Flowchart-and-Algorithm-Basics_CH-05.indd 158 6/12/2020 2:39:00 PM

the art oF File Processing • 159

Account Out of Sequence 005367

Status Number of Accounts Value (in $)

Overdue 05 10,000.00

Receivable 03 5,000.00

Totals 02 15,000.00

START Main-logic

OPEN INVENT

IS
END-OF

FILE ?

C

CLOSE INVENT

READ A RECORD

PROCESS-AND-PRINT

C

Yes

No

START PROCESS-AND-PRINT

PRINT HEADER-1

PRINT HEADER-2

Set COUNTER
to one

COUNTER is the count of the number
of years for which the depreciation values
have been computed

Set ACCUMULATOR
to zero

ACCUMULATOR is the accumulated
depreciation value

COMPUTE D
ASSET-VALUE * RATE

R

D is the depreciation value

COMPUTE ACCUMULATOR ACCUMULATOR + D

COMPUTE ASSET-VALUE ASSET-VALUE – D

PRINT COUNTER, D, ACCUMULATOR,
ASSET-VALUE UNDER HEADER-2

COMPUTE COUNTER COUNTER + 1

IS
COUNTER
= YEARS ?

Exit

R

Yes

No

Return to next step
of PROCESS-AND-PRINT

Flowchart-and-Algorithm-Basics_CH-05.indd 159 6/12/2020 2:39:00 PM

160 • Flowchart and algorithm Basics

START

PREVIOUS-ACCT-NO 0

Stores previously read
account number and so
that each record can be
compared with the
preceding one to see that
they are in ascending
sequence. Initially, it is set
equal to zero.

Initialize the
accumulators

Set to zero : OVERDUE,
OVERDUE-AMOUNT,
RECEIVABLE and
RECEIVABLE-AMOUNT

OPEN RECEIVABLES FILE

A

Read current date
and year

IS
END-OF-

FILE ?

Print error
message STOP

Yes

Flowchart-and-Algorithm-Basics_CH-05.indd 160 6/12/2020 2:39:01 PM

the art oF File Processing • 161

PRINTING

Print HEADING On top of
a new page

COMPUTE HOW-MANY
OVERDUE + RECEIVABLES

COMPUTE TOTALS
OVERDUE-AMOUNT +
RECEIVABLE-AMOUNT

Print line with “OVERDUE”,
OVERDUE, OVERDUE-AMOUNT

Print line with “RECEIVABLE”,
RECEIVABLE, RECEIVABLE-

AMOUNT

Print line with “TOTALS”,
HOW-MANY, TOTALS

CLOSE FILES

STOP

Problem 5.6. In India, the registration charge for letters is calculated as per
the following rules:

For the first 20 grams (or part thereof), the charge is fixed and it is equal
to Rs. 8.25 for domestic letters and Rs. 25.75 for international letters.

For the every additional 15 grams (or part thereof), the charge is Rs. 7.25
for domestic letters and Rs. 18.25 for international letters, as long as the gross
weight does not exceed 500 grams.

For weights above 500 grams, the charge is calculated at the rate Rs. 1.65
per gram for domestic letters and at the rate of Rs. 4.65 per gram for interna-
tional letters.

Flowchart-and-Algorithm-Basics_CH-05.indd 161 6/12/2020 2:39:01 PM

162 • Flowchart and algorithm Basics

Develop a flowchart for the following:

(i) Accept weight and type of letter interactively to calculate the charge
and display it;

(ii) If the sender agrees to register the letter at the calculated charge,
add a record to a register file consisting of the letter number,
 destination, weight, charge, date of registration, and letter type,
and then print out a receipt for the sender in the following format:

Receipt of Registration (Not Insured)
 Letter No.:
 Destination:
 Weight:
 Charge:
 Date:
 Signature

Task Analysis. The logic of this program is simple. A file named LNO-FILE
contains an initial letter number. The subsequent letter numbers are obtained
by incrementing this letter number. Another file named LETTER-FILE is
kept open and contains the records of the registered letters sequentially. Each
record of LETTER-FILE consists of a unique letter number, destination,
weight, charge, date of registration, and type of letter in the order mentioned.
The input data required from the terminal are the weight and type of letter on
the basis of the weight and the type of letter. The registration charge can be
computed according to the rules. The calculated charge can then be displayed
for the confirmation of the sender. If the sender wishes to pay the calculated
charge to get the letter registered, then a receipt of registration is printed in
the given format and a record is appended to the open file.

In the flowchart, the computation of the 15-gram intervals is done using
the following formula:

INV �
�

�integer part of
(ExcessWeight)1

15
1

The reader can check the validity of the formula for any additional weight.
The algorithm of Problem 5.6 is stated below:

 Step 1. OPEN LNO-FILE, LETTER-FILE
 Step 2. REPEAT STEP 3 THROUGH 15
 Step 3. ACCEPT W from the terminal [W is the weight of the letter to

be registered]

Flowchart-and-Algorithm-Basics_CH-05.indd 162 6/12/2020 2:39:02 PM

the art oF File Processing • 163

 Step 4. IF W <= 0 THEN EXIT
 Step 5. ACCEPT LT from the terminal [LT is the type of letter (domes-

tic or international)]
 Step 6. IF W <= 20
 THEN IF LT = ‘‘I’’
 THEN CHG ← 8.25
 ELSE IF LT = “F”
 THEN CHG ← 25.75
 ELSE
 PRINT “INVALID LETTER TYPE”
 GO TO STEP 5
 END-IF
 END-IF
 ELSE IF W <= 500
 THEN COMPUTE EW ← W – 500

COMPUTE INV INT

EW
�

��
�
�

�
�
� �

1
15

1

 IF LT = “I”
 THEN COMPUTE CHG ← 8.25 + INV * 7.25
 ELSE IF LT = “F”
 THEN COMPUTE CHG ← 25.75 + INV * 18.25
 ELSE PRINT “INVALID LETTER TYPE”
 GO TO STEP 5
 END-IF
 END-IF
 ELSE IF LT = “I”
 THEN COMPUTE CHG ← 8.25 + 32 * 7.25 + (W – 500) * 1.65
 ELSE IF LT = “F”
 THEN COMPUTE CHG ← 18.75 + 32 * 18.25 + (W – 500) *

4.65
 ELSE PRINT “INVALID LETTER TYPE” GO TO STEP 5
 END-IF
 END-IF
 END-IF
 Step 7. DISPLAY CHG
 Step 8. ACCEPT RESPONSE
 (TO DETERMINE WHETHER THE SENDER WISHES

TO REGISTER THE LETTER AT THE CALCULATED
CHARGE)

Flowchart-and-Algorithm-Basics_CH-05.indd 163 6/12/2020 2:39:03 PM

164 • Flowchart and algorithm Basics

 Step 9. IF RESPONSE = “N”
 THEN GO TO STEP 3
 END-IF
 Step 10. ACCEPT DESTINATION from the terminal
 Step 11. READ LNO from LNO-FILE
 Step 12. COMPUTE LNO ← LNO + 1
 (Generate new LNO)
 Step 13. PRINT RECEIPT
 Step 14. WRITE a record in LETTER-FILE
 Step 15. END-REPEAT
 Step 16. END

No

Today DAY-DUE
THIS-YEAR YEAR-DUE

This is to save
current date
and year.

READ A RECORD

R

IS
END-OF-

FILE ?

Yes
Printing

IS
PREVIOUS-
ACCT-NO <
ACCT-NO ?

No STOP

PRINT ERROR
MESSAGE

Yes

IS
THIS-YEAR <
YEAR-DUE ?

Yes

IS
THIS-YEAR =

YEAR-
DUE ?

No

No

IS
DAY-DUE
< TODAY

?

YesNo

OVERDUE

OVERDUE

No Yes

RECEIVABLE

RECEIVABLE

A

Receivable

Increment
RECEIVABLE by1

Increment
RECEIVABLE-AMOUNT

by AMOUNT-DUE

Exit

Overdue

Increment
OVERDUE by 1

Increment
OVERDUE-AMOUNT

by AMOUNT-DUE

Exit

Flowchart-and-Algorithm-Basics_CH-05.indd 164 6/12/2020 2:39:04 PM

the art oF File Processing • 165

PRINTING

Print HEADING On top of
a new page

COMPUTE HOW-MANY
OVERDUE + RECEIVABLES

COMPUTE TOTALS
OVERDUE-AMOUNT +
RECEIVABLE-AMOUNT

Print line with “OVERDUE”,
OVERDUE, OVERDUE-AMOUNT

Print line with “RECEIVABLE”,
RECEIVABLE, RECEIVABLE-

AMOUNT

Print line with “TOTALS”,
HOW-MANY, TOTALS

CLOSE FILES

STOP

Flowchart-and-Algorithm-Basics_CH-05.indd 165 6/12/2020 2:39:04 PM

166 • Flowchart and algorithm Basics

START

OPEN LNO-FILE,
LETTER-FILE

LNO-FILE contains the last letter number
LETTER-FILE contains the records
of the registered letter

Prompt for
weight

I

Accept W W is the weight

IS
W <= 0 ?

CLOSE LNO-FILE,
LETTER-FILE

R

Yes

Prompt for
type of letter

No

Accept LT
LT is “I” for a domestic letter and
“F” is for an international letter

IS
W <= 20 ?

IS
LT = ‘I’

?

Yes Yes
CHG 8.25

CNo
A B

No

Problem 5.7. ABC university conducted an examination and collected the
students’ personal data and the total points obtained in the examination in a
file named STUDENTS. The record layout is given below:

Data Description Data Type & Size
Roll Number 5 numeric
Name of the Student 25 alphabetic
Sex Code (M: Male F: Female) 1 alphabetic
Marital Status Code
(U: Unmarried; M: Married, 1 alphabetic
D: Divorced; W: Widowed)
Age in Years 2 numeric
Total Points Obtained 3 numeric

The university authorities require the students’ results in printed form to
have the following information for each student:

1. Roll Number

2. Title of the Student (MR/MISS/MRS.)

Flowchart-and-Algorithm-Basics_CH-05.indd 166 6/12/2020 2:39:04 PM

the art oF File Processing • 167

3. Name of the Student

4. Age in Years

5. Total Marks Obtained

6. Result (PASSED/FAILED)

7. Grade (EXCELLENT/VERY GOOD/ GOOD/ FAIR/POOR)

At the end of the results of all the students, the following summary should
be provided.

Summarized Information

Sex Passed Failed Total
No. of
Students Excellent V. Good Good Fair Total Poor

No. of
Girls

No. of
Boys

The following criteria were adopted to provide the grades of the students:

Marks Obtained Result Grade

≥ 900 Passed Excellent

< 900 but ≥750 Passed Very Good

< 750 but ≥ 500 Passed Good

< 500 but ≤ 400 Passed Fair

< 400 Failed Poor

The criteria for generating the title of each student is as follows:

1. If the sex code is “M,” then the title is “MR.”

2. If the sex code is “F,” and the marital status is “U,” then the title is
“MISS.”

3. If the sex code is “F,” and the marital status is “M” or “D” or “W,” then
the title is “MRS.”

Flowchart-and-Algorithm-Basics_CH-05.indd 167 6/12/2020 2:39:04 PM

168 • Flowchart and algorithm Basics

Construct a flowchart to show the processing logic of the STUDENTS file
to get the information desired. Show the algorithm of the solution.

Task Analysis. The problem consists of two major activities, namely, (i)
developing the result, grade, and the title of each student for the given data,
and printing the information in the desired format; and (ii) obtaining the sum-
mary totals to be printed at the end of the process.

The title of a student is generated from the combination of the sex code
and the marital status code, as per the criteria stated in the problem state-
ment. The result and the grade of the student are developed from the points
obtained, as per the criteria stated. Depending upon the sex code and the
grade, the summary controls are developed. Lastly, the required information
is printed.

No

IS
W <=
500 ? No

IS
LT =
‘I’ ?

Yes COMPUTE CHG
8.25 + 32 * 7.25 +
(W – 500) * 1.65

IS
LT =
‘‘F’’ ?

Yes CHG 25.75

C
Yes

COMPUTE EW
(W – 500)

No

IS
LT =
‘F’ ?

C

X

Yes
COMPUTE CHG

25.75 + 32 * 18.25
+ (W – 500) * 4.65

C

NoX

Display “Invalid
letter-type”

R
COMPUTE INV

INT

+ 1
EW – 1

15

IS
LT =
“I”

Yes COMPUTE CHG
8.25 + INV * 7.25

CNo

IS
LT = “F”

?

Yes COMPUTE CHG
25.75 + INV * 18.25

No
X

A

B

C

PRINT “THE CHARGE
IS Rs.”, CHG

Prompt
for consent

Accept RESPONSE

IS
RESPONSE

= “N” ?
I

Yes

No

ACCEPT DEST DEST is the destination
of the letter

E

Flowchart-and-Algorithm-Basics_CH-05.indd 168 6/12/2020 2:39:04 PM

the art oF File Processing • 169

READ LNO
from LNO-FILE

LNO is the letter no. of
the last registered letter

COMPUTE LNO
LNO + 1

Write LNO in
LNO-FILE

PRINT a receipt in
the format desired

WRITE a record
in LETTER-FILE

I

E

Flowchart-and-Algorithm-Basics_CH-05.indd 169 6/12/2020 2:39:04 PM

170 • Flowchart and algorithm Basics

E-COUNT

IS
SEX = ‘‘M’’

?

ADD 1 TO
NO-GIRL-EXEC

ADD 1 TO
NO-BOY-EXEC

EXIT

Yes

No

VG-COUNT

IS
SEX = ‘‘M’’

?

ADD 1 TO
NO-GIRL-VG

ADD 1 TO
NO-BOY-VG

EXIT

Yes

No

F-COUNT

IS
SEX = ‘‘M’’

?

ADD 1 TO
NO-GIRL-FAIR

ADD 1 TO
NO-BOY-FAIR

EXIT

Yes

No

G-COUNT

IS
SEX = ‘‘M’’

?

ADD 1 TO
NO-GIRL-GOOD

EXIT

ADD 1 TO
NO-BOY-GOOD

Yes

No

INITIALIZE

PAGE-NO 0
NO-BOY-POOR 0

NO-GIRL-POOR 0

←
←
←

NO-BOY-EXEC 0
NO-GIRL-EXEC 0
NO-BOY-GOOD 0

NO-GIRL-GOOD 0

←
←
←
←

NO-BOY-VG 0
NO-GIRL-VG 0
NO-BOY-FAIR 0

NO-GIRL-FAIR 0

←
←
←
←

EXIT

Flowchart-and-Algorithm-Basics_CH-05.indd 170 6/12/2020 2:39:05 PM

the art oF File Processing • 171

PRINT-SUMMARY

COMPUTE TOTAL-GIRLS-APPRED
NO-GIRLS-POOR + NO-GIRLS-EXEC +

NO-GIRLS-VG + NO-GIRLS-GOOD +
NO-GIRLS-FAIR

COMPUTE TOTAL-BOYS-APPRED
NO-BOYS-POOR + NO-BOYS-EXEC +

NO-BOYS-VG + NO-BOYS-GOOD +
NO-BOYS-FAIR

PRINT TEXT HEAD-LINES

PRINT CONTROL TOTALS FOR GIRLS

PRINT CONTROL TOTALS FOR BOYS

EXIT

The algorithm of the solution for Problem 5.7 is summarized below:

 Step 1. OPEN the input file STUDENTS
 Step 2. Initialize PAGE-NO and the 10 counters for the summary

information
 Step 3. PRINT the page heading
 Step 4. WHILE NOT END OF FILE REPEAT STEP 5 THROUGH

STEP 9
 Step 5. GENERATE the title as per the sex and the marital status code
 Step 6. Depending upon the points obtained, generate the grade and

the result of the student. Depending upon the sex code and
the grade of the student the record is counted in one of the 10
counters for the summary.

Flowchart-and-Algorithm-Basics_CH-05.indd 171 6/12/2020 2:39:05 PM

172 • Flowchart and algorithm Basics

 Step 7. PRINT a student-record
 Step 8. ADD 1 TO Line-counter
 Step 9. IF Line-counter > 50
 THEN PRINT page-heading in the next page
 END-IF
 Step 10. CALCULATE total for ‘BOYS’
 Step 11. CALCULATE total for ‘GIRLS’
 Step 12. PRINT total for ‘BOYS’
 Step 13. PRINT total for ‘GIRLS’
 Step 14. CLOSE STUDENT file
 Step 15. STOP

Problem 5.8. A branch of a nationalized bank (ABC Bank) has computer-
ized the savings accounts of its consumers. As a result, they provide a monthly
statement to customers stating their transactions every month.

The data related to the name and address of the customer, bank account
number, and opening balance for every month are kept in a disk file called
SBMAST.DAT. This file is sorted in the order of account number. All the
transactions for the customers are entered in another file called SBTRAN.
DAT. At the end of every month, the transaction file is sorted using the account
number and matched with the Master file for the printing out detailed state-
ment for each customer.

The format of the two input files is given below:

SBMAST-DAT
Data Name Description Type & Size
BR-CODE Branch Code 4 AN
SB-ACT-NO Account Number 10 AN
NAME Name of Customer 25 AN
ADDR Address 30 AN
OPENING BALANCE Opening balance at the N(7 + 2)
 beginning of month

Savings Bank Transaction File: SBTRAN.DAT
Data Name Description Type & Size
SB-ACT-NO Account Number 10 AN
TR-DAT Transaction Date 8 AN
DESCRN Description 15 AN

Flowchart-and-Algorithm-Basics_CH-05.indd 172 6/12/2020 2:39:05 PM

the art oF File Processing • 173

DEBIT Withdrawals (6 + 2) N
CREDIT Deposits (6 + 2) N

The name and address of the customer are printed as taken from the
Master file. The account number is printed on the top right-hand side. The
closing balance of the account is the opening balance credit/debit. Please note
the following, which will help to write the correct algorithm.

There is one record in the Master file for each customer. In the
 transaction file, there may be no records (for a customer who has not had
any transactions during the month) or there may be multiple records, if a
customer has more than one transaction during the month. In the case of
accounts with no transactions, the opening balance and closing balance and
closing balance (both would be the same) are printed on consecutive lines.
The remarks column contains the message “NO TRANSACTIONS” on the
closing balance line. For all customers who have had transactions, every
transaction is printed as a separate line, the opening balance being the first
line. The opening balance line contains the words “OPENING BALANCE”
in the description column of the line. The last line contains the final closing
balance, with the words “OPENING BALANCE”’ in the description column
of the line. The last line contains the final closing balance, with the words
“Closing Balance” in the description column. No dates are printed on the
opening balance lines.

The data printed on the report for each transaction are in the DD-MM-YY
format. The transactions are printed double-spaced, with 30 lines per page.
There is a page skipped after every customer transaction is printed. The page
number is initialized after every customer transaction is printed. The month
and year of statement are taken from the terminal at a beginning of the
 program.

Normally, there should be no instance of the closing balance becoming
negative for any customer. If however, the closing balance becomes negative,
the balance should be printed with a negative sign, and the error message
“NEGATIVE BALANCE” should be printed in the remarks column.

In the case of a customer who has only transactions, but no corresponding
record in the Master file, the records should be bypassed, with the following
message on the terminal: “NO MASTER FOR S/B ACCOUNT NO.” The
account number should be displayed by the side.

Use only the standard file-names for the input, and output and the data-
names as specific above, in the input files. In the case of print record and

Flowchart-and-Algorithm-Basics_CH-05.indd 173 6/12/2020 2:39:05 PM

174 • Flowchart and algorithm Basics

other intermediate values that may be required, use the following standard
names:

Print Record: SBPRT-REC
Data Names: RPT-DATE Data of Transaction
 RPT-EES Description of Transaction
 RPT-OB Opening Balance
 RPT-CR Credit
 RPT-DR Debit
 RPT-CB Closing Balance
 REMK Remarks
Other Data Names: CUMBAL Cumulative balance, starting from the

opening balance to which credits are added and debits are subtracted to arrive
at the closing balance

 MSG1 “OPENING BALANCE”
 MSG2 “CLOSING BALANCE”
 MSG3 “NO TRANSACTIONS”
 MSG4 “BALANCE NEGATIVE”
 MSG5 “NO MASTER FOR S/B
 ACCOUNT NO:”
 PG Page Number
 MY Month and Year accepted from
 terminal

In case it becomes necessary to use any other data name other than what
have been given above, a comment statement explaining what the data name
stands for should be given.

Draw a flowchart showing the processing logic. Write comment statements
to explain the processing logic.

Flowchart-and-Algorithm-Basics_CH-05.indd 174 6/12/2020 2:39:05 PM

the art oF File Processing • 175

START

OPEN
STUDENTS FILE

INITIALIZE

PRINT
HEADING

R

IS
END-OF-

FILE ?

PRINT
SUMMARY

Yes

No CLOSE
STUDENTS FILE

STOP

READ A
RECORD

PROCESS-
RECORD

R

PRINT-HEADING

PRINT HEADING
LINE-1

PRINT HEADING-
LINE-2

LINE-COUNTER 2
COMPUTE PAGE NO.

PAGE NO. + 1

EXIT

Flowchart-and-Algorithm-Basics_CH-05.indd 175 6/12/2020 2:39:05 PM

176 • Flowchart and algorithm Basics

PROCESS-RECORD

IS
SEX =
“M” ?

Yes
TITLE ‘MR’

No

IS
SEX =
“F” ?

Yes

No

IS
M-STATUS

= “U” ?
Yes

TITLE ‘MISS’

No

TITLE “ ” TITLE “MRS”

IS
MARKS <

400 ?

No

Yes RESULT “FAIL”
GRADE “POOR”

RESULT “PASSED”
IS

SEX =
“M” ?

IS
MARKS <

900 ?

IS
MARKS <

750 ?

IS
MARKS <

500 ?

IS
LINE-

COUNTER
> 50 ?

Yes COMPUTE NO-BOY-POOR
NO-BOY-POOR + 1

GRADE
‘‘EXCELLENT’’

GRADE
‘‘VERY GOOD’’

ADD 1 TO
LINE-COUNTER

E-COUNT

VG-COUNT

G-COUNT

F-COUNT

RESULT ‘‘FAIR’’

RESULT
‘‘GOOD’’

COMPUTE NO-GIRL-POOR
NO-GIRL-POOR + 1

PRINT A STUDENT-INFO
RECORD

P

P

P

P

P

P

R

PRINT-HEADING
Yes

Yes

Yes

Yes

No

No

No

No

No

STUDENT-INFO
will consist of all
the desired information
for a student

Flowchart-and-Algorithm-Basics_CH-05.indd 176 6/12/2020 2:39:05 PM

the art oF File Processing • 177

E-COUNT

IS
SEX = ‘‘M’’

?

ADD 1 TO
NO-GIRL-EXEC

ADD 1 TO
NO-BOY-EXEC

EXIT

Yes

No

VG-COUNT

IS
SEX = ‘‘M’’

?

ADD 1 TO
NO-GIRL-VG

ADD 1 TO
NO-BOY-VG

EXIT

Yes

No

F-COUNT

IS
SEX = ‘‘M’’

?

ADD 1 TO
NO-GIRL-FAIR

ADD 1 TO
NO-BOY-FAIR

EXIT

Yes

No

G-COUNT

IS
SEX = ‘‘M’’

?

ADD 1 TO
NO-GIRL-GOOD

EXIT

ADD 1 TO
NO-BOY-GOOD

Yes

No

INITIALIZE

PAGE-NO 0
NO-BOY-POOR 0

NO-GIRL-POOR 0

←
←
←

NO-BOY-EXEC 0
NO-GIRL-EXEC 0
NO-BOY-GOOD 0

NO-GIRL-GOOD 0

←
←
←
←

NO-BOY-VG 0
NO-GIRL-VG 0
NO-BOY-FAIR 0

NO-GIRL-FAIR 0

←
←
←
←

EXIT

Flowchart-and-Algorithm-Basics_CH-05.indd 177 6/12/2020 2:39:06 PM

178 • Flowchart and algorithm Basics

INDEXED FILE ORGANIZATION

An indexed file is a direct access file, and hence it is created only on a disk.
This type of file organization allows for the sequential storage of records but
facilitates random accessing or processing. An indexed file consists of two
principal components: the main file and the index. The main file contains
records in sequential order. The index or index file contains records con-
sisting of two fields: the first field is the key field and the second field is the
address field that holds the address of the physical location of the record in
the main file. The records in the index are kept in the ascending sequence
of the key field values of the records. A particular type of an indexed file
is IBM’s Indexed Sequential Access Method (ISAM) file. It uses an index
file consisting of two levels: the cylinder index and the track index. A search
method utilizes the index tables to determine the approximate storage loca-
tion for a given record and then the desired record can be accessed through
a scanning process.

Some programming languages, such as COBOL, possess features for the
creation and maintenance of an indexed file. Popular programming languages,
such as C and C++, do not possess such features. In C and C++, the index
files can be organized through coding. As there is no standard universal way
of using indexed files, this approach is not included here.

RELATIVE FILE ORGANIZATION

A relative file is also a direct access file that consists of records identified by
a key that contains information about the location of a record in the file. In
an indexed file, the identifier key has to be looked up in the table to deter-
mine the location of a record in the file. In contrast, record keys in a relative
file contain information about the locations of records. This information is the
relative address of a record. A record’s relative address is its position in the
file (first, second, third, and so on). Once we have the relative address, we
can quickly determine approximately where the record is located in the file
and then access it directly. A relative file is thus analogous to an array. Just
as each of the array’s elements has a position relative to the first, so it is for
each element in a relative file that has a position relative to the first. A relative
key value is obtained from the identifier field in a record, i.e., the record key

Flowchart-and-Algorithm-Basics_CH-05.indd 178 6/12/2020 2:39:06 PM

the art oF File Processing • 179

through some key-to-address transformation routine. Such a routine is called
a hash function (this is why it is also called a hashed file organization). As the
records can be accessed randomly approximately within the same interval of
time by using the hashed value, called a relative key, a relative file is also
called a random file. There are many different ways to define hash functions.
The most popular one is the division remainder method.

Here, we define the hash function h by the rule

h (key) = key % divisor

where the symbol % is the modulo operator that gives the remainder after
dividing the record key by divisor. The divisor selected is the largest prime
number less than the maximum file size defined. Normally, the file size is
increased by 25% from what is actually required. Problems arise when two
distinct record keys hash to the same relative storage address. Such a phe-
nomenon is called a collision and the address for which the collision occurs
is called a synonym. The file size is increased by 25% to reduce the chance
of collisions. Any hashing system must provide a collision resolution policy (a
way of handling collisions). We can use a collision resolution policy known as
linear probing. When a collision occurs, we scan the following record loca-
tions until we find the first vacant location and store the record there (with
the first record position is assumed to follow the last record position). When
retrieving a record, we retrieve the record in the original location; if it is not
the one we want, we keep searching in succeeding locations until we get the
record identified by its key.

EXERCISES

 (i) Draw a flowchart to show how SALESFILE is created by accepting
data from the terminal for each record. The record consists of the code
number of a salesperson, name of the person, and sales amount in a
month. Write the algorithm of the solution.

 (ii) Consider SALESFILE from in problem 1. Construct a flowchart show-
ing how a sales report is generated in the format outlined below:

Flowchart-and-Algorithm-Basics_CH-05.indd 179 6/12/2020 2:39:06 PM

180 • Flowchart and algorithm Basics

SALES REPORT OF XYZ LTD.
FOR THE MONTH OF DECEMBER 2019

SALES PERSON
CODE NAME

S A L E S -
AMOUNT COMMISSION

IOL001
SWAPAN

SEN 10,000 3,500

GRAND
TOTALS: … …

NET SALES: … …

AVERAGE NET
SALES: … …

A V E R A G E
COMMISSION: …

 The rules for calculating the commission are as follows:

SALES RATE

<= 5000 2% of SALES

> 5,000 but <=20,000 3.5% of SALES

> 20,000 but <= 50,000 5% + $1,000

> 50,000 7% + $2,500

 Develop the algorithm of the solution.

 (iii) A company maintains inventory data in a file named ITEMFL. The
master file is stored on part number and contains the following types of
data for each item held in the inventory.

Flowchart-and-Algorithm-Basics_CH-05.indd 180 6/12/2020 2:39:06 PM

the art oF File Processing • 181

Field Data Type and Size

Part number 5 numeric positions

Part name 15 alphanumeric positions

Quantity in stock 5 numeric positions

 Another data file named TRANSFL contains the records of transac-
tions on the items in the inventory. Each record of this file consists of
the following:

Field Data Type and Size

Part number 5 numeric positions

Transaction code
 1 = receipt
 2 = issue

1 numeric position

Quantity transacted 5 numeric positions.

 Draw a flowchart to show how the master file is updated on the basis of
the records of the transaction file. Develop an algorithm for the solu-
tion of the above problem.

 (iv) A data file contains invoice records. The layout of the records is given
below:

Field Data Type and Size

Party Code 5 alphanumeric

Invoice Number 6 Numeric

Invoice Data 6 (DD MM YY)

Gross =Value $7 & cents

Discount Amount $6 & cents

Sales Tax Amount $7 & cents

Net Payable $7 & cents

Flowchart-and-Algorithm-Basics_CH-05.indd 181 6/12/2020 2:39:06 PM

182 • Flowchart and algorithm Basics

 The records have been kept sorted in ascending sequence of the
Invoice Number.

 Accumulate the totals of the Gross Value, Discount, Sales Tax, and Net
Payable amounts, and print the totals. Draw a flowchart showing the
processing logic and write the algorithm of the solution.

 (v) A credit bureau maintains a master file that lists for, each of its cus-
tomers, a unique identification number, name, current principal that
the customer owes, and his or her credit limit. The credit bureau also
maintains a transaction file that tracks its customers’ loans and pay-
ments. Each record in this file lists the customer’s identification num-
ber, together with the transaction’s amount and its date. A positive
number indicates a payment and a negative number indicates a loan.
Once a month, the credit bureau updates its master file by processing
entries in the transaction file. Assume that the master file records are
sorted by identification number, but the transaction file is not sorted.

 Construct a flowchart and then develop the algorithm showing the
 program logic to update the master file.

Flowchart-and-Algorithm-Basics_CH-05.indd 182 6/12/2020 2:39:06 PM

INDEX

A

Algorithms, 2–17
Armstrong number, 99
Arrays

defined, 119
examples of, 119–120
of floating point numbers, 120
of integers, 120
of strings, 120
problems involving, 120–143
two-dimensional, 130, 141

Attribute, 147–148

B

Boyle’s law, 15

C

COBOL, 178
Collision, 179
Collision resolution policy, 179
Computer program, defined, 1
Condition, 19
Containers, 6
Counter, 53

D

Data file, 147, 148
Decision-making, problems involving,

19–35

Discriminant, 24
Divisors, 74, 76, 78

E

Entity set, 148
Even number, 56, 57

F

Fact, 147–148
Fibonacci number, 79–80
File, 148

defined, 147
File processing, 147–179
File size, 179
Finite, 119
Floating point numbers, 120
Flow lines, 2
Flowchart, 2–17

categories, 2–3
decision boxes, 20
notation, 19
purpose of, 6
use of, 4

H

Hash function, 179
Hash routine, 149
Hashed file organization, 149, 179
Hashing, 149

Flowchart-and-Algorithm-Basics_CH-06_INDEX.indd 183 6/12/2020 2:39:19 PM

184 • Index

HCF. See Highest Common Factor
Highest Common Factor (HCF), 69–70
Homogeneous, 119

I

IBM’s Indexed Sequential Access
Method (ISAM) file, 178

Index, 148
Index file, 178
Indexed file organization, 148–149, 178
Indexed Sequential Access Method

(ISAM) file, 178
Information, 147
Integers, 120
ISAM file. See Indexed Sequential Access

Method file Iteration, 39
post-test, 40
pre-test, 39

K

Key attribute, 148
Key field, 148

L

Law of equifinality, 2
LCM. See Least Common Multiple
Least Common Multiple (LCM), 69–70
Linear probing, 179
Looping

concept of, 41
defined, 39
problems involving, 43–114

M

Main file, 178

N

Name of the array, 119
Natural numbers, 52–53, 56, 65, 66, 68

O

Optimum way, 2

P

Perfect number, 76, 97
Positive number, 83
Post-test iteration, 40
Pre-test iteration, 39
Predicate, 19
Prime number, 78
Problems involving

arrays, 120–143
decision-making, 19–35
looping, 43–114
selection, 19–35

Program file, 147
Program flowchart, 3

rules for creating, 3
symbols used in, 3–4

Q

Quadrilateral, 25–26

R

Random file, 179
Record, 147
Record keys, 178–179
Relative file organization, 149, 178–179
Relative key, 179
Rhombus, 25–26

S

SBMAST.DAT, 172
SBTRAN, 172
Selection, problems involving, 19–35
Sequential file organization, 148

problems for, 149–177
Solution strategies, 2
Square, 25
Square root of a number, 82–83

Flowchart-and-Algorithm-Basics_CH-06_INDEX.indd 184 6/12/2020 2:39:19 PM

Index • 185

Strings, 120
Symbols, 6
Synonym, 179
System flowchart, 3

T

Task analysis, 2
Three-digit numbers, 101

Two-digit numbers, 103
Two-dimensional array, 130, 141

V

Variables, 6–7

Flowchart-and-Algorithm-Basics_CH-06_INDEX.indd 185 6/12/2020 2:39:19 PM

Flowchart-and-Algorithm-Basics_CH-06_INDEX.indd 186 6/12/2020 2:39:20 PM

	Cover
	Half-Title
	Title
	Copyright
	Contents
	Preface
	Chapter 1: Introduction to Programming
	Introduction
	Flowcharting and Algorithms
	Exercises

	Chapter 2: Problems Involving Selection
	Introduction
	Exercises

	Chapter 3: Problems Involving Looping
	Introduction
	Exercises

	Chapter 4: Problems Involving Arrays
	Introduction
	Exercises

	Chapter 5: The Art of File Processing
	Introduction
	Indexed File Organization
	Relative File Organization
	Exercises

	Index

