

Bash Command Line
and

sheLL sCripts

Pocket Primer

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

By purchasing or using this book and disc (the “Work”), you agree that this license
grants permission to use the contents contained herein, including the disc, but
does not give you the right of ownership to any of the textual content in the book /
disc or ownership to any of the information or products contained in it. This license
does not permit uploading of the Work onto the Internet or on a network (of any
kind) without the written consent of the Publisher. Duplication or dissemination of
any text, code, simulations, images, etc. contained herein is limited to and subject
to licensing terms for the respective products, and permission must be obtained
from the Publisher or the owner of the content, etc., in order to reproduce or
network any portion of the textual material (in any media) that is contained in the
Work.

Mercury Learning and inforMation (“MLI” or “the Publisher”) and anyone
involved in the creation, writing, or production of the companion disc, accompany-
ing algorithms, code, or computer programs (“the software”), and any accompany-
ing Web site or software of the Work, cannot and do not warrant the performance
or results that might be obtained by using the contents of the Work. The author,
developers, and the Publisher have used their best efforts to insure the accuracy
and functionality of the textual material and/or programs contained in this pack-
age; we, however, make no warranty of any kind, express or implied, regarding
the performance of these contents or programs. The Work is sold “as is” without
warranty (except for defective materials used in manufacturing the book or due to
faulty workmanship).

The author, developers, and the publisher of any accompanying content, and any-
one involved in the composition, production, and manufacturing of this work will
not be liable for damages of any kind arising out of the use of (or the inability
to use) the algorithms, source code, computer programs, or textual material con-
tained in this publication. This includes, but is not limited to, loss of revenue or
profit, or other incidental, physical, or consequential damages arising out of the
use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to replace-
ment of the book and/or disc, and only at the discretion of the Publisher. The use
of “implied warranty” and certain “exclusions” vary from state to state, and might
not apply to the purchaser of this product.

(Companion files are also available for downloading from the publisher at
info@merclearning.com.)

Bash Command Line
and

sheLL sCripts

Pocket Primer

MERCURY LEARNING AND INFORMATION
Dulles, Virginia

Boston, Massachusetts
New Delhi

Oswald Campesato

Copyright © 2020 by Mercury Learning and inforMation LLC.
All rights reserved.

This publication, portions of it, or any accompanying software may not be reproduced in
any way, stored in a retrieval system of any type, or transmitted by any means, media,
electronic display or mechanical display, including, but not limited to, photocopy, record-
ing, Internet postings, or scanning, without prior permission in writing from the publisher.

Publisher: David Pallai
Mercury Learning and inforMation

22841 Quicksilver Drive
Dulles, VA 20166
info@merclearning.com
www.merclearning.com
(800) 232-0223

O. Campesato. Bash Command Line and Shell Scripts Pocket Primer.
ISBN: 978-1-68392-504-0

The publisher recognizes and respects all marks used by companies, manufacturers, and
developers as a means to distinguish their products. All brand names and product names
mentioned in this book are trademarks or service marks of their respective companies. Any
omission or misuse (of any kind) of service marks or trademarks, etc. is not an attempt to
infringe on the property of others.

Library of Congress Control Number: 2020935567

202122321 Printed on acid-free paper in the United States of America.

Our titles are available for adoption, license, or bulk purchase by institutions,
corporations, etc. For additional information, please contact the Customer
Service Dept. at (800) 232-0223(toll free).

Digital versions of our titles are available at: www.academiccourseware.com and other
electronic vendors. Companion files are available from the publisher by writing to
info@merclearning.com.

The sole obligation of Mercury Learning and inforMation to the purchaser is to replace
the book and/or disc, based on defective materials or faulty workmanship, but not based
on the operation or functionality of the product.

I’d like to dedicate this book to my parents –
may this bring joy and happiness into their lives.

Preface xv

Chapter 1: Introduction 1
What is Unix? 2

Available Shell Types 2
What is bash? 3

Getting help for bash Commands 4
Navigating Around Directories 4
The history Command 4

Listing Filenames with the ls Command 5
Displaying Contents of Files 8

The cat Command 8
The head and tail Commands 9
The Pipe Symbol 10
The fold Command 11

File Ownership: Owner, Group, and World 11
Hidden Files 12
Handling Problematic Filenames 13
Working with Environment Variables 13

The env Command 13
Useful Environment Variables 14
Setting the PATH Environment Variable 14
Specifying Aliases and Environment Variables 15

Finding Executable Files 16
The printf Command and the echo Command 17
The cut Command 17

CONTENTS

viii • Bash Command Line and Shell Scripts

The echo Command and Whitespaces 18
Command Substitution (“backtick”) 20
The “pipe” Symbol and Multiple Commands 20
Using a Semicolon to Separate Commands 21
The paste Command 22

Inserting Blank Lines with the paste Command 22
A Simple Use Case with the paste Command 23
A Simple Use Case with cut and paste Commands 24
What about zsh? 25

Switching between bash and zsh 26
Configuring zsh 26

Summary 26

Chapter 2: Files and Directories 29
Create, Copy, Remove, and Move Files 29

Creating Text Files 29
Copying Files 30
Copy Files with Command Substitution 30
Deleting Files 31
Moving Files 32
The ln Command 32

The basename, dirname, and file Commands 33
The wc Command 33
The cat Command 34
The more Command and the less Command 34
The head Command 35
The tail Command 36
Comparing File Contents 38
The Parts of a Filename 38
Working with File Permissions 39

The chmod Command 40
Changing owner, permissions, and groups 40
The umask and ulimit Commands 41

Working with Directories 41
Absolute and Relative Directories 41
Absolute/Relative Pathnames 41
Creating Directories 42
Removing Directories 43
Navigating to Directories 43
Moving Directories 44

Using Quote Characters 44
Streams and Redirection Commands 45
Working with Metacharacters 46
Working with Character Classes 47

Contents • ix

MetaCharacters and Character Classes 48
Digits and Characters 48
Working with “^” and “\” and “!” 49

Filenames and Metacharacters 49
Summary 50

Chapter 3: Useful Commands 51
The join Command 52
The fold Command 52
The split Command 53
The sort Command 53
The uniq Command 56
How to Compare Files 56
The od Command 57
The tr Command 57
A Simple Use Case 60
The find Command 61
The tee Command 62
File Compression Commands 63

The tar command 63
The cpio Command 63
The gzip and gunzip Commands 64
The bunzip2 Command 64
The zip Command 65

Commands for zip Files and bz Files 65
Internal Field Separator (IFS) 65
Data From a Range of Columns in a Dataset 66
Working with Uneven Rows in Datasets 68
Summary 68

Chapter 4: Conditional Logic and Loops 71
Quick Overview of Operators in bash 71
Arithmetic Operations and Operators 72

The expr Command 72
Arithmetic Operators 73
Boolean and Numeric Operators 73
Compound Operators and Numeric Operators 74

Working with Variables 74
Assigning Values to Variables 75
The read Command for User Input 76

Boolean Operators and String Operators 76
Compound Operators and String Operators 77

File Test Operators 78
Compound Operators and File Operators 79

x • Bash Command Line and Shell Scripts

Conditional Logic with if/else/fi Statements 80
The case/esac Statement 81
Working with Strings in Shell Scripts 84
Working with Loops 85

Using a for loop 85
Checking Files in a Directory 86
Working with Nested Loops 87
Using a while Loop 89
The while, case, and if/elif/else/fi Statements 91
Using an until Loop 92
User-defined Functions 92
Creating a Simple Menu from Shell Commands 94
Arrays in bash 96
Working with Arrays 98
Summary 102

Chapter 5: Filtering Data with grep 103
What is the grep Command? 104
Metacharacters and the grep Command 105
Escaping Metacharacters with the grep Command 105
Useful Options for the grep Command 106

Character Classes and the grep Command 110
Working with the –c Option in grep 111
Matching a Range of Lines 112
Using Back References in the grep Command 114
Finding Empty Lines in Datasets 116
Using Keys to Search Datasets 116
The Backslash Character and the grep Command 117
Multiple Matches in the grep Command 117
The grep Command and the xargs Command 118

Searching zip Files for a String 119
Checking for a Unique Key Value 120

Redirecting Error Messages 121
The egrep Command and fgrep Command 121

Displaying “Pure” Words in a Dataset with egrep 121
The fgrep Command 123

A Simple Use Case 123
Summary 125

Chapter 6: Transforming Data with sed 127
What is the sed Command? 127

The sed Execution Cycle 128
Matching String Patterns Using sed 128

Contents • xi

Substituting String Patterns Using sed 129
Replacing Vowels from a String or a File 130
Deleting Multiple Digits and Letters from a String 131

Search and Replace with sed 131
Datasets with Multiple Delimiters 133
Useful Switches in sed 134
Working with Datasets 135

Printing Lines 135
Character Classes and sed 136
Removing Control Characters 137

Counting Words in a Dataset 137
Back References in sed 138
Displaying Only “Pure” Words in a Dataset 139
One Line sed Commands 140
Summary 147

Chapter 7: Working with awk 149
The awk Command 150

Built-in Variables That Control awk 150
How Does the awk Command Work? 151

Aligning Text with the printf Command 152
Conditional Logic and Control Statements 152

The while Statement 153
A for loop in awk 154
A for loop with a break Statement 154
The next and continue Statements 155

Deleting Alternate Lines in Datasets 155
Merging Lines in Datasets 156

Printing File Contents as a Single Line 156
Joining Groups of Lines in a Text File 157
Joining Alternate Lines in a Text File 158

Matching with Metacharacters and Character Sets 159
Printing Lines Using Conditional Logic 160
Splitting Filenames with awk 161
Working with Postfix Arithmetic Operators 161
Numeric Functions in awk 162
One Line awk Commands 165
Useful Short awk Scripts 166
Printing the Words in a Text String in awk 167
Count Occurrences of a String in Specific Rows 167
Printing a String in a Fixed Number of Columns 169
Printing a Dataset in a Fixed Number of Columns 169
Aligning Columns in Datasets 170
Aligning Columns and Multiple Rows in Datasets 171
Removing a Column from a Text File 173

xii • Bash Command Line and Shell Scripts

Subsets of Columns Aligned Rows in Datasets 173
Counting Word Frequency in Datasets 175
Displaying Only “Pure” Words in a Dataset 176
Working with Multiline Records in awk 178
A Simple Use Case 179
Another Use Case 181
Summary 183

Chapter 8: Intro to Shell Scripts 185
What are Shell Scripts? 186

A Simple Shell Script 186
Setting Environment Variables via Shell Scripts 187

Sourcing or “Dotting” a Shell Script 188
Working with Functions in Shell Scripts 189
Passing values to Functions in a Shell Script (1) 190
Passing values to Functions in a Shell Script (2) 191
Iterate through values passed to a Function 192
Positional Parameters in User-defined Functions 196
Shell Scripts, Functions, and User Input 198
Recursion and Shell Scripts 199
Iterative Solutions for Factorial Values 200
Calculating Fibonacci Numbers 203
Calculating the GCD of Two Positive Integers 204
Calculating the LCM of two Positive Integers 205
Calculating Prime Divisors 207
Summary 208

Chapter 9: Shell Scripts with grep and awk Command 209
The grep Command with zip Files 209
The grep Command with Multiple Files 212
Simulating Relational Data with the grep Command 216
Checking Updates in a Logfile 218
Processing Multiline Records 220
Adding the Contents of Records 221
Using the split Function in awk 221
Scanning Diagonal Elements in Datasets 222
Adding Values From Multiple Datasets (1) 225
Adding Values From Multiple Datasets (2) 226
Adding Values From Multiple Datasets (3) 228
Calculating Combinations of Field Values 229
Summary 230

Chapter 10: Miscellaneous Shell Scripts 231
Using rm and mv with Directories 231
Using the find Command with Directories 233

Contents • xiii

Creating a Directory of Directories 233
Cloning a set of Sub-directories 234
Executing Files in Multiple Directories 238
The case/esac Command 239
Compressing/uncompressing Files 241
The dd Command 241
The crontab Command 242
Uncompressing Files as a cron Job 243
Scheduled Commands and Background Processes 244

How to Schedule Tasks 244
The nohup Command 244
Executing Commands Remotely 244
How to Schedule Tasks in the Background 245

How to Terminate Processes 245
Terminating Multiple Processes 245

Process-Related Commands 246
How to Monitor Processes 246

Checking Execution Results 247
System Messages and Log Files 249

Disk Usage Commands 250
Trapping and Ignoring Signals 250
Arithmetic with the bc and dc Commands 251
Working with the date Command 252
Print-related Commands 255

Creating a Report with the printf() Command 255
Checking Updates in a Logfile 256
Listing Active Users on a Machine 258
Miscellaneous Commands 259
Summary 261

Index 263

What is The Goal?

The goal of this book is to introduce readers to an assortment of power-
ful command line utilities that can be combined to create simple, yet
powerful shell scripts. While all examples and scripts use the “bash”
command set, many of the concepts translate into other command
shells (such as sh, ksh, zsh, and csh), including the concept of piping
data between commands, regular expression substitution, and the sed
and awk commands. Aimed at a reader relatively new to working in
a bash environment, the book is comprehensive enough to be a good
reference and teach a few new tricks to those who already have some
experience with creating shells scripts.

This short book contains a variety of code fragments and shell scripts
for data scientists, data analysts, and other people who want shell-based
solutions to “clean” various types of text files. In addition, the concepts
and code samples in this book are useful for people who want to sim-
plify routine tasks.

This book takes introductory concepts and commands in bash, and
then demonstrates their use in simple yet powerful shell scripts. This
book does not cover “pure” system administration functionality for
Unix or Linux.

PREFACE

xvi • Bash Command Line and Shell Scripts

Is This Book is For Me and What Will I Learn?

This book is intended for general users, data scientists, data analysts, and
other people who perform a variety of tasks from the command line, and
who also have a limited knowledge of shell programming.

You will acquire an understanding of how to use various bash commands,
often as part of short shell scripts. The chapters also contain simple use
cases that illustrate how to perform various tasks involving text files, such
as switching the order of a two-column text file, removing control charac-
ters in a text file, find specific lines and merge them, reformatting a date
field in a text file, and removing nested quotes.

This book saves you the time required to search for relevant code sam-
ples, adapting them to your specific needs, which is a potentially time-
consuming process.

How Were the Code Samples Created?

The code samples in this book were created and tested using bash on
a Macbook Pro with OS X 10.12.6 (macOS Sierra). The code samples
are derived primarily from scripts prepared by the author, and in some
cases there are code samples that incorporate short sections of code
from discussions in online forums. The key point to remember is that
the code samples follow the “Four Cs”: they must be Clear, Concise,
Complete, and Correct to the extent that it’s possible to do so, given the
page length of this book.

What You need to Know for This Book

You need some familiarity with working from the command line in a
Unix-like environment. However, there are subjective prerequisites,
such as a desire to learn shell programming, along with the motivation
and discipline to read and understand the code samples. In any case,
if you’re not sure whether or not you can absorb the material in this book,
glance through the code samples to get a feel for the level of complexity.

Which bash Commands are Excluded?

The commands that do not meet any of the criteria listed in the previ-
ous section are not included in this Primer. Consequently, there is no
coverage of commands for system administration (e.g., shutting down a
machine, scheduling backups, and so forth). The purpose of the material

Preface • xvii

in the chapters is to illustrate how to use bash commands for handling
common data cleaning tasks with text files, after which you can do fur-
ther reading to deepen your knowledge.

How do I Set up a Command Shell?

If you are a Mac user, there are three ways to do so. The first method is
to use Finder to navigate to Applications > Utilities and then
double click on the Utilities application. Next, if you already have a
command shell available, you can launch a new command shell by typing
the following command:

open /Applications/Utilities/Terminal.app

A second method for Mac users is to open a new command shell on a
Macbook from a command shell that is already visible simply by clicking
command+n in that command shell, and your Mac will launch another
command shell.

If you are a PC user, you can install Cygwin (open source https://cygwin.
com/) that simulates bash commands, or use another toolkit such as MKS (a
commercial product). Please read the online documentation that describes
the download and the installation processes.

What are the “Next Steps” After Finishing This Book?

The answer to this question varies widely, mainly because the answer
depends heavily on your objectives. The best answer is to try a new tool
or technique from the book out on a problem or task you care about,
professionally or personally. Precisely what that might be depends on
who you are, as the needs of a data scientist, manager, student or devel-
oper are all different. In addition, keep what you learned in mind as you
tackle new data cleaning or manipulation challenges. Sometimes know-
ing that a particular technique is possible can make finding a solution
easier, even if you have to re-read the section to remember exactly how
the syntax works.

If you have reached the limits of what you have learned here and want to
get further technical depth on these commands, there is a wide variety of
literature published and online resources describing the bash shell, Unix
programming, and the grep, sed, and awk commands.

 O. Campesato

 April 2020

CHAPTER 1
INTRODUCTION

This chapter contains a fast-paced introduction to basic commands in
the bash shell, such as navigating around the file system, listing files,
and displaying the contents of files. As you will soon see, this chapter

is dense and contains a very eclectic mix of topics in order to prepare you
for later chapters. If you already have some knowledge of bash commands,
you can probably skim quickly through this introductory chapter and then
proceed to Chapter 2. Incidentally, sometimes you will “bash shell” instead
of just bash (as in the first sentence of this paragraph), and although the
former is actually redundant, there won’t be any confusion about its intended
meaning.

The first part of this chapter starts with a brief introduction to some Unix
shells, followed by a discussion about files, file permissions, and directories.
You will also learn how to create files and directories and how to change their
access permissions.

The second part of this chapter introduces simple shell scripts, along with
commands for making them executable. Since shell scripts involve various
bash commands (and can optionally contain user-defined functions), it’s a
good idea to learn about bash commands before you create bash scripts.

The third portion of this chapter discusses two useful bash commands: the
cut command (for cutting or extracting columns and/or fields from a dataset)
and the paste command (for “pasting” text or datasets together vertically).

In addition, the final part of this chapter contains a use case involving the
cut command and paste command that illustrates how to switch the order
of two columns in a dataset. You can also perform this task using the awk com-
mand (discussed in Chapter 7 and Chapter 9).

There are a few points to keep in mind before delving into the details of
shell scripts. First, shell scripts can be executed from the command line after

2 • Bash Command Line and Shell Scripts

adding “execute” permissions to the text file containing the shell script. Sec-
ond, you can use the crontab utility to schedule the execution of your shell
scripts according to a schedule of your choice. Specifically, the crontab
utility allows you to specify the execution of a shell script on an hourly, daily,
weekly, or monthly basis. Tasks that are commonly scheduled via crontab
include performing backups, removing unwanted files, and so forth. If you
are completely new to Unix-based systems, just keep in mind that there is a
way to run scripts both from the command line and in a “scheduled” man-
ner. Setting file permissions to run the script from the command line will be
discussed later.

Third, the contents of any shell script can be as simple as a single com-
mand or can comprise hundreds of lines of bash commands. In general, the
more useful (and often more interesting) shell scripts involve a combination of
several bash commands. A learning tip: since there are usually several ways
to produce the desired result, it’s helpful to read other people’s shell scripts to
learn how to combine commands in useful ways.

WHAT IS UNIX?

Unix is an operating system created by Ken Thompson in the early 1970s,
which eventually led to a number of variations, such as HP/UX for HP machines
and AIX for IBM machines. Linux Torvalds developed the Linux operating sys-
tem during the 1990s, and many Linux commands are the same as their bash
counterparts (but differences exist, often in the commands for system adminis-
trators). The Mac OS X operating system is based on AT&T Unix.

Unix has a rich and storied history, and if you are really interested in learn-
ing about its past, you can read online articles and also Wikipedia. This book
foregoes those details and focuses on helping you quickly learn how to become
productive with various commands.

Available Shell Types
The original Unix shell is the Bourne shell, which was written in the mid-

1970s by Stephen R. Bourne. In addition, the Bourne shell was the first shell
to appear on bash systems, and you will sometimes hear “the shell” as a refer-
ence to the Bourne shell. The Bourne shell is a POSIX standard shell, usually
installed as /bin/sh on most versions of Unix, whose default prompt is the $
character. Consequently, Bourne shell scripts will execute on almost every ver-
sion of Unix. In essence, the AT&T branches of Unix support the Bourne shell
(sh), bash, Korn shell (ksh), tsh, and zsh.

However, there is also the BSD branch of Unix that uses the “C” shell (csh),
whose default prompt is the % character. In general, shell scripts written for
csh will not execute on AT&T branches of Unix, unless the csh shell is also
installed on those machines (and vice versa).

The Bourne shell is the most ‘unadorned’ in the sense that it lacks
some commands that are available in the other shells, such as history,

Introduction • 3

noclobber, and so forth. Some well-known variants for Bourne Shell are
listed as follows:

Korn shell (ksh)
Bourne Again shell (bash)
POSIX shell (sh)
zsh (“Zee shell”)

The different C-type shells are as shown below:
C shell (csh)
TENEX/TOPS C shell (tcsh)

The commands and the shell scripts in this book are based on the bash
shell, and many of the commands also work in other Bourne-related shells (and
the remaining shells have a similar command to accomplish the same goal).
When you are unable to perform a particular shell-related task, perform an
Internet search for “how to use <bash command> in <shell name>” and you
will often find an answer. Keep in mind that sometimes there are variations
in syntax for a given command in a particular shell, and typing “man <com-
mand>” in a command shell can provide useful information.

WHAT IS BASH?

Bash is an acronym for “Bourne Again Shell”, which has its roots in the
Bourne shell created by Stephen R. Bourne. Shell scripts based on the Bourne
shell will execute in bash, but the converse is not necessarily true. The bash
shell provides additional features that are unavailable in the Bourne shell, such
as support for arrays (discussed later in this chapter).

On Mac OS X, the /bin directory contains the following executable shells:
-r-xr-xr-x 1 root wheel 1377872 Apr 28 2017 /bin/ksh

-r-xr-xr-x 1 root wheel 630464 Apr 28 2017 /bin/sh

-rwxr-xr-x 1 root wheel 375632 Apr 28 2017 /bin/csh

-rwxr-xr-x 1 root wheel 592656 Apr 28 2017 /bin/zsh

-r-xr-xr-x 1 root wheel 626272 Apr 28 2017 /bin/bash

In case you’re interested, a nice comparison matrix of the support for vari-
ous features among the preceding shells is here:

https://stackoverflow.com/questions/5725296/difference-between-sh-and-bash
Something else that might surprise you: in some environments the Bourne

shell sh is the Bash shell, which you can check by typing the following com-
mand:
sh --version

GNU bash, version 3.2.57(1)-release (x86_64-apple-darwin16)

Copyright (C) 2007 Free Software Foundation, Inc.

4 • Bash Command Line and Shell Scripts

If you are new to the command line (be it Mac, Linux, or PCs), please read
the Preface that provides some useful guidelines for accessing command shells.

Getting help for bash Commands

If you want to see the options for a specific bash command, invoke the
man command to see a description of that bash command and its options:
man cat

Keep in mind that the man command produces terse explanations, and if
those explanations are not clear enough, you can search for online code sam-
ples that provide more details.

Navigating Around Directories
In a command shell, you will often perform some common operations,

such as displaying (or changing) the current directory, listing the contents of
a directory, displaying the contents of a file, and so forth. The following set of
commands show you how to perform these operations, and you can execute
a subset of these commands in the sequence that is relevant to you. Options
for some of the commands in this section (such as the ls command) are
described in greater detail later in this chapter.

A frequently used Bash command is pwd (“print working directory”) that
displays the current directory, as shown here:
pwd

The output of the preceding command might look something like this:
/Users/jsmith

Use the cd (“change directory”) command to go to a specific directory.
For example, type the command cd /Users/jsmith/Mail to navigate
to this directory (or some other existing directory). If you are currently in
the /Users/jsmith directory, just type cd Mail.

You can navigate to your home directory with either of these commands:
$ cd $HOME

$ cd

One convenient way to return to the previous directory is the command
cd –. Keep in mind that the cd command on Windows merely displays the
current directory and does not change the current directory (unlike the cd
command in bash).

The history Command

The history command displays a list (i.e., the history) of commands
that you executed in the current command shell, as shown here:
history

A sample output of the preceding command is given below:
 1202 cat sample.txt > longfile2.txt
 1203 vi longfile2.txt

Introduction • 5

 1204 cat longfile2.txt |fold -40
 1205 cat longfile2.txt |fold -30
 1206 cat longfile2.txt |fold -50
 1207 cat longfile2.txt |fold -45
 1208 vi longfile2.txt
 1209 history
 1210 cd /Library/Developer/CommandLineTools/usr/include/

c++/
 1211 cd /tmp
 1212 cd $HOME/Desktop
 1213 history

If you want to navigate to the directory that is shown in line 1210, you can
do so simply by typing the following command:
!1210

The command !cd will search backwards through the history of commands
to find the first command that matches the cd command, in this case, line
1212 is the first match. If there aren’t any intervening cd commands between
the current command and the command in line 1210, then !1210 and !cd
will have the same effect.

Be careful with the “!” option with bash commands because the command
that matches the “!” might not be the one you intended, so it’s safer to use the
history command and then explicitly specify the correct number (in that
history) when you invoke the “!” operator.

LISTING FILENAMES WITH THE LS COMMAND

The ls command is for listing filenames, and there are many switches
available that you can use, as shown in this section. For example, the ls com-
mand displays the following filenames (the actual display depends on the font
size and the width of the command shell) on my Mac:
apple-care.txt iphonemeetup.txt outfile.txt
ssl-instructions.txt checkin-commands.txt kyrgyzstan.txt
output.txt

The command ls -1 (the digit “1”) displays a vertical listing of
filenames:
apple-care.txt
checkin-commands.txt
iphonemeetup.txt
kyrgyzstan.txt
outfile.txt
output.txt
ssl-instructions.txt

NOTE

6 • Bash Command Line and Shell Scripts

The command ls -1 (the letter “l”) displays a long listing of filenames:
total 56

-rwx------ 1 ocampesato staff 25 Apr 06 19:21
apple-care.txt

-rwx------ 1 ocampesato staff 146 Apr 06 19:21 checkin-
commands.txt

-rwx------ 1 ocampesato staff 478 Apr 06 19:21
iphonemeetup.txt

-rwx------ 1 ocampesato staff 12 Apr 06 19:21 kyrgyzstan.
txt

-rw-r--r-- 1 ocampesato staff 11 Apr 06 19:21 outfile.txt

-rw-r--r-- 1 ocampesato staff 12 Apr 06 19:21 output.txt

-rwx------ 1 ocampesato staff 176 Apr 06 19:21
ssl-instructions.txt

The command ls -1t (the letters “l” and “t”) display a time-based long
listing:
total 56

-rwx------ 1 ocampesato staff 25 Apr 06 19:21
apple-care.txt

-rwx------ 1 ocampesato staff 146 Apr 06 19:21 checkin-
commands.txt

-rwx------ 1 ocampesato staff 478 Apr 06 19:21
iphonemeetup.txt

-rwx------ 1 ocampesato staff 12 Apr 06 19:21 kyrgyzstan.
txt

-rw-r--r-- 1 ocampesato staff 11 Apr 06 19:21 outfile.txt

-rw-r--r-- 1 ocampesato staff 12 Apr 06 19:21 output.txt

-rwx------ 1 ocampesato staff 176 Apr 06 19:21
ssl-instructions.txt

The command ls -ltr (the letters “l”, “t”, and “r”) display a reversed
time-based long listing of filenames:
total 56

-rwx------ 1 ocampesato staff 176 Apr 06 19:21
ssl-instructions.txt

-rw-r--r-- 1 ocampesato staff 12 Apr 06 19:21 output.txt

-rw-r--r-- 1 ocampesato staff 11 Apr 06 19:21 outfile.txt

Introduction • 7

-rwx------ 1 ocampesato staff 12 Apr 06 19:21 kyrgyzstan.
txt

-rwx------ 1 ocampesato staff 478 Apr 06 19:21
iphonemeetup.txt

-rwx------ 1 ocampesato staff 146 Apr 06 19:21 checkin-
commands.txt

-rwx------ 1 ocampesato staff 25 Apr 06 19:21 apple-care.txt

Here is the description of all the listed columns in the preceding output:

Column #1: represents file type and permission given on the file (see below)
Column #2: the number of memory blocks taken by the file or directory
Column #3: the (Bash user) owner of the file
Column #4: represents a group of the owner
Column #5: represents the file size in bytes.
Column #6: the date and time when this file was created or last modified
Column #7: represents a file or directory name

In the ls -l listing example, every file line began with a d, -, or l. These
characters indicate the type of file that is listed. These (and other) initial values
are described below:

- Regular file (ASCII text file, binary executable, or hard link)
b Block special file (such as a physical hard drive)
c Character special file (such as a physical hard drive)
d Directory file that contains a listing of other files and directories.
l Symbolic link file
p Named pipe (a mechanism for interprocess communications)
s Socket (for interprocess communication)

If you look back at the long listing that is displayed earlier in this section,
you will see that the leftmost character is a dash (“-”), which means that it’s a
long listing of regular files.

You can invoke the wc (word count) command to display the number of lines,
words and characters in any text file, an example of which is shown here:
wc iphonemeetup.txt

10 5 478 iphonemeetup.txt

The preceding output shows that the file iphonemeetup.txt contains
10 lines, 5 words and 478 characters, which means that the file size is actually
quite small.

Another point to keep in mind: this book works with files and directories,
and occasionally with symbolic links; the other file types are primarily useful
for programmers. Consult online documentation for more details regarding
the ls command.

8 • Bash Command Line and Shell Scripts

DISPLAYING CONTENTS OF FILES

This section introduces you to several commands for displaying different
lines of text in a text file. The commands that you will learn about are cat, head,
tail, fold, and also the pipe (“|”) command.

The cat Command

Invoke the cat command to display the entire contents of sample.txt:
cat sample.txt

The preceding command displays the following text:
the contents
of this
long file
are too long
to see in a
single screen
and each line
contains
one or
more words
and if you
use the cat
command the
(other lines are omitted)

The cat command displays the entire contents of a file, which might be
inconvenient when you want to see a small portion of a file. Fortunately, the
head and tail commands are available, along with several commands that
display only a portion of a file, such as less and more that are discussed
later.

You can also display the contents of multiple files via the cat command and
a metacharacter (discussed in more detail later), such as ? or *. For example,
suppose that the file temp1 has the following contents:
this is line1 of temp1
this is line2 of temp1
this is line3 of temp1

Let’s also suppose that the file temp2 has these contents:
this is line1 of temp2
this is line2 of temp2

Now type the following command that contains the ? metacharacter:
cat temp?

The output from the preceding command is shown here:
this is line1 of temp1
this is line2 of temp1
this is line3 of temp1

Introduction • 9

this is line1 of temp2
this is line2 of temp2

If you type the command cat temp* then the output will be the con-
tents of all the files whose name starts with temp in the current directory. If
you have a file – let’s call it temp2 – that contains binary data, then you will
probably see some strange-looking output on your screen!

The head and tail Commands

The head command displays the first ten lines of a text file (by default), an
example of which is here:
head sample.txt

The preceding command displays the following text:
the contents
of this
long file
are too long
to see in a
single screen
and each line
contains
one or
more words

The head command also provides an option to specify a different number
of lines to display, as shown here:
head -4 sample.txt

The preceding command displays the following text:
the contents
of this
long file
are too long

The tail command displays the last 10 lines (by default) of a text file:
tail sample.txt

The preceding command displays the following text:
is available
in every shell
including the
bash shell
csh
zsh
ksh
and Bourne shell

NOTE
The last two lines in the preceding output are blank lines (not a typographical
error in this page).

10 • Bash Command Line and Shell Scripts

Similarly, the tail command allows you to specify a different number of lines
to display: tail –4 sample.txt displays the last 4 lines of sample.txt.

Use the more command to display a screenful of data, as shown here:
more sample.txt

Press the <spacebar> to view the next screenful of data, and press the
<return> key to see the next line of text in a file. Incidentally, some people
prefer the less command, which generates essentially the same output as the
more command. (A geeky joke: “What’s less? It’s more.”)

The Pipe Symbol

A very useful feature of bash is its support for the pipe symbol (“|”) that
enables you to “pipe” or redirect the output of one command to become the
input of another command. The pipe command is very handy when you want to
perform a sequence of operations involving various bash commands.

For example, the following code snippet combines the head command
with the cat command and the pipe (“|”) symbol:
cat sample.txt| head -2

A technical point: the preceding command creates two bash processes
(more about processes later) whereas the command head -2 sample.txt
only creates a single bash process.

You can use the head and tail commands in more interesting ways. For
example, the following command sequence displays lines 11 through 15 of
sample.txt:
head -15 sample.txt |tail -5

The preceding command displays the following text:
and if you
use the cat
command the
file contents
scroll

Display the line numbers for the preceding output as follows:
cat –n sample.txt | head -15 | tail -5

The preceding command displays the following text:
 11 and if you
 12 use the cat
 13 command the
 14 file contents
 15 scroll

You won’t see the “tab” character from the output, but it’s visible if you
redirect the previous command sequence to a file and then use the “-t” option
with the cat command:

Introduction • 11

cat –n sample.txt | head -15 | tail -5 > 1
cat –t 1
 11^Iand if you
 12^Iuse the cat
 13^Icommand the
 14^Ifile contents
 15^Iscroll

The fold Command

The fold command enables you to “fold” the lines in a text file, which
is useful for text files that contain long lines of text that you want to split into
shorter lines. For example, here are the contents of longfile2.txt:
the contents of this long file are too long to see in a
single screen and each line contains one or more words and
if you use the cat command the file contents scroll off the
screen so you can use other commands such as the head or
tail or more commands in conjunction with the pipe command
that is very useful in Bash and is available in every shell
including the bash shell csh zsh ksh and Bourne shell

You can “fold” the contents of longfile2.txt into lines whose length is
45 (just as an example) with this command:
cat longfile2.txt |fold -45

The output of the preceding command is here:
the contents of this long file are too long t
o see in a single screen and each line contai
ns one or more words and if you use the cat c
ommand the file contents scroll off the scree
n so you can use other commands such as the h
ead or tail or more commands in conjunction w
ith the pipe command that is very useful in U
nix and is available in every shell including
the bash shell csh zsh ksh and Bourne shell

Notice that some words in the preceding output are split based on the line
width, and not “newspaper style.”

In Chapter 4, you will learn how to display the lines in a text file that match
a string or a pattern, and in Chapter 5 you will learn how to replace a string with
another string in a text file.

FILE OWNERSHIP: OWNER, GROUP, AND WORLD

Bash files can have partial or full rwx privileges, where r = read privilege,
w = write privilege, x = execute and can be executed from the command line,
simply by typing the file name (or the full path to the file if the file is not in
your current directory). Invoking an executable file from the command line

12 • Bash Command Line and Shell Scripts

will cause the operating system to attempt to execute commands inside the
text file (which must be valid shell commands or executable files with valid
shell commands).

Use the chmod command to change permissions for files. For example, if
you need to set the owner, group, and other permissions equal to rwx rw-
r-- for a file, use the following command:
chmod u=rwx g=rw o=r filename

In the preceding command the options u, g, and o represent user
permissions, group permissions, and others permissions, respectively.

Modify permissions on a file by specifying + to add permission to a user, group
or others and specify - to remove permissions. For example, given a file with the
permissions rwx rw- r--, add the executable permission to “others” as follows:
chmod o+x filename

Add the executable permission to all permission categories, that is, for the
user, group, and others as follows:
chmod a+x filename

As you can surmise, the letter a in the preceding code snippet means
“all groups”. Conversely, specify a - in order to remove permissions from all
groups, as shown here:
chmod a-x filename

HIDDEN FILES

A so-called “hidden” file is a filename that starts with a period character (.).
Bash programs (including the shell) use most of these files to store configura-
tion information. Some common examples of hidden files include the files:

.profile: the Bourne shell (sh) initialization script

.bash_profile: the bash shell (bash) initialization script

.kshrc: the Korn shell (ksh) initialization script

.cshrc: the C shell (csh) initialization script

.rhosts: the remote shell configuration file

You can display a list of hidden files in a directory via the ls command and
the -a option, as shown here:
ls -a
. .profile docs lib test_results
.. .rhosts hosts pub users
.emacs bin hw1 res.01 work
.exrc ch07 hw2 res.02
.kshrc ch07.bak hw3 res.03

Keep in mind that a single dot (“.”) represents the current directory and a
double dot (“..”) represents the parent directory of the current directory.

Introduction • 13

HANDLING PROBLEMATIC FILENAMES

A “problematic” filename is a filename that contains one or more whitespaces,
hidden (non-printing) characters, or starts with a dash (“-“) character.

You can use double quotes to list filenames that contain whitespaces, or you
can precede each whitespace by a backslash “\”) character. For example, if you
have a file named One Space.txt, you can use the ls command as follows:
ls -1 "One Space.txt"

ls –l One\ Space.txt

Filenames that start with a dash (“-“) character are difficult to handle
because the dash character is the prefix that specifies options for bash com-
mands. Consequently, if you have a file whose name is –abc, then the com-
mand ls –abc will not work correctly, because the “-a” is interpreted as a
switch for the ls command (and there is no “a” option).

In most cases, the best solution to this type of filename is to rename the
file. This can be done in your operating system if your client isn’t a bash shell,
or you can use the following special syntax for the mv (“move”) command to
rename the file. The preceding two dashes tell mv to ignore the dash in the
filename. An example is here:
mv -- -abc.txt renamed-abc.txt

WORKING WITH ENVIRONMENT VARIABLES

There are many built-in environment variables available, and the following
subsections discuss the env command that displays the variables that have val-
ues in the environment, along with some common variables that are available
in the environment of a command shell.

The env Command

The env (“environment”) command displays the variables that are in your
bash environment. An example of the output of the env command is here:
SHELL=/bin/bash
TERM=xterm-256color
TMPDIR=/var/folders/73/39lngcln4dj_scmgvsv53g_w0000gn/T/
OLDPWD=/tmp
TERM_SESSION_ID=63101060-9DF0-405E-84E1-EC56282F4803
USER=ocampesato
COMMAND_MODE=bash2003PATH=/opt/local/bin:/Users/ocampesato/
android-sdk-mac_86/platform-tools:/Users/ocampesato/
android-sdk-mac_86/tools:/usr/local/bin:
PWD=/Users/ocampesato
JAVA_HOME=/System/Library/Java/
JavaVirtualMachines/1.6.0.jdk/Contents/Home
LANG=en_US.UTF-8

14 • Bash Command Line and Shell Scripts

NODE_PATH=/usr/local/lib/node_modules
HOME=/Users/ocampesato
LOGNAME=ocampesato
DISPLAY=/tmp/launch-xnTgkE/org.macosforge.xquartz:0
SECURITYSESSIONID=186a4
_=/usr/bin/env

The common environment variables that are pre-defined for you include
HOME, LOGNAME, PWD, SHELL, TERM, and TMPDIR. Use the echo com-
mand to see the value of a single environment variable. For example, if you
want to see the value of the SHELL environment variable, type the following
command (notice the “$” character):

echo $SHELL

 Based on the output of the env command that you saw earlier in this sec-
tion, the output of the preceding command is here:
SHELL=/bin/bash

 One other point: if you do not specify the $ character, you will not see the
value of the environment variable. For example, if you type:
echo SHELL

Then you will see the following output:
SHELL

 Later you will learn how to change the value of a variable, and if you are
feeling impatient, you can see some interesting examples of setting an environ-
ment variable:

https://stackoverflow.com/questions/13998075/setting-environment-vari-
able-for-one-program-call-in-bash-using-env

Useful Environment Variables
This section discusses some important environment variables, most of

which you probably will not need to modify, but it’s useful to be aware of the
existence of these variables and their purpose.

The HOME variable contains the absolute path of the user’s home directory
The HOSTNAME variable specifies the Internet name of the host
The LOGNAME variable specifies the user’s login name
The PATH variable specifies the search path (see next subsection)
The SHELL variable specifies the absolute path of the current shell
The USER specifies the user’s current username. This value might be dif-

ferent than the login name if a superuser executes the su command to emulate
another user’s permissions.

Setting the PATH Environment Variable
Programs and other executable files can reside in many directories, so

operating systems provide a search path that lists the directories that the OS
searches for executable files. Tip: if a directory containing an executable file

Introduction • 15

is not included in your PATH environment variable, simply add that directory
to your PATH environment variable so that you can invoke an executable file
by specifying just the filename: you don’t need to specify the full path to the
executable file.

The search path is stored in an environment variable, which is a named
string maintained by the operating system. Every environment variable con-
tains information available to the command shell and other programs.

One detail to keep in mind: the path variable is named PATH in bash or
Path in Windows (bash is case-sensitive; Windows is not). Set the PATH in
bash/Linux as shown here:
export PATH=$HOME/anaconda:$PATH

Here is the command that adds the Python directory to the PATH variable
for the current command shell when you are using the bash shell:
export PATH="$PATH:/usr/local/bin/python"

Another way to do the same thing as the preceding code
snippet (when you are in the Bourne shell or ksh shell) is with this command:
PATH="$PATH:/usr/local/bin/python"

NOTE /usr/local/bin/python is the full path of the Python directory

Specifying Aliases and Environment Variables
You can define an environment variable and its value in a straightforward

manner. For example, the following command initializes an environment vari-
able called h1:
h1=$HOME/test

Now if you enter the following command:
echo $h1

If the value of $HOME is /Users/jsmith, then you will see the following
output on OS X:
/Users/jsmith/test

The next code snippet shows you how to set the alias ll so that it displays
a long listing of a directory:
alias ll="ls -l"

The following three alias definitions involve the ls command and various
switches:
alias ll="ls –l"

alias lt="ls –lt"

alias ltr="ls –ltr"

As an example, you can replace the command ls -ltr (the letters
“l,” “t,” and “r”) that you saw earlier in the chapter with the ltr alias and

16 • Bash Command Line and Shell Scripts

you will see the same reversed time-based long listing of filenames (repro-
duced here):
total 56
-rwx------ 1 ocampesato staff 176 Apr 06 19:21 ssl-
instructions.txt
-rw-r--r-- 1 ocampesato staff 12 Apr 06 19:21 output.txt
-rw-r--r-- 1 ocampesato staff 11 Apr 06 19:21 outfile.txt
-rwx------ 1 ocampesato staff 12 Apr 06 19:21
kyrgyzstan.txt
-rwx------ 1 ocampesato staff 478 Apr 06 19:21
iphonemeetup.txt
-rwx------ 1 ocampesato staff 146 Apr 06 19:21 checkin-
commands.txt
-rwx------ 1 ocampesato staff 25 Apr 06 19:21 apple-
care.txt

The bash shell supports the pipe (“|”) symbol that sends the output of one
command to the input of another command, which is executed in a left-to-right
fashion. For example, the following alias “pipes” the output of ls -1tr to the
more command:
alias ltrm="ls –ltr|more"

In a similar manner, you can define aliases for directory-related commands:
alias ltd="ls –lt | grep '^d'"

alias ltdm="ls –lt | grep '^d'|more"

FINDING EXECUTABLE FILES

There are several commands available for finding executable files (binary
files or shell scripts) by searching the directories in the PATH environment
variable: which, whence, whereis, and whatis. The first pair of
commands produce similar results as the which command, as discussed below.

The which command gives the full path to whatever executable that you
specify or a blank line if the executable is not in any directory that is specified
in the PATH environment variable.” This is useful for finding out whether a
particular command or utility is installed in the system.
which rm

The output of the preceding command is here:
/bin/rm

The whereis command provides the information that you get from the
where command:
$ whereis rm

/bin/rm

Introduction • 17

The whatis command looks up the specified command in the whatis
database, which is useful for identifying system commands and important con-
figuration files:
git-rm(1) - Remove files from the working tree
and from the index

grm(1), rm(1) - remove files or directories

rm(1), unlink(1) - remove directory entries

Consider it a simplified “man” command, which displays concise details
about bash commands (e.g., type man ls and you will see several pages of
explanation regarding the ls command).

THE PRINTF COMMAND AND THE ECHO COMMAND

In brief, use the printf command instead of the echo command if you
need to control the output format. One key difference is that the echo com-
mand prints a newline character, whereas the printf statement does not
print a newline character. Keep this point in mind when you see the printf
statement in the awk code samples in Chapter 7.

As a simple example, place the following code snippet in a shell script:
printf "%-5s %-10s %-4s\n" ABC DEF GHI
printf "%-5s %-10s %-4.2f\n" ABC DEF 12.3456

Make the shell script executable and then launch the shell script, after
which you will see the following output:
ABC DEF GHI
ABC DEF 12.35

On the other hand, if you type the following pair of commands:
echo "ABC DEF GHI"
echo "ABC DEF 12.3456"

You will see the following output:
ABC DEF GHI
ABC DEF 12.3456

A detailed (and very lengthy) discussion regarding the printf statement
and the echo command is here:

https://unix.stackexchange.com/questions/65803/why-is-printf-better-than-echo

THE CUT COMMAND

The cut command enables you to extract fields from a text file or an input
stream (which itself might be part of a pipe command). When you read the
documentation about bash commands that mention IFS (“Internal Field Sep-
arator”), this refers to the field separator. The typical value for IFS is a space
character (“ “), but you can change this value when you are processing files via
the awk command (discussed in Chapter 7).

18 • Bash Command Line and Shell Scripts

In addition, the cut command allows you to specify a range of columns
from an input stream. Some examples are here:
x= "abc def ghi"
echo $x | cut –d" " –f2

The output (using space " " as IFS, and -f2 to indicate the second
column, whereas –f1 is the first column) of the preceding code snippet is
here:

def

The following code snippet specifies the range of columns 2 through 5 (and
does not specify an IFS or the –f option):
x="abc def ghi"
echo $x | cut –c2-5

Column positions start with the value 1 (not 0), and the range of column
positions is non-inclusive. Hence, the range in –c2-5 is columns 2, 3, and 4
(but not column 5). The output of the preceding code snippet is here:

bc d

Listing 1.13 displays the contents of SplitName1.sh that illustrates how
to split a filename containing the “.” character as a delimiter/IFS.

Listing 1.13: SplitName1.sh
fileName="06.22.04p.vp.0.tgz"
f1=`echo $fileName | cut -d"." -f1`
f2=`echo $fileName | cut -d"." -f2`
f3=`echo $fileName | cut -d"." -f3`
f4=`echo $fileName | cut -d"." -f4`
f5=`echo $fileName | cut -d"." -f5`
f5=`expr $f5 + 12`
newFileName="${f1}.${f2}.${f3}.${f4}.${f5}"
echo "newFileName: $newFileName"

Listing 1.13 uses the echo command and the cut command in order to
initialize the variables f1, f2, f3, f4, and f5, after which a new filename
is constructed. The output of the preceding shell script is here:
newFileName: 06.22.04p.vp.12

THE ECHO COMMAND AND WHITESPACES

The echo command preserves whitespaces in variables when those vari-
ables are defined in a shell script. However, the echo command removes
whitespaces from variables that are defined in a command shell.

For example, open a command shell and then type the following code
snippet:
x= " a b c "
echo $x

Introduction • 19

 The output of the preceding echo command is shown here:

a b c

As you can see, the echo command removed all leading whitespaces,
duplicate whitespaces, and trailing whitespaces (even if you use single
quotes instead of double quotes). However, if you define a variable with
whitespaces inside a shell script, the echo command does not remove the
extra whitespaces.

Listing 1.1 displays the contents of EchoCut.sh that illustrate the
differences that can occur when the echo command is used with the cut
command.

Listing 1.1: EchoCut.sh
x1="123 456 789"
x2="123 456 789"
echo "x1 = $x1"
echo "x2 = $x2"
x3=`echo $x1 | cut -c1-7`
x4=`echo "$x1" | cut -c1-7`
x5=`echo $x2 | cut -c1-7`
echo "x3 = $x3"
echo "x4 = $x4"
echo "x5 = $x5"

Launch the code in Listing 1.1 and you will see the following output:
x1 = 123 456 789
x2 = 123 456 789
x3 = 123 456
x4 = 123 4
x5 = 123 456

The value of x3 is probably different from what you expected: there is only
one blank space between 123 and 456 instead of the three blank spaces that
appear in the definition of the variable x1.

As another variant, suppose that you define a text file tab1 with a single
line of text that contains a leading “tab” character. Now define the variable x
from the command line as follows:
x=`cat tab1`
echo "x = $x"

The output of the preceding code snippet removes all “tab” characters and
multiple whitespaces. In case you’re wondering, the purpose of the “backticks”
in the preceding code snippet is explained in the next section.

Thus, you need to be careful when you write shell scripts that contain the
echo command in a pipe command in order to determine the contents of spe-
cific columns of text files (such as payroll files and other files with financial
data). The solution involves the use of double quotation marks (and sometimes
the IFS variable that is discussed in Chapter 2) that you can see in the defini-
tion of x4.

20 • Bash Command Line and Shell Scripts

COMMAND SUBSTITUTION (“BACKTICK”)

The “backtick” (also called command substitution) feature of bash (and
other shells) is very powerful and enables you to combine multiple bash com-
mands. You can also write very compact and powerful (and complicated) shell
scripts with command substitution. The syntax is to simply precede and follow
your command with a “`” (backtick) character. In Listing 1.2 below, the back-
tick command is `ls *py`.

Listing 1.2 displays the contents of CommandSubst.sh displays a subset
of the list of files in a directory.

Listing 1.2: CommandSubst.sh
for f in `ls *py`
do
 echo "file is: $f"
done

Listing 1.2 contains a for loop that displays the filenames (in the current
directory) that have a py suffix.

The output of Listing 1.2 on my Macbook Pro is here:
file is: CapitalizeList.py
file is: CompareStrings.py
file is: FixedColumnCount1.py
file is: FixedColumnWidth1.py
file is: LongestShortest1.py
file is: My2DMatrix.pyß
file is: PythonBash.py
file is: PythonBash2.py
file is: StringChars1.py
file is: Triangular1.py
file is: Triangular2.py
file is: Zip1.py

NOTE
The output depends on whether or not you have any files with a .py suffix
in the directory where you execute CommandSubst.sh.

THE “PIPE” SYMBOL AND MULTIPLE COMMANDS

At this point, you’ve seen various combinations of bash commands that are
connected with the “|” symbol. In addition, you can redirect the output to a
file. The general form looks something like this:
cmd1 | cmd2 | cmd3 …. >mylist

What happens if there are intermediate errors? Fortunately, you can redi-
rect error messages to a text file if you need to review them. In fact, it’s also
possible to redirect stderr (“standard error”) to stdout (“standard out”),
which is beyond the scope of this chapter.

Introduction • 21

Question: can an intermediate error cause the entire “pipeline” to fail?
Yes, it’s possible for this to happen, and unfortunately, it’s usually a trial-and-
error process to debug long and complex commands that involve multiple
pipe symbols.

 Now consider the case where you need to redirect the output of multiple
commands to the same location. For example, the following commands display
output on the screen:
ls | sort; echo "the contents of /tmp: "; ls /tmp

You can easily redirect the output to a file with this command:
(ls | sort; echo "the contents of /tmp:"; ls /tmp) > myfile1

However, each of the preceding commands inside the parentheses spawns
a subshell (which is an extra process that consumes memory and cpu). You can
avoid spawning subshells by using {} instead of (), as shown here (and the
whitespace after { and before } are required):
{ ls | sort; echo "the contents of /tmp:"; ls /tmp } > myfile1

 Suppose that you want to set a variable, execute a command, and invoke a
second command via a pipe, as shown here:
name=SMITH cmd1 | cmd2

 Unfortunately, cmd2 in the preceding code snippet does not recognize
the value of name, but there is a simple solution, as shown here:
(name=SMITH cmd1) | cmd2

Use the double ampersand && symbol if you want to execute a command
only if a prior command succeeds. For example, the cd command only works if
the mkdir command succeeds in the following code snippet:
mkdir /tmp2/abc && cd /tmp2/abc

The preceding command will fail because (by default) the /tmp2 does not
exist. On the other hand, the following command succeeds because the –p
option ensures that intermediate directories are created:
mkdir –p /tmp/abc/def && cd /tmp/abc && ls –l

USING A SEMICOLON TO SEPARATE COMMANDS

You can combine multiple commands with a semicolon (“;”), as shown here:
cd /tmp; pwd; cd ~; pwd

The preceding code snippet navigates to the /tmp directory, prints the full
path to the current directory, returns to the previous directory, and again prints
the full path to the current directory. The output of the preceding command
is here:
/tmp
/Users/jsmith

22 • Bash Command Line and Shell Scripts

You can use command substitution (discussed in the next section) to assign
the output to a variable, as shown here:
x=`cd /tmp; pwd; cd ~; pwd`
echo $x

The output of the preceding snippet is here:
/tmp /Users/jsmith

THE PASTE COMMAND

The paste command is useful when you need to combine two files in
a “pairwise” fashion. For example, Listing 1.10 and Listing 1.11 display the
contents of the text files list1 and list2, respectively. You can think of
paste as treating the contents of the second file as an additional column for
the first file. In our first example, the first file has a list of files to copy, the
second file also has a list of files that are the destination for the cp command.
The paste command merges the two files into an output that could then be
run to execute all the copy commands in one step.

Listing 1.10: list1
cp abc.sh
cp abc2.sh
cp abc3.sh

Listing 1.11: list2
def.sh
def2.sh
def3.sh

Listing 1.12 display the result of invoking the following command:
paste list1 list2 >list1.sh

Listing 1.12: list1.sh
cp abc.sh def.sh
cp abc2.sh def2.sh
cp abc3.sh def3.sh

Listing 1.12 contains three cp commands that are the result of invoking the
paste command. If you want to execute the commands in Listing 1.12, make
this shell script executable and then launch the script, as shown here:
chmod +x list1.sh
./list1.sh

Inserting Blank Lines with the paste Command

 Instead of merging two equal length files, paste can also be used to add
the same thing to every line in a file.

Introduction • 23

Suppose that the text file names.txt contains the following lines:
Jane Smith
John Jones
Dave Edwards

The following command inserts a blank line after every line in names.txt:
paste -d'\n' - /dev/null < names.txt

 The output from the preceding command is here:
Jane Smith
John Jones
Dave Edwards

 Insert a blank line after every other line in names.txt with this com-
mand:
paste -d'\n' - - /dev/null < names.txt

 The output is here:
Jane Smith
John Jones
Dave Edwards

 Insert a blank line after every third line in names.txt with this command:
paste -d'\n' - - - /dev/null < names.txt

 The output is here:
Jane Smith
John Jones
Dave Edwards

That there is a blank line after the third line in the preceding output. The shell
script joinlines.sh (later in this chapter) also contains examples of one-
line paste commands for joining consecutive lines of a dataset or text file.

A SIMPLE USE CASE WITH THE PASTE COMMAND

The code sample in this section shows you how to use the paste com-
mand in order to join consecutive rows in a dataset. Listing 1.14 displays the
contents of linepairs.csv that contains letter and number pairs, and
Listing 1.15 contains reversecolumns.sh that illustrates how to match
the pairs even though the line breaks are in different places between num-
bers and letters.

Listing 1.14: linepairs.csv
a,b,c,d,e,f,g
h,i,j,k,l
1,2,3,4,5,6,7,8,9
10,11,12

NOTE

24 • Bash Command Line and Shell Scripts

Listing 1.15: linepairs.sh
inputfile="linepairs.csv"
outputfile="linepairsjoined.csv"
join pairs of consecutive lines:
paste -d " " - - < $inputfile > $outputfile
join three consecutive lines:
#paste -d " " - - - < $inputfile > $outputfile
join four consecutive lines:
#paste -d " " - - - - < $inputfile > $outputfile

The contents of the output file are shown here (note that the script is just
joining pairs of lines, and the three and four line command examples are com-
mented out):
a,b,c,d,e,f,g h,i,j,k,l
1,2,3,4,5,6,7,8,9 10,11,12

Notice that the preceding output is not completely correct: there is a space
“ ”instead of a “,” whenever a pair of lines are joined (between “g” and “h” and
also between “9 and 10”). We can make the necessary revision using the sed
command (discussed in Chapter 6):
cat $outputfile | sed "s/ /,/g" > $outputfile2

Examine the contents of $outputfile to see the result of the preceding
code snippet.

A SIMPLE USE CASE WITH CUT AND PASTE COMMANDS

The code sample in this section shows you how to use the cut and paste
commands in order to reverse the order of two columns in a dataset. Keep in
mind that the purpose of the shell script in Listing 1.17 is to help you get some
practice for writing bash scripts. The better solution involves a single line of
code (shown at the end of this section).

Listing 1.16 displays the contents of namepairs.csv that contains the
first name and last name of a set of people, and Listing 1.17 contains rever-
secolumns.sh that illustrates how to reverse these two columns.

Listing 1.16: namepairs.csv
Jane,Smith
Dave,Jones
Sara,Edwards

Listing 1.17: reversecolums.sh
inputfile="namepairs.csv"
outputfile="reversenames.csv"
fnames="fnames"
lnames="lnames"
cat $inputfile|cut -d"," -f1 > $fnames

Introduction • 25

cat $inputfile|cut -d"," -f2 > $lnames
paste –d"," $lnames $fnames > $outputfile

The contents of the output file $outputfile are shown here:
Smith,Jane
Jones,Dave
Edwards,Sara

The code in Listing 1.17 (after removing blank lines) consists of seven lines
of code that involves creating two extra intermediate files. Unless you need
those files, it’s a good idea to remove those two files (which you can do with
one rm command).

Although Listing 1.17 is straightforward, there is a simpler way to execute
this task: use the cat command and the awk command (discussed in detail in
Chapter 7).

Specifically, compare the contents of reversecolumns.sh with the fol-
lowing single line of code that combines the cat command and the awk com-
mand in order to generate the same output:
cat namepairs.csv |awk -F"," '{print $2 "," $1}'

The output from the preceding code snippet is here:
Smith,Jane
Jones,Dave
Edwards,Sara

An even simpler solution involves just the awk command in order to gener-
ate the same output, as shown here:
awk -F"," '{print $2 "," $1}' namepairs.csv

As you can see, there is a big difference between the preceding pair of one-
line solutions and the initial solution that you saw at the beginning of this sec-
tion. If you are unfamiliar with the awk command, then obviously you would
not have thought of the second solution. However, the more you learn about
bash commands and how to combine them, the more adept you will become
in terms of writing better shell scripts to solve various tasks. Another important
point: document the commands as they get more complex, as they can be hard
to interpret later by others, or even by yourself if enough time has passed. A
comment like the following can be extremely helpful in interpreting code:
This command reverses first and last names in namepairs.txt
cat namepairs.txt |awk -F"," '{print $2 "," $1}'

WHAT ABOUT ZSH?

The latest version of OS X provides zsh (often pronounced ZEE-shell)
as the default shell instead of the bash shell. You can find the directory that
contains zsh by typing this command:
which zsh

26 • Bash Command Line and Shell Scripts

and the result will be:
/bin/zsh

In case you didn’t already know, bash and zsh have some highly useful
features common, as shown below:

the z-command
auto-completion
auto-correction
color customization
Unlike zsh, the bash shell does not have inline wildcard expansion.

Hence, tab completion in bash acts like a command output. On the other
hand, tab completion in zsh resembles a “drop-down” list that disappears after
you type additional characters.

In addition, the bash shell does not support prefix or postfix command
aliases. A comparison of the bash shell and zsh is here:

https://sunlightmedia.org/bash-vs-zsh

Switching between bash and zsh

Type the following command to set zsh as the default shell in a command
shell:
chsh -s /bin/zsh

Switch from zsh back to bash with this command:
chsh -s /bin/bash

NOTE That both of the preceding commands only affect the command shell where
you launched the commands.

Configuring zsh

Bash stores user-related configuration settings in the hidden file (in your
home directory) .bashrc, whereas zsh uses the file .zshrc. However, keep
in mind that you need to create the latter file because it’s not created for you.

Bash uses the login-related file .bash_profile, whereas zsh uses the
file .zprofile (also in your home directory) that is invoked when you log into
your system. Consider the use of configuration managers such as Prezto or
Antigen to help you set values to variables. Perform an online search for more
details regarding zsh.

SUMMARY

This chapter started with an introduction to some Unix shells, followed by a
brief discussion of files, file permissions, and directories. You also learned how
to create files and directories and how to change their permissions. Next, you
learned about environment variables, how to display their values, and also how
to use aliases.

Introduction • 27

Next, you learned about the cut command (for cutting columns and/or
fields) and the paste command (for “pasting” test together vertically). Finally,
you saw two use cases, the first of which involved the paste command to
switch the order to two columns in a dataset, and the second showed you
another way to perform the same task using a combination of the cut com-
mand and paste command.

CHAPTER 2
FILES AND DIRECTORIES

This chapter discusses files and directories and various useful bash com-
mands for managing them. You will learn how to use simple commands
that can simplify your tasks. In Chapter 8 and Chapter 9, you will learn

how to create shell scripts involving some of the commands in this chapter, which
will further reduce the amount of time that you spend performing routine tasks.

The first part of this chapter shows works with file-related commands, such
as touch, mv, cp, rm, and so forth. The second part of this chapter contains
shell commands for managing directories. The third part of this chapter dis-
cusses metacharacters and variables that you can use when working with files
and shell scripts.

CREATE, COPY, REMOVE, AND MOVE FILES

This section discusses file-related commands in bash, such as touch, cp,
rm that enable you to create, copy, and remove files, respectively. The follow-
ing subsections illustrate how to use these convenient commands. Except for
the section that discusses how to create text files, the other sections pertain to
text files as well as binary files.

Creating Text Files
Use your favorite editor (such as vim, notepad++, emacs, and so forth) to

create a text file. If you prefer, create an empty text file via the touch com-
mand. For example, the following command illustrates how to create an empty
file called abc:

touch abc

If you issue the command ls –l abc you will see something like this:

-rw-r--r-- 1 owner staff 0 Jul 2 16:39 abc

30 • Bash Command Line and Shell Scripts

Copying Files

You can copy the file abc (or any other file) to abc2 with this command:

cp abc abc2

Be careful when you use the cp command: if the target file already exists,
make sure that you really do want to overwrite its contents with the source
file.

For example, both of the following commands copy the files abc and abc2
to the /tmp directory:

cp abc abc2 /tmp

cp abc* /tmp

However, the following command replaces the file abc2 with the contents
of the file abc:

cp abc*

The reason is simple: the bash shell expands the preceding regular expres-
sion before executing the cp command. Consequently, the preceding cp com-
mand is “expanded” to this cp command:

cp abc abc2

Fortunately, you can prevent an existing file from being overwritten by
another file with this command:

set –o noclobber

Now if you invoke the earlier cp command, you will see the following error
message:

bash: abc2: cannot overwrite existing file

The cp command provides several useful switches that enable you to con-
trol the set of files that you want to copy:

the -a archive flag (for copying an entire directory tree)
the -u update flag (which prevents overwriting identically-named newer

files)
the -r and -R recursive flags.
The –r option is useful for copying the files and all the subdirectories of a

directory to another directory. For example, the following command copies the
files and sub-directories (if any) from $HOME/abc to the directory $HOME/
def:

cd $HOME/abc

cp –r . ../def

Copy Files with Command Substitution

Listing 2.1 displays the contents of CommandSubst.sh that illustrates how
to use “backtick” to copy a set of files to a directory.

Files and Directories • 31

Listing 2.1 CommandSubst.sh

mkdir textfiles
cp `ls *txt` textfiles

The preceding pair of commands creates a directory textfiles in the cur-
rent directory and then copies all the files (located in the current directory)
with the suffix txt into the textfiles sub-directory.

Keep in mind that this command will not copy any subdirectories that have
the suffix txt. If you want to copy files that have the suffix .txt, use this
command:

cp `ls *txt` textfiles

Another caveat: if you have the directory abc.txt, or some other direc-
tory with the .txt suffix, then the contents of that directory will not be copied
(you will see an error message). The following commands will also fail to copy
the contents of abc.txt to the sub-directory textfiles:
cp `ls –R *.txt` textfiles
cp –r `ls –R *.txt` textfiles

Invoke the following command to ensure that the subdirectory abc.txt is
copied into the textfiles sub-directory:

cp –r abc.txt textfiles

If you want to copy the subdirectories of abc.txt but not the directory
abc.txt into textfiles, use this command:

cp –r abc.txt/* textfiles

Deleting Files

The rm command removes files and when you specify the –r option, the
rm command removes the contents of a directory (as well as the directory). For
example, remove the file abc using the rm command:

rm abc

The rm command has some useful options, such as –r, –f, and –i, which
represent “recursive,” “force,” and “interactive.”

You can remove the contents of the current directory and all of its subdirec-
tories with this command:

rm –rf *

NOTE
 Be very careful when you use rm –rf * so that you do not inadvertently
delete the wrong tree of files on your machine.

The –i option is very handy when you want to be prompted before a file
is deleted. Before deleting a set of files, use the ls command to preview the
files that you intend to delete using the rm command. For example, run this
command:

ls *.sh

32 • Bash Command Line and Shell Scripts

The preceding command shows you the files that you will delete when you
run this command:

rm *.sh

Earlier in this section you saw how to use command substitution, which
redirects the output of one command as the input of another command, to
copy a set of files. As another variation, the following command removes the
files that are listed in the text file remove_list.txt instead of specifying a
list of files from the command line:

rm `cat remove_list.txt`

If there is a possibility (at some point in the future) that you might need
some of the files that you intend to delete, another option is to create a direc-
tory and move those files into that directory, as shown here:
mkdir $HOME/backup-shell-scripts
mv *sh $HOME/backup-shell-scripts

Moving Files

The mv command is equivalent to a combination of cp and rm. You can use
this command to move multiple files to a directory or even to rename a direc-
tory. When used in a non-interactive script, mv supports the -f (force) option
to bypass user input. When a directory is moved to a pre-existing directory, it
becomes a sub-directory of the destination directory.

The ln Command

The ln command enables you to create a symbolic link to an existing file,
which is advantageous when the existing file is large because the symbolic link
involves minimal additional overhead. Moreover, changes to the existing file
are automatically available in the symbolic link, which means that you can
maintain one file as “the source of truth” instead of making the same update to
multiple copies of a file.

As a simple example, suppose that you have a file called document1.txt
in your $HOME directory. The following command creates a symbolic link called
doc2 to the file document1.txt:

ln –s $HOME/document1.txt doc2

If you invoke ls –l on doc2 you will see something like this:

lrwxr-xr-x 1 owner staff 26 Feb 8 10:57 doc2 -> /
Users/owner/document1.txt

If you remove doc2 it will not affect $HOME/document1.txt; how-
ever, if you remove the latter file without removing doc2, then doc2 will still
appear in a long listing, but when you attempt to view the contents of doc2,
the file is empty (as you would expect).

Files and Directories • 33

THE BASENAME, DIRNAME, AND FILE COMMANDS

These commands enable you to find the base portion of a filename, the
directory portion, and the type of file, respectively. Here are some examples:
$ x="/tmp/a.b.c.js"
$ basename $x .js
$ a.b.c

$ a="/tmp/a b.js"
$ basename $a .js
a
b.js
.js
$ basename "$a" .js
a b

$ dirname $x
/tmp

$ file /bin/ls
/bin/ls: Mach-O 64-bit executable x86_64

THE WC COMMAND

In Chapter 1, you learned how to use the ls command to obtain informa-
tion about files in a given directory. You can view the number of lines, words,
and characters in a set of files using the wc command. For example, if you
execute the command wc * in a command shell you will see information for
all the files in a directory, similar to the following output:

 3 6 25 apple-care.txt
12 28 146 checkin-commands.txt
27 55 478 iphonemeetup.txt
 2 1 12 kyrgyzstan.txt
 1 2 11 outfile.txt
 2 2 12 output.txt
 5 11 176 ssl-instructions.txt
52 105 860 total

As you can see from the last line in the previous output, there are a total of
52 lines, 105 words, and 860 characters in the text files in this directory. If you
run the command “wc o*” you will see information about files that start with
the letter o, as shown here:
1 2 11 outfile.txt
2 2 12 output.txt
3 4 23 total

34 • Bash Command Line and Shell Scripts

You can count the number of files in a directory with ls -1 |wc as shown
here:
7 7 112

The shell commands cat, more, less, head, and tail display differ-
ent parts of a file. For short files, these commands can overlap in terms of their
output. The next several sections provide more details about these commands,
along with some examples.

THE CAT COMMAND

The cat command displays the entire contents of a file, which is conve-
nient for small files. For longer files, you can use the more command that
enables you to “page” through the contents of a file.

If you type this command:

cat iphonemeetup.txt

you will see the following output:
iPhone meetup
=============
* iPhone.WebDev.com
* iui.googlecode.com
* tinyurl.sqllite.com
* touchcode.googlecode.com: open source supports JSON

XCode: supports SVG-like functionality
blog site: iphoneinaction.manning.com
iPhone in Action: manning.com/callen
iPhone dev camp: probably summer 2021

openGL-ES how to:
* create arcs/circles/ellipses
* linear/radial gradients
* Bezier curves
* Urbanspoon vs Yelp

You can see size-related attributes with the command wc iphone-
meetup.txt:

21 48 417 iphonemeetup.txt

THE MORE COMMAND AND THE LESS COMMAND

The more command enables you to view “pages” of content in a file. Press
the space bar to advance to the next page, and press the return key to advance a

Files and Directories • 35

single line. The less command is similar to the more command. An example
of the more command is here:

more abc.txt

Alternatively, you can use this form, but remember that it’s less efficient
because two processes are involved:

cat abc.txt |more

The more command contains some useful options. For instance, if you
want the more command to start from the 15th line in a file instead of the first
line, use this command:

more +15 abc.txt

If a file contains multiple consecutive blank lines, you can remove them
from the output with this command:

more -s abc.txt

Search for the pattern abc in a text file via the following command:

more +/abc.txt

THE HEAD COMMAND

The head command enables you to display an initial set of lines, and the
default number is 10. For example, the following command displays the first
three lines of test.txt:

cat test.txt |head -3

The following command also displays the first three lines of test.txt:

head -3 test.txt

You can display the first three lines of multiple files. The following com-
mand displays the first three lines in the text file columns2.txt, col-
umns3.txt, and columns4.txt:

head -3 columns[2-4].txt

The output of the preceding command is here:
==> columns2.txt <==
one two
three four
one two three four

==> columns3.txt <==
123 one two
456 three four
one two three four

36 • Bash Command Line and Shell Scripts

==> columns4.txt <==
123 ONE TWO
456 three four
ONE TWO THREE FOUR

The following code snippet checks if the first line of test.txt contains
the string aa:
x=`cat test.txt |head -1|grep aa`
if ["$x" != ""]
 echo "found aa in the first line"
fi

The head command displays the first 10 lines of a file, and the tail com-
mand displays the final 10 lines of a file. Instead of showing you the output
(which you can see from the previous listing), let’s combine the head and
tail commands with the wc command.

The following command combines the head and wc commands:

head iphonemeetup.txt |wc

The preceding command displays the following output:

10 22 224

You can also display the contents of a file whereby each line is preceded
by a line number. For example, the command combines the cat and head
commands:

cat –n iphonemeetup.txt |head -4

The preceding command displays the following output:
1 iPhone meetup
2 =============
3 * iPhone.WebDev.com
4 * iui.googlecode.com

THE TAIL COMMAND

The tail command enables you to display a set of lines at the end of a file,
and the default number is 10. For example, the following command displays
the last three lines of test.txt:

cat test.txt |tail -3

The following command also displays the last three lines of test.txt:

tail -3 test.txt

You can display the last three lines of multiple files. The following command
displays the last three lines in the text file columns2.txt, columns3.txt,
and columns4.txt:

tail -3 columns[2-4].txt

Files and Directories • 37

The output of the preceding command is here:
==> columns2.txt <==
five six
one two three
four five

==> columns3.txt <==
five 123 six
one two three
four five

==> columns4.txt <==
five 123 six
one two three
four five

The following code snippet checks if the first line of test.txt contains
the string aa:
x=`cat test.txt |tail -1|grep aa`
if ["$x" != ""]
 echo "found aa in the test.txt"
fi

The following command displays three values:
tail iphonemeetup.txt |wc
10 26 192

The first number in both output listings is 10, which confirms that only
the first 10 lines or the final ten lines are displayed. Note that if a file con-
tains 10 or fewer lines, then the output of head, tail, cat, and more is
identical.

You can change the number of lines that you want to see in the output of the
head command or the tail command. For example, the command displays
three lines:
$ head -3 iphonemeetup.txt
iPhone meetup
=============
* iPhone.WebDev.com

The next command the last three lines:
$ tail -3 iphonemeetup.txt
* Bezier curves
* Urbanspoon vs Yelp

38 • Bash Command Line and Shell Scripts

The tail command with the –f option is useful when you have a long-
running process that is redirecting output to a file. For example, suppose that
you invoke this command from your home directory:

find . –print |xargs grep –i abc >/tmp/abc &

Invoke the following command to see the contents of the file /tmp/abc
whenever it is updated:

tail –f /tmp/abc

COMPARING FILE CONTENTS

There are several commands for comparing text files, such as the cmp com-
mand and the diff command.

The cmp command is a simpler version of the diff command: diff
reports the differences between two files, whereas cmp only shows at what
point they differ.

Both diff and cmp return an exit status of 0 if the compared files are iden-
tical, and 1 if the files are different, so you can use both commands in a test
construct within a shell script.

The comm command is useful for comparing sorted files:

comm –options first-file second-file

The command comm file1 file2 outputs three columns:

column 1 = lines unique to file1
column 2 = lines unique to file2
column 3 = lines common to both.

The options allow the suppressing of the output of one or more columns.

-1 suppresses column 1
-2 suppresses column 2
-3 suppresses column 3
-12 suppresses both columns 1 and 2, etc.

The comm command is useful for comparing “dictionaries” or word lists
containing sorted text files with one word per line.

THE PARTS OF A FILENAME

The basename command “strips” the path information from a filename,
printing only the filename. The construction basename $0 is the name of the
currently executing script. This functionality can be used for “usage” messages
if, for example, a script is called with missing arguments:

echo "Usage: 'basename $0' arg1 arg2 ... argn"

NOTE

Files and Directories • 39

The dirname command strips the basename from a filename, printing
only the path information.

NOTE
Basename and dirname can operate on any arbitrary string. The argu-
ment does not need to refer to an existing file, or even be a filename.

The strings command displays printable strings (if any) in a binary or
data file. An example invocation is here:

strings /bin/ls

The first few lines of output from the preceding command are here:
$FreeBSD: src/bin/ls/cmp.c,v 1.12 2002/06/30 05:13:54
obrien Exp $
@(#) Copyright (c) 1989, 1993, 1994
The Regents of the University of California. All
rights reserved.
$FreeBSD: src/bin/ls/ls.c,v 1.66 2002/09/21 01:28:36
wollman Exp $
$FreeBSD: src/bin/ls/print.c,v 1.57 2002/08/29
14:29:09 keramida Exp $
$FreeBSD: src/bin/ls/util.c,v 1.38 2005/06/03
11:05:58 dd Exp $
\\""
@(#)PROGRAM:ls PROJECT:file_cmds-264.50.1
COLUMNS
1@ABCFGHLOPRSTUWabcdefghiklmnopqrstuvwx
bin/ls
Unix2003

WORKING WITH FILE PERMISSIONS

In a previous section, you used the touch command to create an empty file
abc and then saw its long listing:

-rw-r--r-- 1 owner staff 0 Nov 2 17:12 abc

Each file in bash contains a set of permissions for three different user
groups: the owner, the group, and the world. The set of permissions are read,
write, and execute that they have value 4, 2, and 1, respectively, in base 8
(octal). Thus, the permissions for a file in each group can have the following
values: 0 (none), 1 (execute), 2 (write), 4 (read), 5 (read and execute), 6 (read
and write), and 7 (read, write, and execute).

For example, a file whose permissions are 755 indicate:
Owner has read/write/execute permissions
Group has write/execute permissions
World has write/execute permissions
You can use various options with the chmod command to change permis-

sions for a file.

40 • Bash Command Line and Shell Scripts

The chmod Command

The chmod command enables you to change permissions for files and
directories. The octal representation 777 corresponds to the permissions
rwxrwxrwx, which enables read, write, and execute for all three groups. The
octal representation 644 corresponds to the permissions rw-r—r—.

The following command makes “filename” executable for all users:

chmod +x filename

Note that the following command makes a file executable only for the
owner of the file:

chmod u+x filename

The following command sets “suid” bit on “filename” permissions, which
allows an ordinary user to execute “filename” with same privileges as the owner
of the file (but is not applicable to shell scripts):

chmod u+s filename

The following command makes filename readable/writable to the owner
and only readable to group and others:

chmod 644 filename

The following command makes “filename” read-only for everyone:

chmod 444 filename

Provide everyone with read, write, and execute permission in the directory
(and also sets the “sticky bit”):

chmod 1777 directory-name

Revoke all permissions for a directory (but no restrictions are enforced on
the root user):

chmod 000 directory-name

Chapter 4 discusses how to use conditional logic to check (and also modify)
file permissions via shell scripts.

Changing owner, permissions, and groups

The chown command enables you to change ownership of files and direc-
tories. For example, the following command assigns dsmith as the owner of
the files with a suffix txt in the current directory:

chown dsmith *txt

The chgrp command changes the group of files and directories, as shown
here:

chgrp internal *.txt

In addition, the chown and chgrp commands support recursion via the
–R option, which means that the commands can affect files that are in a sub-
directory of the current directory.

Files and Directories • 41

The umask and ulimit Commands
Whenever you create a file in bash, the environment variable umask con-

tains the complement (base 8) of the default permissions that are “assigned” to
that file. You can see the value of umask by typing this command at the com-
mand line, and its typical value is 0022. If you perform the (base 8) comple-
ment of this value, the result is 755.

The ulimit command specifies the maximum size of a file that you can
create on your machine. When you invoke this command in a command shell,
you will either see a numeric value or the word unlimited.

WORKING WITH DIRECTORIES

A directory is a file that stores filenames and related information. All files
(i.e., ordinary, special, or directory) are contained in directories. UNIX-based
file systems have a hierarchical structure for organizing files and directories.
This structure is often referred to as a directory tree. The tree has a single root
node, the slash character (/), and all other directories are contained below it.

The position of any file within the hierarchy is described by its pathname.
The elements of a pathname are separated by a slash (“/”) character. A path-

name is absolute if it is described in relation to root, so absolute pathnames
always begin with a /. These are some examples of absolute filenames:

/etc/passwd
/users/oac/ml/class
/dev/rdsk/Os5

A pathname can also be relative to your current working directory. Relative
pathnames begin with ./.

Absolute and Relative Directories
You can navigate to your home directory with any of these commands:

cd $HOME
cd ~
cd

Note that in Windows the cd command shows you the current directory (it
does not navigate to the home directory).

The tilde “~” always indicates a home directory. If you want to go in any
other user’s home directory then use the following command:

cd ~username

You can navigate back to the location of the directory before navigating to
the current directory with this command:

cd -

Absolute/Relative Pathnames
Directories are arranged in a hierarchy with root (/) at the top. The position

of any file within the hierarchy is described by its full pathname. Elements of

42 • Bash Command Line and Shell Scripts

a pathname are separated by a /. A pathname is absolute if it is described in
relation to root, so absolute pathnames always begin with a /. Here are some
examples of absolute filenames:
/etc/passwd
/users/oac/ml/class
/dev/rdsk/Os5

To determine your current directory, use the pwd command:

$ pwd

The output will be something like this:

/Users/owner/Downloads

Display the contents of a directory with the ls command:

$ ls /usr/bin

A tiny display from the preceding command is here:
fc
fddist
fdesetup
fg
fgrep
file

In fact, all the built-in executables that are discussed in this book reside in
the /usr/bin directory.

Creating Directories

If you specify multiple directories on the command line, mkdir creates
each of the directories. For example, the following command creates the direc-
tories docs and pub as siblings under the current directory:

mkdir docs pub

Compare the preceding command with the following command that cre-
ates the directory test and a sub-directory data under the current directory:

mkdir –p test/data

The -p option forces the creation of missing intermediate directories (if
any). If an intermediate directory does not exist, the mkdir issues an error
message. For example, suppose that the intermediate subdirectory account
does not exist in the following code snippet:
$mkdir /tmp/accounting/test
mkdir: Failed to make directory "/tmp/accounting/
test";
No such file or directory

You can also use the –p option to create a sub-directory in your $HOME
directory, as shown here:

mkdir –p $HOME/a/b/c/new-directory

Files and Directories • 43

The preceding command creates the following subdirectories in case any
of them do not exist:
$HOME/a
$HOME/a/b
$HOME/a/b/c
$HOME/a/b/c/new-directory

Removing Directories

Earlier you learned how to use rm –r in order to remove a directory and
its contents. You can also delete empty directories via the rmdir command as
follows:

rmdir dirname1

You can delete multiple empty directories at a time as follows:

rmdir dirname1 dirname2 dirname3

Again, keep in mind that the preceding command removes the directories
dirname1, dirname2, and dirname2 if they are empty. The rmdir com-
mand produces no output if it is successful.

However, if there are files in the dirname1 directory, you can either use
this command:

rm –r dirname1

or, alternatively, you can first remove the files in the subdirectory and then
remove the directory itself, as shown here:
cd dirname1
rm –rf *
cd ../
rmdir dirname1

Navigating to Directories

Use the cd command to change to any directory by specifying a valid abso-
lute or relative path. The syntax is as follows:

cd dirname

The value of dirname is the name of the target directory. For example,
the command:

cd /usr/local/bin

will change to the directory /usr/local/bin.

You can change directories using an absolute path (as in the previous exam-
ple) or via a relative path. For example, you can switch from this directory to
the directory /usr/home/jsmith via the following relative path:

cd ../../home/jsmith

Keep in mind that the file system is a hierarchical tree-like system; hence,
you can navigate to a parent directory via the double dot (“../”) syntax. You can

44 • Bash Command Line and Shell Scripts

also navigate to the parent directory of the current directory (and even higher if
there are additional ancestor directories), as shown in the preceding example.

Moving Directories

The mv (move) command can also be used to rename a directory as well as
renaming a file. The syntax for renaming a directory is the same as renaming
a file:

mv olddir newdir

However, if the target directory already exists and contains at least one file,
then the mv command will fail, an example of which is here:
mkdir /tmp/abcd
touch /tmp/abcd/red
mkdir abcd
mv abcd /tmp

Since the directory /tmp/abcd is not empty, you will see the following
error message:

mv: rename abcd to /tmp/abcd: Directory not empty

In essence, bash provides a noclobber feature for non-empty directories
(which is actually a very good feature).

USING QUOTE CHARACTERS

There are three types of quotes characters: single quotes (‘), double quotes
(“), and ‘backquotes’ (`) that occur in matching pairs (‘’, “”, or ̀ `). Although these
quote characters might seem interchangeable, there are some differences.

Single quotes prevent the shell from “globbing” the argument or substitut-
ing the argument with the value of a shell variable. Characters within a pair of
single quotes are interpreted literally, which means that their metacharacter
meanings (if any) are ignored. Similarly, the shell does not replace references
to the shell or environment variables with the value of the referenced vari-
able.

Characters within a pair of double quotes are interpreted literally: their
metacharacter meanings (if any) are ignored. However, the shell does replace
references to the shell or environment variables with the value of the refer-
enced variable.

Text within a pair of backquotes is interpreted as a command, which the
shell executes before executing the rest of the command line. The output of the
command replaces the original back-quoted text.

In addition, a metacharacter is treated literally whenever it is preceded by
the backslash (\) character.

The following examples illustrate the differences when you use different
quote characters:

echo $PATH

Files and Directories • 45

The echo command will print the value of the PATH shell variable. How-
ever, by enclosing the argument within single quotes, you obtain the desired
result:

echo '$PATH'
Double quotes have a similar effect. They prevent the shell from “globbing”

a filename but permit the expansion of shell variables.
The power of backquotes is the ability to execute a command and use its

output as an argument of another command. For example, the following com-
mand displays the number of files in a user’s home directory:

echo My home directory contains `ls ~ | wc -l` files.

The preceding command first executes the command contained within
backquotes:

ls ~ | wc -l

For the purpose of illustration, let’s assume that the preceding command
displays the value 22. Then the earlier echo command displays the following
output:

My home directory contains 22 files.

STREAMS AND REDIRECTION COMMANDS

The numbers 0,1, and 2 have a special significance when 0 is preceded by
the “<” symbol, and also when the numbers 1 and 2 are followed by the “>”
symbol, with no spaces between the digit 0 and “<”, and no spaces between the
digits 1 and 2 and “>”.

In this situation, 0 refers to standard input (stdin), 1 refers to standard out-
put (stdout), and 2 refers to standard error (stderr). The pattern “1>file1” and
“2>file2” enable you to redirect output from an executable file.

In addition, the “directory” /dev/null refers to the null bit bucket,
and anything that you redirect to this directory is essentially discarded. This
construct is useful when you want to redirect error message that can be safely
ignored.

Here are some examples:

cat $abc 1>std1 2>std2

You can redirect standard error to standard output and then redirect the
latter to a single file, as shown here:

cat $abc 2>&1 1>std1

You can redirect the output of bash commands in various ways, depending
on what your needs are, as shown below:
cmd > myfile redirects the output of cmd to myfile
cmd >> myfile appends the output of cmd to myfile
cmd < myfile sends the contents of myfile to cmd

46 • Bash Command Line and Shell Scripts

cmd 1>out1 2>out2 sends stdout to out1 and stderr to
out2
cmd 2>&1 1>onefile1 sends stdout and stderr to onefile1

You can also redirect error messages to /dev/null, which means that you
will never see those error messages.

For example, if you attempt to list the contents of the non-existent directory
/temp, you will see this error message:

ls: /temp: No such file or directory

However, you can suppress the preceding error message with this com-
mand:

ls /temp 2>/dev/null

You can redirect standard output and standard error to the same file with
this command:

ls /temp 1>output1.txt 2>&1

In the preceding code snippet the file output1.txt contains the same
error message.

Note that the following command displays the error message on the screen
(notice the different location of 2>&1):

ls /temp 2>&1 1>output1.txt

NOTE
 Redirect error messages to /dev/null only if you are certain that they can
be safely ignored.

Redirection can be convenient in conjunction with the find command as
well as sequences of commands that connected with the pipe symbol.

WORKING WITH METACHARACTERS

Earlier in this chapter, you were introduced to the ? and * metacharacters
in conjunction with the cat command. If you are new to metacharacters, it
might be helpful to think of them as a set of wildcards.

In addition, regular expressions are a combination of normal text, special
characters (in some cases), metacharacters, and character classes (discussed
in the next section). Conceptually, a regular expression is analogous to how
to perform a search in a “find” tool (press ctrl-f on your search engine),
but bash allows for much more complex pattern matching because of its rich
metacharacter set. Although there are entire books devoted to regular expres-
sions, this section contains a basic introduction to metacharacters.

The following three metacharacters are useful with regular expressions:
The ? metacharacter refers to 0 or 1 occurrences of something
The + metacharacter refers to 1 or more occurrences of something
The * metacharacter refers to 0 more occurrences of something
Note that “something” in the preceding descriptions can refer to a digit,

letter, word, or more complex combinations.

Files and Directories • 47

Now that you have a general idea of regular expressions, let’s look at some
examples that contain metacharacters.

The expression a? matches the string a and also the string a followed by a
single character, such as a1, a2, …, aa, ab, ac, and so forth. However, abc
and a12 do not match the expression a?.

The expression a+ matches the string a followed by one or more characters,
such as a1, a2, …, aa, ab, ac, and so forth (but abc and a12 do not match).

The expression a* matches the string a followed by zero or more charac-
ters, such as a1, a2, …, aa, ab, ac, and so forth.

The pipe “|” metacharacter (which has a different context from the pipe
symbol n the command line: regular expressions have their own syntax, which
does not match that of the operating system a lot of the time) provides a choice
of options. For example, the expression a|b means a or b, and the expression
a|b|c means a or b or c.

The “$” metacharacter refers to the end of a line of text, and in regular
expressions inside the vi editor, the “$” metacharacter can also refer to the
last line in a file.

The “^” metacharacter refers to the beginning of a string or a line of text.
For example:
*a$ matches "Mary Anna" but not "Anna Mary"
^A* matches "Anna Mary" but not "Mary Anna"

One other interesting detail: the “^” metacharacter means “does not match”
when it is the first character inside a pair of square brackets. The next section
includes some examples of the “^” metacharacter.

WORKING WITH CHARACTER CLASSES

Character classes enable you to express a range of digits, letters, or a com-
bination of both. For example, the character class [0-9] matches any single
digit; [a-z] matches any lowercase letter; and [A-Z] matches any upper-
case letter. You can also specify subranges of digits or letters, such as [3-7],
[g-p], and [F-X], as well as other combinations:

[0-9][0-9] matches a consecutive pair of digits
[0-9[0-9][0-9] matches three consecutive digits
\d{3} also matches three consecutive digits
The previous section introduced you to the “^” metacharacter and here are

some example of using “^” with character classes:

1. ^[a-z] matches any lowercase letter at the beginning of a line of text

2. ^[^a-z] matches any line of text that does not start with a lowercase letter
 Based on what you have learned thus far, you can understand the purpose
of the following regular expressions:

3. ([a-z]|[A-Z]): either a lowercase letter or an uppercase letter

48 • Bash Command Line and Shell Scripts

4. (^[a-z][a-z]): an initial lowercase letter followed by another lowercase letter

5. (^[^a-z][A-Z]): anything other than a lowercase letter followed by an upper-
case letter

Notice that example #3 contains the term [a-z], which matches any
lowercase letter, whereas example #5 contains the term [^a-z], which (as
mentioned in the previous section) means that it does not match a lowercase
letter.

METACHARACTERS AND CHARACTER CLASSES

As you saw in Chapter 1, bash supports metacharacters as well as reg-
ular expressions. If you have worked with a scripting language such as Perl,
or languages such as JavaScript and Java, you have undoubtedly encountered
metacharacters.

Here is an expanded list of metacharacters that the bash shell supports:
? (0 or 1): a? matches the string a (but not ab)
* (0 or more): a* matches the string aaa (but not

baa)
+ (1 or more): a+ matches aaa (but not baa)
^ (start of line): ̂[a] matches the string abc (but

not bc)
$ (end of line): [c]$ matches the string abc (but

not cab)
. (a single dot): matches any character (except

newline)

The preceding metacharacters can be used in bash with commands such
as ls and sed, in shell scripts, and in editors such as vi (but keep in mind that
there are some subtle differences in interpretation of metacharacters).

Digits and Characters
The following code snippets illustrate how to specify sequences of digits

and sequences of character strings:
[0-9] matches a single digit
[0-9][0-9] matches 2 consecutive digits
^[0-9]+$ matches a string consisting solely of
digits

You can define similar patterns using uppercase or lowercase letters:
[a-z] matches a single lowercase letter
[A-Z] matches a single uppercase letter
[a-z][A-Z] matches a single lowercase letter that is
followed by 1 uppercase letter
[a-zA-Z] matches any upper or lowercase letter

Files and Directories • 49

Working with “^” and “\” and “!”
The purpose of the “^” character depends on its context in a regular expres-

sion. For example, the following expression matches a text string that starts
with a digit:

^[0-9]

However, the following expression matches a text string that does not start
with a digit:

^[^0-9]

Thus, the “^” character inside a pair of matching square brackets (“[]”)
negates the expression immediately to its right that is also inside the square
brackets.

The backslash (“\”) allows you to “escape” the meaning of a metacha-
racter. Just to clarify a bit further: a dot “.” matches a single character,
whereas the sequence “\.” matches the dot “.” character. Other examples
are here:
\.H.* matches the string .Hello
H.* matches the string Hello
H.*\. matches the string Hello.
.ell. matches the string Hello
.* matches the string Hello
\..* matches the string .Hello

The “!” metacharacter means negation, as shown here:
[! abc ...] Matches any character other than those
specified
[! a - z] Matches any character not in the specified
range

FILENAMES AND METACHARACTERS

Before the shell passes arguments to an external command or interprets a
built-in command, it scans the command line for certain special characters and
performs an operation known as filename “globbing.” You already saw some
metacharacters in an early section, and this section shows you how to use them
with the ls command.

ls -l file1 file2 file3 file04

However, the following command reports the same information and is
much quicker to type:

ls -l file*

Suppose you issued the following command:

ls -l file?

50 • Bash Command Line and Shell Scripts

The ? filename metacharacter can match only a single character. There-
fore, file04 would not appear in the output of the command. Similarly, the
command displays only file2 and file3:

$ ls -l file[2-3]

The files file2 and file3 are the only files whose names match the speci-
fied pattern, which requires that the last character of the filename be in the
range 2-3.

You can use more than one metacharacter in a single argument. For exam-
ple, consider the following command:

ls -l file??

Most commands let you specify multiple arguments. If no files match a
given argument, the command ignores the argument. Here’s another com-
mand that reports all four files:

ls -l file0* file[1-3]

Suppose that a command has one or more arguments that include one or
more metacharacters. If none of the arguments match any filenames, the shell
passes the arguments to the program with the metacharacters intact. When the
program expects a valid filename, an unexpected error may result.

Another metacharacter lets you easily refer to your home directory. For
example, the following command lists the files in the user’s home directory:

ls ~

SUMMARY

This chapter started with an explanation of file permissions for files and
directories, and also how to set them according to your requirements. Then
you learned about an assortment of file-related commands, including the com-
mands touch, mv, cp, and rm.

Then you saw some bash commands for managing directories and their
contents. Finally, you learned more details about metacharacters and variables
that you can use when working with files and shell scripts.

CHAPTER 3
USEFUL COMMANDS

This chapter discusses bash commands for manipulating the contents
of text files, as well as searching for strings in text files using the bash
“pipe” command that redirects the output of one bash command as

the input of a second bash command.
The first part of this chapter shows you how to merge, fold, and split text

files. This section also shows you how to sort files and find unique lines in files
using the sort and uniq commands, respectively. The last part explains how
to compare text files and binary files.

The second section introduces you to the find command, which is a power-
ful command that supports many options. For example, you can search for files
in the current directory or in sub-directories; you can search for files based on
their creation date and last modification date. One convenient combination is
to “pipe” the output of the find command to the xargs command in order to
search files for a particular pattern. Next, you will see how to use the tr com-
mand, a tool that handles a lot of commonly used text transformations such as
capitalization or removal of whitespace. After the section that discusses the tr
command, you will see a use case that shows you how to use the tr command
in order to remove the ^M control character from a dataset.

The third section contains compression-related commands, such as cpio,
tar, and bash commands for managing files that are already compressed
(such as zdiff, zcmp, zmore, and so forth).

The fourth section introduces you to the IFS option, which is useful when
you need to specify a non-default field separator while extracting data from a
range of columns in a dataset. You will also see how to use the xargs com-
mand in order to “line up” the columns of a dataset so that all rows have the
same number of columns.

52 • Bash Command Line and Shell Scripts

The fifth section shows you how to create shell scripts, which contain bash
commands that are executed sequentially.

THE JOIN COMMAND

The join command allows you to merge two files in a meaningful fashion,
which essentially creates a simple version of a relational database.

The join command operates on two files, and pastes together only those
lines with a common tagged field (usually a numerical label), and writes the
result to stdout. The files to be joined should be sorted according to the
tagged field for the matchups to work properly. Listing 3.1 and Listing 3.2 dis-
plays the contents of 1.data and 2.data, respectively.

Listing 3.1: 1.data

100 Shoes
200 Laces
300 Socks

Listing 3.2: 2.data

100 $40.00
200 $1.00
300 $2.00

Now launch the following command:

join 1.data 2.data

File: 1.data 2.data
 100 Shoes $40.00
 200 Laces $1.00
 300 Socks $2.00

THE FOLD COMMAND

As you know from Chapter 1, the fold command enables you to display
a set of lines with fixed column width, and this section contains a few more
examples. Note that this command does not take into account spaces between
words: the output is displayed in columns that resemble a “newspaper” style.

The following command displays a set of lines with ten characters in each
line:
x="aa bb cc d e f g h i j kk ll mm nn"
echo $x |fold -10

The output of the preceding code snippet is here:
aa bb cc d
e f g h i
j kk ll m
m nn

Useful Commands • 53

As another example, consider the following code snippet:
x="The quick brown fox jumps over the fat lazy dog. "
echo $x |fold -10

The output of the preceding code snippet is here:
The quick
brown fox
jumps over
the fat l
azy dog.

THE SPLIT COMMAND

The split command is useful when you want to create a set of sub-files
of a given file. By default, the sub-files are named xaa, xab, …, xaz, xba,
xbb, …, xbz, … xza, xzb, … , xzz. Thus, the split command creates a
maximum of 676 files (=26x26). The default size for each of these files is 1,000
lines.

The following snippet illustrates how to invoke the split command in
order to split the file abc.txt into files with 500 lines each:

split -l 500 one-dl-course-outline.txt

If the file abc.txt contains between 501 and 1,000 lines, then the preced-
ing command will create the following pair of files:
xaa
xab

You can also specify a file prefix for the created files, as shown here:

split -l 500 one-dl-course-outline.txt shorter

The preceding command creates the following pair of files:
shorterxaa
shorterxab

THE SORT COMMAND

The sort command sorts the lines in a text file. For example, suppose you
have a text file called test2.txt that contains the following lines:
aa
cc
bb

Both of the following commands will sort the lines in test2.txt:
cat test2.txt |sort
sort test2.txt

54 • Bash Command Line and Shell Scripts

The output of the preceding commands is here:
aa
bb
cc

The sort command arranges lines of text alphabetically by default. Some
options for the sort command are here:
-n Sort numerically (10 will sort after 2), ignore
blanks and tabs
-r Reverse the order of sort
-f Sort upper- and lowercase together
+x Ignore first x fields when sorting

You can use the sort command to display the files in a directory based on
their file size, as shown here:
-rw-r--r-- 1 ocampesato staff 11 Apr 06 19:21
outfile.txt
-rw-r--r-- 1 ocampesato staff 12 Apr 06 19:21
output.txt
-rwx------ 1 ocampesato staff 12 Apr 06 19:21
kyrgyzstan.txt
-rwx------ 1 ocampesato staff 25 Apr 06 19:21
apple-care.txt
-rwx------ 1 ocampesato staff 146 Apr 06 19:21
checkin-commands.txt
-rwx------ 1 ocampesato staff 176 Apr 06 19:21 ssl-
instructions.txt
-rwx------ 1 ocampesato staff 417 Apr 06 19:43
iphonemeetup.txt

The sort command supports many options, some of which are summa-
rized here.

The sort –r command sorts the list of files in reverse chronological order.
The sort –n command sorts on numeric data and sort –k command sorts
on a field. For example, the following command displays the long listing of the
files in a directory that are sorted by their file size:

ls –l |sort –k 5

The output is here:
total 72
-rwx------ 1 ocampesato staff 12 Apr 06 20:46
kyrgyzstan.txt
-rw-r--r-- 1 ocampesato staff 12 Apr 06 20:46
output.txt

Useful Commands • 55

-rw-r--r-- 1 ocampesato staff 14 Apr 06 20:46
outfile.txt
-rwx------ 1 ocampesato staff 25 Apr 06 20:46
apple-care.txt
-rwxr-xr-x 1 ocampesato staff 90 Apr 06 20:50
testvars.sh
-rwxr-xr-x 1 ocampesato staff 100 Apr 06 20:50
testvars2.sh
-rwx------ 1 ocampesato staff 146 Apr 06 20:46
checkin-commands.txt
-rwx------ 1 ocampesato staff 176 Apr 06 20:46
ssl-instructions.txt
-rwx------ 1 ocampesato staff 417 Apr 06 20:46
iphonemeetup.txt

Notice that the file listing is sorted based on the fifth column, which dis-
plays the file size of each file. You can sort the files in a directory and display
them from largest to smallest with this command:

ls –l |sort –n

In addition to sorting lists of files, you can use the sort command to sort
the contents of a file. For example, suppose that the file abc2.txt contains
the following:
This is line one
This is line two
This is line one
This is line three
Fourth line
Fifth line
The sixth line
The seventh line

The following command sorts the contents of abc2.txt:

sort abc2.txt

You can sort the contents of multiple files and redirect the output to another
file:

sort outfile.txt output.txt > sortedfile.txt

An example of combining the commands sort and tail is shown here:

cat abc2.txt |sort |tail -5

The preceding command sorts the contents of the file abc2.txt and then
displays the final five lines:
The seventh line
The sixth line
This is line one

56 • Bash Command Line and Shell Scripts

This is line one
This is line three
This is line two

As you can see, the preceding output contains two duplicate lines. The next sec-
tion shows you how to use the uniq command in order to remove duplicate lines.

THE UNIQ COMMAND

The uniq command prints only the unique lines in a sorted text file (i.e.,
it ignores duplicate lines). As a simple example, suppose the file test3.txt
contains the following text:
abc
def
abc
abc

The following command sorts the contents of test3.txt and then dis-
plays the unique lines:

cat test3.txt |sort | uniq

The output of the preceding code snippet is here:
abc
def

HOW TO COMPARE FILES

The diff command enables you to compare two text files and the cmp
command compares two binary files. For example, suppose that the file out-
put.txt contains these two lines:
Hello
World

Suppose that the file outfile.txt contains these two lines:
goodbye
world

Then the output of this command:

diff output.txt outfile.txt

is shown here:
1,2c1,2
< Hello
< World

> goodbye
> world

Useful Commands • 57

Note that the diff command performs a case-sensitive text-based com-
parison, which means that the strings Hello and hello are treated as differ-
ent strings.

THE OD COMMAND

The od command displays an octal dump of a file, which can be very help-
ful when you want to see embedded control characters (such as tab charac-
ters) that are not normally visible on the screen. This command contains many
switches that you can see when you type man od.

As a simple example, suppose that the file abc.txt contains one line of
text with the following three letters, separated by a tab character (which is not
visible here) between each pair of letters:

a b c

The following command displays the tab and newline characters in the file
abc.txt:

cat control1.txt |od -tc

The preceding command generates the following output:
0000000 a \t b \t c \n
0000006

In the special case of tabs, another way to see them is to use the following
cat command:

cat –t abc.txt

The output from the preceding command is here:

a^Ib^Ic

In Chapter 1, you learned that the echo command prints a newline charac-
ter whereas the printf statement does not print a newline character (unless
it is explicitly included). You can verify this fact for yourself with this code
snippet:
echo abcde | od -c
0000000 a b c d e \n
0000006
printf abcde | od -c
0000000 a b c d e
0000005

THE TR COMMAND

The tr command is a highly versatile command that supports some very
useful options. For example, the tr command enables you to remove extrane-
ous whitespaces in datasets, inserting blank lines, printing words on separate

58 • Bash Command Line and Shell Scripts

lines, and also translating characters from one character set to another charac-
ter set (i.e., from uppercase to lowercase, and vice versa).

The following command capitalizes every letter in the variable x:
x="abc def ghi"
echo $x | tr [a-z] [A-Z]
ABC DEF GHI

Here is another way to convert letters from lowercase to uppercase:

cat columns4.txt | tr '[:lower:]' '[:upper:]'

In addition to uppercase and lowercase, you can use the POSIX characters
classes in the tr command:

•	 alnum: alphanumeric characters
•	 alpha: alphabetic characters
•	 cntrl: control (non-printable) characters
•	 digit: numeric characters
•	 graph: graphic characters
•	 lower: lower-case alphabetic characters
•	 print: printable characters
•	 punct: punctuation characters
•	 space: whitespace characters
•	 upper: upper-case characters
•	 xdigit: hexadecimal characters 0-9 A-F

The following example removes white spaces in the variable x (initialized
above):
echo $x |tr -ds " " ""
abcdefghi

The following command prints each word on a separate line:
echo "a b c" | tr -s " " "\012"
a
b
c

The following command replaces every comma with a linefeed:
echo "a,b,c" | tr -s "," "\n"
a
b
c

The following example replaces the linefeed in each line with a blank space,
which produces a single line of output:

cat test4.txt |tr '\n' ' '

The output of the preceding command is here:

abc def abc abc

Useful Commands • 59

The following example removes the linefeed character at the end of each
line of text in a text file. As an illustration, Listing 3.3 displays the contents of
abc2.txt.

Listing 3.3: abc2.txt

This is line one
This is line two
This is line three
Fourth line
Fifth line
The sixth line
The seventh line

The following code snippet removes the linefeed character in the text file
abc2.txt:

tr -d '\n' < abc2.txt

The output of the preceding tr code snippet is here:

This is line oneThis is line twoThis is line
threeFourth lineFifth lineThe sixth lineThe seventh
line

As you can see, the output is missing a blank space between consecutive
lines, which we can insert with this command:

tr -s '\n' ' ' < abc2.txt

The output of the modified version of the tr code snippet is here:

This is line one This is line two This is line three
Fourth line Fifth line The sixth line The seventh line

You can replace the linefeed character with a period “.” with this tr com-
mand:

tr -s '\n' '.' < abc2.txt

The output of the preceding version of the tr code snippet is here:

This is line one.This is line two.This is line three.
Fourth line.Fifth line.The sixth line.The seventh line.

The tr command with the –s option works on a one-for-one basis, which
means that the sequence ‘.’ has the same effect as the sequence ‘. ‘. As a sort
of “preview,” we can add a blank space after each period ‘.’ by combining the
tr command with the sed command (discussed in Chapter 6), as shown here:

tr -s '\n' '.' < abc2.txt | sed 's/\./\. /g'

The output of the preceding command is here:

This is line one. This is line two. This is line three.
Fourth line. Fifth line. The sixth line. The seventh
line.

60 • Bash Command Line and Shell Scripts

Think of the preceding sed snippet as follows: “whenever a ‘period’ is
encountered, replace it with a ‘dot’ followed by a space, and do this for every
occurrence of a period.”

You can also combine multiple commands using the bash “pipe” symbol.
For example, the following command sorts the contents of Listing 3.3, retrieves
the “bottom” five lines of text, retrieves the lines of text that are unique, and
then converts the text to upper case letters,

cat abc2.txt |sort |tail -5 | uniq | tr [a-z] [A-Z]

Here is the output from the preceding command:
THE SEVENTH LINE
THE SIXTH LINE
THIS IS LINE ONE
THIS IS LINE THREE
THIS IS LINE TWO

You can also convert the first letter of a word to uppercase (or to lowercase)
with the tr command, as shown here:
x="pizza"
x=`echo ${x:0:1} | tr '[a-z]' '[A-Z]'`${x:1}
echo $x

A slightly longer (one extra line of code) way to convert the first letter to
uppercase is shown here:
x="pizza"
first=`echo $x|cut -c1|tr [a-z] [A-Z]`
second=`echo $x|cut -c2-`
echo $first$second

As you can see, it’s possible to combine multiple commands using the bash
pipe symbol “|” in order to produce the desired output.

A SIMPLE USE CASE

The code sample in this section shows you how to use the tr command in
order to replace the control character “^M” with a linefeed. Listing 3.4 displays
the contents of the dataset controlm.csv that contains embedded control
characters.

Listing 3.4 controlm.csv

IDN,TEST,WEEK_MINUS1,WEEK0,WEEK1,WEEK2,WEEK3,WEEK4,
WEEK10,WEEK12,WEEK14,WEEK15,WEEK17,WEEK18,WEEK19,
WEEK21^M1,BASO,,1.4,,0.8,,1.2,,1.1,,,2.2,,,1.4^M1,B
ASOAB,,0.05,,0.04,,0.05,,0.04,,,0.07,,,0.05^M1,EOS,,
6.1,,6.2,,7.5,,6.6,,,7.0,,,6.2^M1,EOSAB,,0.22,,0.30
,,0.27,,0.25,,,0.22,,,0.21^M1,HCT,,35.0,,34.2,,

Useful Commands • 61

34.6,,34.3,,,36.2,,,34.1^M1,HGB,,11.8,,11.1,,11.6,,
11.5,,,12.1,,,11.3^M1,LYM,,36.7

Listing 3.5 displays the contents of the file controlm.sh that illustrates
how to remove the control characters from controlm.csv.

Listing 3.5 controlm.sh

inputfile="controlm.csv"
removectrlmfile="removectrlmfile"
tr -s '\r' '\n' < $inputfile > $removectrlmfile

For convenience, Listing 3.5 defines the variable inputfile for the input
file and the variable removectrlmfile for the output file.

The output from launching the shell script in Listing 3.5 is here:
IDN,TEST,WEEK_MINUS1,WEEK0,WEEK1,WEEK2,WEEK3,WEEK4,WE
EK10,WEEK12,WEEK14,WEEK15,WEEK17,WEEK18,WEEK19,WEEK21
1,BASO,,1.4,,0.8,,1.2,,1.1,,,2.2,,,1.4
1,BASOAB,,0.05,,0.04,,0.05,,0.04,,,0.07,,,0.05
1,EOS,,6.1,,6.2,,7.5,,6.6,,,7.0,,,6.2
1,EOSAB,,0.22,,0.30,,0.27,,0.25,,,0.22,,,0.21

As you can see, the task in this section is easily solved via the tr command.
Note that there are empty fields in the preceding output, which means that
additional processing is required.

You can also replace the current delimiter “,” with a different delimiter,
such as a “|” symbol that appears in the following command:

cat removectrlmfile |tr -s ',' '|' > pipedfile

The resulting output is shown here:
IDN|TEST|WEEK_MINUS1|WEEK0|WEEK1|WEEK2|WEEK3|WEEK4|WE
EK10|WEEK12|WEEK14|WEEK15|WEEK17|WEEK18|WEEK19|WEEK21
1|BASO|1.4|0.8|1.2|1.1|2.2|1.4
1|BASOAB|0.05|0.04|0.05|0.04|0.07|0.05
1|EOS|6.1|6.2|7.5|6.6|7.0|6.2
1|EOSAB|0.22|0.30|0.27|0.25|0.22|0.21

If you have a text file with multiple delimiters in arbitrary order in multiple
files, you can replace those delimiters with a single delimiter via the sed com-
mand, which is discussed in Chapter 6.

THE FIND COMMAND

The find command supports many options, including one for printing (dis-
playing) the files returned by the find command, and another one for removing
the files returned by the find command.

In addition, you can specify logical operators such as -a (AND) as well
as -o (OR) in a find command. You can also specify switches to find the files

62 • Bash Command Line and Shell Scripts

(if any) that were created, accessed, or modified before (or after) a specific
date.

Several examples are here:
find . –print displays all the files (including sub-directories)
find . –print |grep "abc" displays all the files whose names con-

tain the string abc
find . –print |grep "sh$" displays all the files whose names have

the suffix sh
find . –depth 2 –print displays all files of depth at most 2 (including

sub-directories)
You can also specify access times pertaining to files. For example, atime,

ctime, and mtime refer to the access time, creation time, and modification
time of a file.

As another example, the following command finds all the files modified in
less than 2 days and prints the record count of each:

$ find . –mtime -2 –exec wc –l {} ;

You can remove a set of files with the find command. For example, you
can remove all the files in the current directory tree that have the suffix “m”
as follows:

find . –name "*m$" –print –exec rm {}

NOTE
Be careful when you remove files: run the preceding command without
“exec rm {}” to review the list of files before deleting them.

THE TEE COMMAND

The tee command enables you to display output to the screen and also
redirect the output to a file at the same time. The –a option will append
subsequent output to the named file instead of overwriting the file. Here is a
simple example:

find . –print |xargs grep "sh$" | tee /tmp/blue

The preceding code snippet redirects the list of all files in the current direc-
tory (and those in any sub-directories) to the xargs command, which then
searches – and prints – all the lines that end with the string “sh.” The result is
displayed on the screen and also redirected to the file /tmp/blue.

find . –print |xargs grep "^abc$" | tee –a /tmp/blue

The preceding code snippet also redirects the list of all files in the current
directory (and those in any sub-directories) to the xargs command, which
then searches – and prints – all the lines that contain only the string “abc.”
The result is displayed on the screen and also appended to the file /tmp/
blue.

Useful Commands • 63

FILE COMPRESSION COMMANDS

Bash supports various commands for compressing sets of files, including
the tar, cpio, gzip, and gunzip commands. The following subsections
contain simple examples of how to use these commands.

The tar command

The tar command enables you to compress a set of files in a directory to
create a new tar file, uncompress an existing tar file, and also display the con-
tents of a tar file.

The “c” option specifies “create,” the “f” option specifies “file” and the
“v” option specifies “verbose.” For example, the following command creates
a compressed file called testing.tar and displays the files that are included in
testing.tar during the creation of this file:

tar cvf testing.tar *.txt

The compressed file testing.tar contains the files with the suffix txt
in the current directory and you will see the following output:
a apple-care.txt
a checkin-commands.txt
a iphonemeetup.txt
a kyrgyzstan.txt
a outfile.txt
a output.txt
a ssl-instructions.txt

The following command extracts the files that are in the tar file test-
ing.tar:

tar xvf testing.tar

The following command displays the contents of a tar file without uncom-
pressing its contents:

tar tvf testing.tar

The preceding command displays the same output as the “ls –l” com-
mand that displays a long listing.

The “z” option uses gzip compression. For example, the following com-
mand creates a compressed file called testing.tar.gz:

tar czvf testing.tar.gz *.txt

The cpio Command

The cpio command provides further compression after you create a
tar file. For example, the following command creates the file archive.
cpio:

ls file1 file2 file3 | cpio -ov > archive.cpio

64 • Bash Command Line and Shell Scripts

The “-o” option specifies an output file and the “-v” option specifies
verbose, which means that the files are displayed as they are placed in the
archive file. The “-I” option specifies input, and the “-d” option specifies
“display”.

You can combine other commands (such as the find command) with the
cpio command, an example of which is here:

find . –name ".sh" | cpio -ov > shell-scripts.cpio

You can display the contents of the file archive.cpio with the following
command:

cpio -id < archive.cpio

The output of the preceding command is here:
file1
file2
file3
1 block

The gzip and gunzip Commands

The gzip command creates a compressed file. For example, the following
command creates the compressed file filename.gz:

gzip filename

Extract the contents of the compressed file filename.gz with the gun-
zip command:

gunzip filename.gz

You can create gzipped tarballs using the following methods:
Method #1:

tar -czvvf archive.tar.gz [YOUR-LIST-OF-FILES]

Method #2:

tar -cavvf archive.tar.gz [YOUR-LIST-OF-FILES]

The -a option specifies that the compression format should automatically
be detected from the extension.

The bunzip2 Command

The bunzip2 utility uses a compression technique that is similar to gun-
zip2, except that bunzip2 typically produces smaller (more compressed)
files than gzip. It comes with all Linux distributions. In order to compress
with bzip2 use:
bzip2 filename
ls
filename.bz2

Useful Commands • 65

The zip Command

The zip command is another utility for creating zip files. For example, if
you have the files called file1, file2, and file3, then the following com-
mand creates the file file1.zip that contains these three files:

zip file?

The zip command has useful options (such as –x for excluding files), and
you can find more information in online tutorials.

COMMANDS FOR ZIP FILES AND BZ FILES

There are various commands for handling zip files, including zdiff,
zcmp, zmore, zless, zcat, zipgrep, zipsplit, zipinfo,
zgrep, zfgrep, and zegrep.

Remove the initial “z” or “zip” from these commands to obtain the corre-
sponding “regular” bash command.

For example, the zcat command is the counterpart to the cat command,
so you can display the contents of a file in a .gz file without manually extract-
ing that file and also without modifying the contents of the .gz file. Here is
an example:
ls test.gz
zcat test.gz

Another set of utilities for bz files includes bzcat, bzcmp, bzdiff,
bzegrep, bzfgrep, bzgrep, bzless, and bzmore.

Read the online documentation to find out more about these commands.

INTERNAL FIELD SEPARATOR (IFS)

The Internal Field Separator is an important concept in shell scripting that
is useful while manipulating text data. An Internal Field Separator (IFS) is an
environment variable that stores delimiting characters. The IFS is the default
delimiter string used by a running shell environment.

Consider the case where we need to iterate through words in a string or
comma separated values (CSV). Specify IFS="," in order to display each
substring on a separate line. For example, suppose that a shell script contains
the following lines:
data="age,gender,street,state"
IFS=$','
for item in $data
do
 echo Item: $item
done

66 • Bash Command Line and Shell Scripts

The output of the preceding code block is here:
Item: age
Item: gender
Item: street
Item: state

Note that you can also use the awk command (discussed in Chapter 7) to
produce the same output.

The next section contains a code sample that relies on the value of IFS in
order to extract data correctly from a dataset.

DATA FROM A RANGE OF COLUMNS IN A DATASET

Listing 3.6 displays the contents of the dataset datacolumns1.txt and
Listing 3.7 displays the contents of the shell script datacolumns1.sh that
illustrates how to extract data from a range of columns from the dataset in
Listing 3.6.

Incidentally, this code sample contains a while loop, which is one of sev-
eral types of loops that are available in bash, and are discussed in more detail
in Chapter 3. As such, this code sample involves “forward referencing”: using
a bash construct before it’s been discussed in detail. However, you are either
already familiar with the concept of a while loop, or you have an intuitive
grasp vis-à-vis its purpose, so you’ll be able to understand the code in this code
sample.

Listing 3.6 datacolumns1.txt

#23456789012345678901234567890
 1000 Jane Edwards
 2000 Tom Smith
 3000 Dave Del Ray

Listing 3.7 datacolumns1.sh

empid: 03-09
fname: 11-20
lname: 21-30
IFS=''
inputfile="datacolumns1.txt"

while read line
do
 pound="`echo $line |grep '^#'`"

 if [x"$pound" == x""]
 then

Useful Commands • 67

 echo "line: $line"
 empid=`echo "$line" |cut -c3-9`
 echo "empid: $empid"

 fname=`echo "$line" |cut -c11-19`
 echo "fname: $fname"

 lname=`echo "$line" |cut -c21-29`
 echo "lname: $lname"
 echo "--------------"
 fi
done < $inputfile

Listing 3.7 sets the value of IFS to an empty string, which is required for this
shell script to work correctly (try running this script without setting IFS and see
what happens). The body of this script contains a while loop that reads each
line from the input file called datacolumns1.txt and sets the pound vari-
able equal to “v” if a line does not start with the “#” character OR sets the pound
variable equal to the entire line if it does start with the “#” character. This is a
simple technique for “filtering” lines based on their initial character.

The if statement executes for lines that do not start with a “#” character,
and the variables empid, fname, and lname are initialized to the characters
in Columns 3 through 9, then 11 through 19, and then 21 through 29, respec-
tively. The values of those three variables are printed each time they are initial-
ized. As you can see, these variables are initialized by a combination of the echo
command and the cut command, and the value of IFS is required in order to
ensure that the echo command does not remove blank spaces.

The output from Listing 3.7 is shown below:

line: 1000 Jane Edwards
empid: 1000
fname: Jane
lname: Edwards

line: 2000 Tom Smith
empid: 2000
fname: Tom
lname: Smith

line: 3000 Dave Del Ray
empid: 3000
fname: Dave
lname: Del Ray

68 • Bash Command Line and Shell Scripts

WORKING WITH UNEVEN ROWS IN DATASETS

Listing 3.8 displays the contents of the dataset uneven.txt that contains
rows with a different number of columns. Listing 3.9 displays the contents of
the bash script uneven.sh that illustrates how to generate a dataset whose
rows have the same number of columns.

Listing 3.8: uneven.txt

abc1 abc2 abc3 abc4
abc5 abc6
abc1 abc2 abc3 abc4
abc5 abc6

Listing 3.9: uneven.sh

inputfile="uneven.txt"
outputfile="even2.txt"

==> four fields per line

#method #1: four fields per line
cat $inputfile | xargs -n 4 >$outputfile

#method #2: two equal rows
#xargs -L 2 <$inputfile > $outputfile

echo "input file:"
cat $inputfile

echo "output file:"
cat $outputfile

Listing 3.9 contains two techniques for realigning the text in the input file
so that the output appears with four columns in each row. As you can see, both
techniques involve the xargs command (which is an interesting use of the
xargs command).

Launch the code in Listing 3.9 and you will see the following output:
abc1 abc2 abc3 abc4
abc5 abc6 abc1 abc2
abc3 abc4 abc5 abc6

SUMMARY

This chapter showed you examples of how to use some useful and versatile
bash commands. First, you learned about the bash commands join, fold,
split, sort, and uniq. Next, you learned about the find command and

Useful Commands • 69

the xargs command. You also learned about various ways to use the tr com-
mand, which is also in the use case in this chapter.

Then you saw some compression-related commands, such as cpio and
tar, which help you create new compressed files and also help you examine
the contents of compressed files.

In addition, you learned how to extract column ranges of data, as well as the
usefulness of the IFS option.

CHAPTER 4
CONDITIONAL LOGIC AND LOOPS

This chapter introduces you to operators (for numeric data and string
variables), conditional logic (if/else/fi), and several types of loops
(for, while, and until) in bash.

The first part of this chapter shows you how to perform arithmetic opera-
tions and the operators that are available for doing so. You will also see how
to assign values to variables, and then how to read user input in a shell script.

The second portion of this chapter shows you how to use the test com-
mand for variables, files, and directories (such as determining if two variables
are equal). You will learn how to use various relational, Boolean, and string
operators.

The third section introduces conditional logic (if/else/fi), the case/
esac switch statement, along with for loops, nested for loops, while loops,
and until loops. You will also learn how to define your own custom functions
in shell scripts.

The final section shows you how to work with arrays in bash, which includes
examples of iterating through array elements and updating their contents.

QUICK OVERVIEW OF OPERATORS IN BASH

The bash shell supports the following operators, each of which is discussed
in greater detail in this chapter:

Arithmetic Operators
String Operators
File Test Operators
Boolean Operators
The expr command is often used to perform arithmetic operations (add,

subtract, multiply, or divide) on numeric values.

72 • Bash Command Line and Shell Scripts

Arithmetic operators enable you to compare pairs of numbers and pairs of
strings. The operators for comparing numbers include –eq, –lt, and –gt for
comparing equality, less than and greater than, respectively. On the other hand,
string operators for comparing strings include ==, <, and > for comparing
equality, less than and greater than, respectively.

Some file-related operators that are available in bash include –f, –d, –e
for checking if a filename is a file, a directory, or checking for the existence of
a file, respectively.

Boolean operators (also called logical operators) in bash are –a, –o, ! for
the AND operation, OR operation, and negation, respectively.

ARITHMETIC OPERATIONS AND OPERATORS

Arithmetic operators include +, -, *, and /, in order to add, subtract,
divide and multiply two numbers, respectively. The % operator is the modulus
operator, which returns the remainder of the division of two numbers. Use
the = operator to assign a value to an operand, == to test if two operands are
equal, and != to test if two operands are unequal.

Arithmetic in POSIX shells is performed with $ and double parentheses,
as shown here:

echo "$(($num1+$num2))"

In addition, you can use command substitution to assign the result of an
arithmetic operation to a variable:
num1=3
num2=5
x='echo "$(($num1+$num2))"'

A simpler alternative to the preceding code snippet involves the expr com-
mand, which is discussed in the next section.

The expr Command
The previous section shows you how to add two numbers using double

parentheses; another technique uses the expr command, as shown here:

expr $num1 + $num2

As you probably expect, the expr command supports arithmetic opera-
tions involving hard-coded numbers, as shown in the following example that
adds two numbers:
sum=`expr 2 + 2`
echo "The sum: $sum"

This would produce the following result:

The sum: 4

Keep in mind that spaces are required between operators and expressions
(so 2+2 is incorrect), and expressions must be inside “backtick” characters
(also called inverted commas).

Conditional Logic and Loops • 73

An interesting use of the expr command is for finding the length of a
string, as shown here:
x="abc"
echo `expr "$x" : ‘.*’`
3
echo ${#x}
3
echo `expr "$x" : ‘.*’`
3

Arithmetic Operators

The bash shell supports the arithmetic operations addition, subtraction,
multiplication, and division via the operators +, -, *, and /, respectively. The
following example illustrates these operations.
x=15
y=4

sum=`expr $x + $y`
diff=`expr $x - $y`
prod=`expr $x * $y`
div=`expr $x / $y`
mod=`expr $x % $y`

echo "sum = $sum"
echo "difference = $diff"
echo "product = $prod"
echo "quotient = $div"
echo "modulus = $mod"

Here are some examples (assume that x and y have numeric values) of the
equality (“==”) and inequality (“!=”) operators:

[$x == $y] returns false
[$x != $y] returns true

Note the required spaces in the preceding expressions. All arithmetic calcu-
lations are done using long integers.

Boolean and Numeric Operators
Bash supports relational operators that are specific to numeric values: they

will not work correctly for string values unless their value is numeric. Here is a
list of some common operators:
$a –eq $b checks if $a and $b are equal
$a –ne $b checks if $a and $b are unequal
$a –gt $b checks if $a is larger than $b
$a –lt $b checks if $a is smaller than $b

74 • Bash Command Line and Shell Scripts

$a –ge $b checks if $a is larger or equal to $b
$a –ge $b checks if $a is smaller than or equal to $b

Note that the preceding expressions are written inside a pair of square
brackets with spaces on both sides: [$a –eq $b], [$a –ne $b],
and so forth.

Compound Operators and Numeric Operators

Suppose that a equals 5 and variable b equals 15 in the following examples:
[! false] is true
-o If one operand is true then the condition is true:
[$a -lt 20 -o $b -gt 100] is true
-a If both operands are true then the condition is true (otherwise it is false):
[$a -lt 20 -a $b -gt 100] is false
! The not operator reverses the value of the condition

\(... \) Group expressions by enclosing them within \(and \)
Logical conditions and other tests are usually enclosed in square brackets

[]. Note that there is a space between square brackets and operands. It will
show an error if no space is provided. An example of a valid syntax is as follows:

[$var -eq 0]

Performing arithmetic conditions on variables or values can be done as fol-
lows:
[$var -eq 0] # true when $var equal to 0
[$var -ne 0] # true when $var differs from 0

You can also combine the preceding operators with –a (“AND”) or –o
(“OR”) to specify compound test conditions, as shown here:
[$var1 -ne 0 -a $var2 -gt 2]
[$var1 -ne 0 -o $var2 -gt 2]

The test command performs condition checks and also reduces the num-
ber of brackets. The same set of test conditions enclosed within [] can be used
for the test command, as shown here:

if [$var -eq 0]; then echo "True"; fi

can be written as

if test $var -eq 0 ; then echo "True"; fi

WORKING WITH VARIABLES

You already saw some example of variables in bash, and this section pro-
vides information about how to assign values to variables. You will also see how
to use conditional logic to test the values of variables.

Always remember that bash variables do not have any type-related infor-
mation, which means that no distinction is made between a number and a

Conditional Logic and Loops • 75

string (similar to JavaScript). However, you will get an error message if you
attempt to perform arithmetic operations on non-numeric values in bash
(which is not always the case in JavaScript).

Assigning Values to Variables
This section contains some simple examples of assigning values to variables

with double quotes and single quotes:
x="abc"
y="123"
echo "x = $x and y = ${y}"
echo "xy = xy"
echo "double and single quotes: $x" '$x'

The preceding code block results in the following output:
x = abc and y = 123
xy = abc123
double and single quotes: abc $x

Make sure that you do not insert any whitespace between a variable and its
value. For example, if you type the following command:

z = "abc"

You will see the following output:

-bash: z: command not found

On the other hand, you can insert whitespace between text strings and vari-
ables in the echo command, as you saw in the previous code block.

One more thing to keep in mind: the following syntax is invalid because the
variable y is preceded by the $ symbol:
$y=3
-bash: =3: command not found

Listing 4.1 displays the contents of variable-operations.sh that
illustrates how to assign variables with different values and how to update them.

Listing 4.1: variable-operations.sh

#length of myvar:
myvar=123456789101112
echo ${#myvar}

#print last 5 characters of myvar:
echo ${myvar: -5}

#10 if myvar was not assigned
echo ${myvar:-10}

#last 10 symbols of myvar

76 • Bash Command Line and Shell Scripts

echo ${myvar: -10}

#substitute part of string with echo:
echo ${myvar//123/999}

#add integers a to b and assign to c:
a=5
b=7
c=$((a+b))
echo "a: $a b: $b c: $c"

other ways to calculate c:
c='expr $a + $b'
echo "c: $c"
c='echo "$a+$b"|bc'
echo "c: $c"
Launch the code in Listing 4.1 and you will see the
following output:
15
01112
123456789101112
6789101112
999456789101112
a: 5 b: 7 c: 12

The read Command for User Input
The following statement is the syntax for reading characters from input into

the variable myvar:

read -n number_of_chars myvar

For example, the following code snippet reads two characters from the com-
mand line (in the form of user input) and then displays those two characters:
$ read -n 2 var
echo "var: $var"

Various other options are possible with the read command. For example,
the following command reads a password in non-echoed mode:

read -s var Display a message with read using:
read -p "Enter input:" var

BOOLEAN OPERATORS AND STRING OPERATORS

There are various operators in bash for testing string variables and com-
bining those operators with Boolean operators. Suppose that the variables x
and y have the values “abc” and "efg", respectively:

Conditional Logic and Loops • 77

[$x = $y] is false
[$x != $y] is true
[-z $x] is false because $a has non-zero length
[-n $x] is true because $a has non-zero length
[$x] is false because $x is a non-empty string

You can also combine the preceding operators to form compound state-
ments, similar to the compound statements in the previous section.

Keep in mind that the “==” operator is for string comparisons, whereas
“-eq” is for numeric tests and numeric comparisons. You can also determine
whether or not a string has non-zero length, as shown here:

-n s1 String s1 has nonzero length
-z s1 String s1 has zero length

When you perform string comparison, use double square brackets because
single brackets can sometimes lead to errors.

Two strings can be compared to determine whether they are the same as
follows:

[[$str1 = $str2]]: true when str1 equals str2
[[$str1 == $str2]]: alternative method for string equality check
We can check whether two strings are not the same as follows:
[[$str1 != $str2]]: true when str1 and str2 mismatches
We can find out the alphabetically smaller or larger string as follows:
[[$str1 > $str2]]: true when str1 is alphabetically greater than

str2
[[$str1 < $str2]]: true when str1 is alphabetically lesser than str2
[[-z $str1]]: true if str1 holds an empty string
[[-n $str1]]: true if str1 holds a non-empty string

Compound Operators and String Operators

Combine multiple string-related conditions using the logical operators &&
and || as follows:
if [[-n $str1]] && [[-z $str2]] ;
then
 commands;
fi

For example:
str1="Not empty "
str2=""
if [[-n $str1]] && [[-z $str2]];
then
 echo str1 is non-empty and str2 is empty string.
fi

78 • Bash Command Line and Shell Scripts

The output is as follows:

str1 is non-empty and str2 is empty string.

Sometimes you will see bash scripts (such as installation-related shell
scripts) that contain compound expressions to perform multiple operations. In
particular, the && operator is used to “connect” multiple commands that exe-
cuted sequentially (in a left-to-right fashion). Each command in the sequence
is executed only if all the preceding commands in the sequence executed suc-
cessfully. If the current command (in a sequence) does not execute success-
fully, the remaining commands (if any) that appear on the right-side of the
failed command will not be executed.

For example, the following code block uses the && operator to first create a
directory, then cd into that directory, and then display a message:
OLDDIR='pwd'
cd /tmp
CURRDIR='pwd'
echo "current directory: $CURRDIR"
mydir="/tmp/abc/def"
mkdir -p $mydir && cd $mydir && echo "now inside
$mydir"
newdir='pwd'
echo "new directory: $newdir"
echo "new directory: 'pwd'"
cd $OLDDIR
echo "current directory: 'pwd'"

At this point you are familiar with all the bash commands in the preced-
ing code block: try to predict the output before you launch the preceding code
block (were you correct)?

FILE TEST OPERATORS

Bash shell supports numerous operators to test various properties of files.
Suppose that the variable file is a non-empty text file that has read, write, and
execute permissions:
-b file Checks if file is a block special file
-c file Checks if file is a character special file
-d file Checks if file is a directory
-e file Checks if file exists
-f file Checks if file is an ordinary file
-g file Checks if file has its set group ID (SGID) bit set
-k file Checks if file has its sticky bit set
-p file Checks if file is a named pipe
-t file Checks if file descriptor is open and associated
with a terminal

Conditional Logic and Loops • 79

-u file Checks if file has its set user id (SUID) bit set
-r file Checks if file is readable
-w file Checks if file is writeable
-x file Checks if file is executable
-s file Checks if file has size greater than 0
-e file Checks if file exists
f1 -nt f2 File f1 is newer than file f2
f1 -ot f2 File f1 is older than file f2

An example of testing for the existence of a file with the –e option is shown
here:
fpath="/etc/passwd"
if [-e $fpath]; then
 echo File exists;
else
 echo Does not exist;
fi

Compound Operators and File Operators

Combine Boolean operators and file-related operators with the && (“AND”)
operator or the || (“OR”) operators. The following example checks if a file
exists and also if it has write permissions:
fpath="/tmp/somedata"

if [-e $fpath] && [–w $fpath]
then
 echo "File $fpath exists and is writable"
else
 if [! -e $fpath]
 then
 echo "File $fpath does not exist "
 else
 echo "File $fpath exists but is not writable"
 fi
fi

Notice the use of the && operator in the first if statement in the preceding
code block. The following syntax is incorrect because there are two consecutive
operators and the bash shell will not interpret the syntax correctly:

if [-e $fpath -a –w $fpath]

Notice that compound operators with string operators also use the && or
the || operators:

if [[-n $str1]] && [[-z $str2]] ;

80 • Bash Command Line and Shell Scripts

However, compound operators with numeric operators do not require the
&& or the || operators, as shown here:

[$a -lt 20 -a $b -gt 100]

CONDITIONAL LOGIC WITH IF/ELSE/FI STATEMENTS

Bash supports conditional logic, but with a slightly different syntax from
other programming languages. The following example shows you how to use
an if/else/if statement in bash that prints one message if the variable x
(which is initialized with the value 25) is less than 30 and a different message if
the value of x is not less than 30:
x=25
if [$x -lt 30]
then
 echo "x is less than 30"
else
 echo "x is at least 30"
fi

Listing 4.2 displays the contents of the shell script testvars.sh that
checks if the variable x is defined.

Listing 4.2: testvars.sh

x="abc"

if [-n "$x"]
then
 echo "x is defined: $x"
else
 echo "x is not defined"
fi

Listing 4.2 initializes the variable x with the value abc, and then uses the
if/else/fi construct to determine whether or not x is initialized, and also
print an appropriate message. Launch the shell script in Listing 4.2 and you
will see the following output:

x is defined: abc

Listing 4.3 displays the contents of the shell script testvars2.sh that
checks if the variable y is undefined.

Listing 4.3: testvars2.sh

if [-z "$y"]
then
 y="def"

Conditional Logic and Loops • 81

 echo "y is defined: $y"
else
 echo "y is defined: $y"
fi

Listing 4.3 first checks whether or not the variable y defined, and since it is
not defined, the following two statements are executed in order to initialize y
and then print a message:
y="def"
echo "y is defined: $y"

Launch the shell script in Listing 4.3 and you will see the following output:

y is defined: def

THE CASE/ESAC STATEMENT

The case/esac statement is the counterpart to a switch statement in
other programming languages. This statement allows you to test various condi-
tions that can include metacharacters. A common scenario involves testing user
input: you can check if users entered a string that starts with an upper case or
lower case “n” (for no) as well as “y” (for yes).

Listing 4.4 displays the contents of case1.sh that checks various condi-
tions in a case/esac statement.

Listing 4.4: case1.sh

x="abc"

case $x in
 a) echo "x is an a" ;;
 c) echo "x is a c" ;;
 a*) echo "x starts with a" ;;
 *) echo "no matches occurred" ;;
esac

Listing 4.4 starts by initializing the variable x with the value abc, followed
by the case keyword which checks various conditions. As you can see, x
matches the third condition, which is true because the value of x starts with
the letter a. Now launch the shell script in Listing 4.4 and you will see the fol-
lowing output:

x starts with a

Listing 4.5 shows you how to prompt users for an input string and then
process that input via a case/esac statement.

82 • Bash Command Line and Shell Scripts

Listing 4.5: UserInfo.sh

echo -n "Please enter your first name: "
read fname
echo -n "Please enter your last name: "
read lname
echo -n "Please enter your city: "
read city

fullname="$fname $lname"
echo "$fullname lives in $city"

case $city in
 San*) echo "$fullname lives in California " ;;
 Chicago) echo "$fullname lives in the Windy City "
;;
 *) echo "$fname lives in la-la land " ;;
esac

Listing 4.5 starts by prompting users for their first name, last name and city
and then assigning those values to the variables fname, lname and city,
respectively. Next, the variable fullname is defined as the concatenation of
the values of fname and lname.

The next portion of Listing 4.5 is the case keyword that checks if the city
variable starts with the string San or if the city variable equals Chicago.
The third option is the default option, which is true if both of the preceding
conditions are false.

Listing 4.6 displays the contents of StartChar.sh that checks the type of
the first character of a user-provided string.

Listing 4.6: StartChar.sh

while (true)
do
 echo -n "Enter a string: "
 read var

 case ${var:0:1} in
 [0-9]*) echo "$var starts with a digit" ;;
 [A-Z]*) echo "$var starts with an uppercase letter"
;;
 [a-z]*) echo "$var starts with a lowercase letter"
;;
 *) echo "$var starts with another symbol" ;;
 esac
done

Conditional Logic and Loops • 83

Listing 4.6 starts by prompting users for a string and then initializes the
variable var with that input string.

The next portion of Listing 4.6 is the case keyword that checks if the vari-
able var starts with 0 or more digits, upper case letters, or lower case letters,
and then displays an appropriate message. The default condition is executed if
none of the preceding conditions is true.

Listing 4.7 displays the contents of StartChar2.sh that checks the type
of the first pair of characters of a user-provided string.

Listing 4.7: StartChar2.sh

while (true)
do
 echo -n "Enter a string: "
 read var

 case ${var:0:2} in
 [0-9][0-9]) echo "$var starts with to digit" ;;
 [A-Z][A-Z]) echo "$var starts with two uppercase
letters" ;;
 [a-z][a-z]) echo "$var starts with two lowercase
letters" ;;
 *) echo "$var starts with another pattern" ;;
 esac
done

Listing 4.7 starts with a while loop whose contents are identical to the
contents of Listing 4.6, and you can read the preceding section for an explana-
tion of the code. The only difference is that this code sample repeats indefi-
nitely, and you can press ctrl-c to terminate the execution of the shell script.

Listing 4.8 displays the contents of StartChar3.sh that checks the type
of the first character of a user-provided string.

Listing 4.8: StartChar3.sh

while (true)
do
 echo -n "Enter a string: "
 read var

 case ${var:0:1} in
 [0-9]*) echo "$var starts with a digit" ;;
 [[:upper:]]) echo "$var starts with a uppercase
letter" ;;
 [[:lower:]]) echo "$var starts with a lowercase
letter" ;;

84 • Bash Command Line and Shell Scripts

 *) echo "$var starts with another
symbol" ;;
 esac
done

Listing 4.8 also starts with a while loop that contains a case/esac state-
ment. However, in this example, the conditions involve zero or more digits,
upper case letters, and lower case letters. In addition, this code sample also
repeats indefinitely, and you can press ctrl-c to terminate the execution of
the shell script.

WORKING WITH STRINGS IN SHELL SCRIPTS

Notice the “curly brackets” syntax in the second code snippet. Listing 4.9
displays the contents of substrings.sh that illustrates examples of the
“curly brackets” syntax in order to find substrings of a given string.

Listing 4.9: substrings.sh

x="abcdefghij"
echo ${x:0}
echo ${x:1}
echo ${x:5}
echo ${x:7:3}

echo ${x:-4}
echo ${x:(-4)}
echo ${x: -4}

The output from the preceding echo statements is here:
abcdefghij
bcdefghij
fghij
hij
abcdefghij
ghij
ghij

Listing 4.9 initializes the variable x as abcdefghij, followed by three
echo statements that display substrings of the variable x, starting from index
0, 1, and 5, respectively. The fourth echo statement displays the substring of x
that starts from column 7 and has length 3.

The next portion of Listing 4.9 contains three echo statements that specify
negative values for column positions, which means that the index position is
calculated in a right-to-left fashion. For example, the expression ${x: -4}
refers to the right-most 4 characters in the variable x, which is equal to ghij.
However, the expression ${x:-4}

Conditional Logic and Loops • 85

is the entire string value of x because there is a missing whitespace. Finally,
the expression ${x:(-4)} is interpreted as we expect, which is to say that it
is also equal to ghij.

The next portion of this chapter discusses constructs such as for, while,
and until statements that you can use in shell scripts.

WORKING WITH LOOPS

The bash shell supports various constructs that enable you to iterate
through a set of values, such as an array, a list of file names, and so forth. Sev-
eral loop constructs are available in bash, including a for loop construct, a
while loop, and an until loop. The following subsections illustrate how you
can use each of these constructs.

Using a for loop

The bash shell supports the for loop whose syntax is slightly different from
other languages (such as JavaScript and Java).

The following code block shows you how to use a for loop in order to iter-
ate through a set of files in the current directory.
for f in `ls *txt`
do
 echo "file: $f"
done

The output of the preceding for loop depends on the files with the suffix
txt that are in the directory where you launch the for loop (if there aren’t
any such files, then the for loop does nothing).

Listing 4.10 displays the contents of renamefiles.sh2 that illustrates
how to rename a set of files in a directory.

Listing 4.10: renamefiles.sh2

newsuffix="txt"

for f in `ls *sh`
do
 base='echo $f |cut -d"." -f1'
 suffix='echo $f |cut -d"." -f2'

 newfile="${base}.${newsuffix}"
 echo "file: $f new: $newfile"

 #either 'cp' or 'mv' the file
 #mv $f $newfile
 #cp $f $newfile
done

86 • Bash Command Line and Shell Scripts

Listing 4.10 initializes the variable newsuffix with the value txt, followed
by a for loop that iterates through the files whose suffix is sh. The variable f
is the loop variable that is assigned each of those filenames.

The first part of the for loop assigns the variables base and suffix with
the initial portion and remaining portion, respectively, of each filename, using
a period (“.”) as a delimiter.

Next, the variable newfile is the concatenation of the value of the vari-
able base with the value of the variable newsuffix, with a period (“.”) as a
delimiter.

The next portion of Listing 4.10 is an echo statement that displays the
value of the variable newfile. You can uncomment either of the last two com-
mands, depending on whether you want to make copies of the existing files or
you want to rename the files.

CHECKING FILES IN A DIRECTORY

The code sample in this section contains a for loop that checks for various
properties of the files in the current directory.

Listing 4.11 displays the contents of checkdir.sh that counts the num-
ber of directories, executable files, readable files, and ASCII files in the current
directory.

Listing 4.11: checkdir.sh

#!/bin/bash
initialize 'counter' variables
TOTAL_FILES=0
ASCII_FILES=0
NONASCII_FILES=0
READABLE_FILES=0
EXEC_FILES=0
DIRECTORIES=0

for f in `ls`
do
 TOTAL_FILES=`expr $TOTAL_FILES + 1`

 if [-d $f]
 then
 DIRECTORIES=`expr $DIRECTORIES + 1`
 fi

 if [-x $f]
 then
 EXEC_FILES=`expr $EXEC_FILES + 1`
 fi

Conditional Logic and Loops • 87

 if [-r $f]
 then
 READABLE_FILES=`expr $READABLE_FILES + 1`
 fi

 readable=`file $f`
 ascii=`echo $readable |grep ASCII`
 if ["$ascii" != ""]
 then
 ASCII_FILES=`expr $ASCII_FILES + 1`
 else
 #echo "readable: $readable"
 NONASCII_FILES=`expr $NONASCII_FILES + 1`
 fi
done

results:
echo "TOTAL_FILES: $TOTAL_FILES"
echo "DIRECTORIES: $DIRECTORIES"
echo "EXEC_FILES: $EXEC_FILES"
echo "ASCII_FILES: $ASCII_FILES"
echo "NON-ASCII_FILES: $NONASCII_FILES"

Listing 4.11 initializes some count-related variables, followed by a for loop
that iterates through the files in the current directory. The body of the for
loop contains multiple conditional code blocks that determine whether or not
the current file is a directory, is executable, is readable, and whether or not the
current file is an ASCII file.

The last portion of Listing 4.11 displays the values of the count-related vari-
ables. Launch the code in Listing 4.11, and you will see something like the
following output (the results shown here are for one of my sub-directories):
TOTAL_FILES: 33
DIRECTORIES: 1
EXEC_FILES: 26
ASCII_FILES: 29
NON-ASCII_FILES: 4

WORKING WITH NESTED LOOPS

This section is mainly for fun: you will see a nested loop to display a “trian-
gular” output. This code sample uses an array with a pair of values: arrays in
bash are discussed in the final section of this chapter. Listing 4.12 displays the
contents of nestedloops.sh that illustrates how to display an alternating
set of symbols in a triangular fashion.

88 • Bash Command Line and Shell Scripts

Listing 4.12: nestedloops2.sh

#!/bin/bash

outermax=10
symbols[0]="#"
symbols[1]="@"

for ((i=1; i<${outermax}; i++));
do
 for ((j=1; j<${i}; j++));
 do
 printf "%-2s" ${symbols[($i+$j)%2]}
 done
 printf "\n"
done

for ((i=1; i<${outermax}; i++));
do
 for ((j=${i}+1; j<${outermax}; j++));
 do
 printf "%-2s" ${symbols[($i+$j)%2]}
 done
 printf "\n"
done

Listing 4.12 initializes some variables, followed by a nested loop. The outer
loop is “controlled” by the loop variable i, whereas the inner loop (which
depends on the value of i) is “controlled” by the loop variable j. The key point
to notice is how the following code snippet prints alternating symbols in the
symbols array, depending on whether or not the value of $i + $j is even
or odd:

printf "%-2s" ${symbols[($i+$j)%2]}

You can easily generalize this code: if the symbols array contains
arrlength elements, then replace the preceding code snippet with the fol-
lowing:

printf "%-2s" ${symbols[($i+$j)% $arrlength]}

Launch the code in Listing 4.12 and you will see the following output:
@
@
@ # @
@ # @
@ # @ # @

Conditional Logic and Loops • 89

@ # @ # @
@ # @ # @ # @
@ # @ # @ # @
@ # @ # @ # @ #
@ # @ # @ # @
@ # @ # @ #
@ # @ # @
@ # @ #
@ # @
@ #
@

USING A WHILE LOOP

Listing 4.13 displays the contents of while1.sh that illustrates how to use
a while loop to iterate through a set of numbers.

Listing 4.13: while1.sh

x=0
x=`expr $x + 1`
echo "new x: $x"

while (true)
do
 echo "x = $x"
 x=`expr $x + 1`

 if [$x -gt 4]
 then
 break
 fi
done

Listing 4.13 initializes the variable x with the value 0 and then increments
its value and prints its new value (which is 1).

The next portion of Listing 4.13 is a while loop that displays the value of x
and then increments its value. Next, an if statement checks if the value of x
is greater than 4; if this is true, then the code “breaks out” of the while loop.

Launch the code in Listing 4.13 and you will see the following output:
new x: 1
x = 1
x = 2
x = 3
x = 4

90 • Bash Command Line and Shell Scripts

Listing 4.14 illustrates how to use a while loop to iterate through a text file
and convert the lines with an even number of words to upper case and the lines
with an odd number of words to lower case.

Listing 4.14: upperlowercase.sh

infile="wordfile.txt"
outfile="converted.txt"
rm -f $outfile 2>/dev/null

while read line
do
 # word count of current line
 wordcount=`echo "$line" |wc -w`

 modvalue=`expr $wordcount % 2`
 if [$modvalue = 0]
 then
 # even: convert to uppercase
 echo "$line" | tr '[a-z]' '[A-Z]' >> $outfile
 else
 # odd: convert to lowercase
 echo "$line" | tr '[A-Z]' '[a-z]' >> $outfile
 fi
done < $infile

Listing 4.14 initializes the variables infile and outfile with the name of
an input file and an output file, respectively, and then invokes the rm command
in order to unconditionally remove the file outfile.

The next portion of Listing 4.14 is a while loop that processes one line of
input at a time in the input file. Next, the variable wordcount is initialized as
the number of words in the current line, and the variable modvalue is initial-
ized to half the value of wordcount.

The next portion of Listing 4.14 is a conditional block that checks whether
modvalue is even or odd. If modvalue is even, the current line is converted
to upper case letters and then appended to the output file. If modvalue is
odd, the current line is converted to lower case and appended to the output
file.

Listing 4.15 displays the contents of wordfile.txt that is the input file
for Listing 4.14.

Listing 4.15: wordfile.txt

abc def
def
abc ghi
abc

Conditional Logic and Loops • 91

Launch the code in Listing 4.14 and the output creates the file con-
verted.txt whose contents are shown here:
ABC DEF
def
ABC GHI
abc

THE WHILE, CASE, AND IF/ELIF/ELSE/FI STATEMENTS

Listing 4.16 displays the contents of yesno.sh that illustrates how to
combine the while, case/esac, and if/elif/else/fi statements in the
same shell script.

Listing 4.16: yesno.sh

while(true)
do
 echo -n "Proceed with backup (Y/y/N/n): "
 read response

 case $response in
 n*|N*) proceed="false" ;;
 y*|Y*) proceed="true" ;;
 *) proceed="unknown" ;;
 esac

 if ["$proceed" = "true"]
 then
 echo "proceeding with backup"
 break
 elif ["$proceed" = "false"]
 then
 echo "cancelling backup"
 else
 echo "Invalid response"
 fi
done

Listing 4.16 contains a while loop that prompts users to enter an upper
case or lower case Y, or an upper case or lower case n. The input value is
assigned to the variable response.

The next portion of Listing 4.16 is a case/esac statement that contains
regular expressions that are used to assign the value false, true, or unknown to
the variable proceed.

92 • Bash Command Line and Shell Scripts

The next portion of Listing 4.16 contains an if/elif/else/fi code
block that prints an appropriate message that depends on the value of the vari-
able proceed.
Proceed with backup (Y/y/N/n): abc
Invalid response
Proceed with backup (Y/y/N/n):
Invalid response
Proceed with backup (Y/y/N/n): YES
proceeding with backup

USING AN UNTIL LOOP

The until command allows you to execute a series of commands as long
as a condition tests false:
until command
do
 commands
done

Listing 4.17 illustrates how to use an until loop to iterate through a set
of numbers.

Listing 4.17: until1.sh

x="0"
until ["$x" = "5"]
do
 x=`expr $x + 1`
 echo "x: $x"
done

Listing 4.17 initializes the variable x with the value 0 and then enters an
until loop. The body of the loop increments x and prints its value until x
equals 5, at which point the loop terminates execution. Launch the code in
Listing 4.17 and you will see the following output:
x: 1
x: 2
x: 3
x: 4
x: 5

USER-DEFINED FUNCTIONS

The bash shell provides built-in functions and also enables you to define
your own functions, which means that you can define custom functions that

Conditional Logic and Loops • 93

are specific to your needs. Here are simple rules to define a function in a shell
script:

•	 Function blocks begin with the keyword function followed by the function
name and parentheses (()).

•	 The code block in a function starts with the curly brackets “{"and ends
with the curly brace brackets"}”.

The following code block defines a very simple custom function that con-
tains the echo command:
Hello()
{
 echo "Hello from a function"
}

You can define the Hello() function directly from the command line or
place the function in a shell script. Execute the function by invoking its name:

Hello

The output is exactly what you expect:

Hello from a function

The preceding function definition does nothing interesting. In order to
make the function more useful, modify the body of the function as shown here:
Hello()
{
 echo "Hello $1 how are you"
}

Execute the modified function and also specify a string, as shown here:

Hello Bob

The output is exactly what you expect:

Hello Bob how are you

The next example uses conditional logic to check for the existence of a
parameter and then prints the appropriate message:
Hello()
{
 if ["$1" != ""]
 then
 echo "Hello $1"
 else
 echo "Please specify a name"
 fi
}

Execute the modified function without specifying a string, as shown here:

Hello

94 • Bash Command Line and Shell Scripts

The output is exactly what you expect:

Please specify a name

The following example illustrates how to define a function that iterates
through all the parameters that are passed to the function:
Hello()
{
 while ["$1" != ""]
 do
 echo "hello $1"
 shift
 done
}

Hello a b c

Place the preceding code in a shell script, and after making the shell script
executable, launch the code and you will see the following output:
hello a
hello b
hello c

CREATING A SIMPLE MENU FROM SHELL COMMANDS

Listing 4.18 displays the contents of AppendRow.sh that illustrates how
to update a set of users in a text file.

Listing 4.18: AppendRow.sh

DataFile="users.txt"

addUser()
{
 echo -n "First Name: "
 read fname

 echo -n "Last Name: "
 read lname

 if [-n $fname -a -n $lname]
 then
 # append new line to the file
 echo "$fname $lname" >> $DataFile
 else

Conditional Logic and Loops • 95

 echo "Please enter non-empty values"
 fi
}

while (true)
do
 echo ""
 echo "List of Users"
 echo "============="
 cat users.txt 2>/dev/null

 echo "-----------------------------"
 echo "Enter 'a' to add a new user"
 echo "Enter 'd' to delete all users"
 echo "Enter 'x' to exit this menu"
 echo "-----------------------------"
 echo

 read answer
 case $answer in
 a|A) addUser ;;
 d|D) rm $DataFile 2>/dev/null ;;
 x|X) break ;;
 esac
done

Listing 4.18 starts by initializing the variable DataFile with the value
users.txt, which will be updated with string values that are supplied by
users. Next, the addUser() function is defined: keep in mind that this func-
tion is executed in the first option of the case/esac code block.

The next section is a while loop that displays the contents of the file
users.txt (which is initially empty). Next, a set of echo statements prompts
users to enter the character x to stop the execution of the shell script, or the
letter d to delete all the names.

If users enter the string x, the shell script exits the loop via the break
statement, which in turn terminates the execution of the shell script. If users
enter the string d, the contents of the file users.txt are deleted. If users
enter the string a, then the addUser function is invoked in order to add a new
user. This function prompts for a first name and last name: if both strings are
non-empty, the new user is appended to the file users.txt; otherwise, an
appropriate message is displayed (i.e., a prompt to enter non-empty values for
both the first name and the last name).

96 • Bash Command Line and Shell Scripts

A sample invocation of Listing 4.18 is here, which has already added three
users:
List of Users
=============
abc def
123 456
888 777

Enter 'a' to add a new user
Enter 'd' to delete all users
Enter 'x' to exit this menu

ARRAYS IN BASH

Arrays are available in many (all?) programming languages, and they are
also available in bash. Note that a one-dimensional array is known as a vector
in mathematics and a two-dimensional array is called a matrix; however, most
online code samples use the word array in shell scripts.

Listing 4.19 displays the contents of Array1.sh that illustrates how to
define an array and access elements in an array

Listing 4.19: Array1.sh

initialize the names array
names[0]="john"
names[1]="nancy"
names[2]="jane"
names[3]="steve"
names[4]="bob"

display the first and second entries
echo "First Index: ${names[0]}"
echo "Second Index: ${names[1]}"

Listing 4.19 defines the names array that is initialized with five strings,
starting from index 0 through index 4. The two echo statements display the
first and second elements in the names array, which are at index 0 and 1,
respectively. The output from Listing 4.19 is here:
First Index: john
Second Index: nancy

If you need to access all the items in an array, you can do so with either of
the following code snippets:

${array_name[*]}
${array_name[@]}

Conditional Logic and Loops • 97

Listing 4.20 displays the contents of the shell script loadarray.sh that
initializes an array and then prints its contents.

Listing 4.20: loadarray.sh

#!/bin/bash
numbers="1 2 3 4 5 6 7 8 9 10"
array1=('echo "$numbers" ')
total1=0
total2=0

for num in "${array1[@]}"
do
 #echo "array item: $num"
 total1+=$num
 let total2+=$num
done

echo "Total1: $total1"
echo "Total2: $total2"

Listing 4.20 defines a string variable numbers that contains the digits
from 1 to 10 inclusive. The array1 variable is initialized with all the values of
the numbers array by the echo statement that is inside a pair of backticks.

Next, the two numeric variables total1 and total2 are initialized to
0, followed by a for loop that finds the sum of all the numbers in the array1
variable. The last pair of echo statements display the results. Launch the shell
script in Listing 4.20 and the output is as follows:
Total1: 012345678910
Total2: 55

As you can see, total1 is the result of appending the elements of the numbers
array into a single string, whereas total2 is the numeric sum of the elements of
the numbers array. The difference is due to the let keyword in the loop.

Listing 4.21 displays the contents of the shell script update-array.sh
that shows you some operations you can perform on an initialized array.

Listing 4.21: updated-array.sh

array=("I" "love" "deep" "dish" "pizza")

#the first array element:
echo ${array[0]}

#all array elements:
echo ${array[@]}

#all array indexes:
echo ${!array[@]}

98 • Bash Command Line and Shell Scripts

#Remove array element at index 3:
unset array[3]

#add new array element with index 1234:
array[1234]="in Chicago"

#all array elements:
echo ${array[@]}
 Launch the code in Listing 4.21 and you will see the
following output:
I
I love deep dish pizza
0 1 2 3 4
I love deep pizza in Chicago

WORKING WITH ARRAYS

Arrays enable you to “group together” related data elements as rows, and
then each row contains logically related data values. As a simple example, the
following array defines three fields for a customer (obviously not a complete
set of fields):
cust[0] = name
cust[1] = Address
cust[2] = phone number

Customer records can be saved in a text file that can be read later by a shell
script. If you are unfamiliar with text files, there are CSV (comma-separated-
values) files and TSV (tab-separated-values) files, as well as files that have dif-
ferent delimiters, such as a colon “:”, a pipe “|” symbol, and so forth. The delim-
iter is called the IFS (Internal Field Separator).

This section contains several shell scripts that illustrate some useful features
of arrays in bash. Listing 4.22 displays the contents of fruits-array1.sh
that illustrates how to use an array and some operations that you can perform
on arrays.

The syntax in bash is different enough from other programming languages
that it’s worthwhile to see several examples to explore its behavior.

Listing 4.22: fruits-array1.sh

#!/bin/bash
method #1:
fruits[0]="apple"
fruits[1]="banana"
fruits[2]="cherry"
fruits[3]="orange"

Conditional Logic and Loops • 99

fruits[4]="pear"
echo "first fruit: ${fruits[0]}"

method #2:
declare -a fruits2=(apple banana cherry orange pear)
echo "first fruit: ${fruits2[0]}"

range of elements:
echo "last two: ${fruits[@]:3:2}"

substring of element:
echo "substring: ${fruits[1]:0:3}"

arrlength=${#fruits[@]}
echo "length: ${#fruits[@]}"
Launch the code in Listing 4.22 and you will see the
following output:
first fruit: apple
first fruit: apple
last two: orange pear
substring: ban
length: 5

Listing 4.23 displays the contents of names.txt and Listing 4.24 displays
the contents of array-from-file.sh that contains a for loop to iterate
through the elements of an array whose initial values are based on the contents
of names.txt.

Listing 4.23: names.txt

Jane Smith
John Jones
Dave Edwards

Listing 4.24: array-from-file.sh

#!/bin/bash

names="names.txt"
contents1=(`cat "$names"`)

echo "First loop:"
for w in "${contents1[@]}"
do
 echo "$w"
done
IFS=""
names="names.txt"

100 • Bash Command Line and Shell Scripts

contents1=(`cat "$names"`)

echo "Second loop:"
for w in "${contents1[@]}"
do
 echo "$w"
done

Listing 4.24 initializes the array variable contents1 by using command
substitution with the cat command, followed by a for loop that displays ele-
ments of the array contents1. The second for loop is the same code as
the first for loop, but this time with the value of IFS equal to “”, which has
the effect of specifying the newline as a separator. Consequently, the second
loop displays two data values per row, which reflects the contents and the same
layout names.txt.

Launch the code in Listing 4.24 and you will see the following output:
First loop:
Jane
Smith
John
Jones
Dave
Edwards
Second loop:
Jane Smith
John Jones
Dave Edwards

Listing 4.25 displays the contents of array-function.sh that illus-
trates how to initialize an array and then display its contents in a user-defined
function.

Listing 4.25: array-function.sh

#!/bin/bash

compact version of the code later in this script:
#items() { for line in "${@}" ; do printf "%s\n"
"${line}" ; done ; }
#aa=(7 -4 -e) ; items "${aa[@]}"

items() {
 for line in "${@}"
 do
 printf "%s\n" "${line}"
 done
}

Conditional Logic and Loops • 101

arr=(123 -abc 'my data')
items "${arr[@]}"

Listing 4.25 contains the items() function that displays the contents of
the arr array that has been initialized prior to invoking this function. The
output is shown here:
123
-abc
my data

Listing 4.26 displays the contents of array-loops1.sh that illustrates
how to determine the length of an initialized array and then display its contents
via a for loop.

Listing 4.26: array-loops1.sh

#!/bin/bash

fruits[0]="apple"
fruits[1]="banana"
fruits[2]="cherry"
fruits[3]="orange"
fruits[4]="pear"

array length:
arrlength=${#fruits[@]}
echo "length: ${#fruits[@]}"

print each element via a loop:
for ((i=1; i<${arrlength}+1; i++));
do
 echo "element $i of ${arrlength} : " ${fruits[$i-1]}
done

Listing 4.26 contains straightforward code for initializing an array and dis-
playing its values. Launch the code in Listing 4.26 and you will see the follow-
ing output:
length: 5
element 1 of 5 : apple
element 2 of 5 : banana
element 3 of 5 : cherry
element 4 of 5 : orange
element 5 of 5 : pear

102 • Bash Command Line and Shell Scripts

SUMMARY

This chapter started with examples of arithmetic operations and the opera-
tors that are available for doing so. You then learned how to assign values to
variables, and then how to read user input in a shell script.

Next, you saw how to use the test command for variables, files, and direc-
tories (such as determining if two variables are equal). In addition, you saw
examples of various relational, Boolean, and string operators that are available
in bash.

Then you learned about conditional logic (if/elif/fi), the case/esac
statement, along with for loops, nested loops, and while loops. Moreover,
you saw how to create your own functions in shell scripts. Finally, you learned
how to work with arrays in bash, such as initializing arrays and updating their
contents in for loops.

CHAPTER 5
FILTERING DATA WITH GREP

This chapter introduces you to the versatile grep command, whose
purpose is to take a stream of text data and reduce it to only the parts
that you care about. The grep command is useful not only by itself

but also in conjunction with other commands, especially the find command.
This chapter contains many short code samples that illustrate various options
of the grep command. Some code samples illustrate how to combine the
grep command with commands from previous chapters.

The first part of this chapter introduces the grep command used in isola-
tion, combined with the regular expression metacharacters (from Chapter 2)
and also with code snippets that illustrate how to use some of the options of the
grep command. Next, you will learn how to match ranges of lines, how to use
the so-called “back references” in grep, and how to “escape” metacharacters
in grep.

The second part of this chapter shows you how to use the grep command
in order to find empty lines and common lines in datasets, as well as the use of
keys to match rows in datasets. Next, you will learn how to use character classes
with the grep command, as well as the backslash “\” character, and how to
specify multiple matching patterns. Next, you will learn how to combine the
grep command with the find command and the xargs command, which is
useful for matching a pattern in files that reside in different directories. This
section also contains some examples of common mistakes that people make
with the grep command.

The third section briefly discusses the egrep command and the fgrep
command, which are related commands that provide additional functionality
that is unavailable in the standard grep utility. The final section contains a use
case that illustrates how to use the grep command in order to find matching
lines that are then merged in order to create a new dataset.

104 • Bash Command Line and Shell Scripts

WHAT IS THE GREP COMMAND?

The grep (“Global Regular Expression Print”) command is useful for find-
ing substrings in one or more files. Several examples are here:

grep abc *sh displays all the lines of abc in files with suffix sh
grep –i abc *sh is the same as the preceding query, but case-

insensitive
grep –l abc *sh displays all the filenames with suffix sh that contain

abc
grep –n abc *sh displays all the line numbers of the occurrences of the

string abc in files with suffix sh
You can perform logical AND and logical OR operations with this syntax:
grep abc *sh |grep def matches lines containing abc AND def
grep "abc\|def" *sh matches lines containing abc OR def
You can combine switches as well: the following command displays the

names of the files that contain the string abc (case insensitive):

grep –il abc *sh

In other words, the preceding command matches filenames that contain
abc, Abc, ABc, ABC, abC, and so forth.

Another (less efficient way) to display the lines containing abc (case insen-
sitive) is here:

cat file1 |grep –i abc

The preceding command involves two processes, whereas the “grep using
–l switch instead of cat to input the files you want” approach involves a single
process. The execution time is roughly the same for small text files, but the
execution time can become more significant if you are working with multiple
large text files.

You can combine the sort command, the pipe symbol, and the grep com-
mand. For example, the following command displays the files with a “Jan”
date in increasing size:

ls -l |grep " Jan " | sort -n

A sample output from the preceding command is here:
-rw-r--r-- 1 oswaldcampesato2 staff 3 Sep 27
2013 abc.txt
-rw-r--r-- 1 oswaldcampesato2 staff 6 Sep 21
2013 control1.txt
-rw-r--r-- 1 oswaldcampesato2 staff 27 Sep 28
2013 fiblist.txt
-rw-r--r-- 1 oswaldcampesato2 staff 28 Sep 14
2013 dest
-rw-r--r-- 1 oswaldcampesato2 staff 36 Sep 14
2013 source

Filtering Data with Grep • 105

-rw-r--r-- 1 oswaldcampesato2 staff 195 Sep 28
2013 Divisors.py
-rw-r--r-- 1 oswaldcampesato2 staff 267 Sep 28
2013 Divisors2.py

METACHARACTERS AND THE GREP COMMAND

The fundamental building blocks are the regular expressions that match a
single character. Most characters, including all letters and digits, are regular
expressions that match themselves. Any metacharacter with special meaning
may be quoted by preceding it with a backslash.

A regular expression may be followed by one of several repetition opera-
tors, as shown below.

“.” matches any single character:

“?” indicates that the preceding item is optional and will be matched at

most once: Z? matches Z or ZZ.

“∗” indicates that the preceding item will be matched zero or more times:
Z∗ matches Z, ZZ, ZZZ, and so forth.

“+” indicates that the preceding item will be matched one or more times:
Z+ matches ZZ, ZZZ, and so forth.

“{n}” indicates that the preceding item is matched exactly n times: Z{3}
matches ZZZ.

“{n,}” indicates that the preceding item is matched n or more times: Z{3}
matches ZZZ, ZZZZ, and so forth.

“{,m}” indicates that the preceding item is matched at most m times: Z{,3}
matches Z, ZZ, and ZZZ.

“{n,m}” indicates that the preceding item is matched at least n times, but
not more than m times: Z{2,4} matches ZZ, ZZZ, and ZZZZ.

The empty regular expression matches the empty string (i.e., a line in the
input stream with no data). Two regular expressions may be joined by the infix
operator “|”. When used in this manner, the infix operator behaves exactly like
a logical “OR” statement, which directs the grep command to return any line
that matches either regular expression.

ESCAPING METACHARACTERS WITH THE GREP COMMAND

Listing 5.1 displays the contents of lines.txt that contains lines with
characters and some lines with metacharacters.

106 • Bash Command Line and Shell Scripts

Listing 5.1: lines.txt

abcd
ab
abc
cd
defg
.*.
..

The following grep command lists the lines of length 2 (using the ^ begin
with and $ end with operators to restrict length) in lines.txt:

grep '^..$' lines.txt

The following command lists the lines of length two in lines.txt that
contain two dots (the backslash tells grep to interpret the dots as actual dots,
not as metacharacters):

grep '^\.\.$' lines.txt

The result is shown here:
ab
cd
..

The following command also displays lines of length two that begin and end
with a dot (the * matches any text of any length, including no text at all and is
used as a metacharacter because it is not preceded with a backslash):

grep '^\.*\.$' lines.txt

The following command lists the lines that contain a period, followed by
an asterisk, and then another period (the * is now a character that must be
matched because it is preceded by a backslash):

grep '^\.*\.$' lines.txt

USEFUL OPTIONS FOR THE GREP COMMAND

There are many types of pattern matching possibilities with the grep com-
mand, and this section contains an eclectic mix of such commands that handle
common scenarios.

In the following examples, we have four text files (two .sh files and two .txt
files) and two Word documents in a directory. The string abc is found on one
line in abc1.txt and three lines in abc3.sh. The string ABC is found on 2
lines in ABC2.txt and 4 lines in ABC4.sh. Notice that abc is not found in
ABC files, and ABC is not found in abc files.

Filtering Data with Grep • 107

ls *

ABC.doc ABC4.sh abc1.txt
ABC2.txt abc.doc abc3.sh

The following code snippet searches for occurrences of the string abc in all
the files in the current directory that have sh as a suffix:
grep abc *sh
abc3.sh:abc at start
abc3.sh:ends with -abc
abc3.sh:the abc is in the middle

The “-c” option counts the number of occurrences of a string (note that
even though ABC4.sh has no matches, it still counts them and returns zero):

grep –c abc *sh

The output of the preceding command is here:
ABC4.sh:0
abc3.sh:3

The “-e” option lets you match patterns that would otherwise cause syntax
problems (the “–“ character normally is interpreted as an argument for grep):
grep –e "-abc" *sh
abc3.sh:ends with -abc

The “-e” option also lets you match multiple patterns.
grep –e "-abc" -e "comment" *sh

ABC4.sh:# ABC in a comment
abc3.sh:ends with -abc

The "-i" option is to perform a case insensitive
match:
grep –i abc *sh
ABC4.sh:ABC at start
ABC4.sh:ends with ABC
ABC4.sh:the ABC is in the middle
ABC4.sh:# ABC in a comment
abc3.sh:abc at start
abc3.sh:ends with -abc
abc3.sh:the abc is in the middle

The “-v” option “inverts” the matching string, which means that the output
consists of the lines that do not contain the specified string (ABC doesn’t match
because -i is not used, and ABC4.sh has an entirely empty line):

grep –v abc *sh

108 • Bash Command Line and Shell Scripts

Use the “-iv” options to display the lines that do not contain a specified
string using a case insensitive match:
grep –iv abc *sh
ABC4.sh:
abc3.sh:this line won't match

The “-l” option is to list only the filenames that contain a successful match
(note this matches the contents of the files, not the filenames). The Word docu-
ment matches because the actual text is still visible to grep, it is just sur-
rounded by proprietary formatting gibberish. You can do similar things with
other formats that contain text, such as XML, HTML, .csv, and so forth:
grep -l abc *

abc1.txt
abc3.sh
abc.doc

The “-l” option is to list only the filenames that contain a successful match:

grep –l abc *sh

Use the “-il” options to display the filenames that contain a specified
string using a case insensitive match:

grep –il abc *doc

The preceding command is very useful when you want to check for the
occurrence of a string in Word documents.

The “-n” option specifies line numbers of any matching file:
grep –n abc *sh
abc3.sh:1:abc at start
abc3.sh:2:ends with -abc
abc3.sh:3:the abc is in the middle

The “-h” option suppresses the display of the filename for a successful
match:
grep –h abc *sh
abc at start
ends with -abc
the abc is in the middle

For the next series of examples, we will use columns4.txt as shown in
Listing 5.2.

Listing 5.2: columns4.txt

123 ONE TWO
456 three four
ONE TWO THREE FOUR
five 123 six

Filtering Data with Grep • 109

one two three
four five

The “-o” option shows only the matched string (this is how you avoid return-
ing the entire line that matches):

grep –o one columns4.txt

The “-o” option followed by the “-b” option shows the position of the
matched string (returns character position, not the line number. The “o” in
“one” is the 59th character of the file):

grep –o –b one columns4.txt

You can specify a recursive search as shown here (output not shown because
it will be different on every client or account. This searches not only every file
in directory /etc, but every file in every subdirectory of etc):

grep –r abc /etc

The preceding commands match lines where the specified string is a sub-
string of a longer string in the file. For instance, the preceding commands will
match occurrences of abc as well as abcd, dabc, abcde, and so forth.
grep ABC *txt

ABC2.txt:ABC at start or ABC in middle or end in ABC
ABC2.txt:ABCD DABC

If you want to exclude everything except for an exact match, you can use the
–w option, as shown here:
grep –w ABC *txt

ABC2.txt:ABC at start or ABC in middle or end in ABC
The --color switch displays the matching string in
color:
grep --color abc *sh
abc3.sh:abc at start
abc3.sh:ends with -abc
abc3.sh:the abc is in the middle

You can use the pair of metacharacters .* to find the occurrences of two
words that are separated by an arbitrary number of intermediate characters.

The following command finds all lines that contain the strings one and
three with any number of intermediate characters:

grep "one.*three" columns4.txt
one two three

You can “invert” the preceding result by using the –v switch, as shown here:
grep –v "one.*three" columns4.txt
123 ONE TWO
456 three four

110 • Bash Command Line and Shell Scripts

ONE TWO THREE FOUR
five 123 six
four five

The following command finds all lines that contain the strings one and
three with any number of intermediate characters, where the match involves
a case-insensitive comparison:
grep -i "one.*three" columns4.txt
ONE TWO THREE FOUR
one two three

You can “invert” the preceding result by using the –v switch, as shown here:
grep –iv "one.*three" columns4.txt
123 ONE TWO
456 three four
five 123 six
four five

Sometimes you need to search a file for the presence of either of two strings.
For example, the following command finds the files that contain “start” or
“end”:
grep -l 'start\|end' *
ABC2.txt
ABC4.sh
abc3.sh

Later in the chapter, you will see how to find files that contain a pair of
strings via the grep and xargs commands.

Character Classes and the grep Command
This section contains some simple one-line commands that combine the

grep command with character classes.
echo "abc" | grep '[:alpha:]'
abc
echo "123" | grep '[:alpha:]'
(returns nothing, no match)
echo "abc123" | grep '[:alpha:]'
abc123
echo "abc" | grep '[:alnum:]'
abc
echo "123" | grep '[:alnum:]'
(returns nothing, no match)
echo "abc123" | grep '[:alnum:]'
abc123
echo "123" | grep '[:alnum:]'
(returns nothing, no match)

Filtering Data with Grep • 111

echo "abc123" | grep '[:alnum:]'
abc123
echo "abc" | grep '[0-9]'
(returns nothing, no match)
echo "123" | grep '[0-9]'
123
echo "abc123" | grep '[0-9]'
abc123
echo „abc123" | grep -w ‚[0-9]'
(returns nothing, no match)

WORKING WITH THE –C OPTION IN GREP

Consider a scenario in which a directory (such as a log directory) has files
created by an outside program. Your task is to write a shell script that deter-
mines which (if any) of the files contain two occurrences of a string, after which
additional processing is performed on the matching files (e.g., use email to
send log files containing two or more errors messages to a system administra-
tor, for investigation).

One solution involves the –c option for grep, followed by additional invo-
cations of the grep command.

The command snippets in this section assume the following data files whose
contents are shown below.

The file hello1.txt contains the following:

hello world1

The file hello2.txt contains the following:
hello world2
hello world2 second time

The file hello3.txt contains the following:
hello world3
hello world3 two
hello world3 three

Now launch the following commands: (2>/dev/null suppresses warnings
and errors caused by empty directories so they do not appear in the output):
grep -c hello hello*txt 2>/dev/null
hello1.txt:1
hello2.txt:2
hello3.txt:3
grep -l hello hello*txt 2>/dev/null
hello1.txt
hello2.txt

112 • Bash Command Line and Shell Scripts

hello3.txt
grep -c hello hello*txt 2>/dev/null |grep ":2$"
hello2.txt:2

Note how we use the “ends with” "$" metacharacter to grab just the files
that have exactly two matches. We also use the colon ":2$" rather than just
"2$" to prevent grabbing files that have 12, 32 or 142 matches. (which would
end in :12, :32 and :142).

What if we wanted to show “two or more” (as in the “2 or more errors in
a log”)? You would instead use the invert (-v) command to exclude counts of
exactly 0 or exactly 1.
grep -c hello hello*txt 2>/dev/null |grep -v ':[0-1]$'
hello2.txt:2
hello3.txt:3

In a real-world application, you would want to strip off everything after the
colon to return only the filenames. There are many ways to do so, but we’ll use
the cut command we learned in Chapter 1, which involves defining : as a
delimiter with -d":" and using -f1 to return the first column (i.e., the part
before the colon in the return text):
grep -c hello hello*txt 2>/dev/null | grep -v ':
[0-1]$'| cut -d":" -f1
hello2.txt
hello3.txt

MATCHING A RANGE OF LINES

In Chapter 1, you saw how to use the head and tail commands to display
a range of lines in a text file. Now suppose that you want to search a range of
lines for a string. For instance, the following command displays lines 9 through
15 of longfile.txt:

cat -n longfile.txt |head -15|tail -9

The output is here:
 7 and each line
 8 contains
 9 one or
 10 more words
 11 and if you
 12 use the cat
 13 command the
 14 file contents
 15 scroll

Filtering Data with Grep • 113

This command displays the subset of lines 9 through 15 of longfile.txt
that contains the string and:

cat -n longfile.txt |head -15|tail -9 | grep and

The output is here:
 7 and each line
 11 and if you
 13 command the

This command includes a whitespace after the word and, thereby exclud-
ing the line with the word “command”:

cat -n longfile.txt |head -15|tail -9 | grep "and "

The output is here:
 7 and each line
 11 and if you

Note that the preceding command excludes lines that end in “and”
because those lines do not have the whitespace after “and” at the end of
the line. You could remedy this situation with an “OR” operator including
both cases:
cat -n longfile.txt |head -15|tail -9 | grep "
and\|and "
 7 and each line
 11 and if you
 13 command the

However, the preceding allows “command’ back into the mix. Hence, if you
really want to match a specific word it’s best to use the -w tag, which is smart
enough to handle the variations:
cat -n longfile.txt |head -15|tail -9 | grep -w "and"
 7 and each line
 11 and if you

The use of whitespace is safer if you are looking for something at the begin-
ning or end of a line. This is a common approach when reading contents of log
files or other structured text where the first word is often important (a tag like
ERROR or Warning, a numeric code or a date). This command displays the
lines that start with the word and:

cat longfile.txt |head -15|tail -9 | grep "^and "

The output is here (without the line number because we are not using
“cat -n”):
and each line
and if you

114 • Bash Command Line and Shell Scripts

Recall that the “use the file name(s) in the command, instead of using cat
to display the file first” style is more efficient:
head -15 longfile.txt |tail -9 | grep "^and "
and each line
and if you

However, the head command does not display the line numbers of a text
file, so the “cat first” (cat -n adds line numbers) style is used in the earlier
examples when you want to see the line numbers, even though this style is less
efficient. Basically, you only want to add an extra command to a pipe if it is
adding value; otherwise, it’s better to start with a direct call to the files you are
trying to process with the first command in the pipe, assuming the command
syntax is capable of reading in filenames.

USING BACK REFERENCES IN THE GREP COMMAND

The grep command allows you to reference a set of characters that match
a regular expression placed inside a pair of parentheses. For grep to parse the
parentheses correctly, each has to be preceded with the escape character “\”.

For example, grep 'a(\.\)' uses the “.” regular expression to match
ab or “a3” but not “3a” or “ba”.

The back reference ‘\n’, where n is a single digit, matches the substring pre-
viously matched by the nth parenthesized sub-expression of the regular expres-
sion. For example, grep '\(a\)\1' matches ‘aa’ and grep '\(a\)\2'
matches “aaa”.

When used with alternation, if the group does not participate in the match
then the back reference makes the whole match fail. For example, grep 'a\
(.\)|b\1' will not match ba or ab or bb (or anything else really).

If you have more than one regular expression inside a pair of parentheses,
they are referenced (from left to right) by \1, \2, …, \9:
grep -e '\([a-z]\)\([0-9]\)\1' is the same as this
command:
grep -e '\([a-z]\)\([0-9]\)\([a-z]\)'
grep -e '\([a-z]\)\([0-9]\)\2' is the same as this
command:
grep -e '\([a-z]\)\([0-9]\)\([0-9]\)'

The easiest way to think of it is that the number (for example, \2) is a place-
holder or variable that saves you from typing the longer regular expression it
references. As regular expressions can get extremely complex, this often helps
code clarity.

You can match consecutive digits or characters using the pattern \([0-
9]\)\1. For example, the following command is a successful match because
the string “1223” contains a pair of consecutive identical digits:

echo "1223" | grep -e '\([0-9]\)\1'

Filtering Data with Grep • 115

Similarly, the following command is a successful match because the string
“12223” contains three consecutive occurrences of the digit 2:

echo "12223" | grep -e '\([0-9]\)\1\1'

You can check for the occurrence of two identical digits separated by any
character with this expression:

echo "12z23" | grep -e '\([0-9]\).\1'

In an analogous manner, you can test for the occurrence of duplicate let-
ters, as shown here:

echo "abbc" | grep -e '\([a-z]\)\1'

The following example matches an IP address, and does not use back refer-
ences, just the “\d” and “\.” Regular expressions to match digits and periods:

echo "192.168.125.103" | grep -e '\(\d\d\d\)\.\
(\d\d\d\)\.\(\d\d\d\)\.\(\d\d\d\)'

If you want to allow for fewer than three digits, you can use the expression
{1,3}, which matches 1, 2, or 3 digits on the third block. In a situation where
any of the four blocks might have fewer than three characters, you must use the
following type of syntax in all four blocks:

echo "192.168.5.103" | grep -e '\(\d\d\d\)\.\
(\d\d\d\)\.\(\d\)\{1,3\}\.\(\d\d\d\)'

You can perform more complex matches using back references. Listing 5.3
displays the contents of columns5.txt that contains several lines that are
palindromes (the same spelling from left-to-right as right-to-left). Note that
the third line is an empty line.

Listing 5.3: columns5.txt

one eno
ONE ENO

ONE TWO OWT ENO
four five

The following command finds all lines that are palindromes:

grep -w -e '\(.\)\(.\).*\2\1' columns5.txt

The output of the preceding command is here:
one eno
ONE ENO
ONE TWO OWT ENO

The idea is as follows: the first \(.\) matches a set of letters, followed by
a second \(.\) that matches a set of letters, followed by any number of inter-
mediate characters. The sequence \2\1 reverses the order of the matching
sets of letters specified by the two consecutive occurrences of \(.\).

116 • Bash Command Line and Shell Scripts

FINDING EMPTY LINES IN DATASETS

Recall that the metacharacter “^” refers to the beginning of a line and the
metacharacter “$” refers to the end of a line. Thus, an empty line consists of
the sequence ^$. You can find the single empty in columns5.txt with this
command:

grep -n "^$" columns5.txt

The output of the preceding grep command is here (use the -n switch
to display line numbers, as blank lines will not otherwise show in the output):

3:
More commonly the goal is to simply strip the empty lines from a file. We

can do that just by inverting the prior query (and not showing the line numbers)
grep -v "^$" columns5.txt

one eno
ONE ENO
ONE TWO OWT ENO
four five

As you can see, the preceding output displays four non-empty lines, and as
we saw in the previous grep command, line #3 is an empty line.

USING KEYS TO SEARCH DATASETS

Data is often organized around unique values (typically numbers) in order
to distinguish otherwise similar things: for example, John Smith the man-
ager must not be confused with John Smith the programmer in an employee
data set. Hence, each record is assigned a unique number that will be used
for all queries related to employees. Moreover, their names are merely data
elements of a given record, rather than a means of identifying a record that
contains a particular person.

With the preceding points in mind, suppose that you have a text file in
which each line contains a single key value. In addition, another text file con-
sists of one or more lines, where each line contains a key-value followed by a
quantity value.

As an illustration, Listing 5.4 displays the contents of skuvalues.txt
and Listing 5.5 displays the contents of skusold.txt. Note that an SKU is
a term often used to refer to an individual product configuration, including its
packaging, labeling, and so forth.

Listing 5.4: skuvalues.txt

4520
5530
6550
7200
8000

Filtering Data with Grep • 117

Listing 5.5: skusold.txt

4520 12
4520 15
5530 5
5530 12
6550 0
6550 8
7200 50
7200 10
7200 30
8000 25
8000 45
8000 90

THE BACKSLASH CHARACTER AND THE GREP COMMAND

The “\” character has a special interpretation when it’s followed by the fol-
lowing characters:

“\b” = Match the empty string at the edge of a word
“\B” = Match the empty string provided it’s not at the edge of a word, so:
“\brat\b” matches the separate word “rat” but not “crate”, and
“\Brat\B” matches “crate” but not “furry rat”
“\<” = Match the empty string at the beginning of the word.
“\>” = Match the empty string at the end of the word.
“\w” = Match word constituent, it is a synonym for “[_[:alnum:]]”.
“\W” = Match non-word constituent, it is a synonym for “[^_[:alnum:]]”.
“\s” = Match whitespace, it is a synonym for “[[:space:]]”.
“\S” = Match non-whitespace, it is a synonym for “[^[:space:]]”.

MULTIPLE MATCHES IN THE GREP COMMAND

In an earlier example, you saw how to use the –i option to perform a case
insensitive match. However, you can also use the pipe “|” symbol to specify
more than one sequence of regular expressions.

For example, the following grep expression matches any line that contains
one as well as any line that contains ONE TWO:

grep "one\|ONE TWO" columns5.txt

The output of the preceding grep command is here:
one eno
ONE TWO OWT ENO

Although the preceding grep command specifies a pair of character
strings, you can specify an arbitrary number of character sequences or regular
expressions, as long as you put "\|" between each thing you want to match.

118 • Bash Command Line and Shell Scripts

THE GREP COMMAND AND THE XARGS COMMAND

The xargs command is often used in conjunction with the find command
in bash. For example, you can search for the files under the current directory
(including sub-directories) that have the sh suffix and then check which one of
those files contains the string abc, as shown here:

find . –print |grep "sh$" | xargs grep –l abc

A more useful combination of the find and xargs command is shown
here:

find . -mtime -7 -name "*.sh" –print | xargs grep –l abc

The preceding command searches for all the files (including sub-directo-
ries) with suffix “sh” that have not been modified in at least seven days, and
pipes that list to the xargs command, which displays the files that contain the
string abc (case insensitive).

The find command supports many options, which can be combined via
AND as well as OR in order to create very complex expressions.

Note that grep –R hello . also performs a search for the string hello
in all files, including sub-directories, and follows the “one process” recommen-
dation. On the other hand, the find . –print command search for all files
in all sub-directories, and you can pipe the output to xargs grep hello
in order to find the occurrences of the word hello in all files (which involves
two processes instead of one process).

You can use the output of the preceding code snippet in order to copy the
matching files to another directory, as shown here:

cp `find . –print |grep "sh$" | xargs grep –l abc` /tmp

Alternatively, you can copy the matching files in the current directory (with-
out matching files in any sub-directories) to another directory with the grep
command:

cp `grep –l abc *sh` /tmp

Yet another approach is to use “backtick” so that you can obtain additional
information:
for file in `find . –print`
do
 echo "Processing the file: $file"
 # now do something here
done

Keep in mind that if you pass too many filenames to the xargs
command you will see a “too many files” error message. In this situation,
try to insert additional grep commands prior to the xargs command
in order to reduce the number of files that are piped into the xargs
command.

Filtering Data with Grep • 119

If you work with NodeJS, you know that the node_modules direc-
tory contains a large number of files. In most cases, you probably want to
exclude the files in that directory when you are searching for a string, and
the “-v” option is ideal for this situation. The following command excludes
the files in the node_modules directory while searching for the names
of the HTML files that contain the string src and redirecting the list of
filenames to the file src_list.txt (and also redirecting error messages
to /dev/null):

find . –print |grep –v node |xargs grep –il src > src_
list.txt 2>/dev/null

You can extend the preceding command to search for the HTML files that
contain the string src and the string angular with the following command:

find . –print |grep –v node |xargs grep –il src |xargs
grep –il angular >angular_list.txt 2>/dev/null

You can use the following combination of grep and xargs to find the files
that contain both xml and defs:

grep -l xml *svg |xargs grep -l def

A variation of the preceding command redirects error messages to /dev/
null, as shown here:

grep -l hello *txt 2>/dev/null | xargs grep -c hello

Searching zip Files for a String
There are at least three ways to search for a string in one or more zip files.

As an example, suppose that you want to determine which zip files contain SVG
documents.

The first way is shown here:
for f in `ls *zip`
do
 echo "Searching $f"
 jar tvf $f |grep "svg$"
done

When there are many zip files in a directory, the output of the preceding
loop can be very verbose, in which case you need to scroll backward and prob-
ably copy/paste the names of the files that actually contain SVG documents
into a separate file. A better solution is to put the preceding loop in a shell and
redirect its output. For instance, create the file findsvg.sh whose contents
are the preceding loop, and then invoking this command:

./findsvg.sh 1>1 2>2

Notice that the preceding command redirects error messages (2>) to file 2
and the results of the jar/grep command (1>) to file 1. See the Appendix
for another example of searching zip files for SVG documents.

120 • Bash Command Line and Shell Scripts

CHECKING FOR A UNIQUE KEY VALUE

Sometimes you need to check for the existence of a string (such as a key)
in a text file, and then perform additional processing based on its existence.
However, do not assume that the existence of a string means that that string
only occurs once. As a simple example, suppose the file mykeys.txt has the
following content:
2000
22000
10000
3000

Suppose that you search for the string 2000, which you can do with find-
key.sh whose contents are displayed in Listing 5.6.

Listing 5.6: findkey.sh

key="2000"

if ["`grep $key mykeys.txt`" != ""]
then
 foundkey=true
else
 foundkey=false
fi

echo "current key = $key"
echo "found key = $foundkey"

Listing 5.6 contains if/else conditional logic to determine whether or not
the file mykeys.txt contains the value of $key (which is initialized as 2000).
Launch the code in Listing 5.6 and you will see the following output:
current key = 2000
found key = true
linecount = 2

While the key value of 2000 does exist in mykeys.txt, you can see that it
matches two lines in mykeys.txt. However, if mykeys.txt were part of a
file with 100,000 (or more) lines, it’s not obvious that the value of 2000 matches
more than one line. In this dataset, 2000 and 22000 both match, and you can
prevent the extra matching line with this code snippet:

grep –w $key

Thus, in files that have duplicate lines, you can count the number of lines
that match the key via the preceding code snippet. Another way to do so
involves the use of wc –l that displays the line count.

Filtering Data with Grep • 121

Redirecting Error Messages

Another scenario involves the use of the xargs command with the grep
command, which can result in “no such … “ error messages:

find . –print |xargs grep –il abc

Make sure to redirect errors using the following variant:

find . –print |xargs grep –il abc 2>/dev/null

THE EGREP COMMAND AND FGREP COMMAND

The egrep command is (“extended grep”) that supports added
grep features like “+” (1 or more occurrence of the previous character), “?”
(0 or 1 occurrence of the previous character) and “|” (alternate matching). The
egrep command is almost identical to the grep -E, along with some caveats
that are described here:

https://www.gnu.org/software/grep/manual/html_node/Basic-vs-Extended.
html

One advantage of using the egrep command is that it’s easier to under-
stand the regular expressions than the corresponding expressions in grep
(when it’s combined with backward references).

The egrep (“extended grep”) command supports extended regular
expressions, as well as the pipe “|” in order to specify multiple words in a
search pattern. A match is successful if any of the words in the search pattern
appears, so you can think of the search pattern as “any” match. Thus, the pat-
tern “abc|def” matches lines that contain either abc or def (or both).

For example, the following code snippet enables you to search for occur-
rences of the string abc as well as occurrences of the string def in all files with
the suffix sh:
egrep -w 'abc|def' *sh

The preceding egrep command is an “or” operation: a line matches if it
contains either abc or def.

You can also use metacharacters in egrep expressions. For example, the
following code snippet matches lines that start with abc or end with four and
a whitespace:
egrep '^123|four $' columns3.txt

A more detailed explanation of grep, egrep, and frep is here:
https://superuser.com/questions/508881/what-is-the-difference-between-

grep-pgrep-egrep-fgrep

Displaying “Pure” Words in a Dataset with egrep
For simplicity, let’s work with a text string and that way we can see the

intermediate results as we work toward the solution. Let’s initialize the variable
x as shown here:
x="ghi abc Ghi 123 #def5 123z"

122 • Bash Command Line and Shell Scripts

The first step is to split x into words:

echo $x |tr -s ' ' '\n'

The output is here:
ghi
abc
Ghi
123
#def5
123z

The second step is to invoke egrep with the regular expression ^[a-zA-
Z]+, which matches any string consisting of one or more uppercase and/or
lowercase letters (and nothing else):

echo $x |tr -s ‚ ‚ ‚\n' |egrep „^[a-zA-Z]+$"

The output is here:
ghi
abc
Ghi

If you also want to sort the output and print only the unique words, use this
command:

echo $x |tr -s ‚ ‚ ‚\n' |egrep „^[a-zA-Z]+$" |sort |
uniq

The output is here:
123
123z
Ghi
abc
ghi

If you want to extract only the integers in the variable x, use this command:

echo $x |tr -s ' ' '\n' |egrep "^[0-9]+$" |sort | uniq

The output is here:

123

If you want to extract alphanumeric words from the variable x, use this
command:

echo $x |tr -s ‚ ‚ ‚\n' |egrep „^[a-zA-Z0-9]+$" |sort |
uniq

The output is here:
123
123z
Ghi

Filtering Data with Grep • 123

abc
ghi

Note that the ASCII collating sequences places digits before uppercase
letters, and the latter are before lowercase letters for the following reason: 0
through 9 are hexadecimal values 0x30 through 0x39, and the uppercase let-
ters in A-Z are hexadecimal 0x41 through 0x5a, and the lowercase letters in
a-z are hexadecimal 0x61 through 0x7a.

Now you can replace echo $x with a dataset in order to retrieve only
alphabetic strings from that dataset.

The fgrep Command

The fgrep (“fast grep”) is the same as grep –F and although fgrep is
deprecated, it’s still supported in order to allow historical applications that rely
on them to run unmodified. In addition, some older systems might not support
the –F option for the grep command, so they use the fgrep command. If
you really want to learn more about the fgrep command, perform an Inter-
net search for tutorials.

A SIMPLE USE CASE

The code sample in this section shows you how to use the grep command
in order to find specific lines in a dataset and then “merge” pairs of lines to
create a new dataset. This is very much like what a “join” command does in a
relational database. Listing 5.7 displays the contents of the file test1.csv
that contains the initial dataset.

Listing 5.7: test1.csv

F1,F2,F3,M0,M1,M2,M3,M4,M5,M6,M7,M8,M9,M10,M11,M12
1,KLM,,1.4,,0.8,,1.2,,1.1,,,2.2,,,1.4
1,KLMAB,,0.05,,0.04,,0.05,,0.04,,,0.07,,,0.05
1,TP,,7.4,,7.7,,7.6,,7.6,,,8.0,,,7.3
1,XYZ,,4.03,3.96,,3.99,,3.84,4.12,,,,4.04,,
2,KLM,,0.9,0.7,,0.6,,0.8,0.5,,,,0.5,,
2,KLMAB,,0.04,0.04,,0.03,,0.04,0.03,,,,0.03,,
2,EGFR,,99,99,,99,,99,99,,,,99,,
2,TP,,6.6,6.7,,6.9,,6.6,7.1,,,,7.0,,
3,KLM,,0.9,0.1,,0.5,,0.7,,0.7,,,0.9,,
3,KLMAB,,0.04,0.01,,0.02,,0.03,,0.03,,,0.03,,
3,PLT,,224,248,,228,,251,,273,,,206,,
3,XYZ,,4.36,4.28,,4.58,,4.39,,4.85,,,4.47,,
3,RDW,,13.6,13.7,,13.8,,14.1,,14.0,,,13.4,,
3,WBC,,3.9,6.5,,5.0,,4.7,,3.7,,,3.9,,
3,A1C,,5.5,5.6,,5.7,,5.6,,5.5,,,5.3,,
4,KLM,,1.2,,0.6,,0.8,0.7,,,0.9,,,1.0,

124 • Bash Command Line and Shell Scripts

4,TP,,7.6,,7.8,,7.6,7.3,,,7.7,,,7.7,
5,KLM,,0.7,,0.8,,1.0,0.8,,0.5,,,1.1,,
5,KLM,,0.03,,0.03,,0.04,0.04,,0.02,,,0.04,,
5,TP,,7.0,,7.4,,7.3,7.6,,7.3,,,7.5,,
5,XYZ,,4.73,,4.48,,4.49,4.40,,,4.59,,,4.63,

Listing 5.8 displays the contents of the file joinlines.sh that illustrates
how to merge the pairs of matching lines in joinlines.csv.

Listing 5.8 joinlines.sh

inputfile="test1.csv"
outputfile="joinedlines.csv"
tmpfile2="tmpfile2"

patterns to match:
klm1="1,KLM,"
klm5="5,KLM,"
xyz1="1,XYZ,"
xyz5="5,XYZ,"

#output:
#klm1,xyz1
#klm5,xyz5

step 1: match patterns with CSV file:
klm1line="`grep $klm1 $inputfile`"
klm5line="`grep $klm5 $inputfile`"
xyz1line="`grep $xyz1 $inputfile`"
$xyz5 matches 2 lines (we want first line):
grep $xyz5 $inputfile > $tmpfile2
xyz5line="`head -1 $tmpfile2`"
echo "klm1line: $klm1line"
echo "klm5line: $klm5line"
echo "xyz1line: $xyz1line"
echo "xyz5line: $xyz5line"

step 3: create summary file:
echo "$klm1line" | tr -d '\n' > $outputfile
echo "$xyz1line" >> $outputfile
echo "$klm5line" | tr -d '\n' >> $outputfile
echo "$xyz5line" >> $outputfile
echo; echo

Filtering Data with Grep • 125

The output from launching the shell script in Listing 5.8 is here:
1,KLM,,1.4,,0.8,,1.2,,1.1,,,2.2,,,1.41,X
YZ,,4.03,3.96,,3.99,,3.84,4.12,,,,4.04,,
5,KLM,,0.7,,0.8,,1.0,0.8,,0.5,,,1.1,,5,KLM
,,0.03,,0.03,,0.04,0.04,,0.02,,,0.04,,5,X
YZ,,4.73,,4.48,,4.49,4.40,,,4.59,,,4.63,

As you can see, the task in this section is very easily solved via the grep
command. Note that additional data cleaning is required in order to handle the
empty fields in the output.

SUMMARY

This chapter showed you how to work with the grep utility, which is a very
powerful bash command for searching text fields for strings. You saw various
options for the grep command and examples of how to use those options to
find string patterns in text files.

Next, you learned about egrep, which is a variant of the grep command,
which can simplify and also expand on the basic functionality of grep, indicat-
ing when you might choose one option over another.

Finally, you learned how to use key values in one text file to search for
matching lines of text in another file, and perform join-like operations using
the grep command.

CHAPTER 6
TRANSFORMING DATA WITH SED

In the previous chapter, we learned how to reduce a stream of data to only the
contents that interested us. In this chapter, we will learn how to transform
that data using the sed utility, which is an acronym for “stream editor.”
The first part of this chapter contains basic examples of the sed command,

such as replacing and deleting strings, numbers and letters. The second part of
this chapter discusses various switches that are available for the sed command,
along with an example of replacing multiple delimiters with a single delimiter
in a dataset.

In the final section, you will see a number of examples of how to per-
form stream-oriented processing on datasets, bringing the capabilities of sed
together with the commands and regular expressions from prior chapters to
accomplish difficult tasks with relatively simple code.

WHAT IS THE SED COMMAND?

The name sed is an abbreviation for “stream editor,” and the utility derives
many of its features from the ed line-editor (ed was the first Unix text edi-
tor). The sed command is a “non-interactive” stream-oriented editor that can
be used to automate editing via shell scripts. This ability to modify an entire
stream of data (which can be the contents of multiple files, in a manner similar
to how grep behaves) as if you were inside an editor is not common in mod-
ern programming languages. This behavior allows some capabilities not easily
duplicated elsewhere while behaving exactly like any other command (grep,
cat, ls, find, and so forth) in how it can accept data, output data and pattern
match with regular expressions.

Some of the more common uses for sed include: print matching lines,
delete matching lines, and find/replace matching strings or regular expressions.

128 • Bash Command Line and Shell Scripts

The sed Execution Cycle

Whenever you invoke the sed command, an execution cycle refers to vari-
ous options that are specified and executed until the end of the file/input is
reached. Specifically, an execution cycle performs the following steps:

Read an entire line from stdin/file
Removes any trailing newline
Places the line in its pattern buffer.
Modify the pattern buffer according to the supplied commands
Print the pattern buffer to stdout

MATCHING STRING PATTERNS USING SED

The sed command requires you to specify a string in order to match the
lines in a file. For example, suppose that the file numbers.txt contains the
following lines:
1
2
123
3
five
4

The following sed command prints all the lines that contain the string 3:

cat numbers.txt |sed –n "/3/p"

Another way to produce the same result:

sed –n "/3/p" numbers.txt

In both cases the output of the preceding commands is as follows:
123
3

As we saw earlier with other commands, it is always more efficient to just
read the file using the sed command than to pipe it in with a different com-
mand. You can “feed” data from another command if that other command
adds value (such as adding line numbers, removing blank lines, or other similar
helpful activities).

The –n option suppresses all output, and the p option prints the match-
ing line. If you omit the –n option then every line is printed, and the p option
causes the matching line to be printed again. Hence, if you issue the following
command:

sed "/3/p" numbers.txt

The output (the data to the right of the colon) is as follows. Note that the
labels to the left of the colon show the source of the data, to illustrate the “one
row at a time” behavior of sed.

Transforming Data with SED • 129

Basic stream output :1
Basic stream output :2
Basic stream output :123
Pattern Matched text:123
Basic stream output :3
Pattern Matched text:3
Basic stream output :five
Basic stream output :4

It is also possible to match two patterns and print everything between the
lines that match:

sed –n "/123/,/five/p" numbers.txt

The output of the preceding command (all lines between 123 and five,
inclusive) is here:
123
3
five

SUBSTITUTING STRING PATTERNS USING SED

The examples in this section illustrate how to use sed to substitute new text
for an existing text pattern.
x="abc"
echo $x |sed "s/abc/def/"

The output of the preceding code snippet is here:
def
In the preceding command you have instructed sed to substitute ("s)

the first text pattern (/abc) with the second pattern (/def) and no further
instructions(/").

Deleting a text pattern is simply a matter of leaving the second pattern
empty:

echo "abcdefabc" |sed "s/abc//"

The result is here:

defabc

As you see, this only removes the first occurrence of the pattern. You can
remove all the occurrences of the pattern by adding the “global” terminal
instruction (/g"):

echo "abcdefabc" |sed "s/abc//g"

The result of the preceding command is here:

def

Note that we are operating directly on the mainstream with this command,
as we are not using the -n tag. You can also suppress the mainstream with

130 • Bash Command Line and Shell Scripts

-n and print the substitution, achieving the same output if you use the terminal
p (print) instruction:

echo "abcdefabc" |sed -n "s/abc//gp"

def

For substitutions, either syntax will do, but that is not always true of other
commands.

You can also remove digits instead of letters, by using the numeric metacha-
racters as your regular expression match pattern (from Chapter 1):
ls svcc1234.txt |sed "s/[0-9]//g"
ls svcc1234.txt |sed –n "s/[0-9]//gp"

The result of either of the two preceding commands is here:

svcc.txt

Recall that the file columns4.txt contains the following text:
123 ONE TWO
456 three four
ONE TWO THREE FOUR
five 123 six
one two three
four five

The following sed command is instructed to identify the rows between 1
and 3, inclusive ("1,3), and delete (d") them from the output:

cat columns4.txt | sed "1,3d"

The output is here:
five 123 six
one two three
four five

The following sed command deletes a range of lines, starting from the
line that matches 123 and continuing through the file until reaching the line
that matches the string five (and also deleting all the intermediate lines). The
syntax should be familiar from the earlier matching example:

sed "/123/,/five/d" columns4.txt

The output is here:
one two three
four five

Replacing Vowels from a String or a File
The following code snippet shows you how simple it is to replace multiple

vowels from a string using the sed command:

echo "hello" | sed "s/[aeio]/u/g"

Transforming Data with SED • 131

The output from the preceding code snippet is here:

Hullu

The preceding sed command is admittedly contrived (when was the last
time that you needed to replace vowels in a string?), yet it illustrates the fact
that you can perform highly context-specific text transformations with the sed
command.

Deleting Multiple Digits and Letters from a String
Suppose that we have a variable x that is defined as follows:

x="a123zAB 10x b 20 c 300 d 40w00"

Recall that an integer consists of one or more digits, so it matches the regu-
lar expression [0-9]+, which matches one or more digits. However, you need
to specify the regular expression [0-9]* in order to remove every number
from the variable x:

echo $x | sed "s/[0-9]//g"

The output of the preceding command is here:

azAB x b c d w

The following command removes all lower case letters from the variable x:

echo $x | sed "s/[a-z]*//g"

The output of the preceding command is here:

123AB 10 20 300 4000

The following command removes all lower case and upper case letters from
the variable x:

echo $x | sed "s/[a-z][A-Z]*//g"

The output of the preceding command is here:

123 10 20 300 4000

SEARCH AND REPLACE WITH SED

The previous section showed you how to delete a range of rows of a text
file, based on a start line and end line, using either a numeric range or a pair
of strings. As deleting is just substituting an empty result for what you match,
it should now be clear that a replacement activity involves populating that part
of the command with something that achieves your desired outcome. This sec-
tion contains various examples that illustrate how to get the exact substitution
you desire.

The following examples illustrate how to convert lower case abc to upper
case ABC in sed:

echo "abc" |sed "s/abc/ABC/"

132 • Bash Command Line and Shell Scripts

The output of the preceding command is here (which only works on one
case of abc):
ABC
echo "abcdefabc" |sed "s/abc/ABC/g"

The output of the preceding command is here (/g") means works on every
case of abc):

ABCdefABC

The following sed expression performs three consecutive substitutions,
using -e to string them together. It changes exactly one (the first) a to A, one
b to B, one c to C:

echo "abcde" |sed -e "s/a/A/" -e "s/b/B/" -e "s/c/C/"

The output of the preceding command is here:

ABCde

Obviously you can use the following sed expression that combines the
three substitutions into one substitution:

echo "abcde" |sed "s/abc/ABC/"

Nevertheless, the –e switch is useful when you need to perform more com-
plex substitutions that cannot be combined into a single substitution.

The “/” character is not the only delimiter that sed supports, which is use-
ful when strings contain the “/” character. For example, you can reverse the
order of /aa/bb/cc/ with this command:

echo "/aa/bb/cc" |sed -n "s#/aa/bb/cc#/cc/bb/aa/#p"

The output of the preceding sed command is here:

/cc/bb/aa/

The following examples illustrate how to use the “w” terminal command
instruction to write the sed output to both standard output and also to a
named file upper1 if the match succeeds:
echo "abcdefabc" |sed "s/abc/ABC/wupper1"
ABCdefabc

If you examine the contents of the text file upper1 you will see that it
contains the same string ABCdefabc that is displayed on the screen. This
two-stream behavior that we noticed earlier with the print (“p”) terminal com-
mand is unusual but sometimes useful. It is more common to simply send the
standard output to a file using the “>” syntax, as shown below (both syntaxes
work for a replacement operation), but in that case nothing is written to the
terminal screen. The above syntax allows both at the same time:
echo "abcdefabc" | sed "s/abc/ABC/" > upper1
echo "abcdefabc" | sed -n "s/abc/ABC/p" > upper1

Transforming Data with SED • 133

Listing 6.1 displays the contents of update2.sh that replace the occur-
rence of the string hello with the string goodbye in the files with the suffix
txt in the current directory.

Listing 6.1: update2.sh

for f in `ls *txt`
do
 newfile="${f}_new"
 cat $f | sed -n "s/hello/goodbye/gp" > $newfile
 mv $newfile $f
done

Listing 6.1 contains a for loop that iterates over the list of text files with the txt
suffix. For each such file, initialize the variable newfile that is created by append-
ing the string _new to the first file (represented by the variable f). Next, replace
the occurrences of hello with the string goodbye in each file f, and redirect
the output to $newfile. Finally, rename $newfile to $f using the mv command.

If you want to perform the update in matching files in all subdirectories,
replace the for statement with the following:

for f in `find . –print |grep "txt$"`

DATASETS WITH MULTIPLE DELIMITERS

Listing 6.2 displays the contents of the dataset delim1.txt that con-
tains multiple delimiters “|”, “:”, and “^”. Listing 6.3 displays the contents of
delimiter1.sh that replaces the various delimiters in delimiter1.txt
with a single comma delimiter “,”.

Listing 6.2: delimiter1.txt

1000|Jane:Edwards^Sales
2000|Tom:Smith^Development
3000|Dave:Del Ray^Marketing

Listing 6.3: delimiter1.sh

inputfile="delimiter1.txt"
cat $inputfile | sed -e 's/:/,/' -e 's/|/,/' -e
's/\^/,/'

As you can see, the second line in Listing 6.3 is simple yet very powerful:
you can extend the sed command with as many delimiters as you require in
order to create a dataset with a single delimiter between values. The output
from Listing 6.3 is shown here:
1000,Jane,Edwards,Sales
2000,Tom,Smith,Development
3000,Dave,Del Ray,Marketing

134 • Bash Command Line and Shell Scripts

Do keep in mind that this kind of transformation can be a bit unsafe unless
you have checked that your new delimiter is not already in use. For that a grep
command is useful (you want result to be zero):
grep -c ',' $inputfile
0

USEFUL SWITCHES IN SED

The three command-line switches -n, -e and -i are useful when you
specify them with the sed command.

As a review, specify -n when you want to suppress the printing of the basic
stream output:

sed -n 's/foo/bar/'

Specify -n and end with /p' when you want to match the result only:

sed -n 's/foo/bar/p'

We briefly touched on using -e to do multiple substitutions, but it can also
be used to combine other commands. This syntax lets us separate the com-
mands in the last example:

sed -n -e 's/foo/bar/' -e 'p'

A more advanced example that hints at the flexibility of sed involve the
insertion of a character after a fixed number of positions. For example, con-
sider the following code snippet:

echo "ABCDEFGHIJKLMNOPQRSTUVWXYZ" | sed "s/.\
{3\}/&\n/g"

The output from the preceding command is here:

ABCnDEFnGHInJKLnMNOnPQRnSTUnVWXnYZ

While the above example does not seem especially useful, consider a large
text stream with no line breaks (everything on one line). You could use some-
thing like this to insert newline characters, or something else to break the data
into easier to process chunks. Even if you are unfamiliar with the syntax, you
can understand exactly what sed is doing by looking at each element of the
command and comparing to the output. (Tip: sometimes you will encounter
very complex instructions for sed without any documentation in the code: try
not to be that person when coding.)

The output is changing after every three characters and we know dot (.)
matches any single character, so .{3} must be telling it to do that (with escape
slashes because brackets are a special character for sed, and it won’t interpret
it properly if we just leave it as .{3}. The “n” is clear enough in the replace-
ment column, so the “&\” must be somehow telling it to insert a character
instead of replacing it. The terminal g command of course means to repeat for
all occurrences that match the pattern. To clarify and confirm those guesses,
take what you could infer and perform an Internet search.

Transforming Data with SED • 135

WORKING WITH DATASETS

The sed utility is very useful for manipulating the contents of text files.
For example, you can print ranges of lines, subsets of lines that match a regular
expression. You can also perform search-and-replace on the lines in a text file.
This section contains examples that illustrate how to perform such functionality.

Printing Lines

Listing 6.4 displays the contents of test4.txt (doubled-spaced lines)
that is used for several examples in this section.

Listing 6.4: test4.txt

abc

def

abc

abc

The following code snippet prints the first 3 lines in test4.txt (we used
this syntax before when deleting rows, it is equally useful for printing):

cat test4.txt |sed -n "1,3p"

The output of the preceding code snippet is here (the second line is blank):
abc

def
The following code snippet prints lines 3 through 5 in test4.txt:

cat test4.txt |sed -n "3,5p"

The output of the preceding code snippet is here:
def

abc
The following code snippet takes advantage of the basic output stream and

the second match stream to duplicates every line (including blank lines) in
test4.txt:

cat test4.txt |sed "p"

The output of the preceding code snippet is here:
abc
abc

def
def

abc
abc

abc
abc

136 • Bash Command Line and Shell Scripts

The following code snippet prints the first three lines and then capitalizes
the string abc, duplicating ABC in the final output because we did not use
-n and did end with /p" in the second sed command. Remember that /p"
only prints the text that matched the sed command, whereas the basic output
prints the whole file, which is why def does not get duplicated:
cat test4.txt |sed -n "1,3p" |sed "s/abc/ABC/p"
ABC
ABC

def

Character Classes and sed

You can also use regular expressions with sed. As a reminder, here are the
contents of columns4.txt:
123 ONE TWO
456 three four
ONE TWO THREE FOUR
five 123 six
one two three
four five

As our first example involving sed and character classes, the following code
snippet illustrates how to match lines that contain lower case letters:

cat columns4.txt | sed -n '/[0-9]/p'

The output from the preceding snippet is here:
one two three
one two
one two three four
one
one three
one four

The following code snippet illustrates how to match lines that contain lower
case letters:

cat columns4.txt | sed -n '/[a-z]/p'

The output from the preceding snippet is here:
123 ONE TWO
456 three four
five 123 six

The following code snippet illustrates how to match lines that contain the
numbers 4, 5, or 6:

cat columns4.txt | sed -n '/[4-6]/p'

Transforming Data with SED • 137

The output from the preceding snippet is here:

456 three four

The following code snippet illustrates how to match lines that start with any
two characters followed by EE:

cat columns4.txt | sed -n '/^.\{2\}EE*/p'

The output from the preceding snippet is here:

ONE TWO THREE FOUR

Removing Control Characters

Listing 6.5 displays the contents of controlchars.txt that we used
before in Chapter 2. Control characters of any kind can be removed by sed
just like any other character.

Listing 6.5: controlchars.txt

1 carriage return^M
2 carriage return^M
1 tab character^I

The following command removes the carriage return and the tab characters
from the text file ControlChars.txt:

cat controlChars.txt | sed "s/^M//" |sed "s/ //"

You cannot see the tab character in the second sed command in the pre-
ceding code snippet; however, if you redirect the output to the file nocon-
trol1.txt, you can see that there are no embedded control characters in
this new file by typing the following command:

cat –t nocontrol1.txt

COUNTING WORDS IN A DATASET

Listing 6.6 displays the contents of wordcountinfile.sh that illustrates
how to combine various bash commands in order to count the words (and
their occurrences) in a file.

Listing 6.6: wordcountinfile.sh
The file is fed to the “tr” command, which changes upper case to lower case
sed removes commas and periods, then changes whitespace to newlines
uniq needs each word on its own line to count the words properly
uniq converts data to unique words and the number of times they

appeared
The final sort orders the data by the word count.

cat "$1" | xargs -n1 | tr A-Z a-z | \
sed -e 's/\.//g' -e 's/\,//g' -e 's/ /\ /g' | \
sort | uniq -c | sort -nr

138 • Bash Command Line and Shell Scripts

The previous command performs the following operations:
* List each word in each line of the file
* Shift characters to lower case
* Filter out periods and commas
* Change space between words to linefeed,
* Remove duplicates, prefix occurrence count and sort numerically

Launch the code in Listing 6.6 by specifying columns4.txt that is dis-
played earlier in this chapter (you can specify a different file):

wordcountinfile.sh columns4.txt

The preceding command displays the following output:
 3 two
 3 three
 3 one
 3 four
 2 five
 2 123
 1 six
 1 456

BACK REFERENCES IN SED

In the chapter describing grep, you learned about back references, and
similar functionality is available with the sed command. The main difference
is that the backreferences can also be used in the replacement section of the
command.

The following sed command matches the consecutive “a” letters and prints
four of them:

echo "aa" |sed -n "s#\([a-z]\)\1#\1\1\1\1#p"

The output of the preceding code snippet is here:

aaaa

The following sed command replaces all duplicate pairs of letters with the
letters aa:

echo "aa/bb/cc" |sed -n "s#\(aa\)/\(bb\)/\
(cc\)#\1/\1/\1/#p"

The output of the previous sed command is here (note the trailing “/”
character):

aa/aa/aa/

The following command inserts a comma in a four-digit number:

echo "1234" |sed -n "s@\([0-9]\)\([0-9]\)\([0-9]\)\
([0-9]\)@\1,\2\3\4@p"

Transforming Data with SED • 139

The preceding sed command uses the @ character as a delimiter. The char-
acter class [0-9] matches one single digit. Since there are four digits in the
input string 1234, the character class [0-9] is repeated 4 times, and the
value of each digit is stored in \1, \2, \3, and \4. The output from the pre-
ceding sed command is here:

1,234

A more general sed expression that can insert a comma in five-digit num-
bers is here:

echo "12345" | sed 's/\([0-9]\{3\}\)$/,\1/g;s/^,//'

The output of the preceding command is here:

12,345

DISPLAYING ONLY “PURE” WORDS IN A DATASET

In the previous chapter, we solved this task using the egrep command, and
this section shows you how to solve this task using the sed command.

For simplicity, let’s work with a text string and that way we can see the inter-
mediate results as we work toward the solution. The approach will be similar to
the code block shown earlier which counted unique words. Let’s initialize the
variable x as shown here:

x="ghi abc Ghi 123 #def5 123z"

The first step is to split x into one word per line by replacing space with
newlines:

echo $x |tr -s ' ' '\n'

The output is here:
ghi
abc
Ghi
123
#def5
123z

The second step is to invoke old with the regular expression ^[a-zA-
Z]+, which matches any string consisting of one or more upper case
and/or lower case letters (and nothing else). Note that the -E switch is
needed to parse this kind of regular expression in sed, as it uses some of
the newer/modern regular expression syntax not available when sed was
new.

echo $x |tr -s ' ' '\n' |sed -nE "s/(^[a-zA-Z][a-zA-
Z]*$)/\1/p"

140 • Bash Command Line and Shell Scripts

The output is here:
ghi
abc
Ghi

If you also want to sort the output and print only the unique words, pipe the
result to the sort and uniq commands:

echo $x |tr -s ' ' '\n' |sed -nE "s/(^[a-zA-Z][a-zA-
Z]*$)/\1/p"|sort|uniq

The output is here:
Ghi
abc
ghi

If you want to extract only the integers in the variable x, use this command:

echo $x |tr -s ' ' '\n' |sed -nE "s/(^[0-9][0-9]*$)/\1/
p" |sort|uniq

The output is here:

123

If you want to extract alphanumeric words from the variable x, use this
command:

echo $x |tr -s ' ' '\n' |sed -nE "s/(^[0-9a-zA-Z]
[0-9a-zA-Z]*$)/\1/p"|sort|uniq

The output is here:
123
123z
Ghi
abc
ghi

Now you can replace echo $x with a dataset in order to retrieve only
alphabetic strings from that dataset. Incidentally, it’s worth while for you to
compare the code snippets in this section with the corresponding section in
Chapter 5 that has essentially the same title as this section.

ONE LINE SED COMMANDS

This section is intended to show a lot of the more useful problems you can
solve with a single line of sed, and expose you to yet more switches and argu-
ments that they can mix and match to solve related tasks.

Moreover, sed supports other options (which are beyond the scope of
this book) to perform many other tasks, some of which are sophisticated
and correspondingly complex. If you encounter something that none of
the examples in this chapter cover, but seems like it is the sort of thing

Transforming Data with SED • 141

sed might do, the odds are decent that it does: an Internet search along
the lines of “how to do <xxx> in sed” will likely either point you in the
right direction or at least to an alternative bash command that will be
helpful.

Listing 6.7 displays the contents of data4.txt that is referenced in some
of the sed commands in this section. Note that some examples contain options
that have not been discussed earlier in this chapter: they are included in case
you need the desired functionality (and you can find more details by reading
online tutorials).

Listing 6.7: data4.txt

 hello world4
 hello world5 two
hello world6 three
 hello world4 four
line five
line six
line seven

Print the first line of data4.txt with this command:

sed q < data4.txt

The output is here:

 hello world3

Print the first three lines of data4.txt with this command:

sed 3q < data4.txt

The output is here:
 hello world4
 hello world5 two
hello world6 three

Print the last line of data4.txt with this command:

sed '$!d' < data4.txt

The output is here:

line seven

You can also use this snippet to print the last line:

sed -n '$p' < data4.txt

Print the last two lines of data4.txt with this command:

sed '$!N;$!D' <data4.txt

The output is here:
line six
line seven

142 • Bash Command Line and Shell Scripts

Suppress the lines in data4.txt that contain world with this command:

sed '/world/d' < data4.txt

The output is here:
line five
line six
line seven

Print duplicates of the lines in data4.txt that contain the word world
with this command:

sed '/world/p' < data4.txt

The output is here:
 hello world4
 hello world4
 hello world5 two
 hello world5 two
hello world6 three
hello world6 three
 hello world4 four
 hello world4 four
line five
line six
line seven

Print the fifth line of data4.txt with this command:

sed -n '5p' < data4.txt

The output is here:

line five

Print the contents of data4.txt and duplicate line five with this
command:

sed '5p' < data4.txt

The output is here:
 hello world4
 hello world5 two
hello world6 three
 hello world4 four
line five
line five
line six
line seven

Print lines four through six of data4.txt with this command:

sed –n '4,6p' < data4.txt

Transforming Data with SED • 143

The output is here:
 hello world4 four
line five
line six

Delete lines four through six of data4.txt with this command:

sed '4,6d' < data4.txt

The output is here:
 hello world4
 hello world5 two
hello world6 three
line seven

Delete the section of lines between world6 and six in data4.txt with
this command:

sed '/world6/,/six/d' < data4.txt

The output is here:
 hello world4
 hello world5 two
line seven

Print the section of lines between world6 and six of data4.txt with
this command:

sed -n '/world6/,/six/p' < data4.txt

The output is here:
hello world6 three
 hello world4 four
line five
line six

Print the contents of data4.txt and duplicate the section of lines
between world6 and six with this command:

sed '/world6/,/six/p' < data4.txt

The output is here:
 hello world4
 hello world5 two
hello world6 three
hello world6 three
 hello world4 four
 hello world4 four
line five
line five
line six

144 • Bash Command Line and Shell Scripts

line six
line seven

Delete the even-numbered lines in data4.txt with this command:

sed 'n;d;' <data4.txt

The output is here:
 hello world4
 hello world6 three
line five
line seven

Replace letters a through m with a “,” with this command:

sed "s/[a-m]/,/g" <data4.txt

The output is here:
 ,,,,o wor,,4
 ,,,,o wor,,5 two
 ,,,,o wor,,6 t,r,,
 ,,,,o wor,,4 ,our
,,n, ,,v,
,,n, s,x
,,n, s,v,n

Replace letters a through m with the characters “,@#” with this command:

sed "s/[a-m]/,@#/g" <data4.txt

The output is here:
 ,@#,@#,@#,@#o wor,@#,@#4
 ,@#,@#,@#,@#o wor,@#,@#5 two
 ,@#,@#,@#,@#o wor,@#,@#6 t,@#r,@#,@#
 ,@#,@#,@#,@#o wor,@#,@#4 ,@#our
,@#,@#n,@# ,@#,@#v,@#
,@#,@#n,@# s,@#x
,@#,@#n,@# s,@#v,@#n

The sed command does not recognize escape sequences such as \t,
which means that you must literally insert a tab on your console. In the case of
the bash shell, enter the control character ^V and then press the <TAB> key
in order to insert a <TAB> character.

Delete the tab characters in data4.txt with this command:

sed 's/ //g' <data4.txt

The output is here:
 hello world4
hello world5 two
 hello world6 three

Transforming Data with SED • 145

hello world4 four
line five
line six
line seven

Delete the tab characters and blank spaces in data4.txt with this
command:

sed 's/ //g' <data4.txt

The output is here:
helloworld4
helloworld5two
helloworld6three
helloworld4four
linefive
linesix
lineseven

Replace every line of data4.txt with the word pasta with this
command:

sed 's/.*/\pasta/' < data4.txt

The output is here:
pasta
pasta
pasta
pasta
pasta
pasta
pasta

Insert two blank lines after the third line and one blank line after the fifth
line in data4.txt with this command:

sed '3G;3G;5G' < data4.txt

The output is here:
 hello world4
 hello world5 two
 hello world6 three

 hello world4 four
line five

line six
line seven

146 • Bash Command Line and Shell Scripts

Insert a blank line after every line of data4.txt with this command:

sed G < data4.txt

The output is here:
 hello world4

 hello world5 two

 hello world6 three

 hello world4 four

line five

line six

line seven

Insert a blank line after every other line of data4.txt with this com-
mand:

sed n\;G < data4.txt

The output is here:
 hello world4
 hello world5 two

 hello world6 three
 hello world4 four

line five
line six

line seven

Reverse the lines in data4.txt with this command:

sed '1! G; h;$!d' < data4.txt

The output of the preceding sed command is here:
line seven
line six
line five
 hello world4 four
 hello world6 three
 hello world5 two
 hello world4

Transforming Data with SED • 147

SUMMARY

This chapter introduced you to the sed utility, illustrating the basic tasks
of data transformation: allowing additions, removal, and mutation of data by
matching individual patterns or matching the position of the rows in a file, or a
combination of the two.

Moreover, we showed that sed not only uses regular expressions to match
data, similar to the grep command but can also use regular expressions to
describe how to transform the data. Finally, there was a list of examples show-
ing both the versatility of the sed command and hopefully communicating the
sense that it is an even more flexible and powerful utility than we can show in
a single chapter.

CHAPTER 7
WORKING WITH AWK

This chapter introduces you to the awk command, which is a highly ver-
satile utility for manipulating data and restructuring datasets. In fact, this util-
ity is so versatile that entire books have been written about the awk utility.
Awk is essentially an entire programming language in a single command, which
accepts standard input, gives standard output and uses regular expressions and
metacharacters in the same way other bash commands do. This lets you com-
bine awk with other expressions and do almost anything, at the cost of adding
complexity to a command string that may already be doing quite a lot already. It
is almost always worthwhile to add a comment when using awk, it is so versatile
that it won’t be clear which of the many features you are using at a glance.

The first part of this chapter provides a very brief introduction of the awk
command. You will learn about some built-in variables for awk, and also how to
manipulate string variables using awk. Note that some of these string-related
examples can also be handled using other bash commands.

The second part of this chapter shows you conditional logic, while loops,
and for loops in awk in order to manipulate the rows and columns in datasets.
This section also shows you how to delete lines and merge lines in datasets, and
also how to print the contents of a file as a single line of text. You will see how
to “join” lines and groups of lines in datasets.

The third section contains code samples that involve metacharacters (intro-
duced in Chapter 1) and character sets in awk commands. You will also see
how to use conditional logic in awk commands in order to determine whether
or not to print a line of text.

The fourth section illustrates how to “split” a text string that contains mul-
tiple “.” characters as a delimiter, followed by examples of awk to perform
numeric calculations (such as addition, subtraction, multiplication, and divi-
sion) in files containing numeric data. This section also shows you various

150 • Bash Command Line and Shell Scripts

numeric functions that are available in awk, and also how to print text in a
fixed set of columns.

The fifth section explains how to align columns in a dataset and also how to
align and merge columns in a dataset. You will see how to delete columns, how
to select a subset of columns from a dataset, and how to work with multiline
records in datasets. This section contains some one-line awk commands that
can be useful for manipulating the contents of datasets.

The final section of this chapter has a pair of use cases involving nested
quotes and date formats in structured data sets.

THE AWK COMMAND

The awk (Aho, Weinberger, and Kernighan) command has C-like syntax
and you can use this utility to perform very complex operations on numbers
and text strings.

As a side comment, there is also the gawk command that is GNU awk,
as well as the nawk command, which is the “new” awk (neither command
is discussed in this book). One advantage of nawk is that it allows you to set
externally the value of an internal variable.

Built-in Variables That Control awk

The awk command provides variables that you can change from their
default values in order to control how awk performs operations. Examples of
such variables (and their default values) include: FS (" "), RS ("\n"),
OFS (" "), ORS ("\n") , SUBSEP, and IGNORECASE. The variables
FS and RS specify the field separator and record separator, whereas the vari-
ables OFS and ORS specify the output field separator and the output record
separator, respectively.

You can think of the field separators as delimiters/IFS we used in other
commands earlier. The record separators behave in a way similar to how sed
treats individual lines – for example, sed can match or delete a range of lines
instead of matching or deleting something that matches a regular expression
(and the default awk record separator is the newline character, so by default
awk and sed have similar ability to manipulate and reference lines in a text file).

As a simple example, you can print a blank line after each line of a file by
changing the ORS, from the default of one newline to two newlines, as shown
here:

cat columns.txt | awk 'BEGIN { ORS ="\n\n" } ;
{ print $0 }'

Other built-in variables include FILENAME (the name of the file that awk
is currently reading), FNR (the current record number in the current file), NF
(the number of fields in the current input record), and NR (the number of input
records awk has processed since the beginning of the program’s execution).

Working with Awk • 151

Consult the online documentation for additional information regarding
these (and other) arguments for the awk command.

How Does the awk Command Work?

The awk command reads the input files one record at a time (by default,
one record is one line). If a record matches a pattern, then an action is per-
formed (otherwise no action is performed). If the search pattern is not given,
then awk performs the given actions for each record of the input. The default
behavior, if no action is given, is to print all the records that match the given
pattern. Finally, empty brackets without any action does nothing; i.e., it will
not perform the default printing operation. Note that each statement in actions
should be delimited by a semicolon.

In order to make the preceding paragraph more concrete, here are some
simple examples involving text strings and the awk command (the results are
displayed after each code snippet). The -F switch sets the field separator to
whatever follows it, in this case a space. Switches will often provide a shortcut
to an action that normally needs a command inside a ‘BEGIN{} block):
x="a b c d e"
echo $x |awk -F" " '{print $1}’
a
echo $x |awk -F" " '{print NF}’
5
echo $x |awk -F" " '{print $0}’
a b c d e
echo $x |awk -F" " '{print $3, $1}’
c a

Now let’s change the FS (record separator) to an empty string to calculate
the length of a string, this time using the BEGIN{} syntax:

echo "abc" | awk 'BEGIN { FS = "" } ; { print NF }'
3

The following example illustrates several equivalent ways to specify test.
txt as the input file for an awk command:
awk < test.txt '{ print $1 }'
awk '{ print $1 }' < test.txt
awk '{ print $1 }' test.txt

Yet another way is shown here (but as we’ve discussed earlier, it can be inef-
ficient, so only do it if the cat is adding value in some way):

cat test.txt | awk '{ print $1 }'

This simple example of four ways to do the same task illustrates why
commenting awk calls of any complexity is almost always a good idea. The
next person to look at your code may not know/remember the syntax you
are using.

152 • Bash Command Line and Shell Scripts

ALIGNING TEXT WITH THE PRINTF COMMAND

Since awk is a programming language inside a single command, it also has
its own way of producing formatted output via the printf command.

Listing 7.1 displays the contents of columns2.txt and Listing 7.2 dis-
plays the contents of the shell script AlignColumns1.sh that shows you
how to align the columns in a text file.

Listing 7.1: columns2.txt

one two
three four
one two three four
five six
one two three
four five

Listing 7.2: AlignColumns1.sh

awk '
{
 # left-align $1 on a 10-char column
 # right-align $2 on a 10-char column
 # right-align $3 on a 10-char column
 # right-align $4 on a 10-char column
 printf("%-10s*%10s*%10s*%10s*\n", $1, $2, $3, $4)
}
' columns2.txt

Listing 7.2 contains a printf() statement that displays the first four fields
of each row in the file columns2.txt, where each field is 10 characters wide.

The output from launching the code in Listing 7.2 is here:
one * two* * *
three * four* * *
one * two* three* four*
five * six* * *
one * two* three* *
four * five* * *

Keep in mind that printf is reasonably powerful and as such has its own
syntax, which is beyond the scope of this chapter. A search online can find the
manual pages and also discussions of “how to do X with printf().”

CONDITIONAL LOGIC AND CONTROL STATEMENTS

Like other programming languages, awk provides support for conditional
logic (if/else) and control statements (for/while loops). awk is the only way to

Working with Awk • 153

put conditional logic inside a piped command stream without creating, install-
ing and adding to the path a custom executable shell script. The following code
block shows you how to use if/else logic:
echo "" | awk '
BEGIN { x = 10 }
{
 if (x % 2 == 0) }
 print "x is even"
 }
 else }
 print "x is odd"
 }
}
'

The preceding code block initializes the variable x with the value 10
and prints “x is even” if x is divisible by 2, otherwise it prints “x is
odd”.

The while Statement

The following code block illustrates how to use a while loop in awk:
echo "" | awk '
{
 x = 0
 while(x < 4) {
 print "x:",x
 x = x + 1
 }
}
'

The preceding code block generates the following output:
x:0
x:1
x:2
x:3

The following code block illustrates how to use a do while loop in awk:
echo "" | awk '
{
 x = 0

 do {
 print "x:",x

154 • Bash Command Line and Shell Scripts

 x = x + 1
 } while(x < 4)
}
'

The preceding code block generates the following output:
x:0
x:1
x:2
x:3

A for loop in awk

Listing 7.3 displays the contents of Loop.sh that illustrates how to print a
list of numbers in a loop. Note that “i++” is another way of writing “i=i+1”
in awk.

Listing 7.3: Loop.sh

awk '
BEGIN {
 for(i=0; i<5; i++) {
 printf("%3d", i)
 }
}
'

Listing 7.3 contains a for loop that prints numbers on the same line via the
printf() statement. The output from Listing 7.3 is here:

0 1 2 3 4

A for loop with a break Statement

The following code block illustrates how to use a break statement in a for
loop in awk:
echo "" | awk '
{
 for(x=1; x<4; x++) {
 print "x:",x
 if(x == 2) {
 break;
 }
 }
}
'

Working with Awk • 155

The preceding code block prints output only until the variable x has the
value 2, after which the loop exits (because of the break inside the conditional
logic). The following output is displayed:

x:1

The next and continue Statements

The following code snippet illustrates how to use next and continue in
a for loop in awk:
awk '
{
 /expression1/ { var1 = 5; next }
 /expression2/ { var2 = 7; next }
 /expression3/ { continue }
 // some other code block here
' somefile

When the current line matches expression1, then var1 is assigned
the value 5 and awk reads the next input line: hence, expression2 and
expression3 will not be tested. If expression1 does not match and
expression2 does match, then var2 is assigned the value 7 and then
awk will read the next input line. If only expression3 results in a positive
match, then awk skips the remaining block of code and processes the next
input line.

DELETING ALTERNATE LINES IN DATASETS

Listing 7.4 displays the contents of linepairs.csv and Listing 7.5 dis-
plays the contents of deletelines.sh that illustrates how to print alternat-
ing lines from the dataset linepairs.csv that have exactly two columns.

Listing 7.4: linepairs.csv

a,b,c,d
e,f,g,h
1,2,3,4
5,6,7,8

Listing 7.5: deletelines.sh

inputfile="linepairs.csv"
outputfile="linepairsdeleted.csv"
awk ' NR%2 {printf "%s", $0; print ""; next}' <
$inputfile > $outputfile

Listing 7.5 checks if the current record number NR is divisible by 2, in
which case it prints the current line and skips the next line in the dataset.

156 • Bash Command Line and Shell Scripts

The output is redirected to the specified output file, the contents of which
are here:
a,b,c,d
1,2,3,4

A slightly more common task involves merging consecutive lines, which is
the topic of the next section.

MERGING LINES IN DATASETS

Listing 7.6 displays the contents of columns.txt and Listing 7.7 displays
the contents of ColumnCount1.sh that illustrates how to print the lines
from the text file columns.txt that have exactly two columns.

Listing 7.6: columns.txt

one two three
one two
one two three four
one
one three
one four

Listing 7.7: ColumnCount1.sh

awk '
{
 if(NF == 2) { print $0 }
}
' columns.txt

Listing 7.7 is straightforward: if the current record number is even, then the
current line is printed (i.e., odd-numbered rows are skipped). The output from
launching the code in Listing 7.7 is here:
one two
one three
one four

If you want to display the lines that do not contain 2 columns, use the fol-
lowing code snippet:

if(NF != 2) { print $0 }

Printing File Contents as a Single Line

The contents of test4.txt are here (note the blank lines):
abc

def

Working with Awk • 157

abc

abc
The following code snippet illustrates how to print the contents of test4.

txt as a single line:

awk '{printf("%s", $0)}' test4.txt

The output of the preceding code snippet is shown below. See if you can
tell what is happening before reading the explanation in the next paragraph:

Abcdefabcabc

Explanation: %s is the record separator syntax for printf, and the end
quote (“) that immediately follows %s means the record separator is the empty
field “”. Our default record separator for awk is /n (newline), what the printf
is doing is stripping out all the newlines. The blank rows will vanish entirely
because they only consist of a new line. Hence, all the lines of text are merged
together without a newline character between them. Replace %s with "%s"
and you will still see the output as a single line, but with a space between con-
secutive lines of the text file. Now replace "%s" with "%s\n" and the output
will be identical (in terms of content and layout) as the text file.

Notice how the following comment helps the comprehension of the code
snippet:

Merging all text into a single line by removing the newlines

awk '{printf("%s", $0)}' test4.txt

Joining Groups of Lines in a Text File

Listing 7.8 displays the contents of digits.txt and Listing 7.9 displays
the contents of digits.sh that “joins” three consecutive lines of text in the
file digits.txt.

Listing 7.8: digits.txt

1
2
3
4
5
6
7
8
9

Listing 7.9: digits.sh

awk -F" " '{
 printf("%d",$0)

158 • Bash Command Line and Shell Scripts

 if(NR % 3 == 0) { printf("\n") }
}' digits.txt

Listing 7.9 prints three consecutive lines of text on the same line, after
which a linefeed is printed. This has the effect of “joining” every three consecu-
tive lines of text. The output from launching digits.sh is here:
123
456
789

Joining Alternate Lines in a Text File

Listing 7.10 displays the contents of columns2.txt and Listing 7.11 dis-
plays the contents of JoinLines.sh that “joins” two consecutive lines of text
in the file columns2.txt.

Listing 7.10: columns2.txt

one two
three four
one two three four
five six
one two three
four five

Listing 7.11: JoinLines.sh

awk '
{
 printf("%s",$0)
 if($1 !~ /one/) { print " " }
}
' columns2.txt

The output from launching Listing 7.11 is here:
one two three four
one two three four five six
one two three four five

Notice that the code in Listing 7.11 depends on the presence of the string
“one” as the first field, which appears in alternating lines of text in columns2.
txt. Hence, the fact that every line in the output starts with the string one is
just a coincidence.

Listing 7.12 illustrates how to merge consecutive pairs of lines without
specifying a particular string.

Listing 7.12: JoinLines2.sh

awk '
BEGIN { count = 0 }

Working with Awk • 159

{
 printf("%s",$0)
 if(++count % 2 == 0) { print " " }
} columns2.txt

Yet another way to “join” consecutive lines is shown in Listing 7.13,
where the input file and output file refer to files that you can populate with
data. This is another example of an awk command that might be puzzling if
encountered in a program without a comment. It is doing exactly the same
thing as Listing 7.12, but its purpose is less obvious because of the more
compact syntax.

Listing 7.13: JoinLines2.sh

inputfile="linepairs.csv"
outputfile="linepairsjoined.csv"
awk ' NR%2 {printf "%s,", $0; next;}1' < $inputfile>
$outputfile

MATCHING WITH METACHARACTERS AND CHARACTER SETS

If we can match a simple pattern, by now you probably expect that you can
also match a regular expression, just as we did in grep and sed. Listing 7.14
displays the contents of Patterns1.sh that uses metacharacters to match
the beginning and the end of a line of text in the file columns2.txt.

Listing 7.14: Patterns1.sh

awk '
 /^f/ { print $1 }
 /two $/ { print $1 }
' columns2.txt

The output from launching Listing 7.14 is here:
one
five
four

Listing 7.15 displays the contents of RemoveColumns.txt with lines
that contain a different number of columns.

Listing 7.15: columns3.txt

123 one two
456 three four
one two three four
five 123 six
one two three
four five

160 • Bash Command Line and Shell Scripts

Listing 7.16 displays the contents of MatchAlpha1.sh that matches text
lines that start with alphabetic characters as well as lines that contain numeric
strings in the second column.

Listing 7.16: MatchAlpha1.sh

awk '
{
 if($0 ~ /^[0-9]/) { print $0 }
 if($0 ~ /^[a-z]+ [0-9]/) { print $0 }
}
' columns3.txt

The output from Listing 7.16 is here:
123 one two
456 three four
five 123 six

PRINTING LINES USING CONDITIONAL LOGIC

Listing 7.17 displays the contents of products.txt that contains three
columns of information.

Listing 7.17: products.txt

MobilePhone 400 new
Tablet 300 new
Tablet 300 used
MobilePhone 200 used
MobilePhone 100 used

The following code snippet prints the lines of text in products.txt
whose second column is greater than 300:

awk '$2 > 300' products.txt

The output of the preceding code snippet is here:

MobilePhone 400 new

The following code snippet prints the lines of text in products.txt
whose product is “new”:

awk '($3 == "new")' products.txt

The output of the preceding code snippet is here:
MobilePhone 400 new
Tablet 300 new

The following code snippet prints the first and third columns of the lines of
text in products.txt whose cost equals 300:

awk ' $2 == 300 { print $1, $3 }' products.txt

Working with Awk • 161

The output of the preceding code snippet is here:
Tablet new
Tablet used

The following code snippet prints the first and third columns of the lines of
text in products.txt that start with the string Tablet:

awk '/^Tablet/ { print $1, $3 }' products.txt

The output of the preceding code snippet is here:
Tablet new
Tablet used

SPLITTING FILENAMES WITH AWK

Listing 7.18 displays the contents of SplitFilename2.sh that illus-
trates how to split a filename containing the “.” character in order to increment
the numeric value of one of the components of the filename. Note that this
code only works for a filename with exactly the expected syntax. It is possible
to write more complex code to count the number of segments, or alternately to
just say “change the field right before the .zip,” which would only require that
the filename had a format matching the final two sections (<anystructure>.
number.zip).

Listing 7.18: SplitFilename2.sh

echo "05.20.144q.az.1.zip" | awk -F"." '
{
 f5=$5 + 1
 printf("%s.%s.%s.%s.%s.%s",$1,$2,$3,$4,f5,$6)
}'

The output from Listing 7.18 is here:

05.20.144q.az.2.zip

WORKING WITH POSTFIX ARITHMETIC OPERATORS

Listing 7.19 displays the contents of mixednumbers.txt that contains
postfix operators, which means numbers where the negative (and/or positive)
sign appears at the end of a column value instead of the beginning of the
number.

Listing 7.19: mixednumbers.txt

324.000-|10|983.000-
453.000-|30|298.000-
783.000-|20|347.000-

Listing 7.20 displays the contents of AddSubtract1.sh that illustrates
how to add the rows of numbers in Listing 7.19.

162 • Bash Command Line and Shell Scripts

Listing 7.20: AddSubtract1.sh

myFile="mixednumbers.txt"

awk -F"|" '
BEGIN { line = 0; total = 0 }
{
 split($1, arr, "-")
 f1 = arr[1]
 if($1 ~ /-/) { f1 = -f1 }
 line += f1

 split($2, arr, "-")
 f2 = arr[1]
 if($2 ~ /-/) { f2 = -f2 }
 line += f2

 split($3, arr, "-")
 f3 = arr[1]
 if($3 ~ /-/) { f3 = -f3 }
 line += f3

 printf("f1: %d f2: %d f3: %d line: %d\n",f1,f2,f3,
line)
 total += line
 line = 0
}
END { print "Total: ",total }
' $myfile

The output from Listing 7.20 is shown below. See if you can work out what
the code is doing before reading the explanation that follows:
f1: -324 f2: 10 f3: -983 line: -1297
f1: -453 f2: 30 f3: -298 line: -721
f1: -783 f2: 20 f3: -347 line: -1110
Total: -3128

The code assumes we know the format of the file. The split function turns
each field record into a length two vector, where the first position is a number,
and the second position either an empty value or a dash: then capture the first
position number into a variable. The if statement just sees if the original field
has a dash in it. If the field has a dash, then the numeric variable is made nega-
tive, otherwise, it is left alone. Then it adds the line up.

NUMERIC FUNCTIONS IN AWK

The int(x) function returns the integer portion of a number. If the num-
ber is not already an integer, it falls between two integers. Of the two possible

Working with Awk • 163

integers, the function will return the one closest to zero. This is different from
a rounding function, which chooses the closer integer.

For example, int(3) is 3, int(3.9) is 3, int(-3.9) is -3, and int
(-3) is -3 as well. An example of the int(x) function in an awk command is here:
awk 'BEGIN {
 print int(3.534);
 print int(4);
 print int(-5.223);
 print int(-5);
}'

The output is here:
3
4
-5
-5

The exp(x) function gives you the exponential of x, or reports an error
if x is out of range. The range of values x can have depends on your machine’s
floating-point representation.
awk 'BEGIN{
 print exp(123434346);
 print exp(0);
 print exp(-12);
}'

The output is here:
inf
1
6.14421e-06

The log(x) function gives you the natural logarithm of x, if x is positive;
otherwise, it reports an error (inf means infinity and nan in output means
“not a number”).
awk 'BEGIN{
 print log(12);
 print log(0);
 print log(1);
 print log(-1);
}'

The output is here:
2.48491
-inf
0
nan

164 • Bash Command Line and Shell Scripts

The sin(x) function gives you the sine of x and cos(x) gives you the
cosine of x, with x in radians:
awk 'BEGIN {
 print cos(90);
 print cos(45);
}'

The output is here:
-0.448074
0.525322

The rand() function gives you a random number. The values of rand()
are uniformly-distributed between 0 and 1: the value is never 0 and never 1.
However, if you want to generate random integers, this user-defined function
obtains a random non-negative integer less than n:
function randint(n) {
 return int(n * rand())
}

The product produces a random real number greater than 0 and less than n.
We then make it an integer (using int) between 0 and n - 1.

Here is an example where a similar function is used to produce random
integers between 1 and n:
awk '
Function to roll a simulated die.
function roll(n) { return 1 + int(rand() * n) }
Roll 3 six-sided dice and print total number of
points.
{
 printf("%d points\n", roll(6)+roll(6)+roll(6))
}'

Note that rand starts generating numbers from the same point (or “seed”)
each time awk is invoked. Hence, a program will produce the same results
each time it is launched. If you want a program to do different things each time
it is used, you must change the seed to a value that will be different in each run.

Use the srand(x) function to set the starting point, or seed, for gener-
ating random numbers to the value x. Each seed value leads to a particular
sequence of “random” numbers. Thus, if you set the seed to the same value
a second time, you will get the same sequence of “random” numbers again. If
you omit the argument x, as in srand(), then the current date and time of
day are used for a seed. This is how to obtain random numbers that are truly
unpredictable. The return value of srand()is the previous seed. This makes
it easy to keep track of the seeds for use in consistently reproducing sequences
of random numbers.

Working with Awk • 165

The time() function (not in all versions of awk) returns the current time
in seconds since January 1, 1970. The function ctime (not in all versions of
awk) takes a numeric argument in seconds and returns a string representing
the corresponding date, suitable for printing or further processing.

The sqrt(x) function gives you the positive square root of x. It reports an
error if x is negative. Thus, sqrt(4) is 2.
awk 'BEGIN{
 print sqrt(16);
 print sqrt(0);
 print sqrt(-12);
}'

The output is here:
4
0
nan

ONE LINE AWK COMMANDS

The code snippets in this section reference the text file short1.txt,
which you can populate with any data of your choice.

The following code snippet prints each line preceded by the number of
fields in each line:

awk '{print NF ":" $0}' short1.txt

Print the right-most field in each line:

awk '{print $NF}' short1.txt

Print the lines that contain more than 2 fields:

awk '{if(NF > 2) print }' short1.txt

Print the value of the right-most field if the current line contains more than
2 fields:

awk '{if(NF > 2) print $NF }' short1.txt

Remove leading and trailing whitespaces:

echo « a b c « | awk '{gsub(/^[\t]+|[
\t]+$/,»»);print}'

Print the first and third fields in reverse order for the lines that contain at
least 3 fields:

awk '{if(NF > 2) print $3, $1}' short1.txt

Print the lines that contain the string one:

awk '{if(/one/) print }' *txt

As you can see from the preceding code snippets, it’s easy to extract infor-
mation or subsets of rows and columns from text files using simple conditional
logic and built-in variables in the awk command.

166 • Bash Command Line and Shell Scripts

USEFUL SHORT AWK SCRIPTS

This section contains a set of short awk -based scripts for performing vari-
ous operations. Some of these scripts can also be used in other shell scripts to
perform more complex operations. Listing 7.21 displays the contents of the file
data.txt that is used in various code samples in this section.

Listing 7.21: data.txt

this is line one that contains more than 40 characters
this is line two
this is line three that also contains more than 40
characters
four

this is line six and the preceding line is empty

line eight and the preceding line is also empty

The following code snippet prints every line that is longer than 40 charac-
ters:

awk 'length($0) > 40' data.txt

Now print the length of the longest line in data.txt:

awk '{ if (x < length()) x = length() }
END { print "maximum line length is " x }' < data.txt

The input is processed to change tabs into spaces, so the widths compared
are actually the right-margin columns.

Print every line that has at least one field:

awk 'NF > 0' data.txt

The preceding code snippet illustrates an easy way to delete blank lines
from a file (or rather, to create a new file similar to the old file but from which
the blank lines have been removed).

Print seven random numbers from 0 to 100, inclusive:
awk 'BEGIN { for (i = 1; i <= 7; i++)
print int(101 * rand()) }'

Count the lines in a file:

awk 'END { print NR }' < data.txt

Print the even-numbered lines in the data file:

awk 'NR % 2 == 0' data.txt

If you use the expression 'NR % 2 == 1' in the previous code snippet,
the program would print the odd-numbered lines.

Insert a duplicate of every line in a text file:

awk '{print $0, '\n', $0}' < data.txt

Working with Awk • 167

Insert a duplicate of every line in a text file and also remove blank lines:

awk '{print $0, "\n", $0}' < data.txt | awk 'NF > 0'

Insert a blank line after every line in a text file:

awk '{print $0, "\n"}' < data.txt

PRINTING THE WORDS IN A TEXT STRING IN AWK

Listing 7.22 displays the contents of Fields2.sh that illustrates how to
print the words in a text string using the awk command.

Listing 7.22: Fields2.sh

echo "a b c d e"| awk '
{
 for(i=1; i<=NF; i++) {
 print "Field",i,":",$i
 }
}
'

The output from Listing 7.22 is here:
Field 1 : a
Field 2 : b
Field 3 : c
Field 4 : d
Field 5 : e

COUNT OCCURRENCES OF A STRING IN SPECIFIC ROWS

Listing 7.23 and Listing 7.24 display the contents data1.csv and data2.
csv, respectively, and Listing 7.25 displays the contents of checkrows.sh
that illustrates how to count the number of occurrences of the string “past” in
column 3 in rows 2, 5, and 7.

Listing 7.23: data1.csv

in,the,past,or,the,present
for,the,past,or,the,present
in,the,past,or,the,present
for,the,paste,or,the,future
in,the,past,or,the,present
completely,unrelated,line1
in,the,past,or,the,present
completely,unrelated,line2

168 • Bash Command Line and Shell Scripts

Listing 7.24: data2.csv

in,the,past,or,the,present
completely,unrelated,line1
for,the,past,or,the,present
completely,unrelated,line2
for,the,paste,or,the,future
in,the,past,or,the,present
in,the,past,or,the,present
completely,unrelated,line3

Listing 7.25: checkrows.sh

files="`ls data*.csv| tr '\n' ' '`"
echo "List of files: $files"

awk -F"," '
(FNR==2 || FNR==5 || FNR==7) {
 if ($3 ~ "past") { count++ }
}
END {
 printf "past: matched %d times (INEXACT) ", count
 printf "in field 3 in lines 2/5/7\n"
}' data*.csv

Listing 7.25 looks for occurrences in the string past in columns 2, 5, and 7
because of the following code snippet:
(FNR==2 || FNR==5 || FNR==7) {
 if ($3 ~ "past") { count++ }
}

If a match occurs, then the value of count is incremented. The END block
reports the number of times that the string past was found in columns 2, 5, and
7. Note that strings such as paste and pasted will match the string past.
The output from Listing 7.25 is here:
List of files: data1.csv data2.csv
past: matched 5 times (INEXACT) in field 3 in lines
2/5/7

The shell script checkrows2.sh replaces the term $3 ~ "past" with
the term $3 == "past" in checkrows.sh in order to check for exact
matches, which produces the following output:
List of files: data1.csv data2.csv
past: matched 4 times (EXACT) in field 3 in lines
2/5/7

Working with Awk • 169

PRINTING A STRING IN A FIXED NUMBER OF COLUMNS

Listing 7.26 displays the contents of FixedFieldCount1.sh
that illustrates how to print the words in a text string using the awk com-
mand.

Listing 7.26: FixedFieldCount1.sh

echo "aa bb cc dd ee ff gg hh"| awk '
BEGIN { colCount = 3 }
{

 for(i=1; i<=NF; i++) {
 printf("%s ", $i)
 if(i % colCount == 0) {
 print " "
 }
 }
}
'

The output from Listing 7.26 is here:
aa bb cc
dd ee ff
gg hh

PRINTING A DATASET IN A FIXED NUMBER OF COLUMNS

Listing 7.27 displays the contents of VariableColumns.txt with lines
of text that contain a different number of columns.

Listing 7.27: VariableColumns.txt

this is line one
this is line number one
this is the third and final line

Listing 7.28 displays the contents of Fields3.sh that illustrates how to
print the words in a text string using the awk command.

Listing 7.28: Fields3.sh

awk '{printf("%s ", $0)}' | awk '
BEGIN { columnCount = 3 }
{
 for(i=1; i<=NF; i++) {
 printf("%s ", $i)
 if(i % columnCount == 0)

170 • Bash Command Line and Shell Scripts

 print " "
 }
}
' VariableColumns.txt

The output from Listing 7.28 is here:
this is line
one this is
line number one
this is the
third and final
line

ALIGNING COLUMNS IN DATASETS

If you have read the preceding two examples, the code sample in this sec-
tion is easy to understand: you will see how to realign columns of data that are
correct in terms of their content, but have been placed in different rows (and
therefore are misaligned). Listing 7.29 displays the contents of mixed-data.
csv with misaligned data values. In addition, the first line and final line in
Listing 7.29 are empty lines, which will be removed by the shell script in this
section.

Listing 7.29: mixed-data.csv

Sara, Jones, 1000, CA, Sally, Smith, 2000, IL,
Dave, Jones, 3000, FL, John, Jones,
4000, CA,
Dave, Jones, 5000, NY, Mike,
Jones, 6000, NY, Tony, Jones, 7000, WA

Listing 7.30 displays the contents of mixed-data.sh that illustrates how
to realign the dataset in Listing 7.29.

Listing 7.30: mixed-data.sh

#---
1) remove blank lines
2) remove line feeds
3) print a LF after every fourth field
4) remove trailing ',’ from each row
#---

inputfile="mixed-data.csv"

grep -v "^$" $inputfile |awk -F"," '{printf("%s",$0)}'
| awk '
BEGIN { columnCount = 4 }

Working with Awk • 171

{
 for(i=1; i<=NF; i++) {
 printf("%s ", $i)
 if(i % columnCount == 0) { print "" }
 }
}' > temp-columns

4) remove trailing ',' from output:
cat temp-columns | sed 's/, $//' | sed 's/ $//' >
 $outputfile

Listing 7.30 starts with a grep command that removes blank lines, fol-
lowed by an awk command that prints the rows of the dataset as a single line
of text. The second awk command initializes the columnCount variable with
the value 4 in the BEGIN block, followed by a for loop that iterates through
the input fields. After four fields are printed on the same output line, a linefeed
is printed, which has the effect of realigning the input dataset as an output
dataset consisting of rows that have four fields. The output from Listing 7.30
is here:
Sara, Jones, 1000, CA
Sally, Smith, 2000, IL
Dave, Jones, 3000, FL
John, Jones, 4000, CA
Dave, Jones, 5000, NY
Mike, Jones, 6000, NY
Tony, Jones, 7000, WA

ALIGNING COLUMNS AND MULTIPLE ROWS IN DATASETS

The preceding section showed you how to re-align a dataset so that each row
contains the same number of columns and also represents a single data record.
The code sample in this section illustrates how to realign columns of data that
are correct in terms of their content, and also place two records in each line
of the new dataset. Listing 7.31 displays the contents of mixed-data2.csv
with misaligned data values, followed by Listing 7.32 that displays the contents
of aligned-data2.csv with the correctly formatted dataset.

Listing 7.31: mixed-data2.csv

Sara, Jones, 1000, CA, Sally, Smith, 2000, IL,
Dave, Jones, 3000, FL, John, Jones,
4000, CA,
Dave, Jones, 5000, NY, Mike,
Jones, 6000, NY, Tony, Jones, 7000, WA

172 • Bash Command Line and Shell Scripts

Listing 7.32: aligned-data2.csv

Sara, Jones, 1000, CA, Sally, Smith, 2000, IL
Dave, Jones, 3000, FL, John, Jones, 4000, CA
Dave, Jones, 5000, NY, Mike, Jones, 6000, NY
Tony, Jones, 7000, WA

Listing 7.33 displays the contents of mixed-data2.sh that illustrates
how to realign the dataset in Listing 7.31.

Listing 7.33: mixed-data2.sh

#---
1) remove blank lines
2) remove line feeds
3) print a LF after every 8 fields
4) remove trailing ',’ from each row
#---
inputfile="mixed-data2.txt"
outputfile="aligned-data2.txt"

grep -v "^$" $inputfile |awk -F"," '{printf("%s",$0)}'
| awk '
BEGIN { columnCount = 4; rowCount = 2; currRow = 0 }
{
 for(i=1; i<=NF; i++) {
 printf("%s ", $i)

 if(i % columnCount == 0) { ++currRow }
 if(currRow > 0 && currRow % rowCount == 0) {currRow = 0; print

“”}
 }
}’ > temp-columns

4) remove trailing ',’ from output:
cat temp-columns | sed 's/, $//' | sed 's/ $//' >
$outputfile

Listing 7.33 is very similar to Listing 7.30. The key idea is to print a linefeed
character after a pair of “normal” records have been processed, which is imple-
mented via the code that is shown in bold in Listing 7.33.

Now you can generalize Listing 7.33 very easily by changing the initial value
of the rowCount variable to any other positive integer, and the code will work
correctly without any further modification. For example, if you initialize row-
Count to the value 5, then every row in the new dataset (with the possible
exception of the final output row) will contain 5 “normal” data records.

Working with Awk • 173

REMOVING A COLUMN FROM A TEXT FILE

Listing 7.34 displays the contents of VariableColumns.txt with lines
of text that contain a different number of columns.

Listing 7.34: VariableColumns.txt

this is line one
this is line number one
this is the third and final line

Listing 7.35 displays the contents of RemoveColumn.sh that removes the
first column from a text file.

Listing 7.35: RemoveColumn.sh

awk '{ for (i=2; i<=NF; i++) printf "%s ", $i; printf
"\n"; }' products.txt

The loop is between 2 and NF, which iterates over all the fields except for
the first field. In addition, printf explicitly adds newlines. The output of the
preceding code snippet is here:
400 new
300 new
300 used
200 used
100 used

SUBSETS OF COLUMNS ALIGNED ROWS IN DATASETS

Listing 7.35 showed you how to align the rows of a dataset, and the code
sample in this section illustrates how to extract a subset of the existing columns
and a subset of the rows. Listing 7.36 displays the contents of sub-rows-
cols.txt of the desired dataset that contains two columns from every even
row of the file aligned-data.txt.

Listing 7.36: sub-rows-cols.txt

Sara, 1000
Dave, 3000
Dave, 5000
Tony, 7000

Listing 7.37 displays the contents of sub-rows-cols.sh that illustrates
how to generate the dataset in Listing 7.36. Most of the code is the same as
Listing 7.33, with the new code shown in bold.

174 • Bash Command Line and Shell Scripts

Listing 7.37: sub-rows-cols.sh

#---
1) remove blank lines
2) remove line feeds
3) print a LF after every fourth field
4) remove trailing ',’ from each row
#---

inputfile="mixed-data.csv"
outputfile="sub-rows-cols.csv"

grep -v "^$" $inputfile |awk -F"," '{printf("%s",$0)}'
| awk '
BEGIN { columnCount = 4 }
{
 for(i=1; i<=NF; i++) {
 printf("%s ", $i)
 if(i % columnCount == 0) { print "" }
 }
}' > temp-columns

4) remove trailing ',’ from output:
cat temp-columns | sed 's/, $//’ | sed 's/$//’ > temp-
columns2

cat temp-columns2 | awk ‘
BEGIN { rowCount = 2; currRow = 0 }
{
 if(currRow % rowCount == 0) { print $1, $3 }
 ++currRow
}' > temp-columns3

cat temp-columns3 | sed 's/,$//' | sed 's/ $//' > $outputfile

Listing 7.37 contains a new block of code that redirects the out-
put of step #4 to a temporary file temp-columns2 whose contents are
processed by another awk command in the last section of Listing 7.37.
Notice that that awk command contains a BEGIN block that initializes
the variables rowCount and currRow with the values 2 and 0, respectively.

The main block prints columns 1 and 3 of the current line if the current
row number is even, and then the value of currRow is then incremented.
The output of this awk command is redirected to yet another temporary file
that is the input to the final code snippet, which uses the cat command and

Working with Awk • 175

two occurrences of the sed command in order to remove a trailing “,” and a
trailing space, as shown here:
cat temp-columns3 | sed ‘s/,$//’ | sed ‘s/ $//’ > $outputfile

Keep in mind that there are other ways to perform the functionality in List-
ing 7.37, and the main purpose is to show you different techniques for combin-
ing various bash commands.

COUNTING WORD FREQUENCY IN DATASETS

Listing 7.38 displays the contents of WordCounts1.sh that illustrates
how to count the frequency of words in a file.

Listing 7.38: WordCounts1.sh

awk '
Print list of word frequencies
{
 for (i = 1; i <= NF; i++)
 freq[$i]++
}
END {
 for (word in freq)
 printf "%s\t%d\n", word, freq[word]
}
' columns2.txt

Listing 7.38 contains a block of code that processes the lines in columns2.
txt. Each time that a word (of a line) is encountered, the code increments the
number of occurrences of that word in the hash table freq. The END block
contains a for loop that displays the number of occurrences of each word in
columns2.txt.

The output from Listing 7.38 is here:
two 3
one 3
three 3
six 1
four 3
five 2

Listing 7.39 displays the contents of WordCounts2.sh that perform a
case insensitive word count.

Listing 7.39: WordCounts2.sh

awk '
{
 # convert everything to lower case
 $0 = tolower($0)

176 • Bash Command Line and Shell Scripts

 # remove punctuation
 #gsub(/[^[:alnum:]_[:blank:]]/, "", $0)

 for(i=1; i<=NF; i++) {
 freq[$i]++
 }
}
END {
 for(word in freq) {
 printf "%s\t%d\n", word, freq[word]
 }
}
' columns4.txt

Listing 7.39 is almost identical to Listing 7.38, with the addition of the fol-
lowing code snippet that converts the text in each input line to lowercase let-
ters, as shown here:

$0 = tolower($0)

Listing 7.40 displays the contents of columns4.txt.

Listing 7.40: columns4.txt

123 ONE TWO
456 three four
ONE TWO THREE FOUR
five 123 six
one two three
four five

The output from launching Listing 7.39 with columns4.txt is here:
456 1
two 3
one 3
three 3
six 1
123 2
four 3
five 2

DISPLAYING ONLY “PURE” WORDS IN A DATASET

For simplicity, let’s work with a text string and that way we can see the inter-
mediate results as we work toward the solution. This example will be familiar
from prior chapters, but now we see how awk does it.

Working with Awk • 177

Listing 7.41 displays the contents of onlywords.sh that contains three
awk commands for displaying the words, integers, and alphanumeric strings,
respectively, in a text string.

Listing 7.41: onlywords.sh

x="ghi abc Ghi 123 #def5 123z"

echo "Only words:"
echo $x |tr -s ' ' '\n' | awk -F" " '
{
 if($0 ~ /^[a-zA-Z]+$/) { print $0 }
}
' | sort | uniq
echo

echo "Only integers:"
echo $x |tr -s ' ' '\n' | awk -F" " '
{
 if($0 ~ /^[0-9]+$/) { print $0 }
}
' | sort | uniq
echo

echo "Only alphanumeric words:"
echo $x |tr -s ' ' '\n' | awk -F" " '
{
 if($0 ~ /^[0-9a-zA-Z]+$/) { print $0 }
}
' | sort | uniq
echo

Listing 7.41 starts by initializing the variable x:

x="ghi abc Ghi 123 #def5 123z"

The next step is to split x into words:

echo $x |tr -s ‚ ‚ ‚\n'

The output is here:
ghi
abc
Ghi
123
#def5
123z

178 • Bash Command Line and Shell Scripts

The third step is to invoke awk and check for words that match the regular
expression ^[a-zA-Z]+, which matches any string consisting of one or more
uppercase and/or lowercase letters (and nothing else):

if($0 ~ /^[a-zA-Z]+$/) { print $0 }

The output is here:
ghi
abc
Ghi

Finally, if you also want to sort the output and print only the unique words,
redirect the output from the awk command to the sort command and the
uniq command.

The second awk command uses the regular expression ^[0-9]+ to
check for integers and the third awk command uses the regular expression
^[0-9a-zA-Z]+ to check for alphanumeric words. The output from launch-
ing Listing 7.41 is here:
Only words:
Ghi
abc
ghi

Only integers:
123

Only alphanumeric words:
123
123z
Ghi
abc
ghi

Now you can replace the variable x with a dataset in order to retrieve only
alphabetic strings from that dataset.

WORKING WITH MULTILINE RECORDS IN AWK

Listing 7.42 displays the contents of employee.txt and Listing 7.43 dis-
plays the contents of Employees.sh that illustrates how to concatenate text
lines in a file.

Listing 7.42: employees.txt

Name: Jane Edwards
EmpId: 12345
Address: 123 Main Street Chicago Illinois

Working with Awk • 179

Name: John Smith
EmpId: 23456
Address: 432 Lombard Avenue SF California

Listing 7.43: employees.sh

inputfile="employees.txt"
outputfile="employees2.txt"

awk '
{
 if($0 ~ /^Name:/) {
 x = substr($0,8) ","
 next
 }

 if($0 ~ /^Empid:/) {
 #skip the Empid data row
 #x = x substr($0,7) ","
 next
 }

 if($0 ~ /^Address:/) {
 x = x substr($0,9)
 print x
 }
}
' < $inputfile > $outputfile

The output from launching the code in Listing 7.43 is here:
Jane Edwards, 123 Main Street Chicago Illinois
John Smith, 432 Lombard Avenue SF California

Now that you have seen a plethora of awk code snippets and shell scripts
containing the awk command that illustrate the various types of tasks that you
can perform on files and datasets you are ready for some uses cases. The next
section (which is the first use case) shows you how to replace multiple field
delimiters with a single delimiter, and the second use case shows you how to
manipulate date strings.

A SIMPLE USE CASE

The code sample in this section shows you how to use the awk command in
order to split the comma-separated fields in the rows of a dataset, where fields
can contain nested quotes of arbitrary depth.

180 • Bash Command Line and Shell Scripts

Listing 7.44 displays the contents of the file quotes3.csv that contains a
“,” delimiter and multiple quoted fields.

Listing 7.44: quotes3.csv

field5,field4,field3,"field2,foo,bar",field1,field6,field7,"
fieldZ"
fname1,"fname2,other,stuff",fname3,"fname4,foo,bar",f
name5
"lname1,a,b","lname2,c,d","lname3,e,f","lname4,foo,ba
r",lname5

Listing 7.45 displays the contents of the file delim1.sh that illustrates
how to replace the delimiters in delim1.csv with a “,” character.

Listing 7.45 delim1.sh

#inputfile="quotes1.csv"
#inputfile="quotes2.csv"
inputfile="quotes3.csv"

grep -v "^$" $inputfile | awk '
{
 print "LINE #" NR ": " $0
 printf ("-------------------------\n")
 for (i = 0; ++i <= NF;)
 printf "field #%d : %s\n", i, $i
 printf ("\n")
}' FPAT='([^,]+)|("[^"]+")' < $inputfile

The output from launching the shell script in Listing 7.45 is here:
LINE #1: field5,field4,field3,"field2,foo,bar",field1,field
6,field7,"fieldZ"

field #1 : field5
field #2 : field4
field #3 : field3
field #4 : "field2,foo,bar"
field #5 : field1
field #6 : field6
field #7 : field7
field #8 : "fieldZ"

LINE #2: fname1,"fname2,other,stuff",fname3,"fname4,f
oo,bar",fname5

Working with Awk • 181

field #1 : fname1
field #2 : "fname2,other,stuff"
field #3 : fname3
field #4 : "fname4,foo,bar"
field #5 : fname5

LINE #3: "lname1,a,b","lname2,c,d","lname3,e,f","lnam
e4,foo,bar",lname5

field #1 : "lname1,a,b"
field #2 : "lname2,c,d"
field #3 : "lname3,e,f"
field #4 : "lname4,foo,bar"
field #5 : lname5

LINE #4: "Outer1 "Inner "Inner "Inner C" B" A" Outer1"
,"XYZ1,c,d","XYZ2lname3,e,f"

field #1 : "Outer1 "Inner "Inner "Inner C" B" A"
Outer1"
field #2 : "XYZ1,c,d"
field #3 : "XYZ2lname3,e,f"

LINE #5:

As you can see, the task in this section is very easily solved via the awk
command, probably simpler than a solution involving other command line
utilities.

ANOTHER USE CASE

The code sample in this section shows you how to use the awk command in
order to reformat the date field in a dataset and change the order of the fields
in the new dataset. For example, given the following input line in the original
dataset:

Jane,Smith,20140805234658

The reformatted line in the output dataset has this format:

2014-08-05 23:46:58,Jane,Smith

Listing 7.46 displays the contents of the file dates2.csv that contains a
“,” delimiter and three fields.

182 • Bash Command Line and Shell Scripts

Listing 7.46: dates2.csv

Jane,Smith,20140805234658
Jack,Jones,20170805234652
Dave,Stone,20160805234655
John,Smith,20130805234646
Jean,Davis,20140805234649
Thad,Smith,20150805234637
Jack,Pruit,20160805234638

Listing 7.47 displays the contents of string2date2.sh that converts the
date field to a new format and shifts the new date to the first field.

Listing 7.47: string2date2.sh

inputfile="dates2.csv"
outputfile="formatteddates2.csv"

rm -f $outputfile; touch $outputfile

for line in `cat $inputfile`
do
 fname='echo $line |cut -d"," -f1'
 lname='echo $line |cut -d"," -f2'
 date1='echo $line |cut -d"," -f3'

 # convert to new date format
 newdate='echo $date1 | awk '{ print substr($0,1,4)"-
"substr($0,5,2)"-"substr($0,7,2)" "substr($0,9,2)":"s
ubstr($0,11,2)":"substr($0,13,2)}’'

 # append newly formatted row to output file
 echo "${newdate},${fname},${lname}" >> $outputfile
done

The contents of the new dataset is here:
2014-08-05 23:46:58,Jane,Smith
2017-08-05 23:46:52,Jack,Jones
2016-08-05 23:46:55,Dave,Stone
2013-08-05 23:46:46,John,Smith
2014-08-05 23:46:49,Jean,Davis
2015-08-05 23:46:37,Thad,Smith
2016-08-05 23:46:38,Jack,Pruit

Working with Awk • 183

SUMMARY

This chapter introduced the awk command, which is essentially an entire
programming language packaged into a single bash command.

We explored some of its built-in variables as well as conditional logic, while
loops, and for loops in awk in order to manipulate the rows and columns in
datasets. You then saw how to delete lines and merge lines in datasets, and also
how to print the contents of a file as a single line of text. Next, you learned how
to use metacharacters and character sets in awk commands. You learned how
to perform numeric calculations (such as addition, subtraction, multiplication,
and division) in files containing numeric data, and also some numeric functions
that are available in awk.

In addition, you saw how to align columns in a dataset, how to delete col-
umns, how to select a subset of columns from a dataset, and how to work with
multiline records in datasets. Finally, you saw a couple of simple use cases
involving nested quotes and date formats in a structured dataset.

At this point, you have all the tools necessary to do quite sophisticated data
cleansing and processing, and you are encouraged to try to apply them on some
task or problem of interest.

CHAPTER 8
INTRO TO SHELL SCRIPTS

This chapter introduces you to shell scripts that illustrate how to solve
some well-known tasks. Although Chapter 4 showed you how to define
a custom function in the AppendRow.sh shell script, this chapter

is devoted to shell scripts. Some examples rely on the grep command, so
this would be a good time to review the material in the chapter that contains
grep-related information. Later in this chapter, you will see shell scripts that
involve recursion-based algorithms for well-known tasks such as the GCD
and LCM of two positive integers.

The first part of this chapter starts with examples of very simple shell scripts
and also how to make those shell scripts executable. This section also shows you
how to “source” or “dot” a shell script, and also describes situations when it’s
necessary to do so.

The second part of this chapter shows you how to use pass parameters to
shell functions that are defined in shell scripts, how to determine the number
of values passed to a function, and how to display their values. This section also
contains an example of an interactive shell script (i.e., prompts users for their
input).

The third part of this chapter shows you how to use recursion in order to
compute the factorial value of a positive integer. In addition, this section shows
you shell scripts for calculating Fibonacci numbers, the GCD and LCM of two
positive integers, and the divisors of a positive integer.

One detail to keep in mind regarding the shell scripts in this book: although
some of them might not have immediate value for you, it’s still worth your time
to read them to see if they contain techniques that you can use in your own
shell scripts.

186 • Bash Command Line and Shell Scripts

WHAT ARE SHELL SCRIPTS?

Shell scripts contain a collection of bash commands that are executed in
order to complete a task defined by you. If the shell script does not contain any
functions, then the commands are executed sequentially from top to bottom
(i.e., in the sequence that they appear in a shell script). As you will see later in
this chapter, you can define functions and use conditional logic in order to alter
the sequence commands are executed in.

Shell scripts can contain whatever bash commands are available on your
system, but keep in mind that some commands require the sudo command,
which in turn requires a password. Simple examples of shell scripts include
file-related commands that create files, read data from files, and update the
contents of files. Regardless of the contents of your shell scripts, they are
interpreted “on the fly,” so there are no compilation steps that create a binary
executable.

Shell scripts automate the process of executing a set of bash commands
so that you don’t need to execute them manually from the command line.
If you need to execute a simple command from the command line, then it’s
unlikely that you need to do so via a shell script: just type the command
and press the <RETURN> key. Note that the crontab utility enables you to
schedule the execution of shell scripts on a regular basis (hourly, daily, weekly,
and so forth). Chapter 10 provides some additional information regarding the
crontab utility.

A Simple Shell Script
This section shows you how to create a shell script that contains an assort-

ment of very simple commands that are executed sequentially. Specifically, cre-
ate the text file test.sh (using your favorite text editor) with the following
contents:
#!/bin/bash
pwd
ls
cd /tmp
ls
mkdir /tmp/abc
touch /tmp/abc/emptyfile
ls /tmp/abc/

The second step involves making this shell script executable, which involves
the chmod command, as shown here:

chmod +x test.sh

Now your shell script is ready for execution, and simply type the following
command in the directory that contains test.sh:

./test.sh

Intro to Shell Scripts • 187

NOTE
 The output from launching test.sh depends on the contents of the /tmp

directory.

The first line in test.sh is called the “shebang” line, which directs the
system to launch the bash shell in order to invoke the commands in test.sh.
The term shebang is sort of a contraction of “hash” (for the “#” character) and
“bang” (for the “!” character). Note that the initial “./” of ./test.sh speci-
fies the file test.sh in the current directory: if the file test.sh is in your
home directory, specify $HOME/test.sh. In addition, if “.” is included in the
PATH environment variable, then you can simply type test.sh without the
“./” prefix.

One point regarding the mkdir command: if you specify a path in which
intermediate directories do not exist, then you need to use the –p switch. For
example, if the directory /tmp/abc does not exist, then the following com-
mand requires the –p switch:

mkdir –p /tmp/abc/def

SETTING ENVIRONMENT VARIABLES VIA SHELL SCRIPTS

A very important concept when using shell scripts is that any variables set
inside the script are no longer set when the script finishes its execution. The
rules are shown below:

If a variable isn’t set in a script but is already defined before the script is
executed, that variable will also be available inside the script.

If a variable is set in a script, it will override any existing variable with the
same name after the variable is set, but once the script ends, the variable will
revert to its old value (or to no value, if it did not exist outside the shell script)

For example, if your $HOME directory is /Users/jsmith but inside
a script on line 10 you define $HOME to be /Users/common/bin, then
the value of $HOME is initially /Users/jsmith for lines 1-9, then becomes
/Users/common/bin on line 10, and maintains that value until the last
command in the shell script is executed. When the shell script has finished its
execution, the value of $HOME reverts to /Users/jsmith.

The reason for this behavior is related to how Unix structures its processes
(known as “shells,” hence the term “shell script”). That discussion is beyond the
scope of this book, but you can perform an online search to find articles with a
detailed explanation.

Thus, the default behavior is that if you set the value of a variable in a
shell script, then that variable (and its value) exists only for the duration of the
execution of the shell script. There is a simple “workaround” whereby variables
“hold” their values after a shell script has completed, and you’ll learn how to do
so in a subsequent section.

Just to make sure that the distinction is clear, consider Listing 8.1 that dis-
plays the contents of the shell script abc.sh.

188 • Bash Command Line and Shell Scripts

Listing 8.1: abc.sh

export x="123"
echo "inside abc.sh"
echo "x = $x"

Make sure that abc.sh is an executable shell script with the chmod com-
mand (as shown earlier in this chapter) and then launch the following sequence
of commands from the command line:
export x="tom"
echo "x = $x"

./abc.sh

echo "x = $x"

The output from the preceding commands is here:
x = tom
inside abc.sh
x = 123
x = tom

As you can see, the value that is assigned to the variable x is only for the
duration of the process associated with the shell script abc.sh. After execu-
tion has completed, the process terminates and the value of x reverts to its
original value. Fortunately, there is a way to ensure that the values of variables
in a shell script can be “set” for the current shell, a technique called “sourcing”
the shell script, as described in the next section.

Sourcing or “Dotting” a Shell Script
Now execute the following sequence of commands:

export x="tom smith"
echo "x = $x"

. abc.sh

echo "x = $x"

The output from the preceding commands is here:
x = "tom smith"
inside abc.sh
x = 123
x = 123

In the preceding code block, the value assigned to the variable x inside
the shell script abc.sh overrides its previously defined value because “sourc-
ing” (also called “dotting”) a shell script does not create a new process. Con-
sequently, if a shell script assigns a new value to an existing variable, that new
value is placed in the current environment and the previously defined value is
lost.

Intro to Shell Scripts • 189

As you probably know, comments are important in source code. A good
shell script contains meaningful comments, which are preceded by a pound
sign “#”, that explain the purpose of different sections in the shell script. The
exception is when the “#” symbol appears in the first line of a shell script, as
you will see in the next section.

WORKING WITH FUNCTIONS IN SHELL SCRIPTS

A shell function can be defined by using the keyword function, followed
by the name of the function (specified by you) and a pair of round parentheses,
followed by a pair of curly brackets that contain shell commands. The general
form is shown here:
function fname()
{
 statements;
}

An alternate method of defining a shell function involves placing the left
curly bracket on a separate line, as shown here:
fname()
{
 statements;
}

A shell function can be invoked by its name, as shown here:

fname ; # executes the function

Arguments can be passed to functions and can be accessed by the shell
script:

fname arg1 arg2 ; # passing args

Listing 8.2 displays the contents of simple-shell.sh that illustrates
how to define a function in a shell script.

Listing 8.2: simple-shell.sh

#!/bin/sh

function1 ()
{
 echo "inside function 1"
}

function2 ()
{
 echo "you entered $1 in function 2"
}

190 • Bash Command Line and Shell Scripts

invoke function1 here:
function1

echo "Enter a string: "
read str

invoke function2 here:
function2 str

Listing 8.2 defines function1 that displays a text message and func-
tion2 that displays the string that you entered at the command line. Launch
Listing 8.2 and enter abc at the prompt and you will see the following output:
inside function 1
Enter a string:
abc
you entered str in function 2

PASSING VALUES TO FUNCTIONS IN A SHELL SCRIPT (1)

Positional parameters are built-in variables that contain the values of
command-line arguments to scripts and functions in shell scripts. The posi-
tional parameters are named 1, 2, 3, etc., and their values are denoted by
$1, $2, $3, etc. The positional parameter 0 has the value equal to the name
of the script.

Listing 8.3 displays the contents of parameters-function.sh that
illustrates how to pass values to a function in a shell script.

Listing 8.3: parameters-function.sh

#!/bin/sh

function1 ()
{
 echo "top of function 1"
 echo "param 1: $1"
 echo "param 2: $2"
 echo "param 3: $3"
}

invoke function1 here:
function1 a
function1 a b
function1 a b c

Intro to Shell Scripts • 191

Listing 8.3 defines function1 that displays the values of the first three
parameters that it receives. Launch Listing 8.3 and you will see the following
output:
top of function 1
param 1: a
param 2:
param 3:
top of function 1
param 1: a
param 2: b
param 3:
top of function 1
param 1: a
param 2: b
param 3: c

There is an obvious problem with the function in Listing 8.3: this function
assumes that there are exactly three parameters. Hence, it displays parameters
that do not have values and do not display the values beyond the first three
parameters.

The solution involves determining the number of parameters that are sup-
plied to a function, which is the topic of the next section.

PASSING VALUES TO FUNCTIONS IN A SHELL SCRIPT (2)

Two special variables contain all of the positional parameters (except for
positional parameter 0): * and @. The difference between them is subtle but
important, and it’s apparent only when they are within double quotes.

Listing 8.4 displays the contents of parameters-function2.sh that
illustrates how to determine the number of values that are passed to a function
in a shell script.

Listing 8.4: parameters-function2.sh

#!/bin/sh

function1 ()
{
 echo "param count: $#"
 echo "all params: $@"
 echo ""
}

invoke function1 here:
function1 a

192 • Bash Command Line and Shell Scripts

function1 a b
function1 a b c
function1 a b c d
function1 1 2 3 4 5

display the command-line values:
echo "param count: $#"
echo "all params: $@"

As you can see, the function in Listing 8.4 uses $3 to display the number of
parameters and $@ in order to display their values each time that the function
is invoked.

Launch Listing 8.4 and you will see the following output:
param count: 1
all params: a

param count: 2
all params: a b

param count: 3
all params: a b c

param count: 4
all params: a b c d

param count: 5
all params: 1 2 3 4 5
param 3: c

param count: 2
all params: good pasta

ITERATE THROUGH VALUES PASSED TO A FUNCTION

As another example, this shell function and invocation of the shell function
shows you how to list parameter values in a convenient block:
show_args ()
{
 echo "Argument count: $#"
 echo "Name of script: $0"
 echo "First argument: $1"
 echo "Second argument: $2"
 echo "Third argument: $3"
 echo "All arguments: $@"
}

show_args new york chicago pizza

Intro to Shell Scripts • 193

The output from the previous code block is here:
Argument count: 4
Name of script: ./arguments.sh
First argument: new
Second argument: york
Third argument: chicago
All arguments: new york chicago pizza

Listing 8.5 displays the contents of iterate-args1.sh that illustrates
how to iterate through a set of values in a shell script.

Listing 8.5: iterate-args1.sh

#!/bin/sh

for i in {1..5}
do
 echo "Value of i: ${i}"
done

As you can see, the function in Listing 8.5 iterate through the values
from 1 through 5 inclusive. Launch Listing 8.5 and you will see the following
output:
Value of i: 1
Value of i: 2
Value of i: 3
Value of i: 4
Value of i: 5

Listing 8.6 displays the contents of iterate-args2.sh that illustrates
how to iterate through a set of values in a shell script.

Listing 8.6: iterate-args2.sh

#!/bin/sh

iterate()
{
 for arg
 do
 echo "value: $arg";
 done
}

iterate a b c d e

194 • Bash Command Line and Shell Scripts

As you can see, the function in Listing 8.6 iterate through the values that
are passed into the function iterate. Launch Listing 8.6 and you will see the
following output:
value: a
value: b
value: c
value: d
value: e

Listing 8.7 displays the contents of iterate-args3.sh that illustrates
how to iterate through a set of values in a shell script.

Listing 8.7: iterate-args3.sh

#!/bin/sh

iterate()
{
 echo "this will be skipped ... why?"
}

iterate()
{
 arg1=”$1”; shift;

 for arg
 do
 echo "value: $arg";
 done
}

iterate a b c d e

As you can see, the function in Listing 8.7 iterate through the values that
are passed into the function iterate. However, there are two definitions of the
iterate() function, and the rule is simple: the last (bottom-most) definition
is executed, and all other preceding definitions are ignored (there might be
more than two definitions of the same function).

Another detail to notice is the first code snippet that’s shown in bold in the
(second) definition of the iterate function, and reproduced here:

arg1="$1"; shift;

The preceding code snippet saves the value of $1 in the variable arg1, just
in case you want to process this value elsewhere in the code (which we simply
ignore in this code sample). Next, the shift keyword performs a “left shift” on

Intro to Shell Scripts • 195

the set of arguments that were passed into the iterate function. As a result, $1 is
replaced with $2, and $2 is replaced with $3, and so on, until all the arguments
have been shifted leftward.

Launch Listing 8.7 and you will see the following output:
value: b
value: c
value: d
value: e

Listing 8.8 displays the contents of iterate-args3.sh that illustrates
how to use a for loop in order to iterate through a set of values in a shell
script.

Listing 8.8: iterate-args4.sh

#!/bin/sh

iterate()
{
 for ((i=2; i <= "$#"; i++))
 do
 echo "arg position: ${i}"
 echo "arg value: ${!i}"
 done
}

iterate a b c d e

As you can see, the function in Listing 8.8 iterate through the values that
are passed into the function iterate(). However, the for loop starts from
the value 2, which skips the first argument. Launch Listing 8.8 and you will see
the following output:
arg position: 2
arg value: b
arg position: 3
arg value: c
arg position: 4
arg value: d
arg position: 5
arg value: e

Listing 8.9 displays the contents of iterate-args5.sh that illustrates
how to use a for loop in order to iterate through a set of values, some of which
are inside quotation marks, in a shell script.

196 • Bash Command Line and Shell Scripts

Listing 8.9: iterate-args5.sh

#!/bin/sh

iterate()
{
 echo "Argument count: $#"
 echo "Argument list: $@"
 echo ""

 for i in "${@}"
 do
 echo "argument: $i"
 done
}

iterate a "b c" d "e f"

As you can see, the function in Listing 8.9 iterate through the values that
are passed into the function iterate(). If two or more strings are inside a
pair of quotes, then they are treated as a single argument. Launch Listing 8.9
and you will see the following output:
Argument count: 4
Argument list: a b c d e f

argument: a
argument: b c
argument: d
argument: e f

POSITIONAL PARAMETERS IN USER-DEFINED FUNCTIONS

Earlier in this chapter, you saw various examples of passing values to shell
functions. The following list of positional parameters are useful when you write
shell functions:
$# contains the number of arguments
$0 contains the command name
$1, $2, ... , $9 contain the individual arguments of
the command
$* contains the entire list of arguments, treated as a
single word
$@ contains the entire list of arguments, treated as a
series of words

Intro to Shell Scripts • 197

$? contains the exit status of the previous command,
and the value 0 denotes successful completion
$$ contains the process id of the current process

Listing 8.10 displays the contents of PositionalParameters1.sh
that displays the values of the preceding positional parameters.

Listing 8.10 PositionalParameters1.sh

echo "number of arguments: $#"
echo "command name: $0"
echo "all params: $1 $2 $3 $4 $5 $6 $7 $8 $9"
echo "all params: $*"
echo "all params: $@"
echo "exit status: $?"
echo "process id: $$"

if [x"$1" != "x"]
then
 echo "Position parameter #1 = $1"
else
 echo "Position parameter #1 is null"
fi

if ["$5" == ""]
then
 echo "Position parameter #5 is nul1"
fi

case $1 in
 n|N) echo "#1 is an n or N" ;;
 y*|Y*) echo "#1 starts with a y or Y" ;;
 *) echo "no matches occurred" ;;
esac

Launch Listing 8.10 with the following command:

./PositionalParameters1.sh yes 2 3 4

The output is shown here:
./PositionalParameters1.sh 2 3 4
number of arguments: 3
command name: ./PositionalParameters1.sh
all params: 2 3 4
all params: 2 3 4
all params: 2 3 4
exit status: 0
process id: 58003

198 • Bash Command Line and Shell Scripts

Position parameter #1 = 2
Position parameter #5 is nul1
no matches occurred

SHELL SCRIPTS, FUNCTIONS, AND USER INPUT

Listing 8.11 displays the contents of checkuser.sh that illustrates how
to prompt users for two input strings and then pass those two strings as param-
eters to a custom function checkNewUser().

Listing 8.11: checkuser.sh

#!/bin/bash

function checkNewUser()
{
 echo "argument #1 = $1"
 echo "argument #2 = $2"
 echo "arg count = $#"

 if test "$1" = "John" && test "$2" = "Smith"
 then
 return 1
 else
 return 0
 fi
}

/bin/echo -n "First name: "
read fname
/bin/echo -n "Last name: "
read lname

checkNewUser $fname $lname
echo "result = $?"

Listing 8.11 contains the function checkNewUser() that displays the
value of the first argument, the second argument, and the total number of
arguments, respectively. This function returns the value 1 if the first argument
is John and the second argument is Smith; otherwise, the function returns 0.

The remaining portion of Listing 8.11 invokes the echo command twice in
order to prompt users to enter a first name and the last name and then invokes
the function checkNewUser()with these two input values. A sample output
from launching Listing 8.11 is shown here:

First name: John
Last name: Smith
argument #1 = John

Intro to Shell Scripts • 199

argument #2 = Smith
arg count = 2
result = 1

What about using command substitution in order to invoke the function
checkNewUser? In order to find out what would happen, let’s add the fol-
lowing code snippet to the bottom of Listing 8.11:
result=`checkNewUser $fname $lname`
echo "result = $result"

Launch the modified version of Listing 8.11, provide the same input values
of John and Smith, and compare the following result with the previous result:
First name: John
Last name: Smith
argument #1 = John
argument #2 = Smith
arg count = 2
result = 1
result = argument #1 = John
argument #2 = Smith
arg count = 2

As another example of a simple shell script, the following script uses the
read command which takes the input from the keyboard and assigns that
input value as the value of the variable PERSON. The echo command prints
the input value on STDOUT, which is the screen (by default).
#!/bin/sh
echo "What is your name?"
read PERSON
echo "Hello, $PERSON"
Here is sample invocation of this script:

$./test.sh
What is your name?
John Smith
Hello, John Smith

RECURSION AND SHELL SCRIPTS

This section contains several examples of shell scripts with recursion, which
is a topic that occurs in many programming languages. Although you probably
won’t need to write many scripts that use recursion, it’s worthwhile to learn this
concept, especially if you plan to study other languages.

If you already understand recursion, then the scripts in this section will be
straightforward. In particular, you will learn how to calculate the factorial value
of a positive integer.

200 • Bash Command Line and Shell Scripts

Listing 8.12 displays the contents of Factorial.sh that computes the
factorial value of a positive integer.

Listing 8.12: Factorial.sh

#!/bin/sh

factorial()
{
 if ["$1" -gt 1]
 then
 decr=`expr $1 - 1`
 result=`factorial $decr`
 product=`expr $1 * $result`
 echo $product
 else
 # we have reached 1:
 echo 1
 fi
}

echo "Enter a number: "
read num

add code to ensure it's a positive integer

echo "$num! = `factorial $num`"

Listing 8.12 contains the factorial() function with conditional logic:
if the first parameter is greater than 1, then the variable decr is initialized as
1 less than the value of $1, followed by initializing result with the recursive
invocation of the factorial() function with the argument decr. Finally,
this block of code initializes the product as the value of $1 multiplied by the
value of the result. Note that if the first parameter is not greater than 1, then
the value 1 is returned.

The last portion of Listing 8.12 prompts users for a number and then the
factorial value of that number is computed and displayed. For simplicity, non-
integer values are not checked (you can try to add that functionality yourself).

Launch the code in Listing 8.12 and you will see the following output:
Enter a number:
7
7! = 5040

ITERATIVE SOLUTIONS FOR FACTORIAL VALUES

Listing 8.13 displays the contents of Factorial2.sh that computes the
factorial value of a positive integer using a for loop.

Intro to Shell Scripts • 201

Listing 8.13: Factorial2.sh

#!/bin/bash

factorial()
{
 num=$1
 result=1
 for ((i=2; i<=${num}; i++));
 do
 result=$((${result}*$i))
 done

 echo $result
}

printf "Enter a number: "
read num

echo "$num! = `factorial $num`"

Listing 8.13 contains a function called factorial() that initializes the
variable num to the first argument passed into the function factorial(),
followed by the variable result whose initial value is 1. The next portion of
Listing 8.13 is a for loop that iteratively multiples the value of result by the
numbers between 2 and num inclusive, and then returns the value of the vari-
able result.

The final portion of Listing 8.13 prompts users for a number and then uses
command substitution to invoke the function factorial() with the user-
supplied value. Note that no validation is performed in order to ensure that
the input value is a non-negative integer. The echo statement displays the
calculated factorial value.

Launch the code in Listing 8.13 and you will see the following output:
Enter a number: 8
8! = 40320
Listing 8.14 displays the contents of Factorial3.sh that computes the

factorial value of a positive integer using a for loop and an array that keeps
track of intermediate factorial values.

Listing 8.14: Factorial3.sh

#!/bin/bash

factorial()
{
 num=$1
 result=1
 for ((i=2; i<=${num}; i++));

202 • Bash Command Line and Shell Scripts

 do
 result=$((${result}*$i))
 factvalues[$i]=$result
 done
}

printf "Enter a number: "
read num

for ((i=1; i<=${num}; i++));
do
 factvalues[$i]=1
done

factorial $num

print each element via a loop:
for ((i=1; i<=${num}; i++));
do
 echo "Factorial of $i : " ${factvalues[$i]}
done

Listing 8.14 is very similar to the code in Listing 8.13: the key difference is
that intermediate factorial values are stored in the array factvalues. Notice
that the initial loop that initializes the values in factvalues: doing so makes
the values global, so we don’t need to return anything from the factorial()
function.

The last portion of Listing 8.14 contains a for loop that displays the
intermediate factorial values as well as the factorial of the user-provided
input.

Launch the code in Listing 8.14 and you will see the following output:
Enter a number: 9
Factorial of 1 : 1
Factorial of 2 : 2
Factorial of 3 : 6
Factorial of 4 : 24
Factorial of 5 : 120
Factorial of 6 : 720
Factorial of 7 : 5040
Factorial of 8 : 40320
Factorial of 9 : 362880

Intro to Shell Scripts • 203

CALCULATING FIBONACCI NUMBERS

In case you don’t already know, the Fibonacci sequence of positive integers
is defined as follows:

F(1) = 1; F(2) = 2; and F(n) = F(n-1) + F(n-2) for
n >= 2.

Listing 8.15 displays the contents of Fibonacci.sh that computes the
Fibonacci value of a positive integer.

Listing 8.15: Fibonacci.sh

#!/bin/sh
LOGFILE="/tmp/a1"
rm -f $LOGFILE 2>/dev/null

fib()
{
 if ["$1" -gt 3]
 then
echo "1 = $1 2 = $2 3 = $3" >> $LOGFILE

 decr1=`expr $2 - 1`
 decr2=`expr $3 - 1`
 decr3=`expr $3 - 2`
echo "d1 = $decr1 d2 = $decr2 d3 = $decr3" >> $LOGFILE

 fib1=`fib $2 $3 $decr2`
 fib2=`fib $3 $decr2 $decr3`
 fib=`expr $fib1 + $fib2`
 echo $fib
 else
 if ["$1" -eq 3]
 then
 echo 2
 else
 echo 1
 fi
 fi
}

echo "Enter a number: "
read num

add code to ensure it's a positive integer

204 • Bash Command Line and Shell Scripts

if ["$num" -lt 3]
then
 echo "fibonacci $num = 1"
else
 decr1=`expr $num - 1`
 decr2=`expr $num - 2`x
 echo “fibonacci $num = `fib $num $decr1 $decr2`”
fi

Listing 8.15 contains code that decrements two variables, called decr1 and
decr2 in order to make recursive invocations of the fib() function, whereas
the calculation of factorial values involves decrementing only a single variable.

Moreover, Listing 8.15 contains a code snippet that writes intermediate cal-
culations to a text file, which you can then examine to trace the execution path
of the code. Launch the code in Listing 8.15 and you will see the following
output:
Enter a number:
10
fibonacci 10 = 55

CALCULATING THE GCD OF TWO POSITIVE INTEGERS

Listing 8.16 displays the contents of the shell script gcd.sh that computes
the greatest common divisor of two positive integers.

Listing 8.16: gcd.sh

#!/bin/sh

function gcd()
{
 if [$1 -lt $2]
 then
 result=`gcd $2 $1`
 echo $result
 else
 remainder=`expr $1 % $2`

 if [$remainder == 0]
 then
 echo $2
 else
 echo `gcd $2 $remainder`
 fi

Intro to Shell Scripts • 205

 fi
}

a="4"
b="20"
result=`gcd $a $b`
echo "GCD of $a and $b = $result"

a="4"
b="22"
result=`gcd $a $b`
echo "GCD of $b and $a = $result"

a="20"
b="3"
result=`gcd $a $b`
echo "GCD of $b and $a = $result"

a="10"
b="10"
result=`gcd $a $b`
echo "GCD of $b and $a = $result"

Listing 8.16 is a straightforward implementation of the Euclidean algorithm
(check Wikipedia for details) for finding the GCD of two positive integers. The
output from Listing 8.16 shows the GCD of 4 and 20, as shown here:

GCD of 4 and 20 = 4
GCD of 22 and 4 = 2
GCD of 3 and 20 = 1
GCD of 10 and 10 = 10

CALCULATING THE LCM OF TWO POSITIVE INTEGERS

Listing 8.17 displays the contents of the shell script lcm.sh that computes
the lowest common multiple (LCM) of two positive integers. This script con-
tains the code in the shell script gcd.sh in order to compute the LCM of two
positive integers.

Listing 8.17: lcm.sh

#!/bin/sh

function gcd()
{
 if [$1 -lt $2]

206 • Bash Command Line and Shell Scripts

 then
 result=`gcd $2 $1`
 echo $result
 else
 remainder=`expr $1 % $2`

 if [$remainder == 0]
 then
 echo $2
 else
 result=`gcd $2 $remainder`
 echo $result
 fi
 fi
}

function lcm()
{
 gcd1=`gcd $1 $2`
 lcm1=`expr $1 / $gcd1`
 lcm2=`expr $lcm1 * $2`
 echo $lcm2
}

a="24"
b="10"
result=`lcm $a $b`
echo "The LCM of $a and $b = $result"

a="10"
b="30"
result=`lcm $a $b`
echo "The LCM of $a and $b = $result"

Notice that Listing 8.17 contains the gcd() function to compute the GCD
of two positive integers. This function is necessary because the next portion of
Listing 8.17 contains the lcm() function that invokes the gcd() function,
followed by some multiplication steps in order to calculate the LCM of two
numbers. The output from Listing 8.17 displays the LCM of 10 and 24, as
shown here:

The LCM of 24 and 10 = 120
The LCM of 10 and 30 = 30

Intro to Shell Scripts • 207

CALCULATING PRIME DIVISORS

Listing 8.18 displays the contents of the shell script Divisors2.sh that
calculates the prime factors of a positive integer.

Listing 8.18: Divisors2.sh

#!/bin/sh

function divisors()
{
 div="2"
 num="$1"
 primes=""

 while (true)
 do
 remainder=`expr $num % $div`

 if [$remainder == 0]
 then
 #echo "divisor: $div"
 primes="${primes} $div"
 num=`expr $num / $div`
 else
 div=`expr $div + 1`
 fi

 if [$num -eq 1]
 then
 break
 fi
 done

 # use ‘echo' instead of ‘return'
 echo $primes
}

num="12"
primes=`divisors $num`
echo "The prime divisors of $num: $primes"

num="768"
primes=`divisors $num`
echo "The prime divisors of $num: $primes"

208 • Bash Command Line and Shell Scripts

num="12345"
primes=`divisors $num`
echo "The prime divisors of $num: $primes"

num="23768"
primes=`divisors $num`
echo "The prime divisors of $num: $primes"

Listing 8.18 contains the divisors() function that consists primarily of a
while loop that checks for the divisors of num (which is initialized as the value
of $1). The initial value of div is 2, and each time div divides num, the value
of div is appended to the primes string, and num is replaced by num/div. If
div does not divide num, div is incremented by 1. Note that the while loop
in Listing 8.18 terminates when num reaches the value of 1.

The output from Listing 8.18 displays the prime divisors of 12, 768, 12345,
and 23768, as shown here:
The prime divisors of 12: 2 2 3
The prime divisors of 768: 2 2 2 2 2 2 2 2 3
The prime divisors of 12345: 3 5 823
The prime divisors of 23768: 2 2 2 2971

The prime factors of 12 and 678 are computed in under 1 second, but the
calculation of the prime factors of 12345 and 23768 is significantly slower.

SUMMARY

In this chapter, you have some examples of how to use some useful and
versatile bash commands. First, you saw examples of shell scripts for vari-
ous tasks involving recursions, such as computing the GCD (greatest common
divisor) and the LCM (lowest common multiple) of two positive integers, the
Fibonacci value of a positive integer, and also the prime divisors of a positive
integer.

CHAPTER 9
SHELL SCRIPTS WITH GREP AND
AWK COMMAND

This chapter contains an assortment of bash scripts that illustrate how to
solve some well-known tasks. Please make sure that you have read the earlier
chapter pertaining to the grep command if you have not already done so.

The first part of this chapter shows you an assortment of bash scripts that
use awk in order to perform various tasks, such as converting multiline records
into single-line records. You will also learn how to compute the total of each
row in a dataset.

The second part of this chapter shows you how to display the main diagonal
and off-diagonal values, as well as the sum of those values.

One detail to keep in mind is that although some of the shell scripts in this
chapter might not have immediate value for you, it’s still worth your time to
read them to see if they contain techniques that you can use in your own shell
scripts.

THE GREP COMMAND WITH ZIP FILES

The first example in this section illustrates how to determine which zip files
contain SVG documents. The second example in this section shows you how to
check the entries in a log file (with simulated values). The third code sample
shows you how to use the grep command in order to simulate a relational
database consisting of three “tables”, each of which is represented by a dataset.

Listing 9.1 displays the contents of myzip.sh that produces two lists of
files: the first list contains the names of the zip files that contain SVG docu-
ments, and the second list contains the names of the zip files that do not
contain SVG documents.

210 • Bash Command Line and Shell Scripts

Listing 9.1: myzip.sh

foundlist=""
notfoundlist=""

for f in `ls *zip`
do
 found=`unzip -v $f |grep “svg$”`
 if ["$found" != ""]
 then
 #echo "$f contains SVG documents:"
 #echo "$found"
 foundlist="$f ${foundlist}"
 else
 notfoundlist="$f ${notfoundlist}"
 fi
done

echo "Files containing SVG documents:"
echo $foundlist| tr ' ' '\n'

echo "Files not containing SVG documents:"
echo $notfoundlist |tr ' ' '\n'

Listing 9.1 searches zip files for the hard-coded string svg: manually
replace this hard-coded string with a different string of your choiee whenever
you want to search a set of zip files for your specific string. Alternatively, you
can prompt users for a search string so you don’t need to make manual modifi-
cations to the shell script.

For your convenience, Listing 9.2 displays the contents of search-
strings.sh that illustrates how to enter one or more strings on the com-
mand line in order to search for those strings in the zip files in the current
directory.

Listing 9.2: searchstrings.sh

foundlist=""
notfoundlist=""

if ["$#" == 0]
then
 echo "Usage: $0 <string-list>"
 exit
fi

zipfiles=`ls *zip 2>/dev/null`

Shell Scripts with Grep and Awk Command • 211

if ["$zipfiles" = ""]
then
 echo "*** No zip files in 'pwd' ***"
 exit

fi

for str in "$@"
do
 echo "Checking zip files for $str:"
 for f in `ls *zip`
 do
 found=`unzip -v $f |grep "$str"`
 if ["$found" != ""]
 then
 foundlist="$f ${foundlist}"
 else
 notfoundlist="$f ${notfoundlist}"
 fi
 done

 echo "Files containing $str:"
 echo $foundlist| tr ' ' '\n’

 echo "Files not containing $str:"
 echo $notfoundlist |tr ' ' '\n’
 foundlist=""
 notfoundlist=""
done

Listing 9.2 first checks that at least one file is specified on the command
line, and then initializes the zipfiles variable with the list of zip files in the
current directory. If zipfiles is null, an appropriate message is displayed.

The next section of Listing 9.2 contains a for loop that processes each argu-
ment that was specified at the command line. For each such argument, another
for loop checks for the names of the zip files that contain that argument. If
there is a match, then the variable $foundlist is updated, otherwise, the
$notfoundlist variable is updated. When the inner loop has completed,
the names of the matching files and the non-matching files are displayed, and
then the outer loop is executed with the next command-line argument.

Although the preceding explanation might seem complicated, a sample out-
put from launching Listing 9.2 will clarify how the code works:
./searchstrings.sh svg abc
Checking zip files for svg:
Files containing svg:

212 • Bash Command Line and Shell Scripts

Files not containing svg:
shell-programming-manuscript.zip
shell-progr-manuscript-0930-2013.zip
shell-progr-manuscript-0207-2015.zip
shell-prog-manuscript.zip
Checking zip files for abc:
Files containing abc:

Files not containing abc:
shell-programming-manuscript.zip
shell-progr-manuscript-0930-2013.zip
shell-progr-manuscript-0207-2015.zip
shell-prog-manuscript.zip
 If you want to perform the search for zip files in sub-
directories, modify the loop as shown here:

for f in `find . –print |grep "zip$"`
do
 echo "Searching $f…"
 unzip -v $f |grep "svg$"
done

If you have Java SDK on your machine, you can also use the jar command
instead of the unzip command, as shown here:

jar tvf $f |grep "svg$"

THE GREP COMMAND WITH MULTIPLE FILES

This section contains shell scripts that process simulated “products” that
have SKU values, along with the price per unit and the number of units sold
in order to calculate the revenue from selling those products. The text files
with the product-related information are very small, which makes it easier to
validate the accuracy of the shell scripts.

Listing 9.3, Listing 9.4, and Listing 9.5 display the contents of skuval-
ues.txt, skuprices.txt, and skusold.txt, respectively. These text
files contain the SKU values, the prices for each product, and the number of
units sold for each product.

Listing 9.3: skuvalues.txt

4520
5530
6550
7200
8000

Shell Scripts with Grep and Awk Command • 213

Listing 9.4: skuprices.txt

4520 3.50
5530 5.00
6550 2.75
7200 6.25
8000 3.50

Listing 9.5: skusold.txt

4520 3.50
4520 50
5530 80
6550 115
7200 125
8000 150

Listing 9.6 displays the contents of skutotals.sh that calculates the
number of units sold for each SKU in skuvalues.txt.

Listing 9.6: skutotals.sh

SKUVALUES="skuvalues.txt"
SKUSOLD="skusold.txt"

for sku in `cat $SKUVALUES`
do
 total=`cat $SKUSOLD |grep $sku | awk ‘{total += $2}
END {print total}'`
 echo "UNITS SOLD FOR SKU $sku: $total"
done

Listing 9.6 contains a for loop that iterates through the rows of the file
skuvalues.txt, and passes those SKU values – one at a time – to a com-
mand that involves the cat, grep, and awk commands. The purpose of the
latter combination of commands is three-fold:

1. find the matching lines in skusold.txt
2. compute the sum of the values of the numbers in the second column
3. print the subtotal for the current SKU.

In essence, this shell script prints the subtotals for each SKU value. Launch
skutotals.sh and you will see the following output:
UNITS SOLD FOR SKU 4520: 50
UNITS SOLD FOR SKU 5530: 80
UNITS SOLD FOR SKU 6550: 115
UNITS SOLD FOR SKU 7200: 125
UNITS SOLD FOR SKU 8000: 150

214 • Bash Command Line and Shell Scripts

We can generalize the previous shell script to take into account different
prices for each SKU.

Listing 9.7 displays the contents of skutotals2.sh that extends the
code in Listing 9.6 in order to calculate the revenue for each SKU.

Listing 9.7: skutotals2.sh

SKUVALUES="skuvalues.txt"
SKUSOLD="skusold.txt"
SKUPRICES="skuprices.txt"

forsku in `cat $SKUVALUES`
do
 skuprice=`grep $sku $SKUPRICES | cut -d" " -f2`
 subtotal=`cat $SKUSOLD |grep $sku | awk '{total +=
$2} END {print total}'`
 total=`echo "$subtotal * $skuprice" |bc`
 echo "AMOUNT SOLD FOR SKU $sku: $total"
done

Listing 9.7 contains a slight enhancement: instead of computing the sub-
totals of the number of units for each SKU, the revenue for each SKU is com-
puted, where the revenue for each item equals the price of the SKU multiplied
by the number of units sold for the given SKU. Launch skutotals2.sh and
you will see the following output:
AMOUNT SOLD FOR SKU 4520: 175.00
AMOUNT SOLD FOR SKU 5530: 400.00
AMOUNT SOLD FOR SKU 6550: 316.25
AMOUNT SOLD FOR SKU 7200: 781.25
AMOUNT SOLD FOR SKU 8000: 525.00

Listing 9.8 displays the contents of skutotals3.sh that calculates the
minimum, maximum, average, and the total number of units sold for each SKU
in skuvalues.txt.

Listing 9.8: skutotals3.sh

SKUVALUES="skuvalues.txt"
SKUSOLD="skusold.txt"
TOTALS="totalspersku.txt"
rm -f $TOTALS 2>/dev/null

##############################
#calculate totals for each sku
##############################

Shell Scripts with Grep and Awk Command • 215

for sku in `cat $SKUVALUES`
do
 total=`cat $SKUSOLD |grep $sku | awk '{total += $2}
END {print total}'`
 echo "UNITS SOLD FOR SKU $sku: $total"
 echo "$sku|$total" >> $TOTALS
done

##########################
#calculate max/min/average
##########################
awk -F"|" '
 BEGIN {first = 1;}
 {if(first) { min = max= avg = sum = $2; first=0;
next}}

 { if($2 < min) { min = $2 }
 if($2 > max) { max = $2 }
 sum += $2
 }
 END {print "Minimum = ",min
 print "Maximum = ",max
 print "Average = ",avg
 print "Total = ",sum
 }
' $TOTALS

Listing 9.8 initializes some variables, followed by a for loop that invokes
an awk command in order to compute subtotals (i.e., number of units sold) for
each SKU value. The next portion of Listing 9.8 contains an awk command that
calculates the maximum, minimum, average, and sum for the SKU units in the
files $TOTALS.

Launch the script file in Listing 9.8 and you will see the following output:
UNITS SOLD FOR SKU 4520: 50
UNITS SOLD FOR SKU 5530: 80
UNITS SOLD FOR SKU 6550: 115
UNITS SOLD FOR SKU 7200: 125
UNITS SOLD FOR SKU 8000: 150
Minimum = 50
Maximum = 150
Average = 50
Total = 520

216 • Bash Command Line and Shell Scripts

SIMULATING RELATIONAL DATA WITH THE GREP COMMAND

This section shows you how to combine the grep and cut commands in
order to keep track of a small database of customers, their purchases, and the
details of their purchases that are stored in three text files.

Keep in mind that there are many open-source toolkits available that can
greatly facilitate working with relational data and non-relational data. These
toolkits can be very robust and also minimize the amount of coding that is
required.

Moreover, you can use the join command (discussed in Chapter 2) to
perform SQL-like operations on datasets. Nevertheless, the real purpose of
this section is to illustrate some techniques with grep that might be useful in
your own shell scripts.

Listing 9.9, Listing 9.10, and Listing 9.11 display the contents of the text
files MasterOrders.txt, Customers.txt, and PurchaseOrders.
txt, respectively.

Listing 9.9: MasterOrders.txt

M10000 C1000 12/15/2012
M11000 C2000 12/15/2012
M12000 C3000 12/15/2012

Listing 9.10: Customers.txt

C1000 John Smith LosAltos California 94002
C2000 Jane Davis MountainView California 94043
C3000 Billy Jones HalfMoonBay California 94040

Listing 9.11: PurchaseOrders.txt

C1000,"Radio",54.99,2,"01/22/2013"
C1000,"DVD",15.99,5,"01/25/2013"
C2000,"Laptop",650.00,1,"01/24/2013"
C3000,"CellPhone",150.00,2,"01/28/2013"

Listing 9.12 displays the contents of the MasterOrders.shbash script
that performs various operations that involve the three preceding text files.

Listing 9.12: MasterOrders.sh

initialize variables for the three main files
MasterOrders="MasterOrders.txt"
CustomerDetails="Customers.txt"
PurchaseOrders="PurchaseOrders.txt"

iterate through the "master table"
for mastCustId in `cat $MasterOrders | cut -d" " -f2`
do

Shell Scripts with Grep and Awk Command • 217

 # get the customer information
 custDetails=`grep $mastCustId $CustomerDetails`

 # get the id from the previous line
 custDetailsId=`echo $custDetails | cut -d" " -f1`

 # get the customer PO from the PO file
 custPO=`grep $custDetailsId $PurchaseOrders`

 # print the details of the customer
 echo "Customer $mastCustId:"
 echo "Customer Details: $custDetails"
 echo "Purchase Orders: $custPO"
 echo "----------------------"
 echo
done

Listing 9.12 initializes some variables for orders, details, and purchase-
related datasets. The next portion of Listing 9.12 contains a for loop that
iterates through the id values in the MasterOrders.txt file and uses each
id to find the corresponding row in the Customers.txt file as well as the
corresponding row in the PurchaseOrders.txt file. Finally, the bottom
of the loop displays the details of the information that was retrieved from the
initial portion of the for loop. The output from Listing 9.12 is here:
Customer C1000:
Customer Details: C1000 John Smith LosAltos California
94002
Purchase Orders: C1000,"Radio",54.99,2,"01/22/2013"
C1000,"DVD",15.99,5,"01/25/2013"

Customer C2000:
Customer Details: C2000 Jane Davis MountainView
California 94043
Purchase Orders: C2000,"Laptop",650.00,1,"01/24/2013"

Customer C3000:
Customer Details: C3000 Billy Jones HalfMoonBay
California 94040
Purchase Orders: C3000,"CellPho
ne",150.00,2,"01/28/2013"

218 • Bash Command Line and Shell Scripts

CHECKING UPDATES IN A LOGFILE

Listing 9.13 displays the contents of CheckLogUpdates.sh that illus-
trates how to periodically check the last line in a log file to determine the status
of a system. This shell script simulates the status of a system by appending a
new row that is based on the current timestamp. The shell script sleeps for a
specified number of seconds, and on the third iteration, the script appends
a row with an error status in order to simulate an error. In the case of a shell
script that is monitoring a live system, the error code is obviously generated
outside the shell script.

Listing 9.13: CheckLogUpdates.sh

DataFile="mylogfile.txt"
OK="okay"
ERROR="error"
sleeptime="2"
loopcount=0

rm -f $DataFile 2>/dev/null; touch $DataFile
newline="`date` SYSTEM IS OKAY"
echo $newline >> $DataFile

while (true)
do
 loopcount=`expr $loopcount + 1`

 echo "sleeping $sleeptime seconds..."
 sleep $sleeptime
 echo "awake again..."

 lastline=`tail -1 $DataFile`

 if ["$lastline" == ""]
 then
 continue
 fi

 okstatus=`echo $lastline |grep -i $OK`
 badstatus=`echo $lastline |grep -i $ERROR`
 if ["$okstatus" != ""]
 then
 echo "system is normal"
 if [$loopcount –lt 5]
 then
 newline="`date` SYSTEM IS OKAY"
 else
 newline="`date` SYSTEM ERROR"

Shell Scripts with Grep and Awk Command • 219

 fi
 echo $newline >> $DataFile
 elif ["$badstatus" != ""]
 then
 echo "Error in logfile: $lastline"
 break
 fi
done

Listing 9.13 initializes some variables and then ensures that the log file
mylogfile.txt is empty. After an initial line is added to this log file, a while
loop sleeps periodically and then examines the contents of the final line of text
in the log file. New text lines are appended to this log file, and when an error
message is detected, the code exits the while loop. A sample invocation of
Listing 9.13 is here:
sleeping 2 seconds...
awake again...
system is normal
sleeping 2 seconds...
awake again...
system is normal
sleeping 2 seconds...
awake again...
system is normal
sleeping 2 seconds...
awake again...
system is normal
sleeping 2 seconds...
awake again...
system is normal
sleeping 2 seconds...
awake again...
Error in logfile: Thu Nov 23 18:22:22 PST 2017 SYSTEM
ERROR

The contents of the log file are shown here:
Thu Nov 23 18:22:12 PST 2017 SYSTEM IS OKAY
Thu Nov 23 18:22:14 PST 2017 SYSTEM IS OKAY
Thu Nov 23 18:22:16 PST 2017 SYSTEM IS OKAY
Thu Nov 23 18:22:18 PST 2017 SYSTEM IS OKAY
Thu Nov 23 18:22:20 PST 2017 SYSTEM IS OKAY
Thu Nov 23 18:22:22 PST 2017 SYSTEM ERROR

220 • Bash Command Line and Shell Scripts

PROCESSING MULTILINE RECORDS

Listing 9.14 displays the contents of the dataset multiline.txt and
Listing 9.15 displays the contents of the shell script multiline.sh that
combines multiple lines into a single record.

Listing 9.14: multiline.txt

 Mary Smith
999 Appian Way
Roman Town, SF 94234

 Jane Adams
123 Main Street
Chicago, IL 67840

John Jones
321 Pine Road
Anywhere, MN 94949

Note that each record spans multiple lines that can contain whitespaces,
and records are separated by a blank line.

Listing 9.15: multiline.sh

Records are separated by blank lines
awk '
BEGIN { RS = "" ; FS = "\n" }
{
 gsub(/[\t]+$/, "", $1)
 gsub(/[\t]+$/, "", $2)
 gsub(/[\t]+$/, "", $3)

 gsub(/^[\t]+/, "", $1)
 gsub(/^[\t]+/, "", $2)
 gsub(/^[\t]+/, "", $3)

 print $1 ":" $2 ":" $3 ""
 #printf("%s:%s:%s\n",$1,$2,$3)
}
' multiline.txt

Listing 9.15 contains a BEGIN block that sets RS (“record separator”) as
an empty string and FS (“field separator”) as a linefeed. Doing so enables us
to “slurp” multiple lines into the same record, using a blank line as a separa-
tor for different records. The gsub() function removes leading and trailing

Shell Scripts with Grep and Awk Command • 221

whitespaces and tabs for three fields in the datasets. The output from launch-
ing Listing 9.15 is here:
Mary Smith:999 Appian Way:Roman Town, SF 94234
Jane Adams:123 Main Street:Chicago, IL 67840
John Jones:321 Pine Road:Anywhere, MN 94949

ADDING THE CONTENTS OF RECORDS

Listing 9.16 displays the contents of the dataset numbers.txt and List-
ing 9.17 displays the contents of the shell script sumrows.sh that computes
the row-size sum of each line in numbers.txt.

Listing 9.16: numbers.txt

1 2 3 4 5
6 7 8 9 10
5 5 5 5 5

Listing 9.17: sumrows.sh

awk '{ for(i=1; i<=NF;i++) j+=$i; print j; j=0 }'
numbers.txt

Listing 9.17 contains a simple invocation of the awk command that contains
a for loop that uses the variable j to hold the sum of the values of the fields
in each record, after which the sum is printed and j is re-initialized to 0. The
output from Listing 9.17 is here:
15
40
25

USING THE SPLIT FUNCTION IN AWK

Listing 9.18 displays the contents of the dataset genetics.txt (some
rows wrap across more than one line) and Listing 9.19 displays the contents
of the shell script genetics.sh that uses the split() function in order to
parse the contents of a field in a record.

Listing 9.18: genetics.txt

#extract rows with 'gene’ and print rows and 'key’
value
xyz3 GTF2GFF chro 55555 44444
key=chr1;Name=chr1
xyz3 GTF2GFF gene 77774 11111 key=XYZ123;NB=
standard;Name=extra
xyz3 GTF2GFF exon 71874 12227 Super=NR_55555
xyz3 GTF2GFF exon 72613 12721 Super=NR_55555

222 • Bash Command Line and Shell Scripts

xyz3 GTF2GFF exon 83221 14408 Super=NR_55555
xyz3 GTF2GFF gene 84362 29370 key=WASH7P;Not
e=extra;Name=ALPHA
xyz3 GTF2GFF exon 84362 14829 Super=NR_222222

Listing 9.19: genetics.sh

required output:
#xyz3:77774:XYZ123
#xyz3:84362:WASH7P

awk -F" " '
{
 if($3 == "gene") {
 split($6, triplet, /[;=]/)
 printf("%s:%s:%s\n", $1, $4, triplet)
 }
}
' genetics.txt

Listing 9.19 matches input lines whose third field equals gene, after which
the array triplet is populated with the components of the sixth field, using the
characters “;” and “=” as delimiters in the sixth field. The output consists of the
first field, the fourth field, and the second element in the array triplet. The
output from launching Listing 9.19 is here:
xyz3:77774:XYZ123
xyz3:84362:WASH7P

SCANNING DIAGONAL ELEMENTS IN DATASETS

Listing 9.20 displays the contents of the dataset diagonal.csv and List-
ing 9.21 displays the contents of the shell script diagonal.sh that displays
the elements in the main diagonal and off-diagonal, and also computes the sum
of the elements in the main diagonal and off-diagonal. Although you re unlikely
to need to perform such a task, the code might contain some techniques that
are useful for your own shell scripts.

Listing 9.20: diagonal.csv

1,1,1,1,1
5,4,3,2,1
8,8,1,8,8
5,4,3,2,1
1,6,6,7,7

Shell Scripts with Grep and Awk Command • 223

Listing 9.21: diagonal.sh

NF is the number of fields in the current record.
NR is the number of the current record/line
(not the number of records in the file).
In the END block (or the last line of the file)
it’s the number of lines in the file.
Solution in R: https://gist.github.com/
dsparks/3693115

echo "Main diagonal:"
awk -F"," '{ for (i=0; i<=NF; i++) if (NR >= 1 && NR
== i) print $(i) }' diagonal.csv

echo "Off diagonal:"
awk -F"," '{print $(NF+1-NR)}' diagonal.csv

echo "Main diagonal sum:"
awk -F"," '
BEGIN { sum = 0 }
{
 for (i=0; i<=NF; i++) { if (NR >= 1 && NR == i) { sum
+= $i } }
}
END { printf ("sum = %s\n",sum) }
' diagonal.csv

echo "Off diagonal sum:"
awk -F"," '
BEGIN { sum = 0 }
{
 for (i=0; i<=NF; i++) { if(NR >= 1 && i+NR == NF+1)
{ sum += $i; } }
}
END { printf ("sum = %s\n",sum) }
' diagonal.csv

Listing 9.21 starts with an awk command that contains a loop that matches
“diagonal” elements of the dataset, which is to say the first field of the first
record, the second field of the second record, the third field of the third record,
and so forth. This matching process is handled by the conditional logic inside
the for loop.

The second part of Listing 9.21 contains an awk command that prints the
off-diagonal elements of the dataset, using a very simple print statement.

224 • Bash Command Line and Shell Scripts

The third part of Listing 9.21 contains an awk command that contains the
same logic as the first awk command and then calculates the cumulative sum
of the diagonal elements.

The fourth part of Listing 9.21 contains an awk command that contains
logic that is similar to the first awk command, with the following variation:

if(NR >= 1 && i+NR == NF+1)

The preceding logic enables us to calculate the cumulative sum of the off-
diagonal elements. The output from launching Listing 9.21 is here:
Main diagonal:
1
4
1
2
7
Off diagonal:
1
2
1
4
1
Main diagonal sum:
sum = 15
Off diagonal sum:
sum = 9

Listing 9.22, Listing 9.23, and Listing 9.24 display the contents of the CSV
files rain1.csv, rain2.csv, and rain3.csv.txt that are used in
several shell scripts in this section.

Listing 9.22: rain1.csv

1,0.10,53,15
2,0.12,54,16
3,0.19,65,10
4,0.25,86,23
5,0.18,57,17
6,0.23,79,34
7,0.34,66,21

Listing 9.23: rain2.csv

1,0.00,63,24
2,0.02,64,25
3,0.09,75,19

Shell Scripts with Grep and Awk Command • 225

4,0.15,66,28
5,0.08,67,36
6,0.13,79,23
7,0.24,68,25

Listing 9.24: rain3.csv

1,1.00,83,34
2,0.02,84,35
3,1.09,75,19
4,0.15,86,38
5,1.08,87,36
6,0.13,79,33
7,0.24,88,45

ADDING VALUES FROM MULTIPLE DATASETS (1)

Listing 9.25 displays the contents of the shell script rainfall1.sh that
adds the numbers in the corresponding fields of several CSV files and displays
the results.

Listing 9.25: rainfall1.sh

=> Calculate COLUMN averages for multiple files

#columns in rain.csv:
#DOW,inches of rain, degrees F, humidity (%)

#files: rain1.csv, rain2.csv, rain3.csv
echo "FILENAMES:"
ls rain?.csv

awk -F’,’ '
{
 inches+=$2
 degrees+=$3
 humidity+=$4
}
END {
 printf("FILENAME: %s\n", FILENAME)
 printf("inches: %.2f\n", inches/7)
 printf("degrees: %.2f\n", degrees/7)
 printf("humidity: %.2f\n", humidity/7)
}
' rain?.csv

Listing 9.25 calculates the sum of the numbers in three columns (i.e., inches
of rainfall, degrees Fahrenheit, and humidity as a percentage) in the datasets

226 • Bash Command Line and Shell Scripts

specified by the expression rain?.csv, which in this particular example con-
sists of the datasets rain1.csv, rain2.csv, and rain3.csv.

Thus, Listing 9.25 can handle multiple datasets (rain1.csv through
rain9.csv). You can generalize this example to handle any dataset that starts
with the string rain and ends with the suffix csv with the following expres-
sion:

rain*.csv

The output from launching Listing 9.25 is here:
FILENAMES:
rain1.csv rain2.csv rain3.csv
inches: 0.83
degrees: 217.71
humidity: 79.43

 ADDING VALUES FROM MULTIPLE DATASETS (2)

Listing 9.26 displays the contents of the shell script rainfall12.sh that
adds the numbers in the corresponding fields of several CSV files and displays
the results.

Listing 9.26: rainfall2.sh

=> Calculate ROW averages for multiple files

#columns in rain.csv:
#DOW,inches of rain, degrees F, humidity (%)

#files: rain1.csv, rain2.csv, rain3.csv

awk -F',' '
{
 mon_rain[FNR]+=$2
 mon_degrees[FNR]+=$3
 mon_humidity[FNR]+=$4
 idx[FNR]++
}
END {
 printf("DAY INCHES DEGREES HUMIDITY\n")

 for(i=1; i<=FNR; i++){
 printf("%3d %-6.2f %-8.2f %-7.2f\n",
 i,mon_rain[i]/idx[i],mon_degrees[i]/idx[i],mon_
humidity[i]/idx[i])
 }
}
' rain?.csv

Shell Scripts with Grep and Awk Command • 227

Listing 9.26 is similar to Listing 9.25, except that this code sample uses the
value of FNR in order to calculate the average rainfall, degrees Fahrenheit, and
percentage of humidity only for Monday. The output from launching Listing
9.26 is here:
DAY INCHES DEGREES HUMIDITY
 1 0.37 66.33 24.33
 2 0.05 67.33 25.33
 3 0.46 71.67 16.00
 4 0.18 79.33 29.67
 5 0.45 70.33 29.67
 6 0.16 79.00 30.00
 7 0.27 74.00 30.33

Listing 9.27, Listing 9.28, and Listing 9.29 display the contents of the data-
set zain1.csv, zain2.csv, and rainz.csv.txt that are used in
an upcoming shell script in this section.

Listing 9.27: zain1.csv

1,0.10,53,15
2,0.12,54,16
3,0.19,65,10
4,0.25,86,23
5,0.18,57,17
6,0.23,79,34
7,0.34,66,21

Listing 9.28: zain2.csv

1,0.00,63,24
2,0.02,64,25
3,0.09,75,19
4,0.15,66,28
5,0.08,67,36
6,0.13,79,23
7,0.24,68,25

Listing 9.29: zain3.csv

1,1.00,83,34
2,0.02,84,35
3,1.09,75,19
4,0.15,86,38
5,1.08,87,36
6,0.13,79,33
7,0.24,88,45

228 • Bash Command Line and Shell Scripts

ADDING VALUES FROM MULTIPLE DATASETS (3)

Listing 9.30 displays the contents of the shell script rainfall3.sh that
adds the numbers in the corresponding fields of several CSV files and displays
the results.

Listing 9.30: rainfall3.sh

=> Calculate COLUMN averages for multiple files
(backtick)

#columns in rain.csv:
#DOW,inches of rain, degrees F, humidity (%)

specify the list of CSV files (supports multiple
regexs)
files=`ls rain*csv zain*csv`

echo "FILES: `echo $files`"

awk -F',' '
{
 mon_rain[FNR]+=$2
 mon_degrees[FNR]+=$3
 mon_humidity[FNR]+=$4
 idx[FNR]++
}
END {
 printf("DAY INCHES DEGREES HUMIDITY\n")

 for(i=1; i<=FNR; i++){
 printf("%3d %-6.2f %-8.2f %-7.2f\n",
 i,mon_rain[i]/idx[i],mon_degrees[i]/idx[i],mon_
humidity[i]/idx[i])
 }
}
' `echo $files`

Listing 9.30 performs the same calculations as Listing 9.26, with the fol-
lowing variation: the datasets specified by the variable files that are defined
by the regular expression 'ls rain*csv zain*csv'. You can modify this
regular expression to include any list of files that need to be processed. Notice
that the final line of code in Listing 9.30 uses backtick substitution to expand
the regular expression in the definition of the variable files:

' `echo $files`

Shell Scripts with Grep and Awk Command • 229

As yet another variation, you can specify a file – let’s call it filelist.txt
- that contains a list of filenames that you want to process, and then replace the
preceding line as follows:

' `cat filelist.txt`

The output from launching Listing 9.30 is here:
FILES: rain1.csv rain2.csv rain3.csv zain1.csv zain2.
csv zain3.csv
DAY INCHES DEGREES HUMIDITY
 1 0.37 66.33 24.33
 2 0.05 67.33 25.33
 3 0.46 71.67 16.00
 4 0.18 79.33 29.67
 5 0.45 70.33 29.67
 6 0.16 79.00 30.00
 7 0.27 74.00 30.33

CALCULATING COMBINATIONS OF FIELD VALUES

Listing 9.31 displays the contents of the shell script linear-combo.sh
that computes various linear combinations of the columns in multiple datasets
and displays one combined dataset as the output.

Listing 9.31: linear-combo.sh

=> combinations of columns
awk -F',' '
{
 $2 += $3 * 2 + $4 / 2
 $3 += $4 / 3 + $2 * $2 / 10
 $4 += $2 + $3
 $1 += $2 * 3 - $4 / 10
 printf("%d,%.2f,%.2f,%.2f\n",$1,$2,$3,$4)
}
' rain?.csv

Listing 9.31 processes the values of the datasets rain1.csv, rain2.
csv, and rain3.csv whose contents are shown earlier in this section.
The key observation to make is that the sequence of calculations in the calcula-
tions in the body of the awk statement involved inter-dependencies.

Specifically, the value of $2 is a linear combination of the values of $3 and
$4. Next, the value of $3 is a linear combination of the value of $4 and $2,
where the latter is not the original value from the datasets, but its calculated
value. Third, the value of $4 is a linear combination of $2 and of $3, both of
which are calculated values and not the values in the datasets. Finally, the value
of $1 is a linear combination of the newly calculated values for $2 and $4.

230 • Bash Command Line and Shell Scripts

As you can see, awk provides the flexibility to specify practically any combi-
nation of calculations (including non-linear combinations) in a very simple and
sequential fashion. The output of Listing 9.31 is here:
194,113.60,1348.50,1477.10
196,116.12,1407.72,1539.84
204,135.19,1895.97,2041.16
187,183.75,3470.07,3676.82
202,122.68,1567.70,1707.38
194,175.23,3160.89,3370.12
207,142.84,2113.33,2277.17
201,138.00,1975.40,2137.40
202,140.52,2046.92,2212.44
201,159.59,2628.23,2806.82
203,146.15,2211.32,2385.47
203,152.08,2391.83,2579.91
199,169.63,2964.10,3156.73
206,148.74,2288.69,2462.43
183,184.00,3479.93,3697.93
182,185.52,3537.43,3757.95
200,160.59,2660.25,2839.84
179,191.15,3752.50,3981.65
178,193.08,3826.99,4056.07
195,174.63,3139.56,3347.19
173,198.74,4052.76,4296.50

SUMMARY

In this chapter, you have some examples of how to create some useful bash
commands. First, you saw a bash script for handling text files containing mul-
tiline records. Next, you saw how to compute cumulative totals of numeric
fields in records. Then you learned how to use the split() function inside a
shell script with an awk command.

Then you saw how to use awk to process records that span multiple data-
sets in order to compute averages and total values. The multi-dataset tasks
enabled you to learn more sophisticated shell scripts that operate on a set of
“relational” tables, presented in the form of text files. Finally, you learned how
to dynamically calculate various combinations of columns of numbers from
multiple datasets.

CHAPTER10
MISCELLANEOUS SHELL SCRIPTS

This chapter contains an eclectic assortment of bash scripts that
illustrate how to perform various tasks involving multiple files and
directories, working with compressed files, background processes, and

printing simple reports.
The first part of this chapter shows you how to selectively copy and delete

files from a directory tree. The second part of this chapter contains an assort-
ment of shell scripts that create sub-directories in a directory, based on a set of
strings. One of the scripts shows you how to check whether or not a given string
is an existing sub-directory or a file.

The third part of this chapter discusses various commands for handling zip
files, such as gzip, gunzip, and so forth. (See Chapter 4 for examples of the
tar command for creating archive files.) The fourth part of this chapter shows
you how to schedule tasks using the commands at and crontab. Next, you
will learn about print-related commands and how to generate simple reports.

USING RM AND MV WITH DIRECTORIES

Before we look at the shell scripts, there are some simple tasks that you can
perform with the rm command. For example, if you want to remove the direc-
tory my_stuff and all its contents, you can do so with this command:

rm –r my_stuff

Alternatively, you can use the mv command to move the directory my_
stuff to the /tmp directory:

mv my_stuff /tmp

However, the preceding command works at most once; if the directory
already exists in /tmp, then the preceding mv command will fail.

232 • Bash Command Line and Shell Scripts

If you want to clone the entire contents of the directory my_stuff (includ-
ing all the sub-directories) into the directory my_stuff2, use this command:

cp –r my_stuff my_stuff2

You can also use the cp or mv command in conjunction with back substitu-
tion to copy (or move) a subset of files in multiple sub-directories.

For example, suppose you have a directory with multiple sub-directories
that contain Word documents and text files, as shown here:
myfiles/wordfiles/chapter1/chapter1.doc
myfiles/wordfiles/chapter2/chapter2.doc
myfiles/wordfiles/chapter3/chapter3.doc
myfiles/wordfiles/chapter4/chapter4.doc
myfiles/wordfiles/chapter1/data1.txt
myfiles/wordfiles/chapter2/data2.txt
myfiles/wordfiles/chapter3/data3.txt
myfiles/wordfiles/chapter4/data4.txt

Listing 10.1 displays the contents of the shell script maketree.sh that
creates a set of sub-directories in the current directory.

Listing 10.1: maketree.sh

remove myfiles
rm –r myfiles 2>/dev/null

create subdirectories
mkdir -p myfiles/wordfiles/chapter1
mkdir -p myfiles/wordfiles/chapter2
mkdir -p myfiles/wordfiles/chapter3
mkdir -p myfiles/wordfiles/chapter4

create empty files
touch myfiles/wordfiles/chapter1/chapter1.doc
touch myfiles/wordfiles/chapter2/chapter2.doc
touch myfiles/wordfiles/chapter3/chapter3.doc
touch myfiles/wordfiles/chapter4/chapter4.doc
touch myfiles/wordfiles/chapter1/data1.txt
touch myfiles/wordfiles/chapter2/data2.txt
touch myfiles/wordfiles/chapter3/data3.txt
touch myfiles/wordfiles/chapter4/data4.txt

Listing 10.1 removes the directory myfiles, and then uses the mkdir -p
command to create a set of sub-directories, followed by the touch command
to create empty Word documents and empty text files.

Miscellaneous Shell Scripts • 233

USING THE FIND COMMAND WITH DIRECTORIES

First, make sure that you launch the shell script mktree.sh in the preced-
ing section in order to create the specified directory structure with the speci-
fied files.

The following command finds all the Word documents in the myfiles
directory:

find myfiles -name "*.doc"

The following command copies all the Word documents from the myfiles
directory to the /tmp directory:

cp `find myfiles -name "*.doc"` /tmp

You can perform similar operations with the text files by replacing occur-
rences of *.doc with *.txt.

Alternatively, the following command uses a combination of the cp, find,
and grep command to copy all the Word documents from the myfiles direc-
tory to the /tmp directory:

cp `find myfiles |grep "\.doc$"` /tmp

Notice the pattern "\.doc$" in the grep command, which ensures that
only files with the suffix .doc are found by the grep command. This pattern
prevents the file (or directory) mydoc_stuff or mydoc from matching in the
grep command.

However, there is one other point to keep in mind: it’s possible to create
the directory called my.doc, which will also match in the grep command. In
this scenario, the cp command will display an error message that the directory
my.doc was not copied.

CREATING A DIRECTORY OF DIRECTORIES

Listing 10.2 displays the contents of the shell script makedirs.sh that
creates a set of sub-directories in the names directory.

Listing 10.2: makedirs.sh

###
Define a variable with a list of directory names
This method does not depend on an external file.
Alternatively, place these names in a text file
and then read the contents of that text file.
###

change the value of mydir to whatever you need
mydir="names"

name_list="andrew-webber dave-jones jane-smith john-
smith keith-thompson"

234 • Bash Command Line and Shell Scripts

if [! -d $mydir]
then
 mkdir $mydir
 cd $mydir

 for name in `echo $name_list`
 do
 echo "creating directory $name in $mydir"
 mkdir $name
 done
else
 echo "Directory $mydir exists"
fi

Listing 10.2 initializes the variable name_list with a hard-coded list
of names, each of which becomes a sub-directory of $mydir. The next por-
tion of Listing 10.2 contains if/else logic to determine whether or not
the $mydir directory exists. If it does not, then a loop iterates through
the strings in $name_list and creates a corresponding sub-directory of
$mydir.

Launch the code in Listing 10.2 and you will see the following output:
creating directory andrew-webber in names
creating directory dave-jones in names
creating directory jane-smith in names
creating directory john-smith in names
creating directory keith-thompson in names

However, if you invoke the code in Listing 10.2 a second time, you will see
the following output:

Directory names exists

CLONING A SET OF SUB-DIRECTORIES

Listing 10.3 displays the contents of the directory names and Listing 10.4
displays the contents of the shell script clonedirs1.sh that populates the
directory names2 with the directories in the names directory.

Listing 10.3: names

john-smith
jane-smith
dave-jones
andrew-webber
keith-thompson

Miscellaneous Shell Scripts • 235

Listing 10.4: clonedirs1.sh

make sure that you "cd" into the "names2" directory
for d in `ls ../names`
do
 echo "Creating directory $d"
 mkdir $d
done

Listing 10.4 contains a simple for loop that iterates through the contents
of the (sibling) directory names, displays a message, and creates a correspond-
ing directory in the names2 directory.

Launch the code in Listing 10.4 and you will see the following output:
Creating directory andrew-webber
Creating directory dave-jones
Creating directory jane-smith
Creating directory john-smith
Creating directory keith-thompson

However, if you invoke the code in Listing 10.4 a second time, you will see
multiple errors because the directories already exist, as shown here:
Creating directory andrew-webber
mkdir: andrew-webber: File exists
Creating directory dave-jones
mkdir: dave-jones: File exists
Creating directory jane-smith
mkdir: jane-smith: File exists
Creating directory john-smith
mkdir: john-smith: File exists
Creating directory keith-thompson
mkdir: keith-thompson: File exists

Listing 10.5 displays the contents of the shell script clonedirs2.sh that
checks whether or not a directory already exists before populating the directory
names2 with the directories in the names directory.

Listing 10.5: clonedirs2.sh

make sure that you "cd" into the "names2" directory
for d in `ls ../names`
do
 if [-d $d]
 then
 echo "Directory $d already exists"
 else

236 • Bash Command Line and Shell Scripts

 echo "Creating directory $d"
 mkdir $d
 fi
done

Listing 10.5 contains a simple for loop that iterates through the contents
of the (sibling) directory names. The if/else code block checks if the direc-
tory already exists; if so, a message is displayed; if not, the directory is created
inside the names2 directory.

Launch the code in Listing 10.5 and you will see the following output:
Directory andrew-webber already exists
Directory dave-jones already exists
Directory jane-smith already exists
Directory john-smith already exists
Directory keith-thompson already exists

Listing 10.6 displays the contents of the shell script clonedirs3.sh that
first checks whether a file in names2 is a file instead of a directory: if so, no
directory is created. Next, if the file in names2 is, in fact, a directory, the code
checks whether or not a directory already exists before populating the directory
names2 with the directories in the names directory.

Listing 10.6: clonedirs3.sh

make sure that you "cd" into the "names2" direc-
tory

for d in `ls ../names`
do
 if [-f $d]
 then
 echo "$d is a file (not a directory)"
 elif [-d $d]
 then
 echo "Directory $d already exists"
 else

 echo "Creating directory $d"
 mkdir $d
 fi
done
Listing 10.6 contains a simple for loop that iterates through the contents

of the (sibling) directory names. The if/else code block checks if the direc-
tory already exists; if so, a message is displayed; if not, the directory is created
in the names2 directory.

Miscellaneous Shell Scripts • 237

Launch the code in Listing 10.6 and you will see the following output:
Directory andrew-webber already exists
Directory dave-jones already exists
Directory jane-smith already exists
Directory john-smith already exists
Directory keith-thompson already exists

Listing 10.7 displays the contents of the shell script copy-file1.sh that
first checks whether a file in names2 is a file instead of a directory: if so, no
copy is created. Next, if the file in names2 is, in fact, a directory, the code
copies file1 into this directory. If the file does not exist, the code creates a
directory and copies file1 into the directory.

Listing 10.7: copy-file1.sh

make sure that you "cd" into the "names2" directory

echo "hello world" >/tmp/file1
file1="/tmp/file1"

for d in `ls`
do
 if [-f $d]
 then
 echo "Skipping copy command for $d"
 elif [-d $d]
 then
 echo "Copying $file1 into $d"
 else
 echo "Creating directory $d"
 mkdir $d
 echo "Copying $file1 into $d"
 fi
done

Listing 10.7 contains a simple for loop that iterates through the contents
of the (sibling) directory names. The if/else code block checks if the direc-
tory already exists; if so, a message is displayed; if not, the directory is created
in the names2 directory.

Launch the code in Listing 10.7 and you will see the following output:
Copying /tmp/file1 into andrew-webber
Skipping copy command for clone-dirs1.sh
Skipping copy command for clone-dirs2.sh
Skipping copy command for clone-dirs3.sh

238 • Bash Command Line and Shell Scripts

Skipping copy command for copy-file1.sh
Copying /tmp/file1 into dave-jones
Copying /tmp/file1 into jane-smith
Copying /tmp/file1 into john-smith
Copying /tmp/file1 into keith-thompson

EXECUTING FILES IN MULTIPLE DIRECTORIES

Suppose that you have executable shell scripts in multiple directories, and
you want to execute all of them. One solution involves keeping track of the
directories and the executable files in each of those directories, and then navi-
gating to those directories to perform the necessary action.

Listing 10.8 displays the contents of the shell script remove-files.sh
that removes different files based on the current directory.

Listing 10.8: remove-files.sh

keep track of the top directory
topdir=`pwd`

for f in `ls`
do
 if [-d $f]
 then
 cd $topdir/$f

 if [-f "remove.sh"]
 then
 echo "executing remove.sh in $f"
 sh remove.sh
 else
 echo "cannot find remove.sh in $f"
 fi

 cd $topdir
 fi
done

Listing 10.8 assigns the current directory to the variable topdir,
followed by a loop that processes the contents of the sub-directories of
topdir. Notice the if/else logic to ensure that the current value of $f
is actually a directory.

If $f is a directory, then perform a cd command into that directory. Note
that the inner if/else logic checks that the shell script remove.sh exists
before executing this shell script.

Miscellaneous Shell Scripts • 239

Another point to notice is the initial sh in the command remove.sh
(shown in bold), which enables us to execute commands even if they do not
have to execute permissions.

Now launch the code in Listing 10.8 and you will see the following output:
executing remove.sh in headers
removing text files
executing remove.sh in src
removing object files

THE CASE/ESAC COMMAND

As you already know, the case/esac command enables you to perform
different actions that are based on the value of a user’s input. Just to refresh
your memory, here is a sample of the syntax of the case statement:
case $option in
 1) echo "Starting system backup...";;
 2) echo "Reading tape drive...";;
 x) echo "Are you really sure? (Y/n)"
esac

In general, you would display a menu of options and prompt users for their
choice, and then execute the appropriate command.

Listing 10.9 displays the contents of the shell script case-menu.sh that
displays a set of options and prompts users for their input.

Listing 10.9: case-menu.sh

menu()
{
 echo "1) Perform system backup"
 echo "2) Read tape drive"
 echo "x) Exit System"
 echo ""
 echo "Enter option:"
}

process_option()
{
 case $option in
 1) echo "Starting system backup...";;
 2) echo "Reading tape drive...";;
 x) echo "Are you really sure? (Y/n)"
 read val
 val=$val | tr '[:upper:]' '[:lower:]'

240 • Bash Command Line and Shell Scripts

 if ["$val" = "y"]
 then
 echo "Exiting system ... goodbye"
 exit
 fi ;;
 *) echo "Exiting system ... goodbye"
 exit ;;
 esac
}

while(true)
do
 menu
 read option
 process_option
done

Listing 10.9 defines the menu() function that displays a set of options,
followed by the process_option() function that processes the input that
users have provided.

The response for the value 1 or the value 2 is straightforward, and you need
to insert code that would actually do something.

The response for the value x is more complex, and it illustrates the flexibil-
ity of the case/esac statement. You can execute whatever you need to do in
this option. In this example, the input value is converted to a lowercase value:
if it equals lowercase x, then the program exits. Notice that the program also
exists for all other input values.

The final portion of Listing 10.9 contains a loop that 1) displays the menu,
2) prompts users for an input value, and 3) processes the users’ input value.

Launch the code in Listing 10.9 and select all the menu options, as shown
here:
1) Perform system backup
2) Read tape drive
x) Exit System

Enter option:
1

Starting system backup...
1) Perform system backup
2) Read tape drive
x) Exit System

Enter option:

Miscellaneous Shell Scripts • 241

2

Reading tape drive...
1) Perform system backup
2) Read tape drive
x) Exit System

Enter option:
x

Are you really sure? (Y/n)

1) Perform system backup
2) Read tape drive
x) Exit System

Enter option:
4

Exiting system

COMPRESSING/UNCOMPRESSING FILES

This brief section contains a description of an assortment of commands for
compressing and uncompressing files:
Compress: Compress files
gunzip: Uncompress gzipped files
gzip: GNU alternative compression method
uncompress: Uncompress files
unzip: List, test and extract compressed files in
a ZIP archive
zcat: Cat a compressed file
zcmp: Compare compressed files
zdiff: Compare compressed files
zmore: File perusal filter for crt viewing of
compressed text

The uuencode utility encodes binary files (images, sound files, compressed
files, etc.) into ASCII characters, making them suitable for transmission as an
attachment or even in the body of an email message. This is especially useful
where MIME (multimedia) encoding is not available. The uudecode decodes
the files created via the uuencode command.

THE DD COMMAND

The man page for the dd command describes dd as a utility that “copies
standard input to standard output.” Despite this innocuous description, the dd
command is actually quite powerful, and can even convert ASCII characters

242 • Bash Command Line and Shell Scripts

into EBCDIC, which is a data format for mainframes, and vice versa. The syn-
tax for the dd command is as follows:

dd if=SOURCE of=TARGET bs=BLOCK_SIZE count=COUNT
The if and of options in the preceding snippet are for the input file and

the output file, respectively. The bs option is for the block size (usually a mul-
tiple of 512), and count is an integer that specifies the number of blocks to be
copied. Note that bs and count are both optional. If count is omitted, then
dd copies data from the input file until it reaches the end of file (EOF) marker.

In order to copy a partition into a file, use this command:

dd if=/dev/sda1 of=sda1_partition.img

Note that /dev/sda1 in the preceding snippet is the device path for the
partition.

Restore the partition using the backup with this command:

dd if=sda1_partition.img of=/dev/sda1

Generate the file data.file of 100kb as follows:

dd if=/dev/zero bs=100k count=1 of=data.file

The preceding command creates a file data.file that is filled with zeros
with a size of 100kb.

The next command creates the file junk.data that is exactly 1MB
in size:
dd if=/dev/zero of=junk.data bs=1M count=1
1+0 records in
1+0 records out
1048576 bytes (1.0 MB) copied, 0.00767266 s, 137 MB/s

THE CRONTAB COMMAND

The crontab command allows you to schedule the execution of tasks on a
regular basis. For instance, you can schedule the execution of shell scripts on a
flexible schedule instead of manually invoking those shell scripts.

Keep in mind that crontab tasks do not inherit the environment of a
specific user, which means that you must ensure that all required environment
variables are set properly (such as invoking a script that contains those vari-
ables).

You can schedule a task to run based on the following:
an hourly, daily, or weekly basis
a specific day of the month
a specific month or year

The following command displays the currently scheduled jobs for your
machine:

crontab

Miscellaneous Shell Scripts • 243

You need to be either the root user or use sudo in order to modify crontab
(in the /usr/bin directory) with the following command:

crontab -e

The following command replaces the current set of jobs with the jobs in the
file crontab.new:

crontab –r < crontab.new

UNCOMPRESSING FILES AS A CRON JOB

Listing 10.10 displays the contents of uncompress.sh that illustrates
how to uncompress a set of “zip” files in separate directories.

Listing 10.10 uncompress.sh

#!/bin/sh

zipfiles="`ls *zip`"

if ["$zipfiles" != ""]
then
 for f in `echo $zipfiles`
 do
 echo "Processing file: $f"
 f1=`echo $f | cut -d"." -f1`
 f2=`echo $f | cut -d"." -f2`
 newdir="${f1}-new"

 echo "Creating directory: $newdir"
 mkdir -p $newdir
 cp $f $newdir
 cd $newdir
 echo "Uncompressing file: $f"
 jar xvf $f
 cd ../
 done
else
 echo "No zip files found"
fi

Listing 10.10 initializes the variable zipfiles with the list of zip files in the
current directory, followed by an if/else block that checks whether or not
any zip files exist by checking the value of the variable zipfiles.

If zipfiles is non-empty, a for loop iterates through each file in the
zipfiles variable, and then constructs a string called newdir by appending
the string –new to the prefix f1 of the current filename.

244 • Bash Command Line and Shell Scripts

The next section in Listing 10.10 invokes the mkdir –p command in order
to create a new directory named newdir. After invoking the cd command to
enter this new directory, the current zip file (which is the value of the loop vari-
able f) is uncompressed into this directory. Notice the invocation of cd ..
(which is the last statement in the loop) in order to return to the parent directory.

SCHEDULED COMMANDS AND BACKGROUND PROCESSES

The section contains an assortment of bash commands that can be useful
for various tasks and shell scripts. You can schedule a command to run at a spe-
cific time via the at command or via cron. You can also schedule a command
to run in the background via the ampersand (“&”) symbol.

How to Schedule Tasks

The at job control command executes a given set of commands at a speci-
fied time. Superficially, it resembles cron; however, the at command is chiefly
useful for a one-time execution of a command set. For example, the following
snippet prompts for a set of commands to execute at that time:

at 2pm January 15

These commands should be shell-script compatible because users are typ-
ing in an executable shell script one line at a time. Input terminates with a
ctrl-d.

Use either the -f option or input redirection (<) when you need the at
command to read a command list from a file.

The batch job control command is similar to the at command; however,
it runs a command list when the system load is less than .8. The batch com-
mand can also read commands from a file with the -f option.

The nohup Command

The nohup (“no hangup”) command enables you to execute another com-
mand and continue to execute that command even after you have logged out.
Here is a simple example:

nohup myscript.sh

By default, both standard output and standard error (if any) are redirected
to the text file nohup.out in the current directory.

Executing Commands Remotely

Bash supports remote execution of various commands. You can remotely
log into another machine using the rsh command. If you want to use a secure
connection, use the ssh instead of rsh.

After logging into a remote system, you can execute various commands
between the two systems. For example, rcp is the counterpart to the cp com-
mand. Other commands include rsync, ftp, ping, and telnet. Perform
an online search to learn the details of these commands.

Miscellaneous Shell Scripts • 245

How to Schedule Tasks in the Background

The & switch runs a process in the background. Note that & does not lower
the priority of a currently executing process. This option is convenient for
invoking two commands in the same shell:
find . –name "*txt" –print > text_files &
tail –f text_files

The preceding find command runs in the background as it searches for
all files with the txt suffix and redirects the output to text_files. The tail
command displays the contents of text_files whenever this file is updated.

You can bring the previous background process to the foreground with this
command:

fg %1

HOW TO TERMINATE PROCESSES

The kill <number> PID command enables you to terminate tasks or
processes by specifying a signal value for <number> and a process id for PID.
The value of <number> can be 1, 2, 3, 6, 9, 14, or 15.

For example, both of the following commands will terminate a process with
a “hangup” signal:
kill -1 2345
kill –s HUP 2345

You can terminate a process whose PID is 2345 with kill -3 2345 and
kill -9 2345, which are signals QUIT and KILL, respectively. However,
the signal QUIT can be “caught” via the “trap” command, whereas the signal
KILL forces a process to terminate immediately (i.e., as soon as the operat-
ing system can execute this command). Moreover, the signal KILL cannot be
caught via the “trap” command and it cannot be ignored.

NOTE Only superuser can send a signal to another user’s processes.

Perform an online search for more details regarding the kill command,
or check the man page with this command:

man kill

Terminating Multiple Processes

The kill <number> PID command enables you to terminate multiple
processes by specifying a list of processes, an example of which is shown here:

kill -1 5000 5010 5135 68238

Another scenario involves multiple child processes that have the same
parent process. For example, when you launch multiple browser sessions in
Chrome or Firefox, each browser session will have an associated PID. There
are two ways to terminate all the child processes and the parent process. One

246 • Bash Command Line and Shell Scripts

technique is to terminate the parent process that appears in the monitor util-
ity. However, if you need to terminate these processes from the command line,
you can invoke the following command:

ps -ef |grep -i firefox | awk '{print $2}' | xargs kill -9

PROCESS-RELATED COMMANDS

The ps command displays information about processes on your machine.
For example, if you type the following command at the command line:

ps –ef | more | head -7

you will see output that is similar to the following:
UID PID PPID C STIME TTY TIME CMD
 0 1 0 0 Thu05AM ?? 34:15.35 /sbin/
launchd
 0 12 1 0 Thu05AM ?? 0:10.58 /usr/
libexec/kextd
 0 14 1 0 Thu05AM ?? 1:44.60 /usr/
sbin/notifyd
 0 15 1 0 Thu05AM ?? 2:18.59 /usr/
sbin/securityd -i
 0 17 1 0 Thu05AM ?? 46:41.08 /usr/
libexec/configd
 0 18 1 0 Thu05AM ?? 1:26.37 /usr/
sbin/syslogd

The kill command enables you to terminate processes. For example, the
following command terminates the Chrome browser that is running on your
machine:

kill -9 Chrome

If you execute commands in a shell script, you can find the process id of the
currently executing process from $$, whereas $! contains the process id of the
process that recently switched to the background.

The uptime command displays how long the system has been running,
and sample output is here:

23:21 up 1 day, 12:59, 9 users, load averages: 2.60
3.26 3.42

How to Monitor Processes

The top command displays information about currently running tasks,
such as the “top” users of the CPU, the amount of memory that they consume,
priorities of processes, and so forth. A sample output from the top command
is here:

Miscellaneous Shell Scripts • 247

Processes: 322 total, 2 running, 320 sleeping, 1382
threads 21:35:32
Load Avg: 2.08, 1.69, 1.44 CPU usage: 3.85% user,
2.65% sys, 93.49% idle
SharedLibs: 142M resident, 42M data, 22M linkedit.
MemRegions: 85784 total, 2587M resident, 57M private,
577M shared.
PhysMem: 8135M used (1543M wired), 55M unused.
VM: 1331G vsize, 634M framework vsize, 48085(0)
swapins, 136883(0) swapouts.
Networks: packets: 3488298/4488M in, 1873020/198M out.
Disks: 2042619/22G read, 346447/14G written.
PID COMMAND %CPU TIME #TH #WQ #PORT MEM
PURG CMPRS PGRP PPID
5207 top 3.9 00:00.67 1/1 0 20 2892K+
0B 0B 5207 491
5092 cupsd 0.0 00:00.06 3 1 43 2420K
0B 0B 5092 1
5089- Office365Ser 0.0 00:00.21 8 2 154 4676K
0B 0B 5089 1
5084 quicklookd 0.0 00:00.16 4 1 86 4344K
32K 0B 5084 1
5043- mdworker32 0.0 00:00.46 3 1 51 5772K
0B 0B 5043 1
4989 mdworker 0.0 00:00.57 4 1 48 21M
0B 0B 4989 1
4943 netbiosd 0.0 00:00.06 2 2 30 500K
0B 1884K 4943 1

Perform an online search for more details about the options that are avail-
able for the top command.

CHECKING EXECUTION RESULTS

Whenever you need to determine the status of the most recently executed
command, check the value of $?. This term is assigned the value that is speci-
fied by the exit statement of the most recently executed command. By con-
vention, an exit value of 0 indicates successful execution, and non-zero values
indicate a non-successful result.

Listing 10.11 displays the contents of parent.sh that illustrates how
to check the result of executing a shell script from inside another shell
script.

248 • Bash Command Line and Shell Scripts

Listing 10.11 parent.sh

#check result of shell script

echo "first time:"
./cmdargs.sh pasta
echo "result = $?"

echo "second time:"
./cmdargs.sh
echo "result = $?"

echo "third time:"
cmdargs.sh
echo "result = $?"

Listing 10.11 invokes the shell script cmdargs.sh three times: the first
time with the parameter pasta, and the subsequent invocations with no
parameters. Each time that cmdargs.sh is launched, the value of $? is dis-
played in the current shell script, which is the exit status of cmdargs.sh.

Listing 10.12 displays the contents of cmdargs.sh that illustrates how
to check the result of executing a shell script from inside another shell script.

Listing 10.12 cmdargs.sh

if [$# -eq 0]
then
 echo "Usage: $0 <filename>"
 exit 1
fi

exit 0

Listing 10.12 checks if any command-line arguments are specified when
cmdargs.sh is launched from the command line. If not, a message is dis-
played and the shell script terminates with an exit value of 1. Otherwise, the
shell script terminates with an exit value of 0.

Launch the preceding shell script as follows:
./cmdargs.sh
The output is shown here:

first time:
result = 0
second time:
Usage: ./cmdargs.sh <filename>
result = 1
third time:
Usage: ./cmdargs.sh <filename>
result = 1

Miscellaneous Shell Scripts • 249

SYSTEM MESSAGES AND LOG FILES

Bash provides the dmesg command to display system-related messages. A
sample output from the dmesg command is here:
hibernate image path: /var/vm/sleepimage
AirPort_Brcm43xx::powerChange: System Sleep
hibernate_alloc_pages act 865005, inact 768286, anon
589882, throt 0, spec 30749, wire 407619, wireinit
241382
hibernate_setup(0) took 0 ms
sizeof(IOHibernateImageHeader) == 512
kern_open_file_for_direct_io(0) took 249 ms
Opened file /var/vm/sleepimage, size 8589934592,
partition base 0x0, maxio 400000 ssd 0
hibernate image major 1, minor 0, blocksize 512,
pollers 5
en1: BSSID changed to 68:7f:74:cb:05:f8
wlEvent: en1 en1 Link DOWN virtIf = 0
AirPort: Link Down on en1. Reason 8 (Disassociated
because station leaving).
en1::IO80211Interface::postMessage bssid changed
LE is supported - Disable LE meta event
 0 [Time 1380032186] [Message hibernate_page_
list_setall(preflight 0) start 0xffffff80fb3d5000,
0xffffff80fb433000

The /var directory on your machine contains various files and directories.
A sample of its contents is here:
en1::IO80211Interface::postMessage bssid changed
total 10872
-rw-r--r--@ 1 root wheel 12 Sep 12
2012 CDIS.custom
drwxrwx--- 33 root admin 1122 Sep 24
02:11 DiagnosticMessages

As you can see, the root user is the owner of many of these directories, so
you need to use sudo in order to view the contents of those directories.

A portion of the aptly named file /var/log/zzz.log is here:
Wed Sep 12 14:22:43 201 [SleepServicesD] /SourceCache/
SleepServicesD_executables/SleepServicesD-1.43/
SleepServicesD/ModeConfig.m:41 Waiting for
IOPlatformPluginFamily to load ...
Wed Sep 12 14:22:48 201 [SleepServicesD] /SourceCache/
SleepServicesD_executables/SleepServicesD-1.43/

250 • Bash Command Line and Shell Scripts

SleepServicesD/ModeConfig.m:41 Waiting for
IOPlatformPluginFamily to load ...
Wed Sep 12 14:22:49 201 [SleepServicesD] /SourceCache/
SleepServicesD_executables/SleepServicesD-1.43/
SleepServicesD/ModeConfig.m:41 Waiting for
IOPlatformPluginFamily to load ...

Disk Usage Commands

The du command displays “disk usage” information and the following invo-
cation displays the number of kilobytes for the files in the current directory:

du –s –k .

Replace “-k” with “-m” to see the number of megabytes.
The df command shows the “disk free” space available, and a sample invo-

cation is here:
Filesystem 1024-blocks Used Available Capacity
iused ifree %iused Mounted on
/dev/disk1 487184384 462012772 24915612 95%
115567191 6228903 95% /

The df command with the –h option produces this type of output:
Filesystem Size Used Avail Capacity iused
ifree %iused Mounted on
/dev/disk1 893Gi 800Gi 92Gi 90% 17489436
4277477843 0% /
devfs 191Ki 191Ki 0Bi 100% 661
0 100% /dev
map -hosts 0Bi 0Bi 0Bi 100% 0
0 100% /net
map auto_home 0Bi 0Bi 0Bi 100% 0
0 100% /home

TRAPPING AND IGNORING SIGNALS

Listing 10.13 displays the contents of trap1.sh that illustrates how to
trap a signal in bash. In this example, a message is displayed when users resize
their command shell in less than 10 seconds.

Listing 10.13 Trap1.sh

#!/bin/sh

maxCount="10"

screenchange()
{
 echo "Caught a signal from the trap statement"
}

Miscellaneous Shell Scripts • 251

echo "Resize the current command shell."
trap screenchange SIGWINCH

COUNT=0
while [$COUNT -lt $maxCount] ; do
 COUNT=$(($COUNT + 1))
 sleep 1
done

Listing 10.13 initializes the variable maxCount with the value 10, followed
by the definition of the screenchange function, which merely displays a
message via the echo statement.

Next, the echo statement prompts users to resize their command shell,
followed by the trap statement that invokes the screenchange function if
the command shell is resized in less than 10 seconds.

The final portion of Listing 10.13 is a for loop that iterates 10 times (i.e.,
the value assigned to the variable maxCount), and sleeps for one second dur-
ing each iteration.

Listing 10.14 displays the contents of trap2.sh that illustrates how to
ignore a signal in a shell script.

Listing 10.14 trap2.sh

#!/bin/sh
trap "" SIGINT
 echo "This program will sleep for 10 seconds and
cannot be killed with"
echo "control-c."
sleep 10

Listing 10.14 starts with the trap statement that “traps” the SIGINT sig-
nal, which occurs when you press ctrl-c at the command line. The next
portion of Listing 10.14 displays a message and then sleeps for 10 seconds.
Launch the code in Listing 10.14 and try to terminate the program by pressing
ctrl-c at the command line.

ARITHMETIC WITH THE BC AND DC COMMANDS

The bash shell does not differentiate between strings and numbers (inte-
gers or real numbers). However, the bc command enables you to work with
numbers, examples of which are shown here:
bc
bc 1.06
Copyright 1991-1994, 1997, 1998, 2000 Free Software
Foundation, Inc.
This is free software with ABSOLUTELY NO WARRANTY.
For details type `warranty'.

252 • Bash Command Line and Shell Scripts

4+3
7
4.5 + 3.7
8.2

Alternatively, you can enter the following commands from the command
line:
echo "2+3" |bc
5
echo "4.5+3.7" |bc
8.2

You can assign values to variables and perform arithmetic operations with
the bc command, as shown here:
x = 4
y = 7
echo "$x * $y" |bc
28

WORKING WITH THE DATE COMMAND

The date command provides information about the current date in vari-
ous formats by specifying different command-line options. The date com-
mand can be useful for generating a quasi-random filename. Alternatively, you
can also use the current process id that is stored in $$, as well as the tempfile
command to generate filenames.
#!/bin/bash
Exercising the 'date' command
echo "The number of days since the year's beginning is
`date +%j`."
Needs a leading '+' to invoke formatting.
%j gives day of year.
echo "The number of seconds elapsed since 01/01/1970
is `date +%s`."
%s yields number of seconds since "BASH epoch"
began,
#+ but how is this useful?

prefix=temp
suffix=$(date +%s) # The "+%s" option to 'date' is
GNU-specific.
filename=$prefix.$suffix
echo "Temporary filename = $filename"

Miscellaneous Shell Scripts • 253

It's great for creating "unique and random" temp
filenames,
#+ even better than using $$.
$ date
Thu May 20 23:09:04 IST 2010

The epoch time can be printed as follows:

$ date +%s

1290047248

You can convert a date string into epoch as follows:

$ date --date "Thu Nov 18 08:07:21 IST 2010" +%s

1290047841

The --date option is used to provide a date string as input. However, we
can use any date formatting options to print output. Feeding input date from
a string can be used to find out the weekday, given the date. Here is a simple
example:

$ date --date "Jan 20 2001" +%A

Saturday

Use a combination of format strings prefixed with + as an argument for the
date command to print the date in the format of your choice. For example:

$ date "+%d %B %Y"

20 May 2010

We can set the date and time as follows:

date -s "Formatted date string"

An example of how to use the preceding syntax is here:

date -s "21 June 2009 11:01:22"

Listing 10.15 displays the contents of DateInfo1.sh that performs date-
related manipulation in conjunction with a case/esac statement.

Listing 10.15 DateInfo1.sh

a script for the following:
display the day of the week
display the current month
execute some command

TOP=`pwd`
today=`date`
dayOfWeek=`echo $today |cut -d" " -f1`
theMonth=`echo $today |cut -d" " -f2`

254 • Bash Command Line and Shell Scripts

dateDir="${dayOfWeek}-${theMonth}"
newDir="$TOP/$dateDir"

echo "Today: $today"
echo "Day of Week: $dayOfWeek"
echo "The Month: $theMonth"
echo "Directory: $newDir"

if [! -d $newDir]; then
 mkdir -p $newDir
fi

case $dayOfWeek in
 Mon) echo "Monday"
 #execute command1
 ;;
 Tue) echo "Tuesday"
 #execute command2
 ;;
 Wed) echo "Wednesday"
 #execute command3
 touch "$newDir/monday-news"
 ;;
 Thu) echo "Thursday"
 #execute command4
 ;;
 Fri) echo "Friday"
 #execute command5
 ;;
 Sat) echo "Saturday"
 #execute command6
 ;;
 Sun) echo "Sunday"
 #execute command7
 ;;
esac

Listing 10.15 starts by initializing the variable TOP with the current direc-
tory, followed by initializing the variable today with the current date. The
next section in Listing 10.15 initializes some date-related variables, as shown
here:
dayOfWeek=`echo $today |cut -d" " -f1`
theMonth=`echo $today |cut -d" " -f2`
dateDir="${dayOfWeek}-${theMonth}"
newDir="$TOP/$dateDir"

Miscellaneous Shell Scripts • 255

Next, several echo statements display the values of the variables that are
initialized in the preceding code block.

The final portion of Listing 10.15 is a case/esac code block that com-
pares the value of the variable dayOfWeek with each day of the week. Notice
that each possibility has a “commented out” statement, which you can substi-
tute with a command that you want to execute on each day of the week.

PRINT-RELATED COMMANDS

The print-related commands enable you to perform various tasks, such as
printing a file using the lp command, the pr command, or the lpr command.
You can use the lpstat command to check the status of a printer and sched-
uled print jobs. The lpq command displays the queue status of the named
printer.

Keep in mind that each waiting or active file has an assigned print job num-
ber, which you can reference when performing operations on those files, such
as deleting a file (discussed later). If your system includes a printer, here is an
example of using the lpr command to print a file called myscript.sh:

lpr myscript.sh

Lengthy files take longer to print, and the good news is that you can send
additional files to the printer while a file is being printed. The lpq command
displays the files that are in the “print queue:”
lpq
lp is ready and printing
Rank Owner Job Files
Total Size
active root 155 /etc/passwd
1030 bytes

Use the lprm to cancel printing of a file by specifying the print job number
of that file. For example:

lprm 155

The preceding command cancels printing of job number 155. However,
only the user who requested that a file be printed (or the root user) can cancel
printing of the file.

Creating a Report with the printf() Command

Listing 10.16 displays the contents of SimpleReport.sh that illustrates
how to update a set of users.

Listing 10.16 SimpleReport.sh

DataFile="users.txt"
NAME="John Doe"
ADDRESS="1234 Appian Way, SF"

256 • Bash Command Line and Shell Scripts

PHONE="(555) 555-5555"
GPA="3.885"

display the aligned output:
printf "%20s | %30s | %14s | %5s\n" "Name" "Address"
"Phone Number" "GPA"
printf "%20s | %30s | %14s | %5.2f\n" "$NAME"
"$ADDRESS" "$PHONE" "$GPA"

Listing 10.16 starts by initializing several variables with simulated data per-
taining to a hypothetical user. The second portion of Listing 10.16 invokes the
printf statement twice in order to display the user-related information in
column-aligned format.

The output from Listing 10.16 is here:
 Name | Address | Phone Number | GPA
 John Doe | 1234 Main Street, SF, CA | (555)
555-5555 | 3.88

CHECKING UPDATES IN A LOGFILE

Listing 10.17 displays the contents of CheckLogUpdates.sh that illus-
trates how to periodically check the last line in a log file to determine the status
of a system. This shell script simulates the status of a system by appending a
new row that is based on the current timestamp.

The shell script sleeps for a specified number of seconds, and on the third
iteration the script appends a row with an error status in order to simulate an
error. In the case of a shell script that is monitoring a live system, the error code
is obviously generated outside the shell script.

Listing 10.17 CheckLogUpdates.sh

DataFile="mylogfile.txt"
OK="okay"
ERROR="error"
sleeptime="2"
loopcount=0

rm -f $DataFile 2>/dev/null; touch $DataFile
newline="`date` SYSTEM IS OKAY"
echo $newline >> $DataFile

while (true)
do
 loopcount=`expr $loopcount + 1`

 echo "sleeping $sleeptime seconds..."
 sleep $sleeptime

Miscellaneous Shell Scripts • 257

 echo "awake again..."

 lastline=`tail -1 $DataFile`

 if ["$lastline" == ""]

 then
 continue
 fi

 okstatus=`echo $lastline |grep -i $OK`
 badstatus=`echo $lastline |grep -i $ERROR`

 if ["$okstatus" != ""]
 then
 echo "system is normal"
 if [$loopcount == "3"]
 then
 newline="`date` SYSTEM IS OKAY"
 else
 newline="`date` SYSTEM ERROR"
 fi
 echo $newline >> $DataFile
 elif ["$badstatus" != ""]
 then
 echo "Error in logfile: $lastline"
 break
 fi
done

Listing 10.17 starts by initializing some variables with hard-coded values
that pertain to a log file that is specified via the variable DataFile, as shown
here:
DataFile="mylogfile.txt"
OK="okay"
ERROR="error"
sleeptime="2"
loopcount=0

The next section of code unconditionally deletes the file DataFile in
order to ensure that it’s initially empty whenever this shell script is invoked.

The main portion of Listing 10.17 is a while loop that contains several
subsections. The first subsection sleeps for $sleeptime seconds and then
checks the last line in the text file defined by the variable DataFile. If the
last line is empty, then the continue statement returns execution to the top of
the while loop.

258 • Bash Command Line and Shell Scripts

Otherwise, the next subsection initializes the variables okstatus and
badstatus by invoking the grep command to find occurrences of the vari-
ables OK and ERROR that are initialized with the values okay and error, respec-
tively. If the variable okstatus is non-empty, then a message is appended to
the log file, depending on the value of the variable loopcount. Notice that
two different messages can be appended to the log file: if an error message is
appended, then this message will be detected during a subsequent iteration of
the while loop.

On the other hand, if okstatus is empty and the variable badstatus is
non-empty, then an error message is appended to the log file and the break
statement exits the while loop. A sample invocation of Listing 10.17 is here:
sleeping 2 seconds...
awake again...
system is normal
sleeping 2 seconds...
awake again...
Error in logfile: Fri Sep 27 21:28:53 PDT 2013 SYSTEM
ERROR

This code sample is admittedly contrived, but you can use the same (or
similar) logic in case you need to parse the contents of a log file to check for
error messages, after which you can provide some type of status update.

LISTING ACTIVE USERS ON A MACHINE

There are various commands for finding out information about users on a
Unix system, such as finger, who, uname, and whoami. The who com-
mand lists information about various users, as shown here:
ocampesato console Aug 17 08:15
ocampesato ttys000 Aug 17 08:16
ocampesato ttys001 Aug 17 08:16
. . .
ocampesato ttys011 Aug 17 08:16
ocampesato ttys012 Aug 17 08:16

The w command provides additional information about users, as shown
here:
22:30 up 28 days, 14:18, 14 users, load averages:
1.14 1.33 1.90
USER TTY FROM LOGIN@ IDLE WHAT
ocampesato console - Thu05AM 28days -
ocampesato s011 - Thu05AM 10 vi shell-

programming-outline.txt
ocampesato s012 - Thu05AM 2days -bash
ocampesato s000 - Thu05AM 27:01 -bash

Miscellaneous Shell Scripts • 259

ocampesato s002 - Thu05AM 3:31 vi demo-list.
txt

ocampesato s001 - Thu05AM 2days -bash
ocampesato s004 - Thu05AM 33:52 vi todo-

events.txt
ocampesato s007 - Thu05AM 2days -bash

You can also view the users who are logged into a Unix machine with the
users command. If you have a Macbook, you will probably be the only person
logged into your machine.

MISCELLANEOUS COMMANDS

The who command displays a list of logged in users. If you are the only user
on your Macbook, you will see something like this:

The df command displays the amount of free disk space, and when you
invoke this command with the –k option, the output looks something like this:
Filesystem 1024-blocks Used Available Capacity
iused ifree %iused Mounted on
/dev/disk1 936490368 839326208 96908160 90%
17483073 4277484206 0% /
devfs 189 189 0 100%
655 0 100% /dev
map -hosts 0 0 0 100%
0 0 100% /net
map auto_home 0 0 0 100%
0 0 100% /home

The man and info commands provide a summary for bash commands.
An

example of the initial portion of the output from man ls is here:
LS(1) BSD General Commands Manual
LS(1)

NAME
 ls -- list directory contents

SYNOPSIS
 ls [-ABCFGHLOPRSTUW@abcdefghiklmnopqrstuwx1] [file
...]

DESCRIPTION
 For each operand that names a file of a type other
than directory,

260 • Bash Command Line and Shell Scripts

 ls displays its name as well as any requested,
associated informa-
 tion. For each operand that names a file of type
directory, ls
 displays the names of files contained within that
directory, as
 well as any requested, associated information.

The curl command is a utility that reads the contents of a URL from the
command line. For example, you can read the contents of the Google homep-
age and redirect its contents to a file with the following command:

curl https://www.google.com >y1

The sleep command is the shell equivalent of a wait loop. It pauses for
a specified number of seconds, doing nothing. It can be useful for timing or
in processes running in the background, checking for a specific event every so
often (polling).

sleep 4 # Pauses 4 seconds.

Note: the sleep command defaults to seconds, but minute, hours, or days
may also be specified.

sleep 4 h # Pauses 4 hours

The su command enables you to switch to the “superuser,” whereas the
sudo command enables you to execute a specific command as superuser, but
without switching to the superuser.

The make utility is primarily for compiling C or C++ programs, but you
can use this command for other purposes as well. By default, the make utility
searches for the file Makefile (“big make”), followed by the file makefile
(“small make”). You can specify a different file via the “-f” switch, as shown
here:

make –f myfile

The tee command enables you to redirect a copy of the output of a com-
mand to a file, as shown here:

ls –l | tee /tmp/files

You can append to an existing file with the “-a” option, as shown here:

ls –l | tee –a /tmp/files

The nice command changes the scheduling priority of a command, which
means that you can increase or decrease its priority.

The sync command synchronizes the contents of your hard disk with the
contents of in-memory buffers.

The finger command provides user-related information for a particular
user.

Miscellaneous Shell Scripts • 261

The cal command displays calendar-related information. Execute the cal
command with no arguments if you want information about the current month
and year, and execute cal 2020 if you want information about all the months
in the year 2020 (or some other year). For example, if the current month and
year are February 2020, the cal command displays the following output:
 February 2020
Su Mo Tu We Th Fr Sa
 1
 2 3 4 5 6 7 8
 9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29

The mktemp enables you to create temporary file names, which are use-
ful for storing intermediate results during the execution of long-running shell
scripts.

SUMMARY

In this chapter, you learned how to selectively copy and delete files from a
directory tree. Then you saw how to create sub-directories in a directory, based
on a set of strings. One of those shell scripts shows you how to check whether
or not a given string is an existing sub-directory or a file.

In addition, you learned how to work with compression-related files such
as gzip, gunzip, and so forth. Then you saw how to schedule tasks with the
at and crontab commands, and also how to terminate processes with the
kill command. Finally, you learned an assortment of miscellaneous com-
mands, such as displaying logged-in users, displaying disk-related information,
and displaying calendar-related information.

At this point, there is one more thing to say: Congratulations! You have
completed a fast-paced yet dense book, and if you are a bash neophyte, the
material will probably keep you busy for many hours. The examples in the
chapters provide a solid foundation, and the appendix contains additional
examples and use cases to further illustrate how the bash commands work
together. The combined effect demonstrates that the universe of possibilities
is larger than the examples in this book, and ultimately they will spark ideas in
you. Good luck!

INDEX

A
absolute directories, 14, 41-43, 251
arithmetic operator, 71-73, 161
arrays, 3, 71, 87, 96, 98, 102
Assigning values to variable, 75
AT&T Unix, 2
Awk command, 17, 25, 149-151, 159,
163, 165, 167, 169, 171, 174, 177-179,
181, 183, 209, 213, 215, 221, 223-224,
230

B

Backtick, 19-20, 30, 72, 97, 118, 228
Basename command, 38
bash shell, 1, 3, 9, 11-13, 15-16, 25-26,
30, 48, 71, 73, 78, 79, 85, 92, 144, 187,
251
bash commands, 5, 10, 13, 17, 20, 25,
29, 45, 50-52, 68, 78, 137, 149, 175, 186,
208, 230, 244, 259, 261
bash scripts, 1, 24, 78, 209, 231
bash systems, 2
boolean operator, 71, 72, 76, 79
Bourne Again shell (bash), 3
bourne shell, 9, 11-12, 15
bunzip2 Command, 64

C

C shell (csh), 2, 3, 12
case statement, 239
cd (change directory), 4
character classes, 46-48, 103, 110, 136
chmod Command, 12, 39, 40, 186, 188
columnCount variable, 171
compound operator, 74, 77, 79, 80
compression-related commands, 51, 69
Copying Files, 30
cpio Command, 63, 64
creating directories, 42
creating text files, 29
crontab utility, 2, 186
curly brackets, 84, 93, 189
cut command, 1, 17, 18, 27, 67, 112, 216

D
date command, 252, 253
dd command, 241, 242
deleting files, 31
diff command, 38, 56, 57
dirname Command, 39
disk usage command, 250
dotting, 188
drop-down, 26

264 • Bash Command Line and Shell Scripts

E
else statement, 80, 91
env command, 13, 14
esac statement, 81, 84, 91, 102, 240,
253
expr command, 71-73

F

fgrep command, 103, 121, 123
file command, 33, 252
file operator, 79
find command, 46, 51, 61-62, 64, 68,
103, 118, 233, 245
fold Command, 11, 52

G
Greatest common divisor (GCD), 204, 208
grep command, 103-106, 110-111, 114,
116-119, 121, 123, 125, 134, 139, 149,
171, 185, 209, 212, 216, 233, 258

group together, 98
gzip command, 64

H

head and tail Command, 8-10, 36,
112

hidden file, 12, 26
history command, 4-5
home variable, 14
hostname variable, 14

I
If statement, 67, 79, 80, 89, 162
IFS (Internal Field Separator), 98
ln Command, 32

J

Join command, 52, 123, 216

K
Ken Thompson, 2
Korn shell (ksh), 2, 3, 122

L

less command, 10, 34, 35
line up, 51, 162

linefeed character, 59, 172
Linux Torvalds, 2
LOGNAME variable, 14
Loops, 66, 71, 85, 87, 101-102, 149,
152, 183

Lowest common multiple (LCM), 205
ls command, 4, 5, 7, 12-13, 15, 17, 31,
33, 42, 49, 65

M
Mac OS X, 2, 3
man cat, 4
more command, 10, 11, 16, 34, 35
moving directories, 44
moving files, 32
mv command, 32, 44, 133, 231, 232

N
nested loops, 87, 102
numeric operator, 73, 74, 80

O

OD command, 57

P

past command, 1, 22, 23
paste command, 1, 22-24, 27
PATH environment variable,
14-16, 187

PATH variable, 14, 15
pipe command, 10, 11, 17, 19, 51
POSIX shell (sh), 3
POSIX standard shell, 2
Print Command, 104, 118
Printing lines, 135, 160
problematic filename, 13
pwd (print working directory), 4

R
read command, 4, 76, 199, 244
redirecting error message, 119, 121
relative directory, 41
removing control characters, 137
removing directories, 43
rwx privileges, 11

Index • 265

S
Schedule task, 231, 244, 245, 261
sed snippet, 60
shell variable, 14, 44, 45
sort command, 53-55, 104, 178
split command, 53
split function, 162, 221, 230
Stephen R Bourne, 2, 3
string operator, 71, 72, 79, 102
suid, 40

T

tee command, 62, 260
TENEX/TOPS C shell (tcsh), 3
terminating multiple process, 245
touch command, 29, 39, 232
TR command, 57

U
ulimit Commands, 41
Umask Command, 41

Uniq command, 51, 140
Unix, 1, 26, 39, 127, 187, 258, 259
until loop, 71, 85, 92,
uuencode command, 241

X

xargs Command, 51, 62, 68, 69, 103,
110, 118, 121

W

wc command, 33, 36
while loop, 66, 67, 71, 83-85, 89, 90,
91, 95, 102, 149, 152, 153, 183, 208, 219,
257, 258

Z

zip Command, 64, 65
zsh (Zee shell), 3

	Bash Command Line and Shell Scripts
	Chapter 1 INTRODUCTION
	Chapter 2 FILES AND DIRECTORIES
	Chapter 3 USEFUL COMMANDS
	Chapter 4 CONDITIONAL LOGIC AND LOOPS
	Chapter 5 FILTERING DATA WITH GREP
	Chapter 6 TRANSFORMING DATA WITH SED
	Chapter 7 WORKING WITH AWK
	Chapter 8 INTRO TO SHELL SCRIPTS
	Chapter 9 SHELL SCRIPTS WITH GREP AND AWK COMMAND
	Chapter 10 MISCELLANEOUS SHELL SCRIPTS
	INDEX

