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Preface
In 2006 Professor James Moor of the Philosophy Department at Dartmouth College asked me to 
organize a computer games exhibit and competition at AI @ 50, a conference that celebrated the 
50th Anniversary of the Dartmouth Summer Conference where John McCarthy coined the term 
“Artificial Intelligence.” A number of the original attendees of that Dartmouth Conference were 
able to attend AI @ 50 including the late John McCarthy, Marvin Minsky, the late Oliver Selfridge, 
and Ray Solomonoff. Professor Lucci also attended AI @ 50 and shortly thereafter we agreed to 
collaborate on an AI text. 

Perspective and Needs
Our view is that AI is comprised of PEOPLE, IDEAS, METHODS, MACHINES, and OUTCOMES. 
First, it is people who make up AI. People have ideas and these ideas become methods. Those 
ideas can be represented by algorithms, heuristics, procedures or systems that are the backbone of 
computation; and finally we have the production of those machines (programs) which we can call 
“outcomes.” Every outcome can be measured for its value, effectiveness, efficiency, etc. 

We have found that existing AI books are often lacking in one or more of these areas. Without 
people there is no AI. Hence we have decided that it is important to “showcase” the people who 
have made AI successful through the human interest boxes which are sprinkled throughout the text. 
From people come the ideas and the development of the methods that we present over the seventeen 
chapters of this book. AI and computer science are relatively young fields, compared to other 
sciences such as mathematics, physics, chemistry and biology. Yet, AI is a discipline that is truly 
interdisciplinary, combining elements of many other fields. Machines/computers are the tools of 
AI researchers allowing them to experiment, learn, and improve methods for problem-solving that 
can be applied in many interesting domains that can be beneficial to humankind. And finally, not in 
the least, there are the outcomes, measurable as the results of applying AI to various problems and 
disciplines that remind us that AI must also be accountable. In a number of places in our text you 
will find discussions of the distinction between “performance” and “competence.” Both are needed, 
as the field of AI matures and advances. 

To date, as faculty members who have taught from and observed the development of AI 
texts, we have found that most of the available texts sometimes fall short in one or more of the 
areas described above. The names and vast contributions of Turing, McCarthy, Minsky, Michie, 
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McLelland, Feigenbaum, Shortliffe, Lenat, Newell and Simon, Brooks, and many others should 
be familiar to students. Yet, this is not a history book! We believe, however, that the discipline, as 
interesting and widespread as it is, with its infinite potential, should justifiably be colored with the 
fascinating ideas and work of the people who comprise it. 

Furthermore, students need hands on experience with problem solving, i.e., students need to 
get their hands “dirty” with the fundamentals of search techniques fully explained in Chapters 
2 through 4, the methods of logic in Chapter 5, and the role of knowledge representation in AI 
(Chapter 6). Chapter 7 sets the stage for learning about fuzzy logic (Chapter 8) and expert systems 
(Chapter 9).

Advanced methods such as neural networks and genetic algorithms are thoroughly presented 
in Chapters 11 and 12. And finally, advanced topics such as natural language processing, planning, 
robotics and advanced computer games are covered in Chapters 13, 14, 15 and 16 respectively. 
Chapter 17, Reprise, summarizes where you’ve been on your journey with us through AI, with a 
view to the future. 

The presentation is enhanced with several hundred fully worked examples, as well as over 
300 figures and images, many in color. Students will also benefit from the significant number of 
solutions to exercises that have been provided. 

How to Use This Book
This text contains more material than can comfortably be covered in a one semester (45 contact 
hours) course. The authors have taught the following courses using material that has led to the 
development of AI in the 21st Century. Note that at CUNY, graduate courses often meet for three 
hours per week for 15 weeks.

As a first course in AI (graduate or undergraduate): 

I A Brief History of AI: Uses and limitations of the subject. Application areas. 
 Chapter 1  6 contact hours

II Search Methodologies: State Space. Graphs. Generate and Test. Backtracking, Greedy 
Search. Blind Search Methods – depth first search breadth first search and depth-first iterative 
deepening. 

 Chapter 2  3 hours

III  Informed Search: Heuristics, Hill Climbing, Beam Search, Best First Search, Branch and 
Bound based Search and A* Search; And/Or Trees.

 Chapter 3 (Section 3.7.3 – Bidirectional Search is optional)  3 hours

IV  Search Using Games: Game Trees and Minimax Evaluation. Elementary two-person games: 
tic-tac-toe and nim. Minimax with Alpha-Beta Pruning. 

  Chapter 4 (Section 4.5 – Game Theory and The Iterated Prisoner’s Dilemma is optional).  
3 hours.

V  Logic in AI: Propositional Logic and Predicate Logic (FOPL); Unification and Resolution in 
FOPL. Converting a Predicate Expression to Clause Form. 

 Chapter 5 (Section 5.4 – Other Logics is optional)  6 hours

VI  Knowledge Representation:  Choices of representation; Semantic Nets, Frames, and Scripts. 
Inheritance and Object-Oriented Programming.Production Systems; Agent Methods. 

  Chapter 6 (Sections 6.10, 6.11 – Association and More Recent Approaches are optional)  
3 hours.
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VII  Production Systems:   Architecture and Examples, Resolution Strategies. Conflict 
Resolution Strategies. State Space Search – Data Driven and Goal 
Driven Approaches, Cellular Automata (CA). One-dimensional 
CA (Wolfram) and Two-Dimensional CA and The Game of Life 
(Conway). 

   Chapter 7 (Section 7.6 Stochastic Processes and Markov Chains are optional)  3 hours

VIII  Expert Systems (ES): An Introduction: Why ES? Characteristics and Architectures for 
ES; Knowledge Engineering, Knowledge Acquisition and Classic Expert Systems; Newer 
Systems Case-based Approaches. Chapter 9 (Sections 9.6, 9.7 and 9.8 are optional). 3 hours

IX  Introduction to Neural Computing: Rudiments of Artificial Neural Networks and and The 
Perceptron Learning Rule.

 Chapter 11 Sections 1.0, 11.1 and 11.3 only  3 hours

X  Introduction to Evolutionary Computing - Genetic Algorithms: 
 Chapter 12 Sections 12.0 and 12.2 (only)  2 hours

XI  Automated Planning: The Problem, Planning as Search; Means Ends Analysis (GPS)STRIPS; 
Various planning algorithms and methods. More Modern Systems: Nonlin, Graphplan, etc.

 Chapter 14 Sections 14.0, 14.1, 14.3.1, 14.3.12, 14.4.1  2 hours

XII  Epilog: Accomplishments of the First 50 years of AI. Prospects for the Future -Where are we 
going? 

 Chapter 17    2 hours
 Midterm Exam     3 hours
 Final Exam     3 hours
 Two-Three Programming Assignments (one in Prolog)
 One Term Paper

As a second course in AI 

(AI-2, usually at the graduate level). Originally it was taught as a course in Neural Computing. 
Artificial neural networks (ANN) are often used for learning—e.g., in the distinction between pattern 
classes; it therefore seemed natural to incorporate genetic algorithms (GA) into the curriculum. AI 
systems are often required to justify their reasoning, especially characteristic of expert systems. 
ANN’s are not especially proficient in this capacity. Fuzzy logic was added to ANN’s and fuzzy 
ANN’s are often used in conjunction to remedy this deficiency. 

Emergence, ant colony optimization, fractals, artificial life and evolutionary computation 
(beyond GA) found their way into this course as all of these perspectives are useful in solving 
difficult problems. Many refer to such a rubric as “natural computing” because Mother Nature 
provides inspiration for these approaches. A proposed syllabus for AI-2: 

I  Preliminaries: Elementary Concepts: Natural Computing, AI, A-Life, emergence, feedback, 
agent top-down vs. bottom-up development. Supplementary material may be used here.   
        3 hours

II  Search inspired by Mother Nature: Search and State Space Graphs. Hill Climbing and 
its drawbacks. Simulated Annealing, Genetic Algorithms and Genetic Programming. Tabu 
Search. Ant Colony Optimization. 
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 Chapter 2 Sections 2.0, 2.1, and 2.1.1.

 Chapter 3 Sections 3.0, 3.1, and 3.2

 Chapter 12  (10 – 15 hours)

III  Neural Networks: Artificial neurons vs. their biological counterparts. McCulloch-Pitts 
Neurons. The Perceptron Learning Rule and its limitations. The Delta Rule. Backpropagation, 
Analyzing patterns and some guidelines for training. Discrete Hopfield Networks. Application 
Areas. Introduction to Machine Learning Chapter 10

 Chapter 11       18 Hours

IV  Fuzzy Sets and Fuzzy Logic: Crisp Sets vs. Fuzzy Sets. Membership functions. Fuzzy logic 
and fuzzy inference systems.

 Chapter 8 Sections 8.0 – 8.3    3 Hours 

V  Optional Topics: Selected from:
• Unsupervised Learning in ANN.
• Artificial Life including Cellular Automata
• Fractals and Complexity
• Immunocomputing
• Quantum Computing 2+ Hours

A 3-hour midterm and a 3-hour final are given. There are 5–6 programming assignments and a term 
paper. 

Some alternative courses could easily be designed from the 17 Chapters we’ve developed. 
A first course could, for example include: Chapter 1 (Introduction/Overview) Chapter 2 

(Uninformed Search), Chapter 3 (Intelligent Search), Chapter 4 (Search Using Games), Chapter 5  
(Logic), Chapter 6 (Knowledge Representation) Chapter 7 (Production Systems), and Chapter 9  
(Expert Systems). 

A second course could consist of: Chapter 8 (Fuzzy Logic) Chapter 10 (Machine Learning: 
Part 1) Chapter 11 (Neural Networks), Chapter 12 (Search Inspired by Mother Nature) and then one 
or two of the special topics chapters from Chapter 13 (Natural Language Processing), Chapter 14  
(Planning), Chapter 15 (Robotics), and Chapter 16 (Advanced Computer Games). 

A Special Topics Course on Expert Systems might run: Chapter 1 (Introduction), Chapter 7 
(Production Systems), Chapter 9 (Expert Systems) “spiced-up” with Chapter 12 (Search Inspired 
by Mother Nature) and some supplemental papers / readings. 

Stephen Lucci’s vast classroom experience teaching AI courses at City College, Brooklyn 
College, and other CUNY schools, has often been lauded by students. Danny Kopec has considerable 
research experience in Computer Chess (University of Edinburgh, Machine Intelligence Research 
Unit), Intelligent Tutoring Systems (University of Maine, 1988–1992) and Computer Science 
Education / Software Engineering / Medical Errors, Technological Mishaps and Problem Solving 
(Brooklyn College from 1991 – present). The text represents a strong collaboration of our efforts. 
You will occasionally hear two voices sharing their ideas and experience. The writing process itself 
has often been joint, listening and adjusting to each other for knowledge, opinion, and style. 

A Shared Vision 
Writing this book has not been an overnight process. We also believe that our approaches, to writing 
and development of material, while different in many respects are complementary. 



 Preface   ■  xxi

We believe that the composite work should provide a strong foundation for anyone interested 
in AI with sufficient opportunity to accrue knowledge, experience, and competence in the methods 
that define the field. We are fortunate that both the authors and the publisher, David Pallai, president 
and founder of Mercury Learning and Information, have shared the same goals and vision for this 
book. Fundamental to this effort has been the agreement that the book should be balanced with 
theory and applications, accurate, pedagogically sound, and reasonably priced. The process has 
required several years, but we are particularly appreciative to Mr. Pallai for seeing the potential in 
our book and bringing it to fruition. 

 We hope that you will enjoy and learn from our efforts. 

Preface to the Second Edition 
Much time has passed since the publication of our first edition. Artificial Intelligence concepts, 
methods, and systems are becoming more integrated into everyday activities. For example, at the 
time when our first edition was being developed, many automobiles were built with the capability 
to parallel park themselves; it has now become commonplace to build cars with collision avoidance 
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This Chapter sets the stage for all that follows. It presents the history and early 
motivations behind Artificial Intelligence (AI) stemming from the 1956 Dartmouth Conference.

Notions of thinking and intelligence lead to discussion of the Turing Test and the various 
controversies and criticisms surrounding it. This sets the stage for distinguishing Strong AI 
from Weak AI. Integral to any classical view is interest in how humans solve problems and 
the heuristics they use. From this background and perspective it becomes feasible to identify 
problems suitable for AI. Various recognized disciplines and approaches to AI such as search, 
neural computation, fuzzy logic, automated reasoning, and knowledge representation, are then 
presented. This discussion transitions to a review of the early history of AI and to more recent 
domains, problems as well as considerations of what lies ahead of us. 

IPart

introduction

Chapter  1
Overview of Artificial  
Intelligence  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  ·  · 3
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Early man had to contend with nature through such tools and weapons as the wheel and fire. 
In the 15th century, Gutenberg’s invention of the printing press made widespread changes in 
peoples’ lives. In the 19th century, the Industrial Revolution exploited natural resources to 
develop power, which facilitated manufacturing, transportation, 
and communication. The 20th century has evidenced man’s 
continuing advancement through air and space exploration, the 
invention of the computer, and microminiaturization leading to 
personal computers, the Internet, World Wide Web, and smart 
phones. The last 60 years have witnessed the nascence of a 
world which has emerged with an abundance of data, facts, and 
information that must be converted to knowledge (an instance 
being the data contained in the genetic code for humans – see 
Figure 1.0). This chapter provides the conceptual framework for 
the discipline of Artificial Intelligence, its successful application 
areas and methods, recent history, and future prospects. 

Alan Turing (photo ©Guy Erwood/Shutterstock.com)
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4  ■  Part  1   ·  Introduct ion

 1.0 INTRODUCTION
Artificial Intelligence (AI) means different things to different people. Some believe that AI is 

synonymous with any form of intelligence achieved by nonliving systems; they maintain that it is 
not important if this intelligent behavior is not arrived at via the same mechanisms on which hu-
mans rely. For others, AI systems must be able to mimic human intelligence. No one would argue 
with the premise that to study AI or to implement AI systems, it is helpful if we first understand 
how humans accomplish intelligent behavior; that is, we must understand activities that are deemed 
intelligent in an intellectual, scientific, psychological, and technical sense. For example, if we want 
to build a robot capable of walking like a human, then we must first understand the process of walk-
ing from each of those perspectives; people, however, do not accomplish locomotion by constantly 
stating and following a prescribed set of formal rules that explain how to take steps. In fact, the 
more human experts are asked to explain how they achieve their level of performance in any dis-
cipline or endeavor, the more they are likely to fail. For example, when Israeli fighter pilots were 
asked to explain their prowess for flying, their performance actually declined.1 Expert performance 
stems not from constant, conscious analysis but from the subconscious levels of the mind. Imagine 
trying to drive on an expressway during rush hour and needing to consciously weigh each vehicle-
control decision. 

Consider the story of the professor of mechanics and the unicyclist.2 If the professor is asked 
to cite principles of mechanics as he attempts to ride the unicycle and bases his success on the 
unicycle on knowing those principles, he is doomed to failure. Likewise, if the unicyclist attempts 
to learn the laws of mechanics and apply them while he performs his craft, he, too, is destined for 
failure and perhaps a tragic accident. The point is, human skill and expertise in many disciplines 
seems to be developed and stored in the subconscious, rather than being available upon explicit 
request from memory or first principles.

 1.0.1  What Is Artificial Intelligence?
In everyday parlance, the term artificial means synthetic (i.e., man-made) and generally has a 

negative connotation as being a lesser form of a real thing. Artificial objects are often superior to 
real or natural objects, however. Consider, for example, an artificial flower, an object made of silk 
and wire and arranged to resemble a bud or blossom. This artifact has the advantage of not requir-
ing sunshine or water for its sustenance, so it provides practical decoration for a home or business. 
Its feel and fragrance are arguably inferior to those of a natural flower; however, an artificial flower 
can look very much like the real thing.

Another example is artificial light produced by candles, kerosene lanterns, or electric light 
bulbs. Artificial light is superior to natural light because it is always accessible. Sunlight, obviously, 
is available only when the sun appears in the sky.

Finally, consider the advantages provided by artificial motion devices—such as automobiles, 
trains, planes, and bicycles—in terms of speed and durability when compared with running, walk-
ing, and other natural forms of transportation, such as horseback riding. The advantages of artificial 
forms of transportation are tempered by stark drawbacks—our planet is paved with ubiquitous 
highways, our atmosphere is laden with vehicle exhaust, and our peace of mind (and often our 
sleep) is interrupted by the din of aircraft.3 

Like artificial light, flowers, and transportation, AI is not natural but is man-made. To identify 
the advantages and drawbacks of AI, you must first understand and define intelligence.
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 1.0.2 What Is Thinking? What Is Intelligence? 
A definition for intelligence is perhaps more elusive than a definition for the term artificial. R. 

Sternberg, in a text on human consciousness, provides the following useful definition: 

Intelligence is the cognitive ability of an individual to learn from experience, to 
reason well, to remember important information, and to cope with the demands of 
daily living.4 

We are all familiar with questions on standardized tests asking us to provide the next number 
in a given sequence, as in: 1, 3, 6, 10, 15, 21 ?

You probably noticed that the gap between successive numbers increases by one; for example 
from 1 to 3, the increase is two, whereas from 3 to 6, it is three, and so on. The correct response is 
28. Such questions are designed to measure our proficiency at identifying salient features in pat-
terns. We can detect patterns by learning from experience.

Try your luck with the following: 

a. 1, 2, 2, 3, 3, 3, 4, 4, 4, 4 ? 
b.  2, 3, 3, 5, 5, 5, 7, 7, 7, 7 ?

Now that we have settled on a definition for intelligence, you might ask the following 
questions: 

 1. How do you decide if someone (something?) is intelligent?
 2. Are animals intelligent?
 3. If animals are intelligent, how do you measure their intelligence?

Most of us can answer the first question easily. We gauge the intelligence of other people many 
times each day by interacting with them — by making comments or posing questions, and then 
observing their responses. Although we have no direct access to someone else’s mind, we feel con-
fident that this indirect view provided by questions and answers gives us an accurate assessment of 
internal cerebral activity. 

If we adhere to this conversational approach to measuring intelligence, how do we address the 
question of animal intelligence? If you have a pet, you have probably answered this question for 
yourself. Dogs seem to remember people they haven’t seen for a month or two, and can find their 
way home after getting lost. Cats often show excitement during the opening of cans at dinner time. 
Is this simply a matter of a Pavlovian reflex or do cats 
consciously associate the sound of cans opening with 
the impending pleasure of dinner?

An intriguing anecdote regarding animal intelli-
gence is that of Clever Hans, a horse in Berlin, Germany, 
circa 1900, which was purportedly proficient in math-
ematics (see Figure 1.1). 

Audiences were transfixed as Hans added numbers 
or calculated square roots. Later people observed that 
Hans did not perform as well without an audience. In 
fact, Hans was talented in identifying human emotions, Figure 1.1 

Clever Hans—A horse doing calculus?
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not mathematics. Horses generally have astute hearing. As Hans came closer to a correct answer, 
audience members became more excited and their heart rates accelerated. Perhaps it was Hans’ 
uncanny ability to detect these changes that enabled him to obtain correct answers.5 You might be 
reluctant to attribute Clever Han’s actions to intelligence; however, you should consult Sternberg’s 
earlier definition before reaching a conclusion. 

Some creatures are intelligent only in groups. For example, ants are simple insects and their 
isolated behavior would hardly warrant inclusion in a text on AI. Ant colonies, on the other hand, 
exhibit extraordinary solutions to complex problems, such as finding the optimal route from a nest 
to a food source, carrying heavy objects, and forming bridges. A collective intelligence arises from 
effective communication among individual insects. More will be said about emergent intelligence 
and swarm intelligence in our discussion of advanced search methods in Chapter 12, “Search In-
spired by Mother Nature.” 

Brain mass and brain-to-body mass ratios are often regarded as indications of animal intelligence. 
Dolphins compare favorably with humans in both metrics. Breathing in dolphins is under voluntary 
control, which could account for excess brain mass and for the interesting fact that alternate halves of 
the dolphin brain take turns sleeping. Dolphins score well on animal self-awareness tests such as the 
mirror test, in which they recognize that the image in the mirror is actually their image. They can also 
perform complex tricks, as visitors to Sea World can testify. This illustrates the ability of dolphins to 
remember and perform complex sequences of physical motions. The use of tools is another litmus 
test for intelligence and is often used to separate homo erectus from earlier ancestors of human be-
ings. Dolphins share this trait with humans. For example, dolphins use deep-sea sponges to protect 
their spouts while foraging for food. It becomes clear that intelligence is not an attribute possessed 
by humans alone. Many living forms possess intelligence to some extent. You should ask yourself 
the following question: “Do you believe that being alive is a necessary precondition for possessing 
intelligence?” or, “Is it possible for inanimate objects, for example, computers, to be intelligent?” The 
declared goal of Artificial Intelligence is to create computer software and/or hardware systems that 
exhibit thinking comparable to that of humans, in other words, to display characteristics usually as-
sociated with human intelligence. A pivotal question is, “Can machines think?” More generally, you 
might ask, “Does a person, animal, or machine possess intelligence?”

At this juncture it is wise to underscore the distinction between thinking and intelligence. 
Thinking is the facility to reason, analyze, evaluate, and formulate ideas and concepts. Not every 
being capable of thinking is intelligent. Intelligence is perhaps akin to efficient and effective think-
ing. Many people approach this issue with biases, saying, “Computers are made of silicon and 
power supplies, and therefore are not capable of thinking,” or, at the other extreme, “Computers 
perform much faster than humans and therefore must be more intelligent than humans.” The truth 
is most likely somewhere between these two extremes.

As we have discussed, different animal species possess intelligence to varying degrees. We will 
expound on software and hardware systems that have been developed by the Artificial Intelligence 
community that also possess intelligence to varying degrees. We are not sufficiently concerned with 
measuring animal intelligence in order to develop standardized IQ tests for animals; however, we 
are interested in a test to ascertain the existence of machine intelligence. 

Perhaps Raphael 6 put it best:

Artificial Intelligence is the science of making machines do things that would require 
intelligence if done by man.
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si d e b A r

Abstraction
Abstraction is a strategy in which 
the implementation (e.g., internal 
workings) of an object or concept 
are ignored so that you gain a 
clearer picture of the artifact and 
its relation to the outside world. 
In other words, you can treat 
something as a black box and be 
concerned only with inputs and 
outputs from that object. (See 
Figure 1.2.) 

Inputs Black box Outputs

Figure 1.2
Inputs to and outputs from a black box.

Abstraction is often a useful (and 
necessary) tool. For example, if 
you want to learn how to drive, 
it is probably a good idea to treat 
the car as a black box. Rather 
than beginning your efforts with a 
course in automatic transmissions 
and power trains, you concentrate 
on the workings of the system’s 
inputs—the gas pedal, brakes, and 
turn signals, for example—and  
its outputs—moving forward, 
stopping, and turning left and 
right. 

Courses on data structures also 
use abstraction, so that if one 
wishes to understand how a stack 
behaves, you concentrate on basic 
stack operations such as pop  
(deleting an item) and push 
(inserting an item) rather than 
becoming bogged down with the 
details of how a list is constructed 
(i.e., as a linear or circular list or 
with linked vs. contiguous  
allocation of space).

 1.1 THE TURING TEST
The first two questions posed in the last section have already been ad-

dressed: How do you determine intelligence, and are animals intelligent? 
The answer to the second question is not necessarily “yes” or “no” — 
some people are smarter than others and some animals are smarter than 
others. The question of machine intelligence is equally problematic. 

Alan Turing sought to answer the question of intelligence in opera-
tional terms. He wanted to separate functionality (what something does) 
from implementation (how something is built). 

 1.1.1 Definition of the Turing Test
Alan Turing7 proposed two imitation games. In an imitation game, 

one person or entity behaves as if he were another. In the first, a person 
(called an interrogator) is in a room with a curtain that runs across the 
center of the room. On the other side of the curtain is a person, and the 
interrogator must determine whether it is a man or a woman. The inter-
rogator (whose gender is irrelevant) accomplishes this task by asking a 
series of questions. The game assumes that the man will perhaps lie in 
his responses, but the woman is always truthful. In order that the interro-
gator cannot determine gender from voice, communication is via com-
puter rather than through spoken words. See Figure 1.3. If it is a man on 
the other side of the curtain, and he is successful in deceiving the inter-
rogator, then he wins the imitation game. In Turing’s original format 
for this test, both a man and a woman were seated behind a curtain and 
the interrogator had to identify both correctly (Turing might have based 
this test on a game that was popular during this period. This same game 
could also have been the impetus behind his machine intelligence test).

As Erich Fromm wrote 8, men and women are equal but not neces-
sarily the same. For instance, the genders might differ in their knowl-
edge of colors, flowers, or the amount of time spent shopping.

What does distinguishing a man from a woman have to do with the 
question of intelligence? Turing understood that there might be different 

types of thinking, and it is important to both under-
stand these differences and to be tolerant of them. 
Figure 1.4 shows the second version of the Turing 
test.

This second game is more appropriate to the 
study of AI. Once again, an interrogator is in a room 
with a curtain. This time, a computer or a person is 
behind the curtain. Here, the machine plays the role 
of the male and could find it convenient on occasion 
to lie. The person, on the other hand, is consistently 
truthful. The interrogator asks questions, and then 
evaluates the responses to determine whether she is 

An interrogator

Curtain

Man (lies)

Woman (truthful)

Figure 1.3
The first Turing imitation game.

An interrogator

Curtain

Computer (lies)

Person (truthful)

Figure 1.4 
The second Turing imitation game.
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communicating with a person or a machine. If the computer 
is successful in deceiving the interrogator, it passes the Tur-
ing test, and is thereby considered intelligent. As we all know, 
machines are many times faster than humans in performing 
arithmetic calculations. A human would have little trouble in 
discerning that a computer, rather than a person, is behind the 
curtain, if the result of a Taylor Series approximation to a trigo-
nometric function is provided within microseconds. Naturally, 
by mere chance, the computer could successfully deceive the 
interrogators during any Turing test; to be a valid barometer for 
intelligence, this test should be executed many times. Again, 
in Turing’s original version of this test, both a person and a 
computer were behind the curtain, and the interrogator had to 
identify each correctly. 

What questions would you propose for the Turing test? 
Consider the following examples: 

• What is (1,000,017)½? Calculations such as this one 
are probably not a good idea. Recall that the  
computer attempts to deceive the interrogator. Rather 
than responding in fractions of a microsecond with the correct answer, it would inten-
tionally take longer and perhaps make a mistake, “knowing” that people are not adept 
at these sorts of calculations.

• What are the current weather conditions? You might be tempted to ask about the 
weather, assuming that a computer cannot peek outside the window. Computers are 
usually connected to the Web, however, and can connect to weather Web sites before 
responding. 

• Are you afraid of dying? Because it is difficult for a computer to feign human  
emotions, you might propose this question and others such as: How does the dark make 
you feel? or What does it feel like to be in love? Recall, however, that you are trying to 
determine intelligence, and human emotions might not be a valid barometer for  
intelligence. 

Turing anticipated many objections to the idea of machine intelligence in his original paper.7 

One is the so-called “head-in-the-sand objection.” It was believed that mankind’s ability to think 
placed humans at the apex of creation. Admitting the possibility of computer thought would chal-
lenge this lofty perch enjoyed by humans. Turing believed that this concern was more cause for 
consolation than for refutation. Another objection he anticipated is the theological objection. Many 
believed that it is a person’s soul that enables thinking, and we would be usurping God’s authority 
by creating machines with this capability. Turing rebutted this argument by proposing that we would 
merely be carrying out God’s will by preparing vessels awaiting endowment of souls. Finally we 
mention Lady Lovelace’s (often referred to in the literature as the first computer programmer) ob-
jection. Commenting on the analytical engine, she exults that it would be impossible for this mere 
machine to surprise us. She was reiterating the belief held by many that a computer is not capable of 
performing any activity for which it is not preprogrammed. Turing counters that machines surprise 
him all the time. He maintains that proponents of this objection subscribe to the belief that human 
minds can instantaneously deduce all consequences of a given fact or action. The reader is referred 

si d e b A r

The Turing Test
No computer system has ever 
passed the Turing test. However, 
in 1990, the philanthropist Hugh 
Gene Loebner underwrote a 
contest designed to implement the 
Turing test. The Loebner Prize of 
$100,000 and a gold medal is to 
be awarded to the first computer 
to pass the Turing test.  
Meanwhile, each year a prize 
of approximately $2000 and a 
bronze medal is awarded to the 
computer that performs best in the 
contest. 
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to Turing’s original paper 7 for a collection of these aforementioned objections, as well as several 
others. The next section covers additional noteworthy criticisms of the Turing test for intelligence. 

 1.1.2 Controversies and Criticisms of the Turing Test
Block’s Criticism of the Turing Test

Ned Block argues that English text is encoded in ASCII, in other words, as a series of 0s and 1s 
inside a computer.9 Hence, a particular Turing test, which is a series of questions and answers, can be 
stored as a very large number. For instance, assuming an upper bound on the length of a Turing test, 
the first three characters in tests that begin “Are you afraid of dying?” are stored as binary numbers, 
as shown in Figure 1.5. 

Suppose that a typical Turing test lasts an hour, and that about 
50 questions are asked and 50 responses given during this time. 
The binary number corresponding to a test would be very long. 
Now suppose that a large database stores all Turing tests consist-
ing of 50 questions or fewer and the reasonable responses. Passing the test could then be accom-
plished by table lookup. Granted, a computer system that can handle such a huge collection of data 
does not yet exist. But if it did, Block asks, “Would you feel comfortable ascribing intelligence to 
such a machine?” In other words, Block’s criticism is that a computer could pass the Turing test by 
the mechanical means of a lookup table, not through intelligence.
Searle’s Criticism: The Chinese Room

John Searle’s criticism of the Turing test is more fundamental.10 Imagine an interrogator who 
asks questions as expected—this time, however, in Chi-
nese. In a separate room is someone who does not know 
Chinese, but does have a detailed rulebook. Although 
the Chinese questions appear as a series of squiggles, 
the person in the room consults the rulebook, processes 
the Chinese characters according to the rules, and re-
sponds with answers written using Chinese characters. 
See Figure 1.6. 

The interrogator is obtaining syntactically correct 
and semantically reasonable responses to the questions. 
Does this mean that the person inside the room knows 
Chinese? If you answer “No,” does the combination of 
the person and the Chinese rule book know Chinese? No—the person is not learning or understand-
ing Chinese, but is only processing symbols. In the same way, a computer running a program re-
ceives, processes, and responds with symbols without learning or understanding what the symbols 
themselves mean. 

Instead of a single person with a rulebook, Searle also asks 
us to envision a gymnasium of people with notes that are passed 
to one another. When a person receives such a note, the rule-
book will determine that they should either produce an output 
or merely pass a message on to another individual in the gym-
nasium. See Figure 1.7

Now, where does the knowledge of Chinese reside? With 
the ensemble of people? Or, with the gymnasium?

A

01000001

R

01110010

E

01100101

Figure 1.5 
Storing the beginning of a Turing test in ASCII code.

Person

Rule book

Answers in Chinese

Questions in Chinese

Interrogator

“How do i get to carnegie hall?”

?

“Practice, practice, practice”

... The rule
book is at
the
squiggle
level

Figure 1.6 
The Chinese Room argument. 

Interrogator

Q

Gymnasium with 1,000
people

Distributed rule book

A

Figure 1.7
Variation of the Chinese Room argument.
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Consider a final example. Picture the brain of a person who 
does indeed know Chinese, as shown in Figure 1.8. This person 
can receive questions asked in Chinese, interpret them accurate-
ly, and then respond in Chinese.

Again, where does the knowledge of Chinese reside? With 
an individual neuron? Or, does it reside with a collection of these 
neurons? (It must reside somewhere!) 

The crux of both Block’s and Searle’s criticisms of the Tur-
ing test is that it is not possible to gain insight into the internal state of some entity from external 
observations alone. That is, we should not expect to learn anything new about intelligence by 
treating an agent possessing intelligence (man or machine) as a black box. This is not always true, 
however. In the Nineteenth Century, the physicist Ernest Rutherford correctly deduced the internal 
state of matter: that it consists mostly of empty space, by bombarding gold foil with alpha particles. 
He predicted that these high-energy particles would either pass through the foil or be somewhat 
deflected. The outcome is consistent with his orbital theory of atoms: that they consist of a dense 
core surrounded by orbiting electrons. This is our current model of the atom, with which many of 
us became acquainted in high school chemistry. Rutherford successfully gained insight into the 
internal state of the atom through external observations alone.

In summary, it is difficult to define intelligence. It is precisely because of this difficulty in 
both defining intelligence and determining whether an agent possesses this attribute that Turing 
developed the Turing test. Implicit in his treatise is that any agent capable of passing the Turing test 
would invariably possess the “cerebral wherewithal” to cope with any reasonable intellectual chal-
lenge on a level commensurate with that of a person widely accepted to be intelligent.11

  1.2 STRONG AI VERSUS WEAK AI

Interrogator
A

Q

Figure 1.8 
Chinese speaker receiving and responding to questions in Chinese. 

AlAn turing

Alan Turing (1912–1954) was a British 
mathematician and a rather remarkable figure 
in the history of computer science. Students 
taking courses in AI, computer science, and 
cryptology should become familiar with 
his contributions. His contribution to AI is 
his famous Turing test for intelligence. This 
test was his attempt to address controversial 
questions in AI such as, “Are computers 
intelligent?” In theoretical computer science, 
one studies the Turing machine model 
of computation. A Turing machine is a 
mathematical model that captures the essence 
of computation. It is designed to answer the 
question: “What does it mean for a function 
to be computable?” 12 It should be appreciated 

by the reader that Turing was essentially 
discussing the notion of using algorithms to 
solve particular problems some seven or eight 
years before the advent of the first digital 
computers. 

You perhaps have seen movies about 
World War II that depict the Battle of Britain. 
German aircraft dropped close to 200,000 
tons of bombs on Great Britain between 
1940 and 1944. Alan Turing led the group 
of mathematicians at Bletchley Park, outside 
of London, whose task it was to break the 
German code, called the Enigma Code. They 
eventually broke the code by using the Enigma 
Machine. This device encoded all military 
commands to German ships and planes. The 
success of Turing’s group might have played 
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a decisive role in the Allied victory over 
Germany. 

AlAn turing And Ai
Turing is credited with the stored program 
concept, which is the foundation for all 
modern-day computers. By 1935, he had 
described an abstract computing machine 
with an unlimited memory, and a read head 
(scanner) that moves back and forth through 
memory, reading and writing symbols dictated 
by a program that is also stored in memory. 
His conception is called the Universal Turing 
Machine. 

Turing had early insights into how the 
nervous system is possibly organized to 
facilitate brain function. Craig Webster (http://
home.clear.net.nz/pages/cw/unorganized.
htm), describing Turing’s paper, “Computing 
Machinery and Intelligence” (eventually 
published in Mind in 1950), presents Turing 
B-type networks as unorganized machines 
that would be found in the cortex of human 
infants. This farsighted observation reminds 
us of the agent view of the world, which you 
will read about in Chapter 6, “Knowledge 
Representation.” 

Turing discusses two types of unorganized 
machines, called Type A and Type B. Type 
A machines are comprised of NAND gates 
(where every node has two states representing 
0 or 1, two inputs and any number of outputs). 
Each A-Type network is intersected with 
three further A-type nodes in special ways, 
generating binary pulses that comprise the 
B-type nodes. Turing already recognized the 
possibility of training, and the needs for self-
stimulating feedback loops, which you will 
read about in “Neural Networks,” Chapter 11.  
Turing also considered the need for a “genetic 
search” to train the B-type networks to 

discover desirable values (or patterns). This 
was an insight into genetic algorithms, which 
are explained in Chapter 12. 

At Bletchley Park he often discussed with 
Donald Michie (one of his colleagues and 
disciples) notions of how machines could learn 
from experience and solve new problems. 
This later became known as heuristic problem 
solving (See Chapters 3, “Intelligent Search 
Methods,” 6, “Knowledge Representation,” 
and 9, “Expert Systems.”) and machine 
learning (see Chapters 10 and 11). 

Turing also achieved early insights into 
problem-solving methods using the game 
of chess as a testbed for AI. Although the 
computing machines of his time were not 
powerful enough to develop a strong chess 
program, he realized the challenges that 
chess—with its estimated 10120 possible 
legal games—posed. His aforementioned 
1948 paper, “Computing Machinery and 
Intelligence,” set the stage for what later 
became the foundation for all chess programs, 
leading to the development of grandmaster 
level machines that could compete with the 
World Champion in the 1990s (see Chapter 16,  
“Advanced Computer Games”). 
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Over the years, two distinct, pervasive strains of AI research have developed. One school of 
thought is associated with the Massachusetts Institute of Technology; it views any system that ex-
hibits intelligent behavior as an example of AI. To this school of thought, it does not matter whether 
the artifact performs its task in the same way humans do. The sole criterion is that the program 
performs correctly. Results of AI projects in electrical engineering, robotics, and related fields are 
primarily concerned with satisfactory performance. This approach is called weak AI. 

Another school of thought is represented by the Carnegie-Mellon University approach to AI, 
which is primarily concerned with biological plausibility. That is, when an artifact exhibits intel-
ligent behavior, its performance should be based upon the same methodologies used by humans. 
Consider for example, a system capable of hearing. Weak AI proponents would be concerned mere-
ly with the system’s performance, whereas proponents of strong AI might aim to achieve success 
by simulating the human hearing system, with the equivalents to cochlea, hearing canal, eardrum, 
and other parts of the ear, each performing its required tasks in the system. Proponents of weak 
AI measure the success of the systems that they build based on their performance alone, whereas 
proponents of strong AI are concerned with the structure of the systems they build. See Chapter 16 
for further discussion of this distinction.

Proponents of weak AI maintain that the raison d’être of AI research is to solve difficult prob-
lems regardless of how they are actually solved. Strong AI proponents, on the other hand, maintain 
that by sheer dint of possessing heuristics, algorithms, and knowledge of AI programs, computers 
can possess a sense of consciousness and intelligence. Hollywood falls into this latter camp. Mov-
ies that come to mind are “I, Robot,” “AI,” and “Blade Runner.”

  1.3 HEURISTICS
AI applications often rely on the application of heuristics. A heuristic is a rule of thumb for 

solving a problem. In other words, a heuristic is a set of guidelines that often works to solve a prob-
lem. Contrast a heuristic with an algorithm, which is a prescribed set of rules to solve a problem 
and whose output is entirely predictable. The reader is undoubtedly familiar with many algorithms 
used in computer programs, such as those for sorting, including bubblesort and quicksort, and for 
searching, including sequential search and binary search. With a heuristic, a favorable outcome is 
likely, but is not guaranteed. Heuristic methods were especially popular in the early days of AI, a 

period including the 1950s and into the 1960s.

 1.3.1 The Diagonal of a Rectangular Solid: 
Solving a Simpler, but Related Problem

An excellent reference on heuristics is George Polya’s clas-
sic work, How to Solve It.13 One heuristic he describes is that 
when confronted with a difficult problem, first try to solve a sim-
pler but related problem. This often provides insight, which is 
useful to the solution of the original problem. 

For example, what is the length of the diagonal of a rect-
angular solid? Those of you who have not recently completed 
a course in solid geometry probably find that this is a difficult 
problem. Following Polya’s heuristic to solve a simpler but re-

You are likely to employ heuristics in your 
everyday life. For example, many people 
hate to ask for directions when driving. 
When exiting a highway at night, however, 
they sometimes have difficulty finding 
their way back to the main thoroughfare. 
One heuristic that could prove helpful 
is to proceed in the direction with more 
streetlights whenever they come to a fork 
in the road. You might have a favorite ploy 
for recovering a dropped contact lens or 
for finding a parking space in a crowded 
shopping mall. Both are examples of 
heuristics.
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lated problem first, you might attempt to find the diagonal of a rectangle. 
See Figure 1.9.

Using the Pythagorean theorem, you can calculate that  
d = Sqrt (h2 + w2). Armed with this insight, you can then revisit the origi-
nal problem. See Figure 1.10.

We now observe that the diagonal of the rectangular solid equals:

Diagonal = Sqrt (d 2 + depth2) = Sqrt (h2 + w2 + depth2)

Solving the simpler problem of calculating the diagonal of a rectan-
gle helps to solve the more difficult problem of calculating the diagonal 
of a rectangular solid. 

 1.3.2 The Water Jug Problem: Working Backward 
A second example from Polya is the Water Jug Problem. You are 

provided with two jugs of sizes m and n respectively; and you are re-
quired to measure r quarts of water where m, n, and r are all different 
quantities. An instance of this problem is: How can you measure exactly 
twelve quarts of water from a tap or a well when you have only an eight-quart jug and an eighteen-
quart jug? See Figure 1.11. 

One way to solve the problem is to use trial and error and hope for the best. Instead, Polya sug-
gests the heuristic of starting with the goal state and working backward. See Figure 1.12.
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Figure 1.9 
Finding the diagonal of a rectangle.
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Figure 1.10 
Finding the diagonal of a rectangular solid.
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Figure 1.11 
Water Jug Problem. (a) Initial state and (b) Final state.
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Figure 1.12
Starting with the goal state and working backward. (Drawing by authors.)
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Observe in part (a) the eighteen-quart jug has been filled up and there are two quarts of water 
in the eight-quart jug. This state is just one step away from the goal state, where you pour an ad-
ditional six quarts of water into the eight-quart jug; where twelve quarts of water remains in the 
eighteen-quart jug. Parts (b) through (d) of the figure provide the requisite steps to reach this penul-
timate state in part (a). You should turn your attention to part (d) and work your way back to portion 
(b) to see all the states that precede the state depicted in part (a). 

Working backward to solve the Water Jug Problem and measure 12 quarts of water using only 
an 18-quart pail and an eight-quart pail, path (a), (b), (c), (d) shows how to go from the desired goal 
state back to the initial state. To actually solve this problem, you reverse the order of the states. First 
fill the 18-quart pail (state d). Then fill and empty the eight-quart pail twice by transferring water 
from the 18-quart pail. This leaves you with two quarts in the 18-quart pail (state c). Pour the last 
two quarts into the eight-quart pail (state b). Fill the 18-quart pail again from the tap or well, and 
pour water from the larger container to fill the eight-quart pail, which removes six quarts from the 
18, leaving 12 quarts in the larger pail (state a). 

As previously mentioned, heuristic methods were especially popular in the early days of AI—in 
the 1950s and into the 1960s. A landmark research project during this period was General Problem 
Solver (GPS).14 GPS solved problems using methods used by human problem solvers. Researchers 
gleaned the requisite problem solving heuristics by having human problem solvers vocalize their 
problem-solving methodology as they tackled various problems. 

 1.4  IDENTIFYING PROBLEMS SUITABLE FOR AI
As we become more familiar with AI and learn how it is distinct from traditional computer 

science, we must answer the question: “What makes a problem suitable for AI?” There are three 
characteristics that are common to most AI problems: 

 1. AI problems tend to be large. 
 2.  They are computationally complex and cannot be solved by straightforward algorithms. 
 3. AI problems and their domains tend to embody a large amount of human expertise, espe-

cially if tackled by strong AI methods. 

Some types of problems are better solved using AI, whereas others are more suitable for tra-
ditional computer science approaches involving simple decision-making or exact computations to 
produce solutions. Let us consider a few examples:

• Medical diagnosis
• Shopping using a cash register with barcode scanning
• ATMs 
• Two person games such as chess and checkers 

Medical diagnosis is a field of science that has for many years employed and welcomed con-
tributions from AI, particularly through the development of expert systems. Expert systems are 
typically built in domains where there is considerable human expertise and where there exist many 
rules (rules of the form: if condition, then action; for example: if you have a headache, then take 
two aspirins and call me in the morning.) — more rules than any human can or wishes to hold in 
his/her head. Expert systems are among the most successful AI techniques for producing results 
that are comprehensive and effective. 



 Chapter  1   ·  Overview of  Art i f ic ia l  Intel l igence   ■  15

One might ask: “Why is medical diagnosis a good candidate for an expert system?” First, medi-
cal diagnosis is a complex process with many possible valid approaches. Diagnosis involves iden-
tifying a disease or medical problem based on patient symptoms and history, as well as precedent 
cases. In most instances, no deterministic algorithm exists that can identify the underlying disease 
or condition. For example, MYCIN is the best-known, rule-based (expert) system (See Section 
1.8.2) for aiding in diagnosis of bacterial infections of blood; MYCIN has over 400 rules15 and has 
been used predominantly as a tool for training medical students. MYCIN does not provide a defi-
nite diagnosis, but rather a probability for which illness is most likely to be present, together with 
a degree of certainty that the diagnosis is correct. The process of developing these rules is referred 
to as knowledge engineering. A knowledge engineer will meet with a domain expert, in this case 
a doctor or other medical professional, and over the course of intensive interviews will glean the 
expert’s knowledge into the form of discrete rules. Another feature of expert systems is that they 
could reach conclusions, which are unexpected even by the domain specialist who designed them. 
This is because the number of possible permutations of the expert’s rules is more than anyone can 
hold in their head. A good candidate domain for building an expert system has the following char-
acteristics:

• It contains a large amount of domain-specific knowledge, (knowledge about a particu-
lar problem area such as medical diagnosis, or area of human endeavor e.g., control 
mechanism for a nuclear power plant to ensure its safe operation).

• It allows for some hierarchical ordering of its knowledge.
• It can be developed as a repository for the knowledge of several experts.

An expert system is therefore more than the sum of the knowledge of the experts who built 
it. Chapter 9 is devoted to the presentation and discussion of expert systems. Shopping at a super-
market where bar codes are used to scan products into a cash register is not typically considered 
an AI domain. Imagine, however, that the grocery shopping experience extends into an interaction 
with an intelligent machine. The machine might remind shoppers about what products to purchase: 
“Don’t you need a box of laundry detergent?” (because these products have not been purchased 
since a date that is known by the machine). The system might prompt the consumer to purchase 
food that goes well with those already selected. (e.g., “Do you need a quart of milk to go with your 
cereal purchase?”). This system could serve as a food advisor for a balanced nutritional diet and 
could be adjusted for a person’s age, weight, ailments, and nutritional goals. This would represent 
an intelligent system because it embodies considerable knowledge about diet, nutrition, health, and 
diverse products; furthermore it can make intelligent decisions, which are presented as advice to 
the consumer.

The ATM, as used for the past 30 years, does not represent an AI system. Suppose this machine 
served as a general financial advisor, however, keeping track of a person’s spending, as well as the 
categories and frequencies of items purchased. The machine could interpret spending for entertain-
ment, necessities, travel, and other categories and offer advice on how spending patterns might be 
beneficially altered. (“Do you really need to spend so much on fancy restaurants?”) An ATM as 
described here would be considered an intelligent system.

Another example of an intelligent system is one that plays chess. Although the rules of chess 
are easy to learn, playing this game at an expert level is no easy matter. More books have been 
written about chess than about all other games combined. It is generally accepted that chess has 
some 1042 possible reasonable games (whereby “reasonable” games are distinguished from the 
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number of “possible” games earlier given as 10120). This is such a large number that, even if the en-
tire world’s fastest computers worked together to solve the game of chess (i.e., develop a program 
to play perfect chess, one which always makes the best move), they wouldn’t finish for 50 years. 
Ironically, despite chess being a zero-sum game (meaning neither player has an edge initially) and 
a two-person game of perfect information (no chance involved and no unknown factors to anyone’s 
advantage), the following questions still remain:

• What is the outcome of chess with perfect play? Does White win, does Black win, or is 
it a draw? (Most people believe it is a draw.)

• What is the best first move for White? Most people believe it is 1.e4 or 1.d4, which is 
chess notation for moving the pawn in front of the White King two squares up (1.e4) or 
moving the pawn in front of the White Queen two squares up (1.d4). Statistics support 
this belief, but there is no proof. 

Building a strong (Master-plus level) chess program has been based on the supposition that 
playing master level chess requires and exhibits intelligence. 

During the past 20 years, computer chess programs have been built that can beat all but the 
world’s very best players. However, no computer program is the official world chess champion. 

All matches played to date have been relatively short and have ex-
ploited human frailties (humans get tired, anxious, etc.). Many in 
the field of AI strongly believe that programs do not yet play better 
than any person. Furthermore, despite the success of recent chess-
playing programs, these programs do not necessarily use “strong AI 
methods,” (this is explored further in the next section). A truly in-
telligent computer chess program would not only play world cham-

pionship-level chess, but would also be able to explain the reasoning behind its moves. It would 
have an enormous amount of knowledge about chess (domain-specific knowledge) that it would be 
able to share and present as part of its decision-making process. 

 1.5 APPLICATIONS AND METHODS
If a system is to exhibit intelligence, it must interact with the real world; to do so it must have 

a formal framework, such as logic, that can be used to represent external reality. Interaction with 
the world also entails some degree of uncertainty. A medical diagnosis system, for example, must 
contend with the possibility that a patient’s fever can be due to one of several factors: bacterial 
infection, a viral attack, or inflammation of some internal organ. 

Identifying causes of events, whether they are medical conditions or automotive mishaps, often 
requires a great deal of knowledge. Reasoning from symptoms to eventual causes also involves 
sound inference rules. AI research has therefore spent considerable effort in designing both expert 
systems and automated reasoning systems. 

Prowess at game playing is often taken as a sign of intelligence. The first fifty years of AI 
research witnessed much effort to design better checker and chess playing programs. Expertise in 
game playing often hinges on search algorithms that can look ahead to the long-term consequences 
that a move will have on subsequent play. Consequently there has been much research on the dis-
covery and the development of efficient search algorithms. 

You might have heard the old joke: “How do I get to Carnegie Hall?” —the answer being 
“Practice, practice, practice.” The serious point is that learning must be an integral part of any 

Recently (July 2007) the game of 
checkers was weakly solved. See 
Chapter 16 “Advanced Computer 
Games,” Section 16.1.5 for a  
discussion.
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viable AI system. Approaches to AI based on animal nervous systems (neural computation) and 
human evolution (evolutionary computation) have proved to be valuable paradigms for learning. 

Building an intelligent system is a daunting enterprise. Some researchers have advocated let-
ting the system “grow” or emerge from some seed, under the control of a few simple rules. Cellular 
Automata (CA) are theoretical systems that have demonstrated how simple rules can produce com-
plex patterns. CA lend hope that we will perhaps someday have the wherewithal to create human-
level AI systems. Applications are presented below from the aforementioned areas of AI research: 

• Search algorithms and puzzles
• Two-person games
• Automated reasoning
• Production systems and expert systems
• Cellular automata
• Neural computation
• Evolutionary computation
• Knowledge representation
• Uncertainty reasoning 

The following sections introduce each type of application. This discussion is merely meant 
to serve as an overview. A thorough exposition of these areas is presented in subsequent chapters.

 1.5.1  Search Algorithms and Puzzles
The 15-puzzle and related search puzzles, such as the 

8-puzzle and the 3-puzzle, serve as helpful examples of 
search algorithms, problem-solving techniques, and the appli-
cation of heuristics. In the 15-puzzle, the numbers 1 through 
15 are written on small plastic squares. These small squares 
are arranged within a larger plastic square frame. One posi-
tion is left blank so that smaller tiles can slide in from as many 
as four directions. See Figure 1.13.

Notice that the 3 is free to move down, while the 12 is 
free to move to the right. Smaller instances of this puzzle are 
more convenient to work with, including the 8-puzzle and 
the 3-puzzle. For example, consider the 3-puzzle, shown in 
Figure 1.14. In these puzzles, it is naturally the numbered 
tiles that slide; however, it is more convenient to consider the 
blank square to be moving. 

The blank can move in one of four directions:

• Up ( ↑ )
• Down ( ↓ )
• Right ( → )
• Left ( ← )

2

4

8

14

5

9

7

10
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15

13
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1
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3

Figure 1.13 
Setting up a 15-puzzle. 

3

1

2

Figure 1.14
Using a 3-puzzle. 
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When moves are to be attempted in turn, they will adhere to this precedence order. In the 
3-puzzle, at most two of these moves are possible at any time. 

To solve the puzzle, define a start state and goal state, as you did in the Water Jug Problem. The 
first, the start state, is arbitrary. The second, the goal 
state, is also arbitrary, but often displays the tiles in 
numeric order. See Figure 1.15.

The objective of this puzzle is to get from the 
start state to the goal state. In some instances, a solu-
tion with the minimum number of moves is desired. 
The structure that corresponds to all possible states 
of a given problem is called the state-space graph. 
It can be thought of as the universe of discourse for 

a problem because it describes every configuration that the puzzle can assume. The graph consists 
of all possible states of a problem, denoted by nodes, with arcs representing all legal transitions 
between states (legal moves in a puzzle). The space tree, which is generally a proper subset of the 
state-space graph, is a tree whose root is the start state, and one or more of its leaves is a goal state. 

One search methodology you can use to traverse state-space graphs is called a blind search. 
It presumes no knowledge of the search space for a problem. There are two classic blind search al-

gorithms that are often explored in courses on data structures and al-
gorithms; they are depth first search (dfs) and breadth first search 
(bfs). In dfs, you plunge as deeply into the search tree as possible. 
That is, when you have a choice of moves, you usually (but not al-
ways) move left. With bfs, you first visit all nodes close to the root, 
level by level, usually moving from left to right. 

A dfs traversal of the tree, shown in Figure 1.16, would inspect 
nodes in the order A, B, D, E, C, F, G. Meanwhile, a bfs traversal 
of this tree would visit the nodes in the order A, B, C, D, E, F, G. In 
Chapter 2, “Uninformed Search,” we will apply these search algo-
rithms to solve instances of the 3-puzzle. 

One theme that is repeated in the study of AI is that of combinatorial explosion. This means 
that the number of possible states of the puzzle is too high to be practical. Solving problems of a 
reasonable size can involve search spaces that grow too rapidly to allow blind search methods to 
succeed. (This will remain true regardless of how fast computers become in the future.) For exam-
ple, the state-space graph for the 15-puzzle might contain more than 16! ≤ (2.09228 × 1013) states. 
Because of combinatorial explosion, success with AI problems depends more upon the successful 
application of heuristics than the design of faster machines. 

One class of heuristic search algorithms looks forward into the state-space graph. Whenever 
two or more alternative paths appear, these algorithms pursue the path or paths closest to the goal. 
The astute reader will of course ask: “How can these search algorithms possibly know the distance 
to the goal state along any perceived path, when the sequence of moves that culminates at a goal is 
not known a priori?” The answer is that they cannot. The algorithms can use heuristic estimates of 
remaining distance, however. 

Three search methods in this “look forward” class are hill climbing, beam search, and best 
first search. These searches will be explored thoroughly in Chapter 3. Another class of algorithms 
progresses toward a goal by continually gauging their distance from the root. These algorithms 
“look backward,” and are referred to as branch-and-bound methods; these will also be covered 
in Chapter 3. For example, the A* algorithm, a well-known algorithm that uses overall estimated 

(a)

2
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(b)

1
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2

Figure 1.15 
States for solving the 3-puzzle. (a) Initial state and (b) Goal state. 

An example

dfs traversal: A,B,D,E,C,F,G

A

B

D E

C

F G

A,B,C,D,E,F,Gbfs traversal:

Figure 1.16 
Comparing dfs and bfs traversals of a state-space graph.
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path cost to determine the order in which solutions are sought, is 
in this class of algorithms. 

 1.5.2 Two-Person Games
Two-person games such as Nim (This games involves several piles of stones. Two players al-

ternately remove a number of stones from one of the piles. In one version of this game, the last per-
son to remove a stone loses.), tic-tac-toe, and chess differ in one fundamental aspect from puzzles: 
when you play a two-person game, you cannot concentrate solely on reaching the goal; you must 
also remain vigilant to monitor and block the progress of your opponent. These adversarial games 
have been the mainstay of AI during its first half-century. Games follow rules that contain many of 
the attributes of real-world scenarios, albeit in simplified form. 

A game that embodies the tension inherent in this class of 
problems is the Iterated Prisoner’s Dilemma. Two perpetra-
tors of a crime are arrested by the police and are immediately 
whisked off to separate cells. Each suspect is promised a reduced 
jail sentence if they betray their accomplice. The suspect who remains loyal will likely receive a 
longer sentence. What should each suspect do? Naturally, if a suspect intends to “go straight” after 
this incident, then betrayal is undoubtedly the best policy. However, if a suspect intends to remain 
committed to a life of crime, then betrayal comes with a heavy price tag. If arrested again, the 
accomplice will recall the partner’s disloyalty and act accordingly. Game playing is the focus of 
Chapter 4, “Search Using Games,” and Chapter 16, “Advanced Computer Games”. 

 1.5.3 Automated Reasoning 
With an automated reasoning system, the software is presented with a collection of facts. 

Deduction is a type of reasoning in which given information is used to derive new and hopefully 
useful facts. Suppose you are presented with the following puzzle: 

Two people are named Michael and Louis. Between them they hold two jobs. Each 
has one job. These jobs are post office clerk and French professor. Michael speaks 
only English, whereas Louis holds a PhD in French. Who holds which job?

First, one must have an appropriate representation language in order to present this information 
to an automated reasoning program. Statements such as the following are helpful in representing 
this problem: 

Works_As (Clerk, Michael) | Works_ As (Clerk, Louis)

Such a logical statement is referred to as a clause. The initial slash is interpreted as “or.” This 
clause means either Michael works as a clerk or Louis works as a clerk.

If you translate the puzzle into a language of clauses suitable for input to a program, you would 
still not have sufficient information to solve this puzzle. Much common sense or world knowledge 
would be missing. Common sense, for example, would suggest that if you own a car, then you also 
own its steering wheel. On the other hand, world knowledge could be used to deduce that precipi-
tation will be in the form of snow when the temperature is 32°F or lower. In this puzzle, common 
sense tells us that a French professor must be able to speak that language. However: Why would a 
reasoning program have this knowledge unless you supply it?

A* does some looking forward as well, 
however, and will be discussed in a later 
chapter.

Games, although they often have attributes 
of real-world scenarios, do not have real-
world consequences, and hence are an 
excellent testbed for AI methods. 
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Consider additional knowledge that you might use to solve this puzzle, such as the fact that 
Michael speaks only English; he cannot be the French professor. Although you can probably solve 
this problem without assistance, having an automated reasoning program as a problem-solving aide 
would be helpful when problems become larger and more involved. 

 1.5.4 Production Rules and Expert Systems
Production rules are used in AI as a method of knowledge representation. A production rule has 

the general forms:

IF (Condition), THEN Action
or 
IF (Condition), THEN Fact

huMAn interest notes

John MccArthy

John McCarthy (1927 – 
2011 ) No textbook on 
Artificial Intelligence 
can be complete 
without paying proper 
tribute to the late John 
McCarthy, who coined 
the term at the 1956 
Dartmouth Conference.

P r o f e s s o r 
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LISP programming language which had 
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AI programs for many years, particularly 
in this country. With a strong aptitude for 
Mathematics, McCarthy received a B.S. 
in Mathematics from Caltech in 1948 and 
then a PhD in Mathematics from Princeton 
University in 1951, under Solomon Lefschetz.
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As a founding father of AI, McCarthy had 
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“Free Will – Even for Robots,” as a means 
of commentary on what AI systems need in 
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for his contributions to AI in 1971. Other 
awards he received include The National 
Medal of Science in Mathematical, Statistical, 
and Computational Sciences (1971), and the 
Benjamin Franklin Medal in Computer and 
Cognitive Science (2003).
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Common examples are included below: 

IF (headache), THEN take two aspirins and call me in the morning. 
IF (( A > B) and (B > C)), THEN A > C

One application area for production systems is in the design of expert systems that were intro-
duced in Section 1.4. An expert system is software that possesses detailed knowledge in a limited 
problem domain. A portion of an expert system for automobile diagnosis might contain the follow-
ing rules:

IF (car won’t start), THEN check headlights.

IF (headlights work), THEN check gas gauge. 

IF (gas tank empty), THEN add gasoline to fuel tank.

IF (headlights don’t work), THEN check battery. 

Supplied with an extensive set of production rules, someone with little mechanical acumen 
could properly diagnose their vehicle. Expert systems were first developed in the early 1970s (MY-
CIN, DENDRAL, PROSPECTOR) and the field reached its maturity in the late 1980s. The archi-
tecture of production systems and expert systems is explored in Chapters 6, 7, and 9. 

 1.5.5 Cellular Automata
A cellular automaton (CA) can be viewed as a collection of cells in n-dimensional space. Each 

cell can be in any one of a small number of states, with two being a typical number. For example, 
a cell can be black or white. Each cell in the system has a neighborhood of adjacent cells. A CA is 
also characterized by two additional properties: 

 1. Physical topology, which refers to the shape of the CA, such as rectangular or hexagonal.
 2. The update rule, which is used to determine the next state 

of a cell in terms of its present state, as well as the states of 
cells in its neighborhood. Cellular automata are synchro-
nous systems in which updating occurs at fixed intervals. 

Figure 1.17 shows a CA with rectangular topology. The CA is 
generally assumed to be unbounded in each dimension. Each cell can 
be in one of two states, shown as “0” and “1.” 

A cell in state 1 is sometimes characterized as being “alive,” 
whereas a cell in state 0 is sometimes said to be “dead.” Cells that 
are alive are often shaded, as in Figure 1.18; dead cells often ap-
pear without shading. In many examples, a cell’s neighborhood in-
cludes the eight cells directly above, below, to the left, to the right, 
and diagonally above and below a cell. In Figure 1.18, the cells in the 
neighborhood of the central cell are indicated by shading. 

Cellular automata are remarkable in that complex patterns can 
be created by the application of a few simple rules.

Figure 1.17 
Part of a one-dimensional CA.

(a) (b)

Figure 1.18 
Neighborhoods in a two-dimensional rectangular cellular 
automaton. (a) The Von Neumann neighborhood and (b) the 
Moore neighborhood.
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 1.5.6 Neural Computation
In the quest for Artificial Intelligence, researchers often design 

systems based on the architecture of the best exemplar for intelli-
gence on this planet. Neural networks attempt to capture the par-
allel and distributed structure of the human nervous system. Early 
work in neural computing began in the 1940s with the research of 
McCulloch and Pitts.17 The basic building block for such systems 
is the artificial neuron, which can be modeled as a threshold logic 

unit (TLU). See Figure 1.19.
The inputs to this neuron, X1 and X2, are assumed to be binary in this example. These inputs 

are mitigated by the real-valued weights, W1 and W2. The output of this TLU is also assumed to be 
either 0 or 1. The output of a TLU equals 1 whenever the dot product of an input vector multiplied 

by this set of weights exceeds or equals the unit’s threshold, which is 
also a real-valued quantity. 

For example, the TLU illustrated in Figure 1.20 implements the two-
input Boolean AND function.

The dot product of the two inputs and the two weights will be greater 
than or equal to the threshold, only when both inputs are equal to 1.

As Figure 1.21 shows,  X  ·W  is greater than or equal to the 
threshold of 1.5 only when both inputs are equal to 1. Where did 
these weights come from? As discussed later in Chapter 11, they 
are the result of an iterative learning algorithm known as the 
Perceptron Learning Rule. In this rule, weights are changed 
as long as the system continues to respond incorrectly. The al-
gorithm is iterative in the sense that, in each pass through the 
inputs, the response of the system converges towards the de-
sired weights. Once the system produces only correct outputs, 
the learning is complete. 

When the dot product of X and W is greater than or equal 
to the threshold T, then the output of the TLU should equal one; 
when this product is less than T the output should equal zero. 
Setting the dot product of X with W equal to T and substituting 
1 for each of the weights, W1 and W2, one can obtain, with the 
help of some algebra, that X2 = −X1 + 1.5. This is the equa-
tion of a straight line; one whose slope is −1 and X2 intercept 
is 1.5. This straight line, known as a discriminant, is drawn in 
Figure 1.21; it separates those inputs that yield an output of 0 
((0, 0), (0,1), (1,0)) from the input (1,1), which produces 1 as 
output. Useful pattern recognition tasks will naturally require 
more than a single threshold unit. Neural networks composed 
of hundreds or even thousands of simple units as described 
above can be used to perform valuable data processing tasks 
such as reading handwritten text or predicting the future price 
of a stock based upon its recent historical activity. Learning 
rules that are appropriate for these more complicated networks 

sidebAr
The Game of Life

John Conway.

The British mathematician John 
Horton Conway devised the 
Game of Life in 1970. It became 
famous the moment its rules 
appeared in Martin Gardner’s 
“Mathematical Games” column 
in Scientific American that 
year.16 The Game of Life will be 
described in detail in Chapter 7, 
“Production Systems,” together 
with CAs and their relationship 
to AI. 
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Figure 1.19 
Threshold Logic Unit.

The dot product of two vectors X  
and W , denoted by X ·W , is the 
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vectors.
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will be described in Chapter 11.It is believed that the brain itself 
is composed of a huge interconnected network of such simple 
processing elements.

 1.5.7 Genetic Algorithms 
Neural networks—software systems that attempt to model 

the human nervous system—provide a fruitful arena for AI re-
search. Another promising paradigm is Darwin’s theory of evo-
lution. Natural selection occurs in nature at a rate of thousands 
or millions of years. Inside a computer, evolution (or the itera-
tive process whereby a proposed solution to a problem improves 
through the application of small incremental changes) proceeds 
somewhat faster. This is to be compared and contrasted with the 
process of evolution in the plant and animal world in which spe-
cies adapt to their environments through the genetic operators 
of natural selection, reproduction, mutation, and recombination. 
Genetic algorithms (GA) are a specific methodology from the 
general field known as evolutionary computation, which is 
that branch of AI wherein proposed solutions to a problem adapt 
much as animal creatures adapt to their environments in the real 
world. In a GA, a problem is encoded as a string. Recall that in 
the 3-puzzle, a series of moves of the blank could be encoded 
as a sequence of 0s and 1s. The GA begins with a population 
of such binary strings that are randomly chosen. Genetic opera-
tors are then systematically applied to these strings and a fitness 
function is used to glean more optimal strings. A fitness function 
is designed to assign higher values to those strings corresponding 
to sequences of moves that bring the puzzle state closer to a goal 
state. Refer to Figure 1.14, which describes the 3-puzzle, and let 
us represent an upward motion (of the blank) by the string 00. 
Similarly, let 01 denote a downward motion, 10 a move right and 
finally 11 a move left. Next, refer to the instance of this puzzle 
depicted in Figure 1.15. Each of the following binary strings of 
length eight can be interpreted as four moves in this puzzle. 11100010, 00110110. Why should 
the latter string be assigned a higher fitness value? Detailed examples of this methodology will be 
provided in Chapter 12. 

 1.5.8 Knowledge Representation 
As soon as one considers the problems of AI, the issue of representation comes to the fore. 

If AI systems acquire and store knowledge in order to process it and produce intelligent results, 
they need to be able to identify and represent that knowledge. The choice of a representation is 
intrinsic to the nature of problem solving and understanding. As Polya 13 commented, a good  
representation choice is almost as important as the algorithm or solution plan devised for a particu-
lar problem. Good and natural representations facilitate fast and comprehensible solutions. Poor 
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TLU simulating the AND function.
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Figure 1.21 
Discriminant for a TLU that simulates the two-input AND function. 



24  ■  Part  1   ·  Introduct ion

representational choices can be equally stifling. For example, consider the familiar Missionaries 
and Cannibals Problem. The problem is to get three missionaries and three cannibals from the 
west bank to the east bank of a river with a boat. At any point during the transitions from west to 
east, you can quickly see and comprehend the solution path by selecting an appropriate representa-
tion. Constraints can also be efficiently represented; such as that the boat can hold no more than 
two people at any time and that the cannibals on any bank can never outnumber the number of 
missionaries. One representation would be to list the start state by W:3M3CB (three missionaries 
and three cannibals with the boat on the West Bank). The goal state is E:3M3CB. A transition of 
one missionary and one cannibal with the boat could be represented by ➔ E: 1M1CB. Leaving 
W:2M2C ~~~~~~~~ E:1M1CB. Another representation would be to pictorially represent the boat, 
Missionaries, and Cannibals with stick figures and a sketch for the boat on each bank as each transi-
tion occurs.

Logic has been used as a knowledge representation and problem-solving technique by AI re-
searchers since the field’s inception, starting with Newell and Simon’s Logic Theorist, 18 and GPS, 14  
which was based on Russell and Whitehead’s Principia Mathematica.19 Both the Logic Theorist 
and GPS programs use the rules of logic to solve problems. A seminal example of the use of logic 
for knowledge representation and language understanding was Winograd’s Blocks World (1972),20 
in which a robot arm interacts with blocks on a tabletop. This program encompassed issues of lan-
guage understanding and scene analysis as well as other aspects of AI. Many AI researchers have 
based their research on a logic-based approach, including Nils Nilsson in his Principles of Artifi-
cial Intelligence text,21 Genesereth and Nilsson, 22 and Alan Bundy in The Computer Modeling of 
Mathematical Reasoning.23

Recall from Section 1.5.4, that production rules and production systems are used to construct 
many successful expert systems. The appeal of production rules and expert systems is based on the 
feasibility of representing heuristics clearly and concisely. Thousands of expert systems have been 
built incorporating this methodology. 

On the other hand, considering the possible alternatives for knowledge representation, graphi-
cal approaches offer greater appeal to the senses, such as vision, space, and motion. Possibly the 
earliest graphical approaches were state-space representations, which display all the possible states 
of a system. (Recall the discussion of the 15-puzzle in Section 1.5.1.) Semantic networks are 
another graphical, though complex, representation of knowledge, dating back to the work of Quil-
lian.24 Semantic networks are a predecessor of object-oriented languages. Object orientation uses 
inheritance (wherein an object from a particular class inherits many of the properties of a super-
class). Much of the work employing semantic networks has focused on representing the knowledge 
and structure of language. Examples include Stuart Shapiro’s 25 SNePS (Semantic Net Processing 
System) and the work of Roger Schank in natural language processing.26

Marvin Minsky, 27 a founding AI researcher and thinker, introduced frames, another primary 
graphical approach to knowledge representation. Frames enable a compact description of objects in 
a systematic and hierarchical way. They are typically organized by slots and fillers in tables (which 
can be related in a similar plane) or three-dimensionality for concepts that exploit the prototypical 
nature of structures in our world. They also employ inheritance to facilitate repetition, predictabil-
ity, and the variety of forms that define real-world objects, such as a university with its buildings, 
faculty, administration, and students. Although the particulars of these elements vary from univer-
sity to university, this variety can be easily captured by frames.

Frames will be fully described, with examples, in Chapter 6. 
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Scripts 28 are an extension of frames that further exploit the ex-
pectancy inherent in human interactions. Through their work, Schank 
and Abelson have been able to build a number of systems that seem 
to comprehend descriptions of well-defined settings. Conceptual 
graphs by Sowa 29 and Novak and Gowin 30 are a simplified but per-
vasive heuristic technology that has often been used to represent the 
knowledge in a discipline. 

In 1985, Marvin Minsky published Society of Mind.31 Minsky pro-
poses theories to explain the organization of the human mind. He sug-
gests that the intelligent world could be run by agents. These agents 
are themselves unintelligent, but could be combined in sophisticated ways to form a society, which 
seems to exhibit intelligent behavior. Concepts such as multiple hierarchies, scales, learning, re-
membering, sensing similarities, emotion, and frames are presented by Minsky through the agent 
model. 

 1.5.9 Uncertainty Reasoning 
Traditional mathematics often deals with certitudes. The set A is either a subset of the set B, or 

it is not. AI systems, much like life itself, are plagued with uncertainty. Chance is an inimitable 
component of our existence; for example, you could catch a cold during your morning commute if 
the passengers next to you on the bus or the train were coughing or sneezing; then again you might 
not. Consider the following sets: the set of people that are satisfied with their jobs, and the set of 
people that are not satisfied. It is not at all unusual for some people to belong to both sets. Some 
people might love their jobs, though they might believe they are underpaid. You can consider the 
set of people who are satisfied with their jobs as a fuzzy set 32 because it varies depending on the 
conditions. Often one is satisfied with the work itself. However, one considers the paycheck to be 
insufficient. That is, one is satisfied with one’s job to a certain extent. The degree of membership 
for a particular person in this set could range from 1.0 for someone who thoroughly loves their 
work to 0.0 for an individual who should seriously consider a career change. 

Fuzzy sets arise in many domains. Cameras vary shutter speed based upon the amount of sun-
light present. Washing machines control wash cycles that are based, in part, on the dirtiness of the 
clothes they contain. Thermostats regulate room temperatures by making sure that temperatures 
actually fall within an accepted range, rather than at a precise value. Modern automobiles adjust 
brake pressure in accordance with weather conditions. Fuzzy-logic controllers can be found in each 
of these devices. A more comprehensive discussion on the role that uncertainty plays in AI is found 
in Chapter 8, “Uncertainty in AI.” 

 1.6  EARLY HISTORY OF AI
Building an intelligent machine has long been a dream of mankind, dating back to the ancient 

Egyptians who took “short cuts” by building statues that contained hidden priests who attempted 
to provide sage counsel to citizens. This type of hoax has unfortunately appeared throughout the 
history of AI; the field has been understandably tainted by such chicanery while trying to achieve 
the status of an accepted scientific discipline—artificial intelligentsia. 

The strongest foundations for AI stem from the logical premises established by Aristotle (circa 
350 BC). Aristotle established the models for scientific thinking and disciplined thought that have 

There are a number of examples 
of early research contributions in 
AI that have been “absorbed” by 
mainstream computer science; for 
example, the programming language 
Smalltalk, hierarchical methods, and 
frames led to advances in the object-
oriented paradigm. 
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become the standard of the present day scientific method. His distinction between matter and form 
was a forerunner to one of the most important concepts in computer science today: data abstrac-
tion, which distinguishes methods (forms) from the shells in which they are encapsulated, or in 
distinguishing the form (shape) of a concept from its actual representation. (Recall the discussion 
of abstraction in the sidebar in Section 1.1.)

Aristotle also emphasized the ability of people to reason, maintaining that this facility distin-
guishes us from all other living beings. Any attempt to build an artificially intelligent machine re-
quires this ability to reason. This is why the work of the nineteenth century British logician, George 
Boole, was so important; his established system for expressing logical relationships later became 
known as Boolean algebra. 

Raymond Llull, the thirteenth century Spanish hermit and scholar, was probably the first per-
son to attempt to mechanize human thought processes. His work predates Boole by more than five 
centuries. Llull, a devout Christian, set about developing a system based on logic whose aim was to 
prove that the tenets of Christianity were true. In his Ars Magna (Great Art), Llull used geometrical 
diagrams and primitive logical devices to realize this goal. Llull’s corpus of work inspired later 
pioneers, including Wilhelm Leibniz (1646–1716). Leibniz, a great mathematician and philosopher 

huMAn interest notes

george boole

For a computer 
program to exhibit any 
kind of intelligence 
it was decided early 
on that it needed to 
be able to reason. The 
British mathematician, 
George Boole (1815–
1864) developed 
a mathematical 

framework for representing the laws of 
human logic. His work consisted of some 
50 individual papers. His main achievement 
was the well-known Treatise on Differential 
Equations that appeared in 1859. This was 
followed, in 1860, by a Treatise on the 
Calculus of Finite Differences. The latter was 
designed to serve as a sequel to the former 
work. Boole’s Laws of Thought provided a 
general method of symbolic inference, which 
is perhaps his greatest achievement. If you 
are given a logical proposition involving any 
number of terms, Boole showed how, with 

purely symbolic treatment of these premises, 
sound logical inferences could be made. 

In the second part of the Laws of Thought, 
Boole attempted to discover a general method 
for translating antecedent probabilities for a 
system of events, to determine the consequent 
probability of any other event that was 
logically connected with the given events. 

The algebraic language (or notation) 
that he developed allowed for variables to 
have interactions (or relationships) based on 
only two states, true and false. He developed 
Boolean Algebra, as it is now known, wherein 
there are three logical operators: and, or, and 
not. The combination of Boolean Algebra and 
the rules of logic enables us to prove things 
“automatically.” Hence, a machine that can do 
this is in some sense capable of reasoning. 33

An example of Boolean logic is shown 
here: 

 IF A ≥ B and B ≥ C, THEN A ≥ C

That is the law of transitivity—IF A 
implies B and B implies C, THEN A 
implies C. 
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in his own right, took Llull’s ideas one step further: he believed that a kind of “logical calculus” or 
“universal algebra” could be built that could resolve all logical arguments and could reason about 
almost anything; he states: 

All our reasoning is nothing but the joining and substituting of characters, whether 
these characters be words or symbols or pictures… (ibid., p.7)

More than two centuries later, Kurt Gödel (1931) 34 demonstrated the over-optimism of Leib-
niz’s goal. He proved that any branch of mathematics would always contain some propositions that 
could not be proven to be either true or false, using only the rules and axioms of that branch of 
mathematics which is complete itself. The great French philosopher Rene Descartes,35 in his Medi-
tations, addressed the question of his physical reality through cognitive introspection. He justified 
his own existence through the reality of thought; culminating in his famous statement, “Cogito ergo 
sum,” or, “I think therefore I am.” In this way, Descartes and the philosophers who followed him 
established the independence of the mind and the physical world. Ultimately, this has led to the 
preferred contemporary view that the mind and the body are not fundamentally different at all. 36

 1.6.1 Logicians and Logic Machines
The world’s first real logic machine was built by Charles Stanhope 

(1753–1816), the third Earl of Stanhope. The Stanhope Demonstrator, 
as it was known, was built circa 1775 and consisted of two colored 
slides made of transparent glass, one red and one gray, which the user 
pushed into slots on the sides of a box. See Figure 1.22. 

Manipulating the demonstrator, the user could verify the validity 
of simple deductive arguments involving two assumptions and a single 
conclusion.33 Despite its limitations, the Stanhope Demonstrator was 
the first step toward the mechanization of thought processes. In 1800, 
Stanhope printed the early chapters of a book explaining his machine, 
but it wasn’t until 60 years after his death (1879) that Reverend Robert 
Harley published the first article on the Stanhope Demonstrator. 

The best-known and first prototype for modern-day computers was 
Charles Babbage’s Difference Engine. Babbage was a prolific and tal-
ented inventor; he built the first general-purpose programmable com-
puter but did not secure enough funding (1500 pounds from the British 
Chancellor of the Exchequer) to complete the project. Babbage continued to fund the project from 
his own resources until granted a further 3000 pounds. His plans became more ambitious, however 
(e.g., calculating to 20 decimal places instead of his original 6), and he never completed the Differ-
ence Engine once his funding stopped. 

Babbage also never realized his plans to build the Analytical En-
gine, which was the successor to his Difference Engine. See Figure 1.23.  
He intended that the Analytical Engine would perform various tasks 
that require human thought, such as playing games of skill, akin to 
checkers, tic-tac-toe, and chess. Babbage, with his collaborator, Lady 
Ada Lovelace, envisioned that their Analytical Engine would reason 
with abstract concepts as well as with numbers. Lady Lovelace is  

Figure 1.22 
The Stanhope Demonstrator.

Figure 1.23 
Image of Babbage’s Analytical Engine.
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considered the world’s first programmer. She was the daughter of Lord Byron, and was the person 
after whom the programming language ADA is named.33

Babbage was at least 100 years ahead of the time that the first chess programs were written. 
He certainly realized the level of complexity in terms of logic and calculation entailed in building 
a mechanical device to play chess. 

The work of George Boole, who was introduced earlier, was extremely important to the foun-
dations of AI and the mathematical formalization of the laws of logic that provide a foundation for 
computer science. Boolean algebra significantly informs the design of logic circuitry. Boole’s goals 
in developing his system are also close to those of contemporary AI researchers. In An Investigation 
of Logic and Probabilities, Chapter 1, he states:

to investigate the fundamental laws of those operations of the mind by which 
reasoning is performed; to give expression to them in the symbolical language of a 
Calculus, and upon this foundation to establish the science of logic and to instruct its 
method; … and finally to collect from these various elements of truth brought to view 
in the course of these inquiries some probable intimations concerning the nature and 
constitution of the human mind.38

Boole’s system was extremely simple and formal, captured 
the full power of logic, and was the basis for all systems that 
followed it. 

Claude Shannon (1916–2001) is widely recognized as the 
father of information science. His seminal paper on the appli-
cation of symbolic logic to relay circuits 39 was based on his 
Master’s thesis at MIT. His pioneering work was important to 
the operation of both telephones and computers. Shannon also 
contributed to AI via his research on computer learning and 
game-playing. His groundbreaking paper on computer chess 
had a great influence on the field and lingers to this day.40

The Nimotron, developed in 1938, was the first machine 
built that could play a complete game of skill. It was designed 
and patented by Edward Condon, Gerald Twoney, and Willard 
Derr and played the game of Nim. An algorithm was developed 
to play the best move in any position of this game. (See Chapter 
4 for a thorough discussion of Nim and other games.) This was 
a prelude to robotics (Chapter 15).

The best-known attempt at developing thinking machines 
was The Turk, which was developed in 1790 by Baron von 
Kempelen, Counselor on Mechanics to the Royal Chamber in 
Vienna. This machine, which toured Europe for many years, 
fooled people into thinking they were playing chess against a 
machine. In fact, a small, master-level human chess player was 
hidden inside the box. 

Torres y Quevedo was a prolific Spanish inventor (1852–
1936) who built what might be the first expert system. He cre-

ated a rule-based system for playing the endgame King and Rook vs. King. Rules were based on 
the relative positions of these three pieces. See Figure 1.24.

sidebAr
The Mythical Man-Month
The story of Babbage trying to 
fund his Difference Engine is a 
good forerunner to the saga that is 
the basis of the landmark work by 
Frederick Brooks, The Mythical 
Man-Month,37 which demonstrat-
ed that programmers have been 
very poor at estimating the costs 
required to complete a project, 
where the costs are measured in 
terms of time, effort, and money. 
This led to the discipline of soft-
ware engineering, which certainly 
benefits from instances when 
AI techniques can be applied 
to obtain more realistic project 
requirements and costs. 

To this day, the field of AI is plagued by 
the suspicion that advances in AI are based 
more on hype than on substance.
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Konrad Zuse (1910–1995) was a German who invented 
the first digital computer powered by electricity. Zuse worked 
independently, and initially his work was dedicated to pure 
number crunching. Zuse recognized the connection between 
engineering and mathematical logic, and he learned that cal-
culations in Boolean algebra are identical to the propositional 
calculus of mathematics. He developed a system corresponding 
to the Boolean algebra of conditional propositions for relays, 
and because much work in AI is based on the importance of 
being able to manipulate conditional propositions (that is, IF 
– THEN propositions), we can see the importance of Zuse’s 
work. His work on logic circuits predates Shannon’s thesis by 
several years. Zuse recognized the need for an efficient and vast 
memory and developed computers based on vacuum tubes and 
electromechanical memory, which he called the Z1, Z2, and Z3. 
It is universally accepted that the Z3 (May 12, 1941) was the 
world’s first reliable, freely programmable working computer based on floating-point numbers. It 
was destroyed by bombings in World War II, but a replica is on display in the Deutsches Museum 
in Munich. 

  1.7  RECENT HISTORY OF AI TO THE PRESENT
Since World War II and the advent of computers, much progress in computer science and 

proficiency in programming techniques has been acquired through the challenges of trying to get 
computers to play and master complex board games. Some examples of games whose play by com-
puter have benefitted from the application of AI insights and methodologies have included chess, 
checkers, GO, and Othello.

 1.7.1 Games 
Games have spurred the development and interest in AI. Early efforts were highlighted by the 

efforts of Arthur Samuel in 1959 on the game of checkers.41 His program was based on tables of 50 
heuristics and was used to play against different versions of itself. The losing program in a series 
of matches would adopt the heuristics of the winning program. It played strong checkers, but never 
mastered the game. A detailed discussion of Samuel’s contributions to checker-playing programs 
will be found in Chapter 16. 

People have been trying to get machines to play strong chess for several centuries. The infatu-
ation with chess machines probably stems from the generally accepted view that it requires intelli-
gence to play chess well. The first real chess program, following the Shannon-Turing Paradigm, 40, 42  
was developed in 1959 by Newell, Simon, and Shaw. Richard Greenblatt’s 43 program was the first 
to play club-level chess. Computer chess programs improved steadily in the 1970s until, by the end 
of that decade, they reached the Expert level (equivalent to the top 1% of chess tournament play-
ers). In 1983, Ken Thompson’s Belle was the first program to officially achieve the Master level. 
This was followed by the success of Hitech, from Carnegie-Mellon University, 44 which success-
fully accomplished a major milestone as the first Senior Master (over 2400-rated) program. Shortly 
thereafter the program Deep Thought (also from Carnegie-Mellon) was developed and became the 

Figure 1.24
Torres y Quevedo’s Machine from “Les Automates” by H. Vigneron, 
La Natura, 1914. 
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first program capable of beating Grandmasters on a regular basis.45 Deep Thought evolved into 
Deep Blue when IBM took over the project in the 1990s, and Deep Blue played a six-game match 
with World Champion Garry Kasparov who “saved mankind” by winning 4–2 in a match in Phila-
delphia in 1996.46 In 1997, however, against Deeper Blue, the successor of Deep Blue, Kasparov 
lost 3.5–2.5 and the chess world was shaken. In subsequent six-game matches against Kasparov, 
Kramnik, and other World Championship-level players, programs have fared well, but these were 
not World Championship Matches. Although it is generally agreed that these programs might still 
be slightly inferior to the best human players, most would be willing to concede that top programs 
play chess indistinguishably from the most accomplished humans (if one is thinking of the Turing 
Test), and there is little doubt that sometime in the next 10–15 years, a program will likely claim 
the World Chess Championship. 

In 1989, Jonathan Schaeffer, at the University of Alberta in Edmonton,47 began his long-term 
goal of conquering the game of checkers with his program Chinook. In a 40-game match in 1992 
against longtime Checkers World Champion Marion Tinsley, Chinook lost 4–2 with 34 draws. In 
1994 their match was tied after six games, when Tinsley had to forfeit because of health reasons. 
Since that time, Schaeffer and his team have been working to solve checkers from both the end of 
the game (all eight-pieces and fewer endings) as well as from the beginning. 

Other games (addressed in Chapter 16) for their use of AI techniques include backgammon, 
poker, bridge, Othello, and GO (often called the new drosophila).

 1.7.2 Expert Systems 
Expert systems are one of the areas that have been investigated for almost as long as AI itself. It 

is one discipline that AI can claim as a great success. Expert systems have many characteristics that 
make them desirable for AI research and development. These include separation of the knowledge 
base from the inference engine, being more than the sum of any or all of their experts, relationship 
of knowledge to search techniques, reasoning, and uncertainty. 

One of the earliest and most often referenced systems was heuristic DENDRAL. Its purpose 
was to identify unknown chemical compounds on the basis of their mass spectrographs.48 DEN-
DRAL was developed at Stanford University with the goal of performing a chemical analysis of the 
Martian soil. It was one of the first systems to illustrate the feasibility of encoding domain-expert 
knowledge in a particular discipline. 

Perhaps the most famous expert system is MYCIN, also from Stanford University (1984). 
Mycin was developed to facilitate the investigation of infectious blood diseases. Even more impor-
tant than its domain, however, was the example that Mycin established for the design of all future 
knowledge-based systems. It had over 400 rules, which were eventually used to provide a training 
dialogue for residents at the Stanford hospital. In the 1970s, PROSPECTOR (also at Stanford Uni-
versity) was developed for mineral exploration.49 PROSPECTOR was also an early and valuable 
example of the use of inference networks. 

Other famous and successful systems that followed in the 1970s were XCON (with  
some 10,000 rules), which was developed to help configure electrical circuit boards on VAX 
computers; 50

GUIDON, 51 a tutoring system that was an offshoot of Mycin; TEIRESIAS, a knowledge ac-
quisition tool for Mycin; 52 and HEARSAY I and II, the premier examples of speech understanding 
using the Blackboard Architecture.53 The AM (Artificial Mathematician) system of Doug Lenat 54  
was another important result of research and development efforts in the 1970s, as well as the 
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Dempster-Schafer Theory for reasoning under uncertainty, together with Zadeh’s aforementioned 
work in fuzzy logic. 32 

Since the 1980s, thousands of expert systems have been developed in such areas as configura-
tion, diagnosis, instruction, monitoring, planning, prognosis, remedy, and control. Today, in addi-
tion to stand-alone expert systems, many expert systems have been embedded into other software 
systems for control purposes, including those in medical equipment and automobiles (for example, 
when should traction control engage in an automobile).

In addition, a number of expert systems shells, such as Emycin 55, OPS 56, EXSYS, and CLIPS,57 
have become industry standards. A number of knowledge representation languages have also been 
developed. Today, many expert systems work behind the scenes to enhance day-to-day experiences, 
such as the online shopping cart. We will discuss many of the major expert systems— including 
their methodologies, designs, purposes, and main features— in Chapter 9. 

 1.7.3 Neural Computing
Section 1.5.6 mentions that McCulloch and Pitts conducted early research in neural  

computing. 17 They were trying to understand the behavior of animal nervous systems. Their 
model of artificial neural networks (ANN) had one serious drawback: it did not include a mecha-
nism for learning. 

Frank Rosenblatt 58 developed an iterative algorithm known as the Perceptron Learning Rule 
for finding the appropriate weights in a single-layered network (a network in which all neurons 
are directly connected to inputs). Research in this burgeoning discipline might have been severely 
hindered by the pronouncement by Minsky and Papert 59 that certain problems could not be solved 
by single-layer perceptrons, such as the exclusive OR (XOR) function. Federal funding for neural 
network research was severely curtailed immediately after this proclamation.

The field witnessed a second flurry of activity in the early 1980s with the work of Hopfield.60 
His asynchronous network model (Hopfield networks) used an energy function to find approximate 
solutions to NP-complete problems.61 The mid-eighties also witnessed the discovery of backprop-
agation, a learning algorithm appropriate for multilayered networks. Backpropagation-based net-
works are routinely employed to predict Dow Jones’ averages and to read printed material in optical 
character recognition systems. Consult Chapter 11 for details. Neural networks are also used in 
control systems. ALVINN was a project at Carnegie Mellon University 62,63 in which a backpropa-
gation network senses the highway and assists in the steering of a Navlab vehicle. One immediate 
application of this work was to warn a driver impaired by lack of sleep, excess of alcohol, or other 
condition whenever the vehicle strayed from its highway lane. Looking toward the future, it is 
hoped that, someday, similar systems will drive vehicles so that we are free to read newspapers and 
talk on our cell phones with impunity. 

 1.7.4 Evolutionary Computation
In Section 1.5.7, we discussed genetic algorithms. These algorithms are more generally clas-

sified as evolutionary computation. Recall that genetic algorithms use probability and parallelism 
to solve combinatorial problems, also called optimization problems. This approach to search was 
developed by John Holland.65

Evolutionary computation, however, is not solely concerned with optimization problems.  
Rodney Brooks was formerly the director of the MIT Computer Science and AI Laboratory. His  
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approach to the successful creation of a human-level Artificial In-
telligence, which he aptly cites as the holy grail of AI research,66 
renounces reliance on the symbol-based approach. This latter 
approach relies upon the use of heuristics (see Section 1.3) and 
representational paradigms (see Sections 1.5.3 and 1.5.4). In his 
subsumption (Intelligent systems can be designed in multiple 
layers in which higher leveled layers rely upon those layers be-
neath them. For example, if you wanted to build a robot capable 
of avoiding obstacles, the obstacle avoidance routine would be 
built upon a lower layer, which would merely be responsible 
for robotic locomotion.) architectural approach, he advocates 
that the world itself should serve as our representation. Brooks 
maintains that intelligence emerges through the interaction of an 
agent with its environment. He is perhaps most well-known for 
the insect-like robots built in his lab that embody this philoso-
phy of intelligence, wherein a community of autonomous robots 
interact with their environment and with each other. Chapter 12 
explores the field of evolutionary computation.

 1.7.5 Natural Language Processing
If we wish to build intelligent systems, it seems natural to ask that our systems possess a language 

understanding facility. This is an axiom that was well understood by many early practitioners. Two 
well-known early application programs were Weizenbaum’s Eliza and Winograd’s SHRDLU.20

Eliza was a program written by Joseph Weizenbaum, an MIT computer scientist working with 
Kenneth Colby, a Stanford University psychiatrist.67 Eliza was intended to imitate the role played 
by a psychiatrist of the Carl Rogers School. For instance, if the user typed in “I feel tired,” Eliza 

might respond, “You say you feel tired. Tell me more.” The “conver-
sation” would go on in this manner, with the machine contributing 
little or nothing in terms of originality to the dialogue. A live psy-
choanalyst might behave in this fashion in the hope that the patient 
would discover their true (perhaps hidden) feelings and frustrations. 
Meanwhile, Eliza is merely using pattern matching to feign human-

like interaction. 
Curiously, Weizenbaum was disturbed by the avid interest that his students (and the public 

in general) took in interacting with Eliza, even though they were 
fully aware that Eliza was only a program. Meanwhile, Colby, the 
psychiatrist, remained dedicated to the project and went on to au-
thor a successful program called DOCTOR. Although Eliza has con-
tributed little to natural language processing (NLP), it is software 
that pretends to possess what is perhaps our last vestige of “special-
ness”—our ability to feel emotions. 

There will be no controversy surrounding the next milestone in 
NLP. Terry Winograd 20 wrote SHRDLU as his doctoral dissertation at MIT. SHRDLU used mean-
ing, syntax, and deductive reasoning to both understand and respond to English commands. Its 
universe of discourse was a tabletop upon which blocks of various shapes, sizes, and colors resided. 

sidebAr
NETtalk64 was a backpropagation 
application that learned the 
correct pronunciation for English 
text. It was claimed to pronounce 
English sounds with 95% 
accuracy. Obviously, problems 
arose because of inconsistencies 
inherent in the pronunciation of 
English words, such as rough and 
through, and the pronunciation 
of words with different foreign 
sources such as pizza and fizzy. 
Chapter 11 will more fully 
explore the contributions of 
neural computing to the design of 
intelligent systems

The most frequently used letters in 
the English language are ETAOIN 
SHRDLU on linotype machines. 
Winograd’s program was named after 
the second set of these letters. 

What will happen when the line 
between a human and machine 
(example: android) becomes less 
clear—perhaps in some 50 years—and 
these androids will be less mortal and 
more like immortals? 
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huMAn interest notes

sherry turkle

To many it seems 
sad that some people 
become addicted to 
Eliza-like programs, 
because they believe 
it to be a sign of the 
frustration some 
people feel with 
their lives. Such 
concern about Eliza 
was expressed in a 
casual conversation 

among attendees at the AI @ 50 Conference 
(“Dartmouth Artificial Intelligence 
Conference: The Next Fifty Years”) on the 
Dartmouth College campus in the summer 
of 2006. One of the participants in that 
discussion was Sherry Turkle, a psychologist 
with analytic training who works at the MIT 
Program in Science, Technology, and Society. 
Naturally, Turkle was sympathetic. 

Turkle 68 has done much research with 
what she calls “relational artifacts.” These 

are devices—both toys and robots—whose 
defining attribute is not their intelligence, but 
their ability to evoke caring behavior in those 
with whom they interact. The first relational 
artifacts in America were Tamagotchis in 1997, 
virtual creatures that lived on an LCD screen. 
These creatures often made veritable slaves of 
many children (and their parents), requiring 
constant feeding, cleaning, and nurturing if they 
were to “grow” to become healthy adults. More 
recently, several MIT robots, including Cog, 
Kismet, and Paro, have been developed with 
the uncanny ability to feign human emotions 
and evoke emotional responses from those 
with whom they interact. Turkle has studied the 
relationships that children and older persons in 
nursing homes have formed with these robots; 
relationships that involve genuine emotion and 
caring. Turkle speaks of the need to perhaps 
redefine the word “relationship” to include 
the encounters that people have with these 
so-called “relational artifacts.” She remains 
confident, however, that such relationships will 
never replace the bonds that can only occur 
between human beings who must confront 
their mortality on a daily basis. 

Sherry Turkle. (Reprinted with 
permission. Photo source: http://
web.mit.edu/sturkle/www/)

(Winograd’s blocks world was introduced in Section 1.5.8.)
A robot arm could interact with this tabletop to achieve various goals. For example, if SHRD-

LU was asked to lift a red block upon which there was a small green block, it knew that it must 
remove the green block before it could lift the red one. Unlike Eliza, SHRDLU was able to under-
stand English commands and respond to them appropriately. 

HEARSAY,69 an ambitious program in speech recognition (mentioned in Section 1.7.2), em-
ployed a blackboard architecture wherein independent knowledge sources (agents) for various 
components of language, such as phonetics and phrases, could freely communicate. Both syntax 
and semantics were used to prune improbable word combinations. 

The HWIM (pronounced “Whim” and short for Hear What I Mean) Project 70 used augmented 
transition networks to understand spoken language. It had a vocabulary of 1000 words dealing 
with travel budget management. Perhaps this project was too ambitious in scope because it did not 
perform as well as HEARSAY II. 

Parsing played an integral part in the success of these natural language programs. SHRD-
LU employed a context-free grammar to help parse English commands. Context-free grammars  
provide a syntactic structure for dealing with strings of symbols. However, to effectively process 
natural languages, semantics must be considered as well. 
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Each of the aforementioned early language processing systems employed world knowledge to 
some extent. However, in the late 1980s the greatest stumbling block for progress in NLP was the 
problem of common sense knowledge. For example, although many successful programs were built 
in particular areas of NLP and AI, these were often criticized as microworlds, meaning that the 
programs did not have general, real-world knowledge or common sense. For example, a program 
might know a lot about a particular scenario, such as ordering food in a restaurant, but it would 
have no knowledge of whether the waiter or waitress was alive or whether they would ordinarily 
be wearing any clothing. During the past 25 years, Douglas Lenat 71 of MCC in Austin, Texas, has 
been building the largest repository of common sense knowledge to address this issue. 

Recently, a major paradigm shift has occurred in the field of NLP. Statistics, rather than world 
knowledge, govern the parse trees for sentences in this relatively new approach. 

Charniak 72 describes how context-free grammars can be augmented such that each rule has an 
associated probability. These associated probabilities could be taken, for instance, from the Penn 
Treebank.73 The Penn Treebank contains more than one million words of English text that have 
been parsed manually, mostly from the Wall Street Journal. Charniak demonstrated how this sta-
tistical approach successfully obtained a parse for a sentence from the front page of The New York 
Times (no trivial feat, even for most humans). 

Recent successes achieved by this statistical approach to NLP and machine translation will be 
described further in Chapter 13. 

 1.7.6  Bioinformatics
Bioinformatics is the nascent discipline that concerns the application of the algorithms and 

techniques of computer science to molecular biology. It is mainly concerned with the management 
and analysis of biological data. In structural genomics, one attempts to specify a structure for each 
observed protein. Automated discovery and data mining could help in this pursuit.74 Juristica and 
Glasgow demonstrate how case-based reasoning could assist in the discovery of the representative 
structure for each protein. In their 2004 survey article in the AAAI special issue on AI and Bioinfor-
matics, Glasgow, Jurisica, and Rost note: “Possibly the most rapidly growing area of recent activity 
in bioinformatics is the analysis of microarray data.” 74

Microbiologists are overwhelmed with both the variety and quantity of data available to them. 
They are being asked to comprehend molecular sequence, structure, and data based solely on huge 
databases. Many researchers believe that AI techniques from knowledge representation and ma-
chine learning will prove beneficial as well. 

 1.8  AI IN THE NEW MILLENNIUM
AI is a unique academic discipline because it allows us to explore the possibilities of what fu-

ture life might be like. In the short history of AI, its methodologies have already been absorbed into 

huMAn interest note

A parse tree provides the relationship between 
the words that compose a sentence. For 
example, many sentences can be broken down 
into both a subject and a predicate. Subjects 

can be broken down perhaps into a noun 
phrase followed by a prepositional phrase 
and so on. Essentially, a parse tree gives the 
semantics that is the meaning of the sentence.
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standard technologies for computer science. Examples of this include search techniques and expert 
systems that, spawned from AI research, are now embedded in many control systems, financial 
systems, and Web-based applications: 

• ALVINN, a neural network-based system to control a vehicle; it used to drive around 
the Carnegie Mellon campus. 

• Many AI systems are currently in use to control financial decisions—such as the pur-
chase and sale of stocks. These systems use various AI technologies, such as neural 
networks, genetic algorithms, and expert systems. 

• Web-based agents search the World Wide Web in pursuit of news articles that will 
interest their users. 

This trend will no doubt continue as technological advances dramatically affect our lives. Ul-
timately, in the next millennium, the question of what it means to be a human being could well 
become a point of discussion. 

Today it is not uncommon for people to live into their 80s and 90s. Life will continue to be ex-
tended. Medicine, coupled with advances in drugs, nutrition, and knowledge about human health, 
will continue to make remarkable advances that will combat the major causes of illness and death. 
In addition, advanced prosthetic devices will help handicapped individuals to lead lives with fewer 
physical restrictions. Eventually, intelligent systems that are small, unobtrusive, and embedded will 
be able to preserve and enhance peoples’ mental capabilities. At some point, we will be confronted 
with the question, “Where does the person end and the machine begin, and vice versa?” 

Initially, such systems will be very expensive, and therefore not available to the general popu-
lation. In the early years there will arise major political issues to address and decisions concerning 
who should be privy to these advanced technologies. In time, standards of normalization will arise. 
But what will be the societal consequences of people living more than a hundred years? Who would 
not subject themselves to embedded hybrid materials (such as silicon circuitry) that could extend 
their lives to more than 100 years? How would life on this planet be different if it were to become 
overpopulated by seniors? Who will address where everyone lives, 
what will be the definition of life, and perhaps more importantly, when 
it ends? These will indeed be difficult moral and ethical issues. 

Which AI methodology will be the champion of the future—the 
technique that will pave the way for the most progress in our lives? 
Will it be advances in logic, search, or knowledge representation? Or 
will we learn from the way that simple-looking systems organize to 
become complex systems with remarkable possibilities (e.g., from cellular automata, genetic algo-
rithms, and agents)? What will expert systems do for us? Will fuzzy logic become the heretofore 
unheralded showcase for AI? What will be the progress in natural language processing, in vision, 
in robotics? And what of the possibilities provided by neural networks and machine learning? The 
answers to these questions will be difficult to obtain, but certainly as AI continues to emerge and 
affect our lives, a plethora of techniques will be employed to facilitate our lives. 

With any technological advances come wonderful possibilities, but also new dangers. Dangers 
can be related to unexpected interactions of components and environments that can lead to acci-
dents, and even catastrophes. Equally dangerous are the possibilities that technological advances 
combined with AI could fall into the hands of the wrong people. Consider, for example, the havoc 
and mayhem that would be caused if combat-enabled robots were snared by terrorists. It is prob-
able that progress will not be stymied. People will probably accept the risks associated with the 

The science fiction classic film, 
Soylent Green, delivers an 
interesting perspective on the future 
of AI.
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astounding possibilities accorded by these technologies, as well as 
their possible detrimental consequences; this will be done either 
explicitly or tacitly. 

The notion of robots had been around even before AI. Cur-
rently, robots play an instrumental role in machine assembly. See 
Figure 1.25. Additionally, it is clear that robots are able to help 
mankind with mundane physical tasks such as vacuuming and 
shopping, and have the potential to help in more challenging arenas 
such as search and rescue, and telemedicine. In time, robots will 
also display emotion, feelings, and love (consider Paro and Cog),67 
behavior that we have always believed to be unique to mankind. 

Robots will be able to help people in every aspect of their lives, many of which are unforeseen at 
present. It is not far-fetched, however, to consider that robots perhaps blur the distinction between 
our “online lives” and our “real-world” lives. When will we define a person to be an android and 
what happens if (when?) robot intelligence becomes superior to that of humans? In attempting to 
predict the future of AI, it is hoped that consideration of these questions will better prepare us for 
the vagaries that could present themselves. 

 1.9 CHAPTER SUMMARY
Chapter 1 sets the tone for thinking about AI. It addresses fundamental questions such as: What 

defines AI? What is thinking and what is intelligence? The reader is poised with considerations of 
what distinguishes human intelligence and how intelligence in animals would be measured. 

Definitions of the Turing Test are provided, as well as controversies and criticisms surrounding 
it, such as Searle’s Chinese Room. 

The distinction between strong and weak AI methods is made and invites discussion of typical 
AI problems as well as solutions to them. The importance of heuristic methods in strong AI ap-
proaches and solutions is emphasized. 

It is advisable to consider what kinds of problems are suitable for AI solutions and which kinds of 
problems are not. For example, medical challenges and similar domains where there exists much ac-
crued human expertise (i.e., the game of chess) are particularly suitable for AI. Other domains, where 
simple and pure computation can be used to attain a solution or answer, are not considered suitable. 

This chapter has introduced an exploration of AI applications and methods, including search 
algorithms, puzzles, and two person games. We have shown that closely related, often, as part of the 
underpinnings of many AI solutions, is the subject of automated reasoning. Considerable history 
and practical applications in the areas of production systems and expert systems have been pre-
sented with a distinctly historical perspective on the players and machines of early AI; and the more 
recent history with respect to games, expert systems, neural computing, evolutionary computation 
and natural language processing has also been reviewed. It has been shown that cellular automata 
and neural computation are sophisticated areas, which are less knowledge-based, but produce good 
results. We have discussed evolutionary computation as a newer area of AI that has great promise, 
and knowledge representation, which addresses the diverse representational choices open to AI 
researchers for solution design. It has also been made evident that uncertainty reasoning employing 
statistical, probabilistic decision-making has become a popular and rewarding approach to many AI 
challenges. This chapter has answered the significant questions: “Who did the work that brought us 
to where we are?” and “How was this accomplished?”

Figure 1.25
Robot car assembly in the new millennium.
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Questions for Discussion

 1.  How would you define Artificial Intelligence?

 2.  Distinguish between strong and weak AI.

 3. ALICE is the software that has won the Loebner Prize several times in the recent past. Go 
online to find a version of this software. What can you tell us about ALICE?

 4. What was Alan Turing’s significant contribution to Artificial Intelligence?

 5. What did John McCarthy contribute to Artificial Intelligence?

 6. Why would an ATM and its programming not be a good example of AI programming?

 7. Why is medical diagnosis a very typical and suitable domain for AI research?

 8. Why have two-person games been a very suitable domain of study for AI?

 9. Explain the role of computer chess with regard to AI. 

 10. What is an expert system? 

 11. Name three forms of knowledge representation.

Exercises

 1. A variation of the Turing test is the so-called Inverted Turing test; in this test, a computer 
must determine whether it is dealing with a person or another computer. Can you envision 
any practical applications for this version of the Turing test? (Hint: In recent years, have you 
tried purchasing tickets for a popular sports or entertainment event online?)

 2. A second variation of the Turing test is the Personal Turing test. Imagine you are trying to 
determine if you are communicating with your friend or with a computer pretending to be 
your friend. If a computer passes this test, what legal or ethical questions do you envision 
will arise? 

 3. Many people consider the use of language as a necessary attribute of intelligence. Koko is 
a gorilla trained by Dr. Francine Patterson of Stanford University in the use of American 
Sign Language. Koko was able to form word combinations for words unknown to her; for 
example, she represented the word ring by the words bracelet and finger, which she already 
knew. Does this gorilla’s possession of knowledge modify your thinking on the subject of 
animal intelligence? If so, then in what ways? Could you envision an intelligence test for 
Koko? 

 4. Consider the following tests for a city to be considered a great city: 

  • It should be possible to obtain a steak dinner at 3:00 a.m. 
  •  A classical music concert should be scheduled somewhere within the city bounds each 

evening. 
  • A major sporting event should be scheduled each evening. 

  Further, suppose a small town somewhere in America determines that they want to pass this 
test. To do so, they open a 24-hour steak joint and purchase a symphony orchestra and major 
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sports franchise. Do you feel that this small town passes our litmus test for being a great city? 
Relate this discussion to the criteria for passing the original Turing test and the possession of 
intelligence (Dennett, 2004).

 5. Suppose you want to design a threshold logic unit to emulate a two-input OR function. Can 
you determine a threshold and the weights to accomplish this task?

 6. Suggest a strategy for the Iterated Prisoner’s Dilemma, wherein the game is repeated n times 
for some unknown value n. How might you measure its success in the long run?

 7. A genetic algorithm is to be employed to solve the instance of the 3-puzzle provided in the 
text. Suggest a string representation for a potential solution. What fitness function would you 
suggest?

 8. Suggest a heuristic that would help to hail a taxi on a visit to New York City (or any other 
major city) during rush hour when taxis are scarce.

 9. What heuristic do lions employ as they pursue their prey?

 10. Suggest possible rules for an expert system designed to help select a suitable dog for your 
household.

 11. Before Copernicus, the earth was considered to be the center of the heavens. After 
Copernicus, the earth was merely one of many planets circling the sun. Before Darwin, 
humans were considered to be a species apart (and above?) the rest of the living organisms 
on this planet. After Darwin, we were just another species of animals that had evolved from 
one-celled organisms. Suppose that in fifty years we have achieved human-level AI, and 
further suppose that successors to the robots Cog, Paro, and Kismet actually experience 
emotions rather than just pretending to do so. At such a point in our history, what claims will 
humans cling to as forming the core of their “specialness”? Are such claims essential or even 
desirable?

 12. Suppose that at some time in the future, NASA plans an unmanned mission to Europa, a 
moon of the planet Jupiter. Suppose that at the time of launch our understanding of this 
moon’s surface is scant. Suggest advantages to sending an “army” of Rodney Brooks-insect-
type robots rather than one or two more substantial machines. 

 13. Should Eliza be considered a relational artifact? Defend your answer.

 14. Listen to the song “Are We Human or Are We Dancer?” by Killers. What do you believe  
the lyrics of this song mean, and how do they relate to our course of study? You might wish 
to consult the lively online discussion (the song can be accessed on YouTube). 

15. How would you define AI problems to be different from other types of problems? Name five 
problem solving techniques typically used in AI? 

16. Develop a new Turing Test for AI that would be applicable today. 

17. Research the Lovelace 2 Robot (http://www.bbc.com/news/technology-30144069) . Do you 
feel that the criteria for this new Turing Test for Robots is acceptable? How would you 
compare it to your answer in Question 2? 
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Many AI researchers would argue that search and the methods by which it is performed are 
fundamental to AI. Chapter 2 concentrates on uninformed search and how it is performed. 

Chapter 3 introduces the notion of heuristics and diverse search techniques that have been 
developed to exploit them. The concept of optimality in search including the branch and bound 
techniques and the relatively neglected bidirectional search are presented. Search in games is 
the focus of Chapter 4. The well-defined rules and objectives of games, particularly two-person 
games, allow for development of methods such as minimax, alpha-beta, and expectimax to 
effectively guide computer play.

Some researchers view logic as the basis for AI. Logic for representation, propositional logic, 
predicate logic, and several other logics, are presented in Chapter 5. Others would argue that the 
choice of representation is integral to human and machine problem solving. Notions of graphs, 
frames, concept maps, semantic networks, and the agent view of the world are presented in 
Chapter 6. Discussion of “Strong” and “Weak” approaches to AI provides the background for 
production systems as a powerful and well-recognized method for knowledge representation 
and problem-solving in AI (Chapter 7). Cellular automata and Markov Chains are also 
introduced. 
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In this chapter, we begin our study with one of the most important problems frequently 
encountered in Artificial Intelligence—search. Our goal in this text is to present the most 
prevalent methods used to solve problems in AI: search, knowledge representation, and 
learning. We begin our study of rudimentary search algorithms—so-called “uninformed” 
or “blind search” methods. These algorithms do not rely on any special knowledge about a 
problem domain. As we shall see, these algorithms often require inordinate amounts of space 
and time. 
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 2.0 INTRODUCTION: SEARCH IN INTELLIGENT SYSTEMS
Search is a natural part of most peoples’ lives. Who among us has not misplaced house keys 

or the TV’s remote control, and then retraced our footsteps around our home, overturning cushions 
and checking pockets? At times a search might be more cerebral. You have probably had occasions 
when you simply cannot recall the name of a place you have visited, the name of an actor in a 
movie you had really enjoyed, or the words to a song you once knew so well. It could be seconds 
(or longer, as one grows older) before the memory ceases to elude you. 

Many algorithms are devoted to searching and sorting through a list. Certainly, one would agree 
that searching is facilitated if the data is organized in logical order. Imagine how cumbersome it 
would be to search through a phone book of a relatively large city if the names and phone numbers 
were arranged randomly. It should therefore come as no surprise that search and organization play 
important roles in the design of intelligent systems. Perhaps it is the search for the name of a locale 
once visited, or the next number in a sequence (Chapter 1, “Overview of Artificial Intelligence”), 
the next best move in a game of tic-tac-toe or checkers (Chapters 4, “Search Using Games,” and 16, 
“Advanced Computer Games”) or perhaps the shortest route through some number of cities (later 
in this chapter). People who can solve such problems very quickly are often deemed to be more 
intelligent than others. The same term is often applied to software systems, where, for example, a 
better chess-playing program could also be considered to be more intelligent than its counterparts.

This chapter provides an introduction to several basic search algorithms. Section 2.1 begins 
with an explanation of state-space graphs, a mathematical structure that helps to formalize the 
search process. This structure is shown for the well-known False Coin Problem in which a coun-
terfeit coin must be identified by weighing two or more coins. Next, the chapter introduces and ex-
plains the generate-and-test search paradigm. A generator module systematically proposes possible 
solutions for a problem, and the tester module verifies their correctness. 

 Two classic approaches to search are also introduced:  the greedy algorithm and backtracking. 
Each of these approaches begins by dividing a problem into stages. For example, if you want to 
place eight Queens on a chessboard so that no two Queens are attacking each other —that is, so that 
no two Queens occupy the same row, column, or diagonal—then Stage 1 might consist of placing 
the first Queen on the board, Stage 2 in placing the second Queen on a safe square, and so on. As 
you will see in Section 2.2, these methods differ from one another with regard to the criteria used 
for making a particular choice.

Blind search algorithms are explained in Section 2.3. A blind, or uninformed, search algo-
rithm is one that makes no use of problem domain knowledge. Suppose, for example, that you 
are finding your way through a maze. In a blind search you might always choose the far left route 
regardless of any other alternatives. Two quintessential blind search algorithms are breadth first 
search (bfs) and depth first search (dfs), which were introduced briefly in Chapter 1. Recall that 
bfs explores all alternatives at a prescribed distance from the start position before proceeding any 
further. A bfs has the advantage that if a solution exists for a problem, then bfs will find it. However, 
if the number of alternatives at each juncture is large, then bfs could require too much memory, 
and it becomes infeasible. Dfs, on the other hand, pursues a different strategy to reach the goal: it 
pursues a single path to its conclusion before pursuing alternate paths. Dfs has reasonable memory 
requirements; however, it could stray arbitrarily far from the start position and might thereby miss 
a solution that lies closer to the beginning of the search. Dfs with iterative deepening is a compro-
mise between bfs and dfs; it combines the moderate space requirements of dfs with the certainty of 
finding a solution, which bfs provides.



 Chapter  2   ·  Uninformed Search   ■  47

 2.1 STATE-SPACE GRAPHS
State-space graphs display a representation of a problem whereby possible alternative 

paths leading to a solution can be explored and analyzed. A solution to a particular problem will 
correspond to a path through a state-space graph. Sometimes we search for any solution to a 
problem; at other times we desire a shortest (or optimal) solution. This chapter will focus primar-
ily on so-called blind search methods that seek to discover any solution. Chapter 3, “Informed 
Search,” will concentrate on informed search algorithms, which often discover optimal solutions 
to a problem. 

 2.1.1 The False Coin Problem
A well-known problem in computer science is the False Coin Problem. There are 12 coins, 

one of which is known to be false, or counterfeit. It is not known, however, whether the false coin 
is lighter or heavier than the others. An ordinary balance scale can be used to determine if any two 
sets of coins weigh the same or if one set is heavier or lighter than the other. To solve the problem, 
you should be able to create a procedure to identify the false coin by weighing only three combina-
tions of coins.

In this chapter, we will solve a simpler instance of this problem involving only six coins; it also 
requires comparing three sets of coins as in the original problem above, but in this case the sets are 
smaller. We call this the Mini False Coin Problem. We use the notation Ci1 Ci2...Cir: Cj1 Cj2…Cjr to 
indicate that the r coins Ci1 Ci2...Cir are being weighed against the r coins Cj1 Cj2…Cjr. The result 
will be that the two sets of coins weigh the same or that they do not. We will not require further 
knowledge about whether the coins on the left weigh more or less than the coins on the right. (That 
additional knowledge is required to solve the 12-coin version of this problem.) Finally, we employ 
the notation [Ck1 Ck2…Ckm] to indicate that a subset of m coins is the smallest set known to contain 
the false coin. One solution to this Mini False Coin Problem is provided in Figure 2.1.

Figure 2.1 is an example of a state-space tree. A state-space tree consists of nodes and 
branches. An oval is a node and represents a state of the problem. Arcs between nodes represent 
operators (or results of operators) that take the state-space tree to new nodes. Consult the node 
in Figure 2.1 labeled with (*). This node [C1 
C2 C3 C4] indicates that the false coin might be 
any one of C1, C2, C3, or C4. We have decided 
to weigh C1 and C2 versus C5 and C6 (opera-
tor applied). If the result is that these sets of 
two coins each are equal in weight, then we 
know that the false coin must be one of C3 or 
C4; if they are unequal then we are sure that 
one of C1 or C2 is the false coin. Why? There 
are two special types of nodes. The first is a 
start node that represents the start state of a 
problem. In Figure 2.1, the start node is [C1 
C2 C3 C4 C5 C6], which indicates that when 
we begin, the false coin could be any one of 
the six coins. Another special type of node 
corresponds to a final or terminal state of the 
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[ C1 C2 C3 C4 C5 C6 ]
C1 C2 : C3 C4 

[ C1 C2 C3 C4 ]
C1 C2 : C5 C6 

[ C1 C2 ]
C1 : C4

[ C1][ C2][ C3][ C4]

[ C5][ C6]

[ C5 C6 ]
C1 : C5

[ C3 C4 ]
C1 : C3

≠

≠

≠

Figure 2.1
A solution for the Mini False Coin Problem.
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problem. The state-space tree in Figure 2.1 has six terminal nodes; each labeled [Ci], where i = 
1,…,6 and where the value of i specifies which coin is false. 

The state-space tree for a problem contains all states that a problem could be in, as well as all 
possible transitions between these states. In fact, because loops often occur, such a structure is more 
generally called a state-space graph. The solution for a problem often entails a search through this 
structure (whether it is a tree or graph) that begins at a start state and culminates at a final or goal 
state. Sometimes we are concerned with finding a solution (whatever its cost); at other times we 
might desire a solution of minimum cost. 

By the cost of a solution, we are referring to the number of operators required to reach 
a goal state and not to the amount of work required to actually find this solution. An 
analogy to computer science might be that we are equating a solution’s cost with 
running time rather than software development time.

Heretofore we have used the terms node 
and state interchangeably. However, these are 
distinct concepts. In general, a state-space 
graph can contain many nodes that represent 
the same problem state, as shown in Figure 2.2. 
Revisiting the Mini False Coin Problem, we 
observe that by weighing two different sets of 
coins, we can arrive at distinct nodes that repre-
sent the same state.

Abstraction was defined in Chapter 1 
as the process whereby certain details of a system 
can be advantageously ignored in order to allow 
interaction at an appropriate level. For example, if 
you want to play baseball, it would serve you better 
to practice learning how to hit a curveball than to 
spend six years earning a PhD in the mechanics of 
moving objects. 

 2.2 GENERATE-AND-TEST PARADIGM
A straightforward way to solve a problem is to propose possible solutions and then to check 

whether each proposal constitutes a solution. This is referred to as the generate-and-test paradigm;  
the approach is illustrated with the n-Queens Problem, shown in Figure 2.3.

The n-Queens Problem involves placing n Queens 
on an n × n chessboard so that no two Queens are at-
tacking. That is, no two Queens should occupy the same 
row, column, or diagonal on the board. These condi-
tions are referred to as the constraints of the problem. 
The proposed solutions in Figure 2.4(a) – (c) violate 
various constraints of the problem. A solution to the 
4-Queens problem appears in Figure 2.4(d). 

[ C1 C2 C3 C4 C5 C6 ]
C1 C2 : C3 C4 

[ C1 C2 C3 C4 C5 C6 ]
C5 : C6

[ C1 C2 C3 C4 ] [ C1 C2 C3 C4 ]

Mini false coin problem

≠ ≠= =

Figure 2.2
Distinct nodes in a state-space graph can represent the same state.

A solution to the Mini False Coin Problem is shown in 
Figure 2.1. It might be true that the person solving this 
problem is wearing a blue shirt, or that someone else 
needed a tall cup of coffee before tackling the 12-coin 
version of the problem. Such details, however, are, and 
should remain, extraneous to a solution. Abstraction 
allows you to exorcise such minutiae.
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Figure 2.3 
The n-Queens problem. No two Queens should occupy (a) the same row, (b) the same 
column, or (c) the same diagonal.
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In this problem four queens need to be 
placed on a 4 × 4 chessboard. There are a total 
of 16C4, or 1820, ways to accomplish this. As 
Figure 2.4 illustrates, many of these proposed 
solutions violate one or more of the problem 
constraints. However, if a solution is not to be 
missed, then a reliable generator must propose 
every subset of size four that satisfies the prob-
lem constraints. More generally, a reliable gen-
erator is complete if it proposes every possible solution. Furthermore, if a proposed solution is 
rejected, it should not be proposed again (in fact, even successful proposals should be made only 
once). In other words, a good generator should be nonredundant. Finally, recall that there are 1820 
ways to place four Queens on a 4 × 4 chessboard. The generator would be more efficient if it did not 
propose solutions that would obviously fail. Figure 2.4(a) shows an example in which all problem 
constraints are violated. We say that a generator is informed if it possesses some information that 
allows it to limit its proposals.

A procedure for the generate-and-test paradigm would look like the following:  
{While no solution is found and more candidates remain
 [Generate a possible solution
 Test if all problem constraints are satisfied]
End While}
If a solution has been found, announce success and output it.
Else announce no solution found. 

exAMple 2.1: generAte And test for priMe nuMbers
Suppose you must determine whether a given number between 3 and 100, 
inclusive, is a prime. Recall that an integer N ≥ 2 is prime if its only factors 
are 1 and itself. So 17 and 23 are prime whereas 33 is not, because it is the 
product of 3 and 11. Assume that you must solve this problem without benefit 
of a computer or pocket calculator. Your first attempt at a solution, using the 
generate-and-test approach, might look like the following pseudocode: 

{While the problem is not yet solved and more 
      possible factors for Number 
remain:  
      [Generate a possible factor for Number
      /*possible factors will be generated in the 
      order 2, 3, 4, 5, .. 
Number*/
 Test: If (Number) / (possible factor) is an integer >= 2
 Then return not prime]
End While}

If possible factor equals Number,
Then return Number is prime

If Number is equal to 85, then the Test fails for possible factors of 2, 3, and 4. 
However, 85/5 yields 17, so we can declare that 85 is not prime. If number is 
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Figure 2.4 
Several proposed solutions for the 4-Queens problem: (a) every constraint is violated; (b) two 
Queens appear on the same diagonal and three in the same column; (c) Queens appear in the 
same row; (d) a solution has been found.
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equal to 37, then we exit the While Loop with possible factors equal to 37 as 
well and return that 37 is prime.

A more informed generator checks only possible factors up to floor (square 
root (Number)). Recall that floor of a number is the largest integer ≤ that 
number; for example floor (3.14) = 3, floor (2) = 2, and floor (−5.17 ) = −6. For 
Number equal to 37 in the previous example, the informed generator returns 
that 37 is prime after only checking 2, 3, 4, 5, and 6 as possible factors. More 
informed generators lead to vast savings in time and complexity.

 2.2.1 Backtracking
Our first approach to solving the 4-Queens problem employed a generator that, in the worst 

case, checks each of the 1820 ways of placing four Queens on a 4 
× 4 chessboard. 

Note that the placement depicted in part (a) of Figure 2.5 is 
not a solution to the 4-Queens problem. In fact, this proposed 
solution violates every constraint of that problem. It is safe to as-
sume that the solution in Figure 2.5(a) was generated one Queen 
at a time. 

Suppose that the first two Queens proposed are as shown in 
Figure 2.5(b). This is called a partial solution.

Exhaustive enumeration is a search methodology that looks everywhere for a 
solution to a problem. A partial solution is developed further even after it has been 
discovered that this set of steps cannot possibly lead to a successful problem solution. 

Exhaustive enumeration, having started with the partial solution depicted in Figure 2.5(b), 
would continue to place two additional Queens on the chessboard, even though any way of placing 
these Queens is doomed to failure. It is required that the tester check that no problem constraints 
are violated after each portion of a proposed solution is provided.

Backtracking is an improvement to exhaustive enumeration. A proposed solution to a problem 
is divided into stages. In our 4-Queens problem, we naturally equate each stage with the place-
ment of one Queen on the chessboard. Consider the possible squares on which a Queen is placed 
in some prescribed order. In Stage i, Queens have been successfully placed in Stages 1,…, i-1. If 
no square remains on which the ith Queen may be placed without violating any of the constraints, 
then we must return to Stage i-1. That is, we must backtrack to the stage concerned with placement 
of the (i-1)st Queen. We undo the placement of this Queen at Stage i-1, make the next choice for 
the Queen, and return to Stage i. If it is not possible to successfully place the (i-1)st Queen, then 
backtracking continues to Stage i-2.

We can use backtracking with the generate-and-test paradigm. The test module is permitted to 
view a possible solution as it is being developed. We will use a generator that attempts to place one 
Queen in each column of the chessboard as opposed to the less informed generator that considered 
all 16C4, or 1820, placements. Our algorithm contains four stages, as shown in Figure 2.6.

In Stage 1, we attempt to place the first Queen in column one. Figure 2.6 illustrates the begin-
ning of a backtracking solution to the 4-Queens problem. Board positions may be represented by a 
vector with four row components: (1,3,-,-) represents the partial solution shown in Figure 2.6(c).
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Figure 2.5
(a) Four Queens on a 4 x 4 Chessboard. (b) Two Queens on a 4 x 4 
chessboard. Is it prudent to continue with this proposed solution?
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The Queen in column 1 is in row 1, the Queen in column 2 is in row 3, and the two dashes in 
positions 3 and 4 of the vector indicate that the third and fourth Queens have not yet been placed 
in the two remaining rows. This vector (1,3,-,-) is shown in (column 3) Figure 2.6(d) to represent a 
partial solution that cannot possibly lead to a total solution; this insight is reached in Stage 3 as the 
algorithm attempts to place a Queen in the third column. Backtracking to Stage 2 and then eventu-
ally to Stage 1 will be required before it is possible to successfully place the third and fourth Queens 
on this chessboard. These steps are shown in Figure 2.7.

The algorithm will eventually backtrack all the way to Stage 1; Queen 1 is now placed in row 
2 as shown in Figure 2.7(e). The algorithm is poised to move forward once again. Subsequent pro-
posed steps on the way to finding a solution are shown in Figure 2.8.

This solution can be represented in a vector as (2,4,1,3). Are other solutions possible?  If so, 
how would we find them?

It turns out that the 4-Queens problem has one additional solution. To find it, print out the solu-
tion shown in Figure 2.8, and then invoke your backtracking routine. Figure 2.9 shows the steps in 
discovering the second solution, which is (3,1,4,2).
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Figure 2.8 
Backtracking-based solution to the 4-Queens problem,concluded. In 
Stage 2, Queen 2 is finally positioned in row 4. In Stage 3, the Queen 
rests in row 1, and in Stage 4 Queen 4 is placed in row 3.
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Figure 2.9
The 4-Queens Problem—finding a second solution. (a) The first solution. (b) Previous placement 
(2,4,1,3) declared void and backtracking begins. (c) Nowhere for Queen 3 to reside. (d) Bactrack to 
Stage 2.; Queen has nowhere to rest. Backtrack to Stage 1. (e) Second solution is found.
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Figure 2.7
Backtracking-based solution to the 4-Queens problem, continued.(a) Backtracking to Stage 2 has 
occurred; Queen 2 is placed on row 4. Return to Stage 3. Queen 3 may not be placed on row 1. 
(Why not?) It is then placed on row 2. This figure is represented by vector (1,4,2,-). (b) Stage 4: The 
algorithm is unable to place Queen 4; a return to Stage 3 is required. (c) Stage 3: Queen 3 cannot be 
successfully placed in column 3. Backtracking to Stage 2 is required. (d) In Stage 2 there is no place 
to put Queen 2; we must backtrack once again. (e) Stage 1: Queen 1 is placed in row 2, column 1.
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Figure 2.6
Backtracking-based solution to the 4-Queens problem. (a) Stage 1: 
Queen 1 is placed in row 1, column 1. (b) Stage 2: Queen 2 is placed in 
row 1, column 2. (c) The test module returns “invalid” to the placement 
in (b). Queen 2 is next placed in row 2 and then in row 3 of column 2. (d) 
Stage 3: We attempt to place a Queen in column 3; this is not possible; it 
is necessary to backtrack to Stage 2.
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The 4-Queens problem has two solutions: (2,4,1,3) and (3,1,4,2). These solutions have a sym-
metric relationship. In fact you can obtain one solution from the other by vertically flipping the 
chessboard. (The issue of symmetry and the role that it plays will be pursued further in the Chapter 
4 exercises.)

The information for the 
search conducted by backtracking to 
find the first solution to the 4-Queens 
problem, as illustrated in Figures 2.6 
through 2.8, can also be represented 
by the search tree in Figure 2.10.

The node in the left sub-
tree at level 4, marked with *, cor-
responds to proposed solution 
(1,4,2,4). The tester will obviously 
reject this proposal. Backtracking in 
this tree is reflected by a return to a 
level closer to the root, and (1,4,2,4) 
will cause the search to return to the 

root. The search will continue in the right subtree, which corresponds to partial solutions that begin 
with Queen 1 in row 2. A solution is finally discovered at the leaf node marked **.

exAMple 2.2: bAcktrAcking to solve the 4-Queens probleM

Recall that a good generator should be informed. Suppose we employ a gen-
erator based on the insight that any solution for the 4-Queens problem will 
place only one Queen in each column and row; solutions to the problem will 
come only from vectors that correspond to permutations of the integers 1, 2, 3, 

and 4. Figure 2.11  
illustrates a back-
tracking search based 
upon this generator. 

The generator in 
Example 2.2 is more 
informed than the 
one in our previous 
approach. A total of 
4! = 24 possibilities 
are proposed (in the 
worst case) as  
opposed to 44 = 256 
in the earlier genera-
tor. Naturally, both of 
these generators  
compare favorably 
with exhaustive 
enumeration, which 
proposed up to 16C4, 

Q1=1 Q1=2

Q2=1

We backtrack,
why?

Again!

Q2=2 Q2=3 Q2=4

Q3=1

No! X X X X

X X

X X X

X X X X GOAL

Q3=2 Q3=3 Q3=4

Q4=1

Q2=1 Q2=2 Q2=3 Q2=4

Q3=1

Q4=1 Q4=2 Q4=3 **Q4=2 Q4=3 Q4=4

Q3=1 Q3=2

*

Figure 2.10
Search tree representing the previous backtracking-based solution to the 4-Queens problem. The four levels in this 
tree correspond to the four stages in the problem. The left branch from the root corresponds to all partial solutions 
that begin with the first Queen in row 1.
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• • Q
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Figure 2.11
Backtracking solution to the 4-Queens problem that employs a generator that proposes only permutations of 
{1,2,3,4} as solutions. (a) (1,2,-,-) is rejected. (b) (1,3,2,-) and (1,3,4,-) are rejected. (c) (1,4,2,3) is proposed 
but the tester says no. (d) (2,1,-,-) fails. However, (2,4,1,3) will eventually solve this problem.

Q1=1

Q2=2
Q2=3

Q2=4

Q3=2 Q3=4 Q3=2 Q3=3

Q4=3

Q1=2

Q2=1
Q2=3

Q2=4

Q3=1

Q4=3

success!

Figure 2.12 
Solving the 4-Queens problem using a more informed generator. 
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or 1820, solutions. The search tree corresponding to the search in  
Example 2.2 is shown in Figure 2.12.

Observe that a smaller portion of the state space was explored before a  
solution was found.

In the exercises at the end of this chapter, you will be asked if even more informed generators 
can be found for the 4-Queens problem. We will return to this issue in Chapter 3, with a discussion 
of constraint satisfaction search. 

 2.2.2 The Greedy Algorithm 
The previous section described back-

tracking, a search procedure that divides a 
search into stages. At each stage, choices 
are made in a prescribed manner. If the 
problem constraints can be satisfied, then 
the search proceeds to the next stage; if no 
choice yields a feasible partial solution, 
then the search continues to backtrack to 
each previous stage, where the last choice 
is undone and the next possibility is pur-
sued.

The greedy algorithm is another 
classic search method, which also op-
erates by first dividing a problem into 
stages. A greedy algorithm always con-
tains an objective function that must be 
optimized (i.e., either maximized or mini-
mized). Typical objective functions might 
be distance traveled, cost expended, or 
time elapsed.

Figure 2.13 (a) represents a map of 
northeastern China. Suppose that a salesperson is starting from Chengdu and wants to find the 
shortest path to Haerbin that passes only through the cities that are circled: Chengdu (V1), Beijing 
(V2), Haerbin (V3), Hangzhou (V4), and Xi’an (V5). Distances between these five cities are shown 
in kilometers. In Stage 1, a greedy approach to this problem proceeds from Chengdu to Xi’an be-
cause, at a distance of only 606 km, Xi’an is the closest city. Subsequent steps in the algorithm are 
explained in Figure 2.14. 

 1. In Stage 1, the path from V1 to V5 is taken because Xi’an is the closest city to Chengdu.
 2. We may consider paths that go through vertices only if they have been visited previously. 

In Stage 2, the next path generated goes directly from V1 to V2; its cost (distance) is 1518 
km. This direct route is less expensive than the path going through V5, which would cost 
606 + 914 = 1520 km.

(Haerbin)

(Beijing)

1061 km

1822 km

1134 km

914 km

606 km

1539 km

1518 km

(Xi'an) 1150 km

V3

V2

V5

V1

(Chengdu)
V4

(Hangzhou)

Figure 2.13
Five cities in China with supposed airline distances between cities that are directly linked to 
one another.
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 3. The least expensive path from V1 to V3 is constructed from the least expensive path from 
V1 to an intermediate node (Vi) plus the least costly path from Vi to V3. Here I equals 
V2; the least costly path from V1 to V3 passes through V2 and has a cost of 1518 + 1061 
= 2579 km. The direct path from V1 to V4, however, is less costly (1539). We are going 
to V4  (Hangzhou).

 4. Stage 4:  We are searching for the next least expensive path from V1 to anywhere. We 
already have the least expensive path from V1 to V5, at a cost of 606 km. The second 
least expensive path is the direct one from V1 to V2, with a cost of 1518 km. The direct 
path from V1 to V4 (1539 km) is less costly than either the one that first passes through 
V5 (606 + 1150 = 1756 km) or V2 (1518 + 1134 = 2652 km). Hence, the next least costly 
path is the one to V3 (2579). There are several possibilities:

• V1 to V5: cost = 606; then V5 to V2: cost = 914; the cost of going from V1 to V2 through 
V5 is 1520. You then need to get from V2 to V3; this distance is 1061. The path from V1 
to V3 that passes through V5 and V2 has a total cost of 1520 + 1061 = 2581.

• V1 to V2: cost = 1518; then V2 to V3: cost = 1061; total cost = 2579 km.
• V1 to V4: cost = 1539; then V4 to V3: cost = 1822; this total cost is 3361 km.

We are taking the path from V1 to V3, which first passes through V2. Its total cost is 2579 km.

Figures 2.14 (a–d) show the various stages in a greedy approach to finding a shortest path from 
Chengdu to Haerbin (V1 to V3).

V1

V5

V4

V2
V3

606

1518

1539

2579

Figure 2.14a 
Stage 1. 

We may consider paths that go through vertices only if they have been visited previously. In 
Stage 2, the next path generated goes directly from V1 to V2.

V1

V5
V2

V3

V4

606 1518

914 2579

1539

Figure 2.14b 
Stage 2.

The least costly path from V1 to V3 passes through V2 and has a cost of 1518 + 1061. The direct 
path from V1 to V4 is less costly.
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V1

V5

V2 V3

V4

606 1518

914
1061

1539

Figure 2.14c 
Stage 3.

The least expensive path is from V1 to V5. The second least expensive path is the direct one 
from V1 to V2. The next least costly path is the one to V3, via V2.

V1

V5

V2 V3

V4

606 1518

914
1061

1539

1150

1134 1822

Figure 2.14d 
Stage 4.

The specific algorithm employed in the last example is Dijks-
tra’s shortest path algorithm; 1 Dijkstra’s algorithm is an example 
of a greedy algorithm. A greedy algorithm can solve a problem in 
an efficient amount of running time; unfortunately, however, some 
problems in computer science cannot be solved using this para-
digm. The Traveling Salesperson Problem, described next, is one 
such problem. 

 2.2.3 The Traveling Salesperson Problem
In the Traveling Salesperson Problem (TSP), you are given n vertices in a weighted graph 

(i.e., a graph with costs on the edges). You must find the shortest circuit that starts at some vertex 
Vi, passes through each vertex in the graph once and only once, and then returns to Vi. The pre-
vious example concerning five cities from 
China is employed. Suppose that our sales-
person resides in Xi’an, and must therefore 
visit each of Chengdu, Beijing, Hangzhou, 
and Haerbin, in some order, and then return 
home to Xi’an. The least expensive  such 
circuit is sought. A greedy-based solution to 
the TSP always visits the closest city next, 
as shown in Figure 2.15.

The greedy algorithm visits Chengdu, 
Beijing, Haerbin, Hangzhou, and then final-
ly returns to Xi’an. The cost of this circuit 
is 606 + 1518 + 1061 + 1822 + 1050 = 6057 

The mathematical discipline of matroid 
theory is useful in identifying those 
problems for which use of a greedy 
algorithm would not be successful.

1539

1134

1150

914

X

C

606

1518
1822

1061
B

Hgz

Hbn

Figure 2.15
A greedy-based solution to the TSP. Our  salesperson begins in Xi’an and first visits 
Chengdu because its distance is only 606 km. Beijing, Haerbin, and Hangzhou are visited 
in that order with a final return to Xi’an.
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km. If the salesperson visits Beijing, Haerbin, Hangzhou, Chengdu, and then returns to Xi’an, the 
total accrued cost is 914 + 1061 + 1822 + 1539 + 606 = 5942 km. Clearly, the greedy algorithm has 
failed to find an optimal route. 

A variation on breadth first search, in which nodes are explored in terms of nondecreasing cost, 
is branch and bound. Branch and bound is also referred to as uniform cost search. Branch and 
bound algorithms will be explored in Chapter 3 (Informed Search), where we will discover that this 
search strategy is successful at solving instances of the TSP.

 2.3 BLIND SEARCH ALGORITHMS
Blind search algorithms, as mentioned earlier, are uninformed search algorithms that do not 

use problem domain knowledge. With these approaches, nothing is presumed to be known about 
the state space. Three principal algorithms that fall under this heading are: depth first search (dfs), 

huMAn interest notes

edsgAr diJkstrA

Edsgar Dijkstra 
(1930 – 2002), a Dutch 
computer scientist 
whose early training 
was in theoretical 
physics, is best known 
for his writing about 
good programming 
style (e.g., structured 
programming) and 

good educational techniques, as well as the 
algorithm—known by his name—for finding 
the shortest path to a goal, through a graph. 

He received the 1972 Turing Award for 
fundamental contributions to developing 
programming languages and was the 
Schlumberger Centennial Chair of Computer 
Sciences at The University of Texas at Austin 
from 1984 until 2000.

He favored structured languages such 
as Algol-60 (which he helped develop) and 
disliked the teaching of BASIC. He gained 
considerable notoriety with his writing, such 
as his 1968 letter titled “Go To Statement 
Considered Harmful,” written to the editor of 
the Communications of the Association for 
Computing Machinery (ACM). 

Much of his work since the 1970s has 
been on developing formal verification of 
program correctness proofs, which he hoped 
to do with elegant mathematics rather than 
through the complexities of such correctness 
proofs, which often become quite convoluted.  
Dijkstra produced over 1300 “EWDs” (his 
initials), which were his handwritten personal 
notes to himself that later were corresponded 
to others and then published. These have been 
archived at http://userweb.cs.utexas.edu/
users/EWD/advancedSearch.html.

Shortly before his death, Dijkstra 
received the ACM  Principles of Distributed 
Computing (PODC) Influential Paper Award 
in Distributed Computing for his work on self-
stabilization of program computation, which, 
in his honor, was renamed the Dijkstra Prize. 
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breadth first search (bfs), and depth first search with iterative deepening (dfs-id). These algo-
rithms share two properties:

 1. They do not use heuristic measures in which the search would proceed along the most 
promising path.

 2. Their aim is to find some solution to the given problem.

Chapter 3 will describe search algorithms that rely on the judicious application of heuristics to 
reduce search time. Some of these algorithms attempt to find an optimal solution, which means in-
creased search time; however, if you intend to use the optimal solutions many times, then the extra 
effort is likely to be worthwhile.

 2.3.1 Depth First Search

Depth first search (dfs), as the name suggests, at-
tempts to plunge as deeply into a tree as quickly as pos-
sible. Whenever the search can make a choice, it selects 
the far left (or far right) branch (though it usually selects 
the far left branch). As an example of dfs, consider the tree 
in Figure 2.16.

You are reminded that tree traversal algorithms 
will often “visit” a node several times, for example, 
in Figure 2.16 a dfs encounters nodes in the order: 
A,B,D,B,E,B,A,C,F,C,G. It is traditional to announce only 
the first visit as shown in the caption.

The 15-puzzle shown in Figure 2.17 was a popular 
children’s puzzle before the advent of computer and video 
games. Fifteen numbered square tiles are encased within 
a plastic frame. One space is left vacant so that tiles can 
slide in one of four directions. 

As shown in Figure 2.17(a), the 1 tile can slide south, 
the 7 can move north one square, the 2 can travel east, 
and the 15 tile can move one position west. The aim of 
this puzzle is to rearrange the numbered tiles from an arbitrary start state to another goal state. In 
Figure 2.17(b), the goal state consists of the tiles in order; however, any arbitrary arrangement can 
be chosen as the goal. From a given start state, exactly half of 
the possible puzzle arrangements are not reachable. Number the 
frame positions 1 to 16 as they appear in the goal state shown 
in Figure 2.17(b). The blank square occupies position 16. Loca-
tion (i) represents the location number in the start state of the 
tile numbered i. Less (i) is the number of tiles j with j < i and 
Location (j) > Location (i).

In the start state in Figure 2.17(a), Less (4) equals 1 because 
numbered tile 2 is the only tile that appears in a higher location.

Refer to Horowitz et al. 2 for more information on the 
15-puzzle, and Rotman 3 for insights on the group theory  
behind this theorem.

E F GD

B

A

C

Figure 2.16
Depth-first search traversal of a tree. The nodes will be visited in the order 
A, B, D, E, C, F, G.

13 11 14 6

10 7 5 9

2 15 12

3

13

9

5

1

14

10

6

2
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12
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41 4 8

(a) (b) (c)

Figure 2.17
The Fifteen-Puzzle: (a) start state, (b) goal state, and (c) useful in calculating 
reachable states.

theoreM 2.1
The goal state of Figure 
2.17(b) is reachable from the 
start state only if the Sum 
of j = 1 to j = 16 of Less (i) 
+ x is even. The value of x 
is 1 if in the start state, the 
blank is in one of the shaded 
regions in Figure 2.17(c), 
otherwise, its value is 0.
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Recall that state spaces can be incredibly large; in fact the 15-puzzle has 16! 
= 2.9 × 1013 different arrangements. As a consequence of the theorem involving 
Figure 2.17, any search for a goal state from some specified start position will 
perhaps have to navigate through a space consisting of half this number of states. 
Other popular versions of this numbered-tile puzzle are the 8-puzzle and 3-puzzle. 
See Figure 2.18. 

For clarity in presentation, several search algorithms are illustrated using the 
3-puzzle.

exAMple 2.3: solving A 3-puzzle using dfs
To find a dfs solution for the 3-puzzle, start by defining the start state and 
goal state, as shown in Figure 2.19.

In Figure 2.19(a) the 1 tile is free to move south one square and the 2 tile 
can move east. Instead, assume that the blank moves. In Figure 2.19(a), the 
blank can move north or west. Four operators can change the state of the 
puzzle—the blank can move north, south, east, or west. Because possible 

moves must be tried in this order, we will represent moves by an arrow point-
ing in the appropriate direction: N, S, E, and W. This order is ar-
bitrary, though some order must be specified. A dfs is employed 
to solve this instance of the 3-puzzle. The results of this search 
are shown in Figure 2.20.

Each step in the search applies the first operator from the set 
{N, S, E, W}. No effort is expended trying to determine which 
move arrives at a solution fastest—in this sense, the search is 
blind. However, the search avoids repeated states. Starting at the 
root and applying N and then S, you arrive at the state marked 
with a * in Figure 2.20. As we shall see in Section 2.4, avoiding 
repeated states is an essential feature of many efficient search 
algorithms.

 2.3.2  Breadth First Search
A second blind search approach is provided by breadth first search (bfs). 

In bfs, nodes are visited level by level from the top of the tree to the bot-
tom, in left to right fashion (or right to left, though left to right is more 
traditional). All nodes at level i are visited before any nodes at level i+1 are 
encountered. Figure 2.21 shows a bfs.

4 6 7

2 3

58 1

(a)

3

2 1

(b)

Figure 2.18
The (a) 8-puzzle and the (b) 3-puzzle.
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(a)

3

1 2

(b)

Figure 2.19
An instance of the 3-puzzle:  
(a) start state; (b) goal state.
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Figure 2.20
Depth first search to solve an instance of the 
3-puzzle. Operators are tried in this order: 
↑↓→← Repeated states are abandoned and 
are marked with an X.
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Figure 2.21
Breadth-first traversal of a tree. The nodes will be visited in the order: A, B, C, D, E, F, G.
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exAMple 2.4:  solving A 3-puzzle using bfs

To find a bfs solution for the 3-puzzle we will once again solve the instance of 
the puzzle shown in Figure 2.19. This time bfs will be employed. See Figure 
2.22. Note that a solution is found at depth 4 (where, as is usual, the root is 
considered to be at depth 0), which means that four moves of the blank are 
required to reach the goal. 

The implementations of dfs and bfs and the relative merits of these two searches are discussed 
in the next section. First, consider one additional problem that is well known in AI lore—the Mis-
sionaries and Cannibals Problem—which is an example of a search problem with constraints.
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Figure 2.22  
Breadth-first search to solve an instance of the 3-puzzle. Operators are  
tried in order: ↑↓→← Repeated states are abandoned and are marked with an X.

exAMple 2.5: MissionAries And cAnnibAls probleM 
Three missionaries and three cannibals stand on the west bank of a river. Nearby 
is a row boat that can accommodate either one or two persons. How can every-
one cross to the east bank in such a manner that cannibals never outnumber mis-

//west bank; east bank; boat on west 3m3c; 0m0c; 0

3m1c; 0m2c; 1 3m2c; 0m1c; 1

3m3c; 0m0c; 03m2c; 0m1c; 03m3c; 0m1c; 03m3c; 0m0c; 0
× loop × loop × loop× occours

elsewhere

3m2c; 0m1c; 0

2m2c; 1m1c; 1

mc

mc c2c

2c c cm

Figure 2.23
Breadth first search for the Missionaries and Cannibals Problem, extended two levels. Note that no move was 
pursued that would lead to an unsafe state on either bank. Note also that  repeated states are to be pruned. Moves 
are tried in the order m, mc, 2c, c.
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sionaries on either side of the river?  If the 
cannibals ever outnumber the missionaries 
on either shore or on the boat, then those 
missionaries will be eaten.

Before beginning a search, we must decide 
on a representation for the problem. We can 
use 3m3c; 0m0c; 0 to represent the start 
state. This denotes that three missionaries 
(3m) and three cannibals (3c) are on the 
West bank, no missionaries (0m) nor can-
nibals (0c) are on the East bank. The final 0 
indicates that the boat is on the West bank, 
whereas 1 in this position specifies that 
the boat is on the East bank. (A computer 
program written to solve this problem might 
represent the start state as 33000; the repre-
sentation as given in this text [3m3c; 0m0c; 
0 ] adds clarity for readers.) The goal state is 
accordingly represented by the string 0m0c; 
3m3c; 1. Moves will be tried in the order m, 
mc, 2c, and c, which represent that a single 
missionary, a missionary and cannibal, two 
cannibals, and a lone cannibal are to cross 
the river (note 2m was not considered for use 
here). The direction of travel is made obvi-
ous by the boat’s position. To ensure that our 
notation is clear, we provide a bfs solution in 
Figure 2.23, which has been extended to two 
levels.

A dfs solution for the Missionaries and 
Cannibals Problem is provided in Figure 
2.24.

 2.4 IMPLEMENTING AND COMPARING BLIND SEARCH 
ALGORITHMS

We have discussed in general terms two blind approaches to searching through state-space 
graphs: depth first search and breadth first search. Dfs plunges deeply into a state-space graph as 
quickly as possible, whereas bfs explores all nodes at a prescribed distance from the root before 
progressing one level deeper. In this section we provide pseudocode for implementing these search 
methodologies and also discuss their relative prowess at finding problem solutions, as well as their 
time-and-space requirements. 

3m3c; 0m0c; 0

2m2c; 1m1c; 1

3m2c; 0m1c; 0

2m2c; 1m1c; 1 3m0c; 0m3c; 1

3m2c; 0m1c; 0

1m1c; 2m2c; 1

2m2c; 1m1c; 03m1c; 0m2c; 0

0m2c; 3m1c; 1

2m2c; 1m1m; 0 0m3c; 3m0c; 0

0m1c; 3m2c; 1

0m2c; 3m1c; 00m3c; 3m0c; 1

0m0c; 3m3c; 1

2c

c2c

2c

2m

2m

2m

2m

2c

2c

c

m

m

mc

mc

c

3m1c; 0m2c; 0

Figure 2.24
A dfs solution for the Missionaries and Cannibals Problem. No move was pursued that 
would lead to an unsafe state on either river bank. Loop states were also not pursued.
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 2.4.1  Implementing a Depth First Search Solution
The various search algorithms in this chapter and the next vary greatly in the way a tree is 

inspected. Each algorithm, however, shares one attribute in that two lists are maintained: an open 
list and a closed list. An open list contains all nodes in the tree that are still being explored (or 
expanded); the closed list contains those nodes that have already been explored and are no longer 
under consideration. Recall that a dfs moves deeply into a search tree as quickly as possible. As the 
code for dfs in Figure 2.25 illustrates, this is accomplished by maintaining the open list as a stack. 
A stack is a last in, first out (LIFO) data structure.

Begin

Open? [Start state] // The open list is

// maintained as a stack. i.e., a list in which the last

// item inserted is the �rst item deleted. This is often referred

// to as a LIFO list.

Closed   ?   [    ] // The closed list contains nodes that have

// already been inspected; it is initially empty.

While Open not empty

 Begin

  Remove �rst item from open, call it X

  If X equals goal then return Success
  Else

   Generate immediate descendants of X

  Put X on Closed List.

  If children of X already encountered then discard

 // loop check

  Else place children not yet encountered on Open
  // end else

 // end While

 Return Goal not Found
Figure 2.25
Code for depth first search. 

As soon as a node is visited, it moves to the front of the open list, ensuring that its children will 
be generated next. This algorithm is applied to the search tree in Figure 2.26. 

The tree in Figure 2.26 will be used to illustrate the blind search algorithms in this chapter as 
well as the heuristic searches in Chapter 3.This tree is redrawn in Figure 2.27 without heuristic 
estimates and node to node distances because dfs does not use these metrics. Depth first search is 
applied to the tree in Figure 2.27.

The results of this search (Figures 2.26 and 2.27) are given in Figure 2.28.
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F:1 H:3D:9 E:12

I21 J:31 G1:0 K:34 L:21 M:18 N:8 G2:0

Figure 2.26  
Numbers on the arcs represent the actual distance between a node and its immediate descendant. For example, the 4 that labels the left 
branch below the root indicates that the distance from node A to node B is 4. Numbers next to the node letters represent the heuristic 
estimate from that node to a goal node; for example, 12 in node E indicates that the estimate of remaining distance from node E to some 
goal is 12. 

Breadth first search explores all nodes close to the root before plunging deeper into the search 
tree. The code for bfs is shown in Figure 2.29.

 2.4.2 Implementing a Breadth First Search Solution
Breadth first search maintains the open list as a queue. A queue is a FIFO (first in, first out) 

data structure. Once a node is expanded, its children move to the rear of the open list: hence these 
children are explored only after every other node at its parent’s level has been visited. Figure 2.30 
traces the steps of bfs on the tree in Figure 2.27.

 2.4.3 Measuring Problem-Solving Performance
To determine which solution works best for a particular problem, we can compare dfs and 

bfs. Before doing so, it is helpful to provide metrics to measure these and other search algorithms. 
Four measures are described in the following sections. (In Chapter 3, additional metrics will be 
provided.)

Completeness

A search algorithm is said to be complete when it is guaranteed to find a solution when there is 
one. Using the generate-and-test paradigm introduced earlier in this chapter, suppose we are trying 
to identify all integers x between 100 and 1000, inclusive, that are perfect cubes. In other words, we 
want to know all x with 100 ≤ x ≤ 1000 such that x = y3 with y an integer. If our generator checks ev-

Open = [A];
Open = [B,C];
Open = [D,E,C];
Open = [I,J,E,C];
Open = [J,E,C];
Open = [E,C];
Open = [G1,K,C];

Closed = [ ];
Closed = [A];
Closed = [B,A];
Closed = [D,B,A];
Closed = [I,D,B,A];
Closed = [J,I,D,B,A];
Closed = [E,J,I,D,B,A];

Figure 2.28
Depth first search applied to the search tree in Figure 2.27. 
Algorithm returns success, G1 is a goal.

A

CB

D

I J G1 G2K L M N

E F H

Figure 2.27
Search tree to illustrate depth first search. Because dfs is a blind search, all heuristic estimates 
and node-to-node distances have been omitted.
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ery integer between 100 and 1000, inclusive, then 
this search would be complete. In fact, the results 
would be such that 125, 216, 343, 512, 729, and 
1000 are perfect cubes. 

Optimality

A search algorithm is said to be optimal if it 
provides the lowest-cost path among all solutions. 
Figure 2.20 depicts a dfs solution for an instance of 
the 3-puzzle. A solution is found whose path length 
is eight. Figure 2.22 illustrates a bfs solution for 
this same instance, with a path length of four. Therefore, dfs is not an optimal search strategy.

Open = [A];
Open = [B,C];
Open = [C,D,E];
Open = [D,E,F,H];
Open = [E,F,H,I,J];
Open = [F,H,I,J,G1,K];
Open = [H,I,J,G1,K,L,M];
... Until G1 is at left end of Open list.

Closed = [ ];
Closed = [A];
Closed = [B,A];
Closed = [C,B,A];
Closed = [D,C,B,A];
Closed = [E,D,C,B,A];
Closed = [F,E,D,C,B,A];

Figure 2.30 
Breadth first search applied to the search tree in Figure 2.27. The algorithm 
returns success, the goal G1 is found. 

Begin

 Open ?  [ Start state   ]  //  The open list is

// maintained as a queue, i.e., a list in which the

// first item inserted is the first item deleted. This is

// often referred to as a FIFO list.

 Closed ?   [   ]   // The closed list contains nodes

// that have already been inspected; it is initially empty.

While Open not empty

 Begin

 Remove first item from Open, call it X.

 If X equals goal then return Success

 Else

  Generate immediate descendants of X

  Put X on Closed List..

 If children of X already encountered

  then discard.   // loop check

 Else place children not yet encountered on Open

 // end else

 // end while

 Return, Goal not found

End Algorithm breadth first search

Figure 2.29
Code for breadth first search. 
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Time Complexity

The time complexity of a search algorithm concerns how long it takes to find a solution. Time 
is measured in terms of the number of nodes generated (or expanded) during the search.

Space Complexity

The space complexity of a search algorithm measures how much memory is required to per-
form the search. We must determine the maximum number of nodes stored in memory. Complexity 
in AI is expressed in terms of three parameters:

 1. The branching factor (b) of a node is the number of branches emanat-
ing from it (see Figure 2.31).

 2.  The parameter (d) measures depth of the shallowest goal node.
 3.  The parameter (m) measures the maximum length of any path in the 

state space.
If every node in a search tree has a branching factor of b, then the branch-

ing factor of the tree equals b.

 2.4.4 Comparing dfs and bfs
We have encountered two blind search algorithms — dfs and bfs. Which is preferable?
First, let’s clarify the criteria. By preferable, do we mean which algorithm requires less 

work to find a path?  Or do we mean which algorithm will find a shorter path? In both cases, as 
expected, the answer is: It depends. 

Depth first search is preferred if

• the tree is deep
• the branching factor is not excessive and
• solutions occur relatively deep in the tree.

Breadth first is preferred if
• the branching factor of the search tree is not excessive (reasonable b)
• a solution occurs at a reasonable level in the tree (d is reasonable), and
• no path is excessively deep.
Depth first search has modest memory requirements. For a state space with branching factor b 

and maximum depth m, dfs requires only b * m + 1 nodes, which is O(b*m). Backtracking is actu-
ally a variant of dfs in which only one successor of a node 
is generated at a time (for example: in which row should the 
third Queen be placed?). Backtracking requires only O(m) 
memory.

Is dfs complete?  Consider the search space in Figure 
2.32. As this figure shows, dfs is not complete. The search 
might get lost in relatively long or even infinite paths in the 
left portion of the search space, while a goal node remains 
unexplored in the upper-right portion of the tree. Recall also 
that dfs is also not optimal. (Review Figures 2.20 and 2.22.)

A

B DC

Figure 2.31 
The branching factor of a node 
is the number of branches 
emanating from it. Node A has a 
branching factor equal to three.

m: a long path

small d: a shallow
goal node

Figure 2.32
A search space in which depth first search would not fare well. Dfs “gets 
lost” deep in the left porition of the search space. A goal node in the upper 
right side might never be searched.
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If you are assured that the branching factor of a search space is finite, then bfs is complete. In 
bfs, you first search all b children of the root, then all b2 grandchildren, and finally all bd nodes at 
level d. This latter argument should also convince the reader that bfs will find the “shallowest” goal 
node first; however, this does not necessarily mean that bfs is optimal. If the path cost is a nonin-
creasing function of the depth of the node, then bfs is optimal.

The time complexity (t(n)) for bfs grows exponentially. If the branching factor of a search tree 
equals b, then the root node will have b children. Each of these b descendants will have b children 
of their own. In fact, one will need to expand all but the last node at level d for a total of 

T(n) = b + b2 + b3 + … +(bd-1 – b) = O(bd+1) .

Because every node that is generated must remain in memory, the space complexity (S(n)) 
for bfs is also O(bd+1). Actually: S(n) = t(n)+1 because the root of the search tree must also be 
stored.

The harshest critique for bfs is that it requires exponential space complexity. For even mod-
est problem sizes, bfs quickly becomes infeasible. To combine the modest space requirements 
of dfs without its propensity to pursue lengthy paths, we can use dfs with iterative deepening 
(dfs-id).

Dfs-id performs a dfs of the state space with 
a depth bound of zero; see Figure 2.33, where we 
apply dfs-id to our example in Figure 2.27. If it 
fails to find a goal, it performs another dfs with 
a depth bound of one. The search continues in 
this fashion, increasing the depth bound by one, 
at each iteration. A complete dfs to the current 
depth is performed at each iteration. The search 
begins anew at each iteration.

It must be emphasized that each tree in 
this figure is drawn from scratch; no tree is 
built from a tree resulting from a depth bound, 
which is one lower.

In the search space at depth one, b nodes 
are generated d times. The b2 nodes at depth 
two are generated d-1 times, and so on. Finally the bd nodes at level d are generated just once. 
Hence, the total number of nodes generated is: 

((d+ 1) * 1) + (d*b) + (d-1) * b2 + … + 1* bd

The time complexity for dfs-id is O(bd), which is somewhat better than bfs. In the worst case, 
all uninformed searches – dfs, bfs, and dfs-id—display exponential time complexity. Only one path 
needs to be stored in memory at a time, so its space complexity is O(b*d), the same as for dfs.

Consider a dfs-id solution for the 3-puzzle depicted in Figure 2.20.  In that figure, dfs finds a 
solution at depth d = 8 after having both generated and visited a total of 13 nodes. Dfs-id will find 
a solution at depth d = 4 after having generated complete binary trees of depth i, where i = 0, …,4. 
(Consulting Figure 2.22 where a bfs solution is provided will perhaps help you to see this.)

As with bfs, dfs-id is complete when the branching factor is finite, and optimal when path costs 
are a nondecreasing function of a node’s depth.

(a) (b)

(c) (d)

Figure 2.33 (a – d) 
The stages in dfs with iterative deepening applied to one example. (a) Dfs search with depth bound 
= 0; (b) dfs search with depth bound = 1; (c) dfs search with depth bound = 2; (d) dfs search with 
depth bound = 3.
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huMAn interest notes

donAld knuth 
Donald Knuth, 

Professor Emeritus, 
Stanford University, 
is one of the greatest 
computer scientists of 
all time. He made his 
reputation by publishing 
three monumental 
volumes in a series titled 
The Art of Computer 
Programming (TAOCP).  
The series became 

known as the “Bible of Computer Science” and 
the volumes were available in the 1970s:

Fundamental Algorithms
Seminumerical Algorithms
Sorting and Searching

The international esteem in which these 
volumes are held is substantiated by the fact that 
they have been translated into many languages. 

In 1978, dismayed with the typography 
in the galley proofs for the second edition of 
his second volume, Knuth journeyed into the 
world of typesetting for many years, until he 
developed a stable version of the language 
TeX. During the past 30 years it has become 
a marvelous tool and a standard to assist 
scientists in developing their technical papers. 

Volume 4, Combinatorial Algorithms, has 
been long-awaited. Instead Knuth has written 
what he calls “Fascicles” of 128 pages, listed 
below. Ever modest, Knuth states:

These fascicles will represent my best 
attempt to write a comprehensive 
account, but computer science has 
grown to the point where I cannot 
hope to be an authority on all the 
material covered in these books. 
Therefore I’ll need feedback from 

readers in order to prepare the official 
volumes later.  

Volume 4 Fascicle 0, Introduction to 
Combinatorial Algorithms and Boolean 
Functions 
Volume 4 Fascicle 1, Bitwise Tricks & 
Techniques; Binary Decision Diagrams 
Volume 4 Fascicle 2, Generating All Tuples 
and Permutations 
Volume 4 Fascicle 3, Generating All 
Combinations and Partitions 
Volume 4 Fascicle 4, Generating All Trees; 
History of Combinatorial Generation 

An insight into Donald Knuth comes from 
his own home page:

I have been a happy man ever since 
January 1, 1990, when I no longer 
had an email address. I’d used email 
since about 1975, and it seems to me 
that 15 years of email is plenty for one 
lifetime. Email is a wonderful thing 
for people whose role in life is to be 
on top of things. But not for me; my 
role is to be on the bottom of things. 
What I do takes long hours of studying 
and uninterruptible concentration. I 
try to learn certain areas of computer 
science exhaustively; then I try to 
digest that knowledge into a form 
that is accessible to people who don’t 
have time for such study.

He has plans to write Volume 5, on the 
topic of syntactic algorithms (for 2015), 
and then to revise Volumes 1–3, and write a 
“Readers Digest” version of Volumes 1–5. He 
plans to publish Volume 6 (on the theory of 
context-free languages) and Volume 7 (about 
compiler techniques), “but only if the things I 
want to say about those topics are still relevant 
and still haven’t been said.” 
Reference:

http://www-cs-faculty.stanford.edu/~uno/taocp.html
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 2.5 CHAPTER SUMMARY
This chapter presented an overview of blind, or uninformed, search algorithms: algorithms that 

do not use problem domain knowledge. Searches take place within state-space graphs (or state-
space trees). Nodes in this structure correspond to problem states. For example, when solving the 
Mini False Coins Problem, nodes correspond to subsets of coins known to contain the false coin. 
The generate-and-test paradigm can be a straightforward way to solve a problem. A generator pro-
poses solutions to a problem and the tester determines their validity. Good generators should be 
complete, non-redundant, and informed. A generator used in the 4-Queens problem that possessed 
these qualities reduced search time dramatically.

Exhaustive enumeration is a search procedure that looks everywhere for a solution. Backtrack-
ing, on the other hand, improves search time by abandoning partial solutions once it is discovered 
that they violate problem constraints.

The greedy algorithm is a search paradigm that is often useful in solving problems, such as 
finding the shortest path between a pair of cities. However, the greedy algorithm is not suitable for 
all problems. For example, it does not successfully solve the Traveling Salesperson Problem.

Three blind search algorithms are breadth first search (bfs), depth first search (dfs), and depth 
first search with iterative deepening (dfs-id). Bfs traverses a tree level by level in its search for a 
problem solution. Bfs is complete and optimal (under various constraints). It is however, hindered by 
its inordinate space demands. Dfs has more reasonable space requirements, though it has a tendency 
to get lost on very long or infinite paths. Hence, dfs is neither complete nor optimal. Dfs-id can serve 
as a compromise between bfs and dfs; it performs a complete dfs on a search tree on bounded trees 
of depth 0, 1, 2, and so on. It has the favorable properties of both dfs and bfs, in other words, the 
space requirements of dfs with the completeness and optimality properties of bfs. All blind search 
algorithms exhibit exponential time complexity. To solve problems of reasonable size, we will need 
better algorithms. Chapter 3 presents informed searches that fare better with regard to some of the 
aforementioned benchmarks.

Questions for Discussion

 1.  Why is search an important component of an AI system?

 2. What is a state-space graph?

 3. Describe the generate-and-test paradigm.

 4. What properties should a generator possess?

 5. How does backtracking improve on exhaustive enumeration?

 6. Describe the greedy algorithm in a sentence or two.

 7. State the Traveling Salesperson Problem.

 8. Name three blind search algorithms.

 9. In what sense are blind search algorithms blind?

 10. Compare the three blind search algorithms described in this chapter with respect to: 
completeness, optimality, and time-and-space complexity.

 11. When is dfs preferable to bfs?
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 12. When is bfs preferable to dfs?

 13. In what sense is dfs-id a compromise between bfs and dfs?

Exercises

 1. Solve the False Coin Problem for 12 coins. Only three combinations of coins are permitted to 
be weighed. Recall that a balance scale returns one of three results: equal, left side is lighter, 
or left side is heavier.

 2. Solve the Mini False Coin Problem weighing only twice, or prove that this is not possible.

 3. A blind search not discussed in this chapter is a nondeterministic search. It is a form of 
blind search in which the children of nodes that have just been expanded are placed on the 
open list in random order. Is a nondeterministic search complete?  Optimal?

 4. Another generator for the n-Queens Problem is:  Place a Queen in row 1. 
Do not place the second Queen in any square that is attacked by the first 
Queen. In state i, place a Queen in column i in a square that is not under 
attack from any of the previous i-1 Queens. See  
Figure 2.34.

  a. Solve the 4-Queens problem using this generator.
  b.  Argue that this generator is more informed than either of the two 

generators used in the text.
  c.  Draw the portion of the search tree expanded in the search for a first solution.

 5.  Consider the following generator for the 4-Queens problem:  for i = 1 to 4, randomly assign 
Queen i to a row.

  Is this generator complete? Is it nonredundant?  Explain your answer.

 6. A number is said to be perfect if it equals the sum of its divisors (excluding itself). For 
example, 6 is perfect because 6 = 1 + 2 + 3, where each of the integers 1, 2, and 3 are divisors 
of 6. Give the most informed generator that you can think of to find all perfect numbers 
between 1 and 100, inclusive.

 7. Use Dijkstra’s Algorithm to find the shortest path from the source vertex Vo to all other 
vertices in Figure 2.35. 

V1

V0

4

3 8

6
1

1 5

2

3
9

V3

V4V2

Figure 2.35
A labeled graph for use with Dijkstra’s Algorithm.

1
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Q

3

2

1

2 3 4

Figure 2.34
2.34 Generator for the 
4-Queens problem.
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 8.  Create a representation for a puzzle such as the 15-puzzle that is appropriate for checking 
repeated states.

 9.  Solve the Missionaries and Cannibals Problem using breadth first search.

 10. A farmer with a wolf, a goat, and a container of cabbage are on the west bank of the river. On 
the river is a boat in which the farmer and one of the other three (wolf, goat, or cabbage) can 
fit. If the wolf is left alone with the goat, the wolf will eat the goat. If the goat is left alone 
with the container of cabbage, the goat will eat the cabbage. Your goal is to transfer everyone 
to the other side of the river safely. Solve this problem using:

  a. Depth first search b. Breadth first search

 11. Use bfs and then dfs to get from start node (S) to goal node (G) in parts (a) and (b) of Figure 
2.36. At each step, explore nodes in alphabetical order.

S

A

(a)

(b)

D E

C F

GB

S

A B D

G

C E

Figure 2.36 
Getting to the goal node using bfs and dfs.

 12. Label the maze in Figure 2.37.
Goal

Start

Figure 2.37 
A maze.
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 13. Use bfs and then dfs to get from the start to the goal, for the maze in Figure 2.37.

 14.  Having determined that the Twelve Coins Problem requires us to weigh three combinations 
of coins to identify the false coin:  How many weighings would be needed to determine a 
false coin amongst 15 coins?  What about 20 coins? Can you develop an algorithm to prove 
your conclusions?  

  Hint: Consider the underlying minimum number of weighings needed for 2,3,4, and 5 coins 
to develop a knowledge base of facts for a bottom up solution to this problem.++ (Reference 
AIP&TS Ch. 4)

 15. We discussed The Missionaries and Cannibals Problem. Develop a solution to this problem 
given that the “moves” or “transitions” are forced.  
Identify “subgoal states” to the problem solution state which must be achieved in order to 
solve the problem. ++ 

Programming Exercises

 1.  Write a program to solve an instance of the 15-puzzle that first checks if a goal state is 
reachable. Your program should employ:

  a. Depth first search
  b. Breadth first search 
  c. Depth first search with iterative deepening.

 2. Write a program that employs the greedy algorithm to find the minimum spanning tree for 
a graph. A spanning tree T for a graph G is a tree whose vertex set is the same as the vertex 
set for the graph. Consider the graph in 2.38(a). A spanning tree is provided in Figure 2.38(b). 
Observe that the Spanning tree in Figure 2.38(c) has minimal cost. The latter tree is referred 
to as a minimum spanning tree. Your program should find a minimum spanning tree for the 
graph in 2.38(d).

1

4

1

4

4

5

(a) (b)

(c) (d)

6 5

3

2

3

7 2
3

5

6

11 4

310

1
2

V1 V2 V3

V6 V5 V4

3

2

Figure 2.38
Finding the minimum spanning tree for a graph. (a) A graph G. (b) A spanning tree for G. (c) A minimum spanning tree for G. (d) A graph for which the minimum spanning 
tree must be found.
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 3. Write a program that employs backtracking to solve the 8–Queens problem and then answer 
the following questions: 

  a. How many solutions are there?
  b.  How many of these solutions are distinct? (You can look ahead to Exercise 5 in Chapter 4 

for hints.)
  c. Which generator did your program employ?

 4. Write a program to solve the 8-Queens problem that employs the generator suggested in 
Exercise 5.

 5. In Chess, a Knight may move in eight different ways:

  1. Up one square, right two squares

  2. Up one, left two

  3. Up two, right one

  4. Up two, left one

  5. Down one right two

  6. Down one, left two

  7. Down two, right one

  8. Down to left one

  A Knight’s tour of an n × n chess board is a sequence of n2 – 1 moves so that a Knight visits 
each square on the board only once when started from an arbitrary square.

  Write a program to perform a Knight’s tour when n = 3, 4, and 5. Employ a random number 
generator to select the start square randomly. 

    Report on your results. 

 6.  When you color a graph, you assign colors to the nodes of a graph so that no two adjacent 
nodes have the same color. For example, in Figure 2.39, if node V1 is colored red, then none 
of the vertices V2, V3, nor V4 could be colored red. Vertex V5, however, might be colored with 
red as V1 and V5 are not adjacent. 

V1

V4

V2

V5

V3

red

Figure 2.39 
Graph to color.

  The chromatic number of graph is the minimum number of colors required to color a graph. 
The chromatic number for various graphs is shown in Figure 2.40.
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(a) (b)

V1 red

V2
blue

V3
green

red V1 V2 blue

V3 redblue V4

(c)

V1 blue

V2 red

V3 blue

red V5

green V4

Figure 2.40 (a – c) 
Chromatic numbers for various graphs. 

  Write a backtracking program to color the graph in Figure 2.41. Employ the most informed 
generator that you can think of.

V1
V2

V3

V5 V4

V6

V7

Figure 2.41 
A graph whose chromatic number is to be determined.
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The large problems tackled by AI are often not amenable to solution by uninformed search 
algorithms. This chapter introduces informed search methods that utilize heuristics to reduce 
a problem space, either by limiting the depth or the breadth of the search. Henceforth, domain 
knowledge is used to avoid search paths that are likely to be fruitless. 

 3.0 INTRODUCTION
In this chapter, we continue our study of 

search techniques. Chapter 2, “Uninformed 
Search,” introduced blind search algorithms 
wherein exploration through a search space 
proceeded in a fixed manner. Depth first 
search (dfs) probed deeply into a tree, where-
as breadth first search (bfs) examined nodes 
close to the root before venturing farther. Dfs 
is not complete because it can resolutely fol-
low long paths and consequently miss a goal 
node closer to the root; bfs, on the other hand, 
has exorbitant space requirements and can 
be easily overwhelmed by even moderate 
branching factors. 
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Both of these algorithms exhibit worst-case time complexity, which is exponential. Dfs-itera-
tive deepening was shown to possess the advantageous features of both algorithms—the moderate 
space requirements of dfs combined with the prospect of completeness displayed by bfs. Even dfs 
iterative deepening, however, is doomed to exponential time complexity in the worst case. 

In Chapters 4, “Search Using Games,” and 16, “Advanced Computer Games,” we will dem-
onstrate how search algorithms are employed to enable computers to compete against humans in 
games such as nim, tic-tac-toe, checkers, and chess. Our triad of blind search algorithms would fare 
adequately with the first two games on our list—however, the huge search spaces lurking behind 
games such as checkers and chess would easily overwhelm this ensemble of search algorithms. 

In Chapter 1, we presented heuristics as rules of thumb that are often useful tools in problem 
solving. In this chapter we present search algorithms that employ heuristics that help guide progress 
through a search space. Sections 3.2–3.4 describe three algorithms—hill climbing, the best-first 
search, and beam search—that “never look back.” Their journey through a state space is steered 
solely by heuristic measure (approximation) of their remaining distance to the goal. Suppose that 
one was hitchhiking from New York City to Madison, Wisconsin. Along the way, there are many 
choices about which highway should next be chosen. This class of searches might employ the heu-
ristic of choosing the road that minimizes one’s straight-line distance to the goal (i.e., Madison). 

Section 3.5 provides four metrics that are useful in evaluating heuristics and/or search algo-
rithms. A heuristic—if it is to be useful—should provide an underestimate of remaining distance. 
In the previous paragraph, it is evident that the straight-line distance is always less than or equal to 
the actual distance (highways often need to circle around mountains, large forests, and urban areas). 
This property of a search heuristic is referred to as admissibility.

Monotonicity asks more of a search heuristic than admissibility; this property requires that, as 
the search forges ahead, the heuristic estimate of remaining distance should continually decrease. 
As any traveler knows, highways are continually being repaired and detours are often unavoidable. 
It is certainly possible that at some juncture in a journey to Madison, all of the available roads take 
one farther away from one’s goal (albeit temporarily). 

Heuristics can also be graded based on their ability to avoid unnecessary search effort. A search 
algorithm that evaluates a small portion of a search tree in its quest for the goal will undoubtedly 
run faster than one that must examine a larger fraction of the tree. The former search algorithm 
would be deemed to be more informed than the latter. 

Some search algorithms examine only a single path. Usually such algorithms produce results 
that are suboptimal. As this chapter will illustrate, hill climbing will continue its progress until a 
node is reached from which no successor node can get one any closer to the goal. The goal might 
have been reached, or one could merely be stuck in a local optimum. Alternately, if backtracking is 
permitted, then the exploration of alternative paths is enabled; in these cases, the search algorithm 
is categorized as tentative. 

The ensemble of search algorithms described in Section 3.6 all have one characteristic in com-
mon—they include the distance traveled from the root as part (or all) of their heuristic measure of 
goodness. These methods, which in a sense always look backward, are referred to as branch and 
bound algorithms. “Plain vanilla” branch and bound can be augmented by heuristic estimates of 
remaining distance or provisions to retain only the best path to any intermediate node. When both 
of these strategies are incorporated into the search we have the well-known A* algorithm. 

Section 3.7 includes a discussion of two additional searches: constraint satisfaction search 
(CSP) and bidirectional search (or wave search). We have already seen that many searches  
incorporate constraints that must be satisfied. For example, in the n-Queens Problem discussed 
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in Chapter 2, the constraints were that no two Queens could occupy the same row, column, or 
diagonal. CSP attempts to employ these restrictions in order to facilitate tree pruning and thereby 
increase efficiency. 

Solving a problem often involves solving subproblems. In some cases, all of the subproblems 
must be solved; at other times, solving one subproblem could suffice. For example, if one is doing 
one’s laundry, it is required to both wash and dry the clothing. Drying, however, can be accom-
plished by either putting the wet clothes into a machine or hanging them on a clothesline. This 
section also includes a discussion of AND/OR trees, which are helpful in modeling this problem-
solving process. 

The chapter concludes with a discussion of bidirectional search, and, as the name alludes, it 
develops two breadth first trees in parallel, one from each of the start and goal nodes. This method 
is found to be especially useful in cases where the location of the goal node is not known a priori. 

 3.1 HEURISTICS
One of the topics most central to this text is the subject of heuristics, which was first intro-

duced in Section 1.6 of Chapter 1. With his landmark book, How to Solve It 1 George Polya could 
perhaps be called the “Father of Heuristics.” As mentioned in Chapter 1, Polya’s efforts focused 
on problem solving, thinking, and learning. He developed a “heuristic dictionary” of heuristic 
primitives. Polya’s approach was both practical and experimental. By formalizing the observa-
tion and experimental processes, he sought to develop and gain insight into human problem-
solving processes.2 

Bolc and Cytowski 3 note that recent approaches to the study of heuristics seek more formal and 
rigid algorithmic-like solutions to specific problem domains, rather than the development of more 
general approaches that could be appropriately selected from and applied to specific problems. 

The goal of heuristic search methods is to greatly reduce the number of nodes considered in 
order to reach a goal state. They are ideally suited for problems whose combinatorial complexity 
grows very quickly. Through knowledge, information, rules, insights, analogies, and simplifica-
tion—in addition to a host of other techniques—heuristic search methods aim to reduce the number 
of objects that must be examined. Good heuristics do not guarantee the achievement of a solution, 
but they are often helpful in guiding one to a solution path. 

In 1984 Judea Pearl published a book titled Heuristics,4 dedicated to the subject from a formal 
mathematical perspective. One must make the distinction between having (or executing) an algo-
rithm and using heuristics. Algorithms are definite methods—a well-defined sequence of steps to 
solve a problem. Heuristics are more intuitive, human-like approaches; they are based on insight, 
experience, and know-how. They are probably the best way of describing human problem-solving 
methods and approaches as distinct from machine-like approaches. 

Pearl notes that, with heuristics, strategies are being modified in order to arrive at a quasi-
optimal (instead of optimal) solution—with a significant cost reduction. Games, especially two-
person, zero-sum games of perfect information, such as chess and checkers, have proven to be a 
very promising domain for the study and testing of heuristics (see Chapters 4 and 16).

As an adjective, heuristic (pronounced hyu-RIS-tik and from 
the Greek “heuriskein” meaning “to discover”) pertains to the 
process of gaining knowledge or some desired result by intelligent 

The Web site whatis.techtarget.com 
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huMAn interest notes

JudeA peArl

Judea Pearl 
(1936– ) is perhaps 
best known for his 
book, Heuristics,4 
published in 1984; 
however, he has 
also done significant 
work on knowledge 
r e p r e s e n t a t i o n , 
probabilistic and 

causal reasoning, nonstandard logics, and 
learning strategies. Some of his many honors 
include the following:

– The David E. Rumelhart Prize, for 
Contributions to the Theoretical 
Foundations of Human Cognition, in 
2010 

– The Festschrift and Symposium in 
honor of Judea Pearl, 2010 

– An Honorary Doctorate of Humane 
Letters degree from Chapman 
University, Orange, CA, in 2008

– The Benjamin Franklin Medal in 
Computers and Cognitive Science, “For 
creating the first general algorithms for 
computing and reasoning with uncertain 
evidence” in 2008 

– An Honorary Doctorate of Science 
degree from the University of Toronto, 
in recognition of “groundbreaking 
contributions to the field of computer 
science . . .”

Judea Pearl received a B.S. degree in 
Electrical Engineering from the Technion, 
Haifa, Israel, in 1960, a Master’s degree 
in Physics from Rutgers University, New 
Brunswick, New Jersey, in 1965, and a PhD in 
Electrical Engineering from the Polytechnic 
Institute of Brooklyn, Brooklyn, New York, 
in 1965. He then worked at RCA Research 
Laboratories, Princeton, New Jersey, on 
superconductive parametric and storage 
devices and at Electronic Memories, Inc., 
Hawthorne, California, on advanced memory 
systems. He joined UCLA in 1970 where he is 
now in the Cognitive Systems Laboratory of 
the Computer Science Department. 

guesswork rather than by following some pre-established formula. (Heuristic can be 
contrasted with algorithmic.) The term seems to have two usages: 

 1. Describing an approach to learning by trying without necessarily having an organized 
hypothesis or way of proving that the results proved or disproved the hypothesis. That 
is, “seat-of-the-pants” or “trial-and-error” learning. 

 2. Pertaining to the use of the general knowledge gained by experience, sometimes expressed 
as “using a rule-of-thumb.” (However, heuristic knowledge can be applied to complex as 
well as simple everyday problems. Human chess players use a heuristic approach.) 

As a noun, a heuristic is a specific rule-of-thumb or argument derived from 
experience. The application of heuristic knowledge to a problem is some-
times known as heuristics. http://whatis.techtarget.com/definition/0,,sid9_
gci212246_top1,00.html

• It is a practical strategy for increasing the effectiveness of complex problem solving. 
• It leads to a solution along the most probable path, omitting the least promising ones.

Here are a few definitions of 
heuristic search:
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• It should enable one to avoid the examination of dead ends, and to use only gathered 
data.15

Heuristic information can be added to a search:

• To decide which node to expand next, instead of doing expansions in a strictly breadth 
first or depth first style

• To decide which successor or successors to generate when generating nodes, rather 
than blindly generating all possible successors at once

• To decide that certain nodes should be discarded (or pruned) from the search tree 2

Bolc and Cytowski 3 add:

. . . use of heuristics in the solution construction process increases the uncertainty of 
arriving at a result . . . due to the use of informal knowledge (rules, laws, intuition, 
etc.) whose usefulness have never been fully proven. Because of this, heuristic 
methods are employed in cases where algorithms give unsatisfactory results or do 
not guarantee to give any results. They are particularly important in solving very 
complex problems (where an accurate algorithm fails), especially in speech and 
image recognition, robotics, and game strategy construction.

Let us consider a few more examples of heuristics. One might, for example, choose the motor 
oil for a vehicle depending on the season. In winter, with cold temperatures, liquids tend to freeze, so 
we would want to use engine oils with lower viscosity (thickness); whereas in summer, with hotter 
temperatures, we would be wise to choose oils with greater viscosity. Analogously, one adds more air 
to automobile tires in winter (when gases compress), versus less air in summer when gases expand. 

huMAn interest notes

george polyA

George Polya 
(1887 – 1985) is most 
famous today for 
his ground-breaking 
work, How to Solve It 
(1945). This book has 
been translated into 17 
languages, and nearly 
a million copies have 
been sold. 

Polya was born in Budapest, Hungary 
and, like many young, intelligent people, was 
uncertain which discipline to choose for his 
future work. He tried a term at law school and 

dreaded it. He became interested in Darwin 
and biology but feared there was little income 
to be had from it. He also received a certificate 
to teach Latin and Hungarian (which he never 
used). He then tried philosophy, whereby 
his professor advised him to try physics and 
mathematics. Eventually he concluded: “I 
thought I am not good enough for physics and I 
am too good for philosophy. Mathematics is in 
between” (G. L. Alexanderson, George Polya 
Interviewed on His 90th Birthday, The Two-
Year College Mathematics Journal. 1979). 

Polya obtained a PhD in mathematics from 
Eötvös Loránd University in Budapest, taught 
at Swiss Technical University of Zurich from 
1914 to 1940, and, like many others, fled the 
war and persecution in Europe for the United 
States. He taught at Stanford University from 
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1940–1953, where he became Professor 
Emeritus for the remainder of his career and 
life.

His interests spanned a number of areas 
of mathematics, including number theory, 
series analysis, geometry, combinatorics, 
and probability. The main focus of his later 
career, however, was to try to characterize the 
methods that people use to solve problems—
and this is precisely why he is so important 
in the field of AI—the notion of heuristics—a 
word which has its roots in Greek, meaning 
“discovery.” 

Heuristics are the foundation of strong 
AI, which you will hear more about in 
Chapter 6 (Knowledge Representation), and 
it is heuristics that distinguish AI methods 
from traditional computer science methods. 
Heuristics distinguish pure algorithms from 
human problem-solving methods, which 
are inexact, intuitive, creative, sometimes 

powerful, and hard 
to define. A point of 
some controversy 
was Polya’s belief 
that effective 
problem-solving is 
a skill that can be 
taught and learned. 

Polya did develop 
a general method for 

problem solving that has been accepted as a 
standard in mathematics, computer science, 
and other disciplines:

1. Understand the problem.

2. Develop a plan.

3. Implement the plan.

4. Evaluate the outcome. 

These four steps have been a universal 
standard, although there have been some 
variations, themes, and refinements on them, 
across disciplines. 

Polya authored four other highly 
influential books: Mathematics and 
Plausible Reasoning, Volumes I and II, and 
Mathematical Discovery: On Understanding, 
Learning, And Teaching Problem Solving 
Volumes I & II. 
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The Knight’s Tour 
Problem (see Exercise 
10a.) demonstrates the 
power of heuristics: it 
is an example of one 
heuristic making the 
problem much easier to 
solve.
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A common example of the application of heuristics versus 
pure calculation and algorithmic problem-solving would be 
transportation in a large city. Many students use as a heuristic, 
never travel by car to their colleges between 7:00 and 9:00 am 
and never go home between 4:00 and 6:00 pm, because this is 
the rush hour in most major cities; a 45-minute trip can easily re-
quire one to two hours. If, travel is necessary during those times, 
then an exception is made. 

It is now quite common to use programs such as MapQuest®, 
Google® Maps, or Yahoo!® Maps to obtain the suggested driving 
directions between two locations. Do you ever wonder if these 
programs have built-in AI, employing heuristics to enable them 
to perform intelligently? If they employ heuristics, then what are 
they? For example, do the programs take into account whether the 
road is an interstate highway, a local highway, an expressway, or 
a boulevard? Are driving conditions considered? How would this 
affect the average speed and difficulty of driving on a particular 
road and its choice as a means to a particular destination? 

Figure 3.1

The MapQuest solution for driving from Brooklyn College to Yankee Stadium.

It is important to remember that heuristics 
are only “rules of thumb.” How else could 
you explain the fact that a student drove his 
friend home to lower Manhattan at 2:00 
am and was heading back to the Brooklyn 
Battery Tunnel, when he suddenly found 
himself frozen in place for more than 15 
minutes, surrounded by taxis and a garbage 
truck near the Holland Tunnel entrance? 
Mention of the Holland Tunnel often is a 
sour note for any New York metropolitan 
area driver who is intent on getting 
anywhere quickly. Perhaps one should 
add a sub-heuristic: “stay away from any 
route that takes you past the entrance to the 
Holland Tunnel — even if you must go out 
of your way.” 
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When using any driving directions or map, it’s a good idea to check and make sure the road still 
exists, watch out for construction, and follow all traffic safety precautions. These maps and direc-
tions are to be used only as aids in planning.

As can be seen from comparing the two programs’ solutions in Figure 3.1 (MapQuest) and Figure 
3.2 (Yahoo! Maps), the MapQuest solution is about 2 miles, and 6 minutes, longer. That is mainly 
because the solutions are started differently. What is important about this example, however, is the 
general concept of the use of heuristics: a person familiar with driving in New York City during rush 
hour would use experience-based techniques to decide how to get to Yankee Stadium for a 7:05 pm 
baseball game. No seasoned New York driver would take the Brooklyn - Queens Expressway (Route 
278) during these times; it is usually a logjam to be avoided at all costs. In this case, it would be much 
wiser to take an alternate route, which might be longer in miles but shorter in time. 

Programs such as Google Maps, Yahoo! Maps, and MapQuest are continually becoming 
“smarter” in order to suit our needs, and they can include such features as shortest time (used in the 

Figure 3.2 
The Yahoo! Maps Solution for driving from Brooklyn College to Yankee Stadium.
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examples in Figures 3.1 and 3.2), shortest distance, avoid highways (there might be circumstances 
in which a driver would wish to avoid highways), tolls, seasonal closings, and so forth. 

 3.2 INFORMED SEARCH ALGORITHMS (PART I) – FINDING  
ANY SOLUTION

Now that we have discussed heuristics and have seen the importance of their role in AI, we 
are ready to address three specific search algorithms that use heuristics to help guide the intelligent 
search process. Most fundamental is the hill climbing algorithm. A bit smarter is steepest-ascent hill 
climbing, and then an algorithm, which, at times, can match an optimal algorithm in efficiency—
the best-first search algorithm. 

 3.2.1 Hill Climbing 

The concept behind this algorithm is that even though you might be climbing a hill, presumably 
getting closer to a goal node at the top, your goal/destination will perhaps not be reachable from your 
current location. In other words, you could be close to a goal state without having access to it. Tradi-
tionally, hill climbing is the first informed search algorithm that is discussed. In its simplest form, it 
is a greedy algorithm in the sense that it has no sense of history, nor the ability to recover from mis-
takes or false paths. It will use one measure to guide it to a goal—whether that measure is minimized 
or maximized, to direct the next “move” choice. Imagine a climber who is trying to reach the peak 
of a mountain. The only device she has is an altimeter, to indicate how high up the mountain she is, 
but that measure cannot guarantee that she will reach the peak of the mountain. The climber, at every 
point where she must make a choice, will take a step that indicates the highest altitude, but there is 
no certainty, beyond the given altitude, that she is on the right path. Obviously, the drawback of this 
simple hill-climbing method is that the decision-making process (heuristic measure) is so naïve and 
the climber does not really have enough information to be sure that she is on the right track. 

Hill climbing will consider only estimates of remaining distance; actual distances traveled are 
ignored. In Figure 3.3, hill climbing decides between A and B. A is chosen, because the estimate 
of remaining distance is less than for B. Node B is “forgotten.” Then hill climbing looks out on 
the search space from A. Each of the nodes C and D are considered but C is selected, for obvious 
reasons, and then H follows.

28 10

B (19)

B (18)

K (32)J (30)I (0)H (18)

C (10)

A (16)

START (25)

D (13)

G (29) L (21) M (0) N (17)

B (11)

15 8 7 11

5 20 12 3 16 29 1 33

Figure 3.3 
Example of hill climbing. Note that in this example, the numbers in the nodes are the estimates of distance to a goal state and  
the numbers on the vertices are indicators only of distance traveled, adding no important information. 
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 3.2.2 Steepest-Ascent Hill Climbing

It would be desirable to be able to make decisions in a given state knowing that you will be 
able to get closer to a certain goal state and that your decision is the best from a number of possible 
choices. In essence, this explains the advantage of steepest-ascent hill climbing over simple hill 
climbing described above. The advantage is that a choice can be made from a number of possible 
“better nodes” than the current state. Rather than merely choosing a move that is “better” (higher) 
than the current state, this approach selects the “best” move (in this case the highest number) from 
a given set of possible nodes. 

Figure 3.4 illustrates steepest-ascent hill climbing. If the program chooses nodes in alphabeti-
cal order, then starting with node A (-30) it would conclude that the best next state would be node B 
which has a score of (-15). But it’s still worse than the current state (0), so eventually it will move to 

START (0)

C (50)

F (100)

E (90)

D (40)

B (–15)

A (–30)

Figure 3.4
Steepest-ascent hill climbing: here we have a climber who is presented with nodes in alphabetical order. From node C (50), hill  
climbing chooses node E (90), and steepest-ascent hill climbing chooses F(100). 

// steepest-ascent Hill climbing

Hillclimbing (Root_Node, goal)
{
Create Queue Q
If (Root_Node = goal) return successes
Push all the children of Root_Node in to Q
While (Q_Is_Not_Empty)
      { 
      Find the child which has minimum distance to goal
      } // end of while
Best_child = the child which has minimum distance to goal
If (Best_child is not a leaf)
     Hillclimbing(Best_child, goal)
Else
      If (Best_child = goal) return Succees
      retum failure;
}// end of the function
}

Figure 3.5 
Pseudocode for steepest-ascent hill climbing.
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node C (50). From node C it could consider nodes D, E, or F. Because node D takes it to a “worse” 
state than its current state, however, it won’t be chosen. Node E, at 90, is an improvement over its 
current state (50) and therefore it would be chosen. 

Standard hill climbing, if used as described here, would never get to examine node F, which 
would return a higher score than node E, namely 100. In contrast to standard hill climbing, steepest-
ascent hill climbing would evaluate all three nodes D, E, and F, and conclude that F (100) is the best 
node to choose from node C. Figure 3.5 provides the pseudocode for steepest-ascent hill climbing.

 The Foothills Problem

There are some circumstances that can be problematic 
for hill climbing. One is called the foothills problem. Hill 
climbing is a greedy algorithm and has no sense of the past 
or future, therefore it can get stuck at a local maximum such 
that although a solution or goal state seems within reach (it 
might even be seen) it cannot be reached from our current 
position even though the top of our current foothill is visible. 
The actual mountaintop itself (the global maximum) might 
also be visible, but it cannot be reached from our current lo-
cale. (See Figure 3.6a) Imagine the hill climber who thinks 
he might be reaching the top of the mountain, but instead he 
is just reaching the top of a hill that he is presently climbing. An analogy for the foothills problem 
would be a scenario such as the following: imagine we were traveling 400 miles west by car on a 
highway to reach a particular state park, and all indications 
on our odometer are that we are indeed getting closer to 
that state park, and then once we are closer to our destina-
tion we discover that the only entrance to this park is 200 
miles north of where we had thought it would be. 

The Plateau Problem

Another typical problem for hill climbing is known as 
the plateau problem. Suppose there are a number of simi-
lar and good local maxima, but to reach the real solution 
state we must move on to another plateau. Figure 3.6b de-
picts the analogy of looking for a certain apartment in a large 
apartment building; it shows what it would be like to be stuck 
on the wrong plateau. 

We might think we are getting closer to our goal apart-
ment (e.g., Apt. 101) but we are in the wrong building!

The Ridge Problem

Finally there is the familiar ridge problem, wherein 
there might be good heuristic values indicating that we are 
approaching a goal or solution, but they are on the wrong 
level of the building. (See Figure 3.6c) This would be akin 
to visiting a major department store and finding ourselves on 
the wrong level (e.g., Women’s Clothing is on the first floor, 

GOAL 300

200
175

150

100

Figure 3.6a 
The foothills problem. 

GOAL

101105101 103

1455 South Street

107 103

Figure 3.6b: 
Hill climbing—the plateau problem. 

300

200100

 
Figure 3.6c 
The ridge problem of hill climbing.
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but we want to buy something in the Men’s Clothing department on the second floor). That we see 
a wide selection of nice Women’s Clothing doesn’t change the fact that we are on the wrong floor 
of the store and will not be finding any appropriate attire anytime soon. 

There are a few remedies that can be tried for these hill-climbing problems. One solution to the 
problem of local maxima is to backtrack (Chapter 2, Section 2) to an earlier node and try a different 
direction. Consider paths that were almost taken (particularly with steepest-ascent hill climbing), 
and if a path led to a dead end, consider an alternate path. 

The plateau problem arises when many points in a neighboring region have similar values. The 
best way to deal with this problem is to try to get to a new region of the search space by applying 
the same rule several times; in this way, new and extreme values will be generated. 

Finally, by applying several rules at once, the search will be pushed into several directions. This 
will help to avoid the kinds of values that will lead to the ridge problem (see Figure 3.6c). Direction 
will be diversified early and often, thereby preventing the search from getting stuck.

Let us consider Figure 3.4 again: if it turns out that the selected path to node F (100) leads 
nowhere, we might return to node B and consider the alternate path, which takes us to node E 
(90)—assuming we have stored that value from the previous search. This would be an example 
of an attempted remedy to the local maximum problem that we discussed above. Likewise, if we 
choose to return to and explore node A (-30), which looked bad at first, we might take the search in 
new directions where our plateau-like problem seemed to exist. 

 3.3 THE BEST-FIRST SEARCH 
The problem with hill climbing is that it is a short-sighted greedy algorithm. Steepest-ascent 

hill climbing has a little more perspective because it compares possible successor nodes before 
making a choice; it is still, however, subject to the problems identified with hill climbing (the foot-
hills problem, the plateau problem, and the ridge problem). If we consider the possible remedies 
and formalize them somewhat, the result is the best-first search. The best-first search is the first 
intelligent search algorithm in our discussion that can make an impact on which nodes and how 
many nodes are explored in order to reach a goal node. Best-first search maintains a list of open and 
closed nodes, as do depth first search and breadth first search. The open nodes are nodes that are on 
the fringe of the search and might later be further explored. The closed nodes are nodes that will 
no longer be explored and will form the basis of a solution. Nodes on the open list are ordered by a 
heuristic estimate of their proximity to a goal state. Thus, each iteration of the search considers the 
most promising node on the open list and thereby brings the best state to the front of the open list. 
Duplicate states (e.g., states that can be reached by more than one path, but with different costs), 
are not retained. Instead, the least costly, most promising, and heuristically closest state to the goal 
state of the duplicate nodes is retained. 

As we can see from the above discussion and from the pseudocode for the best-first search in 
Figure 3.7, the most significant advantage of best-first search over hill climbing is that it can re-
cover from mistakes, false leads, and dead ends by backtracking to nodes on the open list. Children 
of nodes on the open list can be reconsidered, if alternate solutions are sought. The closed-node list, 
if traced in reverse order, represents the best solution found, by omitting dead-end states.

As described above, the best-first search maintains a priority queue for the open-node list. Recall, 
a priority queue has the features (1) that an element can be inserted, and (2) the maximum (or mini-
mum node) can be deleted. Figure 3.8 illustrates how best-first search works. Note that the efficiency 
of best-first search depends on the effectiveness of the heuristic measure(s) that are being used. 
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Good heuristic measures will quickly find a solution that could even be optimal. Poor heuristic 
measures will sometimes find a solution, but even when they do so, such solutions are usually far 
from optimal. 

Using Figure 3.9, we return to the problem of driving from Brooklyn College to Yankee Sta-
dium. We will trace the best-first search algorithm and its solution and then consider what this solu-
tion means in real-world terms—in other words, does it work?

//Best-First Search

BestFirstSearch(Root_Node, Goal)
{
Create Queue Q
Insert Root_Node to Q
While Q_Is_not_Empty)
{
      G = remove from Q
      If (G = goal ) return path from root_node to G  // successes
      While(G has child nodes){
       If (child is not inside Q)
      Insert child node to Q
        Else
    insert the child which has minimum value in to the Q,
       delete all the other nodes.
      } // end of second whlie
 sort Q by the value   // smallest Node at the top
}// end of first while
return failure
}

Figure 3.7 
Pseudocode for the best-first search.

H (3)F (1)

C (4)

A (18)

G1 (0) K (34) G2 (0)N (8)M (18)L (21)J (31)I (21)

1. Open = [A]; Closed []
2. Open = [C, B]; Closed [A]
3. Open = [F, H, B]; Closed [C, A]
4. Open = [H, B, L, M]; Closed [F, C, A]
5. Open = [G2, N, B, L, M]; Closed [H, F, C, A]

E (12)D (9)

B (14)

Figure 3.8
The best-first search. At each level, the node with the lowest estimated cost to a goal is kept on the open queue. Earlier nodes kept on the open-node list might later 
be explored. The “winning” path is A→C→F→H. The search will always find a path if it exists. 
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Abbreviations: 

BQE  = Brooklyn-Queens Expressway
BB  = Brooklyn Bridge
WB  = Bronx-Whitestone Bridge
MD  = Major Deegan Expressway
PP  = Pelham Parkway

Brooklyn College to Yankee 
Stadium: 36 minutes (20.87 
miles)

Brooklyn Bridge to Yankee Sta-
dium: 25 minutes (8.5 miles) 
Brooklyn-Queens Expressway to Yankee Stadium: 24 
minutes (16.8 miles)

Brooklyn College to Bronx-Whitestone Bridge: 35 min-
utes (17.6 miles) 

Abbreviations: 

BC  = Brooklyn College
BQE  = Brooklyn-Queens Expressway
BB  = Brooklyn Bridge
WB  = White Stone Bridge
MD  = Major Deegan Expressway
YS  = Yankee Stadium

sidebAr

The Mythical Man-Month
A good analogy with regard to why best-first search 
is not optimal, or might be far from optimal, can be 
taken from the housing industry in the United States 
at the time of this writing (January 2008). When 
the housing market was peaking several years ago, 
many people elected to improve their homes rather 
than move and buy another home. In such instances, 
a contractor would usually provide a homeowner (or 
the parties responsible for a large construction opera-
tion such as an apartment building or hotel) with an 
estimate of the cost and time involved for the proj-
ect. Often, contractors’ projects have been known to 
overrun the estimated costs (both in terms of dollars 
and time). So, when the renovated homes were 
finally completed (long past their scheduled date) 
it turned out that the housing market had severely 
deflated, and the homes, despite the renovations, 
in most cases had lower market value than they’d 
had before the renovations. As you would expect, 
many home owners were left very disappointed—
some without a home to move back into, because, 
given unexpected costs that might have arisen, the 
construction project was never completed! So it is 
important to have a good heuristic measure and for it 
to be as accurate as possible.

BB

PP

2.0

2.2

1.5

2.0
4.9

5.0

WB

17.6MD

MD2

MD1

Yankee Stadium

6.0

14.6

BQE

Brooklyn
College
(Orgin)

2.2

3.7

Figure 3.9 
Using the best-first search to determine a good route to Yankee Stadium from Brooklyn College at 5:30 pm.

note: estimated travel times 
(and distances) from Map-
Quest are as follows:
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As we can see in Table 3.1, the best-first search returns the solution BC (null 0), BQE (3.7), 
BB (2.2), MD (8.5), YS (2.2) which is a total of only16.6 miles, and is even shorter (in distance) 
than the MapQuest solution. Little wonder, however, that the MapQuest solution, which was trying 
to minimize on time (not distance) did not offer this route. Instead it offered a slightly longer route 
that entailed traveling on the Brooklyn Queens Expressway (BQE) rather than the shorter route, 
which travels through midtown Manhattan. 

 3.4 THE BEAM SEARCH
The beam search has its name because when the best W nodes (e.g., W = 2 as in Figure 3.10) are 

expanded at each level, they form a kind of thin, focused “beam of light” as illustrated in Figure 3.11. 
In beam search, investigation spreads through the search tree level by level, but only the best 

W nodes are expanded. W is called the beam width.
The beam search is an attempted improvement on a breadth first search by reducing the memo-

ry costs from exponential to linear, dependent on the depth of the search tree. A breadth first search 
is used to build its search tree but then splits each level of the search tree into slices at most W states 
where W is the beam width. 6

The number of slices (of width W) is limited to one at each level. 

When beam search expands a level, it generates all successors of the states’ current 
level, sorts them in order of increasing heuristic values (from left to right), splits 

Table 3.1
The best-first search algorithm finds a solution for driving the shortest distance from Brooklyn College to Yankee Stadium. 

Loop  
Number

Closing  
Vertex

Open List Closed List

1 BC BC (null 0 + 3.7) WB (17.6)
2 BQE BB(2.2), MD (14.6), WB(17.6) BC (null 0), BQE(3.7)
3 BB MD(8.5), MD (14.6), WB(17.6) BC (null 0), BQE(3.7), BB(2.2)
4 MD YS (2.2), MD (14.6), WB(17.6) BC (null 0), BQE(3.7), BB(2.2), MD(8.5)
5 YS MD (14.6), WB(17.6) BC (null 0), BQE(3.7), BB(2.2), MD (8.5), YS (2.2)

Let W = 2 here.

Both B and C will be expanded
A:18

C:4B:14

A:18

C:4

Each of F and H will be
expanded. Nodes D and E are
pruned

Nodes N and G
Expanded;
Goal G Found

B:14

D:9 E:12 F:1

L:21 M:8 N:8 G:0

H:3

Figure 3.10 
The beam search: best W (2 in this case) nodes expanded at each level. Goal (G) found.

Figure 3.11 
The beam search—can look like a beam of light.
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them into slices of at most W states each, and then extends the beam by storing the 
first slice only. Beam search terminates when it generates a goal state or runs out of 
memory (ibid.).

Furcy and Koenig studied variations on the “discrepancy” and learned that using larger beams 
enabled the discovery of shorter paths, without running out of memory. A discrepancy in this con-
text was the choice of successor nodes that did not return the best heuristic values from left to right. 
Recall that one of the problems with beam search is that if too thin a beam (of size W) is chosen, 
there is a good chance that a potential solution will be missed in the heuristic decision-making pro-
cess. Furcy and Koenig found that use of the beam search with limited discrepancy backtracking 
could facilitate solution of some difficult problems. 

 3.5 ADDITIONAL METRICS FOR SEARCH ALGORITHMS
In Chapter 2, we introduced several metrics to evaluate search algorithms. Recall that a search 

algorithm is complete if it always finds a solution when one exists. Breadth first search (bfs) is 
complete when the branching factor of a search space is finite. A search algorithm is optimal if it 
returns the lowest-cost path from among all possible solutions. When one is assured that the path 
cost is a nonincreasing function of tree depth, then bfs is also optimal. Space and time complex-
ity were also defined; each of the blind search algorithms presented in the previous chapter were 
shown to exhibit exponential time complexity in the worst case. Furthermore, bfs was plagued by 
exponential space requirements. Consult Table 3.2. 

Branching factor is denoted by b; the depth of a solution by d, the maximum depth of the 
search tree by m; and the depth limit is denoted by l. All search algorithms described in this chapter 
employ heuristics. These rules of thumb are intended to guide a search toward promising portions 
of the search space and thereby reduce search time. Suppose that, at some point in a search, our 
algorithm is situated at an intermediate node n. The search began at start node “S” and will hope-
fully culminate at a goal node “G.” At this point in the search, one might wish to calculate f(n)—the 
exact cost of an S to G path that passes through n; f(n) has two components: g(n), the actual distance 
traveled from S to this node n, and h*(n), the remaining distance to G via a shortest path. In other 
words, f(n) = g(n) + h*(n). We have a problem. We are at node n and are searching for a shortest 
path to G. How can we possibly know the exact cost—h*(n)—of this path, when the path has not 
yet been discovered? We cannot! Hence we must settle for h(n), which is an estimate of remaining 
distance. If this estimate is to be useful, then it must be an underestimate, or, h(n) ≤ h*(n) for all 
nodes n. When this is so, h(n) is said to be an admissible heuristic. Hence, our evaluation function 

Table 3.2
Comparing the complexity of various search algorithms.

Criterion Breadth-
First

Uniform-
Cost

Depth- 
First

Iterative 
Deepening

Depth- 
Limited

Bidrectional  
(if applicable)

Time bd bd bm b1 bd bd/2

Space bd bd bm b1 bd bd/2

Optimal? Yes Yes No No Yes Yes
Complete? Yes Yes No Yes, if 1 ≥ d Yes Yes
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is f(n) = g(n) + h(n). Recall the 3-puzzle from Chapter 2. There are two examples of admissible 
heuristics for this puzzle: 

1. h1 – the number of tiles out of place, and
2. h2 – the sum of the distances that each tile must travel to reach the goal state. 

How can one be sure that these heuristics are admissible? Can the reader think of any other 
admissible heuristics for this puzzle? 

A search algorithm is said to be admissible if it always results in an optimal solution whenever 
some solution does indeed exist (note that in Chapter 2 we used the term optimal in this context). 
We will denote the actual cost of an optimal solution by f* where: f*(n) = g*(n) + h*(n). We have 
already commented that h*(n) is an elusive quantity, and instead we must settle for a heuristic 
estimate h(n), where h(n) ≤ h*(n). Similarly, obtaining the optimal “S to n” path is no easy task, 
and we must often employ g(n), which is the actual cost from S to this node, n. Naturally, it is pos-
sible that g(n) ≥ g*(n). If the search algorithm for the previously cited trip to Madison, Wisconsin, 
were admissible, then we would be certain that the selected path to Madison is optimal. However, 
an admissible algorithm does not guarantee shortest paths to intermediate nodes (in this example, 
cities such as Cleveland, Detroit, and Chicago). A search algorithm is said to be monotonic if it is 
guaranteed to produce the optimal path to every intermediate node as well. A monotonic algorithm 
for our NYC to Madison junket would provide optimal tours for all intermediate nodes as well. 
Intuition will perhaps lead the reader to conclude (correctly) that a monotonic search algorithm 
is always admissible. You are asked to consider the converse of this assertion: “Is an admissible 
search algorithm always monotonic?” (Justify your answer!). 

We categorize search heuristics based on the amount of effort they are likely to save us. Sup-
pose that one has two heuristics, h1 and h2 for some problem. Suppose further that h1(n) ≤ h2(n), 
for all nodes n. Then h2 is said to be more informed than h1; h2(n) being greater than or equal to 
h1(n) means that h2(n) is closer to (or at least as close to) h*(n), the exact cost to the goal as h1(n). 
Consider the two heuristics previously cited for the 3-puzzle. We will demonstrate shortly that h2, 
which corresponds to the sum of the distances that each tile must travel, is more informed than h1, 
which merely considers the number of tiles out of place. 

In Chapter 2 we showed how to solve the 4-Queens Problem by using backtracking. Many ten-
tative solutions were considered and then rejected. Such algorithmic approaches are aptly termed 
tentative. These are to be contrasted with methods that examine only one path, such as “plain va-
nilla” hill climbing. These latter approaches are referred to as irrevocable.

 3.6 INFORMED SEARCH (PART 2) – FINDING AN OPTIMAL 
SOLUTION 

The family of searches in Section 2 had one attribute in common: they each employed a heu-
ristic measure of remaining distance to the goal in order to guide their progress. We now turn our 
attention to a collection of search algorithms that look backward—backward in the sense that dis-
tance from the start node (i.e., g(n)), is either the entire path estimate or at least a major component. 
By including g(n) as part of the total estimated path cost, f(n), we are decreasing the likelihood that 
our search follows a less-than-optimal path to the goal.
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 3.6.1.  Branch and Bound
We refer to our first algorithm as “plain vanilla” branch and bound. 
This algorithm is often referred to in the literature as uniform-cost search. 7 Paths are devel-

oped in terms of increasing cost—more accurately, in terms of nondecreasing cost. The estimated 
cost of a path is simply: f(n) = g(n). No heuristic estimate of remaining distance is employed; or, 

equivalently, this estimate, h(n), is set to zero everywhere. The similari-
ty to breadth first search is apparent in that nodes closest to the start node 
are visited first; however, with branch and bound, cost values might as-
sume any positive real values. A major difference between these two 
searches is that bfs strives to find some path to the goal, whereas branch 
and bound endeavors to find an optimal path. With branch and bound, 
when a path to the goal is found, it is likely that this path is optimal. To 

ensure that the path found is indeed optimal, branch and bound continues generating partial paths 
until each has a cost greater than or equal to the best path to the goal found thus far. Plain vanilla 
branch and bound is shown in Figure 3.12.

The tree we have been using to illustrate our search algorithms is reproduced in Figure 3.13. 
Because branch and bound does not employ heuristic estimates, they are not included in this figure.

Figures 3.14(a–f) and 3.14(g) follow branch and bound as it pursues an optimal path to a goal. 
Observe that nodes are expanded in terms of increasing path length.

The search continues in (f) and (g) until every partial path has a cost greater than or equal to 21, 
the shortest path to the goal. See continuation of the branch and bound in Figure 3.14(g).

Branch and bound finds that the shortest path to a goal in Figure 3.14(g) is A to C to H to G2 
with a cost of 21. 

In Chapter 2, we discussed the Traveling Salesperson Problem (TSP) and demonstrated that a 
greedy-based algorithm was incapable of solving an instance of this problem. Figure 2.13 is repro-
duced for convenience as Figure 3.15. 

Suppose one visited an ice cream 
shop while on a diet—one might 
well forego the chocolate syrup and 
whipped cream and the “fancier” 
flavors and instead settle for plain 
vanilla ice cream.

//Branch and Bound Search.

Branch_Bound (Root_Node, goal)
{
Create Queue Q
Insert Root Node into Q
While (Q_Is_Not_Empty)
      {
      G = Remove from Q
      If (G= goal) Return the path from Root_Node to G;
      else
      Insert children of G in to the Q
      Sort Q by path length
      } // and while
Return failure
}

Figure 3.12
Plain vanilla branch and bound. 

A

4 11

B

15

12 10 18 16 6 3 1 7

13 4 3

D

I J G1 G2K L M N

E F H

C

Figure 3.13 
Our search tree without heuristic estimates. 
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Figure 3.14(a–f) 
(a) Start with root node A. Paths from root are generated. (b) Because B has the least cost, it is expanded. (c) Of three choices, C has  
the least cost, so it is expanded. (d) Node H has least cost, so it is expanded. (e) A path to goal G

2 
is discovered, but expanding to other  

branches is needed in order to see if there is a goal with less distance. (f) Both F and N nodes have a cost of 15; the leftmost node is expanded first. 
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We had assumed, in Chapter 2, that our salesperson lived in Xi’an and that he or she must visit 
each of the remaining four cities and then return to Xi’an, and must do so via a shortest tour. Con-
sider the tree depicted in Figure 3.16. 

g) A

4

B C

15 13

10

J L M N G2K

16 6 3 1 7

E F H

4 3

D19 17

29

Step 4 Step 2 Step 3 Step 1
33 21 18 15 21

11

Figure 3.14(g) 
The next four steps of the branch and bound algorithm. Step 1: The path 
to node N cannot be extended. Step 2: the next shortest path, A→B→E is 
extended; its cost now exceeds 21. Step 3: The paths to nodes M and N cannot 
be extended. Step 4: The least partial path with a cost of ≤ 21 is extended. Its 
cost is now 29 and exceeds the start ≥ goal path.

1518 km
914 km

Beijing

1134 km

1150 km

606 km

1539 km

Xi’an

Chengdu Hangzhou

1822 km

1061 km

Haerbin

Figure 3.15 
An instance of the Traveling Salesperson Problem—revisited.
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b)

Xi’an

Xi’an

c) Xi’an
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1518

B
2124

1539 2579
Hgz Hbn 1518

C
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Hbn
1134 1975

1061

914 1150 1975
C B Hgz Hbn

C B Hgz Hbn

C B Hgz Hbn

Figure 3.16 
The beginning of a branch and bound solution to the TSP. (a) From Xi’an, the first node to be visited is Chengdu at a cost of 606. (b) From Chengdu, the path to Beijing 
is selected. The path from Xi’an to Chengdu and then to Beijing has a total cost of 2124. (c) Branch and bound expands node B (at level 1) next, because Xi’an to 
Beijing with a cost of 914 is the shortest path. From Beijing we next go to Hungzhou. The cost of this Xi’an →Beijing →Haerbin partial path is 914+1061 = 1975 km.
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Branch and bound would begin by generating paths in terms of increasing (i.e., nondecreas-
ing) length. First, the path from Xi’an to Chengdu is developed, and then on to Beijing. Next, the 
path expands from Xi’an to Beijing, and then to Chengdu, and so on until an optimal tour has been 
found. 

The TSP is an example of a problem which is NP-complete. NP is an abbreviation for the class 
of problems that are solvable in polynomial time if guessing is permitted. P stands for the class of 
problems that are solvable in deterministic polynomial time (i.e., polynomial time when no guess-
ing is employed). The class P includes many familiar problems in computer science, such as sorting, 
determining if a graph G is Eulerian, in other words, if G possesses a cycle that traverses each edge 
once and only once (consult Chapter 6, “Knowledge Representation”), or finding a shortest path 
from vertices i to j in a weighted graph G (Chapter 2). NP-complete problems are the most difficult 
problems in the class NP. NP-complete problems seem to require exponential time (in the worst 
case) to solve. No one, however, has proven that polynomial time (i.e., deterministic polynomial 
time) algorithms do not exist for NP-complete problems. We know that P  NP. What is unknown 
is whether P = NP. This remains the most significant open question in theoretical computer science. 
NP-complete problems are all polynomial-time reducible to one another. That is, if a polynomial 
time algorithm were found for any NP-complete problem, then one would have polynomial time 
algorithms for all NP-complete problems. The class NP-complete also contains many well-known 
problems, such as the aforementioned TSP, the satisfiability problem in the propositional logic 
(Chapter 5, “Logic in Artificial Intelligence”), and the Hamiltonian problem (this topic is revisited 
in Chapter 6), in other words, determining if a connected graph G has a circuit that traverses each 
vertex once and only once. The pseudocode for branch and bound with underestimates is shown 
in Figure 3.17.
// Branch and Bound with Underestimates
B_B_Estimate (Root_Node, Goal)
{
Create Queue Q
Insert Root_Node into Q
While (Q_Is_Not_Empty)
      {
      G = Remove from Q
      If (G = Goal) return the path from Root_Node to G.
      else
      Add each child node’s estimated distance to current distance.
      Insert children of G into the Q
      Sort Q by path length   // the smallest value at front of Q
      } // end while
Return failure.
}

Figure 3.17 
Branch and bound with underestimates. Paths are generated in terms of their estimated overall length.

 3.6.2  Branch and Bound with Underestimates
In this section, we will augment branch and bound search with underestimates of remaining 

distance. Consult Figure 3.18 for our search tree.
Branch and bound search with underestimates is shown in Figures 3.19(a–d) and 3.19(e–f).
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By consulting Figures 3.18 and 3.19(a–d) and (e–f), one observes that paths are generated in 
terms of estimated overall length.

After confirming that it is not a goal, node A is expanded. From A, there is a choice of going to 
either of nodes B or C. The distance to B is 4, whereas the cost of C is 11. The estimated costs of 
paths from either B or C to some goal are 14 and 4 respectively. Therefore, the overall estimate of a 
path from the start node A, to some goal, passing through B is 4 + 14 = 18, whereas one that passes 
through C has an estimated cost of 11 + 4 = 15. As Figure 3.19(b) illustrates, branch and bound with 
underestimates first proceeds to node C. Continuing in this fashion, the search algorithm reaches 
the goal node G2 via a path of cost 21 (Figure 3.19(f)). As indicated in the figure, the search is not 
completed until partial paths with an estimated cost less than or equal to 21 have been extended. 

exAMple 3.1 the 3-puzzle revisited

We revisit the instance of the 3-puzzle provided in Chapter 2. This puzzle is 
solved by the two versions of branch and bound just discussed. Figure 3.20 
illustrates plain vanilla branch and bound, whereas branch and bound with 
underestimates is employed in the solution shown in Figure 3.21. Observe 
that plain vanilla branch and bound requires a search tree with four levels, in 
which 15 nodes are expanded. 

B:14

D:9

15

12 10 18

13 4

114
A:18

E:12 H:3

N:8M:18K:34J:31I:21 L:21 G2:0G1:0

F:1

C:4
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16 6 3 1 7

Figure 3.18 
Tree with both node-to-node distances (on the branches) and heuristic estimates to the goal (inside the nodes).
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Figure 3.19(a–d) 
Branch and bound search with underestimates. (a) A is not a goal; we continue. (b) In this 
search we went to C first, instead of B, which we had done in plain vanilla branch and bound.
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Figure 3.19(e–f) 
Bound and branch continues until all paths with an estimated cost ≤ 21 are extended. Step 1: The 
path A→C→F is extended to M. We are over 21. Step 2: A→C→H is extended to N; over 21. Step 
3: A→B is extended to D; over 21.
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Several observations are apparent:

 1. The estimated cost of a solution is set to the distance from the start node, 
i.e., f(n) = g(n). As stated, the estimate of remaining distance to some 
goal, h(n), is merely set to zero everywhere. 

 2. Because the cost of each operator (i.e., moving the blank in one of four 
directions) equals one, plain vanilla branch and bound appears similar 
to breadth first search. 

 3. In this initial version of the branch and bound algorithm, no effort has 
been made to suppress repeated nodes. 

 4. The leaf nodes on the bottom right portion of the search tree would  
ordinarily be expanded, unless the algorithm is modified for this  
application. 

On the other hand, Figure 3.21 demonstrates that branch and bound with 
underestimates requires a search tree wherein only five nodes have been 
expanded. It should be apparent that in general, branch and bound with under-
estimates is a more informed search algorithm than plain vanilla branch and 
bound. It should also be apparent that both of the branch and bound approach-
es are admissible. 
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Figure 3.20 
Plain vanilla branch and bound on an instance of the 3-puzzle.
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S

G

Cost 1 Cost 2

I I

Figure 3.22 
The Principle of Optimality. Optimal paths are 
constructed from optimal subpaths. Suppose 
that there are two paths from S to some 
intermediate node I. Path 1 has a cost equal 
to cost 1 and Path 2 has a cost equal to cost 
2. Suppose that cost 1 is less than cost 2. An 
optimal S to G path that passes through node I 
cannot possibly begin by taking the more costly 
path (path 2 with cost 2) to I. 
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Figure 3.21(a–c) 
Branch and bound with underestimates. The heuristic estimate of distance to the goal that is employed 
is the number of tiles out of place. We had commented earlier that this heuristic is admissible. Observe 
in (b) and (c) that by including g(n) in the estimated cost of a solution f(n), we penalize nodes that 
correspond to loops: the three nodes marked with * that represent loops are not expanded. 

 3.6.3 Branch and Bound with Dynamic Programming 
Suppose that, at some time in the future, interplanetary travel were to become common place, 

and suppose that one wanted a minimal cost trip (in terms of total distance traveled) from Earth to 
Mars. One would not begin the journey by first going from Earth to the moon and then from the 
moon to Mars. The wisdom in this small example is formalized by the Principle of Optimality: 
optimal paths are constructed from optimal subpaths. In Figure 3.22, an optimal subpath from S to 
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G that passes through some intermediate node I is composed of an optimal S to I path, followed by 
an optimal I to G path. 

The branch and bound algorithm that employs dynamic programming (i.e., that makes use of 
the Principle of Optimality) is shown in Figure 3.23.

This algorithm advises us as follows: If two or more paths reach a common node, only the path 
that reaches this common node with the minimum cost should be stored. (Delete the others!) Imple-
menting this search procedure on the instance of the 3-puzzle, we have been considering results in 
a search tree that resembles breadth first search (consult Figure 2.22 in Chapter 2). Retaining only 
the shortest path to each puzzle state will serve to suppress looping.

 3.6.4  The A* Search
The last incantation of branch and bound search is the A* search. This approach employs 

branch and bound with both estimates of remaining distance and dynamic programming. The A* 
algorithm is shown in Figure 3.24. 
//A* Search
A* Search (Root_Node, Goal)
{
Create Queue Q
Insert Root_Node into Q
While (Q_Is_Not_Empty)
      {
      G = Remove from Q
      Mark G visited
      If (G= goal) Return the path from Root_Node to G;
      Else
      Add each child node’s estimated distance to current distance.
      Insert the children of G which have not been previously visited into the Q
      Sort Q by path length
      } // end while
Return failure
}// end of A* function.

Figure 3.24
The A* search algorithm employs both heuristic estimates of remaining distance and dynamic programming. 

// Branch and Bound with Dynamic Programing
B_B_W_Dynamic_Programming (Root_Node, goal)
{
Create Queue Q
Insert Root_Node into Q
While (Q_Is_Not_Empty)
      {
      G = Remove from Q
      Mark G visited
             If this mode has been visited previously, retain only the shortest
path to G
      If (G= goal) Return the path from Root Node to G;
      Insert the children of G which have not been previously visited into the Q
      } // end while
Return failure
}// end of the branch and bound with dynamic programming function.

Figure 3.23 
Pseudocode for the branch and bound algorithm with dynamic programming. 
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exAMple 3.2: the 3-puzzle eMployed one lAst tiMe to  
illustrAte A* seArch 

The solution to this puzzle via the A* search is shown in Figure 3.25.

Observe that the A* search in Figure 3.25 that employs Manhattan distance as 
a heuristic is more informed than the branch and bound search in Figure 3.21 
that used a number of tiles out of place as a heuristic estimate of remaining 
distance. 

 3.7 INFORMED SEARCH (PART 3) –  ADVANCED SEARCH 
ALGORITHMS

 3.7.1 Constraint Satisfaction Search
 The technique of problem reduction is another important approach in AI. That is, to solve a 

complex or larger problem by identifying smaller manageable problems (or subgoals), which you 
know can be solved in fewer steps. 

For example, Figure 3.26 shows the “Donkey Sliding Block” Puzzle. It has been known for 
over 100 years and is presented in the wonderful book Winning Ways for Your Mathematical Plays . 8

The term Manhattan 
distance is employed 
because a tile must travel 
north, south, east, and 
west similar to how a 
taxi cab would maneuver 
through the streets of 
Manhattan. 
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Figure 3.25 
A* search that employs total Manhattan distance as the heuristic estimate. Refer to 
the node marked with a * in level 3 of this tree. Tile 1 must travel one square left; 
tile 2 must move one square east and one square north (or equivalently one square 
north and then one square east) and tile 3 needs to travel one square south. Hence 
the sum of the Manhattan distances, h(n) = 1 + 2 + 1 = 4 for this node. 
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Subject to the constraints on the movement of “pieces” in the slid-
ing block puzzle, the task is to slide the Blob around the Vertical Bar 
with the goal of moving it to the other side. The Blob occupies four 
spaces and needs two adjacent vertical or horizontal spaces in order to 
be able to move, whereas the Vertical Bar needs two adjacent empty 
vertical spaces to move left or right, or one empty space above or below 
it to move up or down. The Horizontal Bars’ movements are comple-
mentary to the Vertical Bar. Likewise, the circles can move to any emp-
ty space around them in a horizontal or vertical line. For this problem to 
be solved, a relatively uninformed state-space search can result in over 800 moves, with plenty of 
backtracking necessary.2 By employing problem reduction, resulting in the recognition of the sub-
goal that needs to be solved before the overall puzzle can be solved: you must get the Blob on the 
two rows above or below the vertical bar (so that they can pass each other); it is possible to solve 
this puzzle in just 82 moves!   

Only 82 moves is quite a reduction, and it is based on understanding the constraints of the prob-
lem solution. The message here is that it is usually better to spend extra time trying to understand a 
problem and its constraints before you begin the problem-solving process. 

 3.7.2  AND/OR Trees
Another well-known technique for problem reduction is called AND/OR trees. Here the goal 

is to find a solution path in a given tree by applying the following rules:  
A node is solvable if

 1. It is a terminal node (a primitive problem),
 2. It is a nonterminal node whose successors are AND nodes that are all solvable, or
 3. It is a nonterminal node whose successors are OR nodes and at least one of them is solv-

able.
Similarly, a node is unsolvable if

 1. it is a nonterminal node that has 
no successors (a nonprimitive 
problem to which no operator 
applies),

 2. it is a nonterminal node whose 
successors are AND nodes and 
at least one of them is unsolv-
able, or

 3. it is a nonterminal node whose 
successors are OR nodes and all 
of them are unsolvable. 

In Figure 3.27, nodes B and C serve 
as exclusive parents to subproblems EF 
and GH, respectively. One way of view-
ing the tree is with nodes B, C, and D 

Vertical

Blob

Figure 3.26 
Constraint satisfaction, problem reduction, and the 
Donkey Sliding Block Puzzle.
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C D

Figure 3.27
AND/OR tree representing the choice of a “date” with Bicycle and a Picnic, Dinner and a Movie, or a Nice 
Restaurant.
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serving as individual, alternative subproblems representing OR nodes. Node pairs E & F and G & 
H, respectively, with curved arrowheads connecting them, represent AND nodes. That is, to solve 
problem B you must solve both subproblems E and F. Likewise, to solve subproblem C, you must 
solve subproblems G and H. Solution paths would therefore be: {A→B→E→F}, {A→C→G→H}, 
and {A→D}.  In this case, we are representing three distinct activity scenarios. In one, if you are 
going bicycling {A→B} and on a picnic, you must check the bikes {E} and get the food ready 
{F}. Or, if you are going out to dinner and a movie {A→C}, you must pick a restaurant {G} and a 
cinema {H}. Or, you could just go out to a nice restaurant {A→D}.

In the special case where no AND nodes occur, we have the ordinary graph occurring in a state-
space search. However, the presence of AND nodes distinguishes AND/OR trees (or graphs) from 
ordinary state structures, which call for their own specialized search techniques. Typical problems 
tackled by AND/OR trees include games or puzzles, and other well-defined state-space goal ori-
ented problems, such as robot planning, movement through an obstacle course, or setting a robot 
the task of reorganizing blocks on a flat surface.2

 3.7.3 The Bidirectional Search
Forward search as described heretofore is known to be a costly process, which can grow expo-

nentially. The idea of bidirectional search is to find a solution path by searching forward for a goal 
state and searching backward 
from a known goal state toward 
a start state.  Figure 3.28 illus-
trates the essence of bidirection-
al search. The search terminates 
when the two subpaths intersect. 
The technique, combining for-
ward and backward reasoning 
approaches, was developed by 
Pohl 9 and is known to expand 
only about ¼ as many nodes as 
a unidirectional search.

Pohl’s original idea regard-
ing the bidirectional search was 
brilliant, barring that he incor-
rectly thought that his algorithm 
(known as BHPA, or tradi-
tional front to end bidirectional 
search) would typically have the 
search frontiers pass each other. 
He described this possibility in 
terms of what came to be called 
the Missile Metaphor: a missile 
and an anti-missile targeted to-
ward each other that then pass 
each other. 

Start

S′

T′

S′ ∩ T′ is a Potential Solution Space.                   indicates More Search
Branches

Figure 3.28 
Bidirectional search involves both a forward search from a start node (S) and backward from a goal node (T), hoping that 
the paths will meet at S’  T’. 
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de Champeaux and Saint 10 demonstrated that the long-held belief that the algorithm is af-
flicted by the Missile Metaphor Problem, is unfounded. They developed a new generic approach 
uniquely applicable to the bidirectional search that can be used to dynamically improve heuristic 
values. Their empirical findings also suggested that the bidirectional search can be performed very 
efficiently, with limited memory demands, a known deficiency of the standard approach. 2

Consequently, wave-shaping algorithms were developed by de Champeaux and Saint 11 and 
de Champeaux, 12 and Politowski and Pohl 13 with the idea of steering the two search “wave fronts” 
towards each other. In contrast the BHPA and bidirectional search (BS*; developed by Kwa 14 to 
combat the inefficiencies of BHPA) methods, the main idea behind the work of Kaindl and Kainz 
was that it was unnecessary (and inefficient) to do heuristic front-to-end evaluations. Their idea was 
to improve the efficiency of the BS* by 

 1. minimizing the number of switches of search direction (a version of the perimeter search), 
and

 2. adding a dynamic feature to the heuristic function of search in the opposite search direc-
tion of the front-to-end evaluation, an idea originally presented by Pohl.

The wave front approaches introduced above use front-to-front evaluations, or, evaluations 
that estimate the minimal cost of some path from the evaluated node on one search front to the 
nodes on the opposing front.9 “In fact, these algorithms achieve large reductions in the number 
of nodes searched compared with algorithms that perform front to 
end evaluations. However, they are either excessively computation-
ally demanding, or they have restrictions on the solution quality” 11  

(p. 284–85).  
Kaindl and Kainz demonstrated, both theoretically and experimen-

tally, that their improvements to the bidirectional search were valid and 
that the bidirectional search itself is more efficient and risk-free than 
previously thought. The “traditional” bidirectional search, as Kaindl 
and Kainz called it, attempted to develop solutions by storing nodes from both frontiers as the re-
sult of forward and backward searches. The traditional approach would use a best-first search and 
run into the problems of exponential storage requirements as the two frontiers tried to “find each 
other.” This is known as the frontiers problem.

Instead, the “nontraditional approach to bidirectional search” developed by Kaindl and Kainz 
would store nodes of only one frontier, using a hashing scheme, because “it is possible to search in 
only one direction first storing nodes, and then to search in the other direction.” This comprises a 
perimeter search.15, 16

In perimeter search, a breadth first search generates and stores all the nodes around t 
up to a predetermined (and fixed) perimeter-depth. The final frontier of this breadth 
first search is called the perimeter. After this search is finished and the nodes are 
stored, a forward search starts from s, targeting all of the perimeter nodes 11 (p.  291).

The forward search, depending on the problem and available storage, can be performed by a 
number of search algorithms including A* and a variant of the iterative deepening dfs (See Section 
2.4.4), among others. (See Figure 3.29)

In a nutshell, the improvement of the nontraditional bidirectional search developed 
by Kaindl and Kainz is that search is mainly in one forward direction to a frontier using a 

The frontiers problem of the 
bidirectional search was thought 
to occur as a result of the costs of 
maintaining in memory the possible 
solution paths from two directions.
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perimeter search. Key information is stored, 
and then backward search is performed from 
the goal to see if the stored forward path can 
be met.  Front-to-end methods (as opposed to 
front-to-front methods) are more efficient for 
this approach. 

In more recent work   Kose tested the effec-
tiveness of the bidirectional search   by applying 
it   to the Donkey puzzle and other problems.17 He 
compared its CPU time and memory usage with 
those of conventional forward direction searches. 
The bidirectional search was implemented as a 
frontier search, with a breadth first search storing 
all nodes to a specified depth, followed by a heu-
ristic search in the reverse direction—from the 
goal state to nodes—in this frontier. 

One search from a start node s toward a 
goal node t, while the other search starts from 
a goal node t, towards a start node, s. The two 
frontiers begin to search while S′∩T′=Ø.  Af-
ter the frontiers meet, S′∩T′ is no longer emp-
ty (S′∩T′ ≠ Ø), a path is found. The second 
level of bidirectional search is to find an opti-
mal path in the set S′∩T′. This second level of 
search adds more complexity to bidirectional 
search. 

s = the start node.
t = the goal node.
S = the collection of nodes reached from s.
T = the same with respect to t.
S′ = the collection of nodes that are neither in S nor in T but are direct successors of nodes in S. 
T′ = the same as S′ with respect to T.
In CPU time and memory usage, the bidirectional search was more efficient than other 

search algorithms with regard to finding an optimal solution to the Donkey sliding block 
puzzle with the fewest nodes generated and explored in the search space. We also varied 
the depth of the frontier, expecting the search algorithm to become less efficient when the 
breadth first search was allowed to continue for too many levels. The best results were 
achieved with a frontier of 30, mainly because in the solution, the 2 × 2 square makes little 
progress for the first 30 moves, leading us to conclude that the heuristic search is a better 
option in the reverse direction from the goal state to a frontier of nodes at move 30. Further 
work intends to compare different programming paradigms with the bidirectional search 
for the solution to the Donkey puzzle.17
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Figure 3.29
The bidirectional search employs two A* searches in order to achieve a task.
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 3.8 CHAPTER SUMMARY

This Chapter introduces a number of intelligent search methods that have been the standards 
distinguishing AI methods from conventional computer science methods. Hill climbing is greedy 
and primitive, but sometimes can be “lucky” enough to concur with optimal approaches in steepest-
ascent hill climbing. More usually, hill climbing can be afflicted by three familiar problems—the 
foothills problem, the plateau problem, and the ridge problem. The more intelligent, preferred ap-
proach to searching is the best-first search, whereby the open-node queue is maintained for feed-
back with regard to how close to the solution a given path may be.  The beam search offers a more 
focused view whereby a narrow path can be pursued toward a solution. 

Section 3.5 introduces four very important metrics for assessing the effectiveness of heuristics, 
including admissibility, which occurs when h(n) is an effective and consistent underestimate of the 
distance to a solution. A search is monotonic if all the intermediate stages (nodes), are consistently 
minimal compared with other nodes for the “smaller” trips.  A heuristic, h(2) is said to be more 
informed than a heuristic h(1), when it is consistently closer to the exact cost to a goal, h*(n). Tenta-
tive approaches offer a number of alternatives for evaluation, whereas irrevocable approaches offer 
no alternatives. 

Section (3.6) focuses on the discovery of optimal solutions. The branch and bound search 
explores partial paths until every partial path has cost greater than or equal to the shortest path to a 
goal. Notions of NP-completeness, polynomial time reducibility, and the satisfiability problem are 
also introduced. Branch and bound search with underestimates is a more informed way to achieve 
optimality. Finally, the branch and bound search with dynamic programming, employing memory 
of shortest paths found so far—another way of attaining optimality—is explored. The A* algorithm 
(Section 3.6.4) achieves optimality by employing both underestimates and dynamic programming. 

Section 3.7.1 introduces the notion of problem reduction by employing constraint satisfaction 
search.  It is considered with respect to the Donkey Sliding Block Puzzle. In Section 3.7.2, we 
explain how AND/OR trees are another way that knowledge can be used to effectively split up and 
reduce a problem space.  

The bidirectional search offers an entirely new perspective by employing both forward and 
backward search to and from a goal state.  Its efficiency is considered, and possible problems and 
remedies, such as the frontiers problem, the Missiles Metaphor, and wave-shaping algorithms are 
also presented.  Improvements to the bidirectional search via the research of Kaindl and Kainz are 
also presented.11 Erdal Kose contributed material related to his thesis work for Section 3.7.3. 17

In the next chapter, we will use the heuristics developed above to play simple two-person 
games such as Nim and tic-tac-toe.

Questions for Discussion

 1. What distinguishes heuristic search methods from those discussed in Chapter 2?

  a. Give three definitions of heuristic search.

  b. Give three ways heuristic information can be added to a search. 

 2. Explain why hill climbing would be classified as a greedy algorithm. 

 3. Explain how steepest-ascent hill climbing can also provide an optimal solution.
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 4.  Why is the best-first search more effective than hill climbing?

 5. Explain how beam search works.

 6. What does it mean for a heuristic to be admissible?

  a. How does admissibility relate to monotonicity?  

  b. Can there be monotonicity without admissibility? Explain. 

 7. What does it mean for a heuristic to be more informed than another heuristic?

 8. What is the idea behind the branch and bound search?

 9. Explain why underestimates are likely to result in better solutions.

 10. a. What is the notion of dynamic programming?  

  b. Describe the Principle of Optimality.

 11. Why should the A* algorithm be better than branch and bound with underestimates or branch 
and bound with dynamic programming?

 12. Explain the ideas behind the constraint satisfaction search and how it might apply to the 
Donkey Puzzle.

 13. Explain how AND/OR trees can be used to divide a search problem. 

 14. Describe how the bidirectional search works.  

  a. How is it different from the other techniques discussed in the chapter? 

  b. Describe the frontiers problem and the Missiles Metaphor. 

  c. What are wave-shaping algorithms? 

Exercises

 1. Give three examples of heuristics and explain how they play a significant role in

  a. your day-to-day life, and 

  b. the problem-solving process for some challenge that faces you.

 2. Explain why hill climbing is called a “greedy algorithm.” 

  a. Describe some other algorithms that you know that are “greedy.”

  b. Explain how steepest-ascent hill climbing is an improvement over simple hill climbing.

  c. How does the best first search improve over hill climbing?

 3.  Suggest an admissible heuristic, not mentioned in the text, for solving the 3-puzzle.

  a.  Employ your heuristic to conduct an A* search to solve the instance of the puzzle 
presented in this chapter.

  b. Is your heuristic more or less informed than the two heuristics that are presented?
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 4. a. Suggest an admissible heuristic for the Missionaries and Cannibals Problem that is robust 
enough to avoid unsafe states. 

  b.  Is your heuristic informed enough to appreciably reduce the search-base explored by an 
A* search?

 5. a. Provide a heuristic that is appropriate for graph coloring. 

  b.  Employ your heuristic to find the chromatic number of the graph in Figure 2.41 in 
Chapter 2.

 6.  Consider the following variation of the n-Queens Problem: 

  If some of the squares that would be attacked by the placement 
are obstructed by the placement of pawns on an n x n chessboard, 
can more than n-Queens be placed on the partial board that 
remains? For example, if five pawns are added to a 3 × 3 
chessboard, then four non-attacking Queens may be placed on 
the board (Figure 3.30).

 7. Use both the “plain vanilla” branch and bound, and branch and 
bound with dynamic programming, to get from the start node (S) 
to the goal node (G) in parts (a) and (b) of Figure 3.31. When all 
else is equal, explore nodes in alphabetical order. 

 8. a.  Develop an admissible heuristic to solve the Maze Problem 
from Chapter 2 (Exercise 13).

  b.  Employ your heuristic to conduct an A* search to solve this 
problem.

 9. a. Suggest an admissible heuristic for the Water Jug Problem.

  b.  Employ your heuristic to conduct an A* search to solve the 
instance of this problem presented in Chapter 1.

 10. Recall that in Chapter 2 we posed the Knight’s Tour problem, in 
which a chess Knight is to visit each of the n × n squares on a 
chessboard. The challenge is to start on a given source square on a 
full 8 × 8 chess board (say (1,1)), and to find a sequence of moves 
that visits every square on the board once and only once, returning 
to the source square on that last move. 

  a.  Starting on the (1,1) square try to solve the Knight’s Tour 
Problem (hint: you will perhaps find that this version of the 
problem requires excessive memory and so you might find it 
useful to identify a heuristic that will help guide the search. (See b. below.)

  b.  Try to identify a heuristic that will help guide the first-time Knight’s Tour Solver to a 
correct solution. 

Q QP

Q QP

P pP

Figure 3.30 
Four Queens on 3 × 3 Chessboard with five Pawns 
strategically placed. How many non-attacking Queens may 
be placed on a 5 × 5 chessboard if one has 3 Pawns at 
one’s disposal? 18  
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Figure 3.31 
Getting to the goal using branch and bound.
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 11. Write a program to apply the primary heuristic search algorithms, described in this chapter, 
to Figure 3.17. That is, hill climbing, beam search, best first search, branch and bound with 
and without underestimates, and  the A* algorithm.

 12.  In Chapter 2, we presented the n-Queens Problem. Write a program to solve the Eight-
Queens Problem by applying constraints that remove any row or column from consideration 
once a queen has been placed. 

13. In the 64 move solution to the Knight’s Tour Problem at some point it becomes necessary to 
abandon the heuristic you were asked to find in Problem 10.b.  Try to identify that point. ++

14. Develop a solution to the Donkey Sliding Block Puzzle (Figure 3.26 in this Chapter). It 
requires 81 moves at minimum. Consider a subgoal that may apply to developing this 
solutions.++
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The previous two chapters discussed search algorithms. This 
chapter introduces the rudiments of two-person games in 
which an adversary who attempts to hinder your progress is 
present. Algorithms for identifying optimal game strategies are 
provided. The chapter concludes with a discussion of the Iterated 
Prisoner’s Dilemma, a game that is useful for modeling societal 
conflicts.
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 4.0 INTRODUCTION
Chapter 4 continues the discussion of search methodologies, with an important variation. In 

Chapter 2, “Uninformed Searches,” and Chapter 3, “Informed Search,” you examined problems 
or puzzles that had a specified start state and goal state; you used operators to transform problem 

states and to help you eventually reach the goal. 
The only obstacle to your progress was the im-
mensity of the associated state space. 

Game playing introduces an additional chal-
lenge: an adversary who is trying to impede your 
advancement. Nearly all games include one or 
more opponents who are actively trying to de-
feat you. In fact, much of the excitement in game 
playing—whether in a friendly card game or a 
tension-filled night of poker— is derived from the 
risk of losing. 

Many people experienced game-playing ses-
sions at the Chinatown Fair, a small amusement 
park on Mott Street in Manhattan’s Chinatown. 
In a small booth poised next to a huge electronic 
tic-tac-toe board, stood the two-foot tall oppo-
nent: the Chinatown Chicken. See Figure 4.1. The 
chicken always moved first, indicating its move 
by tapping its beak against the board. On a good 
night, many people would settle for a draw in the 
game; most of the time the chicken would walk 
away victorious. 

You might realize that it was a computer pro-
gram and not a chicken that was matching wits 
with the game players.

In this chapter we will explore the algorithms 
that enable a computer to play two-person games such as tic-tac-toe and Nim. 

Tic-tac-toe, also known as naughts and crosses, is a game played by two individuals on a  
3 × 3 grid. The players, usually identified as X and O, alternate moves as they attempt to align three 
of their symbols on the same row, column, or diagonal. A sample game is shown in Figure 4.2. 

 4.1  GAME TREES AND MINIMAX EVALUATION
To evaluate the effectiveness, or “goodness,” of a move in a game, you can pursue that move 

and see where it leads. In other words, you can play “what if  ” to ask, “If I make this move, how will 
my opponent respond, and then how will I counter?” After charting the consequences of a move, 
you can evaluate the effectiveness of the original move. You are doing this to determine whether a 
move improves your chances of winning the game. You can use a structure called a game tree for 
this evaluation process. In a game tree, nodes represent game states and branches represent moves 
between these states. A game tree for tic-tac-toe is shown in Figure 4.3.

Figure 4.1 
Chinatown Chicken.

Some chickens have indeed been trained to play tic-tac-
toe without electronic help. For training details, search 
the Web using Boger Chicken University in your favorite 
search engine. You can also search for or visit the 
Tropicana in Atlantic City or the Trump 29 Casino in Palm 
Springs, which both feature chickens playing tic-tac-toe. 
(Although you should first finish reading this chapter).

Figure 4.2
Sample game of tic-tac-toe in which X wins. One new move is made in each  figure, from 
left to right.
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Original board position
“X” moves �rst

 
Figure 4.3 
Game tree for tic-tac-toe.

As you examine this game tree, keep a few 
points in mind: First, the tree in Figure 4.3 shows 
only the first two moves and is not complete. A 
game of tic-tac-toe can last anywhere from five 
to nine moves, depending on the relative skill of 
the players. In fact, there are 39 possible games of 
tic-tac-toe. This is another example of combina-
torial explosion, which you first encountered in 
Chapter 2, when enumerating puzzle states. Re-
call that the total number of ways in which some event can occur, or the number of possible states 
for a puzzle or game, can grow exponentially. 

With present-day computer speeds, which are about several hundred million instructions per 
second, you can completely enumerate all possible games of tic-tac-toe and, hence, it is always pos-
sible to accurately determine the goodness of a move in this game. On the other hand, it has been 
estimated that the total number of distinct (good and bad) chess games is about 10120. In compari-
son, experts say there are 1063 molecules in the universe.

With games of greater complexity, the main challenge in evaluating moves is the ability to look 
ahead as far as possible and then apply a heuristic evaluation of game positions, which involves 
estimating the goodness of the current state based on factors you believe will contribute to a win, 
such as the number of opponent’s pieces captured, or center control. More complex games have 
more possible moves at each juncture, which makes charting and evaluating moves more costly in 
terms of computing time and space, because the game tree explored will be larger. 

Referring again to Figure 4.3, notice that symmetry has been employed to greatly reduce the 
number of possibilities. In this context, symmetry means solutions that are equivalent. For ex-
ample, follow the path where the first move of X is to the center square. This node in the game tree 
could have any one of eight descendants, one for each position where an O could be placed. How-
ever, the two nodes that do appear, where O is in the upper-left or upper-center position, represent 
two distinct equivalence classes. An equivalence class is a set of elements that are viewed as the 
same. For example, 2

4  and 4
8  are equivalent to 1

2  and, hence, are in the same equivalence class. 
If you are familiar with discrete math or abstract algebra, you know that two game positions are 
equivalent if an element of a symmetry group maps one position into the other. A symmetry group 
is the set of physical motions that leave an object unchanged. For example, an equilateral triangle 
can be rotated 0°, 120°, or 240° (clockwise), or flipped about each perpendicular bisector. 

Refer to the end-of-chapter exercises for the role of symmetry in game-tree enumeration. For 
now, note that an O in the upper-left corner, as shown in Figure 4.4a, is equivalent to an O in any 
of the other three corners. This is so because each game state on the right can be obtained by either 
rotating or flipping the one shown on the left.

Even if you accounted for increases in computer 
speeds over the next 5 billion years, it is still 
unclear whether complete enumeration for the 
game of chess could be accomplished before the 
earth’s inevitable demise, when the sun enters the 
red-giant category and expands perilously close to 
Earth’s present orbit.
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Similarly, the game position shown in Figure 4.4b is equivalent to the three other positions il-
lustrated. 

Is equivalent to

Figure 4.4a 
Equivalent positions with O in corner in tic-tac-toe. 

Is eqivalent to

Figure 4.4b 
Equivalent positions in tic-tac-toe.

 4.1.1 Heuristic Evaluation 
When a game tree has been expanded to the end of a game, measuring the goodness of a move 

is trivial. If the move resulted in a win, then it was good; if a loss ensued, it was not as good. Com-
binatorial explosion, however, prevents a complete evaluation for all but the most basic games. 
For more complicated games, you need to use heuristic evaluation. Recall that a heuristic is a set 
of guidelines that usually works to solve a problem. Heuristic evaluation is the process whereby 
a single number is attached to the state of a game; those states more likely to lead to a win are ac-
corded larger numbers. You can use a heuristic evaluation to reduce the number of computations 
required to solve a problem complicated by combinatorial explosion.

You can use heuristic evaluation to solve the game of tic-tac-toe. Let N(X) equal the number of 
rows, columns, and diagonals that X could possibly complete, as shown in Figure 4.5(a). N(O) is 
similarly defined for moves the O player can complete (see Figure 4.5(b)). 

When X is in the upper-left corner (with O in the adjacent space to the right), it can complete 
three possible moves: the leftmost column, and both diagonals. The heuristic evaluation of a game 
position E(X) is defined as N(X) – N(O). Hence, E(X) for the upper-left position illustrated in 
Figure 4.5 is 3 – 1 = 2. The exact number that a heuristic attaches to a game position is not that 
important. What does matter, however, is that more advantageous positions (better positions) are 

accorded higher heuristic values. Heuristics evaluation provides a 
strategy for dealing with combinational explosion. 

Heuristic evaluation provides a tool to assign values to leaf 
nodes in the game tree shown in Figure 4.3. Figure 4.6 shows the game 
tree again where the heuristic evaluation function has been added.

The X player would pursue those moves with the highest 
evaluation (that is 2 in this game) and avoid those game states that 
evaluate to 0 (or worse). Heuristic evaluation has permitted the X 
player to identify advantageous moves without exploring the entire 
game tree.

N(X) = 3 N(0) = 1

Figure 4.5
Heuristic evaluation in tic-tac-toe.
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We now require a technique so that these heuristic values can “percolate” upward so that all 
of this information can be used by the X player before she makes her first move. Minimax evalu-
ation will provide just such a technique. 

 4.1.2 Minimax Evaluation of Game Trees
In tic-tac-toe, the X player can use heuristic evaluation to find the most promising path to vic-

tory, the O player, however, can block that path in any move. A game between two experienced 
players will always end in a draw (unless one player makes a mistake). Instead of following the 
quickest path to victory, X needs to find the path that leads to victory even if O blocks it. Minimax 
evaluation is a technique that identifies such a path (when it exists), and is helpful in most two-
person games.

The two players in a two-person game are traditionally referred to as Max and Min, with Max 
representing the player who attempts to maximize the heuristic evaluation and Min representing 
the player seeking to minimize it. Players alternate moves, with Max generally moving first. As-
sume that heuristic values have been assigned to each of the moves possible for any player in a 
given position. Also assume that for any game (not 
necessarily tic-tac-toe), each position has only two 
possible moves. See Figure 4.7.

The value of the Max node is the maximum of 
the values in either of its immediate successor nodes; 
hence, the value of the Max node shown in Figure 
4.7(a) is 5. Keep in mind that Max and Min are op-
ponents. A move that is good for Max is bad for Min. 
Additionally, all values in a game tree are considered 
from Max’s vantage point. The Min player always 
makes the move with the minimum value attached to 
it, because the Min player is trying to minimize the value that accrues to Max. So the value of the 
Min node shown in Figure 4.7(b) is 1, because this is the minimum of the two values present for the 
successor nodes. This minimax procedure is illustrated in Figure 4.8 on a small game tree. 

In this figure, an arbitrary game has been pursued for two levels, in other words, Max and 
Min have each had the opportunity to make a move. However, no moves have been made yet. This 
evaluation is taking place in Max’s head, in an effort to evaluate the best opening move. The value 

 
Original board position
“X” moves �rst

E(X) =
2–1 = 1

2–2 = 0 3–2 = 1 2–3 = –1 2–2 = 0 3–2 = 1 3–1 = 2 1–1 = 0 1–2 = –1 2–3 = –1 2–2 = 01–3 = –2

Figure 4.6 
Heuristic evaluation applied to a game tree E(X) = N(X) – N(0).

Max

a)

25 1 6

Min

b)

Figure 4.7 
Evaluation of Max and Min nodes in a game tree. (a) The Max node is represented by a 
square, and (b) the Min node by a circle. 
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of nodes D, E, F, and G are then determined by 
employing a heuristic. For each of nodes B and 
C, it is Min’s turn to move. The value of each of 
these two nodes is the minimum of the values 
in immediate successor nodes. The value of B is 
therefore 4 and C is 2. Node A is assumed to cor-
respond to the first move of the game. The value 
of node A, or the value of the game (from Max’s 
vantage point), equals 4. Max therefore decides 
that the best move is to go to node B, which re-
turns the value of 4. 

Now, you can evaluate the sample game of 
tic-tac-toe shown in Figure 4.6. For convenience, 

Figure 4.6 has been redrawn as Figure 4.9. In this figure, minimax evaluation is employed to back 
up heuristic values to the root, where Max is provided with information about the best first move. 
After inspecting this tree, Max sees that moving X to the middle square is the best opening strategy 
because her return is 1, which is maximal. Note, however, that this analysis and placing an X in the 
center square does not guarantee a win for Max 

Original board position
“X” moves �rst

1

–1 –2
1

1 0 1 –1 0 1 2 –2 0 –1 00

Figure 4.9 
Minimax evaluation for a tic-tac-toe game.

For players with equal ability and with a thorough knowledge of strategy, a game of tic-tac-toe 
invariably ends in a draw. After Max has moved to the center square, Min will repeat this evaluation 
process, possibly with deeper heuristic values, attempting to minimize the score. 

exAMple 4.1: gAMe of niM

Nim is a two-person game. Initially there are n stones in r separate piles. The 
initial state of the game can be expressed as (n1, n2, … nr) where n1 + n2 + … + 
nr  = n. In each move of the game, a player can take any number of stones (> 0) 
from any one of the r distinct piles. In one version of the game, the last person 
to make a move wins. Assume that the initial state of a game is (3,1): there 
are two piles of stones, with three stones in the first pile, and one stone in the 
second. The game tree with this initial state of Nim is shown in Figure 4.10a. 

After the game is played to its conclusion, a minimax evaluation is created for 
this tree, which appears in Figure 4.10b. 

A

C
2

Max

Min level

4

4
B

11 4 13 2

GFED

Figure 4.8 
Example of minimax evaluation.
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A leaf node was given a 
value of 1 if it correspond-
ed to a win for Max, and 
a value of zero if it repre-
sented a win for Min. The 
game did not need heu-
ristic estimates. Minimax 
evaluation was employed 
to back up values from 
the game tree. You should 
trace through this example 
carefully to ensure that 
you understand the signifi-
cance of the 0s and 1s in 
Figure 4.10b. For example, 
follow the leftmost path 
in this tree; the Max box 
at the leaf level is labeled 
with a 0. This is because, 
on the previous step (refer 
to Figure 4.10a) Min has 
removed the last stone 
from the right pile, thereby 
winning. The 0 in the left-
most leaf node, therefore, 
signifies that Max has lost. 

The value of 1 in Figure 
4.10b at the root signifies 
that Max is guaranteed to 
win, assuming that the op-
ponents in a game are ra-
tional and that they always 
make the best available 
move. 

Finally, note that the minimax algorithm is a two-pass procedure. In the first phase, a 
depth first search is used to search to a game’s conclusion, or to a fixed level, where 
an evaluation function is applied. In the second phase of minimax, values are backed 
up to the root, where the Max player is provided with feedback on the desirability of 
each move. Backing up values refers to the process whereby insights that are discov-
ered when the game is pursued to leaf nodes are made available to the players earlier 
in the game process.

Dana Nau is a researcher in the field of game theory and automated planning; he is known for 
the discovery of “pathological” games, in which, looking ahead, counterintuitively leads to worse 
decision making. See Human Interest Box which follows. 

31

21 11 01 30 Min plays

Max plays

Min plays

Max plays

11 01

01

20 2001 10

1010 10

1000

00 00 00 00 00

00

00

00 00 00

00

Figure 4.10(a) 
Game tree for Nim, in its initial state.

1

0 1 0 0 Min plays

Max plays

Min plays

Max plays

0 1

0

1 11 1

00 0

10

1 1 1 1 1

0

1

0 0 0

0

Figure 4.10(b) 
Minimax evaluation of the game tree for Nim. In this version of the game, the last player to remove a stone wins. A ‘1’ in a square 
box indicates  that Max has won, whereas a ‘1’ in a circular box indicates that Min has lost. 
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 4.2  MINIMAX WITH ALPHA-BETA PRUNING
 In Example 4.1, you analyzed a complete game of Nim. Because the game tree is relatively 

small, the game does not need heuristic evaluation. Instead, nodes that correspond to a win for Max 
are labeled with a 1, whereas those Min would win are labeled with a 0. Because most game trees 
are not this small, complete evaluation is not generally feasible. In such cases, the tree is typically 
developed to a level whose depth is constrained by memory requirements and computer speeds. 
Alpha-beta pruning (sometimes abbreviated as α-β pruning) can be combined with minimax and 
returns the same measures as minimax alone, but without needing to inspect every node in the tree. 
In fact, alpha-beta pruning usually examines only about one-half as many nodes as minimax alone. 
With the savings in computation that accrue from such pruning, you can go deeper into a game tree, 
using the same amount of time and space, and the evaluations of possible game continuations are 
likely to be more trustworthy and accurate. 

The basic tenet of alpha-beta pruning is that after a move has been discovered to be bad, it is 
abandoned, and additional resources are not expended to discover how truly bad it is. This is similar 
to branch and bound search (Chapter 3), in which partial paths are abandoned when they are found 
to be suboptimal. Consider the examples in Figure 4.11 (no particular game is intended). The figure 
includes time stamps in boxes to indicate the order in which values are computed.

Figure 4.11 shows the first five steps in alpha-beta pruning:

 1. Min discovers that game position D has a value of 3. 
 2. The value of position B is ≤ 3. This upper-bound value for B is referred to as a beta value 

for B. 
 3. The value of E is 5.
 4. Consequently, at time 4, Min knows that the value of B equals 3.

huMAn interest notes
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 5. A is worth at least 3.

  Next, examine Figure 4.12, which shows the next three steps in alpha-beta pruning. Max 
now knows that making a move to game position B guarantees a return of 3. Therefore, 
A is worth at least 3 (as moving to C might yield an even greater return). This lower-
bound for node A is called an alpha value for A. 

 6. At time 6, Min observes that the value of a move to F is worth 2. 
 7. Therefore, at time 7, Min knows that C’s worth is ≤ 2. 
 8. Max now knows that a move to C will return a value of 2 or less. Max will not be moving 

to C because a move to B ensures a return of 3. The value at G will not change this ap-
praisal, so why look? Evaluation of this tree can now end. 

Alpha-beta pruning is an essential tool for evaluation of game trees resulting from games more 
complex than tic-tac-toe and Nim. To explore this approach more thoroughly, consider the more 
sizable example shown in Figure 4.13. Again, time stamps appear in boxes to highlight the order 
in which steps take place.

 1. We move left at every branch until leaf node L is encountered. Its static value is 4. 
 2. Max is guaranteed a score of at least 4. Again, this lower bound of 4 is referred to as an 

alpha value for E.

A

C

Max level

Min level

Max level

B

3 5

GFED

31

4 = 3
2

≥ 35

 ≤ 3

Figure 4.11 
Alpha-beta pruning.

A

C

Max level

Min level

Max level

B

3
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53 261

4 = 3

5 ≥ 3
2 ≤ 3 7 ≤ 2

Figure 4.12 
Alpha-beta pruning steps 6–8.
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D
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2 ≥ 4
4 = 6

Figure 4.13 
Second example of alpha-beta pruning, steps 1–5.
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 3. Max wants to ensure that no score higher than 4 exists in the subtree at E. At time 3, M’s 
value is equal to 6. 

 4. At time 4, node E has a value, which is now equal to 6. 
 5. At time 5, Min node B has a beta value of 6. Why? Try to answer this question before 

continuing with the next steps.

  This example of alpha-beta pruning is continued in Figure 4.14.
  Node N is found to have a value of 8. 

10 ≥ 6

≥ 8
≥ 1
= 2≥ 4

= 6
E
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3 1 2 –1 0 4 2 5 9 6 14 6 8

5
9

2
4

≤ 6 ≤ 2
8

12
14

= 6

3 6 11 131

Figure 4.14 
Second example of alpha-beta pruning, continued. 

 6. The entire subtree at F is pruned. The value at F is ≥ 8. Min at position B would never al-
low Max to get to position F. 

 7. The value at node B is now equal to 6. 
 8. The lower bound (alpha value) for Max is at the start position A. 
 9. Max wants to know if a value > 6 is available in the subtree at C. So the search next ex-

plores node P to derive its value, which is 1.
 10. Now it is known that the value of G is ≥ 1.
 11. Is G worth more than 1 to Max? To answer, the value at node Q must be obtained.
 12. An exact value at node G is now known to equal 2.
 13. Consequently, this value of G serves as an upper bound at position C (i.e., the beta value 

of C = 2). 
 14. Max observes that a move to node B is worth 6, but a move to C guarantees a return of 

at most 2. Max will not be moving to C and therefore this entire subtree can be pruned. 
More generally, whenever a node (here node A) has an alpha value of x, and a grand-
child of this node (here node G) has a value y less than x, the entire subtree whose root 
is the latter’s parent (here the subtree with root C) can be pruned. This is referred to as 
an alpha cutoff. Beta cutoffs (i.e., prunes caused by beta values for Min nodes), are 
defined analogously. 

  Completion of this example of alpha-beta pruning is shown in Figure 4.15.
 15. Max still wants to know if a return better than 6 is possible. To get an answer, the subtree 

at node D must be explored. At this time, the search proceeds to node V. 
 16. The value at node J is ≥ 5. 
 17. Node W is explored. 
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 18. The value of node W (9) is backed up to node J. 
 19. An upper bound at D is established. 
 20. Min needs to know how much less than 9 node D is worth. So far Max has no reason to 

stop the search. Therefore, at time 22, attention is drawn to node X. 
 21. A lower bound of 6 at node K is obtained. 
 22. Y is scanned.
 23. An exact value of 6 is obtained for node K.
 24. The value for Min at node D is equal to 6.
 25. The value of node A, and hence the value of the game 

itself to the Max player equals 6. Consequently, Max has a choice of moving to node B or 
node D. 

Another two-person game is the simple child’s Game of Eight. Unlike tic-tac-toe, it is not  
possible for the game to end in a draw. See Example 4.2.

exAMple 4.2: gAMe of eight

The Game of Eight is a simple children’s game played by two opponents. 
The first player (Max) chooses a number ni from the set n = {1, 2, 3}. Next the 
opponent (Min) chooses a number nj ε n with nj ≠ ni (i.e., Min must choose a 
different number from this set). A running total of the numbers chosen along 
each path is maintained. The first player to bring this total to eight wins the 
game. If a player exceeds eight, he loses and the opponent wins. In this game, 
no draws are possible. Figure 4.16 is a complete game tree for the game of 
Eight. Numbers chosen are displayed along the branches. The current sum is 
drawn within the rectangles or circles. Note that scores can exceed eight. 

Referring to Figure 4.16, we observe that on the rightmost branch, the first 
player (Max) has chosen the number 3; this fact is reflected by the 3 that ap-
pears in the circle below this branch. Min may now choose the number 1 or 2. 
If 2 is chosen, we continue on this rightmost branch where you observe 5 in 
the Max square. If Max next chooses the number 3, the total is 8 and she wins 
the game. Alternately, if she chooses 1, Min is provided with an opportunity 
to win.

27 = 6

10 ≥ 6

≥ 9
≥ 1
= 2≥ 4

= 6
E

L M N O Q R S T U V W X Y

K

D

Max level

Min level

Max level

Static scores

JIH

C

A

16

15

GF

B

P

7

3 1 2 –1 0 4 2 5 9 6 14 6 8

5

9

2

4

≤ 6 ≤ 2
8

12
14

≥ 5
= 9

19
20

≥ 6
= 6

23
25

≤ 9
= 6

21
26

17 19 22 24

= 6

3 6 11 131

Figure 4.15 
Second example of alpha-beta pruning, steps 15–25.

For more practice with minimax 
evaluation and alpha-beta pruning, see 
the exercises at the end of this chapter. 
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Figure 4.16 
Game tree for the game of Eight.

Minimax evaluation for this game tree is shown in Figure 4.17. For clarity, we 
omitted players’ choices for numbers (they are shown earlier in Figure 4.16), 
but preserved totals within the rectangles and circles. A win by Max is denot-
ed with a 1, and −1 denotes a win for Min (or equivalently, a loss for Max). It 
is customary to reserve 0 for ties; however, as mentioned earlier, in this game 
ties do not occur. 
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Figure 4.17 
Minimax evaluation for the game of Eight.

Let us follow two paths in Figure 4.17 to reinforce our understanding. Once 
again, we focus on the rightmost path in this tree. As mentioned above, Max 
has selected the number 3. This is followed by Min choosing 2. These actions 
are reflected by the 5 inside the box at level two (marked with a *). Next, Max 
decides on 3; the sum of 8 has been reached. Max has won, as evidenced by 
the evaluation of 1 outside the rightmost leaf node. Next, consider a path that 
also begins with Max selecting 3, followed by Min selecting 2. We are once 
again at the level-two node, marked with a *. Then, suppose Max chooses 1 
and Min 2 (two branches are followed), until node ** is reached. Min has won 
the game; this is reflected by the −1 outside the leaf node. 
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Again, because even trivial games can require large game trees, 
you need insightful evaluation functions if you want to design success-
ful computer game-playing programs. Once again we trace through 
the rightmost portion of this tree. The Max player chose the number 3 
and Min chose 2. The Max box along this path therefore contains the 
total, which is 5. Continuing along the rightmost branch, Max next 
chooses 3 and hence wins the game. This outcome is reflected by the 
1 that appears below the Min leaf (circle node containing an 8).

 4.3 VARIATIONS AND IMPROVEMENTS TO MINIMAX 
Game playing has received widespread attention throughout the first half-century of AI re-

search. Minimax is the straightforward algorithmic approach to evaluating two-person games. It is 
natural that improvements to this algorithm have been avidly sought. This section highlights some 
of the variations to minimax (in addition to alpha-beta pruning) that have improved its performance.

 4.3.1 Negamax Algorithm
An improvement to minimax is the negamax algorithm, discovered by Knuth and Moore; 4 the 

negamax algorithm uses the same function as minimax to evaluate nodes, while percolating values 
up from both the Max and Min levels of the tree.

Assume that you are evaluating the ith leaf node in a game tree, and the following stand for a 
loss, draw, and win:

ei = −1 for a loss
ei = 0 for a draw
ei = 1 for a win

You can write the negamax evaluation function E(i) as follows:
E(i) = ei for leaf notes
E(i) = Max (− F( j1), −F(  j2), … − F(  jn) for predecessor nodes  j1,  j2, … jn. 

Negamax concludes that the optimal move for either Max or Min is the move that maximizes 
E(i). Figure 4.18 demonstrates this observation, with 1, −1, and 0 indicating a win, loss, and draw, 
respectively. 

In this figure, consider the three nodes labeled as *, **, and *** and described in Table 4.1. 
The negamax algorithm is applied to the game of Eight in Figure 4.19. Compare this to Figure 

4.17 where straightforward minimax evaluation was employed. 
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Figure 4.18
Game tree using negamax evaluation to implement a minimax search.

Table 4.1 
Description of nodes labeled with *, **, and ***. 

Node Evaluation
* E(i) = Max (−0 , −(+1)) = Max ( 0, −1) = −1
** E(i) = Max (− (1), − (−1)) = Max (−1 , +1) = +1
*** Max(− (+1), − (+1) ) = Max ( −1 , −1) = −1

The exercises provide more practice 
with evaluation functions. For a 
good introduction to minimax and 
α-β pruning, see Discrete Math by 
Johnsonburg. 1 Additional examples 
can be found in Firebaugh 2 and 
Winston.3
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Figure 4.19 
Negamax evaluation for the game of Eight.

Negamax is a slight improvement to straightforward minimax in that only the maximization 
operation needs to be used. The sign of the expressions for negamax evaluation will alternate from 
level to level of the game tree; reflecting the fact that a large positive return for Max corresponds 
to a large negative return for Min; these players alternate their moves, and so must the signs of the 
returned values alternate.

Problem-solving, heuristic search, and planning in Artificial Intelligence have been subjects of 
research for Richard Korf, who discovered iterative deepening for depth first search—a methodol-
ogy similar to that of progressive deepening, the topic of out next section. Please see the sidebar to 
learn more about Dr. Korf. 
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4.3.2 Progressive Deepening 
Although this chapter has thus far examined simple games, you can use similar approaches to 

evaluate complex games, with some important variations. For example, consider tournament chess, 
where time is a limiting factor because each player must make a move before the clock runs out. 
Remember that the goodness of a computer’s move in a game depends upon how deep in the game 
tree a search algorithm proceeds before a heuristic function is applied. When evaluating a chess 
move, if you focus on the clock and keep the searches short and shallow, your level of play is likely 
to suffer. Alternately, if you travel deep into a game tree, your moves will be superior but the game 
clock might expire, forcing you to forfeit the move. 

To solve this problem, you could explore the game tree to a depth of one, and then return the 
best move found. If more time remains, you then proceed to depth two. If still more time remains, 
you go down to depth three, and so on. This approach is referred to as progressive deepening. This 
methodology is similar to the depth first search with iterative deepening algorithm from Chapter 2. 
Because the number of leaf nodes in a search tree grows exponentially with respect to the branch-
ing factor of the tree, re-inspecting the tree from scratch but delving one level deeper with each 
iteration does not entail much overhead. When the chess clock does eventually wind down, you are 
prepared to make the best move, given the allotted time. 

 4.3.3 Heuristic Continuation and the Horizon Effect
The horizon is that imaginary line on the earth that appears in the distance across your plane 

of view. If you live away from a big city, perhaps close to an ocean or other large body of water, 
then you probably have observed the following phenomenon while staring at the water: a ship or a 
boat appears in the distance, apparently out of nowhere. In fact, it was out there in the distance for 
some time, though just below the horizon. A similar horizon effect can occur in search trees if you 
search to an a priori bound. A catastrophic move might be lurking in a game tree just out of sight. 

Tournament chess will be discussed in a Chapter 16, “Advanced Computer Games” in which 
you will learn more about progressive deepening and the horizon effect. You will also learn about 
the famous chess match between Kasparov and Deep Blue.

 4.4 GAMES OF CHANCE AND THE EXPECTIMINIMAX ALGORITHM
Recall that at any point in a tic-tac-toe game, a player has complete knowledge of the entire 

game, including what moves are available to either opponent as the game progresses, as well as the 
consequences of these moves. In these situations, the player has perfect information (or complete 
information). Additionally, if a player can always make the best move in a game, the player can 
make perfect decisions. Making perfect decisions is not difficult when you know the consequences 
of every move, including which moves culminate in a win and which lead to a loss. If you can 
generate the entire game tree for a game, then you can easily have perfect information, as you can 
with tic-tac-toe. Because generating an entire game tree for tic-tac-toe is not difficult for a com-
puter, the computer player can also make perfect decisions. The same can be said for the game of 
Nim, as long as the number of stones is reasonable. Checkers, chess, Go, and Othello are additional 
examples of games with perfect information. However, the game trees for these games are so huge 
that it is unrealistic to generate them. Instead, you need to rely on heuristics, as discussed earlier in 
the chapter. Furthermore, computers cannot possibly make perfect decisions for these games. The 
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level of computer play in these board games depends, to a great extent, upon the performance of 
the heuristics. 

Another attribute of some games that must be modeled is chance. You roll dice in backgammon 
to determine how to move your markers. In a game of poker, chance is introduced by the random 
dealing of cards. You can have perfect information in backgammon because you can know all of 
your opponent’s possible moves. In poker, your opponent’s cards are hidden, so you cannot know 

all of your opponent’s moves, meaning you have imperfect in-
formation. 

Games of chance are called nondeterministic games be-
cause you cannot predict the next state of the game based upon 
its present state. To analyze nondeterministic games, you use 
the expectiminimax algorithm. A game tree for a game that 
contains a significant element of chance is composed of three 
types of nodes: Max, Min, and chance. Max and Min nodes oc-
cur in alternate layers as shown in the discussion of minimax in 
Section 4.1. In addition, these rows are interleaved with a layer 
of chance nodes, which introduce the uncertainty that is a sine 
qua non of nondeterminism. 

Figure 4.20 includes Max, Min, and chance nodes. A layer of chance nodes (nodes B and C) 
occurs between the Max and Min nodes. To calculate which move is preferable (α1 or α2), Max must 
calculate the expectiminimax values for each of nodes B and C. Assume that the aspect of chance 
in this game is provided by an unfair coin wherein P(H) = 0.7 and P(T) = 0.3. 

Max needs to calculate the expected value of the random variable X, denoted by E(X), 
where E(X) is given by the following formula: 

E(X) = Σ xi * P (xi) 

xi ε X,

where xi is a value that X may assume, and P(xi) is the 
probability that X assumes this value xi.

We have the expected return at B, or E(B) = (4 * 0.7) + (6 
* 0.3) = 2.8 + 1.8 = 4.6. Meanwhile E(C), the expected return 
for Max if move α2 is chosen, equals (3 * 0.3) + (5 * 0.7) = 
0.9 + 3.5 = 4.4 

Because the expected return to Max is greater if Max 
moves to B, the Max player should make move α1. 

The expectiminimax algorithm warrants another more 
extensive example. Recall the version of Nim and the mini-
max algorithm discussed in Section 4.1.3 and shown in Fig-
ure 4.10. To keep the expectiminimax tree at a reasonable 
size (and to fit on a printed page) the start state can equal 
(2,1), that is, there are two piles of stones with two in the first 
pile and one in the second. The complete game tree using 
minimax evaluation is shown in Figure 4.21. 

Now, suppose this game involves chance — the players 
can specify from which pile to remove stones. However, the 
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Figure 4.20 
Game tree for a game involving chance.

If you have not been exposed to probability 
recently, consider the experiment of tossing 
a coin twice. The set of possible outcomes is 
{TT, TH, HT, HH} each with a probability of 
one-fourth. Suppose the random variable X is 
equal to the number of heads that occur in this 
experiment. Then E(X) = 0 * ¼ + 1 * 2/4 + 2 * 
¼, which equals 0 + ½ + ½ =1.
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Figure 4.21 
Game tree for game of Nim in which the last player to move wins.
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actual number of stones removed is obtained as output from a random number generator that returns 
integer values from 1 to ni, with equal probability, where ni is the number of stones in pile i. The 
game tree illustrating expectiminimax for this modified version of Nim is shown in Figure 4.22. 
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Figure 4.22 
Version of Nim with chance introduced.

The expected value of game position B is E(B) equals (1 * 0.5 ) + (0 * 0.5 ) = 0.5. E(C) is equal 
to 0, meaning that Min is guaranteed a win. Choosing the right pile of stones takes the game to node 
C, where Max is guaranteed to lose. Clearly, Max should choose the left pile, because it provides a 
50% chance of winning. 

 4.5  GAME THEORY 
In the movie The Postman Always Rings Twice the two lead characters fall in love and decide to 

“eliminate” the husband of the female character. The police have insufficient evidence for convic-
tions. However, after the murder, the lovers are apprehended by the police and held for questioning 
in separate interrogation rooms where each is offered the same proposition: “Defect on your partner 
and we’ll go easy on you.” Both perpetrators know that their accomplice is being offered this same 
deal. What should each prisoner do? What makes this predicament intriguing is that neither person 
is privy to their counterpart’s thoughts. In an ideal world, both would remain loyal to one another 
and, without supporting testimony, would probably be convicted of a lesser crime. However, if 
either accomplice defects, then the other would certainly be better off by defecting as well, rather 
than serving a certain murder sentence. 

This so-called Prisoner’s Dilemma was first formulated in game-theoretical terms by Merrill 
Floyd and Melvin Dresher at the RAND Corporation in 1950. 5 At this time, most countries were 
involved in the Cold War between two nuclear super powers—the Soviet Union and the United 
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States, together with allies aligned on either side—poised 
against one another. Should these two super powers coop-
erate with one another and work toward mutual disarma-
ment (aware at all times that the other side might renege) 
or should each mistrust the other and continue developing 
new and more lethal armaments? This is the dilemma that 
confronted our planet for four decades, from the end of 
World War II until the eventual end of the Cold War in 
1989 with the fall of the Berlin Wall. The Prisoner’s Di-
lemma aptly models that era of mistrust. This dilemma can 
also be modeled by the payoff matrix, in Figure 4.23. A 
payoff matrix specifies the return to each player for every 
combination of actions by the two game participants. 

Assume that the two players (that is, the prisoners) in 
this game are rational and want to minimize their jail sentences. Each prisoner has two choices: co-
operate with their partner in crime and remain silent, or defect by confessing to the police in return 
for a lesser sentence. 

You might notice that this game differs in an important aspect from the games discussed earlier 
in this chapter. To determine a course of action in other games, you need to know your opponent’s 
course of action. For example, if you are the second person to move in a game of tic-tac-toe, you 
need to know where the other player has placed the initial X. This is not the case in the Prisoner’s 
Dilemma. Suppose you are the A player and that you choose to defect. However, the B player de-
cides to remain loyal and chooses the cooperate-with-partner strategy. In this case, your decision 
results in no prison time as opposed to a one-year term you would have received if you had chosen 
instead to also cooperate. If your partner chooses to defect, your outcome is still superior if you 
choose to defect. In game-theoretic terms, defecting is a dominant strategy. Because you assume 
that your opponent in this game is rational, he will arrive at the same strategy. 

The strategies {Betray, Betray} on the part of the two participants are referred to as a Nash 
equilibrium. This strategy is named after John F. Nash who won the Nobel Prize in Economics for 
his groundbreaking work in game theory. A change in strategy by either player results in a lesser 
return to them (i.e., more jail time). 

As shown in Figure 4.23, if each player acts more on faith than rationality (faith that their part-
ners would remain loyal) then the total payoff would exceed the total of 10 prison years accorded 
by the Nash equilibrium of {Defect, Defect}. This strategy of {Cooperate, Cooperate} yields the 
best possible outcome in terms of total payoff to the two players. This optimal strategy is referred 
to as a Pareto Optimal. This strategy is named after Alfredo Pareto whose late nineteenth Century 
work in economics laid the foundations for more recent work in game theory. It should be noted 
that the Prisoner’s Dilemma is not a zero-sum game. Why not? In such games the Nash equilibrium 
does not necessarily correspond to a Pareto Optimal. 

exAMple 4.3: gAMe of MorrA

Morra is a game that can be played by two or more people. (Most of us can 
probably recall using two-finger Morra to help choose sides in games of 
baseball or stickball.) One version of this game is played by two people; one 
is designated as Even, the other as Odd. Simultaneously, the two players each 
extend one or two fingers. The parity of the total numbers of fingers shown 
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Figure 4.23 
Payoff matrix for the Prisoner’s Dilemma.
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determines which player wins. The payoff 
matrix for this version of the game is shown in 
Figure 4.24. Note that this game is a zero-sum 
game. 

A game of two-finger Morra does not have a 
Nash equilibrium. For either {1, 1} or {2, 2} 
the Odd player is better off deviating. (The 
numbers inside the curly brackets represent 
the number of fingers extended by the Even 
and Odd players, respectively.) Also, the Even 
player fares better by changing its action for 
{1, 2} and {2, 1}. 

 4.5.1 The Iterated Prisoner’s Dilemma 
If you play the Prisoner’s Dilemma only once, defecting is a dominating strategy for either 

player. In another version of this game, you play repeatedly—n times—and there is some memory 
of previous actions. When having more than one turn, each player is not as quick to defect, knowing 
that revenge from the opponent is forthcoming. One strategy might be to start with a single coop-
erative move to give your opponent a chance to act compassionately. If your opponent chooses to 
defect anyway, you can counter by continually defecting. If your opponent eventually chooses to 
cooperate, you can return to a more magnanimous policy. The exercises at the end of this chapter 
discuss other two-person games that are similar to the Prisoner’s Dilemma. For a more detailed 
discussion of game theory, see Russell et al. 6

 4.6 CHAPTER SUMMARY
To evaluate the effectiveness of a move in a game, you can use a game tree to chart your pos-

sible moves, opponent’s responses, and your counter moves. In a game tree, nodes represent game 
states and branches represent moves between these states.

For all but the most basic games, you cannot create a complete game tree because of combina-
torial explosion. In these cases, you need to use heuristic evaluation to determine the most effective 
moves.

Minimax evaluation is an algorithm used to evaluate game trees. It examines the state of the 
game and returns a value indicating whether the state is a win, loss, or draw for the current player. 
Alpha-beta pruning is often used in conjunction with minimax evaluation. It will return the same 
values as minimax alone, but by examining only about one-half as many nodes in a game tree as 
minimax. This allows a deeper inspection of a game tree, resulting in more trustworthy and accu-
rate evaluations.

Similar to a minimax evaluation, you can use a negamax search in a two-player game to sim-
plify calculations. One variation of minimax is progressive deepening, in which you search a game 
tree in iterations. For example, you can explore the game tree to a depth of one, and then return 
the best move found. If more time remains, you proceed to depth two. If still more time remains, 
you go down to depth three, and so on. Because the number of leaf nodes in a search tree grows 
exponentially with respect to the branching factor of the tree, re-inspecting the tree from scratch but 
exploring one level deeper at each iteration does not involve much overhead.
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Figure 4.24 
Payoff matrix for a version of two-finger Morra. (1, -1) indicates that the  
first player, i.e., even wins and the second player, i.e., odd loses. For (-1, 1) 
indicates that odd has won. 
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In a two-player, zero-sum game such as tic-tac-toe, a player can have perfect information—
knowing what moves are available to either opponent throughout the game and understanding the 
consequences of these moves. Additionally, if a player can always make the best move in a game, 
the player can make perfect decisions. In games of chance, however, you cannot have perfect in-
formation or make perfect decisions. In the Prisoner’s Dilemma, two players can cooperate with 
or betray (defect from) each other. It illustrates game theory, in which players are rational and are 
concerned only with maximizing their payoff without concern for the other player’s payoff. If a 
change in strategy by either player results in a lesser payoff to them, they are engaged in a Nash 
equilibrium. If a strategy yields the best possible outcome in terms of total payoff to the two play-
ers, they are using an optimal strategy, which is called a Pareto Optimal. 

Questions for Discussion

 1. How does a game tree help to evaluate moves in a game?

 2. What is combinational explosion?

 3. What is heuristic evaluation and why is it helpful in games with large game trees?

 4. Briefly explain the principle behind minimax evaluation.

 5. What do we mean by symmetry in a game move? How does it help in game tree evaluation?

 6. What is the principle behind alpha-beta pruning? Why is it helpful in minimax evaluation?

 7. What is progressive deepening? When is it useful?

 8. What is the expectiminimax algorithm? For what types of games is it useful?

 9. What is the Prisoner’s Dilemma? Why has it received so much attention?

 10. Define the following terms.

  a. Nash equilibrium b.  Pareto Optimal

 11. Does a Nash equilibrium always correspond to an optimal strategy? Explain.

Exercises

 1. Perform a minimax evaluation for the game tree in Figure 4.25.
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Figure 4.25
Game tree 1.
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 2. Perform a minimax evaluation for the game tree in Figure 4.26.
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Figure 4.26 
Game tree 2.

 3. Perform a minimax evaluation for the game tree in Figure 4.27.
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Figure 4.27 
Game tree 3.

 4. One variation on the game of nim is described in Luger. 7 The game begins with a single 
pile of stones. The move by a player consists of dividing a pile into two piles that contain an 
unequal number of stones. For example, if one pile contains six stones, it could be subdivided 
into piles of five and one, or four and two, but not three and three. The first player who 
cannot make a move loses the game. 

 a. Draw the complete game tree for this version of Nim if the start state consists of six stones. 

 b. Perform a minimax evaluation for this game. Let 1 denote a win and 0 a loss. 

 5. A group < G, o > is a set G together with a binary operation o such that:

 • the operation o has closure—for all x, y in G, x o y is in G

 • associativity (x o y) o z = x o (y o z)—for all x, y, z in G

 • identity exists ∃ e ∈ G such that 

  ∀ x ∈  G x o e = e o = x

 • inverses exist—for all x in G there exist x-1 such that x o x-1 = x-1 o x = e
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  Subtraction of natural numbers is not closed as 3 – 7 = −4 and −4 is not in the set of natural 
numbers. Addition of natural numbers, however, is a binary operation. Addition of integers is 
associative: (2 + 3) + 4 = 2 + (3 + 4) = 9. However, subtraction of integers is not: (2 − 3) − 4 
does not equal 2 − (3 − 4); i.e., –5 does not equal 3; 0 is an identity element for addition of 
integers 7 + 0 = 0 + 7 = 7. The inverse for 4 with respect to addition of integers is −4 as 4 + 
(−4) = 0. 

  Examples of groups: < Z, +>: The set of integers with respect to addition. <Q, *>: The set of 
non-zero rationals with respect to multiplication. 

  a.  Consider a square (Sq), shown in Figure 4.28, which is free to move in 3-dimensional 
space labeled as follows: Let Π0, Π1, Π2 and Π3 be clockwise rotations through 0°, 90°, 
180°, and 270°, respectively. And let o represent composition of these rotations. For 
example Π1 o Π2 is a 90° rotation followed by a 180° rotation which corresponds to Π3

3 
which is a 270° clockwise rotation. Prove that <Sq, o> is a group. 
1 2

3 4

Figure 4.28 
Square with labeled vertices.

  b. Apply this group to the tic-tac-toe board introduced in section 4.1. Verify that <Sq, o> 
gives us justification for the notion of equivalence stated in Figure 4.4. Consult McCoy. 8

 6. Use alpha-beta pruning to evaluate the game trees shown in Figure 4.25. Be sure to indicate 
all alpha values and all beta values. Specify alpha cutoffs and beta cutoffs, if any. 

 7. Use alpha-beta pruning to evaluate the game trees shown in Figure 4.26. Be sure to indicate 
all alpha values and all beta values. Specify alpha cutoffs and beta cutoffs, if any.

 8. Use alpha-beta pruning to evaluate the game trees shown in Figure 4.27. Be sure to indicate 
all alpha values and all beta values. Specify alpha cutoffs and beta cutoffs, if any.

 9. Consider the work entailed in evaluating the game trees from exercises 1–3 and 6–8. 
Minimax evaluation required the same amount of time regardless of the ordering of heuristic 
evaluations. What impact, if any, did the ordering of heuristic evaluations have on the amount 
of pruning that resulted when the alpha-beta pruning procedure was employed? In particular, 
when was the alpha-beta method most efficient? In other words, when did it inspect the 
fewest number of nodes?

 10. Examine the game of Dots and Boxes. Two players take turns drawing lines between adjacent 
dots on a 3 × 3 grid. Completing the last line on a box makes that box yours. The player that 
completes the most boxes wins. 

  a. Draw the first several levels in the game tree for this game. 
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  b. Compare the complexity of this tree with that for tic-tac-toe.

  c. Cite several heuristics for this game that might lead to a good strategy. 

 11. The game of Sprouts was developed by M. S. Paterson and J. J. Conway. Draw two or more 
points on a piece of paper. Two players then alternate making moves according to these rules:

  •  Draw a line (or curve) joining two points, or one point to itself (a self-loop). The line may 
not pass through another point.

  • Draw a new point anywhere on this new line.

  • At most, three lines might emerge from any point.

  The last player who can still make a move wins. Try to develop a strategy for this game. 

  12. Consider the game of three-dimensional tic-tac-toe. As usual the X and O players 
alternate and the object of play is to get three in a row on any row, column, or diagonal. 

  a.  Compare the complexity for 3-D tic-tac-toe with the more traditional 2-D version of the  
game described in the chapter. 

  b. Develop a heuristic suitable for evaluation of nonterminal nodes. 

 13. Use the negamax algorithm to evaluate the game tree in Figure 4.25.

 14. Following are several well-known problems. Discuss whether they are instances of 
essentially the same problem as the Prisoner’s Dilemma discussed in Section 4.6.

  If you conclude that a problem is equivalent to the Prisoner’s Dilemma, then design an 
appropriate payoff matrix. Comment on the existence of a Nash equilibrium and Pareto 
Optimal in each case. 

  a.  Linux is a version of Unix that has been developed under the General Public License 
(GPL). Under this agreement, you are given free software and may study the source 
code, which is modifiable. You can defect by keeping these improvements to yourself, or 
cooperate by distributing the improved version of the code. In fact, cooperation is forced 
by making it illegal to distribute only the source code without your improvements. 

  b.  Cigarette companies were at one time allowed to advertise in the United States. If only 
one company decided to advertise, an increase in sales invariably followed. However, if 
two companies launched advertising campaigns, their ads would essentially cancel one 
another and no increase in revenue resulted. 

  c.  In New Zealand newspaper boxes are left unlocked. One can easily steal a paper (defect). 
Naturally, if everyone did this, no papers would remain. 9

  d.  (Tragedy of the Commons) There is a village with n farmers where grassland is limited. 
Each of these farmers might decide to keep a sheep. Each farmer obtains some utility 
from these sheep in the form of wool and milk. However, the common grassland (the 
Commons) will suffer somewhat from a sheep’s grazing there. 
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 15. Give pseudocode for the minimax algorithm.

 16. The Nine Tails Problem is depicted in Figure 4.29.

  It is a one-player game where the goal is to flip coins so that they are all showing a Tails 
face. Once a coin with a Heads face is selected, that coin and the coins perpendicular (not 
diagonal) to it are flipped. So if the coin on the bottom left (Row 1, Column 1) is selected 
for the first move, then that coin and the coins directly above it (Row 2, Column 1) and to its 
right (Row 1, Column 2) become Heads. But the coin in Row 2, Column 2 (Diagonal to the 
coin in Row 1, Column) is not flipped. The goal of the puzzle is to flip all the coins to Tails 
in the fewest number of moves. 

  The puzzle is played on the same grid as tic-tac-toe is played and is of similar complexity (9! 
with reduction for symmetry) Develop a heuristic for this puzzle. 

Figure 4.29 
The Nine Tails Problem

 17. Problem 16 is reminiscent of the game known as Othello (or Reversi) which is covered in 
Chapter 16 (Advanced Computer Games). Othello starts with four stones (two White and 
two Black) placed in the middle of an 8 × 8 board (as in chess and checkers). When a stone is 
flipped to the opposite color, the perpendicular adjacent stones are flipped as in the problem 
above. Consider what might be a strong strategy for playing this game.

Programming Exercises

 Use the high-level language of your choice to complete the programming exercises.

 1. Write a program to perform minimax evaluation. (refer to Exercise 15). 

  Test your program on the game trees of exercises 1, 2, and 3.

 2. Write a program to perform alpha-beta pruning.

  Test your program on the game trees of exercises 6, 7, and 8. 

 3. Write a program to play Dots and Boxes as described in exercise 10. Employ alpha-beta 
pruning in your work. Test your program in machine vs. man mode (i.e., let people challenge 
your program in this game). The machine should move first. 
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 4. Write a program to play tic-tac-toe as discussed in the chapter (minimax is sufficient here). 
Your program should play in machine vs. machine mode (the computer makes both moves). 
The first player should follow a procedure that goes three levels into the game tree before 
heuristic evaluation is employed, whereas the second player should go only two levels deep. 
Comment on the results of play after 50 games.

 5.  Write a program to play 3D tic-tac-toe (see Exercise 12). Your program should employ the 
negamax algorithm. Test your program in machine vs. man mode, using a testing procedure 
similar to programming Exercise 4.
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be able to represent its knowledge. In this 
chapter, we begin our foray into knowledge 
representation with a discussion of logic. 
Propositional logic is presented first, focusing 
on its theorems and proof strategies. Predicate 
logic is discussed next and is shown to be 
a more expressive representation language. 
Resolution refutation is seen to be powerful for 
theorem proving. Extensions to predicate logic 
are then briefly introduced. 
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 5.0 INTRODUCTION
This chapter introduces logic as a knowledge representation paradigm in Artificial Intelligence. 

We begin our discussion in Section 5.1 with a well–known puzzle: The King’s Wise Men puzzle, to 
illustrate the expressive power of logic. Additionally, when a problem is well represented, the task 
of drawing inferences (i.e., discovering new knowledge), is facilitated.

Propositional Logic is described in Section 5.2. Logical expressions are the basic building 
blocks; these are expressions or propositions that can be characterized as either true or false. Logic 
connectives such as AND, OR, and NOT are introduced, and the role of truth tables in analyzing 
the resulting compound expressions is also discussed. An argument is defined as a collection of 
premises that is assumed to be true, and a conclusion that could or could not logically follow from 
these premises. When a conclusion follows logically from an argument’s premises, we character-
ize the argument as valid. Two strategies for determining the validity of an argument are explored. 
The first uses a truth table and the second uses resolution. In the latter approach, you combine the 
negation of the conclusion with the premises. If you can arrive at a contradiction, then the original 
argument is valid. Before resolution can be applied, all propositional logic expressions must be 
converted to a special form known as clause form. A procedure for converting propositional logic 
expressions into clause form is provided. 

Section 5.3 introduces predicates; these are seen to have greater expressive power than propo-
sitional logic expressions. Two quantifiers: ∃x – existential quantification and ∀x – universal 
quantification can be applied to predicate logic variables. ∃x is to be interpreted as “there exists 
an x” and ∀x as “for all x.”

We will see that this greater expressive power of predicate logic comes with a price tag. The 
procedure for converting predicate logic expressions into clause form, so that resolution can be 
applied, is more arduous. The nine-step algorithm to accomplish this conversion is explained in 
Section 5.3.3. Several resolution proofs are also provided to illustrate the techniques. 

In Section 5.4, we provide brief introductions to several other logics. In the (first order) predi-
cate logic, quantifiers can be applied only to variables, thus limiting their expressive power. In the 
second order logic, however, quantifiers can also be applied to predicates themselves. An example 
from mathematics is provided. 

First order predicate logic is said to be monotonic, that is, conclusions derived cannot 
be retracted once more information is obtained. Real life is often not this irreversible. Trials 
illustrate this tentative nature of conclusions. At the beginning of a trial in the United States, 
a defendant is presumed to be innocent. During the course of a trial, however, as damning 
evidence is introduced and eyewitness testimony is presented, this early presumption of inno-
cence will possibly need to be amended. Non-monotonic logic captures this provisional nature 
of conclusions. 

Throughout this chapter we proclaim that logical expressions can be classified as either true 
or false. The statement: “It is raining” can be so classified by either looking out the window or 
consulting a weather report. Real-life situations do not necessarily fit nicely into these two truth 
compartments. For example: “He is a good man.” Suppose the man being discussed is nice to his 
children and his pet dog but cheats on his taxes. As we mature, we learn that many qualities in life 
are tempered by degree. We might therefore characterize the previous assertion as being true, to a 
certain extent. Fuzzy logic incorporates this “grayness” that is an integral part of life. Fuzzy logic 
has found widespread applications in the control of many modern appliances. Several examples are 
described. 
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Modal logics are logic models that confront important concerns such as moral imperatives: 
“You should…” and “One ought to…” The issue of time is also tackled. Proven mathematical theo-
rems were always true and will be so in the future; other premises might be true now but were not so 
in the past (e.g., the prevalence of cell phones). It is difficult, however, to unequivocally determine 
truth-values for things that should be so. A widespread use for modal logics is in the analysis of 
philosophical arguments. 

 5.1  LOGIC AND REPRESENTATION
Induction puzzles are logic puzzles that are solved via the identification and subsequent elimi-

nation of perhaps a series of obvious cases. One such puzzle is the well-known King’s Wise Men.
The King’s Wise Men puzzle (Figure 5.1) involves a king looking for a new wise man. After 

prescreening, the three smartest applicants for the position travel to his court. The three men are 
seated facing one another and are then blindfolded. A blue or white hat is placed on each of their 
heads. Now the king has their eyes uncovered all at the same time. The king then tells them “You 
each have either a blue or white hat and at least one of you has a blue hat. Whoever guesses the 
color of his hat first and raises his hand, will be my next wise man.” 

Before we can solve this puzzle (by machine) we must have a suitable representation. Predicate 
logic will be used for this puzzle because it allows each state to be denoted by a distinct expression. 
For example, we can let the predicate WM_1( ) denote that wise man 1 has a hat of some color (to 
be specified), then the situation in which wise man one has a blue hat and both wise men two and 
three are wearing white hats is represented by: 

 WM_1 (B) ˄ WM_2 (W) ˄ WM_3 (W)  (1)

If a representation for this puzzle is to be useful, then it must be 
possible to make inferences, in other words, to draw conclusions that 
help to solve the puzzle. Scanning Expression (1) for example, you 
should be able to conclude that wise man one will raise his hand and 
declare that his hat is blue. He can correctly do so because the king 
promised that at least one of the three hats must be blue, and he ob-
serves that both of the other wise men are wearing white hats, hence 
his hat must be blue. By con-
sulting Table 5.1, you should 
be able to deduce the outcome 
for the other two cases in which 
only one blue hat is present 
(Expressions 2 and 3). 

The king has promised 
that at least one of the hats will 
be blue, so we do not include 
the expression WM_1(W) ˄ 
WM_2(W) ˄  WM_3(W), which 
denotes that all three wise men 
are wearing white hats. 

? ? ? ? ?!

(a) (b)

Figure 5.1 
The King’s Wise Men puzzle. Each must guess the color of his hat. 

Recall that the symbol “˄” is the 
conjunction operator and stands 
for the AND’ ing of terms, and the 
symbol “˅” stands for disjunction 
and represents the OR’ing of terms. 
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The cases with two blue hats are more subtle. We con-
sider the situation depicted by Expression (4) in Table 5.1. 
Put yourself in the shoes of one of the wise men with a blue 
hat, say wise man one. You reason that if your hat were 
white, then the second wise man would observe two white 
hats and therefore declare his own hat to be blue. Wise man 
two makes no such claim and hence you conclude (cor-
rectly) that your hat must be blue. The other cases involv-
ing two blue hats are handled similarly. 

The most difficult case (and in fact the one that ac-
tually occurs) is that all three wise men are wearing blue 

hats, as depicted by Expression (7). We have already seen that those situations with either one or 
two blue hats can be resolved without much delay. In this scenario however, we are told that an 
inordinate amount of time passes. It is therefore reasonable for one of the wise men (the wisest) to 
conclude that none of the aforementioned cases apply and hence all three hats (and in particular his 
own hat) are (is) blue. Later in this chapter, we will describe the various inference rules that permit 
conclusions to be drawn from observed facts. For now, it is sufficient that you appreciate the way 
that logic can be used to represent knowledge. 

 5.2  PROPOSITIONAL LOGIC
We begin our more rigorous discussion of logic with the propositional logic, a logic that does 

not have the same expressive power as predicate logic. For example, with the propositional logic 
we can represent the situation wherein wise man one has a blue hat, by the variable p. If we wish 
to represent that wise man one has a white hat, then a different variable, say, q, must be used. The 
propositional logic is less expressive than predicate logic; however, as we shall see, it is easier to 
work with and thereby affords us a convenient place to begin our discussion of logic. 

 5.2.1  Propositional Logic – Basics
If we were to begin a study of English, a good starting point might be with a sentence. A sen-

tence is a collection of words with proper syntax (or form) that conveys some meaning. Here are 
several English language sentences:

 1. He is taking the bus home tonight.
 2. The music was beautiful. 
 3. Watch out. 

Similarly, a good place to begin a discussion of propositional logic is with statements. A state-
ment (or logical expression) is a sentence that can be categorized with a truth-value of true or false. 
Sentence 1, above, is a statement. To determine its truth-value, you simply observe how the “he” 
referred to actually goes home. Sentence 2 is also a statement (though truth-value will vary with 
listener). Sentence 3, however, is not a statement. If a car is approaching dangerously close, then 
this sentence is certainly appropriate, however, it cannot be classified as either true or false. 

In this text, we use lower case letters from the middle of the English alphabet to denote propo-
sitional logic variables: p, q, r. These variables are the primitives, or basic building blocks in this 

Table 5.1 
The seven distinct cases for The King’s Wise Men Problem. 

(WM_1(B) ˄ WM_2(W) ˄ WM_3(W) ) (1)
(WM_1(W) ˄ WM_2(B) ˄ WM_3(W) ) (2)
(WM_1(W) ˄ WM_2(W) ˄ WM_3(B) ) (3)
(WM_1(B) ˄ WM_2(B) ˄ WM_3(W) ) (4)
(WM_1(W) ˄ WM_2(B) ˄ WM_3(B) ) (5)
 (WM_1(B) ˄ WM_2(W) ˄ WM_3(B) ) (6)
(WM_1(B) ˄ WM_2(B) ˄ WM_3(B) ) (7)
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logic. Table 5.2 shows various compound 
expressions that can be formed by apply-
ing logical connectives (sometimes called 
functions).

The semantics or meaning of these 
logical connectives is defined by a truth 
table, in which the value of the compound 
expression is given for each value of the 
variables. 

In Table 5.3, F denotes false and T de-
notes true. (Some texts use 0 and 1 respec-
tively for these two truth-values.) Observe, 
as shown in the last row of Table 5.3(a), 
that the AND of two variables is true only 
when both of the variables are true. The OR 
function is true when one or both variables 
is (are) true. Note in the first row of Table 
5.3(b), that p ˅ q is false only when both p 
and q are false. The OR function defined 
here is referred to as the inclusive-or function. Contrast this with the two- variable exclusive-or 
(XOR) function defined in Table 5.4. Finally, in Table 5.3(c), you note that the negation of p, writ-
ten ~p is true only when p is false.

The XOR of two variables is true when either variable is true, but is false when both variables 
are true (consult the last row of Table 5.4). If you are a parent, then the distinction between these 
two OR functions is perhaps best made clear by the different interpretations by you and your child 
to the following proclamation at a restaurant: “You can have the chocolate cake or the ice cream 
for dessert.” 

Each of the AND, OR, and exclusive-or functions defined thus far require two variables. The 
NOT function as defined in Table 5.3 requires only one variable; where NOT false is true and NOT 
true is false. 

Implication (⇒) and the biconditional (⇔) functions are defined in Table 5.5. When we say “p 
implies q,” or “if p then q” in everyday parlance we mean that if some condi-
tion p is present, then q will result. For example, “If it rains, then the streets will 
get wet” is taken to mean that if p: “it rains” is true, then q: “the streets will get 
wet” is necessarily true. This interpretation is provided in Table 5.5 by the last 
row of the truth table for p ⇒ q. This table defines each of F ⇒ F and F ⇒ T as 
true; there is no rationale from everyday life why this should be so. In proposi-
tional logic, however, you can argue that it is impossible to prove that “p does 
not imply q” when p is false, and hence, in a vacuous sense, the implication is 
defined as true. Finally, you should have no trouble accepting as false the third 
line for p ⇒ q, the case in which p is true and q is false. 

The rightmost column in Table 5.5 defines the biconditional operator: p 
⇔ q, which can be interpreted as “p if and only if q”; we can represent this 
last phrase as “p iff q.” Observe that p ⇔ q is true whenever both p and q 
have the same truth-value (both are false, or both true); for this reason the 
biconditional operator is sometimes referred to as the equivalence operator. 

Table 5.2 
Compound expressions formed by using logical connections.  

Symbol Name Example English Equivalent 
˄ conjunction p ˄ q p and q
˅ disjunction p ˅ q p or q
~ negation ~p not p
⇒ implication p ⇒ q if p then q or p implies q
⇔ biconditional p ⇔ q p if and only if q or p is  

equivalent to q

Table 5.3 
Truth table for twovariables (p and q) for AND, OR, and NOT operations. 

(a) AND function (b) OR function (c) NOT function
p q p ˄ q p q p ˅ q
F F F F F F p ~p
F T F F T T F T
T F F T F T T F
T T T T T T

Table 5.4 
Truth table for the two-variable XOR function. 

p q p ˅ q 
F F F
F T T
T F T
T T F

Table 5.5 
Truth table for Implication (⇒) and the  
biconditional (⇔) operators.

p q p ⇒ q p ⇔ q
F F T T
F T T F
T F F F
T T T T
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A professor of mathematics, after proving a theorem in class, might inquire, “Is the converse 
also true?” Suppose you are given the implication: “If a number is divisible by four, then it is even.” 
In the original implication, let p represent: “A number is divisible by four,” and let q represent: 
“It is even.” Then the above implication can be represented in propositional logic by the expres-
sion: p ⇒ q. The left side of an implication, p in this example, is referred to as the antecedent; the 
right side, q, as the consequent. The converse of an implication is formed by reversing the roles 
of antecedent and consequent (consult Table 5.6). The converse of this implication is therefore:  
q ⇒ p, or, “If a number is even, then it is divisible by four.” Referring to the original implica-
tion, if a number n is divisible by four then n = 4 * k, where k is an integer. Since 4 = 2 * 2, we 
have n = (2 * 2) * k, which, by the associative law of multiplication equals 2* (2*k); therefore 
n is indeed even. 

The converse to the above implication is false. A useful method to disprove an assertion that is 
false is to produce a counterexample, in other words, an example for which the assertion is not true. 

You can verify that the number 6 is a counterex-
ample for the converse of this implication, as 6 
is even; however, it is not divisible by 4.

The inverse of an implication is formed by 
negating both the antecedent and consequent. 
The inverse of p ⇒ q is ~p ⇒ ~q. The inverse 
for our example is: “If a number is not divisible 
by four, then it is not even.” You are asked to 
find a counterexample for this assertion. 

A useful proof technique in mathematics is 
a proof by contrapositive. The contrapositive 
for our example is: “If a number is not even, 
then it is not divisible by four.” 

We use the symbol ≡ to denote that two 
logical expressions are equivalent by definition. 
For example, (p ⇒ q) ≡ ~p ˅ q. Such a com-
pound expression is referred to as a tautology 
or a theorem. Observe that parentheses are em-

ployed to clarify the interpretation of an expression. 
Using a truth table to demonstrate that a logical expression is 

a tautology and is therefore always true is referred to as a proof by 
perfect induction. The last column in Table 5.7 shows that (~p ˅ 
~q) and ~ (p ˄  q) are always identical in truth-value. This theorem 
is one form of De Morgan’s law. Table 5.8 lists additional theo-
rems in the propositional logic. 

Imagine you are a student in an advanced calculus course, 
and you are challenged by the professor to prove that the 
sqrt(2) is not rational. Perhaps, indeed, this has happened to 
you. What was—or would be—your response?

A number n is rational if it can be expressed as the ratio of 
two integers. For example, 4 which equals 4/1, and 2/3 are 
rationals whereas sqrt(2), pi, and e are not. 

Table 5.6
Truth table for an implication (column 3), as well its converse (column 4), inverse (column 5), and 
contrapositive (column 6), where columns are numbered for ease of reference.

1 2 3 4 5 6
p q p ⇒ q q ⇒ p ~p ⇒ ~q ~q ⇒ ~p
F F T T T T
F T T F F T
T F F T T F
T T T T T T

Table 5.7 
Two tautologies in the propositional logic. Observe that in the last two columns, all the entries are true. 

p q (p ⇒ q) (~p ˅ q) (p ⇒ q) ≡ (~p ˅ q) (~p ˅ ~q) ≡ ~(p ˄ q)
F F T T T T
F T T T T T
T F F F T T
T T T T T T

Augustus De Morgan was an early 
nineteenth century mathematician of 
British descent who spent much of his 
adult life in India after studying at and 
being chair of mathematics at Cambridge. 
His laws of logic are universally 
pervasive across many disciplines.
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Table 5.8 
Theorems in propositional logic.

Theorem Name
p ˅ q ≡ q ˅ p Commutative Property 1
p ˄ q ≡ q ˄ p Commutative Property 2
p ˅ p ≡ p Idempotency Law 1
p ˄ p ≡ p Idempotency Law 2
~ ~p ≡ p Double Negation (or Involution)
(p ˅ q) ˅ r ≡ p ˅ (q ˅ r) Associative Law 1
(p ˄ q) ˄ r ≡ p ˄ (q ˄ r) Associative Law 2
p ˄ (q ˅ r) ≡ (p ˄ q) ˅ (p ˄ r) Distributive Law 1
p ˅ (q ˄ r) ≡ (p ˅ q) ˄ (p ˅ r) Distributive Law 2
p ˅ T ≡ T Domination Law 1
p ˄ F ≡ F Domination Law 2
(p ≡ q) ≡ (p ⇒ q) ˄ (q ⇒ p) Law of Elimination 1
(p ≡ q) ≡ (p ˄ q) ˅ (~p ˄ ~q) Law of Elimination 2
p ˅ ~p ≡ T Law of Excluded Middle
p ˄ ~p ≡ F Contradiction

Theorems in the propositional logic can be used to prove additional theorems through a process 
known as deduction. An example follows:

exAMple 5.1: A proof in the propositionAl logic

Prove that [(~p ˅ q) ˄ ~q] ⇒ ~p is a tautology
  [(~p ˄ ~q) ˅ (q ˄ ~q)] ⇒ ~p distributive law 1
  [(~p ˄ ~q) ˅ F] ⇒ ~p non-contradiction
  (~p ˄ ~q) ⇒ ~p domination law 2
  ~ (~p ˄ ~q) ˅ ~p alternate definition for implication
 (~ ~p ˅ ~ ~q) ˅ ~p De Morgan’s law 
  (p ˅ q) ˅ ~p involution 
  p ˅ (q ˅ ~p) associative law 1
 p ˅ (~p ˅ q) commutative law1
 (p ˅ ~p) ˅ q associative law 1
 T ˅ q law of excluded middle
 T domination law 1

We have seen that an expression whose value is always true is referred to as a tautology. An  
expression whose value is always false is called a contradiction. An example of a contradiction 
is p ˄ ~ p. Finally, an expression in the propositional logic is said to be satisfiable when there is 
at least one truth assignment for the variables that makes the expression true. For example, the 
expression p ˄ q is satisfiable; it evaluates to true precisely when each of p and q are true. The 
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Satisfiability Problem (SAT) in the propositional logic is the problem of determining if there is 
some assignment of truth-values to the variables in an expression that makes the expression true. 
SAT in the propositional logic is NP-Complete (NPC). Recall from Chapter 3, “Informed Search,” 
that a problem is NPC if the best algorithm to solve the problem seems to require exponential time 
(though no one has proven that a polynomial time algorithm does not exist). Perusing Tables 5.3 – 
5.7, you can observe that a truth table for two variables has four rows, with each row corresponding 
to a distinct truth assignment. A truth table for three variables has 23 = 8 rows; generalizing, a truth 
table for n variables has 2n rows. There is no known algorithm for solving SAT that performs better 
than the approach that exhaustively scans each and every one of the 2n rows. 

 5.2.2  Arguments in the Propositional Logic
An argument in the propositional logic has the form:
A: P1
 P2
 .
 .
 .
 Pr
 ______________________
  C // Conclusion

An argument A is said to be valid if the implication formed by taking the conjunction of the 
premises as the antecedent and the conclusion as the consequent, i.e., 

(P1 ˄ P2 ˄ … ˄ Pr) ⇒ C is a tautology.

exAMple 5.2 prove thAt the following ArguMent is vAlid 
1.  p ⇒ q

2.  q ⇒ ~r

3. ~p ⇒ ~r

        \ ~r

The symbol “\” is shorthand for “therefore.” Informally, an argument is valid 
if, whenever the premises are true, then you are certain that the conclusion is 
true as well. Premises are assumed to be true. Premise 1 states that p implies 
q. Premise 2 maintains that q implies ~r. Premises 1 and 2 taken together, 
imply that if p is true then ~r will be true (using transitivity). Premise 3 
addresses the case when p is false; it states that ~p implies ~r. We know that  
p ˅ ~p is a tautology, ~r will follow, and hence this argument is indeed valid. 

More formally, to prove that the previous argument is valid we must show that the implication 

[ ( p ⇒ q ) ˄ ( q ⇒ ~r ) ˄ (~p ⇒ ~r) ] ⇒ ~r is a tautology (consult Table 5.9).
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Column 7 contains the conjunction of the three premises. The rightmost column of Table 5.9 
corresponds to the aforementioned implication and it contains all true values, confirming that the 
implication is indeed a tautology and that the argument is therefore valid. The reader is advised not 
to confuse an argument’s validity with the truth of an expression. A logical argument is valid if its 
conclusion follows from its premises (informally, that the argument has the right “structure”); argu-
ments are not true or false. An example will help to clarify this distinction. Consider the following 
argument:

“If the moon is made of green cheese, then I am rich.” 
Let g represent: “the moon is made of green cheese” and r represent: “I am rich.” This argument 

has the form: 
g

\ r
Since g is false, the implication g ⇒ r is true and hence the argument is valid. Many additional 

examples of truth tables, as well as logical arguments and inference rules can be found in Discrete 
Mathematic 1, Mathematical Structures for Computer Science 2, and Discrete and Combinatorial 
Mathematics.3 

 5.2.3 Proving Arguments in the Propositional Logic Valid –  A Second 
Approach

A second approach to proving validity of propositional logic arguments is known as resolution. 
This strategy is also referred to as resolution-refutation.4 This approach assumes that the premises 
are true and that the conclusion is false. If you can thereby arrive at a contradiction, then the origi-
nal conclusion must follow logically from the premises and hence the original argument is valid. 
Resolution proofs require that the premises and conclusion of the argument be in a special form 
referred to as clause form. 

An expression in the propositional logic is in clause form if:
There is no:
1. implication 
2. conjunction 
3. double negation

Table 5.9 
A proof that the argument in Example 5.2 is valid. 

1 2 3 4 5 6 7 8
p q r p ⇒ q q ⇒ ~r ~p ⇒ ~r 4 ˄ 5 ˄ 6 7 ⇒ ~r
F F F T T T T T
F F T T T F F T
F T F T T T T T
F T T T F F F T
T F F F T T F T
T F T F T T F T
T T F T T T T T
T T T T F T F T
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Removing implication can be accomplished by replacing each occurrence of (p ⇒ q) 
by (~p ˅ q). Removing conjunction is more subtle; p ˄ q can always be replaced by 
p, q via simplification. And finally, each occurrence of ~ ~p can be simplified to p 
(involution or double negation). 

exAMple 5.2 revisited

Use resolution to prove that the following argument is valid:
1. p ⇒ q
2. q ⇒ ~r
3. ~p ⇒ ~r

\ ~r
Step 1: Convert the premises to clause form. To do so, you first remove impli-
cation:
 1’) ~p ˅ q
 2’) ~q ˅ ~r
 3’) ~ ~p ˅ ~r
There are no conjunction operators, therefore we need only to remove the 
double negation operation from the third expression yielding 3’) p ˅ ~r. 
Step 2: Negate the conclusion 
1) ~ ~r
Step 3: Convert the negation of the conclusion to clause form:
4’) r.  // via involution
Finally, in Step 4: Search for a contradiction in this list of clauses. If a contra-
diction is found, then the argument is valid, as the contradiction is due to the 
presence of the negation of the conclusion in the list of clauses (recall that the 
premises are true by definition). 

Our clause base (list of clauses) is listed once more for ease of presentation:

1′) ~p ˅ q
2′) ~q ˅ ~r
3′) p ˅ ~r
4′) r

We combine clauses together to arrive at new clauses. 

3′), 4′)   p  (5′
1′), 5′)   q  (6′
2′, 6′)  ~r  (7′
4′, 7′)  // contradiction 

Combining 3′ with 4′: 4′ states that r is true whereas 3′ asserts that p ˅ ~r is true. However, 
because r is true, we know that p ˅ ~r is true because p is true (~r cannot be true). This process 
of combining clauses to obtain new clauses is called resolution. The proof of validity culminates 
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when the empty clause (denoted by ) is derived as a result of combining clauses 4′ with 7′, in other 
words, r with ~r. 

exAMple 5.3: resolution theoreM  
proving – A second exAMple 

Use resolution to prove that the following argument is valid:
1. p ⇒ (q ˅ r)
2. ~r
_____________
\  q
Step 1: Once again, you first convert the premises to clause form. 
 1′) ~p ˅ (q ˅ r)
 2′) ~r
Step 2: Negate the conclusion.
 3′) ~q
Step 3: Convert the negation of the conclusion to clause form:
 3′) ~q // it was already in clause form 

Step 4: Search for a contradiction in this list of clauses: 1′), 2′), and 3′) 
We try combining 1′) with 3′) and we obtain:
 4′) ~p ˅ r
Then combining 4′) with 2′):
 5′) ~p
It soon becomes apparent that “we are spinning our wheels”, i.e., there is no 
contradiction present. Once you have searched (everywhere) to find a con-
tradiction and are sure that none is present, then you can safely assume that 
the argument is not valid. If p had been given as a premise as well, then this 
argument would indeed be valid. 

 5.3  PREDICATE LOGIC – INTRODUCTION 
We have previously observed that predicate logic has greater expressive power than propo-

sitional logic. If we wished to express The King’s Wise Men problem with propositional logic, 
distinct variables would be required for each of: 

“wise man one is wearing a blue hat”
“wise man one is wearing a white hat”

and so on. You cannot directly refer to a part of an expression in the propositional logic. 
A predicate logic expression consists of a predicate name followed by a list (possibly empty) of 

arguments. In this text predicate names will begin with capital letters, for example: WM_1(). The 
number of elements in a predicate’s list of arguments (or variables) is referred to as its arity. For ex-
ample: Win ( ), Favorite Composer (Beethoven), Greater-Than (6,5) are predicates of arity zero, one, 
and two respectively. (Note, we will allow constants such as Beethoven, me, you, to be capitalized  
or not). As with the propositional logic, predicate logic expressions can be combined with the  
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operators: ~ , ˄  , ˅ , ⇒, ⇔. Furthermore, two quantifiers can be applied 
to predicate variables. The first (∃) is an existential quantifier. ∃x is 
read as: “there exists an x” this means that one or more values of x are 
guaranteed to exist. The second quantifier, (∀) is a universal quanti-
fier. ∀x reads as: “for all x”, this means that the predicate expression is 

stating something for all values that x can assume. Consult Table 5.10 for examples that will clarify 
this terminology. 

 5.3.1  Unification in the Predicate Logic
We discussed resolution within the propositional logic in Section 5.2.3. It was easy to determine 

that two literals cannot both be true at the same time; you just look for L and ~L. This matching 
process in the predicate logic is more complicated because you must also consider the arguments of 
the predicates. For example: Setting (sun) and ~Setting (sun) is a contradiction, whereas Beautiful 
(Day) and ~Beautiful (Night) is not, as the arguments do not match. In order to find contradictions, 
we require a matching procedure that compares two literals to detect whether there exists a set of 
substitutions that makes them identical. This procedure is called unification.

If two literals are to unify, then first, their predicate symbols must match; if they do not, then 
these two literals cannot be unified. For example:

Kite_ is_ flying (X) and
Trying _to _fly_Kite (Y) cannot be unified. 

If the predicate symbols match, then you check the arguments one pair at a time. If the first 
matches, then continue with the second, and so on. 

Matching Rules:

• Different constants or predicates cannot match … only identical ones can. 

Without the last predicate in Table 
5.10, a computer program would 
incorrectly identify a male person as 
their own brother.

Table 5.10 
Predicate logic expressions. 

Predicates English Equivalent
(~ Win (you) ⇒ Lose (you)) ˄ If you don’t win, then you lose and
(Lose (you) ⇒ Win (me)) If you lose then I win. 
[ Play_in_Rosebowl (Wisconsin Badgers) ˅ If either the Wisconsin Badgers or
Play_in_Rosebowl (Oklahoma Sooners)] ⇒ The Oklahoma Sooners play in the Rosebowl, then
Going _to_ California (me). I am going to California. [// to watch the game].
∀(x){[Animal(x) ˄ Has_Hair (x) If x is a warm-blooded animal with hair
˄ Warm_Blooded (x)] ⇒ Mammal (x)} then x is a mammal. 
(x) [ Natural_number (x) Some natural numbers are even. 
˄ Divisible_ by_2 (x)]
{Brother (x, Sam) ⇒ If x is Sam’s brother then
(∃y) [(Parent (y, x) ˄ Parent (y, Sam) ˄ x and Sam must have a common parent,
Male (x) ˄ x must be male, and
~ Equal (x, Sam)]} x must be someone other than Sam. 
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• A variable can match another variable, any constant, or a predicate expression with the 
restriction that the predicate expression must not contain any instances of the variable 
being matched. 

There is one caveat: The substitution that is found must be a single consistent one, in other 
words, you cannot use separate ones for each piece of the expression. To ensure this consistency, a 
substitution must be applied to the rest of the literals before you continue with unification. 

exAMple 5.4: unificAtion 
Coffees (x, x)
Coffees (y, z)
The predicates match, so next check the first arguments, the variables x and y. 
Recall that one variable can be substituted for another; we will substitute y for 
x, this is written as y | x. There is nothing special about this choice; we could 
have chosen instead to substitute x for y. The algorithm must make some 
choice. After substituting y for x, we have:
Coffees (y, x)
Coffees (y, z)
Continuing, we try to match x and z. Suppose we decide upon the substitution 
z | x. There is a problem. The substitution is not consistent. You cannot substi-
tute both y and z for x. Let us begin again. After making the first substitution 
y | x, you should make this substitution throughout the literals, yielding:

Coffees (y, y)
Coffees (y, z) 
Next, you try to unify the variables y and z. You settle on the substitution z | y 
yielding:

Coffees (y, z)
Coffees (y, z)

Success! The two literals are identical. This substitution is the composition of 
two substitutions:
(z | y) (y | x)

You should read this the same way that you read the composition of functions, in other words, 
from right to left. First, y is substituted for x and then z for y. 

When there is one substitution, there are usually many. 

exAMple 5.5: AdditionAl unificAtion exAMples

a. Wines (x, y)
 Wines (Chianti, z)

These predicates can be unified with any of the following substitutions:

1. (Chianti | x, z | y)
2. (Chianti | x, y | z)
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Observe that substitutions 1 and 2 are equivalent. The following substitutions 
are also possible:

3. (Chianti | x, Pinot_Noir | y, Pinot_Noir | z)
4. (Chianti | x, Amarone | y, Amarone | z)

Note that substitutions 3 and 4 are more restrictive than is necessary. We 
desire the most general unifier (mgu) possible. Each of substitutions 1 or 2 
qualifies as an mgu. 

b. Coffees (x, y) 
 Coffees (Espresso, z) 
  {Espresso | x, y | z } is one possible set of substitutions.
c. Coffees (x, x) 
Coffees (Brazilian, Colombian)

The substitution Brazilian | x, Colombian | x is not legal, because you cannot 
substitute two distinct constants for the same variable x. Therefore, unifica-
tion is not possible.

d. Descendant (x, y) 
 Descendant (bob, son (bob))

A legal substitution is:
 {bob | x , son (bob) | y} 

 5.3.2  Resolution in the Predicate Logic
Resolution provides a method for finding contradictions in a database of clauses. Resolution 

refutation proves a theorem by negating the statement that needs to be proved and then adding this 
negation to the set of axioms that are known (have been assumed) to be true.

Resolution refutation proofs involve the following steps:

 1. Put the premises (these are sometimes called axioms or hypotheses) into clause form. 
 2. Add the negation of what is to be proved (i.e., the negation of either the conclusion or 

goal), in clause form, to the set of premises. 
 3. Resolve these clauses together, producing new clauses that logically follow from them. 
 4. Produce a contradiction by generating what is referred to as the empty clause.
 5. The substitutions used to produce the empty clause are precisely those under which the 

opposite of the negated goal is true. 
Resolution is refutation complete. This means that a contradiction can always be generated 

whenever one exists. Resolution refutation proofs require that the premises and the negation of the 
conclusion be placed in a normal form called clause form (as was required in the propositional 
logic). Clause form represents both the premises and the negation of the conclusion as a set of dis-
junction of literals. 

note: Son () is a function that 
takes a person as input, and 
yields their father as output.
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We use the following well-known argument to illustrate resolution proofs. 
Premise 1) Socrates is a mortal. 
Premise 2) All mortals will die. 
-----------------------------------------------
Conclusion: Socrates will die. 

First we represent this argument in the predicate logic. We use the predicates Mortal(x) and  
Will Die (x).

Premise 1) Mortal (Socrates)
Premise 2) (∀x) ( Mortal (x) ⇒ Will _ Die (x) ) 
----------------------------------------------------
Conclusion)  \ Will _ Die (Socrates). 

Next, the premises are converted into clause form: 
Premise 1) Mortal (Socrates)
Premise 2) ~ Mortal (x) ˅ Will _ Die (x)

Negate the conclusion: ~ Will _ Die (Socrates)
Observe this last predicate is already in clause form. 
Our clause base consists of:

1) Mortal (Socrates)
2) ~ Mortal (x) ˅ Will Die (x)
3) ~Will _ Die (Socrates)

Combining 2) with 3) under the substitution Socrates | x yields: 
4) ~Mortal (Socrates). 

Note that we have assumed that both clauses 2) and 3) are true. If clause 3) is true, then the 
only reason clause 2) can be true is if ~Mortal(Socrates) is true. Finally, by combining 1) with 4) 
we derive □, in other words, the empty clause, and so we have a contradiction. Therefore, the nega-
tion of what was assumed true, in other words, not (~ Will _ Die (Socrates)), which is equivalent 
to Will_Die (Socrates), must be true. The original conclusion does logically follow from the argu-
ment’s premises, and therefore the argument is valid. 

exAMple 5.6: resolution exAMple

1. All great chefs are Italian. 
2. All Italians enjoy good food. 
3. Either Michael or Louis is a great chef. 
4. Michael is not a great chef. 
5. Therefore, Louis enjoys good food. 

We use the following predicates:
GC (x) : x is a great chef
I (x) : x is Italian
EF (x) : x enjoys good food

The argument can be represented in the predicate logic as :
1. (∀x) (GC (x) ⇒ I (x))
2. (∀x) (I (x) ⇒ EF (x))
3. GC ( Michael) ˅ GC ( Louis) 
4. ~ GC (Michael)

Therefore:
5. EF (Louis)

The parentheses around Mortal(x) 
Will _ Die (x) are not necessary; but 
they aid clarity.
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Next, we must convert the 
premises into clause form where 
no quantifiers can be present. 
It is easy to remove universal 
quantifiers because we can assume 
that all variables are universally 
quantified. The removal of 
existential quantifiers (not required 
for this example) is more involved 
and will not be discussed in this 
section. Also, for now, observe that 
expression 2) below has a distinct 
variable name (a process referred 
to as standardization of variable 
names). 

 The premises in clause form:
1. ~ GC (x) ˅ I (x)
2. ~ I (y) ˅ EF (y)
3. GC (Michael) ˅ GC (Louis)
4. ~ GC (Michael)

Negate the conclusion:
5. ~ EF (Louis) // already in clause form

We display the search for a contradiction in graphical form in Figure 5.2: The 
substitutions made are shown on the branches.

Additional examples of unification and resolution proofs can be found in Logical Foundations 
of Artificial Intelligence, by Genesereth and Nilsson.5 

 5.2.3  Converting a Predicate Expression to Clause Form
The following rules can be used to transform an arbitrary predicate logic expression into clause 

form. The transformation process described here might cause some nuances of meaning to be lost. 
This loss of meaning can occur because of the substitution process known as skolemization that 
is used to remove existential quantifiers. This set of transformations does, however, possess one 
important property—it will preserve a contradiction whenever one exists in the original set of 
predicate expressions. 

a)  (∀w) {[(P1 (w) ˅ P2 (w)) P3 (w)]
 ˅ [(∃x) (∃y) (P3 (x, y) ⇒ P4 (w, x))]}
  ˄ [ (∀w) P5 (w)].

Step 1: Eliminate implication. Recall that p ⇒ q ≡ ~ p ˅ q. Applying this equivalence to a) we 
obtain:

b)  (∀w) {[ ~(P1 (w) ˅ P2 (w)) ˅ P3 (w)]
  ˅ [(∃x) (∃y) (~P3 (x, y) ˅ P4 (w, x))]}
  ˄ [(∀w) P5 (w)]

x

~EF (Louis) ~GC (x) ∨ EF(x)

 ~I(y) ∨ EF(y) ~GC(x) ∨ I(x)

~GC (Louis)

Louis x

GC (Michael) ∨ GC (Louis)

GC (Michael)~GC (Michael)

y

Figure 5.2 
Resolution proof —a graphical representation.
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Step 2: Reduce the scope of negation by using the following logical equivalences:

 i) ~ (~a) ≡ a
 ii) ~ (∃x) P(x) ≡ (∀x) ~P (x)

Equivalence ii) can be understood as: “If there does not exist a value for x for which the predi-
cate P(x) is true, then for all values of x, this predicate must be false.” 

 iii) ~ (∀x) P(x) ≡ (∃x) ~ P(x)

Equivalence iii) states that “If it is not the case that P(x) is true for all values of x, then there 
must exist a value for x which makes P(x) false.” 

 iv) ~ (a ˄ b) ≡ ~ a ˅ ~b  De Morgan’s theorems
      ~ (a ˅ b) ≡ ~ a ˄ ~b

We use the second form of De Morgan’s law:
 c) (∀w) {[~ P1 (w) ˄ ~ P2 (w) ˅ P3 (w)]

      ˅ [(∃x) (∃y) (~P3 (x, y) ˅ P4 (w, x))]}

      ˄ [(∀w) P5 (w)]

Step 3: Standardize variable names. All variables bound by different quantifiers must have 
unique names. It is therefore necessary to rename some variables. 

Step 3 dictates that the variable w in the last term of c) above must be renamed; we choose z 
as the new variable name. 

 d) ((∀w) {[~ P1 (w) ˄ ~ P2 (w) ˅ P3 (w)]

  ˅ [(∃x) (∃y) (~ P3 (x, y) ˅ P4 (w, x)]}

  ˄ [(∀z) P5 (z)]

Step 4: Move all quantifiers to the left, being certain to preserve their order. Step 3 ensures that 
no confusion will result during this process. 

 e) (∀w) (∃x) (∃y) (∀z) {[~ P1 (w) ˄ ~P2 (w) ˅ P3 (w)] ˅ [(~ P3 (x, y) ˅ 

      P4 (w, x))]} ˄ [P5 (z)]

The expression displayed in e) is referred to as prenex normal form, in which all quantifiers 
form a prefix of the predicate logic expression. 

Step 5: All existential quantifiers are now removed. The process referred to above as skolemiza-
tion is used, in which a name is assigned for something or someone that must exist. 

Examples of skolemization:

• (∃x) (Monster (x)) Can be replaced by: Monster (Rodin)  
// Rodin is a skolem constant. 

• (∀x) (∃y) (Favorite _ Pasta (x,y) can be replaced by: (∀x) 
 (Favorite _ Pasta x, fp(x))

// fp ( ) is a skolem function. The argument(s) of a skolem function will be all the universally 
quantified variables that occur in front of the existentially quantified variable that is being re-
placed. Here, the skolem function fp(x) returns the favorite pasta of the individual x. 

 =  (∀w) (∀x) (∀y) (∃z) (∀t) (Richer _ than (w, x, y, t)) is skolemized to:
  (∀w) (∀x) (∀y) (∀t) (Richer _ than (w, x, y, rt(w, x, y)) 

Rodin was a favorite character in old 
Japanese monster movies. 
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   //The skolem function rt( ) has three arguments, w, x, and y which are the 
three universally quantified variables that precede z. Note that the variable t is 
also universally quantified but because it occurs after z, it does not appear as 
an argument in rt ( ).

Once e) is skolemized we have:
f) (∀w) (∀z) {[~ P1 (w) ˄ ~ P2 (w) ˅ P3 (w)] ˅ [~ P3 (f(w), g(w)) ˅ P4 
 (w, f(w))]} ˄ [P5 (z)]

  // x was replaced by the skolem function f(w) and y by g(w).

Step 6: Drop all universal quantifiers. This is allowed because it is assumed that all variables 
are universally quantified. 

g) {[~ P1 (w) ˄ ~ P2(w) ˅ P3 (w)] ˅ [~ P3 (f(w), g(w)) ˅ P4

     (w, f(w))]} ˄ [P5 (z)]

Step 7: Convert to conjunctive normal form (CNF), in other words, every expression is a 
conjunction of disjunctive terms. The associative laws and one distributive law are reproduced 
below (from Table 5.8):

 a ˅ (b ˅ c) = (a ˅ b) ˅ c
 a ˄ (b ˄ c) = (a ˄ b) ˄ c //associative laws
 a ˅ (b ˄ c) = (a ˅ b) ˄ (a ˅ c) //distributive law
 a ˄ (b ˅ c)   //already in clause form

We use the first distributive law and the commutative law (consult Table 5.8) to obtain:
 h1) {[((P3 (w) ˅ ~P1 (w)) ˄ ((P3 (w) ˅ ~P2 (w)) ] ˅ [~P3 (f (w), 
 g (w)) ˅ P4 (w, f (w))]} ˄ [P5 (z)]

We need to apply the distributive law once again; the substitutions are shown below:
 {[ ((P3 (w) ˅ P1 (w)) ˄ ((P3 (w) ˅ P2 (w)) ] 
             ---------b--------        ---------c--------
 ˅ [~ P3 (f (w), g (w)) ˅ P4 (w, f (w))]} 
              -----------------a--------------
 ˄ [P5 (z)]
 h2) {[(P3 (w) ˅ ~ P1 (w)] ˅ [(~ P3 (f (w), g (w)) ˅ P4 (w, f (w))]}
 ˄ {[(P3 (w) ˅ ~ P2 (w)] ˅ [(~ P3 (f (w), g (w)) ˅ P4(w, f (w))]}
 ˄ {[P5 (z)]}

Step 8: Each term being AND’ed will become a separate clause:
i1) [(P3 (w) ˅ ~P1 (w)] ˅ [(~ P3 (f (w), g (w)) ˅ P4 (w, f (w))]
i2) [(P3 (w) ˅ ~ P2 (w)] ˅ [(~ P3 (f (w), g (w)) ˅ P4 (w, f(w))]
i3) P5 (z)

Step 9: Standardize the variable names one more time. 
j1) [(P3 (w) ˅ ~ P1 (w)] ˅ [(~ P3 (f (w), g (w)) ˅ P4 (w, f (w))]
j2) [(P3 (x) ˅ ~ P2 (x)] ˅ [(~ P3 (f (x), g (x)) ˅ P4(x, f (x))]
j3) P5 (z)

We conclude by commenting that not all nine steps are required in each conversion into clause 
form but you need to be prepared to use any of the steps that are needed. Additional resolution 
proofs that entail the skolemization procedure can be found in Chang and Lee’s Symbolic Logic and 
Mechanical Theorem Proving.6
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exAMple 5.6: resolution exAMple – revisited 
Suppose, in Example 5.5, “All great chefs are Italian” is replaced by “Some 
great chefs are Italian.” Is the resulting argument still valid? This modified 
argument is shown below:

1. Some great chefs are Italian.

2. All Italians enjoy good food. 

3. Either Michael or Louis is a great chef. 

4. Michael is not a great chef. 

5. Therefore, Louis enjoys good food. 

In predicate logic, using our previous predicates, this modified argument can 
be represented in the predicate logic as:

1. (∃x) (GC(x) ˄ I(x))

2. (∀x) (I(x) ⇒ EF(x))

3. GC (Michael) ˅ GC (Louis)

4. ~GC (Michael)

5. Therefore EF (Louis)

In clause form, the premises are:

1.  a) GC (Sam) // The skolem constant Sam enables us to  
eliminate (∃x)

1.  b) I (Sam)

2.  I(x) ˅ EF (x)

3.  GC (Michael) ˅ GC (Louis)

4.  ~GC (Michael)

      and the negation of the conclusion (in clause 
form) is

5. ~EF (Louis)

No contradiction can be found in this set of clauses, hence this modified argu-
ment is not valid. 

 5.4  SEVERAL OTHER LOGICS
In this Section, we discuss several interesting logics that need thorough understanding of the 

previously discussed logics. We only outline the basic structure of these logic models, and ask the 
interested reader to pursue the many references that are available. 
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 5.4.1  Second Order Logic
The predicate logic discussed in Section 5.3 is sometimes referred to as First Order Predicate 

Logic (FOPL). In the FOPL, quantifiers can be applied to variables but not to predicates them-
selves. You might have seen induction proofs in your earlier studies. An induction proof has two 
parts:

i)  A basis step in which some assertion S is demonstrated to hold for an initial value n0. 
ii)   An inductive step in which we assume S is true for some value n, we must then show that 

S holds for n + 1. 

Gauss’s formula for the sum of the first n integers states: 1
( 1)
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 plus (n + 1). This equals ((n(n + 1))/2) + (n + 1), which equals (n(n + 1))/2 +  

(2 (n + 1))/2. This last quantity equals ((n (n + 1)) + (2n + 2)/2, which equals = n2 + 3n + 3, which 
of course equals ((n + 1) (n + 2))/2. This last expression shows that the formula is true for n + 1. 
Hence, we have proved that the theorem holds for all natural numbers. To state the proof methodol-
ogy of mathematical induction we must have:

 (∀S) [(S (n0) ˄ (∀n) (S (n) ⇒ S (n + 1))] ⇒ (∀n) S(n)  (8)

We are trying to represent that all assertions are true when an induction proof for S exists. In the 
FOPL, however, you cannot quantify a predicate. Expression (8) is a well formed formula (WFF) in 
the second order predicate logic. The interested reader might wish to consult Shapiro’s excellent 
text for more details on second order logic.7

 5.4.2  Non-Monotonic Logic
FOPL is sometimes characterized as monotonic (the term monotonic was first encountered 

in Chapter 3). For example, in Section 5.3.3 we stated the theorem: ~ (∃x) P (x) ≡ (∀x) ~ P (x). 
If there is no value of x that makes the predicate: P(x) true, then for all values of x, this predicate 
must be false. Also, you can remain confident that as you learn more about logic, the truth of this 
theorem will not change. More formally, the FOPL is monotonic, in other words, if some expres-
sion Φ can be derived from a set of premises Γ, then Φ can also be derived from any superset Σ of 
Γ (any set containing Γ as a subset). Real life often does not possess this measure of permanence. 
As we learn more, we might wish to retract our earlier conclusions. Children often believe in the 
existence of Santa Claus or the Easter bunny. As many people mature, they no longer hold these 
beliefs. 

Non-monotonic logic has found applications in database theory. Suppose you want to visit 
Qatar and stay in a 7-star hotel while there. You consult a travel agent and, after consulting their 
computer, they respond that Qatar has no 7-star hotels. The travel agent is applying (unwittingly) 
the closed world assumption; the assumption is that the database is complete and if such a hotel 
existed it would appear within the database. 
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McCarthy was an early researcher in non-monotonic logic. He is responsible for the concept 
of circumscription, which maintains that predicates should be extended only as necessary. For 
example: “All nonreligious holidays in the United States are observed on the closest Monday to 
their actual occurrence” (so as to enable a three-day weekend). Only later do you learn that some 
nonreligious holidays are special (such as July 4 – American Independence Day) and are observed 
on their actual date. We should not conclude that other nonreligious holidays are special (say New 
Year’s Day) unless we are explicitly told that it is so. 

Two problems that are currently intractable for non-monotonic logic are: (1) checking consis-
tency of conclusions and (2) determining which conclusions remain viable as new knowledge is 
obtained. Non-monotonic logic more accurately reflects the transient nature of human convictions. 
Computational complexity concerns will need to be addressed if this logic is to find more wide-
spread use. Seminal work in this area of logic has been done by McCarthy,8 McDermott and Doyle,9 
Reiter,10 and Ginsberg.11 

 5.4.3  Fuzzy Logic
In the FOPL, predicates are classified as either true or false. In our world, truth and falsehood 

often come with shades of gray. Some politicians believe that: “All taxes are bad.” Is this posit true 
for a tax on cigarettes—a tax that could possibly cause some smokers to quit smoking, because of 
the increased price tag on their habit, and thereby live longer? Consider: “New Yorkers are polite.” 
Most probably are, and these people probably will offer directions if they see you consulting a map; 
yet exceptions do exist. You might wish to maintain “New Yorkers are polite” is true to a certain 
extent. Fuzzy logic permits this latitude in truth-values. A logical expression can vary anywhere 
from false (0.0 degree of truth) to certainty (1.0 degree of truth). Fuzzy logic has found many appli-
cations in the control of modern conveniences. For example, the wash cycle of a washing machine 
should be longer if the clothes are especially dirty because dirtier clothes need to be washed longer. 
The shutter speed should be faster on a digital camera if it is sunny. “It is a sunny day” can vary 
anywhere from 0.0 to 1.0 in truth-value depending on whether it is nighttime, daytime and cloudy, 
or it is noon and there is not a cloud in the sky. Fuzzy logic controllers often have simpler logic 
design than their “non-fuzzy” counterparts. The founding father of fuzzy logic is Lotfi Zadeh.12 We 
revisit fuzzy logic in Chapter 8. 

 5.4.4  Modal Logic
Modal logic is useful in the analysis of beliefs, in settings wherein temporal expressions are 

used and whenever moral imperatives (“You should brush your teeth before bedtime”) are used. 
Two common modal logic operators are:

Symbol   English Equivalent
□   “It is necessary that…”
◊   “It is possible that…”

We can define ◊ from □ by: ◊A = ~ □ ~A, which says A is possible if ~A is not necessary. You 
should note the similarity of the equivalence between (∀x) A (x) and (~∃x) ~ A (x) cited earlier in 
this chapter. 

One axiom proposed by the logician Luitzen Egbertus Jan Brouwer is: 
A ⇒ □ ◊ A i.e. “if A is true, then A is necessarily possible.”
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In temporal logic (a type of modal logic), two operators, G for the future and H for the past, are 
used. Then we would have “If A is a theorem then both GA and HA are theorems as well.” 

In Section 5.2, we used a truth table to prove that an argument is valid. This approach cannot 
be used in modal logics, because there are no truth tables to represent: “You should do your home-
work.” Or “It is necessary that you wake up early.” We cannot determine the truth-value for □ A 
from the truth-value for A. For example, if A represents “Fishes are fishes” □ A is true, however 
when A equals “Fishes are food”, □ A is no longer true. 

Modal logic has contributed to our understanding of provability in mathematical foundations 
(where one asks: is a given formula a theorem or not?) A bibliography of early modal logic research 
can be found in Hughes and Cresswell. 13 

 5.5  CHAPTER SUMMARY
We have seen that logic is a concise language for knowledge representation. Our discussion 

began with propositional logic because this was the most accessible entry point. Truth tables are a 
convenient tool to ascertain truth-values for propositional logic expressions. 

The FOPL has greater expressive power than the propositional logic. Resolution was seen to 
be a useful procedure for determining validity of arguments. In AI we are concerned with both 
knowledge representation and discovery. Resolution is a strategy that enables us to draw valid con-
clusions from data that can thereby enable us to solve difficult problems. 

Section 5.4 discussed various logic models that are more expressive than the FOPL and can 
enable us to more accurately represent knowledge about the world and to solve some of the conun-
drums that it often tosses our way. 

Questions for Discussion

 1. Comment on the difference in expressive power between the propositional logic and 
the FOPL. 

 2. What limitations do you believe logic has as an AI knowledge representation language?

 3. How might propositional logic be altered if the Law of excluded middle were not a theorem?

 4. A fallacy is a type of reasoning that seems to be valid but is not; an example is post hoc 
reasoning, which literally means “after this.” In this fallacy, one assumes that an event that 
occurred first is the cause of a later event. For example, this morning your horoscope might 
have stated “You will have a conflict today” and then later that same day you have a dispute 
with a colleague. 

  a. Give two additional examples of post hoc reasoning from everyday life. 

  b. Comment on the distinction between causality and post hoc reasoning. 

 5. Another type of faulty reasoning occurs when a premise is stated as a conditional. Consider 
the following lament all too common from students: “If I don’t get at least a B in this course, 
then life is not fair.” Later the student discovers that he has obtained a grade of B+ and 
concludes: “Therefore, life is fair.”

  a. Give an additional example of this type of fallacy. 
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  b. Comment on the lack of validity in this type of argument

 6. “Begging the question” is another form of faulty reasoning. The French comedian Sacha 
Guitny drew a picture in which three thieves are arguing over the distribution of seven pearls. 
The shrewdest thief gives two pearls to each of his partners in crime. One of the thieves 
inquires: “Why do you keep three pearls?” He answers that it is because he is the leader. The 
other asks “Why are you the leader?” Calmly, he responds “Because I have more pearls.”

  a. Comment on the lack of validity in this type of argument. 

  b. Give two additional examples of “begging the question.”

 7. Give three additional types of faulty reasoning. Provide an example for each. 

 8. Why is skolemization a useful tool even though some meaning can be lost?

 9. Give another example in which second order logic has greater expressive power than the 
FOPL. 

  The reader who wishes to learn more about fallacious reasoning can consult Fearnside and 
Holther. 14

Exercises

 1. Use the propositional logic to represent the following English sentences. Choose 
appropriate propositional logic variables.

  a. Many Americans have difficulty learning a foreign language.

  b. All sophomores must pass an English language proficiency exam in order to 
continue their studies. 

  c. If you are old enough to join the military, then you should be old enough to drink. 

  d. A natural number greater than or equal to two is prime if and only if it has no 
divisors other than 1 and itself. 

  e. If the price of gasoline continues to rise, then fewer people will be driving this 
summer. 

  f. If it is neither raining nor snowing, then it is likely there is no precipitation. 

 2. A logic operator not defined in this chapter is the NAND function; it is denoted by ↑. 
NAND is short for “not AND” where a ↑ b ≡ ~ (a ˄ b).

  a. Give the truth table for the two-input NAND function

  b.  Show that the NAND operator can be used to simulate each of the AND, OR, and 
NOT operators. 

 3. The NOR function, denoted by a ↓ b ≡ ~ (a ˅ b); i.e., the NOR is true precisely when 
the (inclusive) OR is false. 

  a. Give the truth table for the two-input NOR function. 
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  b.  Show that the NOR operator can be used to simulate each of the AND, OR, and 
NOT operators. 

 4. Use truth tables to determine if each of the following is a tautology, a contradiction, or 
just satisfiable:

  a. (p ˅ q) ⇒ ~p ˅ ~q

  b. (~p ˄ ~q) ⇒ ~p ˅ ~q

  c. (p ˅ q ˅ r) ≡ (p ˅ q) ˄ (p ˅ r)

  d. p ⇒ (p ˅ q)

  e. p ≡ p ˅ q

  f. (p ↓ q) (p ↑ q) // consult exercises 2 and 3. 

 5. Prove that 2  is irrational by using a contrapositive-based proof. Hint: if a number n 
is rational, then n may be expressed as the ratio of two whole numbers p and q, i.e.,  
n = p/q; furthermore it can be assumed that p and q are in lowest terms. Examples of 
fractions not in lowest terms: 4/8 and 2/4, whereas 1/2 is in lowest terms. 

 6. State a theorem from one of your prior math classes in which:

  a. the converse is also a theorem. 

  b. the converse is not a theorem. 

 7. Use the theorems in Table 5.8 to determine if the following are tautologies. 

  a. [(p ˄ q) ˅ ~r] ⇒ q ˅~r

  b. {[(p ˅~r) ⇔ ~q] ˄ ~q} ⇒ (~p ˄ r)

 8. Use truth tables to determine which of the following arguments are valid:

  a. p ⇒ q

    q ⇒ r

   \ r

  b. p ⇒ (q ˅ ~ q)

   q

   q ⇒ r

   ~ q ⇒ ~ r

   \ r

  c. p ⇒ q

   ~ q

    \ ~ p
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  d. p ⇒ q

   ~ p

    \ ~ q

  e. p ≡ q

   p ⇒ (r ˅ s)

   q

    \ r ˅ s

  f. p ⇒ q

   r ⇒ ~ q

   ~ (~ p ˄ ~ r)

    \ q ˅ ~ q

  g. p ˄ q

   p ⇒ r

   q ⇒ ~ r

    \ r ˅ ~r

  h. The price of oil will continue to rise. 

   If the price of oil continues to rise then the value of the dollar will fall. 

   If the value of the dollar falls then Americans will travel less. 

   If Americans travel less then airlines will lose money.

   Therefore: airlines will lose money. 

 9.  Answer question 8 using resolution. 

10.  Use FOPL to represent the following English sentences. Make up appropriate predicates in 
each case. 

  a. Every time I wake up, I want to go back to sleep. 

  b. Sometimes when I wake up, I desire a cup of coffee. 

  c. If I do not eat less and go to the gym, then I will not lose weight. 

  d.  If I either wake up late or have a cup of coffee, then I do not want to go back to 
sleep. 

  e.  If we are going to solve our energy problems then we must either find more 
sources of oil or develop alternative energy technologies. 

  f. He only likes women that do not like him. 
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  g. Some of the women that he likes do not like him

  h. None of the women that he likes do not like him.

  i. If it walks like a duck and talks like a duck, then it must be a duck. 

 11. Use FOPL to represent the following expressions:

  a. He only dines in Italian restaurants. 

  b. He sometimes dines in Italian restaurants. 

  c. He always dines in Italian or Greek restaurants. 

  d. He never dines in restaurants that are neither Italian nor Greek. 

  e. He never dines in restaurants that are either Italian or Greek.

  f. If he dines in a restaurant then his brother will not dine there.

  g. If he does not dine in a particular restaurant then his brother will not dine there

  h. If he does not dine in a particular restaurant then some of his friends will not dine there. 

  i. If he does not dine in a particular restaurant, then none of his friends will not dine there.

 12. Find the mgu in each pair below or state that unification is not possible. 

  a) Wines (x, y)  Wines (Chianti, Cabernet).

  b) Wines (x, x)  Wines (Chianti, Cabernet).

  c) Wines (x, y)  Wines (y, x)

  d) Wines (Best (bottle), Chardonnay)  Wines (best (x), y) 

 13. Use resolution to determine if the following arguments in the FOPL are valid. Use the 
predicates suggested:

  a. All Italian mothers can cook. (M, C)

   All cooks are healthy. (H)

   Either Connie or Jing Jing is an Italian mother. 

   Jing Jing is not an Italian mother. 

   Therefore, Connie is healthy. 

  b. All New Yorkers are cosmopolitan. (N, C)

   All cosmopolitan people are friendly. (F)

   Either Tom or Nick is a New Yorker. 

   Nick is not a New Yorker. 
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  Conclusion: Tom is friendly.

  c. Anyone who drinks green tea is strong. (T, S)

   Anyone who is strong takes vitamins. (V) 

   Someone at City College drinks green tea. (C)

  Therefore, everyone at City College drinks green tea and is strong. 

 14. Show how resolution can be used to solve the King’s Wise Men Problem.

 15. Halmos Handshare Problem  
As is common, academics will occasionally attend dinner parties. Halmos and his wife 
attended such a dinner party along with four other couples. During the cocktail hour, 
some of those present shook hands, but in an unsystematic way, with no attempt to shake 
everyone’s hand. Of course, no one shook his or her own hand, no one shook hands with his 
or her spouse, and no one shook hands with the same person more than once. During dinner, 
Halmos asked each of the nine other people present (including his own wife), how many 
hands that person had shaken. Under the given conditions, the possible answers ranged from 
0 to 8 hands shaken. Halmos noticed that each person gave a different answer: one person 
claimed not to have shaken anyone else’s hand, one person had shaken exactly one other 
person’s hand, one person had shaken exactly two hands, and so on, to the one person who 
claimed to have shaken hands with all the others present, except his or her spouse, that is, 8 
handshakes in total. So, in summary, of the 10 people present, people gave answers from 0 to 
8 hands shaken, i.e. one person had shaken 0 hands, another 1 hand, another 2 hands, another 
3 hands, etc., up to 8 hands. How many hands did Halmos’wife shake?++

 16. Ten Pirates and Their Gold—Ten Pirates find a buried treasure of 100 pieces of gold. The 
challenge is to divide the gold up in some desirable way according to some rules. The first 
rule is that Pirate 1 is the lead pirate. Pirate 2 is the second in charge. Pirate 3 is the third 
most powerful and so on. The pirates have a scheme for dividing the money. They agree that 
the first pirate P1, will make a proposal for how the money is to be divided. If 50% or more 
of the pirates agree with P1’s system then it will be put into effect. If not, then P1 will be 
killed and the next most powerful pirate becomes the lead pirate. Now, again with one less 
pirate, the process repeats. Again the new lead pirate, P2, will now suggest a new process for 
dividing up the gold. It will be voted on with a 50% vote needed for the leader’s suggestion to 
pass, and less results in the death of this pirate as well. 

  All the pirates are very greedy and savvy—and will vote against a proposal if they can 
determine that they will get more gold if a proposal fails – and hence a lead pirate is killed. 
They will never vote for a proposal that will give them less gold or no gold at all. How Should 
the Gold be Divided among the Ten Pirates? ++

++Problems 15 and 16 are from the book “Artificial Intelligence Problems and Their Solutions,” Mercury Learning 
Inc. 2014.
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Keywords
antecedent
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circumscription
clause form
closed world assumption
commutative law
conjunctive normal form 

(CNF)
consequent
contradiction
contrapositive
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De Morgan’s law
deduction
distributive law
domination law
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exclusive-or
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existential quantifier
fallacy
first order predicate logic 
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Law of Elimination
Law of Excluded Middle
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modal logic
monotonic
most general unifier (mgu)
non-monotonic 

normal form
predicate logic
perfect induction
premises
prenex normal form
propositional logic
resolution 
resolution refutation
Satisfiability Problem (SAT)
satisfiable
second order predicate logic
skolem function
skolemization
statements
tautology
unification
universal quantification
universal quantifier
validity

Programming Exercises

 1. Write a program that takes as input an arbitrary propositional logic expression and returns its 
truth-value. Your program should allow any of the logical connectives from Table 5.2. 

 2. Write a program that uses a truth table to determine if an arbitrary argument in the 
propositional logic is valid. Any of the logic connectives from Table 5.2 should be allowed. 

 3. Use Prolog to solve the jobs puzzle from Section 3 of Chapter 1: Prolog can be downloaded 
from the Web. SWI Prolog is recommended.

  “There are two people, Michael and Louis. Between them they hold two jobs. Each has one 
job. These jobs are Post Office Clerk and French Professor. Michael speaks only English, 
whereas Louis holds a PhD in French. Who holds which job?”

 4. Use Prolog to solve the following jobs puzzle:

  “Jim, Jack, and Joan hold three jobs between them. Each has one job. The jobs are 
schoolteacher, piano player, and secretary. The job of a schoolteacher is held by a male. Jack 
never went to college and has no musical talent.”

   Once again, you need to present Prolog with additional world knowledge. For example, 
Prolog does not know that Joan is a woman’s name or that Jim and Jack are male. 

 5. Use Prolog to solve The King’s Wise Men Problem presented at the beginning of this chapter. 
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Chapter 6 takes you on a journey from notions of 
representational choices, with consideration for intentional 
and extensional approaches, to production systems and object 
orientation. Minsky’s frames and Schank’s scripts move us 
to the conceptual dependency system. The sophistication of 
semantic networks is complemented by humans’ ability to 
make associations. The chapter is rounded out by presentation 
of concept maps, conceptual graphs, and other more recent 
approaches, leading to agent theory with consideration for the 
future.
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 6.0 Introduction
Our information age is composed of computer systems that can process and store vast amounts 

of information. Information comprises data and facts. There is a hierarchical relationship between 
data, facts, information, and knowledge. The simplest pieces of information are data; from data we 
can build facts, and from facts we gain information. Knowledge can be defined as the processing of 
information to enable intelligent decision-making. The challenge of our time is the conversion of 
information into knowledge, which can be used for intelligent decision-making.

Artificial intelligence is about computer programs that can solve interesting problems and 
make intelligent decisions based on knowledge. As we have seen in earlier chapters, certain kinds 
of problems, their solutions, and the choice of language employed are more suited for certain kinds 
of representations. Games often use search trees, the AI language LISP uses lists, whereas Prolog 
uses predicate calculus. Information is often most efficiently stored in a table for fast and accurate 
retrieval. In this chapter, we will describe diverse forms of knowledge representation and how 
they have been developed for use by people and machines. For humans a good representation 
should have the following characteristics: 

 1. It should be transparent; that is, easy to understand. 
 2. It will make an impact on our senses, either through language, vision, touch, sound, or a 

combination of these.
 3. It should tell a story and be easy to perceive in terms of the reality of the world it is repre-

senting.  

For machines, good representations will exploit their computational power—that is, 
their vast memories and processing speeds, with the capability of performing billions of 

computations per second. The choice of a knowledge representation can 
be so innately tied to a problem solution that the problem’s constraints 
and challenges will be most apparent (and understood) via one repre-
sentation, whereas they might be hidden, complicated, and remain unre-
solved via another representation. 

Let us consider the hierarchical spectrum from data, facts, and in-
formation, to knowledge: Data can be numbers without any meaning or 
units attached to them. Facts are numbers with units. Information is the 
conversion of facts into meaning. Finally, knowledge is the higher order 
expression and processing of information to facilitate complex decision-

making and understanding. Figure 6.1 shows the hierarchical relationship of data, facts, 
information, and knowledge.

Consider the three examples listed in Table 6.1, which show how data, facts, informa-
tion, and knowledge work together in daily life. 

In Example 1, you are trying to determine whether conditions are right for swimming out-
doors. The data you have is the integer 70. When you add a unit to the data, you have facts: the 
temperature is 70° Fahrenheit. To convert these facts into information, add meaning to the facts: 
The temperature outside is 70° Fahrenheit. By applying conditions to this information, you provide 
knowledge: If the temperature is over 70° Fahrenheit, then you can go swimming.

In Example 2, you want to explain who is eligible for military service. The data you have is the 
integer 18. Adding the unit of years to the data, you produce facts: 18 years. To add meaning to the 

Data

Facts

Information

Knowledge

Figure 6.1 
The knowledge hierarchy.
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facts and convert them to information, you can explain that 18 is the age of eligibility. The knowl-
edge you provide is that if you are 18 year of age or older, you are eligible for military service. A 
decision (or action) that can be made based on testing for the truth of a condition is known as a rule 
(or If – Then Rule). Rules, or, more formally, production rules (and production systems) will be 
discussed in Chapter 7, “Production Systems.” 

Example 2 can be stated as the rule: If the draft is active and you are 18 years of age or older 
and you have no major chronic ailments, then you are eligible for military service. 

In Example 3, you are visiting a college campus where you need to find Professor Anderson. 
You know he is a professor of mathematics, but that’s all you know. The college directory might 
supply the raw data: Room 232. The facts are that Professor Anderson is in Room 232 of Smith 
Hall. To add meaning to the facts and convert them to information, you learn that Smith Hall is 
located on the southwest side of the campus. Finally, you learn enough to gain knowledge: Enter 
the campus from the West Gate; Smith Hall is the second building, assuming that you are heading 
east. Professor Anderson’s Office is on the second floor to 
your right after you enter from the main entrance. Clearly 
the data “Room 232” was insufficient to find the professor’s 
office. Knowing the fact that the office is in Room 232 of 
Smith Hall doesn’t really help much either. Finding Smith 
Hall from the information provided wouldn’t be adequate 
either, if, for example, there were many buildings in that 
corner of the campus, or you were unsure from which side 
of the campus you had entered (north, east, south, or west). 
However, if the information is carefully processed (engi-
neered) to create a logical, comprehensible solution, you 
can easily find the professor’s office. 

Now that we can understand the differences between 
data, facts, information, and knowledge, we can consider 
the possible elements that knowledge comprises. Knowledge representation systems usually com-
bine two elements: data structures (containing structures such as trees, lists, and stacks) and the in-

Table 6.1 
Examples of the knowledge hierarchy.

      Example Data Facts Information Knowledge
1. Swimming  

conditions
70 70 degrees  

Fahrenheit
The temperature outside is  
70 degrees Fahrenheit.

If the temperature is over 70 
degrees Fahrenheit, then you can 
go swimming.

2. Military service 18 18 years old The age of eligibility is 18. If you are 18 years old or older, 
you are eligible for military 
service.

3. Finding a  
professor’s office

Room 232 Professor Anderson 
is in Room 232 of 
Smith Hall

Smith Hall is located on the 
southwest side of the campus.

Enter the campus from the West 
Gate, Smith Hall is the second 
building on your right as you 
head east. Professor Anderson’s 
office is on the second floor to 
your right after you. Enter from 
the main entrance of the  
building.

You might consider the annual preparation of 
your income taxes in light of this discussion: 
Perhaps, every year, you have a shopping bag 
full of receipts and bank statements in random 
order (facts). After five hours of sorting this 
material into meaningful categories, such 
as earnings, charitable contributions, and 
educational expenses, you then have meaningful 
information. Your accountant processes this 
information and shares with you the (happy) 
knowledge that you will be receiving a refund.
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terpretive procedures for using the knowledge (such as search, sort, and combine).1 In other words, 
there must be a convenient place (structure) to store knowledge and a way to quickly access and 
process it computationally for problem solving, decision-making, and action. 

Feigenbaum  and colleagues 2 suggested the following categories for which knowledge should 
be available:

• Objects: Physical objects and concepts (e.g., table structure = height, width, depth).
• Events: Time element and cause and effect relationships.
• Performance: Information on how something is done (the steps) but also the logic or 

algorithm governing the performance. 
• Meta-knowledge: Knowledge about knowledge, reliability, and relative importance 

of facts. For example, if you cram the night before an exam, your knowledge about a 
subject isn’t likely to last too long. 

In this chapter, we will discuss knowledge in terms of its shape and size. We will consider the 
level of detail (grain size) of a knowledge representation – is it extensional (explicit, detailed, and 
long) or intensional (implicit, short, and compact)?  Extensional representations will usually show 
every case, every example, of some information, while intentional representations will often be 
short; for example, a formula, or an expression that represents some information. A simple example 
would be as follows:

“The even integers from 2 to 30” (implicit), versus, “the set of numbers: 2, 4, 6,  
8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30” (explicit). 

We will also discuss the issue of executability vs. comprehensibility. That is, some solutions 
to problems can be executed (but not understood—either by humans or machines), whereas others 
are easy to understand, at least by humans. The choice of a knowledge representation for an AI 
problem solution is invariably related to these issues.

The choice of a knowledge representation is also integral to problem solving. In computer 
science we all tend to agree on a few common data structures (e.g., tables, arrays, stacks, linked 
lists, etc.) from which a choice might naturally be made to represent a problem and its solution. 
Likewise, in artificial intelligence, there are many ways to represent complex problems and their 
solutions. The types of representation common to both computer science and AI, which, for the 
purposes of this text we will not consider, include lists, stacks, queues, and tables. This chapter will 
focus on twelve standard types of knowledge representations for AI that have emerged over time: 

 1. Graphical sketches
 2. Graphs 
 3. Search trees
 4. Logic
 5. Production systems
 6. Object orientation 
 7. Frames
 8. Scripts and the conceptual dependency system
 9. Semantic networks
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Also, more recent approaches, including: 
 10.  Concept maps
 11.  Conceptual graphs
 12.  Agents 

 6.1 GRAPHICAL SKETCHES AND THE HUMAN WINDOW
A graphical sketch is an informal drawing or outline of a setting, a process, a mood, or system. 

Few AI textbooks classify graphical sketches as a form of knowledge representation. However, a 
picture can represent knowledge with economy and precision. Although a complete verbal descrip-
tion will perhaps require the proverbial “one thousand words,” a pertinent picture or graphic can 
convey the story or message more succinctly. Furthermore, a verbal description might be incom-
plete, verbose, or simply unclear. 

Consider the graphic shown in Figure 6.2, which illustrates the problems of “computational 
ecology.” You don’t have to be a computer expert to understand that there could be situations where 
computers encounter problems when working in networks. For example, they might have memory 
problems (hardware), or there might be something wrong with the operating system (software), or 
there perhaps is an overload in terms of demands on their resources. The extent to which the com-
puter is having trouble is not relevant at this time (too much detail); it is sufficient that we know 
that the computers in a network are having problems. Hence, the graphic has served its purpose and 
therefore it is a satisfactory knowledge representation scheme for the information that needs to be 
conveyed. 

The Human Window is a region con-
strained by human memory capabilities and 
computational limitations. The human window 
illustrates the limitations of the human brain’s 
ability to process information, and the need for 
AI solutions to fall within its bounds. The late 
Donald Michie often credited Michael Clarke 3  
for this concept. The key idea is that the solu-
tions to problems of sufficient complexity (AI-
type problems) are limited by the amount of 
computation and memory needed by people to 
execute the solutions and comprehend them. 
The solutions to complex problems should also 
be 100% correct, and their grain size should be 
manageable. The grain size, again, refers to the 
computational constraints of humans and the 
human window shown in Figure 6.3. 

Figure 6.3 presents the Human Window as 
described by Clarke and Michie 4 so we call it 
the “Clarke–Michie Diagram” or simply “The 
human window.”  It has two extremes. At the 
far left is “L,” to represent Sir James Lighthill, 

Server Slave

Don’t mess with me I’m stressed out
from overload

You are
abusing me

Who am I?

New
Yorker

Cloud

And you thought people have problems!!

Client

You are
stealing my data

I have got an
exploding
headache

Figure 6.2 
The problem of computational ecology.
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whose report criticizing AI stopped all funding of AI research in the 
1970s in Great Britain. At the other extreme (no doubt selected by 
Michael Clarke, who was a strong chess player) is the turn of the 
twentieth century Bohemian Grandmaster, Richard Reti, who, when 
asked, “How many moves do you look ahead in a chess position?” 
is reported to have replied, “One move, the best move.” This would 
be the equivalent of a database lookup. 

Of course, humans cannot maintain a complete database of mil-
lions of positions in their heads. A four-piece chess ending such as 
King and Rook vs. King and Knight (KRKN) will have over three 
million positions. However, with the help of pattern recognition, 
problem-reduction through symmetry, problem constraints, and 
some domain-specific knowledge, a human might be able to make 
sense of such a database. 

In his PhD thesis work, Kopec 5 compared five representations 
of knowledge for the same task. The task was to build a program that 
correctly determined the result (Win for White, or Draw) for every 
position in the least mobile of chess endings, King and Pawn against 
King (KPK). The five representations are illustrated in Table 6.2  

as they might fall within boundaries of the human window with respect to their relative costs of 
requirements for amount of computation and memory size. At the right extreme is the database rep-
resentation which has 98,304 entries, each representing a unique configuration of the three pieces 
in KPK. 5  In Chapter 16 and Appendix C, you will read about databases constructed by Stiller (see 
Bibliography) and Thompson 6 to return the outcome and best move for all chess positions with 
six pieces or fewer left on the board.  Results with both White and Black to move were stored for 
each configuration. Next was the Don Beal 7 solution for KPK which consisted of 48 decision table 
rules, again falling to the right extreme by requiring too much memory. Then, falling within the 

boundary of the human window was Max Bramer’s 19 equivalence 
class solution. 8 Most ideal was the Niblett–Shapiro solution, which 
consisted of only five rules. 

The Niblett–Shapiro solution was developed in Prolog.  The 
other four solutions were developed in either Algol or Fortran (the 
popular languages of the time). The Harris–Kopec solution con-

sisted of seven procedures, which required too much computation (hence were not executable) to 
fall within the human window, but they were comprehensible. All five solutions were translated 
into English and used as “advice texts” for the purpose of evaluating their executability and com-
prehensibility by chess-novice high school students in Edinburgh, Scotland, in 1980.5

The rules did require two “crib sheets” 
of patterns that were necessary to 
be understood in order to execute or 
understand the rules.

Reti (R)(L) Lighthill

COMPUTATION

The Human Window

Memory

Figure 6.3 
The Human Window. 
Sources: Clarke3 and Michie4. 

The Lighthill Report was deemed to be a 
study of the accomplishments of AI. The 
study was headed by Sir James Lighthill, 
an eminent English physicist. He 
criticized AI for not coming to grips with 
the combinatorial explosion. (Lighthill, 
J. 1973.  Artificial Intelligence:  
A general survey. In Artificial 
intelligence: A paper symposium, 
Science Research Council.)

Table 6.2 
Human window aspects of five solutions to KPK.

Program Name Correctness Grain Size Executable Comprehensible

Harris–Kopec (99.11%) Large No Yes

Bramer √ Medium Yes Yes

Niblett–Shapiro √ Ideal Yes Yes 
Beal √ Small Yes No
Thompson √ Very Small Yes No
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Table 6.2 compares the human window qualities of the 
five KPK ending computer solutions with regard to correct-
ness, grain size, executability, and comprehensibility. Some 
solutions were executable, but not comprehensible, while oth-
ers were comprehensible but not executable. The Bramer and 
Niblett–Shapiro solutions were both executable and comprehen-
sible. However, the Niblett–Shapiro was best in terms of the hu-
man window, requiring neither too much computation nor too 
much memory. 

Figure 6.4 summarizes the human window features of these five solu-
tions to KPK. 

In domains of sufficient complexity, such as computer science, mathe-
matics, medicine, chess, violin playing, among others, it has been estimat-
ed that it takes about 10 years of apprenticeship to develop real mastery. 9  
It has also been estimated that chess grandmasters store some 50,000 pat-
terns in their heads. 10, 11 In fact, the same approximate number of patterns (rules) has been estimated 
to be the number of domain-specific facts accrued by a human domain specialist for mastery in any 
of the above domains. 

Little wonder that the secrets of the game of chess and other difficult problems have been stud-
ied and determined to be closely related to pattern recognition. However, let us bear in mind that the 
patterns used by people to represent a problem are not and cannot be the same as the representations 
that must be used for computer programs using AI techniques. 

In Table 6.3, Michie 12 provides useful comparisons that explain some of the human limitations 
to accessing stored information, performing calculations, and the possibilities for accumulating 
knowledge over a lifetime. For example, people can transmit 30 bits of information per second, 
whereas the average computer can transmit trillions of bits per second.

 1. Based on Miller. 13

 2. Calculated from 1. above.
 3. Stroud, 14 cited by Halstead. 15

 4. 4. 5. and 6., from sources cited by Chase and Simon. 10 
 5. Estimated errors can be taken to be around 30%. 13

The Human Window

The Niblett-Shapiro Solution

Bramer’s
19 equivalence

classes

Beal’s 48 rules
Thompson’s KPK databaseThe Harris Kopec procedural

approach

Large computation Large memory

Figure 6.4 
Summary of human window compatibility for five KPK solutions.

note: More details about 
these diverse knowledge 
representations as solutions 
to KPK can be found at this 
text’s companion Web site.

Table 6.3 
Some information-processing parameters of the human brain.

Activity Rate or Amount
1. Rate of information transmission along any input or output channel 30 bits per second
2. Maximum amount of information explicitly storable by the age of 50 1010 bits
3. Number of mental discriminations per second during intellectual work 18
4. Number of addresses that can be held in short-term memory 7
5. Time to access an addressable “chunk” in long-term memory 2 seconds
6. Rate of transfer from long-term to short-term memory of successive elements of one “chunk” 3 elements per second

Source: D. Michie, Practical Limits to Computation. Research Memorandum (1977).
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 6.2   GRAPHS AND THE BRIDGES OF KÖNIGSBERG PROBLEM
A graph consists of a finite set of vertices (nodes) together with a finite set of edges. Each 

edge consists of a distinct pair of vertices. If the edge e consists of the vertices {u, v} we often 
write e = (u, v) and say that u is joined to v (also that v is joined to u) and that u and v are adjacent. 

We also say that u and v are incident with the edge e. Graphs 
can be directed or undirected, together with labels and weights. 
A famous problem is The Bridges of Königsberg Problem, 
shown in Figure 6.5.

The Bridges of Königsberg Problem is a familiar one to 
mathematics and graph theory, computer science, algorithms, 
and artificial intelligence. It asks if you can find a single route 
beginning at any node (point) on a bridge connecting the land 
regions A, B, C, or D, cross each of the seven bridges only 
once, and return to the starting point. Königsberg was formerly 
in Germany; it is now known as Kaliningrad, belonging to 
Russia, and it spans the River Preger.16  The famous Swiss 
mathematician Leonhard Euler, often recognized as the father 
of graph theory, solved this problem, concluding in the nega-
tive, that such a route could not exist in this graph as the de-
gree (number of edges in and out of a node) of every node 
must be even. 

The geographic map to the left is one representation of 
the problem in Figure 6.5. Another equivalent representa-
tion is the graph on its right, which illustrates the problem 
as a mathematical graph. For some people, the map on the 
left is easy to comprehend and is preferable. Others prefer 
the more formal mathematical representation in the graph. 
However, in deriving a solution for this problem, few would 
disagree that the abstract graph on the right facilitates 
greater insight and better comprehension of the so-called  
Eulerian Property described above. 

It seems noteworthy that the bridges bb and dd no longer exist but there is still no Eulerian 
Cycle among the Bridges A, B, C, D. However, there are stairs from A to aacc to connect all 
bridges. Hence, in the graph on the right in Figure 6.6 we see that there is an Eulerian Trail (a path 
which hits each of the nodes in the graph but does not originate and finish at the same node), which 
runs DBCDA.

In summary, graphs are important tools in knowledge representation because they are a natural 
way to represent states, alternatives, and measurable paths in problems involving the search for a 
goal state. 

 6.3 SEARCH TREES 
For problems that require analytical approaches, such as the depth first search and breadth first 

search (exhaustive approaches), and heuristic searches, such as the best-first search and A* algo-
rithm, a search tree is the most suitable representation. Exhaustive approaches have been discussed 
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Figure 6.5 
The Bridges of Königsberg.17

Jan Kåhre claims to have solved this 
problem, but with two of the bridges 
missing. See http://mathworld.wolfram.com/
KönigsbergBridgeProblem.html and  
Kåhre, J. “Königsberg Bridges Solved” 
http://www.matheory.info/konigsberg/
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in Chapter 2, “Uninformed Search,” whereas heuristic approaches were discussed in Chapter 3, 
“Informed Search.” Game trees for Nim, tic-tac-toe, and the Eight Puzzle were presented in Chap-
ter 4, “Search Using Games”; exemplary game trees for checkers, with regard to the minimax and 
alpha-beta algorithms, will be presented in Chapter 16, “Advanced Computer Games.” Other types 
of search trees used in knowledge representation are decision trees. 

 6.3.1 Decision Tree
A decision tree is a special type of a search tree that can be used 

to find a solution to a problem by choosing from alternatives start-
ing from a root node.  A decision tree will logically split a problem 
space into separate paths, which can be independently followed in 
the search for a solution, or for the answer to a question. An example 
would be to try to determine how many homes there are of self-em-
ployed people who earn over $200K from their businesses (see Fig-
ure 6.7). First, we would take the space of all people who are taxpay-
ers in this country and determine who is self-employed, and then we 
would divide that space into those who earn over $200K. 

exAMple 6.1: the twelve coins probleM

Let us return to the problem of the false coin, discussed in Chapter 2. This 
time, the problem is slightly different: Given a balance scale and 12 coins, 
determine the irregular coin (or “slug”) among them, whether it is heavy or 

light, and weigh a minimum number 
of combinations of coins.

Figure 6.8 illustrates 
how the solution could 
be represented in a decision tree:  
The first two shapes are scales with 
coins on the scale tray. The first scale 
has eight coins, numbered 1–8. The 
second scale has six coins numbered 
as shown. For the first combination of 
coins we weigh, we take the example 
wherein coins 1 to 4 are equal to coins 
5 to 8. Then, the second combination 
of coins weighed balances coins 9, 
10, and 11 with coins 1, 2, and 3. If 

Earns over 200K

Earns less than 100K

Earns less than 200K

Figure 6.7   
A decision tree.

This was given as an exercise 
at the end of Chapter 2.

= ?

Know that 9,10, and 11 are heavy or light

Otherwise (9 vs.10) = means 12 is bad
9 or 10 is bad; know heavy or light

= ?

No

9 10 11 1 2 3

1 2 3 4 5 6 7 8

9 ? 10

9 or 10 is bad

Yes

9 = 10

Therefore, 12 is bad

Figure 6.8
The Twelve Coins Problem.

sidebAr
“For A full Discussion of The 12 COINS PROB-
LEM see Chapter 4 of Artificial Intelligence 
Problems And Their Solutions by D. Kopec, S. 
Shetty, and C. Pileggi,  Mercury Learning Inc., 
2014.” 60



176  ■  Part  2   ·  Fundamentals

they are equal, then we immediately know that coin 12 is bad. Otherwise, we 
then balance coin 9 against 10 to determine the faulty coin. 

Trees tend to grow depth first, especially if the key components are allowed 
to. The main point is that this problem can be solved by weighing only three 
sets of coins. However, to minimize the number of times we weigh, we must 
take advantage of the earlier weighed results to help meet the constraints of 
the problem. A second hint for the solution is that the second and third times 
we weigh, comparisons will need to be mixed (especially among coins 9, 10, 
11, and 1, 2, 3). 

 6.4    REPRESENTATIONAL CHOICES
Let us consider a game tree for the familiar Towers of Hanoi Problem, which involves three 

disks. The goal of the problem is to transfer all three disks from Peg A to Peg C. There are two 
constraints of the problem: (1) you can transfer only one disk at a time and (2) a larger disk cannot 
go on top of a smaller disk. This problem is often used in computer science to illustrate recursion, 
which is illustrated in Figure 6.9. We will consider the solution to this problem from a number of 
perspectives, particularly with regard to knowledge representation. First let us consider the practi-
cal solution to the specific problem of transferring the three disks to Peg C. 
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Step 1
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Step 7

Step 2 Step 3

Goal state

Figure 6.9 
The Towers of Hanoi Problem and its solution.

Let us review what has just happened. The solution required seven moves. A description of 
those moves follows:
 1. Move Disk 1 to C
 2. Move Disk 2 to B
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 3. Move Disk 1 to B
 4. Move Disk 3 to C
 5. Move Disk 1 to A (unravel)
 6. Move Disk 2 to C
 7. Move Disk 1 to C

Note that this is also the shortest solution. That is, the minimum number of moves has 
been made to transform the Start state to the Goal state. 

Table 6.4 illustrates the number of moves needed to solve this puzzle, depending on the 
number of disks involved. The “temp” peg is one that holds a disk temporarily.

Little wonder that as the story goes, Babylonian slaves would need until the end of time to 
move 65 large concrete slabs and finish constructing a similar tower. For 65 disks, it would take  
265 – 1 moves. Even with concrete slabs moved at 1 slab per second, it would require 265 – 1 sec-
onds; which is more than 6,418,270,000 years, as described by Alan Bierman in Great Ideas in 
Computer Science.19 p. 311.

Now we can express the algorithm to solve the problem for any number of disks in words, and 
then we will examine the solution in terms of the mathematics that is involved. 

First, the goal is to isolate the largest disk on the original peg. This allows the largest disk to be 
moved by itself to the Goal peg (1 move). Next, the remaining N − 1 disks on the temporary peg 
(that is, Peg B—this required N − 1 moves) can be “unraveled” and moved to the Goal peg on top of 
the biggest disk (N − 1 moves). Adding these moves, we see that 2 × (N − 1) + 1 moves are required 
in total, or 2N − 1 moves are required for N disks to be moved to the Goal peg from the Start peg 
and for the puzzle to be solved. 

Outlining the steps to solve the Towers of Hanoi problem is one way to represent the solu-
tion. The steps are an extensional representation because all the steps are explicitly given. Another 
extensional representation of the steps to solve the Towers of Hanoi problem is provided in the 
“Example 6.2: Extensional Solution” sidebar. 

Table 6.4 
Number of moves required to solve the Towers of Hanoi Problem, depending on the number of disks.

Number of 
Disks

Moves to Temp 
Peg

Moves from Temp Peg 
to Goal

“Big” Disk Moved to 
Goal State

Total Number 
of Moves

1 0 0 1 1
2 1 1 1 3
3 3 3 1 7
4 7 7 1 15
5 15 15 1 31
6 31 31 1 63
7 63 63 1 127
8 127 127 1 255
9 255 255 1 511

10 511 511 1 1023
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exAMple 6.2 extensionAl solution

For any number of disks, N, if the main goal is to move those N disks from 
Peg A to Peg C, then you can complete the following steps: 

 1.  Move N − 1 disks to an intermediary peg (B), which takes 2(N  −1) − 1 
moves (e.g., for three disks, move two disks (22 − 1 moves = 3 moves) 
to peg B). 

 2.  Move the biggest disk from Peg A to Peg C (the Goal). 

 3.  Move the N − 1 disks from Peg B to Peg C (the Goal, which takes 
three more moves). 

In total, you need 7 moves for 3 discs, 15 moves for 4 disks, 31 moves (15 + 15 
+ 1) for 5 disks, and 63 moves (31 + 31 + 1) for 6 disks, etc. 

Another way to represent the solution is to create an intensional representa-
tion, which is a more compact (“intensional”) description of the solution as 
shown in the “Intentional Solution” sidebar. 

exAMple 6.3: intensionAl solution

To solve the Towers of Hanoi Problem for N disks, it requires 2(N) − 1  moves 
comprising 2 × 2(N−1) − 1 (moving N−1 disks to and from peg B)  + 1 move (for 
Big to be moved to Peg C). 

Another intentional description of the Towers of Hanoi solution would be through the recur-
rence relation shown in the “Recurrence Relation” sidebar. A recurrence relation is a compact 
mathematical formula that represents the essence of the process occurring (recurring) in terms of 
the number of steps involved in the solution to a problem.  Recurrence relations are often used to 
analyze the running time of recursive algorithms such as quicksort, mergesort, and selection.

exAMple 6.4: recurrence relAtion 
T(1) = 1

T(N) = 2 T(N −1) + 1

Which has solution T(N) = 2N −1. 

The recurrence relation for the Towers of Hanoi Problem sidebar presents a compact inten-
tional solution to the problem. 

exAMple 6.5: pseudocode for towers of hAnoi probleM

To describe the Towers of Hanoi problem, you can use the following pseudo-
code, where: 
n is the number of disks
Start is the start peg
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int is the intermediate peg
Dest  is the goal or destination peg
TOH (n, Start, Int, Dest)

If n = 1 then move disk from Start to Dest

     Else TOH(n-1, Start, Dest, Int)

          TOH(1, Start, Int, Dest)

          TOH(n-1, Int, Start, Dest)

Solving the Towers of Hanoi problem illustrates a number of different forms of knowledge rep-
resentation, all of them involving recursion, or repetition of a pattern or formula, but with different 
arguments. Figure 6.9 shows graphical representations of the solution. Example 6.2 lists the seven 
steps needed to solve the problem explicitly, which provides an extensional solution. Examples 
6.3 and 6.4 describe the same steps more intentionally. Example 6.5 is an also an intentional solu-
tion that shows the pseudocode you can use to develop a recursively programmed solution to the 
problem. Determining the best solution depends on who the learner is and how he or she prefers 
to learn. Note that each of these intentional representations is also an example of problem reduc-
tion. A problem that seemed large and complex has been broken down into smaller, manageable 
problems whose solutions are both executable and comprehensible (à la the Human Window, as 
described in Section 6.1). 

 6.5    PRODUCTION SYSTEMS
Artificial intelligence is inherently connected with decision making. What sets AI approaches 

and problems apart from ordinary computer science problems is that they usually require intelligent 
decisions to be made to solve the problem. For a computer system or person to make intelligent 
decisions, they need a good way to assess the circumstances (in other words, the problems or condi-
tions) that require a decision to be made. Production systems are often represented by a set of rules 
of the form,

IF [condition] THEN [action], 

together with a control system, which acts as rule interpreter and a sequencer and a database. The 
database acts as a context buffer, which enables the recording of the conditions under which the 
rules are fired. Production systems are also often called condition-action, antecedent-consequent, 
pattern-action, or situation-response pairs. A few production rules follow:

• If [driving and you see a school bus with its STOP sign out], then [pull over quickly to 
the right and stop].

• If [there are less than two outs and a runner is on first base], then [bunt] // Baseball 
game //

• If [it is past 2:00 am and you must drive], then [make sure that you drink coffee].
• If [you have a pain in your knees and it has not gone away after taking a few over-the-

counter pain relief pills], then [make sure you contact your doctor].
An example of a rule used in a more complex, but typical format: 



180  ■  Part  2   ·  Fundamentals

• If [it is over 70°F outside, and if you have your shorts on and a tennis racket], then [it is 
recommended that you play tennis]. 

Chapter 7, “Production Systems,” will cover production systems and their application in expert 
systems in greater detail. 

 6.6 OBJECT ORIENTATION
In Chapter 1, we discussed a number of contributions from the field of AI that have become 

absorbed by computer science. One example is the paradigm of object orientation, which became 
the predominant programming paradigm in the 1990s. Computation and simulation were first popu-

larized in the language SIMULA 67, which also introduced concepts 
of class, object, and message.20 Alan Kay implemented SmallTalk, the 
first purely object-oriented programming language in 1969, when he 
was part of the Palo Alto Research Center (PARC), known as Xerox 
PARC. The final, standard version of SmallTalk was developed by 

Alan Kay, Adele Goldberg, and Daniel Ingalls at PARC in 1980, and was known as Smalltalk-80 
or just Smalltalk. Smalltalk is considered the purist object-oriented language because every entity 

is an object.21

Object orientation is a programming paradigm that 
is designed to be an intuitive and natural reflection of the 
human experience. It is based on the concepts of inheri-
tance, polymorphism, and encapsulation. 

According to Laudon, “It [object orientation] embod-
ies a way of organizing and representing knowledge, a 
way of viewing the world that encompasses a wide range 
of programming activities … .” 19  The desire to allow 
programmers to define and manipulate abstract data types 
(ADTs) was the driving force that led to the development 
of object-oriented programming languages. 20 Founda-
tions for object-oriented languages were provided in lan-
guages such as ADA-83, which included packages that 
describe type specifications and subprograms that can 
belong to a user-defined ADT. This also led to the de-
velopment of libraries of code whereby implementation 
details were separated from a subprogram’s interface. 

Procedural and data abstraction are combined into the notion of classes. Classes describe the data 
and behavior common to a collection of objects. Objects are instances of classes. For example, a 
typical university program has a class named Students, which contains data pertaining to academic 
transcripts, tuition bills, and place of residence. An object created from this class might be Joe 
Smith, a student who is taking two math courses this semester, who still owes $320 on his tuition 
bill and resides on Flatbush Avenue in Brooklyn. Besides classes, objects can be organized into 
superclasses and subclasses, which are natural to our hierarchical thinking about the world and how 
it can be manipulated and changed.

One major AI effort that employed these aspects of the object-oriented paradigm was the work 
of Seymour Papert at MIT between 1967 and 1981. Through the language LOGO, children learn 
about objects and how to manipulate them. Papert demonstrated that children can learn about many 

In contrast, for example, Java does 
not consider primitive scalar types 
such as Boolean, character, and 
numeric types as objects.

Inheritance is a relationship among classes, 
wherein one class shares the structure or behavior 
defined in an “IsA” hierarchy (see Section 6.9 
on Semantic Networks). Subclasses are said to 
inherit both the data and methods from one or 
more generalized superclasses. Polymorphism 
is that feature of a variable that can take on 
values of several different types of a function that 
can be executed using arguments of a variety of 
types.18 Polymorphism separates the notion of 
actions on objects from the data type(s) involved. 
Encapsulation is the concept that only certain 
information needs to be known by certain people at 
certain levels of program development. It is similar 
to the ideas of data abstraction and information 
hiding, all important concepts in the object-
oriented programming paradigm.
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things through the active, intuitive environment that LOGO offers, including logic, graphics, pro-
gramming, the laws of physics, and more.21

In the 1970s, hardware architecture interfaces, together with operating systems and applica-
tions, became more dependent on graphical methods, which lent themselves naturally to the object-
oriented paradigm. The same was true of the entity-relationship database model, wherein data is 
represented as nodes and arcs in a graph.19

Ege further states, “Even in knowledge representation, schemes that supported work in artificial 
intelligence (frames, scripts, and semantic networks), we can see clearly this object-orientation.” 18 

The popularity of object-oriented programming languages such as Java and C++ demonstrates 
that object orientation is an effective and useful way to represent knowledge, especially when used 
to build up complex information structures whereby common attributes can be exploited. 

 6.7    FRAMES 
Frames, developed by Marvin Minsky, 22 are another effective form of knowledge represen-

tation that facilitates the organization of information into a system that can easily be built up to 
exploit features of the real world. They are intended to provide a straightforward way to represent 
information about the world. They facilitate the description of stereotypical situations, thereby 
providing a framework for expressing expectations, goals, and plans. This enables humans and 
machines to better understand what is going on. 

Some examples of these scenarios would be a child’s birthday party, a car accident, a visit to 
the doctor’s office, or filling up your car with gasoline. These are common events that vary only 
by detail. For example, a child’s birthday party always involves a child who is turning a certain 
age; the party is held at a specified place, date, and time. To plan the party, you can create a frame 
which can include slots for the name of the child, the age of the child, the date, the location of the 
party, the time of the party, the number of attendees, and the props used.  Figure 6.10 shows how 
such a frame is constructed with its slots, their respective types, and how the slots can be filled with 
values.  Modern-day newspapers quickly generate reports on events that frequently occur by using 
the “slot and filler” approach to represent-
ing events, an essential aspect of frames. 
Let us construct frames for some of these 
familiar situations. 

From the information in this set of 
frames we can use inheritance to deter-
mine that at least two children will attend 
David’s birthday party, and that David’s 
party will be attended by Jill and Paul. We 
know this because Jill and Paul are attend-
ing parties at the same location (Crystal 
Palace) as the location of David’s party on 
the same date. We also know that at least 
two children will be at David’s party be-
cause from Paul’s birthday (age) we know 
that he is a child. 

The frame system in Figure 6.11 
illustrates how inferences can be made 

Frame Name
David

Tom

Jill

Paul

Child

Slot
IS-A
Has Birthday
Location
Age
IS-A
Has Birthday
Attends Party
Location
Attends Party
Age
Location
Age

Slot Values
Child
11/10/07
Crystal Palace
8
Child
11/30/07
11/10/07
Crystal Palace
11/10/07
9
Crystal Palace
<15

Slot
Name of child
Age of child (new)
Date of birthday
Location of party
Time of party
Number of attendees
Props

Slot Types 
Character string
Integer
Date
Place
Time
Integer
Selection from balloons, signs, lights, and music

Figure 6.10 
The child’s birthday party frame.
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based on frames and their data.
The frame system in Figure 6.11 il-

lustrates how inferences can be made 
based on frames and their data. The in-
formation in Figure 6.11(d) indicates that 
Car_2 was damaged much worse than 
Car_1 (based on the number of fatalities 
and injuries). The slots and their fillers in 
frames are akin to the instances of classes 
employed in object-oriented systems. 
They are facts that describe the accident 
as the basis for a newspaper report, such 
as the date, time, and place of the acci-
dent. One thing the frame system does not 
explain, unless explicitly told, is why the 
SUV had minor injuries to one passenger, 
and escaped relatively unscathed, (see 
Figure 6.11) whereas the sports car had 
two fatalities and was totally destroyed. 
Additional data could be relevant here—
for example, that heavier vehicles gener-
ally fare better in accidents. 

Figure 6.12 is an example of multiple 
inheritance. The car driver must also be 
counted as one of the passengers /occu-
pants of the car. Bill’s slot value indicates 
he is both a passenger and driver of a car. 

The fundamental theme behind 
frames is expectation-driven processing, 
which is based on the human ability to 
associate seemingly unrelated facts into 
complex, meaningful scenarios. Frames 
are a method of knowledge representa-
tion that was commonly used in the de-
velopment of expert systems in the 1980s 
and 1990s. Minsky described frames as 
a network of nodes and relations. Top 

levels of the frame represent attributes, which are always 
true about the situation and so remained fixed.1 The task 
of AI research is to construct corresponding contexts and 
trigger them in the appropriate problem environments. 
Some of the appeal of frames was because of the follow-
ing characteristics:

 1. Default values can be supplied by the program and overwritten by the programmer 
as information becomes available. 

Slot
Place
When
Number of cars involved
Number of people involved
Number of fatalities
Number of people injured
Names of injured

Slot Types 
Character string
Date/time
Integer
Integer
Integer
Integer
Character string

Frame Name
Car accident

Car_1

Slot
Place
Date/time
Hits
Cars
People
Fatalities
Injuries

Slot Value
Coates Crescent
November 1, 8:00am
Car_2

Type Type SUV

2
5
2
1

Frame Name
Car 1

Slot
Type

Number of passengers
Number of fatalities
Number of injuries

Slot Value
SUV

3
0
1

SUV Frame

Car 2 Type

Number of fatalities
Number of injuries

Sports car

2
Number of passengers 2

0

Sports car frame

Frame Name Slot

Model
Year

Slot Value

Explorer
ManufacturerSUV Ford

2004

Frame Name Slot

Model
Year

Slot Value

Miata
ManufacturerSports Car Mazda

2002

(a) Car accident frame

(b) Car accident frame Car_1

(c) Car accident frame Car_1

(d) Car accident frame Car_2

(e) Car accident–Car_2

Frame Name Slot Slot Value

Figure 6.11 
Example of multiple inheritance using car accident frames.

Frame Name
Car accident
Occupants
Car driver
Bill
Tom

Slot
Subclass
Number of passengers
Is
Passenger
Passenger

Slot Value
Number of cars
2
Bill
1
1

Figure 6.12 
Car accident frame, continued.
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 2. Frames lend themselves naturally to query systems. As we’ve seen above, once an 
appropriate frame is found, it is straightforward to search the slots for informa-
tion. In situations where more information is needed, an “IF NEEDED” slot can 
be used to activate an attached procedure to fill in the slot. This concept of a 
procedural attachment is closely related to the concept of demons (ibid.).

Demons are procedures that are activated at any time during program execution depending on 
conditions evaluated in the demon itself. Examples of demons used in conventional programming 
include error detection, default commands, and end of file detection (eof). 

When a program uses a demon, a list is created wherein all changes of state are recorded. All 
demons in the demon list check the status list for each change against their network fragment. If 
changes occur, then control immediately passes to the demon. Self-modifying programs use this 
approach, which, in turn, is intrinsic to systems that can adapt to new situations and improve their 
performance with experience. The ability to demonstrate such flexibility is central to the dynamic 
behavior of programs used for machine learning (ibid.).  

Some AI people, however, (particularly Ron Brachman) have also been critical of frames. He 
notes that those default values, which can be overridden, “…makes one crucial type of representa-
tion impossible – that of composite descriptions whose meanings are functions of the structure and 
interrelation of their parts.” 23 

Brachman notes that the “Is-A” could cause as much confusion as “clarification and distinc-
tion.” 23 His summaries are below (in italics) with our explanations following:
 1. Frames are typically not very frame-like.
  The world is not always as neatly packaged as frames describe it. A frame that accurately 

represents an event requires an increasingly detailed and unwieldy hierarchy of frames 
and slot values. 

 2. Definitions are more important than one might think.
  The more precisely you define frames, slots, and their values, the more accurate the repre-

sentation can be. Thought must be carefully given to just what the frame categories are.
 3. Cancellation of default properties is more difficult than it looks. 
  Such changes must often be “percolated” throughout the programming system. 

 6.8    SCRIPTS AND THE CONCEPTUAL DEPENDENCY SYSTEM
In the 1980s, Roger Schank and Robert Abelson developed a series of programs that success-

fully exhibited natural language understanding in a limited domain with the overall goal of devel-
oping cognitive understanding in computers. They developed an approach called scripts, which 
closely resembled frames, but added information that included sequences of events to the goals and 
plans of the actors involved. Scripts do this so effectively that they can pass the explanation test for 
computer understanding of stories and newspaper accounts. The success of scripts is their ability to 
reduce these stories to a set of primitives that can effectively be handled by the conceptual depen-
dency (CD) formalism. 24 The deeper semantic meaning of a story could be represented by scripts. 
CD theory could be used to answer questions not stated in the story, paraphrase the main issues in 
the story, and even to translate the paraphrased material into alternate natural languages. CD theory 
allows one to develop and study scripts of many diverse real-world situations. The theory is versa-
tile and powerful enough to accommodate situations in both the mental and physical world in which 
we live. For example, familiar human emotions, such as anger, jealously, etc., could be repre-
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sented, as well as objects in the physical world, such as a 
person’s body, a building, a car, etc. Some of the simple 
primitives used are shown in Table 6.5.

Figures 6.12a and 6.12b illustrate the differences be-
tween a frame and a script. Figure 6.12a represents a ba-
sic frame for the situation of eating at a restaurant. 

Figure 6.12b is the familiar example, Eat at Restau-
rant script in Firebaugh1 (p.295–297), and shows the add-
ed sequence of events.  

Scripts can be hierarchically organized as we’ve seen 
with the examples above. They can also employ produc-
tion systems in a natural way. It is easy to see that with 
these solid foundations for representing the world about 
us, scripts with the CD system of Schank and Abelson 

can effectively handle questions and demonstrate at least a rudimentary understanding of common-
place settings. Firebaugh concludes as follows: 

• Scripts can predict events and answer questions about information not explicitly stated 
in the story line.

• Scripts provide a framework for integrating a set of observations into a coherent inter-
pretation.

• Scripts provide a scheme for detecting unusual events.1 

The ability of scripts to perform expectation-driven processing, incorporating the goals and 
plans of the actors and the expected sequence of events, enables them to significantly improve the 
explanatory power available for a knowledge representation (ibid., p.298). 

Schank, Abelson, and their students developed a number of successful script-based natural 
language systems. These will be described in Chapter 9, “Expert Systems,” and Chapter 13, “Natu-
ral Language Processing.” They include SAM (Script Applier Mechanism), PAM (Plan Applier 

EAT_AT_RESTAURANT SCRIPT

Props: (Restaurant, Money, Food, Menu, Tables, Chairs)

Roles:

Point_of_view:

Time_of_occurrence:

Place_of_occurrence:

Event_sequence:
First: Enter_restaurant script

IF[wait_to_be_seated_sign OR reservations]

Please_be_seated script
THEN [get_maitre_d’s_attention script]

Then:

Then:
Order_food scriptThen:
Eat_food script UNLESS[long_wait]Then:

(Hungry_persons, Wait_persons, Chef_persons)

Hungry_persons

(Times_of_operation of restaurant)

(Location of restaurant)

Figure 6.12b  
Eat at Restaurant Script.

RESTAURANT FRAME

Specialization_of:

Types:
 Range:

 Default:
 If_needed:

Business_establishment

(Cafeteria, Seat_yourself,
Wait_to_be_seated)
Wait_to_be_seated
IF[plastic_orange_counter]
 THEN[fast_food]
IF[stack_of_trays]
 THEN[cafeteria]
IF[wait_for_waitress_sign
 OR reservations made_sign]
 THEN[wait_to_be_seated]
OTHERWISE seat_yourself

Location:
 Range:
 If_needed:

An ADDRESS
(Look at the menu)

Name:
 If_needed: (Look at the menu)

Food_style:
 Range: (Burgers, Chinese, American,

Time_of_operation:
 Range:
 Default:

A Time_of_day
Open evenings except Mondays

Payment_form:
 Range: (Cash, Credit-card, Cheque,

Washing_dishes_Script)

Event_sequence:
 Default: Eat_at_restaurant script

Alternatives:
 Range:
 If_needed:

All restaurants with same Food_style
(Find all restaurants with
same Food_style)

 Default:
 If_added:

Sea_food, French)
American
(Update alternatives of restaurant)

 
Figure 6.12a 
The Restaurant Frame.
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Mechanism), and Memory, Analysis, Response Generation, and Inference on English (MARGIE). 
It would be narrow and closed-minded of us not to mention that AI has had its critics over the 

years, in addition to Lighthill, mentioned in Section 6.1. Please refer to the Human Interest Box 
about Hubert Dreyfus, who has been among the most vocal in his criticism. 

Hubert Dreyfus focuses on the ad hoc nature of scripts. For example, he might question the 
EAT_AT_RESTAURANT Script with:

• When the waitress came to the table, did she wear clothes?
• Did she walk forward or backward?
• Did the customer eat his food with his mouth or his ear?
If the program is ambiguous about the answers to these questions, then Dreyfus felt that the 

right answers were attained by tricks or lucky guesses, and it has not understood anything about 
our everyday restaurant behavior. 

Scripts, despite all their positive features, have also been criticized from the perspective of 
what is called “microworlds.” 25 That is, they can be very effective in well-defined settings, but they 
offer no general solution to the problems of understanding and AI. From that point of view emerged 
the work of Douglas Lenat  26 and CYC (short for Encyclopedia), with the goal of building a frame-
based system with the world’s largest database of facts and common 
sense knowledge. Lenat has dedicated much of the past 20 years to 
this project, which he believes will help solve the kinds of problems 
with frames and scripts that we have described. 

huMAn interest notes

hubert dreyfus 
Hubert Dreyfus 

(1929 –  )  During 
the past three decades 
one of the most ardent 
critics of AI has been 
Hubert Dreyfus, 
a philosopher at 
Berkeley University. 
One of his well-
known titles is Mind 

Over Machine (1986),25 which he wrote 
with his brother Stuart, who is a professor 
of Industrial Engineering and Operations 
Research at Berkeley. 

The basis of Dreyfus’s objection to 
AI is that neither the physiological, nor 
psychological aspects of how the human 
brain works can be mimicked by computers; 

therefore, AI—as it has been tackled—cannot 
be achieved. Furthermore, he believes that 
the way humans think cannot be formalized 
symbolically, logically, algorithmically, or 
mathematically. Therefore, in essence, we will 
never be able to understand our own behavior. 

The Dreyfus brothers argue that AI has 
not really been successful and that many of the 
purported achievements in AI are really only 
“microworlds.”  That is, programs have been 
developed that seem intelligent but actually 
are only able to solve problems in very well-
defined, limited domains. Hence, they have no 
general problem-solving ability, no particular 
theory behind them, and are just specialized 
problem solvers. Other well-known titles by 
Dreyfus include: What Computers Can’t Do 
(1972, revised in 1979), and What Computers 
Still Can’t Do A Critique of Artificial Reason, 
a subsequent revision in 1992.

See the Human Interest Box on Lenat, 
in Chapter 9, “Expert Systems.” 
Further discussion of Lenat's work can 
also be found in Chapter 9.
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 6.9 SEMANTIC NETWORKS
Semantic networks were first introduced by Ross Quillian in 1968. They are a versatile form 

knowledge representation and are intended to be a model of how human associative memory works. 
They are a convenient formalism that helps to tell a story about an object, concept, event, or situation 
(represented by nodes—circles or boxes) and lines with arrows (arcs) representing the relationship 
between nodes. Figure 6.13 is from Quillian’s original paper 27 wherein he develops three semantic 
networks to represent three distinct meanings of the word “plant”: (1) a living structure, (2) an appa-
ratus for any structure in industry, and (3) to seed, plant, etc., in earth for growth. 

Semantic networks have certainly been useful for computer programmers and AI researchers 
as a form of knowledge representation, but elements of set membership and precision are missing. 
These would be more readily available from other forms of knowledge representation, such as 
logic. An example is shown in Figure 6.14. We see that Mary owns Toby, which is a dog. A dog can 
be a pet, and so dogs are a subset of pets. So we see multiple inheritance, in that Mary owns Toby, 
and Mary owns a pet, of which Toby happens to be a member. Toby is a member of the class of 
objects called Dog. Her dog happens to be a pet, but not all dogs are pets. For example, Rotweilers 
are dogs that are pets for some people, and for other people they pose a menacing threat. 

Is-A relationships are frequently used in semantic networks, though they do not always repre-
sent what is true in the real world. Sometimes they might represent set membership and at other 
times they might mean equality. For example, a penguin Is-A bird, and we know birds can fly, but 
penguins do not fly. This is because although most birds (superclass) can fly, not all birds can fly 

PLANT.

PLANT

PLANT 2

=A APPARATUS
13CI

USE

FOR 5

PROCESS

IN

INDUSTRY

SEE FIG. 4-1b

= A

PEOPLE
12N1

PLANT 3

PUT

FOR 4

GROW

= B

PERSON
ISCI

5

IN 9
= 9 0

SEED

EARTH

OR

PLANT OBJECT
12CI

PLANT 2

GET 3
=A

FROM 3
FOOD

AIR WATER EARTH

OR

PLANT 3

= A STRUCTURE

LIVE

AND

ANIMAL
LOC1

WITH 3
LIC1

LEAF
12N1

OR

Living structure which is not an animal, frequently
with leaves, getting its food from air, water, earth.
Apparatus used for any process in industry.
Put seed, plant, etc. in earth for growth.

1.

2.
3.

Figure 6.13 
The semantic networks for the word “plant” from Quillian’s original paper in 1968. 
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(subclass). See Figure 6.15. 
Although semantic networks provide an 

intuitive way of representing the world, they 
do not represent many details about the real 
world that must be accounted for. 

Figure 6.16 illustrates a more complex 
semantic network representing a college. The 
college consists of students, academic de-
partments, administration, and a library. The 
college might have a number of academic de-
partments, one of which is Computer Science. 

Departments consist of faculty and staff. 
Students take classes, have records, and orga-
nize clubs. Students are required to do assign-

ments and receive grades from faculty who give assignments and give grades. Students and faculty 
are joined by classes, class codes, and grades.

Semantic Research is a company that specializes in the development and application of seman-
tic networks in knowledge-processing. They state:

Mary

Owns

Owns

Pet

Toby

Is-a

Is-a

Dog

Figure 6.14 
Toby is dog; Mary owns a Pet, but not all dogs are pets

Penguin Is-a Bird(s) Can Fly

Figure 6.15 
A penguin is a bird; birds can fly, but penguins can’t fly.

College

Consists ofConsists ofConsists ofConsists of

StaffFaculty

DoGiveGive Give

Assignments Grades Advice Research

LibraryAdministrationAcademic
Departments

Students

Take Have

Have

Require

Codes year GPA ID#

Classes Records Clubs Computer science

Is-aIs-aIs-a

Is-a

Organize Consist of

Consist of

etc.

Figure 6.16 
Semantic network representation of a college.
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“A semantic network is fundamentally a system for capturing, storing and transferring informa-
tion that works much the same as (and is, in fact, modeled after) the human brain. It is robust, efficient 
and flexible. It is also the basis for many efforts to produce artificial intelligence. Semantic networks 
can grow to extraordinary complexity, necessitating a sophisticated approach to knowledge visualiza-
tion, balancing the need for simplicity with the full expressive power of the network. Semantic net-
works may be traversed via concept list views, via their relations, or by retracing the user’s history.”
Source: http://www.semanticresearch.com/  January 15, 2008

 6.10 ASSOCIATIONS
People are generally adept at making associations. Semantic networks are an attempt to capture 

some of this ability to associate things, including events. For example, let us share a few of the as-
sociations that come from some common life experiences. 

• Association 1: A man might recall scenes from his youth of being in a 1955 Buick on 
Sunday nights, with his dad, driving in traffic across a familiar bridge, returning home 
from a visit to a cousin’s house for some holiday. Unfortunately, the trip (on more than 
one occasion) ended with the car being pushed (or towed) off the bridge because the 
car had overheated. Only much later did he learn that his dad, who had learned to drive 
relatively late in life, used to drive with two feet!  This, coupled with the car’s own 
tendency to “run hot,” helped to explain the car’s overheating. Little wonder that our 
friend, for many years, tended to avoid crossing the bridge (at any time, but especially 
Sunday nights) and being a passenger in a Buick. 

• Association 2: Someone else might always remember when she was 15 in the summer 
of 1969, her first summer away from home, when she spent two months at a college. 
The associations will always be highlighted by certain people and events, such as 
the music of the time (The Moody Blues and Merrily Rush); the reading of Darwin’s 
Origin of the Species; sitting, watching swans, by a lily pond on the campus; and the 
continuous effort for some 24 hours to solve the following crypto-arithmetic problem 
(offered as an exercise at the end of this chapter).

   SEND
                +

  MORE
=======
 MONEY

It would be easy to conclude that associations are just good or bad memories, based on life’s 
experiences, but they are more than that. They represent the unique ability that people have to 
assemble seemingly disparate pieces of knowledge (or information) to formulate a theory or a 
solution, or just to set off special sensations or thoughts, good or bad. It will be a challenge to AI 
for many years to come to somehow demonstrate this unique ability using the power of the compu-
tational resources and methods (discussed in forthcoming chapters) that will perhaps be available. 

 6.11 MORE RECENT APPROACHES
The advent of the World Wide Web, with improvements in fourth-generation languages, led to 
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the development of systems and languages such as the Apple MacIntosh personal computer and, 
with its application Hypercard, scripting languages such as HTML and object-oriented languages 
such as Java. 

 6.11.1 Concept Maps
Concept maps are a sound educational heuristic developed by Gowin and Novak.28 Since about 

1990, they have been used as the basis for the development of educational software for college-age 
populations by the author of this text (Kopec) and others.  In a paper from the proceedings of the 
2001 AMCIS, Kopec 29 states:

Concept maps are a graphical form of knowledge representation whereby all the 
important information in a domain can be embedded in nodes (rectangular buttons 
or nodes in this system) and arcs (the lines connecting nodes). At any time during 
the use of the system a user can see how he/she arrived at where they are (the path 
taken through the SmartBook) and where it can lead to. This is indicated by a pictorial 
representation on the top of each card illustrating how the shaded circle (node) was 
reached and what circle(s) (nodes) it can lead to. Arrows without circles attached to 
them represent nodes which exist but are not shown in order to avoid cluttering the 
screen. These nodes can be found on subsequent screens. “General Text” refers to the 
node which is currently shaded in a graph on a visible screen.

The paper continues: 

Since 1993 the proliferation of the World Wide Web (WWW) has created a plethora of 
new opportunities for the delivery of electronic, distance learning systems. However, 
one might ask, “How many systems facilitated by the existence of the WWW have 
been proven and tested as sound educational tools?” Between 1988 and 1992 we 
developed a technology at the University of Maine for building what we called 
“SmartBooks”™. 30,31,32 The basis of this approach was the use of “concept mapping.” 
The domain of application was education of college-age populations about sexually 
transmitted diseases (STDs), specifically, AIDS.33 The importance of developing an 
anonymous, correct, flexible, and up-to-date source of information and education 
about this killer disease does not need explanation. 

SmartBooks were developed in essentially four stages: 

 1. Interviews with subject matter experts to develop an effective “concept map” for a domain 
(possibly involving a number of iterations over several months).

 2. Translation of the final concept map into the Hypercard language on the Macintosh (later 
Toolbook for Windows was also used).

 3. Implementation of a working SmartBook.
 4. Testing and revision of the working system with undergraduate students.

SmartBooks enable the flexible traversal of nodes in a concept map according to topics of 
interest to the user. The nodes in Figure 6.17, which shows the AIDS SmartBook, are part of the 
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AIDS Concept Map revealing all pop-up windows, which convey vital information and further 
links when clicked. 

More recently, Kopec, Whitlock, and Kogen at Brooklyn College 34 developed a number of 
programs to enhance the education of science students, which became known as the SmartTutor 
Project. See Figure 6.18.

SmartBooks and SmartTutor lack the formalism that was available with semantic networks, but 
at the same time they are not to be confused with formal notions of subsumption (a layered system 
wherein each layer above subsumes the capabilities of the layers below it; e.g., including formal 
logic, such as modus ponens, described in Chapter 5, “Logic in Artificial Intelligence”), which 
could easily be the case with semantic networks. They effectively provide a hierarchical sense of 
any subject area and are easy to develop using the concept mapping techniques described above 
combined with subject matter experts and the World Wide Web. They also encapsulate some of the 
underlying complexities (and details) of a map, because only a few levels need be displayed at any 
time. 

 6.11.2 Conceptual Graphs
The person behind the development of conceptual graphs (CGs) as a knowledge representa-

tion technique is John Sowa. CGs are a system of logic based on the existential graphs of Charles 
Sanders Peirce 36 and the semantic networks of AI. They express meaning in a form that is logi-
cally precise, humanly readable, and computationally tractable. With a direct mapping to language, 
conceptual graphs serve as an intermediate language for translating computer-oriented formalisms 
to and from natural languages. With their graphic representation, they serve as a readable, but for-
mal, design and specification language. CGs have been implemented in a variety of projects for  
information retrieval, database design, expert systems, and natural language processing. 

The CG system is able to capture and represent more accurately elements of natural languages 

Figure 6.17 
A near top-level screenshot of the AIDS SmartBook.32 
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(a) The control structures concept map for the C language SmartTutor. (b) An excerpt from the 
For Loop Tutoring Web page. Further details about SmartTutor can be found in an article titled 
“SmartTutor: A Unified Approach for Enhancing Science Education.” 35 
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than the semantic networks and concept maps described 
earlier. See Figure 6.19. Typical aspects of language cov-
ered are case relations, generalized quantifiers, indexi-
cals, and other aspects of natural languages.37

The items in the rectangular boxes are called concepts, while the items in the circles are called 
conceptual relations. A formula operator φ translates conceptual graphs to formulas in predicate 
calculus. It maps circles to predicates with each arc as one argument, and it maps concept nodes to 
typed variables, where the type label inside each concept box designates the type.38 

For Figure 6.18 the following formula is generated:

(З x: Dog)  (З y: Floor) on (x,y)

The formula means that there is an x of type Dog and a y of type Floor, and x is on y. 
Sowa’s CG system can represent numerous complex natural language relations and 

expressions visually, which is more transparent, precise, and compelling than other natural 
language systems. One can see how it resembles formulations in the logic programming 
language PROLOG, which is presented on the DVD. 

In addition to numerous compelling publications in this area, Sowa has published two major 
treatises: Conceptual Structures 37 and, more recently, Knowledge Representation.38

 6.11.3 Baecker’s Work
The work of Ron Baecker seems very novel and worth mentioning. Troudt 39 whose study 

compares a subject’s choice of graphic representations of scenes described by text, reports the fol-
lowing: 

Baecker, et al., began research in 1981 on alternative forms of presenting computer 
algorithms.40 Anecdotally, visual animations of algorithms appear to improve 
students’ comprehension of program processes. The authors developed the classroom 
video Sorting out Sorting and other sorting animations. Among the salient features 
of their representation are: focusing on showing only the data that is crucial at each 
algorithmic step; simultaneous comparisons of similar algorithms; adopting consistent 
visual conventions; adding a music track to convey the “feeling of what is going on” 
(ibid. p.47); and, narrations in sync with motion. (ibid. p.49) The claim is that their 30 
minutes of video covers as much material as a 30 page textbook chapter.

Baecker’s next claim is that typographic source code presentation improves students’ code litera-
cy. Using the SEE Visual Compiler, a print preprocessing system, typically dry source code is turned 
into what Donald Knuth describes as, “works of literature” (Donald Knuth, as quoted in Baecker, 
ibid., p. 49). The resulting program books contain a table of contents, indices to points of interest, 
comments in the margins as opposed to being inline, and descriptive page headers and footers. Special 
attention is also paid to representing the continuity of logical blocks across multiple pages.

Baecker’s software development environment is LogoMedia, which allows him to attach  
MIDI-based (special files for encoding music) sounds and basic visualizations to running software. 
In its most sophisticated use, programmers can assign different instruments to variables and moni-
tor the changes to those variables by hearing the instrument play sounds at different pitches. (For 

ON THE DVD

DOG ON FLOOR

Figure 6.19 
Conceptual Graph for “A dog is on the floor.”
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example, an infinite loop might have a saxophone play down the scale until the loop becomes stuck 
at a value, when the saxophone would repeatedly output the same note.)  

Baecker claims that auditory representations of code aid in debugging. LogoMedia was tested 
on a sample group of programmers. The programmers spent two hours learning the software, two 
hours using it to write their own code, and two hours using it to debug unknown code—during the 
last two hours, the subjects were asked to “talk aloud” about their thought processes. In all, the test 
group used the auditory flags in more than half of their test runs. Subjects were generally creative, 
using sounds, such as explosions and clicking, that melded well with the meaning of a particular 
code section. Invariably the subjects’ vocabulary would shift to describe problems by the sound it 
made. The authors claim that the methodology frees the screen for other uses, allowing browsing 
and modification of different sections of the code during the runtime, or fostering debugging on a 
personal digital assistant (PDA) and similar small-screen devices.”

 6.12 AGENTS: INTELLIGENT OR OTHERWISE
The agent view of AI created a stir since it emerged in the early 1980s. Common notions of the 

word “agent” are (1) one who acts or who can act, and (2) one who acts in place of another with 
permission. The second definition subsumes the first. Software agents “live” in computer operating 
systems, databases, etc. Artificial life agents “live” in artificial environments on a computer screen 
or in its memory (Langton 41, Franklin and Graesser 42 pp. 185–208).

In this bottom-up view of the world, there are layers of specialists who are able to achieve 
their tasks, and the composite work of the specialists effectively accomplishes a more sophisti-
cated task(s).  The possibility of solving complex computational problems by attacking them with 
tremendous computing resources (possibly in parallel) became feasible (and attractive) with the 
reduction in size and cost of computer hardware, including increases in the amount of memory 
feasible via silicon chip technologies and corresponding  improvements in CPU speed.

The emergence of agent methods was also in direct contradiction with strong AI methods, 
which favored the formal knowledge representation approaches described earlier in this chapter. 
Instead of being concerned with how knowledge is represented, agent methods are concerned with 
what can be done. 

The Laboratory for Computational Intelligence of the Department of Computer Science, at the 
University of British Columbia in Vancouver, British Columbia, Canada, has even gone as far as 
to state on its Web site: 

Computational intelligence (also known as artificial intelligence, or AI) is the study 
of the design of  intelligent agents.

An agent is something that acts in an environment—such as a mobile robot, a Web 
crawler, an automated medical diagnosis system, or an autonomous character in a video 
game. An ‘intelligent’ agent is an agent that acts appropriately in order to satisfy its 
goals. That is, the agent must perceive its environment, decide what action to perform, 
and then carry out the action. Perception comes in many modalities—visual, haptic 
(touch), speech, textual/ linguistic, etc. Decision making also comes in many flavors, 
depending on whether the agent has complete or partial knowledge of its world, whether 
it is acting alone or in collaboration/ competition with other agents, etc. Finally, taking 
actions can have different forms, depending on whether the agent has wheels, arms, 
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huMAn interest notes

MArvin Minsky 43 (1927– )
Since the 

1956 Dartmouth 
Conference, Marvin 
Minsky has been 
one of the founding 
fathers of AI. 

He earned a BA 
in mathematics from 
Harvard in 1950, and 

then a PhD in mathematics from Princeton in 
1954, but his field of specialization is cognitive 
science, to which he has been a contributor 
through his work at MIT since 1958. 

His deep involvement in the field 
has continued through 2006 and the 50th 
Anniversary Dartmouth Conference, where 
this text was first conceived. Professor 
Minsky founded the MIT Computer Science 
and Artificial Intelligence Laboratory 
(CSAIL) in 2003. Minsky won the Turing 
Award in 1969, the Japan Prize in 1990, the  
International Joint Conference on Artificial 
Intelligence Award for Research Excellence 
in 1991, and the Benjamin Franklin Medal 
from the Franklin Institute in 2001. He is one 
of the great pioneers and deep thinkers of AI. 
He developed the theory of frames (Section 
6.8) and many other important contributions 
to AI from the mathematical, psychological, 
and computer science perspectives. In recent 
years he has been affiliated with the MIT 
Media Lab.

society of Mind 
In 1986 Marvin Minsky  43 made a landmark 

contribution with his book, The Society of Mind, 
which opened the door to agent thinking and 
research. A review of the book at http://www.
emcp.com/intro_pc/reading12.htm highlights 
the following points. 

Minsky’s theory as put forth in The Society 
of Mind is the view that the mind comprises 
collections of enormous numbers of semi-
autonomous, intricately connected agents that 
are themselves mindless. As Minsky puts it, 

This book tries to explain how minds 
work. How can intelligence emerge from 
nonintelligence? To answer that, we’ll 
show that you can build a mind from many 
little parts, each mindless by itself. 43

In Minsky’s scheme, the mind is made 
of many smaller processes which he calls 
“agents” (see Section 6.12.1). Each agent 
can only perform simple tasks—but agents 
when joined to form societies “in certain very 
special ways” will lead to intelligence. 

Minsky’s view of the brain is that it 
is a very complex machine. If we were to 
imagine replacing every cell in the brain with 
a computer chip designed to perform the same 
functions as the brain’s agents perform, with 
the exact same connectivity as in the brain, 
then, Minsky states, 

There isn’t any reason to doubt that the 
substitute machine would think and feel 
the same kinds of thoughts and feelings 
that you do—since it embodies all the 
same processes and memories. Indeed, 
it would surely be disposed to declare, 
with all your own intensity, that it is you 
(ibid. p. 289). 

It was around the time of Minsky’s 
landmark work that AI systems were criticized 
for their inability to exhibit common sense 
knowledge. Here is what he had to say: 

Thousands and, perhaps, millions of 
little processes must be involved in how 
we anticipate, imagine, plan, predict, 
and prevent—and yet all this proceeds 
so automatically that we regard it as 
“ordinary common sense” (ibid.).
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or is entirely virtual. An intelligent agent should also learn to improve its performance 
over time, as it repeatedly performs this sense-think-act cycle. 

Agents have four qualities: 
 1. They are situated; that is, they are positioned in or part of some environment. 
 2. They are autonomous – that is they can sense the environment that they are part of and act 

spontaneously upon it. 

 3. They are flexible, able to respond intelligently and proactive. Agents are able to respond to 
environmental stimuli in an appropriate and timely fashion. Agents can also be proactive 
when they are opportunistic, goal directed, and resort to alternatives in a given situation. 
An example would be the traction control agent on a car—it sometimes checks in when 
there are no traction issues on the road (perhaps due to atmospheric humidity conditions) 
but it is smart enough not to stay in control continuously, and it reverts to normal driving 
conditions. 

 4. Agents are social—they can interact with other software or humans appropriately. In this 
sense they know their responsibilities vis-a-vis the goals of the larger system as a whole. 
Hence, agents must be “supportive” and “socially responsive” to the needs of the larger 
system as a whole. 

So we come upon the following definition:

An autonomous agent is a system situated within an environment;  it senses the 
environment and acts on it, over time, in pursuit of its own agenda and thereby is able 
to effect what it senses. 44

When environments change, agents no longer perform as agents. The distinction between 
agents and ordinary programs for a specific function (e.g., a financial computation) is that agents 
keep a temporal continuity. A program that keeps a record of its input and output and possibly 
learns accordingly is an agent. One that just performs output, would not qualify as an agent. Hence, 
“All software agents are programs, but not all programs are agents” (ibid.).  

The term multi-agent system refers to a variety of software systems that are comprised of 
multiple semi-autonomous components. These agents have their independent knowledge and 
it must be tapped and combined in the best way to solve problems that none of the agents can 
solve alone.  The research of Jennings, Sycara, and Woodridge concludes that multi-agent prob-
lem solving shares four important characteristics. First, each agent can suffer from a limited 
viewpoint. Second, there is no global system controller for the entire problem solving. Third, 
the knowledge and input data for the problem is also decentralized, and fourth, the reasoning 
processes are often asynchronous. 45, 46

Franklin and Graesser 42 continue their discussion with development of a taxonomy for defin-
ing various kinds of agents based on properties such as being reactive, autonomous, goal-oriented, 
temporally continuous, communicative, learning, mobile, flexible, and having character, but that is 
beyond the scope of this text. 
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 6.12.1 A Little Agent History
The notion of blackboard architectures is an outstanding feature of the speech understanding 

system known as “Hearsay II.” This is the work of   J.L. Erman, F. Hayes-Roth, V. Lesser, and D. 
Reddy 47 and was the basis for all future research of this kind. Here a number of specialist proce-
dures called knowledge sources (KSs) report to a central blackboard that they are available and 
apply to a problem situation. A control device manages conflicts among the procedures to most 
efficiently develop a solution to a problem. The work of Kornfeld and Hewitt 48 on Ether relates to 
problem solving starting from scientific communities. Sprites (akin to KSs) record facts, hypoth-
eses, and demonstrations in a common area similar to that of a blackboard. These hypotheses have 
defenders and skeptics.  Sponsors also regulate the amount of time that can be spent on each sprite. 
In general, blackboard architectures enable a set of specialist procedures to declare their availabil-
ity for completion of a task. 

However, limitations of architecture prevent these systems from performing efficiently. 
One of the first systems developed for problem solving by a community of specialists was 
the PUP6 System. 49  These software specialists were called “beings,” and it was these be-
ings that worked on the synthesis of one specific specialist.  This specialist, called Concept 
Formation, was capable of handling a task by itself. However, this was really only a model 
or toy system, never fully developed by Lenat. Carl Hewitt 50, … “tended to think in terms 
of distributed systems, considering control structures as patterns of message passing be-
tween active entities called actors. So he had the idea of viewing problem solving as the 
activity of an assembly of experts, considering a reasoning process as a confrontation of 
points of view.”  51 One of the most influential, relatively early Distributed Artificial Intelli-
gence Systems (DAI) was the DVMT (Distributed Vehicle Monitoring Test) developed by 
V. Lesser’s team at MIT. 52 It was a significant research project on the perception and recog-
nition of distributed situations. Sensors transmitted data to processing agents implemented 
in the form of blackboards. The problem for the agents consisted of following vehicles on 
the basis of data—complex data—much of which was complicated with sound effects. 51 
Much further study of multi-agent planning was facilitated by this system. 

Since the late 1980s, Rodney Brooks has been building successful robots based on a subsump-
tion architecture, which represents his belief that intelligent behavior emerges from the interactions 
of organized simpler behaviors. The subsumption architecture is behind the construction of robot 
control systems including a collection of task-handling behaviors. Robots’ behaviors are accom-
plished through the transitions of a finite state machine that maps a perception-based input into an 
action-oriented output. A simple set of condition-action production rules (See Section 6.5) define 
the finite state machines. Brooks’ systems do not include a sense of global knowledge, but they 
do include some hierarchy and feedback between levels of the architecture. Brooks incrementally 
builds the capabilities of his systems by increasing the number of layers in his architecture. Brooks 
believes that top-level behavior emerges as a result of the design and testing of the lower levels of 
the architecture. Experimentation is performed to reveal the best design for the coherent behaviors 
of layers, and to determine the appropriate communication between and within layers. The simplic-
ity of design of the subsumption architecture has not prevented Brooks from achieving success in 
several applications (see Brooks, 1989 53 Brooks, 1991 54 Brooks, 1997 55). 
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huMAn interest notes

rodney brooks - rebel to 
reforM

Rodney Brooks 
(1954 –   ) is a 
multifaceted and 
interesting person. In 
the 1980s he burst onto 
the AI scene as a rebel 
to the establishment 
with maverick views 
of how robot systems 
should be built. Over 

the years he has transformed himself into an 
AI leader, scholar, and visionary. He received 
a bachelor’s degree in pure mathematics from 
the Flinders University of South Australia and 
a PhD in Computer Science from Stanford 
University in 1981. He held research positions 
at Carnegie Mellon University and MIT, and 
a faculty position at Stanford before joining 
the faculty of MIT in 1984. He has established 

his reputation through work in robotics and 
artificial life, further diversified via movies, 
books, and entrepreneurial activities, including 
the establishment of several companies: 
Lucid (1984), IROBOT® (1990) (Figure 6.20 
(a-d), where he designed the commercially 
successful Roomba® (see Figure 6.20c below), 
and its subsidiary Artificial Creatures (1991). 
He was Panasonic Professor of Robotics at 
MIT and Director, MIT Computer Science 
and Artificial Intelligence Laboratory. He has 
designed and built robots marketed to industry 
and the military. In 2008 he founded Heartland 
Robotics whose mission is to bring to market 
a new generation of robots to improve 
productivity in manufacturing environments. 
“Heartland’s goal is to introduce robots into 
places that have not been automated before, 
making manufacturers more efficient, their 
workers more productive and keeping jobs 
from migrating to low-cost regions.”

http://www.heartlandrobotics.com/about.
html

a) b)

d)c)

Figure 6.20 (a – d) 
Products from IROBOT Corporation.
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 6.12.2 Contemporary Agents 
Today many agent-based applications serve as specialists for diverse purposes such as commu-

nication, transportation, health, and beyond. We will discuss some particularly noteworthy examples. 

• KaZaA: This software is a peer-to-peer search agent. 
• Spector Pro: This software is an example of a monitoring agent. 
• Zero Intelligence Plus (Zip): Zip is an autonomous adaptive trading agent algorithm 

developed by Dave Cliff, at Southampton University, and is used by the financial in-
dustry to conduct trades of financial instruments such as stocks and bonds. 

KaZaA 

KaZaA is a peer-to-peer search agent. Unlike traditional search engines with which you query 
only one database, with KaZaA you can search thousands of interconnected computers that have 
chosen to share their files. Audio, video, software, and documents are combined as one. 

KaZaA is composed of five major sections that you can reach via the five icons in the menu 
bar: “Start,” “My KaZaA,” “Theatre,” “Search,” and “Traffic.” You use the Search option to begin 
searching for files. You can enter the keyword(s) you are looking for, and specify the type of media 
files (audio, video, image, software, documents) you want. KaZaA is not limited to sharing audio 
files: as a real digital media library, it lets you find all sorts of documents that have been shared 
by their owners. After choosing your media type, you can do a simple query (by title or author) or 
an advanced one (multiple fields such as file size, language, type, category, etc.). The results are 
displayed in the right window with a lot of information such as the name of the artist and the title, 
but also some indications about the quality of the document and the expected downloading time.

Monitoring Agent: Spector Pro

Spector Pro is a monitoring agent. Opinions differ about the ethics of computer monitoring. If 
you use an agent such as Spector Pro to monitor your employees, colleagues, or friends, you might be 
legally or ethically violating their privacy. On the other hand, you might need to monitor children’s 
activities on the Web, not to limit them, but to protect them. In other cases, you can detect whether 
someone is using your computer for illegal purposes before you can be held responsible for their acts. 

Zero Intelligence Plus (Zip)

The notion of agent-based computing has been adopted enthusiastically in the financial trading 
community, where autonomous market trading agents are said to outperform human commodity 
traders by 7%. Michael Luck of the School of Electronics and Computer Science at the University 
of Southampton and executive director of the EU-funded AgentLink action coordination program 
explains agent-based computing.

Agents are a way to manage interactions between different kinds of computational 
entities, and to get the right kind of behaviour out of large-scale distributed systems. 

Luck continues:

Inevitably, machines can monitor stock market movements much more quickly 
than humans, and if you can encode the kinds of rules that you want, then it is not 
unreasonable to imagine that computational traders will be able to outperform humans. 



198  ■  Part  2   ·  Fundamentals

Finally he states:

I am surprised that the figure is only 7%. This is based on experiments we have 
carried out, but there are robo-trader programs being used in the market not just to 
provide information, but to do actual trading. 56

Since the publication of our first edition smart phones have become even more pervasive in 
how they are used in almost every aspect of our lives – from checking the latest weather report to 
determining when the next subway car is leaving from near your campus.  These software agents 
are now ubiquitous as Apps on all smartphone platforms including, for example, restaurant Apps 
such as Yelp, Savored, and Open Table, traffic Apps such as Waze and Google Maps, shopping 
Apps such as Overstock.com, Amazon and Quibids. And if you’ve ever been mesmerized by 
a tune whose name you cannot recall, you may be familiar with Shazam.  And the list can 
go on and on. 
HAL:  The Next Generation Intelligent Room 

Hal is a highly interactive environment that uses embedded computation to observe and par-
ticipate in the normal, everyday events occurring in the world around it. An offshoot of the MIT AI 
Lab’s Intelligent Room, Hal has cameras for eyes, microphones for ears, and uses a variety of com-
puter vision, speech, and gesture recognition systems to allow people to interact naturally with it. 
Hal is the next generation of the Intelligent Room, designed to support the kind of human-computer 
interaction that up until now has only been science fiction.

 6.12.3 The Semantic Web
The Semantic Web is a project which Tim Berners-Lee, the inventor of the World Wide Web, 

has been developing since the late 1990s. The Semantic Web is a vision of information that is 
understandable and manageable by computers, so that they can perform more of the tedious work 
involved in finding, sharing, and combining information on the Web that humans need and comput-
ers can provide. 

The types of tasks that the Semantic Web would be able to accomplish would be to find the 
French word for “horse,” to make reservations for a concert performance, or to be able to find the 
cheapest hotel room in a city with our particular requirements (e.g., nonsmoking room, king-size 
bed, first floor). 

For example, a computer might be instructed to list the prices of flat screen televisions that 
are greater than or equal to 40” wide, or local restaurants that can offer Italian food, with a menu 
that offers courses between $10 and $15 per plate, and are open after 10 pm on a Tuesday night. 
Present-day conditions would require search engines that are individually tailored to every Web 
site being searched. The semantic web provides a common standard (RDF) for Web sites to publish 
the relevant information in a form that may more readily be processed and integrated by machine.

Tim Berners-Lee originally expressed the vision of the semantic web as follows:

I have a dream for the Web [in which computers] become capable of analyzing all the 
data on the Web—the content, links, and transactions between people and computers. 
A ‘Semantic Web’, which should make this possible, has yet to emerge, but when it 
does, the day-to-day mechanisms of trade, bureaucracy and our daily lives will be 
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handled by machines talking to machines. The ‘intelligent agents’ people have touted 
for ages will finally materialize.57

 6.12.4 The Future – According to IBM
IBM, for most of the twentieth century the largest and most successful computer corporation in 

the world, has dedicated a number of programs to the study and development of agents. Following 
is a statement from its Web site, exemplary of IBM’s commitment to this perspective:

“Today, we are witnessing the first steps in the evolution of the Internet towards 
an open, free-market information economy of software agents buying and selling a 
rich variety of information goods and services. We envision the Internet some years 
hence as a seething milieu in which billions of economically-motivated software 
agents find and process information and disseminate it to humans and, increasingly, 
to other agents. Agents will naturally evolve from facilitators into decision-makers, 
and their degree of autonomy and responsibility will continue to increase with time. 
Ultimately, transactions among economic software agents will constitute an essential 
and perhaps even dominant portion of the world economy. 

The evolution of the Internet into an information economy seems as desirable as it 
does inevitable. After all, economic mechanisms are arguably the best known way to 
adjudicate and satisfy the conflicting needs of billions of agents – human agents. It is 
tempting to blindly wave the Invisible Hand and assume that the same mechanisms 
can be applied successfully to software agents. However, automated agents are not 
people! They make decisions and act on them at a vastly greater speed. They are 
immeasurably less sophisticated, less flexible, less able to learn, and notoriously 
lacking in “common sense.” Given these differences, it is entirely possible that agent-
based economies will behave in very strange and unfamiliar ways.” 58

 6.12.5 Author’s Perspective
We live in times that depend on various kinds of agents. We have personal training agents, 

real estate agents, automobile agents, literary and sports agents, and more. We also have various 
special-purpose devices that perform as our personal assistants. Examples would include watches, 
cell phones, electronic address books, personal computers, geographic information systems, ther-
mometers, blood pressure machines, blood-sugar monitors, and so forth.  It is easy to foresee a 
time in the not-so-distant future when we will carry upon our person a small, integrated multi-
agent system that will offer all these features and more. The device will be truly multifunctional, 
easy to understand, and easy to operate. It could comprise: (1) communication systems, (2) trans-
portation systems, (3) body systems, (4) personal information systems, and (5) knowledge sys-
tems. Imagine performing your day-to-day living with the aid of such a personal agent?  Knowl-
edge systems would be akin to our present-day computers with the benefit of the Internet. They 
could help us solve problems, answer questions intelligently and quickly, and enable real dynamic  
learning. Personal information systems could address our personal needs—appointments, personal 
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records, health, finances, and much more. Communication 
and transportation systems would solve those traditional 
problems. What a wonderful opportunity and, as you can 
imagine, none of the components we have mentioned are 
beyond our technical capabilities today. It is all a matter of 
successfully building integrated multi-agent systems. Natu-
rally, once such a wonderful system would exist, we need to 
concern ourselves with security—yes, with the good comes 

the bad (á la Sara Baase’s wonderful text, Gift of Fire 59), and that is where this discussion ends.

 6.13 CHAPTER SUMMARY
This Chapter focuses on a topic which is very integral to AI—knowledge representation.  Be-

fore you can begin any problem solving you must have some sense of how the problem can best be 
represented. Considerations might include: will the solution to the problem involve decision-mak-
ing? Will it involve search? Will the solution be precise or within some range of acceptable values?  
All these factors contribute to the choice of an appropriate knowledge representation, in addition to 
the predilections of the learner. Does the learner feel comfortable with a graphic representation, or 
would he/she prefer mathematical expression? 

The discussion in the early sections of this chapter focuses on the hierarchy of information 
processing involving the transitions from data, facts, and information to the highest level—knowl-
edge. Then the key issue becomes how can the knowledge best be represented?  

Section 6.1 considers graphical sketches and introduces the notion of the Human Window. 
Another often-used method of knowledge representation is a graph, and this topic is presented 
through the famous Bridges of Königsberg Problem (Section 6.2), why it cannot be solved given 
its inability to satisfy the Eulerian Property, and how the bridges have actually changed in recent 
years is explained.  

Discussion then moves to search trees, decision trees, and is further illustrated through The 
Twelve Coins Problem (Section 6.3). The variety of possible choices for a problem solution is 
highlighted through the famous Towers of Hanoi Problem (Section 6.4). In this section there are 
graphical sketches of the solution, as well as tables, comprising explicit descriptions (extensional 
representations); we also provide pseudocode and recurrence relations comprising implicit (inten-
sional representations) solutions to the problem.  

Production Systems (Section 6.5) have been an important and effective method of knowledge 
representation for many decades, and are also the subject of Chapter 7.  Frames (Section 6.7), with 
their slots and fillers, introduced by Marvin Minsky in 1975, are an important contribution to AI 
and a forerunner to what later became a whole paradigm for programming languages in computer 
science and the subject of Section 6.6, “Object Orientation.”  A whole school of AI using scripts 
and the conceptual dependency (CD) system (Section 6.8) emerged from Yale University in the 
1980s, led by Roger Schank and his students. Semantic networks (Section 6.9) were introduced by 
Quillian in 1968. They seem to naturally lend themselves to knowledge representation for language 
processing, simultaneously allowing for sufficient flexibility through graphics and enabling suffi-
cient formality and precision through the use of language and its implicit meaning and the parsing 
of phrases and sentences. Associations (Section 6.10) are a skill germane to humans and how our 
brains might be wired for relational thinking, interpretation, and problem solving—this perhaps is 
something that can be developed in computers (i.e., the work of Doug Lenat in CYC) but it does 
not come naturally to them.  

Gift of Fire has already been published in 
its third edition (2008), and it has become a 
standard and classic for the course, “Computers 
and Society”; its focus is that computers can 
be viewed as having both positive and negative 
effects on society, as did fire when it was first 
introduced to mankind.
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More recent approaches such as concept maps, conceptual graphs, and Baecker’s Work where-
by the senses, particularly employing visualization and sound, are used to convey meaning, are the 
focus of Section 6.11. 

Agents (Section 6.12) are an entirely different approach to developing problem-solving para-
digms. They stem from the early work of Marvin Minsky and later led by the efforts of Rodney 
Brooks (subsumption architecture), both at MIT. This bottom-up approach concerns itself with 
what can be accomplished through combined efforts of layered specialists exploiting the possibility 
of powerful computational resources. Some of the qualities of agents include being (1) situated, (2) 
autonomous, (3) flexible, and (4) social. A well-known forerunner to the agent approach were the 
blackboard architectures of the speech understanding system, Hearsay II, which employed knowl-
edge sources (KSs), highlighted by the work of Hayes-Roth, Erman, Lesser, and Reddy. 

Section 6.12.2 presents some contemporary agents including KaZaA for peer-to-peer search-
ing, Spector Pro for monitoring, and the trading agent, Zero Intelligence Plus. 

Sections 6.12.3 and 6.12.4 look from the present to the future via the Semantic Web by Tim 
Berners Lee (1999) and how IBM views the world (http://www.research.ibm.com/infoecon). 

Finally, Section 6.12.5 portrays an author’s view of our future world under the control of per-
sonal multi-agents that will serve and facilitate day-to-day life for humans in many possible ways. 

Questions for Discussion

 1. Describe the important features of good knowledge representations.

 2. Distinguish between data, facts, information, and knowledge.

 3. What is the notion of grain size?

 4. What is meant by the Human Window?

 5. What is an intentional representation vs. an extensional representation?

 6. What do frames and object-oriented programming have in common?

 7. What does it mean for a program to be comprehensible?

 8. What are some of the good features of scripts?

 9.  What are some of negative features of scripts?

 10.  How would you describe the functionality of frames?

 11.  What are some of the negative features of frames?

 12. Develop a script for a common scenario that frequently occurs, e.g., “The Getting  
Dressed Script”; “The Go to Work Script”; “The Go Shopping for Food Script.” 

 13. Develop a semantic network for the following facts and relations:

  a.   Joe and Sue are the parents of Tom and Debi. Tom and Debi are brother and sister. 
Kim is the child of Tom; Jill is the child of Debi. 

  b.  Bill, Betty, and Bob are siblings; they live in Baltimore, Maryland. They are the children 
of Don and Carol. 
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 14. How are semantic networks different for Conceptual Graphs and Concept Maps? 

 15. What is the notion of an agent?

 16. Describe four properties of agents.

 17. What are the contributions of Marvin Minsky to the subject of this chapter?

 18. What are some of the accomplishments of Rodney Brooks? 

Exercises

 1. Describe some of the elements of a good knowledge representation.

 2. Trace the history of knowledge representation in AI as discussed in the chapter. 

 3. Discuss some of the pros and cons of frames, semantic networks, and scripts.

 4. Develop a frame representation for the college depicted in the semantic network in  
Figure 6.16.

 5. Develop a semantic network for the car accident frames in Figure 6.11. 

 6. Describe some arguments by Hubert Dreyfus against the value of scripts as knowledge 
representation. 

 7. Develop production rule, frame, and semantic network-based representations of the decisions 
made as to what to wear on a given day; e.g., on a workday or holiday, wear a suit, if it is a 
weekend, wear casual clothes, if it is rainy, if it is sunny and hot, etc. 

 8. Write a research paper describing the achievements of one of the following people: Ross 
Quillian, Marvin Minsky, John Sowa, Roger Schank, Robert Abelson, or Rodney Brooks.

 9. You are trying to describe the game of baseball to someone. Which knowledge representation 
method would be most suitable? Try to build a baseball system using your preferred choice. 

 10. Try to solve the following famous crypto-arithmetic problem. Each letter can stand for one 
and only one digit. What is a most suitable knowledge representation choice for deriving a 
solution to this problem? ++

                                       SEND
                                  +
                                       MORE
                                    ======
                                   MONEY

              BEG SIDEBAR

              60

              END SIDEBAR

++ This problem and crypt-arithms comprise Chapter 5 of Artificial Intelligence Problems and Their Solutions, Mer-
cury Learning Inc. 2014.
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 11. Consider the map in Figure 6.21. Explain whether knowing the instructions represents 
information or knowledge. If your answer is “information,” then explain what would be 
needed to “upgrade” it to knowledge. 

Figure 6.21
Subway map.

12. We have presented a number of problems to this point that have a common feature including: 
The Missionaries and Cannibal Problem, The Twelve Coins Problem, The Knight’s Tour, The 
Eight Puzzle, and the Cryptarithm above. What do these problems share in common?

 13. In this Chapter we introduced the concept of the Human Window. Consider your solutions 
to the above problems and other exercises and problems we have posed in the book.  How 
“Human Window” like are your solutions? That is, do they require too much memory or 
computation for humans? Are they 100% correct? Have a suitable grain size?   Executable?  
Comprehensible? ++

 14. This Chapter introduced the concept of how “Intensional” or “Extensional” a solution to a 
problem is.  Consider representations of solutions to problems that you have produced above, 
in our text, and elsewhere – Are these solutions extensional or intensional?  Who would 
prefer an intensional solution?  Who would prefer an extensional solution? Which would most 
people prefer?++
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This Chapter starts with a discussion of weak  
vs. strong AI methods and includes a practical 
example—The CarBuyer. This production system is 
thoroughly analyzed together with the advantages and 
methods of the production system approach. Methods 
of inference, including forward and backward chaining, 
together with conflict resolution, are illustrated with 
a number of examples. The chapter concludes with an 
introduction to cellular automata, stochastic processes, 
and Markov Chains. 
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 7.0  INTRODUCTION
 “I prefer to be a productionist rather than a perfectionist.” Perhaps the opening quotation needs 

some further explanation. In essence we are suggesting that perfection, although a noble goal, is 
rarely achieved or achievable in any arena, be it science, academics, sports, business, government, 
or others. In many disciplines it is desirable to produce results, albeit imperfect, but representing 
our best efforts, and still provide valuable contributions to society. You perhaps have heard it said 
“Perfection is the enemy of the good.” We leave it to the reader to decide. 

 7.1  BACKGROUND
In some sense the discussion of production vs. perfection is integral to the notion of artificial 

intelligence in the strong or traditional sense. That is, if we were able to discover or derive algo-
rithms that represent all human behaviors, decisions, and problem-solving activities, then there 
would be no need for the discipline of artificial intelligence. Instead we must guess, estimate, and 
make informed, statistically sound decisions, based on what we have learned. Production systems 
can be viewed as a link to, or an attempt at a translation of, what is in a human-domain specialist’s 
head and how that knowledge would look if converted to instructions for a computer to follow and 
execute. 

Production systems can essentially be viewed as synonymous with “IF – THEN Rules.” That 
is, given that certain conditions specified under the “IF” are matched, then we reach certain conclu-
sions, make certain decisions, and take certain actions accordingly. However, there is no intelligent 
human behavior that can be “perfectly” reduced to a set of IF – THEN rules. Attempts to better 
represent reality with probabilities of certainty in reaching specific decisions or conclusions can be 
helpful, but at present are not capable of fully replicating human decision-making processes.

The notion of production systems has considerable history and is led by research in the area of 
human problem solving by Allen Newell and Herb Simon (1972). They viewed production systems 
as a paradigm for how the brain processes information. That is, given a particular set of circum-
stances, we trigger certain actions, decisions, or knowledge. Production systems are also called 
Situation – Action Systems, Antecedent – Consequent, and Rule-Based Systems, Inference 
Systems, or simply productions.

Early developments were inherently tied to the notion of a symbol on the left side generating 
a symbol, or group of symbols, on the right side, for example, A ≥  BC. In 1943, Emil Post intro-
duced the system in a famous paper, “Formal Reductions of the General Combinatorial Decision 
Problem.” 1 

Formally speaking, a Post Tag Machine is a finite state machine that consists of a tape that 
is essentially a first in first out (FIFO) queue of unbounded length, such that, in each transition, the 
machine (1) reads the symbol at the head of the queue, (2) deletes a fixed number of symbols from 
the head, and (3) appends a pre-assigned symbol-string substitution string to the deleted symbol.

Alphabet: {x, y, z, H} 
Production rules:
 x → zzyxH
 y → zzx
 z → zz
 H → halt
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The basic idea of a Post Production System is to 
read the first symbol, delete a fixed number of symbols 
from the head of the queue, and append the substitution 
string for the deleted symbol to the end of the queue. 
We will be deleting two symbols; our case is a 2-tag 
system.

Later, in 1957, Noam Chomsky 2 reintroduced pro-
duction systems as a series of rewrite rules that can be 
used as transformation rules for representing formal 
grammars in natural language systems (See Section 13.3). 

Production systems are very appealing and attractive to AI researchers from a number of per-
spectives:

• As a powerful form of knowledge representation. They are 
very enticing as a model for how humans think about the 
world—either formally or informally. Although any attempt 
to build complete systems with regard to a particular hu-
man knowledge domain either will be too detailed (for the 
purpose of representing what truly goes on in an expert’s 
head), or will fall short of telling the entire truth by being too 
simplistic. Production systems can be conveniently used to 
represent decisions and, consequently, action(s).

• As a bridge connecting AI research to expert systems while embodying strong AI 
methods. Production systems are a very natural means of expression for conveying 
knowledge, for expressing the major rules of a problem domain, and for building an 
expert system. 

• As a way of presenting heuristics and as a model for human behavior. As we’ve em-
phasized throughout this text, humans operate by heuristics. Unlike computers, humans 
are not capable of consistently executing formal algorithms (recall the notion of the 
Human Window presented in Chapter 6, “Knowledge Representation”) but are very 
comfortable in developing and employing heuristics. Production systems are an excel-
lent way to represent heuristics and therefore serve as a model for human behavior. 

• As excellent models for pattern matching and situation – action scenarios. The satis-
fying of conditions acts as a trigger for deciding what action(s) to take. This is a very 
natural way to represent a wide range of human and natural situations. Rules can range 
from being very simple, straightforward, general, and clear, to more complex and very 
domain specific.

 7. 1.1 Strong Methods vs. Weak Methods 
The dichotomy between the strong and weak approaches to AI research was presented in Chap-

ter 1, “Overview of Artificial Intelligence.” The main point was that strong AI methods rely on 
domain-specific knowledge that has been accumulated, organized, refined, and employed to obtain 
working systems that can be helpful to mankind. A good example is computer chess: despite the 
apparent strength of the top programs today, most of the success in the discipline has not been 
achieved by strong AI methods. Strong AI methods would involve the accumulation of all the  

Initial word: yxx

Substitute “zzx” for “y”

Substitute “zzyxH” for “x”

Substitute “zz” for “z”

Substitute "zz" for "z"

Substitute "zzx" for "y"

yxx
xzzx→

zxzzyxH→
zzyxHzz→

yxHzzzz→
Hzzzzzzx (halt)→

Figure 7.1 
Example of a Post Production System

Production systems, akin to Post 
Production Systems, can, in their full 
generality, be demonstrated to be 
the equivalent of a Universal Turing 
Machine. Any working computer 
program (in any computer language) 
can, theoretically, be translated 
to one that performs on a Turing 
Machine.
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relevant knowledge about chess (such as positional concepts, pawn 
structures, all that is known about openings, middle-games, and end-
ings, etc.) and have it combined into one “knowledge soup,” as Sowa has 
called it. 3 Strong AI methods would employ all the knowledge that can 
be accumulated for programs to produce strong, winning chess moves.

Instead, we have programs that seem to play on a par with the best 
human players in the world, but don’t necessarily have a huge amount of 
chess-specific knowledge, at least with respect to Reddy’s 50,000 or so 
estimated chess-specific concepts, which might be accumulated by age 50 

by a human grandmaster.4 That is because the programs employ what are called “weak” AI methods, 
which routinely search trees comprised of hundreds of billions of possible future board positions, in 
contrast to the 50–200 positions that humans will search in the quest to find the best move in a given 
position. The approach of logicians (see Chapter 5, “Logic in Artificial Intelligence”), through the 
framework of the predicate calculus, with complex symbol manipulation, would be considered a rela-
tively weak AI method. In contrast, expert systems (Chapter 9, “Expert Systems”) constructed from 
hundreds of domain-specific rules, are examples of strong AI methods. Other examples of weak meth-
ods are the neural approaches of Chapter 11, “Neural Networks,” and the evolutionary approaches 
described in Chapter 12, “Search Inspired by Mother Nature.” Which approach is to be preferred? 
Discerning the answer entails considering the fine balance between the demands for performance vs. 
competence. For example, it would seem that in the particularly “human” domain of natural language 
processing, strong AI methods would be preferred. Results with statistically-based approaches, which 
would seem like hybrids comprising both strong and weak AI methods, have proven particularly 
promising, however. 5 

 7.2 BASIC EXAMPLES
As described before, production systems are a very versatile way of representing the world 

about us. They follow the basic form we have discussed previously:
  IF [condition] THEN [action]
A number of examples follow:

exAMple 7.1: A siMple rule (lAw)
IF [you are operating a motor vehicle] THEN [don’t drink alcohol]

exAMple 7.2: Another rule (lAw)
IF [you are driving a car AND you want to use your cell phone]

  THEN [make sure you are using a hands-free device]

exAMple 7.3: coMMon sense rule / heuristics

IF [driving AND heavy thunderstorm AND visibility is poor]

  THEN [pull over]

Strong AI is akin to the limitations 
of memory and calculation power 
which humans must cope with by 
applying knowledge to play strong 
chess—looking at a relatively small 
number of positions and not very 
deeply, compared with computer 
programs.
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exAMple 7.4: More coMplex doMAin-specific exAMple

IF [Car does not start AND Battery is OK AND Starter is OK

 AND there is gas] 

 THEN [Check Alternator]

Meta-knowledge is knowledge about a domain that is useful in specific situations where one 
might identify a problem. Following is an example using meta-knowledge to suggest a change in 
teaching strategy that would perhaps lead to better results.

exAMple 7.5: using MetA-knowledge 
Meta-Rule 1:

 IF [student cannot answer a question] 

  THEN [try asking the student a more fundamental question which he/she 

       is more likely to be able to answer successfully]

Example of Meta-Rule 1: 

 Question 1: How many people are there in the world? 

 Answer: I have no idea.

 Question 2: How many people live in China?

 Answer: 1.3 Billion 

Meta-Rule 2:

 IF [student can answer the more fundamental question] 

  THEN [ask a follow-up question which might serve as a “bridge” to 

       answering the original question]. 

Example of Meta-Rule 2: 

Question 3: So how many people would you guess there are in the world? 

One of the earliest and most successful expert systems was MYCIN, developed by Buchanan 
and Shortliffe at Stanford University in 1976. 6 MYCIN tries to determine which urinary tract in-
fection might be present in a patient. The following is one of the most often quoted excerpts from 
MYCIN:

IF [the stain of the organism is gramneg AND the morphology of the organism is rod 
AND the patient is a compromised host]

   THEN [there is suggestive evidence (0.6) that the identity of the organism is 
pseudomonas]
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MYCIN, developed by doctors and a computer 
scientist, comprises some 400 rules. This example 
illustrates its very deep domain-specific knowledge 
and is intended to illustrate MYCIN’s conclusion 
(chain of reasoning) after evaluating the answers 
it has received to a series of questions. MYCIN is 
able to “explain” how it reached its conclusions by 
stating the facts it has accrued and its level of con-
fidence (in this case .6) for the conclusion it has 
reached. 

Recall that productions are a paradigm for how human problem-solving works, developed 
by Newell and Simon at Carnegie-Mellon University.7 They argued that humans used produc-
tions stored in long-term memory when solving certain problems. When certain problem con-
ditions or situations are recognized in short-term memory, a production or rule is said to be 
fired in long-term memory. The prescribed actions (or consequents) are then added to short-
term (working) memory. As a result, new productions in long-term memory can be fired. This 
dynamic process is said to be a model for human reasoning, in that new information can be 
inferred from existing information. As we will soon see, given that a set of circumstances (an-
tecedents, conditions) stored in short-term memory are matched, there could be more than one 
plausible action to take; rule-based systems are designed with the notion that there is a most 
appropriate action (decision) to take. This process is called conflict resolution. Short-term 
memory matches situations in long-term memory and then chooses the best matching rule to 
determine appropriate action(s). Figure 7.2 illustrates how this process works.

This leads us to the notion of Rule-Based Expert Systems. These are systems that combine 
productions (or rules) in a knowledge base, with domain-specific information contained in working 
memory, and an inference engine that can infer new information from existing information. Durkin 8  
gives the following definition, from Expert Systems: Design and Development (p.168):

A computer program that processes problem-specific information contained in the 
working memory with a set of rules contained in the knowledge-base, using an 
inference engine to infer new information. 

Figure 7.3 illustrates the interaction between these three fundamental components of a rule-
based or production system. Here, the global database is the equivalent of the short-term memory. 
It is the main data structure of production systems and consists of lists, small matrices, relation-

al databases, or indexed file structures. It is a dynamic 
structure, which continually changes as a result of ac-
tions by production rules, and can be referred to as con-
text or working memory. From a computer science per-
spective, it is the difference between RAM and hard disk 
or permanent memory. The knowledge base comprises 
production rules, and the control structure is the equiva-
lent of the inference engine defined above. 

Long-term memory

(Productions)

Short-term memory

(Situations)

REASONING

ACTIONS

Situations

Figure 7.2
Production Systems Model. 

CONTROL STRUCTURE
(Rule interpreter)

KNOWLEDGE BASE
(Rule set)

GLOBAL DATABASE
(Working memory)

Figure 7.3
A production system with its three fundamental components: Knowledge Base, 
Global Database, and Control Structure.
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 7.3 THE CARBUYER SYSTEM
We will now present a system (See Table 7.1) that provides a set of production rules to help us 

choose an appropriate car to buy, based on the most pertinent factors, such as CLASS (or body type/
size), PRICE, whether the car is NEW or USED, the car’s MILEAGE (if the car is used), and the 
AVGCMPG (the car’s average combined miles per gallon). If the car is USED, then other typical 
factors would include the car’s MILEAGE and the YEAR the car was manufactured. 

We have tried to build this system to be as realistic as possible while developing a small model 
that is representative of the car buying decisions that are most applicable today. Probably the most 
significant factor in choosing a car at the time of this writing (May 2008) would be the car’s 
CLASS, closely followed by the PRICE, followed by the AVGCMPG. By CLASS we mean one of 
the following: compact, subcompact, midsize, large, SUV, sports car, and so forth. 

• ON_WM x Tests if a property x is in WM (working memory)
• PUT_ON WM x Puts property x in WM 

We built the Car Buyer Production System by developing production rules based on what we 
know about car features that are important when making a buying decision. We have included only 
32 cars in this model or toy system (we ask that readers not be offended if their favorite car model 
is missing). 

Rule 1:  IF [ON_WM MILEAGE = 0] 

  THEN [PUT_ON_WM_ NEW] 

Rule 2:  IF [ON_WM MILEAGE > 0]

  THEN [PUT_ON_WM_ USED]

Rule 3:  IF [ON_WM PRICE ≥ 30K]

  THEN [PUT_ON_WM_ LUXURY]

Rule 4:  IF [ON_WM PRICE ≥ 20K] 
  THEN [PUT_ON_WM_ STANDARD]

Rule 5:  IF [ON_WM PRICE > 5K] 
  THEN [PUT_ON_WM_ ECONOMY]

Rule 6:  IF [ON_WM NEW] AND [ON_WM 8cyl]

  THEN [PUT_ON_WM LUXURY] 

Rule 7: IF [ON_WM AVGCMPG ≥ 25] 

     THEN [PUT_ON_WM Excellent-MPG] 

 ELSEIF [ON_WM AVGCMPG > 16] 

     THEN [PUT_ON_WM Medium-MPG]

  ELSEIF [ON WM AVGCMPG  ≤ 16]

    THEN [PUT_ON_WM Low-MPG]
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Rule 8: IF [ON_WM LUXURY]

 THEN [PUT_ON_WM SUV] AND [PUT_ON_ 

 WM_ Cadillac] AND [PUT_ON_WM Lincoln] AND 

 [PUT_ON WM Mercedes]

Rule 9: IF [ON_WM FOREIGN]

 THEN [PUT_ON_WM Toyota] AND 

 [PUT_ON_WM Mercedes] AND [PUT_ON_WM Honda]

 AND [PUT_ON WM Hyundai]

Rule 10:  IF [ON_WM NEW] AND [ON_WM SUB-COMPACT]

   THEN [PUT_ON_WM Honda Civic]

Rule 11:  IF [ON_WM NEW] AND [ON_WM COMPACT]

  THEN [PUT_ON_ WM Honda Civic] AND 

  [PUT_ON_ WM Ford Focus]

Rule 12:  IF [ON_WM NEW] AND [ON_WM MIDSIZE]

  AND [ON_WM ECONOMY]

    THEN [PUT_ON_ WM Hyundai]

Rule 13:  IF [ON_WM NEW] AND ON_WM MIDSIZE]

  AND [ON_WM STANDARD] 

    THEN [PUT_ON_WM Toyota] AND 

    [PUT_ON_WM Chevrolet] 

Rule 14: IF [ON_WM NEW] AND [ON_WM MIDSIZE]

  AND [ON_WM LUXURY] 

  THEN [PUT_ON_WM Cadillac] AND 

    [PUT_ON_WM Lincoln] 

Rule 15:  IF [ON_WM USED] AND [ON_WM LARGE] 

 THEN [PUT_ON_ WM Lincoln] AND 

 [PUT_ON_ WM Cadillac] AND

 [PUT_ON_ WM Ford]

Rule 16:  IF [ON_ WM USED] AND [ON_WM SUV]

   THEN [PUT_ON_ WM Toyota] AND

   [PUT_ON_ WM Ford] AND
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  [PUT_ON_ WM Chevrolet] AND

  [PUT_ON_ WM Cadillac] AND

  [PUT_ON_ WM Hyundai]

Rule 17:  IF [ON_ WM USED] AND [ON_WM Sub-Compact]

  THEN [PUT_ON_ WM Chevrolet] AND 

  [PUT_ON_ WM Ford]

Rule 18:  IF [ON_WM USED] AND [ON_WM Compact]

  THEN [PUT_ON_ WM Toyota] AND

  [PUT_ON_ WM Hyundai]

Rule 19: IF [ON_ WM USED] AND [ON_ WM Midsize]

   THEN [PUT_ON_ WM Honda] AND

   [PUT_ON_ WM Cadillac]

Rule 20: IF [ON_ WM USED] AND [ON_ WM Sports/Conv]

   AND [ON_WM_Price ≥ $20K] 

  THEN [PUT_ ON WM LUXURY] AND 

   [PUT_ON_ WM Mercedes]

These 20 rules cover all of the 32 cars in our database, at least in terms of being possible candi-
dates for consideration. Although in some cases they will not result in the choice of a single vehicle, 
they will always succeed in reducing the database of cars to a much smaller list. Now we will pres-
ent the rule interpreter, also known as the control system (or structure), which will systematically 
work through the rules to identify the car(s) that would best match the desired features. The control 
system works as follows:

 1. Scan the production rules from first to last for those that have been activated or deemed 
applicable, i.e., those whose IF condition evaluates to TRUE. The result of this step is a 
list of active rules (which could also be the null or empty list). 

 2. If more than one rule is applicable (active), then deactivate (remove from working mem-
ory) those rules which would duplicate characteristics already stored on WM. This pre-
vents redundancy of features on WM.

 3. Fire the LONGEST ACTIVE production rule (in terms of “IF conditions). If there are no 
applicable rules, Exit the loop. The best match for the desired vehicle(s) will be the item 
at the top of WM. 

 4. Turn the IF part of all production rules to FALSE and go to Control Statement (1). This 
enables the control structure to iterate until a best solution is found. 

There are two clearly distinct purposes for the control system. One purpose is to examine work-
ing memory (our database) to answer questions such as: “What used economy cars are available?” 
or “What new luxury cars are available?” Rule 2 and Rule 5 would answer the question about what 
used Economy cars are available. Rule 6 would tell which New Luxury cars are available. The  
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second purpose of the control system is to add knowledge about a possible car sought in the data-
base by making logical inferences through the process of firing production rules which might ap-
ply. For example, Rule 7 tells us that Luxury cars in our database are SUVs, Cadillac, Lincoln, 
and Mercedes. Rule 3 adds further knowledge that Luxury cars cost over $30,000. Rule 13 adds 
further specifications in that if we want a New, Midsize, Luxury car then Cadillac and Lincoln are 
our possible choices. Finally, if we are looking for a USED Luxury car then Rule 20 makes the 
exception (a luxury car for less than $30,000) and offers us the Mercedes Sports Convertible. At 
any point in this process, the working memory can be examined to list the original data that has 
been obtained from rule matches and inferences. 

The iterative nature of the control system is noteworthy. It entails a four-step process, which 
is repeated until no more matching rules can be found (fired). Step 3 is where exit from the loop 
structure can conveniently occur with the resulting best match left at the top of working memory. 
Hence, we summarize that the first phase of the iterative process performs pattern-matching to 
identify candidate rules, whereas the second phase performs conflict resolution to identify the best 
matching rules. The purpose of the third phase is to decide which car(s) are the best candidates for 
the desired features and then to provide action, which, in this case, means decisions. 

Let us now explore how the system might work. Let us suppose that we are searching for a 
MIDSIZE car that is NEW or USED and costs under $20K. Let us iteratively run through the rules 
and see which can apply:

Clearly Rule 5 applies, as does Rule 12 and Rule 19. 
For the reader, we note that this puts the following cars on WM:

Rule 12 → Hyundai; Rule 19 → Honda, Cadillac

It is noteworthy that the LUXURY car, Cadillac, is on the same 
list with the ECONOMY cars, Hyundai and Honda. This demon-
strates that automobile manufacturers must adjust to changing eco-
nomic conditions. In the United States, there was, a few years ago, a 
sharp rise in gasoline prices to well over $4 per gallon. This means that 
a major consideration for automobile purchases is AVGCMPG.

We have added Rule 7 to represent this situation where the goal 
is high AVGCMP. As we can see, Rule 7 results in the choice of the 
NEW (2008) Hyundai Elantra ($16K, 28 AVGCMPG), the Honda 

2003 Accord V6 ($11K, 24 AVGCMPG), and Honda 2003 Accord V4 ($15K, 28 AVGCMPG).
For a difference of only $1000 in price, (and given that the three cars are all foreign) it seems 

that the system should be able to choose the new Hyundai Elantra at only $16K. The fact that 
the 2003 Honda V4 has 111K miles makes the decision easy for humans. How does this logical 
choice get represented in the computer? Rule 12, which is longer than Rule 19, turns out to be a 
tie-breaker on the grounds of the conflict resolution strategy (step 3 of our control system), which 
favors the longest active rule. 

 7.3.1  Advantages of Production Systems
As we have seen, production systems can be a very desirable way for developing an expert 

system and for expressing the rules in a specific domain. If we want to be very specific, then we just 
add many specific rules. If we want to be general, then we do not develop too many rules that are 

Gas prices fluctuate; although they 
returned to more stable levels in 
2010, it is not inconceivable that at 
any time they could again reach the 
$4/gallon level, or perhaps soar even 
higher.
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overly specific. In addition, the rules themselves can all be inclusive or exclusive, as, for example, 
Rule 7, which breaks down all cars that could be purchased into three possible price categories. 
This is achieved by the multi-clause nested IF – THEN – ELSEIF structure. 

Again, we stress that the system we have developed is just a small model, whereas a real system 
might have thousands of cars in its database and could contain several hundred rules. If possible, 
we wish to avoid the “diminishing returns effect,” whereby a small percentage of the rules handle 
most of the problem space, but more and more rules must be added to handle “special cases.” In 
building expert systems, it is common for 10% of the rules to cover 90% of the problem space, and 
then the other 90% of the rules must handle exceptional cases. 

Summarizing the advantages of production systems:

 1. Ease of expression – production systems are a natural way for people (human domain-
specialists or experts) to express themselves and to represent their great amounts of 
knowledge.

 2. Intuitive in nature – the IF – THEN (or antecedent – consequent) nature of production 
systems is a very intuitive way for humans to express themselves. such systems are a 
sound paradigm for representing the thinking and decision-making processes by which 
human experts operate. 

 3. Simplicity – Production rules are very easy to develop and modify. They are also easy to un-
derstand (transparent) and consistent with English (or natural) language forms of expression. 

 4. Modularity and modifiability – We have seen how easy it is to build a production system. 
A production system is a superb example of how knowledge is neatly and distinctly 
separated from control. Knowledge can easily be modified; it can be expanded, reorga-
nized, or deleted as necessary, and is said to possess modularity. This is a very distinct 
aspect of production systems, expert systems, and AI in general; it is sometimes called 
“separation of concerns.” Furthermore, it is important that, as knowledge is added to the 
system, rules are easily reviewed and considered in terms of what has or has not been 
“covered.”

 5. Knowledge Intensive – The separation of concerns addressed above is knowledge inten-
sive; it allows the knowledge engineer to focus on developing production rules and to 
concentrate on the rules rather than to become distracted by the operational aspects of the 
control structure. It becomes cumbersome if the system developer must reconsider how 
the control structure works each time a rule is added. The ease of expression also facili-
tates development of clusters of rules, which can systematically cover a problem space. 

 7.4  PRODUCTION SYSTEMS AND INFERENCE METHODS
The overall purpose of production systems as a form of knowledge representation and as a 

method of embodying heuristics is to facilitate the decision-making process. As we have already 
described, situations will often arise when more than one rule could be applicable unless an a priori 
tie-breaking system has been decided on. That tie-breaking system is called conflict resolution and 
is discussed in the next section.   During the history of production systems, two main approaches 
to traversing rules have been developed and employed for the purpose of problem solving. One is a 
system of reasoning called forward chaining and the other backward chaining. 

These are explored in Sections 7.4.2 and 7.4.3 to follow.
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huMAn interest notes

herb siMon

Herb Simon (1916 – 
2001). Perhaps the most 
significant reason a student 
of artificial intelligence 
would be interested in the 
work of Herbert Simon 
and his close associate, 
Allen Newell, is because 
these two men represented 
the most human side 
of the field. They made 
tremendous contributions 

to the field, but always maintained the Carnegie-
Mellon University perspective, which has had a 
distinct cognitive science slant—hence, strong 
AI, as discussed in Chapter 6, and earlier in this 
chapter. 

Dr. Simon won the Nobel Prize in Economics in 
1978, “for his pioneering research into the decision-
making process with economic organizations,” 
and the ACM’s Turing Award in 1975 jointly 
with his PhD student Allen Newell, for making 
“basic contributions to artificial intelligence, 
the psychology of human cognition, and list 
processing.” He also won the National Medal of 
Science (1986) and the American Psychological 
Association’s Award for Outstanding Lifetime 
Contributions to Psychology (1993). He joined 
the Psychology Department at CMU in 1949, 
where he remained until his death in 2001. He is 
considered to be one of the founding fathers of the 
fields of both cognitive psychology and artificial 
intelligence. Simon and Newell were two of the 
main proponents of the pattern-based, heuristic 
approach to problem-solving and developing 
models for human thinking. 

He attained The Academy Medal of Honor 
for his theory of bounded rationality, wherein the 
notion is simply that people make rational decisions 
based on the limitations of their knowledge or 

analytical abilities rather than seeking the optimal 
choice/commodity at the best price. People make 
the choice(s) that “satisfices” (a Simon word), 
or, is good enough. (http://www.postgazette.com/
regionstate/20001016simon2.asp)

Writes Jones (1999; see first entry, Selected 
References, below): 

Bounded rationality asserts that 
decision makers are intendedly 
rational; that is, they are goal oriented 
and adaptive, but because of human 
cognitive and emotional architecture, 
they sometimes fail, occasionally in 
important decisions . . . .

Although most political scientists 
are aware of Simon’s contributions, 
many fail to appreciate that bounded 
rationality was the first, and because of 
its ripple effects in so many disciplines, 
the most important idea (even academic 
school of thought) that political science 
has ever exported.

The broadness and deep respect for the quality 
of his contributions is further represented by the 
following statement, issued by Royal Academy of 
Sciences in 1978: 

Herbert A. Simon’s scientific output 
goes far beyond the disciplines in which 
he has held professorships: political 
science, administration, psychology 
and information sciences. He has made 
contributions in the fields of science 
theory, applied mathematics, statistics, 
operations research, economics and 
business and public administration 
(and), in all areas in which he has 
conducted research, Simon has had 
something of importance to say.

  – Official Nobel Prize 
announcement of the Royal  

Academy of Sciences in Sweden.
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 The CMU Computer Science Department 
tribute to Professor Simon included the 
following words: 

The thread of continuity through 
all of his work was his interest 
in human decision-making and 
problem-solving processes and 
the implications of these processes 
for social institutions. He made 
extensive use of the computer as 
tool for both simulating human 
thinking and augmenting it with 
artificial intelligence.

(http://www.cs.cmu.edu/simon/bio.
html).

Simon studied social sciences and 
mathematics at the University of Chicago, 
earning a BA in 1936 and a PhD in Political 
Science in 1943. As Simon states in his 
autobiography: 

. . . the descriptive study of 
organizational decision-making 
continued as my main occupation. 
… Our work led us to feel 
increasingly the need for a more 
adequate theory of human problem-
solving if we were to understand 
decisions. Allen Newell, whom I 
had met at the Rand Corporation in 
1952, held similar views.

(http://nobelprize.org/nobel_
prizes/economics/laureates/1978/
simon-autobio.html)

Around 1954 Newell and Simon 
conceived the idea “that the right way to 
study problem-solving was to simulate it with 
computer programs” (ibid.). 

 Gradually, computer simulation of human 
cognition became his central research interest 
for the rest of his life. 

In an interview in 2000 with Byron 
Spice, Simon was asked how computers will 
continue to shape the world. His response 
was that, in essence, although computers will 
embody great power, the outcomes of how 
this power is embraced and used will continue 
to be up to people. Stating …

So we’re going to have to think 
about how you group people up 
who find exciting things to do 
when there’s nothing that has to 
be done. We’re dangerously close 
to that for half our society right 
now. But here again, you see, 
technology may create a condition, 
but the questions are what do we 
do about ourselves. We better 
understand ourselves pretty clearly 
and we better find ways to like 
ourselves…

(http://www.post-gazette.com/
regionstate/20001016simon2.asp)
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Herb Simon published over 1000 papers. Only a small 
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 7.4.1  Conflict Resolution 
As we have seen, when several rules are candidates 

for matching the antecedent [If] conditions of a produc-
tion, then there must be a strategy for choosing the most 
appropriate rule among them. This is called conflict res-
olution, and it can be accomplished several ways.

Larkin, J. H., and Simon, H. A. 1987.“Why a diagram 
is (sometimes) worth 10,000 words.” Cognitive Science 
11:65–100. 

Langley, P., Simon, H. A., Bradshaw, G. L., and 
Zytkow, J. M. 1987. Scientific discovery: Computational 
explorations of the creative processes. Cambridge, MA: 
The MIT Press. 
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Cambridge, MA: The MIT Press. 
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the 17th Annual Conference of the Cognitive Science 
Society, ed.J. D. Moore and J. F. Lehman, 340–345. 
Hillsdale, NJ: Erlbaum. 

Shen, W., and Simon, H. A. (1993). “Fitness 
requirements for scientific theories containing recursive 
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Kulkarni, D., and Simon, H. A. 1988. “The processes of 
scientific discovery: The strategy of experimentation.” 
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This topic will also be addressed in Chapter 16, 
“Advanced Computer Games,” and the work of 
Arthur Samuel on the game of checkers. There we 
will introduce Samuel’s notions of forgetting and 
refreshing. Forgetting refers to the aging or lack of 
use of a heuristic, whereas refreshing gives heuristics 
added importance, if they have recently been used, by 
dividing their age (time unused) by two. 
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Conflict Resolution Strategies:

 1. Fire the first rule that matches the contents of memory. 
  Example: 
  Rule 1: If I have a significant amount of money I go out to eat.
  Rule 2: If I have limited funds, then I stay home and cook dinner.
  Using the conflict resolution rule above, one would go out to dinner if one had funds. It 

could turn out that the real thrust is that a person might have adequate funds to go out 
to eat but doesn’t have the time! And that person is perhaps also a poor cook. So the 
resolution of the conflict might be to go out to eat—but for fast food nearby, which was 
not specified by Rule 1. To resolve such a conflict, more rules and more specific rules 
could be needed. 

 2. Fire the rule with the highest priority.
  Rules can be assigned priorities. That is, some rules are perhaps deemed more important 

than others. Clearly, in our CarBuyer system, the rules related to the PRICE of the car 
are more important than the CATEGORY or whether the car is NEW or USED. The 
reason is that you cannot buy what you cannot afford. That is why those rules have been 
put at the top of the list, although the list is not technically prioritized. We have tried to 
construct the list of rules in a way that would be representative of buyers’ priorities. You 
might ask, then why is NEW or USED at the top of the list? That is because we believe 
the decision (NEW or USED) is the first one that affects a buyers’ initial searches. Later, 
as buyers become more knowledgeable in their search processes, and as they learn what 
kinds of vehicles are available at what prices, buyers could indeed decide that price is 
the most important factor. In addition, the choice of NEW or USED quickly splits the 
list into two conveniently sized lists of 12 and 20 cars, respectively! 

 3. Fire the most specific rule.
  If two rules essentially cover the same set of possibilities, it is likely that the more specific 

rule will represent the case we are looking for. That is, the more specific rule contains 
more information than the more general one. Earlier we saw that Rule 12 was “re-
solved” over Rule 19, because it was the more specific rule. The additional information 
contained in this rule was that an Economy car (that is, one which costs less than $20K) 
was desirable. It is not coincidental that the longest rule will almost always be the most 
specific rule.

 4. Fire the most recently used rule. 
  This approach is called refreshing, and it is a logical way of adding significance to con-

cepts that have been used before and have been proven valuable. For a depth first search, 
as used in chess and checkers, this strategy encourages exploration of paths with great-
est activity.

 5. Fire the most recently added rule. 
  This cycling approach to heuristics is particularly suitable for dynamic knowledge bases 

which can be quickly changing. Its purpose is to give a fair chance to heuristics that 
might otherwise not be used. An example of applying this conflict resolution rule would 
again be production Rule 7 in the CarBuyer system, which was actually added only after 
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the 19 other rules had been developed. The reason was to enhance the importance of the 
concept of a car’s AVGCMPG, given the recent economic developments. As it turned 
out, that rule was quickly applied and was the deciding factor in the choice of a car with 
the appropriate desired features.

 6. Don’t fire a rule that has already fired. 
  This rule prevents looping (redundancy) and means that only new rules will be fired and 

put on working memory. 
Conflict resolution strategies enable control over which rules will fire. There could be situa-

tions wherein certain heuristics will be favored over others. For this purpose, conflict resolution 
strategies can be designed to facilitate certain groups or clusters of heuristics to fire. This encour-
ages experimentation and the study of the process behind certain results. 

 7.4.2 Forward Chaining
Forward chaining refers to a very natural form of inference (thinking) that humans perform 

regularly. We accumulate facts that enable us to reason and reach a conclusion. Not all the facts that 
are accumulated will contribute to our conclusion. Some might be irrelevant while others could be 
part of a line of reasoning that might lead to certain conclusions. Another term for forward chaining 
is fanning in.

Examples of Forward Chaining 

exAMple 7.6
1. I am feeling weak

2. I have a head cold

3. I have a fever

Conclusion: Weakness, having a cold, and fever are all indicative of flu-like 
symptoms.

Remedy: Rest in bed, drink plenty of fluids, take aspirin or Tylenol.

exAMple 7.7
1. The dog got into the garbage and made a mess.

2. We came home and saw the mess in the kitchen.

3. There was an unpleasant smell emanating from the basement.

4.  We found the dog lying on the floor in the basement not far from the smell 
in the basement. 

Conclusion: The dog got sick from what it ate in the garbage. 
The conclusion seems very viable based on the facts. 
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exAMple 7.8 
1. THE CAR WILL NOT START

 Then Check the Battery

 If the Headlights work 

   Then Conclude Battery is OK

 Check the Starter

 If Car turns over

  Then Conclude Starter is OK

Check the Alternator

If Alternator is connected and operational 

 Then Conclude Alternator is OK

Check Fuel Pump

 If Pump is Operational

  Then Check Fuel Line

 If Fuel Line is damaged

  Then Replace Fuel Line 

Else Seek Professional Help 

The above is a standard protocol for trying to understand why a car might not be starting prop-
erly, or might be starting and then stalling. We see how each fact leads to a logical conclusion and 
a logical follow up. In situations involving starting problems, it is normal to check the battery, 
check the starter, check the alternator, and finally to check the fuel pump. To a mechanic there is 
also a hierarchical logic as to which questions are asked first. In other words, we do not first con-
sider a possible failure in the alternator or even the starter. The most common problem associated 
with cars not starting is the battery. Once we have established that a car’s battery is sufficiently 
charged, we consider a possible failure in the car’s starter. Only when we know that the battery 
and starter are properly functioning do we consider that the alternator is perhaps not functioning 
properly. Finally, if we have established that the battery, starter, and alternator are not at fault, then 
we consider the fuel pump. Again, in terms of probability, the fuel pump is the least likely of these 
parts to be responsible for this kind of problem.

Figure 7.4 illustrates the reasoning that is being used in forward chaining. Here we see evi-
dence E1 and E2 supporting hypothesis H1, evidence E3 and E4 supporting hypothesis H2, and 
evidence E5 and E6 supporting hypothesis H3. 
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Essentially, forward chaining works by accumulating 
data (evidence, facts) and then can lead to a hypothesis (or 
several hypotheses) and subsequently could lead to one or 
more conclusions. Forward chaining is particularly suit-
able for problems requiring planning, monitoring, con-
trol, and interpretation. Each of these kinds of problems 
involves making decisions based on the accumulation of a 
significant amount of data. 

 7.4.3 Backward Chaining
Backward chaining is another standard way of draw-

ing inferences with production systems. Backward chain-
ing retraces events from a known goal or outcome and tries 
to ascertain which facts/knowledge/events (evidence) led 
to the result. 

Backward chaining is often used to diagnose, ana-
lyze, troubleshoot or to prove some goal or hypothesis 
by working backward through the available evidence and 
facts that might be suggestive of some condition. 

When backward chaining is performed, we are said to 
be fanning out from the goal or conclusion to the support-
ing facts or evidence. Figures 7.5a, 7.5b, and 7.5c illustrate 
this. 

H1 ← E1 
H1 ← E2 ← E3 

Here we see hypothesis H1 supported by evidence E1; 
hypothesis H1 is also supported by evidence E2 which it-
self is supported by evidence E3. 

H2 ← E1 
H2 ← E4 
H2 ← E5

Here hypothesis H2 is supported by evidence E; evi-
dence E4 also supports H2, as does evidence E5.

H3 ← E2 
      ← E5 ← E6 ← E7
Here, H3 has four pieces of evidence: E2, E5, E6, and 

E7. 
A typical example would be trying to solve a crime 

mystery. We know that a certain criminal event has oc-
curred and try to work backward, employing all the facts 
and evidence to solve the mystery. For example, if a bank 
robbery has occurred, we try to obtain as much evidence 
as possible surrounding the robbery. 

E1

H1

Fanning
in
or

FORWARD
CHAINING

E2

E3

E4

E5

E6

H3

H2

Figure 7.4 
Forward Chaining or fanning in.

E1

H1 E2 E3

Figure 7.5a 
Fanning out with backward chaining.

H2

E1

E4

E5

Figure 7.5b 
Fanning out; hypothesis H2 is supported by each of evidence E1, E4, and E5.

E5

E2

E6 E7H3

Figure 7.5c 
Backward chaining with linked evidence E5, E6, E7. 
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Examples of Backward Chaining

exAMple 7.9: heArt AttAcks

Fact: A person has had a heart attack.

E1: Smoking causes hardening of the arteries.

E2: Hardening of the arteries will result in a heart attack.

E3: High cholesterol is likely to be conducive to a heart attack. 

This example essentially matches pattern 1 in Figure 7.5a. 

H1 ← E3 

E1 → E2 

If the person who had a heart attack was a smoker and had high cholesterol,  
Then it was very plausible that these factors were causes of the heart attack. 

exAMple 7.10: cAr repAir

Facts:

 1. One day I backed into a tree with my car; no apparent damage.

 2.  A few days later I noticed that my indicator lights for braking and 
right hand turns were not working. 

Analysis:

 1.  One possibility was that it was the flashers—which are the electrical 
device under the dashboard that controls turning and breaking indica-
tors in a car. 

 2.  Then apply “backward chaining” Fact 1 to the indicator lights. Indeed, 
the problem was just that some bulbs were damaged from the impact 
of hitting the tree. 

Summary:

Flashers in a car will break after about 100,000 miles of driving or a number 
of years. It was logical to “causally” connect the failure of the indicator lights 
(by backward chaining) to hitting the tree a few days earlier. Failure of the 
flashers was a much less likely event. 
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exAMple 7.11: retrogrAde AnAlysis

There is a whole field of logic that is used to analyze the history of a chess 
position. The form of analysis tries to answer questions such as “what piece 
fell off the board on a particular square” or “how did the pawn get to a certain 
square on the chessboard?” By performing a logical historical (retrograde or 
backward) analysis of what could have occurred, based on at least a knowl-
edge of the rules of the game in certain peculiar positions, such questions can 
be answered. The person most associated with the field of retrograde analysis 
in chess is Professor Raymond Smullyen, logician, mathematician, and phi-
losopher. Again, retrograde analysis in chess is performed by working back-
ward from an outcome (a position) through a database of facts known about 
the position and the game of chess. 

exAMple 7.12: Accident AnAlysis

Whenever a major catastrophic event, such as a plane crash or railroad acci-
dent occurs, there will be a careful reconstruction of the events that occurred 
leading up to the accident. The Air or Rail Safety Transportation Board will 
send personnel who are expert analysts of such scenes. These experts will 
know everything that is important to know about the vehicles involved in the 
accident, everything about the accident scene, as well as the relevant safety 
factors. They will also know how and what to study and investigate in terms 
of developing an understanding of the events leading up to the accident and 
for building a causal analysis. Again, this is an example of backward chain-
ing through the evidence and facts to try to reach a conclusion about what has 
happened. 

exAMple 7.13: recovering A lost iteM 
Almost all of us have, on occasion, lost or misplaced something of value; per-
haps a wallet, purse, or keys. Usually, the only way to recover something that 
has been lost or misplaced is to work backwards. 

Perhaps you have had an experience similar to this: It’s a Sunday and you are casually dressed 
in your comfy sweats. You have stopped to eat and relax a bit at a restaurant in the course of doing 
some window shopping and a couple of errands, and you stop at a bank ATM; when you return to 
where your car is parked, you reach into your pocket and can’t find your car keys—nor your house 
keys! You must retrace your steps, and you must also backtrack in your mind, considering where 
you had been, on which side of the street you had walked, and other details, until . . . lucky you! 
You find your keys on the counter at the bank ATM—the last place you had stopped. In fact, in the 
course of backtracking, you consider several specific details, or facts, such as (1) because you’re 
wearing sweat pants, your keys had been in the same pocket with your wallet; (2) you clearly re-
member taking your keys out of your pocket every time you retrieved your wallet. (3) You have not 
made any purchases, so you used your wallet at the restaurant and (4) at the bank; it was Sunday, so 
the bank lobby was closed and you had to retrieve your ATM card so you could use the ATM; (5) 
you remember taking your keys out of your pocket at that time. 
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Clearly, this is an example of backward chaining. An event happens and we try to figure out 
why and how it happened. The more detail we can recall, as we piece facts together, the greater the 
chance we have of recovering what we have misplaced.

It seems worth mentioning that if the keys been taken by someone, what would be your chances 
of recovering them? Well, there are two security matters that would probably have protected me 
(but not without some inconvenience and uncertainty) – one is that most banks today will have se-
curity cameras, and secondly, to get inside a bank on a Sunday (note the evidence given) one would 
need an ATM card to open the door. 

In considering the above possibilities I did learn something. There are occasions when one 
visits the bank in off hours when another person who also uses that bank ATM arrives at nearly 
the same time. If you use your ATM card and let that person in too, then you are in effect lowering 
bank security, and had something peculiar happened, that ATM card would be an important piece 
of evidence.

huMAn interest notes

Allen Newell (1927–1992) was one of 
the great early AI researchers who made 
a number of significant contributions to 
the fields of problem solving, knowledge 
representation, and cognitive science. For this 
he was awarded the ACM’s AM Turing Award 
in 1975 together with his long-time colleague 
Herbert Simon. 

Two of the early programs that Newell 
developed were The Logic Theorist (1956) 
and The General Problem Solver (1957). 

He received a bachelor’s degree from 
Stanford University in 1949, and then he 
studied mathematics at Princeton University 
where he learned about the work of von 
Neumann and Morgenstern in the area of 
game theory and economics. From his early 
experience at RAND Corporation in the 
1950s in areas such as Air Traffic Control and 
simulation of organizations, Newell learned 
about information processing using card-
programmed calculators.

According to Simon (http://www.nap.edu/
html/biomems/anewell.html),

Newell described himself as “a scientist.” 
His early experiences provided an excellent 
background and pedigree for his development; 
influenced by the likes of Polya (see Chapter 3,  
“Informed Search”) at Stanford, von 

Neumann, and others at RAND, he became 
focused on solving the problem of “How do 
humans think?” After a seminar run by Oliver 
Selfridge at RAND in 1954, Newell became 
convinced that “intelligent adaptive systems 
could be built to accomplish things more 
complex than anything yet done (Newell, 
1986).” 

Hence, his interest turned to developing 
heuristics for complex problem-solving 
such as is found in the game of chess, and to 
developing a better understanding of how the 
human mind works. 

In 1955, Newell joined Herb Simon in 
Pittsburgh, where he had been relocated by 
the RAND Corporation. His interest in chess 
evolved to building a Logic Theory Machine 
(LTM), which was to discover theorems 
in the propositional calculus, then used to 
perform hand simulations (in 1955) and then 
a running program in 1956. LTM and its 
successor, General Problem Solver (GPS) 
laid the foundations for AI programs for the 
next decade. Newell eventually obtained 
a PhD from Carnegie-Mellon in Industrial 
Management. “The LTM was a program of 
research to understand complex information-
processing systems, but was the first, only 
partially successful, attempt at automating 
protocol analysis (Newell, 1971).” 
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GPS was a primary example of the study 
of “means ends analysis”—the attempt to 
minimize the distance between a current 
state in a problem situation and a goal state. 
GPS was able to identify its own small set of 
primitives and to learn which operators were 
relevant for reducing differences (ibid). 

Dr. Newell’s Human Problem Solving 
(1972, with Cliff Shaw and Herb Simon) was 
a monumental contribution toward furthering 
our understanding of how humans perform 
problem solving in a number of domains. 
He tried to develop Unified Theories of 
Cognition (his final work, 1990), which could 
be experimentally modeled and tested with 
the system Soar, which he developed in the 
1980s. The intent was a broad theoretical 
framework for how the mind works. 

Simon (url above) summarizes Newell’s 
Soar project as follows: 

When existing unified theories are 
viewed closely, each can be seen to be 
built around a core cognitive activity, 
which is then extended to handle 
other cognitive tasks. In Anderson’s 
Act* the core is semantic memory; 
in EPAM, perception and memory; 
in connectionist models, concept 
learning. In Soar as in GPS the core is 
problem solving, and the central GPS 
concept of problem space is taken over 
and expanded to allow the system to 
use multiple problem spaces in solving 
a single problem. The Soar program 
is a production system. To this were 
added two key components developed 
in collaboration with graduate students: 
learning by chunking (Rosenbloom and 
Newell, 1982), which produced a wide 
variety of kinds of learning obeying the 
empirically observed power law, and 
a universal weak method (Laird and 
Newell, 1983), which incorporated a 
method for universal subgoaling.

The essence of Soar was the demonstration 
that a powerful learning mechanism, chunking 
(an accepted theory of how memory works, 
Rosenbloom and Newell, 1982), coupled with 
learning by adaptive production systems, can 
provide a consistent, viable, working theory 
of learning. Soar has continued to attract 
researchers from a number of universities 
since Newell’s death. 
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 7.5 PRODUCTION SYSTEMS AND CELLULAR  AUTOMATA
Closely related to artificial intelligence is the field of artificial 

life and the question: Can machines replicate themselves? This was 
the interest of John von Neumann, one of the founders of computer 
science, at Princeton University in the 1950s. Could a robot-like ma-
chine, with vision, be able to follow a program in the form of a Tur-
ing Machine and be able to assemble a copy of itself from the basic 

component parts? 9 
Los Alamos mathematician Stanislaw Ulam 10 suggested to von Neumann that he could con-

struct an abstract model of this universe on a grid of squares (cells) to test his hypotheses. 
Here is the standard set of production rules for the Game of Life:

 R1: If [N = 2] 

  THEN [cell maintains status quo]

 R2:  If [N = 3]

  THEN [cell is on (lives) in next generation]

 R3:  If [N = 0 OR N = 1 OR N = 4 OR N = 5 OR N = 6 OR 

  N = 7 OR N = 8] THEN [cell is off (dies) in next generation]

 Where N = number of live neighbors (range is 0 – 8).
The seven cases of R3 can be described in terms of what goes on in life. If a cell has 0 or 1 

neighbors it dies of “loneliness.” If a cell has more than 3 neighbors it dies from overcrowding. 
Some states are stable, some disappear, and some oscillate and will effectively explode. Following 
these simple rules we can see what happens to the patterns in Figure 7.6.

In the classic AI movie “Bi-Centennial 
Man” (starring Robin Williams), the 
robot was trying to replicate itself; 
it was running a factory for the 
construction of robot parts.

huMAn interest notes

John conwAy

Von Neumann was 
sufficiently impressed 
by Ulam’s cellular 
automata idea that he 
developed a prototype 
model. The model 
included 29 “game 
pieces” that could reside 
on any square of the 

cellular grid. These 29 cells fell into three 
categories: one an unexcited state (perhaps 
the empty cell), twenty quiescent (or dying) 
states, and eight excited or reproductive 
states. “A pulsar (or construction arm) would 
pass over these cells and help them get into 
the state that the automaton wanted. With 

these twenty-nine states for the cells, it would 
theoretically be possible to do anything 
logical or constructive or operative that was 
required. These automata would be able to 
construct other automata, certainly including 
automata like themselves.” 11 Von Neumann’s 
ideas were far ahead of the machinery of his 
time and were at the forefront of his thinking 
at the time of his death in 1957.12

Many of von Neumann’s ideas were 
implemented in The Game of Life by John 
Conway, also of Princeton University.13 Here 
again we have a square board of cells on 
which patterns can be randomly generated by 
either a computer program or a human player. 
What happens to every cell in the “the next 
generation” is determined by how many live 
neighbors (N) a cell has. 
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The top line shows five patterns in Generation 0. The bottom line shows 
what has happened to these patterns by the time Generation 3 is reached. The 
first two patterns have disappeared, while the third pattern becomes a “blinker” 
as it alternates between generations, and the fourth and fifth patterns have al-
ready stabilized. 

The Game of Life demonstrates how production systems can be used to 
simulate interesting and complex real-life situations based on some very simple rules. 

In Chapter 12, we will see examples of how some simple initial states can produce interesting 
results. 

Figure 7.6 
The Game of Life patterns.

huMAn interest notes

John von Neumann (1903 – 1957) is a 
legendary figure in the history of mathematics, 
high-speed computing machines, the 
mathematical theory of games, economics, 
logic, quantum physics, and a number of other 
fields. 

He was born in Budapest, Hungary, one 
of three sons in a well-to-do Jewish family. 
At a very early age it was clear that he had 
prodigious talents, such as his memory of 
phone numbers and addresses. He also had the 
ability to perform tremendous computations 
quickly and possessed the ability to divide 
two eight-digit numbers in his head. 

By seventeen, he was dissuaded from 
studying mathematics by his father for financial 
reasons; this led to his obtaining a diploma in 
chemistry in Berlin (1921 – 1923) a diploma 
in Chemical Engineering from the Zurich 
Technical University (ETH) and a PhD in 
Mathematics from The University of Budapest 
(1926). He made contributions to set theory 
and logic in mathematics; however, some of 
his ideas were shaken by those of Kurt Godel. 

He was a visiting lecturer at Princeton 
University in 1930 (at the age of 27), and 
by 1933 he helped found the Institute for 
Advanced Study where he was one of its 
six original professors in the School of 
Mathematics. Von Neumann knew how to 
enjoy life in America; there were frequent 
parties at his home. 

Von Neumann produced over 150 papers, 
about 60 of them in pure mathematics, 
including set theory, logic, topological groups, 

measure theory, ergodic theory, operator 
theory, and continuous geometry. There were 
also about 20 papers in physics, and about 60 
in applied mathematics, including statistics, 
game theory, and computer theory. In game 
theory, one of his early contributions was the 
theory of minimax (see Chapter 4, “Search 
Using Games”), which led to his famous co-
authored authoritative book on the subject 
with Oscar Morgenstern. 

He is generally credited with designing 
the first computer architecture; his stored-
program concept is the backbone for serial 
architectures to this day. He was interested in 
what machines could remember, questions of 
self-reproduction for automata, and the use 
of machines to perform a large number of 
probabilistic experiments. 

Much of his greatness could be attributed 
to “…the extraordinary rapidity with which 
he could understand and think and the unusual 
memory that retained everything he had once 
thought through…”(Halmos, 1973). 

Paul Halmos, the late esteemed 
mathematician, his student, and the author 
of an article, “The Legend of John von 
Neumann,” which formed much of the basis 
of our summary here, felt that it was von 
Neumann’s ability to stick to “axiomatic 
methods” that helped make him so great—his 
repeated clarity, speed, and depth of thought. 
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 7.6  STOCHASTIC PROCESSES AND MARKOV CHAINS
As we study the real world and systems about us, we learn that the manner in which a system 

performs will differ depending on the state that the system is in at that time. That is, the probability 
of making a transition to a certain new state or condition will vary depending on the current state. 
Processes that depend on time states are very common today. In Chapter 16, we will introduce the 
notion of “temporal difference learning,” which is the process by which most contemporary strong 
backgammon programs have been developed. It depends on the backgammon programs learning 
the differences (by probabilities) between the quality of a given current state and a possible future 
state. So “time” and “timing” do make a difference. 

There are a number of familiar real-world examples in which time is of critical importance. In 
such cases, there will be a series of discrete states and associated probabilities of making a transi-
tion from one state to another; the processes are called stochastic processes. Stochastic processes 
will usually have a number of random variables involved and will tend to be statistical in nature. 
Examples include the stock market, medicine, equipment, weather, voting, and genetics, among 
others. Markov Systems will be concerned only with the probability of getting from a current state 
to a future state, not with how we arrived at where we are. That is why we introduce them here. 

Let us consider the example of weather. Early work in computing using Markov Chains was 
done by Kemeny, Snell and Thompson.14 Consider this famous example:

The Land of Oz is blessed by many things, but not by good weather. They never have 
two nice days in a row. If they have a nice day, they are just as likely to have snow 
as rain the next day. If they have snow or rain, they have an even chance of having 
the same the next day. If there is change from snow or rain, only half of the time 
is this a change to a nice day. We take as states the kinds of weather R, N, and S. 
From the above information we determine the transition probabilities. These are most 
conveniently represented in a square array as:

   R    N    S
R  (1/2  1/4  1/4)
N  (1/2  0  1/2)
S  (1/4  1/4  1/2)

From this description, it is easy to interpret the probabilities for weather represented in the ma-
trix. It is called a matrix of transition probabilities, or the transition matrix. For example, row 
two indicates that a nice day can never be followed by another nice day since there is a 50% chance 
of rain and a 50% chance of snow on the next day. And a rainy or snowy day has only a 25% chance 
of being followed by a nice day. 

So the challenge becomes to compute the probability of the weather two days from now. If it is 
raining today then tomorrow three kinds of whether can follow: Raining (probability of .50), Nice 
(probability of .25), and Snowing (probability of .25). So if it is raining today the probability of 
snow two days from now is the disjoint union of three events: (1) rain tomorrow followed by snow, 
(2) nice tomorrow followed by rain, and (3) snow tomorrow followed by more snow. 

This can be done by computing the probability of the product p11p13 in the transition matrix 
which gives,

P13
(2) = p11p13 + p12p23 +p13p33, 
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which is the dot product of the first row times the third column of the transition matrix. Using 
computer programs, it is easy to compute the probability of weather many days in the future for the 
entire matrix. Statistical methods in natural language processing such as Markov Chains combined 
with AI techniques will be explored further in Chapter 13. 

 7.7 CHAPTER SUMMARY 
Chapter 7 presents the background, history, key concepts behind, as well as applications of 

production systems. It begins with an introduction to Post Production Systems and works its way 
historically to presenting how and why production systems are such attractive paradigms for repre-
senting the way the human brain and intelligent systems work. In this regard, the work of Newell 
and Simon is emphasized. Chapter 7 also discusses how strong AI methods are distinct from weak 
methods.

Much of the chapter gets its inspiration from the following excellent treatises: Human Problem 
Solving,7 Artificial Intelligence: A Knowledge-Based Approach,15 and Expert Systems: Design and 
Development.8 For their time, we found both the Firebaugh and Durkin texts very readable, pro-
found, and comprehensive. Also very helpful, comprehensive, and highly recommended is the text 
by Joseph Giarratano and Gary Riley, Expert Systems: Principles and Programming.16 

The CarBuyer System, as developed and presented in Section 7.3, was inspired by the example 
of the “Naturalist” as presented by Firebaugh in Chapter 10 of his excellent text. The Naturalist has 
been has been successfully used as a classroom example of the topic of production systems, work-
ing memory and conflict resolution in expert systems. We hope that readers will find the CarBuyer 
System equally useful as an example of how a small expert system works and will find it somewhat 
practically useful as well. 

We have dedicated a complete Section, 7.3.1, to the important topic of conflict resolution, dis-
cussing, through a number of examples, ways in which this can be done. Sections 7.3.2 and 7.3.3 
cover the equally important fundamental methods of making inferences while traversing a knowl-
edge base, forward chaining and backward chaining. Included are a number of examples illustrat-
ing how each approach would possibly be more suitable for certain kinds of problems. 

Section 7.6 re-introduces cellular automata, a form of production system and an introduction 
to evolutionary systems that we will investigate more closely in Chapter 13, “Natural Language 
Understanding.” Section 7.7 presents stochastic processes and Markov Chains, which represent an 
important aspect of statistical approaches to artificial intelligence. 

Questions for Discussion

 1. Describe briefly the history of production systems. 

 2. Why are production systems an important AI topic?

 3. Give five synonyms for production systems.

 4. Describe the components of a rule-based expert system.

 5. How might production systems be a metaphor for the human brain? 

 6. Give five advantages of production systems for building an expert system.
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 7. In what kinds of situations would it be desirable to use forward chaining and when might 
backward chaining be more appropriate?

 8. What is conflict resolution? 

 9. What is aging, refreshing, and recycling in terms of conflict resolution? Describe three other 
conflict resolution techniques.

 10. Who was the famous Princeton computer scientist who first studied cellular automata? Who 
inspired him and what was the ultimate theoretical goal of his research in this area?

 11. What is the Game of Life, who devised it and what is the premise behind it?

 12. What is a stochastic process and give some examples.

 13. What is the purpose of Markov Chains, how are they related to production systems, and what 
would a transition matrix represent?

 14. What is the “diminishing returns effect” in terms of expert systems or rule bases?

Exercises

 1.  Production systems are equivalent to the single IF – THEN case, the two alternative IF - 
THEN - ELSE, and multiple alternative IF – THEN – ELSE-IF or CASE structure of many 
programming languages. How is what was presented in this Chapter different from those 
straightforward applications of programming language constructs?

 2. Consider and discuss the problems of a conflict resolution strategy that would say “Fire All 
Rules.” 

 3. How is the Global Database illustrated in Figure 7.3 different from conventional database 
systems used today?

 4. Consider the effects that ordering of rules can have in expert systems.

 5. If there were no conflict resolution strategy in an expert system what would two possible 
affects be? Why can’t the knowledge engineer just develop rules so that every possible case is 
covered? 

  Hint: Consider scaling effects for the above question.

 6. Implement the CarBuyer System in your favorite programming language? Does it work? Are 
there cars in the database that will never be selected with the existing set of 20 rules? 

 7. a.  Are there any improvements to the CarBuyer System that you can see? Are there any rules 
that you would add or remove?

   b. What would you need to add to the system to make it more realistic? 

 8. Intuitiveness, modularity, and ease of expression are three features of production systems 
that are often given as advantages. 

  Discuss briefly how production systems facilitate these advantages. Develop a small set of 
rules for something that you are trying to express. 
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 9. What if von Neumann’s results had indicated that it is impossible to build a cellular 
automaton that is self-replicating. How would that affect the possible construction of a self-
replicating machine in the 3-dimensional world?

 10. Let us say you notice the following market trends. You are considering buying a house. How 
would you Backward Chain to a conclusion to buy or not?

  Rule 1  IF the price of homes is down  
THEN buy a house.

  Rule 2  IF Interest rates are increasing 
 THEN the price of homes is up.

  Rule 3  IF Interest rates are decreasing  
THEN the price of homes is down.

  Rule 4  IF Gas prices are rising  
THEN the stock market is down.

  Rule 5  IF Gas prices are decreasing  
THEN the stock market is up.

 11. Let us say that another rule is added, as below, how would the rule system in Question 10 
above be affected if traversed in a Forward Chaining style?

  Rule 6  IF you have job instability  
THEN invest in bonds. 

12.  Given

  1. A & B ⇒ F

  2. C & D ⇒ G

  3. E ⇒ H

  4. B & G ⇒ J

  5. F & H ⇒ X

  6. G & E ⇒ K

  7. J & K ⇒ X

  And that Facts B, C, D and E are True, how would a program deduce that X is true? 

  (Reference: “Expert Systems”, by Donald Michie, The Computer Journal, V 23, No. 4, 1980) 

 13.  Write a five page paper summarizing the accomplishments of one of the following people: 
John von Neumann, Allen Newell, Herb Simon, and John Conway. 
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This Part presents and explores well-trodden and proven success stories for AI. Some 50 
years ago when Lofti Zadeh discovered Fuzzy Logic, little did he know how powerful 
and pervasive this concept would become. Fuzzy Logic, fuzzy sets, and fuzzy inferences 
coupled with probability theory and uncertainly comprise Chapter 8. 
Expert Systems are one of the genuine success stories of AI. Since the 1980’s, thousands 
of these systems have proven cost-effective with human experts in many diverse 
disciplines. Methods for efficiency, case-based reasoning systems and more recent 
approaches are also explored (Chapter 9). 
Chapter 10 begins our discussion of Machine Learning. Decision trees with an 
introduction to entropy are studied. Our discussion of Machine Learning continues with 
Neural approaches. Neural Networks are a domain that was introduced more than a 
half century ago and abandoned by AI for many years before theoretical and hardware 
advances enabled computational power feasible for practical application. The Perceptron 
Learning Rule, The Delta Rule, and Backpropagation are discussed. Implementation 
concerns, discrete Hopfield nets, and diverse application areas round out Chapter 11. 
It is natural for AI researchers to seek alternate ways to search and solve problems. These 
are explored through genetic algorithms, genetic programming, ant colony optimization 
and tabu search (Chapter 12). 
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Conclusions reached in inference systems often are not certain. Your doctor might feel that 
you have a cold or you could be suffering from allergies. Fuzzy logic and probability theory 
are two methods for coping with such uncertainty.
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uncertAinty in Ai

 Lotfi Zadeh

Figure 8.0 
Most modern automobiles are equipped with traction control systems which “kick-in” 
under varying precipitation conditions. Fuzzy logic controls these systems.
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 8.0 INTRODUCTION
Uncertainty is an inevitable component in everyone’s life. The morning weather report informs 

us that there is a 30% chance of evening showers. The business section in your newspaper reports 
that there is a 50% chance that the housing foreclosure crisis in your community will get worse 
before it improves. Your doctor has said that if you continue to overeat and avoid exercise, your 
chances for a long life are not certain. Naturally, if our AI systems are going to be robust, they must 
possess the capability to contend with such uncertainties.

Fuzzy logic and probability theory are two often-used tools. Fuzzy logic assigns grayness lev-
els to events that were previously declared to be black or white. For example, when it is raining, the 
traction control system on your new car should engage. Suppose there is a light drizzle, then it is 
raining to a certain extent. Fuzzy logic supplies the wherewithal to contend with such uncertainties.

You want to buy a new car but you are strapped for cash. You apply for a bank loan. The bank’s 
loan officer wants to know the size of your savings account, your yearly income, the remaining 
mortgage on your house or your monthly rent, your credit history, and other financial consider-
ations. Essentially, the bank is trying to determine the probability that you will repay the loan 
based on your present circumstances. Probability is often used in situations when outcomes are not 
entirely predictable.

 8.1  FUZZY SETS
Suppose your instructor asked you to raise your hand if you are male then asked you to put your 

hands down. Next you were asked to raise your hand if you are female. Undoubtedly, each student 
in your class raised their hands once and only once. The following sets:

M = {x | x is a male student in your class}

F = {y | y is a female student in your class}

are examples of crisp sets in that each student in your class belongs to one and only one set. 
The intersection of these two sets is empty, i.e.

M ∩ F = ∅ meaning that no element is a member of both sets.

Imagine next that everyone in your class has a job; your instructor now 
asks you to raise your hand if you are satisfied with your jobs. Then you are 
asked to raise your hand if you are dissatisfied with your job. It is likely that 
some hands went up both times. 1 Some hands may have even been only 
somewhat raised in each case. Job satisfaction can be thought of as a fuzzy 
concept in that most people are not entirely happy or unhappy with their 
jobs. Another example can be taken from spaces in a parking lot (consult 

Figure 8.1). Frequently we find that people, in a rush for whatever reason, will haphazardly park 
their cars in such a way as to take two different, adjoining spaces.

Fuzzy logic was developed by Lotfi Zadeh.2 Let X = {x1, x2, x3,…, xn} be a finite set. Let A be 
a subset of X, written A ⊆ X consisting of x2 alone; then A can be denoted by a membership vector 
of dimension n:

Z(A) = {0, 1, 0, …, 0}.

Space 1 Space 2

Car

Figure 8.1 
A car partially parked in two different spaces.
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Whenever xi equals 1, then xi is an element of the set A. The subset B of X that contains x2 and 
x3 is denoted by 

Z(B) = {0, 1, 1, …, 0}.

The other crisp subsets (there are 2n –2 others) can be similarly represented.
Consider next the fuzzy set C: 

Z(C) = {0, 0.5, 0, …, 0}.

This represents an impossible scenario in classical (i.e., crisp) set theory. Does x2 belong to C 
or does it not? In fuzzy set theory, the element x2 belongs to the set C to a certain extent. 3 This 
degree of membership is represented by a real number in the interval [0, 1]. 

Another example of a fuzzy set is the set of all tall people. If you watched the opening ceremo-
nies of the 2008 Beijing Olympics, then you may have seen Yao Ming, the 7′6″-tall basketball star 
carrying the flag for the Chinese contingency of athletes. Beside him was Lin Hao, an elementary 
school student who helped rescue classmates from rubble after an earthquake in Sichuan Province 
in May 2008. No one would argue with the premise that Yao Ming is tall and Lin Hao is not. 

What should be said of individuals who are 5′10″? Well, you can say they are tall to a certain 
extent.

“Tallness” is seen to be a ‘fuzzy concept.’ To represent the degree of membership in a fuzzy set 
we can draw a membership function as in Figure 8.2.

A person who is 5′ tall (or shorter) is not a member of the set of tall people. A person who is 
6′ tall might have a degree of membership of 0.65 in this set; we would write this as µt (6′) = 0.65, 
where µt ( ) is the membership function for this set. You certainly would agree that µt (7′ 6″) = 1.0, 
i.e., Yao Ming certainly qualifies for full membership in this set. 4
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Figure 8.2 
Membership function for the set of tall people.
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Let X be a classical universal set.

A real function µA : X → [0, 1] is the membership function for the set A. The set of 
all pairs (x, µA (x)) defines the fuzzy subset A of X.

A membership function completely specifies a fuzzy set. The set of all elements x that belong to 
X where (x, µA (x)) belongs to A and µA (x) > 0 is called the set of support of the fuzzy set A. For 
the set t of all tall people (as described in Figure 8.2), the set of support consists of all people 5′ in 
height or taller. If A is a set with a finite set of support {a1, a2, .., am} then this can be represented as

A = µ1 / a1 + µ2 / a2 + … + µm / am,

where µi = µA (ai), i = 1, … , m. Note, the “/” and “+” symbols are being used as delimiters, no 
divisions or additions are being performed. For example, if X = {x1, x2, x3} where A and B are the 
two (crisp) subsets: A = {x1, x3} and B = {x2, x3}, then these sets can be represented as

A = 1 / x1 + 0 / x2 + 1 / x3

B = 0 / x1 + 1 / x2 + 1 / x3.

The union of two sets A and B denoted A ∪ B, is the set of all elements that lie in either A or B 
(or both). A ∪ B can be computed by taking for each xi, the maximum of its membership in either 
set, i.e., A ∪ B = 1 / x1 + 1 / x2 + 1 / x3. This methodology easily generalizes to the case in which 
the sets are fuzzy. For example, if

C = 0.2 / x1 + 0.5 / x2 + 0.8 / x3

D = 0.6 / x1 + 0.4 / x2 + 0.2 / x3,

Then the fuzzy union of C with D is

C ∪ D = 0.6 / x1 + 0.5 / x2 + 0.8 / x3.

The fuzzy intersection of two sets can be defined by using the minimum instead of the maxi-
mum of each degree of membership. So, for our previous example,

C ∩ D = 0.2 / x1 + 0.4 / x2 + 0.2 / x3

The complement of the crisp set E, i.e., Ec is the set of all elements that lie in the universal set 
(X in this example) but not in E. The complement Ec where E is a fuzzy set can be computed by

µE
c (x) = 1 - µE (x), ∀ x ∈ X.

For example, if E is the fuzzy subset,

E = 0.3 / x1 + 0.1 / x2 + 0.9 / x3,

then the complement of E equals

Ec = 0.7 / x1 + 0.9 / x2 + 0.1 / x3.
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Observe that, in general, when A is a fuzzy set, the union of A with its complement does not 
equal the universal set, and the intersection of A with its complement does not equal the empty set, 
as is the case for crisp sets. For the fuzzy set E we have

E ∪ Ec = 0.7 / x1 + 0.9 /  x2 + 0.9 / x3

E ∩ Ec = 0.3 / x1 + 0.1 / x2 + 0.1 / x3

 8.2  FUZZY LOGIC
In “ordinary” propositional logic (consult Chapter 5, “Logic in Artificial Intelligence”), an ex-

pression is either true or false. For example, it is either raining or it is not raining. In fuzzy logic, an 
expression can be true to a certain extent. One can define fuzzy counterparts to logical operations, 
where for the fuzzy OR operation ( ) we use the maximum, for fuzzy AND ( ), the minimum is 
used, and for fuzzy complementation ( ) replace x with 1 − x. So suppose that proposition A has 
a truth value of 0.8, where 0 denotes false and 1 means true with certainty, and proposition B has a 
truth value of 0.3. Then AB has truth value equal to max (0.8, 0.3) = 0.8 and AB is true with a 
truth value equal to min (0.8, 0.3) = 0.3. 

Notice that A   A = min (0.8, (1 − 0.8)) = 0.2. In ordinary propositional logic, the truth value 
of an assertion and its complement is always false. So that p   p where p can represent “It is rain-
ing,” is always a contradiction. Also, observe that A    A = max (0.8, (1−0.8)) = 0.8, whereas  
p   p (“It is raining” or “It is not raining”) is always true in ordinary propositional logic. This last 
claim is known as the Law of the Excluded Middle 
and was accepted as evident by Aristotle.

The fuzzy OR operator obeys boundary conditions, 
and is commutative, associative, monotonic, and idem-
potent. Consult Table 8.1.

The fuzzy AND function is monotonic, commuta-
tive, and associative. The boundary conditions are: 0   
0 = 0; 1   0 = 0; 0   1 = 0; 1   1 = 1.

Fuzzy negation obeys the following conditions: 

•  0 = 1 
•  1 = 0  boundary conditions
• If a ≤ b, then  b ≤  a  monotonicity 
• a =   a  involution

To illustrate the monotonic property, for the fuzzy OR function assume the following truth 
values: a = 0.3, b = 0.6, then b has a truth value of 1 – 0.6 = 0.4, and the truth value of a equals 
1 − 0.3 = 0.7 and 0.4 ≤ 0.7 as expected.

 8.3  FUZZY INFERENCES 
Production systems were discussed in Chapter 7, “Production Systems.” Chapter 9, “Expert 

Systems,” will show how knowledge-based systems can be used to solve real-world problems, such 
as why your car won’t start or what disease you might have contracted. Fuzzy measures can be  

Table 8.1 
Properties for the fuzzy OR function.

0   0 = 0 Boundary Conditions

1   0 = 1

0   1 = 1

1   1 = 1

a   b = b   a commutativity

a   (b   c) = (a   b)   c associativity

If a ≤ a′ and b ≤ b′, monotonicity

then a   b ≤ a′   b′

a   a = a idempotency
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applied to production rules to reflect the vagueness that is present in the world. For example, per-
haps your car will not start because the battery is dead, or maybe the fuel tank is empty, or, if it’s 
too cold, the motor could have frozen.

Fuzzy production rules have the same structure as their more traditional counterparts, intro-
duced in Chapter 7, for example,

Rule1: If (A   B), then C.

Rule2: If (A   B), then D. 

Suppose that the truth values of A and B are 0.1 and 0.8, respectively. Then

 A   B = (0.1, 0.8) = 0.8

A   B = min (0.1, 0.8) = 0.1

Rules 1 and 2 can be applied only to some extent. Rule 1 is applied 80% and Rule 2 is applied 
10%, in order that a combination of actions (or deductions) C and D will occur.

exAMple 8.1: degree of MeMbership

Suppose that you work in a tea factory as a taster for bottled tea and your 
job is to ensure that bottles of tea being produced have the correct degree of 
sweetness.

There is a pump that sprays sugar into the vat holding the tea. The pump’s 
operation is governed by three rules that depend upon your appraisal of  
sweetness:

R1: If (tea is not sweet enough), then spray more sugar.

R2: If (tea is satisfactory), then maintain sugar spray.

R3: If (tea is too sweet), then spray less sugar.

Your evaluations on sweetness are integer values that range from −5 to +5, 
where a sweetness evaluation x = +2 indicates that the batch is 2% too sweet, 
whereas when x = −3, you thought the tea was 3% less sweet than ideal.  
Assume that your evaluation of sweetness is x = +1 for this measurement: 

Degree of membership of 0.14 in the set of too sweet.

Degree of membership of 0.5 in the set of tea that is fine.

Degree of membership of 0.0 in the set tea that is not sweet enough.

We express this information as a fuzzy category:

too sweet fine not sweet enough
X

0.14 0.5 0.0
= + +
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Based on this information, some action is taken. We obtain the following 
fuzzy inference:

reduce sugar spray Maintain system increase sugar spray
Action

0.14 0.5 0.0
= + +

To be useful, however, this action must be converted into a crisp value; reduce 
sugar spray (or increase it) and by how much.

To express fuzzy categories graphically, triangular or trapezium-shaped membership functions 
are frequently used. Figure 8.3 displays a triangular-shaped membership function.

Figure 8.4 shows a trapezium-shaped graphical representation of a membership function.

We return to Example 8.1

exAMple 8.1: revisited:
The membership functions for the bottled tea factory example are drawn in Figure 8.5

Not sweet
enough
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CATEGORY 11
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α3

CATEGORY 2

MEASUREMENTS
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Figure 8.3 
Categories with triangular-shaped membership functions.

MEASUREMENTS

1

Figure 8.4 
Categories with trapezium-shaped membership functions.
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Increase
sugar spray

Maintain
system

Decrease
sugar spray
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–5 –4 –3 –2 –1 0 1 2 3 4 5

(b)
Figure 8.5 
Membership functions for the bottled-tea factory example; (a) sweetness evaluation; (b) percentage 
change in sugar spray from pump.

Observe that in Figure 8.5b, the action reduce sugar spray is valid to 0.12 and 
maintain sugar spray is valid to 0.5. The regions of the two respective catego-
ries are shaded. To transform the fuzzy action prescribed above into a crisp 
action, we must find the horizontal component for the “center of gravity” of 
the shaded region in Figure 8.5. This corresponds to a value approximately 
equal to 0.1, hence sugar flow should be reduced by 1%.

The so-called “center of gravity” is technically known as the centroid of the shaded region. 
Algorithms for computing the centroid of a region can be found in many advanced calculus texts.

If our goal is to produce artificial intelligence at or near (above?) the human level then we 
should be concerned with biological plausibility. The human eye can be viewed as a fuzzy system. 
Light of different wavelengths comes to rest on the human retina—a typical eye responds to light 
energy in the range of 380 nm (violet) to 750 nm (red) (this is usually expressed in angstrom units, 
where 1 angstrom unit(Ǻ) = 0.1nm) or 3800 to 7500 angstrom units. The eye, however, contains 
receptors that are specialized for the colors blue, green, and red. Consult Figure 8.6
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4000 4500 5000 5500 6000 6500 7000

Figure 8.6 
Reponses of the three receptors in the human retina. The maximum excitation for the blue 
receptor is 4300Å, for green it is 5300Å, and 5600Å for red.
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• Monochromatic color will excite all three receptor types. The output of each receptor 
class depends on wavelength.

• Maximum excitation for each receptor:

Blue~4300 Å
Green~5300 Å
Red~5600 Å

• Monochromatic light is thereby transformed into three different excitation levels, i.e., 
into a relative excitation of the three receptor types.

• The wavelength is transformed into a fuzzy category, just as with fuzzy controllers.
• The three excitation levels measure the degree of membership in each of the three color 

categories: blue, green, and red.
• Coding of the wavelength using three excitation values reduces the number of rules 

needed in subsequent processing.
• Sparseness of rules in fuzzy controllers has a counterpart in the sparseness of the bio-

logical components.

Ordinary light will excite each of the three receptors to some extent, the light is thereby being 
transformed into a fuzzy category. Fuzzy systems are noteworthy for the sparseness of the rule set. 
This attribute of fuzzy systems is in harmony with the need for biological frugality.

Fuzzy logic has been incorporated into the control mechanism for many devices. Imagine 
you are taking photos with friends and it is somewhat cloudy. Should you use a flash? The in-
structions that came with your camera say that if it is not sunny, use a flash . . . however, it is 
sunny—to a certain extent. It is no surprise that many digital cameras incorporate fuzzy logic 
into their control.

Now, imagine that you are doing your laundry and you are setting the wash cycle. Machine 
instructions recommend that if clothes are especially dirty, then you should select a long wash 
cycle. Naturally, your clothes are dirty to a certain extent. Many washing machine models use 
fuzzy logic. Fuzzy logic is finding applicability in vacuum cleaners, automobile ABS brakes, 
and traction systems. Additionally, we cannot be certain of many of the conclusions we reach in 
real life. Are you sneezing because you have a cold or are you suffering from an allergy attack? 
It is no surprise that fuzzy logic is used in Expert Systems (Chapter 9). In Chapter 11, “Neural 
Networks,” we discuss artificial neural networks (ANN), an information processing paradigm 
based on the structure of animal nervous systems. Unfortunately, ANNs cannot explain their re-
sults. Many researchers have combined ANNs with fuzzy logic to produce systems that possess 
an explanatory capability.

 8.4 PROBABILITY THEORY AND UNCERTAINTY
Some would contend that probability theory witnessed its inception in 1654. A friend of Blaise 

Pascal was interested in gambling problems—what resulted was a series of mathematical commu-
nications between Pascal and Pierre de Fermat. It should come as no surprise then, that probability 
theory plays a prominent role in handling uncertainty. One impediment, however, to its achieving 
even wider acceptance is that most people are subjective (rather than analytical) in their evaluations 
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huMAn interest notes

lotfi zAdeh

Lotfi Zadeh  
(1921– ) was born 
in Baku, Soviet 
Azerbaijan, but 
he is also of 
Iranian descent, 
and has long 
lived in the 

United States; like the famous concept 
that he created, his background is across 
boundaries—he is an international person. 
“The question really isn’t whether I’m 
American, Russian, Iranian, Azerbaijani, 
or anything else,” he’ll tell you. “I’ve been 
shaped by all these people and cultures 
and I feel quite comfortable among all of 
them.” (http://azer.com/aiweb/categories/
magaz ine /24_fo lder /24_ar t ic les /24_
fuzzylogic.html) April 15, 2011.

When Zadeh was 10 years old, his family, 
under persecution from Stalin, decided to 
move back to Iran, which was his father’s 
homeland. In 1942, he graduated from the 
University of Tehran with a degree in electrical 
engineering. During World War II, his family 
moved to the United States; he obtained an 
MS degree from MIT in 1946, and a PhD 
from Columbia University in 1949. 

In 1959 he joined the Electrical 
Engineering Department at Berkeley, where 
he became chair in 1963 and chair of the 
Computer Science Division (EECS) as well. 

Following is a segment of an interview 
Betty Blair conducted with Lotfi Zadeh. 

 Zadeh was asked: 

Back in 1965 when you published 
your initial paper on Fuzzy Logic, 
how did you think it would be 
accepted? 

Zadeh responded:

Well, I knew it was going to be 
important. That much I knew. In fact, 
I had thought about sealing it in a 
dated envelope with my predictions 
and then opening it 20–30 years later 
to see if my intuitions were right. 
I realized this paper marked a new 
direction. I used to think about it 
this way—that one day Fuzzy Logic 
would turn out to be one of the most 
important things to come out of our 
Electrical Engineering Computer 
Systems Division at Berkeley. I never 
dreamed it would become a worldwide 
phenomenon. My expectations were 
much more modest.

(http://azer.com/aiweb/categories/
magazine/24_folder/24_articles/24_
fuzzylogic.html) 

From that interview it seems clear that 
Zadeh felt that fuzzy logic would have wide 
application in many fields, such as economics, 
psychology, philosophy, linguistics, politics, 
and other of the social sciences. He has been 
surprised at how few social scientists have 
exploited its possibilities. Back in 1965, 
Zadeh did not expect that fuzzy logic would 
primarily be used by engineers for industrial 
process control and in “smart” consumer 
products. Examples of the latter include 
hand-held camcorders, in which fuzzy logic 
compensates for spurious hand movements, 
and microwaves that enable us to cook food 
perfectly by pressing a single button.

Zadeh further confirmed that he decided 
on the term “fuzzy logic” because he felt it 
most accurately described what was going 
on in the theory. Other terms, such as “soft,” 
“unsharp,” “blurred,” and “elastic” were 
considered, but he didn’t feel they more 
accurately portrayed what his methods did. 

Lotfi Zadeh
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of risk. For example, people are often more fearful of air travel than driving. It is a well-known 
fact, however, that statistically you are much safer in an airplane than you are driving in your car.

The starting point for any discussion of probability theory begins with an experiment which is 
some process that is carried out. For example, consider the experiment of tossing a fair coin twice.

We considered this example in Chapter 4, where some rudiments of probability theory were 
needed to properly analyze games involving chance. The sample space for an experiment S is the 
set of all possible outcomes (an outcome is sometimes referred to as a set of sample points). In our 
case, S, in which a coin is tossed twice, equals {(H, H), (T, T),(T, H),(H, T)}.

Notice that we are distinguishing between a head followed by a tail and the outcome in which 
the lone tail occurs first. An event E is a subset of S. The sample space S consists of four sample 
points, hence 24 or 16 events are possible: 

E1 = {(T, H, (H, T)} which corresponds to one head and one tail occurring, 

E2 =  {(T, T), (H, H)}, the event in which each toss resulted in the same side  
landing up, 

E3 = {(T, T), (T, H)}, the event in which the first toss is a tail, and so on. 

The fact that fuzzy logic is a “coarse” 
rather than a “refined” way of doing things 
means that it is less expensive and easier 
to accomplish than traditional forms of 
computing. He gives the example of parking 
a car: if one had to find a car in a parking lot 
within the space of 1/10th of an inch it would 
be a very difficult task, but since we don’t 
have to do so, more “coarse” methods can be 
used. 

In preparing an article on fuzzy logic, 
Mark Hopkins received a wide response 
and found the following list of applications: 
finances, geography, philosophy, ecology, 
agricultural processes, water treatment, 
baggage handling at Denver International 
Airport, remote sensing images from 
satellite images, recognition of handwriting 
and nuclear science, the stock market, and 
weather. Boeing in Seattle reported that it has 
incorporated fuzzy logic in a controller for 
Navy #6 autopilots, which trails a long wire 
antenna for communications with submarines. 

Further examples that Hopkins 
found include the following: biomedical 
applications are being used to diagnose breast 
cancer, rheumatoid arthritis, postmenopausal 
osteoporosis, and heart disease; to monitor 
anesthesia, blood pressure, and insulin for 
diabetes; as a postoperative pain controller; 
to produce magnetic resonance images of the 
brain; and to set up intelligent bedside monitors 
and hospital communication networks. 

To date, the countries applying fuzzy 
logic most prevalently are Japan (#1), 
Germany (#2), and the United States (#3). 
The possibilities are limitless, because the 
concept is broad and can be applied to almost 
any field. 
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Finally, the probability of an event Ei is defined as:

P(Ei ) =  the number of ways in which Ei can occur, divided by the total number of 
possible outcomes.

For example, the probability of event E3 (just described) equals:

P(E3) =  2/4 or 1/2, as when a fair coin is tossed, two sample points correspond to 
this event, whereas |S| equals 4.

There are three basic axioms of probability measures:

• For any event E : P(E) ≥ 0
• P(S) =  1 // when two coins are tossed, some outcome is certain to occur.
• If the events E1 and E2 are mutually exclusive, then P(E1 ∪ E2) =  

P(E1) + P(E2)

// For example, if E1 equals two heads occurring when a coin is tossed twice, and E2 corre-
sponds to two tails occurring, then E1 ∪ E2 is the event corresponding to either two heads or two 
tails occurring. The probability of this event equals

P(E1 ∪ E2) = P(E1) + P(E2) = 1/4 + 1/4 = 1/2.

A function that satisfies these three axioms is referred to as a probability function.

exAMple 8.2:
There are nine marbles in an urn, three are blue, three dark pink, and three 
red. Two marbles are drawn randomly from the urn at the same time (your 
eyes are closed). What is the probability that both marbles are red?

P(2r) = (3C2) / (9C2) = 3/36 = 1/12.

The numerator represents the number of ways in which two red marbles can 
be drawn. Number the red marbles: r1, r2, and r3. Then two red marbles are 
drawn for each of these events :{r1, r2}, {r1, r3}, and {r2, r3}. The denominator 
corresponds to the total number of outcomes when two marbles are drawn, 
i.e., {r1, r2}, {p1, p2}, {p1, p3}, etc.

Suppose we could not derive the probability in Example 8.2 analytically; what you could do 
instead is to conduct the following series of experiments: Draw two marbles from the urn, ten suc-
cessive times (replacing the marbles after each attempt). Draw the two marbles from the urn, 100 
times, then 1000 times, and so on. As the number of times that the experiment is repeated grows 
relatively larger and larger, we believe that the frequency of obtaining two red marbles approaches 
the probability of this event. A more formal statement of this observation is known as the Law of 
Large Numbers. In fact, we use this perspective on probability later (Chapter 12, “Search Inspired 
by Mother Nature”) in a Monte Carlo exercise to approximate the value of π.
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Suppose that E1 is the event that a head occurs on the first toss when a fair coin is tossed twice 
and E2 is the event that a tail occurs on the second toss when a coin is tossed twice, then the joint 
probability of both E1 and E2 occurring is the event (E1,E2) equal to {H,T}, that is, a head and then 
a tail occur when a fair coin is tossed twice P(E1,E2) = P(H on first toss) * P(T on second)

 = 1/2 * 1/2 = 1/4

Consider Example 8.2 once again. Suppose you know that both marbles drawn are the same 
color and you wish to calculate the probability that both marbles are red. In essence, the sample 
space has shrunk from (9C3) to 3 * (3C2); what you wish to calculate is the conditional probability:

P (two red | both marbles the same color).

P (2r | both same color) = (3C2) / (3*(3C2)) = 1/3.

Probability theory enters into many situations in real life. A bank is (or should be) interested in 
the probability that a home owner will repay their mortgage. A doctor weighs the probabilities of 
several conflicting diagnoses when treating a patient with some symptoms. A person considers the 
odds when placing a bet on a horse at the racetrack.

 An important result when considering conditional probabilities is Bayes’ theorem. Suppose the 
probability of some event B > 0, then P (A|B) can be calculated by 

P (A|B) = [P (B|A) * P (A)] / P (B)

exAMple 8.3: bAyes’ theoreM

A brief physical exam is administered to all new inmates at a prison. Suppose 
that 80% of all healthy individuals pass this exam, 60% of all individuals with 
minor ailments pass, and 30% of all prisoners with serious ailments also pass. 
Suppose that 25% of these new prisoners are actually in good health (event 
E1), 50% have minor ailments (E2), and 25% have major health issues (E3). 
Given that an inmate passes this physical (event B), what is the conditional 
probability that the inmate is in good physical condition?

P(B|E1) = 0.8, P(B|E2) = 0.6, P(B|E3) = 0.3, P(E1) = P(E3) = 0.25, P(E2) = 0.50

Using Bayes’ Theorem we obtain that:

P (inmate is healthy | passes health exam) = P (E1 | B)

 = P (B | E1) * P (E1) / ∑
3

i=1 P (B | Ei)* P (Ei)

 = [(0.8) (0.25) / (0.8) (0.25) + (0.6) (0.5) + (0.3) (0.25)] = 0.35

Originally we might have suspected that a randomly chosen new inmate 
would be in good health with a probability of 0.25. However, after passing this 
health exam, our conviction has risen to 0.35
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Bayesian networks are often used to contend with 
uncertainty. Suppose you have a skin rash for which you 
consult your doctor; in order to properly treat you, your 
doctor must determine what is causing this rash. Com-
mon causes include allergic reaction to a medicine or food 
product or contact with an object (perhaps even a pet).

Your doctor might view the situation as shown in Fig-
ure 8.7:

This is a Bayesian network in which nodes represent 
variables. The three variables that could be causing the condition have arrows leading to the re-
sulting condition. Probabilities p1, p2 and p3 are probabilities labeling these arcs. Where do these 
probabilities come from? They are a subjective evaluation of the situation based on the doctor’s 
previous experience with this malady. The incidence of allergies (MSG, peanuts, corn starch) and 
environmental factors (cats, dogs) is relatively common, hence your doctor will likely conclude 
that p1 is much less than either p2 or p3. 

 8.5  CHAPTER SUMMARY
This chapter has provided a brief glimpse at two tools used for handling uncertainty in AI. As 

we have seen, life is not just black or white; there are many shades of gray as well. For example, 
when is an individual considered mature? A person can enter the military in the United States at 
the age of 18; however, to order a drink in a bar in New York State, you must be 21 years of age. 
To run for president, you must be at least 35. Maturity is seen to be a fuzzy concept. Fuzzy logic 
has achieved widespread applicability in the control for many modern applications from digital 
cameras to washing machines.

  Probability theory has its origins with the desire to understand the odds involved in games 
of chance. It is a tool employed by pharmaceutical firms in testing the effectiveness of their prod-
ucts. Many expert systems (Chapter 9) employ probability to contend with the uncertainty inherent 
in drawn inferences of these systems. This chapter is in no way meant to be complete. In fact, there 
is a third approach to handling uncertainty in AI systems that we have not discussed. Dempster-
Shafer theory 11 measures the confidence one has in probabilities that have been assigned to events. 
The belief for some event E, bel (E) ≤ P (E), is defined as the sum of all outcomes in which E 
results. The plausibility of this event E, pl (E) is the sum of all outcomes in which E is not con-
tradicted, hence P(E) ≤ pl(E). This methodology is often used in sensor fusion. For example, an 
astronomer observing a distant star may use an optical telescope, a spectrometer, and a radio tele-
scope. The observations achieved by these tools could be in conflict with one another. Dempster-
Shafer theory provides a calculus for contending with contradictory evidence.

Questions for Discussion

 1. Name five things from everyday life that correspond to fuzzy sets.

 2.  a. Let S be a crisp set with n elements. How many subsets will S have?

  b. How many subsets will S have if S is a fuzzy set with n elements?

 3. Give an example of a fuzzy inference from everyday life.

Allergic to
medicine

Allergic to
food

Rash

p1 p2 p3

Environmental
causes

Figure 8.7 
A Bayesian network to analyze a symptom.
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 4.  Fuzzy logic and probability are essentially the same thing. Discuss this assertion.

 5.  A ~ B represents set difference, or, the set of all elements in A but not in B. 

  Choose an appropriate metric to calculate the set difference between two sets (i.e., max, min, 
etc).

 6. Let X = {a, b, c}. List all subsets of X using membership function notation.

 7. Do you believe fuzzy logic should be preferred to probability theory (or vice versa) when 
analyzing the following situations: 

  a. The effectiveness of a new medicine.

  b. Evaluating highway safety.

  c. The accuracy of a weather report.

  d. The risk involved in buying a lottery ticket.

  e. The risk involved in buying a stock.

  f. Analyzing pollution levels in a nearby lake.

 8. Give an example from your everyday life in which you use conditional probability (perhaps 
unknowingly).

Exercises

 1. Let X={x1, x2, x3} be a universal set. Consider the following sets:

   A = 0.2 /x1 + 0.1 /x2 + 0.2 /x3

   B = 0.2 /x1 + 0.4 /x2 + 0.7 /x3

  a. A ∪ B = ?

  b. A ∩ B = ?

  c. Ac  ∩ Bc  = ?

 2. Draw the fuzzy membership function for each of the following:

  a. Person X is considerably heavier than 100 pounds.

  b. Star Y is considerably larger than our Sun.

  c. Car Z costs approximately $30,000.

  d. µA (x) = 0 for x ≤ 5 and 1 + (x – 5)-2 when x > 5.

 3. Consider the example of tallness discussed in this chapter. Draw the membership function for 
the set of:

  a. Very tall person.

  b.  A person who is not tall. 
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 4. a.  Draw the membership functions for the following sets: 

   M: mature people

   Y: young people

   O: old people

  b. Classify a person who is

 i. 18 years old

 ii. 21 years old

 iii. 42 years old

 iv. 61 years old

  c.  Explain how you would defuzzify your answer for part b. iii. above (i.e., obtain the age of 
42 from your fuzzy categorization).

 5. a.  A television can be viewed as “domestic” or “foreign” in different ways. For example, 
many components for American televisions are manufactured in Mexico or Asia. 
Similarly, there can be instances in which a television with a foreign name is actually 
manufactured in your country. Draw two fuzzy membership functions, one for foreign 
TV sets (µF(x)) and one for domestic brands (µD(x)). What are µF(x) and µD(x) for 60%?

  b. Assume the following rules have the same membership functions as above:

   Rule 1: If a TV set is domestic then maintain tariffs (a tax imposed on imports).

   Rule 2: If a TV set is foreign then raise tariffs.

  What inference would you make for a TV set that is 40% foreign?

 6. Suppose that the people attending a resort have a long-term chance of 1 in 100 of having 
skin cancer (from too much sun exposure). The resort maintains a clinic to help detect this 
disease. Suppose that the screening used at this clinic has a false positive rate of 0.2 (that 
is 20%) of people without skin cancer will test positive for cancer) and that it has a false 
negative rate of 0.1 (10% of people with skin cancer will test negative). Suppose that a person 
has just tested positive for skin cancer. What is the probability that he actually has the 
disease?

 7.  A gambling bet is considered fair if the individual making the bet considers that  
 they will break even in the long run. Which of the following bets would be considered fair?

  a.  A fair coin is flipped. You pay $1 to guess the outcome and receive $2 in return 
 if your guess is correct.

  b. You pay $5 to toss two dice. If the total is 7 or 11 you receive $20 in return.

 8. A Dutch Book is some mix of wagers, which can be shown to result in a sure loss (according 
to the bettor’s beliefs). Consider this situation (The three-card problem): there are three cards, 
one is red on both sides (RR), the second is red on one side and white on the other (RW), and 
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the third card is white on both sides (WW). A single card is drawn (eyes closed) and tossed 
into the air.

  a. P (RR card selected) = ?

  b. P (W-showing) = ? 

  c. P (not - RR|R - showing) = ?

  d.  Are the following fair bets or a Dutch Book:

 i.  You pay $1 – to guess a card

  You win $3 – if correct

 ii. R-showing

  You pay $1 – to guess card

  You win $2 – if correct

 iii. Win $1– if R-showing and not RR

  You lose $1– if R-showing and RR 

Keywords
crisp sets
fuzzy concept
fuzzy set
fuzzy set theory

joint probability
Law of the Excluded Middle
Law of Large Numbers
membership function

sample space
sample points
set of support
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This chapter presents Expert Systems, 
one of the domains of AI considered 
most successful with regard to its 
contributions to computer science 
and the real world in general. Herein 
we discuss typical features of expert 
systems, how they are built, and 
some of the most successful systems 
that have been built during the more 
than 30-year history of the field. 
Examples of systems employing 
case-based reasoning and some of the 
most recent expert systems are also 
presented. 
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 9.0 INTRODUCTION
The development of expert systems could be viewed as the single most important accomplish-

ment of artificial intelligence. They emerged in the 1970s at a time when the whole field of artificial 
intelligence was stifled by the disparaging report by Sir George Lighthill (See Chapter 6, “Knowl-
edge Representation”). AI was criticized for not producing real-time, real-world working systems. 
Some important insights were gained in the fields of computer vision and, hence, robotics from the 
work of R. J. Popplestone.1 The toy system Freddy was built to perform simple tasks such as the 
assembly of a toy car or the placing of a coffee cup on a saucer. Soon thereafter came the famous 
thesis work of Terry Winograd 2 at MIT; SHRDLU, or Blocks World, lent further insight into under-
standing natural language (see Chapter 13, “Natural Language Understanding”). AI had also gained 
a certain degree of interest and notoriety from early systems such as GPS in 1972 (“Overview of 
Artificial Intelligence,” Chapter 1, Section 1.8.8) and the famous ELIZA system which fooled 
many people into believing it was intelligent.3 

 9. 1  BACKGROUND
As we have discussed in Chapters 1, “Overview of Artificial Intelligence,” and 6, “Knowledge 

Representation,” we live in times when knowledge is at a premium. In earlier times, such as during 
the Industrial Revolution of the 1800s, a society’s progress could be measured by its ability to convert 
natural resources such as minerals and iron ore into energy and man-made products. In the twentieth 
century, more typical measures of progress were the facility and speed in communication and trans-
portation. In communications we have gone from the telephone in the late 19th century to Google, 
Facebook, and Twitter in the 21st century. In transportation we have progressed from steam-driven 
ships to landing man on the moon. Technological progress was also in part driven by World War I, and 

to a greater extent by World War II, with the burgeoning of the 
Computer Age. In America, the development of the Electronic 
Numerical Integrator and Computer (ENIAC) was the driving 
force of the technological age, and in England, it was the at-
tempt to solve the Enigma Codes through the construction of 
the Colossus by Turing and his aides at Bletchley Park in 1943. 

In addition to putting a man on the moon in 1969, tech-
nological progress was based on microminiaturization 
coupled with microchip technologies. In the 1980s, with the 
proliferation of the personal computer, the transition to an 
“information society” began. 

More and more homes could afford personal computers, 
and the computer took on increasingly diverse and impor-
tant roles in peoples’ lives. In the 1990s, the World Wide 
Web was introduced by Tim Berners-Lee, offering an en-
tirely new forum for business, leisure, travel, work, study, 
and for that matter, just about anything else. By the end of 
the first decade of the new Millennium the challenges for 
the “knowledge-society” that we live in are to efficiently 
manipulate and transfer vast amounts of information and 
convert it to knowledge for useful and important decision-
making that will benefit society. 

Presper Eckert and John Mauchley are credited 
for the ENIAC at around 1946.
The Enigma codes were secret codes that the 
Germans sent to submarines during World 
War II. The Colossus (Turing, et al.) was built 
primarily to help break the Enigma Codes. It 
did indeed succeed in accomplishing this task.

The use of microchip technologies reduced 
the size and increased the speed of operation 
of computers and their corresponding chips; 
this led directly to the advent of Moore’s Law, 
through which it was realized that smaller 
components meant the possibility of greater 
speed. Hence, it was also discovered that 
the speed of microprocessors corresponded 
directly to the speed of computers—and for 
many years improved chip technology with 
microminiuaturization had enabled the speed of 
microprocessors to double every 18 months. 
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A good example of a system that is very sensitive to tremendous, abundant, and varied informa-
tion sources is the stock market. For example, the stock market’s position at the time of this writing 
is highly affected by the supply and demand for oil. In the course of a very short time we have seen 
the price of oil jump from $60 per barrel to nearly $150 per barrel and more recently drop to below 
$100 per barrel. What is the true value of a barrel of oil today and how should it be reflected at the 
gas pumps? A truly intelligent expert system would be able to take into consideration a number of 
factors in order to predict the correct value (within a range) for oil in both the short and long term. 

 9.1.1  Human and Machine Experts 
The goals of early systems, labeled the “power strategy” by Goldstein and Papert,34 were to de-

velop general and powerful methods that could be applied to diverse problem-solving areas. Early 
programs, such as DENDRAL,5 proved weak in terms of their power of generality. The behavior of 
the best general problem solvers we know, human problem-solvers, is weak and shallow, except in 
those areas where the human problem-solver is a specialist (ibid.). 

Contrary to early beliefs, most humans are experts in only their own specialized fields; they do 
not possess some kind of magic that enables them to quickly generate the finest and most cogent 
set of rules for an arbitrary problem domain. Hence, a chess grandmaster, who might have some 
50,000 rules (patterns) which have been accumulated and developed over many decades of praxis 
and study (see Michie 6 and Reddy 7), will more than likely not be a grandmaster in the creation of 
heuristics, rules, methods, or anything else in life for that matter. The same is probably true for a 
PhD mathematician, medical doctor, or a lawyer. Each is expert in handling information within his/
her sphere, and that skill doesn’t assure any particular expertise in the handling of information in 
general or to other spheres of expertise. What we do know is that a long apprenticeship is required 
before any particular domain can be mastered. 

Brady 8 noted that there are a number of ways human experts combat the combinatorial 
explosion:

Firstly to impose structure on the knowledge base, to enable the solver to operate 
within a relatively narrowly specified context. A second approach is to make explicit 
the knowledge one has about the way in which domain specific knowledge can best be 
used; so-called meta-knowledge. The uniformity of knowledge representation really 
begins to pay off here, as one can turn the full power of the problem solver onto the 
meta-knowledge in exactly the same way as one applies it to the base knowledge. …
Thirdly, one attempts to exploit the redundancy which seems ever present and crucial 
for human problem solving and perception. There are several ways in which this 
might be achieved, but mostly they amount to the exploitation of constraints. 

Often one can make explicit a number of conditions, none of which uniquely specify a solution, 
but whose simultaneous satisfaction is unique. 

Here, for “redundancy present in human problem solving and perception,” we believe that 
Brady really means one word: PATTERNS. Again we return to the example of finding your car in a 
vast parking lot. Knowing what floor your car is on or what numbered area will make a huge differ-
ence with regard to how quickly you retrieve it. Furthermore, having knowledge about the position 
(central row, outer row, middle or end of row, etc.), the features of your car (its color, shape, style, 
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etc.), and the area within the parking lot where you left it (near a building, an exit, a column, a wall, 
etc.), will make a huge difference in how quickly you find it. There are three distinct approaches 
humans will use: 

 1. Depending on the information (the numbers on your receipt, ticket, and the information 
provided in the lot). With this approach, a human is not using any intelligence, just as 
one might use a car’s navigation system to a destination without having any geographi-
cal understanding of where one is going. 

 2. Using a combination of the information on the ticket/receipt provided and some patterns 
about the car and its location. For example, your ticket says your car is in Area 7B, but 
you also remember it is not very far away from where you are, that your car is bright 
yellow and that it is huge; there aren’t many large yellow cars, and it stands out from all 
other cars. (See Figure 9.1.) 

 3. A fragile approach whereby a human relies entirely on memory and patterns, rather than 
any specific information. 

Figure 9.1 
Patterns and information can help us identify things.

All three approaches illustrate the advantages humans have in processing information. Humans 
have built-in random access and associations (Section 6.11). To get to a car on Level 3, we do not 
need to explore Levels 1 through 3 linearly. A robot would have to be explicitly taught to skip 
the Levels below Level 3. Our memories allow us to exploit constraints about our vehicle (e.g., it 
was yellow, it was large, it was an old car). There are not too many of those cars around. Patterns 
coupled with information can help reduce our search (akin to the constraints and meta-knowledge 
that Brady refers to above). So we know our car is on a certain level (the ticket says so), but we also 
recall how we parked it (neatly or sloppily), what cars might have been nearby, and other notable 
features of the spot we selected. When humans become totally dependent on information systems, 
they could deprive themselves of their fundamental, innate intelligence, and this will perhaps lead 
to critical situations. Little wonder that we hear stories of a couple who let a GPS system lead them 
to the precipice of a mountain! 

Before we go any further in our discussion of human expertise it would seem appropriate to 
mention the thoughts of the philosopher brothers at Berkeley, Hubert, and Stuart Dreyfus (see  
Chapter 6, ‘Human Interest Box’). One of their main criticisms is that human “know-how” is hard 
to explain or develop in a machine. We know how to ride a bicycle, we know how to drive a car, and 
many other fundamental things such as walking, talking, and so forth, but when we try to explain 
how these actions are accomplished, our performance degrades quickly. The Dreyfus brothers also 
make the distinction between “knowing that” and “knowing how.” Knowing that refers to factual 
knowledge, such as a set of instructions or steps to follow, but it is not the same as knowing how. 
Developing know-how is not something that we want to explain because it is very difficult. When 
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know-how is attained, it becomes something that is hidden in the subconscious. Practice is required 
to avert memory failure. For example, you perhaps used to record TV programs with a VCR. You 
learned the necessary steps—they were both intuitive from the controls on the VCR, and you also 
understood that the TV had to be set on a particular channel. You could both execute and compre-
hend the necessary steps to record a TV program (know-how). That was a long time ago, however. 
Now there are DVDs, and systems have changed. So now you might have to admit that you have 
lost the know-how for how to record a TV program. 

Dreyfus and Dreyfus 9 focus much of their discussion of expertise on the premise that there are 
five stages of skill acquisition in the progression from novice to expert:

 1. Novice 
 2. Advanced Beginner
 3. Competent
 4. Proficient
 5. Expert

Stage 1: The novice just follows rules and has no coherent understanding of the task domain. 
There is no context to the rules, no understanding, just the ability to follow rules to accomplish a 
task. One example would be to follow a sequence of steps to get somewhere when driving. Another 
is following some instructions for example – assembling a new product, or typing in a computer 
program from a paper copy. 

Stage 2: The advanced beginner starts to learn more from experience and is able to employ 
contextual clues. For example, when learning to make coffee with a coffee machine, we follow the 
instructions, however, we also use our sense of smell to tell us when the coffee is indeed ready. In 
other words, we learn from clues that we can perceive in the task environment. 

Stage 3: The competent skill performer no longer needs to just follow rules, but also has a 
clear understanding of the task environment. He is able to make decisions, draw upon a hierarchy 
of rules, and to recognize patterns (which Dreyfus and Dreyfus call a “small set of factors” or a 
“constellation of those elements” 9). Competent performers might be goal-oriented and can alter 
their behavior according to conditions. For example, a competent driver knows how to alter his 
driving according to weather conditions, including speed, the gear, windshield wipers, mirrors, 
and so forth. At this point, the performer will have developed intuition or know-how. A performer 
at this level is still analytical, able to combine elements to make the best decisions based on his 
experience. 

Stage 4: The proficient problem-solver will not only be able to recognize what the situation 
and appropriate choices are, but will also be able to deliberate the best way to implement a solution. 
An example is the doctor who knows what a patient’s signs and symptoms suggest, and will care-
fully consider what the possible choices of treatment are. 

Stage 5: The expert “generally knows what to do, based on mature and practiced understand-
ing.” 9 When the expert copes with his environment, he does not see problems as detached from his 
effort to solve them, nor does he worry about the future and devise elaborate plans. “We usually 
do not make deliberative decisions when we walk, talk, drive, or carry on most social activities.” 9 
Hence, Dreyfus and Dreyfus suggest that experts become one with the environment or tableau they 
are working on. The driver is not just driving a car, but is “driving,” the pilot is not flying a plane, 
but is “flying,” and the chess grandmaster is not just playing chess, but rather becomes a partici-
pant “in a world of opportunities, threats, strengths, weaknesses, hopes and fears.” 9 Dreyfus and  
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Dreyfus further state: “When things are proceeding normally, experts don’t solve problems and 
don’t make decisions; they do what normally works” (ibid., p. 30). The main point Dreyfus and 
Dreyfus make is that “those who are proficient or expert make judgments based upon their prior 
concrete experiences in a manner that defies explanation” (ibid., p. 36). They conclude that “experts 
act irrationally”; that is, action without conscious analytic decomposition and recombination.

Dreyfus and Dreyfus argue that machines are inferior to the human mind in many ways, includ-
ing the way in which the human mind works holistically, for vision, for interpretation and judg-
ment, and that without this ability machines will always be inferior to human beings (the brain/
the mind). Although machines might be excellent symbolic manipulators (logic machines or infer-
ence engines), they lack the ability to holistically recognize and distinguish among similar images 

that humans have. For example, in facial recognition, machines cannot 
capture all the features that a human will, neither explicitly nor im-
plicitly. The Dreyfus brothers cite Hofstader, in Gödel, Escher, Bach: 
An Eternal Golden Braid 10 who argued that machines are required to 
recognize letters from their basic parameters (font, length, width of 
serifs, etc.) and basic features, opposed to holistically using judgment 

of similarity. Hofstader states “Nobody can possess the ‘secret recipe’ from which all the (infinite 
many) members of a category such as ‘A’ can in theory be generated. In fact, my claim is that no 
such recipe exists.” 10 

Firebaugh 11 discusses the fact that experts have certain characteristics and techniques that al-
low them to perform at a high level in their problem domain. One key distinguishing feature is that 
they get the job done, hence, performance. To accomplish this they are able to

• Solve the problem – this is fundamental, and without this ability the expert would not 
be an expert. 
Unlike some other AI Techniques (neural nets, genetic algorithms, consult  
Chapters 11 and 12) expert systems are able to explain their decision-making process. 
Consider a medical expert system which determines that you have six months to live; 
You certainly would like to know how this conclusion was attained.

• Explain the result – experts must be able to serve in an advisory capacity and explain 
their reasoning. Hence, they have a deep understanding of their task domain. Experts 
understand the underlying principles, how the principles relate to the problem at hand, 
and can apply them to new problems. 

• Learn – human experts continuously learn and thereby can improve their abilities. 
Perhaps this is the single most difficult aspect of human expertise that those in the field 
of AI aspire to for machines. 

• Restructure Knowledge – this is a unique feature of humans who can adapt their 
knowledge to a new problem environment. In this sense, expert human problem-solvers 
can be flexible and adaptive. 

• Break rules – exceptions, in some instances, are the rule. The real human expert 
knows the exceptions in his discipline. For example, a pharmacist knows what drugs or 
medications will not interact well with the prescribed drug when he fills a prescription 
for a patient. 

• Know their limitations – human experts know what they can and cannot do.  
They don’t accept tasks beyond their capabilities or too far afield from their standard 
areas. 

One wonders how impressed 
Hofstader and the Dreyfus brothers 
would be by progress in this domain 
in recent years.
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• Degrade gracefully – human experts do not just break 
down when confronted with difficult problems. That is 
they do not “crash”; likewise, this is unacceptable in expert 
systems. 

Let us consider and compare these features in expert systems: 

• Solve the problem – expert systems are certainly capable 
of solving problems in their domains. Sometimes they even 
solve problems that human experts could not solve, or come 
up with solutions that the human expert did not consider.

• Learn – learning is not a main feature of expert systems, 
but they can be taught by changes to their knowledge base or inference engine if  
necessary. Machine learning is another topic area and will be explored in Chapter 10, 
Machine Learning: Part I, Chapter 11, Machine Learning Part II: Neural Networks and 
12, “Search Inspired by Mother Nature.”

• Restructure knowledge – although this capability might exist in expert systems, in  
essence it calls for a change in representation, and this is difficult for machines.

• Break rules – for machines to break rules in the intuitive, informed way that a human 
expert might, is difficult. Instead, new rules will be added to existing rules as exceptions. 

• Know their limitations – perhaps aided by the World Wide Web, when a problem is 
beyond their realm of expertise, expert systems and programs in general today are able 
to refer to other programs wherein solutions can be found. 

• Degrade gracefully – instead of the computer screen just freezing or going blank, 
expert systems will usually explain where they are stuck or having problems, what they 
are trying to determine, and what they have ascertained to that point. 

Other typical features of expert systems include the following: 

• Separate the inference engine and the knowledge base. 
This is important in order to avoid duplication and to maintain efficiency of the  
program.

• Use as uniform a representation as possible. 
Too many representations could lead to combinatorial explosion and “obscure the actual 
operation of the system.” 

• Keep the inference engine simple.  
This prevents the programmer from getting bogged down and it is easier to determine 
what knowledge is critical to the system’s performance.

• Exploit redundancy.  
By bringing together as much diverse and relevant information as possible, incomplete 
and inexact knowledge can be avoided. (ibid., p. 374–375).

Giarratano and Riley (2005) 12 summarize the advantages of expert systems as follows:

• Increased availability
• Cost efficiency
• Embodiment of multiple sources of expertise

An example of an expert who 
understands the rules of his 
discipline and their exceptions can 
be taken from the violent movie 
Casino. Recall Robert De Niro at 
the end, when he cites a special 
protective feature of his 1980 
Cadillac that prevented its explosion 
despite a bomb being attached to the 
ignition!
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• Multiple information sources
• Fast Response

Despite all of these advantages, it seems appropriate to mention that there are a few well-
known weaknesses of expert systems. First, their deep subject-matter understanding, in a causal 
sense, as alluded to earlier, is shallow. Second, they lack common sense. For example, they might 
know that water boils at 212°F, but they don’t have any idea that boiling water can turn into steam, 
which can be used to run turbines. Hence, the efforts of Lenat, 13 who is building the largest ency-
clopedia of common-sense knowledge, Cyc. Third, they cannot demonstrate deep subject matter 
understanding. Even great expert systems with thousands of rules do not have a deep understand-
ing of their subject matter. e.g. MYCIN (See Section 9.5.3) does not have a deep understanding of 
human physiology.

huMAn interest notes

douglAs lenAt

D o u g l a s 
Lenat (1950 – ) is 
CEO of CyCorp 
and one of the 
preeminent AI 
r e s e a r c h e r s . 
Lenat received 
his PhD in 
C o m p u t e r 
Science in 1976 
from Stanford 
University, under 
the supervision 

of Edward Feigenbaum. 
His early work with the programs AM 

and Eurisko quickly gained him notoriety. 
AM, developed in LISP, stands for Automated 
Mathematician and was one of the first 
discovery programs, which in 1977 led to 
Lenat being awarded the IJCAI (International 
Joint Conference on Artificial Intelligence) 
Computers and Thought Award. AM generated 
and modified short LISP programs, which 
were interpreted to represent mathematical 
concepts. An example would be a program 
that could learn the notion of mathematical 
equality by comparing the length of two lists 
and discovering that they are equal. 

The program was sophisticated in the 
number and kinds of heuristics available, but 
also quite complicated. AM always chose 
the top task on its priority list, but this could 
become quite convoluted when combined 
with an intricate set of preconditions for 
rules. AM also was a good example of meta-
knowledge—the use of knowledge about 
knowledge—in its complex infrastructure of 
rules. Lenat attracted some controversy when 
he claimed that AM had solved Goldbach’s 
Conjecture (a famous unsolved mathematics 
problem) and the Unique Prime Factorization 
Theorem, which others disputed.

Eurisko (Greek for “discover”), which 
Lenat began in 1976, was intended to extend 
the domain of discovery of his program 
beyond mathematics, the limited domain of 
AM. Eurisko’s purpose was discovery of 
heuristics across a broad spectrum of domains, 
and in this sense it has been a great success, 
receiving the support of the Defense Advanced 
Research Projects Agency (DARPA).

One prevailing criticism of AI systems in 
the 1980s was that, although they had domain- 
specific knowledge, they lacked more general 
“common sense” knowledge necessary to tackle 
more general problems. In 1986, Lenat set out 
to build the largest database of common-sense 
knowledge, Cyc, and this has been his mission 
ever since. In Cyc, Lenat hopes to combine a 

Douglas Lenat 
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This section has explored human and machine expertise from a number of perspectives.
In the next two sections, we will focus on how machine expertise is accomplished. 

 9.2 CHARACTERISTICS OF EXPERT SYSTEMS
The first question that arises when one considers building an expert system is whether the do-

main and problem are suitable. Giarratano and Riley 12 have a series of questions that one should 
consider before embarking on the construction of an expert system:

• “Can the problem be solved efficiently by conventional programming?” If the answer 
is YES then an expert system is probably not the best choice.” Ill-structured problems 
where there are no efficient algorithms are most suited for the construction of an expert 
system.

• “Is the domain well-bounded?” A well-defined domain is most suitable, if problems 
in the domain draw upon expertise in other domains. For example, an astronaut must 
know a great deal more about her mission than she does about outer space, such as the 
mechanics of flight, nutrition, computer controls, electrical systems, etc.

• “Is there a need and a desire for an expert system?” There must be users (or a market) 
for the system, and the experts must also be in favor of building the system.

• “Is there at least one human expert who is willing to cooperate?” Without this, it is 
certainly not possible to proceed. The expert(s) must be in favor of the system and be 
willing to dedicate many hours to its construction. The expert(s) must be aware of the 
amount of time and cooperation that will be necessary.

• “Can the expert explain the knowledge so that it is understandable by the knowledge 
engineer?” This is a kind of litmus test. Can the two people work together? Can the 
expert be sufficiently clear in terms of his use of technical terms for the knowledge 
engineer to understand them and translate them into computer code? 

• “Is the problem-solving knowledge mainly heuristic and uncertain?” Such domains, 
based on knowledge and experience and the kind of “know-how” we have described 
above, are particularly suitable for expert systems. 

Note that the main differences are that expert systems tend to deal with uncertainty and inexact 
knowledge. That is, they might work correctly only part of the time, and the input data might be 
incorrect, incomplete, inconsistent, or have other flaws. Sometimes expert systems will even just 
give some answer—even a bad one. They note that at first this will perhaps seem very surprising 

powerful inference engine with millions of 
pieces of common-sense knowledge of over 
100,000 concepts, with thousands of links 
between concepts embodying relationships 
such as inheritance and “Is-A,” as discussed 
in Chapter 6. Lenat has also stated: “Once you 
have a truly massive amount of information 
integrated as knowledge, then the human 
software system will be superhuman, in the 

same sense that mankind with writing is 
superhuman compared to mankind before 
writing.” 
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and perhaps disturbing, but upon further consideration, it is consistent with notions of what an ex-
pert system is all about. 

Expert systems have been built for many purposes including those on the following list (based 
on Durkin): 14

• Analyze – to determine the cause of a problem given data

• Control – to ensure that systems and hardware perform according to specifications

• Design – to configure systems under certain constraints

• Diagnosis – to be able to make inferences about system malfunctions

• Instruction – to analyze, debug, and provide suggestive instruction for student errors 

• Interpretation – to infer a situation description from data

• Monitor – to compare observations to expected values

• Plan – to design actions according to conditions

• Predict – to predict likely consequences of a given situation

• Prescript – to recommend a solution to system malfunction

• Select – to identify the best choice from a number of possibilities

• Simulate – to model interactions between system components.

Expert systems have been built in a number of domains; Table 9.1 lists some of the most 
common.

See Appendix D.1 presenting a number of well-known, successful expert systems that have 
been developed across several domains. Thousands of expert systems have been built worldwide 
to date. 

Table 9.1 
Major application areas of expert systems.

Major Application Areas of Expert System
Agriculture Environment Meteorology
Business Finance Military
Certification Geology Mining
Chemistry Image Processing Power Systems
Communications Information Management Science
Computer Systems Law Security
Education Manufacturing Space Technology
Electronics Mathematics Transportation
Engineering Medicine
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 9.3  KNOWLEDGE ENGINEERING
Knowledge is the key to the power of any expert system. Knowledge will often arrive in a 

crude, inexact, incomplete, and poorly specified form. Like human amateurs, experts do not devel-
op instantly, but must be built incrementally over time. Knowledge will be inexact for probabilistic 
sciences such as medicine, geology, weather, and certain other disciplines, yet the techniques for 
propagating uncertainties have been highly developed (see Section 9.5.5) and expert systems can 
do this much more systematically, quickly, and accurately than humans can. Perhaps surprisingly, 
human experts often find it difficult to express the logic, intuition, and heuristics they use to analyze 
data when it comes under their management. Recall the introduction to Chapter 1, wherein this 
phenomenon was described through the example of the professor of mechanics and the unicyclist; 
both are fine doing what they do expertly, however, once they try to understand and explain their 
expertise, their performance dramatically degenerates. The unicyclist can’t explain her abilities 
and, likewise, the professor’s knowledge of the laws of mechanics won’t make him a successful 
unicyclist! 

In reporting on Themes and Cases of Knowledge Engineering, Feigenbaum 15 noted that the 
keys to building successful systems use the following approaches:

 1. Generate and Test – This approach is used not for any particular advantage that it has, 
but simply for the reason that it has been tried, tested, and employed for several decades. 
We hear of employing generate and test in the development of the heuristic DENDRAL 
program. 

 2. The use of situation–action rules – Also known as production rules (Chapter 7, “Produc-
tion Systems”), or knowledge-based systems, this representation facilitates effective 
construction of expert systems with ease of modification of knowledge, ease of explana-
tion, and so forth. “The essence of our approach is that a rule must capture a ‘chunk’ of 
domain knowledge that is meaningful, in and of itself, to the domain specialist” (ibid.).

 3. Domain-specific knowledge – Knowledge is the key, not the inference engine. The 
knowledge plays a critical role in organizing and constraining search. Knowledge in the 
form of rules and frames is easy to represent and manipulate. 

 4. Flexibility of the knowledge base – The knowledge base comprises rules whose grain 
sizes (see Chapter 6) are chosen appropriately. That is, small enough to be compre-
hensible and large enough to be meaningful to the domain specialist. In this way, the 
knowledge is flexible enough to be easily modified in terms of changes to, addition to, 
and subtraction of knowledge. 

 5. Line of reasoning – The construction of knowledge whose meaning, intention, and pur-
pose is clear to the domain specialist seems to be an important organizing principle in 
the construction of intelligent agents. 

 6. Multiple sources of knowledge – The integration of multiple sources of seemingly unre-
lated items of knowledge is necessary for the development and maintenance of a line of 
reasoning. 

 7. Explanation – The ability for the system to explain its line of reasoning is important 
(and necessary for system debugging and extension). This is considered an important 
knowledge engineering principle and must be given considerable thought. The structure 
of explanations and their appropriate level of complexity is also very important.
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In order to gain credibility from both the scientific and business world, AI needed systems that 
worked properly and were economical. Here is what Donald Michie 6 summarized as “practical 
insights” into the requirements for an expert system:

 1. The market for consultancy demands specialists, not generalists: this applies to automated 
consultancy too.

 2. Real-time operation is, in some applications, not just desirable, but essential.
 3. A consultant’s skill consists to an important degree in asking the client the right follow-up 

questions, as the outlines of the case take shape.
 4. Unless the program can do this, and can also explain its steps on demand, client confi-

dence suffers. 
 5. An expert system acts as a systematizing repository, over time, of the knowledge accu-

mulated by many specialists of diverse experiences. Hence, it can and does ultimately 
attain a level of consultant expertise exceeding that of any single one of its “tutors.” 

 6. Program text in the ordinary sense is an unsuitable and unpopular medium for the descrip-
tion and communication by human experts of their expertise; “advice languages” are 
needed. 

Figure 9.2 illustrates the main components of a rule-based expert system. Expert systems, due 
to their complexity, can be driven from either direction, (e.g., MYCIN), but Michie (ibid., p. 370) 

refers to them as “data-base driven.”
In Chapter 7 we described how AI systems, 

particularly production systems and expert systems 
based on them, are distinct from traditional com-
puter science programs because they tend to sepa-
rate the computational components from the knowl-
edge-based components. Hence, in terms of expert 
systems, the inference engine is distinct from the 
knowledge base. In Chapter 7 (Section 7.4) we also 
introduced concepts of top-down (procedural ap-
proaches) and bottom-up (data-driven) approaches. 

Their database typically comprises rules “in-
voked by pattern-match with features of the task-environment which can be added to, modified, or 
deleted by the user.” Databases of this type are called knowledge bases. Users can employ knowl-
edge bases in three typically distinct fashions:

 1. Getting answers to problems – user as client
 2. Improving or increasing the system’s knowledge – user as tutor
 3. Harvesting the knowledge base for human use – user as pupil (ibid.)

The people who use expert systems in mode 2 are known as domain specialists. It is not pos-
sible to build an expert system without the help of a domain specialist. The person who extracts the 
knowledge from a domain specialist and formulates it as a knowledge base is known as the knowl-
edge engineer. “The process of extracting the knowledge from the domain specialist’s head (a very 
important process) is known as knowledge acquisition.”

INFERENCE
ENGINE

User
interface

Explanation
facility

Knowledge
acquisition facility

Working
memory

GoalsKnowledge
base

(Rules)

Figure 9.2
Typical structure of a rule-based expert system.
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The process of constructing the knowledge base via a series of interactions between the domain 
specialist and the knowledge engineer is known as knowledge engineering.16 Often this process 
will involve a number of iterations and refinements of the rules over time by the knowledge engi-
neer as he becomes more familiar with the domain specialist’s rules. 

The knowledge engineer is always searching for the best tools available for representation and 
solution of the problem at hand. He tries to organize knowledge, to develop methods of inference, 
techniques for structuring symbolic information. He works closely with the domain specialist to 
try to build the best possible expert system. Knowledge and its representation in the system is 
re-conceptualized as necessary. The human interface to the system is improved and “linguistic 
transactions” of the system are made more comfortable for the human user. The system’s inference 
processes are made more understandable to the user.5

 9.4  KNOWLEDGE ACQUISITION 
The task of eliciting the knowledge from the expert and organizing it into a usable system has 

always been viewed as a difficult one. It is also most important to the power of an expert system 
and, in essence, represents the expert’s understanding of the problem. Knowledge acquisition is the 
formal name of this task, and it is the biggest challenge to building an expert system. 

Although sources of knowledge can be books, databases, reports, or records, the single most 
important source for most projects is the domain specialist or expert.14 (p. 519) The process of getting 
the knowledge from the expert is called knowledge elicitation. Knowledge elicitation can be a 
long and arduous task involving a number of tedious sessions. These sessions could be in the form 
of interactive discussion with exchange of ideas or in the form of interviews or case studies. In the 
latter form, the expert is observed as she tries to solve a real problem. Whatever the method, the 
goal is to uncover the expert’s knowledge and gain better insight into her problem-solving skills. 
People have wondered why the expert cannot simply be probed by questions for her knowledge. 
Let us not forget the following characteristics of experts:

 1. They tend to be very specialized in their domain and will tend to use language that is do-
main specific.

 2. They have largely heuristic knowledge, which is uncertain and imprecise.
 3. They have difficulties in expressing themselves.
 4. They bring to bear many sources of knowledge to achieve their performance.

Duda and Shortliffe 17 give their position on this issue by stating:

The identification and encoding of knowledge is one of the most complex and arduous 
tasks encountered in the construction of an expert system … the effort required to 
produce a system that is ready for serious evaluation (well before contemplation of 
actual use) is more often measured in man-years. 

Hayes-Roth et al.18 employed the famous term “bottleneck” in describing the construction of 
expert systems:

Knowledge acquisition is a bottleneck in the construction of expert systems. The 
knowledge engineer’s job is to act as a go-between to help build an expert system. 
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Since the knowledge engineer has far less knowledge of the domain than the expert, 
however, communication problems impede the process of transferring expertise into 
the job.

Of course, since the 1970s, there have been many attempts to automate the process of knowl-
edge acquisition with techniques such as machine learning, data mining, and neural nets, among 
others (see Chapter 11). In certain cases, these have proven successful. For example, there is the 
famous case of soybean crop diagnosis 19 wherein, starting with a set of primitive descriptors from 
the human expert pathologist (Jacobsen) and a training set of values for diseased plants with con-

firmed diagnoses, the program synthesizes a set of 
diagnostic rules. The unexpected discovery was 
that a machine-synthesized set of rules out-per-
formed those developed by the plant pathologist,  
Dr. Jacobsen, who acted as domain specialist. Ja-
cobsen provided the original set of descriptors and 
then tried to improve his rules with partial suc-
cess, as shown in Figure 9.3. With the machine’s 
rules 99% accurate, however, he abandoned this 
effort and adopted the machine-synthesized rules 
as the basis for his professional work.

There are five major classifications of knowledge:

 1. Procedural knowledge – rules, strategies, agendas, and procedures
 2. Declarative knowledge – concepts, objects, and facts
 3. Meta-knowledge – knowledge about the other types of knowledge and how to use them
 4. Heuristic knowledge – rules of thumb
 5. Structural knowledge – rule sets, concept relationships, concept to object relations 14  

(p. 521)

The sources of these diverse forms of knowledge might be experts, end users, multiple experts, 
reports, books, regulations, online information, programs, and guidelines. 

The processes of collecting and interpreting knowledge could require only several hours, but 
interpreting, analyzing, and designing a new model of the knowledge might, in contrast, require 
many hours (ibid., pp. 524–25).

We have already addressed some of the difficulties that can possibly be encountered when 
dealing with experts. Experts will tend to compile their problem-solving knowledge into a compact 
form that enables efficient problem-solving. They will also make mental leaps that go far beyond 
what the nonexpert knowledge engineer can appreciate or understand. Experts perhaps describe 
such leaps as intuition, but they could, in fact, be the result of some very complex reasoning based 
on deep knowledge (ibid. p. 527). Waterman 20 labels this dilemma the knowledge-engineering 
paradox, stating, “The more competent domain experts become, the less able they are to describe 
the knowledge they used to solve problems!” 

The process of converting shallow knowledge (which might be based on intuition) into deep 
or deeper knowledge (which might be hidden in the expert’s subconscious) is called the knowl-
edge compilation problem. Developing skill in knowledge elicitation can help to facilitate the 
knowledge-acquisition process. 

AQ11 in PL1 120 K byes of program space

Soybean data:

Test set:

Machine runs using

Rules of different origins

376 new cases

> 99% accurate diagnosis with machine rules

83% accuracy with Jacobsen’s rules

93% accuracy with interactively improved rule.

19 diseases
35 descriptors (domain sizes 2-7)
307 cases (descriptor-sets with confirmed diagnoses)

Figure 9.3 
Experiment by Chilausky, Jacobsen, and Michalski.19
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 9.5  CLASSIC EXPERT SYSTEMS
Expert systems with hundreds to several thousand rules have been built for over 40 years. In 

this section we will explore a few of the best-known systems and present their background, history, 
main features, and main accomplishments.

 9.5.1 DENDRAL
The story of DENDRAL, its longevity, and its overall importance as an example of expert-sys-

tems development, is almost as magnificent and old as the history of AI. The program is a success 
story from many perspectives, involving numerous chemists and computer scientists at Stanford 
University for many years, beginning in 1965. Many ideas pertinent to the development of AI, 
both in an experimental sense and in a formal analytic and scientific sense, were initiated with this 
project. For example, DENDRAL was an early and strong testament to the validity of the generate-
and-test algorithm, as well as the rule-based approach to building expert systems. 

The main developers of the system were Edward Feigenbaum (computer scientist), Joshua 
Lederberg (chemist, Nobel prizewinner in genetics), Bruce Buchanan (computer scientist), and 
Raymond Carhart (chemist), all at Stanford University.5 

DENDRAL’s task was to enumerate plausible chemical structures (atom-bond graphs) for or-
ganic molecules, given two kinds of in-
formation: (1) analytic instrument data 
from a mass spectrometer and a nuclear 
magnetic resonance spectrometer, and 
(2) user-supplied constraints on the an-
swers, derived from any other source of 
knowledge (instrumental or contextual) 
available to the user. Feigenbaum 21 ex-
plained it as follows: 

As Feigenbaum 21 noted. There was 
no algorithm for mapping the mass 
spectrograph of an unknown compound 
into its molecular structure. Hence, the 
task was to incorporate the experience, 
skill, and expertise of a human expert 
(Lederberg) into a program that could perform at a human-expert level. In the process of develop-
ing DENDRAL, Lederberg had to learn a great deal about computing, as Feigenbaum had to learn 
about chemistry. It became apparent to Feigenbaum that in addition to many specific rules related to 
chemistry, chemists use a vast amount of heuristic knowledge based on experience and guessing.11

The input to DENDRAL typically consisted of the following information on the compound 
under study:

• The chemical formula, e.g., C6H12O
• The mass spectrum for unknown chemical compounds (see Figure 9.4)
• Nuclear magnetic resonance spectroscopy information 
(www.fda.gov/Food/scienceresearch/laboratorymethods/drugchemicalresiduesmethodology/

ucm113209.htm) 
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Typical mass spectrum for unknown organic compounds. 
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DENDRAL then performs a heuristic search in three stages without feedback called: 
plan – generate – test. 

 1. Plan – This stage reduces the answer from the set of all possible configurations of atoms 
to those consistent with the constraints derived from the mass spectrum. Constraints can 
be applied to select molecular fragments that must appear in the final structure and those 
that must not appear (ibid.). 

 2. Generate – A program called CONGEN was then used to generate possible structures. 
“Its foundation is a combinatorial algorithm (with mathematically proven properties of 
completeness and non-redundant generation) that can produce all the topologically legal 
candidate structures. Constraints supplied by the use or by the ‘Plan’ process prune and 
steer the generation to produce the plausible set (i.e., those satisfying the constraints) 
and not the enormous legal set.” 5

 3. Test – This final stage ranks the output of the structures generated according to the qual-
ity of fit between the hypothesized mass structure and the experimental one.

DENDRAL would quickly reduce from hundreds of possible structures to several or possibly 
one. If several possible structures were generated, then they would be listed with probabilities at-
tached. 

Summary: DENDRAL demonstrated that computers could perform on a par with human experts 
in a restrictive domain. In chemistry it performed on a par or above a PhD chemist. The program 
was largely written in a dialect of Lisp called Interlisp. Subroutines such as CONGEN were writ-
ten in Fortran and Sail. It was widely marketed and used by chemists throughout the United States. 
Feigenbaum 5 (p.11) further states,

DENDRAL’s structure elucidation abilities are, paradoxically, both very general and 
very narrow. In general, DENDRAL handles all molecules, cyclic, and tree-like. 
In pure structure elucidation under constraints (with instrument data), CONGEN 
is unrivaled by human performance. … Within these areas of knowledge-intensive 
specialization, DENDRAL’s performance is usually not only much faster but also 
more accurate than expert human performance.

 9.5.2  MYCIN
There can be little doubt that the most famous and most quoted expert system is MYCIN. It 

also was started and developed at Stanford University, as the PhD thesis of Edward Shortliffe. 22 

This rule-based expert system was designed for diagnosis and therapy recommendations for infec-
tious blood diseases caused by bacteria in the blood and meningitis (bacterial disease that causes in-
flammation of the membrane surrounding the brain and spinal cord). Such diseases can be quickly 
fatal if not treated early. MYCIN required some 20-person years to develop, uses backward chain-
ing, and is comprised of more than 400 rules. Like DENDRAL, it was primarily written in Interlisp. 

Clearly, due to the life-threatening nature of possible illnesses, it was important to be able to 
quickly diagnose the particular infection present and to quickly be able to decide on an appropriate 
course of drug intervention. There was, therefore, a need for such a system, and this was consistent 
with the direction that AI was taking in the 1970s. 
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Furthermore, if the system was going to be accepted and successful, then it had to be interac-
tive and closely resemble interactions between physicians and resident blood infection experts. It 
should be able to answer doctors’ queries and in general be accommodating (rather than removed 
or obstructive) to physicians’ needs. 

MYCIN is the most written about, studied, and modeled program. Durkin 14 dedicates a whole 
chapter (Ch. 5, pp.131–62) to MYCIN and provides some very interesting insights to the system’s 
background, methods, performance, and evaluation. He notes that at the time (1970s), treatment 
procedures led to a misuse or overuse of antibiotics. He notes the study of Roberts and Visconti,23 
which “suggested that 66% of therapies selected by physicians were inadvisable and of these, over 
62% used inappropriate combinations of antibiotics” (p.132). He notes that it was a time when 
the introduction of penicillin led to the introduction of a large number of antibiotics. These drugs, 
though very effective when properly prescribed and used, could have harmful side effects. A stan-
dard desk reference, The Physician’s Desk Reference, was necessary and helpful. Furthermore, 
there was a shortage of expertise in the area of blood diseases. Hence, according to Durkin, for the 
reasons above, it seemed like a very good idea to develop the MYCIN program.

To prove its conclusion and be able to explain it, MYCIN works backward through its rule 
base, searching for confirming evidence. Using backward chaining, MYCIN could perform on a 
par with human experts. It confirmed that the power of experts’ abilities comes from their knowl-
edge and not some clever tricks. 

The important results that MYCIN represented, based on Durkin,14 (pp.134–140) are as follows:

• Knowledge is separated from control – a hallmark of all expert systems, and MYCIN 
was one of the earliest examples of this. If the rules change you don’t have to change 
the inference engine.

• Incorporates meta-rules (rules about rules) – when to break rules for special cases or 
situations.

• Employs inexact reasoning – MYCIN’s certainty factor (CF) ranged from −1 (definitely 
false) to +1 (definitely true). Another term is “degree of belief.” 

• Remembers prior sessions – like a good human expert, every experience in his sphere 
has an impact on expert knowledge. 

• Accommodates the user – the program has to be user friendly and transparent to the 
user/physician. 

• Natural language interaction – MYCIN interacts with the physician in a natural  
fashion. 

• Provides explanations – MYCIN can explain HOW and WHY it reached a particular 
conclusion. 

• Can provide alternative recommendations – MYCIN tries to provide alternatives for the 
physician to choose from. In doing this, the program is being cooperative rather than 
directive; hence the physician can feel that she is being helped rather than dictated to or 
controlled. 
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exAMple 9.1: hypotheticAl exAMples of how  
And why in A MedicAl systeM 

Two samples of the MYCIN program are represented in Figures 9.5a and 9.5b. 
Figure 9.5a shows a WHY and HOW to determine the suitability of surgery as 
a course of treatment for an elderly patient.

SYSTEM: How old is the patient?

USER: WHY

SYSTEM: This will aid in determining if the patient is a
good candidate for surgery.

Rule 057
IF  The patient is over 80 years old
AND  The patient is frail
THEN  The patient is probably not a good

candidate for open heart surgery.

SYSTEM: I recommend that the patient is not a good
candidate for surgery.

USER: HOW

SYSTEM: I used rule 048 to conclude that patient should
not undergo surgery:

Rule 048
IF  The patient is frail (weak)
THEN  Recommend against surgery.

I used Rule 057 to conclude the patient’s condition
IF  The patient is over 80 years old

AND  The patient is frail
THEN  The patient is probably not a good

candidate for open heart surgery.  
Figure 9.5a 
Illustrates a sample WHY and HOW plan from MYCIN.

My therapy recommendations will be designed to treat for organisms that are
either very likely or, although less likely, would have a significant effect on
therapy selection if they were present. It is important to cover for the following
probable infection(s) and associated organism(s):

INFECTION-1 is CYSTITIS
<Item 1> PSEUDOMONAS-CEPACIA [ORGANISM-5]
<Item 2> CITROBACTER-DIVERSUS [ORGANISM-4]
<Item 3> E.COLI [ORGANISM-3]

INFECTION-2 is UPPER-RESPIRATORY-INFECTION
<Item 4> LISTERIA [ORGANISM-2]

INFECTION-3 is BACTEREMIA
<Item 5> ENTEROCOCCUS [ORGANISM-1]

[REC-1] My preferred therapy recommendation is as follows:
In order to cover for items <1 2 3 4 5>:
Give the following in combination:
1) KANAMYCIN
Dose: 750 mg (7.5 mg/kg) q12h IM (or IV)
         for 28 days
Comments: Modify dose in renal failure
2) PENICILLIN
Dose: 2,500,000 units (25,000 units/kg)
         q4h IV for 28 days

 Figure 9.5b
Illustrates a sample diagnosis and treatment plan from MYCIN.

Figure 9.5b shows a recommendation for therapy that would rely on treatment 
for an infection through the use of drugs.

Summary: MYCIN is the most famous and successful expert system ever developed. 
Its purpose is to diagnose and recommend treatment of blood infections, and it was eventually 

used as a training program for medical interns. As a model, it is exemplary of many good features 
and reasons for why one would like to build an expert system. MYCIN employs probabilities, it 
has an explaination facility, it tries to communicate in a friendly and useful manner for physicians, 
and it has more than 400 rules. 

 9.5.3  EMYCIN
MYCIN proved to be such a successful expert system that it was determined that it should be 

generalized. William van Melle used the MYCIN inference engine and a 1975 Pontiac Service 
Manual to build a 15-rule system for diagnosing problems with the car horn circuit. This toy system 
provided the basis for the development of the first expert system shell, EMYCIN. The acronym, 
which was suggested by Joshua Lederberg, stands for “Essential” or “Empty” MYCIN. A shell is a 
special-purpose tool designed for certain types of applications in which the user must supply only 
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the knowledge base. In the case of EMYCIN the shell was made by removing the medical knowl-
edge base of the MYCIN expert system.12 (p. 28),24 Van Melle 25 wrote, “One ought to be able to take 
out the clinical knowledge and plug in knowledge about some other domain.” 

The goal was naturally to retain the excellent features of MYCIN, including the representation 
of domain-specific knowledge, ability to traverse the knowledge base, the ability to support uncer-
tainty, hypothetical reasoning, explanation facilities, and so forth. 

EMYCIN supported both forward and backward chaining and led to the development of many 
expert systems, including PUFF,26 an application for the diagnosis of pulmonary problems. It was 
a very important development for expert-systems technology because it provided a tool whereby 
expert systems could be built “cost effectively,” which we noted in Section 9.3 was a requirement 
for their success as listed by Donald Michie. EMYCIN served as the model for all future expert-
system shells.

 9.5.4 PROSPECTOR
PROSPECTOR was an early expert system designed for decision-making problems in min-

eral exploration. It was noted for using a structure called an inference network to represent 
its database. The program was written in 1978 by Richard O. Duda, who, at the time, was at 
Stanford Research Institute (SRI).27 We summarize its most important features as represented in 
Firebaugh. 11 (p. 345)

huMAn interest notes

edwArd shortliffe

E d w a r d 
Shortliffe (1947 – ) 
is another highly 
accomplished AI 
person; he hails 
from Edmonton, 
Alberta, but has 
made the United 
States his home, 
and is a unique 
individual in that he 
is highly educated 

and trained in two arenas— medicine and 
computer science. He graduated Magna 
Cum Laude in Mathematics from Harvard in 
1970, obtained a PhD in Medical Information 
Sciences from Stanford in 1975 and an MD 
in 1976. In 1976 he won the Grace Murray 
Hopper Award for the Outstanding Young 
Computer Scientist, based on his dissertation 
work on MYCIN. He is the author of dozens 

of articles and a number of books, but perhaps 
best known is Rule-Based Expert Systems: 
The MYCIN Experiments of the Stanford 
Heuristic Programming Project, which he 
wrote with Bruce Buchanan. 

As the main architect of MYCIN, which 
has been the basis for nearly all rule-based 
expert systems, given its 400 rules, use 
of forward and backward chaining, use of 
knowledge representation, and reasoning 
under uncertainty, Shortliffe has reached the 
pinnacle of success in AI. 

In 1980, Shortliffe founded the first degree 
program in Biomedical Informatics at Stanford 
University, a field which he is credited as being 
the founder of. Presently Shortliffe is Chair of 
the Department of Biomedical Informatics at 
Columbia University. He is a member of the 
Institute of Medicine of the National Academy 
of Sciences, and is regarded as a highly skilled 
administrator. In 2009, he became President 
and CEO of the American Medical Informatics 
Association (AMIA).

Edward Shortliffe.
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• The system represents fuzzy input on a range from −5 = certainly false to +5 = certainly 
true and produces conclusions with associated uncertainty factors. 

• The system’s expertise is based on the hand-crafted knowledge of 12 major prospect-
scale models and 23 smaller regional-scale models. The prospect-scale models describe 
major ore deposits:
o Massive Sulfide Deposit, Kuroko Type
o Mississippi-Valley-Type Lead-Linz
o Western States Sandstone Uranium

• Prospector doesn’t understand the rules in its knowledge base, but can explain the steps 
used in reaching its conclusions.

• The knowledge acquisition system KAS was developed for easy editing and expansion 
of the inference network structure in which the knowledge base is stored. 

• PROSPECTOR performs at the level of an expert hard-rock geologist and was success-
ful at prospecting. It predicted a molybdenum deposit near Mt. Tolman in Washington 
State, which was later confirmed by core drilling as having a value of $100 million.

Prospector uses a knowledge representation scheme called an inference network which is a 
form of semantic networks described in Chapter 6. Next, we will summarize the main features of 
inference networks and their correspondence to the elements of a semantic network.

Nodes – correspond to propositional assertions rather than a single noun. A typical model con-
tains about 150 nodes. A node might consist of the following assertions:

• There is a pervasively biotized hornblende.
• There is a cretaceous dike.
• There is an alteration favorable for the potassic zone of a porphyry copper deposit.

Arcs – Akin to semantic networks, arcs specify the relationship between nodes. In particular, 
they represent the inference rules that specify how the probability of one assertion affects the prob-
ability of another assertion. A typical model contains about 100 arcs. 

Inference trees – The nodes and arcs are organized in an inference tree with the following structure:

• Top-level hypotheses – no outgoing arcs
• Intermediate factors – both incoming and outgoing arcs
• Evidential statements – no incoming arcs 

PROSPECTOR works like a bottom-up tree, using evidence to forward chain  
to a location that suggests further exploration. The program is designed to run in three modes: com-

piled execution, batch processing, or interactive consultation. The 
user’s answers range from −5 (assertion absolutely false) to +5 
(assertion absolutely true). 

At any point in the interaction the user may ask WHY to ask 
the system for an explanation of the rationale for a question. There-
by the skilled geologist can follow PROSPECTOR’s line of rea-
soning. Other commands can provide tracing inferences, change 
assertions, and list the best “current estimate” of the prospect. The 
program also has graphics capability and can produce a map with 
probability distributions for success and failure in an area. 

For further information regarding the data 
listed in Table 9.2, see the following: 
Nokleberg et al., 1987. “Significant 
metalliferous lode deposits and placer 
districts of Alaska.” U.S. Geological Survey 
Bulletin 1786, p. 104. 
Cox, D. P., and Singer, D. A., eds. 1986. 
Mineral deposit models: U.S. Geological 
Survey Bulletin 1693, p. 379.
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Table 9.2 illustrates the effectiveness of the Prospector II expert system. Of 124 deposits clas-
sified by a panel of geologists, 103 were classified the same by Prospector II. 

“By combining Prospector II’s first and second choices as indicating a match with the classifi-
cations made by the panel, there was agreement in 111 out of the 119 deposits classified – that is, 
a 93 percent agreement.”

Table 9.2 Comparison of classification between Prospector 11 and panel of geologists using the 
Cox-Singer deposit classification for 124 metalliferous lode deposits in Alaska. 

 
 

 

Deposit type
(classified by panel of geologists) 

Frequency of ranking
 (classified by Prospector 11)

1st 2nd 3rd 4th 5th
1. Gabbroic Ni-Cu deposits (7a) 4 0 1 0 1
2. Podiform chromite deposits (8a) 1 0 0 0 0
3. Serpentine-hosted asbestos deposits (8d) 1 0 0 0 0
4. Alaskan-pge (9) 5 0 0 0 0
5. W skarn deposits (14a) 1 0 0 0 0
6. Sn skarn deposits (14b) 2 0 0 0 0
7. Sn vein deposits (15b) 1 0 1 0 0
8. Sn greisen deposits (15c) 1 0 0 0 0
9. Porphyry Cu deposits (17) 4 1 0 0 0

10. Cu skarn deposits (18b) 2 0 1 0 0
11. Zn-Pb skarn deposits (18c) 2 0 0 0 0
12. Fe skarn deposits (18d) 4 1 0 0 0
13. Porphyry Cu-Mo deposits (21a) 1 0 2 0 0
14. Porphyry Mo, low F deposits (21b) 1 0 0 0 0
15. Polymetallic vein deposits (22c) 14 3 0 0 0
16. Basaltic Cu deposits (23) 0 0 1 0 0
17. Cyprus massive sulfide deposits (24a) 0 0 1 0 0
18. Besshi massive sulfide deposits (24b) 3 0 0 0 0
19. Epithermal vein deposits (25b, 25c, 25d, 25c) 2 0 0 0 0
20. Hot-spring Hg deposits (27a) 3 1 0 0 0
21. Sb-Au vein deposits (27d, 27e) 5 0 0 0 0
22. Kuroko massive sulfide deposits (28a) 9 0 0 0 0
23. Sandstone U deposits (30c) 1 0 0 0 0
24. Sedimentary exhalative Zn-Pb deposits (31a) 2 0 0 0 0
25. Bedded barite deposits (31b) 2 0 0 0 0
26. Kipushi Cu-Pb-Zn deposits (32c) 1 0 0 0 0
27. Low-sulfide Au quartz vein deposits (36a) 25 1 0 0 0

 Totals 103 8 7 0 1

Source: McCammon, R. Numerical Mineral Deposit Models, Table 4. Available at http://pubs.usgs.gov/bul/b2004/html/bull2004numerical_mineral_
deposit_models.htm May 15, 2011
NOTE:  Alphanumeric characters in parentheses refer to model numbers in Cox and Singer (1986).



278  ■  Part  3   ·  Knowledge-Based Systems

 9.5.5 Fuzzy Knowledge and Bayes’ Rule
Geology and mineral exploration is a classic domain for the use and discussion of uncertainty. 

Fuzzy knowledge (as discussed in Chapter 8, “Uncertainty in AI”) deals with making good deci-
sions when dealing with uncertainty. PROSPECTOR works with rules of the form:

  IF E, THEN H (to degree LS, LN)
where 
  H = a given hypothesis
  E = evidence for the hypothesis
  LS = measure of support for hypothesis if E present
  LN = measure of discredit to hypothesis if E missing

The values of LS and LN are defined when the model is built and remain constant during the 
analysis. A small portion of the set of rules might read:

R1: IF E1 AND E2,  THEN H2(LS1, LN1)
R2: IF H2,   THEN H1(LS2, LN2)
R3: IF E3    THEN H1(LS3, LN3)

This net incorporates R1 – R3 from Figure 9.6 and indicates how evidence is used in reaching 
the hypotheses. H1 is the top level hypothesis or “conclusion” of this portion of the net. 

Prospector was the first expert system to incor-
porate Bayes’ Theorem for evidence for computing 
P (H | E) and propagating uncertainties through the 
system. See Chapter 8 for a discussion of this rule. 

In addition to using Bayes’ rule for computing 
probabilities, PROSPECTOR uses heuristics from 
the theory of fuzzy sets to propagate uncertainties 
based on logical contributions of assertions (A1, A2, 
… AK), in either a conjunctive or disjunctive form: 

Conjunction: A = A1 AND A2 AND … AK

 Disjunction: A = A1 OR A2 OR … AK,

Assuming that we know the probabilities P (Ai|E) associated with assertions Ai for the case 
in which evidence E is presented. The challenge is to propagate the probability of A being true in 
light of this evidence. Lotfi Zadeh (See Chapter 8) proposed the following set of heuristic equations 
which were applied in PROSPECTOR:

 Conjunction: P (A|E) = MINi (P Ai|E)

 Disjunction: P (A|E) = MAXi (P (Ai|E)

In brief, the Conjunction (AND) of assertions depends on the assertion with minimum fuzzy 
measurement of the assertions, while the Disjunction (OR) of assertions depends on the maximum 
fuzzy measurement of the assertions. Let us turn this fuzzy logic example into a real-world problem 
you can probably relate to: 

H1

E3

E1 E2

H2

AND

(S3,LN3)
(LS2,LN2)

(LS1,LN1)

(P1)

(P2) (P3)

(P4) (P5)

Figure 9.6 
Portion of inference net from PROSPECTOR.
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We want to determine the probability that someone whom you are about to meet will like you. 
Here are the pieces of evidence with probabilities:

 Evidence = e = You will meet

 E1 = You communicate easily = 0.80

 E2 = You matched well on the computer dating survey = 0.84

 E3 = Your life situations match = 0.80

 E4 = You are pretty busy = 0.50

Fuzzy logic will generate a conclusion of .50 that you will like each other. This might seem 
“unfair” since all the other pieces of evidence look good. (High matching, high probabilities. Keep 
in mind, however, that all the reasons you might not like each other haven’t been listed either! May-
be your match has some habits you really don’t like? Maybe your match is a workaholic? Maybe 
this person has reasons for desiring a courtship that are different from yours? Anyway, dating, like 
love, cannot be just a probabilistic thing!

On the other hand, let’s consider the Disjunction of Evidence Formula:

 If E1 Or E2 Or E3 Or … En, p(E|e) = Max[p(Ei|e)].

What is the probability that you will fall in love when you meet your match?
 E1 = She contacted me (Nice!) = 0.80
 E2 = We matched high on the computer dating survey = 0.80
 E3 = We have never met = 0.50
 E4 = We carry a large amount of life’s “baggage” into a relationship = 0.85 

Here, the Fuzzy Logic rule of Disjunction will go by E4. In reality, this is probably a good rep-
resentative value, and PROSPECTOR used an approach similar to this. 

Summary: It is noteworthy that thousands of prospective mineral deposits are usually explored 
before one is found that could lead to a profitable mine. The PROSPECTOR Project was funded 
by SRI, the U.S. Geological Survey and the National Science Foundation. Many of the researchers 
involved went on to join or develop successful commercial efforts with expert systems. 

 9.6  METHODS FOR EFFICIENCY
As expert systems grew and became more complex, it became evident that methods were need-

ed to handle rules efficiently in terms of search, conflict resolution and activation, and general man-
agement. In Section 7.4.1 of Chapter 7, we discussed conflict resolution strategies. In this section 
we will address two methods that have been developed for handling rules in critical situations and 
for efficiency. 

 9.6.1  Demon Rules
Demon rules are a way that expert system designers combine forward and backward chaining. 

Durkin 14 defines a Demon Rule as:

A rule that fires whenever its premises match the contents of working memory.
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The concept is that these “friendly demons” are there, sitting among backward-chain-
ing rules, but without participating in the backward chaining process. Instead they remain 
in the background, until “called upon” by information that appears in working memory. 
When called, the demon will fire and enter its conclusion into working memory. The new in-
formation it generates could support backward-chaining rules, or “it might set into mo-
tion other demon rules that collectively act like a series of forward chaining rules” (ibid.). 
Demons thereby allow systems to be self-modifying, an essential aspect of applications that need 
to adapt to new situations.14 (p. 115) 

We present the notion of demons through the hypothetical example of nuclear power station 
fire alarms. Alarms will be set off when there is too much heat. Too much heat means that machines 
should be shutdown. If machines are shutdown, then the building should be evacuated. Using back-
ward chaining will help a complete system shutdown so that diagnosis of the problem can be done. 

Demon 1 Generator Heat Problem
  IF POWER IS OFF 
  AND TEMPERATURE IS > 500,
  THEN PROBLEM = GENERATOR HEAT PROBLEM

Demon 2 Emergency Situation / Sound Alarms
  IF PROBLEM = TANK PRESSURE,
  THEN SITUATION = EMERGENCY / SOUND ALARMS

Demon 3 Evacuate
  IF SITUATION = EMERGENCY, 
  THEN RESPONSE = EVACUATE PERSONNEL

We can see how these demons work together (in a backward chaining style) to han-
dle this potential emergency situation. Heat will set off alarms and alarms will lead to the  
evacuation of the building. 

 9.6.2 The Rete Algorithm
The Rete Algorithm involves efficient negotiation of a number of component procedures of 

expert systems that we have already discussed in Chapter 7 (including Markov Chains) and in our 
present discussion. Once one gets into the construction of fairly large expert systems of dozens to 
hundreds of rules, matters of efficiency become rather important. That is, we need a procedure that 
knows which rules will apply without having to test each of them sequentially. 

In his PhD thesis on the OPS (Official Production System) Shell, (1979 at Carnegie Mel-
lon University), Charles Forgy developed a solution to this prob-
lem. Forgy’s concept was that the net could hold much information 

about rules and rule firings, and this could significantly reduce the amount of searching needed. 
The Rete Algorithm is a dynamic data structure, which can be reorganized once search proceeds.

Giarratano and Riley 12 (p.38) state, 

The Rete Algorithm is a very fast pattern matcher that obtains its speed by storing 
information about the rules in a network in memory. The Rete Algorithm is intended 
to improve the speed of forward-chained rule systems by limiting the effort required 
to re-compute the conflict set after a rule is fired.

The word “Rete” means “net” in Latin.
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The algorithm is costly in terms of memory space requirements, but this is not a problem 
because memory has become very inexpensive. The Rete, as it is known, takes advantage of two 
empirical observations that were used to come up with its data structure, as Giarratano and Riley 
further state:

 1. Temporal Redundancy – The firing of a rule usually changes only a few facts, and only 
a few rules are affected by each of these changes.

 2. Structural Similarity – The same pattern often appears 
in the left-hand side of more than one rule (ibid.).

In the 1970s, when computers were much slower, and with 
expert systems having thousands of rules, The Rete Algorithm was 
an important practical tool which could facilitate fast execution. 

On every cycle of its execution, the algorithm looks only for 
changes in matches of rules. This greatly speeds up the matching 
of facts to antecedents over trying to match facts against every rule 
on every recognize-act cycle. See Figure 9.7 

The Rete Algorithm has been an important contributor to the 
practical and efficient application of expert systems. 

 9.7  CASE-BASED REASONING 
This section introduces case-based reasoning (CBR), an approach to problem-solving that 

really is the basis for many of the fundamental ways civilized man functions and makes decisions. 
The essence is that we learn from experience—the experiences others have had and our own expe-
riences. It is on this basis that we make decisions. Naturally, these experiences must somehow be 
documented, otherwise their usefulness is limited. You may have heard the saying: “What is the 
purpose of history if we don’t learn from it?” 

Lawyers, doctors, teachers, mechanics, sportsmen, or trades-people—people make decisions 
based on their previous experiences. For lawyers it is precedent. How have cases with similar cir-
cumstances in the past been resolved? What is the tendency of the particular judge we are dealing 
with? Is he conservative or liberal? What kind of decisions is the judge likely to make, based on 
the precedents in similar cases? The medical profession is similar; most decisions doctors make 
are actually based on probabilities— the kinds of Bayesian probabilities that you learned about in 
Chapter 8. Given the particular signs and symptoms that a patient has had, and given the patient’s 
age, medical history, and other known relevant factors (e.g., existing conditions, previous surgeries, 
allergies to drugs, medical insurance) a doctor is able to make the decision(s) most likely to result 
in a favorable outcome. Furthermore, today’s doctors must also be aware of how their decision(s) 
might result in a malpractice suit! For a teacher, the circumstances are similar. We use techniques 
that have worked in the past. If a certain course has gone well with a certain text book or a certain 
order of topics or with certain materials, we will tend to use them again. If not, we will vary and try 
things out according to our experience. It is the same for auto mechanics and other trades people; 
people in all walks of life learn from experience and know how to ply their trades. 

Very little that one can read in books can entirely compensate for the knowledge gained by ex-
perience. Rules are good to know, for example, you should not drive a brand new car at full speed 
for the first 1000 miles; but possibly, rules of thumb, heuristics, are even more important— for 
example, “don’t drive a large luxury sedan as you would drive a sports car”— are even more im-

Facts

RULES

GOALS

Figure 9.7 
An interesting feature of the Rete Algorithm is the discovery 
of the notion that it is more efficient to match a few facts 
maintained in the inference cycle against antecedents of rules, 
than to check rules for facts.
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sidebAr
ex A M p l e:  bA s e b A l l cbr
Let us imagine that we could represent any baseball game situation with 
a 6-tuple. The 6-tuple would consist of: (1) the inning, (2) the number of 
outs, (3) the number of base runners, (4) the score (5) the batter, and (6) 
what the case-based reasoning system suggests should be done (swing, 
take a pitch, bunt). The top of the inning is represented by positive num-
bers and the bottom of the inning by negative numbers. The number of 
base-runners and their positions can be represented as follows 0 = no one 
on base, 1 = runner on 1st base, 2 = runner on 2nd base, 3 = runner on 3rd 
base, 4 = runners on 1st and 2nd, 5 = runners on 1st and 3rd base, 6 = run-
ners on 1st, 2nd, and 3rd base (bases loaded). The score can embed whether 
we are winning or losing, for example, +6 4 means we are winning 6 – 4, 
whereas −6 4 means we are losing 6 – 4. 

So let us say we have the following 6-tuple representing a game situation 
for the New York Yankees in 2010: (−8, 0, 4, −2 3, 13, 3). This 6-tuple 
translates to: (1) We are in the bottom of the 8th inning; (2) there is no one 
out; (3) there are runners on 1st and 2nd; (4) the Yankees are losing 3–2; (5) 
Number 13 is at bat, and (6) the system recommends a bunt. This means 
that the superstar Alex Rodriguez (one of the best and highest paid players 
in baseball) is batting. The percentage play that the CBR should discover 
for most players, and the best suggestion in the circumstance, is to bunt the 
runners over to 2nd and 3rd bases, and there would be one out. That is why 
well over 50% of the situations in which there are runners on 1st and 2nd 
with no one out result in a run scored. Here, however, is where the CBR 
system would have to demonstrate some a priori knowledge or intelligence 
for the 2010 New York Yankees—Alex Rodriguez never bunts. A study of 
a database of previous cases would reveal that he has bunted very rarely 
in his career and in similar previous situations has not been asked to bunt, 
even though this is by far the best recommended percentage play. There 
are three other players on the present-day New York Yankees Team who 
are never asked to bunt in  
similar situations. They are: 
Jorge Posada (20),† Mark  
Texeira (25), and Robinson 
Cano (24) ‡ . Each of these 
players is considered such a 
big slugger that he is never  
asked to bunt, in any situa-
tion. Our CBR would have to 
recognize the general case and 
distinguish the special cases of 
Rodriguez, Posada, Texeira, and 
Cano batting (via their numbers 
–13, 20, 25, 24). 
†Now retired
‡Now (2014) playing for Seattle Mariners

portant. Why? Because, such rules of thumb 
tend to cover a greater number of situations. 
It is most important, however, that whatever 
kinds of rules or heuristics we follow, we 
understand the underlying reasoning behind 
them and therefore know why and when to 
invoke them. One might ask, “Why did I pay 
the mechanic for the little job he did? He 
only tightened a screw— anyone could have 
done that.” The answer, of course, is: “You 
paid him for his know-how— the fact that he 
knew which screw to tighten!” 

Finally, let us consider the case of ath-
letes or sportspeople. Almost everything they 
do is based on statistics and trying to match 
or improve on past performance. In baseball, 
it might be how well does a batter do against 
a particular pitcher? Nearly all decisions by 
the manager are based on precedent or sta-
tistics. What outcomes are most likely to be 
brought about by certain actions in certain 
situations? 

In essence, this is what (CBR) is all 
about. That is, building AI systems that are 
able to match cases of solutions according 
to precedent; in other words, trying to solve 
new problems by matching them to solutions 
of old problems. Hence, it is about building 
knowledge-based systems that learn from 
previous situations.28 The main element of a 
CBR system is the case base; a structure that 
stores the problems, elements (cases), and 
its solutions. Therefore, a case base can be 
visualized as a database where a collection 
of problems is stored, keeping a relationship 
with the solutions to every problem stored, 
which gives the system the ability to general-
ize in order to solve new problems. 29

The learning capabilities of CBR sys-
tems are defined by the result of their own 
structures, typically composed of four phas-
es: retrieval, reuse, revision, and reten-
tion.30 The first phase, (retrieve) consists of 
finding the case most similar to the proposed 
problem, and retrieving it from the case base. 
Once a series of cases are extracted from the 

I (DK) did a little research and 
discovered that my suggested strategy 
that one should bunt with runners 
on first and second and no one out 
in a close game is considered a bit 
archaic. Most baseball analysts do 
not think so cautiously, but the key is 
the probability of generating a run – 
The contemporary thinking is that it 
very much depends on who is batting. 
A very interesting discussion can be 
found at: http://baseballanalysts.com/
archives/2006/07/empirical_analy_1.
php June 15, 2010.
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case base, the second phase (reuse) adapts the selected case to fit the current problem. Once the 
system finds a solution to the problem it is revised and checked to see whether it is indeed a solution 
to the problem. Once the proposed solution is confirmed as appropriate, it is retained and can serve 
as a solution to future problems.29

One of the main issues for CBR design is the choice of a data structure. Data structures can 
range from simple tuples, which store the cases to be matched and their solutions, to complex proof 
trees. Most typical are a large number of situation–action rules, whereby the rules are the most 
salient features to be matched, and the operators comprise transformations to be used in new situ-
ations. 

The most difficult decision for CBR systems is the choice of the most salient features of cases 
for indexing and retrieval. 29 Kolodner suggests that it is most important for cases to be organized 
by the goals and needs of the problem solver; this requires careful analysis of the case descriptors 
in the context of how they will be used in the problem solution. 30

Kolodner offers the following set of possible preference heuristics to facilitate the storage and 
retrieval of cases: 

 1. Goal-directed preference. Organize cases at least in part by goal descriptions. Retrieve 
cases that have the same goal as the current situation.

 2. Salient-feature preference. Prefer cases that match the most important features or those 
matching the largest number of important situations. 

 3. Specify preference. Look for cases that match features as closely as possible, before con-
sidering more general matches. 

 4. Frequency preference. Check first the most frequently matched cases.
 5. Recency preference. Prefer case used most recently. 
 6. Ease of adaptation preference. Use first cases most easily adapted to the current situation 

(Luger, p. 307–308).

The notion of “similarity” becomes a more important and subtle issue. Selecting and defining 
the vocabulary that determines similarity is an important factor. As the number of cases for match-
ing increases, good and bad factors arise; that is, more cases offer the opportunity for better match-
ing, but the process of matching also becomes more complex and time consuming. 

CBR is not a new area of AI and is often used when the domain rules are incomplete, ill-de-
fined, or inconsistent.31 Case-based approaches can be useful in enabling an expert system to learn 
from previous experiences by storing solutions that have worked or failed in the past. This can 
greatly curtail the overall problem-solving process. Long before expert systems were developed, 
an early example of learning from experience was the building of signature tables of heuristics for 
checkers programs by Arthur Samuel.32 His work, which tried to identify and store good and bad 
board situations, will be presented in detail in Chapter 16, “Advanced Computer Games,” and will 
be applicable to this discussion. 

During the past 20 years, CBR has drawn a great deal of attention via the large number of 
successful commercial and industrial computer applications that have been developed using this 
approach. Systems commonly in daily use include applications assisting in customer support, sales 
support, diagnostics, and help-desk systems as described by Watson.33, 34 The earliest CBR sys-
tems were developed nearly 30 years ago. One of the first systems was developed by Rissland and 
was designed to support legal arguments.35 CASEY and PROTOS were early CBR systems that  
exploited case histories of patients and interns’ experiences with other patients. 36, 37
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As described earlier, auto mechanics and experts in hardware diagnosis in general will bring 
extensive theoretical knowledge of electronic and mechanical systems, including recall of suc-
cessful and failed experiences, to the process of solving a new problem. CBR has proven to be an 
important component of many hardware diagnostic systems. Skinner and Luger used CBR on the 
maintenance of signal sources and batteries in earth-orbiting satellites.39 Later, this was applied to 
failure analysis of discrete component semiconductors.40 Automated explanation for why a particu-
lar case is chosen as the best match is desirable but difficult to achieve. Perhaps more importantly, 
any degree of sophistication in the explanation of how and why a particular case is chosen is 
particularly difficult, though not necessarily of importance. In the case of recurring weak satellite 
signals, CBR could not discern their causes, and this introduces an example of a different approach 
to problem solving: model-based reasoning, which was able to accomplish the task of identifying 
the cause of weak satellite signals.39, 28 (p.309) 

huMAn interest notes

JAnet kolodner

Janet L. 
Kolodner (1954 
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the School of 
I n t e r a c t i v e 
Computing at 
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and founding 
editor in chief of 
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the Learning Sciences, an interdisciplinary 
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learning and education. She obtained a BS 
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from Brandeis University, and then an MS 
and a PhD (1980) from Yale. During the 
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publications in the field, also demonstrating 
how CBR could be linked with analogy. Her 
book, Case-Based Reasoning 38 synthesizes 
work across the field of CBR from its inception 

to 1993. The notion of a case-based design aid 
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with the kinds of information in them that 
can help with design decisions, comes from 
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During the late 1980s and early 1990s, 
Kolodner used the cognitive model implied 
by CBR to address issues in creative design. 
Automated case-based reasoners from her 
lab have focused on CBR for situations of 
real-world complexity. She has developed 
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by Design,” and it is incorporated into the 
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called Project-Based Inquiry Science (PBIS).

Kolodner was founding director of Georgia 
Tech’s EduTech Institute, whose mission 
was to use what we know about cognition to 
inform the design of educational technology 
and learning environments. EduTech’s major 
efforts, under her direction, were in the areas 
of design education and software in support of 
collaborative learning.

Janet L. Kolodner



 Chapter  9   ·  Expert  Systems   ■  285

ApplicAtion box 

cbr for finding oil slicks

Recently (June 2010), in the Gulf of Mexico, there occurred the worst oil spill ever known. The cost 
amounted to billions of dollars, and there ensued far-reaching effects on the ecological life and economic 
welfare of the entire region, and the potential for disastrous consequences for the entire Eastern seaboard.

In 2008, Aitor Mata and Juan Manuel Corchado published a paper titled “Forecasting the Probability 
of Finding Oil Slicks Using a CBR System,” 41 which addressed how such disasters could be avoided. 
Given complex oceanic conditions, numerous variables and elements, this is a difficult problem. The 
basis of such an effort is the gathering of data from previous spills, including measuring numerous 
variables, piecing them together using satellite images to obtain the precise position of slicks. The basis 
for the study by the authors is the Prestige Oil Spill generating data from November 2002 to April 2003. 
The program generates a probability of between 0 and 1 of finding an oil slick after an oil spill. Once an 
oil spill occurs, it is important to determine if an area will be contaminated. The more data available on 
how oil slicks behave, the better we can determine how they will behave, and this is done by obtaining 
Synthetic Aperture Images (SAR) images by satellite. Areas where there appear to be no waves are 
indicative of oil spills. Figure 9.8 illustrates an SAR image which shows oil spills (ibid., p. 8240). In this 
way, normal sea variability can be distinguished from oil slicks. The distinction between the surface of an 
oil slick and normal quiet waters, however, is sometimes difficult to distinguish, however, by applying a 
series of computational tools this can be resolved. In addition, once a slick is identified, collecting various 
atmospheric, maritime, and weather condition data can help explain how slicks evolve. 

Then Oil Slick CBR (OSCBR, as the system is known) combines the capabilities of CBR and the 
power of artificial intelligence techniques. As part of the pre-processing, historical data is collected and 
then principal components analysis (PCA) is used to reduce the number of variables and therefore the 
number of candidate cases. Then a technique called Growing Cell Structures (GCS) is used to organize 
cases by their similarity and proximity. Mata and Corchado state:

“When a new cell is introduced in the structure, the closest cells move towards the new one, changing 
the overall structure of the system, as shown in in (2) and (3). 

Oil

Oil

Shipwreck

Figure 9.8 
NASA Satellite image showing an oil slick. 
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The weights of the winning, Wc, and its neighbors, Wn, are changed. The changed value is represented by 
Wc (t +1) and Wn (t + 1) respectively. The terms εc and εn represent the learning rates for the winner and χ, the 
value of the input vector. 

Wc(t + 1) = Wc(t) + εc ( χ − Wc)

Wn (t + 1) = Wn (t) +εn (χ −Wn)

The pseudocode of the insertion process is shown below 

Growing Cell Structure Insertion Pseudocode: 

(1) The most similar cell to the new one is found.

(2) The new cell is introduced in the middle of the connection between the 
most 

(3) similar cell and the least similar to the new one.

(4) Direct neighbors to the closest cell change their values by approximating 
to 

(5) the new cell and specified percentage of the distance between them and 
the new cell.”

(ibid. p. 8243). 

This takes care of the first phase of CBR, retrieve. The problem of finding the most relevant candidate cases 
uses the GCS again. The similarity between cases is determined by calculating a multidimensional distance. Then 
the problem of predicting the future probability of finding oil slicks in an area is generated using an artificial 
neural network with a hybrid learning system. Radial basis functions are a type of neural network (See Chapter 
11), which is efficient in training to identify the most similar cases in the case base to the proposed problem 
(ibid.). This addresses the problem of reuse. 

A set of square colored areas appear and the intensity of their color corresponds with the possibility of 
finding an oil slick in that area. The proposed solution is to check with a human user, and the system provides 
an automatic method of revision that must be checked by an expert. Explanations for the proposed solution are 
reviewed, and its proximity is compared with other selected cases. As long as the proposed solution does not seem 
too far afield, it is accepted. Once accepted, the solution is considered good and retained and added to the case 
base for future use with new problems. 

The OSCBR system, using a combination of AI techniques with CBR, has proven to be close to 90% accurate 
in predicting oil slicks as the number of cases increases. The burning question, however, is “What can the OSCBR 
system been able to do future oil spoils?”
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 9.8  MORE RECENT EXPERT SYSTEMS 
More recent expert systems integrated other well-known and tested approaches to dealing with 

large amounts of domain-specific data, including databases, data mining, machine learning, and 
CBR. Hybrid-intelligent approaches have been used in many diverse areas, such as speech/natu-
ral language understanding, robotics, medical diagnosis, fault diagnosis of industrial equipment, 
education, assessment, and information retrieval. In this section, we will briefly present and de-
scribe some examples of these systems. 

 9.8.1  Systems for Improving Employment Matching
Kouremenos Drigas et al. have developed a number of expert systems during the past two de-

cades, but particularly suitable for times of a suffering economy was their development of a system 
for matching jobs with the skills of the unemployed in more than a rudimentary Boolean way. 42 An 
earlier expert system that tried to match qualified individuals with small companies was the Skills 
Analyzer Tool.43 It combined neural networks (see Chapter 11) with rule-based analysis to match 
employees with certain jobs on new projects. Collaboration filtering techniques were used in a 
later system (CASPER) to help enforce intelligence in the search engine of the JobFinder Web site 
(www.jobfinder.com).43,44 CASPER consisted of a user profiling system, an automated collaborative 
filtering engine for recommendation services, and a personalized retrieval engine. Mobile Agents 
Technology (see Chapter 6, Section 6.12) has been applied to the EMA employment agent and is 
a typical recommender agent.45 The methods of CASPER and EMA have been extensively used in 
recommendation and information retrieval, but one could hardly call them experts in job matching. 

The system for job matching developed by Drigas et al. employed the following features:

 1. Connectivity with a corporate database contains the unemployed, employers, and offered 
jobs records 

 2. Use of neurofuzzy techniques (see Chapters 8 and 11) for the inductive training (through 
examples) of complex fuzzy terms, also used in the final evaluation phase

 3. Supervised retraining of the neuro-fuzzy network when recommended by the  
administrator 

 4. Fuzzy models that design and develop the fuzzy inference engine 
 5. Combination processing of the fuzzy elements for the final data evaluation 
 6. Flexible and friendly user interface in Visual Basic 42

Large training sets of old historical records of unemployed who belonged to the same social 
class, previously rejected or approved at several posts, were used to define the weights of the sys-
tem parameters. Retraining was performed after a standard number of new cases became available. 
The output was a measure of the suitability for certain jobs by the unemployed (ibid.). 

 9.8.2  An Expert System for Vibration Fault Diagnosis
One of the important roles of expert systems is fault diagnosis. In the case of expensive, high-

speed, critical machinery, early and accurate detection of faults is very important. In the case of 
machinery, a common indicator of abnormal conditions is vibration in rotating machinery. Upon 
detection of a fault, the maintenance engineer is able to identify symptomatic information, interpret 
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various error messages and indications, and come up with the correct diagnosis. That is, the com-
ponents that might have caused the fault and the reasons the component(s) has failed. 45

Machinery will tend to have hundreds of parts and be highly complex. It will require domain-
specific expertise to diagnose and repair machinery. A decision table (DT) is a compact, fast, ac-
curate way to solve problems (see the CarBuyer Example in Chapter 7). 

The VIBEX Expert System combines decision table analysis (DTA) constructed on known 
cases and a DT constructed for the purpose of making classifications using the inductive knowl-
edge acquisition process. The VIBEX DT, coupled with machine learning techniques (See Chap-
ters 11 and 12), makes diagnoses more efficiently than the VIBEX (VIBration Expert) TBL, deal-
ing with 14 vibration causes and cases where the probability is high.46 The DTA is constructed in 
cooperation with a human expert, resulting in a set of rules that compose the knowledge base of 
the system. The Bayesian algorithm (Chapters 7 and 8) is then used to establish certainty factors 
for the rules. The DT analysis then employs the C4.5 Algorithm 47 as a convenient way to sys-
tematically break down and classify the data. This requires definition of the classes that represent 
the vibration cause, and attributes that represent the vibration phenomena required for sets of 
samples to enable machine learning. The C4.5 uses inductive inference from examples to build 
the decision tree. Thereby, it plays a role itself as a vibration diagnostic tool. VIBEX embeds 
the cause-result matrix, comprising some 1800 confidence factors suitable for monitoring and 
diagnosing the rotating machinery.

 9.8.3  Automatic Dental Identification 
For forensic reasons, it is very important to be able to quickly and accurately assess dental 

records. Given the abundance of data available, particularly as a result of mass disasters such as 
wars, natural disasters, and terrorist attacks, the automation of identification of dental records is 
both necessary and very useful. 

In 1997 the Criminal Justice Information Services (CJIS) division of the FBI created a Dental 
Task Force (DTF) to foster the creation of an Automated Dental Identification System (ADIS). 
The purpose of ADIS was to provide automated search and matching capabilities for digitized 
radiographs and photographic images, in order to generate a short list for dental forensic agents.48 
The philosophy behind the architecture of the system is to exploit high-level features for fast 
retrieval of a candidate list. A potential match’s search component uses this list and then refines 
the candidate list, using low-level image features reducing to a short match list. Hence the archi-
tecture includes (1) a Record Preprocessing component, (2) a Potential Matches Search compo-
nent, and (3) an Image Comparison component. The record preprocessing component handles 
the following five tasks:

 1. Record cropping into dental films 
 2. Enhancement of films to compensate for possible poor contrast 
 3. Classification of films into bitewing, periapical, or panoramic views 
 4. Segmentation of teeth from films 
 5. Annotating of teeth with labels corresponding to their location

There are three modes of operation for the Web-ADIS: (1) configuration mode, (2) identifica-
tion mode, and (3) maintenance mode. Configuration mode is for tuning, Identification Mode is 
used by the client to get the mechanics for the submitted record.
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The Maintenance Mode is used for uploading the database server with new reference records 
and also to enable updating of the preprocessing server. The system has achieved a genuine accep-
tance rate of 85%. 

 9.8.4  More Expert Systems Employing Case-Based Reasoning
Now we will briefly discuss some more recent systems that employ CBR. The work of He 

et al.49 addressed interface design of Web-based CBR retrieval systems. They note that although 
there exist a number of systems that assist with customer support, sales support, diagnostics, and 
help-desk systems, most have focused on functional capability and implementation, rather than 
interface design. Interface design is an important component of systems design, and, as He et al. 
(ibid.) argue, more effort needs to be devoted to the study of users’ mental models for searching a 
CBR system. Conceptual descriptions with conceptual schemas can be provided by the CBR re-
trieval system to enable users to receive training to achieve higher levels of learning and problem 
solving. 50 The value of a hybrid approach combining CBR with a rule-based approach for domain 
independent decision support in an ICU was demonstrated by Kumar, Singh, and Sanyal (2007). 51 
The case base consisted of several domains such as poisoning, accident, cancer, viral diseases, and 
others. Flexibility was induced by giving more importance to the CBR system and making sure that 
the rule base consists of rules that are common for all domains of the ICU.

 9.9  CHAPTER SUMMARY
Chapter 9 discusses one of the oldest, most well-known, and most favorably recognized fields 

of AI – expert systems. They are ideal for domains that are well defined, in which there is a large 
corpus of human expertise and knowledge, yet the knowledge is mainly heuristic and uncertain. 
Although expert systems do not necessarily perform in the same manner that human experts will 
perform, they are built on the premise that they are somehow mimicking or modeling the deci-
sion-making and problem-solving skills of human experts. An important feature of expert systems, 
which sets them apart from typical programs, is that they will usually include an explain facility. 
That is, they will try to explain how they reached their conclusions, in other words, what kind of 
chain of reasoning did they use to reach a conclusion? 

Section 9.1 provides a background on what kinds of inventions in the late nineteenth and early 
twentieth centuries led up to the development of expert systems. Section 9.1.1 discusses some of 
the essential differences between human and machine expertise. Some of the key abilities of human 
experts include the ability to: (1) solve the problem correctly, (2) explain their results and how they 
were attained, (3) learn from experience, (4) restructure knowledge, (5) break rules, (6) know their 
limitations, and (7) degrade gracefully. Some features that expert systems do offer include: knowl-
edge that is separate from the inference engine, an inference engine that is simple, redundancy that 
can be exploited, increased availability, reduced cost, reduced danger, multiple expertise, and so forth. 

Section 9.2 discusses the characteristics, variety of uses of expert systems, and the wide areas 
of application of expert systems, including, for example, communications, medicine, engineering, 
analysis, advice, control, decision-making, design, instruction, monitoring, planning, prediction, 
prescription, selection, and simulation. 

Section 9.3 introduces knowledge engineering and describes how this is a craft in itself. The 
acquisition, harvesting, and exploitation of knowledge leading to the construction of a knowledge 
base and subsequently to an expert system is the focus of this section. 
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Section 9.4 presents the subject of knowledge acquisition and discusses how this in itself is a 
challenge to knowledge engineers. How do we best extract what is in an expert’s head? How do 
we know that we have correctly and accurately represented what is in the expert’s head? As expert 
systems grew in size and complexity it became more important to develop techniques to efficiently 
process knowledge, hence, demon rules and the Rete Algorithm of Section 9.6 has become more 
important. 

There follows a presentation of some of the classic expert systems, in Section 9.5 and its sub-
sections, including DENDRAL, MYCIN, EMYCIN, and PROSPECTOR.

Then we introduce the notions of fuzzy logic and Bayes’ Theorem reminding us that expert sys-
tems, although very capable and possibly rich with domain-specific knowledge, are still founded 
on handling uncertainty. 

This segues to a very important active area of expert systems development, case-based reason-
ing (CBR, Section 9.7). A number of CBR systems are discussed, including an example of a CBR 
system for helping to recognize oil slicks. Section 9.8 presents some more recent expert systems 
and investigates how the domain has evolved with hybrid-intelligent approaches. 

Questions for Discussion

 1.  Explain how expert systems fit into the advances in technology in the time during which they 
were developed.

  2. Explain how a domain specialist might have some 50,000 concepts in his skill domain.

 3. Explain how humans can compete with programs in performance of activities in which 
programs perform millions of computations.

 4. Describe the Five Stages of Skill Acquisition.

 5. What was Dreyfus & Dreyfus’s main position on the limitations of AI?

 6. Describe 10 characteristics of human experts. 

 7. Describe 10 characteristics of expert systems. 

 8. List 10 purposes expert systems have been built for.

 9. List 10 application areas for expert systems.

 10. Name 5 different expert systems in five different areas.

 11. Describe the process of knowledge engineering.

 12. Explain why knowledge acquisition is the “bottleneck for AI.”

 13. Describe the main purpose and main method of DENDRAL.

 14. Why was MYCIN such an important program? 

 15.  What is a Demon Rule?

 16. What is the Rete Algorithm? 
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 17. What is the idea behind case-based reasoning (CBR)?

 18. Name four typical aspects of constructing a CBR System? 

 19. Describe several problems in building a CBR? 

 20. Name three expert systems built in the last decade and their application domains.

21.  Describe some of the hybrid intelligent techniques used to build these systems.

Exercises

 1. Consider a domain you might want to build an expert system for. What characteristics should 
the domain possess in order to be a good candidate?

 2. Try to build an expert system using CLIPS in your domain of interest.

 3. Evaluate your system. How good is its performance? How could it be improved? Can it be 
used as a practical tool?

 4. Did you use/need a domain specialist for your problem domain? If not, consider how a 
domain specialist might help you. If so, consider the knowledge engineering process that 
took place between you and the domain specialist.

 5. What is a Demon Rule? Develop prototype demon rules for your expert system.

 6. Do you believe expert systems can outperform human experts? If not, explain why not. If so, 
give some examples and describe what these can do that a human expert cannot do. 

 7. Why is a procedure such as the Rete Algorithm important to expert systems development?

 8. Why is it important for an expert system to be cost effective? 

 9. Explain why expert systems are different from conventional programs?

 10. Explain the difference between procedural knowledge, declarative knowledge, and meta-
knowledge. 

 11. Explain why MYCIN was such an important program to all future expert systems and shells. 

 12. Who owns expert systems? Expert systems have long been considered a major success story 
from the field of artificial intelligence; however, they have also become somewhat standard 
and common. Should expert systems be considered a computer science technology or do they 
strictly belong to AI?

 13. One of the criticisms of expert systems has been that they are conducive to the creation of 
microworlds (e.g. by Professor Hubert Dreyfus, see Chapter 6, Section 6.8, p.185). Explain 
why you do or do not agree. 

14. How would expert systems need to perform to pass the Turing Test? 

15. Research expert systems built in the past 5 years. What are their features? 
How are they different from earlier expert systems described in this chapter? 
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This chapter begins our discussion of learning. We start with machine learning and an 
explanation of the inductive paradigm. Decision trees are a widely used inductive learning 
approach. They had fallen out of favor for a decade or so as they did not generalize well and 
hence were bad at prediction. However, if we take many trees, we are able to remove much 
variance. The so-called random forests (or decision forests) that result have led to a recent 
renaissance in this learning approach. Finally, we explain entropy and the relation that this 
mathematical measure has to decision tree construction.   
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 10.0 INTRODUCTION
Learning enables people to improve their performance in an area of study—whether it is den-

tistry or violin playing. Students in dental school become more proficient at repairing teeth whereas 
a violinist attending the Juilliard School in New York City is likely to play a Mozart violin concerto 
with greater artistry after several years of training. Similarly, machine learning is the process 
whereby a computer distills meaning by exposure to training data. Earlier in our studies, we posed 
the question: Can machines think? If we were to discover algorithms wherein computers were 
enabled to perform the analytical reasoning entailed in learning (beyond the application of deduc-
tive principles outlined in Chapter 5), this would go a long way toward resolving this question—as 
most people believe that learning is an essential component of thinking. Furthermore, many view 
machine learning as the holy grail of AI, since machine learning would undoubtedly help to over-
come the knowledge and commonsense bottlenecks that we have identified as major roadblocks to 
the development of human-level AI. 

 10.1 MACHINE LEARNING: A BRIEF OVERVIEW
Machine learning can trace its roots to Arthur Samuel.1 He spent two decades at IBM (starting 

in 1949) teaching computers to play checkers. One aspect of his programs was rote learning—i.e., 
the programs would memorize good moves from previous games. More interesting, perhaps, was 
the incorporation of strategy into his checker playing programs. Samuel obtained his insights into 
the game by interviewing human checker players. Guidelines included: 

• Always strive for center control of the checkerboard.
• Jump your opponent’s pieces wherever possible. 
• Seek to achieve Kings.

To achieve superior game playing ability in some game, humans play that game repeatedly. 
Similarly, Samuel had various versions of his programs play against one another. The loser of 
a game would borrow heuristics from the winner. This pioneering work is described in detail in 
Chapter 16.

Five major Machine Learning (ML) paradigms are listed 
below.
 1. neural networks 
 2. case-based reasoning
 3. genetic algorithms
 4. rule induction
 5. analytic learning 2

The artificial neural network-focused ML community received 
their inspiration from the metaphor with the human brain and ner-
vous system, which is perhaps the most intelligent vestibule of natu-
ral intelligence on this planet. In an artificial neural network (ANN), 
artificial neurons are connected with links in some prescribed topol-
ogy. An input signal to the network often results in a change in the 
interconnection strengths and culminates with the production of an 

A metaphor is a figure of speech in 
which two things that are in reality 
different are compared with one 
another. The properties of the second 
are thereby transferred to the first. For 
example: “He eats like a horse.”

This listing is in no sense meant to be 
exhaustive but rather serves as an entry 
point for our discussion. The subject of 
ML would easily fill an entire volume. 
The interested reader is encouraged to 
consult one of the many excellent texts 
on this subject.3,4,5
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output signal. A training set is a carefully selected set of input examples that is used to teach a 
concept to a neural network. Chapter 11 is entirely devoted to this approach to Machine Learning. 

In case-based reasoning, it is the analogy with human memory that is at play. This approach 
maintains a file of past cases or scenarios that are effectively indexed to permit ready access. A 
metric is used to measure similarity with some present case. For example, a doctor examines a 
patient complaining of severe headaches and exhibiting partial aphasia with some peripheral vision 
loss. The doctor may recall a similar case in which the diagnosis was viral meningitis; appropri-
ate anti-seizure meds were administered and the eventual outcome was favorable. Having a file of 
previous cases that have already been handled enables the doctor to reach a speedier diagnosis in 
the current case. Naturally, some tests must still be performed to rule out other diseases exhibiting 
similar symptomology but with vastly different causation and/or outcomes. For example, the doctor 
might order an MRI to confirm brain swelling and also rule out the presence of a tumor. A spinal 
tap might even be performed to preclude the presence of bacterial meningitis. Further discussion of 
case-based reasoning may be found in Chapter 9. 

In genetic algorithm-based ML, natural evolution is the inspiration for this learning. Darwin 
developed his theory of natural selection in the mid-nineteenth century. Changes in a species—
whether flora or fauna—that provide advantages for survival will appear with greater frequency 
in offspring. In early nineteenth-century London, for example, light-colored moths possessed an 
ecological advantage over their darker-colored brethren. Birch trees were prevalent in London and 
its environs at the time and were light in color, thus affording the lighter-colored moths natural 
camouflage from birds, their predators. Once the industrial revolution was underway, pollution 
became widespread. Consequently, trees in England became darker, and the camouflage advantage 
went to the darker moths, whose proportion in the population increased. Genetic algorithms and 
genetic programs are discussed in Chapter 12.

Rule induction is that branch of ML that relies upon production rules and decision trees—two 
topics that were introduced in Chapters 6 and 7. One production rule appropriate for teaching a 
robot to bag groceries is: 

IF [item is frozen food] 
THEN [place item in freezer bag before placing item in shopping bag] 6

We will soon discover a similarity between the information content in each of these production 
rules and decision trees. Figure 10.1 depicts a part of a decision tree for our robot grocery bagger.

Frozen Food

Place item in 
shopping bag

Place item in freezer
bag and then in 

shopping bag

Yes No

Figure 10.1
A decision tree for a robot grocery bagger. Note the similarity with the production rule given in the text.
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The impetus in rule induction is from heuristic search. Decision trees are studied extensively 
in this chapter. 

 10.2 THE ROLE OF FEEDBACK IN MACHINE LEARNING SYSTEMS
Suppose we have an agent that wishes to play baseball at the 

major league level. Training for this profession can easily require 
15 or more years. This is a lengthy learning period in spite of the 
maxim:

“Throw the ball, catch the ball, hit the ball.”

One thing our agent must learn early in this training is that a baseball game has many possible 
states. 

 1. Is our team leading?
 2. If I am on defense and the ball has been hit to me, then I must know: Is the player now 

running to first base a fast runner? If so, then I must rush my throw.
 3. Does the opposing pitcher throw a knuckleball (this pitch is hard to hit!)? Then perhaps I 

should feign an illness today.

The type of feedback this young agent receives is central to the learning process. In machine 
learning there are three types of feedback:

• Supervised learning
• Unsupervised learning
• Reinforcement learning

Learning a function with supervised learning is the most straightforward approach. The agent 
is provided with appropriate feedback immediately after he performs some action. For example, if 
he takes his time throwing the ball to first base when a fast runner has grounded a ball at him, he 
will be reminded within minutes of the need for haste in these situations. In Chapter 11, we dis-
cover how a neural network uses supervised learning to learn a Boolean function. The network is 

provided with a table that lists the correct outputs for 
each possible input. 

With unsupervised learning no specific feedback 
is provided during the training. If learning is to occur, 
however, then our agent must receive some feedback. 
Suppose that our agent has had a miserable day on of-
fense, i.e., he had no base hits. Defense was a differ-
ent story—he made two diving catches and robbed an 
opponent of a homerun. It was a close game and his 
team won. After the game, he is congratulated by his 
teammates, thus concluding that good defense is also 
appreciated. 

With reinforcement learning there is no teacher 
providing right answers to our agent. In fact, the agent 

This quote is from the 1988 movie Bull 
Durham directed by Ron Shelton. The 
reader by now has certainly observed that 
both of the authors are baseball fans.

Figure 10.2
Balancing an umbrella, small incremental moves in the x-y plane are required to keep 
the umbrella balanced.
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may not even know the consequences of an action in advance. To further complicate matters, even 
when the impact of an action is known, the value of the impact may not be, and must therefore be 
learned by trial and error. It is difficult to ascertain the goodness of an action as rewards are delayed. 
Anyone who has attempted to balance an umbrella (closed) on their index finger understands the 
basics of reinforcement learning. Consult Figure 10.2.

If the umbrella is leaning left, a corresponding large move to the left on your part will not be 
discovered as an overcorrection until a few moments later. Let us return to our baseball agent for a 
moment. Suppose he is a pitcher with a penchant for throwing the baseball at opposing batters when 
they have hit a homerun off him. Several innings later when the opposing pitcher throws a 90-mph 
fastball at his legs, he will need to make a connection between his aching knee cap and his perhaps 
overly aggressive style of play. We will restrict our discussion in this text to supervised learning. An 
excellent discussion of unsupervised learning and reinforcement learning may be found in Ballard.7

With supervised learning, you are presented with a set of ordered pairs:

( ) ( ) ( )(1) (1) (2) (2) ( ) ( ){ , , , ,… r r x  t  x  t x  t

known as a training set. ( ),   1, , ix i r= …  is an input vector in n-dimensional space, i.e.,
( )( ) ( ) ( )

1 2( , , , )ii i i
nx x x x= …  ) whereas it  is the value of this function at ( )ix , that is to be learned. The func-

tion f maps each input vector into the correct output response. Generally ( ) ( ) ( ) ( )
1 2( ,   ,  ,  )i i i i

mt t t t= …  
in m-dimensional space. Each component tk, k = 1, ..., m is from a prescribed set, i.e., the set of 
integers, reals, etc. (the sets for inputs and outputs may be different).

 10.3 INDUCTIVE LEARNING
The task in inductive learning is to find that function h that most closely agrees with the true 

function f  (). We refer to h as a hypothesis for f(). The Hypothesis Space H is the set of functions 
that the learning algorithm considers as approximators of the correct function f (). The goal in this 
learning is to find h that agrees with f at all points in the training set. This endeavor is known as 
curve fitting. Refer to Figure 10.3.

0

0 2 4 6 8 10

8

9












7

6

5

4

3

2

1

f(x)

x

Figure 10.3
The hypothesis h is said to be consistent if it agrees with f on all points.
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Three different hypotheses  are drawn in Figure 10.4. At first glance it appears that h3 is the 
best hypothesis. And it is important for us to keep in mind that the purpose of learning is not for us 
to score perfectly on the training set but rather for the agent to perform well on the validation set.

f(x)
10

8

6

4

2

0
1080 2 4 6

x









h1

f(x)
10

8

6

4

2

0
1080 2 4 6

x

h2








f(x)
10

8

6

4

2

0
1080 2 4 6

x












(a) (b) (c)

h3

Figure 10.4
Three Different Hypotheses. Note that only h

3
 is consistent with f as it passes through all six points.

The validation set is a set of examples upon which the agent is tested. If the agent has truly 
learned some concept, then it should not merely have memorized the input-output correspondence, 
but rather it should have attained the ability to generalize, i.e., to provide appropriate responses to 
inputs it has never before encountered. Often a hypothesis that performs flawlessly on the train-
ing set has been overtrained and will not generalize well. One way to achieve generalization is to 
alternate training and validation, and note that during validation the agent’s learning mechanism 
is turned off. Training terminates when the validation error—and not the training error—is mini-
mized. This training methodology is explained thoroughly in Chapter 11, in the context of back-
propagation learning with neural networks. We refer one last time to our baseball agent. If he has 
truly learned how to play the game of baseball well, then he should respond appropriately even 
when encountering a game situation for the first time, e.g., participation in his very first triple play, 
in which three outs are made during one play.

Refer once again to Figure 10.4 (c). The function  passes through all six points. We can use La-
grange Interpolation to find many other functions with this property, e.g., polynomials of degree 7, 
8, 9, etc. A guiding principle in the learning community—both machine and human learning—is that 
when there are multiple explanations for the same observed phenomenon, it is wise to choose the 
simplest. This principle is known as Occam’s Razor. Here are several examples of this guideline:

 1. A small bright light is seen moving in the distant sky. Explanation a): It is an airplane 
either taking off from or readying to land at a nearby airport. Explanation b): A star has 
left its galaxy and is preparing to enter ours. Explanation a) is the likelier one. 

 2. You wake up early on Christmas morning and observe snow on the street outside your win-
dow—snow that was not there last night when you went to sleep. Explanation a): Santa 
Claus commissioned his elves to shovel snow from the North Pole to your neighborhood 
because you behaved extraordinarily well this year. Explanation b): It snowed while you 
were sleeping. Explanation b) is more likely.

 3. You walk past Bleecker Street and 6th Avenue in Manhattan one September morning 
some years ago. You witness thousands of   New Yorkers walking north heading away 
from the downtown section of the city. Explanation a): There was an electrical malfunc-
tion on the subways and the trains were not running. Explanation b): Terrorists hijacked 
two airplanes and crashed them into the World Trade Center Towers. Explanation a) is 
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more likely but as we unfortunately remember, the correct 
explanation was b).

Most scientists would agree that when there are two theories to 
explain the same phenomenon, the simpler one is preferable; however, 
as we know, this does not always guarantee correctness. It may just be 
a better starting point until new evidence is discovered. 

There is one additional characterization that is often applied to learning methods; they can be 
classified as either lazy or eager. A lazy learner is deemed so because it delays generalization be-
yond the training data until a new query is made. No effort is made to compress data; consequently, 
all data is available when the model is invoked. Contrast this with eager learners, which abstract 
general rules that can be applied when a new query is made. The training data itself, however, is 
no longer retained. Training lazy learners is generally faster; however, using them requires more 
time. Eager learners adhere to a single hypothesis and are therefore less flexible than lazy learners.

Case-based reasoning (consult Chapter 9) is classified as a lazy learner. The advantage in this 
is that the entire case is available and hence may have more general applicability. Neural networks, 
on the other hand, are classified as eager learners. The weights in a backpropagation network (BPN) 
represent the network’s learning and may be considered a compressed version of the training data. 
To apply a BPN to a new sample, you need simply apply the new query as inputs to the network. 
The previous data that was used to train this network, however, is no longer retrievable.

 10.4  LEARNING WITH DECISION TREES
Decision trees are a widely used inductive approach for concept learning. Nodes in the decision 

tree correspond to queries made regarding some attribute. Branches emanating from a node denote 
the values that an attribute has assumed. Refer to Figure 10.5.

Contains Meat Contains Seafood Yes

Sauce Color

Yes YesNo No

PinkRed

False

W
hi

te

False Tru
e

Tru
e

Figure 10.5
Decision tree depicting Italian pasta preferences for one of the authors (SL).

One of authors (SL) was late for an 
appointment that Tuesday morning 
in 2001 and failed to listen to a 
morning news broadcast.
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This tree may be used to classify instances of pasta into two distinct 
classes—those that are liked by SL and those that are not. Queries al-
ways commence at the root of the tree and terminate at leaf nodes where 
class labels are found. Consider the following list of pasta dishes:

 1. Spaghetti and Meatballs—Meatballs and pasta in a red tomato sauce.
 2. Spaghetti Arrabbiata—Spaghetti with spicy red marinara sauce.
 3. Linguine Vongole—Linguine with clams in red sauce.
 4. Linguine Vongole—Linguine with clams in white sauce.
 5. Rigatoni alla Vodka—Rigatoni in a pink creamy vodka sauce.

To classify Spaghetti and Meatballs from this list, we begin at the root in Figure 10.5. The 
sauce of this dish is red, hence we go left in the tree. The root of the left subtree asks if 
this dish contains meat, and of course it does. The tree classifies Spaghetti and Meatballs 
as a pasta dish liked by SL. Why not trace the other four instances using this same deci-
sion tree? After doing so you will have observed that all five pasta recipes are classified 
into one of two distinct classes:

Class 1—Pasta dishes liked by SL contains instances 1, 4 and 5.
Class 2—Pasta dishes disliked by SL consists of in-

stances 2, 3.

Any path down the decision tree in Figure 10.5 that 
begins at the root and ends at a leaf node represents the 
conjunction (ANDing) of attribute values on that path. For 
example, the path followed in the classification of Spaghet-
ti Arrabbiata is (sauce = red) ^ (meat = no). The concept 
of pasta dishes liked by SL corresponds to the disjunction 
(ORing) of all conjunctive terms that follow a path culmi-
nating in a yes node. In our example, we have:

[(sauce = red) ^ (meat = yes)] ˅ [(sauce = white) ^ (seafood = no)] ˅ [(sauce = pink)].

 10.5 PROBLEMS SUITABLE FOR DECISION TREES
Problems that work well with decision tree learning are characterized by the following:  

 1. Attributes assume a small number of values, e.g., sauce = red, white, or pink. Instances are 
represented by a set of attribute values, e.g., for instance = Spaghetti and Meatballs, we 
have attributes with values Sauce is red, and meat present = yes.

 2. Target function should generally have a small number of discrete values. In our Italian 
pasta example, the values were yes and no. 

 3. Errors may be present in the training data. Decision trees 
perform well when errors occur in either attribute values 
or instance classification (contrast this robustness with 
neural network learning in Chapter 11).

Any person familiar with Italian 
restaurants soon discovers that pasta 
comes in many shapes and sizes

Disclaimer—One of the authors (SL) chose these 
attribute values for pedagogical reasons alone. 
SL grew up in New York City’s Little Italy in 
lower Manhattan and, unfortunately (for his 
waistline), he likes just about every pasta dish! In 
fact, he has tasted most of the dishes cited at two 
of his favorite restaurants—Puglia’s located at 
189 Hester Street and DaNico’s at 164 Mulberry 
Street in Little Italy.

These are ideal conditions. By 
consulting the literature in this field, 
you will learn of ways to bypass 
many of these limitations.
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Missing attribute values may occur in training data. For example, it might be assumed that the 
user of a decision tree knows that Spaghetti Arrabbiata contains no meat and this attribute might 
be missing.

Many real-world problems satisfy the constraints imposed by the previous list. In medical ap-
plications, attributes correspond to visible symptoms or patient complaints: skin color = yellowish, 
nose = runny, headache is present, or test results: temperature is elevated, blood pressure or blood 
sugar levels are high, heart enzymes are abnormal. The target function in a medical application 
would likely indicate the presence of a disease or condition: patient has hay fever, hepatitis, or trou-
ble with a recently repaired heart valve. Decision trees are widely used by medical practitioners.

In the financial arena, applications range from credit card worthiness decisions to the favorabil-
ity of real estate investments. A fundamental application in the business world is option trading—
i.e., where an option is a contract that gives a person the right to buy or sell some asset (e.g., a stock) 
at a given price or by a certain date.

 10.6 ENTROPY
Entropy quantifies the homogeneity present in a col-

lection of samples. To simplify our discussion, we assume 
that the concept to be learned is binary in nature—e.g., a 
person either likes a pasta dish or does not. Given a set S, 
the entropy of S relative to this binary classification is:

Entropy = -p(+) * log 2 p(x) - p(-) * log 2 p(-)

where p(+) represents the portion that is favorably dis-
posed, i.e., likes the pasta dish and p(-), the portion that 
dislikes it. In discussions of entropy, logarithms are always 
taken base 2, even when the classification is not binary as 
it is here.

The decision tree in Figure 10.5 describes pasta pref-
erences. Suppose that we have a set of four pasta dishes 
and they are all liked—we denote this by [4(+), 0(-)]. The 
entropy contained in this set is:

Entropy [4(+), 0(-)] = -4/4 * log2 (4/4) – 0/4 * log2 (0/4)
 = -1 * log2 (1) – 0*log2 (0)
 = -1 * 0  –  0 * 0
 = 0.
If two pasta dishes are liked and two are disliked, then:

Entropy [2(+), 2(-)] = -2/4 * log2 (2/4) – 2/4 * log2 (2/4)
 = -1/2 * (-1) -1/2 * (-1)
 = 1/2 – (-1/2)
 = 1.
We observe that when all members belong to the same set, the entropy of this collection is 0. 

This value of 0 indicates there is no impurity in the set as all members in this example are positive. 
The entropy achieved its maximal value of 1 in the second example when half the members were 
positive and half negative. In a binary classification, the entropy of a set ranges from 0 to 1 (see 
Figure 10.6).

Figure 10.6
The entropy function for a binary classification as the proportion of positive 
samples varies over the interval [0,1].
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The entropy of a set may be viewed as the number of bits required to determine which class a 
selected item is from. For example, for the set [2(+), 2(-)], one bit is needed to specify which class 
an item is chosen from, where 1 could mean that the item is liked and 0 that it is not. Conversely, 
no bits are necessary to label an item in the set [4(+), 0(-)] with entropy 0 as all items are liked.

 10.7 CONSTRUCTING A DECISION TREE WITH ID3
Quinlan developed ID3 in 1986. It has been one of the most widely used algorithms for decision 

tree learning. A decision tree is constructed by ID3 in a top-down manner. It begins by searching for 
that attribute which most nearly partitions the training set into equal subsets. If we are to success-
fully use decision trees, we must understand how they are constructed. In our pasta example, there 
are three attributes: sauce color, meat is contained, seafood is contained. See Table 10.1.

Table 10.1 
Data used for our decision tree learning.

Pasta Sauce Color Contains Meat Contains Seafood Like
1 Spaghetti with Meatballs Red True false yes
2 Spaghetti Arrabbiata Red False false no
3 Linguine Vongole Red False true no
4 Linguine Vongole white False true no
5 Rigatoni alla Vodka Pink False false yes
6 Lasagne Red True false yes
7 Rigatoni Lucia white False false yes
8 Fettucine Alfredo white False false yes
9 Fusilli Boscaiola Red False false no
10 Ravioli Florentine Pink False false yes

There are three different attributes, hence there are different choices for which attribute is to 
appear first. Consult Figure 10.7.
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(c) Beginning tree with Seafood present attribute

Figure 10.7
There are three attributes the decision tree may begin with. In part a) when the sauce color is red, two pasta dishes are liked and three are not. The other boxes may be similarly interpreted.
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An attribute is deemed good if the sample is dichotomized based upon the value of that attri-
bute, i.e., for one attribute value we have all instances positive and for the other value, all negative. 
Contrawise, an attribute is considered useless when it contains no discriminative value. In our ex-
ample, this would mean that for each attribute value we have the same number of likes and dislikes.

ID3 uses information gain for the placement of attributes. It will place an attribute closer to 
the root of the decision tree if that attribute yields the greatest expected reduction in entropy. To 
determine which of the three subtrees in Figure 10.7 should be selected first, ID3 calculates the 
average information for each of the subtrees illustrated. The tree that results in the greatest informa-
tion gain is then selected where:

The information gain yielded by attribute A is the reduction in entropy that results from the 
partitioning of the set S induced by A. 

( ) ( )
  values ( )

Gain , Entropy   * Entropy ( )v
v

V A

S
S A S S

S
⊆

= − ∑
where v is a value that attribute A can assume. This formula will sum Sv (which is the subset of 

S with value v) over all values for v. Consult Figures 10.8 through 10.10 to follow the calculations 
that ID3 must complete. 
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0.97 * + 0.64 * + 0 * = 0.68

10 10 10

Info of all training samples S = 0.97
Gain (S, Sauce Color) = 0.97 - 0.68 = 0.29

Figure 10.8
Information Gain if Sauce Color is chosen first equals 0.29.
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Info of all training samples S = 0.97
Gain (S, Contains Meat) = 0.97 - 0.80 = 0.17

Figure 10.9
Information Gain if Contains Meat is Chosen first.
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                           Info of all training samples S = 0.97
                           Gain (S, contains seafood) = 0.97 - 0.65 = 0.32
Figure 10.10
Information gain if Contains Seafood is chosen first equals 0.32.

Perusing Figures 10.8, 10.9, and 10.10, it is evident that ID3 selects Contains Seafood as the 
first attribute in the decision tree, as its associated information gain of 0.32 is the largest of the three.

Next, ID3 must choose between the two trees drawn in Figure 10.11.
Once the second attribute is chosen, the attribute not selected is applied next where needed. You 

will be asked to complete these computations in the exercises. 
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Figure 10.11
ID3 must select which attribute is second—either Sauce Color or Contains Meat.

 10.8 ISSUES REMAINING
This chapter is intended as an introduction to Inductive Learning with decision trees. There are 

additional issues listed below:

 1. Overfitting the data—this may occur when you do not possess sufficient training data to 
adequately cover the entire hypothesis space. 

 2. How does one handle attributes with continuous values, e.g., temperature, income, stress?
 3. How do you train when certain attributes are missing? 
 4. What if some attribute values are more costly or inconvenient to obtain? For example, 

taking a patient’s temperature is less intrusive than performing an MRI (especially when 
the patient is claustrophobic). 

Machine Learning is a huge and vastly important area of research. Hopefully this chapter has 
encouraged you to consult some of the excellent references listed at the end of this chapter and also 
to read Chapter 11 on neural approaches to Machine Learning, as well as Chapter 12, which can 
serve as springboard to evolutionary approaches on the subject. 

 10.9 CHAPTER SUMMARY
This chapter has introduced the field of machine learning. We have emphasized the importance 

of some form of feedback to the system. With supervised learning the agent is provided with im-
mediate feedback so that it knows at once if it has been correct. With unsupervised learning no 
feedback is provided while training is ongoing; however, eventually the agent will know if it is 
performing well. Finally, with reinforcement learning, interpreting received feedback correctly is 
the most problematic.

Our discussion has emphasized inductive learning, wherein a hypothesis is found that most 
accurately reflects a set of observations. We cited Occam’s Razor as a useful principle when formu-
lating an explanation; when several hypotheses explain an observed phenomenon, it is often wise 
to choose the simplest one (at least as a starting point).

Decision trees were seen to be a useful tool for classifying data. We also explained the informa-
tion-theoretic concept of entropy, which is a measure of the amount of disorder in a set. Quinlan’s 
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ID3 program utilizes entropy in a manner that favors shorter decision trees. Decision trees have 
long been used in both the medical community and the financial area. Our discussion of machine 
learning continues in Chapter 11 with neural networks. Consult the many fine machine learning 
texts to learn about AdaBoosting, an algorithm that strengthens the performance of decision trees. 

Questions for Discussion

 1. What is machine learning and why is it such an important subfield of AI?

 2. List several ML paradigms.

 3. Describe three different forms of feedback in ML systems.

 4. Why is feedback important to an agent?

 5. Describe inductive learning.

 6. When performing curve fitting, why is a function that passes through all the points in a 
training set not necessarily the best hypothesis? 

 7. a. What is Occam’s Razor?

  b. Does it claim that the shortest hypothesis is always the best?

 8. Give an example of where you have used Occam’s Razor in your everyday experience.

 9. Look on the web and find several other areas where decision trees are used.

 10. When calculating the entropy of a set, why are logarithms calculated with a base equal to 2?

 11. Why does choosing that attribute with the largest information gain favor construction of 
shorter decision trees?

 12. Suggest a possible method to handle attributes with continuous values.

 13. Are decision trees a lazy or eager learner? Explain your answer.

Exercises

 1. Design a decision tree for the following Boolean functions: 

  a. a ˅ (b ˄ ~ c)

  b. majority (x,y,z)

 2. Calculate the entropy for each of the following sets: 

  a. [6(+), 11(-)]

  b. [1(+), 9(-)]

  c. [2(+), 12(-)]

 3. Entropy is also defined when classification is into three or more classes.
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  The entropy of a set S relative to n distinct classes is defined as: 

   Entropy (S) =  2
1

log
n

i i
i

p p
=

−∑

   where pi  is the proportion of the Set S in class i,

   with i = 1, …, n. Notice that logarithms are still calculated base 2.

        Calculate the entropy of the set S, where p1 = 6/20, p2 = 9/20, and p3 =5/20.

Programming Exercises

 1. Use ID3 to confirm the final form of the decision tree for pasta preferences in Section 10.7. 

 2. Add some noisy data to the tree construction program above. 

  Comment on what happens. For example:

  Sauce = red, contains meat = true, and contains seafood = false, but likes = no.

  Penne with Bolognese sauce would yield these attribute values.

  Go on-line to find several other “noisy” examples.

 3. Test your trees from programming exercises 1 and 2 with:

  Spaghetti carbonara where sauce = white, contains meat = true, and contains seafood is false.

  What result did you obtain? Is it what you expected? Explain. 

 4. Table 10.2 contains data about two medical conditions: 

  A person has a cold vs. a person has the flu. Use ID3 to build a decision tree to determine 
which affliction a person suffers from based upon their symptomology. 

  Cold and Flu.
Table 10.2

Fever or 
Chills

Sore 
Throat

Cough Headache 
or Body 

ache

Stuffy or 
Runny 
Nose

Fatigue Fever Diagnosis

Mild yes moderate None yes mild None Cold
Medium no extreme Severe no extreme higher Flu
Extreme no none Moderate yes mild slight Flu

No no mild Moderate yes none slight Cold
Extreme yes moderate Severe no extreme higher Flu

No yes moderate None yes none None Cold
Medium no moderate Severe no extreme higher Flu

No yes mild None no mild slight Cold
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 5. Refer first to exercise 3. Design a decision tree to distinguish between bronchitis, pneumonia, 
and TB. 
Table 10.3

Cough Fever Phlegm Shaking 
Chills

Shortness       
of Breath

Weakness  
or Fatigue

Diagnosis

bad no or low yes No yes yes Bronchitis
yes mild or high yes Yes yes yes Pneumonia
yes Yes yes Yes yes yes TB

 6. If your decision tree does not converge, what is needed here?  

   i. More input data?

  ii. Attributes that do a better job of separating hypotheses? 

Keywords
eager learners
entropy 
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hypothesis space

ID3
information gain
lazy learner 
machine learning 
Occam’s Razor

reinforcement learning 
supervised learning 
training set
unsupervised learning 

References

 1. Samuel, A. 1959. Some studies in machine learning 
using the game of checkers. IBM Journal of 
Research and Development 3: 210–229.

 2. Langley, P. and Simon, H. A. 1995. Applications 
of machine learning and rule induction. 
Communications of the ACM 38 (11): 54–64.

 3. Mehryer, M., Rostamizaden, A., and Talwalker, 
A. 2012. Foundations of Machine Learning. 
Cambridge, MA: MIT Press.

 4. Murphy, K. P. 2012. Machine Learning: 
Probabilistic Perspective. Cambridge, MA: MIT 
Press.

 5. Marsland, S. 2009. Machine Learning: An 
Algorithmic Perspective. United Kingdom: 
Chapman and Hall/CRC. 

 6. Winston, P. H. 1992. Artificial Intelligence, 3rd ed. 
Reading, MA: Addison-Wesley.

 7. Ballard, D. H. 1999. An Introduction to Natural 
Computation. Cambridge, MA: MIT Press.

 8. Quinlan, J. R. 1993. Programs for Mach ine 
Learning. San Mateo, CA: Morgan Kaufman.

Bibliography

Darwin, C. 1959. Origin of Species. New York, NY: 
Bantam.

Heath, M. T. 1997. Scientific Computing—An 
Introductory Survey. New York, NY: McGraw-Hill.

Kolodner, J. L., ed. 1988. Proceedings: Case-Based 
Reasoning Workshop. San Mateo, CA: Morgan 
Kaufman.

Quinlan, J. R. 1986. Induction of decision trees. 
Machine Learning 1: 81–106.



■ ■ ■ ■ ■

This chapter continues our discussion of machine learning. Algorithms are presented that are 
modeled on the human brain and nervous system. These so-called artificial neural networks 
(ANN) have exhibited remarkable performance in pattern recognition, economic forecasting, 
and many other applications. 
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 11.0 INTRODUCTION
In this chapter and parts of Chapter 12 we shift gears somewhat. At the onset of this text we 

stated that intelligent systems (natural or artificial) must be able to represent their knowledge, search 
for answers when necessary, and learn from experience. In this chapter we begin our discussion of 
learning. Whenever you wish to design a system to perform some activity, it is a good idea to begin 
by asking yourself if a solution already exists in nature. For example, imagine the year was 1902 
(before the Wright brothers’ successful flights in 1903), and you wanted to design an artificial flying 
machine (an airplane). You would observe that natural flying “machines” do in fact exist (birds). 
Your airplane design would probably incorporate two large wings. So it seems natural that if you 
want to design artificially intelligent systems (as we do) that you begin your studies by analyzing 
one of the most naturally intelligent systems on this planet—the human brain and nervous system.

The human brain consists of 10–100 billion neurons that are highly connected to one another. 
Some neurons communicate with several or perhaps several dozen neighboring neurons, whereas 
others have thousands of neurons with which they share information. Drawing inspiration from 
this natural paradigm, researchers have designed artificial neural networks (ANN) over the past 
decades. Applications have ranged from stock market forecasting to autonomous control of auto-
mobiles.

The human brain is an adaptive system that must respond to the vagaries of existence. Learning 
takes place by modifying the strengths of connections between neurons. In a similar manner, artifi-
cial neural network weights must change to take on this same adaptability. In one ANN paradigm—
supervised learning—learning rules assume responsibility for this task by comparing a network’s 
performance against desired responses and then modifying the system’s weights accordingly. Three 
learning rules are described: The Perceptron Learning Rule, the delta rule, and backpropagation. 
It is the latter rule that has the wherewithal to contend with multilayer networks and has encoun-
tered widespread success across numerous applications. Some of these successes are described in  
Section 11.8.

Familiarity with various network architectures and learning rules is not enough to guarantee 
the success of your models. You also need to know how your data should be encoded and how long 
your network training should last, as well as how you should handle difficulties if your network 
fails to converge. These and other issues are discussed in Section 11.6.

Artificial network research underwent a dry spell during the 1970s. Government funding was 
not as available, and the field produced few new results. John Hopfield, the Nobel Prize laureate in 
physics, rekindled enthusiasm in this discipline with his research. His model, the so-called Hopfield 
network, has found widespread applications in optimization. Discrete Hopfield models are briefly 
introduced in Section 11.7.

 11.1 RUDIMENTS OF ARTIFICIAL NEURAL NETWORKS
McCulloch and Pitts 1 developed the first model for artificial neurons. They were attempting to 

understand (and to simulate) the behavior of animal nervous systems. Present day biologists and 
neurologists do understand how individual neurons communicate with one another inside a living 
being. Animal nervous systems are composed of thousands or millions of these interconnected 
cells; in humans, it is billions. The way in which parallel collections of neurons form functional 
units, however, is still a mystery. Before plunging into a discussion of artificial neural networks 
(ANN), we need to understand the relationship to their biological counterparts. A biological neuron 
is shown in Figure 11.1. 
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Figure 11.1
Basic design of a biological neuron.

Electrical signals flow into the cell body via dendrites, which are hair-like filaments. The cell 
body (or soma) is where “processing” occurs. When sufficient excitation is present, the neuron 
fires; in other words, it sends a small electrical signal (measured in milliwatts) down the cable-like 
protrusion known as an axon. A neuron will usually have a single axon but will possess many den-
drites. By sufficient excitation we mean in excess of some predetermined threshold.1 The electrical 
signal flows through the axon until it reaches the end bulb (refer to the bottom right corner of Figure 
11.1). The axon-dendrite (or axon-soma or axon-axon) contact between an end bulb and a cell it 
encroaches on is called a synapse. There is actually a small gap between two neurons (that almost 
touch)—this is called a synaptic gap. This gap is laden with a conductive fluid that permits the flow 
of interneuronal electrical signals. Brain hormones (or ingested drugs such as caffeine) affect the 
degree of conductivity that is present.

There are four elements that AI has adopted from this biological model:

Biological model Artificial neurons
• Cell body
• Axon
• Dendrites
• Synapses

• Cell body
• Output channel
• Input channel
• Weights

As seen above, real-valued weights play the 
role of synapses. The value of a weight reflects 
the conductive level of a biological synapse and 
serves to mediate the degree of influence that one 
neuron has on another. An abstract neuron (some-
times called a unit or node or just a neuron) is 
depicted in Figure 11.2.

The input to a neuron is a real-valued vector 
( )1 2,  , , nx x x= …x with n components. A weight 

vector 1 2( ,  , , ),nw w w w= …  also real-valued, is the 
counterpart to a synapse in a biological neuron. These weights govern the effect that the inputs 
will have on the unit. The body of a neuron computes a primitive function f. Finally, the output 

x1 w1

w2

wn

f
y = ƒ (x1w1 + x2w2 + ··· + xnwn)x2

xn

 Figure 11.2
A model of an abstract neuron.
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of this unit y is equal to the function f applied to 
the dot product of x with w . More generally, the 
network computes some function g of the inputs 
and weights. Figure 11.3 illustrates the more gen-
eral situation. Here, g is a function of the inputs x  
and w  and f is the output or activation function. 
Recall from Chapter 1, “Overview of Artificial  
Intelligence,” that the dot product of two vectors, 
x  and w , denoted by ,⋅x w  is their component-
wise product. That is, 

1 1 2 2  *  *   * ,n nx w x w x w⋅ = + +…+x w

which equals a scalar (a real number without direction). 
An artificial neural network (ANN) (in the text of this chapter, we always 

mean an artificial neural network; on those rare occasions when we are refer-
ring to “real” neurons, we will use the adjective biological) is a collection of 
abstract neurons arranged in some topology. An ANN computes a function 
F, where F is from Rn into Rm, or F: Rn → Rm with R being the set of real 
numbers. An ANN can be viewed as a black box (refer to the discussion on 

abstraction in Chapter 1) as seen in Figure 11.4. 
Certain input vectors x  should produce specific outputs y . To accomplish this feat, the net-

work must adjust its weights in a self-organizing process.

 11.2 McCULLOCH-PITTS NETWORK
The earliest models for neurons were by McCulloch and Pitts.1 

Marvin Minsky introduced the notation for the so-called McCulloch-
Pitts units shown in Figure 11.5.

The input to this neuron ( )1 2,  , , nx x x= …x and the output y are bi-
nary signals, in other words, either 0 or 1. Edges are either excitatory 
or inhibitory. The latter are marked with a small circle just near the 
unit. The threshold value is θ. The inputs x1, x2, …, xn enter the neu-
ron through n excitatory edges. There can also be inputs v1, v2, …, vm 
entering the unit through m inhibitory edges; if any inhibitory inputs 
are present, then the neuron is inhibited and its output y will equal 0. 
Otherwise, the total excitation 1 2    .nx x x= + +…+( )g x  If ( )g x  ≥ θ then 
the unit fires, and y = 1. The activation function f which produces the 
output of this unit is a step (or threshold) function (see Figure 11.6).

Note that when the total excitation ( )g x  < θ, the output is 0.  
McCulloch-Pitts units that function as two-input Boolean AND and OR 
gates (consult Chapter 5, “Logic in Artificial Intelligence”) are shown 
in Figure 11.7.

In Figure 11.7(a), the output of the AND gate, 1 2,( )  y g x x x= =  
equals 1 only when both x1 and x2 are equal to 1. For the (inclusive) OR 
gate in 11.7(b), the output y equals 1 when either x1 or x2 (or both) are 

x1 w1

w2

wn

f
y = ƒ (g(x, w))– –

x2

xn

Figure 11.3
A generic neuron.
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Figure 11.4
A neural network as a black box.
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g ƒ yx2
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Figure 11.5
Diagram of a McCulloch-Pitts neuron.
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q

Figure 11.6
The step function for a McCulloch-Pitts neuron with 
threshold θ
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equal to 1. Figure 11.8 shows the truth table for a two-input NOR function and a McCulloch-Pitts 
implementation.

The function equals 1 when both inputs equal 0. When either (or both) inputs equal 1, the in-
hibitory inputs of the McCulloch-Pitts unit (depicted by little circles) cause the correct output of 0 
to be produced.

A decoder is a switching circuit that is true for one or more minterms. A minterm is a prod-
uct term (terms that are ANDed together) in which every variable is present in complemented or 
uncomplemented form. For example, three minterms over the variables x1 and x2 are 1 2 1 2, ,x x x x′ ′ and  
x1 x2 (the AND operation is implicit and is therefore not shown). A decoder for 1 2 3x x x′ (sometimes 
denoted by 101 when the variables are understood) is shown in Figure 11.9.

Confirm that the output of this unit will equal 1 only when x1 = x3 = 1 and x2 = 0. The truth table 
for the two-input XOR function is shown in Figure 11.10a (refer to Chapter 5). A McCulloch-Pitts 
neuron that implements the XOR function is provided in Figure 11.10b. 

 11.3 THE PERCEPTRON LEARNING RULE
The limitation of the McCulloch-Pitts model is that there are no weights. Neurons are not 

adaptive and, hence, no learning can take place unless the network topology is transformed or the 
threshold is altered. We saw that an ANN can be viewed as a black box (refer once again to Figure 
11.4). Suppose that we present a network with a series of input vectors 1 2,  , , . r…x x x . For each input 
vector ix  there is a desired output vector it , where t is short for target (something we aim for). 
Naturally, the actual output of the network iy , can be different from it . Associated with each input 
in this model is a weight; these weights are the free parameters of the system. Our task is to adjust 
the weights so as to minimize (or eliminate) the difference between iy and it . The process that 
governs the adjustment of system weights is called a learning rule. In this section we discuss the 
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Figure 11.7
McCulloch-Pitts implementations for two-input (a) AND gate and (b) OR gate.
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(a) Truth table for a two-input NOR function and (b) McCulloch-Pitts implementation of 
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(a) Truth table for the two-input XOR function. (b) McCulloch-Pitts implementation using decoders.
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Perceptron Learning Rule, which was developed by the psychologist Frank 
Rosenblatt in 1958. 2 We begin our discussion by considering networks consist-
ing of one neuron. An abstract neuron was discussed in Section 11.1 and appears 
as in Figure 11.11. 

We will refer to this device as a Threshold Logic Unit (TLU). We let the exci-
tation function of a TLU, or ,( )g x  w equal to 1 1 2 2*  *   * .n nx w x w x w⋅ = + +…+x w    As 
an example, consider a TLU with threshold θ = 1.0 and with 1 2 3 ( , , ) (1,1,0)x x x x= =
and 1 2 3( , , ) (0.5, 1.0, 1.2)w w w= =w  as shown in Figure 11.12.

The excitation to this neuron is ⋅ =x w
( )1 1 2 2 3 3*  *  * 1*0.5 (1*1.0)x w x w x w+ + = + +

(0*1.2) 1.5.= Whenever  ,x w q⋅ ≥  the acti-
vation function f specifies that the output y 
will equal 1. Since the excitation ⋅x w  in 
this example equals 1.5 and the threshold θ 
equals 1.0, the output of the unit y equals 1.

We have seen that whenever the exci-
tation equals or exceeds the threshold, the 
TLU has an output of 1; when this quan-
tity is less than θ, y equals 0. We examine 
the case in which ⋅x w equals θ. Consult 
Figure 11.13. The TLU in this figure has a 
threshold θ = 1.0, and weight vector =w  
(0.5, 0.5).

By setting ⋅ =x w  θ we obtain: 
x1* w1+ x2* w2 = θ. We solve for x2 in terms 
of 

x1, w1, w2  and  θ,

yielding:

x2 * w2 = θ - x1 * w1.

Some algebraic manipulation gives us:

2 2 1 1

1
2 1

2 2

*  *  

 *  .

x w x w
wx xw w

q
q

=− +

=− +

Recall that the equation of a straight line is: y = m * x + b where m is the slope (m equals ,y
x

∆
∆

or the change in y divided by the change in x), and b is the y-intercept. Hence, we have a straight 
line whose slope equals 1

2
−

w
w

 and intercept equals 
2

.w
q  Substituting the values for w1, w2, θ, shown 

in Figure 11.13 we have: x2 = -x1 + 2. This line is shown in Figure 11.14.

x
1

x
n

w
n

w
1

q y

Figure 11.11
An abstract neuron referred to as a 
Threshold Logic Unit (TLU). 
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Figure 11.12
A Threshold Logic Unit with threshold input vector =x (1, 1, 0)  and weight vector (0.5,1.0, 1.2)=w   .
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Figure 11.13
A TLU with two inputs.
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2(0,0) (1,0)
X1 *

Figure 11.14
The straight line obtained from the TLU in Figure 11.13 when the excitation equals the threshold.

Inputs to a neural network are sometimes referred 
to as patterns. Inputs are presently restricted to binary 
values, therefore the four patterns for the TLU in Figure 
11.13 are (0, 0), (0, 1), (1, 0), and (1, 1). The n-dimen-
sional space representing all input patterns is referred 
to as the pattern space; Figure 11.14 shows the pattern 
space for this TLU. Figure 11.15 displays the outputs 
for the TLU in Figure 11.13 for each input pattern. 

We observe that this TLU is behaving as a 2-input 
AND gate. The set of patterns that produce the same 
output is referred to as a pattern class. From Figure 
11.15 we surmise that {(0, 0), (0, 1), (1, 0)} result in an 
output of 0, whereas {(1, 1)} produces a 1 as output. We 
refer to the former as pattern class zero, or C0, and the 
latter as pattern class one, or C1. In Figure 11.14, mem-
bers of C0 are represented by circles that are unshaded, 
whereas the sole element in C1 is denoted by a darkened 
circle. Referring once again to the straight line in Figure 
11.14, we notice that members of C0 lie entirely below this line whereas the element in C1 lies at (or 
above) the line. This straight line, which is called a discriminant, separates the two pattern classes 
from one another. In this example, the patterns lie in 2-dimensional space and the discriminant 
is a straight line. More generally, when the dimension of the pattern space is n, the discriminant 
will have dimension n-1. An (n-1)-dimensional “surface” is referred to as a hyperplane. ANNs 
perform pattern recognition by producing discriminant(s) that separate the n-dimensional pattern 
space into convex subspaces bounded by discriminating hyperplane(s). How are these discrimi-
nants produced? The Perceptron Learning Rule does so by a series of iterative corrections. To un-
derstand how these corrections are made, we return to the concept of the dot product of two vectors.  
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Figure 11.15
Input/output behavior for the TLU in Figure 11.13.
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The magnitude of a vector 1 2  ( ,  , , ),nu u u= …U  denoted by |U| equals 2 2 2
1 2   .nu u u+ +…+  Figure 11.16 

illustrates this concept for a vector with two components. 
The magnitude of u, denoted |u| equals 2 2 2 2

1 2  1 1  2.u u+ = + =  The magnitude of v , in other 
words, |v |, equals 2 2 2 2

1 2  2  0  4 2.v v+ = + = =  We stated that ⋅x w is the component-wise prod-
uct of the input vector x with weight vector w , in other words, 1 1 2 2*  * * . n nx w x w x w⋅ = + +…+x w  
Alternatively, ⋅x w can be defined as |x|*|w|* cos φ, where φ is the angle between the two vectors. 
Calculating the dot product of u  and v using our first formula yields:

1 1 2 2 *  * 1*2 1*0 2.u v u v u v⋅ = + = + =

Employing the second formula for the dot product of two vectors yields the same result (as 
expected):

2* *cos 2 2* cos45 2* 2 *  2.2u v j⋅ = = ° = =u v  *

The definition and graph for the cosine function are shown in Figure 11.17.
You can observe in this figure that the cosine function achieves its maximal value when the 

angle φ equals 0°. At 90°, cos φ equals 0, and at 180°, the cosine equals −1, then at 270° it again 
equals 0°, and at 360° the value of the cosine once more returns to 1. As Figure 11.17 shows, the 
cosine function is periodic and hence the aforementioned values repeat modulo 360°.

We are almost poised to derive the Perceptron Learning Rule. One final observation remains, 
one that concerns the equivalence of the two TLUs drawn in Figure 11.18.

y

2

1

-u

-u

(1,1)

(2,1)

1 2
x

j

 
Figure 11.16
Two vectors u and v separated by an angle φ.
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In 11.18(a), the output y equals 1 whenever ⋅x w  ≥ θ. Observe that the TLU in 11.18(b) has 
a 1 as an output whenever ( )1 1 *  0.n nx w x w+ +⋅ + ≥  By setting xn+1 to -1 and wn+1 to θ, we obtain: 
⋅x w  + (-1) * θ ≥ 0. By adding θ to both sides we have that this occurs precisely when ⋅x w  ≥ θ. 

Hence, the two models of TLU’s are equivalent. We refer to the input vector (x1, x2, ..., xn, xn+1, where  
xn+1 = -1) as the augmented input vector, which we denote by x̂ . Similarly, the augmented 
weight vector  ŵ equals (w1, w2, ..., wn, wn+1, where wn+1 = θ). 

Suppose now that we present an augmented input x̂  to the TLU in Figure 11.18(b) and that 
the output y is 0 but the target output t is 1. We know that ˆ ˆ⋅x w  is less than 0 (or else y would have 
been equal to 1). Consult Figure 11.19(a).

The TLU has produced the wrong output. The output 
y equals 0 because the excitation of the TLU, ˆ ˆ⋅x w , is less 
than 0. Therefore, we seek to increase this dot product; 
to do so, we rotate ŵ  in the direction of x̂ . The angle 
between these two vectors, φ, is thereby decreased to φ′. 
Since φ′< φ, cos φ′ > cos φ and hence  ˆ ˆ ˆ ˆ .new old⋅ > ⋅x w x w  
We continue rotating ˆ toward x̂  in subsequent steps un-
til ˆ ˆ⋅x w  exceeds 0 and the correct output is produced, or 
until y equals t. Rotating the vector ŵ toward x̂ is equiva-
lent to adding a fraction (α) of x̂  to ŵ . So that when

a c

b

(b)

1

–1

a-c

Π
-
2 Π

2P

3Π
-

2

(a) cos j =

j

Figure 11.17
Graph of the cosine function.

(a)

Wn

W2

W1X1

X2

Xn

θ y

(b)

Wn

Wn+1 = q

W2

W1X1

X2

Xn

Xn+1 = –1

O y

Figure 11.18
The threshold of a TLU can be treated as an additional weight.

(a) (b)

W

old

new

ŵ

x̂

ŵ

x̂j j¢

Figure 11.19
(a) The angle between x̂ and ŵ equals φ. (b) The vector ŵ is rotated toward x̂ .
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  y = 0  and  t = 1,  ˆ ˆnew old=w  w + α* ˆ.x  (1)

You are asked to verify that when 

 y = 1 and t = 0, the proper corrective action is provided by

  ˆ ˆnew old=w  w - α* ˆ.x  (2)
In this situation, w is being rotated away from x. The constant α is referred to as the learning 

rate of the algorithm. This quantity is a small positive constant with 0 < α ≤ 1. Combining Equa-
tions 1 and 2 we obtain:

  ˆ ˆnew old=w  w + α* (t - y) * ˆ.x  (3)

Observe that the quantity t - y always provides the proper sign for the corrective term. Pseudo-
code for the Perceptron Learning Rule is given in Figure 11.20. The vector  ˆ neww has n + 1 compo-
nents; accordingly Equation (3) may also be expressed as:

 ( )* ,a∆ = −t yi iw  * x  i = 1 to n + 1.

1. Inputs: // the input patterns.

2. // the desired outputs for each pattern.

3.     // augmented weight vector which
       is randomly generated.

4. i = 1 // an index that selects pattern.

5. while (not-all equal)   // i.e.  for some pattern .

6. for i = 1 to p

7. if then { is corrected according to Equation 3

not_all_equal = true}

8. // end if

9. // end for

10. if not_all_equal = false then return that the TLU has  

    successfully been trained and = .

11. else continue

12. //end while

X1,X2,…,Xp
^ ^ ^

Xi

(W1,W2,…,Wn,Wn+1)Wnew
^

Wnew
^

Wnew
^

Ŵ

Wold= =^

t1,t2,…,tp
- - -

tiyi ≠ --

tiyi ≠ --

Figure 11.20
Pseudocode for the Perceptron Learning Rule.
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The Perceptron Learning Rule is an iterative procedure. It begins 
with a random weight vector 1 2 , , , nw w w w= … , in which each wi is a 
small (close to 0) random number. You might be asking what happens 
when the driver for the while loop in line 5 is never satisfied, or when 
some network output yi always differs from the target ti? When this oc-
curs, the algorithm will cycle endlessly, confined within this while loop. The algorithm converges 
and a discriminant is produced when the pattern classes are linearly separable, in other words, can 
be separated by a straight line (see Figure 11.25(d) for the two-input OR function). We return to the 
issue of separability later in this section.

We observe that the input patterns 1 ,ˆ ˆ… px  x  and derived outputs, 1 2, , ,… pt  t   t  are inputs to this 
algorithm. Two comments are in order here—first that in general, a TLU can have more than a 
single output, hence, each target value and each actual output iy  can be viewed in general as 
vectors (we shall drop the “(-)” above the variables when the TLU has a single output). Second, the 
Perceptron Learning Rule is an instance of what is called Supervised Learning or Learning with 
a Teacher, in that the network is supplied a priori with the correct input-output correspondence. 

exAMple 11.1: use the perceptron trAining rule to trAin A  
tlu to leArn the 2-input inclusive or function. 

Observe from Figure 11.22, and 11.23 that we let the 

learning rate 1 2a =  and ( ) 0,  0ˆ  0,w = .

We build a table as shown in Figure 11.22.

Observe in this figure that the set of all possible inputs 
to the OR function are listed in the first four rows 
of columns 1 and 2. Column 3 contains x3, the aug-
mented input which always equals -1. The augmented 
weight vector, ŵ , is contained in columns 4, 5, and 6. 
Notice that w3 the augmented weight which equals θ, 
is treated in the same manner as the original weights 
w1 and w2. All three components of ŵ  are initialized 
to 0 in this example. Column 7 contains the excitation 
to the neuron; when this quantity equals or exceeds 0, 
then the corresponding entry in column 8—the output 
of this unit y—will equal 1, and otherwise y will be 
set to 0. Column 9 contains the target output for each 
input pattern. Finally, columns 10, 11, and 12 hold the quantities by which the 
components of ŵ  should be adjusted. We refer to the set of all input patterns 
as an epoch. After one epoch, the table for this example appears as in Figure 
11.23.

In row one of the table, ( )  0,  0,  1 (0,  0,  0)ˆ ,x̂ w⋅ = − ⋅  which equals 0 (column 7). 
Because 0 ≥ 0, column 8 contains a “1.” However, the target output in row 
one is “0.” Hence, weights are adjusted according to Equation 3. Only w3 is 
changed as each of x1 and x2 are 0. Dw3 = 0.5 * (0 - 1)*(-1) = 0.5 (column 12). 
Therefore, when pattern ( )2 0, 1 x =  is presented (row 2), w3 equals 0.5. As a 
result of the calculations in the second row, w2 will be increased by Dw2 = 0.5 

More accurately, the Perceptron 
Learning Rule should be classified 
as a procedure because an algorithm 
is always guaranteed to halt.

x1

0

0

1

1

0

1

0

1

0

1

1

1

x2 x1 + x2

Figure 11.21
Two input inclusive OR functions. 
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and w3 will be decreased by Dw3 = -0.5. The stopping condition for this learn-
ing rule is that an entire epoch must be processed with no weight changes.

The entire table for this example is shown in Figure 11.24.

The training required four epochs. The correct weights were found during Epoch III, 
however, an additional epoch was required to verify that the values were correct.

x1 x2 x3 w1 w2 w3 = q x̂ · ŵ y t ∆w1 ∆w2 ∆w3

0 0 –1 0 0 0 0

0 1 –1 1

1 0 –1 1

1 1 –1 1

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Figure 11.22
Table employed for the Perceptron Learning Rule.

x1 x2 x3 w1 w2 w3 = q x̂ · ŵ y t ∆w1 ∆w2 ∆w3

0 0 –1 0 0 0 0 1 0 0 0 0.5

0 1 –1 0 0 0.5 –0.5 0 1 0 0.5 –0.5

1 0 –1 0 0.5 0 0 1 1 0 0 0

1 1 –1 0 0.5 0 0.5 1 1 0 0 0

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Figure 11.23
Parameter values after one epoch of Perceptron Training.
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X1 X2 X3 W1 W2 W3 = q x̂ · ŵ y t ∆W1 ∆W2 ∆W3

0Epoch

I

0 –1 0.0 0.0 0.0 0.0 1 0 0 0 0.5

0 1 –1 0.5 0.0 0.5 –0.5 0 1 0 0.5 –0.5

1 0 –1 0.0 0.5 0.0 0.0 1 1 0 0 0

1 1 –1 0.0

0.0

0.0

0.0

0.5

0.5 0.0 0.5 1 1 0 0 0

0Epoch

II

0 –1 0.5 0.0 0.0 1 0 0 0 0.5

0 1 –1 0.5 0.5 0.0 1 1 0 0 0

1 0 –1 0.5 0.5 –0.5 0 1 0.5 0 –0.5

1 1 –1 0.5 0.0 1.0 1 1 0 0 0

0Epoch

III

0 –1 0.5 0.5 0.0 0.0 1 0 0 0 0.5

0 1 –1 0.5 0.5 0.5 0.0 1 1 0 0 0

1 0 –1 0.5 0.5 0.5 0.0 1 1 0 0 0

1 1 –1 0.5

0.5

0.5

0.5

0.5

0.5 0.5 0.5 1 1 0 0 0

0Epoch

IV

0 –1 0.5 0.5 –0.5 0 0 0 0 0

0 1 –1 0.5 0.5 0.0 1 1 0 0 0

1 0 –1 0.5 0.5 0.0 1 1 0 0 0

1 1 –1 0.5 0.5 0.5 1 1 0 0 0

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Figure 11.24
The entire Perceptron Training Procedure for Example 11.1.
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X2

X1

(0,1) (1,1)

(0,0) (1,0)

X2

(a) Initially ŵ = (0.0, 0.0, 0.0)
 ŵ = (0.0, 0.5, 0.0)

X2

X1

(0,1) (1,1)

(0,0) (1,0)

X2

X1

(0,1) (1,1)

(0,0) (1,0)

X1

(b) After epoch I,
x2 = 0.0

Pattern (0,0) is misclassified.

(c) After epoch II,
 ŵ = (0.5, 0.5, 0.0)

x2 = − x1
Once again, pattern (0,0) is misclassified.

(d) After epoch III,
 ŵ = (0.5, 0.5, 0.5)

x2 = − x1 + 1
This discriminant separates the two

pattern classes.

(0,1) (1,1)

(0,0) (1,0)

Figure 11.25
(a) The initial discriminant,  (b) in other words, (c) before training begins. (d) After each of epochs I, II, and III.

Figure 11.25 depicts the discriminant at four stages during the training pro-
cess.

As this figure illustrates, the discriminant in 11.25(d) correctly separates pattern 
class 0 = {(0, 0)} from pattern class 1 = {(0, 1), (1, 0), (1, 1)}. All points in C0 lie 
below the discriminant, while all members of C1 lie on (or above) this line.

We have chosen to represent inputs and outputs as binary numbers, in other words, 0 or 1. Be-
cause weight updates in the Perceptron Learning Rule prescribe that ( )* * ,i iw xa∆ = −t y  a glance 
at Figure 11.24 confirms that in many instances where y and t differed, no weight adjustments were 
made. This occurs because the corresponding input, or xi, equals 0. It is for this reason that bipo-
lar values are often chosen to represent neural net inputs and outputs. Bipolar values are -1 and 
1, where -1 corresponds to 0, and 1 is represented as itself. The two-input inclusive-OR function 
represented with bipolar values appears in Figure 11.26. Compare this figure with Figure 11.21.  
A training rule that employs bipolar values often converges sooner.
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We stated earlier that the Perceptron Learning Rule will 
successfully converge and produce a discriminant when the 
pattern classes are linearly separable. There are 24 or 16 Bool-
ean functions on two variables. All but two are linearly sepa-
rable. One function that is not is the two-input exclusive-OR 
function illustrated in Figure 11.10a and reproduced for con-
venience in Figure 11.27a.

Figure 11.27(b) depicts the pattern space for the 2-input 
XOR function.

Pattern class 0 consists of (0, 0) and (1, 1) whereas pat-
tern class 1 contains (0, 1) and (1, 0). You should convince 
yourself that it is impossible to separate C0 from C1 with a 
single straight line; the 2-input XOR function is not linearly 
separable. Therefore, the Perceptron Learning Rule will loop 
forever when this function is input. The Perceptron Learning 
Convergence Theorem states that this learning rule will halt 
with a solution when a solution exists; alternatively, it will loop forever when one does not. It must 
be understood that the 2-input XOR function does not represent a death sentence for the utility of 
ANN. This function can be implemented—however, to do so will require multilayer networks, the 
subject of Section 11.5.

X1

0

0

1

1

0

1

0

1

0

1

1

0

(0,1)

(0,0)

(a) (b)

(1,0)

(1,1)

X2

X1

X2 X1 X2+

 (a) 2-input XOR function (b) Pattern space for the XOR function.

Figure 11.27
(a) The truth table for the 2-input Exclusive Or function. (b) The associated pattern space.

 11.4 THE DELTA RULE
The Perceptron Learning Rule fails to converge whenever the input patterns are not linearly 

separable; this limitation manifests itself even when outliers represent a small fraction of the inputs. 
Consult Figure 11.28.

X1

–1

–1

1

1

–1

1

–1

1

–1

1

1

1

X2 X1 + X2

Figure 11.26
The two-input inclusive-OR function represented with bipolar values.
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The Perceptron Rule would not converge in this 
example; however, the Delta Rule, which we define 
here, successfully classifies the vast majority of the 
inputs. The Delta Rule and backpropagation, which is 
discussed in Section 11.5, both rely on gradient de-
scent. 

Gradient descent is a calculus-based method used 
to find the minimum of a function. Suppose that the 
variable y depends on a single variable x, or y = f (x). 
We refer to x as the independent variable and y as 
the dependent variable. Refer to Figure 11.29. We are 
searching for that value x* for which y is minimum; 
f (x*) ≤  f (x), ∀x.

Let x0 be the current value for x, in other words, 
we are at position P0 = (x0, y0) on the graph, where  
y0 = f (x0). Consult Figures 11.29 and 11.30.

We are searching for x*, that value 
that minimizes y = f (x). We travel in 
the direction that minimizes this func-
tion, in other words, we proceed either 
to x0 + Dx or x0 - Dx for some small 
step Dx. You perhaps recognize this as 
a form of hill climbing (Chapter 3, “In-
formed Search”). We need to know the 
resulting change in y for these changes 
in x; in other words, we require the 
slope m = (Dy/Dx) of the straight line L 
(known as the tangent line), which just 
touches the graph at the point P0. If the 
graph is drawn carefully, then Dx and 
Dy can be measured directly from the 
graph. You might recall from the first 
course in calculus that as Dx and Dy  
get smaller and smaller then the ratio 
(Dy/Dx) approaches the derivative of 
the function at the point P0; in other 
words, 0( ).y f xx

∆ ′≈∆  In Figure 11.30, 
observe that δy and δx are also drawn. The ratio of these quantities represents the rate at which the 
function f (x) is changing at the point P0 = (x0, y0); in other words, the derivative f ′(x), and not the 
rate at which the tangent line to the point P0 is changing. When Dx is sufficiently small, then δy = Dy, 
or the change in height of the function equals the change in y-value of the tangent line. We employ 
some algebra:

δy = Dy // Dx sufficiently small

y

x

Figure 11.28
Two pattern classes (  and ). The dashed line correctly classifies most of the 
inputs.

y = f(x)

x* x0

x

Figure 11.29
Finding the minimum of the function y = f (x).
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*y
y xxd ∆ = ∆ ∆ 

 // we multiplied the right hand side (rhs) by (Dx/Dx)

δy ≈ Dy // for small Dx
 \ δy = slope of tangent line * Dx

and *y
dy xdxd  = ∆ 

 
  (*)// where (dy/dx) is the instantaneous rate of 

 // change of y with respect to x, 
 // or the derivative of the function f (x). 
If the function f is differentiable, then calculate the derivative of f (x), in other words, f ′(x). Set:

 * **,dyx dxa  ∆ = −  
 

where α is a positive constant, small enough so that . 
When (**) is substituted into (*), we have

2

   dydy dxa  ≈−  
 

(***)

Because 
2dy

dx
 
 
 

must be positive, the rhs of *** 
2

 dy
dxa  −  

 
is negative. \δy < 0 . We have there-

fore taken a step down the curve. If this process is repeated, we should eventually arrive at the 
function minimum f (x*). This iterative process is known as gradient descent.

P0 = (x0, y0)

y = f(x)

x

∆y

∆x

δy

δx

Figure 11.30
The slope of a function.
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If y is a function of the n variables: x1, x2,…, xn, or, y = f (x1, x2,…, 
xn), then the above argument can be generalized. One can speak of the 
rate of change of the function f with respect to each of the variables. 
The partial derivative ∂f /∂xi is the instantaneous rate of change of the 
function f with respect to the variable xi, the “variables” x1, x2, …, xi-1, 
xi+1, …, xn are treated as constants. The counterpart to equation (**) in 
the n-dimensional case is

 *
i

y
i

x
x

d
a d

 ∆ = −  
 

 for each  i = 1, …, n . 

We now apply gradient descent to 
find the minimum of the error func-
tion for a single TLU. This discussion 
culminates with a second rule for su-
pervised learning—the Delta Rule—
a rule that can be viewed as more 
robust than the Perceptron Learning 
Rule in that a few inputs may violate 
the linear separability restriction im-
posed by the latter rule. For this dis-
cussion we redraw a simple threshold 
logic unit in Figure 11.31. 

This abstract neuron is presented with an input pattern px and where pt  is the associated target 
output. Whenever the TLU’s output py  does not equal pt , the system’s weights must be adjusted. 
The blame for any discrepancy between py and pt  lies with ŵ , the augmented weight vector. 
Any function E that expresses the error of this unit must have ŵ  as an argument, in other words, 
( ) ( )1 2 1, , ˆ , nE w E w w w += … . Our task is to find an appropriate expression for this error function E( ) 

and to use gradient descent to minimize it. 
Suppose we present N patterns to the TLU and we set E to the average error:

  
1

1 *
N

p

p

E eN
=

 
 =
 
 
∑ , where e p = t p - y p,

or, the system error encountered for pattern p. However, when t p = 1 and y p = 0, the error will be 
calculated as larger than when t p = 0 and y p = 1. One is tempted to use: e p = (t p - y p)2 instead. How-
ever, gradient descent requires that the function involved be smooth and differentiable. The TLU’s 
activation function is discontinuous at the point x = θ, with an abrupt jump in output as x increases 
to θ, y experiences a sudden leap from 0 to 1 (consult Figure 11.35a). The equation that is used is

( )2
 ̂ ˆ1 *2

p p pe t x w= − ⋅ ,

where bipolar {−1, 1} instead of binary values {0, 1} are used. The average or mean square error 
(MSE) over all N patterns is

( )2

1

1 1 * ˆ ˆ 2

N
p p

p

E t x wN
=

= − ⋅∑ .

The gradient of a function f (denoted 
grad f or ∇f, read as del of f) is a 
vector that points in the direction in 
which f increases most rapidly. So 
strictly speaking, we are traveling 
down f in the direction opposite to 
the gradient of f.

W1

y

0
W2

X2

X1

Wn+1 = θXn+1 = −1

Figure 11.31
A TLU.
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This error E depends on all of the patterns, as does each partial derivative ∂E /∂wi. Hence, all 
of the N patterns must be presented before any weight changes are mandated; this is referred to as 
batch training but is computationally intensive. Instead, what is done in practice is to present a 
network with a pattern p and then make adjustments based on 

p

i

e
w
∂
∂

, which is used as an estimate for 

∂E /∂wi. This minimization process is noisy, and sometimes weight changes are made that actually 
increase the error E. The error produced when pattern p is presented to the TLU is

( )21 ˆ ˆ*  2
p p pe t x w= − ⋅ ,

where the dot product ˆ ˆpx w⋅  equals

1 1 2 2 1 1*  *  *p p p
n nx w x w x w+ ++ +…+ .

Therefore, ( )ˆ ˆ  * ,
p

p p p
i

i

e t x w xw
∂

=− − ⋅∂
where p

ix  is the ith component of the input pattern p. The chain rule is employed to obtain this re-
sult. Remember that the w’s are variables in this expression and the x terms are constants. Weight 
adjustments are made according to

  ( )ˆ ˆ *  * ,p p p
i iw t x w xa∆ = − ⋅  (#)

where α is the learning rate. The learning rule based upon this minimization process is the Widrow–
Hoff Rule,3 often referred to as the Delta Rule (or δ rule). Pseudocode for the Delta Rule is given 
in Figure 11.31a.

Repeat
 For each training vector pair ( )x, t
   Calculate the excitation ˆ ˆ⋅x w  when x̂ is 
   presented as input to the TLU
  Make weight adjustments according to #
 End for
Until the rate of error change is sufficiently small

 End
Figure 11.31a
Pseudocode for the Delta Rule.

The Delta Rule converges when the learning rate α is sufficiently small. That is, the weight vec-
tor ŵ  approaches *ŵ where ( )*ˆE w  is minimum. When the pattern classes are not linearly separable 
then some error will remain, in other words, some patterns will be misclassified (“x”s that lie above 
the discriminant in Figure 11.28 will be incorrectly classified as “0”s and vice versa; the Perceptron 
Learning Rule would never have converged for these input patterns). The Delta Rule will always 
make changes (unless your program forces an exit from the loop) because ˆ ˆx w⋅  will never exactly 
equal t which is either 0 or 1.

exAMple 11.2
Use the Delta Rule to train a two-input TLU to learn the two-input inclusive 
OR function with initial weights w  = (0, 0.2) and threshold θ = 0.25 using a 
learning rate α = 0.10. 
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We illustrate the requisite calculations during the first epoch in Figure 11.32.

x1 x2 x3w1 w2 w3 = q x̂  · ŵ a * (t – x̂ · ŵ)t δw1
δw2

δw3

0 0 –10.0 0.2 0.25 –0.25 –0.075  a)–1 0.0 0.0 0.075

0 1 –10.0 0.2 0.33 –0.13 0.113  b)1 0.0  c) –0.113  d) 0.113  e)

1 0 –10.0 0.09 0.44 –0.44 0.1441 0.144 0.0 –0.144

1 1 –10.14 0.09 0.30 –0.07  f) 0.1071 0.107 0.107 –0.107

Figure 11.32
Sample training with the Delta Rule. Recall that bipolar inputs and outputs are being used. 

After the first epoch, w1 = 0.25, w2 = 0.20, w3 = θ = 0.19. Details for several of 
the results are given as follows:

(a) Row 1: ( ) ( ) ( )ˆ ˆ*  0.1* 1 ( 0.25) 0.1* 0.75  0.075t x wa − ⋅ = − − − = − = −

  Note that rounding off to two decimal places has occurred after the calcu-
lations are made.

(b) Row 2: ( ) ( )( ) ( )*  0.1* 1 0.13  0.1* 1.13  0.1ˆ ˆ 13t x wa − ⋅ = − − = =

(c) ( ) 1ˆ ˆ*  *
iw t x w xd a= − ⋅

  In Row 2, x1 = 0
 \δw1 = 0.

(d) ( ) ( )( ) ( )2 2ˆ ˆ *  * 0.1* 1 0.44 0.1* 1.44  0.144w t x w xd a= − ⋅ = − − = =

(e) ( ) ( )( )3 3ˆ ˆ *  * 0.1* 1 0.44 *( 1)w t x w xd a= − ⋅ = − − −  // x3 is always −1

       = 0.1 * (1.44) * (-1) = -0.144.

(f) In Row 4

 ( ) ( )
( ) ( ) ( )

( )

ˆ ˆ 1,1 , 1 0.14, 0.09, 0.30
1*0.14 1*0.09 1*0.30

 0.14 0.09 0.30 0.07

x w⋅ = − ⋅

= + + −

= + + − = −

Widroff and Hoff first produced this training method in 1960. They trained 
ADALINES (short for adaptive linear elements) which are similar to TLUs, 
except that bipolar values (or {−1, 1}) are used for both inputs and outputs.
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 11.5 BACKPROPAGATION
We have described three paradigms for neural networks. McCulloch-Pitts neurons were seen 

to be capable of implementing arbitrary Boolean functions; their drawback, however, is that the 
functions they implemented are “hard-wired” and cannot consequently be modified without over-
hauling the network topology. Both the Perceptron Learning Rule and the Delta Rule overcome this 
handicap, thus these models behave as adaptive systems: systems capable of responding to their 
environment. The limitation of these approaches is that the function being implemented must be 
linearly separable and for complex pattern spaces this can be a draconian requirement. The Delta 
Rule is somewhat more flexible; however, implementation of arbitrary functions remains unten-
able. Backpropagation is the learning rule described in this section; it is robust enough to work on 
multilayer networks, and as we shall see, this rule overcomes the aforementioned drawbacks.

A multilayer neural network is drawn in Figure 11.33.

X1

h1

h2

y

-
w1 -

w2

X2

X3

Input layer Hidden layer Output layer

Figure 11.33
A multiple layer neural network.

This network consists of six neurons arranged in three layers. Neurons in the same layer lie at 
the same distance from the input signals x1, x2, and x3. In this figure, there are three neurons in the 
input layer, two neurons in the hidden layer, and the output layer consists of a single unit. Input 
neurons are connected directly to input signals and output signals emanate directly from output 
neurons. Since neither the inputs nor outputs from the middle layer are directly accessible, they are 
referred to as hidden units. There is some disagreement in the literature as to how the neural net-
work in Figure 11.33 should be classified. You could argue that it is a 3-layer network (for obvious 
reasons); however, neurons in the input layer of a multilayer network behave merely as input sites. 
The learning in a network takes place in the weights. A quick glance at Figure 11.33 confirms that 
two layers of weights are present—those connecting input neurons to hidden neurons are denoted 
by 1w , and those weights from the outputs of hidden units to the inputs of output units are labeled 
as 2w . Hence, this neural network is often classified as a 2-layer network. We adopt the latter  
characterization in this text. 
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In the network depicted in Figure 11.33 every neuron in layer i 
(counting from left to right) is connected only to neurons in layer j 
where j = i + 1; additionally, there are no intra-layer connections. This 
network topology is referred to in general as a feed forward network; 
the specific network illustrated is a 3 – 2 – 1 feed forward network, as 
these numbers designate the number of neurons in each layer. When 
intra-layer connections are also present, then the network is referred to 
as a layered network.

We comment here that in a fully connected, n – r – m feed forward 
network, 1w  is an n × r matrix of weights and 2w  has dimension r × m.

Training in a multilayer network is somewhat more involved. Refer to Figure 11.34.

x1

h1

x2

Xn

hj

hr

y : t

Figure 11.34
An n – r – m feed forward network.

An input pattern 1 2( , , , )i nx x x x= …  is presented to the network. Each input xi, where i = 1, …, n 
is connected to every hidden unit hj , j = 1, …, r. Additionally, each of the hidden units is connected 
to every one of the m output neurons (for clarity we have taken m = 1). In response to this input 
x , the network produces an output iy , which is then compared to the target it . An error term ei is 
computed, which measures the disparity between the actual and desired outputs. This process of 
presenting an input pattern ix  to the network and then calculating the resulting error ie  is repeated 
N times, where N is the number of patterns in the training set. This process yields E, the average 

error produced by the network where
1

.1 N
i

i

eN
=

= ∑E  Armed with this information, the network must 

assign blame to every one of the l weights in the network where l = (n × r) + (r × m) (l corresponds 
to the sum of the number of entries in the weight matrices 1w  and 2w . As a precursor to this assign-

ment of responsibility to each weight, the partial derivatives 
l

E
w
∂
∂

 must be calculated for all l = 1, ...  

(n × r) + (r × m). These partial derivatives specify the instantaneous rates of change of the error 
term with respect to each weight in the network. In Section 11.3, we saw an example where the Per-
ceptron Learning Rule with a training set of size four required three epochs; in backpropagation it is 
common to have training sets of hundreds or even thousands of patterns and for training to require 

We have commented on the 
inconsistencies in the notation. Some 
sources reverse the definition of 
feed forward and layered networks 
provided here. When consulting 
other sources, be sure to understand 
how those authors define their terms.
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thousands of epochs. Even before the exact details of the backpropagation algorithm are presented, 
it is apparent that the procedure will be computation intensive. Backpropagation was “discovered” 
on several occasions 4, 5, 6, 7 but it was not until the 1980s that computers had become fast enough to 
handle the requisite calculations that backpropagation entails. 

Backpropagation requires that the activation function be continuous and differentiable (just as 
the Delta Rule did). The threshold function shown in Figure 11.35(a) is discontinuous and hence 
unacceptable. The Sigmoid function in 11.35(b) is often used with backpropagation networks. The 

Sigmoid function Sc:  → (0, 1) is given by *
1

1c c xS
e−

=
+

, and the parameter c is referred to as the 

slope of the function; for larger values of c this function resembles the step function. The input 
to a sigmoidal unit will be ˆ ˆx w⋅ , in other words, when the input is x  = (x1, x2, ..., xn), the output 

prescribed by this activation function is i1

1 .
1 *

n
ii

exp w x q
=

+ −∑ . Recalling the reciprocal rule, the 

–3 –2 –1 0

1

–1
a

b

1 2 3

(c) Ramp function

–4 –2 0

1

2 4

(b) Sigmoid function

y

1

0

x

(a) Threshold function

θ

Figure 11.35
Several common activation functions (a) the step or threshold function (b) sigmoid function (c) ramp function .
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derivative of the sigmoid with respect to x is: ( )
( )

( ) ( )( )2 1 .
1

x

x

d eS x S x S xdx e

−

−
= = −

+
 This quantity 

will prove useful later when we derive the rule for backpropagation learning.

The ramp function in Figure 11.35(c) is defined by ( )
, 
1, 
1, 

cx a x b
r x x b

x a

≤ ≤
= ≥
 − ≤

This activation function is useful when scaling of input quantities is required. You must use 
care when x = a or x = b, as r(x) is not differentiable at these points.

The learning problem for a backpropagation network (BPN) can be characterized as follows:

• Each neuron j in the network evaluates a function of its inputs f (g( x ))where g( x ) is 
usually the dot product of the unit’s inputs with its weights, or g( x ) = x w⋅ , and fj(**) 
is an activation function that is continuous and differentiable; fj determines the neuron’s 
output. The weights of the network are initialized to small random numbers. 

• The network implements a composite function F, called the network function.
• The learning problem consists in finding the set of weights: w1, w2, ..., wt such that F is 

as close as possible to Fd (desired function). However, Fd is not given explicitly. Rather, 
you are provided with a training set ( ) ( ) ( ){ }1 1 2 2, , , , , ,N Nx t x t x t… , wherein each input pat-
tern ix  is an n-dimensional vector and each target output it  is an m-dimensional vector. 

• An input ix  is presented to the network. The BPN produces an output iy , which is then 
compared to the target output it .

• The aim of the learning rule is to make iy  = it  for every pattern i in the training set. 
This is done (exactly or approximately) by minimizing the network error function 

( )2

1

1
2 .

N

i=

= −∑ i iy t  E is minimized by using gradient descent (described in Section 11.4). 

The gradient of E is calculated:
1 2
, , , .

l

E E EE w w w
∂ ∂ ∂ ∇ = … ∂ ∂ ∂ 

 The weights are then updated 

according to: i
i

Ew wa ∂ ∆ =  ∂ 
i = 1, …, l where the learning rate is 0 < α ≤ 1. When the 

error is minimized, ∇E = 0, though we will rarely be this fortunate and some error will 

remain.

To derive the backpropagation algorithm, we use the two-layered network in Figure 11.36.
A glance at this function confirms that there are (n + 1) * r weights between input sites and hid-

den units and (r + 1)* m weights between the network’s hidden and output units. Therefore, 1ŵ is an 
(n + 1) × r weight matrix and 2ŵ  has dimension (r + 1) × m. As usual, ( )1 2, , , nx x x x= …  represents 
the n-dimensional input. The augmented input x̂  equals (x1, x2, ..., xn, -1) . The excitation of the jth 

hidden unit we denote by g(hj), where ( ) ( )
1

1

1

ˆ ˆ
n

j i ij
i

g h x w
+

=

=∑ . The output of hidden unit j, or f (g(h j)) we 
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denote (for clarity) by ( )1
jx . Because we are using sigmoid functions for the activation functions of 

all units, we have that

( ) ( )
1

1 1

1

ˆ .
n

j i ij
i

x s x w
+

=

 
=   

 
∑

The excitation of all units in the hidden layer = 1ˆ ˆx w⋅ .

–1

weight matrix

weight matrix

n inputs r hidden units m output units

(a)

(b)

n input units.
location n + 1 is a constant –1 input.
m output units.

 denotes a weight between input i and hidden unit j.

 denotes the weight between hidden unit i and output j.

 the weight between the constant input of –1 and hidden unit j (equals θ for j = 1, ..., r).

 the weight between the constant input of –1 and output unit j. (equals θ for j = 1, ..., m).

–1

w (1)
n+1,r

w (1)
n+1,j

w (2)
r+1,m

w (2)
r+1,j

w (1)
ij

w (2)
ij

ŵ1

ŵ2

Figure 11.36
(a) A two layered network. (b) Explanation of notation employed. 
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The vector is represented by ( )1x , whose components are the outputs of the hidden units; it is 
calculated by

( ) ( )1
1ˆ ˆ .x s xw=

The excitation of units in the output layer is computed using ( ) ( ) ( )( )1 1 1
1ˆ , , , 1rx x x= … − . Finally, the 

output of the network is an m-dimensional vector: 

( ) ( )( )2 1
2ˆ ˆ .x s x w=

The Backpropagation Algorithm can be viewed as a four step procedure:

 Step 1: Feed forward computation
 Step 2: Backpropagation to the output layer
 Step 3: Backpropagation to the hidden layer
 Step 4: Update the weights

The stopping criteria are similar to those for 
the Delta Rule: either the number of epochs has 
exceeded our limit or the error E of the network 
has become sufficiently small. We will return to 
this issue in Section 11.7. 

During the feed forward step, the input pat-
tern x  is presented to the network. Next, the vec-
tors ( )1x  and ( )2x  are computed. In Step 2, the 

partial derivatives 
( )2
ij

E
w
∂
∂

 are calculated. Figure 

11.37 illustrates the path from hidden unit i to 
output unit j. 

The output at output node j is ( )2
jx  and the jth 

component of the target is tj. Hence, the error at output node j is ( )( )221
2 .j jx t− The partial derivative

( ) ( )( ) ( )( ) ( )2 2 2 1 .1j j j j i
ij

E x x x t xw
∂

= − −∂

( ) ( ) ( )( )* 1d s x s x s xdx = − coefficient of weight wij (the input to this weight)

The backpropagation error at output unit j is equal to the product of the first three terms above, 
in other words,

( ) ( ) ( )( ) ( )( )2 2 2 21 .j j j j jx x x td = − −

Therefore, we may simply 
ij

E
w
∂
∂

write as ( ) ( )2 1
j ixd .

ith hidden unit

jth output unit

x (1)
i

x (2)
j

w (2)
ij

Figure 11.37
Hidden unit i connected to output unit j.
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In Step 3, we compute ( )1 .
ij

E
w
∂
∂

 That is, we assign blame proportionally to each weight on the left 

side of the network for the errors that occur at the output units. Consult Figure 11.38.
Hidden unit j Output units

1

2

Xi

m

Input unit i

w (1)
ij

w (2)
j1

w (2)
jm

w (2)
j2

Figure 11.38
The error caused by a weight leading into hidden unit j.

Each hidden unit j is connected to each unit q in the output layer with an edge whose weight is 
( )2
jqw for q = 1, …, m. The backpropagated error at hidden unit j is denoted by ( )1

jd  where:

( ) ( ) ( )( ) ( ) ( )1 1 1 2 2

1

1 .
m

j j j jq q
q

x x wd d
=

= − ∑
The partial derivative that expresses the rate at which the error E would change with changes 

in weight ( )1
ijw is

( )
( )1

1 ,j i
ij

E x
w

d∂
=

∂
 where, as Figure 11.38 shows, xi is the input along weight wij.

In Step 4, weight adjustments are made. Weights in the right portion of the network—in other 
words, weights connecting hidden units to output units—are adjusted according to 

( ) ( ) ( )2 1 2
ij iw xa d∆ = −  for i = 1, …, r + 1 and j = 1, …, m.

And weights on the left side of the network, or weights connecting input neurons to hidden 
units, are adjusted according to

( ) ( )1 1 ,ij i jw xa d∆ = −  for i = 1, …, n + 1 and j = 1… r,

where α is the learning rate of the network and ( )1
1 1 1.n rx x+ += = −

Corrections should be made to the weights only after the backpropagation error has been com-
puted for all units. We have calculated the error that a single input pattern will induce in the BPN. In 
general, the training set will consist of N patterns, necessitating the following series of corrections:

( ) ( ) ( )1 1 1
1 2, , , .ij ij N ijw w w∆ ∆ … ∆

When batch (or offline) updates are made, then each weight will be corrected only after all 
N patterns have been presented ( ) ( ) ( ) ( )1 1 1 1

1 2ij ij ij N ijw w w w∆ = ∆ + ∆ +…+ ∆  with backpropagation applica-
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tions, the number of patterns N in the training set can often be in the thousands. Hence, weight  
adjustments are often made after each input is presented (online training). This is not true of gradi-
ent descent; however, the noise that is thereby introduced often facilitates training in that the train-
ing is less prone to settle at a local optimum of the function.

Consider the network in Figure 11.39.
Input layer

x1

y

-1
x3 = –1

in1 h1

in2 h2

Hidden layer Output layer

x2

w (1)
11

w (2)
11

w (1)
22

w (1)
31

w (1)
32

w (1)
12

w (1)
21

w (2)
21

w (2)
31

J

Figure 11.39
Backpropagation network to implement the two-input XOR function.

This network includes all components in one implementation of the two-input XOR function. 
Use a random number generator to initialize all weights to random numbers between −0.5 and +0.5. 
Then, to test your understanding of backpropagation, train this network for one epoch by hand 
(with the aid of a pocket calculator). For ease of computation, let the learning rate α = 0.1.

 11.6 IMPLEMENTATION CONCERNS
We have spent a good deal of time in this chapter discussing neural networks—the biological 

units that provide the infrastructure for naturally intelligent entities, and the artificial units that are 
the building blocks for learning networks. However, if we are to design useful ANN applications, 
our intellectual armamentarium must possess more than a rudimentary knowledge of linear alge-
bra, calculus, and learning rules. We must also know how to represent appropriate data and, more 
importantly, how to obtain it. Finally, we must know how to train a network. For both the Delta 
Rule and backpropagation, we have cited one stopping condition: “the error E of the network has 
become sufficiently small.” We must be more specific than this if our applications are to succeed. 
How should the output of an individual neuron or even an entire layer in this structure be inter-
preted? The outputs themselves in an ANN have no intrinsic meaning—it is the user who supplies 
the external semantics to the system. 
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For example, how different are the following binary patterns:

x = 0111010010111101100001110

y = 0111001010010100110101110

What metric should we employ to measure distance? One com-
mon measure used to measure dissimilarity in binary patterns is Ham-
ming distance, where this distance is defined as the number of bits in 
which two signals differ. For example, the Hamming distance between 
110 and 000, in other words H(110,000), equals two, as these patterns 
differ in both the first and second bits.

In our example, H(x, y) equals 7. How is this to be interpreted? Suppose that x and y are viewed 
as 2-dimensional patterns (consult Figure 11.40). 

(a) (b)

Figure 11.40
The letter “e” in (a) block form and (b) cursively.

The letter “e” is written in both block form and cursively on a 5 × 5 grid. The boxes considered 
are numbered in row major order. The ith component of a vector equals 1 if the letter occupies the 
corresponding block (to some extent), and 0 otherwise. 

Pattern Representation is a critical issue. Suppose that you designed an application to model 
the behavior of iron as its temperature varies from 2780°F to 2820°F (the melting point of iron is 
2800°F). Should you scale directly? Recall that ANN inputs and outputs vary in magnitude over  
(0, 1), or sometimes over (−1, 1). It would make more sense to model the difference in temperatures 
(2820 – 2780 = 40) rather than the temperatures themselves, so that 2780°F could be represented 
by 0, 2790°F by 0.25, 2800°F by 0.50, and so on. Also, the sigmoid function does not scale well 
(Section 11.5), so that the use of the ramp function as an activation function is recommended. 

Another concern is any interrelationship between parameters that might be present. For exam-
ple, if you are designing an ANN for weather prediction, you should expect a correlation between 
precipitation type (e.g., rain, snow, sleet, hail, etc.) and temperature. You must also be wary of inter-
relationships among data—in fact, duplicated data may be present.

The reader is referred to an excellent 
text by David M. Skapura that treats 
the issues of data representation and 
training methodology in depth.

Hamming distance is a common 
metric in algebraic coding theory—
the theory behind error detection and 
error correction in computer data.
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Binary patterns are the easiest to represent; you 
can allow 1 to represent the presence of a feature, 
say the possession of a checking account, and 0 to 
represent its absence. Sometimes, however, there 
is a third possibility—a don’t care condition. In 
Chapter 4, we discussed simple adversarial games 
such as Nim and tic-tac-toe. How would you rep-
resent a tic-tac-toe board to an ANN? A square can 
be occupied with an X, an O, or it can be vacant. 
You can represent an X by 100, an O by 010 and 
a vacant square by 001. These representations are 
orthogonal (the dot product of any two of these 
equals zero); this aids the network in distinguishing 
between them. Nine independent subpatterns can 
then be concatenated together to form a vector of 
length 27, which represents the state of an entire 
tic-tac-toe game. Figure 11.41(a) illustrates a row 
major ordering convention that can be used to rep-
resent each square in the game, and Figure 11.41(b) 
depicts an arbitrary state in a game and its vector 
representation.

Many other issues arise in data representation. 
For example, how would you represent an image 
that is moving? Anyone who intends to become a 
serious user of the technology of ANN is advised to 
consult the excellent texts on this subject. 8, 9, 10, 11, 12

exAMple 11.3
Propose a design for a backpropagation network (BPN) to help graduate advi-
sors make admission decisions to a graduate program in Computer Science 
(CSc). 

Discuss the appropriate inputs and outputs to your BPN. What data repre-
sentations do you recommend, and what type of activation functions would 
you use? Use your own real-world knowledge to help your network balance 
conflicting aims: a student’s desire to be granted admission vs. a department’s 
limited resources, which make it incumbent to admit only students who are 
likely to succeed. Indicate where the necessary training data will come from, 
and propose an initial architecture for your BPN. 

Inputs to the network are as follows:

• Student name and address—this is text and is not to be weighted.

 Skapura in Building Neural Networks has an excellent 
example of a network for this purpose.

1 2 3

4 5 6

7 8 9

X O O

X

X

1

100

X X XO O – – – –

010 010 001 100 100001 001 001

2

(a)

(b)

3 4 5 6 7 8 9

Figure 11.41
(a) The squares in a tic-tac -toe grid numbered in row major order. (b) Representation of 
a game state by a binary vector with 27 components.
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• Undergraduate major—there are literally dozens of possible undergraduate (ug) ma-
jors—you might group them as suggested:
° science/math/engineering  input 1

° liberal arts/humanities/social sciences  input 0

• with the rationale that students with technical ug majors are more likely to succeed in 
a CSc program.

• Undergraduate grade point average (GPA) —grades in most schools range 
°  from A, B, C, D, F; many institutions employ + and – on these letters 

as well. We employ numeric 0 → 4 scaled, where 4 represents an A, 3 
a B, etc.

• GPA in CSc courses—scaled numeric data, also from 0–4.
• Financial ability to pay— if no, then input equals 0 

 if yes, then input equals 1
• This would not be an admission criterion unless scholarship funds are limited. 
• English proficiency—Many American graduate students in CSc come from  

foreign countries. TOEFL exam scores measure English proficiency. Input is scaled 
numeric.

• Recommendation letters:   if excellent, then input equals 1  
if average, then input equals 0.5 
if bad, then input equals 0

• Quality of ug school attended:  if excellent, then input equals 1 
if average, then input equals 0.5 
if not so excellent 0.0 
(scaled from 0 to 1)

The output of this network is either:  deny represented by 0  
  admit by 1. 

The output is scaled between these values based on the strength of the conclu-
sion. Numeric data that must be scaled should use a ramp activation function; 
a sigmoid unit suffices in other cases.

There are a total of eight inputs to this network. A good rule of thumb (heu-
ristic) is that the number of hidden units should equal about 20% of the input 
units. Therefore, the initial architecture for this application is an 8 – 2 – 1 feed 
forward BPN depicted in Figure 11.42.

Training data could be obtained from the Registrar’s Office. Because this 
data is from past years, you also have access to the ultimate success of these 
students.
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Input layer Hidden layer Output layer

 Figure 11.42
Proposed BPN architecture for the graduate CSc admission application.

 11.6.1 Pattern Analysis
Considering Example 11.3, suppose the Registrar’s Office contains records for only American 

students who have applied to your graduate program in the past; however, presently, the vast major-
ity of your applicants are from Europe and Asia. You cannot expect your network to produce valid 
results. Suppose that you were designing a network for weather prediction and you had the follow-
ing two patterns in your training set:

Current weather conditions:  cloudy and cold

Tomorrow’s weather:  rain
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Current weather conditions: cloudy and cold

Tomorrow’s weather:  sunny

No learning rule could reconcile this disparity. You need to eliminate this inconsistency from 
your patterns, or network convergence is impossible. Either remove these patterns or find other fac-
tors (say an approaching warm or cold front) that explain the different outcomes.

Suppose you are designing a BPN application for Optical Character Recognition (OCR). OCR 
devices have numerous applications; the Post Office routinely uses these devices to automatically 
sort first class mail. Those letters that cannot be classified by machine must still be routed by postal 
clerks. When designing your training set, you should follow the 50:50 rule. Half of your input 
patterns should be valid examples, such as a, a, A, A for the letter “A.” The other half should be 
null patterns, in other words, inputs that do not belong to any of the (26) valid pattern classes, for 
example, D, <, and x. 

 11.6.2 Training Methodology
How long should training with an ANN continue? If the Perceptron Learning Rule is being 

used, the answer is easy: stop once (if  ) the network weights have remained constant for an entire 
epoch. For BPN the answer is more subtle. Consult Figure 11.43. In 11.43(a) all patterns have been 
correctly classified, whereas the application in 11.43(b) incorrectly classifies several patterns. You 
might be misled into believing that the network in Figure 11.43(a) does a better job at classification, 
when, in fact, it has memorized the training set and will exhibit poor generalization. The network 
in Figure 11.43(b) has several errors but performs better on a validation set. A validation set is a 
collection of input patterns that the network has not seen previously. This set, as the name suggests, 
is used to measure how well the network has learned the “essence” of its task (i.e., how well has it 
identified features that are key to identifying a pattern).

(a) (b)

Figure 11.43
Two examples of network training in pattern space: (a) overtraining and (b) generalization.
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If you have chosen your exemplar 
set properly, and no contradictions re-
main in your training data, then you 
should expect that the error of a BPN 
will decrease as the number of epochs 
increases (Figure 11.44).

However, this is not so; instead, 
once the training error is minimized, 
you will likely have overtrained your 
network, and it will fail to perform 
well on validation data. Your goal in 
training a BPN should be to minimize 
the validation error (Figure 11.45). 
After some number of epochs in the 
training process, the validation error 
(denoted with a dashed line) begins to 
rise (the point marked by  in this fig-
ure), while the training error continues 
to fall. 

Remember that the reason for de-
veloping a neural network is to use it 
in the real world and not on the train-
ing set. It is therefore a good idea to 
alternate training with validation (be 
sure to disable weight changes during 
validation) and stop training once the 
validation error exhibits an upturn. 

What should you do if you begin 
training your network but the error 
fails to decrease? It is likely that in-

consistencies remain in your data. What now? It is infeasible to manually examine several thousand 
(or more) training patterns. Instead, you can use a binary search of the exemplar set. Divide your 
training set in half and train two copies of your network independently on each half of the data. The 
half that contains contradictory data will fail to converge. Continue this splitting process until the 
spurious pattern(s) are sufficiently isolated so that manual inspection becomes feasible. However, 
the network’s failure to converge might be due to the network itself. It could be necessary to add or 
delete hidden units from your design. A graphical tool that is useful here is a Hinton diagram that 
permits visual inspection of interconnection weights while training is occurring (consult Skapura 8).

You might desire additional guidance on when network training can cease. Interleaving train-
ing and validation data can be time-consuming. Another approach is to train the BPN until the error 
falls below 0.2. Recall the epoch and save the value of all network weights. Continue training until 
the error falls below 0.1. If the additional number of epochs required to reach this halving of error 
is ≤ 30% of the original number of epochs, then repeat this process and try for an error of 0.05. If 
not, then overtraining is occurring and you should return to the previous state of the network.

If validation is to occur after training, then two approaches can be used. In validation, the  
network is presented with patterns that are not in the training set. You can choose to withhold a 
number of patterns randomly; exercise caution, however, that the network is not sensitive to the 

Number of epochs

Error
(in training
data)

Figure 11.44
In a BPN, the error in the training set continues to decrease.

Error

Number of epochs

Training set

Validation set

Figure 11.45
Training error vs. validation error in a BPN.
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order in which the training patterns are presented. A more robust procedure is known as Hold-one-
out training; however, training the network N times is then required, and when the training set is 
large, this method can be time-consuming.

 11.7  DISCRETE HOPFIELD NETWORKS
In this section, we discuss the Discrete Hopfield Network, which was proposed by John Hop-

field, a Nobel Prize laureate in physics. It is not surprising that an energy function is associated 
with this model. A Hopfield network always finds a local minimum of the energy function. Hopfield 
networks are a type of associative network that have proven useful in combinatorial optimization 
and in finding approximate solutions for NP–complete problems.

Discrete Hopfield Networks are a type of associative network. In an associative network, pat-
terns are associated that are similar or perhaps opposites of one another. In some cases, a pattern 
is recalled from a part of a pattern or from a noisy (distorted) version of it. Human memory often 
functions as an associative network. How often have you heard a song on the radio and immediately 
recalled a special evening from your past?

Two types of associative networks are autoassociative and heteroassociative. In autoassocia-
tive networks the input patterns used for training and the target outputs are identical. Often these 
networks are used to retrieve distorted or partial inputs. An example of an autoassociative network 
“at work” is shown in Figure 11.46.

X1 W11

W1j

Wij

Wi1

Wn1

Wnn

W1nWnj

W1n

Xi

Xn

Input units Output units

y1

yj

yn

Figure 11.46
An autoassociative network.
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Heteroassociative networks, as the name suggests, associate patterns from different pattern 
classes. A sample heteroassociative application is depicted in Figure 11.47. 

X1

Input image (two eggs) Output image (chicken)

W11

W12

W21

W22

W31

W32

W41
W42

y1

y2

X2

X3

X4

Figure 11.47
A heteroassociative network.

Associative networks are often trained using Hebb’s learning rule. 13  
Hebb postulated that two neurons that are active at the same time 
should be more actively engaged (i.e., should be joined by a larger 
weight) than those neurons not correlated via the same processing task. 
For an input neuron x1 and an output neuron yj, Hebb’s rule prescribes 

that weight updates should be made by: Dwij = αxi  yj. Excellent examples of learning for associative 
networks can be found in Fundamentals of Neural Networks by Laurene V. Fausett.14

A Discrete Hopfield Network is an autoassociative network with feedback, in other words, a 
recurrent autoassociative network (see Figure 11.48). The outputs of the network at time t form 
inputs to the system at time t + 1.

The reader who has taken a course 
in switching theory can see the 
analogy with sequential circuits that 
also remember some of their outputs.
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X1 X1

X2

X2

Xn

Xn

Figure 11.48
An autoassociative network with feedback.

However, in a Discrete Hopfield Network, no self-
loops are present (Figure 11.49).

The architecture of a Discrete Hopfield Network has 
the following attributes:

 i. Every unit in the network is connected to ev-
ery other unit except itself.

 ii. The network is symmetric: wij = wji ∀i, j.
 iii. Each unit can assume the state 1 or −1.
 iv. Only one unit is selected for update at a time 

and selection is random.
 v. A necessary (but not sufficient) condition 

for the network to lead to a stable state 
( )1

*    .t tx x t t+ = ∀ ≥  
A Discrete Hopfield network with two units is drawn 

in Figure 11.50.
The number drawn inside a unit represents that unit’s threshold, hence θ1 = θ2 = 0. Also, 

observe that w12 = w21 = -1. Suppose further that the network is initialized to x1 = 1 and x2 = -1. 
The excitation to unit 1 is then x2 * w21 = (-1) * (-1) = 1. Because this is greater than the unit’s 
threshold, unit 1 remains in state x1 = 1 (note, we are assuming a threshold activation function). 
Meanwhile, unit 2 experiences an excitation equal to x1 
* w12 = (1) * (-1) = -1. This excitation is less than θ2, 
which is 0, hence unit 2 remains in state x2 = -1. The 
state (1, −1), written this way for convenience, remains 
in this state and is therefore referred to as a stable 
state. Verify that (−1, 1) is a second stable state. Next, 
consider what happens if the initial state is (−1, −1)?  
Assume that unit 1 is chosen first for updating. This 
unit experiences an excitation equal to x2 * w21 = (-1) *  
(-1) = 1. This excitation of 1 is greater than θ1 = 0, 

Figure 11.49
A Discrete Hopfield Network.

0
0

–1

X1 X2

Figure 11.50
A Discrete Hopfield Network with two units.



350  ■  Part  3   ·  Knowledge-Based Systems

therefore unit 1 will change its state to x1 
= 1. The network is now in state (1, −1); 
the state (−1, −1) is therefore referred to 
as an unstable state. What if unit 2 had 
been chosen first for updating above? 
You may wish to confirm that (1, 1) is 
also an unstable state for this network.

What would happen if we relax con-
dition ii) above, which requires that weights in a Discrete Hopfield Network be symmetric? Consult 
Figure 11.51. 

Let the thresholds θ1 and θ2 each once again equal 0. Verify that the state (1, −1) will change to 
(1, 1), and that (-1, 1) → (-1, -1) → (1, -1) and so on. We conclude that symmetric weights are a 
necessary condition if stable states are to exist.

Hopfield defines an energy function for these networks (also known as a Lyaponov function). 
If w  denotes the n × n weight matrix of a Hopfield network with n units   and is a row vector of 
dimension n, representing the units’ thresholds, then the energy E(x) of a state x  is given by

( ) 1  2E = − +T Tx xwx x

Alternatively, this energy function can be computed as

( )
1 1 1

1
2

n n n

ij i j i i
j i i

E w x x x
= = =

= − +∑∑ ∑x 

The terms wij xi xj and wji xj xi will both 
occur in this double sum, therefore a coeffi-
cient of (1/2) is used. Hopfield networks are 
often used to solve combinatorial problems. 
Because a Hopfield network will always find 
a local minimum of the energy function, the 
solutions obtained are sometimes only ap-
proximate solutions. Consider the two-state 
Hopfield network in Figure 11.52. The en-
ergy is calculated for each of the four states 
below.

Unstable:  ( ) ( ) ( )12 1 2 21 2 1 1 1 2 2
11,1 2E E x w x x w x x x x= = − + + + = 

 ( ) ( )[ ] ( )[ ]1 11 *1*1 1 *1*1 0*1 0*1 1 ( 1) 12 2− − + − + + = − − + − =

Stable:  ( ) ( ) ( ) ( ) ( )[ ]11, 1  1 *1* 1 1 * 1 *1 0 0 12E − =− − − + − − + + = −

Stable:  ( ) ( ) ( ) ( ) ( )[ ]11,1 1 * 1 *1 1 *1* 1 0 0 12E − = − − − + − − + + = −

Unstable:  ( ) ( ) ( ) ( ) ( ) ( )[ ]11, 1 1 * 1 * 1 1 * 1 *( 1) 12E − − = − − − − + − − − =

1

X1 X2

–1

Figure 11.51
A network with asymmetric weights (w

12
 ≠ w

21
).

Energy

1

0

–1 Two stable states

(–1, –1) (1, 1)

(1, –1) (–1, 1)

Figure 11.52
State transitions for the network in Figure 11.51.
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Figure 11.52 illustrates state transitions when each of unit 1 or unit 2 is chosen for updating. 
Observe that stable states correspond to those with minimal energy.

exAMple 11.4: use the hopfield network to solve  
the Multiflop probleM. 

A multiflop is a binary vector with n components, each of which equals 0 ex-
cept for a single 1. For example, if n = 4, then one solution to this instance of 
the problem is (1, 0, 0, 0). Consider the Hopfield network in Figure 11.53.

–3

–3

–1 –1 –1 –1
–3 –3 –3

–3

Figure 11.53
A Hopfield network to solve the multiflop problem when n = 4. 

If a unit is set to 1, this unit will inhibit the other units through edges with 
weights equal to −3. Suppose the network is started with all units set to zero 
(in this example, binary values are allowed). Any unit that is randomly chosen 
for update will flip its state to 1, as the excitation will be 0, which is greater 
than θ1= -1. Suppose that unit 1 is updated to 1, then it will prevent any other 
unit from changing its state to 1. This example appears somewhat innocuous; 
however, in the exercises we see how, by using the networks similar to the one 
illustrated in Figure 11.53, we can tackle formidable problems encountered in 
earlier chapters, such as the n-Queens problem and the TSP. 

 11.8  APPLICATION AREAS
Neural networks have been widely applied over the last three decades to solve problems in 

several areas:

• Control
• Search
• Optimization
• Function approximation
• Pattern association
• Clustering
• Classification
• Forecasting



352  ■  Part  3   ·  Knowledge-Based Systems

In control applications there is a device that requires inputs so that desired outputs can be 
produced. A recent example of a control application is with Lexus, the Toyota luxury line of auto-
mobiles, which comes equipped with rear back-up cameras, sonar devices, and a neural network 
that automatically parallel parks the car for you.15 Actually, this is an example of what is known as 
the inverse problem, in that the route the car must take is known, and what must be calculated is 
the requisite force and the steering wheel displacements involved. An earlier example of inverse 
control is that of a truck backing up.16 An example of forward identification (the forces are known 
and the behavior must be identified) is that of robot arm control.17

Search is a critical component of any intelligent system. The basic problem in applying 
neural networks to search is representation of the state space. If a suitably trained network were 
presented with the input vector in Figure 11.41(b) representing a state in the game of tic-tac-toe, 
we would hope that the network’s response would be y  = 001 001 001 001 001 001 001 001 
010 - place an “0” in the lower right square so as to block the “X” player. Neural networks have 
been applied to blackjack,18 backgammon,19 checkers,20 and numerous other games, including 
tic-tac-toe.

In optimization, the goal is to minimize or maximize some objective function. A classic optimi-
zation problem is the TSP (Chapters 2, 3, 12). Discrete Hopfield Networks can yield approximate 
solutions that are often useful.21 Bharitkar et al. describe how the Hopfield network can be used to 
optimize word width in the control memory of a computer.22

In function approximation you are trying to map numerical inputs (domain elements) into ap-
propriate outputs (range elements). Many problems can be recast in this framework. For example, 
you can view the states in a tic-tac-toe game as the domain of some function and optimal moves as 
the range of this function. 

We have already seen that associative networks are adept at pattern association. Some patterns, 
perhaps noisy versions of photo images (the photographer may have moved during filming), form 
the inputs to such a network, and crisp versions of these photos are outputs. Associative networks 
have also been successful in OCR applications (consult Section 11.6.1). 

With clustering, you are trying to map patterns into clusters so that each pattern in the same 
cluster shares commonality in the values of some feature(s) while patterns in different clusters dif-
fer in these values. For example, flowers can be mapped into clusters based on color or petal length. 
Often the features that govern membership within a cluster are not known a priori and the network 
must discover these on its own.

In pattern classification, input patterns are grouped according to membership in a particular 
pattern class. We have encountered examples of classification in our discussion of Boolean func-
tions and supervised learning algorithms. For example, does x  = (0, 1) belong to pattern class 0 or 
1 for the 2-input inclusive OR function? A seminal work in this research area was NETtalk by Terry 
Sejnowski and Charles Rosenberg.23 NETtalk can be viewed as a talking typewriter. Written text is 
converted into sequences of phonemes; these phonemes are then fed into a speech synthesizer to 
produce spoken words. The relationship between text and sounds in English is complex and some-
times contradictory. Why is “tough” pronounced with an “f” sound while “dough” is not? Why is 
the “e” in the words “head” and “heat” pronounced differently? If English is your second language, 
then you can probably volunteer dozens of additional examples. Critical to correct pronunciations 
is the way in which vowels are spoken; their pronunciation is dependent upon the surrounding 
characters. 
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Letters are input to NETtalk in a neighborhood consisting 
of the three preceding and three succeeding letters. The letters 
are first converted into binary vectors of length 29:

• One of N encoding is used
• 26 uppercase English characters, i.e., A…Z
• Three inputs for punctuation characters that influence pronunciation

Training data consisted of 
5,000 English words together 
with the correct phonetic se-
quence for each word. Each in-
put pattern had length 203 (29 
bits per character * 7 characters 
per letter neighborhood). The 
training set for NETtalk consist-
ed of 30,000 examples (5,000 
words * average word length ≈ 
6 characters). The BPN archi-
tecture for NETtalk is drawn in 
Figure 11.54.

The classification produced 
by this network is converted to 
a phoneme, which is then used 
as input to a speech synthesizer. 
The sounds produced by NET-
talk during the course of its 
training can be likened to those 
made by a child upon first learn-
ing to read.

• Before training—the network produced random sounds.
• After 100 epochs—proper segmentation began.
• After 500 epochs—vowel and consonant sounds could be distinguished.
• After 1,000 epochs—words were distinguishable from one another but still not phoneti-

cally correct.
• After 1,500 epochs—phonetic rules appeared to have been learned. Pronunciation was 

correct but the sound was somewhat mechanical.

When training was completed, NETtalk was presented with 200 words from the validation set. 
It is estimated that NETtalk can read English text with accuracy ≈ 95%.

In forecasting one desires the measure of a phenomenon at some point in the future. Forecast-
ing can be viewed as function approximation, where the function’s domain is time and its range is 
the future performance of the phenomenon under investigation. Neural networks have succeeded 
in arenas ranging from prediction of sunspot activity 24, 25 to Standard & Poors (S & P) 500 Index 
performance.26

Residents of New York City will identify a 
problem in that “Houston,” a city in Texas, 
is pronounced differently than “Houston” 
as in a street in NYC.
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Figure 11.54
BPN architecture for NETtalk application. 
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It is the latter application, that of economic forecasting, that excites most people. Which of us 
would not be delirious to know tomorrow’s stock prices with certainty? Are stock prices chaotic, 
in other words, a complex phenomenon and hence too elusive to be predictable? Neural networks 
have met with some success in this area.

The Dow Jones Industrial Average is a single number that provides the scaled average of the 
30 most widely held public companies in the United States. This single number reflects the state of 
the American stock market. This average, however, varies continuously and therefore needs to be 
modified before it can serve as a neural network input. A technique known as discrete time sam-
pling is employed, in which this continuously varying signal is sampled at regular time intervals. 
A single pattern consists of n samples that are concatenated together. Figure 11.55 shows the Dow 
Jones Industrial Average over six months.
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Figure 11.55
The Dow Jones Industrial Average from April 2008 to October 2008.

Each bar represents the range of values during the day, and tick marks indicate the closing price 
that day. We cannot use the Dow Jones average by itself as input to a neural network, because by 
itself it provides very little predictive value. 

Financial analysts often use so-called economic indicators to gain insights into the way the 
stock market in general or a particular stock is moving (up or down). There are three common 
indicators:

• ADX—a market intensity indicator
• MACD (moving average convergence/divergence)—provides optimal buy and sell sig-

nals when the market is trending
• Slow Stochastic Analysis—works well in conjunction with MACD

The ADX compares the high and low values of the market at present with the high and low 
values at a previous time. Figure 11.56 will prove useful in defining this metric.
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Figure 11.56
Illustration of directional movement (DM) of a stock: (a) Positive DM, (b) negative DM, (c) current trading is outside the range of  
previous time, and (d) DM = 0.

In Figure 11.56 vertical lines represent the high and low prices of a stock (or stock index) dur-
ing a day, and tick marks indicate the closing value for that day. Four cases arise:

 1. The directional movement is positive (+DM) when the current high price is above 
that for the previous time unit.

 2. DM is negative (−DM) because the previous high price is above the current day’s 
high price.

 3. The current trading is outside the range of the previous time; in this case  
DM = max (|1 + DM|, |1−DM|).

 4. The trading range for today lies within the range at the previous time. The  
DM = 0.

The Directional Indicator (DI) 27 provides a method to scale the DM. The DI is the percentage 
of the price range that is directional for a time period. 

,DMDI TR=

where TR is the actual range exhibited. The TR is defined as the largest of

• The difference between the current high and low values
• The difference between the current high and the closing value at the previous time
• The difference between the current low and the closing value at the previous time

The DI can be positive or negative. Wilder 25 defines two indicators, one for each case.

• +DI reflects a time interval with positive DI.
• −DI uses the absolute value of DI where DI is negative.
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Finally, the ADX is a smoothed moving average of the DI values across an interval consisting 
of n time periods. Financial analysts often find it useful to convert the DI to a Directional Move-
ment Index (DMI), which reflects the magnitude of the trend on a scale from 0 to 100. The ADX is 
then computed as an n-period moving average of the DMI. Figure 11.57 exhibits the value of the 
ADX in making timely buy and sell decisions.
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Figure 11.57
(a) Behavior of a stock on the New York Stock Exchange (NYSE) over a period of six months. 
(b) ADX for this stock over this same six-month period.

Observe that the ADX peaks at the same time that the stock growth trend diminishes. 
A Stochastic Oscillator is a signal whose purpose is to predict sudden market reversals.25, 27, 28  

Wall Street insiders know that a market top or high point for a stock is often reflected in daily clos-
ing values that cluster around the stock’s high value, whereas a market bottom is reflected in daily 
closing values that cluster around a stock’s low value. Stock prices tend to reverse their trends dur-
ing a top (or bottom) period. If we can detect when a stock is close to its limit, then predicting a 
reversal becomes possible. To develop such an indicator, you compare the closing price of a stock 
with its highest high and lowest low values over a period of time. Lane’s indicators 28 do so over an 
interval of 5–14 days. His notation for a 14-day interval is %K, and %D is a 3- day average of the 
%K indicator. Consult Figure 11.58.

A stock is considered overbought when the stochastic indicator goes over 80% (a good time to 
sell) and oversold (a good time to buy) when the indicator goes below 20%.

The Moving Average Convergence / Divergence (MACD) measures the trend of a stock over a 
period of time (Figure 11.59)

Referring to this figure, note that Buy signals tend to precede periods in which stock prices are 
increasing, and Sell signals precede those in which stock prices are decreasing.

Fishman, Bar, and Loick 27 developed a successful BPN for predicting the Standard & Poors 
(S&P) index five days into the future. Their network had two layers (though a 3-layer network was 
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(a) Sell periods are indicated by a stochastic (straight lines). 
(b) Buy period shown at right. Indicators have gone below 20%. (c) Data smoothed by %D indicator. 
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The usefulness of the MACD. (a) The closing price of a stock. (b) MACD over the same period.
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also developed). The network had n inputs, where n corresponded to the number of economic indi-
cators used. The output of their network was a single unit scaled so as to predict the change in the 
S&P five days from the present. The architecture of one of their networks is shown in Figure 11.60.

This network has six inputs, as depicted, and one output unit. 
Training examples were obtained from past market data. The per-

formance of their network is shown in Figure 11.61.
This figure compares the actual S&P average with that predicted 

by their network. Performance is formidable for periods of 9–10 days 
into the future. At that juncture, it makes sense to retrain with more 
recent data than to depend on less reliable predictions. This extended 
foray into economic forecasting should forewarn you that to develop a 
successful neural network in a particular domain requires that you (or 

colleagues) possess extensive knowledge in neural networks and that application area.
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Figure 11.60
BPN developed by LBS Capital Management to predict the S&P 500 average. 
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Figure 11.61
Performance of the LBS Capital BPN to predict the S&P 500 average.

Getting specific architectural details 
for a successful model for a (or more 
recent) BPN such as the S&P index 
is not an easy chore. Successful 
models are usually hidden from the 
public.

huMAn interest notes

donald michie.
Donald Michie 

(1923–2007) was an 
exceptional scientist whose 
accomplishments spanned 
four different fields: 
the biological sciences, 
medicine, computing, and 
artificial intelligence. Born 

in Burma in 1923, he graduated from Balliol 
College, Oxford, with an MA in Human 
Anatomy and Physiology, and a D.Phil. in 
Mammalian Genetics. During World War II, 
he worked with Alan Turing and the Enigma 
code-breaking group at Bletchley Park. He 
later founded the Turing Institute (in 1984) 
at the University of Strathclyde, where he 
was Chief Scientist and was Chairman of the 
Board of Trustees of the A. M. Turing Trust 
(1975–1984). Donald Michie
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Professor Michie’s scientific publications 
include authorship of five books and some 
170 academic papers, and he has edited the 14 
volumes of the Machine Intelligence series as 
well as several other books. His best known 
work has been in Artificial Intelligence, in 
which his seminal efforts made enormous 
contributions in the fields of Computer Chess, 
Expert Systems, and Machine Learning.

His awards and affiliations include: 
Scientific Fellow, Zoological Society of London 
(1953); Founder and Director, Experimental 
Programming Unit, University of Edinburgh 
(1965); Founder, Professor Emeritus and 
first Chairman, Department of Machine 
Intelligence and Perception, University of 
Edinburgh (1967); Fellow of the Royal Society 
of Edinburgh (1969); Fellow of the British 
Computer Society (1971); Visiting Lecturer, 
USSR Academy of Sciences (1973 and 1985); 
Director, Machine Intelligence Research 
Unit, University of Edinburgh (1974–1984); 
Founder, British Computer Society Specialist 
Group in Expert Systems (1980); Pioneer 
Award, International Embryo Transfer Society 
(1988), jointly with Dr. Ann McLaren for work 
in the 1950s; Founding Fellow, American 
Association for Artificial Intelligence (1990); 
Founder, Human-Computer Learning 
Foundation (1995); recipient, Feigenbaum 
Medal of the World Congress on Expert 
Systems (1996) and of the International Joint 
Conference on Artificial Intelligence Award 
for Research Excellence (2001); and Foreign 
Honorary Member of the American Academy 
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 11.9 CHAPTER SUMMARY
This chapter has introduced the rudiments of Artificial Neural Networks. We began by high-

lighting the similarities between artificial neural networks and their biological counterparts. In fact, 
McCulloch and Pitts used their artificial network models to gain insights into biological units. Their 
models, however, were not adaptive because weights were fixed a priori, and hence, were incapable 
of learning.

Three learning rules were introduced that turned ANNs into adaptive systems. The Perceptron 
Learning and the Delta Rule are rules that can function on single-layer networks to learn functions 
that are linearly separable. Backpropagation is a more robust algorithm, in that multilayer networks 
can be trained to learn arbitrary functions, and many successful applications have been developed 
using this framework. Finally, Discrete Hopfield networks were introduced. These networks are 
adept at solving combinatorial optimization problems.

This introduction to the subject has in no way been meant to be complete. Many omissions were 
made due to time and space constraints. For example, Radial Basis Function (RBF) networks have 
been shown to be astute function approximators29 and have also met with some success in forecast-
ing applications. 12 Also, our survey has focused on Supervised Learning. In some applications, 
Unsupervised Learning is used when the network is not supplied with the “right answers” but 
must find them on its own. One example is Adaptive Resonance Theory (ART) models, which are 
proficient at clustering applications. 30 With Competitive Learning (another Unsupervised Learn-
ing Paradigm), units that respond most strongly to an input pattern squelch the responses of other 
units in the network. This approach has biological plausibility in that the brain must conserve its re-
sources; allowing more neurons to respond to a stimulus than is necessary is wasteful. Competitive 
networks have been successful in performing Vector Quantization (VQ), a technique useful in the 
compression of image and speech signals. The so-called Self Organizing Map (SOM) developed by 
Kohonen31 has found widespread applicability.12 

A major disadvantage of neural networks is that they are opaque, in other words, they cannot 
explain their results. One area of research is that of combining ANN with fuzzy logic (Chapter 8, 
“Uncertainty in AI”) to produce neural fuzzy networks that have the learning capability of ANNs 
combined with the facility for explanation, possessed by fuzzy logic. Negnevitsky 32 provides a nice 
introduction to these so-called hybrid systems. In fact, a recent research area is devoted to making 
ANNs more transparent (able to explain their results). Cloete and Zurada33 have an entire text de-
voted to the subject of knowledge-based neurocomputing. 

The holy grail of ANN research would, of course, be to design a network with the same infor-
mation processing capabilities as the human brain; a goal that certainly, for the foreseeable future, 
must remain as a dream. Some researchers have attempted to model a cat’s brain. 31 Meanwhile, 
Carver Mead, taking a more bottom-up approach, has successfully modeled networks capable of 
seeing and hearing. Kurzweil predicts 34 that by the year 2050, neurobiologists will have a complete 
understanding of the human brain. He also predicts that it will be feasible to build a highly con-
nected network consisting of 10 billion components. If and when these predictions come to fruition, 
will the creation of human-level artificial intelligence finally become a reality?

Questions for Discussion

 1. In Section 1 we portray an ANN as a black box. What limitations does this opaqueness 
impose on their utility?
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 2. In a linear system, the output is proportionally related to the input, in other words, small 
changes in the input produce correspondingly small changes in output and similarly for large 
input changes. Describe two systems in nature that are examples of linear systems.

 3. Nonlinear systems do not obey the proportionality relation between input and output changes 
as do linear systems. Consider an artificial neuron with a threshold θ = 0.50. Argue that this 
neuron is a nonlinear system.

 4. Why might stress in humans be considered a nonlinear phenomenon?

 5. A single-layer neural network cannot implement a function that is not linearly separable. Is 
this a serious drawback? Explain.

 6. The learning rate is a constant between 0 and 1, in other words, 0 < α ≤ 1. Since a larger 
learning rate results in faster learning, why not use large values for α?

 7. What information does the dot product of x  with w  provide in an ANN? How is this 
information used in the following:

  a. The Perceptron Learning Rule?

  b. The Delta Rule?

  c. Backpropagation?

 8. The backpropagation algorithm is often referred to as the generalized Delta Rule. Why do 
you think this is so?

 9. Why will both the Delta Rule and backpropagation continue to have some error, whereas the 
Perceptron Learning Rule halts when there is no error present?

 10. What is the difference between offline and batch training?

 11. The human brain consists of between 10 billion (1010) and 100 billion (1011) neurons. Once we 
understand the workings of the human brain 1 and we construct full-scale software and/or 
hardware simulations, what do you predict will occur?

Kurzweil predicts (Kurzweil 1999) that this will occur by the mid-21st century. 

 12. What are the differences between biological and artificial neurons (neural networks) in terms 
of both structure and functionality?

 13. Contrast supervised and unsupervised learning.

Exercises

 1. Draw a McCulloch-Pitts network to implement the sum function S for a full adder 
where ( ) .i i i i iS ABC A B C A BC AB C ABC′′ ′ ′ ′ ′= + + +

 2. Design a McCulloch-Pitts network for the three-input minority function where 
Min(x1,x2,x3) equals 1 whenever only one or none of the inputs equal 1, in other 
words, 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3Min( , , ) .x x x x x x x x x x x x x x x′ ′ ′ ′ ′ ′ ′ ′ ′ ′= + + +

 3. What function F is computed by the McCulloch-Pitts network in Figure 11.62?
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Figure 11.62
A McCulloch-Pitts network to implement the function F.

 4. It is a well-known physiological phenomenon that if a cold stimulus is applied to a 
person’s skin for a very short period of time, the person will perceive heat. However, 
if the same stimulus is applied for a longer period, the person will perceive cold. The 
use of discrete time steps enables the McCulloch-Pitts network drawn below to model 
this phenomenon. Neurons x1 and x2 represent receptors for heat and cold, respectively, 
and neurons y1 and y2 are the counterpart perceptors. Neurons z1, z2 are auxiliary 
neurons. As shown, each neuron has a threshold of 2. Input to the system will be (1, 0) 
if heat is applied and (0, 1) if cold is applied. Verify that this network correctly models 
this phenomenon—in other words, if a cold stimulus is applied for only one time step, 
heat will be perceived. However, if the cold is applied for two time steps, then cold 
will indeed be perceived. Notice, we allow this network to possess weights. 

Heat

X1

Z1

Z2

2
22

2

2

2

2

–1

1

1

Receptors Perceptors

2
2
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X2

Y1

Y2

Cold

Figure 11.63
A McCulloch-Pitts network that models human perception of hot and cold stimuli.
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 5. Prove that the two-input XNOR function cannot be implemented with a single 
perceptron. Your proof should use a system of inequalities.

 6.  a.  Use the Perceptron Learning Rule to train a neuron to learn the two-input function 
depicted in Figure 11.64. Use an augmented input vector. Let the initial weight 
values be w1 = 0.1, w2 = 0.4 and θ = 0.3. Use a learning rate α = 0.5.

  b.   Give the equation of the discriminant and draw this line in two-dimensional pattern 
space.

x1

0 0 0

0 1 0

1 0 1

1 1 1

x2
ƒ (x1, x2)

Figure 11.64
A two-input function. 

 7. Use the Perceptron Learning Rule to learn the majority function on three inputs where the 
second input x2 is held fixed at 1. Maj(x1,x2,x3)  = 1 whenever two or three of x1, x2, and x3 
are equal to 1, then Maj(x1,x2,x3)  = 1. All inputs are binary and the initial weight values are 

( )1 2 3
3 3 1, , , , 1, ,4 4 2w w w q  = − 

 
. The learning rate 1 .2a =

 8. A TLU is being trained using the Perceptron Learning Rule. Input vector and weight 
vector appear as in Figure 11.65.

W

X

ϑ

Figure 11.65
Input and weight vectors for a TLU during training. 
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  The target t for the current pattern = 1, however, the actual output of the unit y equals 0. 
Which way should w  be rotated with respect to x ? Explain your answer.

 9. Suppose that you have a single TLU with n inputs; in other words, unaugmented input vector 
ix , will have n components, and you are performing Perceptron Learning. How many epochs 

must you wait before you can be certain that the algorithm will not halt (that is, that the 
patterns are not linearly separable)?

 10. Which of the following sets of points are linearly separable?

  a. Class 1: {(0.5, 0.5, 0.5), (1.5, 1.5, 1.5)}

   Class 2: {(2.5, 2.5, 2.5), (2.5, 2.5, 2.5)}

  b. Class 1: {(1, 1, 0), (2, 3, 1), (3, 2, 1.5)}

   Class  2: {(1, 1, 2), (2, 3, 2.5), (3, 2, 3.5)}

  c. Class 1: {(0, 0, 18), (2, 1, 10), (7, 5, 4)}

   Class 2: {(0, 1, 16), (2, 5, 9), (6, 8, 1)}

  d. Class 1: {(0, 0, 5), (1, 2, 4), (3, 5, 8)}

   Class 2: {(0, 0, -2), (1, 2, 5), (3, 5, -1}

 11.  a. Solve Exercise 6 using the Delta Rule. Train the neuron for one epoch.

  b. What is the stopping criterion for this learning rule?

 12.  a.  Propose a design for a BPN to help make health insurance premium decisions for an 
insurance company. Prospective clients for health insurance are to be classified as low-
risk or high-risk candidates, where high-risk clients are to be charged a higher premium 
or may even be refused insurance. Carefully, discuss the appropriate inputs and outputs 
to your BPN. What data representation do you recommend and what type of activation 
function would you use? What is the initial architecture of your network? 

  b. Indicate where the necessary training data would come from.

  c.  In light of advances in computer and genetics technology, discuss some of the ethical and 
legal problems that could arise.

  d.  Describe your training methodology. Include a discussion of the types of problems that 
can occur and recommend possible remedies in each case. When should training stop?

  e.  Describe several approaches to validating your BPN. Give an advantage and 
disadvantage for each approach.

 13. The n-Rooks Problem is to place n rooks on an n × n chessboard so that these pieces are 
nonattacking. A rook can attack any piece on the same row or column. A solution to the 4–
rooks problem is shown in Figure 11.66.
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1

1

1

1

Figure 11.66
A solution to the 4–rooks problem.

  Specify the architecture of a Discrete Hopfield Network to solve this problem.

 14. The n-Queens Problem was discussed extensively in Chapter 2. Specify the architecture of a 
Discrete Hopfield Network to solve this problem when n = 4.

 15. The TSP was also discussed extensively in both Chapters 2 and 3. Specify the architecture of 
a Discrete Hopfield Network to solve a small instance of this problem, say n = 4 cities.  
Hint—use an n × n Boolean matrix to represent your tour. A “1” should be placed in column j 
of row i if city j is visited after city i.

 16. Consider the Hopfield network drawn in Figure 11.67. Calculate the energy for each state and 
draw the state transition diagram for this network. Identify the stable states (if any).

Unit 1

Unit 2

Unit 31

1 –1

0.5

0.5 0.5

Figure 11.67
A Hopfield network with 3 neurons.
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Programming Exercises

 1. Generate 20 triples of random numbers (60 in total) where each number ∈ [0, 1]. Each triple 
corresponds to a point in the unit cube. Generate these numbers so that ten triples lie in Class 
1 and ten lie in Class 2 and these classes are linearly separable. Use the Perceptron Learning 
Rule on this data with a learning rate α = (a) 0.01 (b) 0.1 (c) 0.25 (d) 0.50 (e) 1.0 (f) 5.0. 
Comment on the performance of the learning algorithm in each case.

 2. There are 24 or 16 Boolean functions of 2 variables. Use the Perceptron Learning Rule to 
determine how many of these are linearly separable.

 3. Use the Delta Rule to complete the training for the two-input OR function in Example 11.2.

 4. Write a program to implement the backpropagation algorithm to train the two-layer network 
in Figure 11.38 for the XOR function.

 5. Write a program that can apply the backpropagation algorithm to any two-layer feed forward 
network.

 6. Use your program in Programming Exercise 5 to approximate the function that provides the 
weight in mg of Wild Australian Rabbits as a function of age (in days). Withhold every third 
data item in this table for validation purposes. [See DVD, Appendix D.2.1]

 7. Use your program in Programming Exercise 5 to predict the next week’s gold price based upon 
the following data. Use the last 25% of the data for validation. [See DVD, Appendix D.2.1] 

 8. Use your program in Programming Exercise 5 to classify irises into three classes—Setosa, 
Versicolor, and Virginia. [See DVD, Appendix D.2.1]

 9. Write a program to solve the 4–Queens problem using a Discrete Hopfield Network (consult 
Exercise #14). Run your program 10 times choosing different units for update on each run. 
Discuss your results. (Recall that the Hopfield network finds a local energy minimum, and 
therefore you should expect at times to obtain “approximate” solutions.)

 10.  Write a program to solve the TSP when n = 10 cities, using a Discrete Hopfield network 
(consult Exercise #15). As in the previous program, run your program 10 times and discuss 
your results.
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This chapter continues our discussion of learning. We 
describe several approaches that take their inspiration 
from the work of Charles Darwin—so-called 
evolutionary methods. Tabu search is an algorithm 
motivated by social mores. Finally, the behavior of 
ants gives rise to ant colony optimization.
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 12.0 INTRODUCTION
Search is an essential component of any intelligent system. You have already seen that com-

plete search through a state space can be a daunting challenge. Chapter 3, “Informed Search,” dem-
onstrated the ways heuristics enable you to search through the most auspicious portions of search 
trees. The inspiration for these heuristics derives from our insights into a problem, for example: 
How many tiles must be moved to solve an instance of the 8-Puzzle? In this chapter, inspiration is 
provided by natural systems—both living and nonliving. 

It is a fairly well-known fact that diamonds are made from compressed coal. Coal and dia-
monds are each composed of carbon; what distinguishes one from the other is the arrangement of 
the carbon molecules, which are pyramidal in the former and plane-like in the latter. This insight—
that the physical properties of a substance depend not only on its composition but also upon the 
arrangement of its molecules, and that this arrangement can be modified—is the impetus behind 
annealing. In annealing, a metal is first heated until it liquefies and is then slowly cooled until it re-
solidifies. The resulting metal is often stronger after undergoing annealing. Simulated annealing is 
a search algorithm modeled after this physical process. It is described in Section 12.1.

In 1859, Charles Darwin’s magnum opus The Origin of Species 
was first published. In this work he presents his theory on how popula-
tions of living systems evolve, through a process known as natural se-
lection. When individuals mate, their offspring display traits garnered 
from each of their parents. Progeny that possess characteristics favor-
able to survival are also more likely to reproduce. Over time these fa-
vorable traits are likely to occur with greater frequency. A well-studied 
example is that of gypsy moths in England. In the early nineteenth 
century, most gypsy moths were light gray, as this afforded natural 
camouflage from their predators. The industrial revolution, however, 
was well underway at this time, and immeasurable quantities of pollut-

ants were spewed into the environment of industrialized countries. Trees, which had been pristine 
and light colored, were coated with soot and became dark. Light gray gypsy moths could no longer 
depend on their coloration for protection. Over the course of several decades, gray-black Gypsy 
Moths evolved to become the norm. 1 Inside a computer program we can perform “artificial evolu-
tion.” Genetic Algorithms form the subject matter of Section 12.2. 

In “The Elves and the Shoemaker,” a fairy tale by The Grimm 
Brothers, a poor shoemaker leaves leather on his workbench at night 
and awakens each morning to observe shoes that have seemingly made 
themselves. He soon discovers that two talented elves are responsible 
for the handiwork. Would we not all wish to possess software that 
(magically) writes itself to solve the problems we are confronted with? 
In Section 12.3, we discuss Genetic Programs, software that employs 
evolutionary strategies (rather than elves) to design itself. 

Section 12.4 describes tabu search, a search based upon societal practices. A tabu (or taboo) 
is behavior that society believes should be forbidden. What we learn about human behavior is that 
over time, things change. For example, at one time it was considered tabu for a man to wear ear-
rings. Obviously, that prohibition no longer exists. A tabu search maintains a tabu list of recently 
made moves; these moves are forbidden from being reused for some period of time. This proscrip-

Some of you might have seen the 
episode of the 1951–57 television 
series Superman, in which Superman 
converts a plain lump of coal 
into a lavish diamond by merely 
compressing it in his hand. The 
episode “Jungle Devil,” in which 
this phenomenon took place, aired 
originally in 1953.

The example of the gypsy moths 
is often cited in the literature. 
However, selection usually 
requires thousands and even tens of 
thousands of years before changes in 
a population are evident.
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tion fosters exploration as already visited portions of the state space are temporarily out of bounds. 
Tabu search does not entirely ignore exploitation because forbidden moves are allowed if they 
would take the search to a destination whose objective function is superior to any visited previ-
ously; this latter “reprieve” is dubbed an aspiration criterion. Tabu search has met with great suc-
cess in the solution of scheduling problems.

Inspiration for Section 12.5 comes from insect colonies—more specifically, colonies of ants. 
Ants are social insects that exhibit remarkable cooperation and adaptability. Ants communicate 
indirectly by depositing pheromones (chemical scents) in a process referred to as stigmergy. Ant 
colonies exhibit rare acumen for solving optimization problems, such as finding a shortest path to 
a food source, and also for the clustering entailed in cemetery formation. It is suspected that stig-
mergy plays a key role in these behaviors. Computer scientists simulate this behavior in distributed 
algorithms to solve difficult combinatorial problems and to perform useful data-clustering proce-
dures.

 12.1  SIMULATED ANNEALING
Simulated annealing (SA) capitalizes on the analogy between the 

energy level of the molecules within a physical substance and a search 
algorithm in which some objective function is to be optimized. 

In metallurgy, metals are often subjected to molecular realignment 
in a process known as annealing. The molecules in a metal are ar-
ranged in a local energy minimum. In order to rearrange these mol-
ecules at a lower energy, it is first necessary to heat the metal until it 
liquefies. The molten metal is then slowly cooled until it solidifies; 
annealed metals exhibit many desirable properties, for instance, they 
are stronger and often more pliable.

Figure 12.1
Molecular rearrangement in a metal that has occurred due to annealing. (a) Iron in a furnace, being heated to its melting point.  
(b) A lattice arrangement of molecules often exhibits more strength.

SA is a probabilistic search that sometimes allows counterintuitive moves so as not to become 
trapped in a local optimum. Recall that hill climbing (Chapter 3) sometimes fails to find a global 
optimum. This drawback of hill climbing is illustrated in Figure 12.2. A search that begins at x0 will 
culminate at x*, even though the true global optimum lies at xbest.

We mentioned earlier that Superman 
affected molecular realignment of 
the carbon molecules in coal by 
compressing the coal in his hand. In 
nature this transformation of coal to 
diamonds is achieved by subjecting 
the coal to tons of pressure over 
millions of years.
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There are two components to any search algo-
rithm: exploitation and exploration. Exploitation 
employs the maxim that good solutions are likely 
to lie close to one another. Once a good solution is 
found, you examine its neighbors to determine if a 
better solution is present. Exploration, on the other 
hand, relies upon the adage, “Nothing ventured, 
nothing gained”; in other words, better solutions can 
lie in unexplored regions of the state space, so do 
not confine your search to one small region. An ideal 
search algorithm must strike the proper balance be-
tween these two conflicting strategies. Hill climbing 
makes advantageous use of exploitation to find x*, the 
local optimum in Figure 12.3. 

In this example, however, if the global maximum located at xbest is to be found, then some use 
of exploration is required as well. Consult Figure 12.4 and assume that x3 is the present location. 
SA would permit a jump to x6 even though this constitutes a “backward jump.” Note that any search 
that fails to explore the rightmost peak in this example will never find a global optimum. 

SA was discovered by S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi in 1983 3 and indepen-
dently by V. Cerny in 1985.4 SA is based upon the Metropolis-Hastings algorithm. 5

In SA there is a global temperature parameter T. At the beginning of the simulation, T is high; 
as the simulation progresses, T is lowered. The manner in which T is decreased is referred to as 
the cooling schedule. Two widely used methods are geometric cooling and linear cooling. In 
geometric cooling, Tnew = α * Told with α < 1, whereas with linear cooling, Tnew = Told – α with α > 0. 
Whenever f(xnew) > f(xold) SA will allow this jump. However an SA also permits counterintuitive or 
backward jumps with a probability P, which is proportional to

 e– [(f(x_old) – f(x_new))/T]. (1)

Observe that when T is high, jumps that result in a lower objective function will occur with a 
greater probability. Consulting Figure 12.4 once again, this means that a jump from x3 to x6 is more 
likely to occur at the beginning of the simulation, when T is much higher, rather than later. Hence, 
the early stages of SA favor exploration, whereas exploitation is preferred in later stages of the 
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Figure 12.2
Hill climbing sometimes gets stuck in a local optimum. A search that begins at x

0
 will get 

stuck at x*. Observe that f(x
best

) > f(x*).
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Figure 12.3
Hill climbing relies heavily upon exploitation.
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If a search is to find the global maximum at x
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exploration as well as exploitation. Simulated annealing would allow a jump from x
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search. Referring once again to the above equation, we observe that even though counterintuitive 
jumps are allowed, as the difference between f (xold) and f (xnew) increases, that is, as the new value 
of x becomes less and less favorable, the probability of going there decreases. This last observation 
dictates that if each of x6 and x7 in Figure 12.4 are possible successors to x3, the probability of going 
to x6 is greater than to x7 as f (x7) is less than f (x6). Pseudocode for SA is provided in Figure 12.5. 

 1. Choose x0 as initial solution

 2. Calculate f(x0)

 3. Place in memory

 4. xold = x0
 5. f(xold) = f(x0)

 6. Count = 0

 7. T = T0
 8. while Count < maxcount and progress being made and ideal solution

    not found.

 9. Count = Count + 1

10. choose xnew from neighborhood of xold
11. calculate f(xnew)

12. if f(xnew) = f(xold) or rand [0,1] = e
*[[f(x_old) = f(x_new)]/T] then 

    xold = xnew
    Solution = [xold, f(xold)]

13. // end if

14. Tnew = cooling_schedule (count, Told) // geometric or linear cooling

    can be adaptive, greater decrease if a large improvement is made

15. // end while

16. Print Solution // Best solution so far.

// Initial temperature T0 is high

// Number of iterations permitted

// Usually done randomly

// Objective function

// Solution = [x0, f(x0)]

Figure 12.5
Simulated annealing pseudocode.

Line 8 in the code reminds us that a search cannot run forever. After some maximum number 
of iterations you must end the search and output your results. Line 10 in the algorithm specifies that 
each possible new point in our search xnew must be reachable from xold (i.e., lie in the neighborhood 
of xold). For example, if you are trying 
to solve an instance of the TSP, then the 
neighborhood of one solution can con-
sist of all tours that result when d cuts 
are permitted, and the specified edges 
are reconnected (as shown in Figure 
12.6). Line 12 in this code confirms that 
xnew is selected whenever f (xnew) ≥ f (xold), 
thereby encouraging exploitation. How-
ever, xnew can be accepted even when 
f (xnew) is less than f (xold). The probability 

(b)

v1

v3v4

v2

(a)

v1

v3v4

v2

Figure 12.6
Possible neighborhood function for an instance of the TSP. Assume we permit d = 2 cuts on the current 
solution in (a) and then rearrange the cited edges as in (b). 
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of this acceptance hinges on both the difference between f (xold) and f (xnew) and the temperature T. 
Exploration is encouraged more fervently early in the simulation; modest decreases in the objec-
tive function are more acceptable than precipitous drops throughout the search. And finally, the 
comment in Line 16 reminds us that SA does not guarantee a global optimum. There are two ways 
that the likelihood of obtaining a global optimum can be increased. The first is to let the simulation 
run longer (increase maxcount). The second is to conduct several restarts, in other words, reset all 
variables and begin a new SA, commencing at a different place in the search region (compare this 
to restarts in backpropagation in neural networks in Chapter 11, “Neural Networks”). SA searches 
have been successful at solving combinatorial optimization problems.

 12.2 GENETIC ALGORITHMS
In August 1831, the HMS Beagle departed 

London to begin its voyage around our planet; 
its mission was to collect plant, animal, and 
fossil samples. Charles Darwin, a young natu-
ralist (physical anthropologist) was on board. 
The voyage lasted five years and vast numbers 
of physical samples were collected. The ad-
ventures encountered by the Beagle’s crew are 
vividly described in Darwin’s The Voyage of 
the Beagle. 6 Consult Figure 12.7.

Darwin spent much of the next several 
decades analyzing the samples from this voy-
age. In the 1840s he began to communicate 
his emerging theory on evolution via letters 
to colleagues. He admitted, with some trepi-
dation, that he feared the world would deem 
him insane. Finally, in 1857 he published his 

theory of evolution. 7 In 1859 his Origin of Species was published. 8 It is in this volume that the 
term “survival of the fittest” was coined. Darwin postulated that populations of living entities (both 
fauna and flora) adapt, in other words, those traits that make a living organism more suited to its 
environment will occur with greater frequency over the course of many generations; this tendency 

he called natural selection. You can view natural selection as a type 
of learning in which the species (rather than an individual within that 
species) learns to better adapt itself to its environment. 

John Holland developed Genetic Algorithms (GA) at the Uni-
versity of Michigan in the later 1960s. He popularized the field with 
Adaptation in Natural and Artificial Systems, 9 and he explains that 
his inspiration came from the work of Darwin. 

In GA, a solution is represented by a string. In canonical GA this 
string is binary, in other words, a sequence of 0s and 1s, though real 
numbers and other representations are possible. 10 This string is often 
referred to as a chromosome. Suppose that we wish to design a GA to 
learn the two-input NAND function depicted in Table 12.1 (consult 
Chapter 5, “Logic in Artificial Intelligence”). 

Figure 12.7
The HMS Beagle. Charles Darwin spent five years on this ship gathering physical samples of 
flora, fauna, and fossils from around the world.

John Holland. 
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There are several ways to represent the information contained in 
this table. You can choose a 12-bit representation in which the contents 
of Table 12.1 are written in row-major order (the contents of row 1 
followed by row 2, and so on) as: 001011101110. Alternatively, you 
might choose to write just the contents of the rightmost columns yield-
ing 1110, where the ith bit represents the NANDing of the operands in 
the ith row; for example, the third bit in 1110 is a “1,” which is the result 
of NANDing 1 with 0 (the third row operands). GAs are parallel algo-
rithms so that you begin with a so-called population of strings. Also, canonical GAs are an instance 
of a blind search algorithm (consult Chapter 2, “Uninformed Search”) in that no domain knowl-
edge is presumed; this latter condition also characterizes GA as a so-called weak method 
(Chapter 7, “Production Systems”). We will employ a population size of four; each string 
will consist of four bits and will be randomly generated.

Central to the operation of GA is a fitness function (or payoff function). The fitness 
of a string is a measure of how well the string solves our problem. 

If a fitness function is to be useful, it should do more than indicate merely whether a 
string solves a problem or not, rather, it should also provide some indication of how close 
the string comes to an ideal solution. A natural metric in our problem is to award one point 
to a string for each row of the NAND function table that it represents correctly. 

Consulting Figure 12.8, we observe that the fitness of the first string 1010 is three; this is be-
cause 1010 correctly contains the results of rows one, three, and four in Table 12.1. Only the result 
of row two is incorrect as 0 NANDed with 1 should equal 1 and not 
0. GAs are an iterative procedure. The algorithm proceeds through a 
sequence of stages and in each stage it (hopefully) converges toward 
a solution. The strings that you begin with, in other words, those that 
have been randomly generated, are referred to as the initial popula-
tion. Hence, in Figure 12.8 you observe that the initial population, 
denoted here by P0, equals {1010, 0000, 1101, 0110}. In each stage (or 
iteration) you apply genetic operators to the strings to produce a new 
population of strings that is likely to contain a better (or ideal) solution 
to the problem. Therefore, GAs produce a sequence of populations: P0, 
P1, P2, … Pi, …, Pmaxcount. You stop the GA when Pmaxcount contains an 
ideal solution or one that is adequate. Alternatively, the algorithm may 
have exceeded its time constraints.

Three popular genetic operators are selection, crossover (recom-
bination), and mutation. These operators are applied to population Pi 
to produce the next population, Pi+1. Selection chooses the individuals 
(i.e., strings or chromosomes) that are to participate in the formation 
of the next population. One selection method is roulette wheel selec-
tion, in which the ith string, Si, is chosen to help form the next popula-
tion with a probability equal to fi   / Σf, where fi is the fitness of string i and Σf is the total fitness of 
the current population. So Si is selected with a probability proportional to the percentage of the 
population’s fitness that it possesses. 

Consult Figure 12.9. If p(Si) = 0.5 and we select four strings, then the expected number of  
occurrences of string i would equal two.

Table 12.1
Two-input NAND function.

x1 x2 x1 x2

0 0 1
0 1 1
1 0 1
1 1 0

String

1010
0000
1101
0110

3
1
2
3

Fitness

Figure 12.8
A population of four 4-bit 
numbers that have been 
randomly generated. 
The fitness of each 
string is also shown.

Some authors distinguish between 
the evaluation of a string (how well 
it solves the problem) vs. fitness (how 
much this string should be favored 
in reproduction); to be explained 
shortly (Vafaie et al.1994).

Other stopping criteria are possible. 
You might wish to stop the GA if 
little or no improvement is observed 
for several generations.

You might wish to consult the 
discussion of expected values in 
Chapter 4, “Search Using Games.”
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In roulette wheel selection, you can imag-
ine that the strings constituting the present 
population are placed around a roulette wheel 
with arc lengths proportional to their fitness 
(Figure 12.10).

Naturally, in a GA no roulette wheels are 
spun, rather random numbers over (0,1) are 
generated.

Imagine that you have selected four strings 
randomly, as shown in the rightmost column 
of Figure 12.9; in other words, strings 1 and 3 
occur one time each, and two copies of string 
4 are chosen. 

You are now ready to form the next popula-
tion from the intermediate pool of strings seen 
in the leftmost column of Figure 12.11. To do 
so, crossover will be applied to these strings. 
Crossover is a genetic operator that produces 
offspring from parent strings via a sharing of 
genetic material. For example, if a human male 

with a long nose marries a woman with a petite nose, it is expected that their children will have 
medium length noses. 

In one form of crossover, two mates are randomly selected. Next, a single crossover point is 
randomly generated. Finally, two offspring are produced, as shown in Figure 12.12.

Suppose that the crossover point selected 
is k = 4. Then the first child will be identi-
cal to parent1 before the crossover point (bits 
1–4) and equal to parent2 after the crossover 
point (bits 5–7). Similarly, the second child 
shares genetic material from parent2 before 
the crossover point and from parent1 after this 

String

S1: 1010

S2: 0000

S3: 1101

S4: 0110

3 3/9 3/(9/4) = 4 / 3

1/(9/4) = 4 / 9

2/(9/4) = 8 / 9

3/(9/4) = 4 / 3

1

0

1

2

2/9

1/9

3/9

1

2

3

Total �tness = 9

Max �tness = 3

Fitness p(si)
probability
of selection of
string = ƒi /∑ƒ

Expected Actual count
(via roulette
wheel
selection)

count = ƒi /ƒ
-

Avg �tness
ƒ = 9/4 = 2.25
-

Figure 12.9
Initial population for the NAND problem. The probability of selecting a string and the expected 
number of times a string is selected are also shown.

Wheel is spun

Selection
point

S4

S1

S2S3

Figure 12.10
Roulette wheel selection. The probability of selecting Si is proportional to f(Si) / ∑f. 
P(S

1
) = (3/9), P(S

2
) = (1/9), P(S

3
) = (2/9), P(S

4
) = (3/9).

The half-closed, half-open interval from 0 to 1 is [0,1). Zero 
is included, however one is not. Consult any calculus text for 
further discussion.

Strings
selected
from initial
population

S
1
: 1010 2

1

4

3

1 1110 1110 4

3

3

2

0110

1100

0111

0010

1100

0111

1

3

3

S
2
: 0110

S
3
: 1101

S
4
: 0110

Mating
Partner
(selected
randomly)

Crossover
point
(selected
randomly)

Population
after
crossover

New
population
(mutation
has been
applied)

F(S
i
) fitness

of new
population

Tot fitness = 12
Max fitness = 4
Avg fitness = 3

Figure 12.11
Formation of the next population. Note that we begin with two copies of S

4
 and one each of S

1
 and 

S
3
 from P

o
. However, for easy reference, the strings are renumbered S

1
 through S

4
.

To simplify the discussion, we are ignoring discussion of 
dominant and recessive traits. For example, brown eyes are 
a dominant trait in humans whereas blue eyes are recessive 
(both parents must carry this gene). Consult any standard text 
on genetics for more details.
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point. After crossover, you have the strings in the 4th column of Figure 12.11.  
Once crossover is completed, then mutation is applied to each bit in the popu-
lation. Mutation inverts each bit with a small probability. A “1” is changed to 
a “0” or vice versa with a probability equal to approximately 0.001. In nature, 
mutation helps to ensure genetic diversity. Most traits that occur via mutation 
are not productive and, hence, quickly vanish, however, occasionally muta-
tion does result in some survival advantage and such traits will become more 
prevalent in subsequent generations. In our “toy” example, we let the prob-
ability for mutation equal 0.1.

Observe from Figure 12.11 that the second bit in S2 has been mutated, 
changing 0010 to 0110 (fifth column, second row). The fitness of the new 
population is contained in the rightmost column. Notice that the average, max-
imum, and total fitness of population P1 have all increased from P0. Also, note 
that the fittest string in P1, in other words, S1 equal to 1110, with a fitness of 
four, solves the problem and, hence, P1 is the final population. Recapitulating, 
we have seen that GAs have the following characteristics:

• parallel
• probabilistic 
• iterative
• blind

The solution to a problem is encoded as a string to which a fitness function is applied. The fit-
ness of a string is a measure of how well that string solves the problem. You begin with a population 
of strings that are randomly generated. The genetic operators of selection, crossover, and mutation 
are then applied to form subsequent populations until a string in some generation solves the prob-
lem exactly or satisfactorily, or the GA is observed not to be making satisfactory progress toward a 
solution. Figure 12.13 illustrates the parallel nature of GA. 

(a) (b)

Figure 12.13
GA search illustrated. (a) Randomly generated points are distributed throughout the search space. (b) We observe that the points are converging to a 
global optimum after some number of iterations.

Parent strings

Offspring strings

k = 4

1 0

0 0 0 0 0

0 0 000

0 0

1 1

11

1 1

1 1 1 1 1

0 1 1

Parent1:

Child1:

Child2:

Parent2:

Figure 12.12
Crossover between two parent strings with 
crossover point k = 4.

A toy example is one used to explain 
a concept or process and should not 
be taken as indicative of a realistic 
application.



378  ■  Part  3   ·  Knowledge-Based Systems

Pseudocode for GA is contained in Figure 12.14. 
Genetic algorithm search

1. Randomly generate S1, S2, ..., Sn from state space. // Initial
   population of strings – P0.

2. Calculate the fitness for each string – f(S1), f(S2), ..., f(Sn).
3. Count = 0
4.  While count < maxcount and progress being made and ideal
   solution not found.
5. Count = Count + 1
6. Select mates from the current population
7. Apply crossover
8. Apply mutation
9. Calculate the fitness for this new population of strings
10. // end while

  /*Print the string with the highest fitness from the last
population. If fitness equals ideal fitness (best possible), indicate
that the s olution is exact, otherwise state that it is the best
possible. If no progress is made for several generations, specify that
GA is not converging toward an exact solution. */

Figure 12.14
Pseudocode for GA.

Consult the Sidebar for an example of a GA search that directs a robot to a goal.

exAMple 12.1: gA to direct robot to A goAl.
Suppose that a robot starts at square S in Figure 12.15 and must 
reach goal square G. 

The robot can move one square at a time in each of the direc-
tions: North, South, East, or West. A legal move is one that is 
not prevented by the constraints of the board, for example, the 
robot cannot move West from square E, East from Square F, or 
South from square A. One of the first steps in a GA is to encode 

the solution as a string. We encode the moves North, South, East, and West, 
respectively, by the strings 00, 01, 10, and 11. Suppose that we suspect that 
the Goal can be reached in four moves; then a series of four moves can be 
represented by a string of length eight. This is a small problem, so you can let 

the population size be four (consult the 
leftmost column in Figure 12.16).

The next step is to decide on an appro-
priate fitness function. A natural choice 
is to use the Manhattan distance from 
the goal for this purpose. However, better 
strings would then be allocated lower 
fitness measures. We generally desire 
that strings that more accurately solve a 
problem be allotted higher fitness values. 
This condition is satisfied by the func-
tion f(si) = 4 – distance from the Goal 

F

E

S

C

G

B

D

A

Figure 12.15
A robot must get from square S (Start) to  
G (Goal).

Fitness

Total fitness = 6

Max fitness = 2

Avg. fitness = 1.5

Initial
population

S
1
: 10101111

S
2
: 10100001

S
3
: 00010000

0 0 0 0

Actual
count

-P(si) = ƒi /∑ƒ Expected
count = ƒi /ƒ

1/3

1/3

1/3

4/3

4/3

4/3

2

1

12

2

2

S
4
: 10111000

Figure 12.16
Initial population P

0
 for the robot problem.
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that the string Si takes the robot to. 
For example, in Figure 12.16, the 
string S3 has a fitness of two, as  
S3 = 00010000 takes the robot one 
square North, then one square South 
(the robot is back in square S) fol-
lowed by two squares North, leaving 
the robot in Square F. Recall that the 
Manhattan distance from square F 
to G is an estimate of remaining dis-
tance between the two squares (and 
not the actual distance). The fitness 
of S3 is therefore seen in Figure 
12.16 to equal two. The remaining 
fitnesses are calculated in a similar 
manner. 

Observe in Figure 12.16 that two copies of string two and one each of strings 
three and four are selected to help construct the next population. Figure 12.17 
shows the details of this process. In this example, we have chosen a more 
realistic probability for mutation of 0.001; as a result, notice that mutation 
does not play a role in this simulation. In the fourth column, first row, observe 
that the problem has been solved by string 1, whose fitness is four. Also notice 
that something curious has occurred in this population. Confirm that S1 does 
indeed take the robot to square G. This has occurred in spite of the fact that 
both the total and average fitness of this population have decreased. We will 
comment on this anomaly shortly. 

At this point in our discussion, you might be asking yourself: “Why should GA work?” “Why 
should randomly generated strings subjected to repeated selection, crossover, and mutation con-
verge toward the global optimum of some function?” Holland’s explanation for GA convergence 
involves the concept of schemata. 11 To simplify this discussion, we assume that binary strings 
represent GA chromosomes.

If a chromosome has string length L, then the GA has a state space consisting of the 2L points in 
L-dimensional space. To concretize matters, we consider L = 3; the state space then consists of the 
eight vertices of the cube depicted in Figure 12.18. A schema is a string over the extended alphabet 
{0, 1, *} where * is a don’t care symbol (i.e., * matches 0 or 1). For example **0, 1*1, and 110 are 
three schemata (the plural for schema). The order of schemata is the number of original alphabet 
symbols they contain. Our three sample schemata have order one, two, and three, respectively. Hol-
land 11 and Goldberg 12 describe the way in which a schema can be viewed as representing a sub-
space of the state space. For example, consult Figure 12.18(c) to confirm that schema 0** matches 
each of 000, 010, 001, and 011 and represents the front plane of the cube, while schema 1*1 match-
es 101 and 111 and represents the right rear vertical edge, whereas 110 represents just itself. Each 
population in a GA uncovers more information than is contained in just those points themselves. 
Each string provides information about all of the hyperplanes (and subspaces) corresponding to the 
numerous schemata in which each point is contained; this property is referred to in the literature as 
implicit parallelism and could help to explain the robustness of GA. More information is thereby 
obtained in each generation to help guide the search. 

Strings selected from
initial population

S
1
: 10101111 2

1

4

4

4

4

0

0

0

10100000

00011111

10101000

10110001

Tot fitness = 4
Max fitness = 4
Avg fitness = 1

3

6

6

S
2
: 00010000

S
3
: 10100001

S
4
: 10111000

Mating partner
(selected
randomly)

Crossover
point
(selected
randomly)

Population after
crossover

F(s
i
)

fitness
of new
pop.

Figure 12.17
Constructing the second population in our simulation.
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The defining length of a schema, Δ(H) 
is the distance between the rightmost and 
leftmost occurrence of a 0 or 1. For ex-
ample, the schema 1***0 has length 5 − 1 
= 4 whereas 010** has length two. The 
probability that a schemata of length L 
will be decoupled by one-point crossover 
is Δ(H) / (L−1). Observe that schemata 
with short defining lengths are less likely 
to be disturbed. Highly fit schemata of 
short defining length are called building 
blocks. Goldberg describes how these 
building blocks combine to form opti-
mal solutions. 12 He likens this process 
to brainstorming in a business meeting 
where each person has a notion of how 
the problem under discussion is to be 
solved; notions are alternately rejected, 
accepted, and combined with other no-
tions, ultimately to form an idea that the 
meeting participants agree upon. Suppose 
that a GA must minimize the function 
f(x) = x2, where x is an integer between 
0 and 127. The chromosomes will consist 
of 7 bits (why?). And you might suspect 
that 000****, *000***, and **00*** 
are schemata with relatively high fitness. 
The GA would work with these build-
ing blocks (and others), combining them 
at times, much as notions are combined 
during brainstorming. The mathematical 

justification for GA is provided by the Schema Theorem which states that schemata with above av-
erage fitness can be expected to become more frequent in the next generation (see 11 or 12 for a more 
concise statement of this theorem and a proof). It is quite reasonable in the short run, however, to 
witness the average or total fitness take several backward steps (refer to Example 12.1).

Several points still need to be clarified. In the toy problems we considered earlier, population 
size was four. Realistic GA applications will typically use several hundred to several thousand 
chromosomes; calculating the fitness for each of these strings through many generations requires 
considerable computing prowess. It should come as no surprise that the emerging popularity of GA 
in the late 1980s coincided with the tremendous increases in processor speeds that occurred at that 
time.

We mentioned only one model for selection—that of roulette wheel selection. Other paradigms 
are available. One is elitist selection, in which the best or several of the best strings are guaranteed 
to be included in the formation of the next generation. However, you must be careful to avoid pre-
mature convergence, in which “superfit” individuals reproduce abundantly; population diversity 
is thereby decreased and convergence to a local optimum results. In nature this is referred to as 
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(a) The state space for a GA when chromosome length equals three. (b) All schemata when string length 
L = 3. (c) Subspaces for three schemata. Subspace represented by schema 0** (front plane), schema 1*1 
(right rear vertical edge), and 110 just the left rear vertex.
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genetic drift and in nature it is not a problem, as animals or plants need only possess an adequate 
mode for survival—optimal traits are not mandatory. To control genetic drift, you can utilize scaled 
selection, in which reproduction is based on a statistical comparison to the average fitness of the 
population. You can allow selection strength to increase over the course of the simulation (note the 
similarity to the temperature parameter T in an SA). Finally, in tournament selection, a popula-
tion is partitioned into subgroups. Members of each subgroup compete against one another with 
the winner from each subgroup included in the formation of the next generation (compare this with 
Olympic tryouts on a nation-by-nation basis).

GAs have found widespread acceptance over the past several decades with numerous applica-
tions. GAs have been used for stock market prediction and portfolio planning. Kurzweil 13 states 
that GAs are currently responsible for 10% of all stock purchase decisions, and this percentage will 
soar dramatically as we approach mid-century. They have also been used to predict the exchange 
rates of foreign currencies. GAs are especially well suited to scheduling problems. You might recall 
how television reports from abroad would fade on our television screens as orbiting satellites fell 
out of range. E. A. Williams, W. A. Crossley, and T. J. Lang in 2001 14 used GAs to help schedule 
telecommunication satellite orbits so as to minimize such fade-outs. GA has also reduced airport 
landing delays by 2–5% at London’s Heathrow airport. 15 GAs have been successful at both find-
ing appropriate weights for backpropagation networks as well as formation of appropriate network 
topologies. Consult the discussions in Negnevitsky 16 and Rojas. 17 We cited earlier that a fitness 
function should not only indicate whether or not a string solves a problem but also how close it 
comes to doing so. Recent work by Chellapilla and Fogel 18 is noteworthy in that they employed 
a GA to help evolve ANN to play the game of checkers. Their fitness function indicated merely 
whether a win or draw resulted. The network itself was left the task of discovering game strategy. 
Their program, Anaconda, played competitively but not entirely successfully against both Chinook 
(Chapter 16, “Advanced Computer Games”) and human competitors. Its rating was about 2045 
(expert-level play).

 12.3 GENETIC PROGRAMMING
In GA, a problem is encoded as a string. Genetic operators guided 

by a fitness function iteratively modify a population of these strings 
until some string (hopefully) solves the given problem. With Genetic 
Programming (GP), a string is used to encode a program that solves 
the problem. The genetic operators (similar to those described in the 
last section) act on the programs themselves. The programs, through a process akin to compu-
tational introspection, evaluate themselves based on how well they solve a problem and rewrite 
themselves to do better. GP works with programs that are encoded as trees rather than strings. GP 
works well with LISP (and other functional languages), which is based on lists. .

The function f (x, y, z), for example, can be encoded as (f x y z); the function f is followed by its 
list of arguments. When the program is run, the function is computed. In LISP, a list can consist of 
both terminals and functions. Examples of terminals are X, Y, Z, 1, 2, and 3, whereas < , +, •, and 
IF are functions. A LISP program can be written as a nested list whose semantics correspond to a 
tree. For example, (* x (* y z)) computes x * (y * z) and + ((* x y)( / y z)) corresponds to (x * y) + 
(y / z), as shown in Figure 12.19. 

More recent work has focused on 
Linear Genetic Programming, in 
which imperative languages such as 
C++ or Java are used.
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As these examples demonstrate, the format of 
instructions in LISP is that of functions applied to 
arguments.

Common genetic operators in GP are cross-
over, inversion, and mutation. To apply these 
operations you must identify a fracture point in 
the list where modification can occur. A fracture 
point can occur at the beginning of a sublist or at a  
terminal.

Following these steps to perform crossover:

• Choose two programs in the current population.
• Select two sublists randomly, one from each parent.
• Switch these sublists in their offspring.

Consult Figure 12.20.
The steps to perform inversion are as follows:

• Randomly choose an individual from the population.
• Select two fracture points within this individual program.
• Switch the indicated subtrees. 
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Figure 12.19
Two programs and their interpretations.
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Figure 12.20
Crossover in a Genetic Program. (a) Fracture points (←) chosen in two parents;  
(b) offspring after crossover.
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Figure 12.21
Inversion acts on one parent to produce a single offspring. (a) Two fracture points (→; ←) chosen in a 
program; (b) new program after inversion.
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Refer to Figure 12.21.
And finally, follow these steps to 

perform mutation:

• Select an individual program 
from the population.

• Randomly replace any function 
symbol with another function 
symbol

OR—
any terminal symbol with another. 
Mutation is depicted in Figure 12.22.
To avoid errors when performing 

mutation, type checking must be performed. For example, you must check if the operands should 
be numeric or logical.

Pseudocode for GP is provided in Figure 12.23.

Genetic Programming

1. Randomly generate S1, S2,..., Sn // initial population of programs

4. Count = 0

6. Count = Count + 1
7. Select individuals from the current population
8. Apply crossover
9. Apply inversion
10.Apply mutation
11. Calculate the fitness for this new population of strings
12. // end while

/*Print the string with the highest fitness from the best population.
If the program provides an ideal solution for the problem indicate that
the solution is exact, otherwise state that it is the best possible.
If no progress is made for several generations then specify that the GP
is not converging toward an exact solution.*/

5. While Count < maxcount and progress is still being made and ideal
   solution not found.

3. Calculate the fitness for each program, i.e.: How well does each
   program solve the problem? - f(S1),f(S2),..., f(Sn)

2. // For a realistic problem, population can easily be in the
   thousands

Figure 12.23
Pseudocode for GP.

Line 1 of the GP pseudocode merits a good deal of explanation. In a GP, we cannot generate 
random strings, binary or otherwise, as we did with GA. The nodes in a tree that represent an in-
dividual program can either contain a function or a terminal; these contents are often referred to 
as genes. If a GP is to achieve success, then genes should be chosen carefully. As a toy example, 
we consider a full adder circuit (FA). This is a circuit that has three binary inputs and two binary 
outputs (Figure 12.24.) The inputs are the two numbers to be added (represented by x and y respec-
tively)—the addend and augend—and a carry in (Ci) from a similar unit to its right. The outputs are 
the Sum (S) and carry out (Co) which is passed as a carry in signal to the FA on its left.

+

+ +

+

*

X

(a) (b)

V X ZXZV X

–

Figure 12.22
Mutation modifies an individual parent to produce one offspring. (a) Individual before mutation, chosen node 
also shown; (b) after mutation. Note that the multiplication operation has been changed to subtraction at 
the selected node.
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carry out (Co)

Addend

FA

Sum (S)

(a) (b)

S = 1 S = 0 S = 1

x y

Augend

carry in (Ci)
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Co = 0 Co = 1 Co = 1

1
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1
+ 0

1
+ 1

Ci = 1 Ci = 1

Figure 12.24
Full adder circuit; (a) schematic diagram of an FA; (b) three sample additions.

Figure 12.25 gives a truth table for an FA, in other words, for every set 
of inputs, this table specifies the correct outputs. Naturally, to do addition 
in many computers, we require that 32 FAs be joined in tandem (where 32 
is the word size of the machine).

We desire a GP to construct a program that performs as an FA. One ap-
propriate set of genes is {0, 1, +, •, ‘}. The 0 and 1 represent the terminals 
and +, •, and ‘ represent the OR, AND, and NOT functions (refer to Figure 
12.26).

We note that any set of functions capable of simulating the behavior of 
{+, •, ‘} would suffice. For example, the NAND function (↑) introduced in 
Chapter 5 would also work.

Koza is often cited as the “father” of GP. He recommends three strate-
gies for creation of a random population: grow, full, and ramped-half-and-
half. He also advises that no duplicates be allowed in the initial population. 

With the grow method, a tree can be of any depth up to some specified 
value m. 

Every node is chosen randomly to be either 
a terminal or a function. Naturally, leaf nodes 
(nodes at the “bottom” of the tree) must be termi-
nals. If a node is selected to be a function, then its 
direct descendants must be terminals, and there 
must be a number of these, equal to the arity of the 
function. For example, + would have two children 
whereas – (for minus) would have only one. Sup-
pose we let maximum depth m = 3. Then possible 
trees in the initial population for our toy FA prob-
lem appear in Figure 12.27.

In the full method, every tree has a depth 
equal to a prespecified depth d. For example, if depth d = 2, then every tree would consist of three 
levels or have depth d = 2, as does the fifth tree from the left in Figure 12.27. 

Finally, Koza describes the ramped-half-and-half method that he uses to maintain increased vari-
ation within the initial population. Population is divided into m * d – 1 parts. The composition of each 
part is produced half by the grow method, and half by the full method. Consult Figure 12.28.
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Truth table for an FA.
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Figure 12.26
Truth tables; (a) the OR function, (b) the AND function, and (c) the NOT function.
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GPs have been successfully applied in numerous fields: the design of antennas 19 and field pro-
grammable gate arrays, pattern recognition, 20 and robotics. 21 Koza has cited the same functionality 
in already patented devices and also in new inventions that have been discovered. 22

 12.4  TABU SEARCH
In this chapter, we have explored search 

paradigms based on nature. Simulated annealing 
takes its impetus from annealing—a metallurgi-
cal process that attempts to place the molecules 
in a material at an energy minimum. Evolution-
ary algorithms (GA and GP) use operators in-
spired by natural selection to, respectively, find 
solutions for problems or to construct programs 
that solve these problems. The search paradigm 
described in this section seemingly mirrors soci-
etal mores. 

A tabu (or taboo) is cultural behavior that is 
frowned upon, if not outright forbidden. Over the 
course of time, though, behavior that was once 
tabu (morally repugnant) might become acceptable. For example, it was once tabu for an older 
woman to date a younger man; a casual glance at the Hollywood gossip columns should convince 
anyone that such behavior is now acceptable. 

Tabu Search (TS) was developed by Fred Glover in the 1970s 23 and employs two types of lists: 
tabu lists and aspiration lists. Recall that to prevent convergence to a local optimum, SA uses a 
temperature parameter T that permits backward jumps with some probability. TS also allows back-
ward jumps; tabu lists are present to prevent the search from revisiting previous points in the search 
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Figure 11.27
Possible trees in the initial population using the grow method with bound m = 3 (AND is represented by the symbol *).
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Figure 12.28
Composition of the initial population for GP when the ramped-half-and-half method is used. In this example, m = 2 and d = 3.

Tabu Search Revisited.
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space and also to prevent cycling. A move to x* that 
is tabu may nonetheless be allowed, if this move 
appreciably increases the objective function: f (x); 
say, for example, that f (x*) ≥ any previously visited 
point; the aspiration list monitors such conditions. 

We revisit a problem from Section 12.2 to il-
lustrate a simplified form of TS. Once again, a robot 
must get from square S (Start) to G (Goal). Figure 
12.15 is reproduced as Figure 12.29.

A TS can begin its search by randomly selecting 
a starting point or by using a greedy-based method. 
We represent a possible solution to this problem by 
a sequence of size four, over the alphabet {“N,” “S,” 
“W,” “E”} where the alphabet symbols represent a 
move of one square in the directions: north, south, 
west, or east, respectively. We start the search with 

a random feasible solution—one that does not take the robot off the board (consult Section 12.2 for 
further clarification). Our starting point will be: x0 = ENWS. Once again we use the fitness function: 
f (xi) = 4 − Manhattan distance to the goal after the move contained in sample point xi is executed. 
TS terminology refers to this function f () as an objective function, and solutions in TS need not 
necessarily be strings; hence, we use xi rather than si. In our example, x0 takes the robot one square 
east, then one square north, then west one and south one, leaving it where it started, in square S. 
The objective function f (x0) therefore equals 4 – 4 = 0. 

If there is some biological underpinning to TS, it lies with the importance of memory in deci-
sion-making; decision-making should improve with experience. TS uses both short-term memory 
and long-term memory. Short-term memory is incorporated into the search in terms of a recency-
based tabu list. States in the state space that have been recently visited cannot be revisited for a 
period of time referred to as the tabu tenure. Actually, it is the moves m that transform one point 
xi into another xj (where xi + m = xj) that are tabulated. This strategy encourages exploration. Long-
term memory is reflected in the use of aspiration criteria. We mentioned earlier that one aspiration 
criteria is to visit x* even if forbidden by the tabu list, if f (x*) is superior to any previously visited 
point xi. Other aspiration criteria include the following:

• Aspiration by default; if all moves are tabu, then select the oldest move.
• Aspiration by direction favors moves that have led to improved values of f (x) in the past. 

This heuristic fosters exploitation.
• Aspiration by influence favors moves that lead to unexplored regions of the state space. 

This heuristic favors exploration. 24

Long-term memory also includes a frequency-based tabu list; this list monitors how often each 
move has been used since the search began.

We now return to our toy problem. We stated that x0 = ENWS and that f (x0) = 0. We let a move 
correspond to the alteration of a single step. When selecting moves, we need to ensure that a path 
exists from x0 to an optimal solution. There is no concern with this simple problem, but this latter 
proviso cannot be ignored when more realistic problems are encountered. We observe that there are 
44, or 256, points in the state space of this problem; many of these points correspond to infeasible 

F G

E CD

S BA

Figure 12.29
A robot must get from square S (Start) to G (Goal).
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solutions (take the robot off the grid). The neighborhood of a sample point xj : N(xj), corresponds 
to all points reachable from xj via one move. More accurately, we should refer to the neighborhood 
of xj at time k or N(xj, k), because the neighborhood changes as the search progresses (and vari-
ous tabu and aspiration criteria are modified). It is no surprise that memory usage can become a 
concern for TS on moderate to large problems. The neighborhood of x0 at time 0 (the search just 
beginning), N(x0, 0) contains 12 additional sample points (i.e., in addition to x0 itself). To see this, 
just observe that any one of the four directional steps can be changed to any of the three remaining 
directional steps. We comment that some of these 12 sample points are not feasible, for example, 
ENNS attempts to enter the barrier between squares F and G. Any move that is made is reflected in 
a recency-based tabu list (RTL). Initially, this list will have the following format: 

1 2 3 4 RTL
0 0 0 0

RTL(i) = j indicates that step i of a sample point was last modified at time j. Observe that the list is 
initialized to all zeroes as no moves have yet been made.

Suppose that at time 1 we choose x1, which belongs to N(ENWS, 0) equal to ENWN. Note that 
f (x1) = f (ENWN) = 2 as ENWN leaves the robot in square D, which is a Manhattan distance of two 
from G. The recency-based tabu list now equals: 

1 2 3 4
0 0 0 1 RTL

The “1” in RTL (4) reflects that this step was last modified at time 1. Any move that takes place 
will remain tabu for k time units, in other words, this move cannot be made again until sufficient 
time has elapsed. This quantity k is referred to as the tabu tenure and must be specified. We shall let 
k = 3, hence step 4 cannot be modified again until three time periods have elapsed, in other words, 
until time 4. What can occur if tabu tenure is set too high, say k = 4 or 5, in this example? 

At time 2, we modify x1 = ENWN to x2 = EEWN as no other move brings us closer to square G. 
We have modified the second step from N to E. Observe that EEWN also brings the robot to square 
D, hence f(x2) still equals 2. RTL appears as:

1 2 3 4 RTL
0 2 0 1

At time 3, we observe that steps 2 and 4 cannot yet be modified (they are tabu). By converting step 
3 from W to N we obtain x3 = EENN. Our final tabu list equals:

1 2 3 4 RTL
0 2 3 1

More importantly, however, the fitness of this proposed solution, f (x3) = 4 – 0 = 4, and therefore 
the problem has been solved as EENN sends the robot to square G. It is difficult to construct a toy 
problem for TS that uses frequency-based tabu lists and aspiration. The reader who wishes to use 
TS to solve real-world problems is therefore encouraged to consult references by Glover 25 and 
Glover and Manuel. 26 Pseudocode for TS appears in Figure 12.30.
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1. Randomly choose an initial solution x0. // A Greedy method can also
      sometimes be used to get started.

2. Calculate f(x0)  // Objective function.

3. Initialize tabu list // Fill in RTL with all 0’s.
4. Count = 0

6. Count = Count + 1

8. Calculate f(xt)

9. Update the tabu list RTL

10.  //  end while

/*Output the last solution xt and indicate whether this represents an
ideal or approximate solution. */

7. Choose xt in N(x, t) - (tabu elements)  //  Observe that the
neighborhood changes with time

5. while Count < maxcount and progress being made and ideal solution
    not found.

Figure 12.30
Pseudocode for tabu search.

TS has successfully been applied to the solution of many scheduling and optimization prob-
lems, VLSI design, pattern classification, and many additional problem domains. 27, 28, 29

 12.5 ANT COLONY OPTIMIZATION
In Chapter 1, we defined intelligence as the ability to cope with the demands of daily living and 

to solve problems that arise. We concluded by stating that intelligence was not a binary attribute 
in an entity, in other words, either present or absent, but rather, existed in degrees. If we were to 
rate the most intelligent creatures on this planet, it is doubtful that ants would be on anyone’s “Top 
Ten list.” And yet, ant colonies exhibit remarkable intelligence. The intelligence exhibited by ant 
colonies is an example of emergent behavior, unforeseen behavior at one level that arises from a 
lower level. An example from our discipline is human consciousness. Betweem ten billion (1010) 
and hundred billions (1011) neurons form the human brain; these neurons are arranged to process 
visual and auditory inputs and to control breathing, locomotion, and other biological functions. 
There seem to be no rules for consciousness, and yet it is present in our sense of “I”. This is also an 
example of bottom-up design, where rule-based organization at a lower level yields unexpected 
behavior at a higher level.

The emergent behavior that serves as impetus here is the apparent intelligence that arises from 
ant colonies. Ants can be viewed as agents—entities capable of sensing the environment, commu-
nicating with other agents, and responding to the vagaries of their environment. M. Dorigo was the 
first to recognize the applicability of ant colony behavior to combinatorial optimization. 30

One behavior of interest to us is that of ant foraging. If a food source is introduced near an ant 
colony, a trail will be formed to enable colony ants to locate and retrieve this nourishment (see 
Figure 12.31).

In Figure 12.31(a) you observe that forager ants eventually discover the food source. These 
“scouts” then recruit colleagues by forming a chemical trail on the return trip to the nest; they 
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do so by depositing pheromones, lightweight chemicals that are produced in an ant’s guts or in 
special glands. This indirect communication among insects is called stigmergy and has several 
advantages: 

 1. One insect need not know the location of the others with whom it is communicating.
 2. The communication will outlast the sender should it perish.

The pheromone trail encourages exploitation by other colony members. Observe, however, in 
Figure 12.31(c) that not every ant is following the prescribed trail; this apparently random behavior 
by the foragers fosters exploration—in this context, the search for alternate food sources.

We mentioned that ant colony behavior was applicable to combinatorial optimization. The 
phenomenon of trail laying and following just discussed enables some species of ants to find a 
shortest path between a food source and their colony. Goss and colleagues 31 and Deneubourg and 
colleagues 32 conducted several experiments that demonstrate this facility for optimization. In Fig-
ure 12.32(a) we see a food source separated from an ant home by two paths of different lengths; 
initially the nest is blocked. Once the barricade is removed in Figure 12.32(b) we observe no pref-
erence for either path. In 12.32(c), however, after the ants have had some time to travel along both 
pathways, a clear preference for the shorter path is evident. 

Once again some ants continue to traverse the longer path, which is a form of exploration. One 
further comment about pheromone; over time this chemical will evaporate. Does this last remark 
help you to answer why ants in this experiment display a clear preference for the shorter path?

There are biological advantages to choosing a shorter path. Ants expend less energy in food 
collection and thereby finish this task faster; this enables them to avoid competition from other 

(a)

(b)

(c)

Nest

Food
source

Figure 12.31
Ants establishing and then following a trail from their nest to a food source. (a) Forager ants eventually discover the food source; 
(b) these “scouts” then recruit colleagues; and (c) not every ant is following the prescribed trail.
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colonies and possible confrontations with predators. Dorigo and colleagues 33 employed artificial 
ants with artificial pheromone trails to solve instances of the Traveling Salesperson Problem (TSP; 
Chapters 2 and 3). In their simulations, a colony of artificial ants travels from city to city; journeys 
are made independently and randomly; however, pheromone is deposited on the trail. The quantity 
of pheromone deposited is inversely proportional to the overall length of a particular tour. Because 
of pheromone evaporation, shorter tours will contain more pheromone than longer ones. Ants make 
this trip a number of times; on subsequent journeys, those tours with more pheromone will be visit-
ed by more ants. In what is termed a simple ant colony optimization algorithm (S-ACO), each edge 
(i, j) in a graph has some quantity of artificial pheromone τi, j. Each agent (artificial ant) is capable 
of depositing pheromone on a trail and can also sense deposits left by other agents. Each agent can 
probabilistically decide the next node to visit according to

( )
( )

( )
          

 

0                           . .

ij
k

ijij j N

t
if j N

tp t

o w

t
t

∈


∈

=



∑
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Figure 12.32
Ants finding a shortest path from their home to a food source. Initially the nest is isolated. The barrier is removed. We witness traffic on 
both paths that appears random. The shortest path to the food source exhibits heavier traffic (exploitation), whereas some foragers are 
found on the other path (exploration).
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nodes. While an agent is traversing an edge (i, j), it deposits some quantity of pheromone Δτ. 
Hence, pheromone levels are updated as follows:

τi,j(t) ← τi,j(t) + Δτ.

More robust results, however, were obtained when pheromone evaporation was also employed 
as a parameter, yielding

τi,j(t) ← (1 – p) τi,j(t) + Δτ,

where the pheromone decay rate is represented by p in [0, 1]. 34 Most early work for ACO 
has focused on discrete optimization. ACO has successfully solved the vehicle routing problem  
(VRP) 35, 36, 37, network routing, graph coloring (consult exercises in Chapters 2 and 3), machine 
scheduling, and the shortest common super sequence problem. 38

Other behavior of ant colonies that has attracted attention by researchers is that of dead body 
clustering. In several ant species, it has been observed that worker ants will gather dead ants (and 
ant parts) and form clusters similar to cemeteries.39, 32 Figure 12.33 illustrates this phenomenon.

Initially corpses are randomly distributed. Several hours later, you can observe that worker ants 
are beginning to pile the corpses. Worker ants have formed clusters of corpses.

It is believed that the clustering that occurs is the result of an attraction between corpses, facili-
tated by worker ants. As small clusters of corpses grow, more worker ants are attracted to deposit 
more corpses. This form of positive feedback is responsible for the formation of larger and larger 

(a) (b)

(c)

Figure 12.33
Cemetery formation in ants.
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clusters. A related behavior is that of larval sorting by one species of ants, in which worker ants 
gather larvae. Broods are arranged with smaller larvae in the center and larger larvae around the 
outside. 40 These two behaviors have led to applications in data clustering (ant clustering algorithms 
or ACA). 

Ants are not alone as social insects. Bees, wasps, and termites 
have also been studied extensively. One can use the word swarm to 
refer to any structural collection of cooperating agents.41 Hence, a 
flock of birds can also be considered a swarm. Swarm intelligence 
refers to intelligence that emerges from a collection of cooperating 
agents that work in close proximity to one another. In this section 
we have discussed ant colonies as an example of swarm intelli-
gence. A new field of research is swarm robotics, in which autono-
mous robotic agents, governed by relatively simple rules, behave 
much as a community of ants. Collections of these small robots 
have recreated the behavior of ants in the following areas: foraging 

for food, clustering of dead bodies, collective prey retrieval, and clustering around a food source. 
Food foraging simulations were conducted by Krieger, Billeter, and Keller 41 and by Krieger and 
Billeter. 42 Research on object clustering was performed by Beckers and colleagues. 43 Work on 
cooperative box-pushing, in which miniature robots cooperate to move a box that is beyond the 
capability of any individual robot, was conducted by Kube and Zhang 44, 45, 46 and by Kube and Bo-
nabeau.47

 12.6 CHAPTER SUMMARY 
We have seen that artificial intelligence researchers can glean useful search paradigms from the 

world around us. Many of the optimization algorithms discussed earlier—for example, hill climb-
ing (Chapter 3) and gradient descent (Chapter 11)—suffer from a propensity to converge to a local 
optimum. 

Simulated annealing draws its inspiration from the metallurgic process of annealing. If the 
molecules in a metal are to be brought to an energy minimum, they must first be excited via heating 
and then be allowed to slowly cool. In SA, reaching a global optimum might first involve jumping 
to points in the state space with lower objective values.

GA and GP borrow the genetic operators of selection, crossover, and mutation to facilitate 
the convergence of strings toward a problem’s solution, much as living systems converge toward 
adaptation with their environment. Evolution of living organisms is inherently a parallel process 
as it occurs across an entire population. Additionally, adaptation of a species to an (ever-changing) 
environment requires many generations. This adaptation is necessarily blind because no individual 

in a population can consciously change itself to facilitate its fitness. 
Evolutionary algorithms such as GA and GP are therefore parallel, 

iterative, and blind procedures.
Tabu search capitalizes on the changing state of human beliefs to 

design a search that fosters exploration. Portions of the state space 
that have been recently visited remain forbidden until some time has 
elapsed. This tabu can be overlooked if the payoff is sufficient; these 
“free passes” are contained in an aspiration list.

The social behavior of ants in ant colonies, wherein communica-

 Videos of this work in the area of 
swarm robotics can be viewed at http://
www.nature.com/nature/journal/v406/
n6799/extref/406992ail.mov and http://
www.cs.ualberta.ca/~kube. Looking 
several decades into the future, one can 
envision useful applications for micro 
bots and nano bots in surgery and for 
the internal dispensing of medicines.

Lamarck was a French botanist 
who subscribed to the theory that 
traits acquired by an individual 
could be transmitted to his or her 
descendants. His theories are not 
held in high regard by modern 
geneticists.
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tion occurs indirectly via chemical transmission, is the impetus behind ACO and ACA algorithms. 
Intelligence that emerges from a large population of communicating and autonomous agents in 
close proximity is referred to as swarm intelligence. This is a model for intelligent behavior that 
has been successfully applied to colonies of small robots (swarm robotics) and holds promise for 
the future, once advances in miniaturization have occurred. 

There are several research disciplines in so-called Natural Computing that we have not dis-
cussed:

• Immunocomputing—Agents are modeled after an animal’s immune system. There has 
been some success in speech identification and computer virus detection systems.

• A-life—Simulations that model the behavior of living systems yield insight into these 
systems.

• Quantum computing—The U.S. government expects to have a viable model of a comput-
er based upon quantum physics in the not too distant future (interactions at the subatomic 
level do not obey the traditional physical principles of everyday life). Such computers are 
expected to be highly parallel for certain search problems.

• DNA Computing—Computer systems modeled after the algorithms involved in human 
DNA transcriptions. These computers would have the capacity to replicate processors 
when more computing prowess is required. 

Questions for Discussion

 1. What is the relationship between annealing and SA?

 2. Define exploitation and exploration in search algorithms.

 3. What is the disadvantage of favoring exploitation over exploration in a search (hint: think of 
hill climbing)?

 4. How does the temperature parameter T help SA to balance exploitation and exploration?

 5. Explain the genetic operators: selection, crossover, and mutation used in GA.

 6. Which operator do you believe is more useful to a GA—crossover or mutation? Defend your 
assertion.

 7. One selection algorithm not discussed is that of miser selection, in which the worst member 
of a population is selected to participate in reproduction. What advantages do you foresee for 
this approach?

  a. What advantages do you foresee in increasing the population size in a GA? 

  b. What disadvantages?

 8. Suppose that you are using a GA to solve an instance of the TSP. What precautions must be 
taken when performing crossover?
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 9. A genetic operator not discussed for GA is inversion. Choose two sites randomly on a 
chromosome: 10^0100^11, and then reverse all characters between these two points as: 
10001012.

  a. First, what possible problem do you believe inversion is trying to correct?

  b. Second, what is wrong with the way we have addressed this operation?

 10. What is the major distinction between GA and GP?

 11. What problems do you foresee in selection of tree heights in GP? How does Koza’s ramped-
half-and-half method address this problem?

 12. a. In tabu search, do tabu lists encourage exploitation or exploration?

  b. Same question for aspiration lists?

 13. List three aspiration criteria in tabu search and explain why they are helpful.

 14. What is stigmergy? Why is this a useful means of communication?

 15. Explain the role that pheromone evaporation plays in the shortest path example explained in 
Section 5.

 16. Observe that in Figure 12.32, some ants do not follow the shortest path from the nest to a 
food source. What useful purposes do these supposedly misguided foragers play?

 17. What possible applications do you envision for the cemetery formation example?

 18. Cite several future applications for swarm robotics at both the macroscopic and microscopic 
level.

Exercises
The search methods in this chapter employ probability to some extent (there is a stochastic ver-

sion of TS that we did not discuss). Monte Carlo simulation uses probabilistic tools to approximate 
“difficult” functions. Imagine that you are playing darts on the following dartboard. 

 1. Drawn on the dartboard is ¼ of a circle as shown. You throw 100 darts at 
the board. Assume that all darts land randomly somewhere on the board. 
How can you use this experiment to approximate the value of π?

 2. Design a GA solution for the 4-Queens problem (Chapter 2). Be sure to 
specify your representation and your fitness function.

 3. Design a GA solution for the Missionaries and Cannibals problem (Chapter 2). How does 
your fitness function measure closeness to the goal? How does it prevent unsafe states from 
occurring?

 4. Design a GA solution for determining the chromatic number of a graph (Chapter 2). How 
does your fitness function avoid infeasible solutions? How does it reward solutions using 
fewer colors?

 5. Design a GA solution for the 15-puzzle. 

1

1

Figure 12.34
A square dartboard, 1 foot 
on each side.
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 6. How would you formulate a GA that is capable of playing tic-tac-toe?

 7. How would you design a GA-based strategy for the iterated Prisoner’s Dilemma (Chapter 4)?

 8. Design a GP to determine the chromatic number of a graph (see Exercise 12.3). You will need 
to use functions that 

  a. Assign a color to a node.

  b. Change the color of a node when necessary.

  c. Keep count of the number of colors used.

 9. Until Darwin’s theory of evolution, people believed that living systems were designed by 
God (or a God-like figure). William Paley was a theologian who proposed in the 1802 book 
Natural Theology 48 his watchmaker argument: A watch is a complex artifact. If you were to 
find a watch on the side of the road and carefully examined its internal workings, it is likely 
you would conclude that some human watchmakers designed it. Similarly, he argued that 
living systems are also complicated. It is natural to conclude that God must be responsible 
for their design: Are you convinced by Paley’s argument? You might wish to first consult the 
book by Richard Dawkins The Blind Watchmaker 49 before answering. Dawkins argues that 
evolution via natural selection can be viewed as a blind watchmaker.

Programming Exercises

 1. Write a program that uses Monte Carlo simulation to approximate the value of π. (See 
Exercise 1 above). Use pairs of random numbers over [0, 1) instead of darts.

 2. Write a program to have a GA solve the 4-Queens problem (see Exercise 2).

 3. Write a program to have a GA solve the Missionaries and Cannibals problem (see Exercise 3).

 4. Write a program to have a GA determine the chromatic number of a graph (see Exercise 4). 
Test your program on the graphs depicted in Figures 2.39 and 2.40.

 5. Write a program to have a GA solve the 15-puzzle. The input to your program is a random 
arrangement of the tiles. The output is the tiles in order or a message that a solution is not 
possible (recall that half of the arrangements will not be reachable).

 6. Write a program for a GA-based tic-tac-toe player.

 7. Write a program that uses a GA to develop a strategy for the iterated Prisoner’s Dilemma.

  Use Koza’s ramped-half-and-half method to form the initial population for each of problems 
8 and 9. Experiment with various values of m and d.

 8. Write a program that uses GP to construct a full adder.

 9. Write a program that uses GP to determine the chromatic number of a graph. Test your 
program on the graphs depicted in Figures 2.39 and 2.40.

 10. Write a program that uses GP to solve the Tower of Hanoi Problem (consult Chapter 6) for  
n = 3 discs.
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 11. The minimum k-tree problem is to find a tree T in a labeled graph such that T has k edges 
and the total cost is minimal. For the graph shown in Figure 12.35, minimum 3-tree has a 
cost = 9.

1 2 2

3 35

6

6
7

(a) (b)

Figure 12.35
(a) A graph G and (b) A minimum 3-tree with cost = 2 + 3 + 4 = 9.

 12. Write a program that uses TS to find a minimum k-tree in a graph. Test your program on the 
graph shown in Figure 12.36, with k = 4. 
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Figure 12.36
Test input for your TS program.

  Your program begins with a greedy-based solution that selects the minimal cost edge first 
and 3 additional edges that are adjacent to this edge (depicted by bold edges in Figure 12.36). 
Moves in this search consist of the addition of an adjacent edge and the deletion of a single 
edge from the tree. You may wish to consult “Tabu Search” by Fred Glover and Manuel 
Laguna. 50

 13. Write a program that uses S-ACO to solve the shortest path problem described in Chapter 
2. Test your program on the map of northern China depicted in Figure 2.14(a). Experiment 
with various pheromone deposit levels. Also, compare results obtained when pheromone 
evaporation is not (is) employed.
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 14.  In the Euclidean TSP, vertices are randomly placed in some square box (see Figure 12.37). No 
cost matrix is provided, as the distance between two points, P1 and P2, can be calculated by: 
d(P1, P2) = sqrt((x2 – x1)

2 + (y2 – y1)
2). Write a program to solve an instance of the Euclidean 

TSP when n = 25 by using

  a. SA

  b. GA

  c. Tabu Search

  d.  Experiment with various values of d (the number of cuts—consult discussion in  
Section 12.1). 

  e. Try various population sizes for Part b of this question. Discuss your results.

P1(x1, y1)

P2(x2, y2)

X

y

Figure 12.37
An instance of the Euclidean TSP with n = 10 cities.
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■ ■ ■ ■ ■

Natural language understanding has long been a goal of AI researchers. Early 
researchers in machine translation did not realize the difficult challenges posed by both 
syntax and semantics in language.  Formalisms were used leading to grammars that 
helped to make significant progress in the 1970s and 80s.  But real breakthroughs came 
with the development of corpus linguistics coupled with statistical approaches including 
Markov methods. Great progress has been made in recent years and this is illustrated by 
examples of several question–answer systems) as well as significant progress in speech 
understanding systems (Chapter 13). 
Planning is an old area of AI which has enjoyed much progress in design, development, 
and application during the past few decades.  Future systems are being designed to tackle 
such monumental tasks as industrial automation and space exploration coupled with 
robotics (Chapter 14). 
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Having computers understand 
the written and spoken language 
of humans has been the goal of 
some research disciplines for many 
years. Here we trace that history 
leading to the knowledge-based 
approaches of the 1970s and 80s. 
The development of language 
corpora led directly to successful 
statistical approaches to language 
which have prevailed for the past 
two decades. We present some of 
the more interesting commercial 
and technical systems of the past 
decade. 
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 13.0 INTRODUCTION
One of the oldest, most researched, and most demanding fields of AI is speech and language un-

derstanding. Any attempt at developing intelligent systems ultimately seems compelled to address 
what form of communication will be the standard. Language communication is often the preferred 
choice over, for example, graphical or data-based systems. Early attempts at tackling language with 
Machine Translation in the 1950s and 60s proved futile. However, the foundations for natural lan-
guage understanding were established in the 1940s and 50s with work on finite automata, formal 
grammars, and probability. There followed trends toward symbolic and stochastic approaches 
into the 1970s. This chapter will explore developments in Natural Language Processing (NLP) 
leading to present approaches using stochastic processes, machine learning, information extraction, 
and question-answering amongst others, with a view to the future.

 13.1 OVERVIEW: THE PROBLEMS AND POSSIBILITIES OF 
LANGUAGE

Today there are many systems in which machines perform language related functions (both 
spoken and textual / interactive) that are difficult to distinguish from humans. It is not uncommon 
to be at once both frustrated and impressed with these systems. We may be frustrated by the num-
ber of simple decisions that we must endure in interacting with a machine to route our calls, but 
sometimes the machine seems capable of making decisions that we had previously thought were 
special to humans. 

• Today travelers can make reservations and check the status of their transportation plans 
using conversational agents that provide them with most of the choices a human can of-
fer.

• Remarkable advances have been made in automobile navigational systems, which pro-
vide textual, graphical, and speech guides to the driver, including typical destinations, 
points of interest such as gas stations, restaurants, stores, banks, etc., as well as tourist 
attractions. The important thing is that these satellite-based systems (which can come 
factory-installed in newer vehicles and can be easily purchased for $100–$300) is that 
they will get you where you want to go efficiently while providing great amounts of  
useful information.

• Video search companies provide search services for millions of hours of video on the 
Web by using speech technology to capture the words in the desired sound track.

• Google, as we know, can perform amazing information retrieval tasks. For example, it 
can perform cross-language information retrieval and translation services whereby  a 
query is made in one’s native language, then is translated to other languages (e.g., to 
search for a collection); the relevant pages are found and then translated back to the  
native language. 

• Large educational publishers and the Educational Testing Service have developed auto-
mated systems that can analyze thousands of student essays, grading and assessing them 
in a manner indistinguishable from human graders.  

• Interactive virtual agents, emulating animated characters, can serve as tutors for children 
learning to read (Wise et al. 2007). 
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• In addition to great advances in information retrieval, there 
is text analysis whereby automated measurement of opinion, 
importance, preferences, and attitudes is possible.   

The contemporary standard text on this subject is Speech and Lan-
guage Understanding, by D. Jurafsky and J. Martin,1 and a number of 
the above points are based on their “State of the Art” (p.8–9). 

Language is diabolical. Spoken and written language is somewhat 
special to human beings (although there can be no doubt that other 
animals communicate through sound and language). Language affords 
us many opportunities for detailed communication—and great misunderstanding! The opportuni-
ties and advantages of language (both spoken and written) are somewhat obvious, yet we feel they 
are worth explaining here. Spoken language enables us to have a synchronous conversation through 
which we can communicate interactively with one or more people. This is probably the most com-
mon and oldest form of language communication between human beings. It is easy to do, allows 
us to be most expressive, and most importantly, we can also listen to each other. Although spoken 
language offers the opportunity for precision, there are few people who can and do use language as 
precisely as it can be used. Spoken language can lead to misunderstanding when the two or more 
parties are not speaking the same language, have different interpretations of language, or the words 
are not properly understood; sounds may be slurred, blurred, muffled, or are subject to regional 
dialects. Perhaps most importantly, spoken language rarely leaves any official record, unless there 
is an actual effort to record it. 

On the other hand, textual language has the obvious advantage of providing a record (whether it 
is a book, a document, an email, or other form) but it lacks the spontaneity, fluidity, and interactivity 
that spoken language affords.  

In this chapter, we will present some techniques that will provide insights into how computers 
can be programmed to handle language as text.

 13.1.1 Ambiguity
One need not go far to see some of the possibilities for misunderstanding and misinterpretation 

of language. Consider some of the following modern methods of communication and how they can 
be used normally but could result in miscommunication(s):

Telephone – sound(s) could be unclear, a person’s words may be misunderstood, 
and language comprehension between the two parties poses its own set of unique 
problems. Many possibilities for misinterpretation, misunderstanding, and incorrect 
recall exist.

Handwritten Letter – may be illegible, various kinds of writing errors can easily 
occur; could be lost by the post office. Origin and date may be omitted. 

Typed Letter – Not sufficiently fast and the source and real meaning behind a letter 
may be misunderstood and may not be sufficiently formal.

Email – requires the Internet; it is easy to misunderstand context and misinterpret 
intent.

Wise, B., Van Vuuren, S., and Byrne, 
B. 2005–2010. National Institutes of 
Health, 5 p50 HD27802, Response 
to Computer-Assisted Instruction for 
Reading Difficulties. Wise, B., PI, 
Project V in Differential Diagnoses 
of Learning Disabilities Center, 
Olson, R., PI.
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Instant Message – precise, fast, may be synchronous, but still not as smooth as 
talking. Records can be kept.

Text Message – requires phone, limited size, and can be hard to produce. (e.g., small 
keyboard, not to be done while driving, during class, etc.) 

Language is unique for the very reason that it offers opportunities for both precision and vague-
ness; it can be used precisely in terms of (for example) legal or scientific language, or it can be used 
in a deliberately “artistic” way, for example, as poetry or a novel. As a form of communication, 
written or spoken language can be ambiguous. Let us consider a few examples:

exAMple 13.1 “i’ll Meet you After the concert, in the bAr.”
The intent of this sentence is clear, although there are many details missing 
that could help make this rendezvous more likely to be successful. What if 
the concert hall has more than one bar?  Could the concert be in the bar and 
we are meeting after it? What time exactly was the meeting to take place and 
how long are you willing to wait for the meeting to take place? The statement 
“after the concert” shows intent but is ambiguous. What will the two parties 
do after a certain amount of time has passed and they have not yet met each 
other?  

exAMple 13.2. “turn right At the third light.”
Again here, the intention is good but a lot of details have been omitted. 

How far apart are the lights? They could be a few blocks apart or they could 
be miles apart. More precision about distance, landmarks, and so forth would 
be helpful in terms of driving instructions, when directions are given. 

exAMple 13.3. “how Are you doing? we’re All set.”
These two sentences demonstrate contextual ambiguity. What are the referents 
set for? Set to depart? Is the dinner table set up? Or they’re not in any need 
for counseling. Part of the problem here is the possible multiple meanings of 
the word “set.” Is it a noun (a set of kitchenware), a verb (to set up), or perhaps 
another kind of word usage?

From the examples above, it should be clear that there are many possible ambiguities in lan-
guage. Therefore, if this is the case with language in communications between humans, one can 
well imagine the problems that language understanding can pose for machines. 

 13.2 HISTORY OF NATURAL LANGUAGE PROCESSING (NLP)
Jurafsky and Martin 1  identify six major periods in the history of Natural Language Processing, 

which we present in Table 13.1. We will briefly try to describe each of these periods. The subsec-
tions in this history roughly correspond to the titles for these periods provided by Jurafsky and 
Martin.
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Table 13.1
The six periods of NLP (based on Jurafsky and Martin, 2008, pp 9–12).

Period  Number Period Name Years

1 Foundations 1940s and 1950s
2 Symbolic vs. Stochastic Approaches 1957–1970
3 Four Paradigms 1970 – 1980
4 Empiricism and Finite State Models Redux 1983–1993
5 The Field Comes Together 1994–1999
6 The Rise of Machine Learning 2000–2008

 13.2.1 Foundations (1940s and 1950s)
The history of natural language processing can be traced back to the foundations of computer 

science itself. The field of computer science was built on the groundwork of Turing’s model of 
algorithmic computation.2 After this initial foundation, many subfields emerged in computer sci-
ence, each of which provided fertile ground for further research. Natural language processing is a 
subfield in computer science that has drawn on the conceptual groundwork of Turing’s ideas.

Turing’s work led to other models of computation, such as the McCulloch-Pitts neuron.3 The 
McCulloch-Pitts neuron was modeled on the human neuron, taking 
several inputs and producing output only if the combined input ex-
ceeded a threshold value. 

These models of computation were closely followed by the work 
of Kleene on finite automata and regular expressions; 4 they would play a major role in computa-
tional linguistics and theoretical computer science. 

Shannon added probability to finite automata, making these models more powerful in their rep-
resentation of ambiguity in language.5 These probabilistic finite automata were based on Markov 
models in mathematics, and they played a crucial role in the next major development in natural 
language processing. 

Noam Chomsky drew on the ideas of Shannon, and Chomsky’s work on formal grammars was 
a major influence shaping computational linguistics.6 Chomsky used finite automata to describe 
formal grammars, and he defined languages in terms of the grammars that generated them. Based 
on formal language theory, a language could be considered a set of strings, and each string could be 
considered a sequence of symbols produced by a finite automaton.

Together with Chomsky’s work in shaping the field, Shannon provided the other major influ-
ence on the early work in natural language processing. In particular, Shannon’s noisy channel 
model was crucial to the development of probabilistic algorithms in language processing. In the 
noisy channel model, it is assumed the input has been obscured by noise, and the original word 
must be recovered from the noisy input. Conceptually, the input is treated as if it had been passed 
through a noisy communication channel.  Based on this model, probabilistic methods were used to 
find the best match between the input and possible words.

 13.2.2 Symbolic vs. Stochastic Approaches (1957–1970)
From these early ideas, it became clear that natural language processing could be considered 

from two different perspectives: (1) the symbolic and (2) the stochastic. The symbolic approach 

See Chapter 11, “Neural Networks,” 
for further discussion.
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was exemplified by Chomsky’s formal language theory. Based on this view, a language contained 
sequences of symbols, and these sequences had to follow the rules of syntax of their generative 
grammar. This perspective simplified linguistic structure into a set of clearly defined rules, allowing 
each sentence and word to be broken into structural components.

Parsing algorithms were developed to break an input into smaller units of meaning and struc-
ture. Work in the 1950s and 1960s led to several different strategies for parsing algorithms, such 
as top-down parsing and bottom-up parsing. Zelig Harris developed the Transformations and Dis-
course Analysis Project (TDAP), an early example of a parsing system. Later work on parsing 
algorithms used the concepts of dynamic programming, storing intermediate results in a table to 
build the best possible parse.7

Thus, the symbolic approach emphasized linguistic structure and the parsing of an input into its 
units of structure. The other major approach, the stochastic, was more concerned with probabilistic 
methods to represent the ambiguity in language. Taken from mathematics, Bayesian methods were 
used to represent conditional probabilities. Early applications of this approach included optical 
character recognition, and an early text-recognition system was built by Bledsoe and Browning. 8 
Given a dictionary of words, the likelihood of each letter sequence was computed by multiplying 
the likelihood of each included letter.

 13.2.3 The Four Paradigms: 1970–1983
The next period was dominated by four paradigms:

 1.  Stochastic methods, particularly in speech recognition systems. Earlier work on the noisy 
channel model was applied in speech recognition and decoding, and Markov models were 
modified into Hidden Markov models (HMMs) to allow further ambiguity and uncertainty 
to be represented. AT&T’s Bell Laboratories played a key role in these developments 
in speech recognition, as did IBM’s Thomas J. Watson Research Center, and Princeton 
University’s Institute for Defense Analyses. The stochastic approach began to dominate in 
this period.

 2.  The symbolic approach also made key contributions, and natural language understand-
ing was another strand of development that continued the classic symbolic approach. This 
area of research could be traced back to the earliest work on Artificial Intelligence (AI), 
including the workshop known as the 1956 Dartmouth Conference organized by John 
McCarthy, Marvin Minsky, Claude Shannon, and Nathaniel Rochester where the term 
“Artificial Intelligence” was coined (See Section 1.5.3). AI researchers began to empha-
size the underlying reasoning and logic used by the systems they built, such as Newell 
and Simon’s Logic Theorist and the General Problem Solver. In order for these systems to 
“reason” their way to a solution, the systems had to “understand” the problem in terms of 
language. Thus, natural language understanding found an application in these AI systems, 
allowing these systems to answer questions by recognizing text patterns in the input prob-
lems.

 3. Logic-based systems used formal logic as a way to represent the computations involved 
in language processing. Notable contributions included the work of Colmerauer and col-
leagues on metamorphosis grammars, 9 Pereira and Warren’s work on Definite Clause 
Grammars, 10 Kay’s work on functional grammar, 11 and Bresnan and Kaplan’s work on 
Lexical Functional Grammar (LFG). 12
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   Natural language understanding had its most productive period in the 1970s with Wino-
grad’s SHRDLU system.13 This system was a simulation in which a robot moved toy 
blocks into different positions. The robot responded to commands from the user, moving 
the appropriate blocks on top of each other. For example, if the user asked the robot to 
move the blue block onto the larger red block, the robot would successfully understand 
and follow the command. This system pushed natural language understanding to a new 
level of complexity, pointing the way to more advanced uses of parsing. Rather than fo-
cusing simply on syntax, parsing could be used on the level of meaning and discourse, 
allowing the system to interpret commands more successfully.

   Similarly, Roger Schank and his colleagues at Yale University built more conceptual 
knowledge of meaning into their systems. Schank used models such as scripts and frames 
to organize the information available to the system. 14, 15 For example, if the system was 
supposed to answer questions about restaurant orders, the system would be provided with 
the typical information associated with restaurants. The script would capture the typical 
details associated with well-known settings and these associations would be used by the 
system to answer questions about those settings (see Section 13.9.3).16 Other systems, 
such as LUNAR (used to answer questions about moon rocks), combined natural language 
understanding with logic-based methods, using predicate logic as a semantic represen-
tation. 17, 18 Thus, these systems incorporated more semantic knowledge, expanding the 
power of the symbolic approach from syntactic rules to semantic understanding.

  4.  The discourse modeling paradigm was featured in the work of Grosz; she and her col-
leagues introduced and concentrated on substructure in discourse and discourse focus,19 
while Sidner 20 introduced anaphora, but other researchers such as Hobbs also made con-
tributions to the field. 21 

 13.2.4 Empiricism and Finite-State Models
In the 1980s and early 1990s, the symbolic approach continued with a revival of earlier ideas 

such as finite-state models. These models had fallen out of favor after their initial use in the early 
years of natural language processing. Their revival was brought about by Kaplan and Kay’s work 
on finite-state phonology and morphology,22 and Church’s work on finite-state models of syntax. 23 

The second trend in this period was called “the return of empiricism.” This approach was 
highly influenced by the work at IBM’s Thomas J. Watson Research Center employing probabi-
listic models in speech and language processing. Probabilistic models coupled with data-driven 
approaches moved to studies of part-of-speech tagging, parsing, attachment ambiguities, and se-
mantics. The empirical approach also led to a new focus on model evaluation, with development of 
quantitative metrics for evaluation. Emphasis was on comparison of performance with previously 
published research.

 13.2.5 The Field Comes Together: 1994–1999
The changes in this period indicate that probabilistic and data-driven approaches became the 

standard in NLP Research in all aspects of speech, including algorithms for parsing, part-of-speech 
tagging, reference resolution, and discourse processing. It incorporated probabilities and em-
ployed evaluation methods borrowed from speech recognition and information retrieval. This was 
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all somewhat coincidental with increases in computer speed and memory enabling commercial 
exploitation of various subareas of speech and language processing. In particular, these subareas 
included speech recognition with spelling and grammar correction. Equally important, the rise of 
the Web emphasized the need and possibilities for language-based retrieval and information ex-
traction (ibid., p. 12).

 13.2.6 The Rise of Machine Learning
The early 2000s were marked by a key development: the availability of huge collections of 

written and spoken material, provided by organizations such as the Linguistic Data Consortium 
(LDC). Collections such as the Penn Treebank 24 annotated the written material with syntactic 
and semantic information. The value of this resource was immediately evident in the development 
of new language processing systems. New systems could be trained by comparing the correctness 
of their parses with the annotations. Supervised machine learning became a major part of solving 
traditional problems such as parsing and semantic analysis.

This development was accelerated by the availability of high-performance computing systems, 
as computers continued to grow in speed and memory. With more computing power available to 
a large number of users, speech and language processing technology could be used in commercial 
applications. In particular, speech recognition with spelling/grammar correction tools became more 
commonly used in a variety of environments. The Web was another major driving force for these 
applications, as information retrieval and information extraction became essential parts of using 
the Web.

In very recent years, unsupervised statistical approaches began to receive renewed attention. 
These approaches were effectively applied to perform machine translation on unannotated data 
alone. 25, 26 The cost of developing reliably annotated corpora became a limiting factor for the use of 
supervised learning approaches. We refer the reader to Jurafsky and Martin 1 for more detail about 
each period. 

 13.3 SYNTAX AND FORMAL GRAMMARS
Language can be analyzed on several different levels of structure. These levels include syntax, 

morphology, and semantics. We now present some of the key terms in the study of language:

Morphology – The study of form and structure of a word and its relationship to its 
roots and derived forms

Syntax – The manner in which words are put together to form phrases and sentences; 
usually concerned with the formalities of structure of sentences

Semantics – The study or science of meaning in language 

Parse – To break a sentence down into its component parts of speech with an 
explanation of the form, function, and syntactical relationship of each part; rules of 
the grammar determine how the parse is done 

Lexical – Relating to the vocabulary, words, or morphemes (atoms) of a language; 
derived from lexicon
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Pragmatics – The study of the use of language in context

Ellipsis – The omission of a portion of a sentence necessary syntactically but for 
which the semantics are clear from the context 

In this section, we begin with syntax, and in Section 13.4 we continue with semantics and an 
analysis of meaning.

 13.3.1 Types of Grammars
A good way to approach the study of language and how it can be taught to computers is through 

the study of grammar. Feigenbaum et al. define the grammar of a language as “A scheme for speci-
fying the sentences allowed in the language, indicating the syntactic rules for combining words into 
well-formed phrases and clauses.” 27 

MIT linguist Noam Chomsky 28 did the seminal work in the systematic and mathematical study 
of language syntax, and this essentially initiated the field of computational linguistics. He defined 
formal language as a set of strings composed of a vocabulary of symbols according to rules of 
grammar. The set of strings correspond to the set of all possible sentences, which may be infinite 
in number. The vocabulary of symbols corresponds to a finite alphabet or lexicon of words. He 
defined the four rules of grammar as follows:

 1. Syntactic categories serving as variables or nonterminal symbols are defined. Examples 
of syntactic variables include <VERB>, <NOUN>, <ADJECTIVE>, and <PREPOSI-
TION>. 

 2. Natural language words from the vocabulary are considered terminal symbols and are 
concatenated (strung together) to form sentences according to rewrite rules.

 3. The relationships between particular strings of terminal and nonterminal symbols are 
specified by rewrite rules or productions (see Chapter 7, “Production Systems”). In the 
context of this discussion:

 <SENTENCE> → <NOUN PHRASE> <VERB PHRASE>
 <NOUN PHRASE> → the <NOUN>

 <NOUN> → student

 <NOUN> → expert 

 <VERB> → reads
 Note that the variables are enclosed in <…>, and terminal symbols are lowercase.

 4. The start symbol, S, or <SENTENCE>, is distinguished from the productions and initi-
ates the generation of all possible sentences according to the productions specified in (3) 
above. This set of sentences is called the language generated by the grammar. The simple 
grammar defined above would generate the following sentences:

 The student reads.

 The expert reads.
The rewrite rules to generate these sentences by substituting words for sentences would be ap-

plied as follows:
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<SENTENCE> → 
<NOUN PHRASE> <VERB PHRASE>
The <NOUN PHRASE> <VERB PHRASE>
The student <VERB PHRASE>
The student reads.

It is easy to see how a grammar can therefore act as a “machine” to “crank out” all possible 
sentences that would be allowed by rewrite rules. All that is necessary is a given vocabulary and a 
set of productions. Similarly, using this approach, the grammar and “structure” of all programming 
languages has been developed using the Backus-Naur production rules. From these sentences it is 
possible to perform the first phase of all NLP programs—parsing—and work backward to put the 
sentences into their syntactic categories without ambiguity. 

Chomsky demonstrated that there are essentially four types of grammars that can be generated 
by his formal language theory. The grammar is defined as the quadruplet (VN, VT, P, S),

 where 
 V = vocabulary
 N = nonterminal symbols from the vocabulary
 T = terminal symbols from the vocabulary
 P = productions of the form X → Y
 S = the start symbol.

Type 0: Recursively Enumerable Languages 

This type of language has no restrictions on the form of the productions and consequently is too 
general to be useful. Sentences generated by languages of this type can be recognized by a Turing 
machine, which is the theoretical basis for all modern-day computers. 

Type 1: Context-Sensitive Languages

This type of grammar generates productions of the form X → Y, with the restriction that the 
right-hand side Y must contain at least as many symbols as the left-hand side, X. Hence, produc-
tions look like:

 u X v → uYv
 where X = single nonterminal symbol
 u, v = arbitrary strings including the null string
 Y = nonempty string over vocabulary V.
This form of production (rewrite rule) is equivalent to saying “X can be replaced by Y  

in the context u, v.” 
So, for example, the grammar:

 Rule 1  S → xSBC
 Rule 2   S → xBC
 Rule 3 CB → BC
 Rule 4 xB → xy
 Rule 5 yB → yy
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 Rule 6 yC → yz
 Rule 7 zC → zz
 where  S = Start symbol
 A, B, C = Variables
 x, y, z = terminal symbols.
Substituting according to the rewrite rules of this grammar, we are able to derive the following 

sentence:
   S
 Rule 1:  xSBC
 Rule 2: xxBCBC
 Rule 3: xxBBCC
 Rule 4: xxyBCC
 Rule 5: xxyyCC
 Rule 6: xxyyzC
 Rule 7: xxyyzz
After some analysis, it shouldn’t take readers long to convince themselves that this grammar 

generates strings of the form xyz, xxyyzz, and so on.

Type 2: Context-Free Languages

In context-free grammars, the left-hand side must contain only a single nonterminal symbol. 
Context-free means that each word in the language occurs with rules applied to it independent of 
the context in which the word(s) are used. This grammar most closely represents natural language.

 The productions S  aSb
    S  ab
generate strings of the form ab, aabb, aaabbb, and so on. 
Let us see an example of how a context-free grammar can generate natural language sentences 

with the following rewrite rules:
 <SENTENCE> → <NOUN PHRASE> <VERB PHRASE>
 <NOUN PHRASE> → <DETERMINER> <NOUN>
 <NOUN PHRASE> → <NOUN>
 <VERB PHRASE> → <VERB> <NOUN PHRASE>
 <DETERMINER> → the 
 <NOUN> → dogs
 <NOUN> → cat
 <VERB> → chase
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This derivation tree or the parse tree (from sentences to grammar) is as follows:

<SENTENCE>

 <NOUN PHRASE>  <VERB PHRASE>

 <DETERMINER>  <NOUN>  <VERB>  <NOUN PHRASE>
 | | | |
  the  dogs  chase  <NOUN>
    |
     cats 

This context-free grammar has generated the sentence:
The dogs chase cats.

However, following the same rules, the sentence,
The cats chase dogs,

can also be generated by the same grammar. This demonstrates that syntax is only concerned 
with structure and that semantics is an entirely different matter. 

Type 3: Regular Languages 

This class of language is also called a finite-state grammar and generates sentences according 
to the productions,

   X → aY
   X → a
where 
   X, Y = single variables
         a = single terminal.

The following regular grammar:  S → 0S | 0T
 T → 1T | ε  
would generate the language consisting of at least one “0” followed by any number (including 

zero) of “1s.” 
Note that as we go from Type 0 to Type 3 languages, we move from more general to more re-

strictive grammars. That is, every regular grammar is context-free, every context-free grammar can 
generate context-sensitive sentences, and every context-sensitive grammar is of Type 0 because it 
is essentially unrestricted. Hence, the more restrictive the rewrite rules, the simpler the generated 
language becomes. 

Figure 13.1 shows that the hierarchy is slightly augmented with a fifth class called “Mildly 
Context-Sensitive Languages.” Such grammars can be defined by a number of different grammar 
formalisms (including Post Production Systems introduced in Section 7.1) which are, however, 
beyond the scope of our discussion here. 
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At this point it is important to 
emphasize that although context-free 
grammars are useful in the design of 
programming languages and for deci-
phering large segments of natural lan-
guages, Chomsky himself felt that they 
could not completely represent natural 
languages such as English. Again, this 
emphasizes the conclusion that while 
syntax / grammar is necessary for un-
derstanding natural language, it in it-
self is not sufficient. Firebaugh 29 notes 
the analogy between grammar for lan-
guage interpretation and propositional 
logic for problem solving. Although 
either may be adequate in certain well-
defined situations, neither is adequate 
in large, general problem situations. 29

 13.3.2 Syntactic Parsing: The CYK Algorithm
The syntactic structure of natural languages is often represented in the form of a parse tree. 

Sentences are often ambiguous and can be parsed in many different ways, so finding the best parse 
is a key step in representing the correct meaning and intent of the sentence.

One way of finding the best parse is to approach parsing as a search problem. The search space 
contains all possible parse trees for the input sentence, and the best parse must be found by search-
ing this space. Using this approach, there are two main strategies that can be pursued: top-down 
search, and bottom-up search.

Top-down search begins at the start symbol S and tries to build all parse trees that will produce 
the input sentence as the leaves of the tree. Beginning with S as the root node, this strategy builds a 
separate parse tree for each production rule in the grammar, with S on the left-hand side. Thus, after 
the first stage of the process, there will be a separate parse tree for each production rule that expands 
S in the grammar. Continuing onto the next level of the tree, the left-most symbol produced by S 
will be expanded next. Each possible expansion of this symbol will lead to a separate parse tree. 
This process continues until all parse trees have been explored to their final level, and the leaves 
are compared to the input sentence. Incorrect parses are rejected and pruned from the search, while 
the correct parses are retained as successful parses of the input sentences.

In contrast, bottom-up search begins with the words of the input sentence, trying to build a tree 
from the leaves upward. This strategy tries to match a word in the input with the nonterminal sym-
bols that could be expanded to produce this word. If a word can be produced from a nonterminal 
symbol, then the nonterminal symbol is used as the parent node of the word in the parse tree. If the 
word can be produced from several different nonterminal symbols, then separate parse trees must 
be constructed for each of these possible expansions. Continuing from the leaves to the next higher 
level, this strategy moves upward until it reaches S as the root node. The parse trees that cannot 
reach S are pruned from the search.

Recursively enumerable languages

Context sensitive languages

 Mildly context sensitive languages

Context free languages

Regular (or right linear) languages

Figure 13.1
Reproduced from Jurafsky and Martin (2008, p. 530) illustrates what is called the “Chomsky hierarchy” in 
a Venn diagram.
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The problem with both of these search strategies is the large amount of memory needed to store 
all the possible parse trees. These memory demands are impractical, and a more realistic alternative 
is to use a backtracking strategy (see Section 2.2.1). A parse tree is explored until it successfully 
reaches a solution, or it can no longer continue as a viable solution. Then the search moves back to 
an earlier state in the search space, returning to build a tree from a state which is yet to be expanded.

Backtracking has its own problems with efficiency, mainly because large portions of the trees 
are duplicated from one expansion to the next. If a tree fails to reach a solution, it is discarded, 
even though much of the tree will be duplicated in the next possible solution. This inefficiency 

can be avoided by using dynamic programming algorithms. The 
dynamic programming approach stores intermediate results in a 
table so they can be reused. Subtrees are stored in the table, al-
lowing them to be looked up each time they are needed for a 
possible solution. 

The CYK algorithm (developed by Cocke, Kasami, and 
Younger) is a dynamic programming algorithm (see Chapter 3, 
“Informed Search”) and one of the most frequently used tech-
niques in syntactic parsing. 

To use the algorithm, the input’s grammar must be in Chomsky Normal Form, which means 
that the production rules must take one of two forms: A → BC, or A → x. The right-hand side must 
have two nonterminals, or it must have a single terminal. Chomsky Normal Form is useful in this 
application because it ensures each nonterminal node will have two children, or it will have a single 
child, which will be a terminal symbol and a leaf of the tree.

Once the grammar is in Chomsky Normal Form, the CYK algorithm builds a (n + 1) x (n + 1) 
matrix, where n is the number of words in the input sentence. Each cell [i, j] in the table contains 
information about the span of words from position i to position j. Specifically, each cell contains 
the set of nonterminal symbols that could have produced the words from position i to position j. 

The cell [0, 1] contains nonterminal symbols that can produce the first word in the sentence. 
Similarly, the cell [1, 2] represents the second word in the sentence (the word between position 1 
and position 2). This cell contains the nonterminals that could have produced the second word in 
the sentence.

More complex is the calculation of the cell [0, 2]. This cell represents the span between posi-
tions 0 and 2. This combined span of words can be broken up into two parts: the first part from 
position 0 to position 1, and the second part from position 1 to position 2. These two parts are 
represented by the cells [0, 1] and [1, 2] respectively. The nonterminals in both of these cells are 
combined in every possible combination, and the algorithm searches for any production rule that 
could have produced these combinations. If such production rules exist, the nonterminals on the 
left-hand sides of the rules are placed in the cell [0, 2].

Similarly, the cell [0, 3] describes the span between positions 0 and 3. However, the value for 
this cell is more difficult to compute because this span can be broken in several different ways. Ei-
ther it can be broken after position 1, separating it into two parts: the first part between positions 0 
and 1, and the second part between positions 1 and 3. Or it can be broken after position 2, separating 
it into a first part between positions 0 and 2, and a second part between positions 2 and 3. 

If it is broken after position 1, then we will use the cells [0, 1] and [1, 3] and combine their 
nonterminal symbols. If it is broken after position 2, we will use the cells [0, 2] and [2, 3] and 
combine their nonterminal symbols. We must use both of these partitions to get the total number of 
nonterminals for cell [0, 3]. Continuing in this way, we build the table by using intermediate results 

To learn about the CYK algorithm in more 
detail, the interested reader should see 
Kasami, T. 1965. An efficient recognition 
and syntax-analysis algorithm for 
context-free languages. Scientific report 
AFCRL-65-758, Air Force Cambridge 
Research Lab, Bedford, MA.
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from previous cells, until we reach [0, n]. This cell represents the words between positions 0 and n, 
which compose the entire input sentence. Thus, the cell [0, n] contains all the nonterminal symbols 
that could be used to begin a parse tree for the input sentence. We can use back-pointers in the table 
to connect the final cell with the intermediate cells that produced it, yielding the correct sequence 
of nonterminal symbols in a parse of the sentence.

 13.4  SEMANTIC ANALYSIS AND EXTENDED GRAMMARS
Chomsky 30 was well aware of the limitations of formal grammars and proposed that language 

must be analyzed at two levels: the surface structure, which can be analyzed and parsed gram-
matically, and the underlying structure (deep structure), which holds the sentence’s semantic in-
formation. Professor Michie summarized the distinction between surface and deep understanding 
by analogy to a medical example, with regard to complex computer systems: 

A patient may have a boil (a surface level problem) on his or her bottom and lancing 
will do to remove the boil. However, if the patient’s problem is a cancer (a deep 
problem) which is rapidly spreading, then no amount of lancing will remedy this 
problem.31

The solution that researchers settled on for this problem was the addition of more knowledge. 
Knowledge about the deeper structure of sentences, knowledge about the purpose of sentences, 
knowledge about the case of words, and even knowledge through the exhaustive enumeration of 
all possible meanings of a sentence or phrase. Possibilities for such complete enumerations became 
more realistic with the continuing multifold rise in computer speed and memory during the past 
few decades. We will summarize the extensions to phrase-structure grammar (called extended 
grammars) in the following sections.

 13.4.1  Transformational Grammar
The task of a transformational grammar is to connect the two levels of understanding: syn-

tactic and semantic. Transformational grammars were introduced to make adjustments between 
tenses, between singular and plural objects, and between active and passive tenses. The method 
often employed is a dictionary (lexicon) which is used with a context-free grammar to parse the 
surface structure, together with transformation rules, in order to convert the surface structure to a 
deep structure. 

Sentences that may have distinct structures but are identical in semantic meaning (deep struc-
ture) are identified through queries and answered intelligently. In order to accomplish this, two 
additional components are needed:

Phonological component – that is, the sentence is transformed back from its deep 
structure to its surface structure in order to sound correct.

Semantic component – this element determines meaning from the deep structure 
representation.
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The entire framework, which tries to draw meaning by 
using transformational grammars, is called interpretive se-
mantics. This is not an easy task to accomplish and has drawn 
some criticism in the past. It will reappear soon in our pre-
sentation of Schank’s conceptual dependency systems MAR-
GIE, SAM, and PAM (see also Chapter 6, “Knowledge  
Representation”). 

 13.4.2 Systemic Grammar
When we think about how easily natural language can be misunderstood, we often return to the 

notion of context. Sentences can have distinctly different meanings and interpretations depending 
on the context in which they occur. One of the early systems to address context was by Michael 
Halliday of the University of London.32 The key notion of a systemic grammar is the function or 
purpose of the language under consideration. This field, focusing on the functional context of lan-
guage, is called pragmatics. Halliday defined three functions that every sentence normally serves:

1.  Ideational Function – What is the main idea the sentence is trying to convey? 
In order to accomplish this, several key questions are answered:

• Who is the actor (object)?
• What kind of process does the clause describe?
• Are there other participants such as direct or indirect objects?
• Are time and place of conditions described? 

This approach tries to apply a series of hierarchical choices called “systems” to 
determine the 

2. Structure and mood of a sentence and 

3.  Sentences are considered from their “interpersonal function,” in other words, what 
the mood of the sentence is (often aided by punctuation); and from their “textual 
function,” for example, knowledge of what has come before, the theme of the 
question or statement, and knowledge of what is new and what is given.

Halliday further classified his grammar by four categories:

 1. Units of Language (e.g., clause, group, word, and morpheme)
 2. Structure of Units (e.g., subject or predicator)
 3. Classification of Units (e.g., role such as verbal for the predicator, and nominal for the 

subject)
 4. System, as described earlier, hierarchical breakdown of sentence components

This approach to language, the study of pragmatics for the context of language, helped make 
understanding of the meaning of sentences clearer and helped to remove much of the ambigu-
ity inherent in language. Systemic grammar’s embedding of a sentence’s units within the gram-
mar is called generative semantics and was used by Winograd in his highly successful SHRDLU  
program. 

Recall from Chapter 6: SAM (Script Applier 
Mechanism), PAM (Plan Applier Mechanism), 
and MARGIE (Memory, Analysis, Response 
Generation, and Inference on English; also the 
name of Roger Schank’s mother).
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 13.4.3 Case Grammars
The case of a noun is determined by the ending which is applied to it. Cases can include 

nominative, genitive, accusative, dative, and ablative. These endings help the reader identify the 
function a noun plays in a sentence (e.g., the subject, the direct 
object, possession, and so on). Nouns therefore carry their own 
“tag” within a sentence, revealing how they are used. This makes 
the word order of a sentence less important. This approach (case 
grammars) to the study of language was an extension of Chom-
sky’s transformational grammar and was introduced by Fillmore. 

He proposed that noun phrases are always related to verbs in uniquely identifiable ways that 
indicate the “deep case” of the noun phrase. Fillmore proposed the following deep cases:

Agent – the instigator of the event

Counteragent – the force or resistance against which the action is carried out

Object –  the entity that moves or changes or whose position or existence is in 
consideration

Result – the entity that comes as a result of the action

Instrument – the stimulus or immediate physical cause of an event

Source – the place from which something moves

Goal – the place to which something moves

Experience –  the entity which receives or accepts or experiences or undergoes the 
effect of an action 

Verbs were designated as having case frames. For example, verbs such as “grow” can be 
framed as:

 [ (OBJECT) (INSTRUMENT) (AGENT) ]

The verb will be “framed” appropriately for how it is used, 
and this can serve as a template for how sentences are interpreted. 

Case frames helped to resolve certain ambiguities that had 
eluded previous grammars. Contributions of this approach includ-
ed the following: 

 1. Ordering of cases so that it is clear which noun is the subject of a sentence (highest  
ranking).

 2. Recognizing legitimate sentence structures, e.g., I am toasting and the bread is toasting 
are legitimate, but the sentence I and the bread are toasting is not legitimate. This is rec-
ognized because I and bread will belong to different cases. 

 3. Distinguishing similarities, but not reciprocal (inverse) nature of verb pairs, e.g., buy and 
sell, or learn and teach. Again, case frames helped with this. 

Fillmore, C. J. 1968. “The case for 
case.” In Universals in linguistic theory, 
ed., E. Bach and R. Harms. New York, 
NY: Holt, Rinehart, and Winston.

Case frames for verbs resemble the 
predicates with associated argument lists 
in predicate calculus (Chapter 5, “Logic 
in Artificial Intelligence,” and Prolog).
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Deep cases helped to extract correct and same meaning of sentences that would be structured 
differently, for example, The cat knocked over the garbage and The garbage was knocked over by 
the cat. Case frames did bring some progress, but they also helped to illustrate the difficulties in 
trying to derive meaning from grammar. 

 13.4.4  Semantic Grammars
Semantic Grammar is the work of Gary Hendrix in building 

the natural language tool LIFER (Language Interface Facility with 
Ellipsis and Recursion) and the database query system LADDER 
(Language Access to Distributed Data with Error Recovery), de-
scribed by Hendrix and Sacerdoti.33 

Semantic Grammar is represented by three major features:

 1. The domain is restricted – thereby LIFER can provide the front end to a variety of applica-
tions such as information retrieval and database management.

 2. Integrate semantics into the syntax – this is accomplished by the user restricting the range 
of sentences that can be used for natural language queries. In addition, nonterminal sym-
bols are restricted to a narrowly defined set such as <PERSON> and <ATTRIBUTE>, 
rather than broad categories such as <NOUN>. After the categories are drawn, an exhaus-
tive enumeration is done for possible terminal substitutions. 

 3. Excellent user interface – LIFER had a very friendly user interface and included features 
such as spelling correction, ellipsis, and paraphrase generation. 

Questions to LIFER were of the form 

(GETPROP ‘PERSON ‘ATTRIBUTE).

Using a complex search of numerous databases, LIFER could handle a wide range of questions:

• How many home runs did Roger Maris hit in 1961?

• When was Abraham Lincoln born?

• How wealthy is Bill Gates?

• Who founded Apple Computer?

• What hurricane hit New Orleans in 2005?

The performance of these systems was impressive and is a result of the encoding of semantic 
knowledge directly into its grammar and associated functions. This was accomplished by restrict-
ing the problem domain to a large but manageable database.

We conclude our discussion of semantic analysis and its role in NLP by noting that the more 
specific the knowledge that was added to the system, the better the performance that could be 
achieved. So, for example, the use of a semantic grammar to write a natural language interpreter 
would require producing a list of all possible cases for each word. This returns to where we started 
by noting that language is diabolical—it can be used and analyzed precisely, but some may prefer 
it to remain deliberately vague and open to interpretation—for example, as in poetry! 

Hendrix, G. and Sacerdoti, E. 1981. 
“Natural language processing, the field 
in perspective”, Byte 6(9):304–352. 
Peterborough, New Hampshire.
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 13.4.5  Schank’s Systems
In Section 6.8, we introduced and discussed Roger Schank’s conceptual dependency (CD) sys-

tem. We discussed how the CD can be used to develop natural language representations for many 
real-world situations, abstract, mental, and physical transfers, mental concepts, physical states, 
causality, and more. 

MARGIE

The first product of Roger Schank’s CD theory was MARGIE. It was developed with Schank’s 
students at Stanford University and combined a parser, a generator, and an inference engine.30

The parser could take an English sentence and convert it to a semantic primitive representation. 
The generator reviewed an internal representation and returned valid English paraphrases of the 
statement. The inferencer, using 16 rules of inference, generated the implications of the statement 
in semantic primitive language, and this was sent to the generator, which converted the inferences 
into English. 

Margie could operate in two modes, paraphrase mode and inference mode. 
Samples from each mode are shown below:

Inference Mode

INPUT: John told Mary that Bill wants a book.

OUTPUT1: A book about what?

OUTPUT2: Mary knows that Bill wants a book.

OUTPUT3: Bill wants to come to have a book.

OUTPUT4: Bill wants someone to cease to have a book.

OUTPUT5: Bill wants to read a book.

INPUT: John gave Mary an aspirin.

OUTPUT1: John believes that Mary wants an aspirin.

OUTPUT2: Mary is sick.

OUTPUT3: Mary wants to feel better. 

OUTPUT4: Mary will ingest aspirin.

Paraphrase Mode

INPUT: John advised Mary to drink the wine.

OUTPUT: John told Mary that drinking the wine would benefit her.
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The system might paraphrase the following Input:

INPUT:  It is a warm cloudy day.

OUTPUT: The sky is not clear and temperature is high.

For its time MARGIE was an impressive program, but its most serious flaws were:
• It could process only single sentences.
• It demonstrated the problem of “inference explosion.” That is, inferences drawn 

from the original statement could be expanded ad infinitum.

SAM

By 1974, Schank moved to Yale University, where he and Robert Abelson (Professor of Psy-
chology) developed scripts (Chapter 6). Scripts helped to solve both of the above mentioned prob-
lems with MARGIE. Scripts enabled the easy expansion of sentences into stories. The explosion of 
inferences was remedied by providing context through which some inferences could be validated 
and others removed. These ideas were implemented in the program SAM and were the PhD thesis 
work of Richard Cullingford. The internal structure consisted of four parts:

 1. A modified version of MARGIE’s parser was used to convert the story sentences to CD 
formalism.

 2. A modified version of MARGIE’s generator was used to convert CD representations back 
into correct English.

 3. A script applier checked the consistency of the CD representation with that specified in the 
script. 

 4. A question-answerer module was included.

Using automobile accident scripts, SAM was capable of reading, paraphrasing, translating, and 
answering questions on newspaper reports of accidents. An excerpt from a script illustrating this 
follows: 29

INPUT
Friday evening a car swerved off Route 69. The vehicle struck a 
tree. The passenger, a New Jersey man, was killed. David Hall, 
27, was pronounced dead at the scene by Dr. Dana Blanchard, 
medical examiner. Frank Miller, 32, of 593 Foxon Rd., the driver, 
was taken to Milford Hospital by Flanagan Ambulance. He was 
treated and released. No charges were made. Patrolman Robert 
Onofrio investigated the accident.

ENGLISH SUMMARY
An automobile hit a tree near Highway 69 four days ago. David 
Hall, age 27, residence in New Jersey, the passenger, died. Frank 
Miller, 32, residence at 593 Foxon Rd. in New Haven, Connecticut, 
the driver, was slightly injured. The police department did not 
file charges.
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SPANISH SUMMARY
Un auto choco contra un arbol cerca de la carretera 69 el viernes 
al anochecher. David Hall, de 27 anos, que vivia en New Jersey, 
el pasagero, se murio. Frank Miller, de 32 anos, que vivia en 593 
Calle Foxon en New Haven, Connecticut, el chofer, quedo un poco 
herido. El departamento de policia no acuso a nadie.

QUESTION-ANSWERING OUTPUT
Q1: Was anyone killed?
A1: Yes, David Hall died.

Q2: Was anyone hurt?
A2: Yes, Frank Miller was slightly injured.

Q3: Why was Miller hurt?
A3: Because the automobile hit the tree.

Q4: Did Miller go to the hospital?
A4: Yes, he was in the Milford Hospital.

Q5: How did Miller get to the hospital?
A5:  The Flanagan Ambulance Company took him to the Milford 

Hospital.

For its purpose, SAM was excellent, but it could only work with very restrictive stories. The 
Yale University group’s efforts then led to the development of PAM to address these issues. 

PAM

PAM, by Robert Wilensky, was a hybrid of the ideas of SAM and TALE-SPIN.33 In TALE-
SPIN, Schank and his students gave the characters of a story certain goals and simulated human 
planning to meet those goals. The program was then allowed to write its own stories based on the 
information it had been given. 

PAM had its own generator and special vocabulary to enhance the sophistication of its conver-
sations. In addition, because PAM had the plans and goals of each of its main characters available 
to it, PAM could narrate story summaries from various points of view! 

One more CD-based program seems worth mentioning—CYRUS.
CYRUS (Computerized Yale Reasoning and Understanding System) was the PhD work of 

Janet Kolodner. It was the culmination of the previous CD-based programs, and had some very 
impressive capabilities and accomplishments:

• It was an attempt to model the memory of a particular individual, the diplomat Cyrus 
Vance.

• It could learn, that is, continuously change on the basis of new experience.
• It continually reorganized itself to best reflect what it knew. This feature resembles the 

human capability of “self-awareness.”
• It had the capability of “guessing” about events of which it had no direct knowledge.33
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huMAn interest notes

roger schAnk

Roger Schank  
(1946 – ) is a visionary 
in Artificial Intelligence, 
learning theory, 
cognitive science, and 
the building of virtual 
learning environments. 
He is CEO of Socratic 
Arts, a company whose 

goal is to design and implement learning-by-
doing, story-centered curricula in schools, 
universities, and corporations.

In the early 1970s, while an assistant 
professor at Stanford, Schank was the first to 
get computers to be able to process typewritten 
everyday English language sentences. In order 
to do this, Schank developed a model for 
representing knowledge and the relationships 
between concepts that enabled his programs 
to predict what concepts might be coming 
next in a sentence. This spawned an entire 
field in psychology devoted to determining 
how people make inferences from what they 
hear.

After moving to Yale in 1974, Schank 
worked on developing computers to read 
newspaper stories. His work was heavily 
funded by the U.S. Department of Defense, 
which was interested in trying to make 
computers able to predict world trouble spots 
by reading the news and analyzing it. He built 
the first newspaper-story-reading program 
in 1976. Five years later, Schank was made 
Chairman of Computer Science at Yale and 
ran their Artificial Intelligence lab.

In order to enable computers to know 
enough about the world to comprehend 
the semantics of a sentence, Schank came 
up with the notion of a script. Scripts were 
needed to keep the inferences that computers 

made from exploding exponentially. For 
example, a computer could understand that 
what you order is what you eat in a restaurant 
if it had a set of expectations about what 
happened in a restaurant (the script). Scripts 
were a powerful idea that enabled Schank’s 
machines to read about any subject that was 
well structured. Psychologists began testing 
people to see if they operated with scripts, as 
Schank had suggested, and the evidence was 
overwhelming that Schank had discovered 
something important about people even 
though he was working in computer science. 
This work culminated in a book, written with 
Robert Abelson, on the subject utilized by 
social scientists to this day—Scripts, Plans, 
Goals and Understanding: An Inquiry into 
Human Knowledge Structures.

Schank’s most famous book, Dynamic 
Memory: A Theory of Reminding and 
Learning in Computers and People, dealt with 
learning through the remembrance of events 
and their results. This theory of learning via 
a “schema” was in opposition to traditional 
learning theory. 

Schank had a successful career in 
academia and business in the 1990s and 2000s. 
After founding AI related-Departments at 
Northwestern University and Carnegie Mellon 
University, as well as running the Department 
of Computer Science at Yale University, 
Schank became the Distinguished Career 
Professor in the School of Computer Science 
at Carnegie Mellon University and the Chief 
Educational Officer of Carnegie Mellon West. 
Dr. Roger Schank is the Executive Director 
and founder of Engines for Education. He 
is also the Chairman and CEO of Socratic 
Arts, a company that delivers Story-Centered 
Curricula to schools and businesses. In an 
advisory capacity, he is also Chief Learning 
Officer of Trump University.

Roger Schank.
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 13.5 STATISTICAL METHODS IN NLP
Previous sections of this chapter focused on sentence parsing techniques (e.g., syntax, Section 

13.3) and attempts to decipher meaning (semantics, Section 13.4). These methods are often insuffi-
cient, however, to process ambiguous sentences. For example, a sentence can have several different 
parse trees, making it difficult to choose the best parse and infer the correct meaning. 

One way of approaching this problem is to assign probabilities to each parse, choosing the 
parse tree with the highest probability. Thus, probabilistic and statistical methods have become the 
norm in language processing over the last two decades.

During the past 25 years or so, NLP research has adopted statistical methods as the dominant 
approach to solving long-standing problems in the field. Eugene Charniak (See Section 13.9), a 
leading researcher at Brown University, calls it a “statistical revolution” in his wonderful paper at 
Artificial Intelligence at 50, Dartmouth College, July 13–15, 2006.34 

 13.5.1 Statistical Parsing
Probabilistic parsers assign a probability to each parse, choosing the most likely parse for a 

particular input sentence. To do this, context-free grammars can be augmented with conditional 
probabilities for each production rule. 

For example, if the grammar includes a nonterminal symbol A, and it is the left-hand side of 
three production rules in the grammar, then each of these production rules can be assigned a prob-
ability, based on the likelihood of each expansion of A. The sum of the three probabilities must be 
1, and similarly, for any other nonterminal B, the sum of probabilities for B’s production rules must 
be 1.

Thus, for a production rule A → CD [p], the conditional probability p represents the likelihood 
of A being expanded to produce CD. In other words, p is the probability of the expansion CD, given 
the left-hand side A.  

Extending this concept to parse an entire sentence, we can calculate the probability of a parse 
by multiplying the probabilities for each rule used to expand the nodes in the parse tree. If there are 
n nonterminal nodes in the parse tree, then there are n production rules that were used to produce 
these nodes. For each of these n production rules, there is an associated probability, and we multiply 
these n probabilities together to calculate the total probability of the parse: 

P(π,s) = ∏ p(rule(c))

 c∈π

To use probabilistic parsers, we must know the probability for each production rule in the 
grammar. There are two ways of assigning probabilities to the rules of a grammar. If a treebank 
such as the Penn Treebank is available, we can simply count the number of times a nonterminal 
symbol A was expanded with a particular production rule. For example, for the production rule  
A → CD, the probability could be calculated with the equation,

Count ( )
Count ( )

A CD
A

→

If a treebank is not available, then we must train the system on a corpus of sentences. The parser 
starts off with equal probabilities for each rule, parsing the sentences in the corpus and calculating 
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the probabilities for these parses. Based on the results of the first parse, the parser adjusts the prob-
abilities for each rule, using the adjusted parameters to parse the sentences again, and so on, until 
the parser is trained with the most appropriate probabilities for each rule.

Currently, most probabilistic parsers have been augmented to take other syntactic and semantic 
features into consideration. Of particular note is the Collins parser, 35 which belongs to more com-
plex types of systems known as probabilistic lexicalized parsers. In a lexicalized grammar, each 
nonterminal is marked with a lexical head and the head’s part-of-speech tag. The head is the most 
important word in the phrase produced by a nonterminal. 

Essentially, the lexicalized grammar is an augmented version of a context-free grammar, in 
which each nonterminal is made specific to its headword. By having so many more nonterminals, 
the lexicalized grammar can make each production rule specific to the headword it produces. Thus, 
there are many copies of a simple production rule, one copy for each possible headword and head 
tag combination. 

As an example of lexicalized statistical parsing, Charniak gives the following example: Con-
sider the probability of the rule: “VP → VERB NP NP.” This construction represents sentences in 
which there is a verb followed by two nouns. For example, “Tom gave Jill a racket.” The probabil-
ity of the rule p(VP → VERB NP NP | VP, V=racket ) = 0.003, a very low probability. However, the 
probability of the main verb “gave” is nearly a factor of 10 higher, giving: p(VP → VERB NP NP | 
VP, V=gave) = 0.02. Here we can see how combined probabilities can effectively contribute to the 
ability to make correct parses. Probability is, in effect, being converted to knowledge. 

Parsers of the kind discussed here were known to be about 73% accurate, but with additional 
information of the kind referred to in the example above, they are now able to achieve an accuracy 
of well over 90%. The next section describes how a statistical “advantage” is sought when dealing 
with language as sound (speech) understanding.

 13.5.2  Machine Translation (Revisited) and IBM’s Candide System
During earlier periods, machine translation was done mainly by nonstatistical approaches. 

The three main methods of translation were: (1) direct translation, which is the word-by-word 
translation of the source text; (2) transfer approaches, which use structural knowledge and syn-
tactic parsing; and (3) interlingua approaches, which translate the source sentence into a general 
representation of meaning before translating this representation into the desired language. None of 
these approaches was very successful. 

The transition to statistical methods began in the early 1990s with the development of IBM’s 
Candide system. This project was hugely influential in shaping subsequent research in machine 
translation, and statistical methods began to dominate the field in the following years. IBM used 
probabilistic algorithms, which they had already developed in the context of speech recognition, 
applying these algorithms to their research in machine translation.

The statistical approach to machine translation is based on ideas from the noisy channel model. 
Using this approach, a sentence in the source language is considered to be a noisy version of a sen-
tence in the target language. We must calculate the most probable sentence in the target language 
that corresponds to the noisy input of the source sentence. For example, if we are translating from 
French into English, then French is the source language and English is the target language. There-
fore, we will calculate the probability P(E|F), or the probability of a particular English sentence, 
given the noisy input of the French sentence.
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Using Bayes’ Rule (see Chapter 8, Section 8.4), we can express this probability by the equation,

P(E|F) 
P(F|E)P(E)

P(F)= .

We want to maximize this probability by choosing the most probable English sentence from all 
possible English translations. We can disregard the denominator P(F) because the French sentence 
will be fixed as a constant for each possible English translation.

 P(E|F) = argmaxE P(F|E) P(E)

Now using this equation, we only need to calculate two things: 

• P(F|E), which is the probability of the French sentence, given the English translation,
• and P(E), which is the probability of the English sentence. 

P(E) is the likelihood of the sentence occurring in English, and this can be estimated by using 
probabilistic N-gram models with a large corpus of English text. P(F|E) is the probability of the 
French sentence, given the English sentence, and it requires a phrase-by-phrase alignment between 
French sentences and English sentences. Phrase-alignment algorithms used by IBM were defining 
influences on the research in machine translation, providing it with the statistical methods to move 
beyond the less consistent approaches of earlier research.

 13.5.3  Word Sense Disambiguation
Statistical methods are also used in word sense disambiguation, a crucial task in natural lan-

guage processing. Words can have many different meanings, depending on the context, and this 
ambiguity is the source for much of the difficulty in natural language processing. 

For example, the word table can be used to describe a piece of furniture, or it can be used to 
refer to a graphical representation of data. Countless other ambiguous examples can be found (see 
Section 13.1.1), and the correct meaning of the word must be inferred from the context in which it 
occurs. Ide and Veronis 36 point out that word sense disambiguation was first articulated by Weaver 
with regard to machine translation:

If one examines the words in a book, one at a time as through an opaque mask with a 
hole in it one word wide, then it is obviously impossible to determine, one at a time, 
the meaning of the words. […] But if one lengthens the slit in the opaque mask, until 
one can see not only the central word in question but also say N words on either side, 
then if N is large enough one can unambiguously decide the meaning of the central 
word. […]

The practical question is: “What minimum value of N will, at least in a tolerable 
fraction of cases, lead to the correct choice of meaning for the central word?” (1, p. 640)

Using supervised learning algorithms, systems can be trained to recognize the correct sense of 
a particular word. With a large training set of text, the system can learn the associations between 
a word and the context clues which typically surround it. For example, the word table will tend to 
have a certain set of words around it when it is used to refer to furniture, as compared to another set 
of words around it when it is used to describe a tabular representation of data.
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Feature extraction is the process by which the key features of the accompanying text are identi-
fied for their predictive value in determining the correct sense of the word. Often, the context clues 
occur at very specific positions relative to the word in question. For example, the word remote can 
often be found one position before the word control, combining to form remote control. Similarly, 
the word table can often be found two positions before the word contents, forming the phrase table 
of contents. A collocation is a word or sequence of words typically found at a set position relative 
to the word in question. These positions can be noted by the system as it learns the typical associa-
tions between words, helping the system to overcome the difficulties of word sense disambiguation.

 13.6  PROBABILISTIC MODELS FOR STATISTICAL NLP
Statistical methods involve the computation of a probabilistic model, and the model is used to 

assign probabilities to each possible outcome for a given task. For example, in statistical parsing, 
each production rule is assigned a probability by counting its occurrence in a corpus of text.

In this section, we provide an example of a probabilistic model used in NLP applications, to-
gether with the algorithm that computes the most likely outcome based on the model.

 13.6.1  Hidden Markov Models
Hidden Markov Models (HMMs) are statistical models used in many NLP applications. Like 

finite state automata, HMMs are represented as directed graphs in which vertices represent differ-
ent states of the computation, and the arcs represent transitions between states. Similar to weighted 
finite state automata, HMMs include probabilities for each arc, representing the probability of mov-
ing from one state to another. 

A Markov chain is a weighted finite state automaton, in which the input uniquely determines 
the transitions through the automaton. In other words, each input produces exactly one path through 
the automaton. The probability of this input is calculated by multiplying the arc probabilities in the 
path. 

We are able to multiply the probabilities because of the Markov property of these models. 
The Markov property allows us to disregard preceding events when estimating the probability of a 
transition. The probability of a transition depends only on the current state (state 2) and the follow-
ing state (state 3), and does not depend on previous transitions in the sequence. This simplifies the 
estimates of probability, and it allows us to calculate the total probability of a sequence by multiply-
ing the probabilities along each arc.

Like Markov chains, HMMs are specified by a set of states, and a set of transition probabilities 
describing the probability Pij of moving from state i to state j for each i and j. When describing a 
path through the model, however, we do not know the sequence of states. We can only describe a 
path in terms of the output produced along the path. 

HMMs include a set of output observations O, and a set of observation probabilities B. For 
each observation and each state, there is an associated probability bi(ot), expressing the likelihood 
of the observation ot being produced at time t as output from state i. Less formally, the observa-
tions are the output that can be produced, and the observation probabilities represent the likelihood 
of generating a particular output from a particular state. We make the simplifying assumption that 
there is one output observation produced for each state transition. Thus, if the output consists of 
five observations, then we know five states must have been included in the path, because there are 
five output symbols produced.
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To make this more concrete, we can use a real-life example in which the underlying “states” 
are hidden and must be inferred from the observable output. Imagine a student who is answering 
questions on a computer-generated standardized test. The computer produces questions of varying 
difficulty, mixing together simple questions with more difficult questions. The student does not 
know if a question is intended to be simple or difficult, and he tries to infer the difficulty of a ques-
tion from the amount of time he spends to find an answer. 

For example, if he takes only 1 minute to answer a question, he is reasonably confident the 
question was intended to be simple. However, if he takes 3 minutes to answer a question, he feels 
the question was intended to be more difficult. He can only infer the intended level of difficulty 
from the amount of time he spends on a question.

In this example, the hidden states are Simple and Difficult, and the observable output is the 
number of minutes taken on a question. The output observations are the set {1, 2, 3}, representing 
1 minute, 2 minutes, or 3 minutes to answer a question. 

Figure 13.2 shows the two states Simple and Difficult, together with the start state and the end 
state. 

The model includes the transition probability for each 
arc between states. To complete the model, we need to 
include the observation probabilities:

P(1|Simple) = 0.8

P(2|Simple) = 0.1

P(3|Simple) = 0.1

P(1|Difficult) = 0.1

P(2|Difficult) = 0.2

P(3|Difficult) = 0.7

These numbers are the conditional probabilities of 
spending a certain number of minutes on a question, 
given the intended level of difficulty. For example, the 
probability P(1|Simple) is the probability of spending 1 minute on a simple question. Similarly, 
P(3|Difficult) is the probability of spending 3 minutes on a difficult question.

 If we are given a sequence of output observations 2 1 1 3, we find the most likely sequence 
of states by calculating the probability for each sequence and choosing the one with highest prob-
ability. Because there are two states and four observations in this sequence, there are 24 or 16 pos-
sible sequences of states. 

One possible sequence of states is Simple Simple Simple Difficult. The probability for this 
sequence of states can be calculated by multiplying the transition probabilities for the path:

PstartS × PSS × PSS × PSD × PDEnd = .7 × .6 × .6 × .3 × .1 = 0.00756

PstartS is the transition probability of moving from the start state to the Simple state, PSS is the 
transition probability of looping from the Simple state to the Simple state again, PSD is the transi-
tion probability of moving from the Simple state to the Difficult state, and so on.

Simple

Start

Difficult

End

0.7

0.3

0.3

0.3
0.1

0.1

0.6

0.6

Figure 13.2
HMM for test questions.
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Once we multiply the transition probabilities, we need to take the observation probabilities into 
account for this sequence. The observation probabilities in this sequence are as follows:

P(2|Simple) × P(1|Simple) × P(1|Simple) × P(3|Difficult) = .1 × .8 × .8 × .7 = 0.0448.

For the total probability, we multiply the product of observation probabilities by the product of 
transition probabilities:

PstartS × PSS × PSS × PSD × PDEnd × P(2|Simple) × P(1|Simple) × P(1|Simple) ×  

P(3|Difficult)= 0.7 × 0.6 × 0.6 × 0.3 × 0.1 × 0.1 × 0.8 × 0.8 × 0.7

       = 0.000338688.

This product is the probability for one possible sequence of states Simple Simple Simple Dif-
ficult. We do not know if this is the correct sequence of states, and we must try all the different 
sequences that are possible. 

Real-world applications have many more states and many more observations, and these cal-
culations become impractical for such large numbers. More feasible methods involve dynamic 
programming algorithms, in which intermediate results are stored in a table so calculations do not 
have to be duplicated. 

 13.6.2 The Viterbi Algorithm
The Viterbi algorithm is a dynamic programming algorithm used to find the most probable 

sequence of states in an HMM. This algorithm creates a table in which each cell represents the 
probability of being in a particular state after seeing a certain number of output observations. 

In our example, the states can be numbered so that the start state is state 0, the Simple state is 
state 1, the Difficult state is state 2, and the end state is state 3. Now the table can be represented 
with a two-dimensional array Viterbi [ ] [ ]. 

In this array, a cell such as Viterbi [1] [1] represents the probability of being in state 1 after see-
ing the first output observation. Remembering that our output sequence was 2 1 1 3, the first output 
symbol in this sequence is 2. Thus, this cell represents the probability of producing a 2 as the first 
output observation while reaching state 1, the Simple state.

To calculate Viterbi [1] [1], we use the transition probability PstartS for the transition from the 
start state to the Simple state, and we multiply PstartS by the observation probability P(2|Simple), 
which is the probability of producing a 2 as output from the Simple state:

Viterbi [1] [1] = PstartS × P(2|Simple) = .7 × .1 = 0.07

Similarly, the cell Viterbi [2] [1] represents the probability of being in state 2, the Difficult state, 
after producing the first observation. This probability is the product of PstartD and P(2|Difficult):

Viterbi [2] [1] = PstartD × P(2|Difficult) = .3 × .2 = 0.06

Once these initial cells have been calculated, we store these values in the table, using them 
to calculate the remaining cells. In the next column, Viterbi [1] [2] represents the probability of 
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producing the second output observation from state 1. The second observation in this sequence is a 
1, so this cell represents the probability of producing a 1 as the second observation while reaching 
state 1, the Simple state. 

To calculate this cell, we multiply the probability stored in each cell in the preceding column by 
the transition probability from its state to the Simple state. Then we multiply each of these products 
by the observation probability of producing a 1 from the Simple state. We place the maximum of 
these values in Viterbi [1][2]:

Viterbi [1] [1] × PSS × P(1|Simple) = 0.07 × 0.6 × 0.8 

 = 0.0336.

Viterbi [2] [1] × PDS × P(1|Simple) = 0.06 × 0.6 × 0.8

 = 0.0288.

Thus, Viterbi [1] [2] will contain 0.0336, the maximum of these 2 computations. More general-
ly, in a HMM with n states, we make n computations, one for each state in the previous column, and 
we place the maximum in the current cell. When we reach the cell representing the final observation 
and the end state, this cell will contain the total probability of the most likely sequence of states. 

We can trace through this sequence of states by keeping a backpointer [ ] [ ] array to store our 
path so far. This trace will give us the sequence of states with the highest probability of producing 
the output sequence.

 13.7  LINGUISTIC DATA COLLECTIONS FOR STATISTICAL NLP
Statistical methods require large amounts of data in order to train probabilistic models. In lan-

guage processing applications, large collections of text and spoken language are used for this pur-
pose. These collections consist of huge numbers of sentences labeled with syntactic and semantic 
information by human annotators. In this section, we describe the most important collections used 
in statistical NLP over the last decade.

 13.7.1 The Penn Treebank Project
As we have learned in earlier sections, given a context-free grammar it is possible to parse 

every sentence. That is, we can build a corpus in which every sentence is syntactically annotated 
with a parse tree. A systematically annotated corpus such as this is called a treebank. Treebanks 
have proven very useful in empirical studies of syntactic phenomena.1, p.404

A number of treebanks have been created during the past 40 years that can automatically parse 
sentences, following which humans contribute with hand-correction (e.g., the Brown corpus de-
scribed in Section 13.2). The Penn Treebank has produced treebanks from the Brown, Switchboard 
(for standard telephone conversations), ATIS, and Wall Street Journal corpora of English. Tree-
banks have also been produced in other languages such as Arabic and Chinese. Other treebanks 
include: the Prague Dependency Treebank for Czech, the Negra treebank for German, and the 
Susanne treebank for English.1, p. 404 
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The Penn treebank project started around 1989 and has produced 
treebanks in multiple languages at various stages. There have been 
Treebank I,24 Treebank II,37 and Treebank III releases for the English 
language. 

Treebank 1 consists of 4.5 million words and was constructed be-
tween 1989 and 1992 for part-of-speech (POS) tagging. It has also 
been annotated for skeletal syntax syntactic structure. 

Charniak 34 gives an impressive practical example of how far NLP 
with these treebanks has gone. He gives the following sentence from 
the June 1, 2006 edition of the New York Times:

The Bush administration said Wednesday that the United States 
would join the Europeans in talks with Iran over its nuclear 
program, but only if Tehran first suspended its uranium activities, 
which are thought to be a cover for developing nuclear arms.

Charniak 34 summarizes what the Penn WSJ parser has done in  
Figure 13.3 with the following comments:

Given current parser accuracy (92%) and length of the sentence 
(44 words and punctuation) we would expect several errors. 
The only mistake is the attachment  of the clause which starts 
“only if…” We believe it should be conjoined with  the ‘S’ that 
starts “the United States…” not the SBAR that starts “that the 
United…”.

This latter analysis is the one found by the parser. It is also reason-
able, but to our mind not as plausible.

The next few sections describe more recent systems that exploit 
the capabilities of database, statistical, and web technologies.

 13.7.2  WordNet
WordNet is a lexical database that stores words organized in syn-

sets, or sets of synonyms. Each synset represents one lexical concept, 
accompanied by a short definition of the concept it expresses, and is 
linked to all semantically related synsets.38 WordNet is a popular tool, 
widely used in the field of AI and NLP in particular. The WordNet da-
tabase and software tools have been licensed and are available online 

at http://wordnet.princeton.edu. The English version of WordNet has served as a basis for databases 
for other languages such as EuroWordNet, MultiWordNet, and BalkaNet.

Bentivogli and colleagues propose to extend WordNet with a new data structure called phra-
set that will represent a set of free combinations of words (as opposed to lexical units), which are 
frequently used to express a certain concept. Bentivogli and colleagues think that phrasets will be 
useful for knowledge-based word alignment of parallel corpora to find correspondence between 

In Marcus et al. (1993) it is stated: 
“A distinction is sometimes made 
between a corpus as carefully 
structured set of materials gathered 
together to jointly meet some design 
principles, and a collection, which 
may be much more opportunistic 
in construction. We acknowledge 
that from this point of view, the raw 
materials of the Penn Treebank form 
a collection.”

Figure 13.3
Parse for the lead sentence of the June 1, 2006 edition 
of the NYT.
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lexical units in one language. This will free combinations of words in another language and word 
sense disambiguation in both monolingual and multilingual environments. 

Two basic lexical units that compose WordNet’s synsets are words and multiwords, which are 
idioms or restricted collocations. An idiom is a term or phrase, the meaning of which cannot be 
understood from the literal definitions of its constituents. None of the constituents of an idiom can 
be substituted with a synonym. A restricted collocation, on the other hand, is “a sequence of words 
which habitually co-occur and whose meaning can be derived compositionally.”38 Idioms and re-
stricted collocations are different from free combinations of words, which are simply combinations 
of words that follow the general rules of syntax.39 Free combinations are not considered lexical 
units and therefore do not compose synsets in WordNet.

There are phrases in every language that are frequently used to represent a single concept, and 
which are not idioms or restricted collocations. Examples include such Italian phrases as “andare 
in bicicletta,” which means “to bike” in English and “punta di freccia,” which means “arrowhead.” 
Bentivogli and colleagues propose to extend the WordNet model with phrasets to include such 
phrases. The members of a phraset are referred to as recurrent free phrases. Phrasets could be 
extremely useful in a multilingual environment when the source language uses a lexical unit to 
express a concept whereas the target language does not, or vice versa.

 13.7.3 Models of Metaphor in NLP
For a Natural Language Processing system to be effective, it must be able to deal with meta-

phors. This task can be divided into two parts: metaphor recognition and metaphor interpreta-
tion. In the literature of linguistics and philosophy, we can find four main views on the theory of 
metaphor. Katerina Shukova 40 did a thorough study of models of metaphor in NLP. She studied a 
number of models including: 

 1. the comparison view 41 
 2. the interaction view 42, 43 
 3. the selectional restrictions violation view 44, 45 and 
 4. the conceptual metaphor view. 46

One of the first attempts to implement a system to identify and interpret metaphorical expres-
sions automatically was done by Dan Fass. The system was called met* (pronounced met star) 
and was able to distinguish between literalness, metonymy, metaphor, and anomaly. Metonymy is 
figure of speech in which a thing or concept is called the name of something related in meaning 
with that thing or concept. While a metaphor works by drawing a similarity between the two con-
cepts across different domains, metonymy works by drawing a contiguity (association) between 
them within the same domain. For example, “Hollywood” is a metonym for the US film industry. 
This district of Los Angeles contains most of the major American film studios, but there’s noth-
ing similar between the location itself and the film industry. Met* works in three stages: first it 
would determine the literalness of a phrase using selectional preference violation as an indicator. 
This refers to the Preference Semantics approach for word-sense disambiguation as developed by 
Yorick Wilks, where the “most coherent” interpretation of a sentence is determined based on the 
maximum number of internal preferences of its parts. If it was found to be nonliteral, the phrase 
would be tested for metonymy using a hand-coded set of metonymic relationships. If it fails to find 
a metonymy, then a knowledge base is searched for a suitable analogy to distinguish a metaphorical  
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relation from an anomalous one. One problem with the selectional preference approach is that 
while some expressions may be metaphorical, they may still not violate preference selection. For 
example, the sentence “Idi Amin is an animal” is literally valid and will not violate the preference 
selection, but is clearly meant metaphorically. And on the other hand, a sentence may violate pref-
erence selection, but may be neither metaphorical nor metonymical. 

Some other approaches to metaphor identification are worth mentioning. Goatly came up with 
a system for identifying metaphors by picking up on language cues such as “so to speak.” By itself, 
it may not be sufficient, but could be a part of a larger system. Peters and Peters 47 mined WordNet, 
an English lexical database, looking for systematic polyseme, which they found has a strong cor-
relation to metaphorical or metonymic expressions. While Fass’ work relied on a hand-coding of 
metonymic and metaphoric relationships, Zachary Mason’s CorMet system 48 was the first attempt 
to automatically discover source-target domain mappings. CorMet analyzes large corpora of do-
main-specific documents and learns the preferences of the characteristic verbs of each domain for a 
particular type of argument in a particular role. For example, CorMet would collect texts from the 
LAB domain and a FINANCE domain in both of which “pour” is a characteristic verb. “Pour” se-
lects strongly in the LAB domain for objects of liquid type and in the FINANCE domain for money. 
From this a concept mapping liquid-money is inferred. Birke and Sarkar 49 developed a TropFi 
system which uses a sentence clustering approach for nonliteral language recognition. This idea 
originates from a similarity-based word sense disambiguation method developed by Karov and 
Edelman. 50 The method employs a set of seed sentences with annotated senses. It then computes 
the similarity between a sentence containing the word to be disambiguated and all of the seed sen-
tences and then selects the sense corresponding to the annotation in the most similar seed sentences.

While Birke & Sarkar and Fass focus strictly on verbs, Krishnakumaran and Zhu’s 51 approach 
deals with verbs, nouns, and adjectives. For nouns, they use the hyponym (is-a) relationship in 
WordNet to check if a phrase is metaphorical. If it is not hyponymous, then the phrase is tagged as 
metaphorical. At the same time, they also calculate bigram probabilities of verb-noun and adjec-
tive-noun pairs, but also consider all the hyponyms/hypernyms of the nouns. If the pair is not found 
in the data with a frequency above a certain threshold then the phrase is tagged as metaphorical. 
At the same time that Fass was working on metaphor recognition with met*, Martin 52 developed 
a Metaphor Interpretation, Denotation and Acquisition System (MIDAS). MIDAS relies on a da-
tabase of conventional metaphors organized into a hierarchy. Given a metaphorical expression, 
it searches for it in the database. If it’s not able to find it, it abstracts to more general concepts 
and performs the search again. If found, it attaches the sought-after metaphor to the parent in the 
hierarchy. In 2008, Veal and Hao developed a knowledge base called Talking Points and an associ-
ated reasoning framework called SlipNet. Talking Points is comprised of a set of characteristics 
of concepts belonging to source and target domains and related facts about the world mined from 
WordNet and the web. SlipNet is a framework that allows insertions, deletions, and substitutions of 
such characteristics in order to find a connection between the source and target domains. 

The trend of metaphor research has followed the same path as the field of NLP in general, that 
is to to move away from the hand-coded knowledge methods of the 80s and early 90s to more ro-
bust corpus-based statistical methods. The latest developments in the lexical acquisition technology 
will in the near future enable fully automated corpus-based processing of metaphor. Future research 
would benefit greatly from a standardized metaphor annotation procedure and creation of a large 
publicly available metaphor corpus. 
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 13.8  APPLICATIONS: INFORMATION EXTRACTION AND QUESTION 
ANSWERING SYSTEMS

In the previous section, we described statistical methods in 
NLP, contrasting these methods to the symbolic approach of 
formal syntax and semantics. Often, both approaches are used 
in tandem, and a single application must make use of both sym-
bolic and statistical methods. 

Perhaps the most well-known application of NLP methods 
is in information extraction (IE) and question answering sys-
tems, now commonly used for searching the web. Let us con-
sider an example: 

Before you would make the decision to buy AIG’s stock, 
however, you would want to locate articles on the Internet that 
will back up your “belief” that AIG’s stock will go up. In order 
to do this you will have to find text that includes “AIG,” “Gov-
ernment Bailout,” stock, and a number of other keywords that 
will help you to find the relevant information about what AIG’s 
stock future is likely to be. 

This is precisely the kind of task that is suitable for an information extraction system to solve. 
IE is actually a combination of a number of techniques that we have already addressed, including 
finite state methods, probabilistic models, and syntactic chunking. In this section, we describe the 
techniques used to build an information extraction and question answering system.

 13.8.1  Question Answering Systems
Question answering systems find the best answer to a user’s query by searching through a col-

lection of documents. Often, the collection of documents can be as large as the Web, or it can a set 
of related documents owned by a particular company. Because the number of documents can be 
huge, it is essential to find and rank the most relevant documents, breaking these files down into 
the most relevant passages, and finding the correct answer to the question by searching within these 
passages.

Thus, question answering systems must accomplish three tasks: (1) process the user’s question, 
turning it into a suitable input query for the system; (2) retrieve the documents and passages most 
relevant to the query; and (3) process these passages to find the best answer to the user’s question.

In the first step, the user’s question is processed by identifying keywords and eliminating non-
essential words. Initially, a query is formed from the keywords, and then the query is expanded to 
include any synonyms of the keywords. For example, if the user’s question included the keyword car, 
the query would be expanded to include automobile along with car. In addition, morphological vari-
ants of keywords are also included in the query. If the user’s question included the word drive, then the 
query would also include driving and other morphological variants of the verb drive. By expanding 
the list of keywords in the query, the system maximizes the chances of finding relevant documents. 

Retrieving these documents is the second step in the process. This task is known as information 
retrieval (IR), and IR can be performed with a vector space model, in which vectors are used to rep-
resent word frequencies. For example, let’s use a small document for the purposes of explanation, 
and let’s assume there are three words in this document. The word frequencies in this document 

sidebAr
ex A M p l e

In 2008 the US government bailed out the 
multinational insurance conglomerate AIG 
(American International Group) to the tune 
of $85 billion. You assume that since none 
other than the US government has sup-
ported such a large company (essentially 
ensured its survival), it might be a good 
time to buy its stock which has dropped 
from $70 a share to $2 a share. You are 
fairly confident that the government bail-
out will guarantee that AIG’s stock value 
will rise from $2. 
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can be represented by the vector (w1, w2, w3), in which w1 is the frequency of the first word, w2  
is the frequency of the second word, and so on. If the first word occurs 8 times, and the second 
word occurs 12 times, and the third word occurs 7 times, then the vector for this document would 
be (8, 12, 7).

Of course, in a real-world example, there would be thousands of words, not just three words as 
in our small document. In real applications, the vector has thousands of dimensions, one dimension 
for each word in the collection of documents. Each document is assigned a vector to represent the 
words that occur within the document. Many entries will be 0 in this vector, because many words 
will not occur in a particular document. Similarly, a query from the user is assigned a vector, and 
most of the entries will be 0, because the query does not contain many words compared with the 
entire collection of documents. However, many of these 0s do not have to be stored in the vectors 
because hashing and other forms of representation are used to simplify the vectors.

Once a vector is assigned to a query, this vector is compared to the vectors of all the documents 
in the collection. The closest matches are found by viewing the vectors in multidimensional space. 
To calculate the distance between two vectors, we use the angle between them, and we compute the 
cosine of this angle. 

The cosine of the angle between two vectors can be calculated by using the normalized dot 
product of the two vectors. A higher value denotes a closer match between the query vector and a 
document vector. When the two vectors are identical, the cosine is equal to 1, and when the two 
vectors are completely different from each other with nothing in common, the cosine is equal to 0. 
Thus, the documents most relevant to the query are identified by finding the highest values for the 
cosine function, using the angle between the query vector and the document vector. 

Once the most relevant documents have been retrieved, these documents are divided into pas-
sages of manageable size. Passages that do not contain any keywords or potential answers are dis-
carded, and the remaining passages are ranked by their likelihood of containing an answer. 

At this stage, we are ready for the third and final step of the question answering process: ex-
tracting an answer from the ranked passages. 

huMAn interest notes

lArry r. hArris

Larry R. Harris 
(1948–) has a long history 
of involvement with and 
contributions to AI database 
systems and natural 
language processing. His 
“diffusion of AI research 

techniques into commercial products,” as 
he calls it, began with his PhD thesis at 
Cornell University (1970) titled A Model for 
Adaptive Problem Solving Applied to Natural 
Language Acquisition. His early publications 
include: The Bandwidth Heuristic Search, 

User-Oriented Data Base Query with the 
ROBOT Natural Language Query System, 
and Experience with INTELLECT: Artificial 
Intelligence Technology Transfer. Harris 
developed ROBOT in 1975, when he 
founded the AI Corporation which eventually 
employed over 80 people. INTELLECT, 
the successor to ROBOT, provided a unique 
English language interface to enable the query 
of database systems. The approach of ROBOT 
called for mapping English language questions 
into a language of database semantics that is 
independent of the content of the database. In 
this way, the system worked in a “movable 
mini-world” because the semantic primitives 
were fixed, but the area of discourse varied 
with the content of the database. Thus, by 

Larry Harris.
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making only dictionary changes, a student 
grade file could be interfaced with an 
employee file and a data dictionary.

He was also the chief architect of KBMS 
(Knowledge-Base Management System), an 
expert system tool, and InfoHub, a relational 
engine for accessing nonrelational mainframe 
data. 

Harris was a professor in the Mathematics 
Department at Dartmouth College in 1972; there 
was no computer science department at that time. 
He was instrumental (together with this author) 
in developing the Dartmouth Computer Chess 
Program, which (in 1973) was the first program 
to not lose to Northwestern University’s Program 
(NUCHESS), the then-dominant computer chess 
program in the United States in the 1970s (see 
Chapter 16 for more on Computer Chess). 

He founded EasyAsk as Linguistic 
Technology Corporation (LTC) in 1994, and is 
the author of its EasyAsk and English Wizard 
products. EasyAsk, which was spun off from 
Progress Software in early 2009 and is now 
a standalone corporation once again, focused 
on the continuation of Dr. Harris’ vision to 
innovate and take a leadership role in the 
areas of e-Commerce, Operational Business 
Intelligence, and Search, while using natural 
language to create a user experience that 
makes its products truly usable by knowledge 
workers and end users alike.

Dr. Harris had the following to say, as 
early as 1984 in the AAAI Magazine: 

Our orientation is product-based; we 
want to sell the same product repeatedly. 
We want it to be general purpose so 
that it can be used in a wide variety of 
application domains and we want to 
remove as much of the AI mystique as 
possible from the process of using it. 
In terms of market positioning we have 

made the commitment to be market-
driven, to find out what the real needs 
of the marketplace are in terms of the 
problem we are trying to solve, and to 
choose the appropriate technology to 
solve that problem. We also made the 
commitment to interface to existing 
software and to work within the 
common commercial data processing 
structure, but, at the same time, not to 
try to reproduce the existing data base 
technology, graphics technology, and so 
forth.

The perspective described above 
demonstrates a deep appreciation of what 
AI systems need to be able to do in order to 
serve the business and commercial world 
effectively. 
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20, 2010.
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A p p l i c A t i o n  b o x

easyasK 

One of Dr. Larry Harris’ contributions to AI was the founding of EasyAsk® in 1994. EasyAsk delivers software 
for information discovery and analysis. EasyAsk e-Commerce is the retail industry’s most intuitive Web site 
search, navigation, and merchandising software. It helps merchandisers to deliver immediate ROI through 
increased conversion rates, sales revenue, and customer satisfaction.

EasyAsk is widely adopted by business users and consumers who use the business language they employ 
every day to find pertinent information, regardless of the information source or location. 

EasyAsk technology is used today by leading retailers, manufacturers, financial services institutions, 
government agencies, and pharmaceutical and healthcare organizations around the globe.

EasyAsk allows business users to ask ordinary English questions to get answers from relational databases. 
Common business questions can often require complex SQL, so it is often the case that users cannot be self-
sufficient in getting the answers they need without the help of a natural language system. The following three 
examples are very simple business questions that happen to require complex SQL. Figures 13.4 (a), (b), and (c) 
present an example of how EasyAsk works: 

Problem: Find customers that are returning products at a much higher rate than other customers. The 
challenge here is that you must look at returns in both an absolute and a relative basis. The customers you really 
want to find are those that order a great deal and return a great deal. (See Figure 13.4c)

The complexity of the SQL comes from the need to use a “Having clause” to restrict on a subtotal and the 
need to express the sum of a ratio (the percent returned) as a ratio of the sums. 

Note: The user’s English input is shown on the upper left of the screen with the answer below it. The SQL 
generated by EasyAsk is shown at the bottom. The Report matches on the right side of the screen represent 
reports, possibly from other systems, that EasyAsk feels might also be relevant to the user’s question. 

Problem: Sales of one product are often related to sales of related product. Effective marketing campaigns 
can be directed at customers who are buying the first product but not the related product. For example, if we 
could ask “What customers bought tables, but not chairs?” we could market chairs to them. Unfortunately, 
this requires SQL with subselects, which are too difficult for business users to deal with on their own. Oddly, 
conventional query tools don’t help users put together queries with subselects. It’s a major advantage of natural 
language systems that they can expand a user’s range to include questions that require this complexity.

Problem: Every business loses customers; it is extremely helpful to find these customers so that they can 
be marketed to and to help prevent them from leaving the customer base. An answer to “What customers had 
an order in the last 12 months but didn’t have an order in the last 12 weeks” would provide a list of customers 
that a company might be losing. Unfortunately, answering this question also requires a query with subselects.

Figure 13.4a
Example of interactive EasyAsk.
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Figure 13.4b
Example of interactive sales query with EasyAsk.

Business problems:
Too many products are being returned
Sales of one product are fine, but sales of a companion product are too low 
Some sales reps are underperforming
Losing too many customers

Dashboard showing that returns are high 
Too many products are being returned 
customer returns – 2 reports
  Note: report search & ad hoc query
  Note: help with date item names & questions Look at both reports: return rate is key
show the sales, returns and return rate last year of each customer with sales over $10,000
show the sales, returns and return rate last year of each customer with sales over $10,000 and a 
return rate above 50%
share this report: Find it by “customer returns”
Line graph returns monthly last year for HENNEN (/ALEXANDRIA) 
show the sales, returns and return rate this year of each brand
  Note: share this report
  Diffculty: all other systems sum(return rate)!
  EasyAsk transforms sum of a ratio into ratio of the sums
Rumor. sales of chairs is down, relative to tables
Compare the unit sales of tables to chairs last year/quarter/month. 
What customers bought tables but not chairs?
  Show SQL
  Diffculty: SQL requires a subselect
Some sales reps are underperforming
Show the growth in sales of each sales rep from last year to this year.
  Diffculty: SQL requires temp tables to compute % growth!
Rumor: Losing too many customers
What percent of customers didn’t have an order in the last year?
How many customers had an order in the last 12 months but had no order in the last 12 weeks.
Diffculty: SQL requires 2 sub-selects!
Add to dash board

Figure 13.4c
Business report for EasyAsk.
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 13.8.2  Information Extraction
To extract an answer, we search through these passages, looking for specific patterns that are 

typically found in text surrounding the answer. Often, answer phrases are related to question phras-
es in clearly recognizable patterns in a sentence. 

For example, let us assume the user asked the question: What is a syllogism? The query is made 
up of the keyword syllogism, and we will perhaps be able to find this keyword next to possible an-
swers in very specific patterns and locations. A common pattern is: <AP> such as <QP>, in which 
AP represents an answer phrase, and QP represents a question phrase. This pattern is a regular 
expression that can be used to search through the passages for possible answers. 

Basically, we will search for sentences in which the word syllogism is preceded by ‘such as,’ 
and we will be reasonably confident that ‘such as’ will be preceded by an answer. For example, 
let’s assume we find the following sequence of words in a passage: A logical argument such as syl-
logism. This sequence contains the question keyword syllogism, and this keyword is preceded by 
the answer phrase A logical argument. Thus, the pattern captures a common relationship between 
an answer and the question keyword: often the keyword is defined by an answer phrase followed 
by such as, followed by the question keyword. 

Many other patterns can be used. In another commonly found pattern, the answer phrase is 
an appositive separated by commas from the question phrase: <QP>, a <AP>. This pattern may 
be found in a sequence of words such as Syllogism, a form of deductive reasoning, in which the 
answer phrase is an appositive separated by commas from syllogism. Based on the answer phrases 
we found, we know syllogism is a logical argument and a form of deductive reasoning, and we can 
begin to combine these phrases into an answer to the user’s question.

 13.9  PRESENT AND FUTURE RESEARCH (ACCORDING TO 
CHARNIAK)

Eugene Charniak 34 notes that there is ongoing work to extend capabilities in many directions. 
Efforts to make parsing more accurate have been somewhat successful, with the record for the Penn 
WSJ treebank now at 92%. This means about one in three errors have been eliminated with no loss 
in speed. Other research associated with speed has accelerated parsing from 0.7 seconds a sentence 
to 0.2 seconds a sentence. Research is spreading to languages other than English, although few 
treebanks have the size of Penn WSJ. Other languages tend to depend more on case endings (See 
Section 13.4.3) of nouns and this may require new techniques. Now that syntactic parsing has been 
accomplished with some degree of success, more attention can be paid to “deep structure” issues. 

Charniak believes that the future of NLP must be to concentrate on meaning. Hence, there must 
be a shift from concentrating on the correct parse of a sentence to the correct meaning of a sentence. 
This will still require many years of work, with the likelihood that efforts will continue to go into 
a long series of representations, each adding information about aspects of meaning, while other 
components of a sentence that are not necessary for meaning can be removed. 

Charniak concludes, “Statistics has taken over AI because it works.” 34, p. 7 It has worked for ma-
chine parsing and speech recognition, and even for where this chapter began—machine translation. 
He notes that Google® already has a pretty good machine translation from Arabic and Mandarin to 
English, with other languages soon to follow, all by statistical methods. Charniak predicts that in 
the future, AI will be dominated by statistical approaches. That is because he believes that prob-
ability theory is the best way to make use of multiple sources of information. Examples of AI areas 
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successfully employing statistical approaches include machine learning and robotics, and they are 
likely to spread to other areas. 

 13.10  SPEECH UNDERSTANDING
Speech Understanding is a functionality that enables a system to understand spoken input from 

a microphone and respond back correctly. These systems are also known as voice recognition 
systems. There are several different types of Speech Understanding systems that exist, and during 
the past two decades or so there have been dramatic improvements. As of today, many of us live 
surrounded by such software and devices. It is remarkable to witness how far speech understand-
ing systems have progressed. A reason for this progress may be that speech understanding was one 
of the first areas studied in artificial intelligence and also that it is in high demand. This section is 
prepared by Mimi Lin Gao based on a thesis by Sona Brahmbhatt.58

Speech recognition software may be so popular because it is easier for us to speak than to type. 
Speaking commands is faster than clicking buttons with a mouse or a touch pad. To open a pro-
gram such as “Notepad” in Windows would require a click on Start, then Programs, Accessories, 
and finally Notepad. Four or five clicks can easily be required. Speech recognition software allows  
the users to simply say, “Open Notepad” and the program opens, saving time and sometimes  
frustration. 

The development of speech understanding systems began with ideas from machine transla-
tion. However, attempts at solving basic problems in syntax proved more challenging than had 
been assumed; this was before problems in semantics, accent, and inflexion were tackled. Three 
early methods of speech translation are direct translation, transfer, and Interlingua. The direct 
translation method interprets “word by word” of the source as words, attempting to translate them. 
The transfer method uses structural knowledge and syntactic parsing. The Interlingua method first 
translates the sentence into a representation of the meaning and then translates the sentence into the 
preferred language.1

 13.10.1  Speech Understanding Techniques
There are several techniques used for recognizing speech understanding patterns. The Pattern 

Recognition approach is a combination of pattern training and pattern comparison. The Hidden 
Markov Model (see Section 13.6.1) is applied to sounds or words to accomplish accurate pattern 
training recognition. The direct comparison approach occurs when unknown words are tested with 
the patterns learned from training the system, using algorithms such as The Viterbi algorithm (Sec-
tion 13.6.2) and the Feature Extraction approach.54

Part-of-Speech Tagging

A Hidden Markov Model uses Part-of-Speech Tagging (POST). The eight part-of-speech tags 
are noun, verb, pronoun, preposition, adverb, conjunction, participle, and article. The importance of 
part-of-speech tagging is that it provides much information regarding a word and its context. It is 
usually applied to a sequence of words using a microphone. “Knowing whether a word is a posses-
sive pronoun or a personal pronoun can tell us what words are likely to occur in its vicinity” (1, p. 123).  
POST is valuable when a portion of a sentence or word is distorted. Voice recognition software can 
use part-of-speech tags to find the best match for the missing word. This enables us to estimate the 
best tag sequence. 54, p.133–139
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Bayesian Inference

Bayesian inference (see Section 8.4, Example 8.3) is a special case where part-of-speech tag-
ging is used for the Hidden Markov Models. Bayesian inference is used to determine part-of-speech 
tagging for the observations usually in order of words or a sentence. In other words, each word of 
the sentence is classified for proper tagging. To correctly classify a word, all possible sequence tags 
are applied. Out of all tags, one tag will be rated the most probable for that word. 

Bayesian inteference uses Bayes’ Rule (See Figure 13.5) to calculate a probability equation 
that returns the prior probability and the probability of likelihood that the word’s POST is correct. 
“The two terms are the prior probability of the sequence 1( )nP t  and the likehood of the word string 

1 1( | )n nP w t ” (ibid., p. 139–140).
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priorlikelihood
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55, p. 140

Figure 13.5
Bayes’ Rule

There are two “simplifying assumptions” made by an HMM tagger once Bayes’ Rule is com-
puted. The first is that the word is independent and does not depend on its surrounding words. The 
second assumption is that the word is dependent on previous tag words. The HMM tagger helps 
estimate the highest probable tag-sequence.55

Bigram Equation

A Bigram equation is formulated by using the HMM “simplifying assumptions.” This equation 
includes tag transition probabilities and word likelihood, which help determine the most prob-
able tag. The tag transition probability equation is P(ti | ti - 1|) which stands for the “probability of 
a tag given the previous tag” (ibid. Computing the likelihood by employing a Corpus would help 
us determine the probability for the tag transition. The Corpus equation which is used to calculate 
the tag transition is P(ti | ti - 1|) = P(NN|DT), in which NN stands for common nouns and DT stands 
for Determiners, which refers to words such as “a, the.” The Corpus equations use words labeled 
with their part of speech to count the number of determiner words before nouns that are followed 
by determiners.55

The Feature Extraction Approach

The feature extraction approach determines the predictive value of a word by identifying key 
features of the accompanying text. Feature extraction helps overcome disambiguation with words 
by extracting relevant information from the speech. 

The feature extraction approach uses sets of feature vectors, the product of analog-to-digital 
conversion, to understand sounds for proper sound labeling. These vectors signify the data of a 
signal in a little time window.54

Analog sound waves are captured through a microphone where the analog waves are converted 
into digital signals. Sampling Rate and Quantization are the two steps involved during the con-
version of analog to digital. When a signal’s amplitude is measured at a certain time, it is called 
Sampling rate. There must be at least two sampling rates taken to accurately measure a sound wave. 
Thus, each cycle of a sound wave has a negative and a positive state. (1, p. 295).
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Figure 13.6
Sound wave chart.

In the Sound Wave chart (Figure 13.6), the 1st to the 2nd second is one cycle. It is better to 
have more than two samples in a cycle to increase amplitude accuracy. The Nyquist Frequency 
represents the maximum frequency for a particular sampling rate. In human speech, the frequency 
is usually below 10,000 Hz. Thus, a sampling rate of 20,000 Hz is needed for accuracy. Telephone 
frequency is less than 4,000 Hz, since speech is transmitted by switching networks; therefore, a 
sampling rate of 8,000 Hz is needed to transmit frequency on a telephone bandwidth. Microphone 
speech uses wideband to transmit a frequency at a 16,000 Hz sampling rate. (ibid., p. 295).

Amplitude measurements are stored in 8-bit to 16-bit integers where quantum size and the val-
ues that appear closer to this quantum size are signified as identical. This process is called Quanti-
zation. The quantized waveform equation is x[n] (see Figure 13.7) representing a digitized sample. 

Quantized Waveform = x[n] 

                                   n is index over time
(ibid.)

Figure 13.7
Quantized waveform equation.

Mel Frequency Cepstral Coefficient

The most well-known and respected feature extraction technique is the Mel Frequency Ceps-
tral Coefficient (MFCC). There are seven steps to complete the MFCC process: (1) Preemphasis, 
(2) Window, (3) Discrete Fourier Transform, (4) Mel Filter Bank, (5) log, (6) Inverse Discrete 
Fourier Transform, and (7) Deltas and Energy as illustrated in Figure 13.8. 56 We will now discuss 
each of these features.
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Figure 13.8
MFCC: Process

 1. Preemphasis boosts the energy to the maximum value. In the voice spectrum, vowel seg-
ments have a greater amount of energy in a lower frequency than in a higher frequency, 
called spectral tilt. Boosting the high frequency improves the results of the acoustic model 
and phone recognition accuracy.

 2. Windowing allows the extraction of the spectral features of a part of a conversation. Since 
speech is made of non-stationary signals, the spectrum rapidly changes. Windowing actu-
ally stationizes the signals that are captured in a small window. This portion of the window 
consists of a zero and a non-zero region where waveforms are extracted. MFCC extraction 
employes a Hamming Window where the values near the window boundaries are leveled 
out to zero. This avoids signals that are cut off shortly at each end which usually happens 
in a rectangular-shaped window. 

 3. The Discrete Fourier Transform extracts spectral data from the window. This process 
identifies the signal’s energy level at each frequency band at a discrete time (1,. p. 298).

 4. The Mel Filter Bank collects the energy for each band of frequency including ten filters 
less than 1,000 Hz. The rest of the filters are above 1,000 Hz. One thousand hertz is an 
important number in a Mel Filter, since humans are not able to hear frequencies higher 
than 1,000 Hz. (ibid., p. 299). 

 5. Log is a process which takes the log of each mel spectrum result. The log process helps 
the feature estimates reduce the level of sensitivity created by the voice input device. It is 
also caused by the distance between a user and the voice input device. (ibid.) 

 6. Inverse of the Discrete Fourier Transform helps to increase speech recognition accu-
racy by detecting all the filters in a waveform. Filters represent the actual position of the 
vocal tract.
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 7. Deltas demonstrate the change between each frame and are added to each of the features 
to improve accuracy, since a speech signal is not constant. (ibid., p. 301)

It is straightforward to envision that extracting these seven features will help improve the 
speech understanding process. 

In summary, we can see that Speech Understanding Systems entail a number of factors in their 
evaluation including voice recognition, adaptation, dictation, commands, personalization, training, 
costs, and system features. Some of the common techniques used to develop Speech Recognition 
Systems include Part-of-Speech Tagging using Bayesian Inferences, Hidden Markov Chains using 
the Viterbi algorithm, identification of Bigrams, Feature Extraction using the Mel Frequency Ceps-
tral Coefficient with a number of prerequisite substeps.

 13.11 APPLICATIONS OF SPEECH UNDERSTANDING
This section features three examples of working speech understanding systems which illustrate 

the tremendous progress that has been made in this field during the past few decades. The first ver-
sions of such systems developed in the early 1990s cost thousands of dollars and were prohibitively 
expensive for most individuals. A dramatic indication of the progress in this area is the fact that 
today it is possible to buy such a system for under $100, and it will be nearly 100% accurate with 
a voice that has been trained. 

huMAn interest notes

dr. JAMes MAisel And zydoc

Since its inception 
in 1993, ZyDoc’s 
mission has been to 
increase the efficiency 
of physicians through 
the use of software 
technology and services 
to improve patient 
care and outcomes, 
lower malpractice 
risk, and maximize 

reimbursement. In 1993, ZyDoc released one 
of the first multimedia electronic medical 
records (EMR) as envisioned by the Institute 
of Medicine. The prototype was purchased 
by the Department of Defense and helped 
serve as a paradigm for the industry. ZyDoc 
immediately recognized the problem of 
the data-entry bottleneck inherent in the 
EMR and has been pursuing solutions since 
then. The founder, James Maisel, M.D., a 

retina surgeon, became involved in medical 
informatics and served as the Chairman of 
Healthcare Open Systems and Trials (HOST) 
in 1998. ZyDoc left the EMR arena in 2000 
to develop other solutions that would be more 
efficient for physicians. 

Early on, ZyDoc promoted speech-
recognition technology and created language 
models for every medical specialty. These 
were bundled and sold by Dragon Systems 
Naturally Speaking 4.0 Medical in 2000 and 
are widespread in the industry. Realizing that 
speech recognition was only a tool that needed 
to be embedded within other applications, 
ZyDoc developed an award-winning 
multimodal EMR solution in conjunction 
with Toshiba that allowed physicians to enter 
information via dictation, touch screens, 
keyboard, or mouse. Usability and support 
issues for speech recognition limited the 
success of this EMR, and in 2002 ZyDoc 
turned its attention to medical transcription. 
ZyDoc’s medical transcription infrastructure 
platform was ranked third in competition 

James M. Maisel, MD 
Chairman, Zydoc Medical 
Transcription. 
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13.11.1 Dragon’s NaturallySpeaking System and Windows’ Speech Recognition 
System

For her 2013 MSc thesis in Management of Information Systems, Sona Brahmbhatt did a com-
parative study of Dragon’s NaturallySpeaking System and Microsoft’s Windows Speech Recogni-
tion System. 58 Below is a summary of her work prepared by Mimi Lin Gao. 

Today, almost everyone owns a smartphone with an Apple or Android operating system. These 
devices have speech recognition functionality, giving users the capability to speak their text mes-
sages without typing a single letter. Navigation devices have also added speech recognition ca-
pabilities, allowing users to speak destination address(es) or just say “home” to navigate to their 
home, instead of typing. This is very helpful if one is unable to use a keypad on a small window 
due to spelling difficulties or vision problems. 

Two leading commercially available speech recognition systems are Nuance’s Dragon Natu-
rallySpeaking Home Edition™ software, which understands dictation and follows customized 
commands by providing the user with capabilities for navigation, interpretation, and website 
browsing; and Microsoft’s Windows Speech Recognition™ software, which understands spoken 
commands and is also used as a navigation tool. It allows users the ability to select links and but-
tons, and choose from a numbered list.

In her thesis,58 Sona Brahmbatt compared and evaluated these two systems based on their 
positive features, weak points, and their profile customization, as well as a voice training tutorial 
provided for first-time users.

User Profile Creation and Voice Training

The user profile process is very important since a user’s voice is learned and adapted to by his/
her accent. This also allows the system to only focus on the user’s voice and channel out most of 

at TEPR in 2004, and has been licensed to 
public and private transcription companies. 
Leveraging this platform for its own use, 
ZyDoc has grown its transcription business to 
a nationwide level with a reputation for ease-
of-use, high accuracy, fast turnaround time, 
and full-featured service backed by a 24/7 
ZyDoc Operations Center. 

Recognizing an industry-wide problem 
for medical informatics due to tremendous 
increase in security concerns and difficulty 
in software implementation in physician 
and hospital environments, ZyDoc.com, the 
software division of the company, released 
Bulletproof Messenger (BPM) in 2009. BPM 
is a new generation of file transfer software that 
obviates the need for administrative privileges 

and bypasses network, security, and firewall 
constrictions within offices. This application 
allows physicians with no technology 
expertise to transmit audio, imaging, and 
other data files up to 2 GB in size securely 
and easily. When used in combination with 
ZyDoc’s proprietary TrackDoc Web-based 
object management services, workflow is 
customizable to accommodate the file transfer 
requirements of virtually any size healthcare 
facility. Over 2000 physicians completed beta 
testing of the software that was released at the 
HIMSS meeting in April 2009. 
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the background noises. Dragon NaturallySpeaking and Microsoft Speech Recognition both allow 
the user to create multiple profiles for different people using the computer. 

Dragon NaturallySpeaking (DNS) User Profile

The DNS profile creation process asks for name, age, region, accent, and the type of speech 
device that will be employed. This process also adjusts the user’s microphone and performs a qual-
ity check on the microphone sound for better accuracy.

The training prompts the user to read a passage onscreen to test sound levels, voice, and accent 
so that the system is able to recognize the user’s voice by picking a passage that he/she reads.

The accuracy training process goes through the user’s applications such as Word and Outlook 
to add a personalized vocabulary. It scans for unknown words from sent e-mails, documents, and 
contact names. 

Microsoft’s Speech Recognition (MSR) User Profile

Microsoft’s Windows 7 Professional Speech Recognition System requires the same steps to set 
up a user profile that are required by the DNS System. They primarily include setting up the micro-
phone and performing voice training. The interface is not as user-friendly as the DNS interface, but 
it gives the user a chance to access and modify many settings. The wizard screen allows the user to 
choose the most appropriate microphone for best results in a given setting and to adjust the volume 
of the microphone. The last step necessary to complete a profile is Speech Recognition Voice Train-
ing, allowing the system to adapt to the way a user speaks.

 Dragon NaturallySpeaking Interactive Tutorial

The DNS Interactive Tutorial process helps users understand the basics in order to dictate and 
increase efficiecy. This tutorial is broken down into segments which explain the basics on Dictat-
ing, Correction Menu, Spelling Window, Editing, and Learning More. 

 Microsoft Speech Recognition Training

The tutorial is broken down into segments which are also broken in sections. The process 
prompts the user to use the commands after every segment of the tutorial and to complete a final 
lab that requires all the learned commands. This tutorial asks the user to delete a word or correct a 
sentence during the tutorial so that he/she is more likely to remember more commands and know 
how to use them better.

Positive Features and Weak Points 

The DNS interface is user-friendly (Figure 13.9). The left panel of the figure displays all the 
commands that can be used, and it is very helpful for users who are new to the software and do not 
remember all the commands. The panel also displays tips for usage and can be minimized if not 
needed. There is a panel on the top bar that displays messages and what has been said, and it’s very 
helpful when correcting mistakes. The top panel also gives access to Profile, Tools, Vocabulary, 
Modes, Audio, and Help.

DNS is able to format text by saying “Select <word>”, “bold,” or “underline” using Excel or 
Microsoft Word. It is relatively easily to open Firefox and browse yahoo.com by saying, “Open 
Firefox,” “Search Web for Yahoo.com” using DNS. The DNS system weak point is that it takes 
about two minutes to load the user profile.
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Figure 13.9
Dragon NaturallySpeaking Interface

The MSR panel is very simple and easy 
to understand. All the messages are displayed 
within the panel. The microphone icon (Figure 
13.10) on the panel lets the user turn on and 
off speech recognition. The panel is small and 
can be easily moved to diverse locations on the 
screen or minimized when not needed. This in-
terface is not as user-friendly as DNS, since 
very few options are provided on the panel. 

In MSR, the user would have to select 
the word, say “Font Tab” and then say “bold” 
or “underline.” In MSR, the user has to say 
“Open Firefox” and spell out the entire web-
site URL. However, MSR is fast when loading 
the user profile. Also, “Show Numbers” is a 
positive feature in MSR in which all applica-
tion options are numbered and easier to navi-
gate through by just selecting the number of 
the application.

Overall we found that DNS was more  
user-friendly in terms of its interface, although MSR was more efficient when in training mode. 

  
Listening 

  

"What was that?" 

  
Turned Off  
 

Figure 13.10
Microsoft speech recognition panel.
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A p p l i c A t i o n  b o x

13.11.2 cisco’s voice systeM

Speech Enabled Auto Attendant (SEAA) Design: Using Application Intelligence to 
Deliver Superior Voice Recognition

Business owners and employees today conduct business worldwide 24 hours a day using seemingly infi-
nite combinations of tools: phones, voice messaging, e-mail, fax, mobile clients, and rich-media conferencing. 
However, these tools are often not used as effectively as they could be due to various reasons such as Infor-
mation Overload, Misdirected Communications, Technical Difficulties, and Insufficient Training. As unified 
communications solutions integrate applications, phones, and computers, speech recognition plays an increas-
ingly important role in the way we interact with these devices and applications. Speech recognition frees our 
hands and lets us control our unified communications experience with spoken commands instead of memorized, 
menu-controlled clicks, keystrokes, and button pushing. 

Yet speech recognition solutions, for a variety of reasons, have failed to evolve to maximize the effective-
ness of unified communications solutions. In particular, many Automated Attendant products have added speech 
recognition to improve the user experience and increase customer satisfaction by allowing customers to use 
natural language to command the attendant to direct their calls. However, the many alternative solutions contain 
underdeveloped application intelligence which does not deliver a time-saving, customer-satisfying experience. 
Some of the shortcomings in many SEAA solutions can be attributed to the fact that there are numerous ap-
proaches to designing the solution. A typical SEAA solution is made up of three key components: 

1. Speech-enhanced user interface

2. Speech engine

3. The directory (or grammar)
The Cisco solution contains six components:

1. Speech-enhanced user interface

2. Speech engine

3. The directory (or grammar)

4. Advanced disambiguation

5. Names-tuning linguists

6. Dynamic dictionary

Advanced Disambiguation

This is a process to validate the dialogue which a caller uses when making a request through the system. A 
user tells the system he would like to reach an employee named “Jim Smith.” When multiple employees have 
the same name, the speech engine begins the “advanced disambiguation” process.

 1. Jim Smith (Marketing, Chicago, Ill.
 2. Jim Smith (Marketing, San Jose, Calif.
 3. Jim Smith (Manufacturing, location unknown
 4. Jim Smith (Product Management, San Jose, Calif.

Advanced disambiguation adds intelligence to the user interface, learning from past disambiguations and 
applying reason to reduce your time spent (and level of frustration) connecting with the people you are trying 
to reach. 
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13.12  CHAPTER SUMMARY
Chapter 13 covers the exciting challenges posed by trying to program a computer to understand 

natural language. First the problems of language and ambiguity are introduced (Section 13.1). The 
history of the field is covered across the past seven decades in Section 13.2, based on the periodic 
breakdown presented in the classic work by Jurafsky and Martin. 1 

Formal grammars introduced by Chomsky in the 1950s, which are important for sentence pars-
ing and their implications, are explained in Section 13.3. In addition, the complexities of under-
standing meaning are described with examples of semantic analysis and extended grammars (Sec-
tion 13.4). 

The transition from symbolic methods to statistical NLP is explained in Section 13.5, involving 
the use of probabilistic models such as HMMs (Section 13.6), and requiring large collections of 
linguistically annotated data (Section 13.7).

We revisit several of these methods as exemplified in information extraction and question an-
swering systems, a defining example of an NLP application (Section 13.8). The chapter continues 
with a discussion of the present and future of NLP according to Professor Eugene Charniak. 

 Competing SEAA Products

Presents these results to you through a dialogue such as “Press 1 for Jim Smith in Marketing, Press 2 for…” 
or “Did you mean Jim Smith in Chicago? Press 1…” This approach fails in most organizations, not because you 
have to work your way through all four results the first time you participate in this dialogue, but because there is 
no change in the procedure after the 100th time you are presented with this dialogue. For as long as you speak 
“Jim Smith,” you will always have to tolerate the same interaction. Before long you will fall back to dialing 
numbers, meaning the SEAA product failed to deliver any value. 

 Name-Tuning Linguists

This product collects the results of disambiguations along with your actions, sorting the information and 
routing the records to linguists. A linguist can then accurately determine the source of the error—whether infor-
mation might have been missing from the grammar, the name was mispronounced, or noise contributed to the 
problem. Timely corrections can then be made and transmitted back to the grammar, tuning the directory. 

 Dynamic Dictionary

As employees join your organization, move locations, and add new contact numbers, the application will 
allow administrators to easily reflect these changes in the master dictionary in real time. 

Figure 13.11
SEAA architecture with advanced disambiguation, names tuning, and dynamic dictionary.

http://www.cisco.com/en/US/prod/collateral/voicesw/ps6789/ps5745/ps2237/white_paper_c11-468855.html  
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Questions for Discussion

 1. Describe some of the typical ambiguities of language.

 2. Explain why language can be diabolical.

 3. What were the goals of machine translation?

 4. Have they been accomplished after some 50 years?

 5. Research what Henri Kucera did to build the Brown Corpus.

 6. Describe briefly the six periods of Natural Language Processing.

 7. Describe five classes of understanding in terms of language.

 8. Describe the Chomsky Hierarchy of Grammars.

 9. Give an example of a regular grammar.

 10. Describe two features of Prolog that make it suitable for NLP.

 11. What is a transformational grammar?

 12. What is a systemic grammar?

 13. What is a case grammar?

 14. What is a semantic grammar, who developed it, and for what system?

 15. Describe the features of a finite state transition network.

 16. What is the CYK Algorithm and how does it work? 

 17. What is an HMM and how is it different from a Markov chain?

 18. What were the features of Schanks’ MARGIE, SAM, and PAM systems?
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 19. Describe when and how statistical systems became prevalent in NLP systems.

 20. What was one of the main efforts that led to the success of this approach?

 21. What is the noisy-channel model?

 22. Describe some of the main elements of Information Extraction.

 23. Describe the Penn Treebank Project. 

 24. What does Charniak see as the future of NLP and AI?

Exercises

 1. Explain the kind of difficulties that machine translation encountered.

 2. Write two context-free grammars to generate this sentence: “Time flies like an arrow.”

 3. Have a field day in parsing two of Yogi Berra’s famous phrases:

  “It’s getting late early”; and “That place is getting too crowded so nobody goes there 
anymore.”

  What are the syntactic and semantic issues here?

 4. What was the concept behind the development of extended grammars?

 5. Describe how natural language processing has turned from the early ideals of AI 
researchers—clearly trying to distinguish syntax from semantics—to more recent 
approaches?

 6. Obtain a copy of the early ELIZA program and run several pages of conversation with her. 
You should include reference to “computers,” family (mother, father, etc.), and perhaps use 
harsh language.

  What patterns do you observe?

 7. Winograd observes that the problem of determining the correct time context can be seen with 
the following sentences:

  a. Many rich people made their fortunes during the depression.

  b. Many rich people lost their fortunes during the depression.

  c. Many rich people worked in restaurants during the depression.

  Consider the question: “When were the people rich?” and justify your answer for each of the 
sentences. 

 8. Experience indicates that the average programmer produces N lines of documented, 
debugged code per day, on the average, for which N is some number less than 10. High-level 
code is typically n1 times as efficient as assembly code (i.e., a given job requires 1/n1 times 
as many lines of code as lower level code) and Prolog is typically n2 times as efficient as 
high-level language where n1 and n2 are in the range 4 to 10. Find evidence supporting these 
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numbers and interpret your results in terms of the implications of NLP for programming 
productivity. 

 9. Write as many interpretations as you can of the sentence:

  “Tom saw his dog in the park with the new glasses.” 

 10. Bar-Hillel was astonished that no one had ever pointed out that in language understanding 
there is a world-modeling process going on in the mind of the listener. In what ways is this 
observation related to the basic hypothesis of conceptual dependency theory? 

 11. Identify the different senses of the verb “roll” in the following sentences, and give an 
informal definition of each meaning. Try to identify how each different sense allows different 
conclusions to be made from each sentence (you may use a dictionary). 

  We rolled the log onto the river.

  The log rolled by the house.

  The cook rolled the pastry with a large jar.

  The ball rolled around the room.

  We rolled the piano to the house on a dolly.

 12. Consider the following CFG that generates sequences of letters:

 S -> a X c 
X -> b X c 
X -> b X d 
X -> b X e 
X -> c X e 
X -> f X 
X -> g

  a.  If you had to write a parser for this grammar, would it be more efficient to use a top-down 
or bottom-up approach? Explain why.

  b.  Trace the approach of your choice on the input bffge.

 13. Consider the following grammar and the sentential forms it could produce. Draw a parse tree 
to demonstrate how the output strings below may be generated. 
 S → aAb | bBA  A → ab | aAB  B → aB | b

  a. aaAbb

  b. bBab

  c. aaAbBb

 14. Explain the difference between traditional Markov Chains and the Hidden Markov Model.

 15. Explain the trends in NLP during the past 10–20 years. What are the challenges of 
Information Extraction?
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■ ■ ■ ■ ■

The needs and ideas for planning in AI are not 
new. This chapter explores traditional problems, 
methods, and approaches transitioning to 
newer approaches. With numerous successful 
industrial applications, it is clear that the field 
has come a long way and is very important to 
future developments in a number of areas of AI 
including industrial robotics, communication, and 
transportation.* 
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 14.0  INTRODUCTION
As was the case with Natural Language processing (the subject of Chapter 13), planning is an 

activity that is normally considered germane to human beings. Planning is unique to humans be-
cause it represents a very special indicator of intelligence, that is, the ability to make adjustments 
to activities in order to achieve goals.

Planning has two characteristics that are quite distinct: 

 1.  In order to complete a task, a defined series of steps will possibly need to be completed. 
 2. The sequence of steps that define a solution to a problem will possibly be conditional. That 

is, the steps that comprise a plan might be revised according to conditions (this is called 
conditional planning). 

Hence, the ability to plan represents a certain consciousness, and consequently, self-conscious-
ness, that makes us human.

Tate (1999) states, 

Planning is the process of generating (possibly partial) representations of future 
behavior prior to the use of such plans to constrain or control that behavior. The 
outcome is usually a set of actions, with temporal and other constraints on them, for 
execution by some agent or agents.1

Planning can also be defined as follows:

Planning is an essential component of intelligent agents and systems; it enhances their 
independence and ability to adapt to a dynamic environment. In order to accomplish 
this, agents must be able to represent the current state of a world and be able to predict 
the future. Intelligent agents utilize planning to generate sequences of actions that lead 
to a goal. Planning has been an active area of research in artificial intelligence; areas 
in which planning algorithms and techniques have been applied include: robotics, 
process planning, web-based information gathering, autonomous agents, animation, 
and multiagent planning.

 14.1 THE PROBLEM OF PLANNING
Planning, usually considered a subfield of reasoning within the general area of problem solv-

ing, is one of the earliest areas of interest of artificial intelligence. Some typical planning problems 
in AI include the following: 2

• Representing and reasoning about time, causality, and intentions
• Physical and other kinds of constraints on acceptable solutions 
• Uncertainty in the execution of plans
• How the “real world” is sensed and perceived 
• Multiple agents who may cooperate or interfere 

There has been particularly great progress in the field during the past 20 years or so, concurrent 
with advances in machine capabilities and in the field of machine learning. 
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It is common to see planning and scheduling listed as common types of problems, but there is 
a fairly clear distinction: Planning is concerned with “figuring out what actions need to be carried 
out,” whereas scheduling is concerned with “figuring out when to carry out actions.” 3 In a general 
sense, planning focuses on choosing and proper sequencing of actions in order to accomplish a 
goal, whereas scheduling focuses on resource constraints (including timing). In this chapter, we 
will consider scheduling problems as a special case of planning problems. 

 14.1.1  Planning Terminology
The essence of all planning problems in AI is the challenge of transforming a current (pos-

sibly initial) state into a desired goal state. The plan generated is comprised of a sequence of steps 
within a domain to perform this transformation. The sequence of steps followed to solve a planning 
problem is called operator schemata. Operator schemata characterize ac-
tions or events (terms that are used interchangeably). Operator schemata 
characterize a class of possible variables, which can be replaced by values 
(constants) comprising operator instances that describe specific actions. 
The term operator can be used synonymously for operator schemata and 
operator instances. Common usage in the AI literature is to refer to Stan-
ford University Institute Problem Solver (STRIPS) operators (one of the 
oldest planning programs of Fikes et al.) 4, 5 STRIPS operators are used to 
describe an action by three components: a precondition formula, an add-
list, and a delete-list (see Figure 14.1). 

An operator’s precondition formula (or simply the operator’s precon-
ditions) provides facts that must hold true before the operator can be ap-
plied. Whenever an action occurs, the add-list and the delete-list help to 
define that specific action. The application of an operator means that the 
add-list and delete-list produce a new state. The new state is produced with 
the deletion of all the formulas in the delete-list and the addition all the 
formulas in the add-list. The first state considered is the initial state, and repeated operator applica-
tion produces intermediate state descriptions until a goal state is reached. At this stage, a plan can 
be called a solution to the specified problem. 

Plans that work from the initial state to a goal state are called progressions, whereas those that 
work backward from a goal state are called regressions, akin to the forward chaining and backward 
chaining discussed in Chapter 7, “Production Systems.” 

Repeated analysis will determine if all the operators in a plan can be applied in the order speci-
fied by a plan. Such an analysis is referred to as temporal projection. 

 14.1.2  Examples of Planning Applications
Planning has found familiar applications in discrete puzzles such as Rubik’s cube, sliding block 

puzzles such as the 15-puzzle in Chapter 4, “Search Using Games,” including chess and bridge, 
and scheduling problems. These areas are very suitable for developing and applying planning algo-
rithms because of the regularity and symmetries involved in the moving parts.

Chapter 16 makes the distinction between strategy and tactics in chess. In games, strategic play 
is really synonymous with planning. It does not usually involve interaction of forces, but rather, 
long-term thinking, which will result in measurable improvements in terms of positioning of forces. 

PICKUP (x)

Delete List:   ONTABLE(X) 

HANDEMPTY

CLEAR(x)

Add List: HOLDING(x)

Precondition :

HANDEMPTY ∧

CLEAR(x)

ONTABLE(X) ∧

Figure 14.1
PICKUP(x) – A typical STRIPS operator.



460  ■  Part  4   ·  Advanced Topics

The actual interplay of forces resulting in captures (in chess and check-
ers) is usually synonymous with tactical play. Figure 14.2 presents a 
very famous position from the 23rd and final game of the chess match 
between Jose Raul Capablanca and Frank Marshall in New York City 
in 1909. Marshall was a gifted tactician but lacked depth in his strategic 
play, whereas Capablanca was a complete player who went on to be-
come World Champion (1921–1927). Capablanca won the match with 8 
wins, 1 loss, and 14 draws.**

Marshall’s continuation 16.Rfc1? led to one of the most famous ex-
amples of how to win with a queenside pawn majority whereas the cor-
rect plan was for White to play 16.e4 followed by Qe3, f4, and a general 
kingside pawn advance.

Figure 14.3 shows an excerpt from Bridge Baron, the 1997 World 
Championship bridge program.6 

Finesse(P1; S)

LeadLow(P1; S)

• • • • • •

PlayCard(P1; S, R1) EasyFinesse(P2; S)

FinesseTwo(P2; S)

StandardFinesse(P2; S) BustedFinesse(P2; S)

FinesseFour(P4; S)StandardFinesseThree(P3; S)StandardFinesseTwo(P2; S)

PlayCard(P2; S, R2) PlayCard(P3; S, R3) PlayCard(P4; S, R4) PlayCard(P4; S, R4’)

Us: East declarer, West dummy
Opponents: defenders, South & North
Contract: East – 3NT
On lead: West at trick 3

North — ♠3

West — ♠2

(North — ♠Q) (North — ♣3)

East — ♠J South — ♠5 South — ♠Q

East: ♠KJ74
West: ♠A2
Out: ♠QT98653

Figure 14.3
An example of plan declaring by Bridge Baron.

In Chapter 16, it is demonstrated how search and thinking in computer 
chess and checkers is different from how humans play the game. In contrast, 
the Bridge Baron emulates the plan declarer in Bridge. (See Appendix D.3.1 ). 
Bridge Baron uses an adaptation of the Hierarchical Task Network (HTN) plan-
ning to accomplish its play. We shall discuss how this is done in Section 14.3.

Equally common was the problem of trying to get a robot to move through 
a maze by recognizing walls and obstacles but at the same time navigating suc-
cessfully to its goal. This was a typical problem in the field of computer and 
robot vision. Figure 14.4 illustrates the kind of maze problem that robots have 
been solving for many years.

The task in Figure 14.5 is to use three mobile robots with manipulation 
arms mounted on them to move a grand piano across a room that has furniture as obstacles. Humor-
ously labeled The Piano Mover’s Problem, collisions between robots and other pieces of furniture 
must be avoided. This is a typical contemporary planning problem.

8
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Figure 14.2
Capablanca – Marshall, 1909.

A

B

Figure 14.4
A typical maze problem. The robot not only 
needs to get from A to B, but it also needs 
to be able to recognize walls and deal with 
them appropriately.

** The Marshall Chess Club on 23 W 10th Street in New York City celebrates its 100th Anniversary in 2015.
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In design and manufacturing applications, 
planning is applied to solve problems of assem-
bly, maintainability and mechanical part disas-
sembly. Motion planning is used to automatically 
compute a collision-free path for removing a part 
from an assembly. The illustration in Figure 14.6 
demonstrates the removal of a pipe from a com-
plex machinery room without any collisions.7 

There are many potential opportunities for 
the video game programmer and AI planner com-
munities to combine efforts to produce wonder-
ful, unique, humanlike characters. There is also a 
broad interest in developing virtual humans and 
computer-generated animations. The goal of ani-
mators is to develop characters with the features 
special to human actors while being able to design high-level descriptions of motions that can to be 
performed by agents. Otherwise, this remains an extremely detailed and laborious, frame-by-frame 
process, which animators hope can be curtailed through the development of planning algorithms. 

Figure 14.6
Planning for maintainability of a pipe motion.

Automatic manipulation planning is applied to com-
puter animation to compute the animation of figures in a 
scene based on their task specifications. This allows ani-
mators to focus on the overall design of a scene, rather than 
the details of how to move figures in realistic and collision-
free paths. A specific example is to generate the optimal 
motions for human and robotic arms to perform a task such 
as manipulating an object; this is relevant, not only to com-
puter animation, but to ergonomics and product usability 
evaluations. Koga et al. developed a planner that performs 
multi-arm manipulation that, given a goal or task to com-
plete, will generate the necessary animations for the coop-
erative manipulation of a chessboard between a human and 

Figure 14.5
Illustrates the familiar Piano Mover’s Problem.

Figure 14.7
Robot arms assisting manufacture of assembly line automobiles.
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the robot arm. 8 Figure 14.7 depicts a robot arm planner that performs multi-arm tasks assisting in 
the manufacturing of assembly-line automobiles. 

The entertainment and gaming industries are concerned with producing high-quality animated 
characters whose motions are as realistic as possible; the characters also require the ability to 
automatically adapt to a dynamic environment that presents challenges and obstacles. Behavior 
planning can be used to generate these realistic motions for animated characters. Lau and Kuffner 
utilize real human-motion captures by creating a finite-state machine of high-level behaviors, and 
then performing a global search to compute a sequence of behaviors that brings an animated char-
acter to its goal position. 9 Figure 14.8 depicts a dynamic environment in which a jogger needs to 
adapt by jumping over a fallen tree.

Another distinction can be made between the process of constructing plans and the process of 
executing plans. The example which follows illustrates these distinctions. 

Figure 14.8
An animated character adapting to a dynamic environment (courtesy of M. Lau).

exAMple 14.1 
Let us consider the process of planning your departure for work one day. 
There is a meeting at 10:00 am that you must attend. The morning commute 
usually takes 40 minutes. In the process of getting ready for the trip to work 
there are also a number of tasks that you like to perform—some that you 
might consider essential, and some that you consider a luxury, depending on 
the time available. Listed are some of the tasks that you consider doing before 
work:

1. Dropping off a few shirts at the dry cleaners

2. Dropping off bottles for recycling

3. Taking the garbage out 

4. Stopping at your bank’s ATM for cash

5. Buying gas for your car at the best local price

6. Putting air into your bike’s tires 

7. Cleaning up your car – tidying and vacuuming

8. Putting air into your car’s tires

As an intelligent person, you will immediately ask about the constraints of the 
problem (or tasks). That is, how much time is available for these various tasks 
in order for you to be on time for your meeting? 
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You get up at 8:00 am thinking that two hours is plenty of time to execute 
many of the above tasks and to be comfortably on time for your meeting at 
10:00: 

1. Dropping off a few shirts at the dry cleaners

2. Dropping off bottles for recycling

3. Taking the garbage out 

4. Stopping at your bank’s ATM for cash

5. Buying gas for your car at the best local price

6. Putting air into your bike’s tires

7. Cleaning up your car – tidying and vacuuming

8. Putting air into your car’s tires

Of these eight possible tasks, you will soon decide that only two are really 
important: Item 4 (getting cash) and Item 8 (putting air into your car’s tires). 
Item 4 is important because from experience you know that it will be difficult 
to conduct your day with a shortage of cash. You need to buy meals, snacks, 
and possibly other items. Item 8 could be even more important than item 4, 
depending upon how little air there is in your tires. In the extreme case you 
won’t be able to drive, or it will be unsafe to drive. In most cases, having 
your tires underinflated will at least be inefficient in terms of the comfort of 
your drive and your car’s miles per gallon. You now decide that items 4 and 
8 are important and cannot be avoided. This is an example of hierarchical 
planning, that is, the imposition of a hierarchy or set of values to tasks which 
must be accomplished. In other words, not all tasks are of equal importance, 
and you can order them accordingly. 

You think in terms of a gas station that is near the bank/ATM. You conclude 
that the closest gas station is about three blocks from the bank. You also 
think, “If I’m already going to the gas station for air, I might as well buy gas 
too.” Now you consider, “What’s the gas station near the bank that also has an 
air pump?” This is an example of opportunistic planning. That is, you are 
trying to exploit the conditions and opportunities offered by a certain state in 
plan formation and in the plan execution process. In this case, you don’t really 
need to buy gas, but you are trying to be economical, in the sense that if you 
have already expended the time and energy to drive to a gas station for air, 
it wouldn’t be very efficient (either in terms of time or cost) to go to one gas 
station to put air in your tires and to drive to another to buy gas. 

At this point Items 1–3 look entirely unimportant; Items 6 and 7 look equally 
unimportant and more suitable for a weekend when there might be more time 
for such tasks. Certainly getting air into the tires of your bicycle is not usu-
ally relevant to driving to work unless you are planning some combination of 
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driving and biking! Let us consider a few circumstances when items 1–3 may 
be quite relevant. 

Item 1: Dropping off shirts at the dry cleaners

This would also seem like an irrelevant luxury on a busy workday morning, 
but perhaps you have an interview for a new job the next day, or a presentation 
you want to look good for, or even a date that you have been looking forward 
to for some time. In these cases you are thinking correctly (planning) and 
doing the right thing to have the best chance for a successful, happy event. 

Item 2: Dropping off bottles for recycling

Again, this is normally a “weekend”-type activity. Is there an imaginable 
situation wherein this could be a necessary course of action? Yes, but that 
would represent a very sorry state of affairs for you. You have just lost your 
wallet with all your cash, credit cards, and ID cards. 

You need to get to the supermarket to recycle in order to obtain cash for the 
100 bottles you have at 5 cents a bottle. A very sorry state of affairs that we 
hope will never happen to you—besides, if you lost your wallet, you shouldn’t 
be driving without your license. Nonetheless, this sounds like a situation 
we should all be prepared for. If it did happen to you, you’d probably have 
sufficient reason to miss that meeting. 

Item 3: Taking out the garbage

There are quite realistic conditions under which this task could gain signifi-
cantly in importance. Listed are some examples:

1. The garbage is already creating a horrible stench.

2.  Your apartment has been declared derelict and you are responsible for 
cleaning it up.

3.  It is Monday morning and the garbage won’t be picked up again until 
Thursday. 

Planning of this kind, based on certain contingencies or certain events that 
could happen, is called conditional planning. This kind of planning is often 
useful as a kind of “defensive” measure, or if you must consider a number of 
possible events that might happen. For example, if you are planning to orga-
nize a major event in Florida in early September, it may not be a bad idea to 
consider hurricane insurance.

Sometimes we can only plan for some subset of events (operators) that can 
be effected to reach a goal without particular concern for the order in which 
those steps will be performed. This is called a partially ordered plan. In the 
context of our Example 14.1, we can go to the gas station for air first or to 
the bank for cash first, if our tire situation is not too critical. If the tire were 
indeed flat, however, then the order of execution of the plan would require 
getting the tire repaired first, and then proceeding to other tasks. 
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We close this example by noting some further realities. Even though two 
hours would seem like a large amount of time to handle a few errands and 
still make a 40 minute commute, one quickly realizes that even in this simple 
scenario there could be many unknowns. For example, there could be lines 
at the air pump at the gas station or at the bank; there could be accidents on 
the highway delaying your commute; or there could be police, fire, or school 
buses that might cause delays. In other words, there are many unknown events 
that could interfere with our best laid plans! 

 14.2 A BRIEF HISTORY AND A FAMOUS PROBLEM
The earliest work in Cognitive Science as it relates to AI sought to develop systems that could 

be general problem solvers. The first and most successful of these was The General Problem Solver 
(GPS) of Newell and Simon (1963).10 It was based on the greedy algorithm called means-ends 
analysis, which, in turn, was based on goal-directed problem solving by minimizing the difference 
(distance) between a goal (successor) state and a current state. 

During the 1960s there was also considerable ongoing research into search methods (in opera-
tions research, e.g., branch and bound methods) and reasoning using predicate logic in theorem-
proving systems. This was very fertile ground for AI as the world also underwent major changes. 
Recall that this was the decade during which John McCarthy introduced LISP and the term artificial 
intelligence was coined. 

It was in 1969 that the STRIPS (Stanford Research Institute Problem Solver, Section 14.4.1) 
was introduced at the Stanford Research Institute. Its application domain states were represented 
in first-order logic, and it was able to represent actions through changes in its world state. STRIPS 
also employed means-ends analysis to identify goals and subgoals that needed to be solved. The 
methods of STRIPS provided the foundations for many future systems, as well as a testbed for 
inherent problems. 

Later approaches investigated the identification of partially defined plans, plan modification, 
constraint posting, and least-commitment planning. 

These techniques are discussed in Section 14.3. The work of Stefik 11, 12 in MOLGEN (Mo-
lecular Structure Generation) concentrated on constraint management techniques with planning, or 
plan object constraints in DEVISER (Voyager Mission Spacecraft Sequencing) 13 and FORBIN for 
temporal constraints in factory control. SIPE (System for Interactive Planning and Execution moni-
toring) 14 was another well-known system that focused on resource constraints. These approaches 
combined planning with scheduling problems. 

Partial planning was closely related to plan refinement. 15 This led naturally to the study of anal-
ogy and case-based planning (Section 14.3.4).

In the mid-1970s, attention turned to Networks of Action Hierarchies (NOAH), 16 which is 
fully presented in Sections 14.3.3 and 14.4.2. Plans started to be considered as partially ordered 
instead of totally ordered, and the ideas of planning became more generalized, independent of do-
main. NONLIN (Section 14.4.3) was a very significant system of this time period together with a 
question-answer procedure that it used. 

Partially ordered planners (POP) were the standard of the day. These included SIPE,14 O-Plan, 17  
and UCPOP (Universal Conditional Partially Ordered Planner). 18 
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In the intervening 20 years or so, planners have taken a distinctly practical direction based on 
sound methodological foundations. These are illustrated by the general planner described in Sec-
tion 14.5.1 (O-Plan 19) and later Graphplan. 20

Planning can be helpful in many aspects of problem solving. One area that has been in desper-
ate need of improvement is the success rate of first year (novice) programming students. That is the 
purpose of WPOL 21 (Section 14.5.4)—to use a planning system that will help these students succeed.

 14.2.1 The Frame Problem 
As we have seen, planning is concerned with changes in a well-defined world. How do you get 

an agent (robot) from a current state to a goal state? What are the transformations that are necessary 
and what are the transformations that have occurred? Hence, it becomes important to specify both 
what has changed and what has not changed. When a robot arm grips a block and picks it up, changes 
have occurred in terms of where the block is, what the gripper is doing (grasping or not), and what 

huMAn interest notes

Austin tAte

Professor Austin Tate (1951– ) holds the 
Chair in Knowledge-Based Systems at the 
University of Edinburgh and is the Director 
of the Artificial Intelligence Applications 
Institute at the University. He helped form 
AIAI in 1984, and since that time has led its 
efforts to transfer the technologies and methods 
of artificial intelligence and knowledge 
systems into commercial, governmental, and 
academic applications throughout the world. 
He holds degrees in Computer Studies (BA 
Lancaster, 1972) and Machine Intelligence 
(PhD Edinburgh, 1975). He is a Fellow of 
the Royal Society of Edinburgh (Scotland’s 
National Academy), and is a Fellow of the 
Association for the Advancement of Artificial 
Intelligence, among other honors. He is a 
professionally Chartered Engineer. 

Prof. Tate’s research interests are in the 
use of rich process and plan representations 
together with tools that can utilize these 
representations to support planning and 
activity management. He pioneered the 
early—now widely used and deployed—
approaches to hierarchical planning and 
constraint satisfaction in the Interplan, 

NONLIN, O-Plan, and I-Plan planning 
systems. His recent work on “I-X” is 
concerned with supporting collaboration 
between human and system agents to perform 
cooperative tasks in a “Helpful Environment.” 
Prof. Tate was the Edinburgh Principal 
Investigator in the Advanced Knowledge 
Technologies Interdisciplinary Research 
Collaboration funded by EPSRC (Engineering 
and Physical Sciences Research Council). He 
also led the DARPA-funded Coalition Agent 
eXperiment (CoAX) project involving some 
30 organizations in 4 countries over a 3-year 
period. His work is being applied to search 
and rescue and emergency response tasks. 
His internationally sponsored research work 
is focused on the use of advanced knowledge 
and planning technologies, and collaborative 
systems—especially using virtual worlds. 

Prof. Tate leads the Virtual University 
of Edinburgh, Vue, a virtual educational and 
research institute bringing together those 
interested in the use of virtual worlds for 
teaching, research, and outreach. Prof. Tate is 
on the Senior Advisory Board for the IEEE 
Intelligent Systems journal and is a member of 
the editorial board of number of other journals. 

(Source: http://www.aiai.ed.ac.uk/~bat/bat-
very-short-biography.html)



 Chapter  14  ·  Automated Planning   ■  467

blocks are on top of each other. Picking up the 
block does not change the position of the other 
blocks, the walls, the doors, or rooms. Figure 
14.9 presents a snapshot of the Blocks World, 
which illustrates the typical permissible opera-
tions by a robot arm and blocks while certain 
preconditions exist, and the resulting effect. 

A famous problem in AI that was identified 
by McCarthy and Hayes (1969) 22 as the need 
to characterize what has changed in a world as 
actions occur is known as the frame problem. 
As the complexity of a problem space increas-
es, keeping track of everything that has changed 
and everything that has not changed (hence a 
complete state-space description) becomes an 
increasingly difficult computational problem. 
McCarthy saw it largely as a problem of com-
binatorics. Others view it as a problem of rea-
soning with incomplete information, 23 and still 
others believe it relates to the difficulty of enabling systems to notice salient properties of the world. 24, 25  

Allen and colleagues see it to be “simply that of constructing a formulation in which it is possible 
to readily specify and reason about the properties of events and sub-problems.” 26

 14.3  PLANNING METHODS
Over the course of more than 40 years of development in the field of planning in AI, numerous 

techniques have been introduced and experimented with. In this section, we will explore some of 
the most significant of those methods, and describe systems that were particularly illustrative of 
certain methods.

 14.3.1  Planning as Search
In a nutshell, planning is essentially a search problem. The same kinds of search issues that 

we have described throughout this text (in Chapters 2, 3, 4, and 12) are crucial here. These involve 
the efficiency of search techniques in terms of number of computational steps and memory space, 
as well as correctness and optimality. Finding a plan that works will typically involve exploring a 
potentially large search space, starting in the initial state and ending in the goal state. Additional 
complications can appear when different states or partial plans interact. Hence, it is not surprising 
that Chapman (1987) 26 was able to demonstrate that even simple planning problems can become 
exponential in size. The planning literature has focused on how a heuristic search should be orga-
nized, how partial or failed plans should be handled, and in general how good, informed decisions 
for problem solving should be made.2 In this section, we will present a summary of the view of 
planning as search and then shift to a more quantitative view of planning with heuristic search. 27 

14.3.1.1 State-Space Search

As we described in Section 14.1, early planning work focused on the “legal moves” of games 
and puzzles (as in the 8-puzzle) to see if a sequence of moves could be found to transform an initial 
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Figure 14.9
A snapshot of the Blocks World.
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state into a goal state. Heuristic evaluation could then be applied to evaluate “proximity” or “close-
ness” to a goal state (e.g., as in the A* algorithm; 28 see Section 3.6.4) and the Graph Traverser. 29 
Without heuristic approaches, state-space search could quickly become unmanageable. 

Examples that we have already discussed in Chapters 2 and 3 include the breadth first search 
which uses O(bd) time to find an optimal solution of length d (recall b is the branching factor of 
a problem and d is the depth of a solution) but also uses O(bd) space because all the nodes at any 
level are stored before the next level is generated. In contrast, depth first search only uses linear 
space, but requires an arbitrary depth cutoff in order to terminate. Depending on the depth where 
that cutoff occurs, no solution might be found, because solutions could lie at a depth beyond the 
cutoff depth d. These problems are remedied by depth first search with iterative deepening (dfs with 
iterative deepening, discussed in Chapter 2) where a depth cutoff of one is used with an iterative 
series of depth increases of the search by one level until a solution is found. The algorithm finds a 
solution of length d in O(bd) in terms of time and O(d) in terms of space. You may recall, that dfs 
with iterative deepening is “…asymptotically optimal in terms of time and space, over all brute-
force tree search algorithms that are guaranteed to find optimal solutions.” 27 Now we will turn our 
attention to a number of heuristic search techniques that have been used for planning. 

14.3.1.2 Means-Ends Analysis

One of the earliest AI systems was the General Problem Solver (GPS) of Newell and Simon 
(1963),10 which we introduced in earlier chapters. GPS used a technique for problem solving and 
planning called Means-Ends Analysis. The main idea behind means-ends analysis is to reduce the 
distance between a current state and a goal state. That is, if you are measuring the distance in miles 
between two cities, the algorithm would choose the “move” that would reduce that distance in 
miles the most without consideration for what further opportunities exist to reach a goal city from 
that intermediary city. This is a greedy algorithm (see Section 2.2.2) and therefore it has no hind-
sight, no memory of where it’s been, and no particular knowledge of its task environment. 

Let us consider the following example, shown in Table 14.1. You want to get from New York 
City to Ottawa, Canada. The distance is 424 miles, and this is estimated to take about 9 hours of 
driving time. Flying takes only about an hour, but because it’s an international flight the cost is 
$600, and this is considered prohibitively high. 

Consider the table below:

Table 14.1
Distance vs. possible choices of means of transportation. Once distance exceeds 1,000, choices are based on comfort and economy of cost.

Distance (Miles)
Travel Method

TAXI BUS  TRAIN RENTAL CAR PLANE
0–50 √ √ √ √
51–200 √ √ √
201–600 √ √ √ √
601– 1,000 √ √ √
1,001–3,000 √ √

For this problem, means-ends analysis would naturally prefer flying, but this is prohibitively 
expensive. An interesting alternative, which combines efficiency of cost in terms of time and mon-
ey while allowing for sufficient freedom, is flying to Syracuse, NY (the closest large US city) and 
then renting a car to drive to Ottawa. It seems worth noting that there can be a number of overriding 
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factors regarding the recommended solution. For example, you must consider the actual cost of the 
car rental, the number of days you will be spending in Ottawa, and whether you really need a car in 
Ottawa. Depending on the answer to these questions, you may opt for a bus or train for part or all 
of your transportation needs. 

14.3.1.3 A Variety of Heuristic Search Methods for Planning

As we have indicated in Section 14.3.1.1, state-space (unintelligent, exhaustive) search tech-
niques can result in the necessity to explore too many possibilities, as was the case when we ex-
plored search as early as Chapter 2. In this section we will briefly present a variety of heuristic 
search techniques that have been developed with the goal of remedying this situation. 

Least Commitment Search
Least commitment in planning refers to “any aspect of a planner, which only commits to a par-

ticular choice when forced by some constraints.” 2 They allow for a wider set of possible distinct 
plans to be represented in a single search space. 2 An example is the use of a parallel plan to represent 
a number of possible action orderings prior to making a commitment. This was done in NOAH 16  
or by the posting of objects referred to in the plan rather than by making an arbitrary selection (e.g., 
MOLGEN 11, 12). Weld (1994) 30 states that the idea behind least commitment planning is 

to represent plans in a flexible way that enables deferring decisions. Instead of 
committing prematurely to a complete, totally ordered sequence of actions, plans 
are represented as a partially ordered sequence, and the planning algorithm practices 
least commitment planning—only the essential ordering decisions are recorded.

As an example, let us say you are planning to move to a new apartment. You first decide what 
the suitable towns and neighborhoods are for your particular income level. You don’t need to decide 
which block, building, and specific apartment you will be living in. These are decisions that can be 
delayed until a later, more opportune time.

Select and Commit
Select and commit was one unique planning-with-search technique described by Hendler, Tate, 

and Drummond 2 that doesn’t inspire much confidence. It refers to new techniques that were tested 
by making a decision (commitment) to follow one solution path based on local information (akin 
to means-ends analysis). Often planners that were tested in this way were incorporated into later 
planners that could search for alternatives. Of course there were problems if the commitment to a 
path did not generate a solution. 

Depth First Backtracking
Depth first backtracking is a simple method of considering alternatives, particularly when there 

are only a few to choose from. The method involves saving the state 
of a solution path at the point where there are alternatives. The first 
alternative path is chosen and the search backs up. If no solution is 
found then the next alternative path is chosen. The process of testing 
these branches—by partially instantiating operators to see if a solu-
tion has been found—has been referred to as “lifting.” 31 Figure 14.10 
illustrates depth first backtracking. It should soon be apparent to the 
reader that the backed up search generated by lifting is still too large 
and that it grows exponentially. 
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Beam Search
The beam search was introduced in Chapter 3. Recall that it results in the exploration of a 

few “best nodes” at each level of a breadth first search. In the context of planning, this results in a 
small pre-constrained area that is searched for solutions. It is not uncommon for the beam search 
to be implemented alongside other heuristic methods to choose the “best” solutions, possibly to 
sub-problems suggested by the beam search, in other words, ISIS-II (International Satellite for 
Ionospheric Studies).32

One-Then-Best Backtracking
As we have noted throughout this text, backtracking through a search space, although possibly 

leading to a solution, can be prohibitively expensive in terms of the number of nodes that need to 
be explored through a number of levels. It is akin to the expression “barking up the wrong tree.” 
One-Then-Best Backtracking expends more effort to determine that the local choice made to back 
up from a particular node is the best choice. 

For an analogy, let us return to the problem of choosing a town to live in. We consider the can-
didate areas by two major factors—distance and then perhaps price. We find the most desirable area 
based on these factors. But now we must make a decision, possibly based on a choice of five to ten 
towns that are reasonable candidates. Now we must bring into play more factors: 

 1. How is the school system (for kids)?
 2. How is the shopping in the area?
 3. How safe is it to live in the town?
 4. How centrally located is it (transportation)?
 5. What other attractions are available in the area?

When you are able to make an assessment, based on the price of apartments and the distance 
from your work for each of the candidate towns, coupled with the five above additional factors, you 
should be able to choose one town and then proceed with further search for an appropriate apart-
ment. Once you have chosen a town, you look at the availability and suitability of some apartments 
in the town, and then if necessary, reassess the other towns as possibilities and choose another town 
(based on the two primary and five secondary factors) as your primary choice. That is how the One-
Then-Best Backtracking algorithm works. 

Dependency-Directed Search
As described in the previous method, backtracking to saved states and resumption of search can 

be very wasteful. Storing the saved states of solutions found at choice points is perhaps useful, but 
it turns out to be more useful and efficient to store dependencies between decisions, what assump-
tions have been made, and the alternatives from which a selection can be made. That is what the 
studies of Hayes (1975), 33 Sussman (1977) 34, NONLIN + Decision Graph (Daniel, 1983) 35, and 
MOLGEN (Stefik, 1981) 11, 12 revealed. Such systems undid a failure by reconstructing all of the 
dependent parts of the solution. Thereby, unrelated parts could also be left intact. 

Opportunistic Search
The opportunistic search technique is based on “the most constrained operation that can be 

performed.” 2 All problem-solving components can summarize their requirements for a solution 
as constraints on the solution or restrictions on the value of variables representing objects be-
ing manipulated. Operations can be suspended until further information becomes available, (e.g., 
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MOLGEN 11, 12 ). It is common for such systems to use a blackboard architecture through which 
various components declare their availability and communicate, (e.g., Hearsay-II 36 and OPM 37). 
Task scheduling can also be done through the blackboard. For humans, the blackboard architecture 
for opportunistic search consists of five levels: plan, plan abstraction, knowledge-base, executive, 
and meta-plan. 38 

Meta-Level Planning
Meta-level planning is the process of reasoning and choosing from a variety of plan options. A 

number of planning systems have an operator-like representation of plan transformations available 
to the planner. A separate search is performed to decide which operator is best applied at any point. 
This occurs before any decisions are made about any plan application. This is a very high-level 
skill, which is illustrated in MOLGEN 11, 12 and Wilensky (1981). 38

Distributed Planning
The distributed planning system allocates sub-problems among a group of experts who are 

given sub-problems to solve. The sub-problems are passed between specialized experts who com-
municate through a blackboard and executive. Examples include Georgeff (1982) 39 and Corkill and 
Lesser (1983). 40

This concludes our review of search methods used in planning. We have seen that the problems 
of search in AI in general (growth in terms of the combinatorial explosion and corresponding com-
putation time and memory space) apply here too. Hence, the AI planning community has developed 
a number of techniques to limit the amount of search required. Now we will move on to consider 
other planning methods that have been developed.

 14.3.2  Partially Ordered Planning 
In Section 14.1.1, we defined partially ordered planning (POP) to be when some subset of 

events (operators) can be effected to reach a goal without particular concern for the order that those 
steps will be performed in.

In a partial order planner, a plan is represented as a partially ordered network of operators. A 
partial order planner performs least-commitment in the sense that ordering links between opera-
tors are introduced only when the problems in the developing plan demand it. 2 In contrast, a total 
order planner uses a sequence of operators to represent the plans in its search space. 

A partially ordered plan usually has three components: 

 1. A set of actions 
  {drive to work, get dressed, eat breakfast, take shower}
 2. A set of ordering constraints
  {take shower, get dressed, eat breakfast, drive to work}
 3. A set of causal links 
  Get dressed---dressed→drive to work 

Here the causal link is to get dressed before driving to work…you wouldn’t want to get into 
your car undressed! Such links help detect and prevent inconsistencies when a partial plan is refined 
and implemented. 

Recall that in the standard searches discussed in previous chapters, a node equals a state in a 
concrete world (or state space). In the planning world, a node is a partial plan.
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So a partial plan consists of the following:

• A set of operator applications Si

• Partial (temporal) order constraints Si < Sj

• Causal links c
i jS S→

This means that Si achieves c, which is a precondition of Sj. Hence, operators are actions on 
a causal condition to achieve an open condition. An open condition is a precondition of an action 
that has not yet been causally linked. 

These steps are combined to form a partial plan as follows:

• An action is described with a causal link to achieve an open condition.
• A causal link is made from an existing action to an open condition.
• An order constraint is made between the above steps. 

Figure 14.11 depicts a simple partially ordered 
plan. The plan starts at home and ends at home. In 
a partially ordered plan, different paths (such as the 
choice of going to the gas station or bank first) are 
not alternative plans, but alternative actions. We say 
a plan is complete if every precondition is achieved 
(we get to the bank and gas station and get home 
safely). When the order of the actions becomes fully 
determined, a partially ordered plan becomes a total-
ly ordered plan. An example would be if we discover 
(as in earlier example) that our vehicle’s gas tank is 

very nearly empty! A plan is complete if and only if every precondition is achieved. A threat to a 
plan occurs when some action Sk occurs that prevents us from executing our plan by blocking us 
from achieving all the preconditions of the plan. A threat is a potentially intervening step that pre-
vents a condition achieved by a causal link. In the context of our above example, a threat would be 
if your vehicle did not start, as shown in Figure 14.11. That could throw off our “best laid plans…” 

14.3.2.1 The Sussman Anomaly

A famous problem in the STRIPS (blocks) world occurs if we try to apply partial order plan-
ning to the task of placing three blocks on top of each other, in the order shown in Figure 14.12. 

Here, in the language of the STRIPS and BLOCKS world, where x = B, y = C, and z = A, we 
have the initial state: Clear (x), On (y,z), Clear(y), and our goal state is On (x,y), On (z,x), and 

Clear(z). 
To achieve the goal state, it quickly becomes ap-

parent that one of the subgoals, PutOn (x,y)—the step 
which puts Block B on Block C—is a necessary step, 
but it must be achieved at the correct time. Hence there 
are “ordering effects” and a partial order plan will not 
work to solve this problem.

So the necessary steps are (1) PutOnTable(y), (2) 
PutOn(x,y), and then (3) PutOn(z,x). The first step 
achieves a necessary subgoal, which is that all the 
blocks are cleared and on the table. That takes care of 

Car won’t start
(Sk)

Home
(start)

Bank
(Si)

Home
(Si)

Buy gas
(Si)

Figure 14.11
A partially ordered plan.

C

A

A

B

B

C

Table

Start state Goal state

Figure 14.12
STRIPS (blocks) world problem – partial order planning.
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the fundamental problem that the blocks in the initial state (with C on A) were out of order for the 
goal state. Clearing all the blocks allows us to reorder the stacking of blocks. Once the order Block 
B is on Block C, then Block A can be put on Block B to achieve the goal state. In effect, Block C 
was a threat to this plan because it sits on Block A. Hence, to remedy the Sussman Problem, we 
need at least the subgoals described above or a total order plan. 

In summary, partial order planning is a sound and complete planning method. It can backtrack 
over choice points if failure occurs. There can be extensions for disjunction, universal quantifica-
tion, negation, and conditionals. Overall it is an efficient planning technique when coupled with 
good problem descriptions. However, it is very sensitive to subgoal ordering.41

 14.3.3  Hierarchical Planning
Planning is an activity that naturally lends itself to hierarchy. That is, not all tasks are at the 

same level of importance, and some tasks must be completed before others are attempted, whereas 
others may be interleaved. Besides, hierarchy (which is sometimes necessary for the purpose of 
satisfying task preconditions) can be useful for reducing complexity. Tate 1 states that “Most practi-
cal planners employ ‘hierarchical planning methods.’  ” 

Hierarchical planning is usually comprised of a library of action descriptions. Action descrip-
tions are comprised of operators that perform some of the preconditions comprising a plan. Some 
of these action descriptions will “decompose” into a number of sub-actions which operate at a more 
detailed (lower) level. Consequently some of the sub-actions are defined as “primitives”—actions 
that cannot be further divided into simpler tasks. An example of a primitive would be “ClearTop” 
in the STRIPs domain. It simply means that a block does not have a block on top of it. The task 
called “ClearTable,” however, would mean that there is nothing on a table. ClearTable could be 
comprised of a number of sub-actions such as grasping a block (or any object on a table), moving 
it and ungrasping it, and dropping it in a defined space off the table. In this example “ClearTable” 
would comprise a hierarchical task network (HTN), which is composed of the subtasks (including 
primitives such as Cleartop). Tate 1 states,

HTN planning lends itself to the refinement planning model. An initial plan 
incorporates the task specification assumptions about the situation in which the plan 
is to be executed, and perhaps a partial solution. This can then be refined through the 
hierarchy into greater levels of detail while also addressing issues and flaws in the 
plan.

The work of Erol, Hendler, and Nau (1994) 42 addresses “the problem of a lack of a clear 
theoretical framework for ATN planning.” Early papers by Yang (1990) 43 and Kambhampati and 
Hendler (1992) 44 focused on this problem but from a syntactic rather than semantic point of view. 

In the HTN planning world, basic actions are represented in a manner similar to the representa-
tions used in STRIPS. 45, 27 Each “state” of the world as it is changing is represented by collections 
of atoms, and operators are used to associate effects with actions (what we called primitive tasks).43 

STRIPS and HTN fundamentally differ in their representation of “desired change” in the world. 
In HTN, STRIPS-style goals are replaced by tasks and task networks.45 Task networks as de-

scribed earlier are also called “procedural nets.” Figure 14.13 presents the essence of the basic HTN 
Planning Procedure used by several heuristic systems. 2, 13, 15, 44, 45 HTN planning, as shown here, 
works by expanding tasks and resolving conflicts iteratively, until a conflict-free plan can be found 
that consists only of primitive tasks.43 
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Expansion of non-primitive tasks (steps 3–5 in Figure 14.13) is accomplished by choosing an 
appropriate reduction. That reduction in effect specifies one possible way of accomplishing the 
task. Reductions are stored as methods, which consequently associate non-primitive tasks with task 
networks. 

Sometimes interactions between tasks can be conflicting, which can be caused by step 5. The 
job of discovering and resolving such interactions is performed by so-called critics. The notion of 
critics was introduced in the early program NOAH 17 (see Section 14.4.2) to “identify and deal with 
several kinds of interactions (not just deleted preconditions) between the different networks used 
to reduce each non-primitive operator.” 17 Steps 6 and 7 show the use of the critics to recognize and 
resolve interactions. The effect is that the critics are able to facilitate recognition of interactions and 
thereby reduce the amount of backtracking necessary. 

Erol et al.42 developed a formalism for HTN planning. The details of their formalism are be-
yond our discussion here, but they were able to demonstrate that HTN planning is more expressive 
than planning without decompositions. The semantics of their formalism also enabled deeper un-
derstanding of HTN planning systems, such as tasks, task networks, filter conditions, task decom-
position, and critics. 

Hierarchical planning has been extensively deployed in practical applications such as logistics, 
military operations planning, crisis response (oil spills), production line scheduling, construction 
planning, space applications such as mission sequencing and satellite control, and software devel-
opment. 

1.  Input a planning problem P.
2.  If P contains only primitive tasks, then resolve the con�icts in P and return the result. If the
     con�icts cannot be resolved,
     return failure.
3.  Choose a non-primitive task t in P.
4.  Choose an expansion for t.
5.  Replace t with the expansion..
6.  Use critics to �nd the interactions among the tasks in P, and suggest ways to handle them.
7.  Apply one of the ways suggested in step 6.
8.  Go to step 2.

Figure 14.13
The basic HTN planning procedure.

 14.3.4  Case-Based Planning
Case-based reasoning is a classical AI technique that is closely tied to the ability to describe 

previous instances of a state in a world and then to identify how well new situations in that world 
match an earlier case(s). In the world of law and medicine, it has everything to do with recognizing 
precedent. If you are able to do so then you should be able to perform adequate matching to that 
precedent case and then to choose the statically based course of action. 

In case-based planning, learning occurs by plan replay and by performing a “derivational anal-
ogy” with previous plans that have worked in similar situations. Case-based planning is concerned 
with reuse of plans that have succeeded in the past and recovery from plans that have failed. 46 

Case-based planners are designed for the solution of the following problems: 

• Plan-Memory Representation, basically, refers to the issue of deciding what to store and 
how memory will be organized in order to retrieve and reuse old plans effectively and 
efficiently.
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• Plan Retrieval handles the issue of retrieving one or more plans which solve problems 
similar to the current one.

• Plan Reuse solves the issue of being able to reuse (adapt) a retrieved plan in order to 
satisfy a new problem.

• Plan Revision refers to the issue of testing the new plan for success and repairing it if a 
failure occurs.

• Plan Retention handles the issue of storing a new plan in order to be useful for future 
planning. Usually, if the new plan fails, it is stored with some reason for its failure. 

Spalzzi 46 surveys a number of systems across these five parameters. Case-based planners can 
accumulate and negotiate successful plans with justified local choices. Partially matched learned 
experience is reused and new problems need only to be similar for reuse. The system called “Prod-
igy/Analogy” 47 performs “lazy” generalization, as learned episodes are not explained for correct-
ness. Therefore, no complete domain theory is required. It is hard to improve on provably correct 
learned knowledge. Learning at local decisions could increase the transfer of learned knowledge 
(but it also increases the matching cost). Hence, it is also necessary to define a similarity metric 
between planning situations. Modern planning systems are often linked with machine learning 
methods for tasks such as this. 

 14.3.5  A Potpourri of Planning Methods
We have spent a significant portion of this chapter covering several major planning techniques 

that define the discipline, including search (14.3.1), partial order planning (14.3.2), hierarchical 
planning (14.3.3), and case-based planning (14.3.4). However, there are many more planning tech-
niques that have been explored and developed by researchers. We feel that it is important to men-
tion the following:

Logic-based planning (also called change-based planning) – The planner will try to generate 
a plan, Gamma, which, when executed by the acting module or the executor (when the system is in 
the state i satisfying the initial state description), will result in the state g satisfying the goal state 
description. This approach often leads to discussion of the situation calculus. This is the approach 
favored by Genesereth and Nilsson in their text Logical Foundations of Artificial Intelligence.

Operator-based Planning– Actions are represented as operators. This approach, also called the 
STRIPS approach, utilizes various operator schema and plan representations. 

Reactive approaches are listed as follows: 

• Planning & Execution – planners think, executors do
• Predictability (thinking) vs. Reactivity (doing) 
• Online vs. off-line planning; classical planning done off-line, the generated plan fed to 

the online execution module 
• Closed vs. Open loops; reaction rules encode sense-act cycles 
• Triangle tables 
• Universal plans 
• Situated automata 
• Action nets 
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• Reactive action packages 
• Task-control architectures 
• Subsumption architectures 

There are many additional techniques: planning as conditional planning, constraint satisfac-
tion, plan graph search, planning as model checking, planning on a computational grid, planning 
using temporal logic, distributed and multiagent planning, planning under uncertainty, probabilistic 
planning, planning and decision theory, mixed-initiative planning, and so forth. 

 14.4  EARLY PLANNING SYSTEMS
In this Section, we will explore three early systems that were particularly significant in the his-

tory of planning research and development. We start with undoubtedly the most famous system, 
STRIPS. Then we move on to one of its successors at Stanford Research Institute, which general-
ized on the planning ideas behind STRIPS, namely NOAH. We follow with NONLIN, which took 
the ideas of NOAH a step further.

 14.4.1  STRIPS
As mentioned in Section 14.1.1, STRIPS—or Stanford University Institute Problem Solver 

(Fikes, Hart, and Nilsson, 1971)—was one of the earliest and most fundamental planning systems. 
Even the language of STRIPS, of which we have seen examples throughout this chapter, has been 
a standard (e.g., Grasp (x), Puton (x,y), ClearTop (y), etc.). It was able to represent application of 
domain states in first-order logic and could represent changes to its domain state. It could also use 
means-ends analysis to identify goals and subgoals that needed to be achieved as prerequisites to a 
solution. STRIPS operators provided a simple and effective framework in which search and action 
in a domain could be represented. As we’ve seen, they formed the basis for much future work in 
planning.

For example, here is how STRIPS might represent the world of a robot waiter: 

At (Robot, Counter) and On (Cup-a , Table-1) and On (Plate-a, Table-2).

The following action arcs might represent the movement or pickup action of the Robot waiter:
Operator Pickup(x)

Preconditions: On(x,y) and At(Robot, y)

Delete list: On(x,y)

Add list: Held(x) 
In the case of this example, the robot would need to get to two objects on two tables. STRIPS 

would have three kinds of lists: (1) precondition lists that needed to be satisfied for an action to be 
performed, (2) a delete list for preconditions that have been satisfied or changed, and (3) an add list 
for changes to the world state when an action was performed. One can see how attractive such a 
system is for representing simple worlds. However, as a world becomes more complicated, you can 
see how the task of maintaining these lists would become very cumbersome (even for a computer). 
This leads naturally to the aforementioned frame problem. 
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Two other problems were identified as a result of the STRIPS world. The first of these was 
the ramification problem, in other words, what are the ramifications of changes that occur in the 
world as a result of an action(s)? For example, if the robot gets from point A to point B, is Block A 
still on Block B? Does the robot still have tires on its wheels? Does it still draw the same amount 
of electricity for operation? 

As we see, questions regarding the state of blocks are easy to answer, but once we get into ques-
tions that involve issues of self-state awareness (consciousness) and common sense knowledge, the 
problem of ramifications becomes more serious. The other problem that STRIPS brought to the fore 
was called the qualification problem. That is, when some action is performed (e.g., putting a key 
in a lock), what are the necessary qualifications that define success? If the key does not open the 
door, what could be wrong (e.g., I have the wrong key, the lock is broken, the key is worn out, etc.)? 

As you can see, STRIPS was a very important system in the history, thinking, and development 
of systems for automated planning.

 14.4.2  NOAH
In his seminal work, A Structure for Plans and Behavior (1975), 17 Earl Sacerdoti describes 

the concepts behind his program “NOAH” (Nets of Action Hierarchies). His colleague at Stanford 
Research Institute, Nils Nilsson, considers the work a milestone in three respects:

 1. It was a major contribution to the techniques for developing a plan hierarchy as opposed 
to a single-level plan.

 2. It introduced and exploited the idea of representing a plan as a partially ordered sequence 
that made no more than the necessary commitments to the time-ordering of steps.

 3. It developed mechanisms enabling planning systems to examine their own plans so 
that these plans could be improved and so that plan execution could be intelligently  
monitored. 17, p. ix

These were distinct advances over GPS, STRIPS, and MIT’s Blocks World, which were limited 
to actions at a single level.

Sacerdoti summarizes the importance of NOAH 17, p. 105:

the structure of knowledge about actions within a computer memory is as important 
as the content of that knowledge. 

NOAH used a high-level PLANNER-like language to cause the creation of nodes in a net-
work, rather than to execute code. The nodes represent frame-like (in the Minsky sense) actions 
that constitute a plan. Nodes have individual procedures attached to them but can also have many 
declarative properties that can be independently accessed. Analysis of these declarative properties 
allowed the system to analyze actions. The development and study of NOAH contributed to early 
AI debates regarding the relative merits of procedural and declarative knowledge, in that frames 
embodied both kinds of knowledge. 

NOAH brought to bear three kinds of knowledge: (1) problem solving, (2) domain-specificity 
in the procedural specification of actions, and (3) a database of symbolic knowledge for handling 
specific situations. In summary, NOAH contributed to automated planning, particularly in the fol-
lowing ways: 
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 1. It used imperative semantics to generate frame-like structures (as described above).
 2. It accounted for the nonlinear nature of plans; plans are viewed as partial orderings with 

respect to time. This also avoids the necessity for deep backtracking caused by linearity.
 3. Planning can be done at many levels of abstraction.
 4. It provided execution monitoring and easy error recovery with hierarchical plans. 
 5. It provided abstraction for representation of iteration.
 6. It encouraged the importance of structure to help deal with a mass of knowledge at differ-

ent levels of detail. 

 14.4.3  NONLIN
The NONLIN system was developed by Austin Tate (1977) 48 as a continuation of the “land-

mark work on the NOAH planner at SRI,” 17, 49 for the generation of a plan as a partially ordered 
network of actions. NONLIN was a plan-space planner (as opposed to a state-space planner) in 
which the problem space is searched backward from a goal for a solution plan. It used a functional, 
state-variable representation for plan generation. NONLIN’s goal structure-based plan develop-
ment considered alternative “approaches” based on a plan’s rationale. 

NONLIN can perform Question / Answer modal truth criterion conditions. That is, it can re-
spond to two kinds of query: 49 

 1. Does statement P have value V at node N in the current network? (Choices for V’s values 
are “definitely V, definitely not V, or undecidable”.)

 2. What links would have to be added to the network to make P have a certain value at N if 
it did not have this value in the given network? 

To answer questions of the first type, NONLIN would find “critical” nodes in the network that 
could be used to provide a truth result. 

We had mentioned in the previous section that NOAH made a decision at choice-points in 
a manner that avoided backtracking, but this could lead to some incompleteness of the search 
space—meaning that some simple block-pushing tasks could not be accomplished by NOAH. In 
contrast, NONLIN could suggest two orderings at a choice-point, thereby avoiding the possible 
incompleteness of NOAH mentioned above. 

NONLIN also had a Task Formalism (TF) that could enable actions to be specified in a domain 
in a hierarchical fashion. Its purpose was to encourage the writing of modular job descriptions at 
various levels of detail. Thereby, subtask descriptions could be written independently of how they 
would be applied at higher levels.49 These formalisms include the following information: 

• When to introduce an action in the plan
• The effects of an action
• What conditions must hold before an action can be performed
• How to expand an action to lower level actions 

NONLIN also had a provision for an explicit record of the conditions on any node, together 
with the nodes that achieve those conditions (i.e., the goal structure of the network). This provided 
a simplified representation of the plan, which is of benefit in directing the planner’s search. 
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NONLIN had many other good features, highlighted by Tate (1983) 50 in his paper, “The Less 
Obvious Side of NONLIN”—including a table of multiple effects (TOME), a search control strat-
egy using heuristic and dependency-directed, typed (pre)conditions for planning, and planning with 
time or cost information, among others. 

One of the most important features of NONLIN was considered to be that it maintained a Goal 
Structure Table during planning to record what facts had to be true at any point in the network and 
the possible “contributors” that could make them true. In this way, the system could plan without 
choosing one of the (possibly multiple) contributors until this was forced by interaction detection 
as described above. 

 14.5 MORE MODERN PLANNING SYSTEMS
In this Section, we will explore a few of the newer planning systems that have been developed 

during the past two decades. The first of these will be O-Plan, and this will be followed by Graph-
plan. 

 14.5.1  O-Plan
O-Plan 18, 20 is Austin Tate’s successor to the already acclaimed NONLIN system and was de-

veloped between 1983 and 1999 at the University of Edinburgh. O-Plan is written in Common Lisp 
and is available as a web-planning service (since 1994). 20, 51 It has a wide variety of applications, 
which we shall soon list. O-Plan expands on the earlier work of Tate in NONLIN, described in the 
previous section as a hierarchical planning system that can generate plans as partially ordered net-
works of activities. These networks can check a variety of constraints on time, resources, search, 
and so forth. 

O-PLAN, like NONLIN before it, was a practical planner and could be used for a variety of AI 
planning features: 

• Domain knowledge elicitation and modeling tools
• Rich plan representation and use
• Hierarchical Task Network Planning
• Detailed constraint management
• Goal structure-based plan monitoring
• Dynamic issue handling
• Plan repair in low- and high-tempo situations
• Interfaces for users with different roles
• Management of planning and execution workflow

Listed below is a variety of realistic applications where O-plan has been used: 

• Air Campaign Planning 52

• Noncombatant Evacuation Operations 52

• Search & Rescue Coordination 53

• US Army Small Unit Operations 54
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• Spacecraft Mission Planning 55

• Construction Planning 18

• Engineering Tasks 56

• Biological Pathway Discovery 57

• Unmanned Autonomous Vehicle Command and Control 20

O-Plan’s design was also used as the basis for Optimum-AIV, 58 a deployed system used for 
assembly, integration, and verification, in preparation of the payload bay for flights of the European 
Space Agency Ariane IV launcher.

More details of O-Plan technology are available at http://www.aiai.ed.ac.uk/project/oplan/. 
A range of simple and more comprehensive demonstrations of the O-Plan planning web service 

is available at http://www.aiai.ed.ac.uk/~oplan/.

A p p l i c A t i o n  b o x

Practical Applications of Edinburgh AI Planners

1975: NONLIN – Electricity Turbine Overhaul Procedures (UK CEGB)
1982: Deviser based on NONLIN – Voyager Mission Planning (NASA JPL)
1996: OPTIMUM_AIV based on O-Plan – ESA Ariane IV AIV for payload bay
1996–Present: Search and Rescue (UK RAF and USA JPRA)
Commercial applications for Nynas tanker scheduling and Edify for financial help desks 

Figure 14.14
Practical applications for O-Plan (http://www.aiai.ed.ac.uk/project/plan/ ).
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A simple planning service that O-Plan provided over the Web was as a Unix Systems Admin-
istrators Script writing aid. The planner could generate a suitable script for the task of stating the 
requirements for mapping physical to logical Unix disk volumes. This was an example of using AI 
planning where the basic components are familiar, but their specific combinations are numerous. 

O-Plan was also used for Multi-User Planning Services. Here multiple users could work with 
O-Plan simultaneously in a mixed-initiative fashion. Work with the US Army identified stages in 
the Small Unit Operations (SUO) command, planning, and execution process at US Army company 
level, from receipt of mission to successful outcome. 59, 20 

O-Plan is also an example of successful design with an open planning architecture. This is 
greatly facilitated by Lisp in that key components could be plugged in as needed. O-Plan finds a 
plan by exploring a search space of partial plans. “Issues” represent the missing parts of a partial 
plan. These identify which actions need to be expanded into sub-actions or conditions that need to 
be satisfied. At the top level, O-Plan has a controller that repeatedly selects an issue and invokes a 
“knowledge source” to resolve all issues. 

Knowledge sources can make decisions about what to put in the plan and what parts of the 
search space should be visited. A plan is then built by adding nodes to a partially ordered network 
of actions and by adding constraints that represent pre- and post-conditions on actions, time limita-
tions, resource usage, and other things. 59 

Constraint managers determine what constraints can be satisfied and communicate to knowl-
edge sources possible ways to do this. In this flexible architecture, knowledge sources and con-
straint managers can be added, removed, and replaced as needed. 60, 61

O-Plan has been followed by I-X, 62, 63 which provides a more general approach to support 
mixed-initiative planning, configuration, and so forth. O-Plan continues to be available as a plan-
ning service on the Web, and can be utilized for this purpose via I-X. 20 

 14.5.2 Graphplan
Graphplan is a planner that works in STRIPS-like domains by constructing and analyzing a 

compact structure called a planning graph. A planning graph encodes a planning problem with the 
intent of exploiting inherent problem constraints to reduce the amount of search necessary. 

As we’ve stressed throughout this text, search is a very important process in AI. Some people 
even view the search process in itself as the essence of AI, whereas others are more concerned with 
knowledge. It is clear that search without knowledge and direction (constraints) will result in a con-
siderable amount of wasted effort and sometimes (in a complex domain) will never find a solution. 
However, knowledge without search is a bit like “the DNA of an insect stuck in resin”—that is, it is 
useful but it can’t move. In any case, we can rest assured that knowledge (intelligence, heuristics) 
employed to limit search is a good thing. 

Planning graphs can be constructed quickly (polynomial 
size and time) and a plan is a kind of “flow” of truth-values 
through the graph. 21 Graphplan is strongly committed to search 
in which it combines aspects of both total-order and partial-or-
der planners. It performs search in a kind of “parallel” plan way, 
assuring that a shortest plan will be found among these plans—
which will then be pursued independently. 

In the domain of Graphplan, a valid plan is one that consists 
of a set of actions and specified times in which each action is to 
be carried out.

Recall that an action is a fully-instantiated 
operator, for example, Put X on Y. This 
means that all the actions at time t add 
to the world all the propositions that are 
among Add-Effects and deletes all the 
propositions that are among its Delete-
Effects. 
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Actions will occur at time 1 and then others at time 2 and so on. Actions can be specified to 
occur at the same time step as long as they do not interfere with each other.

Two actions are said to interfere with each other if one deletes a precondition or an add-on ef-
fect of the other. In a linear plan, independent parallel actions can be performed in any order with 
exactly the same outcome. A plan at any time t is deemed valid if all the preconditions at any time 
prior to t have been met and the Problem Goals are true at the final time step. This translates to: a 
plan is valid at time 1 if all the plan’s preconditions have been met, at a time > 1, if all the Add-
Effects of some action at a time t – 1 have been met. 21, p. 4

Planning graphs are similar to valid plans, except that the requirement that actions at a given 
time step do not interfere is removed. An important aspect of Planning Graph Analysis is the abil-
ity to notice and propagate certain mutual exclusion relations among nodes. Two actions at a given 
action level in a Planning Graph are said to be mutually exclusive if no valid plan could possibly 
make both true. 

Here is an example from the real world, illustrating mutual exclusion. You have made an ar-
rangement to visit your mother. When you visit your mother she requests only two things: 

(1) that you be on time and (2) that you be dressed nicely. 
Now that’s not asking for too much is it? However, you find that you’re about to leave your 

home with 30 minutes to go and it’s a 25 minute trip to mom’s place. You consider your clothing 
and discover you don’t have any slacks that are “nice” and you haven’t had your morning coffee to 
be able to drive safely to mom. It should quickly become clear that your necessities (actions / goals) 
are mutually exclusive. You cannot get changed, get coffee, and be on time for mom. If you don’t 
change clothes, your mom won’t be happy, and if you don’t get that coffee, you might not be able 
to reach her safely. What should you do? 

Identifying mutual exclusion relationships can be of enormous help in reducing the search for 
a sub-graph of a Planning Graph that might correspond to a valid plan.21, p. 5 Mutual exclusion pro-
vides a mechanism for propagating constraints throughout a graph. A simple and useful fact is that 
an object can be in only one place at a time t. This facilitates limitation of the possible preconditions 
that could be part of a solution. 

In experimental studies on several familiar problems in the planning world, including the 
Rockets Problem, the Spare Tire Problem, and the Monkeys and Banana Problem, Graphplan fared 
favorably over the UCPOP and PRODIGY systems. 

 14.5.3  A Potpourri of Planning Systems
In this Section, we have reviewed three older, classic systems in the history and development 

of automated planning (STRIPS, NOAH, and NONLIN) and two newer systems for planning (O-
PLAN and GRAPHPLAN). The figure below, Figure 14.15, illustrates that there are many more 
planning systems and planning techniques that have been developed. We have discussed many of 
them here, but others, such as constraint satisfaction planning, plan refinement, optimization meth-
ods, multiagent planning, re-planning, plan learning, and mixed-initiative planning, have not been 
discussed because of limitations of time and space.
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Planning Research Areas, Systems, and Techniques2

• Domain Modeling: HTN, SIPE
• Domain Description: PDDL, NIST PSL
• Domain Analysis: TIMS 

• Search Methods: Heuristics, A* 
• Graph Planning Algorithms: GraphPlan
• Partial-Order Planning: NONLIN, UCPOP 
• Hierarchical Planning: NOAH, NONLIN, O-Plan 
• Refinement Planning: Kambhampat
• Opportunistic Search: OPM 
• Constraint Satisfaction: CSP, OR, TMMS
• Optimization Methods: NN, GA, Ant Colony Opt.
• Issue/Flaw Handling: O-Plan

• Plan Analysis: NOAH, Critics 
• Plan Simulation: QinetiQ 
• Plan Qualitative Modeling: Excalibur

• Plan Repair: O-Plan
• Re-planning: O-Plan
• Plan Monitoring: O-Plan, IPEM

• Plan Generalization: Macrops, EBL 
• Case-Based Planning: CHEF, PRODIGY
• Plan Learning: SOAR, PRODIGY

• User Interfaces: SIPE, O-Plan 
• Plan Advice: SRI/Myers
• Mixed-Initiative Plans: TRIPS/TRAINS

• Planning Web Services: O-Plan, SHOP2

• Plan Sharing & Comms: I-X, <I-N-C-A> 
• NL Generation … 
• Dialogue Management …

Figure 14.15
Planning research areas and systems that have been developed.2

 14.5.4  A Planning Approach to Learning Systems
Planning systems, as described in this chapter, have been applied successfully to various do-

mains. This section presents a learning system for planning to increase the effectiveness of concept 
representation, integration, and application. The planning approach is explored for teaching object-
oriented programming and design to novice programmers.

A Plan-Oriented Learning Environment for Novice Object Design

A serious problem for computer science departments is the attrition and failure rate in the in-
troductory programming course. Instructors are constantly seeking ways to enhance the teaching 
of programming in an effort to resolve learner difficulties. Despite various enhancements in pro-
gramming languages, environments, and pedagogical approaches, novices are still faced with many 
challenges when learning to program—particularly the additional layers of abstraction presented 
by the object-oriented paradigm.

Plans can be used to capture the way expert programmers represent programming knowledge, 
and the visualization of plans in a learning system can be used to enhance novices’ learning of 
programming in the object-oriented paradigm. 22 It has been shown that experienced programmers 
utilize plan representations to encode programming concepts and tasks. 64 Novice programmers 
lack this higher level (plan) knowledge that experts have built up over years of experience. Pre-
senting programming knowledge to novices in a structured plan representation can facilitate their 
understanding of various programming concepts, such as abstraction in OOP. Studies of novice 
programmers reveal that most major errors are a result of incorrect plan integration and misconcep-
tions related to objects, such as correct object representation and incorporation of OOP concepts 
into problem solving. 65

A Plan-Object learning paradigm that reinforces concepts of object design through plan repre-
sentation can aid students’ ability to design and implement objects, as well as increase their ability 
to utilize objects in problem solving. Web Plan Object Language (WPOL) 65 is an online learning 
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environment that utilizes the Plan-Object approach with three phases of learning: plan observation, 
integration, and creation. The observation phase demonstrates, step by step, a sample solution to 
a problem in terms of plans and objects. The integration phase tests a novice’s ability to integrate 
plans properly to form a solution and reinforces concepts of plan integration and object design. In 
the creation phase, the student can customize plans and design new objects.

The Plan-Object Paradigm represents the conceptualization and design stage of objects and 
presents a method for early assimilation of OOP. Objects are explicitly defined and given context 
within the plan framework. An Object Plan consists of Data Member, Member Function, and Ob-
ject Utilities sub-plans (class components). Depending on the application, appropriate Variable(s) 
and/or Function(s) will be created and integrated. An Object’s Utilities include Set Plan, Get Plan, 
Constructor, and Destructor sub-plans. 

The Plan-Object Paradigm applies the concept of plans to object-oriented programming. The 
Plan-Object approach enhances novice programmers’ ability to design, implement, and integrate 
objects into their programs. An empirical study was conducted to measure novices’ performance 
on a sample case study involving objects and problem solving. The programs of students exposed 
to the Plan Object Paradigm and WPOL demonstrated a 56.7% reduction in problem-solving er-
rors related to objects and 54% fewer total errors related to algorithm and problem-solving plans. 
The visual experience of Plan and Object design, integration, and implementation enhances novice 
programmers’ capabilities in terms of object representation and incorporation of plans and objects 
into a solution.

 14.5.5  The SCI Box Automated Planner

https://info.aiaa.org/tac/SMG/SOSTC/Workshop%20Documents/2010/Choo_APL_Sci-
Box%20Planning%20System.pdf. 

Figure 14.16
An overview of the SciBox System.

Planning science missions in space is always a time-consuming, laborious, and expensive pro-
cess. It requires many iterations and considerable coordination among many teams—sub-system 
engineers, orbit and pointing analysts, command sequencers, mission operators, and instrument 
scientists. Project schedules are tight and only so many iterations can be performed. As a result, 
spacecraft resources are frequently not optimally utilized.

SciBox (see Figure 14.16) is an end-to-end automated science planning and commanding sys-
tem. The system begins with science objectives, derives the required observing sequences, sched-
ules those observations, and finally generates and validates uploadable commands to drive the 
spacecraft and instruments. The process is automated, and there is no manual scheduling of science 
operations or construction of command sequences, except for limited special operations and tests.

SciBox development began in 2001 for the MESSENGER mission to Mercury and proceeded 
in incremental stages, with various key software modules being tested on other spaceflight mis-
sions.

Goal-based planning and commanding systems using SciBox have been successfully employed 
for the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) instrument on the Mars 
Reconnaissance Orbiter (MRO) in 2005 and the Miniature Radio Frequency (MiniRF) instruments 
onboard Chandrayaan-1 and the Lunar Reconnaissance Orbiter (LRO) in 2008 and 2009, respec-
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tively. Goal-based planning systems decouple science planning from command generation and al-
low scientists to focus on science-observation opportunity analysis instead of commanding details.

NASA’s MESSENGER spacecraft was launched on August 3, 2004. On March 18, 2011, MES-
SENGER entered into a non-Sun-synchronous, highly eccentric 200 × 15,200-km-altitude orbit 
with an inclination of 82.5° and a period of approximately 12 hours. MESSENGER began its 
primary science phase on April 4, 2011. By that time, the technology had matured to the point that 
it was used to plan and command all orbital science operations for the mission to Mercury. MES-
SENGER’s mission was to address the following scientific questions:

 1. What planetary formational processes led to the high ratio of metal to silicate in Mercury?
 2. What is the geological history of Mercury?
 3. What are the nature and origin of Mercury’s magnetic field?
 4. What are the structure and state of Mercury’s core?
 5. What are the radar-reflective materials at Mercury’s poles?
 6. What are the important volatile species and their sources and sinks on and near Mercury?

To answer these questions about Mercury, SciBox would automate a planning process that 
started with the measurement objectives, which can be divided into three types: those that require 
continuous observing, those that require building observation coverage under specified observing 
conditions, and targeted observations where acquisition of global data is not feasible. The Sci-
Box architecture consists of four main components—opportunity analyzers, constraint checkers, 
priority scheduler, and the command generator—which streamline a process that starts with mea-
surement objectives and produces spacecraft and instrument sequence of commands. Opportunity 
analyzers’ task is to find all opportunities to make desired observations within specified constraints. 
For each observation opportunity, the constraints checker systematically validates the observing 
operation so that it complies with the operational constraints placed on the spacecraft and instru-
mentation by the engineers. The priority scheduler then sorts the observing opportunities validated 
by the constraint analyzer, weighing them against each other based on their priority. For example, 
an observing opportunity which occurs more frequently might be given a lower priority. Within a 
given type of observation, opportunities are also ranked by a quality metric (such as resolution or 
illumination) that is calculated based on predicted range to target, solar position, etc. The priority 
scheduler then selects the best observation opportunities and inserts them into a timeline in order 
of decreasing priority, until the available spacecraft resources (e.g., spacecraft pointing restrictions 
to ensure thermal safety of the spacecraft, variable available downlink volume due to Earth-Mer-
cury distance variations and solar conjunctions, solid-state recorder space) are used up. Next, the 
conflict-free schedule is fed to the command generator, which creates a sequence of commands for 
upload to the spacecraft and instruments. At the same time an HTML report is produced for review.

SciBox has not only reduced the lead time for operations planning which requires a time-
consuming coordination among different specialized teams. It also reduced cost by automating the 
hitherto manual adjudication of observing priorities which expended many man-hours, reduced 
operations risk by systematically checking constraints, and maximized the scientific value of the 
mission by weighing the trade-offs between the observing opportunities. This enabled negotia-
tion of MESSENGER science priorities against operational constraints such as spacecraft recorder 
space, downlink bandwidth, scheduling, and orbital-geometry.
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 14.6  CHAPTER SUMMARY
Chapter 14 provides an overview of Automated Planning in the context of Artificial Intelli-

gence. We began by introducing the notion of planning, which is a feature of human intelligence. 
Planning involves knowing what steps need to be completed to finish a particular task or to reach 
a goal, and the order in which we execute steps in a plan can change based on various conditions. 
Can we develop agents and systems that exhibit a humanlike ability to reason and solve prob-
lems? There are many things to consider when designing such a system, including representing 
the agent’s world in a well-defined manner, keeping track of changes that take place in the world, 
predicting what effects an agent’s actions will have, handling new obstacles, and formulating a plan 
that will enable the agent to reach its goal.

Throughout the chapter, we discussed many existing planning applications—from chess and 
bridge to robotics and computer animation. We also presented the major planning methods such 
as search (state space search, means-ends analysis, heuristic search methods), partially ordered 
planning, hierarchical planning, and case-based planning. As a background and history, we re-
viewed classic early planning systems that contributed immensely to the field of planning, includ-
ing STRIPS, NOAH, and NONLIN. More modern systems, such as O-Plan and Graphplan, have 
expanded the field of planning by introducing and incorporating new techniques. Sections 14.5.4 
and 14.5.5 present and explore two implemented and developing planning systems, WPOL and 
SciBox, respectively. 

Questions for Discussion

 1.  Why would one want to get a computer to be able to plan?

 2.  What are the essential components of a plan in the computer sense?

 3. What was the first problem-solving system that performed planning? What was its purpose?

 4. What is the system that many future planning systems were based on? Where was it 
developed? What could it do?

 5. What system was developed to generalize on this system? 

 6. Name five different kinds of search methods in planning.

 7. What is least-commitment search?

 8.  Explain how means-ends analysis works.

 9.  How would you distinguish planning from other kinds of play in games?

  10. What is the Frame Problem? What is the Qualification Problem? What is the ‘Ramification 
Problem’?

  11. Distinguish between partially and totally ordered planning.

  12. Name and describe five planning techniques. 

  13. How did NOAH improve on what STRIPS started?

 14.  What is “One-Then-Best Backtracking”?
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 15. What is Sussman’s Anomaly?

 16. What was the main feature of NONLIN?

 17. What does O-Plan offer that the earlier planners didn’t?

 18. Name several areas where practical planners have been built.

Exercises

 1.  Recall the Donkey Puzzle presented in Chapter 3. Explain how you would define subgoals 
to solve this problem. How would a program recognize when the subgoals have been 
accomplished? Are there any preconditions to the subgoals?

 2. In the World of STRIPS, use the standard operators and actions to place three blocks—A, B,  
C—on top of each other on a table starting in the state, A is on C and B is on the table.

 3. How would you get three blocks on Table X to be stacked on Table Y in the order A, B, C 
with block A on top? What operator(s) do you need in addition to those in Problem 2?

 4. What did the Sussman Anomaly demonstrate?

 5. Try one of the Practical Planners on the University of Edinburgh Web site www.aiai.ed.ac.uk 
/project/oplan and report on your experience.

 6. Consider how a STRIPS-like system would solve the famous Monkeys and Bananas Problem 
posed by John McCarthy:

The Monkey is faced with the problem of getting a bunch of bananas hanging from 
the ceiling just beyond his reach. To solve this problem, the monkey must push a box 
to an empty place under the bananas, climb on top of the box, and then reach them. 

The constants are monkey, box, bananas, and under-bananas. 

  The functions are reach, climb, and move, meaning the following: 

Reach (m, z, s): The state resulting from the action of m reaching z, starting from 
state s.

Climb (m, b, s): The state resulting from the action of m climbing b, starting from 
state s.

Move (m, b u, s): The state resulting from the action of m moving b to place u, 
starting from state s.

  Try to solve this problem with a logical series of operations using these functions.

 7. How might a computer-planning program be helpful to the military?

 8. How could computer planning be helpful in coping with natural disasters?

 9. Describe how a human’s approach to planning is different from how a computer might tackle 
a planning problem. Describe how each one’s methods might also be similar. 
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 10. Write a five-page report on multiagent planners. What are the most recent systems, who 
developed them, how successful are they, what tests have been done with them, and so forth? 
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A new addition to this Part is Robotics (Chapter 15) which exploits research discussed in 
the previous Chapters and has witnessed great strides in recent decades it will likely open 
new vistas for  AI methods to greatly impact in the near future. 
Games have been played and tackled by AI researches from its beginnings. Checkers, 
chess, Othello, backgammon, bridge, poker, and Go are all well-known human arenas 
for competition. Despite AI’s leading to computer mastery of all these games, (except 
Go which has been called the new drosophila for AI) humans can still enjoy them, be 
competitive and find room for symbiosis (e.g. Chess) – Chapter 16.
Finally Reprise (Chapter 17) summarizes where we’ve been and where we’re possibly 
going.
The time arrives for us to review our journey through AI and consider where we have 
been and what the future holds. 
An exciting recent example with IBM Watson playing Jeopardy on a par with the best 
human contestants provides optimism that the Turing Test will soon be tackled and 
conquered by machines in new frontiers and arenas. 
The burning questions which will lie before us in the coming decades include:
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1. What defines a person – given all the augmentations we may soon acquire (better vision, 
better calculation skills, better health, longer life, etc.) ? 

2. Where, when, and what will define a person’s real identity – one’s essence (soul) ? 

3. Who will receive the best care (augmentations, resources) when there are limitations on 
availability?

4. And if life will be extendable in these ways, how will overpopulation be prevented?
5. How will we maintain “control” over the machines we have created? 



■ ■ ■ ■ ■

The chapter introduces the subject 
of Robotics which is no longer 
just a look into the future but has 
been developing for many years, is 
happening now, and will continue 
to emerge as a part of human 
life for the unforeseeable future. 
First, we present the philosophical 
and pragmatic issues of the field, 
then we review the history of 
man trying to create machines 
that emulate what he/she does, or 
recreate himself. There follows a 
discussion of the technical issues 
that must be addressed when robots are built. Then a number of applications of robotics today 
are presented. The chapter concludes with a presentation and discussion of a new Turing Test 
called “The Lovelace Project.”
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Figure 15.0
The “Urbie” urban robot during vision-guided, autonomous stair climbing (courtesy NASA). 

Sebastian Thurn.
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 15.0 INTRODUCTION
“In the Year 2525 (Exordium et Terminus)”—This was the title of the number one hit song by 

Zager and Evans in 1969. 
The song projects what may happen to mankind in the coming millennia. Its “thesis” is the 

premise that man will continue to “dehumanize” himself in the coming years as he/she succumbs 
to technological advances. 

That is not the subject of this chapter, but it sets the tone for the kinds of considerations for the 
future of mankind that we are required to look into when seeking advances in robotics. Here we are 
able to guess, dream, imagine, or “look into the crystal ball” to consider how our lives will change. 
Robots are no longer just a futuristic topic as they were in the early history of AI—they are a real-
ity of life and becoming more and more a part of everyday life. Advances in robotics are integrally 
tied to advances in AI. 

Let us consider now a small, future robot scene in a middle-class American home: 

MrTomR: Bobby you should have breakfast now. 

Bobby: (cries and runs around the kitchen) 

MrTomR: Bobby please sit down here. (indicates to Bobby where he should sit, pointing)

Bobby: (finally sits down in a chair in the kitchen)  

MrTomR: What would you like for breakfast today?

Bobby: What are my choices? 

MrTomR: Let’s see. I could make you toast, with juice and milk;  Or a bowl of cereal with milk 
and juice. Or I could make you scrambled eggs with English muffins. 

Bobby: MrTomR could make me toast with coffee? 

MrTomR: Bobby you know you are not allowed to drink coffee.  

Let us consider what this dialogue entails and what kinds of information, knowledge, and  
state of the art/technological advances this dialogue entails. Every sentence by both five-year-old 
Bobby and MrTomR gives a significant clue to the state of the world when this dialogue could take 
place. 

MrTomR is a robot whose task is similar to that of a butler or nanny who is to take care of a 
five-year-old. The parents of Bobby are away at work or on a weekend vacation. MrTomR is doing 
what he is capable of to simulate the interactions that might take place. Let us analyze what kinds 
of intelligence MrTomR must have to be able to conduct this dialogue: 

First Mr TomR suggests that Bobby should have breakfast at a particular time. That is not 
a difficult programming task. The only thing that is sophisticated about this is the robot’s ability to 
speak a sentence that is understandable. The sentence in itself can be constructed from a menu of 
commands that MrTomR is programmed to speak in certain trigger situations. Here the triggers are: 
1) Bobby is home alone being cared for by MrTomR. 2) It is time for breakfast which Bobby has 
not yet received (Bobby never gets his own breakfast). 

Mr TomR tells Bobby to sit down. This indicates that MrTomR understands what it means to 
be standing, that it has some sense of locomotion. That in order to eat breakfast “civilly,” Bobby 
should be sitting at the breakfast table. Furthermore, MrTomR is able to point and understands 
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where Bobby should be sitting. That is already quite a bit of advanced intelligence that MrTomR 
is demonstrating. 

MrTomR announces the breakfast menu. This indicates that MrTomR understands the ques-
tion from Bobby, and can articulately state the answer to it. 

Bobby asks MrTomR for toast and coffee. MrTomR knows that Bobby is not allowed coffee 
(although it recognizes that toast was one of the items which comprises part of the menu). As chil-
dren will do, Bobby is trying to see how far he can go with his caretaker. MrTomR is intelligent 
enough to be aware of the rules. He responds as an intelligent, experienced human butler or nanny 
might. 

Every chapter and topic in our text to this point is or could be related to the field of robotics. 
Whether we are delving into search, games, logic, knowledge representation, production and expert 
systems, or neural networks, genetic algorithms, language, planning, and so on, there are easy and 
natural connections to robotics—and they are not far-fetched or remote. We now consider some of 
these connections in more detail. 

Robotics and Search–from the early days of robotics (in the sense of a machine serving man 
by trying to accomplish a task), search has been integral to robotics. For example, the kinds of 
search problems that we addressed in Chapters 2, 3, and 4, including, for example, breadth first 
search and depth first search (Chapter 2), heuristic search (Chapter 3), and search in games (Chap-
ter 4), are all typical problems that roboticists must address when building a system. That is, a robot 
must be programmed to get from point A to point B in the most efficient way. Or a robot must get 
around some obstacles to reach a destination or goal, akin to dealing with the kinds of maze prob-
lems that we introduced in these chapters. 

Robotics, Logic, and Knowledge Representation–It goes without saying that robots and log-
ic go hand in hand. The kinds of logical problems presented in Chapter 5 (logic) are the foundations 
of robotics, and the methods, such as resolution proofs and unification, are the building blocks for 
constructing sound robotic systems. Before any AI system is built, consideration must be made 
of how the elements of that system will be represented. Whether an agent-based approach will be 
used, swarm intelligence, trees, graphs, networks, or other approaches, these considerations are 
fundamental in robotic systems. 

Production Systems and Expert Systems–Production systems as the foundations of expert 
systems are closely tied to control systems, which are the basic foundation of robotic systems. 
Directing a robot across a factory floor, getting a robot to pick up packages in an Amazon fac-
tory—what tasks need to be accomplished in order to be able to accomplish a bigger task (hierar-
chy). These are all examples of how robots may depend on production systems and expert systems 
(Chapters 7 and 9). Furthermore, the expertise that humans have developed in various spheres (e.g., 
machinist tools, factory assembly lines, blending of colors for paint generation, choosing the right 
packaging, etc.) are natural arenas for production systems comprising expert systems. 

Fuzzy Logic–was the subject of Chapter 8 and even in the robotic world there are outcomes 
that are not only black and white / yes and no, but “to a certain degree of.” For example, a robot 
may encounter resistance along its path to a goal, and thereby stumble. The robot must persist in 
its goal of accomplishing an objective. In other words, even the robot world is not just discrete, but 
will depend on certain “degrees of freedom” with variations on the degrees of attributes rather than 
outcomes which are just “on” or “off” or “yes” or “no.” 

Machine Learning and Neural Networks–as the sophistication of these AI methods has im-
proved, opportunities for their use in applications of robotics have emerged. The Google Car comes 
to mind as a premier example. 
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Techniques such as Genetic Algorithms, Tabu Search, and Swarm Intelligence are 
naturally explored by robotic systems, especially when they must work in groups, for example, 
in the simulation of crowd behavior, or walking on New York City streets; or robots simulat-
ing people rushing to their commutes while avoiding people who are approaching them or in 
their paths. 

Natural Language Understanding and Speech Understanding – this was the subject of 
Chapter 13, and we continually see improvements in how machines (robots) will replace humans 
in ever more advanced tasks which involve language and speech understanding. Hence progress 
in these disciplines is integral and important to robotics. The issues and factors involved—for ex-
ample, semantics, syntax, accent, and inflection—are enormous. 

Planning – was presented in Chapter 14, and has always been a subfield of AI that is strongly 
associated with robotics. You have already seen a number of examples of planning in robotics in 
that chapter which involve how a robot should proceed in a accomplishing a task or set of tasks. 

We will now discuss some of the challenges for robotics and why it is both a promising and 
very difficult field. In constructing robots we are addressing the issues that make mankind unique. 
The challenges are dependent on how ambitious we want to be. That is, do we only wish the robot 
to be mobile? Do we wish the robot to perform tasks akin to the original definition of the word from 
the play by the Czech playwright Karel Čapek entitled R.U.R. (1921) where it was first introduced? 
In the Czech language robota means labor or work, but in the context of the play it meant slavery or 
forced labor. 1 Or do we have much greater ambitions for robots—that they not only be able to aid 
man, but to emulate him/her, enhance him/her, and be recreated/replaced in his image? Hence we 
have robots performing mundane tasks that not only people had to do (e.g., vacuum as with IRO-
BOT Roomba, See Chapter 6), but also are building robots that are able to perform surgery, to enter 
dangerous places, carry heavy loads, and even to drive cars safely without humans! And in the new 
millennium, they are starting to perform such difficult tasks better than humans can—that is, more 
accurately, more quickly, and more efficiently, thereby freeing people from the dangers and chal-
lenges of such tasks. Robots are taking on more and more tasks that for hundreds of years humans 
had customarily performed themselves. Robots are even being built to simulate recreational tasks 
such as playing bridge (see Chapter 16) and soccer. 

 These advances have been enabled by improvements in 1) Locomotion, 2) Machine Vision,  
3) Machine Learning, 4) Planning, 5) Problem Solving, and others. In the future we will likely en-
trust robots to an increasing number of decisions of a vital nature to humans. Some argue that there 
are limitations to what robots will be able to accomplish until we understand ourselves better. Mar-
vin Minsky 2 poses this perspective in his relatively early work on robotics. For nearly thirty years 
he, Doug Lenat (see Chapter 9), and others have been trying to address the problem of common 
sense knowledge. He addresses questions such as: How do children really learn? What turns short-
term memories into long-term memories? How is knowledge organized for people? During the past 
25 years or so it has become evident that robots are and will continue to be able to take advantage 
of tremendous advances in natural language processing and speech understanding (Chapter 13). 
As has already been alluded, such advances, along with the possibility that machines will be built 
with intelligence on a par with or beyond our own, will pose difficult philosophical and practical 
questions. One thing is clear—despite the recognizable pros and cons of building highly intelligent 
robotic systems, in this technological age there is no turning back. 
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 15.1  HISTORY: SERVING, EMULATING, ENHANCING, AND 
REPLACING MAN

The history of “Man Makes Man,” as T. A. Heppinger names his essay, 1 is much richer and 
longer than one might imagine. We will consider the historical aspects of robotics from a number 
of perspectives, including: Robot Lore, Early Mechanical Robots, Robots in Film and Literature, 
and Early Twentieth-Century Robots.

 15.1.1  Robot Lore
One of the earliest examples of robot lore is the story of the brilliant thirteenth-century English 

clergyman-scientist-philosopher, Friar Roger Bacon, who wanted to build a wall of brass to protect 
England against invaders. To accomplish this, he proposed a “brass head” to explain how such a wall 
should be built. That head was watched for three weeks, and it was only after the friars had watched 
carefully over the head that it spoke, “Time is.” And a half hour later, “Time was.” And another half 
hour later, “Time is past.” Certainly it is just a tale, but it may have been the inspiration for the leading 
medieval physician Paracelsus to suggest how an entire living being, a “homunculus,” could be built:

Let the semen of a man putrefy by itself in a hermetically sealed glass with the highest 
putrefaction of horse manure for forty days, or until it begins at last to live, move and 
be agitated, which can easily be seen. After this time it will be in some degree like a 
human being…If now after this, it will be every day nourished and fed cautiously and 
prudently with the Arcanum of human blood, and kept for 
forty days in the perpetual and equal heat of horse manure, 
… This we call a homunculus and it should afterwards be 
educated with the greatest care and zeal, until it grows and 
begins to display intelligence. 1, p. 30–31.

Although this was based on “alchemical lore,” the story re-
minds us of the vast advancements science and the medical pro-
fession have made through the centuries. 

Another legend of man-made man is the lore of golem from 
the sixteenth century several decades after Paracelsus. From the 
Talmud the word “golem” means incomplete or malformed, such 
as an embryo or the shapeless mass of dust from which Adam 
was created. It is said that around the year 1550, Elijah of Chelm 
created an artificial man, called a golem, with the Name of God 
corresponding to the four letters YHWH. This golem was deemed 
a monster threatening the world until its sacred name was re-
moved.1, p. 32

Thirty years later there was another golem. This one centered 
around the Rabbi Judah ben Loew, Chief Rabbi of Prague. The 
Rabbi was known as a sober figure who was friends with the fa-
mous astronomers Tycho Brahe and Johannes Kepler. To protect 
his people, the Rabbi is said to have gone to the River Moldau 
with two assistants where they fashioned from clay a human fig-
ure (see Figure 15.1). 

Figure 15.1
Clay golem. 
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The story continues:

One assistant circled the figure seven times from left to right. Loew pronounced 
an incantation, and the golem began to shine like fire. The other assistant then began 
his own incantation which circling seven times from right to left. The fire went out, 
hair grew on the figure’s head, and nails developed on its fingers. Now it was Loew’s 
turn to circle seven times, as the three of them chanted words from Genesis. When 
Loew implanted the Holy Name upon its forehead, the golem opened its eyes and 
came to life… 

Although the golem was unable to speak, it had superhuman power, and thus was useful in 
defending the Jews of Prague against the Gentiles. The golem was also Loew’s servant and worked 
as a janitor within the temple, with an allowance for rest on Sabbath. Only Rabbi Loew was able to 
control the golem, but eventually it ran amok, attacking its creator. The golem’s reign of destruction 
ended when Rabbi Loew tricked it into kneeling before him and plucked the sacred name from its 
forehead—and magically the golem was again reduced to clay.1

These three legends—the brass head of Bacon, the homunculus of Paracelsus, and the golem 
of Rabbi Loew—share in common the notion of a savant (a respected, accomplished man of intel-
ligence) creating something in the form of a man that will have the power of a man. And the famous 
legend of Frankenstein, authored by Mary Shelley in 1817, is actually a statement on the dangers 
of letting technology run amok; it is noteworthy that the story, by analogy, is quite consistent with 
the story of the golem some four centuries earlier. 

 15.1.2  Early Mechanical Robots
Perhaps the first accepted mechanical representation of man was the Strasbourg cock, a cast-

iron rooster built in 1574, intended to be a reminder of St. Peter’s denial of Jesus (see Figure 15.2). 
At noon daily, it opened its beak, stretched out its tongue, flapped its wings, spread out its feathers, 

raised its head, and crowed three times. Used until 1789, it 
served as an inspiration to Hobbes, Descartes, and Boyle as an 
example of what might someday be achievable by machinery. 

In the mid-eighteenth century, there followed the 
inventions of Jacques de Vaucanson, who created various 
artificial humans and animals which were of great realism. 
One of his most famous inventions was a 1738 mechanical 
duck which amazed in its ability to quack, splash around in 
water, eat, drink, and excrete (see Figure 15.3a). Vaucanson 
also built two androids in human form that played musical 
instruments (see Figure 15.3). One played the flute and the 
other the drums. What most impressed people was that the 
flutist was actually playing, rather than producing sounds 
from a hidden place. The flutist’s breath came directly from 
its mouth by means of a set of bellows. Lip movements 
were controlled by a mechanism. The flute, being a standard 
instrument, made sounds via finger motions over holes—as 
would be performed by a human. Hence, in the early history 

Figure 15.2
Strasbourg Cock.
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of robotics, this was a considered a landmark, in that the flute was considered an instrument of skill 
that only a small number of people could play well. Here, we had the first mechanical device that 
performed a learned skill better than most people.1, p. 38

The next rather well-known example of man emulating man was 
somewhat of a hoax which fooled Europe as it was exhibited over many 
years. The Turk was a contraption built by the Baron Wolfgang von Kem-
pelen in the Austro-Hungarian Court in 1769. Purportedly, inside a box 
with gears and cogs which played the moves of chess on a board, was 
a midget Polish chess master. It featured “a mannequin in the form of a 
Turk, with turban and handlebar mustache, seated behind a wooden cabi-
net.” 1, p. 39 see Figure 15.4). The Turk wowed audiences across Europe for 
many years in that it played strong chess and could not be fooled with 
illegal moves. It was impressive in the fact that it was the first time that 
people believed that the distinction between man and machine had been 
blurred.1

Eventually the Turk was safely transported to a Philadelphia museum 
where in the mid-twentieth century it unfortunately burned down in a fire. 

Between 1770 and 1773 the father and son pair, Pierre and Henri-
Louis Jaquet-Drov, developed and demonstrated three amazing human-like figures known as the 
Scribe, the Draftsman, and the Musician (see Figure 15.5). All three operated via clockwork featur-
ing an intricate array of cams. Two, the Scribe and the Draftsman, were in the shape of young boys, 
elegantly dressed. The Scribe was capable of dipping a quill pen in an inkwell and then writing up 
to forty letters. The Scribe’s hand, controlled by a cam, could move in any of three directions to 
form one letter. Levers on a disk were used for control, and the Scribe could then write any desired 
text. His brother, the Draftsman, could produce drawings of Louis XV and similar figures includ-
ing, for example, a battleship. The eyes of these androids demonstrated an attentive attitude while 
at work by moving them accordingly. 

Figure 15.4
Baron von Kempelen’s The Turk.

Figure 15.3a
Vaucanson’s duck with internal mechanisms.

Figure 15.3
Vaucanson’s duck, flutist, and drummer.
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Figure 15.5
The Scribe, the Draftsman, and the Musician – Pierre and Henri Louis Jaquet-Drov.

The Musician, another Jaquet-Droz android, resembled a girl of 16, wearing a powdered wig 
and a dress appropriate for the court of Vienna. She played the organ and did so well, with convinc-
ing eye and body movements that made her seem alive. The end of a performance was accompanied 
by a bow. Jaquet-Droz androids found permanent homes in the Muséed’Art et d’Histoire in Neu-
chatel, Switzerland. The Draftsman, with its design of a battleship, found its way into the Franklin 
Institute in Philadelphia. In each, one can see the innovation and engineering which led to modern 
industrial robots. The differences are in form and the modern use of hydraulics and programming 
instead of springs, cams, and clockwork mechanisms. 

There followed the industrial revolution, and one of its artifacts was a mechanism devised by 
James Watt (credited with the development of the first practical steam engine circa 1783). In 1788 
Watt devised a “flywheel governor” featuring two whirling balls that were able to swing outward 
via centrifugal force. It was linked to a steam engine whereby the outward swing of the flyballs 
measured the engine’s speed; furthermore, using another linkage, the outward swing controlled a 
value that maintained its present speed. In essence, this comprised the world’s first feedback-con-
trol mechanism. In 1868 James Clerk Maxwell (who discovered Maxwell’s equations in electro-
magnetism) published “On Governors,” the first systematic study of feedback control. This turned 
out to be an essential element of robots in the twentieth century. 

In 1912 the automatic, mechanical, chess-playing machine built of gears and cogs by Leonardo 
Torres y Quevedo (see Chapter 1, Figure 1.24) could play the elementary endgame King and Rook 
vs. King via an explicit set of rules to deliver checkmate in a limited number of moves regardless 
of the starting position. This was believed to be the first machine capable of not only handling in-
formation but being able to make decisions based on this information. 
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 15.1.3  Robots in Film and Literature
The play R.U.R. (stands for Rossum’s Universal Robots) entails robots who have been de-

signed and used as general purpose laborers. They are devoid of human feelings and emotions, 
but are used as soldiers in war. In the play it turns out that an associate at R.U.R. discovers how to 
add pain and emotions to the robots. Hence the robots rebel against their human masters, virtually 
exterminating them. However, they are unable to maintain the level of production of themselves. A 
final touch is when the two robots fall in love with the suggestion of the coming of the new Adam 
and Eve. 

We must bear in mind the time when R.U.R. appeared—just after the end of World War I. It 
was also a statement on the dangers of technology which, with the invention of machine guns, 
submarines, and poison gas, had turned the war into a bloodbath with mass carnage and massacre. 
Another work in the same vein was the 1926 classic movie Metropolis by Fritz Lang—a very 
popular and highly respected German filmmaker. It was based on a book written by his wife Thea 
Harbou. Metropolis focuses on the wretched lives of workers who live beneath a city. Its robot is a 
labor agitator, Maria, who assumes the appearance of a leader whom the workers can trust. It turns 
out that Maria leads the robots to self-destruction, and they burn her at the stake, where she turns 
to metal (ibid., p. 49.).

Regarding contributions to robotics in film, arts, and literature, the work of Isaac Asimov must 
be introduced. In 1942 as a young science fiction writer, he contributed to Galaxy Science Fiction 
the story “The Caves of Steel,” where he first presented the oft-repeated Three Laws of Robots: 

 1. A robot may not injure a human being, or through inaction allow a human  
being to come to harm.

 2. A robot must obey the orders given it by human beings except where such orders  
would conflict with the First Law. 

 3. A robot must protect its own existence as long as such protection does not conflict with 
the First or Second Law.

Many decades passed before Asimov’s ideas captivated the world in such films as Forbidden 
Planet (1956) and the Star Wars Trilogy (1977, Star Wars; 1980, The Empire Strikes Back; and 
1983, The Return of the Jedi). 

 15.1.4  Twentieth-Century Robots
In the twentieth century a number of robotic systems were built. Many were successful. In the 

1980s robots started to become commonplace in factories and industrial settings. Here we limit our 
discussion to robots that were particularly instrumental to research and progress in the field. 

15.1.4.1 Biomimetic Systems

In this section, we present two biomimetic systems that were very important to progress in 
robotics research. One field that has not been discussed in our text to this point, considered an early 
forerunner to AI, is the field of cybernetics—the study and comparison of communication and 
control processes in biological and artificial systems. The person most credited for defining and 
doing seminal research in this field is Norbert Wiener at MIT. 3 This field combined theories and 
principles from neuroscience and biology with those from engineering, with the goal of finding 
common properties and principles in animals and machines. 4 Matarić notes that “a key concept of 
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cybernetics focuses on the coupling, combining, and interaction between the mechanism or organ-
ism and its environment.” Such interactions are necessarily complex as we shall soon see. 

Her definition of a robot is as follows:

an autonomous system which exists in the physical world, can sense its environment, 
and can act on it to achieve some goals. 4, p. 2 1*

Given this definition, Prof. Matarić 
calls William Grey Walter’s Tortoise the 
first robot that was built with the under-
lying goals of cybernetics. Walter (1910–
1977) was born in Kansas City but lived 
and was educated in Great Britain. He was 
a neurophysiologist with a strong interest 
in how the brain works, discovering theta 
and delta waves that are produced during 
sleep. He built machines with animal-like 
behavior to study how the brain works. 
Walter was convinced that even organisms 
with very simple nervous systems could 
exhibit complex and unexpected behav-
ior. Walter’s robots were distinct from the 
robots that preceded them in that they be-
haved in unpredictable ways, had reflexes, 

and in their environments were able to avoid repetitious behaviors. 5  The tortoise consisted of a 
hard plastic shell with three wheels (see Figure 15.7). Two wheels were for forward and backward 
motion while the third was for steering. Its “sense organs” were extremely simple, consisting of 
only a photoelectric cell to provide sensitivity to light and surface electric contacts that served as 
touch sensors. A telephone battery provided power, while the shell provided some degree of protec-
tion against physical damage. 5 

With these simple components and a few others, Grey Walter’s Machina Speculatrix (for ma-
chine that thinks) was able to exhibit the following behaviors:

• Find the light
• Head toward the light
• Back away from bright light
• Turn and push to avoid obstacles 
• Recharge its battery

The turtles were the earliest examples of artificial life or ALife; their variety of complex, un-
programmed behaviors were early examples of what we now call emergent behavior. 4

Valentino Braitenberg is a German scientist who was inspired by Grey Walter’s work. In 1984 
he published a book entitled Vehicles long after the ideas of cybernetics, and long after it was con-
sidered a separate discipline of study. The book presents a series of ideas (or thought experiments) 

* Note that an autonomous robot acts on the basis of its own decisions, and is not controlled by a human.

Figure 15.6
Grey Walter’s Tortoise – the first recognized robot.
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demonstrating how simple robots (which he called vehicles) 
can produce behaviors which appear very human and lifelike. 4 
Although Braitenberg’s vehicles were never built, they proved 
inspirational for roboticists. 

These started with a single motor and light sensor. Gradual-
ly they increased in complexity to several motors and sensors, 
and exploration of the various permutations of sensors between 
them. The sensors were connected to the motors. Therefore, 
a light sensor could be connected directly to the wheels of a 
vehicle, and as the light would get stronger, the faster the robot 
would move toward the light—this is called photophilic attrac-
tion or, in Latin, “loving light.” Also, the connections could be 
reversed so that the robot would move more slowly and hence 
be photophobic, or exhibit fear of light. 

Furthermore, akin to the concepts of Chapter 11 on neural 
networks, connections between sensors and motors, whereby 
stronger sensor input produced stronger output, were called 
excitatory connections. Conversely, sensory inputs that weak-
ened the motor as they got stronger were called inhibitory con-
nections. Again the inspiration came from biological neurons 
and their excitatory and inhibitory connections. Continuing with this analogy, it is fairly evident 
how variations in these connections between sensors and motors can result in a variety of behav-
iors. Braitenberg’s book describes how such simple mechanisms can be used 
to store information, build a memory, and even achieve learning. 4

15.1.4.2 More Recent Systems

Artificial Intelligence research progressed in many arenas during the 
twentieth century, a point we have described throughout this text. Research 
incorporating what had and was being learned in the various disciplines of AI 
was focused at three institutions: MIT, Standard, and SRI International 
(then known as Stanford Research Institute).

Shakey, at SRI (1966–1972), was the first general-purpose mobile robot 
able to reason about its own actions. Shakey (see Figure 15.8) was designed 
to analyze commands and break them into a series of actions necessary to 
perform. Its basis was research in computer vision and natural language 
processing. Charles Rosen was the project manager; contributors included 
Nils Nilsson, Alfraed Brain, Sven Wahlstrom, Bertram Raphael, and oth-
ers. STRIPS (Stanford Research Institute Problem Solver) was mentioned in 
Chapter 14 (Planning) as a premier example of an automated planning robot 
system. It was developed by Richard Fikes and Nils Nilsson in 1971 at SRI 
International. MIT (The Massachusetts Institute of Technology) has a long 
history of research and contributions to the field of AI and robotics—includ-
ing robots in many environments such as space and sea, and also exhibiting 
locomotion. 

There are many more examples than we can give justice to here, how-
ever, in Section 15.3 you will learn about twenty-first-century applications 

Figure 15.7
Example of Braitenberg’s vehicles. Vehicle 2a moves toward a source 
of light while vehicle 2b moves away from a source of light. 

Figure 15.8
SRI’s Shakey.
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of robotics, including MIT’s Cog. Table 15.1 presents diverse robot systems that have been built 
during the past 55 years or so. Their increasing sophistication, capabilities, and purpose are most 
noteworthy. Problems which involve locomotion in open terrain are much harder than in well-
defined spaces or environments. 

Table 15.1
Summary of robotics projects from 1960–2010.

 
SYSTEM 
NAME

YEAR CREATOR
INSTITUTION/ 

COMPANY
FEATURES FOOTNOTE

1 Stanford Cart 1960–1980  James Adams Stanford University
Able to move around 

obstacles using a 
camera

[9]

2 Freddy 1969–1971 Donald Michie
University of  

Edinburgh
Assembles blocks by 

using its camera
[10]

3 WABOT-1 1970–1973
Waseda  

University
Waseda University

First full-scale 
anthropomorphic robot. 
Able to communicate 

with a person in 
Japanese. Could 

measure distances with 
receptors.

[11]

4 FAMULUS 1973 KUKA Robotics KUKA Robotics
Material handling, 

i.e, moving parts and 
materials in factories

[1]

5 Silver Arm 1974 David Silver MIT

Small parts assembler 
that reacts to feedback 

from touch and 
pressure sensors.

[2]

6 WABOT-2 1980–1984
Waseda  

University
Waseda University

Able to read a musical 
score and play the 

organ, and speak to 
people

[11]

7 Omnibot 1980s–2000 Tomy Tomy
Carry light objects 

with arms, had a tray to 
carry objects 

[12]

8 Direct Drive Arm 1981 Takeo Kanade 
Carnegie Mellon  

University

Robotic arm that could 
move more freely and 

smoothly
[3]

9 Modulus Robot 1984–1990s
Massimo  
Giuliana

Sirius
Domestic household 

robot, household 
applications

[13]

10 Big Dog
1986– 
Present

Martin Buehler Boston Dynamics
Quadruped walking, 

pack mule
[7]
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SYSTEM 
NAME

YEAR CREATOR
INSTITUTION/ 

COMPANY
FEATURES FOOTNOTE

11 Kismet 1990s Cynthia Breazeal MIT

Low-level feature 
extraction system, 
Motivation system, 

Motor system

[30]

12 COG
1993– 
Present

Rodney Brooks MIT
Humanoid, emulates 

human thought
[4]

13
The Walking For-

est Machine
1995 PlusTech Ltd. PlusTech Ltd.

Walking backwards, 
forwards, sideways, 

and diagonally in 
uneven terrain

[5]

14 Scout II 1998
Ambulatory Ro-
botic Laboratory

Ambulatory Robotic 
Laboratory 

Quadruped walking [5]

15 AIBO 1999 Sony Sony
Quadruped Walking, 

pet
[6]

16 Hiro 1999–2010 Kawada KK
Kawada Industries  

INC.
Runs real time Linux 

QNX
[14]

17 CosmoBot
1999– 
Present

Dr. Corinna 
Lathan with Jack 

Vice
AnthroTronix, Inc.

Live Play, Simon Says, 
playback

[15]

9 ASIMO
2000– 
Present

Honda Honda
Humanoid upright, 
two-legged walking

[5]

20 Anybots
2001– 
Present

Trevor Blackwell ANYBOTS
Virtual presence 

systems
[16]

21 Inkha 2002–2006 mat and mrplong
King’s College  

London

Camera to track Human 
movement, speaks 

periodically about facts
[17]

22 Domo
2004– 
Present

Jeff Weber and 
Aaron Edsinger

MIT
Perception, learning, 

manipulation
[18]

23 Seropi
2005– 
Present

KITECH KITECH 
Human-friendly 
working space 

guidance
[19]

24 Wakamaru
2005– 
Present

Mitsubishi Heavy 
Industries

Mitsubishi Heavy 
Industries

Reminder, emergency 
call, Linux operating 

system and connects to 
the internet

[20]

25 Enon
2005– 
Present

Fujitsu Fujitsu Corporation
Self-guiding, limited 

speech recognition and 
synthesis

[21]

26 MUSA
2005– 
Present

Young Bong 
Bang

Seoul National  
University

Fight using kendo [22]
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SYSTEM 
NAME

YEAR CREATOR
INSTITUTION/ 

COMPANY
FEATURES FOOTNOTE

28 BEAR
2005– 
Present

Vecna  
Technologies

Vecna Technologies

Six feet tall, hydraulic 
upper body lifts 500lbs, 
steel torso, maximum 
hydraulic exertion of 

3000psi

[23]

29 Issac
2006– 
Present

IssacTeam Politecnico di Torino
Offers many solutions 
oriented to automation 

industry
[24]

30 Willow Garage
2006– 
Present

Scott Hassan Willo Garage Inc.

ROS (Robot Operating 
System) developing 

hardware and 
software for robotics 

applications

[25]

31 RuBot II
2006– 
Present

Pete Redmond Mechatrons.com Solves Rubik’s Cube [26]

32 KeepOn 2007 Kozima, Hideki Miyagi University
Responds to emotions 

and dances
[8]

33 Topio Dio 2008–2010
TOSY Robotics 

JSC
Automatica

Remote control via 
wireless, integrate 

3D vision via 2 
cameras, 3D operation 

space, processes 
pre-defined images, 
detects obstacles by 

ultrasonic sensor, three-
wheeled base with 

omnidirectional and 
balanced motion

[27]

34 Phobot
2008– 
Present

Students
University of Amster-

dam

Exhibits behavior 
that mimics fear and 

overcoming it by 
graded exposure

[28]

35 Salvius
2008– 
Present

Gunther Cox Salvius Robot

Modular design, 
constructed using 

recycled materials and 
Open source

[29]

36 ROBOTY
2010– 
Present

Hamdi M. 
Sahloul

Engineering University 
of Sana

Robot capable of 
playing chess

[30]

References for Table 15.1
 [1]  RobotWorx. The History of...KUKA Robotics. December 9, 2014. Retrieved from http://www.used-robots.

com/articles/viewing/the-history-of-kuka-robotics. 
 [2]  Nocks, L. 2007. The Robot: The Life Store of Technology. Westport: Greenwood Publishing Group. 
 [3]  Williams, J. D. Direct Drive Robotic Arms. December 9, 2014. Retrieved from http://diva.library.cmu.edu/

Kanade/kanadearm.html. 
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 [4]  Ahmad, N. 2003. The humanoid robot Cog. Crossroads 10 (2): 3. 
 [5] Carbone, G. and Ceccarelli, M. Legged Robotic Systems. December 9, 2014. Retrieved from http://cdn.

intechopen.com/pdfs-wm/33.pdf. 
 [6] Sony. ERS-1010. December 9, 2014. Retrieved from http://www.sony.net/Fun/design/history/product/1990/

ers-110.html. 
 [7] Buehler, M. 2006. BigDog - a dynamic quadruped robot. Robotics Institute Seminar. Boston Dynamics. 

BigDog - The Most Advanced Rough-Terrain Robot. December 9, 2014. Retrieved from http://www.
bostondynamics.com/robot_bigdog.html. 

 [8] Cox, W. Top 10 Robots of the Past 10 Years - Robots of the Decade Awards. 4 January 2010. December 9, 
2014. Retrieved from <http://www.robotshop.com/blog/en/top-10-robots-of-the-past-10-years-robots-of-the-
decade-awards-3743.

 [9] Earnest, L. December 2012. Stanford Cart. December 9, 2014. Retrieved from http://web.stanford.
edu/~learnest/cart.htm. 

 [10] Tate, A. December 14, 2012. Edinburgh Freddy Robot. December 9, 2014. Retrieved from http://www.aiai.
ed.ac.uk/project/freddy/. 

 [11] Humanoid Robotics Institute, Waseda University. Humanoid History -WABOT-. December 9, 2014. Retrieved 
from http://www.humanoid.waseda.ac.jp/booklet/kato_2.html.

 [12] Tomy. http://www.theoldrobots.com/omnibot.html 
 [13] Sirius. http://www.megadroid.com/Robots/mody.htm 
 [14] Kawada Industries. http://global.kawada.jp/mechatronics/ 
 [15] AnthroTronics Inc. http://www.anthrotronix.com/?option=com_content&view=article&id=81&Itemid=144 
 [16] Anybots. http://www.anybots.com/ 
 [17] King’s College London. http://www.whoosh.co.uk/inkha/TextLifeStory.htm 
 [18] MIT. http://people.csail.mit.edu/edsinger/domo_research.htm 
 [19] KITECH. http://www.plasticpals.com/?p=12155
 [20] Mitsubishi Heavy Industries. https://www.mhi-global.com/products/detail/wakamaru_about.html
 [21] Fjitsu. http://thefutureofthings.com/5191-fujitsus-enon-robot/
 [22] MUSA. <http://www.technovelgy.com/ct/Science-Fiction-News.asp?NewsNum=423
 [23] Vecna Technologies. http://www.vecna.com/labs; http://www.gizmag.com/battlefield-extraction-assist-

robot/17059/
 [24] ISAAC Team. http://www.isaacrobot.it/
 [25] Willow Garage. http://www.willowgarage.com/
 [26] Mechatrons. http://mechatrons.com/rubot-ii/
 [27] Automatica. http://techcrunch.com/2010/06/18/topio-dio-meet-vietnams-first-robot/; http://en.akihabaranews.

com/51330/robot/meet-topio-dio-vietnams-first-humanoid-service-robot
 [28] University of Amsterdam. http://www.foxnews.com/story/2008/03/17/cowardly-phobot-steals-show-at-

amsterdam-robot-conference/
 [29] Salvius Robot. http://salviusrobot.blogspot.com/

 [30] Engineering University of Sana. http://www.scribd.com/doc/57089754/Roboty

 15. 2  TECHNICAL ISSUES
As we alluded at the beginning of this chapter, the technical issues for developing robots are 

immense, and in one way or another, they depend on how ambitious and sophisticated one’s goals 
are for a robot’s capabilities. In essence, working in robotics is a multifaceted form of problem 
solving. 
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By analogy, let us consider the problems a human faces when entering a shopping mall and 
attempting to find a particular store in that mall. For a human, there are fairly straightforward 
steps and questions to ask in order to find the store he/she is looking for. You might look for the 
mall directory, or ask people at information desks, or see store managers who might be familiar, 
or use information sources such as the WWW or even phone apps. If we have previously visited 
the store, we may even have some memory of where this store is located in the mall—i.e., which 
floor, neighboring stores, special features, and so on. Now let us consider what the challenges 
would be for a mobile robot to find a particular store in the mall. One solution would be for the 
robot to simply follow locomotion directions, for example, go straight for .2 miles, turn left, go .1 
miles, and so on; or it may be told to take an elevator up a floor, and so forth. The means of com-
municating directions to the robot could of course be quite varied in format. The directions could 
be sensory, auditory, written, or visual. The differences in how diverse robots could handle this 
problem and related problems is the subject of this section. It is important to bear in mind that 
whatever the solution method chosen for a robot to find the goal store in question, every aspect of 
the solution must be considered by the robot’s developers and programmers. Its locomotion, its 
perception of obstacles, landmarks, and goal points, must all be considered in detail—by human 
developers. That is why the possibility of employing machine learning in robots (see Chapters 
11 and 12) represents such an important advance in the field. If a robot can learn…then almost 
anything seems possible. 

The early history of robotics focused on locomotion and vision (known as machine vision). 
Closely aligned to the discipline were problems of computational geometry and planning. In the 
past few decades, the possibilities for robots have become more of a reality, with domains such as 
linguistics, neural networks, and fuzzy logic being more integral to the research and progress in 
robotics. 

 15.2.1  Robot Components
Before we delve into the typical problems facing roboticists, we feel it is important to consider 

the components which comprise a typical robot. These include:

 1. The physical body or embodiment
 2. Sensors for perceiving the environment
 3. Effectors and actuators to enable action 
 4. Controller(s) to enable autonomous behavior 

We’ll consider the requirements for each of these four components one by one.

 1. Having a physical body means that a robot may conceivably develop as sense of 
self—that is, it can consider such questions as: where am I, what is my state (or 
condition), and where am I trying to go? This also means that it is subject to the 
same physical laws that we live by, it takes up a certain amount of space, and also 
needs energy to perform functions, such as sensing and thinking. 2 

2. It seems worthwhile mentioning that one of the basic elements of life is considered to be motion, or the ability to move. 
So when considering the possibility of machines moving, we are anointing them with one of the most basic accepted 
ingredients of being alive. 
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 2. Sensory perception is a requirement for a real robot. It must be able to  
perceive the environment, react to it, and act on it. Usually such reactions involve  
movement, and that is a fundamental task for robots. As is common in computer science 
hardware, states of electronic systems are often represented by 1s and 0s or binary dig-
its. Depending on the number of these sensors involved, there are 2N combinations of  
perceptions (sensor states) that a robot can have. The sensors are used to represent the in-
ternal and external state of a robot. The internal world refers to the robot’s own state as it 
perceives it. The external state refers to how the robot perceives the world it is interacting 
with. Representation of internal and external states (or internal models) of robots is an 
important design issue. 

 3. Effectors and Actuators  Effectors are the components that enable a robot to take action. 
They use underlying mechanisms, such as muscles and motors, to perform various func-
tions, but mainly for locomotion and manipulation (4, p. 24). Locomotion and manipulation 
comprise two major subfields of robotics. The former is concerned with movement (i.e., 
the legs of robots), while the latter is concerned with handling things (i.e., the arms of a 
robot). 

 4. Controllers are the hardware and/or software that enable a robot to be autonomous; hence 
the devices that control their decisions—or their brain. If robots are partially or fully con-
trolled by humans, then they are not autonomous. 

It is noteworthy that there are a number of important analogies between power supplies for 
robots and people. Humans need food and water to provide energy for their bodies, for locomo-
tion and for brain functioning. Robots’ brains are not presently so developed and therefore need 
power (usually provided by batteries) for locomotion and manipulation. Now consider what hap-
pens when our power supply goes down (i.e., when we are hungry or require rest). We become in-
capable of making good decisions, make mistakes, and may act poorly or strangely. The same thing 
can happen to robots. Hence their power supply must be isolated, protected, and efficient, and they 
should degrade gracefully. That is, robots should be able to replenish their power autonomously 
and without totally breaking down 4.

Effectors are any device on a robot that has an effect on the environment. In the world of robot-
ics they may be arms, legs, or wheels, that is, any robot component that can be used to have an ef-
fect on the environment. Actuators are the mechanisms that enable effectors to perform their tasks. 
Actuators may include electric motors, hydraulic or pneumatic cylinders, or temperature-sensitive 
or chemically sensitive materials. Such actuators may be used to activate wheels, arms, grippers, 
legs, and other effectors. Actuators may be passive or active. Although all actuators require energy, 
some may be passive and require direct power to operate, while others may be passive and use 
physical laws of motion to conserve energy. The most common actuators are motors, but may also 
be hydraulics using fluid pressure, pneumatics using air pressure, photoreactive material (respond-
ing to light), chemically reactive materials, thermally reactive materials, or piezoelectric materials 
(materials, usually crystals, that create electric charges when pushed or pressed) (4., p. 32).

15.2.1.1 Motors and Gears

The inventions of the electromagnet by Joseph Henry in 1831 is considered by many the greatest 
invention since man created the wheel. Closely tied and of equal significance is the invention of the 
electric motor in 1861 by Etienne Lenoir. The association and significance of motors to power for 
effecting motion is paramount Equally significant, therefore, is the importance of motors to robotics. 
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Robots will typically use DC motors comprised of electromagnets and current to produce mag-
netic fields which turn the shafts of the motors. Motors must be run by a voltage appropriate for the 
task(s) they are being asked to perform so as not to wear them down. DC motors are preferred, as 
they provide constant voltage, drawing current at an amount proportional to the work being done. 
Motors which run into high resistance (e.g., a robot runs into a wall which does not move) will 
eventually stall after running out of power. Recall from physics that 

V (Voltage) = I (Current) × R (Resistance).

Hence V/I = R or Voltage is proportional to resistance. But Work = Force × Distance. In the 
case of the robot stuck against a wall, the distance becomes very small (or zero) and thus, despite 
high power (Voltage), the work actually performed is very little or none at all. Perhaps an easy anal-
ogy to demonstrate this idea is a car that is stuck in snow with its motor revved up and its wheels 
spinning. If this goes on for too long, the car too will eventually stall (4. p. 33). 

The more current (electrons transferred per unit of time, measured in Amperes) that a motor 
produces, the more torque (rotational force) is produced by the motor shaft. Hence the power of a 
motor is the produce of its torque and the rotational speed of the shaft.*** Most DC motors operate 
at the speed of 3,000–9,000 revolutions per minute (rpm). This means they produce high speeds but 
low torque. However, robots are usually required to perform tasks that require less rotational speed 
and more torque such as turning wheels, transporting loads, and lifting. 

The problem with robot motors’ need for more torque 
rather than rotational speed is alleviated by understanding and 
cleverly applying the theory of how gears work. As with ro-
botics in general, simple ideas that are well-understood can be 
compounded to develop more complex working systems. Small 
gears will turn more quickly, but are less powerful. Larger gears 
turn more slowly but are more powerful. This is the principle 
of gears on which multi-gear / multi-speed bicycles are based. 
So if a smaller gear drives a larger gear, more torque is created 
in the ratio of the size of the smaller gear to the larger gear (in 
terms of number of teeth). Such paired gears are called ganged 
gears. Figure 15.9 illustrates this principle with ganged gears 
called a “compound gear train.” For example, if the input-
output ratio of one axle is 40 to 8, it would reduce to 5 to 1. A 

second pair of meshed gears could have the input of an 8-tooth gear to drive a 24-tooth gear. This 
converts to a 3 to 1 ratio. Now we notice that the 8-tooth gear of the second axle may be on the same 
axle as the 40-tooth gear of the first pair. This gives a ganged gear ratio of 5 to 1 × 3 to 1 which is 
15 to 1. Hence the first axle (with smaller gears) must turn 15 times for the second axle to turn once. 
Therefore more torque (in the ratio of 15:1) has been created for the second axle. 

Another concept in robot motors is the servo motor. This kind of motor (or servos for short) are 
motors that can rotate in such a way that their shaft reaches a specific position. They are common in 

Figure 15.9
Ganged Gears.

*** A colleague of the authors was known to have purchased a 1999 Cadillac in 2004. Shortly after he purchased it, a 
check engine error came up on the dashboard. It was identified as a problem with the “torque converter,” which is part 
of the transmission. The transmission was rebuilt, and this problem was allayed for some 100,000 miles before the torque 
converter problem did actually present itself after some 15 miles of continuous driving, when the car could not maintain 
its highway speed. 
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toys, and are used for adjusting steering in remote control cars or wing positions in remote control 
planes. Servo motors are made from DC motors with the following additional components: 

 1. Gear reduction for torque
 2. A position sensor for the motor shaft to tell how much the motor is turning and in 

what direction
 3. An electronic circuit to control the motor, telling it how much to turn and in what  

direction (4., p. 37)

Electronic signals in the form of a series of pulses will tell the motor shaft how much to turn, 
typically within a range of 180 degrees. Pulse-width modulation is a method of controlling the 
amount that the motor’s shaft will turn by the length of the pulse; the larger the pulse, the larger 
the turn angle of the shaft. This is usually measured in units of microseconds and therefore quite 
precise. Between pulses, the shaft is stopped. 

15.2.1.2 Degrees of Freedom

A common notion in the field of robotics is the concept 
of degrees of motion for an object. These are a means of ex-
pressing the various types of motion available to a robot. As 
an example, consider the degrees of freedom of motion (called 
translational degrees of freedom) of a helicopter. There are 
six degrees of freedom (DOF) which are usually used to de-
scribe the possible motions of a helicopter—roll, pitch, and 
yaw (see Figure 15.10). Roll means rolling from side to side, 
pitch means angling up or down, and yaw means turning left or 
right. An object like a car (or a helicopter on the ground) has 
only three DOF (vertical motion is lost), but only two are con-
trollable. That is, a car on the ground can only move forward 
and backward (via the wheels) and turn left or right via its steering wheel. If a car could move 
directly left or right (say by turning each of its wheels 90 degrees), that would add another DOF. 
Hence with more complicated robot motions, such as arms or legs trying to move in various direc-
tions (as is possible in human arms with a rotator cuff) the number of DOF are an important issue. 

 15.2.2  Locomotion 
This is probably the oldest problem in robotics. Whether you are trying to get a robot to play 

soccer, or land on the moon, or work under the ocean, the most fundamental issue is locomotion. 
How does the robot move? What are its capabilities? The typical actuators which come to mind 
include:

• wheels for rolling along
• legs enabling walking, crawling, running, climbing, and jumping
• arms for grabbing hold, swinging, and climbing 
• wings for flying
• flippers for swimming

Figure 15.10
A helicopter and its degrees of freedom. 
Source: http://commons.wikimedia.org/wiki/
Helicopter#mediaviewer/File:Bell_407_(D-HBEN).jpg.
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As soon as you start considering movement, you must also think about stability. After all, it 
typically takes a child at least a year before it can learn how to walk. For people and robots there 
is also the notion of center of gravity, which is some point above the ground where we are walking 
and enabled to stay balanced. Too low a center of gravity means that we are dragged down to the 
ground, while one that is too high means instability. Hand in hand with this concept is the notion of 
a polygon of support. This is the platform that must support a robot to enforce stability. Humans 
have such a support platform as well, only we are not usually aware of it somewhere up in our tor-
sos. For a robot, as it attains more legs—that is, three, four, or six, this becomes less of issue. For 
example, see Figure 15.12, which depicts NASA’s Jet Propulsion Labs Spiderbot. 

A p p l i c A t i o n  b o x

“spider-bot”
It was the first in a line of robots called “Spider-Bot” for its spider-like appearance. This first MRE was a 
proof-of-concept to represent a node in a mobile network of sensors for solid surface exploration. The JPL 
describes it further:

Large robots use large actuators to build large structures. Fine work requires small, precise 
actuators and often small robots that can fit into confined spaces. Spiderbots can provide the small 
chassis and the mobility to support this second type of work. The Spiderbot is designed to develop 
and demonstrate hexapods that can walk on flat surfaces, crawl on meshes, and assemble simple 
structures. The task’s current mission is to demonstrate complex mobility behaviors, including 
maneuvering (i.e. mesh crawling) in a space analog environment (i.e. micro-gravity).

http://www.robotics.jpl.nasa.gov/tasks/showTask.cfm?FuseAction=ShowTask&TaskID=30&tda
ID=2585<

Figure 15.11
The Jet Propulsion Lab’s “Spiderbot” circa 2002.
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 15.2.3  Path Planning for a Point Robot
A point robot is the simple notion of an autonomous robot as a single point operating in some 

well-defined environment—typically a Cartesian plane. Hence the point (x,y) will be sufficient to 
describe the robot’s state. 

The fundamental problem is to find a path for the robot at some starting configuration S = (a,b) 
to some goal state T = (c,d). How can such a continuous path be found—if it exists? The most basic 
solution to this problem is known as the Bug2 Algorithm. 

The algorithm is fairly straightforward. If a direct, straight-line path between S and T exists 
in the free space between S and T, the robot should use it. If the path is obstructed, then the robot 
uses the path until it encounters the obstacle (point P). The robot should then circumnavigate the 
obstacle until it can rejoin the line ST moving towards the goal T. If it encounters another obstacle, 
it should once again circumnavigate it until it finds another point on the obstacle on the line ST 
from which it can leave the obstacle in the direction of T that is closer to T than the point P at which 
it started circumnavigating the obstacle. If no such point exists, then the robot determines that no 
path exists from S to T. 

Although the Bug2 Algorithm is known to be complete (see Chapter 2), and certain to find a 
path to the goal if such a path exists, there is no guarantee that the path will be efficient. 6 

In order to be aware of the robot’s position at all times and plan appropriately, sensors must 
continuously refine their map of the environment and update their estimation of its position. In the 
world of robotics this is known as SLAM—simultaneous localization and mapping algorithm. 

 15.2.4  Mobile Robot Kinematics
Kinematics is the most basic study of how mechanical systems behave. In mobile robotics, this 

is a bottom-up technique that necessarily entails the worlds of physics, mechanics, software, and 
control. As such, it quickly gets rather complex because it requires software to control hardware at 
every moment. 

For this purpose, much knowledge about kinematics was attained from the early program-
ming of robot manipulators. Here the task was primarily to control a robot’s arm. Consideration 
of the dynamics (force and mass) of such situations was important when built into the constraints 
on workspace and trajectory. We introduced the concept of locomotion in the previous section. 
Here we consider further factors which are integral to position estimation and motion estimation, 
which are in themselves very challenging tasks.7

Integral to considering the position and motion of a mobile robot is the position and angle of 
every wheel. Each wheel is considered for its contribution to the robot’s motion, and these kine-
matic constraints are combined to express the entire robot’s kinematic constraints. 

The starting point is the robot’s position in a simple X-Y plane, and consider its angle Ɵ which 
helps to create a reference point for the robot’s direction of motion. That direction is represented 
with respect to the X-axis by the angle of Ɵ. 

Hence the Robot’s global reference can be expressed by: 

| |
X

I Y
 
 =  
 Θ 
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huMAn interest notes

sebAstiAn thrun

It does not take 
much investigation 
to realize that  
Dr. Sebastian Thrun is 
one of the truly great 
scientists alive today. 
The titles and awards 

he has received and his accomplishments by the 
age of 47 are truly exceptional. He is successful 
to the point where one gets the impression that 
today Dr. Thrun is able to pursue activities 
that truly interest him: Udacity, the company 
he founded with David Stavens and Mike 
Sokolsky in 2012, but more about that later. 
He is primarily recognized as an educator, 
programmer, roboticist, and computer scientist. 
He was born in Solingen, Germany in 1967. 

There are few people in AI today or in the 
past who can claim to have had as illustrious 
and diverse a career as Dr. Thrun. He received 
degrees from the Universities of Bonn (in 1993 
undergraduate, 1995 computer science and sta-
tistics PhD) and Hildesheim (1988) in comput-
er science, economics, and medicine. His PhD 
was titled Explanation-Based Neural Network 
Learning: A Lifelong Learning Approach. 

From the time Dr. Thrun joined the 
Computer Science Department at Carnegie 
Mellon University in 1995 as a research 
scientist, his ascent and accomplishments have 
been mercurial. In 1998 he became an assistant 

professor and codirector of the Robot Learning 
Laboratory at CMU. Shortly thereafter he 
cofounded a Master’s Program in Automated 
Learning and Discovery which later became 
a PhD program in Machine Learning and 
Scientific Discovery. After spending a 
sabbatical year at Stanford University, he 
returned to CMU as Finmeccanica Associate 
Professor of Computer Science with an 
endowed professorship. In July 2003 Prof. 
Thrun left CMU to be Associate Professor at 
Stanford, and Director of SAIL (Stanford AI 
Lab). He spent the years 2007–2011 as full 
Professor of Computer Science and Electrical 
Engineering. He also became a Google VP 
and Fellow. He founded Google X, where 
he developed and contributed to a number of 
systems, including the Google driverless car 
system, Google Glass, Indoor Navigation, 
Google Brain, Project Wing, and Project Loon.

His international reputation stems 
from developing a number of successful 
autonomous robotic systems. In 1997 he 
developed the world’s first robotic tour guide 
with his colleagues Wolfram Burgard and 
Dieter Fox at the Deutsches Museum Bonn. 
Minerva was a similar follow-up system which 
he installed at the Smithsonian’s National 
Museum of American History in Washington, 
DC, guiding tens of thousands of people over 
a two-week deployment. 

Other accomplishments include the 
interactive humanoid robot Nursebot, 
which helped residents at a nursing home in 

Sebastian Thrun.

This vector comprised of X, Y, and Ɵ defines what is called the “pose” of a robot. From this 
equation, all movements of the robot in the global plane {X1,Y1} can be represented with respect to 
the local reference frame {XR,YR} using an orthogonal rotation matrix.

Thus, instantaneous changes in robot position can be represented by matrix manipulations 
representing changes in the robot’s wheel angles. Naturally, modeling of this kind is necessary and 
gets more and more complicated. Adding more wheels and notions of velocity and diverse motions, 
possibly in different directions and dimensions, introduces further complexity, which is beyond 
our purpose here. An excellent reference source for further investigation of technical details of 
kinematics, robot perception, mobile robot localization, and planning and navigation is the text by 
Siegwart, Nourbakhsh, and Scaramuzza.7
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Pittsburgh, PA. In 2002 with his colleagues at 
CMU, William Whittaker and Scott Thayer, 
Thrun developed mine-mapping robots. 
At Stanford in 2003 he was involved in the 
development of the robot Stanley, which in 
2005 won the DARPA Grand Challenge. The 
Darpa Grand Challenge is intended to support 
high-payoff research that bridges the gap 
between fundamental discoveries and military 
use. The initial DARPA Grand Challenge 
was created to spur the development of 
technologies needed to create the first fully 
autonomous ground vehicles capable of 
completing a substantial off-road course 
within a limited time. The second Challenge in 
2005 entailed 23 finalist vehicles that traveled 
more than 7.32 miles, passed through three 
narrow tunnels, and negotiated more than 100 
sharp left and right turns. The race concluded 
through Beer Bottle Pass, near the California-
Nevada border, a winding mountain pass with 
a sheer drop-off on one side and a rock face 
on the other. Professor Thrun’s Stanley team 
finished 9 minutes ahead of its competitor 
team from CMU, capturing a $2 million purse.

Professor Thrun is best known for 
his theoretical contributions to robotics, 
particularly in the field of Probabilistic 
Robotics. This field conjoins statistics and 
robotics, and in 2005 he published a book with 
this title coauthored with William Burgard 
and Dieter Fox (MIT Press). 

In 2011 he received a Research Award and 
the inaugural AAAI Ed Feigenbaum Prize. 
He was elected into the Germany Academy 
of Engineering and the German Academy of 
Sciences Leopoldina in 2007. Other awards 
include:

•  Named one of the Brilliant 5 by Popular 
Science (2005)

•  Career Award from the National Science 
Foundation (1999–2003)

•  #4 on Foreign Policy Magazine’s Top 
100 Global Thinkers (2012)

•  Recipient of Smithsonian magazine’s 
American Ingenuity Award in Education 
(2012)

Professor Thrun has some 374(!) 
publications during the past 25 years. That 
makes 15 publications per year, including five 
monographs, seven edited volumes, numerous 
chapters in books, journal articles, conference 
papers, and so on. Perhaps this helps better 
explain why Dr. Thrun was able to take the 
gamble of leaving his position as Professor of 
Computer Science at Stanford in 2011 to be 
a Research Professor there. Subsequently, he 
relinquished his position as Google VP and 
Fellow. One might think that Sebastian Thrun 
had gone through a catharsis, but reading 
further and trying to understand him better, one 
realizes that he has accomplished so much that 
he can now pursue what he really believes in 
as the future of Education: Udacity. This is the 
online learning university which he founded in 
January 2012. On his website he states: 

At Udacity, we are trying to 
democratize higher education. Udacity 
stands for “we are audacious, for you, 
the student.” We created the notion 
of “nanodegrees” which empowers 
people from all traits and ages to find 
employment in the tech industry.
In an in-depth article in WIRED, Dr. Thrun 

discusses his plans and ideas for Udacity. 
He envisions that in some 50 years very few 
universities (as we know them), for the purpose 
of delivering higher education, will exist. 
(http://www.wired.com/2012/03/ff_aiclass/all/)

It is clear that Dr. Thrun has great visions 
and plans for Udacity and is totally dedicated 
to the concept. If his past record is any 
indication—he will succeed. 

Professor Thrun has published three books, 
with a fourth, The FastSLAM Algorithm for 
Simultaneous Localization and Mapping 
(with M. Montemerlo), coming out soon. 
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 15.3  APPLICATIONS: ROBOTICS IN THE TWENTY-FIRST CENTURY
This section presents three major robotic systems that have been developed in the twenty-first 

century—Big Dog, Asimo, and Cog. Each project represents a major effort that has been ongoing 
for several decades starting in the late twentieth century. Each addresses complex and sophisticated 
technical issues and problems in robotics introduced in the previous section. Big Dog is mainly 
concerned with locomotion and conveyance of heavy loads, particularly for military purposes. Asi-
mo displays diverse aspects of locomotion with a strong emphasis on anthropomorphic elements—
that is, understanding how humans move. Cog is more about thinking, which is also considered to 
be special to humans, distinguishing us from other living beings. 

A p p l i c A t i o n  b o x

big dog

In 1986 Marc Raibert, Kevin Blankespoor, Gabriel Nelson, and Rob Playter, leaders of the BigDog Team 
at MIT, wanted to achieve animal-like mobility on rough terrain that people and vehicles have difficulties 
navigating (Raibert, 1986) This effort was motivated by the fact that less than half of the earth’s land is 
navigable by wheeled and tracked vehicles. The goal was to develop mobile robots that could perform on a 
par with humans and animals in terms of mobility, autonomy, and speed. Typical challenges included terrain 
that is steep, rutted, rocky, wet, muddy, and covered with snow. The team developed a series of robots that 
had up to four legs to perform movements of which humans and animals are capable (Raibert, 1986). These 
multi-legged robots were developed to study dynamic control and the challenges of maintaining balance for 
robots on diverse terrain. Dynamically balanced legged systems were needed—hence BigDog was invented.

BigDog is a legged robot developed by Boston Dynamics (c. 1996) and was funded by DARPA (Defense 
Advanced Research Projects Agency). It is the size of a large dog, about 3 feet long, 2.5 feet tall, and weighs 
around 240 lbs. The goal of the BigDog project was to create an unmanned legged robot that could travel 
anywhere a person or an animal could go. This robot has built-in systems for power, actuation, sensing, 
control, and communication. Ideally, the system would be able to travel anywhere, run for consecutive hours, 
and carry its fuel and weight without trouble. 

A human being employs an operator control unit (or OCU) connected to an IP radio to control BigDog’s 
actions. A human employs a controller to provide steering and speed parameters to guide the robot through 
diverse terrain. The controller can also start and stop the robot as needed. The controller can also direct BigDog 
to walk, jog, or trot. The data is displayed and input. Then the robot’s AI system takes over and operates on its 
own to make sure it stays upright or mobile.

BigDog employs AI for coordination of its basic posture and to prevent falls, enabling it to learn to 
distribute weight amongst its four legs. This allows Big Dog to carry heavy loads and to maneuver through 
diverse and rough terrain, with little human support. The goal is to develop a system with auto-control. The 
robot has to be smart enough to navigate with little or minimal human guidance or intervention. The robot 
has fifty sensors which feed information to the onboard computer that monitors how BigDog is moving and 
where it is, and provides data from the fields. Future projects seek further independence from human control, 
particularly in areas where there is limited human access.

There are high-level and low-level control systems which help maintain the robot’s balance. The high-
level system coordinates how the legs move as well as the speed and height of body during movement, and 
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the low-level system positions and moves the joints. This control system also helps it learn to adjust to maintain 
balance through slopes and climbs. It also controls ground actions to help maintain support of robot movements 
and to keep it from slipping. If it falls, it learns to get back up and stand on all four legs, continuing with 
its movement through the terrain. The system also allows BigDog to have a variety of movement behaviors 
including: standing up on all four legs, squatting down, walking normally, or crawling by moving one leg 
forward at a time or in a diagonal action. 

Big Dog’s power supply consists of water cooled 
by a two stroke internal combustion engine, and the 
engine delivers high-pressure oil into the robot’s leg 
actuators. Each leg has four hydraulic actuators that 
power BigDog’s joints as well as a passive fifth degree of 
freedom. These actuators have sensors for joint position, 
with a heat exchanger mounted on the body to stop it from 
overheating the engine. BigDog’s 50 sensors include 
Inertial sensors that measure attitude and acceleration 
of the body and joint sensors for the actuators that help 
it move. These features enable and facilitate BigDog 
through its longest movement of 6.2 consecutive miles. It 
can carry up to 154 kilograms on a flat terrain, but normal 
loads are usually 50 kilograms on a normal day. BigDog 
also has a visual system and a LIDAR, which is a pair 
of cameras, a computer, and visual software (see Figure 
15.12). These components help point out the terrain that 
BigDog is navigating and assist it in finding a clear path 
forward. The LIDAR system is for the sole purpose of 
ignoring a human operator and enabling the robot to use 
its sensors to follow a human leader out in the field.

BigDog has a quadrupedal walking algorithm for 
sloped and tough terrains. It can walk on sloped pathways 
of up to 60 degrees but can also take into account unexpected or irregular terrain with the assistance of its 
control system. BigDog adapts to different changes in two ways: 1) It fixes itself according to the height and 
elevation of the terrain and footfall placement so that it won’t lopside and fall over on its side. 2) It also looks at 
shadows for changes to make its own adjustments in posturewhile traveling through diverse terrain. BigDog’s 
control system is coordinated with kinematics and ground reaction forces so that it can optiminze the amount it 
can carry. The control system optimizes the load by splitting it equally among the robot’s legs. 
Summary and Future Directions: There are many plans for the future of BigDog. The team wants to make 
it possible for BigDog to move through rougher and steeper terrain and have it able to carry more and heavier 
loads. The team wants to upgrade its engine and system to make it quieter as its motors and system are extremly 
noisy. They also want BigDog to be less reliant on humans and employ computer vision to allow it to navigate 
entirely on its own. So far new items include a head, arm, torso, and various other parts to increase versatility. 
These additions have given BigDog the ability to use its entire body to throw heavy objects around or lift and 
move heavy objects aside if they become obstructions.

Figure 15.12
BigDog carrying its weight in supplies.
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Next we present another robotics project that has been ongoing for many years: the Honda 
Asimo robot. Asimo moves in a very human-like way and was designed to be particularly helpful 
to people. 

Figure 15.13
BigDog robots trot around in the shadows.

Big Dog References

Raibert, M. 1986. Legged Robots that Balance. MIT Press. Retrieved from http://www.bostondynamics.com/img/BigDog_IFAC_Apr-
8-2008.pdfhttp://phys.org/news/2013-03-boston-dynamics-bigdog-toss-video.html

A p p l i c A t i o n  b o x

AsiMo

HISTORY AND INTRODUCTION
Imagine a world where humans and machine live together, aiding and supporting each other in all tasks 

ranging from carrying the everyday grocery shopping bags to helping firefighters rescue people trapped in 
flaming houses or fallen structures. This is a world envisioned by the Honda engineers who conceived Asimo 
in Japan in 1986. Asimo is a two-legged humanoid robot created in Honda’s research lab after two decades 
of research and development. The objective of creating a humanoid robot that resembles and duplicates the 
complex structure of a human being is so that it is able to aide people on various activities for the advancement 
of scientific development.1
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PURPOSE
Creating a humanoid robot was not an easy task. However, 

Honda has embraced this challenge by envisioning a world where 
robots and humans interact harmoniously. Having a valuable 
partner with great mobility and ability to maneuver who can 
interact with humans would be a great support for people who 
need an extra set of helping hands without the expense of another 
human.

FEATURES: DESIGN CONCEPT
Asimo’s design concept is to make this into a people-friendly 

robot that is both lightweight and flexible. The Asimo is compact: 
120 cm or 4 feet tall and weighing approximately 52 kgs or 115 
pounds. 2 The engineers chose this size to allow Asimo to operate 
freely and efficiently in a human living space. Based on their 
research, this height allows Asimo to “operate light switches and 
door knobs, and work at tables and work benches.” 3

MOBILITY AND LOCOMOTION
After collecting various data about human mobility and locomotion, including walking and other forms of 

human movement, Honda developed Asimo to walk in a very similar way to how humans walk. The two-legged 
walking concept includes operation and movement on different surfaces. Asimo can perform everyday tasks 
such as walking from one point to another while avoiding obstacles, climbing or descending stairs, pushing 
a cart, passing through doorways, and carry things while walking. These advanced physical capabilities are 
achieved by a number of sensors placed to determine the leg’s joint angle and speed to mimic humans’ center 
of gravity. These sensors collect data and interpret it into information to be processed for the next movement. 

ARTIFICIAL INTELLIGENCE FEATURES
Asimo’s second most prominent feature is its ability to interact with humans. Asimo must be able to 

approach and communicate with them and is able to achieve this by processing information that it captures 
through replicating humans’ five senses.

Asimo captures video input through the two cameras mounted in its head, which allow it to recognize 
moving objects and facial features on humans for limited facial recognition. It also creates a map of the 
surrounding environment with the visual information that helps for the purpose of collision prevention and 
object positioning.

Furthermore, Asimo is able to distinguish and interpret sounds and voice commands that are captured by 
the microphones installed in its head. Asimo processes audio input enabling it to “recognize when its name 
is called, and then turn to the source of a sound,” as well as reacting to “unusual sounds, such as those of an 
object falling or a collision, and face in that direction.” 3 Audio processing also enables Asimo to engage in 
conversations with humans through its abilities in speech and natural language understanding (Chapter 13). 
It’s possible for Asimo to carry out orders and respond to them with specific feedback. Asimo also has Internet 

Figure 15.14
Honda’s ASIMO.
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connectivity, which enables it to access information via the Internet to provide answers, such as news and 
weather conditions for the benefit of people.

FUTURE
Asimo’s prospects for meeting its original goal—to be a helper to people in need—seem to be very bright. 

With all the capabilities that Asimo has, it would be able to not only support the sick and elderly, but also 
provide help on situations where it would be dangerous for humans to function, such as cleaning a toxic spill 
or putting out a blazing fire without risking lives. Furthermore, Asimo can provide a sense of companionship to 
people. Although it is not currently available for sale or lease in the United States, Asimo is featured in Japan 
science museums and is “being used by a few high-tech companies to welcome guests to their facilities” 2

Although Asimo is a robot, it has traveled to many countries and landmarks around the world ranging from 
the Brooklyn Bridge all the way to Europe and Switzerland. It was also featured as a guest in Disney Land, and 
played soccer with President Barack Obama. 1 Its popularity does not cease to increase as it keeps encouraging 
and inspiring young people around the world to study the sciences via robotics and Artificial Intelligence.

Asimo References

1. http://asimo.honda.com/

2. http://asimo.honda.com/downloads/pdf/asimo-technical-faq.pdf

3. http://asimo.honda.com/downloads/pdf/asimo-technical-information.pdf

Q u i c k  A p p l i c A t i o n  b o x

JAeMi the huMAnoid robot

Figure 15.15
Jaemi the Humanoid Robot.
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Children play “Simon Says” with Jaemi, a humanoid robot (HUBO), during his visit to the Please Touch 
Museum in Philadelphia, PA. Jaemi was created by a team from Drexel University working in collaboration 
with Korean researchers. The project was supported by the National Science Foundation Partnership for 
International Research and Education (PIRE) program. This image accompanied NSF press release, U.S. and 
Korean Researchers Unveil Newest Research Team Member: Jaemi the Humanoid. 

Credit: Lisa-Joy Zgorski, National Science Foundation.

A p p l i c A t i o n  b o x

In 1993 a team at MIT headed by Rodney Brooks started to construct a robot named Cog, which is short for 
“cognition.” Cog was motivated to be built based on the theory that “Humanoid intelligence requires humanoid 
interactions with the world,” 1 which would have necessitated the construction of a robot that would think and 
experience the world in the same way that a human would. Cog is made of actuators and motors that work 
similarly to humans’ bones, joints, and movements. The MIT team built a robot that has human-like intelligence, 
mimicking the human body and its behaviors. Nonetheless, there are some important aspects of the human body 
that cannot be mimicked by a robot. The team also wanted to be able to use this robot to interact with others as 
humans would. So for their “training,” Cog would interact with humans, and what better way is there to learn 
human behaviors than to interact with them?

Cog was designed to simulate the same environments and physical constraints that adult humans encounter. 
Although it does not have legs, it does have a pair of symmetrical arms, a body, and a head. The lower part of 
its body, beyond the waist, is just a stand. Cog “sees” with two pairs of cameras mounted on its head with two 
degrees of freedom, and two microphones enable it to hear. Each eye also has its own pair of cameras for wide 
view and far range. The motor system has sensors indicating where the joints are and gives information on their 
current status, as well as if there are any issues or problems with them. Cog’s arm also provides feedback by 
having an electric motor there to operate the arm and provide torque feedback information. The robot has a total 
of 22 degrees of freedom. It has six degrees in its arms, four degrees for its neck, three in its eyes, two degrees 
in its waist, and one in its torso enabling twisting motions. 2

Cog has a diverse network with many different processors operating at different control levels. It ranges 
from small microcontrollers for joint-level control to digital signal processors. The brain controls have been 
revised many times to help improve the way Cog acts like a human. The first network contained 16 megahertz 
Motorola 68332 microcontrollers with custom boards and connected through dual port RAM. 2 The modern-day 
Cog consists of a network of 200 megahertz industrial personal computers running the QNX real-time operating 
system and connected to a 100 VG Ethernet. This network currently has 4 nodes, but more can be added if 
desired.

The robot has a pair of electret condenser microphones which are mounted to its head close to where human 
ears would be. The microphone is similar in functionality to what a hearing aid is to a human. Cog includes a 
stereo system that amplifies the audio system and connects to a C40 DSP system. The team wanted to use these 
hearing systems to allow the robot to be aware of sounds that it hears in the same environment that humans 
do. They also wanted to do the same with the robot’s vision. Each of the robot’s eyes rotates in a vertical and 

Next we present another long-term project that attempts to fulfill some of the early original 
aspirations for robotics discussed in previous sections—that is, to be able to mimic how people 
learn to interact as children and to develop cognitive skills. 
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horizontal axis. In order to get a better resolution and view of the environment, Cog takes the visual information 
and processes the image in its network for a better image.

Humans have a vestibular system which they use for movement and a sense of balance. Without it, people 
would fall over and would stay stationary. The brain takes this information from this system and helps human 
beings coordinate in everyday activities such as walking and keeping themselves upright. The human system 
has three sensory organs with a semicircular passage. The team at MIT wanted to copy this idea for Cog. Cog 
includes three rate gyroscopes placed on an orthogonal axis and two linear accelerometers. They put these 
devices below the eye so it can imitate sensory information for balance. The robot amplifies, processes, and 
converts these sensory devices to its personal computer brain.

The team at MIT has created a pointing action that allows Cog to extend its arm and point at whatever is 
there. This was tested this many times, even without having the team observe its performing these actions. 
During these actions, Cog’s neck is still and it points at a target. In the initial stages of experimentation, Cog 
would perform these actions rather primitively, akin to a human infant or someone who is inexperienced at a 
certain task. However, in the process of “maturing,” Cog seemed to learn and become more accurate in locating 
the target. In some sense, Cog becomes more human-like through its ability to mimic human actions and learn, 
and then to practice toward achieving perfection in performing an action. Cog’s developers seek to continually 
make improvements that will enable it to behave more like humans (for better or worse!), including facial 

features. Cog does not have a face, but in the future, MIT roboticists will try to give Cog 
organic features akin to humans. This ongoing research project has also tried to try to 
replicate the behavior and thought processes of humans. Objectives include getting Cog 
to learn the relationship between motor commands and sensory inputs so it can observe 
and learn through its own actions. The team at MIT will try to get the neck and body to 
fully rotate as much as possible to simulate the way a human body rotates. The robot’s 
front torso feedback was also tested by using resistive force sensors. One experiment 
involves applying considerable force to a surface sensor, enabling simulation of the robot’s 
perception of forces. 

Also in MIT’s plans for Cog are a greater number of sensors, motors, cameras, and 
joints so that it will have more degrees of freedom. This would allow Cog to be still more 
human-like. Cog has learned to adapt to the way humans do things, but there are still some 
actions that it needs to learn and adapt to. A big challenge for Cog is to be able to adapt to 
new environments as a human infant might. Nonetheless, Cog has a long way to go before 

it becomes a full human simulation with full thoughts that cause human-like movements and interactions. 
1. Overview of the Cog project. Retrieved from http://www.ai.mit.edu/projects/cog/OverviewOfCog/cog_overview.html

2. Naveed, Ahmad. The humanoid robot Cog. (page 2)

Figure 15.16
Image of Cog at the MIT 
Museum.
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As discussed in Chapter 1, Section 1.1 (The Turing Test), Section 15.1, Section 15.2, and sev-
eral times throughout our text, one of the main questions perplexing scientists and philosophers for 
centuries is how to determine whether a machine, robot, or an artificial creation possesses any sort 
of intelligence or consciousness at the level of human intelligence. However, (recall in Section 1.1) 
we discussed that in order to compare the level of intelligence of different agents we have to define 
what intelligence, or an intelligent being, means. Humans are intelligent beings because they are 
capable of thinking, rationalizing, learning, and conceptualizing information in their brains. 
But can robots with algorithms that possess sufficient case scenarios be able to exhibit some form 
of intelligence? Certainly, that is a very plausible scenario, since, after all, nowadays robots can 
look, sound, and act like a person. They are capable of learning and storing information into their 
memory and processing it into logical cases. Also they are able to analyze a given sentence based 
on its semantics and syntax and come up with a credible and logical answer—but does that qualify 
machines as intelligent? Also, please recall the Chinese Room Argument of Chapter 1 (Section 1.1) 
by John Searle, 1 which illustrates that being able to effectively and continuously respond correctly 
is not the equivalent of understanding.

However, the Turing Test has been claimed to have been passed by a chatbot program called 
“Eugene Goostman” that fooled judges into believing that the program was actually a thirteen-year-
old Ukranian boy. 2 It is argued that the chatbot program fooled the judges by avoiding questions 
that it does not have a concrete answer to—much like how a thirteen-year-old boy would act.

Therefore, it is disputed amongst various scientists that the Turing Test only works with low-
level intelligent (low AI) machines and can in those cases distinguish between machine and hu-
mans. However, in the case of the new high-level intelligent (strong AI) machines developed today, 
the Turing Test fails to separate the two. Over the years, as we have discussed previously, a number 
of new Turing Tests have been proposed. 

A p p l i c A t i o n  b o x

the lovelAce proJect

The Lovelace Test – In order to design a test capable of distinguishing strong AI, the Lovelace Test was 
proposed by Bringjord, Bello, and Ferrucci 3 to set a new bar for determining intelligent beings. It requires the 
machine to create something original, something that even the creator cannot explain how it was created, such 
as a poem, story, music, or painting—or any creative act that requires the cognitive capabilities of humans. 
These creative acts would then be evaluated by a human being in order to determine whether the creation passes 
a set of criteria.

Lovelace vs. Lovelace 2.0 – Mark O. Riedl enhanced the Lovelace Test by proposing the Lovelace Test 2.0, 
stating that “the artificial agent passes if it develops a creative artifact from a subset of artistic genres deemed to 
require human-level intelligence, and the artefact meets certain creative constraints given by a human evaluator.” 4  
The Lovelace Test 2.0 evaluates the creativity instead of only the intelligence of a machine. 

The Lovelace 2.0 Test is as follows: artificial agent α passes the Lovelace Test if and only if:

• α creates an artifact o of type t,

• o conforms to a set of constraints C where ci ∈ C is any criterion expressible in natural language,
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• A human evaluator h, having chosen t and C, is satisfied that o is a valid instance of t and meets C, and

• A human referee r determines the combination of t and C to not be impossible. 4 

Riedl believes that a “computational system can originate a creative artifact”—for example, when creating a 
fictional story, a machine requires common knowledge, planning, reason, language processing, familiarity with 
the subject, cultural artifact, and so on. However, no story generation system can pass the Lovelace 2.0 Test 
because most story generation systems require a priori (knowledge, or argument independent of experience) 
domain descriptions.4

Thus, it is shown that although robots and machines have greatly advanced in the field of Artificial 
Intelligence, there is a fundamental difference between humans, who possess creativity, and machines, which 
still follow a set program or rationalized path.

Lovelace References
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Figure 15.17
Robot At Royal Australian Mint, Canberra & Watercolor Painting (www.kopecart.com).
Could a robot produce the watercolor on the right, and then could such a painting be distinguished from one created by a human?
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 15.4 CHAPTER SUMMARY
Robotics was once a rather distinct field which was closely related to AI via computational 

geometry and vision. Today we can see many aspects of AI in robotics, especially as embedded 
systems. This includes search algorithms, logic, expert systems, fuzzy logic, machine learning, 
neural networks, genetic algorithms, planning, and even games. Robots do not navigate stating, “I 
have AI,” but it is clear that robotics as a field would not be where it is without employing AI. We 
illustrate examples of how and where robotics is and will be used. Let us not forget the effect that 
advances in natural language and speech understanding have had on improving robotics. 

The history of robotics and man is much richer than one might imagine. It started with notions 
of robot lore, and then early mechanical systems such Vaucanson’s duck and von Kempelen’s Turk 
from the eighteenth century are introduced. Robots in film and literature are well-known via Mary 
Shelley’s Frankenstein (1817), Karel Čapek’s R.U.R. (1921), and Fritz Lang’s Metropolis (1926), 
all of which pose a rather grim picture of the future impact of technology on man’s life. In the first 
half of the twentieth century, science fiction hero Isaac Asimov already had the vision to develop 
the Three Laws of Robots. More recent systems and their capabilities are also presented. Then tech-
nical details (Section 15.2) are presented as well as some of the standard and difficult issues. The 
section closes with a Human Interest Box on the remarkable Sebastrian Thrun.

Section 15.3 features stellar applications of robotics, focusing on Big Dog, Asimo, and Cog. 
The section closes out with new tests for AI via the Lovelace Project. Application boxes on Big 
Dog and Cog were contributed by Peter Tan. Application Boxes on Asimo and Lovelace were con-
tributed by Mimi Lin Gao. 

Questions for Discussion

 1. Discuss five areas of AI presented in previous chapters and their relationship to robotics.

 2. In the Story Box of MrTomR and Bobby, explain how today’s robots may or may not be able 
to perform the functions of MrTomR. 

 3. Describe some of the early myths about robotics that were presented in the chapter, including 
The Brass Head, the Homunculus, and the golem. 

 4. Describe the inventions of the father-son team Pierre and Henri-Louis Jaquet-Drov. When did 
they occur? 

 5. Name and describe two chess-related automata that were built in prior centuries. 

 6. Describe the literary works of Karel Čapek, Mary Shelley, and Isaac Asimov and how they 
projected concerns and developments in robotics. 

 7. Consider Asimov’s Three Laws of Robotics—are they still valid? 

 8. Describe the purpose of the field of cybernetics.

 9. Discuss the purpose and capabilities of the Tortoise by Grey Walters. 

 10. Describe the purposes and capabilities of the three significant modern-day robot projects 
presented in Section 15.3—Big Dog, Asimo, and Cog.

 11. What is the Lovelace Project about? Do you believe it is sound and appropriate?
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Exercises

 1. Watch and review the movie IROBOT. What are the premier themes, methods, and technical 
issues addressed in this movie?

 2. Watch and review the movie Bicentennial Man. What major questions regarding robots does 
the film address? 

 3. Compare the two films addressed above. Which do you believe is a better example of the 
theoretical, ethical, and technical issues of Robotics and AI? Explain. 

 4. Implement the Bug2 algorithm described in this chapter. You may assume that the obstacles 
are comprised of triangles of three cells in a discrete, well-defined space. When the robot 
encounters the obstacles, it should move counterclockwise to circumvent them. 

 5. Review some of the works of Rodney Brooks. What is his approach to Robotics (see  
Chapter 6), what companies did he found, and which robotic systems should he be credited 
for? 

 6. You have learned about the work of the remarkable Sebastian Thrun. What robotic systems 
has he built? Write a short paper about the systems we did not cover in our human interest 
box. 

 7. Review Table 15.1 and determine if it is accurate. Are there any systems missing that should 
be in the table? Are there any trends you can see? What kind of progress in robotic systems 
does it illustrate? 

 8. You have seen the dialog between MrTomR and five-year-old Bobby in Section 15.0. Would 
such a dialog be possible today? Why or why not? What areas of AI that you have learned 
about in the text would need more progress before such systems could be successfully built? 

 9. Robots are assisting in sophisticated surgeries today. Usually these surgeries will be 
successful. However when they fail, there are of course complex legal issues. Review the 
literature and report what kinds of surgeries robots have been successful in assisting with, 
and find cases where they have failed and lawsuits have followed.

Keywords
actuators
artificial life
Asimo
autonomous
Big Dog
biomimetic
Braitenberg’s Vehicles
Cog
compound gear train
cybernetics
degrade gracefully
degrees of freedom

effectors
emergent behavior
excitatory connections 
ganged gears
golem
homunculus
inhibitory connections 
internal state 
Lovelace II
Metropolis
motion estimation
orthogonal matrix rotation 

photophilic
photophobic
R.U.R.
servo motor
SLAM
Tortoise or Machina  

Speculatrix
position estimation
translational DOF
Three Laws of Robots



 Chapter  15  ·  Robot ics   ■  529

References

 1.  Heppenheimer, T. A. 1985. Man makes man. In 
Robotics, edited by M. L. Minsky. Omni Press: 
New York.

 2. Minsky, M. L. 1985. Chapter 1, Introduction. In 
Robotics, edited by M. L. Minsky. Omni Press: 
New York.

 3. Wiener, N. 1948. Cybernetics: Or Control and 
Communication in the Animal and the Machine. 
Paris (Hermann & Cie) & Cambridge, MA: MIT 
Press. 2nd revised ed. 1961.

 4. Mataric, M. 2007. The Robotics Primer. 
Cambridge, MA: MIT Press. 

 5. Levy, D. N. L. 2006. Robots Unlimited. A.K. 
Peters, Ltd: Wellesley, MA. 

 6. Dudek, G. and Jenkin, M. 2010. Computational 
Principles of Mobile Robotics, 2nd edition. 
Cambridge, England: Cambridge University Press. 

 7. Siegwart, R., Nourbaksh, I, and Scaramuzza, D. 
2011. Introduction to Autonomous Mobiles Robots, 
2nd ed. Cambridge, MA: MIT Press.





■ ■ ■ ■ ■

It was a long-held belief that if computers could master some of the harder board games that 
people play such as chess, checkers, Othello, and backgammon, they 
would be able to demonstrate genuine artificial intelligence (AI). As it 
turns out, after some 50 years of research, computers have demonstrated 
great mastery (performance) in these games but not necessarily by the 
means that “strong AI” researchers had hoped for.
This chapter is written from the perspective of a seasoned international 
chess master and AI researcher. Efforts are moving to overcome the 
challenges of a “new drosophila,” Go, as well as other games. One 
tip for students is that it is very hard to appreciate the difficulties of 
programming a game unless you understand the rules and objectives of 
that game.
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Kenneth Lane Thompson.

The Card Player.
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 16.0 INTRODUCTION
People have been infatuated with games for several centuries. They will always be inclined to 

work hard, meet their responsibilities, and then find time to relax and compete while challenging 
and developing their intellect. Part of the allure of games is that you can compete at different lev-

els; you can test your knowledge and abilities, and then see 
results in a timely manner. You can analyze why the specific 
outcome occurred (win, draw, or loss), learn from mistakes, 
and then play another game.

The discussion in this chapter focuses mainly on two-
person, zero sum board games of perfect information (e.g., 
games that do not involve chance), including checkers, chess, 
and Othello. You will also explore a few games of chance that 

are of great popular interest, including backgammon, bridge, and poker. Finally, you will turn to 
what some call the ideal AI test subject of the present and future, Go. 

 16.1 CHECKERS: FROM SAMUEL TO SCHAEFFER
Recall from Chapter 1 that in 1952, Arthur Samuel wrote the first version of a checkers pro-

gram. Clearly, when programming the game of checkers for the IBM 704, Samuel’s main interest 
was in developing a checkers program that could demonstrate machine learning. The significance 
of Arthur Samuel’s early paper 1 and work on checkers is not the result or success of his program, 
which were typically overblown by the press 2 after the program’s win of a single game against 

Champion Robert Nealy, but as an early model of the 
application and study of sound AI techniques. Samuel’s 
work represents some of the earliest studies in machine 
learning. Samuel had already considered the possibilities 
of a neural network approach to the game, but instead, 
he decided on a more organized, structured network ap-
proach to learning.

He chose to study checkers for the following reasons:

•   Checkers is not deterministic in a practical sense.
•   Each game has a definite goal—depriving the  

opponent of moves.
•   The rules of engagement (play) are clear.
•   There is a considerable corpus of knowledge about the 

game.
•   Many people are familiar with checkers as a board 

game, so the behavior of a checkers program is also 
understandable.

Recall from Chapter 4 that the sum of the 
winner’s gain is precisely offset by the loser’s 
loss; for example, the winner in chess gets 1.0 
points, the loser gets no points, and in the case 
of a draw, each person gets 0.5 points.

sidebAr
Consider the quote: “The Lord gave, 
and the Lord hath taken away”

—Job 1: 20–21 (KJV). 

Three notions prompt this quote. First is the 
notion that we are given life and we must do 
the most we can with it. Second, many games 
involve the idea of tradeoffs or sacrifices. Often 
the skill in games is to recognize the hierarchy of 
the importance of certain concepts over others. 
Perhaps most dramatic is the victory of position 
over material. Third, in two-person games of 
perfect information we are “gambling the value 
of our knowledge against our opponent’s knowl-
edge.” This tradeoff can be sufficient motivation 
for competition and represents the clash between 
a more experienced (older and more knowledge-
able) player and a rising young superstar in an 
event requiring skill, such as a tennis match, 
chess game, or musical competition.
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Samuel’s checkers program used a standard minimax approach to 
employing a linear polynomial that scored positions in terms of a number 
of heuristics. The ability to play a move is the dominant scoring term 
in checkers—though it is computed separately—that is, any move will 
result in the capture of men.

Hence, the main heuristic function in checkers is the capture of the 
opponent’s pieces. This leads to further heuristics such as “it is advanta-
geous to trade pieces when ahead and to avoid trades when behind.”

The program’s lookahead was 3 ply unless the position involved one 
of the following activities, which would extend the search:

 1. The move is a jump (capture).
 2. The last move was a jump.
 3. An exchange offer is possible.

Such special conditions extended the search to 5, 11, or even 
20 ply depending on circumstances.

To understand games such as checkers and chess, you should 
become comfortable with the notation system used to describe 
positions and games played. Figure 16.1 illustrates the standard 
addressing and notation system used for the game of checkers. 
The rules and algebraic notation system for 
chess are described in Appendix D.

Hence, if we see the notation 9-13, it 
means that Black plays his checkers from 
the square numbered 9 to the square 13. 
Then Red can respond with 22-17. As we 
will later read, this is part of an opening 
sequence that has been proven to achieve 
at least a draw for Black, but let us not get 
ahead of ourselves. The beauty and appeal 
of the endgame in games such as chess, 
checkers, and backgammon is that exhaus-
tive calculation is often feasible to the end 
to “mathematically prove” a particular out-
come. Certain endgames have an elegant 
simplicity that belies their underlying com-
plexity and highlights the importance of 
applying heuristics and principles. As is 
known for typical game-winning middle 
game combinations (a forced sequence 
of moves that achieves material gain or 
clear positional superiority), endgames can 
also help to illustrate an important winning (or drawing) theme 
through concrete analysis.

You do not have to be a game expert to understand the out-
come of an analysis such as the following if you are willing to 

ON THE DVD

Arthur Samuel.

In chess, the inability to move is called 
“zugzwang”—coming from the German 
words for “compulsion to move.” In other 
words, there are no good moves.
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5 6 7

1 2 3

Figure 16.1
Numbering scheme for checkers.

In chess, a middle game combination can 
also be used to achieve a checkmate, a 
forced draw, or other goals.
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map out the positions using the notation or an actual checkerboard and set. Figure 16.2 shows a 
position that could occur in a game of checkers with Red to move.

Red in position
16 can move to
12 (16-12)

Red to move

Red in position
13 can move to
8 or 9 (13-8 or
13-9)

Figure 16.2
Red moves next in this checkers game.

In the diagrammed position, Red (to move) has three legal moves: 16-12, 13-8, or 13-9. Which 
is the best move for Red to play in terms of the minimax-game-theoretic value? To find the answer, 
we can try to build a solution by constructing a 5-ply minimax game tree as described in Chapter 
4. Figure 16.3 shows a nearly complete alpha-beta minimax game tree analysis of the position il-
lustrated in Figure 16.2.

For sorting Red’s moves left to right, we need to first examine the move 16-12. Black can 
answer Red’s move with 4-8, though Black loses at least one piece after Red moves 13-4. Alterna-
tively, Black can play 0-5 on its next move. Red answers with 20-16, which is the only safe move. 
Next, Black makes “an offer” with 5-8 that Red must capture with 12-5. Finally, Black achieves 
a winning combination with 1-8-17, completing a 6-ply search that wins a piece and the game for 
Black. Therefore, the 0-5 response to Red’s 16-12 move is a refutation demonstrating that the 
move 16-12 loses after a 6-ply search. This is an example of how the 3-ply search might be ex-
tended by the capture opportunity that occurs on ply 4 with the offer 5-8 (a quiescence search, as 
defined in Chapter 4). Furthermore, analysis of Black’s other alternatives at ply 2 (after 16-12) is 
unnecessary thanks to possible alpha-beta cutoffs (described in Chapter 4). As it turns out, a 5-ply 
search would reveal that Black’s other moves at ply 2, (1-5 and 1-6) also led to Black sacrificing a 
piece. The alpha-beta algorithm indicates that we do not need to explore how bad a move 16-12 is 
once we have determined that the move can be refuted with 0-5.

Likewise, after a 5-ply search, we realize that 13-8 is the best move as the worst that Red can 
end up with is an extra piece—a king (200 points) or nearly a new king (50 points).
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 16.1.1 Heuristic Methods for Learning in the Game of Checkers
Samuel’s work was particularly noteworthy for its investigation of the use of heuristics and 

how they could be used for machine learning. In this regard, he was significantly ahead of his time. 
One of his general ideas was to have different versions of his program play against each other and 
have the loser adopt the winner’s heuristics. In this way, the program would be learning and would 
be improved. Another approach was to compare the programs’ preferred moves against those ad-
judged to be best by checker masters.1

One way that this was done was to play through a stored “book” master game and to record at 
each position how many moves the program considered to be better than the recorded move and 
how many moves the program considered to be worse. This process could be applied for both sides. 
Hence, a correlation coefficient for the programs’ preferred moves against the moves played by 
masters could be computed as follows: 

C = (L − H) / (L + H) 

Here, L is the number of legal moves in a position (or game) that the program rated lower than 
the actual move played and H is the number of moves that the program rated higher than the actual 
move played. In practice, these values ranged from 0.2 (for poor correlations) to 0.6 (for the evalu-
ation polynomial coefficients ultimately adopted).

If L is high and H stays low, this correlation coefficient has the best chance of being close to 
1.0, which is the most desired outcome. The program would be consistently evaluating moves not 
played as worse than the master moves and would be correctly judging other possible moves as 
worse than the moves of a master game. Samuel tried to stay away from giving the program book 
openings and instead let them learn from experience by playing from various test positions, end-
games, and puzzles.

Samuel invested a lot of effort into efficiently storing positions (then on a magnetic or “memo-
ry” tape) as a unique bit string akin to the work of Christopher Strachey (Strachey, 1952). Samuel 
needed to access the well-organized “records” of positions quickly in memory so that the search 
could compare them. One interesting heuristic that he employed for the search was if two different 
move sequences produced a similar score at a depth of 3 ply vs., for example, a move sequence to 6 
ply, it would choose the lower depth move (at 3 ply) if winning and choose the higher depth move 
(at 6 ply) if losing. Another clever heuristic was the notion of aging. Keep in mind that memory was 
limited in size and expensive at that time. If a record (position) in memory was not referenced for 
some time, it was “forgotten” and removed from the record when it reached an arbitrary maximum 
value. This heuristic was called forgetting. On the other hand, when a position in memory was 
referred to by the search, it was “refreshed” by having its associated age divided by 2. This was 
called refreshing.

The four terms of the main evaluation function used in order of decreasing importance were 
as follows:

• Piece advantage
• Denial of occupancy
• Mobility
• A hybrid term that combined control of the center and piece advancement
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Using Samuel’s heuristic approach as described earlier, a program was developed that played 
a very good opening, recognized most winning and losing endgames well in advance, but did not 
improve much in the middle game. Its play was certainly beyond the level of a novice but below 
the level of an expert.

Samuel reached the following simple conclusions about rote-learning tests:

• An effective rote-learning technique must include a procedure to give the program a 
sense of direction, and it must contain a refined system for cataloging and storing posi-
tions.

• Storage capacity limitations were a concern for the machine that was being used at the 
time (the IBM 704).

• A game such as checkers is a suitable vehicle for developing and demonstrating machine-
learning techniques.

Studies in generalized learning were developed using two versions of the program, one called 
Alpha and the other called Beta. According to Samuel (1952), “Alpha generalizes on its experience 
after each move by adjusting the coefficients in its evaluation polynomial and by replacing terms 
which appear to be unimportant by new parameters drawn from a reserve list. Beta, on the contrary, 
uses the same evaluation polynomial for the duration of any game. Program Alpha is used to play 
against human opponents, and during self-play Alpha and Beta play each other.” 

In play against Beta, if Alpha wins, Beta adopts Alpha’s scoring function. If Beta wins, a neu-
tral portion of the program evaluates Alpha. If Alpha fails a certain number of times (usually three), 
the coefficient of the scoring polynomial is set to 0. Ideally, the program should adjust its scoring 
polynomial by itself, but in practice, manual (human) intervention was sometimes necessary. A 
total of 38 heuristics could be used in the polynomial, but only 16 of these were ever used at one 
time, while the remaining 22 remained on the reserve list.

Moves that repeatedly scored low on the correlation coefficient were eventually transferred 
to the bottom of the reserve list and replaced with a term from the top of the reserve list. On the 
average, an active term was replaced every eight moves and recycled for another chance every 176 
moves. Terms could also be replaced for minimal usage. Binary coefficients of terms were also 
possible, with adjustable coefficients and signs, but it was decided to limit these to a small number.

A series of 28 games played by the program with Alpha against Beta was employed to test 
learning generalization. As the number of games played increased, and a set of terms changed dra-
matically, the set of terms stabilized as did the machine’s strength and learning ability. After these 
games, the program was deemed a better-than-average player. The following defects were found to 
be mostly responsible for the program’s bad play:

 1. The program was fooled by deliberately bad play on the part of the opponent. A simple 
solution was to change the correlation coefficients less drastically when positive scores 
were generated.

 2. A second defect was connected to the too frequent changes of terms made to the evalua-
tion function.

 3. A third defect was the appropriation of credit to moves that looked like they caused a 
spectacular improvement, when in fact it was the ground-building, simpler moves occur-
ring earlier that deserved equal credit for improving a position to enable a combination or 
consequently a spike in a position’s score.
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The following are two of the important conclusions that Samuel (1967) reached about machine 
learning:

 1. “A simple generalization scheme of the type used here can be an effective learning device 
for problems amenable to tree-searching procedures ….

 2. Even with the incomplete and redundant set of parameters which have been used to date, 
it is possible for the computer to learn to play a better-than-average game of checkers in a 
relatively short period of time.”

Figure 16.4 from Samuel (1967) 3 illustrates the results of a second series of learning by gener-
alization tests performed by Samuel.

 16.1.2 Rote Learning and Generalization
By the end of his first experiments, Samuel observed that the program that used rote learning 

did learn to play standard openings and learned how to avoid most standard endgame traps. It never 
learned how to play the middle game well. On the contrary, the program that used generalization 
never learned to play standard openings, did not learn to play endgames well (e.g., two kings 
against one in a double corner), but did learn to play well in the middle game, efficiently winning 
most positions with a piece advantage. Hence, rote learning was deemed useful for situations where 
very specific action was necessary, or results would be long delayed, whereas generalization learn-
ing was useful where there were a large number of permutations and where results could be quickly 
accomplished. Learning by either method using the alpha-beta minimax search technique proved 
to be a reliable but slow method. Rather than the linear polynomial method, Samuel (1959, 1967) 
turned his attention to signature tables. Values of parameters are read from signature tables and 
combined as subsets.

Samuel concludes that attempts to study strong checker players and their “thinking methods” 
is somewhat futile, stating, “…from the writer’s limited observation of checkers players he is con-
vinced that the better the player, the more apparent confusion there exists in his approach to the 
problem, and the more intuitive his reactions seem to be, at least as viewed by the average person 
not blessed with a similar proficiency.”

Samuel (1967) also concluded that “the heuristic search for heuristics” was “a more compli-
cated task than is the playing itself.” 

It is not surprising that heuristics seem to 
work together in groups. In AI, you often hear 
of the “rule of diminishing returns”—that is, a 
small number of rules (such as 10%) take care 
of or apply to 90% of the cases. The remaining 
10% of the cases (the so-called exceptions) 
might require 90% of the rules.

Samuel also studied and reported how the 
alpha-beta procedure could be used most ef-
fectively to reduce the necessary search tree 
for the game of checkers.

One such approach is called “plausibil-
ity analysis”—it would be used to perform 

In the world of chess, I (D. K.) have often encountered the 
belief that chess masters’ thinking is unfathomable to “mere 
mortals.” The skills that chess masters develop in thinking  
and choosing a move or move sequence, however, are based 
on large pattern stores and vast experience. In a number 
of cases, however, chess masters are also simply not very 
articulate when it comes to explaining their thinking.

This insight is be echoed by knowledge engineers sometime 
later (see Chapter 9) and predated somewhat by Plato in his 
Euthypro. (S. L.)
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a search to a fixed depth to quickly identify the most plausible 
moves. Such a plausibility analysis could also be done to various 
depths in the tree. Samuel points out that certain risks are associ-
ated with any move that is pruned (or forward pruned), though 
more pruning can safely be done at lower (deeper) levels in the 
tree than at higher levels in the tree when evaluation and choice 
of moves is more critical. Samuel also reported great problems in 
handling what he called “pitch moves” (or temporary sacrifices). 

Naturally, such concepts are difficult for standard game-playing programs because they cannot 
identify the return on their investment soon enough or by “normal” methods unless special efforts 
are made to identify such positions.

 16.1.3 Signature Table Evaluations and Book Learning
The concept behind Samuel’s signature tables was to group together parameters thought to be 

related. In one arrangement, tables were organized at three levels including 105 entries at the first 
level, 125 entries at the second level, and 343 entries at the third level. In another arrangement, 
there were 68 entries at the first level, 125 entries at the second level, and 225 entries at the third 
level. Much effort was made to make the signature table values meaningful. Many entries were zero 
or simply had insufficient data, even after comparing them with more than 100,000 book game po-
sitions. Correlation coefficients were computed to measure the effects of learning for the signature-
table procedure and for the linear polynomial procedure as a function of the total number of book 
moves analyzed. It was found that the signature table approach had a much higher correlation than 
the linear polynomial approach. After studying 175,000 moves, it reached a limit of .48 correlation 
for the signature table approach, whereas it stabilized at a correlation of .26 after 50,000 moves for 
the linear polynomial approach. 3

One problem that strong human checker players noted with Samuel’s program was that it did 
not seem to have a sense of long-term strategy. Instead, each position seemed to be evaluated as a 
completely new problem. One attempt to address this problem was to combine signature tables with 
plausibility analysis. The interdependency of parameters related to strategy was the goal of using 
this approach, and when related parameters seemed to operate effectively, they were weighted with 
a constant factor.

 16.1.4 World Championship Checkers with Schaeffer’s Chinook
Besides being a very strong computer scientist, Jonathan Schaeffer is a fervent competitor, as 

are most strong chess players.
Around 1990, Jonathan Schaeffer confessed to me (D. K. and others) that he really wanted to 

be the World Champion of something. He developed a chess program named Phoenix in the mid-
1980s, which firmly entrenched him in the middle history of computer 
chess. Phoenix could play at the Class A (1800–2000) level but not 
much better.

For various reasons, including computer resources, Schaeffer felt 
that he had little chance of developing a World Championship-level 
chess program. His approach to the development of his chess program 

Similar results are witnessed in the 
development of page-first tables in 
operating system design as well as in 
life itself—see, for example, Who Rules 
America by G. William Domhoff (7th 
edition, 2014).

Schaeffer is a master-level chess 
player from Canada, and at the time  
of this writing, Dean of Science at the 
University of Alberta in Edmonton, 
Alberta, Canada.
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was very noble in trying to study and develop various heuristic meth-
ods. 4 He tried to systematically evaluate how various versions of his 
programs would perform as he added or removed specific heuristics. 
Around 1989, Schaeffer decided to embark on the development of a 
World Championship–level checkers program, which he felt was an 
achievable goal. The notion that the Samuel Checkers program was very strong was finally dis-
solved in 1979 when the Duke University checkers program (developed by Tom Truscott) 5 defeat-
ed the Samuel Program in a short match. By 1990, Chinook (developed by Schaeffer, Norman Tre-
loar, Robert Lake, Paul Lu, and Martin Bryant) had earned the right to play a match for the World 
Championship with Marion Tinsley, who for some 40 years was the World Checkers Champion. 
The match with Tinsley finally took place in 1992 with 40 games being played, Chinook winning 
four times against Tinley’s two wins, with the remaining 34 games being drawn. In 1994, a rematch 
with Tinsley was arranged, but after only six games (all drawn), he resigned the match citing ill-
health. In fact, he was diagnosed with cancer a week later and died 8 months later. Chinook was the 
first program to win a human world championship in any game. Subsequently, Chinook defended 
its title twice and was never defeated after 1994. In 1997, it was retired from human competition 
playing at a level that was estimated to be 200 rating points (or at least one class) above the best 
human players. In other words, it would be expected to score 75% in a match against the human 
world champion.

In fact, on a visit to Edmonton in 
1984, D. K. played the program in 
a small tournament and won a short 
game.

huMAn interest notes

JonAthAn schAeffer

Jonathan Schaeffer.

Jonathan Schaeffer (1957–    ) must be 
crowned “The Grandmaster of Computer 
Games.” He attained a PhD in computer 
science from Waterloo University in 1986 
and is a master-level chess player. By 1994, 
he achieved the title of Professor of Computer 
Science at the University of Alberta, was Chair 

of his department from 2005–2008, and since 
2008 has been Vice-Provost and Associate 
Vice-President for Information Technology at 
the University of Alberta.

Schaeffer started to gain notoriety in 
the 1980s with the development of a strong 
computer chess program called PHOENIX 
that regularly competed in the North American 
and World Computer Chess Championships. 
Around 1990, he decided to pursue the game 
of Checkers for which he felt he could develop 
a World Championship Program. This was 
accomplished in 1994 when his program, 
CHINOOK, defeated the World Checker 
Champion, Marion Tinsley. In the most recent 
decade, having at least partially solved the 
game of checkers, Schaeffer has begun a 
broad assault on POKER, a game of perfect 
information, with considerable success. 
Schaeffer has been a friend and professional 
associate of D. K.’s for many years.
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Not surprisingly, given Schaeffer’s background and 
experience, Chinook was designed with a structure “simi-
lar to that of a typical chess program.” 6, 7, 2 He also stated 
that Chinook uses “search, knowledge, database of opening 
moves, and endgame databases. Chinook uses alpha-beta 
search with a myriad of enhancements, including iterative 
deepening, transposition tables, move ordering, search 
extensions, and search reductions. Chinook was able to av-
erage a minimum of 19 ply searches against Tinsley (using 
1994 hardware), with search extensions occasionally reach-

ing 45 ply into the tree. The median position evaluated was typically 25 ply deep into the search.”

 16.1.5 Checkers Is Solved
More recently, Schaffer demonstrated that the game of checkers can be solved and must end in 

a draw with best play.
The complete game of checkers consists of approximately 500 billion positions, or 5 × 1020 

possible positions.
Schaeffer has used a type of “sandwich” or “inside-out” approach toward solving checkers. 

Unlike chess, he knew that the game might be easy to control if openings (such as the first 10 moves 
by each side) were preordained or solved with standard opening libraries that humans have devel-

oped for the game over many decades. Chinook’s search checked these 
opening libraries carefully and deeply, whereas databases solved the 
end of the game through search and analysis by providing the outcome 
of all positions with a total of 10 or less pieces left on the board. The 
search technique and database use comprises the “bread” (or outside) 

of the complex sandwich, and the “meat” could be viewed as the search coupled with heuristics to 
handle the middle of the game.

In other words, once the openings and endings are known, not much is left in the middle of the 
game—say 20 moves on the average.

The game of checkers was solved using three algorithm and data components: 

 1. The endgame database was developed using a backward search (called retrograde 
analysis) by working backward from all known one-piece positions and their values, 
linking them to all enumerable two-piece positions, then three-piece positions, and so on. 
The up to 10-piece database consists of 3.9 × 1013 positions whose game-theoretic value 
has been determined.

 2. The proof-tree manager employs a forward search to maintain a tree of the proof as it is 
being developed and generates positions that need to be further explored.

 3. A proof solver also employs forward search to determine the values of positions presented 
by the proof-tree manager.

The longest known move sequence required to force a win in the 10-piece database was found 
to be 279 ply. The 39 trillion possible positions are compressed into 237 gigabytes, with an average 
of 143 positions per byte.

A custom compression program enables “rapid localized real-time decompression.” 8,9 The 
construction of the database began in 1989 for all possible positions with four or less pieces on the 

Chinook vs. Marion Tinsley (1994).

Checkers is Solved, www.
sciencemag.org/cgi/content/
abstract/1144079v1.
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board. By 1996, the database covered all endings with eight pieces or less. In 2001, with compu-
tational resources improving, it was possible to construct the eight-piece database in just 1 month, 
instead of over 7 years! In 2005, the 10-piece database computation was completed. Initially, in 
1989, 200 computers were used, but in 2007, the average number of computers used was 50.

The solution of the game of checkers was achieved in a manner known as weakly solved. In 
this sense, not every position in the game was analyzed and solved (which would be “strongly 
solved”), but instead, a unique sequence of moves was found and analyzed that demonstrated that 
the first player to move (Black) can obtain at least a forced draw by starting out with the move 

Table 1. The number of positions in the game of checkers.

Table 2. Openings solved, Note that the total does not match the sum of the 19 openings. The combined tree has some
duplicated nodes, which have been removed when reporting the total.

# Opening

09-13 22-17 13-22 Draw

Draw

Draw

Draw

Draw

Draw

Draw

≤Draw

≤Draw

≤Draw

≤Draw

≤Draw

Loss

≤Draw

≤Draw

≤Draw
≤Draw

≤Draw

≤Draw

Draw Total
15,123,711

Total
3,301,807

Max
154

Max
94

Overall

09-13 21-17 05-09

09-13 22-18 10-15

09-13 23-18 05-09

09-13-23-19 11-16

09-13 24-19 11-15

09-13 24-20 11-15

09-14 23-18 14-23

10-14 23-18 14-23

10-15 22-18 15-22

11-15 22-18 15-22

11-16 23-19 16-23

12-16 24-19 09-13

12-16 24-19 09-14

12-16 24-19 10-14

12-16 24-19 10-15
12-16 24-19 11-15

12-16 24-19 16-20

12-16 24-19 08-12

Proof Searches Max Ply Max PlyMinimal size

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16
17

18

19

Pieces Number of positions
259,669,578,902,016
1,695,618,078,654,976
9,726,900,031,328,256
49,134,911,067,979,776
218,511,510,918,189,056
852,888,183,557,922,816
2,905,162,728,973,680,640
8,568,043,414,939,516,928
21,661,954,506,100,113,408
46,352,957,062,510,379,008
82,459,728,874,435,248,128
118,435,747,136,817,856,512
129,406,908,049,181,900,800
90,072,726,844,888,186,880
500,995,484,682,338,672,639

PiecesNumber of positions
120
6,972
261,224
7,092,774
148,688,232
2,503,611,964
34,779,531,480
406,309,208,481
4,048,627,642,976
34,778,882,769,216

1 11
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Total 1-24Total 1-10 39,271,258,813,439
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113,210

107,109
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1,987,856

715,280

671,948

964,193

554,265

1,058,328

2,202,533

1,296,790

543,603

919,594

1,969,641

205,385

61,279

21,328

31,473
23,803

283,353

266,924

Figure 16.5
Two Tables illustrating how the game of checkers was solved. One gives the number of positions in checkers, and the other gives the 
best opening moves (with some duplicate sequences removed).8
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09-13. Then White replies 22-17, which offers a capture and forces 
the reply 13-17-22. It turns out that all of White’s other six replies to 
Black’s initial move 09-13 (21-17, 22-18, 23-18, 23-19, 24-19, and 
24-20) lead to at least a draw for Black (≥D), so White will prefer the 
move 22-17. 8

Thus, a stored proof tree was generated with a total of “only” 107 
positions. See Table 1 in Figure 16.5. Storing every position from the 
initial move 09-13 would require many terabytes. Thus, combining 
heuristic results from the search and the proof-tree manager reduced 
the number of stored positions to be analyzed to a manageable size, 

both for storage and computation purposes. The longest sequence analyzed was 154 ply. See Table 
2 in Figure 16.5. The 20 plus ply were analyzed by the solver and then tied to a database position 
whose analysis could be the result of several hundred ply of analysis.

Overall, the effort to solve the game of checkers involved 18 years by Schaeffer’s team, com-
bining a number of AI approaches including deep and clever search techniques, subtle algorithmic 
proofs, heuristics derived from human experts, and advanced database techniques. Figure 16.6 il-
lustrates how the game of checkers was solved.

Number of
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Relevent search space

Endgame databases

Number of positions (logarithmic)
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Seeded line
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Figure 16.6
How the game of checkers was solved.

The source (with permission) 
for Figures 16.5 and 16.6 is the 
article “Checkers is Solved” by 
Jonathan Schaeffer, Neil Burch, 
Yngvi Björnsson, Akihiro Kishimoto, 
Martin Müller, Robert Lake, Paul 
Lu, and Steve Sutphen, which 
appeared in Science Express, 2007.
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 16.2 CHESS: THE DROSOPHILA OF AI
Newell, Shaw, and Simon wrote about chess and AI some 50 

years ago.10 Therefore, chess has been subjected to over 250 years of 
intensive study, and despite over 50 years of assistance in studying the 
game with computers and the efforts of numerous, massive databases 
of chess games and chess openings, middle games, and endings, we 
don’t even know the answers to the following fundamental questions: 

 1. What is the outcome of a chess game with best play?
 2. What is the best first move for White—1.e4, 1.d4, or another 

move?

In addition, thousands of chess professionals worldwide attempt 
to make a living out of competing, teaching, writing about, and orga-
nizing various aspects of this intellectual game par excellence. Fur-
thermore, more books are written on chess than on all games put together. Almost every weekend, 
you can find a tournament within a few hundred miles of where you live. It is clear that chess 
is an intriguing game, which by no means has been “played out,” even though the great Cuban 
World Champion (1921–1927), Jose Raul Capablanca, once predicted it might be. Chess is no 
more played out than, say, are the possible number of ways of seeing New York City. Surely, if one 
decides to take the same path to and from the same destination, every day, then after a while New 
York City could seem limiting and boring. If one endeavors to vary his or her routes, however, 
then no doubt, one will find New York City very interesting. So it’s just a matter of combinatorics 
and willingness to vary and possibly take risks. Most chess games offer an estimated 30 possible 
moves to each player at each typical position. If a typical competitive Master game lasts 40 moves 
(80 ply), you can see why there are an estimated 1043 possible and reasonable chess games. Includ-
ing unreasonable games, chess is estimated to have 10120 possible positions, including unreason-
able moves by each side. That is an enormous number. (For a further discussion of this number in 
terms of computational complexity see Chapter 4.) Chess remains popular today, even with strong 
computer programs that can compete at least evenly with the best human players. Chess combines 
elements of sports, science, war, and art in the struggle that develops between two antagonists. 
Those who do not completely understand the rules and goals of the game might have difficulty see-
ing these elements in the game, but those who play it at the highest level will quickly attest to this. 
Why? For one, chess at its best is a marathon. That is, games at the highest level today (even with 
speedup to avoid adjournments and possible outside intervention) will typically last 4 to 6 hours. 
So the endurance and physical strength typified by sports is often necessary for successful competi-
tion. Chess also offers plenty of opportunity for deep analysis, precise calculation, and combining 
intuition with knowledge, experience, and instinct akin to decision-making processes in science.

Elements of war come into play with chess when you consider the 
tactical and strategic factors that contribute to the process of choosing 
a move, a plan, or a sequence of moves. Mobility and material are at a 
premium, but safety of the king is foremost.

Positioning of forces (usually in the center) is important for a 
quick strike, security, and maneuverability. Distribution of forces and 
their coordinated participation is also important as are timing and the 
element of surprise. Finally, the notion of struggle and the desire to 
win are the human elements that make chess unique, distinct, and at-

ON THE DVD

That is, chess with best play could be 
a win for White, a win for Black, or 
a draw. The prevailing theory is that 
with best play, chess is a draw.

See Appendix D.3.3 for an 
explanation of chess notation. Again, 
based on statistics, it is largely 
believed that either 1.e4 or 1.d4 are 
the best moves for White, but there is 
no proof of this.

Lasker (1862–1941), a German, 
was well known for his writings in 
philosophy and mathematics and 
supposedly only played in chess 
tournaments and matches when he 
needed to make a living.



546  ■  Part  5   ·  The Present  and Future

tractive. No one likes to lose, and the struggle to avoid defeat or to enjoy victory pits one ego 
against another equally determined to demonstrate superiority. Putting aside physical factors such 
as rest, tiredness, speed of play, and persistence, chess offers you the opportunity to “gamble” your 
knowledge directly against the opponent’s knowledge. As the great Dr. Emmanuel Lasker, World 
Chess Champion from 1894 to 1921, said, “On the chessboard lies and hypocrisy do not survive.”

In 1933, Thomas Hunt Morgan of the California Institute of Technology was awarded the No-
bel Prize for his research in population genetics. This research was based on studies of the common 
fruit fly known as the drosophila. The drosophila was ideal for such studies because of its short life 
cycle; its easily identifiable features, including wing span and eye color; as well as its economy for 
experimentation. Morgan and his associates from Columbia University, in 1910, were able to de-
rive much information from the low-cost experimentation with the drosophila that was dictated by 
the limited resources of the times. John McCarthy 11 credited the Russian mathematician and AI re-
searcher Alexander Kronrad with the phrase, “Chess is the drosophila of artificial intelligence.” The 
late Donald Michie* considered chess suitable for AI experimentation for the following reasons:

 1. Chess constitutes a well-formalized knowledge domain.
 2. It challenges the highest levels of intellectual capacity over a wide range of cognitive func-

tions, including logical calculation, rote-learning, concept formation, analogical thinking, 
and deductive and inductive reasoning.

 3. A detailed corpus of chess knowledge has accumulated over centuries in chess instruc-
tional works and commentary.

 4. A generally accepted numerical scale for performance is available in the ELO. and United 
States Chess Federation (USCF) rating system.

 5. Chess can be divided into subgames for intensive separate analysis.12

 16.2.1 Historical Background of Computer Chess
People have been trying to get computers to play strong chess for several centuries. Early ef-

forts, that is, the Turk in 1770, 13 as mentioned in Chapter 1, even involved attempts to fool the pub-
lic by having a chess master concealed inside a box.** 
Over the course of its tours around Europe, the Turk 
fooled many people over many years.13 Subsequent 
efforts were more serious, and the Spanish inventor 
Torres y Quevedo (circa 1900) developed a mechani-
cal device to win the ending K+R vs. K. 14

In 1948, Alan Turing, deemed by many “The 
father of computer science,” and Claude Shannon, 
known as the “father of information science,” inde-
pendently developed the basic algorithms that are still 
employed by today’s chess programs. 15,16 In 1957, the 
late Nobel laureate in economics, Herbert Simon of 
Carnegie Mellon University, predicted that a comput-
er would become the chess champion within 10 years. 
(He and many others after him, however, have been 

The ELO rating system is a reliable way of ranking 
chess players. There are five classes (A–E) separated 
by 200 point intervals. So Class E is 1000–1199, Class 
D is 1200–1399, Class C is 1400–1599, Class B is 
1600–1799, and Class A is 1800–1999. Expert level is 
2000–2199, Master level is 2200–2399, Senior Master 
level is over 2400, International Master (IM) level is 
usually over 2400 internationally, and grandmaster is 
over 2500. World Class Players are over 2700 today, 
and the very top few players are around 2800. The 
rating system is very accurate in predicting outcomes 
between two players depending on the point spread 
between them, once ratings are established after 25 
games of play.

*See Chapters 6, 9 and 10 for more about Donald Michie.
** See also Chapter 15 for more on the Turk.
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proven incorrect.) After many rudimentary efforts to develop chess programs, the first successful 
serious effort was by Newell, Simon, and Shaw in 1959. In 1967, Richard Greenblatt of Massachu-
setts Institute of Technology (MIT) developed the first club-level program, Machack, which played 
at about the 1600 level. Greenblatt only allowed his program to play against humans.17

In 1968, David Levy, the Scottish IM, made a bet with three computer science professors for 
$2,000 that no computer program could beat him in a serious chess match. Levy made this bet in 
an attempt to spur research and commitment to the development of strong computer chess pro-
grams. In 1970, Monty Newborn, a computer science professor at McGill University, initiated the 
North American Computer Chess Championships, which for 25 years held a well-defined place as 
a continuing experiment to measure the progress of computer chess 
programs. Between 1970 and 1980, the North American Computer 
Chess Championships (later known as the International Computer 
Chess Championship) were dominated by Northwestern University’s 
Chess 3.x and 4.x series of programs developed by David Slate, Larry 
Atkin, and Keith Gorlen.

In 1978, IM Levy was finally challenged and easily beat Chess 4.7 by a score of 3.5–1.5.
In 1983, Belle, the program of Ken Thompson at Bell Laboratories, became the first officially 

rated USCF master-level program. But in the 1983 World Computer Chess Championships (New 
York City), held every 3 years, Belle was defeated by Cray Blitz, developed by Bob Hyatt, Albert 
Gower, and Harry Nelson of the University of Southern Mississippi. Again in 1983, Levy was 
challenged by and again defeated the then-World Champion program Cray Blitz 4-0 in a match 
in London. Cray Blitz ran on the world’s fastest computer at the time, the Cray XMP. One of the 
authors (D. K.) served as Levy’s second for the match. Levy was able to get Cray Blitz out of its 
opening book early to steer for middle-game positions that were relatively blocked, and in general, 
he avoided Cray Blitz’s tactical prowess, while in general exploiting the match conditions to get 
Cray Blitz into time trouble. Thereby, Cray Blitz could not benefit from its major advantages: cal-
culation power, depth, and accuracy. 19

Between 1985 and 1988, Hitech (Berliner et al., Carnegie Mellon University) quickly became 
the dominant program and the first to break the 2400 barrier. Hitech was a hybrid game comprised 
of chess knowledge and search depth.20 In 1987, Fidelity Electronics (Miami, Florida) developed 
the first officially rated master-level microcomputer-based chess program (Spracklen and Sprack-
len, Baczynskyjs, and Kopec). Their chess engine was so good that it was subsequently sold to and 
used by the developers of the popular Chessmaster™ series of programs.

 16.2.2 Programming Methods
A chess program is the result of a very complex endeavor. Throughout the history of computer 

chess, a number of programming techniques and methods have been developed and refined. It usu-
ally comprises the following components:

 1. A Shannon type B approach described in the following section
 2. Board and legal move representation
 3. Openings and position evaluation
 4. Tree searching with the alpha–beta minimax algorithm, alpha–beta windows, depth-first 

search with iterative deepening, and transposition tables
 5. Large opening libraries and special purpose knowledge for each phase of play

In chess, a win is worth 1 point, a 
draw 0.5 points, and a loss 0 points. 
So this score represents three wins 
for Levy, one draw, and one loss.
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16.2.2.1 Shannon Approaches

From the time of Claude Shannon’s original paper in 1950, two fundamental approaches have 
been developed called Shannon type A and Shannon type B. The Shannon type A approach says 
to iteratively search, level by level, to a fixed depth from any given position. The Shannon type B 
approach says to extend the search beyond an ordained depth if a position holds sufficient inter-
est—for example, there has been a capture, check, or another tactical event that has not been com-
pleted. In other words, until the position is deemed to be quiescent or quiet. In chess, a quiescent 
position is one where there are no imminent tactics, for example, checks, pins, forks, captures, and 
so on.

In contrast, people use a technique called progressive deepening. Recall from Chapter 4 that 
because human memory is not as versatile as machine memory, people must constantly review 
what they have analyzed. When trying to decide on which move to play in a chess position, people 
will analyze more deeply for certain variations (or lines) that they are particularly interested in, as 
their memory and time permits, returning to these again and again to analyze more deeply. That is 
the progressive sense of this kind of analysis.

16.2.2.2 Board and Legal Move Representation

For humans, it is easy to enjoy and under-
stand a chess position. Just look at the lovely 
position before us with those beautifully pro-
portioned wooden or plastic Staunton design 
White and Black pieces in front of us (Figure 
16.7).

For computers, of course, this is not so 
easy, and it is important to remember that all 
decisions are ultimately determined by the con-
version of numbers to ones and zeros. A simple 

scheme to represent the initial chessboard shown above would be to have White pieces represented 
by positive numbers, Black pieces by negative numbers, and empty squares by zeros. This is shown 
in Figure 16.8.

Figure 16.8 assigns the pieces to squares 
on a chessboard. The actual addresses of the 
squares on the chessboard are more typically 
represented by the scheme in Figure 16.9.

Now let us put a piece on an arbitrary 
square, say a king on the square 44. Now 
the squares that the king can move to are (in 
a clockwise manner) 54, 55, 45, 35, 34, 33, 
44, and 52. So we could say that the squares 
the king can move to are K+10, K+11, K+1, 
K−9, K−10, K−11, K−1, and K+9. This is 
called a pseudo-legal move list. It is easy 
to see how this scheme can be extended to 
handle the legal movements of all pieces. Of 

The Englishman Howard Staunton 
was an unofficial World Chess 
Champion between 1843 and 1851. 
He created the standard design of 
chess pieces, which so distinctly 
identifies the pieces as seen in the 
chess diagrams of this book.
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Figure 16.7
The starting position in chess.
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Figure 16.8
The initial position in chess as it might be represented in a program. Here, 1 stands for a pawn, 2 
for a knight, 3 for a bishop, 4 for a rook, 5 for a queen, and 6 for a king, and 0 for an empty square. 
White pieces are positive numbers, Black pieces are negative numbers.
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course, one would have to check whether a 
square is already occupied by one’s own 
forces or what enemy forces either attack or 
occupy a square before considering a move 
to a square. Instead of lists, the pseudo-legal 
moves in a position could be more efficient-
ly stored and looked up in a table. The lists 
or tables could be stored in RAM and up-
dated as moves are analyzed or made. The 
logic behind this is that two-thirds of all the 
pieces on a chessboard are unaffected by 
whatever move is made.18 Furthermore, in 
the 1980s, with development of the program 
Belle 21 and its successors Hitech, Deep 
Thought, and Deep Blue, it became quite common to employ special-purpose hardware to gener-
ate the legal moves. This, coupled with other factors, enabled a speedup of several thousand-fold 
that resulted in several extra ply in the search depth that gave these programs an edge over their 
competitors.

16.2.2.3 Openings and Position Evaluation

In chess, it is generally accepted that there are three phases of play: the opening, middle game, 
and ending. In the opening, it is most important that (1) pieces are developed, (2) king safety is 
achieved, and (3) the rooks are connected.

In the 1980s, it was decided that programming computers to play the openings well in chess 
was a very difficult task. There seemed to be as many exceptions as there were rules to follow. For 
example, all chess novices learn the fundamental rule “do not take your queen out too early.” Yet, 
on many occasions, because of a particular configuration of pieces, it is precisely such a queen 
move that can be used to refute an opponent’s play, and such an opportunity cannot and should not 
be missed.

From the 1980s onward, it has become standard for computer programs to have opening librar-
ies of more than a million positions to assist programs in their opening play. This has stifled open-
ing play by computer programs and ended the area as an academic discipline. Nonetheless, five 
heuristics or goals emerge as crucial to successful play of chess openings:

 1. Develop pieces
 2. Control the center
 3. Maintain the King safety
 4. Control space
 5. Maintain material balance
1. Development

In the opening of a chess game, development is probably the single most important concept 
and universal goal. Development usually refers to the activation of knights and bishops and their 
movement off the back row so that castling can occur. When development is completed, the king 
is castled, and the rooks are connected, a side is said to be in the middle game. In the middle game, 

81 82 83 84 85 86 87 88

71 72 73 74 75 76 77 78

61 62 63 64 65 66 67 68

51 52 52 54 55 56 57 58

41 42 43 44 45 46 47 48

31 32 33 34 35 36 37 38

21 22 23 24 25 26 27 28

11 12 13 14 15 16 17 18

Figure 16.9
A typical representation of the “addresses” of squares on a chessboard.
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pieces will tend to move for their second and third times and short- and long-
term tactical skirmishes as well as long-term strategic maneuvers will often occur. 
When there are less than or equal to 20 points of heavy material (e.g., less than a 
queen (or two rooks) and three minor pieces (bishops and knights)) we are usually 
in an endgame.

The following is a brilliant example from David Levy’s wonderful Computer 
Chess Handbook (pp. 16–17). 18 The position (see Figure 16.10) has been subjected 
to tremendous analysis by at least three monographs (earlier by Znosko-Borovsky 
and more recently by Korchnoi and Zak, and Estrin and Glazkov) on the historic 
King’s Gambit Opening.

King’s Gambit [C37]
1.e4 e5 2.f4 exf4  3.Nf3 g5  4.Bc4    g4 5.0–0     gxf3 6.Qxf3 Qf6 
7.e5 Qxe5  8.d3 Bh6  9.Nc3 Ne7 10.Bd2 Nbc6  11.Rae1 Qf5  12.Nd5 Kd8
13.Qe2 

Levy notes that White is a knight and pawn down (or the equivalent of four pawns), but White 
has a considerable lead in mobility (46 to 34). Then he goes on to apply a formula for assessing 
development:

Development = D/3 − U/4 − (K × C)

That is to say:
D  (the number of minor pieces not on their original squares) is 3 for White and 3 for Black.
U  (which is 0 if the queen has not been moved or has been captured but which otherwise is the 

number of undeveloped pieces) is 0 for White, because his queen has moved, but there are 
no undeveloped pieces, but 3 for Black, because the Black queen has moved and there are 
two rooks and a bishop undeveloped.

C  (which is 2 if the opponent’s queen is still on the board) is 2 for White and for Black.
K  (which depends on castling rights) is 0 for White, who has castled, and 1 for Black, who has 

lost all castling rights.
So from the formula: 

Development = D/3 − U/4 − (K × C)

We have:
White’s development = 3/3 − 0/4 − (0 × 2) = 1
Black’s development = 3/3 − 3/4 − (1 × 2) = −1.75 from which we can see that White has a lead 

in development of 2.75 units.
Given an estimate that 10 units of mobility is worth a pawn, and coupled with Black’s weak-

ened king position and doubled and isolated pawns, we can assess that the position is actually about 
equal. Hence, White’s lead in development, mobility, Black’s insecure king, and weakened pawn 
structure compensate for White’s 4.0-point deficit. Indeed after 13. … Qe6, White can respond with 
14.Qf3 Qf5, and after 15.Qe2 Qe6 with threefold repetition to follow, the players can quickly agree 
to a draw.

2. Center Control
Control of the center has always been considered an important concept in chess. The reason 

is akin to the notion of “Grand Central Station.” From the center, forces can easily move to any 
board sector, as one could from a central train station. The weighting scheme provided in Figure 
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Figure 16.10
Ancient King’s Gambit position for 
development analysis.
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16.11 differentiates between the center (d and 
e files), subcenter (c and f files), wings (b and 
g files), edges, and corners. Clearly, the four 
squares marked with 10s (d4, d5, e4, and d5 
on a chessboard) are considered the center and 
are the most important squares on the board. 
When the center is closed (e.g., occupied and 
blocked with pawns), however, this might 
change. Then play can shift to the subcenter 
and wings.

There are well-known heuristics and ex-
pressions in chess such as “a knight on the rim 
is dim,” and this is reflected by the weight-
ings given to the edge squares, but there are 
also many exceptions, where, for example, 
a knight’s move to the rim can be a winning 
move.

3. King Safety
King safety is an important objective of the Opening and is usually achieved by castling. As 

play progresses, it is usually important to maintain a shield of pawns (like a house or castle) around 
the king to protect him. King safety is inherently related to pawn structure. Pawn play is a so-
phisticated and subtle aspect of chess. One way to measure king safety would be to consider the 
pawn structure around the king at all times and to add up the number of defensive forces and their 
values around one’s king. Another, more common, approach would be to measure the number (and 
weight) of the attacking forces on the quadrant the king lives in and see how these are offset by the 
defending forces.

4. Control Space
When one considers the subject of space in chess, it is inherently related to pawn structure (see 

Section 16.2.2.5). More advanced and healthy pawn structures will inevitably provide more space. 
Control of space will generally include better central control and suggest better maneuverability of 
forces (mobility). But even healthy structures can often be attacked and destroyed. Furthermore, 
even when one side has more space, there is no certainty that the opponent cannot work around that 
space and get behind enemy lines. Therefore, the subject of space is a difficult one, often involving 
delicate interplay of pieces and pawns. 

5. Material Balance
The fifth element, material balance, provides the greatest contribution of com-

puter chess to chess.
During the romantic period of chess (1850–1880), the more material that you 

could sacrifice to achieve checkmate, the more beautiful the game was considered 
to be. In the intervening 150 or so years, however, sound opening play has been 
developed and defensive techniques have improved. Correct chess play now en-
tails great attention to material balance. Furthermore, permanent pawn structural 
weaknesses usually cannot be endured and will usually turn into material losses.

After the first six moves in the ultra-sharp Schliemann Variation of the Ruy 
Lopez, we reach the critical position in Figure 16.12.

1 2 3 4 4 3 2 1

2 5 6 7 7 6 5 2

3 6 8 9 9 8 6 3

4 7 9 10 10 9 7 4

4 7 9 10 10 9 7 4

3 6 8 9 9 8 6 3

2 5 6 7 7 6 5 2

1 2 3 4 4 3 2 1

a b c d e f g h

Figure 16.11
A typical weighting scheme for the squares on a chessboard (Levy, p. 19).
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Figure 16.12
Ruy Lopez, Schliemann Variation.
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Ruy Lopez, Schliemann Variation [C63]
1.e4 e5  2.Nf3 Nc6  3.Bb5 f5  4.d4 fxe4  5.Nxe5 Nxe5  6.dxe5  c6
Many players who don’t know this theoretical position would now somewhat naively play 

7.Bc4, even though after Qa5+ and Qxe5 are soon followed with d5, White has very little com-
pensation for a pawn. When this position was presented to Fritz 9, in 2 minutes of thinking time, 
it found the necessary theoretical 7.Nc3! In other words, Fritz was able to search deeply enough to 
discover the necessary (and theoretical) piece sacrifice by realizing that any other move will just 
lose material without compensation. See DVD for further discussion.

The standard numbers used for material in chess are:
Pawn: 1, Knight: 3, Bishop: 3.5, Rook: 5, Queen: 9, and K: ∞
Before computers played a big role in chess, knights and bishops were considered closer to 3 

or equal in value. With the experience and knowledge gained through computer chess program-
ming, bishops are considered worth 3.25–3.5 points, whereas knights are worth 
3.0 points. The history of computer chess has reinforced the ideas of Mikhail Bot-
vinnik (the Chess World Champion from 1948–1963). Although Botvinnik never 
completed a strong chess-playing program himself, in his book “Chess, Comput-
ers, and Long Range Planning,” 22 he tried to mathematically prove the importance 
of material in chess. This has, for nearly three decades, been proven to be the most 
significant term in programs’ evaluation functions. In a nutshell, the increased 
depth of programs’ search capabilities has demonstrated viable defensive possi-
bilities in positions that humans long ago have discounted as untenable.

The position in Figure 16.13 is taken from the book “Test, Evaluate and Im-
prove Your Chess: A Knowledge-Based Approach” (p. 227). 23 It is Intermediate 
Test Position No. 8 where the idea is again to sacrifice a piece for two pawns to 

exploit a pin. The concept of the sacrifice shows a clear distinction between human and computer 
chess play. A long, deep, intricate analysis from our text, (see Appendix D.3.2) can demonstrate 
that with perfect play Black can hold. This isn’t the way humans can or do play chess. Humans play 
with heuristics, and here, the most important heuristic is that N/f6 should not play g5 in positions 
such as the one when the Black-squared bishop cannot easily get back to e7 to break the pin on the 
N/f6. Computers, like Fritz 9, do not have such heuristics but will instead dourly defend as long as 
some defense maintaining a material advantage is possible.

16.2.2.4 Mobility and Connectivity

After material, the next most important concept in most programs’ evaluation function is mo-
bility. Mobility refers to the activity of pieces—how many squares can each piece move to and 
influence? E. T. O Slater 24 did a famous study of mobility in master games. In reviewing 78 games 

that ended by move 40, he found that the average mobility of the eventual winner 
of a game was significantly higher than that of the loser. The difference between 
the averages of their mobility also increased as play proceeded. Table 16.1 shows 
Slater’s findings.

1.e4 e5 2.Nf3 Nc6 3.Bc4 Diagram 
In the diagrammed position (Figure 16.14), White has just played 3.Bc4. This 

is the most natural developing move because it helps White castle (that is to achieve 
king safety), and it controls the center. In addition, it is the most mobile (active) 
square the bishop can move to from f1. From c4, the bishop influences no less 
than 10 squares, whereas from the next most active square, b5, it would influence  
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Figure 16.13
Diagram 166, p. 227 from Kopec and 
Terrie, 2003.
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Figure 16.14
Bc4 has just been played.
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eight squares. In addition from c4, the bishop influences the all-important f7 square, which is the 
weakest square in Black’s camp because it is the only square defended only by the Black king.

Considerable evidence indicates that another important heuristic should be connectivity—how 
well the forces are connected or protected. Connectivity is a measure of the safety of a position, and 
the lack of it is suggestive of opportunities for combinations exploiting unprotected forces (mate-
rial). Connected (protected) positions are easier to play and closely related to planning. In “Connec-
tivity in Chess,” 25 we demonstrated through the review of hundreds of master-level, grandmaster-
level, and world championship-level games, and using novice games as controls, that connectivity 
is indeed an important consideration in most strong players’ play.

Positions with good pawn structures (see next section) tend to be more connected. As an exam-
ple, please see Figure 16.15. In this position (which is classified as a “knight ending” because there 
is only one knight left on the board plus three pawns and a kings for each side), White has poor 
connectivity and poor mobility, which usually goes hand in hand with bad pawn structures. White’s 
“a-pawns” are doubled, and he has two distinct groups of pawns (the a-pawn and the d-pawn), 
whereas Black’s pawns and position in contrast is neatly connected and protected as one group. 

For this position, where pawns are worth 10 and knights are worth 30, and for simplicity, let’s 
leave out the kings: A reasonable measure of connectivity could be as follows: Piece Value + 3.2 
(where 3.2 is the square root of the value of a pawn, 10), for each defender. BN/a5 = 30 + 3.2 (pro-
tector P/b6) + BP/b6 = 10 + 3.2; (BP/c6 = 10 + 6.4 (two protectors) and BP/d5 = 10 + 6.4.

Total Connectivity for Black = 79.2
For White, the Connectivity is for WN/d2 = 30 + 3.2; WP/d3 = 10 + 3.2; and WP/a3 = 10; 

WP:a4 = 10; the total for White is 66.4.
Black is significantly ahead in connectivity. Note that piece values are used in 

this computation as they should be. Protector values could vary for different piece 
combinations and could be done as table lookup for speed. A much simpler com-
putation for connectivity would be to say that Black’s protection count is 5 and 
White’s is 2 for each piece or pawn protection.

For the data in this study, the differences in average connectivity between the 
winners and losers from move 20 to the end of game were used. An open question 
would be to test the counterbalances of connectivity and mobility. This could be 
done as a study of “style in chess.” For example, someone familiar with champi-
onship chess would expect Mikhail Tal (known for his daring play and sacrifices) 
to have the highest mobility and lowest connectivity in his games, while expect-

Table 16.1
Results of an Examination by E. T. O. Slater of 78 arbitrarily selected master games that ended with a decisive result on or before the 40th move. This result helps to 
ascertain the importance of mobility as a term in any program’s evaluation function.

After Move Winner’s Mobility  
(Average)

Loser’s Mobility 
 (Average)

Difference

 0 20.0 20.0  0
 5 34.2 33.9 0.3
10 37.5 36.0 1.5
15 39.7 35.2 4.5
20 38.9 36.4 2.5
25 39.6 31.9 7.7
30 35.6 27.7 7.9
35 31.7 23.2 8.5
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Figure 16.15
Example of a position for study of 
connectivity.
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ing a much lower mobility and higher connectivity for the games of Anatoly Karpov and Tigran 
Petrosian (both known for their careful and safe play). Somewhere in between would be Fischer, 
Alekhine, and Kasparov, who would be expected to have more of a balance between mobility and 
connectivity. Figure 16.16 hypothesizes a sketch comparing the mobility and connectivity tenden-
cies of these players on a graph.

Mobility

HIGH MOBILITY

HIGH 
CONNECTIVITY

Tal
     Alekhine

             Kasparov

                         Fischer

                                       Karpov
                                       Petrosian

Pawn
Structure

Connectivity

Figure 16.16
Mobility vs. Connectivity—styles of world champions could be depicted, studied, evaluated, and proven with this method.

Perhaps one of the most important topics in chess and for computer chess programming is pawn 
structure. Pawn structure is a subject that is relevant throughout play in the opening, middle game, and 
ending. It can be argued that nearly all play and positioning of pieces is related to pawns. Pawn struc-
tures and their handling can be either static or dynamic in nature. Good pawn structures are inherently 
related to center control, space, mobility of forces (and pawns), and the ability to attack the opposing 
king. Pawn structural defects can endure from the opening to the ending. Pawn structural advantages 
can be the major reason for victory in any phase of play. Pawns can be viewed as “islands or groups.” 
The more “islands” of pawns a player has, the worse is considered his or her structure.

Although players and machines can be taught everything that is necessary to know about good 
and bad pawn structures (statically), it is much harder to understand the dynamics of pawn play and 
how pawn play can interact with piece play. Even harder and more subtle is the generation of a plan 
that might result in the decision to initiate a certain pawn assault. Pawn play is usually equated with 
“positional (or strategic) play,” although as alluded to earlier, it might quickly become dynamic in 
nature, particularly when related to an attack on the opposing king. Usually, positional factors are 
not allowed to total more than a pawn’s value (1 point) in the assessment of a position. Therefore, 
if after performing a search, a program returns an assessment of a position of say +.75, it is saying 
that it thinks it is three quarters of a pawn ahead in positional (static) factors.

Pawn structures are especially important to the outcome of endings. The position in Figure 
16.17 could easily result from the most popular chess opening—the Sicilian Defense as played 
here by Black. As strong a program as Fritz 9 is, it does not seem to realize White’s usual threat in 
this kind of position. Every strong human player would be familiar with this kind of position and 
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would know that White threatens the favorable exchange of bishop for knight with 
1.Bg5, resulting in an ending of “Good Knight against Bad Bishop.” No doubt the 
program does not fear Bg5 and the subsequent exchange of White’s bishop for 
Black’s knight because it believes bishops are more valuable than knights.  How-
ever, because of the particular pawn structure (highlighted by Black’s backward 
pawn on d6 on a dark square), this is one of the well-known exceptions, and after 
allowing Bg5 followed by Bxf6, it should be prepared for an arduous defensive 
task.

 16.2.3 Beyond the Horizon
In the early 1970s, World Correspondence Champion (1966–1969) Dr. Hans 

Berliner developed the horizon effect concept, which was introduced in Chapter 4. 26  
This was a phenomenon that Dr. Berliner had observed while doing his doctoral 
research. The phenomenon was based on the observation that seeing a forthcoming 
disastrous variation (say a loss of material), a computer chess program would try 
to give away more material to push what it had “seen” earlier beyond the horizon. 
In doing so, the program tended to compound its difficulties.

The position in Figure 16.18 is one of the most famous positions in the an-
nals of computer chess. An audience of over 500, including a former world cham-
pion, was aghast when Kaissa elected to play 34. ...Re8 instead of the obvious 34. 
...Kg7. Was this a blunder? Why did Kaissa (Black) give up a rook for nothing? 
Actually, it was a case of the horizon effect/brute force being applied for correct 
reasons. Kaissa preferred this over allowing a forced mate with the beautiful queen sacrifice, for 
example, 34.Kg7 35.Qf8 + Kxf8 36.Bh6+ Bg7 37.Rc8+ and mate follows.

 16.2.4 Deep Thought and Deep Blue Against Grandmaster  
Competition: 1988–1995

During roughly the same period, a program that came to be known as Deep Thought (Ananth-
araman, Campbell, and Nowatzk, all graduate students at Carnegie Mellon University) tied for first 
at the 1988 Software Toolworks Championship with GM Tony Miles defeating GM Bent Larsen 
along the way. It was during this period that it became clear that only the very best players would 
be able to defeat computer chess programs on a regular basis, even in slow play. Deep Thought 
established a rating of 2551, and in 1989 won the sixth World Computer Chess Championship in 
Edmonton, Alberta. 27

One other event of 1988–1989, which is significant to the past, present, and future of computers 
and chess, is the victory of the late IM Michael Valvo over Deep Thought in a two-game Internet 
match played at the rate of one move every 3 days. Valvo won both games, although both were tacti-
cally complex. This showed, that given the time and proper conditions, humans could still compete 
with the best programs. Between 1989 and 1990, a number of other significant events happened in 
the computer chess world. In October, 1989 World Chess Champion (1985–2000) Gary Kasparov 
won a two-game exhibition match in New York City against Deep Thought. It was clear that the 
computer was not yet ready to challenge the World Champion. In December that same year, David 
Levy’s challenge bet ($1,000 from Levy and $4,000 from Omni magazine) was finally claimed 
by a program. Deep Thought defeated Levy, who for many years had been out of chess-playing  
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Figure 16.17
A position based on deep structural 
knowledge.
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Figure 16.18
World Computer Chess 
Championship, Toronto, 1977. Kaissa 
played 34. … Re8! 
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practice, with a one-sided 4-0 score. Again D. K. served as Levy’s 
second in preparation for the match. In a nutshell, a few days was not 
enough to make up the gap in playing strength that Levy had lost from 

years of inactivity—while Deep Thought was a significant improvement over challengers of yes-
teryear. In February 1990, former World Champion Anatoly Karpov played an exhibition game at 
Harvard University with Deep Thought and narrowly won. In February 1996, Kasparov demonstrated 
some of the existing flaws in Deep Blue in his match in Philadelphia, which he won 4-2 (+3, =2, −1).

Note that the match was tied after four games. In the fifth game, through 23 moves, Kasparov con-
sidered the game roughly equal when the Deep Blue team unadvisedly turned down a draw offer from 
the World Champion, who was slightly short of time. In the last game of the match, Kasparov steered 
play into channels whereby the machine, with little space and activity, was gradually squashed. 28

In the May 1997 rematch with Deeper Blue in New York City, Kasparov was defeated 3.5-2.5 
(+1, =3, −2). True, this was the first time that Kasparov had lost a match at slower speeds since 

becoming World Champion in 1985, but not as much sig-
nificance should have been attached to the result, as it was 
a relatively short match and was not played with the World 
Championship at stake.

Figure 16.19, based on Hsu’s article in Scientific Ameri-
can in 1990, is probably the most important figure in this 
chapter. 29 It shows a trend started by Belle and continued 
by Hitech, Deep Thought, Deep Blue, and subsequent pro-
grams. Hsu predicted that once programs could achieve a 
depth of 14 ply of exhaustive search, they would play very 
strong grandmaster chess and be able to compete with the 
world champions. He was absolutely right, and their ratings 
have approached 3400 as predicted in Figure 16.19.

This means Kasparov won three 
games, drew two, and lost one.
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Figure 16.19
History and predictions for chess program rating vs. search depth.

Garry Kasparov at Turing Centennial in Manchester England on June 26, 
2012. 
Photo by Dennis Monniaux
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 16.3 CONTRIBUTIONS OF COMPUTER CHESS TO ARTIFICIAL 
INTELLIGENCE

As has been described in the previous sections, chess programming has largely proven to be 
a problem of representation—that is representation of the most important concepts necessary for 
strong chess play—and one of search. No program has reached the master level today without per-
forming enormous searches, especially when compared to what humans do. The ability to increase 
search depth by a ply, or to be able to more efficiently focus a large search so that it is able to iden-
tify the most critical and best moves for each player, and to recognize when positions reoccur or 
when a search is reaching a dead end has been critical to the success of the best programs.

 16.3.1 Search in Machines
As has been described earlier, most chess programs will employ a Shannon type B search strat-

egy with a depth-first iterative deepening search with the minimax alpha-beta algorithm. Searches 
beyond 14 ply are not uncommon with today’s programs.

In a large search tree analysis, such as the ones generated when computers play chess, many 
positions that have been previously encountered reappear by move order transpositions. Hashing 
is the technique that computer scientists use to efficiently store information or data that might be 
used for later examination. For efficient recovery of this data, positions are stored so they are easy 
to find in what is called a transposition table. This way a position, once assessed, doesn’t need to 
be reassessed.

Sometimes, a move (or concept) that has proven important earlier in a search tree analysis be-
comes available again. Identification and reemployment of such a heuristic is called use of a killer 
heuristic. This is particularly effective when a so-called refutation move that has enabled a large 
alpha-beta cutoff is looked at first at another level in the tree and can be used again to cut off the 
search.

One search heuristic discovered by the Deep Thought/Deep Blue team in the late 1980s and 
early 1990s was the null move heuristic. Like the killer heuristic, the intention of the null move 
heuristic is to achieve greater efficiencies in search by employing the alpha-beta algorithm more 
effectively. That is, the side to move in a position to be analyzed skips its turn and the position is 
then analyzed at a higher level in the tree. If the position generates alpha-beta cutoffs with the null 
move heuristic being applied, then it has been effective. If not, the search continues more deeply.

Singular extensions are another result of the research by the Deep Blue team in trying to make 
its search deeper and more efficient. Basically, the concept is that if a move’s value particularly 
stands out from the value of all other moves, then the search on that move should be extended to 
another level to make sure that the value can be trusted.

Computer chess endgame databases have been built for all possible endings of up to seven 
pieces. This has been accomplished via a technique known as the retrograde analysis, whereby 
starting with positions with known values (e.g., K + Q vs. K) and working backward to all possible 
predecessor positions, ultimately, all possible positions in an ending are labeled or evaluated as a 
win or a draw in x number of moves.

Computer chess programs have been exploiting the possibility of using special-purpose hard-
ware since Ken Thompson introduced the program Belle at Bell Labs in 1980. The coupling of this 
special purpose hardware with parallel search algorithms further improved the search depth and 
speed of computer chess programs.
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 16.3.2 Search in Man vs. Machine
The infatuation of computer scientists with chess has, no doubt, stemmed from the belief that 

if you could create a program that played master-level chess, you would be emulating and achiev-
ing the very core of human creative endeavor and thinking. As computer chess programs became 
stronger, they clearly did not achieve competence in their play by the same methods that humans 
do. We can investigate some of the differences in the methods that humans and machines use to 
choose a move.

Humans are estimated to search 50–200 future board positions from any given board position 
in 3 minutes of think time. Even World Champion Kasparov is limited to these numbers. The best 
computer chess programs such as Deeper Blue can, however, search several hundred billion posi-
tions in the same 3-minute interval. Humans cannot match computer programs in calculation power 
when playing chess. In terms of calculation, breadth, and depth, chess masters consider at most an 
estimated seven possible candidate moves in a given middle game position. Computer programs 
look at every possible move for both players from a given board position, estimated to be 35 pos-

sible moves on average in the middle game. Therefore, in addition to 
inferior calculation power, people cannot match computer chess pro-
grams in breadth (width) of search. Furthermore, from a given board 
position, computer programs can search up to 14 ply (recall, a ply is 
a half move, where 2 ply equals a move by both White and Black, so 
14 ply equals seven moves) in depth. Humans, however, can rarely 
search to a depth of more than 10 ply. Even Kasparov admitted this 
to be his typical limit in the Deeper Blue matches in February 1996 
and May 1997. These search statistics might vary, especially in the 
endgame, where considerably more depth due to the reduced material 
on the board is possible. So we are comparing computer search depth 
limits, approximately 35,14  to human search depth limits, which are 

somewhere between 25 (32 or 2 moves per position, 5 ply deep) and 35 (243 or three moves per 
position 5 ply deep). However, it is widely accepted that humans, unlike machines, do not search 
uniformly either in terms of breadth or depth. This is more likely in the extreme case of the most 
calculation-intensive players, people search one line 10 ply deep, another line or two 8 ply deep, 
other lines 7 ply deep, and so on.

How it is that humans can compete with the best programs? It turns out that most of the hun-
dreds of billions of positions that computers search are considered simply because they fall into 
the category of legal moves. In other words, many moves that computers evaluate are unrealistic. 
For example, after 1.e4 e5 2.Nf3 Qh4, a computer program as White needs to consider 3…Qh4 as 
a legal move even though it is not a reasonable move (it loses a queen for nothing). If humans can 
find combinations or sacrifices where the compensation is deep enough, then even the best pro-
grams can be beaten. To find these combinations, people can rely on long-term positional concepts, 
including heuristics such as weak squares or weak square complexes. The best human players can 
employ such heuristics effectively. In practice, however, the depth of the compensation for sacri-
ficed material has also been pushed so far over the horizon by the adroit defense posed by computer 
programs as defenders, often sufficient compensation is not found.

This is somewhat more than the 
earlier stated hundreds of billions 
searched by the best programs 
probably because as search depth 
increases as a result of captures or 
exchanges, the number of possible 
moves in a position (the branching 
factor, here initially 35) decreases to 
something more like 25.11
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 16.3.3 Heuristics, Knowledge, and Problem-Solving
Studies by Chase and Simon in 1972 30 and others demonstrate that humans play chess largely 

by pattern recognition. The original interest in chess by AI researchers and cognitive scientists was 
that by solving chess or reaching chess mastery, we would gain significant insight into human prob-
lem solving and thinking methods. Furthermore, programs that solved or mastered chess would 
demonstrate that machines could intrude into and contribute to the realms of creative endeavor 
originally considered germane to, symbolic of, and unique to human intelligence, such as chess, 
music, and mathematics. As you learned in the previous section, machines and humans solve prob-
lems in and contribute original material to these domains in different ways.

As described in Chapter 7, people constantly use heuristics to help them make decisions. We 
are not machines. We function by being imprecise and approximate, yet purposeful and goal ori-
ented. In fact, when people try to function or perform in a machine-like manner by being regular, 
predictable, and routine, they either fail or go crazy. Most people do not follow a checklist to start 
their day: first, you must wash, then brush your teeth, get dressed, eat breakfast, and so on, spend-
ing x minutes on each task. We must estimate knowing in general what our tasks and goals are for a 
particular day, weekend, month, or year. By employing heuristics and the knowledge they provide, 
we compensate for our slow and limited search speed. Examples of heuristics in chess include the 
following: in the opening, develop pieces, control the center, achieve king safety, fight for space, 
and don’t lose any material. Other, more refined, heuristics are, for example, that three moves of 
development in the opening are worth a pawn and that a knight on the rim is dim, in other words, 
knights are better positioned in the center of board than on the periphery. Although computers are 
also programmed to play chess with heuristics, these heuristics are not represented by words but by 
numbers. (We (humans) actually do the same thing, only we don’t explicitly and consciously put 
the numbers together to choose a move—we do so subconsciously.)

As people are the programmers of machines, the methods by which computers evaluate a move 
or a variation are based on human translation of imprecise heuristics (of a static structure) into a 
final numerical evaluation for the quality of each move considered and selected. Programmers must 
fine-tune their evaluation function based upon their understanding of the performance or effective-
ness of the program’s heuristics. Generally, that is why a strong player needs to provide advice 
to chess programmers and help them evaluate the accuracy and effectiveness of their heuristics. 
Automated, statistical database-like attempts to study the performance of a program’s heuristics, 
including Deep Thought and then Deep Blue, have led to improvements in the weightings of the 
heuristics comprising a program’s evaluation function. Nonetheless, the task of converting chess 
knowledge represented by heuristics into strong chess play, combined with all the other aspects of 
a chess program (such as data structures, search, opening book, and diverse tables of information), 
remains complex and intricate.

 16.3.4 Brute Force: Knowledge vs. Search; Performance vs. Competence
Despite computer chess programs’ achievement of the master level in 1982, senior master 

(2400+) level in 1988, and grandmaster level in the 1990s, some AI experts are skeptical about 
the contributions of chess to AI. A continuing argument among AI researchers is whether efficient 
search techniques constitute strong AI. Recall that strong AI is the approach that searches for solu-
tions to difficult problems developed in a way that humans would employ, that is, from the cogni-
tive psychological perspective. In other words, the solutions model what humans do and help us 
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gain a better understanding of how we function and think. By that definition, because the decision-
making processes by humans and machines are so different, is searching and deciding on the best 
move in a chess position by a program equivalent to human thinking?

One contribution that has been a by-product of computer chess for AI and for computer sci-
ence in general is the power of brute force. In the context of computer science, brute force means 
the allocation of great computational power in order to perform an exhaustive search from a given 
position to a certain ply depth. Brute force has changed the view of how chess is best played by 
both people and machines. Strong AI proponents (D. K. included) have always hoped that we could 
learn enough about what goes on in a strong chess player’s head that very strong chess programs 
could be developed without much calculation.

However, evidence acquired over many years, including the efforts of many 
great scientists, shows that we were wrong. Instead, a lot of calculation is indeed 
required, and the benefits of knowledge in reducing the requirements for search 
have been hard to discern. Hence, the distinction between tactical play and strate-
gic play in chess, once believed to be clear, has been almost entirely eroded via the 
power (effects) of brute force. An example is Figure 16.20 from the fourth game of 
the six-game match between Michael Adams (then the No. 7 player in the World) 
and the Computer Hydra of the United Arab Emirates.

We see again the beautiful and unexpected tactical concepts which can be a 
direct result of brute force. Hydra has just played 44. ...Rh5, which essentially seals 
Black’s victory. Before that move, Black’s rook was stuck in an innocuous position 
on h6. It seemed problematic for Black to try to activate this piece (say with Rh8) 
because the P/g6 would be left unprotected. But now, through this clever move, 

Black can advance with his king, leaving his passed d-pawn unprotected and it will be immune 
because the clever tactic f4+ will be there for Black. The play ended with 45.Ra1 Kc5 46.Rc1+ 
Kb4 47.Rd1 Kc4 48.Rc1+ Kd3 49.Rc6 Rh6 50.h5 f4+ White resigns. Furthermore, we can see from 
such examples how programs can compensate for not having the immense kind of special-purpose 
knowledge that strong humans have for chess endings.

Tactical play generally refers to hand-to-hand combat between the White and Black forces 
(e.g., checks, captures, pins, and forks), whereas strategic play generally refers to more long-term 
maneuvers (e.g., regrouping a knight by retreating it, outposts for pieces, advances by parts to de-
velop and execute a plan).

In summary, programs can play what seems to be the strongest chess of all time without strong 
AI techniques, without the benefit of special-purpose chess knowledge, and by the mere application 
of brute force. AI scientists call this distinction performance vs. competence. That is, programs 
that can perform well but don’t have great knowledge about what they are doing or the principles 
behind what they are doing fall into the realm of weak AI or performance. Programs that display a 
good knowledge of their realm are called competent and exhibit strong AI.

 16.3.5 Endgame Databases and Parallelism
Developments in chess endgame databases 31 have contributed to knowledge about the game 

and its relationship with computer science issues. Progress in this area further demonstrates the 
distinction between search and knowledge. Nearly all work in computer chess endgames in recent 
years has focused on developing complete database solutions, rather than understanding the secrets 
of such endings through the organization of knowledge about them. Complete endgame databases 
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Adams, Michael (2737)—Comp 
Hydra at London Man-Machine 
London (Match Game 4), 6/25/05.
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have been constructed for up to six pieces by Lewis Stiller, 32 extend-
ing our knowledge about certain special-purpose endings. In 1991, 
Lewis Stiller, while still a graduate student at Johns Hopkins Univer-
sity, solved the secrets of the ending KRB vs. KNN demonstrating a 
win for the strong side in 223 moves.

However, endgame databases do not provide the kind of “knowl-
edge refinery” that Professor Michie has spoken of, enabling human 
acquisition of the critical concepts for such endings and thereby extending the science of chess and 
related disciplines.33

Monty Newborn of McGill University was the first to develop parallel versions of his program, 
Ostrich, in the 1970s. 34 Subsequently, all the top computer programs, including Cray Blitz, Hitech, 
Deep Thought, and Deep Blue, exploited the advanced search capabilities available through paral-
lel architectures. Publication of these parallel search techniques applied to computer chess and how 
they were efficiently accomplished has contributed to the discipline of search and parallelism.35 
Although a speedup due to parallelism is by no means near to linear with the number of processors, 
it is an integral feature of most top chess programs today. Table 16.2 compares the top computer 
chess programs historically in terms of size, makeup, speed, strength, and so on.

 16.3.6 Author Contributions
One of the authors (D. K.) in his PhD thesis 36 in machine intelligence focused on the compari-

son of knowledge representations of several correct and optimal solutions for the least mobile of 
chess endings, K + P vs. K. These solutions were compared for their executability as advice texts 
for human novices and then for their comprehensibility for the same purpose (see Chapter 6). In 
other words, could novice chess players in high school learn from the translation of these programs 
from a programming language such as Algol or Prolog into English, where the program informa-
tion appeared as decision tables or as procedures?

The endgame K + R vs. K+ N is a specialized chess endgame that can occur frequently, even 
in top-level play. In a paper with Tim Niblett titled “How Hard Is the K+R vs. K+N Ending?” 37 
we learned that it takes about a master-level player to hold a drawn position or win a won position 
in this ending. The longest win is 33 moves, and it is not uncommon for people, even at the master 
plus level, to make errors in this ending. From this research, it was discovered that to hold certain 
positions in this ending with the weak (N) side, you must play counterintuitive “separating” moves 
that increase the distance between the defending K and N rather than decrease it as is the common 
human heuristic in all chess books. In other words, in certain positions, it’s not the distance between 
the K and N that is important but rather the availability of safe paths between them.

In work with Ivan Bratko, 38 a test was developed for evaluating chess strength based on tactical 
ability and knowledge of a certain aspect of pawn play called “levers.” This test, consisting of only 
24 positions administered for 2 minutes each, for many years had been the standard benchmark 
for evaluating the strength of humans and computer chess programs. It has proven quite reliable 
for players rated 1500 to master. A later effort, “Experiments in Chess Cognition,” 39 involved the 
use of various tests on people to determine whether two heads are better than one or whether two 
people working together on test positions perform better than one person. Another test involved 
time-sequence experiments to see how various levels of players perform on positions of diverse 
difficulty with varying amounts of time. In general, the results found that two people perform one 
class better than one person performing alone. It was found that in easier positions presented for 

Since this six-piece endgame has 
over six billion positions, Stiller’s 
discovery that over 96% of the 
positions are wins for the strong side 
is very significant and well beyond 
the realm of human comprehension.
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short amounts of time, weaker players performed on a par 
with stronger players. In harder positions, presented over 
longer amounts of time, the stronger players distinguished 
themselves.

Work with Hans Berliner 40 initiated the attempt to 
compile and classify all the important concepts in correct 
chess play that could be identified. If we could classify the 
problem of choosing a correct move in a position into an 
appropriate category, then problem solving in chess could 
be well classified, and no doubt, performance and under-
standing would improve. This work was later expanded 
into the book, “Test, Evaluate, and Improve Your Chess: 
A Knowledge-Based Approach,” 41 with the second edi-
tion providing seven tests on all parts of the game at all 
levels. 42

 16.4 OTHER GAMES
We have detailed the history, research, and progress in two of the best-known, advanced com-

puter games, chess and checkers. Now we will summarize progress in some of the other well-
known games such as Othello (Reversi), Backgammon, Bridge, Poker, and Go.

 16.4.1 Othello
The goal of the game of Othello is to have as many disks as possible of your color at the end of 

play when the 64 squares of the eight-by-eight square board 
have been covered. With each move, you flip your opponent’s 
disks to your color disk by “surrounding” or capturing them. 
Play starts with four disks in the middle of the board, two 
white and two black. See Figure 16.21.

The corners and certain other squares around the disks in 
the four corners are considered most important. The struggle 
to control the four corners and the squares around them is 
critical to success in Othello. Here is a block of code illustrat-
ing the importance of the X square (b2) in Othello:

If a1 = own THEN RETURN 100 END;
If a1 = opp THEN RETURN 2 END;
IF (g1 = opp) OR (a7 = opp) THEN RETURN – 100 
          END.
RETURN – 200.

This code was developed by Kierulf in 1983. 43 See 
Figure 16.22.

Othello is a game of strategy; brute-force play of just try-
ing to capture disks with every move will inevitably fail.
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Figure 16.21
The starting position in Othello.
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Figure 16.22
The importance of the four corners and the squares immediately around 
them.
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For many years, there has been the general belief that the best Othello programs will beat the 
best human players, and when this finally did happen in 1997, the top program Logistello was 
promptly retired.

In the 1990s, Logistello won 18 of the 25 tournaments it participated in, finished second six 
times and finished fourth once. The program combined deep search with a sophisticated evaluation 
function that was automatically tuned, coupled with an extensive database of opening moves and a 
perfect endgame player. 2 Schaeffer suggests that Othello is a candidate for the next advanced com-
puter game to be solved: “The disk-flipping game of Othello is the next popular game that is likely to 
be solved, but it will require considerably more resources than were required to solve checkers.” 8,44  
Table 16.3 lists the milestones in computer Othello.

Table 16.3
Milestones in Computer Othello.

Year Program or Event Description
1971 Othello Othello as we now know it was created when Goro 

Hasegawa modified the rules of Reversi, a game from the 
late 1880s.

1980 The Moor The Othello program, The Moor (written by Mike Reeve 
and David Levy) won one game in a six-game match 
against world champion Hiroshi Inoue.

Early 1980s Iago Paul Rosenbloom developed the Othello program Iago. 
When Iago played The Moor, Iago was better at capturing 
pieces permanently and limiting its opponent’s mobility.

Late 1980s Bill Kai-Fu Lee and Sanjoy Mahajan created the Othello pro-
gram Bill, which was similar to Iago but incorporated 
Bayesian learning. Bill reliably beat Iago.

1992 Logistello introduced Michael Buro began work on the Othello program Lo-
gistello. Logistello’s search techniques, evaluation func-
tion, and knowledge base of patterns were better than 
those in earlier programs. Logistello perfected its game by 
playing over 100,000 games against itself.

1997 Logistello perfected Logistello won every game in a six-game match against 
world champion Takeshi Murakami. Though there had 
not been much doubt that Othello programs were stronger 
than humans, it had been 17 years since the last match 
between a computer and a reigning world champion. After 
the 1997 match, there was no longer any doubt. Logistello 
was significantly better than any human player.

1998 Hannibal, Zebra Michael Buro retired Logistello. Research interest in 
Othello waned somewhat, but some programs, including 
Hannibal (by Martin Piotte and Louis Geoffrey) and Zebra 
(by Gunnar Andersson), continued to be developed.
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 16.4.2 Backgammon
Backgammon, a game that has 

been played for over 5,000 years, has 
been called the “ultimate race game” 45  
and could be viewed as a sophisti-
cated version of the popular children’s 
game Parcheesi, where the goal of a 
play is for up to four players to travel 
around a game board as quickly as 
possible dictated by a counter.

Backgammon also includes a 
defensive component whereby play-
ers try to create points that block 
an opponent’s progress. Backgam-
mon combines elements of chance 
(the dice) with elements of strategy, 
calculation, probability, risk and 
analysis, experience, intuition, and 
knowledge. It is definitely a game of 
skill, although in an individual game 
or short series of games, a novice 
could win against a top player. Figure 16.23 shows an opening move by White on a dice roll of 
6-2. The move played is 24-18 and 13-11. Clearly, moves in Backgammon are based on chances 
of creating safe structures (points), moving into positions to bear off, and the probability (and 
capability) of needing to cope with an opponent’s hit.

Gerald Tesauro’s accomplishments with TD-GAMMON 3.0 through close to 1,500,000 self-
play games, whereby it would train itself using a neural net to attain the most effective evaluation 
function, are considered a major contribution to AI.2 To achieve this, after each game was played, a 
technique called temporal difference learning (TD learning) was employed by the neural network 
to determine which terms had played the most important role in the program’s success. TD learning 
is a combination of Monte Carlo ideas and dynamic programming (recall dynamic programming 
was explained in Chapter 3, Section 3.6.3) ideas. Like Monte Carlo methods, TD methods can 
learn directly from raw experience without a model of the environment’s dynamics. Like dynamic 
programming, TD methods update estimates based in part on other learned estimates, without wait-
ing for a final outcome (they bootstrap). Table 16.4 lists the milestones in computer backgammon.

 16.4.3 Bridge
Bridge is a trick-taking card game of skill and chance. Tricks are units of play during which 

each player selects one card from his or her hand. Play includes four players who form two partner-
ships. The players (usually called South, West, North, and East) sit opposite each other at a table 
with South and North forming one partnership and East and West forming the other. The game 
consists of the auction (often called bidding) and play, 
after which the hand is scored.

ON THE DVD

Figure 16.23
The position after White’s first moves on the dice roll 6-2.

See Appendix D.3.1 for a full description 
of the rules and objectives of bridge.
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The bidding ends with a contract, which is a declaration by one partnership that their side will 
take at least a stated number of tricks, with a specified suit as trump or without trumps. The rules of 
play are similar to other trick-taking games, with the addition of the feature that one player’s hand 
is displayed face up on the table as the “dummy.”

A session of bridge consists of several deals (also called hands or boards). As a hand is dealt, 
the bidding (or auction) proceeds to a conclusion, and then the hand is played. Finally, the hand’s 
result is scored. The goal of a single deal is to achieve the highest score with given cards. The score 
is affected by two principal factors: the number of tricks bid in the auction and the number of tricks 
taken (won) during play. If the side that wins the auction (declaring side) then takes the contracted 
number of tricks (or more), it is said to have made the contract and is awarded a score; otherwise, 
the contract is said to be “defeated” or “set” and points are awarded to the opponents (defenders). 
Table 16.5 lists the milestones in computer bridge.
Table 16.5
Milestones in computer bridge.

Year Program or Event Description
1958 N/A Tom Throop, an avid chess and bridge player, wrote a bridge program on a UNIVAC 

computer. It could only play one round before it ran out of memory.
1980s Bridge Baron Computer bridge attracted more attention from more researchers, but Tom Throop 

stayed at the fore. In 1982, he finished the first version of Bridge Baron, a program that 
continues to be developed today.

Table 16.4
Milestones in computer backgammon.

Year Program or Event Description
1979 BKG 9.8 BKG 9.8, the first strong backgammon player (written by Hans Berliner of 

Carnegie Mellon University), defeated world champion Luigi Villa in an ex-
hibition match. It is widely accepted that Villa played better and that chance 
favored the computer with better dice rolls.

1989 Neurogammon Gerald Tesauro’s neural network-based Neurogammon, which was trained 
with a database of games played by expert human players, won the back-
gammon championship at the 1989 International Computer Olympiad. All 
top backgammon programs since Neurogammon have been based on neural 
networks. Search-based algorithms are not currently feasible for backgam-
mon because the game has a branching factor of several hundred.

1991 Debut of TD-Gammon Gerald Tesauro’s TD-Gammon debuted. Instead of being trained with a 
database of moves, TD-Gammon was trained by playing itself. This approach 
was challenging because individual moves are not rewarded—the reward 
is delayed until the end of the game, and credit for winning must then be 
distributed among the various moves. Tesauro used temporal difference learn-
ing, pioneered by Richard Sutton, to get around this obstacle.

1992 TD-Gammon improve-
ments

TD-Gammon was playing at a level nearly equal to that of the best human 
players. Furthermore, it influenced the play of human backgammon experts.

1992–present JellyFish, mloner, and 
Snowie

Many programs inspired by TD-Gammon have emerged, such as Fredrik 
Dahl’s JellyFish, Harald Wittman’s mloner, and Olivier Egger’s Snowie. 
Some programs have been developed that are not based on the temporal dif-
ference learning method, but they have not proven themselves superior.
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Year Program or Event Description
1990 £1 million prize offered Zia Mahmood offered a £1,000,000 prize to any bridge program that could beat him.
1997 Bridge Baron Bridge Baron won the first World Computer Bridge Championship.
1998 GIB The program GIB, written by Matthew Ginsberg from the University of Oregon, became 

the strongest bridge program. In 1998, GIB not only won the Computer Bridge World 
Championship, it was also the only computer player invited to play in the Par Contest at 
the World Bridge Championships. Out of 35 competitors, GIB finished 12th.

1998 GIB GIB played Zia Mahmood and Michael Rosenberg in an exhibition match. GIB lost but 
did well enough to make Zia Mahmood nervous, and he withdrew his £1,000,000 chal-
lenge.

2000s Jack, WBridge5 Jack, written by Hans Kuijf from the Netherlands, dominated the computer bridge world. 
Jack won the Computer Bridge World Championship in 2001, 2002, 2003, 2004, and 
2006. In 2005, the winner was WBridge5, a program by Yves Costel from France.

 16.4.4 Poker
Poker is a card game that has gained popularity around the world in casinos, online, and in 

many social venues. Its popularity as a game that combines skill and luck has led to great interest, 
including many new books and programs attempting to capture the essence of poker. Because chess 
programs automate a game of perfect information, any attempt to add elements of psychology ex-
ploiting human strengths and weaknesses is scorned; for poker, in contrast, any successful program 
must emulate the human elements of play, including bluffing.

In successful poker play, you must hide from and deceive opponents about the cards you are hold-
ing and then finally present your cards at a most opportune moment. Jonathan Schaeffer, the world’s 
leader in programming computer games, summarizes poker in context of other computer games: 

Two-player perfect information games are poor models of real-world complexity. The world is not two-
player, not turn-based, and not perfect information! Hence members of this class of games are limited in 
what they teach us about artificial intelligence. In contrast, games like poker (for example), with its imper-
fect information, better reflect the complexities of reasoning of the real world and, hence, are more likely to 
be used to make substantive contributions to our understanding of artificial intelligence.46

Table 16.6 lists the milestones in computer poker.

Table 16.6
Milestones in computer poker.

Year Program or Event Description
1970s First five-card draw 

poker program
Nicolas Findler wrote a poker program that played five-card draw. His program was not 
especially strong, but his aim was to model the thought processes of human players, 
not to make the best possible player.

1984 Orac Professional poker player Mike Caro wrote the program Orac on an Apple II computer. 
Orac played Texas Hold’em, a popular and computationally interesting type of poker. 
Unfortunately, Caro kept the program secret, so it’s not known how strong or weak the 
program was.

1990s Turbo Texas Hold’em A commercial poker program called Turbo Texas Hold’em was developed. A rule-
based program, it has sold more copies than any other commercial poker program, and 
it is still sold today.

(Continued)
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Year Program or Event Description
1997 Loki University of Alberta researchers, led by Jonathan Schaeffer, wrote Loki, a Texas 

Hold’em program.
1999 Poki The University of Alberta team rewrote Loki and called the new program Poki. Poki 

plays ring game Texas Hold’em, which has up to 10 players.
2001 PsOpti The growing University of Alberta team wrote PsOpti (which stands for “pseudoopti-

mal”), which used game theory. PsOpti plays heads-up (two-player) Texas Hold’em.
2000s Online gambling Web 

sites
Online gambling sites proliferated. Because these sites involve real money, poker pro-
grams, or “pokerbots,” are not allowed to play.

2000s Vexbot The University of Alberta team continued to develop new technology. Their research 
included the creation of Vexbot, a learning-based program that adapts according to 
models it makes of its opponents.

2005 PokerProBot The first World Poker Robot Championship was held. The winner of the amateur com-
petition (which did not include programs from the University of Alberta), PokerProBot, 
won $100,000.

2006 Hyperborean Later in July, the American Association for Artificial Intelligence (AAAI) hosted the 
first AAAI Computer Poker Competition, which was organized and won (ahead of 
three other programs) by Hyperborean of the Poker Research Group at the University 
of Alberta.

2007 2007 poker competition The 2007 poker competition consisted of 15 competitors from 7 countries and 43 bots. 
Matches were played on 32 machines running for a month, playing over 17 million 
hands of poker. The results were announced at AAAI 2007 on July 24, 2007 in Vancou-
ver BC:

•  Limit Series (Equilibrium) and Limit Bankroll (Online)—33 bots from 13 competi-
tors,13.7 million hands played

•  No Limit—10 bots from 8 competitors, 3.4 million hands played

 16.5  GO: THE NEW DROSOPHILA OF AI?
The ancient Japanese game of Go is played on a 19 × 19 square board (and consequently has a 

branching factor of about 360!) with black on white “stones” placed one at a time on squares on the 
board. The game defies approachability via the standard search, knowledge, and pruning techniques 
that have been applied to the traditional two-person, zero-sum games to date. Schaeffer 2,7 states,

i.e., because of the 19 × 19 board and the resulting large branching factor, alpha-beta search alone has 
no hope of producing strong play. Instead, the programs perform small, local searches that use extensive 
application-dependent knowledge. David Fotland, the author of the Many Faces of Go program, identifies 
over 50 major components needed by a strong Go-playing program. The components are substantially dif-
ferent from each other, few are easy to implement, and all are critical to achieving strong play. In effect, you 
have a linked chain, where the weakest link determines the overall strength.

In addition, Martin Mueller (author of the program Explorer) feels that there isn’t enough 
information generally available about Go for a computer game to significantly challenge human 
players.47 Hence, he feels it will be many decades before serious progress can be made. For these 
reasons, Go could easily be the drosophila of AI for the future. Table 16.7 lists the milestones in 
computer Go.
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Table 16.7
Milestones in computer Go.

Year Program or Event Description
1970 Go Al Zobrist wrote the first computer Go program as part of his dissertation.
1972 Interim.2 Walter Reitman and Bruce Wilcox began years of research on Go programs. They 

wrote the program Interim.2 and published several influential articles on computer 
Go.

1981 Many Faces of Go David Fotland began writing the program that is now known as the Many Faces of 
Go.

1983 Go++ Michael Reiss began writing the program that is now known as Go++. Despite its 
name, Go++ is written in C, not C++.

1984 Computer Go tournaments Computer Go tournaments began to be held. Recurring tournaments included the 
Ing Cup, which was held from 1985 to 2000, and the FOST Cup (sponsored by the 
Japanese Foundation for the Fusion of Science and Technology), which was held 
from 1995 to 1999.

1990s Handtalk Chen Zhixing, a retired professor of chemistry, wrote the Go program Handtalk, 
which went on to win the Ing Cup and FOST Cup in 1995, 1996, and 1997. In the late 
1990s, when Handtalk was being reworked, Go4++ (now called Go++) and the Many 
Faces of Go rose to prominence.

2000 Goemate Goemate, the successor to Handtalk, won the Go competition in the fifth Computer 
Olympiad.

2000 Ing Prize The Ing Prize expired without having been won. Offered by Acer Incorporated 
and the Ing Chang-Ki Wei-Chi Educational Foundation, the Ing Prize would have 
awarded about $1,500,000 to the developers of a Go program that could beat a junior 
champion.

2000s Go Intellect, GNU Go Computer Go programs proliferated. Among the strongest programs now are Go 
Intellect (written by Ken Chen, University of North Carolina at Charlotte) and the 
open-source program GNU Go.

 16.5.1 The Stars of Advanced Computer Games

huMAn interest notes

hAns J. berliner 
Hans J. Berliner 

(1929– ) has made 
significant contributions 
to the game of chess 
and to advanced games 
programming. He attained 
his PhD from Carnegie 
Mellon University in 1969 

where he was research Professor of Computer 
Science. Berliner was World Correspondence 
Chess Champion from 1965–1968. In 
addition to developing the World’s first senior 
master–level chess program in 1985, Hitech, 
Berliner developed a strong program to play 
backgammon in 1979.

Hans J. Berliner.
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huMAn interest notes

Monty newborn

Monty Newborn 
(1937–  ) is one of the 
pioneers of computer 
chess, having developed 
one of the early 
multiprocessor programs, 
OSTRICH, and organized 
the North American and 

World Computer Chess Championships for 

25 years starting in 1970. He also is one of 
the cofounders of the International Computer 
Chess Association (ICCA) in 1977. He was 
Chair of the School of Computer Science at 
McGill University from 1976–1983, Chief 
Organizer of the Kasparov vs. Deep Blue 
Match in 1996, and author of a number 
of books on computer chess and theorem 
proving. In his retirement, he builds beautiful 
stained glass lamps and is one of Quebec’s top 
senior tennis players.Monty Newborn.

huMAn interest notes

dAvid levy And  
JAAp vAn den herik

David Levy 
(1945–  ) is 
one of the most 
p r o d u c t i v e 
people in 
the field of 
computer chess 
and computer 

games in general, an international chess 
master, a scholar who has published over 30 
books, and an internationally recognized AI 
leader. Levy instigated research in computer 
chess with his famous 1968 bet with three 
computer science professors that no program 
could beat him in a chess match. He won 
several matches where D. K. was his second, 

but in 1989, Deep Thought defeated him 4-0. 
Like D. K., Levy was also a disciple and 
friend of Donald Michie’s.

More recently, he has published the well-
received Robots Unlimited (2005) and Love 
and Sex with Robots (2007).

Jaap van den Herik (1947–  ) is 
Professor of Computer Science at Maastricht 
University, and in 2008, he became a leader 
of the Tilberg Centre for Creative Computing. 
Professor van den Herik has energetically led 
and edited the ICCA Journal, which morphed 
into the International Computer Games 
Association (ICGA) Journal.

He has numerous scientific publications 
in these areas and beyond and has held a 
Chair in Law and Computing at Leiden 
University since 1988.

David Levy and Jaap van den Herik.
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 16.6 CHAPTER SUMMARY
This chapter has emphasized the history and significance of the advanced games to AI. These 

include checkers, chess, backgammon, Othello, bridge, poker, and Go. The games of perfect infor-
mation (no chance, no luck) are checkers, chess, Othello, and Go. Elements of chance, such as dice 
and cards, affect the outcomes in backgammon and in card games, such as bridge and poker. None-
theless, in the long run, skill is the predominating factor in any longer series of games or matches 
with all of these games.

Recently, the game of checkers (with an estimated 1020 number of possible positions) was 
weakly solved.8 This means that the outcome for the first player to move has been determined 
(with best play) to be at least a draw. In contrast, chess, called the “drosophila of AI” by Alexander 
Kronrad, with an estimated 1042 reasonable possible positions (or games), is far from solved. More 
books are written about chess than about all games put together. Although all chess endgames of 
up to six pieces have been solved, 31,32 we still do not know the best first move for White in chess, 
Black’s best reply, or what the game theoretic-minimax-optimal value of chess is (win for White, 
draw, or win for Black) with best play by both sides. The next game likely to be solved is Othello, 
which is a step up from checkers. Significant progress has been made in developing strong pro-
grams using AI techniques for other games such as Othello, checkers, backgammon, Scrabble, and 
poker. The next drosophila of AI is likely to be the ancient game of Go.

AI techniques were very effectively studied in the early works of Arthur Samuel, 1,3 who devel-
oped programs for the game of checkers. Heuristics were tested and evaluated through the use of 
parameter adjustment and signature tables. Having the program play many matches against versions 
of itself and adjusting parameters according to outcomes of these matches was one important way 
(parameter adjustment) that Samuel improved his program. The program Chinook was developed 
at the University of Alberta, in Edmonton, Canada, by Schaeffer et al. starting in 1989. By the late 

huMAn interest notes

Kenneth Lane 
Thompson (1943–  ) is one 
of the most distinguished 
American pioneers of 
computer science. His most 
noted accomplishments 
include the development 
of the B programming 
language which he used 

to write the UNIX operating system with the 
late Dennis Ritchie in 1969, leading to the 
development of the C language. In computer 
chess he is noted for developing the program 
BELLE  with special-purpose hardware at Bell 
Labs where he worked for many years. In 1980 
it was the World Champion computer chess 
program and then in 1982 the first master-
rated computer chess program. Thompson is 

also noted for developing endgame databases 
for chess which have contributed greatly to 
the sphere of chess knowledge.

Thompson has received a number of 
awards for his pioneering work with Ritchie 
on the UNIX operating system including The 
IEEE Richard W. Hamming Medal (1990), 
Fellow of the Computer History Museum 
(1997), National Medal of Technology from 
President Bill Clinton (1999) and the Japan 
Prize (2011). In 1999 Thompson also received 
the first Tsutomi Kanai Award. 

Recently he joined Google where he works 
as a distinguished engineer and has developed 
the language “Go.” He is a man who believes 
in enjoying and employing power, whether it 
be in fast cars, flying planes, or programming 
computers. 
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1990s, Chinook had already played on par with the World Checkers Champion, Marion Tinsley, in 
two matches (in 1992 and 1994) and was clearly superior to even the best human players. There-
fore, in 1997, undefeated since 1994, Chinook was retired. Schaeffer et al. 8 reported that the game 
of checkers has been weakly solved. This research effort spanned over 18 years by Schaeffer’s 
team, combining a number of AI approaches, including deep and clever search techniques, subtle 
algorithmic proofs, heuristics derived from human experts, and advanced database techniques.

The game of chess has been played by people following essentially the same rules for several 
thousand years since its origins in India. Mankind has been somewhat infatuated by the possibil-
ity of building a machine to play strong chess for several centuries. Interest started with the Turk 
in the 1700s 13 and later the work of Torre ye Quevedo (1890), who built a mechanical machine to 
play the endgame King and Rook vs. King. Turing 48 and Shannon 16 independently developed the 
first paradigms for building a chess program that are still essentially in effect today. The first chess 
programs started to appear in the 1960s. In the 1970s, competition against people who played at the 
club-level and above and against other computer chess programs started to become common. The 
minimax alpha-beta algorithm began to be developed with deeper and deeper searches, opening 
libraries, transposition tables, heuristics for pawn structure, and king safety. In the 1980s, the first 
master-level chess programs were developed, starting with Belle, of Bell Labs, by Ken Thompson 21  
and Cray Blitz by Robert Hyatt, Albert Gower, and Herbert Nelson in 1985. 49 By 1988, Berliner 
and Eberling 20 had developed the first senior master-rated program. Not long after, Hsu et al. 29 
developed a powerful program using special-purpose hardware and parallel architectures combined 
with AI techniques. The program was named Deep Thought and became the first program capable 
of competing with and beating grandmasters on a regular basis. In 1989, Deep Thought lost a two-
game match played in New York City against World Chess Champion (since 1985) Garry Kasparov.

In the 1990s, IBM hired several members of the Deep Thought team to develop Deep Blue. 
Deep Blue continued to incorporate the most powerful computers, AI techniques, parallel search, 
and refinements to the alpha-beta algorithm. The evaluation function was tuned to the choices of 
human grandmasters over thousands of games (akin to the original work of Samuel on check-
ers). In 1996, Kasparov played a six-game match in Philadelphia with Deep Blue that he won 4-2  
(3 wins, 2 draws, and 1 loss), although the Deep Blue team unadvisedly rejected a draw in game 5, 
when the match could have been tied. In 1997, Kasparov played another match with Deep Blue’s 
successor program, Deeper Blue, and the improved program scored a sensational upset winning the 
match by winning the last game to score 3.5-2.5 (two wins, three draws, and one loss) against Kasp-
arov. In the intervening 10 years, many matches have pitted Kasparov, his successor, Kramnik, and 
other top humans against the best programs.

The results have indicated that the best programs today (e.g., Deep Junior, Deep Fritz, Hydra, 
Rybka, and others) are clearly competitive with the best human players. More attention needs to 
be given to organizing matches between top machines and top human players who are not handi-
capped by typical human frailties, such as tiredness (for whatever reason), time pressure, and in 
general any conditions that help to induce blunders by humans. Matches need to reflect people 
playing their best chess against machines playing their best. Anything else is just an exhibition 
match and is relatively meaningless.

Computer chess programs and the artificial techniques used to develop them have affected 
how chess is played in a number of ways. First, material is the most important factor affecting 
the outcome of a game. Chess players must therefore be tactically alert and avoid material losses. 
People can learn and prepare for opponents by looking at large databases that hold even the most 
recent games played by their opponents (not only grandmasters) around the world. Programs are 
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capable of deep searches, which in many games and positions have resulted in improved defenses 
(holding material) so that the side being attacked has survived and consequently been able to win. 
In serious international play, there are no more adjournments to prevent computers from being used 
for analysis. Certain endgames (such as KRB vs. KR or KBB vs. KN) have been solved with the 
construction of databases (for all endings including up to seven pieces) and have been determined 
to require more than 50 moves to win in certain positions.

Once you learn the rules of Othello (previously known as Reversi), you might wrongly think 
that it is an easy game. The rules are easy to learn but not as easy to master. A good Othello program 
in 1980 (developed by Mike Reeve and David Levy) won a six-game match against then World 
Champion Hiroshi Inoui. Throughout the 1980s, the program Iago, developed by Paul Rosenbloom, 
was known to be the best Othello program. In the late 1980s, the program Bill, developed by Kai-
Fu Lee and Sanjoy Mahajan, incorporating Bayesian learning, defeated Iago. In 1992, Michael 
Buro began working on his program Logistello, which incorporated search techniques, an evalu-
ation function, and a knowledge base of patterns. By playing over 100,000 games against itself, 
Logistello was perfected and won a six-game match against World Champion Takeshi Murakami. 50  
The best Othello programs can defeat the best humans, though there has been little progress in 
Othello programming since Michael Buro retired Logistello in 1998.

Backgammon is another game that is easy to learn but not easy to master. It includes great ele-
ments of probability, chance, logic, and knowledge. The first strong backgammon program, called 
BKG 9.8, was developed by Hans Berliner of Carnegie Mellon University in 1979. 51 Between 1989 
and 1992, Gerald Tesauro developed the neural network-based program Neurogammon, which 
learns from a large database of games. Backgammon’s branching factor of several hundred means 
it is better suited for neural approaches than traditional search-based methods. Tesauro later devel-
oped TD-Gammon, which employed temporal difference learning to help judge which moves in a 
series of games against itself were most responsible for success. 52 TD-Gammon was proven to be 
on a par with the best human players and even influenced their play.

Tom Throop, an avid chess and bridge player, wrote his first bridge program in 1958. In 1982, he 
introduced the program Bridge Baron. In 1997, Bridge Baron won the first World Computer Bridge 
Championship, and it continues to be developed to this day. 53 Since 1992, a number of other strong 
bridge programs have been developed. In recent years, programs have become strong enough that Zia 
Mahmood withdrew the 100,000 pound prize he offered in 1990 to the first program to defeat him.

Poker is a card game that involves considerable skill in gambling (hence chance and prob-
ability) and has attracted considerable worldwide interest in recent years. Programs have been 
developed since the 1970s, and in 1984, Mike Caro, a professional poker player, wrote Orac for 
an Apple II computer to play the popular form of poker known as Texas Hold’em. In the 1990s, 
commercial programs started to be written for poker, and in 1997, research on development of pro-
grams for the game started at the University of Alberta, in Edmonton, Canada, headed by Jonathan 
Schaeffer.7354 During the present decade, they have developed Vexbot, a learning-based program 
that tries to model its opponents’ behaviors. In 2005, the first World Poker Robot Championship 
was won by PokerProbot, another program from the Schaeffer team, capturing a $100,000 prize.

The new drosophila of AI is likely to be the oriental game of Go. Serious chess games at the 
international level between humans are known to last about 5 hours. For Go, the top-level games 
are known to last about 10 hours! Efforts to tackle Go by traditional AI techniques have failed 
badly. Go is played on a 19 × 19 board and has a branching factor of 360 55. David Fotland, author 
of the program, the Many Faces of Go, has identified some 50 major unique components, which he 
believes would be critical to achieving strong play in Go.
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Questions for Discussion

 1. Why are advanced computer games a valid area of research for AI?

 2. Briefly explain the history, research, and state of the art in computer checkers.

 3. Who were/are the main players in computer checkers research?

 4. Why has chess been considered the drosophila of AI for a long time? What is the likely next 
drosophila for AI?

 5. What are some of the techniques that are used in chess programming? For example, depth-
first search with iterative deepening, heuristics, killer heuristic, transposition tables, etc.

 6. What is the estimated size of state space in chess? In checkers?

 7. How strong are the best chess programs? Can you name five of them?

 8. What are the accomplishments in computer checkers, Othello, bridge, backgammon, poker, 
and Go?

 9. What is temporal difference learning and where was it used?

 10. After checkers, what can be the most likely advanced computer game to be solved?

Exercises

 1. Explain why advanced games such as checkers, chess, and backgammon are excellent test 
subjects for heuristics and AI.

 2. Give five reasons that Samuel considered checkers an excellent experimental domain for AI 
study.

 3. What were some of the AI techniques that Arthur Samuel used in his checker program that 
apply to other domains?

 4. Describe how the game of checkers was solved.

 5. What is the difference between a game being weakly solved and a game being strongly 
solved?

 6. Connect-Four is a game that might be viewed as an extension or more sophisticated version 
of tic-tac-toe. That is, the objective is to get four disks of one color in a straight line (row, 

ON THE DVD
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column, or diagonal) as disks are added to a grid of seven columns and six rows. The game 
was solved independently by James D. Allen and Victor Allis in 1988.56

  a. If you were to try to develop a program to play this game, how would you do it?

  b.  How would you go about solving the game? What AI methods might you use to reduce 
the amount of searching that would be necessary? What problem constraints and 
symmetries could be exploited to reduce the problem size?

 7. From what you have read and can estimate, describe and compare the size of the state space 
in tic-tac-toe, Connect-Four, checkers, and chess.

 8. Often, the best way to learn about a game and its hidden secrets is to analyze by playing both 
sides. Study the checker endgame two pieces against one. Are there positions where this is a 
draw or can a win be forced by the stronger side from any starting position?

 9. Why has chess been called the “drosophila of AI”?

 10. Place a White king on the square c3 on a chessboard. Place a White pawn on the square 
d3. Place Black king on the square b5. Build a search tree with a 3-ply minimax alpha-beta 
analysis using the rule “If the White king can get two ranks ahead of the White pawn, White 
wins to help prune the tree.”

 11. Describe the difference between the Shannon type A and Shannon type B approach to chess 
programming.

 12. Why have the best computer chess programs appeared superior to the best human chess 
players and how should future matches be organized?

 13. Describe the following methods used in computer chess programming: 

  a. transposition tables

  b. quiescence search

  c. iterative deepening

  d. null move heuristic

  e. killer heuristic

  f. singular extensions

  g. endgame databases 

 14. The chess endgame King, Rook, and Bishop vs. King and Rook (KRBKR) has been called 
the “headache ending.” KRBKR was determined to require 59 moves to win in the longest 
winning position. The rules of chess normally allow only 50 moves to win where there are no 
pawn moves or captures and therefore had to be changed for such cases.

  a.  Although special databases contain all seven-piece chess endings, explain why it might be a 
challenge to develop a program that plays this endgame correctly for either side. That is, in 
won positions, it wins for the strong side, and in drawn positions, it holds the draw.

  b. What AI methods might be used to develop such a program?
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 15. Despite very powerful programs that play chess today and more books on chess than on all 
games put together, we still do not know the game-theoretic-minimax-optimal value of chess 
or even the best first move. Explain why chess is somewhat intractable to being solved (even 
weakly) in the manner that checkers was solved.

 16. Why has Go been coined the “drosophila of AI” for the future? Explain.

 17. To program a computer to play a board game, you need a way to represent the board. The 
board in the game of checkers was represented as an array that embeds which pieces are on 
which squares, whose turn it is to move, etc. 57 Develop an array that represents the board for 
the initial position in the game of chess.

 18. Short Research Project: Obtain one of the following papers and write a summary of it in two 
double-spaced pages: 

  • Turing’s paper (1950)

  • Shannon’s paper (1950)

  • Samuel’s paper (1959)

  • “Computer Backgammon,” Berliner (1980)

  • Lee and Mahajan’s paper (1990)

  • Tesauro’s paper (2002)

  • “Checkers is Solved,” Schaeffer (2007)

 19. Research Project: Write a five-page summary of one of the following longer papers or 
books listed in Section 16.9 References or the Endnotes, Section 16.10 below: 

  • “The magical seven, plus or minus two,” G. A. Miller (1956)

  • A Program to Play Chess Endgames, B. Huberman (1968)

  • Chess, Computers, and Long Range Planning, M. M. Botvinnik (1970)

  • Human Problem Solving, Newell and H. A. Simon (1972)

  • Perception in Chess, W. Chase and H. A. Simon (1973)

  • “An analysis of alpha-beta pruning,” D. E. Knuth and R. Moore (1975)

  • Chess Skill in Man and Machine, P. Frey (1977)

  • “A World Championship-Level Othello Program,” P. Rosenbloom (1982)

  •  “A comparison of human and computer performance in chess,” D. Kopec and I. Bratko 
(1982)

  • Computers, Chess, and Cognition, T. Marsland and J. Schaeffer (eds.) (1990)

  • Kasparov versus Deep Blue: Computer Chess Comes of Age, M. Newborn (1997)

  • One Jump Ahead: Challenging Human Supremacy in Checkers, J. Schaeffer (1997)
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 • “Computer Go: An AI Oriented Survey,” B. Bouzy and C. Tristan (2001)

 • “The Challenger of Poker,” D. Billings, A. Davidson, J. Schaeffer, and D. Szafron (2002)

 • “Programming Backgammon Using Self-Teaching Neural Nets,” G. Tesauro (2002)

 20. Describe five areas of AI where development of computer game-playing programs has made 
significant contributions. Name the game, the year, the authors, describe the methods used 
and the contributions made.

Keywords
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null move heuristic
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This chapter attempts to provide an appropriate perspective on Artificial Intelligence (AI). 
We review where we have been and what has been achieved. We list AI achievements from 
the past half century. The recent IBM Watson-Jeopardy Challenge is discussed. We also 
weigh our prospects for ever achieving human-level AI.
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 17.0 INTRODUCTION
We review the importance of search, knowledge representation, and learning in the construc-

tion of AI systems. An example is given illustrating how an appropriate representation can facilitate 
a problem’s solution.

In Section 2, we present a recurring theme in both mythology and literature: Attempts to create 
life or intelligence are often met with dire consequences. Perhaps a warning to the AI community 
is being provided.

The concept of an unsolvable problem in computer science is explained, that is, there are prob-
lems for which no algorithmic solutions exist. We ask if the creation of human-level AI is such a 
problem.

In Section 3, we review some AI achievements from the past half century. And in Section 4, the 
IBM Watson system is discussed. In March 2011, there was a man-machine challenge in which an 
IBM computer beat two long-time Jeopardy champions on a widely viewed television match. We 
conclude by reviewing several theories on the creation of life and explanations for intelligence and 
consciousness.

 17.1 RECAPITULATION — PART I
We began this journey together in Chapter 1. We said at that time that if you wanted to design 

intelligent software, it would need to possess:

 1. A search facility
 2. A knowledge representation language
 3. The ability to learn

It became evident early in our endeavors that blind search algorithms—that is, those which 
possessed no domain knowledge, such as breadth-first search and depth-first search, could not ef-
fectively negotiate the large search spaces confronting them.

As stated in this text, a useful guiding principle is that if you wanted to design a system to per-
form a task, first look to discover if a similar system already exists in nature. Therefore, if it were 
1902 and you wished to design a “flying machine,” your attention should focus on birds. It is not 
surprising that the Wright brothers’ successful flights in 1903 utilized an airplane with a relatively 
thin fuselage and two large wings protruding from it (Figure 17.1).

Blind search algorithms do not possess the wherewithal necessary for the large search problems 
that arise in AI venues. People, however, are expert “problem solving 
machines.” Newell and Simon, cognizant of this insight, studied hu-
mans who were asked to “think aloud” as they went about the process 
of solving problems. This research culminated in the General Problem 
Solver (GPS) in 1957.1 GPS, endowed with heuristics distilled from hu-
man subjects, was successful in solving the following: The Water Jug 
Problem (Chapter 1), The Missionaries and Cannibals Problem (Chapter 
2), as well as the Bridges of Königsberg Problem (Chapter 6), and many 
others. The search algorithms in Chapter 3 as well as the game-playing 
algorithms in Chapters 4 and 16 effectively used heuristics to partially 
overcome the conundrum of combinatorial explosion.Figure 17.1

Wright brothers’ airplane. This early model presented 
a two-tiered wing.
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One’s knowledge representation scheme also has a tangible impact on prob-
lem-solving prowess. The Königsberg Bridge Problem is described in Chapter 6. 
Figure 6.6 illustrates the problem; it is redrawn here as Figure 17.2.

The question is: “Is it possible to traverse each of the seven bridges once and 
only once and return to one’s starting position?”

A graph model of the Bridges of Königsberg is depicted in Figure 6.6 as well; 
this portion of the figure is redrawn here as Figure 17.3.

Leonhard Euler wrote the first paper in graph theory in 1736. He concluded 
that the bridges depicted in Figure 17.2 could be traversed as described, if and 
only if the graph illustrated in Figure 17.3 possessed a cycle that contains all of 
the edges and used all of the vertices. Euler concluded that a graph contains such 
a cycle (now referred to as an “Euler cycle”) if and only if the degree of every 
vertex is even.

Problem representation, evidently, has dramatic impact on the ease of solu-
tion discovery.

The aforementioned guiding principle led us to two paradigms for learning. 
The human brain (and nervous system) is the most remarkable example of a natu-
ral learning system. In Chapter 11, it serves as a metaphor. There, we outlined 
an approach to learning—artificial neural nets (ANN) that distill salient features 
from the human brain model—high connectivity, parallelism, and fault tolerance. 
ANN models were seen to be successful in many problem-solving domains from 
economic forecasting to game playing and control systems.

The second paradigm, perhaps not as obvious, is evolution. Darwin described how species of 
plants and animals adapt to their environment so as to abet their survival. Here, there is no individ-
ual who is learning but rather the species itself. Chapter 12 outlined two evolutionary approaches 
to learning—Genetic Algorithms (GA) and Genetic Programming (GP). Each of these is successful 
in solving problems in arenas ranging from scheduling to optimization.

 17.2 PROMETHEUS REDUX
In Greek mythology, Prometheus was the god who stole fire from heaven to bring it to man-

kind. Some accounts also have him entrusted with the task of molding mankind itself out of clay. 
This theme, of creating life out of inanimate material, is pervasive in literature. Perhaps the most 
spine-chilling account occurs in Frankenstein or “The Modern Prometheus,” a novel by Mary Shel-
ley. Undoubtedly, the reader is familiar with this story in which a scientist creates life and then is 
horrified by his own creation. In the 1931 movie, directed by James Whale, Boris Karloff plays the 
role of the monster (See also Section 15.1).

The first edition of Shelley’s novel was published in 1818, in the thick of the industrial revolu-
tion. Mankind had harnessed steam power leading to dramatic changes in manufacturing and the 
textile industry. The invention of the telegraph made long distance communication practically in-
stantaneous. Many believe that the legacy of this revolution has not been entirely auspicious. Our 
reliance on steam and coal power, then petroleum, and more recently nuclear power has served to 
pollute our planet, its water bodies, and its atmosphere. It is also 
contended that the industrial revolution has fostered a depraved 
emphasis on materialism. Literary critics insightfully pointed out 
that the moral of Frankenstein was that society must be wary of its 

One of the authors (S. L.) first viewed this 
film in his childhood. To this day, he still 
sleeps with the lights on.
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attempts to master nature. This is a warning that perhaps needs to be continually heeded by the AI 
community, as its mastery of intelligence continues to grow throughout the 21st century.

Computer science is a field of science concerned with information and computation. Its focus 
is on the algorithmic solutions of problems. The 20th century provided this nascent discipline with 
cause for humility. This humility was imposed by the discovery of fundamental limits on the solv-
ability of problems. That is, there are problems that exist for which no algorithmic solutions are 
possible. The most well-known of such problems is the so-called “halting problem.” Given an 
arbitrary procedure P, running with arbitrary data w, would P(w) ever halt? For example, the Four-
Color Problem was perhaps the most famous open problem in graph theory. Its statement “Are four 
colors sufficient to color a map so that no two adjacent regions have the same color?” This question 
was answered in the affirmative by Appel and Haken in 1976.2 Their computer program solution to 
this problem ran for several hundred hours. It would have been helpful if the operating system on 
which this program was running could have predicted that the program would indeed eventually 
halt. The halting problem informs us that such a priori knowledge is not always possible.

Alan Turing was mentioned prominently early in this text. In 1936, he was investigating the 
issue of what functions were computable.3 For example, addition is a computable function—that is, 
a step-by-step procedure can be given so that if integers X and Y are given as inputs, then their sum 
X + Y can be obtained after a finite number of computation steps. He provided a model of computa-
tion that is now known as a Turing machine (see Figure 17.4). A Turing machine is composed of 
three parts:

----------------------------------------------------------------------- 
 … | B | 1 | 1 | + | 1 | 1 | 1 | B | …  
==========================================

Read / write headFinite
control

Figure 17.4
A Turing machine.

 1. An input/output tape upon which the input problem is inscribed and upon which the result 
is written. Various models of Turing machines exist; the one depicted in Figure 17.4 has 
a two-way unbounded tape. The tape is divided into cells, and one symbol may be written 
in each cell. The tape comes preloaded with the blank symbol (B) on each cell.

 2. A finite control that contains an algorithm (i.e., a step-by-step procedure to solve the  
problem).

 3. A read/write head which can read a symbol on the tape and write symbols onto this tape. 
It can also move left or right.

Turing discussed the concept of a Universal Turing Machine (UTM)—a Turing machine 
which is able to run the programs of other Turing machines, that is, is capable of simulating the 
behavior of “ordinary” Turing machines. Turing proved that it was impossible to determine if an 
arbitrary Turing machine (T) with arbitrary input (w), that is, T(w), would ever halt. This is the 
so-called Turing machine halting problem. The more general version of this problem, the Halt-
ing Problem, cannot be proven undecidable. Instead, it is accepted on faith; faith provided by the 
Turing-Church Thesis. This thesis states that the computational power of a Turing machine is 
equivalent to that of a digital computer. As a consequence of the Turing-Church Thesis, if a prob-
lem cannot be solved on a Turing machine, most computer scientists believe that the problem is 
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algorithmically unsolvable. Hence, there are fundamental limits to computation. AI as a sub-disci-
pline of computer science inherits these fundamental limits as well. One wonders if the creation of 
a human-level AI is one of these limits.

 17.3 RECAPITULATION—PART II: PRESENT AI 
ACCOMPLISHMENTS

We return to the feasibility of creating a human-level AI later in this chapter. Presently, we 
provide a brief overview of AI accomplishments that have been cited in the previous 16 chapters: 

• In Search:
– A* has been incorporated into video game design; games have become more real-

istic (Chapter 3).
– Mapquest, Google, and Yahoo maps use heuristic search. Many GPS and smart 

phone apps incorporate this technology (Chapter 3).
– Finding approximate solutions for difficult and (and sometimes NP-complete 

problems such as the TSP) using Hopfield networks (Chapter 11) and evolutionary approaches 
(Chapter 12).

• Game Playing:
– Minimax evaluation so that computers can play relatively simple games such as tic-

tac-toe and nim (Chapter 4).
– Minimax evaluation with alpha-beta pruning aided by heuristics and other machine 

learning tools so that computers can play championship-level checkers (Samuels and 
Schaeffer) and chess (Deeper Blue defeated the World Chess Champion, Garry Kasp-
arov, in 1997) (Chapter 16).

– Championship-level programs for Othello (Logistello, 1997) as well as “proficient 
play” in Backgammon (TD-Gammon, 1992), Bridge (Jack and WBridge 5 (2000s), 
and Poker (2007) (Chapter 16).

• Fuzzy Logic:
– Hand-held camcorders automatically compensate for spurious hand movements.
– Traction control devices for automobiles.
– Control devices for digital cameras, washing machines, and other household appli-

ances.

• Expert Systems
– Knowledge-intensive software with built-in inferencing and explanatory facilities, or 

so-called Expert Systems (ES), help consumers select an appropriate car model, navi-
gate online web sites to make purchases, etc.

– ES are also useful in analysis, control, diagnosis (What disease does a patient have?) 
instruction, and prediction (where should we dig for oil?).

– ES are used in arenas as diverse as medicine, chemical analysis, and computer configu-
ration.

– There is no controversy regarding ES’ status as one of the biggest achievements in AI 
as long as these systems are used to help humans and not to supplant them (Chapter 9).
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• Neural Networks
– The Lexus automobile has rear back-up cameras, sonar devices, and a neural network, 

and using these technologies, the car can automatically parallel park.
– The Mercedes automobile and others have automatic stop control when the vehicle 

gets too close to other vehicles or objects.
– The Google Car is totally autonomous (well almost); it drives itself, however,  

a human must still be in the vehicle. 
– Optical Character Readers (OCR) automatically route a good deal of our mail.
– Automatic speech recognition systems are in widespread use. Software agents rou-

tinely help us navigate our credit card and banking transactions.
– Software provides automatic security alerts at airports when persons on “no-fly” lists 

are detected.
– Neural networks assist in medical diagnosis and economic forecasting (Chapter 11).

• Evolutionary Approaches:
– Telecommunication satellites’ orbits are scheduled to prevent communication fade-

outs.
– Software to optimize antenna and very-large-scale integration (VLSI) circuit design.
– Data-mining software to make data more valuable to companies (Chapter 12).

• Natural Language Processing (NLP)
– Conversational agents provide individuals with travel information and assist with res-

ervations.
– GPS systems routinely vocalize instructions to users. For example, “Make a left turn 

at the next corner.” Some smart phones have apps that permit you to speak requests: 
“Where is the nearest coffee shop that makes cappuccinos?”

– Web requests enable cross-language information retrieval and perform language trans-
lation when desired.

– Interactive agents provide verbal assistance to children learning to read (Chapter 13).
– Applications of machine learning with neural networks, natural language processing 

(Chapter 13), speech understanding, and planning (Chapter 14) have all enabled re-
markable progress in robotics (Chapter 15).

Overall, not a bad track record for a sub-discipline of computer science that is beginning its 
second half century on the scene.
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A p p l i c A t i o n  b o x

google cAr

Google was founded in 1998 by Stanford University graduate students, Larry Page and Sergey Brin. It 
started as a search engine called BackRub which used links to rank the importance of web pages. The Google 
search engine, which is a play on the word “googol,”was a huge success, and quickly became the most pow-
erful, well-known, and dominant search engine on the planet. Over the years, Google has also developed the 
equally successful e-mail system “Gmail” and then acquired the hugely popular public video system “You-
Tube.”  In the early 2000s, Google secretly developed a driverless car, however, since then it has become 
public knowledge. 

One of the engineers behind Google’s Driverless car is Dmitri Dolgov, and the leader of the project is 
Dr. Sebastian Thrun. Thrun is the former director of Stanford’s Artificial Intelligence Laboratory and is co-
inventor of Google’s Street View. The Google car has been tested for years and will still continue to be in ex-
perimental form for a number of years to come. It seems likely that autonomous cars are still years away from 
mass production, but technologists believe that in the near future they will be as popular as cell phones and 
GPS systems. Google is betting that this technology will likely not be profitable for many years.   However, 
huge profits are projected from the possible sales of information and navigation services for makers of other 
autonomous vehicles. 

The Google car uses artificial intelligence technology such as a laser point marker for sensing anything 
nearby such as signs, and marks on the floor to make decisions that a human driver would make, such as turn-
ing to avoid an obstacle or stopping for pedestrians. 

Google, by law, must have a person behind the wheel in case something goes wrong, and it also has a 
technician to monitor the navigation systems to make sure the tests are safe and no accidents occur. It also has 
different driving personalities that you can choose for different drivers such as “careful driving,” “defensive 
driving,” and “aggressive driving.” 

A robot usually reacts faster than humans can; it has all-around perception based on its receptors and devices. 
It also does not become distracted and is free of other factors which typically cause accidents, such as fatigue, 
drugs, and carelessness. The goal of engineers is to make these driverless cars more reliable than humans. Human 
error is the cause of many accidents. Furthermore, the software that these driverless cars use must be carefully 
tested and must be free of viruses and malware. Other concerns are for fuel efficiency and space efficiency—that 
is, the cars can be “crowded” on the roads, since theoretically they are accident-free. Several of Google’s driver-
less cars have logged more than one thousand miles without any incidents or human intervention. These cars 
have also logged over one hundred thousand miles with a small number of human corrections.1

One of Google’s tests of its driverless car started outside its campus near San Francisco. It used a variety 
of sensors with a 600-foot range and followed a route programmed into the car’s global positioning satellite 
system or GPS. The car stayed within the State of California’s speed limit of 65mph. When the car made turns, 
it slowed down and then accelerated a bit after turning, just as a human would. The device that sat on top of the 
car provided a detailed, mapped version of the environment and its surroundings. Hence it knew which roads 
it needed to take, which ones to avoid, and which ones were dead ends. It was able to get on busy freeways, 
travel for several miles, and exit without incident. It was also able to drive through traffic and stop at red lights 
and stop signs, and was able to interface seamlessly with pedestrians. If humans were present, it would wait for 
them to move. It has a voice system to announce its actions to people in the car or to the driver alone. Drivers 
were also alerted when its artificial intelligence system detected problems with its sensors. It can also prevent 
accidents, using detection systems that indicate what is going on. The driver can also regain control of the car 
by pushing a red button near his right hand, by touching the brakes, or by turning the steering wheel.
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When the car is driverless and the system is in control, it is called cruise mode and the people in the car can 
let go of the wheel. In effect it becomes a mode of public transportation, without the expense, crowding, traffic, 
and other factors which can be irritating to drivers of ordinary cars. 

There are certain legal questions which arise such as who would be liable if an accident occurs. All the 
states that have allowed driverless car testing do not have laws regarding what would happen when no human 
was operating the car. Google discovered that it is legal to drive an automated car as long as a human being is 
in the car that can override any errors that may occur. 

The Google car would reduce the need for personal cars which would consequently reduce traffic and pro-
vide more land for people to use instead of making wider roads.

Recently Google has been building experimental electric cars with normal standard controls but with no 
driver controls except for starting and stopping the vehicle. This car would be self-driven to the location of the 
person who needs it through a smart phone app and would drive the person to their destination. There is also a 
feature invented called the Traffic Jam Assist, which allows the driverless car to follow another vehicle during 
traffic.2

Google’s plan for the new driverless cars is to have at least 100 new prototype vehicles that would run on 
electricity. The team at Google would limit them to drive at only 25 mph and to drive in urban and suburban 
settings. The tests would be performed by Google personnel. This would help test them in small, confined areas. 
It will naturally take some time to persuade regulators that it is safe to permit people to utilize driverless cars.

Figure 17.5
Google Car.
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 17.4 IBM WATSON-JEOPARDY CHALLENGE
Man vs. machine challenges provide a framework to incite en-

thusiasm and publicity for some technological achievement. IBM is 
responsible for three such events. The first occurred in 1997 when 
Deeper Blue, a parallel computer with a special-purpose search facil-
ity, beat the reigning world chess champion in a six-game match (see 
Chapter 16).

Blue Gene is a project to produce several high-speed supercom-
puters to study biomolecular phenomena. Speeds of several hundred 
TFLOPs have been achieved by machines in this project..  In 2014, 
the Blue Gene/L System performed at speeds exceeding 36 trillion 
calculations per second. 

The IBM Watson-Jeopardy Challenge has been an ongoing ven-
ture over the past few years. Its goal has been to design a computer 
capable of answering questions posed in a natural language, which is 
fraught with ambiguity. Question/Answer Systems are nothing new in 
the world of NLP (see Chapter 13). It was hoped, however, that Wat-
son would perform at speeds comparable to the best human players 
(2–3 seconds).

Top human Jeopardy contestants are vast repositories of information on numerous diverse sub-
jects ranging from world geography to Broadway plays, and from literature to pop culture.

Several past questions follow:

 1. A 2000 ad showing this pop sensation at ages 3 and 18 was the 100th “got milk?” ad. The 
correct answer is: “Who is Britney Spears?” Blue J (Watson’s early name) suggested: 
“What is Holy Crap?”

 2. “In nine-ball, whenever you sink this, it’s a scratch.” Blue J answered correctly: “What is 
a cue ball?”

 3. “What country shares the longest border with Chile?” Blue J incorrectly responded: “What 
is Bolivia?” The correct response was, “What is Argentina?” was its second choice.

David Ferrucci, a senior IBM employee, was chosen to head the Watson development team in 
2007. He had extensive experience in language processing systems. In Stephen Baker’s popular 
book,4 Ferrucci confides two conflicting fears: one, that after several years and millions of spent 
research dollars, Watson (and consequently IBM) would fail miserably on a national stage and 
two, that at the last minute, another company would bypass IBM and design a superior system. 
As it turned out, he would have four long years to live with these fears. Ferrucci understood that 
if Watson were to succeed, it must be loaded with facts. Not just any facts, but the right kinds of 
facts. Hence, thousands of previous Jeopardy questions were studied and categorized. It was de-
cided that Watson would be loaded with “tons” of Wikipedia articles. Next, the Gutenberg Library 
was downloaded and Watson “studied” The Great Books. Insight was also gleaned from Watson’s 
human competitors. It was discovered early in the Watson project that deep knowledge was not 
necessary—having a passing knowledge of many diverse subjects was adequate. Ken Jennings did 
not prepare for the contest matches by laboriously reading tomes but rather by practicing with flash 
cards. The goal was to possess shallow knowledge on a vast array of topics.

One TFLOP (teraflop) stands for 
one trillion (1012) floating point 
operations per second.

One petaflop corresponds to one 
quadrillion (1015) floating point 
operations per second.

The best sources of information on 
the IBM Watson-Jeopardy Challenge 
can be found online. First type 
www.ibm.com, then enter “Watson-
Jeopardy Challenge.”
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Next, Watson was spoon-fed a diet of encyclopedia entries, dictionaries, news articles, and Web 
pages. As Baker described it: “[Watson] was painfully slow.” The next several years were spent 
in sparring matches with former Jeopardy contestants. Slowly, its performance began to improve.

Watson was composed of more than 2,000 processors, each working in parallel to pursue a 
different thread of reasoning. It would display several answers for each question with its degree of 
confidence listed for each. Whenever Watson was sufficiently confident in one of its responses, it 
would scramble to press the buzzer. 

Gradually, Watson began to fare well against human competition. Occasionally, there would 
be a faux pas of profane language. Naturally, the corporate image of IBM is important; a filter was 
installed so that Watson would not utter the most common profanities.

The man-machine contest took place early in March 2011. Watson was victorious, even though 
it made several embarrassing mistakes, the most famous of which was to the Final Jeopardy ques-
tion: 

“Its largest airport is named for a World War II battle.” In the category of “U.S. Cities,” Watson 
responded: “What is Toronto?”

In Watson’s defense, Ferrucci explained that there is a Toronto in Illinois and Toronto also pos-
sesses an American League baseball team. However, the fact remains that Watson made a mistake. 
An interesting question, of course, is: “What sort of future is there for Watson-like machines?” 
There certainly is no market for Jeopardy Champion Computers. IBM anticipates, however, that 

Watson and its successors will be trained as specialists in medicine, 
law, and other fields where new knowledge is being discovered at a 
feverish pace. It would be helpful if a “medical Watson” has read the 
latest journals and could advise physicians on the best course of treat-
ment for a patient. Alternatively, a legal Watson would identify prec-
edents upon which legal defenses could be found.

To help publicize the IBM Watson-Jeopardy Challenge, IBM sent 
representatives to the City College of New York and the City Univer-
sity of New York (CUNY) Graduate Center in February 2011. On the 
first page of this chapter (in Figure 17.0), Wlodek Zadrozny is seen 

Figure 17.6
Members of the IBM team at The City College of New York.
IBM Team (left to right): Bruno Bonetti, Jerry Moy, Faton Avdiu, Arif Sheikh, Andrew Rosenberg, Wlodek Zadrozny, Raul 
Fernandez, Vincent DiPalermo, Andy Aaron, and Rolando Franco.

Figure 17.7
Wlodek Zadrozny discussing Watson with 
an attendee at The City College of New 
York.

Figure 17.8
Jerry Moy moderated both of the CUNY 
presentations.
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addressing students and faculty at the City College of New York. Members of the IBM team who 
attended this event are shown in Figure 17.6. In Figure 17.7, Wlodek Zadrozny is shown discussing 
Watson with an attendee at the City College of New York. Finally, Jerry Moy, who moderated both 
CUNY presentations, is shown in Figure 17.8.

We have frequently said in this text that the proper role for AI technology is to assist rather than 
to replace humans. Watson will be a valuable aide to human professionals in varied fields over the 
next several decades.

huMAn interest notes rAy kurzweil

Figure 17.9
Singularity from KurzweilAI.net homepage / Source: Shutterstock.

Figure 17.10
Ray Kurzweil. (Credit: Photo by Michael Lutch.  
Courtesy of Kurzweil Technologies, Inc.).

Ray Kurzweil and The Singularity 

Ray Kurzweil is amongst the world’s 
leading scientists, inventors, entrepreneurs, 
and futurists. Forbes magazine has called 
him “the rightful heir to Thomas Edison” 
and ranked him amongst the 8 leading 
entrepreneurs in the world. Kurzweil has 
always been, as it is said, “an industry onto 
himself.” Some of his notable inventions 
include the first CCD flatbed scanner, the first 
omni-font optical character recognition, the 
first print-to-speech reading machine for the 
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blind, the first text-to-speech synthesizer, the 
first music synthesizer capable of recreating 
the grand piano and other orchestral 
instruments, and the commercially marketed 
large-vocabulary speech recognition system.  

Kurzweil is the recipient of the $500,000 
MIT-Lemelson Prize, the largest prize for 
innovation. In 1999 he received the National 
Medal of Technology, the nation’s highest 
honor in technology. In 2002 he was inducted 
into the National Inventors Hall of Fame, 
established by the U.S. Patent Office. 

In addition he has received 20 honorary 
doctorates and has been honored by three US 
presidents. He has authored seven books, five 
of which have been best sellers. The Age of 
Spriritual Machines was translated into nine 
languages and was the #1 best-selling book on 
Amazon in science. His book, The Singularity 
Is Near, was a New York Times best seller 
and has been the #1 book on Amazon in both 
science and philosophy. It is the subject of this 
section.

In 2012 Kurzweil was appointed Director 
of Engineering at Google, heading a team 
developing machine intelligence and natural 
language understanding. 

Kurzweil’s books include: 

The Age of Intelligent Machines (1990)

The 10% Solution for a Healthy Life (1993)

The Age of Spiritual Machines (1999) 

Fantastic Voyage (with Dr. Terry Grossman) 
(2004)

The Singularity (2005)

Transcend: Nine Steps to Living Well (with 
Dr. Terry Grossman) (2009)

How to Create a Mind (2012)

The source of much of our information 
here about Ray Kurzweil is the website  
KurzweilAI. 

THE SINGULARITY

In 2005 Ray Kurzweil published what 
is perhaps his most controversial book: The 
Singularity is Near: When Humans Transcend 
Biology. The central theme in this tome is 
what he refers to as The Law of Accelerating 
Returns. He maintains that computers, 
genetics, nanotechnology, and AI are 
experiencing exponential growth. He predicts 
that by the year 2045, machine intelligence 
will exceed the combined human intelligence 
on this planet. 

Kurzweil believes that there are six stages 
to evolution: 

1. Physics and Chemistry

2. Biology and DNA

3. Brains 

4. Technology

5. The Merger of Human Technology 
with Human Intelligence and 

6. The Universe Wakes Up

He claims that the first four stages have 
occurred and that we are now in Stage 5.  
By 2045 technological advances will 
transpire so precipitously that people will be 
able to augment their bodies genetically, via 
nanotechnology and AI. 

We began our journey together in Chapter 
1 with a reference on Jerri Ryan as part of 
the Borg in Star Trek: The Next Generation. 
If Raymond Kurzweil is correct in his 
predictions, then perhaps a unified super-
intelligence is inevitable and much like those 
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 17.5 AI IN THE 21ST CENTURY
We return to the open question raised earlier in our discussion: Is the creation of a human-level 

AI beyond the fundamental limits of AI? We speculate first on the origins of human intelligence 
and then on the origins of life itself.

Richard Dawkins 5 tackles this latter question, finding insight in Darwin’s Theory of Evolu-
tion. Naturally, four billion years ago, there were no animals or plants on planet earth—just a 
“primordial soup” of elementary atoms. Dawkins believes that Darwin’s theory can be generalized 
to “survival of the stable,” in other words, stable atoms (and molecules) are more likely to have 
survived on this ancient earth. He speculates further that in its early history, this planet possessed 
an abundance of water, carbon dioxide, methane, and ammonia and thus, amino acids—complex 
molecules that are the building blocks for proteins—were likely formed. Proteins are known to be 
a precursor for life. Dawkins envisions the next step on the long path to life on this planet as being 
the accidental creation of a molecule he refers to as the Replicator. This Replicator molecule has 

members of the Borg in that former television 
series, we will find individuality extinct 
and resistance indeed futile. As a return for 

this sacrifice, we will be presented with the 
prospect for eternal life. 

Figure 17.11
Moore’s Law as depicted on Kurzweil.net.
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the remarkable property of being able to make a faithful copy of itself. He maintains that replicator 
molecules that could expeditiously and accurately copy themselves would have been stable in this 
primitive environment.

The replication (or reproduction) process itself required a steady supply of the basic “raw 
materials.” Undoubtedly, different replicator molecules were in constant competition for adequate 
supplies of water, carbon dioxide, methane, and ammonia. This evolutionary process continued for 
four billion years. Dawkins theorizes that the successors in this lengthy evolutionary bout might be 
found inside the present-day animals and plants that inhabit our planet—they are our genes.

Dawkins continues his extraordinary treatise on the possible origins of life on this planet by 
explaining how these genes endeavored to ensure their survival. Over the past 600 million years or 
so, they have behaved much like the fictional elves cited in Chapter 12. They have been fashioning 
our eyes, ears, lungs, and so on from which the living vessels (i.e., their bodies) would be con-
structed. In this treatise, it is as if animal bodies and flora are merely protective barriers to ensure 
the survival of all-important genes. As I (S. L.) was reading Dawkins’ work recently, my mind trav-
eled back to one of the scenes from the Star Wars movies in which the enemy troops attack while 
encased in huge legged robotic fighting machines, robots that form a protective shell for the soldier 
inside. Even if we were to accept Dawkins’ theory, we are still left with the question, “Where does 
consciousness in humans arise from?” Dawkins would likely maintain that those animals that pos-
sessed consciousness (which once again arose through natural selection) would possess superior 
survival skills and would therefore achieve relative stability and would consequently be assured of 
survival.

Gerald Edelman is a Nobel-Prize winning biologist. He proposes a biological theory of con-
sciousness, 6 which also rests upon Darwinist underpinnings. He maintains that consciousness and 
the mind are purely biological phenomena. Groups of neurons self-organize into numerous com-
plex and adaptable modules. Edelman believes that the brain possesses functional plasticity, that 
is, a great deal of brain organization is self-directed as the human genome does not have sufficient 

coding capability to specify brain structure completely.
Marvin Minsky tackles a broader issue in “Society of Mind.” 7 

He asks, “How is the brain organized?” and “How does cognition 
occur?” As Dawkins informs us, human brains have resulted from 
hundreds of millions of years of evolution. It is unlikely that one 
unifying theory will neatly explain the functioning of the complex 
organ that resides within the human skull. Constructing a mind can 
be likened to assembling a conductor-less orchestra. The instru-
ments in this mélange are called agents (see Chapter 6) and are not 
there to play music but rather to interpret the world. Some agents 

help to understand language, others to interpret visual scenes, and some to provide humans with 
common sense. (See the discussion of the Cyc Project in Chapter 9.) Nothing meaningful can be 
accomplished unless there is effective inter-agent communication. Minsky hypothesizes that an 
individual’s state of mind can be explained as a function of which subset of agents are active at 
any point in time. Perhaps AI is still too young a field and is not yet ready for such a “Unified Field 
Theory” for intelligence as Minsky proposes. However, when AI matures sufficiently, Minsky’s 
“Society of Mind” will likely play a prominent role in the discussions.

In 2015, there is a complete understanding at both the biological and chemical level of how 
individual neurons function. What is still inadequate is our knowledge of how collections of neu-
rons process sensory data, encode experiences, understand language, and more generally facilitate 

In physics, a Unified Field Theory 
is supposed to be a theory about 
everything, striving to unite the various 
forces that occur in nature, for example, 
gravitational, electromagnetic, strong, 
and weak forces.
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cognition and enable consciousness. Current research uses x-rays and other scanning technologies 
to obtain an understanding of the brain at the functioning module level. Kurzweil predicts 8 that by 
mid-century we will have a complete architectural understanding of the human brain. Furthermore, 
he theorizes that miniaturization of computer components will have progressed to the stage where 
a complete implementation of the brain in hardware will be feasible, an implementation requiring 
billions of artificial neurons and trillions or even quadrillions of neuronal interconnections. Perhaps 
at that juncture, we will have the wherewithal to implement a human-level AI. It would be wise 
if we remembered Prometheus’ “reward” for creating fully conscious humans—he was strapped 
down so that his liver could be devoured by lions and then his liver regenerated so that the feasting 
could begin anew. Science fiction literature has outlined countless dismal scenarios resulting from 
mankind’s creation of human-level AI. Hopefully, if AI were ever to achieve this lofty goal, its 
reward would be more gratifying than the one presented to Prometheus.

 17.6 CHAPTER SUMMARY
In this chapter, we have reviewed many of the achievements of the AI community over the 

past five decades. We place AI in a framework as a sub-discipline of computer science. We ponder 
whether the creation of human-level AI is impossible in the same sense that the well-known halting 
problem in computer science is undecidable.

We discuss the IBM Watson system and cite its role as an assistant for professionals in law and 
medicine.

We conclude by considering the origins of life, intelligence, and consciousness. We offer Kurz-
weil’s optimistic viewpoint on the possibility of the successful creation of human-level AI in the 
near future.

Questions for Discussion

 1. When the first boats were built (perhaps many thousands of years ago), what natural systems 
might have served as inspiration?

 2. Give an additional example of a problem where an appropriate representation facilitates its 
solution.

 3. Look on the Web for an additional example of an unsolvable problem.

 4. Are you familiar with an additional work in literature which employs the Prometheus theme?

 5. Describe the Turing machine model of computation.

 6. In what ways is the Turing machine model similar to

  a. a person performing a calculation?

  b. a computer doing the same thing?

 7. Compare and contrast a Universal Turing machine running a Turing machine program with a 
digital computer running a program.

 8.  What heuristics are incorporated into GPS (Global Positioning System) systems? You may 
wish to consult Chapter 3.
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 9. Look on the Web for a discussion of the game Go. Why do you suppose that championship-
level programs do not exist for this game? (See Chapter 16.)

 10. How might fuzzy logic be incorporated into the control mechanism of a household appliance 
that we have not mentioned?

 11. The next time you go online to a shopping site such as Amazon.com, comment on the ways 
in which ES technology has been incorporated into your shopping experience.

 12. Have you observed OCR technology anywhere in addition to the post office?

 13. The next time you interact with a conversational agent, think of the ways in which AI 
technology has influenced the experience. What improvements would you like to see?

 14. Why was Jeopardy selected as a man-machine challenge?

 15. Do you believe that Watson possesses human-level intelligence? Why or why not?

 16.  How does Richard Dawkins believe that life began on earth?

 17. Why is it that the human genome does not fully specify brain processes?

 18. Why do you suppose that Marvin Minsky’s “Society of Mind” does not receive more 
attention in the AI community?

 19. Why does Kurzweil believe that a hardware implementation of the human brain will be  
possible later in this century?

Exercises

 1. Study the symbol-processing systems first developed by Newell and Simon. Write a 
short essay explaining why (or why not) a human-level AI should be designed using their 
methodology.

 2. Which of the graphs in the following Chapter 2 figures are Eulerian? Explain.

  i. Figure 2.33 d)

  ii. Figure 2.39

  iii. Figure 2.40 b)

  iv. Figure 2.41

 3. Look up inductive approaches to learning, in particular Quinlan’s ID3 algorithm (consult 
Chapter 10). What ideas that we have studied are used in that algorithm?

 4. Read the story you cited in Questions For Discussion #4. What lessons can be drawn from it 
for AI?

 5. Study Figure 17.4 for this exercise. The tape depicts two numbers in unary notation that are 
to be added. You can envision unary as the manner in which a dog might count, “Ruff, Ruff” 
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would be a dog’s way to represent two and “Ruff, Ruff, Ruff” the number three. Hence this 
Turing machine is to add 2 and 3. A move can be represented as a 5-tuple: <qi, Sj, Sk, ql, {L, 
R, N}>

  qi: represents the present state

  Sj: the symbol scanned

  Sk: A symbol that is to be written on the same square upon which Sj appears (note Sk might 
equal Sj).

  ql: the next state for the Turing machine

  {L, R, N}: the Turing machine might then move left or right one square, or not move at all.

  Assume the computation begins with the read/write head positioned as shown and that when 
the computation is complete, the machine should be in a qh, directly underneath the blank 
to the right of the answer. Write a Turing machine program to perform addition of unary 
numbers. Trace your program for the problem given.

 6. Write a short essay specifying what you believe will be the future applications for Watson. 
What improvements to Watson do you anticipate?

 7. Read The Blind Watchmaker by Richard Dawkins.9 Explain in a short essay how this book 
supports the theory of evolution by natural selection.

 8. Study some of the writings of (or about) Gerald Edelman.10, 11, 12 Write a short essay on his 
theory of the development of consciousness.

 9. Read “Elephants Don’t Play Chess” by Rodney Brooks.13 Elaborate on his theory concerning 
the development of intelligence.

 10. Consult Searle’s volume “The Mystery of Consciousnesss” once again. Read his discussion 
on Penrose’s point of view. Compare Penrose’s viewpoint on the prospects for the 
development of a human-level AI with the unbridled optimism espoused by Kurzweil.8

 11. Survey current research to determine how close we are to a complete understanding of the 
brain’s functioning that Kurzweil anticipates by mid-century.

 12. Read the essay by Harold J. Morowitz, “Rediscovering the Mind,” which is reprinted in The 
Mind’s I. Morowitz describes the quandary that quantum physics presents for the prospects 
of developing a human-level AI. Summarize Hofstadter’s response.14

 13. Read Gödel, Escher, Bach: An Eternal Golden Braid by Douglas R. Hofstadter.15 Have you 
become a believer in strong AI after completing the book?

 14. Look online for articles on digital ghosts. What is a digital ghost? In what sense do they 
guarantee immortality?

 15. Look up the word “avatar.” What was its early definition via à vis the Hindu religion? What 
is its more modern definition? Next, go to SecondLife.com. How would you account for this 
tremendous interest in avatar existences?
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 16. There have been recent advances with prosthetic devices that respond appropriately to brain 
signals. Read several online reports and then comment on how close you feel we have come 
to needing to heed the warnings in Section 1.8 (“AI in the New Millennium”) regarding man/
machine hybrids?

 17. Go online to read about Mercedes-Benz’s automatic stopping technology. If a driver 
mistakenly attempts to go through a red light, the car would stop itself. For this system to 
work properly, every stoplight in the country would need to be upgraded. How long do you 
predict it will be before drivers will indeed be able to read the papers and shave while they 
drive to work?

Keywords
Halting problem
Undecidable problem
Turing machine

Turing machine halting 
problem

Universal Turing machine

Turing-Church Thesis
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Chapter 9
CLIPS is a multi-paradigm programming lan-

guage that provides support for rule-based, object-
oriented, and procedural programming. CLIPS is 
similar to but more powerful than OPS5 and only 
supports forward chaining.  CLIPS, an acronym 
for “C Language Integrated Production System,” 
was developed at NASA/Johnson Space Center 
with the specific purpose of providing high por-
tability (it is available on the internet free and can 
support a number of languages), low cost, and 

easy integration.   It has since been expanded to 
support diverse language and forms of knowledge 
representation.

Chapter 7 “Introduction to CLIPS” of Giar-
ratano and Riley (Cengage/Thomson, 2005) ex-
plains how to use CLIPS. 

What follows is a very simple example of an 
expert system developed in CLIPS which suggests 
a city for choice of vacation travel in the United 
States based on the user’s entries.

AAppendix

exAMple with clips: 
the expert systeM shell

;*********************deftemplate declaration
(deftemplate Month (slot month))
(deftemplate VacationMatters (slot vacation-matters))
(deftemplate Vacation (slot vacation))
(deftemplate SportsType (slot sports-type))
(deftemplate SightseeingType (slot sightseeing-type))
(deftemplate LocalSeason (slot local-season))

;**************default rules (Activated every time)
;Rule 1
(defrule GetMonth
   =>
   (printout t “In what month of the year do you plan your trip? “)
   (bind ?response (read))
   (assert (Month (month ?response))))

;Rule 2
(defrule GetVacationMatters
   =>
   (printout t “Do you have any preference in your vacation activities?
   (yes/no) “)
   (bind ?response (read))
   (assert (VacationMatters (vacation-matters ?response))))
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;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; The following questions are only asked based on the answers to the 
questions asked in the previous section

;Rule 3
(defrule GetVacation
   (VacationMatters (vacation-matters yes))
   =>
   (printout t “What kind of vacation do you prefer? (beach/sports/
    sightseeing) “)
   (bind ?response (read))
   (assert (Vacation (vacation ?response))))

;Rule 4
(defrule GetSportsType
   (Vacation (vacation sports))
   =>
   (printout t “What kind of sports do you prefer? (mountain/river/
    ocean) “)
   (bind ?response (read))
   (assert (SportsType (sports-type ?response))))

;Rule 5
(defrule GetSightseeingType
   (Vacation (vacation sightseeing))
   =>
   (printout t “What kind of sightseeing would you prefer? 
    (city or nature) “)
   (bind ?response (read))
   (assert (SightseeingType (sightseeing-type ?response))))

;;;;;;;;;rules to define local season according to user’s entry;;;;;;;;;;;;;
;Rule 6
(defrule GetLocalSummer
   (Month (month June|July|August|September))
   =>
   (assert (LocalSeason (local-season summer))))

Rule 7
(defrule GetLocalWinter
   (Month (month December|January|February))
   =>
   (assert (LocalSeason (local-season winter))))

Rule 8
(defrule GetLocalMidSeason
   (Month (month March|April|May|October|November))
   =>
   (assert (LocalSeason (local-season summer))))
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;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;rules to define and print suggested flights

; Rules to determine the destination based on the user’s entries
; Salience added to give the first rule a priority

Rule 9
(defrule Flight1
   (declare (salience 200))
   (LocalSeason (local-season winter))
   (Vacation (vacation beach))
   =>
   (assert (destination Miami)))

Rule 10
(defrule Flight2
   (declare (salience 100))
   (LocalSeason (local-season summer))
   (Vacation (vacation beach))
   =>
   (assert (destination OceanCity))
   (assert (destination LosAngeles)))

Rule 11
(defrule Flight3
   (declare (salience 100))
   (VacationMatters (vacation-matters no))
   (LocalSeason (local-season summer|midseason|winter))
   =>
   (assert (destination Miami)))

Rule 12
(defrule Flight4
   (Vacation(vacation sports))
   (SportsType (sports-type mountain))
   =>
   (assert (destination Utah)))

Rule 13
(defrule Flight5
   (Vacation(vacation sports))
   (SportsType (sports-type river))
   =>
   (assert (destination Virginia)))

Rule 14
(defrule Flight6
   (Vacation(vacation sports))
   (SportsType (sports-type ocean))
   =>
   (assert (destination FloridaKeys)))
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Rule 15
(defrule Flight7
   (Vacation(vacation sightseeing))
   (SightseeingType (sightseeing-type nature))
   =>
   (assert (destination GrandCanyon)))

Rule 16
(defrule Flight8
   (Vacation(vacation sightseeing))
   (SightseeingType (sightseeing-type city))
   =>
   (assert (destination NewYork))
   (assert (destination LasVegas))
   (assert (destination Boston)))

;;;;;;;;;;;;;;;;;;;;;;;;print out the rules;;;;;;;;;;;;;;;;;;;
Rule 17
(defrule no-city-found “”
  (declare (salience -10))
  (not (destination ?))
  =>
  (assert (destination “The system cannot suggest you a destination 
based on your entries. Please contact your travel agent.”)))

Rule 18
(defrule print-dest “”
  (destination ?item)
  =>
  (printout t ?item crlf))
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This program uses the Forward Chaining 
so to acquire facts based on the user’s answers 
and than matches the facts from the Working 
Memory to the rules. The actions of the selected 
rule are executed (which may affect the list of 
applicable rules) and then the inference engine 
selects another rule and executes its actions. 
This process continues until no applicable rules 

remain. The Inference Engine sorts the activa-
tions according to their salience and determines 
which rule(s) should ultimately be fired after 
conflict resolution. (Section 8.x).  In this case 
Rule 9 is chosen over Rule 11 after conflict 
resolution because of its Salience (200) and the 
desire for a midwinter vacation spot. This can 
be seen in the example below:

CLIPS> (watch activations)
CLIPS> (reset)
==> Activation 0 GetVacationMatters: f-0
==> Activation -10 no-city-found: f-0,
==> Activation 0 GetMonth: f-0
CLIPS> (run)
In what month of the year do you plan your trip? December
==> Activation 0 GetLocalWinter: f-1
Do you have any preference in your vacation activities? (yes/no) yes
==> Activation 0 GetVacation: f-3
What kind of vacation do you prefer? (beach/sports/sightseeing) beach
==> Activation 200 Flight1: f-2,f-4
==> Activation 0 print-dest: f-5
<== Activation -10 no-city-found: f-0,
Miami

We can see the order of activations after which the program fired the final answer (Miami). The rule 
with salience -10 was retracted from the Working Memory before firing the answer.
Current facts stored in the Working Memory are:

CLIPS> (facts)
f-0 (initial-fact)
f-1 (Month (month December))
f-2 (LocalSeason (local-season winter))
f-3 (VacationMatters (vacation-matters yes))
f-4 (Vacation (vacation beach))
f-5 (destination Miami)

For a total of 6 facts.
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An implementation of the Viterbi algorithm in 

Java is included on the following page.  The most no-
ticeable aspect of the implementation is its organiza-
tion into three main steps: initialization, recursion, and 
termination.  The initialization step fills in the column 
for the first output observation, beginning with transi-
tions from the start state.  Then the recursion step uses 
the first column to build up the next column, and so 
on, continuing until the table is mostly filled.  Finally, 

the termination step fills in the final cell, representing 
the probability of reaching the end state after having 
produced the final observation.

After the three steps in the calculation, we use 
the backpointer [ ]  [ ] array to trace through the 
most likely sequence of states.  This implementa-
tion in Java makes use

Code in Java:
package javaapplication2;

BAppendix

iMpleMentAtion of the viterbi 
AlgorithM for hidden  

MArkov chAins

(by hArun iftikhAr)

class Main {

    public static void main(String[] args) {

        // There are two states: Simple and Difficult

        int numberOfStates = 2;

        // The output sequence 2 1 1 3 has length equal to 4

        int lengthOfSequence = 4;

  // The transitionProb[][] array contains the transition probabilities

        double [][] transitionProb = { {0, 0.7, 0.3, 0},

                                       {0, 0.6, 0.3, 0.1},

                                       {0, 0.6, 0.3, 0.1},

                                       {0, 0, 0, 0} };

        // The observationProb[][] contains observation probabilities

        double [][] observationProb = { {0, 0, 0},

                                      {0.8, 0.1, 0.1},

                                      {0.1, 0.2, 0.7},

                                      {0, 0, 0} };

        double [][] viterbi = new double [numberOfStates + 2]

        [lengthOfSequence + 1];

        int [][] backpointer = new int [numberOfStates + 2]

        [lengthOfSequence + 1];
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        int [] observationSequence = {2, 1, 1, 3};

        double currentProb, maxProb = 0;

        int maxArg = 0;

        

        // Initialization for-loop fills in the first column of viterbi 

           and backpointer arrays

        for (int s = 1; s <= numberOfStates; s++)

        {

            viterbi[s][1] = transitionProb[0][s] * observationProb[s]

            [observationSequence[0] - 1];

            backpointer[s][1] = 0;

        }

        

        // Nested for-loops which fill remaining columns in viterbi 

           and backpointer arrays

        for (int t = 2; t <=  lengthOfSequence; t++)

        {

            for (int s = 1; s <= numberOfStates; s++)

            {

                for (int i = 1; i <= numberOfStates; i++)

                {

                    currentProb = viterbi[i][t - 1] * 

                                  transitionProb[i][s]

        * observationProb[s][observationSequence[t - 1] - 1];

                    if ( currentProb > maxProb )

                    {

                        maxProb = currentProb;

                        maxArg = i;

                    }

                }

                viterbi[s][t] = maxProb;

                backpointer[s][t] = maxArg;

                currentProb = maxProb = 0;

                maxArg = 0;

            }

        }

        currentProb = maxProb = 0;

        maxArg = 0;
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        // Termination for-loop fills in the final column for the 

           last time step

        for (int i = 1; i <= numberOfStates; i++)

        {

        currentProb = viterbi[i][lengthOfSequence] *  

                     transitionProb[i][3];

            if (currentProb > maxProb)

            {

                maxProb = currentProb;

                maxArg = i;

            }

        }

        viterbi[3][lengthOfSequence] = maxProb;

        backpointer[3][lengthOfSequence] = maxArg;

        // Print out results by backtracing through the backpointer array

        int index = 3;

        

        int arrayIndex = lengthOfSequence - 1;

        int[] tempArray = new int[lengthOfSequence];

        tempArray[arrayIndex] = backpointer[index][lengthOfSequence];

        index = backpointer[index][lengthOfSequence];

        for (int t = lengthOfSequence; t > 1; t--)

        {

            tempArray[--arrayIndex] = backpointer[index][t];

            index = backpointer[index][t];

        }

        System.out.println(“The observation sequence was: “);

        for (int j = 0; j < lengthOfSequence; j++)

        {

            System.out.print(observationSequence[j] + “ “);

        }

        

        System.out.println(“\n\nThe most probable sequence of states:”);

        for (int j = 0; j < lengthOfSequence; j++)

        {

            if (tempArray[j] == 1)

                System.out.println(“Simple”);

            else if (tempArray[j] == 2)

                System.out.println(“Difficult”);
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        }

}

}

Output for 2 1 1 3 Sequence

The observation sequence was: 

2 1 1 3 

The most probable sequence of states:

Simple

Simple

Simple

Difficult

BUILD SUCCESSFUL (total time: 0 seconds)
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In 1977, Ken Thompson1 presented his databases 
for all four-piece endings to top players. One database 
demonstrated that they couldn’t win with K + Q vs. K 
+ R, which portended a number of changes to follow. 
Subsequently, the rules were changed for K + R + B 
vs. K + R (called “The Headache Ending” by Benko) 
to 75 moves, then 100 moves, then back to 50 moves 
since the longest win is 59 moves. Extensions also 
occurred for other endings like K + B + B vs. K + N 
which was demonstrated to be a win in 77 moves. 

For some hundred years it was believed that the 
endgame King and Queen vs. King and Rook (KQKR), 
was a win for the strong side; not trivial, but certainly 
manageable in 50 moves. In 1977, Ken Thompson 
came to the World Computer Chess Championships 
armed with his database for KQKR and challenged 
the top masters in attendance. 

To their horror and embarrassment, International 
Masters Lawrence Day (of Canada) and Hans Berliner 
(World Correspondence Chess Champion, 1969) 
failed to win in 50 moves with the strong side. Later, 
World Chess Championship Candidate and for many 
years the chess columnist of the New York Times, 
Grandmaster Robert Byrne, took his turn and failed 
to win. 

The rules of chess allow 50 moves to end a game 
if no pawns remain on the board. The longest win 
requires 31 moves. The common heuristic provided 
by endgame textbooks is to survive by keeping the 
King and Rook together, thereby avoiding any tactical 
trick that might fork or skewer the King and Rook. In 
contrast, Ken Thompson’s database was playing moves 
that occasionally separated the King and Rook. What 
did it know that humans hadn’t known? Very simply, 
nothing at all, just that if a move separating the King 

and Rook was the longest 
surviving move, then that 
was the move to play.

Grandmaster Walter 
Shawn Browne (1949–
2015) of Berkeley, 
California, was a six-time 
U.S. Chess Champion 
(1974, 1975, 1977, 1980, 
1981, 1983). He was the 
best chess player in the 
United States in the 1970s in the absence of Bobby 
Fischer after Fischer won the World Championship 
from Boris Spassky in Reykjavik, Iceland in 1972. 
Browne, who dropped out of Brooklyn’s Erasmus High 
School less than a decade after Bobby Fischer left the 
same school, is superb at many board games including 
Scrabble and backgammon, and for more than 20 years 
has made his primary income from the game of poker. 

A few months after Ken Thompson came to the 
World Computer Chess Championships in 1977, 
Browne, who calculated extremely well, took on the 
challenge against Ken Thompson’s database as a bet 
for $100. The challenge was played at the rate of 40 
moves in 2.5 hours (which was the standard rate of 
international chess play at the time). Like the others 
before him, Browne was unable to win in 50 moves. 
Moves were transmitted by telephone between Bell 
Labs in Murray Hill, New Jersey and Browne’s home 
in Berkeley, California. 

Ever the competitor and gambler, Browne 
asked for a rematch against the database at “double 
or nothing” a week later. Although Browne never 
attended college, he does know how to analyze and 
study. He studied the program’s play and looked for 

CAppendix

contributions to coMputer chess: 
the AMAzing wAlter shAwn browne

Figure C.0
Walter Browne.
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patterns. Learning how to play correctly (to win in 
50 moves) is a challenging task (since the longest 
win is 31 moves) but learning how to play optimally 
in all variations and win in the minimum number of 
moves (31) is a daunting task for a human being. 
In Figure C.1, White with the Queen is Browne and 
Black is BELLE. The position starts with the White 

King in check. The number of moves to mate with 
best play is indicated in parentheses.

As you can see in Figure C.1, Browne did win 
the bet, capturing the rook (which was one way to 
win) on exactly the fiftieth move! This means that 
he played moves that actually cost him 19 moves in 
terms of optimal play.

Figure C.1 
Walter Browne’s winning the endgame KQ vs. KR against the computer program, BELLE (2nd game).
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The record of the Browne vs. BELLE match originally 
appeared in an article by Warren Stenberg and Edward 
Conway published in the Chess Voice (April/May, 1979) 
and then in D. Kopec, (1990), “The History of Man-
Machine Chess”, in  The Encyclopedia of Computer 
Science and Technology, eds. A. Kent and J.G. Williams, 
New York, NY: Marcel Dekker, Vol.26, Supp 11,  
pp.241-43. 

Browne later informed me (1990) that contrary to 
some reports he was not “lucky,” but he had actually 
analyzed, calculated, prepared, and memorized the 
last 24 went exactly according to his home analysis.  
He also reminded me that years later he had a game 
that went some 125 moves in another theoretical 
ending—King and Bishop and Bishop vs. King and 
Knight against Robert Rowley—and did not win 
in 50 moves. The rules of chess had not yet been 
changed to accommodate five-piece endings like 
this.  We later learned from Thompson’s database 
that this ending requires 66 moves to win with best 
play (See Table C.1).

Table C.1
The Maximum Number of Moves Needed to Win Chess Endings With Five Pieces or  Less  
Based on  Thompson, 1986.  

Three Pieces  
ENDGAME 

Maximum Number of 
Moves to  Win

KQK 10 to mate
KRK 16 to mate

Four Pieces  
ENDGAME 

Maximum Number of 
Moves to  Win

  KQKR 31 moves for conversion to KQK
  KRKB 18 moves for conversion to KQK
  KRKN 27 moves for conversion to KRK
  KBBK 19 to mate
  KBNK 33 to mate

Five Pieces  
ENDGAME 

Maximum Number of 
Moves to  Win

  KRBKR 59
  KBBKN 77
  KRQKQ 60
  KRNKR 33
  KQNKQ 35

As an addendum to this story, it should be mentioned 
that a book was published in 1895 authored by “Euclid” 
and edited by E. Freeborough, entitled Analysis of the 
Chess Ending King and Queen Against King and Rook, 
published by Kegan Paul, Trench, Trubner & Company. 
The book had analysis very similar to that generated by 
Thompson’s database, with the same conclusions: the 
longest win requires 31 moves.  A quote from this long 
out of print book with 144 pages of analysis and 191 
diagrams reads: 
 “The view commonly held and expressed that there 
could be no practical difficulty in winning with Queen 
against a Rook was …. Discarded as illusory  
(pp. iv – v).”
 Clearly the book by “Euclid” has been somewhat 
overlooked by both the chess and computer chess 
worlds! (Kopec, 1990)

Reference 
 1. Thompson, K.  (1986). Retrograde Analysis of 

Certain Endgames.  ICCA Journal 9(3): 131–39.  
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Solutions (including figures) to Selected Exercises in the text may be found on the companion 
DVD.

EAppendix

solutions to Selected Exercises





A
A* algorithm, 18–19
abstraction, 7, 48 
action descriptions, 473 
activation function, 316 
adaptive systems, 228 
add-list, 459 
admissibility, 76 
admissible heuristic, 90–91 
advanced beginner, 261 
adversarial games, 19 
adversary, 112 
agent, 10–11

autonomous, 201 
contemporary, 201–232 
intelligent, 192–194 
proactive, 194 
qualities of, 173–201 
social, 194

aging, 221, 536 
algorithm, 12
alpha-beta pruning, 118–123 
alpha cutoff, 120 
alpha value, 119 
ambiguity, 405–406 
AND/OR trees, 101–102 
animal intelligence, 5 
ANN. See artificial neural network 
annealing, 370
ant colony optimization, 386–392 
antecedent, 142
antecedent-consequent systems. See production systems 
argument, 138
arity, 147
artificial neural network (ANN), 298–316
Artificial Intelligence Features, 521
artificial life, 504
A* search, 99–100
Asmio, 521
aspiration criterion, 371
aspiration lists, 385
associations, 188
associative law, 142
associative network, 347

autoassociative network, 347
autoassociative network with feedback, 348–349
automated reasoning, 19–20
automatic dental identification, 288–289
autonomous agent, 194

B
Backgammon, game of, 532–533 
backpropagation, 31, 333–340
backpropagation network (BPN), 336
backtracking, 50–53 
backward chaining, 225–229
batch training, 331
Bayes’ theorem, 251 
beam search, 18, 89–90, 470 
Berliner, Hans J., 571 
best first search, 18 
best-first search algorithm, 86–89 
beta value, 118
bidirectional search, 76, 102–104
bigdog, 518
bioinformatics, 34
blackboard architecture, 33, 201 
blind search algorithms, 18, 56–57

breadth first search, 58–60
depth first search, 57–58 
dfs vs. bfs, 62, 64–66 
implementing bfs solution, 65 
implementing dfs solution, 63 
problem-solving performance, 62–64 

Block’s criticism of Turing test, 9 
Blocks World, 24 
Boole, George, 26 
bottom-up, 192 
bottom-up design, 388 
bounded rationality, 219 
BPN. See backpropagation network 
branch–and–bound algorithm, 56, 76, 94–99 

See also uniform cost search 
branch and bound with dynamic  

programming, 98–99 
branch and bound with underestimates, 95–98 
branching factor of node, 64 

index
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branching factor of tree, 64 
breadth first search (bfs), 18, 46, 90 
Bridge, game of, 536–539 
Bridges of Konigsberg, 585 
brute force, 559–560 
Brooks, Frederick, 28 
Brooks, Rodney, 201
building blocks, 380

C
CA. See cellular automata
Carbuyer System, 213–216
case base, 281–286
case-based planning, 465
case-based reasoning (CBR), 281,292
case frames, 419
case grammars, 419–420
CBR. See case–based reasoning
cellular automata (CA), 17
center control, 554
center of gravity, 521
chance nodes, 126
change-based planning. 

See logic-based planning 
Chomsky hierarchy, 415 
Chomsky normal form, 416 
circumscription, 157
C Language Integrated Production System  

(CLIPS), 573 
classes, 188
classic expert systems 

DENDRAL, 271–272
EMYCIN, 274–275 
fuzzy knowledge, 278–279 
MYCIN, 272–274 
PROSPECTOR, 279 

clause form, 138
CLIPS. See C Language Integrated Production  

System 
closed list, 61
closed world assumption, 156
clustering, 351
CNF. See conjunctive normal form 
collocation, 154
combinatorial complexity, 77 
combinatorial explosion, 18, 114 
common sense knowledge, 34, 186
commutative law, 154 
competent skill performer, 261
completeness form collocation, 62 

comprehensibility, 173 
computational intelligence.  

See artificial intelligence 
Computer Chess, 557 
concept maps, 189–190
concepts, 191
conceptual dependency (CD) formalism, 183
conceptual graphs (Cgs), 190
conceptual relations, 191
conditional planning, 458
configuration mode, 288
conflict resolution 207

dynamic process, 212 
strategies, 223

conjunctive normal form (CNF), 154 
consequent, 142 
constraints, 24
constraint satisfaction search (CSP), 76
contemporary agents, 197–198
context-free grammar, 33, 413, 414
context-free languages, 413,416
context sensitive languages, 412,414
contradiction, 143
contrapositive proof, 142
control space, 551
control system, 215
converse, 142
Conway, John, 230
cooling schedule, 372
corpus, 425
correctness, 172–173
crisp sets, 240
crossover, 376
cycling approach, 222
CYK algorithm, 415–417

D
decision making, 192 
decision tree, 175 
declarative knowledge, 270 
deduction, 143 
deep knowledge, 270
deep structure, 417
delete-list, 459 
Delta Rule, 327–332 
demon rules, 279–280 
demons, 183 
De Morgan’s law, 142 
Dempster-Shafer theory, 252 
DENDRAL, 271–272 
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dependency-directed search, 470
dependent variable, 328 
depth first backtracking, 469
depth first search (dfs), 18, 46, 56–57 
depth first search with iterative deepening  

(dfs–id), 57, 67 
development, 549–550 
dfs. See depth first search 
dfs-id. See depth with iterative deepening 
Dijkstra, Edsgar, 56
directional indicator (DI), 355 
directional movement index (DMI), 356 
direct translation, 426 
disambiguation, 427 
discourse, 409
discourse modeling paradigm, 409 
discrete Hopfield network, 347–351 
distributed planning, 471 
distributive law, 154 
DMI. See directional movement index 
domain specialists, 268 
domain-specific knowledge, 15 
dominant scoring term, 533
dominant strategy, 128 
domination law, 143 
double negation, 145 
Dreyfus, Hubert, 185
drosophila, 546

E
ease of adaptation preference, 283 
economic indicators, 354 
edges, 174 
efficiency methods 

demon rules, 279–280 
Rete algorithm, 280–281

elitist selection, 380 
ellipsis, 411
e-mail, 405
emergent behavior, 388 
empiricism, 409
employment matching systems, 287 
EMYCIN, 274–275 
encapsulation, 180 
endgame databases, 560–561
english summary, 422 
Enigma Code, 10 
Entropy, 305–306
equivalence class, 113
Eulerian Cycle, 174

Eulerian Property, 174 
Eulerian Trail, 174 
evaluation function, 536 
events, 464
evolutionary computation, 17, 31–32
excitatory edges, 316 
exclusive-or (XOR) function, 141 
executability, 170 
exhaustive enumeration, 50 
existential quantification, 138 
existential quantifier, 148 
expectation-driven processing, 182 
expectiminimax algorithm, 125–127 
expert skill acquisition, 261 
expert systems, 14, 20–21 

advantages of, 216–218 
automatic dental identification, 288–289 
case–based reasoning, 289 
characteristics of, 265–266 
classic, 271
construction of, 269 
efficiency methods, 209–210
employment matching systems, 287
features of, 275 
knowledge acquisition, 269–270
knowledge engineering, 267–269
vibration fault diagnosis, 287–288 

exploitation, 372 
exploration, 372 
extended grammar, 417 
extensional representation, 170, 177

F
fallacy, 158
False Coin Problem, 47–48
fanning in. See forward chaining
fanning out. See backward chaining 
fault diagnosis, 287 
finite automata, 404
finite automaton, 407
finite state machine, 208 
finite-state models, 409 
fired rule, 216
first order predicate logic (FOPL), 156
fitness function, 23, 375
foothills problem, 85
FOPL. See first order predicate logic
forgetting, 221, 536
formula operator, 191
forward chaining, 223–225
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frame problem, 466–467
frames, 24, 181–183
frequency preference, 283
frontiers problem, 103
function approximation, 351
functions, 141
fuzzy concept, 240
fuzzy inferences, 243–247
fuzzy logic, 157, 243, 521
fuzzy OR function, 243
fuzzy production rules, 244
fuzzy sets, 240–243
fuzzy set theory, 241

G
game of Eight, 121 
Game of Life, 22, 236 
games, 29–30
game theory, 127–129 
game tree, 175 

heuristic evaluation, 114–115 
Minimax evaluation, 112–113 

GAs. See genetic algorithms 
General Problem Solver (GPS), 14, 228 
generate–and–test paradigm 

backtracking, 48–50 
greedy algorithm, 46, 53–55 
procedure for, 49 
Traveling Salesperson Problem, 55–56 

generative semantics, 418 
genetic algorithms (GAs), 23, 374–381 
genetic drift, 381 
genetic operators, 375
genetic programming (GP), 381 
geometric cooling, 372 
global database, 212 
goal–directed preference, 283
goal, of artificial intelligence, 6
goal state, 18,57, 58
Go, Japanese game of, 570 
GP. See genetic programming 
GPS. See General Problem Solver 
gradient descent, 328
grain size, 170 
grammar 

case, 411–415 
context–free, 413 
definition, 7–9
extended, 94, 417 
phrase–structure, 417 

rules of, 421 
semantic, 186–188 
transformational, 417–418 

graph, 18, 47, 70
graphical sketch, 171–173 
Graphplan, 466, 481–482 
greedy algorithm, 46, 53–55

H
HAL (Next Generation Intelligent Room), 198
hand-written letter, 405
Harris, Larry R., 436–437
Hayes-Roth, Frederick, 486
head-in-the-sand objection, 8
heteroassociative network, 348
heuristic evaluation, 114–115
heuristic knowledge, 271
halting problem, 586
heuristics, 12, 77–83 

vs. algorithm, 83, 90–91
definition, 5, 7–9 
description of, 181, 567, 
examples for, 83, 181, 210–212 
solving simpler problem, 13 
usages of, 78 
Water Jug Problem, 13–14 

hidden layer, 333
hidden Markov models (HMMs), 408,428
hidden units, 333
hierarchical planning, 463, 487
hierarchical task network (HTN), 460, 473
hill climbing algorithm, 83 
hill climbing search method, 105
HMMs. See hidden Markov models 
homunculus, 499
hold-one-out-training, 408
horizon effect, 555 
HTN. See hierarchical task network 
human experts, 460, 473
Human Window, 171–173 
hybrid–intelligent approach, 287

I
idempotency, 143 
identification mode, 288 
IF–THEN, rules, 288
imitation games, Turing test, 7
implicit parallelism, 379 
inclusive–or function, 141 
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independent variable, 328 
induction puzzles, 139
inference engine, 212
inference mode, 421
inference network, 275 
inference systems, See production systems 
information extraction, 208, 216–218
informaiton gain, 307
information–processing parameters,  

human brain, 173
information society, 258
informed generator, 50 
informed search, 47, 56 

beam search, 76, 89–90
best-first search algorithm, 83, 89 
finding optimal solution 

A* search, 83
branch and bound, 76, 92– 95
branch and bound dynamic  

programming, 98–99 
branch and bound with underestimates, 106

heuristics, 12, 76 
hill climbing algorithm, 83 
search algorithms, 16, 17–19

AND/OR trees, 77, 101–102 
bidirectional search, 43, 102–104 
constraint satisfaction search, 53, 100–101
metrics for, 105 

steepest-ascent hill climbing algorithm, 84–86
inheritance, 24, 180
inhibitory edges, 316 
input layer, 333
instant message, 406 
intelligence, definition of, 5
intelligent agents, 192 
intelligent systems search, 46 
intensional representation, 178, 200
interlingua approach, 426
interpretive semantics, 418 
interrogator, 7–9
inverse, 142 
inversion, 382
involution, See double negation 
irrevocable approach, 105
Iterated Prisoner’s Dilemma, 19, 129
iterative deepening, 468 
iterative learning algorithm, 22
iterative procedure, 323,375

J
James Clerk Maxwell, 502
joint probability, 251

K
KaZaA, 197, 201
killer heuristic, 557 
king safety, 551, 549
knowledge 15

acquisition, 289 
bases, 282 
compilation problem, 270
definition, 7–9
elicitation, 269
engineering, 269
hierarchy, 168 
intensive, 218 

knowledge engineer, 218, 267–269 
knowledge-engineering paradox, 270 
knowledge representation, 218

agent (see agent)
application of AI, 23–25
characteristics, 289
concept map approach, 43
conceptual graph approach, 190–191 
frames, 181–183 
graph, 174
graphical sketch, 171
hierarchical relationship, 168
object orientation, 180–181 
production systems, 184, 208 
scripts, 183–186 
search tree, 175–176
semantic networks, 186–188 
Towers of Hanoi Problem, 200

knowledge sources (KSs), 195, 201
Knuth, Donald, 66 
Kolodner, Janet L., 284 
Korf, Richard, 124

L
Languages

context–free, 413–414 
context sensitive, 412–414 
problems and possibilities of, 404–405
recursively enumerable, 412 
regular, 414 
spoken, 352
textual, 192

Law of Elimination, 143 
Law of Excluded Middle, 143 
Law of Large Numbers, 250 
learning problem, 336 
learning rule, 22, 237, 314
learning with teacher, 303–304 
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least-commitment planning, 465
least commitment search, 469
Lenat, Douglas, 264 
Levy, David, 572 
lexical, 410
lexicalized statistical parsing, 426 
linear cooling, 372 
linearly separable pattern class, 323 
Loebner, Hugh Gene, 8 
logic, 16
logical connectives, 141
logic-based planning, 475 
logic-based systems, 408 
Logic Theorist, 24
long-term memory, 212
Lyaponov function, 350

M
machine experts, 259–265
machine learning, 298–300
machine translation, 426–427
maintenance mode, 288
Maisel, James, 445
MARGIE, 185, 418
Markov Chains, 43, 232–233
Markov property, 428
material balance, 549
matrix of transition probability, 232
Max node, 115
McCarthy, John, 20, 157
McCulloch–Pitts network, 316–317
means-ends analysis, 465
mean square error (MSE), 330
mechanical duck, 500
medical diagnosis, 14
membership function, 241, 245
meta-knowledge, 170, 211, 259
meta-level planning, 471
metaphor, 298
mgu. See most general unifier
Michie, Donald, 171, 358
microchip technologies, 258
micro-miniaturization, 258
microworlds, 34
middle game combinations, 533
Mildly Context–Sensitive languages, 414
Mini False Coin Problem, 47–48
Minimax, 43 

alpha-beta pruning, 118–123 
in game tree, 113, 130 

variations and improvements  
horizon effect, 123
negamax algorithm, 124 
progressive deepening, 125 

Min node, 115
Minsky, Marvin, 193
 minterm, 317
Missile Metaphor problem, 103
Missionaries and Cannibals Problem, 24, 59
Mobile Robot Kinematics, 515–516
modal logics, 139, 158
modularity, 218
morphology, 409, 410
most general unifier (mgu), 150
MSE. 330 
mean square error, 330
multi–agent system, 194
multilayer neural network, 333
multiple inheritance, 182
mutation, 375
mutually exclusive. See planning graph
MYCIN, 30, 212

N
Nash equilibrium, 128
natural language processing (NLP), 32, 404  

See also statistical natural language processing
natural language understanding, 183
natural selection, 23,299
Nau, Dana, 117 
negamax algorithm, 123–124
Nets of Action Hierarchies (NOAH), 477–478
NETtalk, 32, 352
network function, 336 
neural computation, 22–23 
neural networks, 31, 313 

artificial, 3, 4, 20
backpropagation, 31,302
classification applications, 270, 277
clustering applications, 371, 392
in control applications, 352
Delta Rule, 237, 327–332 
discrete Hopfield network, 347–351 
in forecasting, 353 
in function approximation, 352
McCulloch-Pitts network, 316–317
in optimization, 314, 352
in pattern classification, 352
Perceptron Learning Rule, 22, 317–327 
in search applications, 43, 393 
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Newborn, Monty, 547 
Newell, Allan, 219, 221
new millennium, 34–36
artificial intelligence in, 4, 137, 208
Niblett-Shapiro solution, 172
NOAH, See Nets of Action Hierarchies
noisy channel model, 407
nondeterministic games, 126
non–monotonic logic, 138
nonredundant generator, 49
normal form, 150
novice, 172, 483
NP–complete problems, 31, 95 
n-Queens Problem, 48
null move heuristic, 557

O
objective function, 53
object orientation, 167, 180–181 
objects, 4, 483
Occamʼs Razor, 302
One-Then-Best Backtracking, 470 
open condition, 472 
opening libraries, 542 
open list, 61
operator–based planning, 475
operator schemata, 459
O-Plan, 465
opportunistic planning, 463
opportunistic search technique, 470
optimality, 105
optimization, 31, 388–392
Othello, game of, 29, 134, 565–566
output layer, 333

P
PAM, 423
parallelism, 560–561
parallel plan, 469
parallel search algorithms, 557
paraphrase mode, 421
Pareto optimal startegy, 128
parse, 408
parse trees, 34
parsing algorithms, 408
partially ordered planning (POP), 471
partial solution, 50
pattern analysis, 344–345 
pattern classification, 352 

pattern-matching process, 216
payoff matrix, 128 
Pearl, Judea, 78
Penn Treebank Project, 431–432 
perception, 192
Perceptron Learning Rule, 22, 317–327 
perception learning rule.

See iterative learning algorithm
perfect induction, 142
perfect information, 16, 125
performance, 4, 62– 64
perimeter search, 103 
phonological component, 417
phrase-structure grammar, 417 
physical body, 510
planning, 31, 118

applications, 16–17
characteristics, 265–266
conditional, 425 
definition, 5, 7–9
 hierarchical, 168, 473–474
opportunistic, 194
partially ordered, 464 
problems, 1, 14–16

planning graph, 481 
planning methods, 487

case–based planning, 465
hierarchical planning, 473–474
logic-based planning, 475
operator-based planning, 475 
partially ordered planning, 471–473
as search (See search methods for planning)

planning systesm
Graphplan, 469–470 
to learning systems, 471–473 
NOAH, 477–478 
NONLIN, 478–479
STRIPS, 459

Plan-Object learning paradigm, 483
plateau problem, 85 
plausibility analysis, 539
ply, 542
Poker, game of, 569–570 
Polya, George, 79–80 
polymorphism, 180 
POP, 471
See, partially ordered planning, 471–473 
population of strings, 375
positive feedback, 391 
Post Production System, 209
Post Tag Machine, 208 
power of brute force, 560 
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pragmatics, 411 
precondition formula, 459
predicate logic, 465 

converting to clause form, 152–155
propositional logic, 140 
resolution, 138, 145
unification, 148–150 

preference heuristics, 283 
premature convergence, 380
prenex normal form, 153 
Principle of Optimality, 98 
Prisoner’s Dilemma, 19, 129
proactive agents, 194
probabilistic methods, 407 
probability theory, 247–252 
problem reduction, 101 
procedural attachment. 183
procedural knowledge, 270, 291 
production rules, 20– 21
production systems, 179–180 

advantages of, 216–218
backward chaining, 225–229
and cellular automata, 230–231 
components of, 33, 212
conflict resolution, 221–223 
forward chaining, 223–225 
knowledge representation, 23–25
Markov Chains, 232–233 
perspectives of, 4, 176
process model, 15, 23 
stochastic processes, 232–233

proficient problem–solver, 261
programming methods, 547–555 

board and legal move representation, 548 
mobility and connectivity, 552 
openings and position evaluation, 549
Shannon approach, 548

progressions, 459
progressive deepening, 125 
Prometheus Redux, 585–587 
propositional logic, 138, 140 

arguments in, 144–145 
basics of, 301 
proving arguments in, 145–147

PROSPECTOR, 275–277
pseudo–legal move list, 548 
puzzles, 17–19

Q
qualification problem, 477

question-answering output, 423
question answering systems, 435–436
queue, 62
quiescence search, 534 

R
ramification problem, 477
ramped-half-and-half method, 384
recency preference, 283
recurrence relation, 178
recurrent autoassociative network, 348
recursively enumerable languages, 412
reference resolution, 409
refreshing, 221
refutation, 150
regressions, 459
regular languages, 414–415
resolution, 138
resolution-refutation, 145
Rete algorithm, 280–281
retention phase, 282
retrieval phase, 283
retrograde analysis, 227
reuse phase, 475
revision phase, 185
ridge problem, 85
Robots in Film and Literature, 503
Robot Lore, 499–500
rote-learning tests, 537
roulette wheel selection, 375
rule-based expert systems, 212

See also production systems

S
salient-feature preference, 283
SAM, 418 
sample point, 249
sample space, 251 
Satisfiability Problem (SAT), 95 
scaled selection, 381 
Schaeffer, Jonathan, 541 
Schank, Roger, 424 
Schank’s systems 

MARGIE, 421–424 
PAM, 185 
SAM, 

schemata, 379
schema theorem, 380
scripts, 183–185
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search algorithms, 17–19 
search methods for planning 

beam search, 18 
dependency, 183–186
directed search, 470
depth first backtracking, 469 
distributed planning, 471 
least commitment search, 469
means-ends analysis, 468
meta-level planning, 471 
One-Then-Best Backtracking, 487 
opportunistic search technique, 470
select and commit, 469 
state–space search, 467

search tree, 557
Searle’s criticism of Turing test, 9,10 
second order logic, 156 
second order predicate logic, 156 
selection, 375 
semantic component, 417 
semantic grammars, 420 
semantic networks, 24, 186–188
semantics, 409 
Semantic Web, 198–199 
set of support, 242
shallow knowledge, 270 
Shannon type A approach, 548 
Shannon type B approach, 548 
Shortliffe, Edward, 275 
short-term memory, 386 
signature tables, 539 
Simon, Herb, 219–221 
simulated annealing (SA), 371–374
singular extensions, 557 
situated agent, 194 
situation-action systems, 283

See production systems, 21 
skill acquisition, 261 
skolem function, 153 
skolemization, 152 
slots and fillers, 24, 200
slot value, 182 
SmartBooks, 189 
social agents, 194 
space complexity, 64 
space tree, 47 
spanish summary, 423 
special-purpose hardware, 549
specify preference, 283
Spector Pro, 197
spoken language, 405 
sponsors, 195 

sprite, 195
stable state, 349
stack, 61
Stanford University Institute Problem Solver  

(STRIPS), 459 
start node, 47, 104 
start state, 18, 48 
statements, 140
statespace graph, 18, 47 
state-space search, 467 
state-space tree, 47
statistical natural language processing 

hidden Markov models, 455 
information extraction, 435 
linguistic data collections, 431
machine translation, 426–427
question answering systems, 435
statistical parsing, 425–426 
Viterbi algorithm, 430–431 
word sense disambiguation, 427–428 

statistical parsing, 425–426
21st century, artificial intelligence in, 595–597

steepest-ascent hill climbing algorithm, 84–86 
step function, 335 
stigmergy, 371
stochastic approach, 407–408
stochastic methods, 408
stochastic oscillator, 356
stochastic processes, 232–233 
stock index, 355 
stored program concept, 11 
Strasbourg cock, 500
STRIPS. See, Stanford University  

Institute Problem Solver 
strong artificial intelligence, 459 
structural knowledge, 270 
structural similarity, 281 
subsumption architecture, 195
supervised learning, 300, 323 
surface structure, 417 
swarm intelligence, 6, 392
swarm robotics, 392
symbolic approach, 408 
symmetry, 113
symmetry group, 113 
syntactic parsing, 415–417
syntax, 410–411
systemic grammar, 418
Systems

Production, 497
Expert, 497
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T
tabu lists, 385
tabu search, 370, 385–388
tabu tenure, 386
tautology, 142 
telephone, 405
temporal difference learning, 567
temporal projection, 459
temporal redundancy, 281
text message, 406
textual language, 405
The Bridges of Konigsberg Problem, 174
threat, 472
threshold function. See step function
threshold logic unit (TLU), 39, 318
Thompson, Kenneth Lane, 531
time complexity, 64
total order planner, 471
tournament selection, 381
Towers of Hanoi Problem, 178
transfer approach, 426
transformational grammar, 417–418
transition matrix, 232
transposition tables, 542
trapezium-shaped membership function, 245
Traveling Salesperson Problem (TSP), 55–56
treebank, 431–432
triangular-shaped membership function, 245
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