

PROGRAMMING ON
PURPOSE

III
Cf ~~ap~ on .i>ofttuart

mrcbno lo gp

P.J. Plauger

PTR Prentice Hall
Englewood Cliffs, New Jersey 07632

Acquisitions editor: Paul Becker
Editorial assistant: Noreen Regina
Cover design director: Eloise Starkweather
Cover designer: Lundgren Graphics
Manufacturing buyer: Mary E. McCartney

©1994 by P.J. Plauger

It Published by PTR Prentice-Hall, Inc.
A Simon & Schuster Company
Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this book may be reproduced,
in any form or by any means, without permission in writing
of the author.

The publisher offers discounts on this book when ordered in
bulk quantities. For more information, contact Corporate Sales Department,
PTR Prentice Hall, 113 Sylvan Avenue, Englewood Cliffs, NJ 07632.
Phone: 201-592-2863; FAX: 201-592-2249.

Printed in the United States of America
10 9 8 7 6 5 4 3 2 1

ISBN 0-13-328113-2

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia, Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Simon & Schuster Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brazil, Ltda., Rio de Janeiro

In memory of Isaac Asimov,
who taught us

that complexity need not be obscure
and that rationality need not be cold

PERMISSIONS

The essays in this book originally appeared as installments
of the monthly column "Programming on Purpose" by P.J. Plauger

in the magazine Computer Language, published by Miller Freeman Inc.
All are reprinted by permission of the author.

TRADEMARKS

Compaq SLT /386s-20 is a trademark of Compaq Computer Corporation.
Corel Draw is a trademark of Corel Systems.

IBM PC and System/370 are trademarks of IBM Corporation.
Macintosh is a trademark of Apple Computer.

MS-DOS and Windows are trademarks of Microsoft Corporation.
PDP-11 and VAX are trademarks of Digital Equipment Corporation.

UNIX is a trademark of AT&T Bell Laboratories.
Ventura Publisher is a trademark of Ventura Software Inc.

TYPOGRAPHY

This book was typeset in Palatino, Avant Garde,
Bitstream Cloister, and Courier bold by the author
using a Compaq SLT /386s-20 computer running

Ventura Publisher 4.0.1 and Corel Draw 2.01 L
under Microsoft Windows 3.1.

Table of Contents

Preface ...

1 You Must Be Joking .
2 Computer Arithmetic .
3 Floating-Point Arithmetic .
4 The Central Folly
5 Safe Math
6 Do-It-Yourself Math Functions
7 Locking the Barn Door .
8 Half a Secret
9 It's (Almost) Alive

1 O The (Almost) Right Stuff .
11 Instant Lies
12 What Meets the Eye . .
13 Technicolor and Cinemascope
14 What Meets the Ear .
15 Warm Fuzzies
16 Font Follies
17 Text Editors
18 Approximating Functions
19 Economizing Polynomials
20 Technical Writing
21 All I Want to Do Is
22 Programming for the Billions
23 All Sorts of Sorts
24 Transforming Strings . . .
25 Books for Our Times
26 Through the Grapevine . .

Appendix A List of Columns
Appendix B Bibliography .

Index

v

vii

. 1

.9
17
25
33
41
51
59
67
75
83
91
99

. 107

. 115

. 121

. 129

. 137

. 145

. 153

. 161

. 169

. 177

. 185

. 195

. 201

. 207

. 211

.. 213

Preface

7{ began a journey in July, 1986, that continues to this day. That month
;JJ marks the first installment of my column "Programming on Purpose"
in the magazine Computer Language. Many years and many issues later, I
find myself still writing those monthly columns. And, mirabile dictu, I have
yet to miss an issue.

Do something every month for six or more years and material accumu
lates. I have been asked repeatedly by readers to make some of that
accumulated material more widely available. For many years my excuse
was that I was too busy to do so. I was president of my own software
company, Whitesmiths, Ltd. Then I sold the company to become a full-time
writer. Packaging these essays has at last risen to the top of the queue.

This particular collection concerns itself with the technology of writing
computer software. That can span many disciplines. You will find essays
on computer arithmetic and approximating math functions, on human
perception and artificial intelligence, on encrypting data and clarifying
documentation. If a programmer may need to know it to do a job, it's fair
game here. You will find here a useful sampler of topics not always covered
in conventional computer science courses.

Thus, this collection can serve as supplemental reading for an interme
diate or advanced course in programming methods, such as data structures
or algorithms. For "remedial software engineering," it can be quite useful.
The independent reader can get a taste of many topics. Some are funda
mental to every day programming. Some are at the cutting edge. All are
valuable to the practicing software engineer.

I follow each essay with a brief Afterword. That gives me the opportunity
to fill in historical context where necessary. It also lets me excuse away the
worst naivetes. I chose to present these notes as Afterwords rather than
Forewords so as not to bias the reader up front. Mostly, the essays speak for
themselves.

Other collections from "Programming on Purpose" deal with other
themes. Besides programming technology, I have written essays on (among
other things): software design, software standards development, the busi
ness of software, and the people who love and write computer software.
Some essays are humorous, some are deadly serious. A few are gems, but
I like to think that all are worth reading. If you enjoy what you find here,
please consider the other collections as well.

vii

viii Programming on Purpose

11T"he magazine business sees considerable turnover of editorial staff.
\t!IMiller Freeman, the publisher of Computer Language, is no exception. I
have thus enjoyed the services of many editors over the years. All have
worked hard to rescue my prose from its more florid excursions. They have
nevertheless permitted me to retain a certain colloquial illiteracy that I find
comfortable. I thank all the people at Miller Freeman who, over the years,
have helped make these essays more readable. You should too.

Two people in particular deserve oak-leaf clusters. Regina Starr Ridley,
now a publisher at Miller Freeman, was one of my earliest editors. And
Nicole Freeman, now a managing editor there, has cheerfully haunted my
career in many editorial guises. I am happy to acknowledge their continu
ing assistance in making "Programming on Purpose" better. I am also
happy to count both as good friends.

Having given credit where it is due, I must issue a warning. I re-edited
these essays from the original machine readable. I certainly strove to
recapture the spirit of Computer Language edits, but I make no pretense at
following them to the letter. If any have lost ground as a result, you can
blame me.

P.J. Plauger
Concord, Massachusetts

1 You Must Be Joking

11rhis being the April Fool's issue, I felt a strong obligation to provide
\C.llsomething specious, dry, and puckish by way of an essay. I flinched,
however, at one frightening possibility- suppose nobody noticed? (Have
you ever wondered why professional people so seldom go on strike? Same
reason.)

As a safer course, I decided to take this opportunity to celebrate in print
some of the design and engineering gaffes that I have run afoul of over the
years. In all cases, these are fundamental decisions that, once I understood
that they were deliberate and premeditated, elicited the thunderstruck
remark, "You must be joking!" These are also decisions that have cost me
and other practitioners of the programming trade countless hours of pro
ductivity, either because of the high error rates they lead to or because of
the energy that must be dedicated to doing battle with their consequences.
We're talking the April Fool's Hall of Fame for data processing, here.

In no particular order, here are some of my most unhousebroken pet
peeves.
#rst is "the NUXI problem." I guess DEC gets principal credit for this
,.JJ one, but I'm not sure. It seems that, once upon a time (in the early 1960s),
a company called IBM married the disparate technologies of scientific and
commercial computing into one cohesive family of machines called Sys
tem/360. Its upgraded form, System/370, still dominates mainframe com
puting, in case you hadn't noticed. Never mind all the mistakes they made
as pioneers, the fact is that IBM succeeded in many important ways.
System/370 also influenced many subsequent machine architectures. Sev
eral often imitated features are:
1) eight-bit bytes
2) twos-complement integer arithmetic on one-, two-, and four-byte inte

gers
3) byte-level addressing, using the lowest-addressed byte as the address

of a multibyte datum
Yes, I know there are still significant architectures in use today that differ

in one or more of those attributes, but there are also gazillions of lines of
code (written in FORTRAN, Pascal, and C among other languages) that
work right only if all those attributes are as stated. And if you list the best
selling computers of all sizes, this class tops the list.

2 Programming on Purpose

?11?11.t hen DEC introduced the PDP-11, it had all these attributes. It differed
~from System/370 in one important way, however. Whereas on Sys
tem/370, a two-byte integer had its more significant byte at the lower byte
address, the PDP-11 put its less significant byte there. If you write 0 for the
less significant byte, and 1 for the other, then System/370 is a big-endian
with integers stored as 10, and PDP-11 is a little-endian with integers stored
as 01.

My first tip off that something fishy was going on was when I ran across
the SWAB (for "swap bytes") instruction in the original PDP-11 manual. It
struck me as silly to dedicate a precious instruction merely to optimizing a
left rotate by eight bits. Surely that didn't happen all that often. Then I
reread the description of data formats, slapped my forehead, and expostu
lated (in the general direction of Maynard, Mass.), ''You must be joking!"

The only reason I can contrive, to this day, for trotting up a new way of
ordering bytes is that you can locate the smaller integer (one-byte) within
the larger (two-byte) without incrementing the address. In sixteen years of
living with little-endian architectures, I have encountered any number of
bugs encouraged by this latitude, but never a case where it truly makes life
better.

Far worse, the introduction of variant byte orders has created a whole
bestiary of difficulties in moving multibyte data among machines, and in
writing programs that run on diverse instruction sets. We early users of the
PDP-11 quickly found uses for that SWAB instruction, in all the ad hoc
translation programs we had to contrive to get existing data (and cross-as
sembled programs) onto the PDP-11 from other machines. And we slowly
learned all the subtle ways that byte-order dependencies can creep into
code, particularly in the hands of programmers innocent in the evil ways
of hardware designers.

My favorite name for this syndrome is the NUXI problem. I believe
Dennis Ritchie coined the term as a way of describing the putative effect
on UNIX when moved between architectures with insufficient forethought.
It gets byte-swapped, or NUXIed if you wish. (NUXI is not a trademark of
TAT&.)

The real killer, however, lies not in that simple SWAB kludge that came
with the PDP-11, but in all the variant byte orders that have come afterward.
There are only two ways you can order two bytes, 10 and 01. But with four
or more bytes you can get pretty creative. For long integers, I know of
machines that use 0123 (VAX), 3210 (System/370, MC68000), and 2301
(PDP-11).

PDP-11 and VAX floating point somehow ended up with 67452301.
Intel and Motorola both use IEEE floating-point format, but the former is
01234567 and the latter is 76543210. The NSC32016 uses 0123 for
integers in data space, and 3210 for constants embedded in the instruction

Essay 1 You Must Be Joking 3

stream! And if you think that's bad, I know of a significant new comer that's
even more exciting. But I am constrained by nondisclosure from telling you
what the machine is or how the designers could contrive yet another
variation on this overworked theme .
.a... till another sad side effect of this arbitrary variation in byte ordering
e::1'haunts the design of UNIX itself. As a portable operating system, UNIX
is potentially capable of enforcing a standard format for disk-based file
systems across multiple architectures. It's always the same code manipu
lating the control information of a file system, regardless of the machine
architecture you're running on. Unfortunately, that control information
(called inodes, super blocks, and free lists in UNIX-ese) involves lots of
multibyte data, and that data is read and written by the UNIX resident in
native byte order for the host machine. What this means is that you can
have two machines running identical releases of UNIX and equipped with
identical disk (or diskette) drives, but you can't make a file system on one
machine and read it on the other if the CPUs support different native byte
orders.

I am told that this behavior was the result of an intentional decision made
in the early days of porting UNIX about. I was never privy to the reasons
behind the decision, but there are many small ways in which UNIX seems
to presume that file systems are the private property of the machine that
first made them, not to be involved in interstate commerce. You can guess
my reaction when I heard of this decision.

If performance was a consideration, then it was a misplaced concern.
The Idris operating system has always supported a standard byte order for
file systems, regardless of host. It just swaps bytes about as necessary as
control information moves in and out of memory. We have never measured
a significant performance degradation from this extra work. On the other
hand, having truly interchangeable file systems has been invaluable in
moving data among diverse Idris machines (and in moving Idris to new
machines, for that matter).

I have railed too often in the past about the ghettoization of the UNIX
community to bore you further with this particular topic. Let me just end
with a whimsical sigh that the NUXI problem bites in so many subtle ways.
11rhe next gripe I'll call "militant segmentism." Intel gets credit for this
\C.llone. Picking on the architecture of the Intel 8086 family is like shooting
fish in a barrel, but I'm not going after the obvious shortcomings here. There
were strong market forces pulling this design in several directions. (See
Pla87.) Those forces explain a number of the peculiarities of the 8086, even
if they don't fully excuse them. What bugs me the most is the several small
decisions that prevent us implementors from glossing over a Balkanized
address space.

4 Programming on Purpose

The Intel 8086 is a segmented architecture. That means that a program's
memory is conceptually chopped up into hundreds, or even thousands, of
contiguous chunks. Each chunk conceptually is just big enough to hold one
function or data object. With the kind of hardware access checking sup
ported by the 80286 and 80386 family members, your program should be
pretty quick to discover many of the bad jumps or bad data pointers that
otherwise plague debugging and lower program reliability. Those two
"conceptually"s warn you, however, that few if any implementors push
program segmentation to this logical extreme. In point of fact, most pro
grammers and all compilers stuff functions and data objects willy nilly into
just a few segments. The checking, when available, is largely subverted.

What bugs programmers most, in fact, is the relatively small size of those
segments. You can't support a group of functions or a data object larger
than 64 kilobytes as a single segment. The advantage of this size limitation
is that within a segment you can address all bytes with a two-byte (near)
pointer. Once the function group gets large, you must use four-byte (far)
pointers to address the individual functions and intersegment calls to enter
them. Once a data object gets large, you must use a far pointer to address
it and perform truly horrendous arithmetic to step through it.
.0... ince there is a significant increase in code space and execution time
~once you start trafficking in far pointers, you naturally avoid them as
long as possible. This gets you to fretting about code and data sizes,
diverting energy in the solution away from just solving the original prob
lem. Or to mixing near and far pointers, imposing structure and complexity
on the solution that is not intrinsic in the original problem. However you
look at it, the architecture gets in the way.

A particular nuisance that plagues us compiler vendors is that we must
ship the same support libraries compiled in a number of different ways, so
the customer can have a library consistent with any of several choices of
pointer sizes. Half the libraries could have been eliminated had Intel made
one small decision differently.

When the 8086 executes an intrasegment call, it pushes the instruction
pointer (IP) on the stack as a near pointer and jumps to the called function.
An intrasegment return instruction pops the IP to continue execution in the
caller just past the call. For an intersegment call, however, the machine must
push both the IP and the code segment register (CS) as a far pointer. The
call jumps by loading new values into both IP and CS. To get back, there is
an intersegment return to pop both CS and IP. Since the two calling
sequences are so different, the caller had better agree with the callee, lest
madness ensue.

Now, my first reaction on reading the 8086 manual was to say, "Oh, I see.
You can merge the two models with a simple trick." The trick was to provide

Essay l You Must Be Joking 5

two entry points for each function, one with a far name and one with a near
one, as in:

NEAR func:
push cs

FAR func:

You can then perform an intersegment (far) return unconditionally. At the
cost of an extra push and pop of CS, the near function is merged with its
far equivalent.

Unfortunately, this doesn't work. Why? Because an intersegment call
pushes CS on the stack before it pushes IP. And the code needed to pick up
IP, push CS, then push IP again is a bit harder to shrug off - particularly
if your calling sequence doesn't permit you to clobber any registers before
they are pushed on the stack. If there is any fundamental reason why CS
and IP couldn't have been stacked in the other order, it is beyond me. When
I saw my beautiful trick go up in smoke, I faced the general direction of
Aloha, Oregon and said, "You must be joking."
~ow let's look at data pointers. If you want to poke about within a data
»object larger than 64 kilobytes, you have to grit your teeth a lot while
writing the code. To access the object, you must load the far pointer into a
segment register and an index register. There are nice instructions for doing
this. But once you put it there, you can't do arithmetic on the full pointer,
since you can't add a carry out of the offset part to a segment register. So
you shuffle the segment register to a data register to do the arithmetic, then
put it back. Sigh.

Even in a data register, a segment value is a tough beast to do arithmetic
on. For an 8086, 80186, or 8088, a carry out of the offset requires that you
add 4096 (!) to the segment, to get to the next contiguous byte in memory.
You also have a choice of 4096 ways to represent the address of any
particular byte in memory, so comparing two pointers just for equality
requires either:
• that you perform a nontrivial calculation for the comparison
• that you put both pointers in canonical form before each comparison
• that you keep all pointers in canonical form at all times
None of these choices leads to compact code.

Okay, I'm willing to forgive the original design of the 8086 for being
shortsighted, for the reasons given in an earlier article (Pla87 again). But
with the 80286, Intel had a second chance. For this chip, and the later 80386,
the segment portion no longer has a fixed numerical relationship to the
offset portion of a pointer. Depending upon how the operating system
loads up the segment descriptor tables, you can map segment numbers to
physical addresses almost any way you'd like. Almost.

6 Programming on Purpose

.1flltY first reaction on reading the 286 manual (later renamed the 80286)
JJ~lwas to say, "Oh, I see. You can merge adjacent segments to make an
object larger than 64 kilobytes with a simple trick." The trick was to assign
segment number N to the first 64 kilobytes of the data object, then segment
number N+ 1 to the next chunk, and so on for as long as necessary. With this
preparation, pointer arithmetic is almost indistinguishable from long-inte
ger arithmetic, just like on machines with large flat address spaces. It is still
not as easy as one would like, but it's reasonable.

Unfortunately, this doesn't work. Why? Because two bits of the segment
value are used to specify requested access, not select a segment descriptor.
A third bit selects which table (local or global) contains the segment
descriptor. And these happen to be the three least significant bits of the
value. So you're back to turning a simple carry from the offset into an add
of eight (or possibly four) to the segment, thereby destroying any simple
flattening of the address space. If there is any fundamental reason why
these bits couldn't have been put in the high part of the value, it is beyond
me. When I saw my beautiful trick go up in smoke - well, you get the drift.

I'm all in favor of segmented architectures, by the way, so long as either
• the segments are large enough to stay out of my way
• I can pave over the segmentation from time to time

The attitude that says this is not necessary I call militant segmentism. I
believe that it led to the early demise of the Zilog Z8000 (which had the
jump on the Intel 8086 and the Motorola 68000), and the stillbirth of the
Intel 432. Both of these were segmented architectures designed in such a
way, for no good reason that I can see, that their 64-kilobyte segments could
not be merged. The Intel 8086 family has a strong toehold (for obvious
reasons), so I don't expect it to fade from the scene the same way. And the
80386 may have solved the small segment problem. But meanwhile there
are lots of kiloprogrammer hours diverted from the real problems at hand.
Aow let's talk about arrays in C. This one goes to Dennis Ritchie, so I'll
»keep it short. (It's a lot easier to zing a diffuse corporate entity than a
single individual who has clearly done so many things right.) There are
several things that people knock about the C language - its terseness, its
lack of checking, its bizarre declaration syntax. All of these have been
blamed, with some degree of justification, for higher error rates among C
programmers. But there is one aspect that I think rivals all of the above, and
is almost never mentioned as a problem area. C programmers can't tell the
difference between pointers and arrays.

It is fundamental to the design of C that nearly all references to arrays
within an expression are converted to pointer values. Thus, given the
declaration:

int arr[lO];

Essay l You Must Be Joking

the expression:

arr[2]

selects the third (counting from zero) element of the array.

7

In a language like FORTRAN, this is obvious. In C, it depends upon
several subtleties. First, the subscript operator is replaced by its equivalent:

*(arr+ 2)

Then, because C is a language of (mostly) scalar expressions, the term arr
is replaced by the value of the pointer to the first (number zero) element of
the array, and the type of the term is changed to pointer to int because arr
is an array of ints. Finally, the 2 is scaled by the size of int data objects on
the target machine, so the pointer addition gets you to the proper int within
the array when the indirection is performed.

All of that is explained, in some form, early in the career of every C
programmer. The conversion of arrays to pointers in expressions happens
so often and so effortlessly that programmers quickly learn to write p [i]
(wherep isa pointer type) as freely as a [i]. And they learn to declare array
arguments such as:

int f (a)
char a[lO];
{ }

knowing that C will pass a pointer to the array, rather than copy the whole
array contents. That's the good news.

11rhe bad news is that skilled and intelligent C programmers come to me
\CJlregularly with bugs caused by declaring a pointer data object where
they really needed an entire array, or contrariwise. Even wor'se, several
compilers in common use now convert arrays to pointer values so quickly
that useful expressions such as &a are outlawed. (Guess what I said when
I tripped over that one in the UNIX C compiler?) The discussions on this
topic that I have enjoyed in X3J11 Standards meetings have been heated,
circular, and frustrating. For skilled C programmers to see array names as
other than some form of pointer constants can often border on the impos
sible.

With 20-20 hindsight, I think that Ritchie should have restricted the
implicit conversion of arrays to pointers to just the subscript operator. Of
course, you would have to write f (&a [O]) in places where C program
mers gleefully write f (a), but I find that a small price to pay for the clarity
of understanding that would (might) ensue. It would also have opened the
door for making arrays first-class objects that you could pass as arguments
and assign, just like structures and unions are these days.

It is often the case that the fundamental strengths of a design also contain
the seeds of its fundamental weakness. I believe that, in the case of C, this

8 Programming on Purpose

fundamental approach to keeping expressions scalar in the early days is
more of a limitation on the language than anything else that has been cited.

Now for the apologia. Having gotten all this off my chest, I feel more like
Andy Rooney than Clive Barnes, but what the heck it's April. On a more
serious note, I would like to confess that I have designed more than one
computer architecture (for pay) and more than one programming language
(ditto). I can't say that I've done any better than the commercial successes
I've just taken several swipes at.

So before you start writing irate letters because I zinged your favorite
chip /language/ designer, please note that I at least have the decency to be
humble about my criticism, if not contrite. o

(7tfterword: This was the first in a series of annual April Fool's specials. My
~riginal intent was to trot out a fresh handful of design gaffes (as I saw them)
every year. That didn't happen. Instead, I used April Fool's Day as an excuse to
tackle a variety of off the wall subjects, humorous and otherwise. The others follow
in this collection.

I believe our business desperately needs criticism such as this. Edsger Dijkstra
once spoke about reviewing computer architectures, but drew back from doing so.
I wish that he had. C.A.R. Hoare spoke out against Ada in his Turing Award Lecture
(Hoa81), but I disagree with his conclusions. Ah well. The problem with critics is
that they often fail to reinforce our prejudices.

2 Computer Arithmetic

1~omputer arithmetic occurs in many forms. Chances are your favorite
U,.,programming language, or computer architecture, supports only a few
varieties. Chances are you have learned just enough of the properties of
these varieties of arithmetic to (mostly) get by.

There are times, however, when you have considerable latitude in choos
ing a numeric data representation, and hence the rules for doing arithmetic
on that data. You should know enough to choose wisely, and not just accept
the native arithmetic of your current host architecture. There are even more
times when you obtain arithmetic results that are surprising. You should
know enough to avoid the worst surprises, and to recognize the lesser
anomalies when they rise up and bite.

This essay is an overview of the principal forms of arithmetic supported
by modern computers. It ranges from the basic, and fairly widely known,
to the esoteric, and fairly widely overlooked. Most programmers, in my
experience, learn this stuff in patches. Here is my attempt at pasting some
of those patches together and putting them all in one place.
7{ begin with integer arithmetic, because the only arithmetic that most
..JJ computer hardware actually performs is to add together two binary
integers of some predetermined length. Arithmetic is by far the easiest to
perform if numbers are represented in a positional encoding. That is, the
least-significant (rightmost) bit carries a numeric weight of 1, the next
least-significant bit carries a weight of 2, the next 4, and so on with higher
powers of 2. Using four bits, you can write sixteen different numbers, the
first of which are:

0000 0
0001 1
0010 2
0011 3

0100 4
0101 5
0110 6
0111 7

And so forth. Lest you think this is the only way to fly, I can tell you that
there are other ways to encode numbers:
• You can use groups of four bits to encode decimal digits, in a repre

sentation called binary-coded decimal, or BCD. This is a positional encod
ing, but not binary weighted. It is still widely used where the cost of
conversion to human-readable form is comparable to the cost of per
forming computations. You sort of meet both needs halfway.

9

10 Programming on Purpose

• You can represent numbers in Gray code, which ensures that any two
adjacent values differ in their representations in only one bit. This is a
binary positional encoding, but not weighted. Gray code is very useful
in mechanical position transducers, because of its tolerance for align
ment errors. Some sample values are:

0000 0 0110 4
0001 1 0111 5
0011 2 0101 6
0010 3 0100 7

• You can use groups of bits to represent the digits in a Roman numeral.
This is a partly positional, weighted encoding that is not binary. It is
useful for making dates that are hard to read on cornerstones of build
ings.

Binary and BCD are the only sensible representations for performing arith
metic conveniently. The other representations have more specialized uses.
Let's focus on binary arithmetic for now.
11T"he result of a binary addition is a binary integer with one more digit
\tll(bit) than the two operands. (Why?) The extra bit is called a carry, which
is usually retained in a place separate from the rest of the sum. That way,
the sum will fit in the same size storage as the operands, and the carry can
be held in a place more convenient for testing.

If you simply ignore the carry bit, the sum represents the low-order bits
of the full result. When you add one to the largest number you can
represent, the result wraps around to zero. This is called modulus arithmetic.

You use modulus arithmetic every day for telling time on a clock face.
Ten o'clock plus three hours is one o'clock, or thirteen modulo twelve. You
don't worry about overflow, because all times are representable somewhere
on the face of a clock. What you do, in fact, is maintain extra bits of
information separately, such as whether it's a.m. or p.m., or what date goes
with the clock time. Days of the week are also a form of modulus arithmetic,
modulo seven, as are compass angles, modulo 360.

If you treat the carry bit as an overflow indication, the sum represents a
positive counting number. When you add one to the largest number you
can represent, the result is erroneous. This is called unsigned arithmetic.

You use unsigned arithmetic every day for measuring the distance your
car has traveled. The odometer on your car's dashboard maintains five or
six digits of the total number of miles, or kilometers, that your car has
traveled. You don't worry too much about overflow, because it's easy
enough to keep track of the lost bits of information. All you have to do is
look at the rust on the rocker panels to know that 00015 does not signify a
mere fifteen miles traveled. You do worry, however, when your stock
market tracking software tells you the market dropped 08 points, on a day

Essay 2 Computer Arithmetic 11

when it dropped 508 points. In the absence of additional information, that
may lead you to make suboptimal investment decisions.
7{f you want to do arithmetic on negative integers as well, you generally
.:.nrely on one of three approaches. In all three approaches, you treat all
numbers whose most-significant bit is set as negative integers. What value
you assign to a given representation of a negative number varies consider
ably, however.

To negate a number with the first approach, complement (toggle) all of
its bits and add one. Some sample negative numbers are:

1111 -1
1110 -2
1101 -3
1100 -4

To algebraically add two numbers, add them as unsigned integers and
discard any carry. This approach is called twos-complement arithmetic. Its
biggest wart is that there is one more negative number than there are
positive numbers.

To negate a number with the second approach, you just complement all
of its bits. Some sample negative numbers are:

1110 -1
1101 -2
1100 -3
1011 -4

To algebraically add two numbers, add them as unsigned integers and
add any carry back to the least-significant bit of the result. (You cannot get
a second carry from this "end-around carry." Why?) This approach is called
ones-complement arithmetic. It requires different addition rules from un
signed arithmetic, and it has a negative zero. While negative zero partici
pates properly in arithmetic, it can make comparisons more difficult.

To negate a number with the third approach, you just complement the
most significant bit. Some sample negative numbers are:

1001 -1
1010 -2
1011 -3
1100 -4

To algebraically add two numbers, you must first convert each negative
operand to a ones-complement or a twos-complement form, add by the
appropriate rules, then convert a negative result back. This approach is
called signed-magnitude arithmetic. It also has a negative zero, just like
ones-complement arithmetic. And unless you need the positive form of the
number most of the time, it is less convenient for performing arithmetic.

12 Programming on Purpose

~f the three approaches, twos-complement arithmetic is by far the most
\CD' widely used today. Perhaps its greatest advantage is that you perform
addition, subtraction, and sometimes even multiplication by the same rules
regardless of whether you want a modulus, unsigned, or signed result. You
can summarize the result of each arithmetic operation with just four bits of
additional information, in what is usually called a condition code:
• whether the result is zero
• whether the result has its sign bit set
• whether the result has suffered a signed overflow
• whether the result has suffered an unsigned overflow (carry)
Given a rich enough set of test and branch instructions, you can test for any
combination of negative (if signed), zero, or positive nonzero results. You
can test either the stored result or the full computed result. And you can
test correctly either for modulus, unsigned, or signed results.

Modulus arithmetic, with carry testing, is just what you need to perform
multiple-precision arithmetic. You can chain together fixed-size binary
integers to make arbitrarily large arithmetic operands, much the way you
write multidigit numbers when you perform arithmetic by hand. Since
modulus arithmetic coexists so peacefully with twos-complement, a manu
facturer can provide both useful forms with fewer instructions than if some
other representation for negative numbers were chosen. Little wonder that
twos-complement arithmetic is so widely used today.

There are, of course, some drawbacks to twos-complement arithmetic:
• You can negate a number and cause an overflow, since there is one more

negative value than there are positive values. The code 1000, for -8,
becomes 10 0 0 again when you negate it. This often surprise people, who
can fail to plan for it.

• You still need different operations for signed and unsigned divide. And
if you want to multiply two operands to get the full result at twice the
precision, you need different operations for signed and unsigned mul
tiply.

• You can double an integer by shifting all of its bits left and inserting a
zero on the right. You can do this repeatedly to multiply a number by
any power of two. If you try to halve an integer by shifting it one bit
position to the right, however, you encounter a difficulty and a surprise.
The difficulty is that you must copy the sign bit into itself, rather than
insert a zero, to get (almost) the right negative result. This requires a
different right shift from unsigned arithmetic. The surprise is that nega
tive numbers do not truncate toward zero the way you expect. If you
shift any one bits off the right end, the result is more negative by one
than you probably want. Many an innocent programmer has been
burned by this behavior. Some examples of right-shifted values are:

Essay 2 Computer Arithmetic

1111
1101
1011

-1 => 1111
-3 => 1110
-5 => 1101

13

-1
-2
-3

Actually, the most insidious problem caused by twos-complement arith
metic stems from its ability to cohabit with modulus and unsigned arith
metic. Because the same instruction can be used for three different kinds of
addition, the computer cannot know which flavor you intend at any given
time. If it were to trap on signed overflow, that might interfere with a
perfectly valid unsigned addition. If it were to trap on unsigned overflow,
that might interfere with a perfectly valid modulus addition.

So what most computers do these days is simply nothing. They set the
condition code for all possible interpretations of the result, then leave it to
the programmer to take appropriate action. Most assembly-language pro
grammers, and most high-level language translators, ignore potential over
flows.

Programmers have learned that they can get away with murder when it
comes to integer arithmetic. Even if you declare your operands to be signed
integers, you can go ahead and treat them as unsigned or modulus oper
ands and you will still get the right answer more often than not.
'7f ike all mammals, you learn to avoid fire by getting your fingers burned,
14or by getting slapped by your mother at judicious times. Reading a few
pious platitudes that are demonstrably unenforced does not have the same
educational effect. As a result, we have produced a generation of program
mers who view integer overflow as something somewhat less bothersome
than a mosquito bite.

At one meeting of X3J11, the committee standardizing C there was
considerable sentiment that translators should be free to regroup arithmetic
expressions even if the regrouping introduced integer overflows that
would not otherwise occur. Many people feared the loss of optimization
opportunities more than they feared the loss of programmer control over
how expressions are evaluated. In the end, the committee elected to honor
grouping and disallow the introduction of spurious overflows, but in doing
so they went against an attitude that has prevailed since the earliest days
ofC.

C is actually a cleaner language than many people think, at least in the
area of integer arithmetic. What C calls unsigned arithmetic is actually
modulus arithmetic, but it does distinguish between modulus and signed
arithmetic. An overflow in signed arithmetic is classified as "undefined
behavior," which gives an implementation license to check for it and trap
it. If integer overflow trapping is rarely enabled, you must blame imple
mentations more than the language itself.

14 Programming on Purpose

Standard C is also defined in such a way that an implementation may
use any of the three encodings for signed integers that I outlined above. At
least in principle. My suspicion is that many C programs, like programs in
general, are sufficiently lax about mixing modulus, unsigned, and signed
arithmetic that they are not likely to work unchanged on machines that
support other than twos-complement arithmetic with quiet wraparound
on overflow. It will be interesting to see the experience of those vendors
who, for whatever good reason, elect to support Standard C on hardware
that does not use twos-complement arithmetic.
7{f you want to represent fractional values as well as integers, you must
,JJ tackle an additional set of problems. The simplest thing to do is simply
decree that the rightmost Nbits of each representation are fraction bits. That
is, there is an implied binary point (analogous to a decimal point) immedi
ately to the left of the Nth least-significant bit. Or to put it yet another way,
the true value is the apparent integer value divided by two raised to the
Nth power.

This representation is called fixed point. Integers are simply a special case
of fixed point, with the binary point immediately to the right of the
least-significant bit. If you've ever written a program that deals in dollar
amounts as an integer number of pennies, then you've used a fixed-point
(decimal) representation.

Assuming for the moment that all of the values that participate in
arithmetic expressions together have the same number of binary places,
then addition and subtraction take care of themselves. Your major concern
is deciding where to place the binary point. If you devote too few bits to
representing the fraction, you lose the ability to represent small numbers
precisely. If you devote too few bits to representing the integer part, you
lose the ability to represent large numbers well.

For the usual case that all of your operands have the same fixed number
of bits, you must trade off these two numbers carefully. And you must trade
them off differently for each program you write. You may even have to
trade them off differently for each range of input cases you wish to handle.
So while fixed-point arithmetic gives you the ability to represent fractional
values for about the cost of integer arithmetic, your intellectual investment
in designing a correct program can be high.
11rhere are a few other problems. While addition and subtraction are the
~same as for integer arithmetic, you must handle multiplication with
special care. Form the integer product of two fixed-point numbers and you
have a result with twice the fraction bits of the two operands. You have to
shift the result right N bits (taking care to fix up negative numbers in
twos-complement, as described above). And unless you can capture a
double-precision product long enough to shift it back into proper align-

Essay 2 Computer Arithmetic 15

ment, you must reserve N additional integer bits to avoid intermediate
overflow.

Alternatively, you can preshift one operand to discard its fraction bits.
Do this, however, and you really sacrifice precision. For 1.5 times 1.5, you
get a product of 1.5 instead of 2.25. Not acceptable.

You face similar issues with fixed-point divides. The only easy thing to
do is convert the dividend to double precision (if you can), then preshift it
left N bits. There are enough headaches with signed divides on many
computers that you are better off working with positive operands and
negating the result as necessary. Even then, the fraction you get is truncated.
If you want a rounded result, you must develop an extra fraction bit, by
preshifting N+ 1 bits, to determine which way to round.

I have probably coded considerably more fixed-point arithmetic than the
average programmer, yet I still find myself botching this stuff with regu
larity. Opportunities for error abound. Little wonder that fixed point arith
metic is largely unused.
11T"here is, of course, a better alternative. Rather than tailor a fixed-point
"'1trepresentation for each application you tackle, you can use a more
generic representation. Say you represent each operand as a pair of num
bers, a signed integer value as before, plus a scale factor. The scale factor
indicates where to locate the binary point. The point need not be located
among the bits of the signed-integer value. A large positive scale factor
indicates a large integer operand, a large negative scale factor indicates a
small fractional operand.

This representation is called floating point. The binary point floats under
control of the scale factor. You can represent a wide range of values and
retain a fixed number of bits of precision regardless of magnitude. Float
ing-point arithmetic is complicated and hard to get right, but it can be used
just about everywhere you might feel a need for fixed point. It is the sort of
thing that a few experts can implement and many other programmers can
use repeatedly.

Floating-point arithmetic is a study in tradeoffs. You trade off a few bits
that could be used to represent value for flexibility in how the value is
scaled. You trade off control of absolute errors in how well you represent
values for rather good control of relative errors. You trade off considerable
additional complexity for wider utility.

The vast majority of programmers have accepted these tradeoffs gladly.
Hardware vendors accept them more reluctantly. It takes about as much
microcode to implement floating-point add, subtract, multiply, divide, and
compare as it does all of the other instructions combined in a typical mini
or microcomputer.

16 Programming on Purpose

Microcode costs money, if not in hardware then in lower chip yields due
to added complexity. As a result, floating-point instructions are standard
equipment only in mainframes, superminis, or top-of-the-line microproc
essors. They are implemented as plug-in options for minis and as coproc
essor chips for mid-line microcomputers. They are implemented in
software just about everywhere that floating-point hardware support is not
available.

There is no question that floating-point arithmetic fills an important
need for many computer programs. Unfortunately, many programmers
tend to view it as a panacea for all computational ills. The list of difficulties
I have just enumerated for integer and fixed-point arithmetic pales in
comparison to the ways you can get in trouble with floating point. Sooner
or later, you get burned.

Programmers who get burned a few times by floating-point idiosyncra
sies often overreact. They develop a fear of floating point that is as mis
placed as their original innocent delight. The truth, as always, lies
somewhere in between. There's lots more to be said about floating-point
arithmetic. I will cover some of that in the next essay. (See Essay 3: Float
ing-Point Arithmetic.) o

mfterword: I put off writing this essay more than once. It struck me as such an
~elementary topic that I was afraid to insult my readers. Then I saw what
happened in discussions of computer arithmetic at C standards meetings. It was
clear that we all had a lot to learn about what we thought was obvious. So I wrote
this essay to capture the basics of computer integer arithmetic. Now I'm not sorry
I did.

3 Floating-Point Arithmetic

7{n the previous essay, I talked about various aspects of computer arith
~ metic. (See Essay 2: Computer Arithmetic.) How signed integers are
represented has a strong influence on how easy it is for you to mix signed
arithmetic with unsigned and modulus arithmetic, how easy it is for you
to perform fixed-point (fractional) and multi-precision arithmetic, and how
cavalier you tend to be about overflows. I ended with a brief introduction
to floating-point arithmetic.

This essay extends that discussion. If you believe that using floating
point arithmetic lets you avoid all computational problems, my goal is to
dissuade you of that fantasy. If you believe, on the other hand, that float
ing-point arithmetic is completely untrustworthy, my goal is to dissuade
you of that pessimism. Floating-point arithmetic is one of the tools that you,
as a professional programmer, should know when to use and how to use
to best advantage. Let's begin with the basics. However it is represented, a
floating-point number has two varying components:
• a signed-value part, which represents the most-significant digits of the

actual value
• a signed-exponent part, which tells how to scale the signed-value part

up or down to get the actual value.
There are also several non-varying components:
• the implied base and fixed scale factor used to represent the signed

value part
• the implied base and bias used to represent the signed-exponent part
• the implied base, raised to the power represented by the signed-expo

nent part, to make the varying scale factor for the signed-value part
As an example, the IEEE 754 standard for floating-point arithmetic

(IEE85) specifies several formats for representing floating-point numbers.
The smallest of these calls for:
• a 25-bit binary signed-value part, which represents a signed-magnitude

integer with a fixed scale factor of Z-24• All signed-value parts represent
fractions strictly less than 1.0.

• an 8-bit binary exponent, which represents as an unsigned integer,
biased by adding 126. Values less than 126 represent negative signed
exponents.

• an implied base of 2

17

18 Programming on Purpose

I won't thrill you with all of the perverse combinations of 2s, 10s, and
16s that have been used over the years for these implied bases. Instead, I
will restrict the remaining discussion to representations like this one, where
all of these implied bases have the value 2. That is, the signed-value part
and signed-exponent part are both binary numbers, and the exponent tells
you how far to shift the value left or right to get the actual value. There are
only a few surprises introduced when you deal in bases other than 2. I will
mention some of them in passing.
11rhe designer of a floating-point number format faces a number of
~difficult tradeoffs. Perhaps the most important is the number of bits to
allocate for the signed-value part. That determines the precision with which
you can represent the magnitude of all the values you wish to manipulate.
Too few bits and you can't maintain enough precision for your final
computed results to be meaningful. Too many bits and you consume
excessive amounts of storage for intermediate results. Also, arithmetic costs
you more in hardware complexity and/ or execution time.

I have seen a number of digital-filtering applications, involving speech
or picture processing, where four or five decimal digits of precision suffice
and computational speed is of the essence. I have met few numerical
analysts who are content with fewer than ten decimal digits of precision for
the computations they wish to perform. I have encountered few occasions
where more than about 20 decimal digits of precision were justified.

It is no surprise, given these observations, to find that floating-point
arithmetic is generally offered at two precisions. Normal precision provides
about six decimal digits of precision and occupies a total of 32 bits, exponent
and all. Double precision provides about 16 decimal digits of precision and
occupies a total of 64 bits. "Double" is an obvious misnomer if the precision
more than doubles when you double the number of bits. The anomaly
stems from the common practice of allocating most, if not all, of the extra
bits to the signed-value part, which more than doubles in size.

The number of bits that the designer allocates for the signed-exponent
part determines the range of values that you can represent. Too few bits
and you keep hitting the stops with very large or very small results. Too
many bits and you either consume excessive amounts of storage for inter
mediate results, or you reduce the precision that you can represent.

The smallest range of values that people seem willing to tolerate is from
10-38 to 10+38• This corresponds to an 8-bit exponent, as for the IEEE short
format shown above. I have never seen a range large enough to make
everybody happy, but the largest I have seen implemented lets you repre
sent numbers as big as 1010•000• This corresponds to a 16-bit exponent, which
is the size used in the IEEE extended-precision format.

Essay 3 Floating-Point Arithmetic 19

If you want to write programs that perform floating-point arithmetic and
which are as portable as possible across a variety of machines, you need to
keep these ranges in mind. It's pretty safe to assume:
• a choice of two precisions, one about 6 decimal digits and one about 16
• a decimal exponent range from about 10-38 to 10+38

Beyond that, the less you know about the underlying format, the more
likely you will not take advantage of that knowledge.

You do need to be aware of some of the ways in which format decisions
can affect your results, however, if only to avoid algorithms (or environ
ments) that will cause trouble. One important issue, for instance, is whether
all floating-point numbers must be normalized. The encoding I have de
scribed so far allows for multiple ways of representing the same value, at
least in many cases. Consider a four-bit signed value part, for simplicity,
with three bits to the right of the binary point. There are three different ways
to represent the value 1.0:

0.100 x 2 1

0. 010 x 22

0.001 x 2 3

Of these, only the first maintains the full three bits of precision. It is the
form always chosen for the normalized representation - the binary frac
tion must be in the semi-closed interval [1/2, 1). (This notation tells you
that the range includes 1 /2, but stops short of including 1.)

71l?IJ.thy is normalization so important? Well, for one thing, it's much
~harder to compare two floating-point numbers if either or both need
not be normalized. You can't just assume that the one with the larger
signed-exponent part is the larger number, because leading zeros in the
fraction might more than make up the difference in determining the actual
value. You must either prenormalize all numbers before you compare them,
or be content with getting the wrong answer when you compare unnor
malized numbers.

But there is a more important reason why you want to stick with
normalized operands. Consider the following subtraction, which I write as
decimal fractions to avoid overtaxing your imagination:

0 .123456 x 10°
-0.123000 x 10°

0.000456 x 10°

This result has lost three decimal digits of significance, to be sure. You
might think that the most honest thing to do would be to leave it in this
form for future computations to record the true retained significance. But
if you then add, say:

0.000456 x 10°
+o. 111234 x 10-3

20 Programming on Purpose

you must prescale the smaller operand and retain only six digits of the
result, to get:

0.000456
+0.000111234

0.000567

x 10°
x 10°
x 10°

This is hardly the best internal representation of the result. Had you post
normalized the result of the first subtraction, however, you would get
0.456000 x 10-3 for the intermediate result. And the final result would have
been much better represented as 0.567234 x 10-3.

There is a subtle but important distinction between the accuracy of a
result and the best internal representation of that result. Both are described
in terms of the number of significant digits, but it often takes more bits of
the latter to do right by the former.

What you need to know is that unnormalized floating-point arithmetic
is bad news. Very seldom does modern computer hardware generate an
unnormalized result, unless you go out of your way to ask for it. But I still
encounter from time to time a program that throws together unnormalized
floating-point numbers, using machine-specific ad hoc code, because nor
malizing the numbers is tedious and/ or time consuming. Usually, these
values get cleaned up early enough as arithmetic results get postnormal
ized. But sometimes they trash precision in surprising ways.

If you play games with unnormalized floating point numbers, make sure
you know what you're doing.
11rhere are some floating-point representations where you can't even
"1.twrite an unnormalized number. I emphasized earlier how precious bits
are, and how a designer must trade off total bits against the sizes of the two
parts of a floating-point number. Then I went on to say that you want to
restrict yourself to using only normalized representations. But for a binary
representation, this means that there is one bit (the 1 /2-weighted bit in the
fraction, typically) that is always set. If a bit must always be set, it is not
conveying useful information. It is wasting space.

A common practice, therefore, is to suppress this bit in the stored
representation of floating-point numbers. When you unpack the repre
sentation into its two component parts to perform arithmetic, you insert
this hidden bit once again. You may have noticed that the description I gave
earlier of short-format IEEE floating point numbers required 33 bits. They
can be represented in 32 bits by hiding the most-significant bit of a normal
ized signed-value part.

Employing a hidden bit does cause a minor difficulty. How do you
represent the value zero? Zero is a wart in floating-point arithmetic, but it
is an important one. You can't simply approximate it by 10-300, or some other
tiny but finite value. Sooner or later, that approach leads to trouble.

Essay 3 Floating-Point Arithmetic 21

If you don't use the hidden-bit trick, then any zero signed-value part can
represent the value zero. (You pick one preferred signed exponent-part
value, usually zero, to use for writing a normalized zero.) If you do use the
hidden bit, then you can't write a signed-value part that has the value zero.
11rhe usual approach is to reserve one value of the signed-exponent part
\C.Vas a code that the actual value is not obtained by the usual rules. Instead
of representing a binary exponent of-126, for instance, a signed-exponent
part with value zero in IEEE short form means that a signed-fraction part
of zero represents the actual value zero. (IEEE extends this technique, of
giving special meaning to certain values, in all sorts of directions that I can't
begin to describe here.)

There is one other trick for saving representation bits that you should be
aware of. On System/370, the implied base is 16. This means that you have
to shift the signed-value part by four binary places every time you change
the signed exponent-part by a count of one. A normalized signed value part
lies in the interval [1/16, 1). The hidden-bit trick can't be used, because no
one bit must always be set. But you can look at this encoding as a way of
suppressing the low two bits of the signed-exponent part. A 7-bit signed
exponent, base 16, gives you the same range of representable values as a
9-bit signed exponent, base 2.

What it costs you is a degree of uncertainty in how much precision you
have for representing values. If the normalized signed-value part happens
to fall in the interval [1/2,1), then a 32-bit floating point number retains 24
bits of precision. If it happens to fall in the interval [l/16, 1/8), however, it
retains only 21 bits. This encoding has been aptly dubbed wobbly precision.
It gives numerical analysts headaches when they attempt any serious error
analysis.

What it means to you is that you should assume you have only 21 bits
of precision (or 53 for double precision) when you perform floating-point
arithmetic on System/370.
71l?IJ.then I discussed fixed-point arithmetic in the previous essay, I talked
~quite a bit about overflow. Overflow occurs when the result of a
computation is too large to be represented by the encoding you have chosen
for stored results. For a variety of good, and not so good, reasons, a common
practice with fixed-point overflow is to retain only the low bits of the correct
result. The value effectively wraps around, like an automobile odometer,
from very large to very small values.

Floating-point overflow is not so lightly handled. You get a floating
point overflow when you cannot represent a signed-exponent part large
enough to correctly represent the actual value. When this happens, there
are a variety of recovery strategies that you can imagine:

22 Programming on Purpose

• You can let the signed-exponent part wrap around, much like in fixed
point arithmetic, yielding a tiny garbage result.

• You can replace the result with the largest representable value, yielding
garbage which is arguably more representative of the actual result.

• You can raise an exception, so that program execution either terminates
or resumes under control of a user-supplied exception handler designed
to do something constructive in the face of floating-point overflows.

• You can replace the result with some special code that indicates the value
is untrustworthy. This code propagates through subsequent arithmetic,
so that you can detect the untrustworthy result later in the calculation.
As you might expect, all of these strategies have been tried at one time

or another. Most are still in use in popular architectures today. I have sorted
them in increasing order of sophistication. Naturally, none are of much use
if your program contrives to ignore the warnings being sent your way.
...,d:'loating-point arithmetic can also suffer underflow, unlike fixed-point
~ arithmetic. You get a floating-point underflow when you cannot repre
sent a signed-exponent part small enough to correctly represent the actual
value. When this happens, there are a variety of recovery strategies:
• You can let the signed exponent part wrap around, much like in fixed

point arithmetic, yielding a huge garbage result.
• You can replace the result with zero.
• You can raise an exception.

Again, all of these strategies have been tried, and most are still in use
today. And again, I have sorted them in increasing order of sophistication.
What makes underflow more pernicious than overflow is that many people
consider zero quite an adequate fixup value for a result that has under
flowed, while most people have a proper fear of any substitute for a result
that is too large. It is not until you get an unexpected zero divide that you
realize the important difference between zero and almost nothing. (See my
article "Programming on Purpose: Handling Exceptions," Computer Lan
guage, January 1987.)

If you want to write truly portable and robust code that uses floating
point arithmetic, there is only one strategy that I have found effective in
dealing with floating-point overflow. Don't let it happen. You can often get
away with zero fixup for underflow, but you can and should avoid even that.
You might run across an implementation that insists on printing a nasty
message for every underflow.

It's much easier than you think to analyze a computation sufficiently to
see whether exponents can ever get too large or too small. At the worst, you
may have to identify a handful of places where overflow will occur if it's
ever going to occur in your program. In these cases, I make use of a
primitive function that I call yrod. You use it in expressions that look like:

Essay 3 Floating-Point Arithmetic 23

z = _yrod (x, y, "scale factor too biq") ;

711?11.that _yrod does is form the product of x and y safely - in such a
~way that the function does not lose control to an exception handler
if the hardware can trap floating-point overflows. If no overflow occurs,
then it returns the product as the value of the function. Otherwise, it calls
a portable exception handler (called_ range) with the third argument as a
message string. I can then choose either to have the program terminate with
a more or less meaningful message, or to return control to the proper part
of the program. (C has a primitive non-local GOTO capability to process
exceptions, using the library functions set jmp and lonqjmp.) I have yet
to find a need to interface with arbitrary exception handling machinery,
given _yrod.

The function _yrod is, of course, machine dependent. At least in prin
ciple. In practice, it is written in terms of two lower-level functions that are
indeed machine dependent. One of these unpacks a floating-point number
into its component parts, the other repacks them. There are two other
important machine-dependent functions. One of these splits a floating
point number into an integer and a fraction, the other does a more sophis
ticated version of the same job with a scale factor. (The Standard C library
has reasonable approximations to these functions, called fmod, frexp,
ldexp, and modf.)

What these lower-level primitives let you do is to treat many floating
point operations semi-numerically. You rip an operand apart, perform
simple logic or fixed-point arithmetic on its pieces, then paste the final
result together. In between, you perform far fewer floating-point operations
than you might imagine. And the fewer operations you perform in that
domain, the fewer opportunities you have for unexpected overflow, under
flow, or loss of significance. (See Essay 5: Safe Math.)
11T"'here are other things you can find to worry about with floating-point
~arithmetic that I have not chosen to discuss here. How your implemen
tation rounds or truncates results can make a real difference in how much
precision and accuracy you retain. Things like guard digits, rounding
digits, and sticky bits are fun to describe. (See Pla91.) But unless you plan
to write your own floating-point arithmetic routines - heaven forfend -
you are at the mercy of whatever machinery is provided for you. The good
news is that the current level of sophistication in this arena is quite high. I
don't know of any floating-point arithmetic on computers in wide use
today that is truly bad.

If you want to learn more, however, the ultimate reference is Pat Ster
benz, Floating-Point Computation (Ste72). R.W. Hamming best characterized
this book by saying, "Nobody should ever have to know that much about
floating-point arithmetic. But I'm afraid sometimes you might." o

24 Programming on Purpose

(?tfterword: The problem with floating-point arithmetic is that it works so well.
,a_ You are easily lulled into believing that it solves all numeric representation
issues. Then you get burned and often overreact. I wrote this essay to help people
stay more in a sane middle ground. Knowing the design tradeoffs makes most people
more tolerant. Knowing the dangers makes some people more cautious. Seldom do
you need more sophistication to safely do business with floating-point arithmetic.

4 The Central Folly

7{ learned a long time ago how to buy a television set. Sure, you worry
.:.llabout how the picture looks on the demo set. And sure, you check that
it has all the gadgets you want. If you're sufficiently fastidious, you might
paw through recent issues of Consumer Reports to reinforce your current
prejudice. And if you care anything about decor, you might even note
whether the cabinet clashes with your beer-can collection. But that's not
where the real action is.

What I learned to do, after I had convinced myself a given model was a
likely candidate, was to tum it around. On the back of nearly every
television set ever made is at least one mysterious knob. It may be as modest
as a screwdriver hole giving you access to some inner trim pot. It may be as
grandiose as a knurled plastic gismo that more or less matches the knobs
on the front. But that knob is there all right.

The knob invariably has some arcane label. BUZZ is a nice blend of the
familiar and the ominous. FOCUS and VERT LIN are somewhat shopworn,
but still dependable entrants. AGC SYNC STABILITY is one of my all-time
favorites. Whatever the label says, you can be sure that it's not something
that you really want to adjust. You'd be quite content for the television set
to give you its best shot at controlling the parameter in question and not
solicit your input on the subject.

There is a well known principle in drama that I like to think of as the
Pistol Principle. If you, the playwright, cause an actor to call attention to a
pistol in the top left-hand drawer of a Louis XIV desk sometime during Act
I, then you'd better make sure that pistol gets used before the end of the
last act. Otherwise, you are guilty of intellectual clutter.

You can bet that whoever designed the television set you are about to
buy was just as sensitive to clutter as the most fastidious playwright. The
designer is not competing in the marketplace of ideas, to be sure, but in the
much tougher arena of consumer electronics. Those folks count tenths of a
cent (or yen, these days) when pricing the cost of parts and assembly, even
for a product that will retail in the hundreds of dollars. If there is a knob on
the back of your soon-to-be television set, it is there for a reason.

What the knob tells you is that the designer had to compromise. Some
part of the circuitry proved to be a little unstable, if not when the set was
new then after it had baked in for a few thousand hours. The designer might
have added more (or higher quality) components at a critical point, and

25

26 Programming on Purpose

gone over the 17.3 cent budget for that subassembly. Or the designer might
have started over from scratch, to avoid the fundamental problems leading
to the instability, and risked delivering the design late (with a different
instability). Or the designer could simply bring a knob out to the back, for
that fine day when you discover you have to tweak the AGC SYNC
STABILITY to watch channel 13.

Guess which is the cheapest alternative.
I was pleasantly surprised to learn that I could evaluate computer

programming languages by much the same rules as television sets. No,
programming languages don't have knobs on the back. But they do have
the moral equivalent thereof.
10-very programming language comes with a reference manual, at least,
~and one or more tutorials, at best. That documentation should tell you
all you need to know about the language to put it to use. If it doesn't tell
you enough, you're reduced to performing experiments on the current
translator you happen to own. Or you switch to another language. If it tells
you too much, you are too overwhelmed to get your bearings. Program
ming languages are among the most complex creations that a single person
has to do battle with these days. The last thing you need, when mastering
a language, is extraneous detail.

Intellectual clutter in a programming language is just as fatal as over
engineered circuitry in mass-market electronic appliances. It can price you
out of the market. You can bet that an earnest language documentor tells
you only what you need to know. The knobs are kept to a minimum.

So when I evaluate a programming language, I look for the extra knobs
sticking out the back. When I see pages and pages of discussion about how
to deal with something that I don't care about, I've found the knob. If I can't
relate the discussion to the problem I want to solve, then I know I'm being
asked to work around a design compromise in the language. Sooner or later,
I'm going to have to learn how to tweak that mysterious knob to get the
results I want.

The mere presence of a lengthy and arcane discussion in a language
tutorial tells me that the designer couldn't eliminate the compromise. The
language was in danger of becoming even more complex, or of being late
to market due to redesign. The cheapest way out was to try to explain the
compromise, rather than eliminate it.

I call this compromise "the central folly." It lies at the heart of the
language design, and it is arguably a fundamental mistake. Someone made
a conjecture, early on in the design process, and had to stick to it. And later
came to regret it.

With that lengthy preamble, I am now ready to introduce my (second)
annual April Fool's essay. By long-standing tradition, I take this opportu-

Essay 4 The Central Folly 27

nity to savage other designers, in the thin disguise of good clean fun. My
topic this time, as you must have guessed by now, is computer program
ming languages. And I intend to snipe at three of the biggest ducks in the
bay- PL/I, Algol 68, and Ada. Are you ready?
7{ have this vision of how PL/I came into being. No, I don't really know
.nits exact history, so I won't pretend to anything other than fantasy.
Anyway, I imagine a committee forming in the early 1960s, under the
benign guidance of IBM. On that committee are numerous FORTRAN and
COBOL programmers. All are determined to make a new language worthy
of System/360, one that will combine the best points of the most popular
scientific programming language and the most popular business program
ming language. Each is willing to compromise on many broad design
issues, provided his or her three favorite features go in as well.

I am convinced that PL/I was designed by a committee of users. I suspect
that the only serious arguments they had while piling on all the features
they could imagine was whether there was room for three kitchen sinks or
four.

PL/I supports every data type you can imagine, and then some. For
encoded values, you can choose any combination of:
• binary or decimal base
• fixed-point integers, fixed point with a scale factor, or floating point
• real or complex
• various precisions

You can also specify character strings, with or without an editing picture,
and bit strings. In the early days, you could even perform arithmetic in
pounds, shillings, and pence! (PL/I dropped Sterling fixed-point constants
only after the British empire did.)

It was an interesting conjecture that you needed all of those data types
supported directly in the language, if you were going to capture the hearts
and minds of all of those FORTRAN and COBOL programmers. But that
interacted with another conjecture to cause a few problems.
11rhe other conjecture was that the language must be blindly subsettable.
~After pouring in features from two distinct cultures, the designers then
wanted each culture to be able to use PL/I without learning about the other.
Permeating the language design is the attitude, "What you don't know
shouldn't hurt you." Every option should have a default. If you fail to
specify it, the translator will guess what you probably intended.

One aspect of this conjecture is that keywords are not reserved names in
PL/I. (FORTRAN has no reserved names, COBOL has tons of them.) If you
write a keyword in a context where it is not expected, the translator will
guess that you intend it to be an ordinary name. That attitude permits
barbarisms such as:

28

IF IF = THEN
THEN THEN = ELSE
ELSE ELSE = IF

Programming on Purpose

which ascribes two distinct meanings to each of IF, THEN, ELSE, and the=
operator. But what the heck. Any tool can be abused.
mnother aspect of this conjecture is that you can write an expression with
.cl.nearly any combination of data types. Many FORTRAN programmers
enjoyed being able to mix integer and floating-point types, and let the
translator guess how to combine them sensibly. Why not bring this luxury
to the richer world of PL/I data types? The result is that the language
explainers had to write pages and pages describing what happens when
you combine REAL FLOAT DECIMAL operands with bit strings and Ster
ling fixed-point constants.

There's the knob on the back of the set.
Life is interesting enough with FORTRAN. If you convert a REAL to an

INTEGER, implicitly by assignment, the translator guesses that you want
to truncate the result toward zero. Rounding is often a better idea. If you
convert an INTEGER to a REAL, the translator guesses that any low-order
bits lost in the process are not worth mentioning. Reporting a loss of
significance can sometimes be important. Nevertheless, the number of
questionable conversions in FORTRAN is small and easily learned. The
conscientious programmer learns when to be careful, or to use the explicit
conversion functions.

PL/I, however, offers boundless opportunities for the translator to think
up questionable conversions. My favorite eyebrow raisers usually involve
some sequence that takes you from a DECIMAL form, through a bit string,
to a single bit that you want to test. Picking up a meaningless leading zero
bit along the way, that you eventually test instead of the good stuff, is
frighteningly easy.

Things would not be so bad were programmers educated to write
explicit conversions, but such is not the case. Part of the culture of PL/I, as
I have seen it practiced, is that real programmers never write anything that
doesn't have to be specified. (Imagine taking your favorite large Pascal or
C program, erasing all of the conversion functions and/ or type casts, and
expecting the translator to guess how to put them back.) Getting the
expressions right in the first place is hard enough, but maintaining PL/I,
to me, often resembles tweaking a knob whose effect I don't understand .
.1fl1t y vision of the origins of Algol 68 also begins in the early 1960s. Again
.J)1JlI see a committee, this time composed of numerous language theo
rists. All share a love for the elegant orthogonality of Algol 60 and a zeal
for making a successor that will be even more elegant and even more
orthogonal. All have lots of interesting ideas about how to specify a

Essay 4 The Central Folly 29

programming language. Here, the major concern is whether the language
must have a kitchen sink, per se, or whether you can construct one from
underlying primitives.

I understand that the working goal of the committee was to make a
language called Algol 64. At least through the end of 1964. The fact that it
was eventually called Algol 68 tells us that theoreticians are not immune
to schedule overruns either. But what the heck. We're all human, and
committees move slowly.

The cute thing about Algol 68 was that the committee ended up invent
ing a language to describe the language that describes the language. Algol
68 itself has a grammar with an infinite number of productions. (Try writing
that on a four-sided reference card.) You need a meta-grammar to produce
all of the productions that produce all of the valid sentences of the language.
Why the committee felt it necessary to retread the English language to
describe the meta-grammar, however, is beyond me.

Digging through pages of jargon about "softly deproceduring" and
"stirmly hipping to void" is off-putting in the extreme. It is a real barrier to
understanding. True, you occasionally unearth a real gem such as, "An
assignation is the commonest form of confrontation." But it's not worth
sapping through all of the mud along the way. There should probably be a
law against quoting Lewis Carroll or W.S. Gilbert in a computer-language
reference manual.

Algol 68 lets you declare all sorts of pointer types, a luxury to which we
have grown accustomed with Pascal and C. They are called "reference
variables" in Algol 68. Accessing a variable via a pointer is called dereferenc
ing. Calling a function, given its name or a pointer to it, is called deprocedur
ing. All fine and good.
11rhe designers made an interesting conjecture early on, however. They
~concluded that if you merely mention the name of any variable in an
expression, the translator should know what to do with it. If a variable
points to another variable, you probably want to dereference it to get the
contents of that other variable. You only want to copy it as a reference variable
if you are assigning it to another reference variable of the same type.
Similarly, if a variable names a procedure that has no arguments, then you
probably want to deprocedure it, or call it, when you mention it in an
expression. And that's always the case. Except when you don't.

Sure, you can also decorate the names with operators to say what you
mean. But you don't have to. Instead, the description of Algol 68 contains
pages of explanation about how the translator guesses what to do from
context (strong, firm, weak, or soft) and from the type of each subexpres
sion. There is even a wonderful railroad-track diagram, filling over half a
page, that endeavors to teach you how to second guess the translator.

30 Programming on Purpose

Have you spotted the knob on the back yet?
To fully appreciate the effect of this conjecture on the description of Algol

68, you have to repeat the gedanken experiment I suggested above. Take
your favorite Pascal or C program and erase all of the indirection operators
("' or *)and all of the empty parentheses. Now explain simply how the
translator should put them all back.
.JrlltY view of Ada goes back about a dozen years. I imagine a committee
JI iii.of university consultants forming, under the benign guidance of the
U.S. Department of Defense. On that committee are people who fund their
research courtesy of the U.S. government. To this attentive audience, the
DOD poses a challenge.

We're going to give you some money to study the state of the art of computer
programming languages, says the DOD. We want you to look at what everyone
else has done in the way of program design and determine whether:
• they have already done a better job than you can possibly do in designing a

programming language
• we should give you lots more money to spend the next several years designing

the programming language you've always dreamed of
You can guess the result.

No, I'm not going to make snide remarks about gold-plated kitchen
sinks, or savage Ada in the usual ways. I believe that the people who
worked on Strawman, Ironman, Steelman, and the various color-coded
candidate languages had good intentions and did the best jobs they could,
under the circumstances.

What I'm saying is that the deck was stacked, by those circumstances, in
favor of yet another language designed by committee. Even though Jean
khbiah gets full and proper credit for bringing considerable coherence to
the design of Ada, he was in many ways hobbled by an over detailed
specification, produced by a committee.

Ada was specified from the start to be a language in which you can write
really large programs. It assumes that a typical program will be constructed
from multiple modules written by different people. As a consequence, it
worries quite a bit about name-space control. Lots of thought was given to
controlling just what names are visible at any given point in an Ada
program.

Opposing this concern, however, was an important conjecture - that
the types and operators of Ada should be extendible. You should be able
to introduce, say, the flavor of complex numbers that you like best, and
extend the meaning of all the sensible arithmetic operators to cover them.
You can, in other words, overload the meaning of the operators plus and
minus, for instance, to cover complex operands as well.

Essay 4 The Central Folly 31

IA verloading operators is certainly a convenience. Nearly every language
"171 can think of lets you write a plus operator in ways that have quite
different meanings, depending upon the types of its operands. Algol 68 and
other languages let you extend the overloading to cover types that you
introduce as well. You can write programs that have a very agreeable
notation for performing new forms of arithmetic.

When overloading and extendibility meet up with heavy-duty name
space control problems, however, you can expect complexities. It's no fun
to have to qualify every plus operator, for instance, with the name of the
module that is providing the appropriate definition. Rather, you want to be
able to open up a module, as it were, and dump its contents into the general,
unqualified name space. That's fine if you have only one module adding
interesting new meanings to the plus operator. But what happens if ten of
the 23 modules you are using overload plus in different ways? (Or what if
three of these overload it the same way, which is different from the others?)

What you can do with operators, you can also do with function names
and other creatures. Ada tutorials devote pages and pages to explaining
how the translator can guess which meaning to ascribe to a name that you
define multiple ways in the same region of program text. The basic rule
seems to be, "If the translator has any chance at resolving the ambiguity,
then it must permit the ambiguity and endeavor to resolve it the way it
thinks best."

There's the knob on the back once again.
To me, this is like taking the WITH statement of Pascal and going wild

with it. Or perhaps it can be compared to erasing as many structure
specifiers from a C program as you can, changing

p->e.o.left->val = x.z;

to

val = z;

until the translator begs for mercy. It might be interesting to start with the
minimum number of qualifiers, then add them until the diagnostics go
away. But that probably isn't the most productive use of programmer time.
Nor is it the most maintainable code.
11rhe point of all of these gripes is the same. A language designer may have
\C.Va conjecture about how people plan to use a language. Chances are, the
designer will fear that a language will not be used if the user has to specify
too much. When the designer is a single, gifted person such as Nicklaus
Wirth (Pascal) or Dennis Ritchie (C), he or she can often arbitrarily rule in
favor of linguistic simplicity. When the designer is part of a committee,
however, it is harder to rule arbitrarily against the putative desires of the
future user community. Particularly when there are vocal potential users
on the committee.

32 Programming on Purpose

I have characterized the conjectures in each of the three languages in
terms of what guesses they require of the translator. It is my belief that
high-level language translators have their hands full diagnosing obvious
errors and optimizing for less-than-optimal computer architectures. They
should not be asked to guess, particularly where a simple word to the wise
from a programmer will make their job easier, and the program more
readable. You will notice that two of the most successful languages of the
past decade, Pascal and C, offer little in the way of shorthand in the areas
I have discussed.

I believe that each of the three languages I've taken to task are important
languages. I believe that each has many good design features. They have
certainly influenced many others, usually to advantage. I have certainly
learned many useful principles from studying all three.

Each bears the marks, however, of committee design. Each could be
made stronger, I believe, by being asked to do less. And each is hampered
by a central folly that causes you to tweak knobs better left hidden. o

(-1tfterword: Rarely does a complex design avoid a central folly. Try your hand at
x:ispotting the central folly in UNIX, MS-DOS, C, and C++, just for practice.
Learning how to spot such lapses in others can help make you a better designer. The
sooner you twig to your own lapses, the better chance you have to mitigate them.
At the least, being alert to central follies can make you more tolerant.

5 Safe Math

11rhis essay continues the discussion of computer arithmetic that I began
\C.llearlier. (See Essay 2: Computer Arithmetic and Essay 3: Floating-Point
Arithmetic.) The last topic I covered was floating-point arithmetic, which
I concluded with some general statements about how to write portable
programs that perform floating-point operations. I mentioned the function
yrod (x, y), and some underlying primitive functions, that I use to avoid
having to deal with all the different ways that floating-point overflow and
underflow are handled on different computer architectures.

That column stimulated an interesting letter from Paul E. Condon, of San
Carlos CA. Here is a summary of his letter:

Mr. Condon begins by observing that you can write a portable version
of the yrod function in terms of existing library functions. In C terms
(although he was speaking FORTRAN), you use the function fabs to force
each argument positive. You then obtain its logarithm, as in the expression
loq (fabs (x)). Of course, you must first ensure that xis nonzero. So to
write yrod (x, y):

1. If either x or y is zero, return zero.
2. Otherwise, compute the logarithm of the (unsigned) product, which

cannot overflow if the operands are representable:

z = loq(fabs(x) + loq(fabs(y));

3. If z is less than the logarithm of the smallest representable number (call
it DMIN), report an underflow.

4. If z is greater than the logarithm of the largest representable number
(call it DMAX), report an overflow.

5. Otherwise, return the product x*y, knowing that the result is repre
sentable.
Mr. Condon then observes that you can use this code to write code smart

enough to run on machines with two different floating-point repre
sentations. You can, for example, test on the more forgiving machine
whether a calculation would fail if moved to the less forgiving one. Or you
can test on the less forgiving machine whether it would help to move a
failed calculation to the more forgiving one. Or you could simply select
DMIN and DMAX to satisfy the most stringent range requirements across all
machines of interest.

33

34 Programming on Purpose

Mr. Condon concludes by presenting a trick. The idea is to look at
numbers two different ways by using EQUIVALENCE statements in FOR
TRAN or "type casts in C." He observes that the sign bit of a floating-point
number is always in the same position as that of an integer. Moreover,
floating-point exponents usually occupy more significant bit positions than
the fractions. Hence, a floating-point value treated as an integer is roughly
proportional to the logarithm of the proper value. That might save time in
the checking procedure that _prod uses above.
~rst, let me say that I applaud Mr. Condon's attitude toward writing

,.JJ portable programs that perform mathematical calculations. The world
needs more programmers like him. I have a few critical things to say about
his recommendations, and I don't want that important underlying message
to get lost.

His implementation of _prod certainly does the job. He identifies the
primary reservation I have about the function - computing log twice
takes considerably more time than computing the product alone. This extra
time is usually less important than you might think. You probably need to
check only a few critical products to make your code safe and portable, and
you probably don't know where your program's hot spots are to begin
with. Nevertheless, nobody likes to depend upon a staple function that
consumes more time than is absolutely necessary.

Mr. Condon characterizes this as a machine-independent function, then
points out that you must build into it at least two machine-dependent
constants, DMIN and DMAX. Granted, this is a localized disturbance and the
algorithm as a whole is indeed machine independent. And it does permit
some pretty sophisticated portability checks, as Mr. Condon points out.
Nevertheless, it also compromises the maintainability of the function as
portable code.

Complaining about performance and degree of portability is merely
carping. It is the last observation in the letter that rang alarm bells for me.

First, a small correction. You can indeed access a floating-point datum
in FORTRAN via an EQUIVALENCE statement as one or two integers. The
comparable trick in C is not to use a type cast, however. Casting a value of
floating-point type to an integer type would encourage the translator to
generate code that converts the representation of the value from floating
point to integer format. What you want to do instead is to place the
floating-point value in a union, as in:

union {
float fl;
int in;
} x;

Essay 5 Safe Math 35

What you store in x. fl as type float you can access via x. in as type int,
with no conversion. While there are no official guarantees about accessing
the wrong member of a union, this trick works for all of the popular C
implementations that I know.
11T"'he first alarm bell that rang in my head concerns the relative size of
~integers and floating-point representations in C. I showed a union
containing a float and an int above. Both are 32-bit quantities on a number
of popular architectures, including System/370, VAX, and (sometimes)
Motorola 680XO. There are millions of computers, however, for which this
trick doesn't work properly. The Intel 80X86 family, used in IBM PCs and
compatibles, usually represents type int in only 16 bits. Some C compilers
for Motorola 680XO also have a 16-bit representation for type int.

FORTRAN promises that types INTEGERand REAL each occupy a single
storage cell, and that type DOUBLE PRECISION occupies two cells.Coffers
an even wider assortment of choices. Floating-point types traditionally
occupy four or eight bytes on most popular machines. The new type long
double, added by ANSI X3Jll, may require ten to 16 bytes.

Integers, on the other hand, usually occupy two or four bytes. To get to
all parts of a floating-point type, you may have to replace the int member
in the union with an array of from two to eight ints. So in summary, if you
want to manipulate floating-point data using integer operations, you are
going to have to write a very machine-specific declaration of a union to do
so safely and reliably.
11T"'here is still another alarm bell ringing. Mr. Condon asserts that the sign
~bit of a floating-point datum tends to be in the same position as the sign
bit in the integer datum you plonk on top of it (via EQUIVALENCE or union).
Given the discussion above, the first question you must answer is, which
integer datum? Hardware designers have been excessively creative, over
the years, in deciding how to lay out the bytes of a multi-byte datum in
memory. (See Essay 1: You Must Be Joking.) The most significant integer
is not necessarily the first, or even the last, in the array.

I gather from his letter that Mr. Condon was thinking in terms of
comparing the FORTRAN types REAL and INTEGER, both of which occupy
a single cell. (The language doesn't promise that type INTEGER uses all of
a cell, however.) Even in that restricted environment, an important excep
tion springs immediately to mind. On both the DEC PDP-11 family and the
DEC VAX family, the sign bit of a 32-bit floating-point datum does not
necessarily line up with the sign bit of a 32-bit integer.

If you label the bytes with digits in increasing order of significance, then
VAX represents 32-bit floating-point data as 2301 and 32-bit integer data
as 0123. (Some PDP-11 languages represent 32-bit integers as 2301, some
as 0123.) The sign bits do line up for the 32-bit representations on Sys
tem/370, Motorola 680XO, and Intel 80X86. For 64-bit floating-point repre-

36 Programming on Purpose

sentations, there are all sorts of variations on the same basic theme. (And
for 80-bit representations, there are still more.)

So to summarize again, if you want to manipulate floating-point data
using integer operations, you need to write a very machine-specific decla
ration of a union. You also need to know which integer field in the union
to look at to inspect the sign bit of the floating-point datum.
7{'m still not done with the alarm bells. Mr. Condon is correct in observing
..JJ that floating-point numbers are often packed with the exponent in a
convenient place, and biased by a convenient value as well. All of the
popular formats place the exponent in the most-significant bit positions of
the representation. All also normalize the fractions. (See Essay 3: Floating
Point Arithmetic.) The net result is that the magnitude of a floating-point
datum, treated as a binary integer, increases monotonically with the value
being represented. Assuming that you can compare integers of the same
size as floating-point, and that both values are positive, you can use integer
comparisons to compare floating-point values.

You get in trouble with negative values, however. On all of the popular
architectures that I have been describing, negative floating-point numbers
are represented in signed-magnitude form and negative integers are in
twos complement. (See Essay 2: Computer Arithmetic.) A comparison that
involves two negative values will often yield the wrong answer.

I have written fast floating-point comparison routines on half a dozen
architectures, using the basic shortcut that Mr. Condon describes in his
letter. In every case, however, I had to add code that converts the operands
as signed-magnitude, multi-precision integers to twos-complement, multi
precision integers having the same value. (If the sign bit is set, you ones
complement all of the integers, add 1 to the least-significant integer, propa
gate carries, then toggle the sign bit. This converts -0 to a true zero, by the
way.) And in every case, I had to compare the most-significant integers
differently (as signed integers) from the remaining integers (which are
compared as unsigned integers).

So while Mr. Condon makes an interesting observation about the repre
sentation of floating-point values, there are a few practical details you must
keep in mind if you want to take advantage of that observation.
fAne final point, and I will leave the poor letter writer in peace. Given the
~placement of the floating-point exponent described above, Mr. Condon
is quite correct in observing that the integer interpretation closely approxi
mates the logarithm. For all of the popular architectures I have been
tracking, the leading bits accurately represent the logarithm, base 2, of the
value being represented. If you add two floating-point values as integers
(getting the representation of negative numbers right, as for comparisons
above), you will indeed get a value that is closely related to the true
floating-point product.

Essay 5 Safe Math

This is hardly surprising. If you write two numbers as
fracl * 2•xp1 + BIAS

and
frac2 * 2•xp2 + BIAS

then their true product is
fraCl * fraC2 * 2•xpl + exp2 + BIAS

37

If each of the numbers is dominated by its exponent part, then their sum as
integers is dominated by the sum of their exponents. Take away the extra
BIAS and you have a not-unreasonable approximation to the floating
point product.

The only drawback is, you have the worst problems when you're at or
near the extremes of the representable range of exponents. If the sum of
exponents cannot be properly represented, then it will spill over into the
sign bit. Perhaps. Or the resultant exponent will be one of those special
values reserved to represent machine infinities and other special codes.
Perhaps. Or the resultant exponent might be off by one (or two) because of
carries from the fraction part. Perhaps.

In short, there are enough uncertainties that this technique is least
satisfying in just those areas where you need _prod to help you the most.
It is when you are getting close to overflow or underflow that you want to
do a safe check before you risk raising a hardware exception when comput
ing the actual product.
]'(have belabored several aspects of Mr. Condon's presentation, but it is
..lJnot my goal to beat him up in print. My father told me years ago, "Never
argue with a man holding a megaphone." To this day, I am reluctant to write
letters to magazines out of fear of that crushing final riposte that begins
with, "The author replies ... " Once again, I appreciate the letter and the
attitude it conveys.

My goal in detailing these problem areas is to demonstrate how perilous
it can be to write representation-dependent code. If you want good per
formance and a high degree of portability (and who doesn't, these days?),
then you must isolate representation dependencies in a few well chosen
primitives. Use these primitives religiously and you can win with both
performance and portability. Let's take a closer look at those primitives I
mentioned that are in the Standard C library.

Function frexp partitions a floating-point argument into two compo
nent results, an integer exponent and a floating-point fraction. If the input
number is not zero, then the floating-point fraction is in the interval [1 /2,
1). You raise 2 to the integer exponent and multiply the result by the
floating-point fraction to get the input value.

38 Programming on Purpose

On machines with a binary exponent, this simply involves extracting a
subfield of the floating-point representation. You add a standard bias to the
extracted subfield to get the exponent part. You replace the exponent with
a standard exponent value to get the floating-point fraction part. On
machines with a hexadecimal exponent, such as System/370, you have to
do slightly more work, but not much more. In any case, the frexp function
is fast, and it involves no floating-point arithmetic.
~nction ldexp raises 2 to the integer exponent argument and multi

,.JJ plies the result by the floating-point fraction argument to get the
function result. As you may have guessed, ldexp performs the inverse of
frexp. If the input number is not zero, you add the integer exponent
argument to the appropriate subfield of the floating-point fraction argu
ment and check for overflow or underflow. Once again, there is a bit more
work involved on System/370. But once again, this is a fast function.

Function modf partitions the floating-point argument into two compo
nent results, a floating-point result that is an exact integer and a floating
point result whose magnitude is less than 1.0. Both have the same sign as
the argument. You add the two component results to get the input value.

This function is somewhat harder than the two previous ones. If you
want to avoid using floating-point instructions, you must do a lot of
shifting, masking, and realigning to separate the two components and
package them properly. The function is worth calling, however, if you have
reason to believe that simply converting a floating-point number to integer
form might cause integer overflow.

Function fmod effectively subtracts the magnitude of one floating-point
argument repeatedly from the magnitude of the other floating-point argu
ment until the residue is less than the value being subtracted. The result is
analogous to the remainder you get when performing the integer division
x/y, for the arguments x and y to fmod. The result is also closely akin to
what you would get for a fraction result if you called modf with x/y, but
with a very important difference - fmod works hard to preserve all of the
bits of precision available in the fraction. Were you to first compute x/y
and obtain a magnitude larger than one, you would have to sacrifice some
bits of precision to represent the integer part that you intend to discard.

This function is very hard to write so that it is both correct and efficient.
I used the term "effectively" in describing its operation because that is the
easiest way to describe its effect, but no sensible implementor would write
the function that way. You have to do some pretty fancy scaling and looping
to save time. (The modem floating-point coprocessor chips provide special
instructions to do at least part of this job, because it's so important.) Even
then, this function can easily take a dozen floating-point comparisons and
subtractions. But it's worth it.

Essay 5 Safe Math 39

AX iven these primitives, let's take another look at the _J)rod function that
~started this whole discussion. If you call frexp with one of the oper
ands that you wish to multiply together, you extract its exponent and leave
a floating-point part that is strictly less than one. You can safely proceed to
multiply that part by the other operand, with no fear that the result can
overflow. Any overflow will happen when you call ldexp to fold the
exponent you extracted back into the product. But that is a software
operation that steers clear of any hardware exception-handling machinery.
So you can write portable code to deal with potential overflows.

If you are also concerned about detecting and handling floating-point
underflows with _J)rod, then you need to call frexp for both operands. If
one operand is near the smallest representable value, multiplying it by 0.5
may cause it to underflow. But if you reduce both operands to the interval
[1/2, 1) (or zero), then the product must lie in the interval [1/4, 1) (or zero).
You add the extracted exponents and fold them back into the product by
calling ldexp. If an underflow is going to occur, it will happen then.

This implementation of _J)rod is merely a safe way of profiting from Mr.
Condon' s final observation. You extract the exponents of two floating-point
operands by using integer operations and sum them. You form the product
by a safe hardware multiply. You check whether adding the sum back into
the exponent of the product will cause overflow or underflow, and handle
any exceptions in portable software. The result is a safe floating-point
multiply that involves no additional floating-point operations.

Having harped on this subject at length, I would now like to show you
a number of concrete examples of how you can (and should) compute real
live mathematical functions using code that is simultaneously efficient,
precise, portable and safe. You can only truly appreciate the primitives I
have been discussing by seeing them in action. That is the topic of the next
essay. (See Essay 6: Do-It-Yourself Math Functions.) o

t?{fterword: I really hated to pummel a letter writer, but I couldn't resist the
x::iopportunity to discuss so many issues. Writing floating-point software that is
at once safe, efficient, and portable is a major challenge. Picking the right primitives
makes all the difference. Thanks again to Paul Condon for suffering my diatribe.

6 Do-It-Yourself Math Functions

11rhis essay continues the discussion of computer arithmetic that I began
\C.Vseveral essays back. (See Essay 2: Computer Arithmetic, Essay 3:
Floating-Point Arithmetic and Essay 5: Safe Math.) In the last essay, I
described a few low-level primitives from the Standard C library that you
can use to write mathematical functions. These functions assist you in
constructing functions that are simultaneously efficient, precise, portable,
and safe. In this essay, I show examples of how you can practice safe math
in the modern world of portable programming.

The examples I have chosen are several of the common math functions.
I have written these in many forms over the last quarter century. Each time,
I have picked up a bit more technology and (more important) gained a bit
more insight into computer arithmetic. The latest versions are decidedly
smaller, faster, more accurate, more portable, and more maintainable than
the earliest.

It may seem silly to describe in detail how a library function computes,
say, a square root. I have preached repeatedly that you should never
replicate technology that already exists, particularly technology that re
quires considerable expertise to master. It is not my intention to inspire
applications programmers to run off and belt out several thousand private
versions of common math functions. If you can perform the math calcula
tions you need by using the standard library functions that come with your
favorite programming language, then by all means do so.

The purpose of this essay is to show you what technology you can bring
to bear in those cases where the standard math library does not serve your
needs. For instance:
• The Standard C library provides functions only for operands of type

double. If you need a smaller and faster library for operands of type float,
you may have to do part or all of the job yourself. Even if you have access
to the library source code, you cannot get optimum results merely by
changing all the double declarations to float and recompiling. At best, the
resultant code will waste time. At worst, it will give incorrect answers.

• The math functions I describe here exemplify many of the computational
difficulties you may encounter when computing more exotic functions.
You can learn a lot about computing any periodic function, say, from the
way the library computes sin and cos.

41

42 Programming on Purpose

• You may have serious performance problems that are best solved by
bootlegging special versions of the standard math functions. A function
that computes both sin and cos for the same argument, for instance,
can speed rotations in graphics.
Equally important, knowing what it takes to compute math functions

safely may be enough to dissuade you from a marginal enterprise. If the
standard library is close enough, you are probably better off just using it.
Save your ingenuity for the application-specific part of your program.
']'(et's begin with one of the easiest math functions, computing the square
.14root. Traditionally, the function is called sqrt. It is defined such that,
for y = sqrt (x), x = y * y.

The first thing to observe is that the square root of x is not defined, at
least in the world of real numbers, for negative values of x. (You can take
the square root of any complex number and get a representable complex
result, but that is another library.) Amathematician would say that negative
values of x are outside the domain of the function sqrt.

Such a domain error is not the same thing as an overflow. You get an
overflow when the value of the function is well defined for its argument
value(s), but is too large to represent with the floating-point format used
on this particular machine. Some other machine may have no trouble for
the same argument value(s).

You can also get an underflow when the value of the function is well
defined, but is too small to represent. (See Essay 3: Floating-Point Arith
metic.) A mathematician doesn't believe in overflow and underflow, but a
software engineer knows to call these aberrations range errors.

You must check for domain errors at the top of each library function that
might experience them, and you must report them in some useful way. You
must check for range errors wherever they might occur, and you must
report them in some useful way. (See Essay 5: Safe Math.) It is not accept
able to report a range error for an intermediate overflow if the final result
is representable. You must find a way to avoid the intermediate overflow.

Reporting errors from a library function raises all sorts of design issues.
At the one extreme, you would like all the help you can get on debugging
aberrant behavior. A silly argument to a library function should cause a
diagnostic printout, preferably with some trace back to indicate the chain
of callers, and probably with automatic program termination.

At the other extreme, you would like your embedded program to keep
chugging no matter what. You would like some way for your program to
retain control for all possible errors reported by library functions.

There are several solutions to the problem of library error reporting,
including:

Essay 6 Do-It-Yourself Math Functions 43

• Bull ahead with the computation and rely on the hardware to detect
and/ or report any problems.

• Return some unusual (but incorrect) value when the error occurs.
• Return some in-channel error indicator such as machine indefinite or

machine infinity that the program can check later, even after additional
arithmetic has been attempted upon the function result. (Again, see
Essay 5: Safe Math.)

• Call a standard function to report the error, and return the unusual value
or in-channel error indicator only if the error reporter returns control.

ms someone who likes both safe and portable code, I always lean toward
.Q.the last solution. Having the library functions call another function
when errors occur gives you the most freedom in responding to the errors.
You can provide default error handling that prints a message and termi
nates program execution. That is what most people want and need, if only
in the earliest stages of debugging a program. You can also permit the
program to specify alternate behavior when an error is reported:
• If you ask that the error be ignored, the error reporter simply returns to

the library function that called it, as I described above.
• If you specify your own handler function, the error reporter calls your

function. That function can jerk control back to a higher level of your
program, by invoking some sort of exception handler or non-local GOTO.

(See my essay "Programming on Purpose: Handling Exceptions," Com
puter Language, January 1988.) Or it can take a few notes and return
control to the error reporter, which in turn returns control to the library
function, which in turn returns control to the caller with its unusual
value or in-channel error indicator.
The primitives that I use are two functions called_ domain and_ range.

Each takes as argument a pointer to an error message that the default error
handler will incorporate into its diagnostic printout. Each can return con
trol if the error reporter determines that the library function should return
control to its caller.

So, getting back to the square-root function, its overall structure is
dictated by the need to detect domain errors:

sqrt (x)
IF (x < 0)

_domain ("square root")
RETURN (0)

ELSE
<compute square root y>
RETURN (y)

For the actual computation of the square root, Isaac Newton developed
an algorithm which still cannot be beat. You simply guess some positive

44 Programming on Purpose

value for y and average that with x/y to get a new y that is a better
approximation to the square root. You can see that if your initial guess for
y is too small, then x/y will be larger than sqrt (x). Averaging will yield
a new y that is closer to the square root. And if your initial guess is too large,
then x/y will be smaller than sqrt (x). The average will once again take
you in the right direction.

What is not so obvious is that this algorithm converges really fast. You
more than double the number of bits of precision with each iteration. You
go from, say, four bits of precision to 79 in just four iterations (9, 19, 39, 79).
The only times that the algorithm does not converge, in fact, are:
• when x < 0, which is already ruled out as a domain error
• when x = 0, which you can handle as a special case
• when you choose a negative value as an initial guess for y, a sin which

you can easily avoid committing
So your first temptation is to write:

y := 1
WHILE (<not close enough>)

y := Cy + x I y) I 2

where <not close enough> involves checking that the relative differ
ence between x and y * y is sufficiently smaller than x to meet your
needs.

This works fine. I have even seen amateur square-root functions that do
something like this. But it is nowhere near the level of engineering you
should demand of an important library function.
']'f et's get back to those primitive functions I discussed in the previous
14essay. One of them, frexp, unpacks a floating-point number into a
fraction (call it f) in the interval [1/2,1) and an integer exponent, base two
(call it n). If you unpack x this way, then:

X := f * 2n
sqrt (x) : = sqrt (f) * sqrt (2n)

Computing sqrt (2"n) is easy. You just halve the exponent n and fold
it into the final result by using another primitive, ldexp. If n is odd, you
must also multiply the result by the square root of 2. But that is just a
constant factor.

Computing sqrt (f) looks no easier than computing sqrt (x), but it
does offer two important advantages:
• Because it is in a very narrow interval of values, [1 /2, 1), you can easily

guess a good starting value. A linear approximation of the form:

y := Cl*f + C2

can start you off with several bits of precision.

Essay 6 Do-It-Yourself Math Functions

sqrt(x)
IF (x < 0)

_domain ("square root")
RETURN (0)

ELSE IF (x = 0)
RETURN (0)

ELSE
(x, n) : = frexp (x)
y .- Cl*f :j:' C2
Y += x/y
y := 0.25*y + x/y
y += x/y
y .- 0.25*y + x/y
IF (<n is odd>)

y *= 2112

y := _ldexp(y, n/2)
RETURN (y)

Figure 6.1: Pseudo code for square-root function.

45

• Because you know how many bits of precision you start off with, you
can simply iterate a fixed number of times. There is no need for the
time-consuming test for convergence.

Putting all of these shortcuts together gives a first-rate implementation of
sqrt, as shown in Figure 6.1.

I used the C-style assignment operators (also in Algol 68), +=and*=, to
indicate operations performed in place. They save time if your language
supports them. I also unwound the divide-and-average calculations by
pairs and regrouped operations to minimize arithmetic. The effect is the
same as four divide-and-average iterations, but with a few less operations.
mou can determine the coefficients Cl and C2 in a variety of ways. My
~favorite algorithm is to look them up in a book. (But see also Essay 18:
Approximating Functions.) An excellent source of numerical approxima
tions for all of the common math functions is John F. Hart, et al., Computer
Approximations (Har78). Using coefficients from Hart, this algorithm gives
at least 56 bits of precision. That is more than you need for IEEE or IBM
System/370 double format, and enough for DEC VAX and PDP-11.

You can find 2112 to sufficient precision in many places. A good all-around
source of such lore is M. Abramowitz and I. Stegun, Handbook of Mathemati
cal Functions (A&S65). Whatever you do, don't use your pocket calculator
to determine coefficients like this. The result will be good only to about ten
decimal places. (I once spent days chasing a small systematic error in a
FORTRAN program before I discovered that the author had written 1t using
the junior-high-school approximation 22/7! On the other hand, 355/113 is
a satisfactory approximation to 1t if you are working in single precision.)

46 Programming on Purpose

You can write a cube-root function, or a function that computes even
higher roots, using much the same techniques that I showed here. In fact,
Newton's method is good for finding the roots of quite a number of
functions. You can also adapt this algorithm to computing square roots to
lower or higher precision. Knowing the number of bits of precision you
need to develop, you can trade off the complexity of the initial-guess
computation against the number of times you need to iterate.
m close relative of the square-root function is the hypotenuse. Often
.a.written hypot (x, y), it yields the length of the hypotenuse of a right
triangle whose sides are x and y. It also gives the magnitude of a complex
number, or the distance from the origin to a point in the (x, y) plane.

The obvious way to compute the hypotenuse is:

hypot(x, y) := sqrt(x*x + y*y)

By now, you are alert enough to recognize the potential pitfalls:
• Either x*x or y*y may overflow, even when the result is representable.
• The sum may overflow, even when the result is representable.
• The result may not be representable.

What to do? If Ix I < I y I, then you can recast the formula above into
the safer form:

r := lxl/lyl
hypot(x, y) := lyl*sqrt(l + r*r)

You may get an underflow when doing the divide, but it is safe to accept
the usual zero fixup when that occurs. If the result is unrepresentable, then
you will get an overflow on the final multiply by I y I . For this operation,
you can use the safe function _J>rod that I described at length in the pre
vious essay.

If I y I < I x I , then you can do the same as above by reversing the roles
of x and y. The only other possibility is x = y = 0, which is easy enough
to handle as a special case. (You treat special cases separately only to protect
an algorithm from blowing up. If you have good reason to believe that you
will get a speedup because the special case occurs so often, then handle it
separately, but by all means label the code as an optimization. Otherwise
you will drive maintainers crazy.)

Putting all these considerations together, you get:

hypot(x, y)
IF (x < 0)

x := -x
IF (y < 0)

y := -y
IF (x < y)

r := x/y

Essay 6 Do-It-Yourself Math Functions

ELSE IF (x = 0)
RETURN (0)

ELSE
r := y/x
y := x

RETURN (_yrod(y, sqrt(l + r*r)))

47

As you can see, the difference between a mathematically correct function
and a computationally safe one can be considerable, at least in terms of
apparent complexity.
Aow let's look at another widely used function, for computing the sine
»of x, usually written sin (x). It is, of course, closely related to still
another widely used function, the cosine of x, or cos (x) . So intimately
related are the two that both are typically computed in the same library
module, using much the same code for both functions.

At first blush, in fact, you might observe that:

sin(x) = cos(x - 7t/2)

If you write sin (x) this way, by subtracting rt/2 from its argument and
calling cos, you are asking for trouble. Tiny values of x will lose all signifi
cance when combined with n/2. The value of the function will suffer along
with x. Even larger values can easily lose at least one or more bits of sig
nificance. You do slightly better by writing cos in terms of sin, but you
still risk measurable loss of significance. And either way, you are perform
ing an additional floating-point addition or subtraction, which costs extra
time.

This typifies an important principal in writing safe math functions.
Never subtract (algebraically) two floating-point numbers that might be
comparable in magnitude. The result invariably has a large relative error,
which often results in avoidable loss of precision in the final result. A
corollary is that you should never add two numbers if there is any chance
that you later will wish to subtract out one of them. A larger number will
swamp the precision carried by a smaller one.

So what do you do? Well, sin and cos are periodic functions. You can
add 27t to the argument (mathematically at least) and get the same value
for the function. It makes sense to use this identity to reduce an argument
to the interval [-rt, 7t]. There are enough additional symmetries that it makes
even more sense to reduce an argument to the interval [-7t/ 4, rt/ 4], by
repeatedly adding or subtracting n/2 and counting the number of times
you do so. All you need to keep track of besides the reduced argument are
the low two bits of the count. These bits tell you what quadrant the
argument is in. If you reduce the argument this way, then the difference
between sin and cos is whether you start counting from quadrant 0or1.

48 Programming on Purpose

You do not want to divide x by 7t/2. The integer part of the quotient may
overflow your largest available representation, and the fraction part will
lose significance. You probably do not want to actually add or subtract 7t/2
repeatedly. For a large argument, that can take a long time. (Never mind
how meaningful the result is.) This is an ideal application for the fmod
primitive I described in the previous essay. It forms the residue carefully,
as if by repeated subtractions, but much more quickly. The version of fmod
that I favor also safely delivers up the low order bits of the add/ subtract
count, no matter how large the count might be.
~nee you have reduced the argument, all you have to do is compute
"17 sin (x) (if the quadrant count is even) or cos (x) (if odd) for Ix I <
7t/ 4. Both sin and cos are sufficiently well behaved that you can approxi
mate each by a polynomial in x. What is the polynomial? A natural candi
date is a truncated version of the Taylor series:

sin(x) = x - x 3 /3! + x 5 /5! - .. .
cos(x) = 1 - x 2 /2! + x 4 /4! - .. .

You need to retain about seven or eight terms for a double result.
You can reduce the number of terms you need to compute, however, by

"telescoping" the truncated Taylor series. What you observe is that a linear
combination of powers of x will have its worst error at the extremes of the
range, where Ix I approaches 7t/ 4. A truncated series that is barely accept
able at the extremes has far more precision than you need for smaller values
of x. Wouldn't it be nice if there were some way to adjust the coefficients of
the truncated polynomial to sort of smear the error over the whole range?
An approximation that wiggles back and forth around the exact result has
to be better than one that steadily diverges for larger magnitudes of x.

There is a set of functions, called the Chebychev polynomials, that
wiggle just this way over a unit interval. The trick is to fit a linear combi
nation of Chebychev polynomials to your truncated series, then discard the
highest-order polynomial. The resultant polynomial has one lower power
of x than the original, and has an error that wiggles nicely about the exact
result. What you see as a result of this process is a set of coefficients that are
tweaked up and down slightly to do a better job over the finite interval in
question. For a more detailed description of telescoping polynomials, see
F. Acton, Numerical Methods that Work (Act70).(See also Essay 19: Economiz
ing Polynomials.)

An even better way to improve upon a truncated Taylor series is to
browse through Hart, et al. (See above.) You are sure to find just the
coefficients you need for whatever precision you are striving for. To develop
a double result on most popular machines, you need polynomials of order
6 for both sin and cos.

The final result is show in Figure 6.2.

Essay 6 Do-It-Yourself Math Functions

sin(x)
RETURN (_sin(x, 0))

cos(x)
RETURN (_sin(x, 1))

_sin(x, quad)
(x, n) := _fmod(x, n I 2)
quad += n
y := x*x
IF (quad & 1)

y .- _J>oly(y, cos_tab, 6)
ELSE

y .- x * _J>oly(y, sin_tab, 6)
IF (quad & 2)

RETURN (-y)
ELSE

RETURN (+y)

Figure 6.2: Pseudo code for sine and cosine functions.

49

Here, I also make use of the primitive _J>Oly, which computes a
polynomial given the value of its independent variable, a table of coeffi
cients, and the order of the polynomial. It is a tight loop that computes the
polynomial very efficiently using Homer's method, a succession of multi
plies and adds. (On the DEC VAX, _J>oly is a single instruction.) You can
see how a well chosen set of primitives distills out all but the unique as
pects of computing sin and cos .

.Jflltany other periodic functions also fit this mold. Once you reduce the
;JI ~linterval over which you must approximate a function, you have a
broad assortment of techniques for picking the most economical form.
Acton gives some useful guidelines in his book that I cited above. A few of
them are:
• If it wiggles like a polynomial, approximate it with a polynomial.
• If it approaches an asymptote, use a truncated continued fraction or a

ratio of two polynomials.
• If you are near a singularity mathematically, you are at a singularity

computationally. Factor it out or perish.
Armed with this sage but general advice, and the handful of primitive

functions I have discussed these last two essays, I have tackled many a nasty
problem in approximating mathematical functions. With a proper respect
for the limitations of floating-point arithmetic, you can too. o

50 Programming on Purpose

(7ffterword: Computing math functions well has been a preoccupation of mine for
.:clmost of my career. I risk boring others in my zeal to explain the technology
involved. Still, I know of few sources that cover everything you need to know in
one place. When you have to compute a function with accuracy, robustness, and
efficiency, you'd better know what you're doing.

I revisit this theme in two later essays.(See Essay 18: Approximating Func
tionsand Essay 19: Economizing Polynomials.)

7 Locking the Barn Door

7{nformation has value. Many of you who read this collection earn the
.:.nmoney to pay for it by creating information. And you depend upon a
vast infrastructure to protect the value of that information and ensure that
the proper owners benefit from it. You also have a personal responsibility
to ensure that the information you work with is protected.

People who manufacture, say, lawn chairs understand value and protec
tion. You don't spend all day turning out chairs, only to leave them
unattended on the sidewalk in front of the store overnight. It is a matter of
time before someone takes advantage of your laxity and walks off with a
chair or three. Never mind that it is illegal, never mind that the city employs
a police force and courts to protect your property rights. You still have an
obligation to do your part in protecting your goods from theft. You take the
chairs inside the store at night and lock the door.

People who manufacture jewelry understand value and protection even
more. Their stuff is much more highly valued than lawn chairs. It is also
much more portable. If you manufacture jewelry, you don't display it out
on the sidewalk. Many thieves would risk a snatch and run in broad
daylight for the chance of nabbing a $5,000 bracelet. You don't depend on
just locking up the store at night. There are enough thieves who would risk
breaking and entering to haul off $100,000 worth of assorted jewelry.
Jewelers must invest far more than furniture stores in private methods of
protection, such as armed guards, burglar alarms, and safes.

When it comes to tangible goods, we have several millennia of experi
ence in how to behave. We understand that gray area where we must
provide our own protection, even though society nominally provides it for
us. We understand that the investment in protection must be proportional
to the value that is at risk. We understand that nothing is ultimately safe
from theft, but that everything can be made safe enough if we make life
tough enough for prospective thieves.

When it comes to information, however, we encounter greater difficul
ties. Information can be copied, often quite cheaply, so that thieves can
benefit from it without having to pay the cost of generation. There is a
thriving black market for pirated software, audio cassettes, video cassettes,
and inside information on mergers and acquisitions. Information can be
corrupted or blocked, often without a trace, so that enemies can deceive
you into believing untrue data. Whether you make a bad marketing deci-

51

52 Programming on Purpose

sion, an unwise stock transaction, or an unsafe military maneuver, cor
rupted information can be disastrous.

Worst of all, we tend not to think about the value of our private infor
mation, so we forget to guard it. There are still communities in the United
States, mostly rural, where people leave their homes unlocked at night or
when left unattended. Sadly, those communities have become the rare
exception. A typical multi-user UNIX installation, on the other hand, is like
a rural farmhouse in Central Park. Its neglected defenses leave it at the
mercy of the first aggressive assailant. And those assailants are more
numerous than you might think.
ms you may have guessed by now, this essay is about protecting informa
.:cltion. There is some really neat technology to help you keep information
private and uncorrupted, as I indicated in an earlier essay. (See my essay,
"Programming on Purpose: You Can't Do That," Computer Language, Sep
tember 1988.) You should know what is possible these days in both single
key and public-key cryptography, so you can avoid the more obvious
oversights in this twisty business. At least as important, however, is to be
aware of what protocols you must follow to ensure that your efforts at
protection are not misplaced. The vast majority of successful security
attacks are akin to finding the door key under the welcome mat. And most
responses to invasion amount to no more than locking the barn door after
the horse has been stolen.

To protect information properly:
• you must first notice that you have information that is worth protecting
• you must avoid subverting whatever protocols you have for protections

that are already in place
• you must be sure that the protections you use raise the cost of assault to

a sufficiently high level
If you fail to notice that you have information that is worth protecting,

then the game is over before it is begun. What you tend to overlook is that
information has no special value to you if you cannot control access to it. A
wise general knows that a wanton killer makes a bad soldier, and a mob is
no substitute for an army. It is the ability to turn an armed force on and off
at will that makes for military might. Similarly, a mining engineer has no
interest in a powerful explosive if it is also unstable. The engineer favors
dynamite over nitroglycerin because the former is easier to control.

You can control information by limiting access to it. Do you have a
software product? Then show the source code only to customers who pay
good money and sign a well crafted license for the privilege. Don't let your
employees take it home on diskettes. Put copyright notices on it, in case it
does go astray. You might even ask yourself whether a neighbor might
enjoy browsing through your dumpster.

Essay 7 Locking the Barn Door 53

Do you have a customer list? Then treat it like the gold that it is. Don't
disclose it to other customers, and certainly not to competitors. Don't tell
anybody what your gross sales are, or your market share. Public corpora
tions must disclose a lot, but even they are permitted a few secrets.

If you find an atmosphere of secrecy repulsive, you need to readjust your
thinking. Many of us enjoyed the open and liberal atmosphere of college.
We learned to associate secrecy with acts that are illicit or unethical. But I
am not talking about coverups or clandestine operations. I am talking about
privacy. What you do in the bathroom is no secret, but it is private. The
same should be true of your checkbook and your company's customer list.

I am continually amazed at the inconsistent way most companies protect
their information. One company that I have had recent dealings with is very
closed about its other business relationships. But it maintains a visitors' log
in the lobby that I read with interest every time I sign in. Knowing who my
competitors are, and when they visit, has helped immeasurably in my
negotiations.

I have two guidelines for determining when to protect information:
• How much would I enjoy learning similar data from a competitor?
• How much did it cost me to acquire the information?
If either of these questions rings a bell, then I start locking the barn door
before it is too late.
11ro understand the importance of observing protocols, you should read
~Clifford Stall's "Stalking the Wily Hacker" (Sto88). It describes the
antics of an assailant, evidently somewhere in West Germany, who success
fully invaded dozens of computer systems over a one-year period. Some
unusually alert and responsible people at Lawrence Berkeley Labs caught
him in the act, then set about monitoring his actions while various law-en
forcement agencies cooperated in tracking him down. The intruder was
patently on the lookout for military information.

What is sobering about Stall's account is the ease with which the assail
ant found his way around a network of several hundred machines, and his
success rate in invading many of them. This was no War Games whiz kid,
nor any sort of computer genius. The assailant succeeded with a little
knowledge of common security gaffes in UNIX systems, and a lot of
persistence. Fully 13 per cent of all systems available to the assailant gave
at least some information about their operations. Five per cent let him log
in, and two per cent granted him system-manager privileges!

You should understand that UNIX is capable of being a reasonably
secure system. When you specify your password for subsequent logins, the
system does not save a copy of it in a file, as many earlier systems have
done. The best protected file can always be read by someone. Rather, it
encrypts your password using a scheme that is known to be very expense

54 Programming on Purpose

to invert, even if you know the algorithm. The encrypted password is stored
in a file that need not be protected from arbitrary readers. Whenever the
system requests your password, it encrypts what you type and compares
the result with the encrypted password. Plaintext versions of passwords
have a very limited lifetime.
1.rzach program runs in protected mode, so that it can perform certain
~operations (such as file 1/0) only via system calls that check access
permissions. The access permissions on each file can be set to prohibit your
altering any programs which have permissions beyond your own. Dennis
Ritchie was even granted a patent on the "set-user-ID" access protection,
which lies at the heart of the ingenious but simple UNIX protection mecha
nism.

There is no reason, in principle, why a UNIX system cannot be made
arbitrarily safe. In practice, however, users subvert the protections in a
number of ways. Stoll reports that 20 per cent of the passwords at LBL fell
to a simple guessing attack. I have found about the same ratio over many
years of working under multi-user systems. If I have to guess login IDs, I
begin with root, bin, and guest. I proceed with known users' sur
names, first names, and initials. For passwords, I try password, foo, and
bar. I proceed with login IDs, followed by names of children, spouses, and
pets, then license-plate numbers. I can usually score enough hits to acquire
a useful assortment of permissions.

I often find that just logging on to a UNIX system gives me all the access
permissions I need, because system managers are lax about limiting access
to critical files. If I can read the raw devices on which file systems are
written, I can read any file regardless of its protection. If I can write on a
file with set-user-ID permissions, I can replace it (temporarily) with my
own shell. If all else fails, there is usually a version of mail or emacs lying
about that I can subvert into corrupting a system file on my behalf. And by
judicious juggling of the login history file and the date command, I can
erase any tracks I make in my wanderings.

To the best of my knowledge, I am no more adept at cracking UNIX
systems than the wily hacker described by Stoll.
tft'\ne of the most adept assailants, naturally enough, is the guy who
"'7 developed UNIX. Read Ken Thompson's Turing Award Lecture, "Re
flections on Trusting Trust," (Tho84). He describes a marvelous double
Trojan horse that he insinuated into an early version of UNIX. Thompson
devised a simple change to the login utility that would let him bypass the
normal password check when logging on in a special way. He then replaced
that change in login with a special pattern of code, and altered the C
compiler to replace the special pattern with the desired change. Now you
could inspect the code of login and not see the Trojan horse.

Essay 7 Locking the Barn Door 55

To protect the C compiler, Thompson repeated the process. He replaced
the Trojan horse with another special pattern of code, and altered the C
compiler in a different way to replace the second special pattern with the
double Trojan horse. After one recompile, he discarded the intermediate
version of the C compiler. The final product was innocent-looking source
code for both login and the C compiler, and a perverted binary for the C
compiler.

As icing on the cake, the new C compiler source made use of one or two
small extensions over the previous version. I remember getting the source
of the new compiler and being annoyed that the old compiler balked at it.
A quick phone call to Murray Hill saved the day, however. Thompson
cheerfully agreed to send me the new binary (complete with double Trojan
horse) to help me convert to the new dialect of C. What a guy.

I have also been guilty of installing a Trojan horse in the UNIX login
command. Not being as subtle as Thompson, I used the purloined-letter
approach. You could stare straight at the new code in login and not see its
malicious purpose. Forgive me if I don't tell you what use I made of the
modified command. I also had occasion to augment a file-encryption utility,
so that it wrote to a secret file all passwords it used. That ploy gave me
legitimate access to some very useful information. And it taught me that it
is easier to steal keys than to pick locks.
~ow for the technology. You can often get adequate protection just by
»limiting access to your valuable information. No technology needed,
it's all protocol. If you must transmit information via public channels,
however, then you need to use some form of encryption.

The simplest scheme is called single-key encryption. Sender and receiver
agree on a method for mapping plaintext to a cryptogram. The encryption
must, of course, be reversible, so that the plaintext can be recovered by a
corresponding decryption mapping. Many methods take the form of a
generic mapping algorithm plus a variable key. Sender and receiver share
the key in secret.

The simplest of these simple schemes is also the best. It is the only one I
know that serious cryptographers agree cannot be cracked. The key shared
between sender and receiver is a thick pad of text. For each transmission,
the sender tears the top sheet off the pad and uses its text as the encryption
key. Each character of the cryptogram is a function of the corresponding
characters in the message and the key. If you represent characters by
numeric codes, such as ASCII for example, you can simply exclusive-OR
the key and message characters to produce the cryptogram character. You
can then decrypt the cryptogram by performing the same operation with
the same key. Because there is no redundancy in this "one-time pad"
approach, assailants have little to analyze.

56 Programming on Purpose

For shipping megabytes of information, however, this scheme presents
problems. You need some way to distribute megabytes of keys by some safe
channel, so why not use that channel to send the information in the first
place? It is clearly desirable to be able to use short keys, and to be able to
reuse keys. Much of the science of cryptography concerns itself with finding
safe ways to use short keys. (The rest concerns itself with subverting these
efforts.)

Julius Caesar used a simple encryption scheme which is still popular
today. The key consists of a permutation of the letters of the alphabet. You
encipher plaintext by replacing each letter with its corresponding letter in
the permutation. It is a simple scheme with just one principal drawback -
it is practically worthless.

Today this encryption scheme is used as an idle amusement. Most
collections of crossword puzzles come with a dozen or so cryptograms
encoded by simple letter substitution. Millions of people crack messages as
short as one sentence, using only a basic knowledge of English word
patterns and letter frequencies. If we amateurs can be so successful, you
have to wonder what the professionals can do when the stakes get high.

You can do a few things to help simple substitution codes. Since the letter
e occurs frequently, you can replace each e by randomly choosing from a
group of replacement sequences. You can drop in occasional noise letters,
such as the letter x in places where it obviously does not belong. You can
run the words together. All of these changes are fairly easy to unravel when
you decrypt the message, and interfere nicely with the normal fun of
cracking substitution ciphers.
7{f you want state of the art encryption, however, don't waste your time.
.nwith incremental improvements on a basically unsafe approach. The
best known technology for single-key encryption is the Data Encryption
Standard published by the National Bureau of Standards (NBS77). First
published in 1977, the DES algorithm has been the subject of intense
scrutiny by the best in the trade. To date, nobody has reported a successful
method of attack that does not involve an exhaustive search over nearly all
possible keys.

DES uses only a 56-bit key, which puts exhaustive search within the
realm of possibility for today's ever more powerful computers. But there
are various techniques for performing a sort of "lapstrake" encryption,
where encrypted text is fed back to confound the encryption process even
more. And you can always double encrypt with two keys to up the ante.

There are some who fear that NSA, or some other perennially suspect
government agency, knows how to crack the DES. These people are certain
that the government is encouraging the use of DES because it eases the task
of spying on the private communications of private enterprise. Personally,
I have an aversion to paranoid thinking. My anodyne to paranoia is: If

Essay 7 Locking the Barn Door 57

everybody's behavior can be explained by simple stupidity and greed,
there's no point in assuming a conspiracy. Besides, what are you doing to
attract the attention of NSA? If you're not, then you have nothing to worry
about. If you are, you have more to worry about than having your mail
steamed open.

DES is used widely to secure and authenticate electronic funds transfers.
You can buy chips that will encode a data stream using DES at a respectable
bit rate. You can buy library functions that will let your PC or your
mainframe speak DES as well. If you have private data that you must send
over public channels, my advice to you is to get on the DES bandwagon
now, before you lose any (more) horses.

The next step up in sophistication is to use two-key, or public-key,
cryptography. It is the topic of the essay that follows. (See Essay 8: Half a
Secret.) o

mfterword: People are becoming more aware of the need for confidentiality, but
.a.only slowly. Programmers are becoming more aware of encryption technolo
gies, but not much faster. I focus on the simplest technology in this essay, because
it is often sufficient. No point in putting a fancy lock on the barn door until you
get in the habit of closing the door behind you.

8 Half a Secret

~ne of my favorite Sunday comic strips, as a child, was "Uncle Remus."
"17This was a Walt Disney product, based on the delightful fables by Joel
Chandler Harris. I suspect much of the strip was contrived by the folks at
Disney Studios, not derived from Harris' stales, but the spirit of the original
was well preserved.

A particular favorite of mine among these strips concerned the on-going
rivalry between Br' er Rabbit and Br' er Fox. Br' er Rabbit was growing tired
of Br'er Fox stealing watermelons from his watermelon patch. One day, he
got a bright idea. He put up a sign in the middle of his watermelon patch.
It said, "Br' er Fox, you'd better not eat any of these watermelons, because
one of 'em is pizened." He reckoned that Br'er Fox wouldn't dare steal any
of the watermelons, for fear of eating the poisoned one.

Next day, he returned to his watermelon patch to find that no watermel
ons had been taken during the night. That was the good news. But scribbled
across the bottom of the sign was the addendum, "Now two of these
watermelons is pizened!"

I remember delighting, even as a child, in the elegance of the stalemate.
Each of these perennial connivers knew half a secret, which watermelon he
himself has poisoned. (Of course, either or both may have poisoned no
watermelons at all, or several of them. That scarcely altered the value of the
information each of them held.) Safe consumption of watermelons was
possible only if the two pooled their information. That gave Br'er Fox a
strong bargaining position with the luckless owner of the watermelon
patch.

In another essay, I described several clever techniques for solving prob
lems that seem impossible, at least at first glance. (See my essay, "Program
ming on Purpose: You Can't Do That," Computer Language, September
1988.) I ended that essay by alluding to a companion problem to Br'er
Rabbit's dilemma - how do you prove conclusively to somebody that you
know a secret, without revealing just what that secret is? In other words,
how do you tell half a secret? The fascinating technology of public-key
cryptography lets you do just that. By the sheerest of coincidence, that same
issue of Computer Language contains an overview of encryption systems, by
T.A. Elkins (Elk88). I recommend that you read it.

59

60 Programming on Purpose

In the previous essay, I discussed at some length the ways in which
information has value. (See Essay 7: Locking the Barn Door.) I also de
scribed some of the ways you can protect your valuable information:
• by keeping it secret
• by encrypting it with state-of-the-art techniques
• by honoring the necessary protocols to ensure that neither secrecy nor

encryption are compromised
I continue that topic in this essay by discussing public-key encryption.
11rhe people who thought up public-key encryption are W. Diffie and M.E.
"11Hellman. They wrote a landmark paper called "New Directions in
Cryptography," (D&H76). In that paper, they explored what you could do
if you could, indeed, split a secret in half. Half the secret is how to encrypt
a message. The other half is how to decrypt it. If you could devise a scheme,
the authors argued, whereby the encryptor could not decrypt messages and
the decryptor could not encrypt messages, all sorts of interesting problems
in authentication and secure communication could be solved.

Diffie and Hellman offered some suggestions for how to pull off such a
trick, as did others. Over the years, however, many of the methods pro
posed for partitioning secrets have succumbed to the intense analysis of
code breakers. One of the best survivors, to date, is called the RSA crypto
system, in honor of its authors, R.L. Rivest, A. Shamir, and L. Adleman
(RSA76). Before we get into the various uses for public-key cryptosystems,
let's look at how the RSA approach works.

One good way to curdle numerically encoded information, so that it is
hard to read, is to exclusive-OR it with an encryption key, as I discussed in
the previous essay. You get the information back by repeating the exclusive
OR operation with the same key. Still another way is to raise each code
value, x, to some power, E, then reduce the computed value modulo some
base, N. The effect is much like flicking the spinning arrow on one of those
children's board games. Even if the arrow head sweeps through an arc of
predictable length, where it ends up pointing around the circle is hard to
correlate with where it started out. You can take a numerical sequence of
codes and end up with a sequence of encoded values that are distributed
with a satisfying pseudo-randomness.

You get particularly satisfying results if the code value and the base N
are relatively prime. That is, they have no common factors other than 1. Or
to put it in terms of the greatest-common-denominator function (GCD):

GCD(X, N) = 1

Whether you add X repeatedly to a running sum, or multiply x repeat
edly into a running product, you tend to get sequences that repeat no values
until you have iterated N times. Such behavior is not always essential to
good encryption schemes, but it helps to confuse matters.

Essay 8 Half a Secret 61

11ro decrypt information encoded this way, you have to spin the arrow
\C.llagain in such a way that it ends up where it started. For a code value
raised to the Eth power, you can find the Eth root (modulo N, of course). Or
you can compute the logarithm and scale it appropriately (again modulo
N). It would be nice, however, if you could raise the code value to still
another value, D, reduce it modulo N, and obtain the original code value.
That has the advantage of using the same machinery for decryption as for
encryption. It also means that either exponent can be used as the encryptor
and the other used as its corresponding decryptor, since any value raised
to the D*E power equals the same value raised to the E*D power.

It may sound expensive to take on an encryption scheme that involves
all of this exponentiation. Certainly it is more time consuming to perform
multiplies than to perform exclusive-OR operations. But the cost need not
be outrageous. The standard way that library functions raise X to an integer
power E takes time proportional to the logarithm of E. In other words, the
number of multiplies you have to perform is proportional to the number
of bits needed to express the value of E. In pseudo-code:

pow(X, E)
ans := 1
FOREVER

IF (E & 1)
ans *= X

E /= 2
IF (E = 0)

RETURN (ans)
x *= x

The trick is to build just those binary powers of X that might contribute
to the final result. Along the way, you fold into the result, ans, just those
binary powers of x for which there are corresponding 1 bits in the exponent
E. Note that the two in-place multiplies above, signaled by the operator*=,
should be performed modulo N for this particular application.
m more important matter is, do such pairs D and E exist, for a given N?
.:cl.Certainly they do if you choose N to be the product D*E. Pierre de
Fermat showed over three centuries ago that any positive prime number
you can write (modulo N) when raised to the Nth power (modulo N) equals
itself. So, for instance, you could represent a 64-character alphabet with the
code values 1through64. If you pick D=S and E=l3, you get N=65, which
can represent all of the code values. You encipher each character by raising
its code value to the 13-th power (modulo 65). You decipher each character
by raising the cipher value to the 5-th power (modulo 65).

Of course, this yields just another one-for-one substitution code. We
dispatched those as incredibly weak in the previous essay. You can salvage
the approach, however, by picking D and E much larger. Then you encrypt

62 Programming on Purpose

large blocks of text all at once and smear many adjacent characters into the
same ciphertext. The numeric value you encode is the large number you
get by treating the individual characters as digits, base 64. You might use
the leftover zero code as a padding character, both for filling out short
blocks and for insinuating occasional nonsense in the message stream. This
is comparable to the old practice of peppering extra Xs in a message to
disrupt the expected patterns of English text. The padding characters are
easily filtered out when you decrypt the message.

So we know that it is possible to find triples (N, D, E) that can provide
separate encryption and decryption keys. Unfortunately, the particular
scheme I just outlined does not chop the secret in half. You have to know N

and E to encrypt a message. Knowing those two values, it is an easy matter
to determine D. It is simply N/E. We need a sneakier way of picking the
triple so that:
• you can't easily deduce D given only N and E

• you can't easily deduce E given only N and D

• you can nevertheless easily contrive the triple
The first two requirements are met by what are called one-way functions.

These are functions that are reasonable to compute, but very unreasonable
to invert. The Data Encryption Standard I described in the previous essay
(NBS77), like any good enciphering algorithm, is a one-way function. There
is no easy way to look at the ciphertext, in the absence of the encryption
key, and determine either the plaintext message or the key.

The third requirement is met by what is called a trap-door one-way
function. This is a function that you can easily invert, but only if given some
extra bit of information. Naturally, you keep this extra information secret.
The nice thing about the use of the trap-door here is that the secret need
not be shared between encryptor and decryptor for the two to cooperate in
exchanging secret messages.
11T"he RSA approach takes advantage of several properties of prime num
"'1lbers and modulus arithmetic. I won't go into all of them, because I don't
intend to prove that the cryptosystem is correct. I just want to describe how
it works. See the May 1988 issue of the Proceedings of the IEEE for a number
of excellent articles on cryptology. There you will find all the mathematical
backup you could possibly want. I leaned heavily on that issue in writing
this essay, particularly James L. Massey's, "An Introduction to Contempo
rary Cryptography," p. 533 (Mas88). See also Martin E. Hellman's, "The
Mathematics of Public-Key Cryptography," in the August 1979 issue of
Scientific American (Hel79).

In the RSA cryptosystem, you determine two large primes, called p and
q. You keep these primes secret. What you use for the base N is their product,
p*q. You then pick a candidate value for D, which must be relatively prime

Essay 8 Half a Secret

rsa_J>air(D, p, q)
bp := 0
b := 1
c := (p-l)*(q-1)
d := D
FOREVER

q := c/d
r := c % d
IF (r = 0)

IF (d <> 1)
<error>

ELSE IF (b < 0)
RETURN (p*q - b)

ELSE
RETURN (b)

t := bp
bp := b
b .- t - q*b
d := r
r := q

Figure 8.1: Pseudo-code to determine an RSA key pair.

63

to (p-1) * (q-1) . The corresponding value for E is then the unique value
for which D*E has the value 1, modulo (p-1) * (q-1). Given p, q, and D,
you can determine E by an extension of the standard algorithm for com
puting GCD. I adapted the pseudo-code in Figure 8.1 from Don Knuth's
The Art of Computer Programming, Volume 1, p. 14 (Knu68).

This code reports an error if D is not relatively prime to N. Otherwise it
returns the value of E that corresponds to D. For the example above, with
p=S and q=l3, you can use this algorithm to determine the four (D, E) pairs
(5, 29), (11, 35), (13, 37) and (19, 43). There are also seven other candidate
values: 7, 17, 23, 25, 31, 41, and 47. These form pairs with themselves, such
as (7, 7), which may not be a wise choice.

The "trap door" here is knowing p and q. You need them to determine
the critical modulus (p-1) * (q-1) that relates D to E. You can in principle
determine p and q from the published value of N, which is p*q. But to do
so requires you to factor a very large number.
(7Y modern supercomputer takes about a day to factor a 250-bit number .
.Q.For every 50 bits you add, the time required goes up about tenfold.
Considerable attention has been lavished on the problem of factoring
numbers (inspired, in part by RSA). And the price of computer power has
dropped impressively over the past decade. Nevertheless, there is no
serious hint that we will need values of p and q with more than a few
hundred bits to make codes that are safe for the foreseeable future.

64 Programming on Purpose

One technical problem remains. How do you determine the large primes
p and q, if it is so expensive to factor very large numbers? The answer is
that you only have to be reasonably certain that p and q are primes, and
you can determine that certainty to whatever degree you wish. In the range
of numbers we are talking about, approximately one per cent of all odd
numbers are prime. So what you do is guess an odd number, X, at random.
Then guess about a hundred or so numbers less than X and see if each of
them obeys the theorem of Fermat's that I mentioned earlier. If all hundred
odd guesses pan out, you are virtually certain to have guessed an X that is
prime. Otherwise, go back and guess again. Within about a hundred
guesses for X, you should strike a prime. So you see that it is much easier
to determine that a number is quite likely to be a prime than it is to prove
that the number is definitely not a prime by factoring it.
.0:... o what can you do with this elegant machinery? First of all, you can
e:1'forget about replacing your DES applications with RSA. It is much
slower. Instead, you should consider distributing the secret keys you need
for DES via a channel protected by RSA. That takes best advantage of the
respective strengths of both methods.

The nice thing about RSA, in fact, is that you can freely publish the pair
(N, E) for both friends and enemies alike to peruse. Your friends can encrypt
messages that only you can decrypt. You still have the problem, in the
presence of thine enemies, to authenticate any messages sent your way.
Remember that information forged, corrupted, or lost can be just as dam
aging to you as valid information that falls into the wrong hands. Public
key encryption doesn't make this problem any worse, only more apparent.

Every message that might be forged needs some form of signature
(discussed below). Every message that might be corrupted needs enough
redundant structure (also discussed below) so that any corruption is likely
to be detected. Every message that might be lost needs a deadline, sent in
an earlier message.

Your friends also have an obligation to compose messages that don't leak
information in subtle ways. Say, for instance, you are expecting a simple
yes or no answer. Your enemy can use (N, E) to encrypt the messages yes
and no to see what they look like. When he sees your friend send a
cryptogram that matches one of these simple patterns, he knows the answer
without having to decrypt anything. Remember that even the mere presence
of a message can convey information. There's much to be said for padding
a communication channel with baseball scores and idle chit chat.

You can publish instead the pair (N, D). Any cryptogram you send out
can then be decoded by the world at large. But only you can contrive a
cryptogram that decodes properly for a given (N, D). That's one way of
proving, electronically and from afar, that you are who you say you are.

Essay 8 Half a Secret 65

Ao, you don't simply encrypt a static message such as, "Hello world. My
»name is Joe." Once you send that, anybody can copy it and present it
as your forged signature. Instead, you encrypt part of the accompanying
message, or the current date and time, as proof that you can repeat your
magic trick on demand.

Say you have a file of information that you wish many people to peruse.
But you want to protect your friends from an enemy corrupting the con
tents of the file. A checksum over the file can determine whether its contents
have been altered, but an enemy can change the checksum to match. So you
encrypt the checksum by your secret pair (N, E) and advertise the pair (N,
D). Your public can decrypt the checksum to validate the file. But your
enemy cannot forge a valid cryptogram with a new checksum.

Someone has even worked out a way to use the RSA cryptosystem to
help verify treaty compliance (Sim88). Imagine a seismograph provided by
the U.S. to monitor nuclear testing within the Soviet Union. The U.S. wants
to receive telemetry with some assurance that the Soviets are not altering
it in any way. The Soviets want to be sure that only seismic telemetry is
being sent out. Both sides have a stake in being able to demonstrate
noncompliance to a disinterested third party. The solution involves stuffing
a computer down the bore hole, along with the seismograph, so that the
instrument can concoct its own triples (N, D, E). Beyond saying that, I won't
even begin to describe how all the protocols hang together. But it's neat.

I believe we have only begun to think of ways that public-key cryptog
raphy can be used in our everyday affairs. Already there are credit cards
with logic and memory sandwiched inside. I have no idea how far we are
from having cards that can use RSA to prove they are not forgeries, but I'll
bet it's closer than you imagine. That should either elate you or frighten
you, depending on whether you're an optimist or a pessimist. Either way,
it's exciting.
ms an occasional writer of speculative fiction, I can't resist a creepy
.a.addendum. It is clear to me that the current methods of personal
authentication are becoming strained. Too many people are adept at crib
bing credit-card numbers, forging signatures, impersonating voices, or
imitating appearances. The technological choices on the horizon for safer
authentication involve matching fingerprints, matching retinal patterns, or
public-key cryptography.

Imagine a near future where these technologies compete for dominance
of the growing commercial authentication market. Imagine trying to ex
plain such a future in terms understandable to a person living before the
age of high tech. Now consider the description of the "beast" that conquers
the world for a time in Revelations 13:16-17:

And he causeth all, both small and great, rich and poor, free and bond, to receive
a mark in their right hand, or in their foreheads.

66 Programming on Purpose

And that no man might buy or sell, save that he had the mark, or the name of
the beast, or the number of his name.

Before you send me any tracts, please understand. I am neither preach
ing the coming of the Anti-Christ nor making fun of St. John the Divine.
Having been raised in the hills of West Virginia, then later trained as a
nuclear physicist, I try to keep an open mind on these matters. If any of this
makes you feel queasy, however, you can take some comfort in the verse
that follows:

Here is wisdom. Let him that hath understanding count the number of the beast:
for it is the number of a man; and his number is Six hundred threescore and six.

At least we know how to charge things to his Visa account. o

mfterword: Public-key cryptography is one of the more sophisticated topics I've
x:itried to cover in these essays. I introduced an error or two in the original version
(corrected in this presentation). I ruffled a few feathers with my biblical excursion
at the end. And I dated the essay more than I ever expected by discussing Cold War
applications. But all in all, I'm happy that I handled a difficult topic without
compromising the facts.

9 It's (Almost) Alive

?ll?flthen I was about ten years old, I sat down one day and made a list of
~all the things I wanted to learn about. It was a long list. Three topics
stood out at the top of the list, however:
• Cybernetics - I wanted to understand the mechanics of how people

think, and the discipline that would help us replicate thought and think
more clearly ourselves.

• Computers - I wanted to understand the mechanics of how computers
work, and the discipline that would help us use them more effectively.

• Natural philosophy - I wanted to understand the mechanics of how
the real world operates, and the discipline that would help us more
quickly discover and understand natural laws.

These three topics are mushed together in my brain in ways that I cannot
yet articulate well. Somehow, I see them as different manifestations of the
same fascinating topic.

In my freshman year at college, I realized I would have to trim my list,
at least for the time being. Princeton only let me take five courses per
semester. So I struck from my long list all those topics that I felt I could
satisfactorily address later in life merely by spending a few thousand hours
pawing through library card catalogs and reading into the night. That took
care of history, literature, philosophy, and a few branches of mathematics.

My top three items remained on the list, however. I trimmed the short
list with a cold-bloodedness that I find, with hindsight, almost terrifying in
a seventeen-year-old:
• Cybernetics was still in its infancy. I would defer serious study of it until

others had laid more groundwork. I am still waiting.
• Computers were just becoming available on campus, but there were no

computer science courses in those days. I could learn enough simply by
working as a programmer a hundred hours a week during the summer
and thirty hours a week during the school year.

• Natural philosophy required me to exercise skills at which I am not very
strong. I got mostly Bs, with an occasional A or C, in math and physics
courses. So the obvious thing to do was to major in physics and have the
stuff forced down my throat. I earned a Bachelor of Arts in physics at
Princeton and a Doctor of Philosophy in nuclear physics at Michigan
State. (And I haven't done a lick of physics since the day I took my orals.)

67

68 Programming on Purpose

7{ recite this history not to brag, but to show how you can turn an
.:.nundisciplined ne'er-do-well (like me) into a yuppie over achiever.
There's nothing like the joy of playing with expensive toys (computers) and
the terror of final examinations (in physics) to keep your attention focused.

I also recite this history by way of introduction to an essay whose focus
I cannot well articulate. Recent progress in these three separate fields has
created a growing number of bridges between them. I feel a growing
excitement that we are close to achieving a new level of understanding
about how people think and how we can reflect those thought processes in
software and hardware.

I freely confess to general ignorance about the current state of the art in
artificial intelligence. (What I am maundering about isn't exactly artificial
intelligence, but that's the closest discipline to it that has been actively
pursued, at least until recently.) What I know I have learned from reading
the trade press and popular literature, not from writing Lisp and Prolog
programs.

Nevertheless, like any other Philistine, I know what I like. It seems to me
that the recent progress in AI has resulted primarily from the astounding
drop in the cost of raw computer power. The same paradigms that investi
gators pursued twenty years ago still dominate the field today. If there have
been significant breakthroughs in the algorithms used to model human
intelligence, I have yet to see the payoff in their application. My focus is a
little outside the AI spotlight (as I understand it).

To clarify this focus, I would like to again go back in time to my days as
a graduate student. I encountered then three computer programs, each of
which offered tantalizing hints about the peculiar nature of living things.
Bear with me while I recount these anecdotes.

Interestingly enough, all three programs were written by one person.
John Kopf was (and remains) a close friend and fellow programmer who
masqueraded for a time as a physicist. He is currently a senior staff scientist
at a company in Cupertino CA. In those days before structured program
ming, John was a remarkably disciplined assembly-language programmer.
He also had a peculiar gift for making programs come alive.
~n one occasion, the MSU Cyclotron Lab played host to some visiting
~biologists. The laboratory director asked John to provide a demonstra
tion of our little on-line computer (one of the first in physics research) that
a biologist could relate to. John responded by making a DNA molecule out
of a yard of paper tape. If you stuffed the strip of paper tape in the reader
and hit the bootstrap switch, the computer would read in the head of the
tape and transfer control to it. The head consisted of a small program which
copied itself to the paper tape punch, then copied the tail from the reader
to the punch. Voila, reproduction.

Essay 9 It's (Almost) Alive 69

John demonstrated his little DNA program and let the visitors turn out
half a dozen replicas. It was cute, but rather trivial. They got the point very
quickly. But the real fun began when John handed a visitor a hole punch
and asked him to "mutate" a DNA molecule. The results were fascinating.

Chances were that a random hole would end up in the tail, since it was
much longer than the head. If the hole was in a data track, the bad parity
light would come on during the read, but the change took effect. It appeared
in the daughter molecule, with the parity corrected. The daughter molecule
produced future generations with the same mutation (and no parity
gripes). If the hole was in the parity track, the bad parity light would again
come on, but the change disappeared. The genetic damage was repaired
during reproduction!

If the visitor punched a hole in the head of the molecule, it could almost
never reproduce. A parity hole was corrected, as with the data tail, but any
other change would alter the program. And the program was so tightly
written that any change at all would alter its behavior unacceptably.

People who work around radiation know how silly are most of those
sci-fi films that center around mutated monsters. Sterility is the most likely
result of random damage to the reproductive machinery. And it is an axiom
of genetics that sterility is not hereditary. John's program did a marvelous
job of illustrating the behavior of life at its lowest levels. We used up several
hundred feet of paper tape getting educated that afternoon.

11rhe second program was almost as simple as the DNA molecule. John
\CJlread an article (in Scientific American, as I recall) about a random
sentence constructor. You fed it short lists of nouns, verbs, and adjectives
and it followed the basic rules of English to construct well formed but silly
sentences.

The program John wrote was a sort of automated Mad Lib generator.
Depending upon the vocabulary you fed it, it was as insulting, profound,
or licentious as you wanted to make it. Unless you have a preadolescent
fondn~ss for Mad Libs, such games get old after a short time.

What made the program interesting to me was a combination of two
factors. First, it was capable of generating recursive structures, such as "The
book that you ate is humble." And second, John put a fairly shallow stack
in the program. On stack overflow, the program simply emitted a despair
ing" ... fooey!"

As a result, about one sentence in 50 would degenerate into Teutonic
convolutions, then terminate the whole exercise with admirable impa
tience. It was heart warming to see such utterances as, "The computer that
the byte that a diode that ... fooey!"

Many years later, I learned from Larry Constantine why I found the
program's behavior so endearing. Larry showed me a sentence that proves

70 Programming on Purpose

that we carry only a limited push down stack around in our heads. It reads,
"The girl the boy the dog bit hit cried." I believe this sentence is discussed
in Yourdon and Constantine's Structured Design (Y&C79), but I can't locate
it now.

If I tell you about a boy the dog bit, you can understand me. If I tell you
about a girl the boy hit, you can understand me. But if I pack both
appositions into one sentence, you suffer stack overflow and get lost. Even
Germans, who exercise their push-down stacks heavily in everyday speech,
seem to let the leftover gewesens and wardens sort of trail off in idle
conversation. They reserve their pride in recursive exactitude for written
essays.

I found it humbling to learn that I was just as limited in some ways as a
program that could be represented in a few kilobytes. I also found it
pleasantly surprising to see a very human trait - impatience - modeled
so simply.
11T"he third program of the Kopf suite was by far the most complex. John
\tllread yet another article (again in Scientific American, as I recall) on a
program that could play checkers. By today's standards, the strategy was
pretty naive. It had a simple board evaluator and a move generator that
could look ahead only a few moves. There was no tree pruning.John coded
it up quickly to demonstrate our newly acquired display scopes.

Had he done it right, he would have produced a program that played
mediocre checkers and dragged out its inevitable loss with tedious insis
tence. Instead, John inadvertently wrote a program with two significant
bugs.

The first bug lay in the min/max algorithm for deciding which move to
make. It was supposed to pick the move that would give the computer the
best future position assuming that the human opponent was doing his or
her level best to defeat it. Instead, the program essentially assumed that the
human opponent would make a colossally stupid move at every opportu
nity. As a result, the program itself made colossally stupid moves, one after
the other. Young children took particular delight in playing a much vaunted
computing machine and beating the pants off it.

And that exposed the second bug. John forgot to program for the
eventuality that the program might lose. When defeat became inevitable
the program misbehaved in an utterly charming fashion. It would cheat.
Frequently, it would jump its remaining checker to some random position
of temporary safety. I once saw it flood the board with its own kings. If you
think kids liked beating a computer fair and square, you should have seen
their delight when they drove it to cheat.

Essay 9 It's (Almost) Alive 71

I don't recall whether John ever fixed the bugs in his checker program.
There was a strong lobby against any such interference. I do recall that the
buggy version was a mainstay among demo programs for some time.

I also recall being once again struck by how an irrational program
appeared so much more human than the various sophisticated attempts at
modeling the best of human reasoning. And even though it was more
complex than the sentence generator, John's checker playing program was
still astonishingly simple to simulate human behavior so well.
7{ suspect that what made me remember this trio of computer programs
;.nwas a recent presidential election campaign. Nothing underlines the
basic irrationality of human thought half so much as watching reasoned
arguments repeatedly fall before a well orchestrated emotional appeal. We
are repeatedly assured that rational thought is of paramount importance
in picking our nation's leaders, but the campaign managers charged with
getting candidates elected know better than to count on (or worry about)
that.

Before you assume that I have something against your favorite candi
date, let me assure you that I am talking about the whole process, not
specific individuals. If some were more successful than others at subverting
reason in the selection process, it was not because the others weren't trying
much the same tactics.

The next thought that probably springs into your head is that I am
indulging in the usual elitist bleatings about the incompetence of average
folk to determine their own government. Far from it. I firmly believe that
democracy is our best shot at good (or adequate) government, and that
people usually choose the government that is right for them, whether
vociferous individuals concur or not.

I believe we are wrong to lament a lack of reason where we have no
reason (!) to expect it in the first place. Who says that being logical is a
survival trait? All that nature requires of a species is that it survive. No
brownie points are handed out for doing it a certain way. Whatever it is that
human beings have been doing with their much vaunted intelligence for
the past million years has demonstrably worked. For whatever reason.

1~ertainly being intelligent in our society has only limited benefits. "If
~ou're so smart, why ain't you rich?" is a common challenge, and a
legitimate one. If anything, there is considerable evidence that people
skilled in rational thought don't land the most desirable mates or the best
paying jobs. That other set of skills we call common sense or street smarts is
at best loosely correlated with logic.

On the other hand, what has kept us ahead of other life forms (by some
metrics, at least) for the past million years may not be adequate to see us
through the challenges of our successes. If we quadruple the current human

72 Programming on Purpose

biomass, overheat the planet, or detonate but a fraction of our nuclear
arsenal, you may not like what passes for human survival in the years that
follow. If triumphs of reason gave us the technology to get into this narrow
strait, many argue that only a more consistent exercise of reason will get us
out of it.

So to summarize:
• We shouldn't confuse thinking with logical reasoning.
• Whatever we do that passes for thinking has kept us going this far.
• Rather than fret that we are either too logical or too emotional, we need

to learn how to balance the two and to be better at both.
?'11?11.t hat Kopf' s trio of programs suggest to me is that the calculus of
~thought is probably not as complex as we have tended to view it. I
feel that there is such a calculus, that it is knowable, and that it is reproduc
ible. Looking for the roots of that calculus in logic is probably not fruitful.

I see lots of evidence that the outcome of our thought processes has
almost as much to do with the current chemistry of our blood as the neural
networks so carefully laid down by nature and trained by nurture. Think
ing that is slow and error prone when we are tired comes easily the next
morning. A donut or a cup of coffee does more than satisfy hunger pangs.
Some of us get buzzed sufficiently by carbohydrates and chocolate that we
can just say no to stronger ways to edit our moods.

The exciting thing to me is that researchers are forming links between
physics and life at all levels of abstraction, from the workings of DNA to
the beating of a heart to the development of artistic creativity. Almost every
issue of Physics Today now contains some mention of the order to be found
in the chaos of life, or the living chaos available in the most ordered of
systems. And a colleague just showed me Artificial Life: The Proceedings of
an Interdisciplinary Workshop on the Synthesis and Simulation of Living Systems
Held September, 1987 in Los Alamos, New Mexico, edited by Christopher G.
Langdon (Lan89).

You can see the ferment in the popular press as well. A recent issue of
the Boston Globe (January 16, 1989) contained the following articles:
• "Scientists link attitude to course of AIDS," by Richard Saltus, on p. 3

(Sal89)
• "A paradox of the body: Order may be unhealthy," by David L. Chan

dler, on p. 4 (Cha89a)
• "Fractals: Out of the studio, into the lab," by David L. Chandler, on p.

45 (Cha89b)
• "A glimpse of how mind produces art," by Tom Valeo, on p. 45 (Val89)
Each of these articles deals with a different aspect of the confluence be
tween cybernetics, computability, and physics.

Essay 9 It's (Almost) Alive 73

7{f we can better understand how we really think, then we are in a better
,;n position to program (or wire) computers to think as well. It will probably
still require gigabytes and kilo-MIPS just to sort garbage. And I fully expect
thinking machines will make mistakes and get moody, but what the heck.
That has to be better than balancing parentheses in a gigantic Lisp program.

If we can better understand how we really think, then we will almost
certainly begin to do a better job of it. If you dig your well downhill from
your latrine, you are likely to get sick more often than if you separate the
two properly. That is now obvious to us, but it became common knowledge
in Europe only about a thousand years ago. We need the same improve
ment in collective mental hygiene now that we saw in physical hygiene
back then.

It just might trigger another renaissance. o

f?rfterword: I didn't know where I was going with this essay until I got there.
;a.Finally, I realized I was making a plea for a broader, and simpler, view of
artificial intelligence. Artificial rationality has its uses, to be sure, but I somehow
suspect that reason and survivability are distinct skills.

1 0 The (Almost) Right Stuff

?11711.te all strive for perfection. It is the elegant algorithm that wins our
~hearts, the super performer who wins our admiration. In our culture,
it sometimes seems like there is no credit to be earned for near perfection,
no glory in being second best.

Yet much of the world must be less that perfect, almost by definition. We
muddle through with approximate theories. We win many a ball game with
the second string. It's nice to have "the right stuff,'' like Tom Wolfe's
characterization of the original seven Mercury astronauts. But most of the
time we get the job done with the almost right stuff.

By long-standing tradition (this is the third year in a row), I have
celebrated the month of April by criticizing the shortcomings of other
people's designs. What better way to honor April Fool's Day, said I, than
to shine a harsh light on the follies that haunt the most successful designers
of computer software and hardware?

In the process of gathering also-rans for this year's essay, however, I
found myself drawn to more abstract themes. There are no names to be
named this time. I also found myself being more tolerant of ideas that have
proved to be less than perfect. Perhaps I am mellowing in my old age.

For whatever reason, I'd like to share with you several approximations
to perfection that have demonstrated redeeming social value over the
years. You can look on it as my contribution to a kinder and gentler April
Fool's Day.
'lf et's start with a few numbers that are almost right. The one you're
J4doubtless the most familiar with is the number hiding behind that
upper case "K" you see in all those ads for computer memory. When
computer types talk about 640K of memory, you know and I know that they
really mean 640 x 1,024 bytes, or 655,360 bytes of memory. The K is cribbed
from the table of standard prefixes of the International System of Units (SI).
It indicates a multiplier of 1<>3, or 1,000. That's not exactly 1,024, but it seems
to be close enough to satisfy most of us. We must consider it an amusing
accident of nature that 210 is so close to 1<>3.

It doesn't hurt that you get an extra 24 bytes with every K you buy -
I'll bet if the actual number were less than 1,000 all of those ads would have
to carry tiny footnotes warning us unsuspecting consumers of the shortfall.
(How about something like, "Memory is sold by weight. Contents may
settle after packing.") I have no idea who first commandeered the K. As far

75

76 Programming on Purpose

back as I can remember, it has been in common usage among computer
types.

What I find interesting is that the error builds as you piggy back on ever
higher SI prefixes. A 2.4 per cent error around a thousand grows to 4.9 per
cent around a million. Yes, we cribbed the "M" for mega from the same
source as K for kilo. We are all happy to get a five per cent bonus in disk
space, or even memory space with today's megabyte desktops. We are even
happier to get a 7.4 per cent bonus on a gigabyte of storage, cribbing the
"G" for giga to represent 230 as almost the same value as 109•

I wonder at what level will the purveyors of huge storage devices feel
compelled to emphasize the bonus. Here is the current table of SI prefixes
and the associated errors in approximating powers of two:

Prefix Symbol Value Error
kilo K 103 2.4%
mega M 106 4. 8
giga G 109 7. 4
tera T 1012 11. 0
peta P lOu 12.6
exa E lOa 15.3

Perhaps it will be a non problem. By the time you see exabyte add-on drives
advertised in the back pages of Computer Language for a mere $new 5,000,
none of us will be in a mood to sweat an extra sixth of a billion billion bytes.
It's close enough.
7{ can't help drift away from computers a bit while on the subject of almost
..lJright numbers. One of my favorites is the remarkable coincidence that
27112 is very close to 3/2. That coincidence is why there are twelve different
notes in every octave on a piano keyboard.

Here's why. The simplest harmony you can make with a musical note is
to double it. That harmony is so basic that we assign the same letter name
to all notes obtained by doubling a given frequency. Middle C is 256 Hz
(cycles per second), the next C up is 512, and so on. The next simplest
harmony is the frequency that is 3/2 that of your starting note. (It is called
a fifth for ancient reasons.) In the scale starting at C, G meets this require
ment. You will find that many of the simple, happy melodies of Western
music are rooted deeply in C/G-type harmonies.

But what if you want to start with G and make a simple harmony? Then
you need a note at 3 /2 the frequency of G, which happens to be D. Start at
D and you need to add an A. In principle, you would need an infinite
number of notes to complete this sequence. In practice, however, you can
do an adequate job with a very finite set.

If instead of making G 1.5 times the frequency of C you set it at 27 m, you
introduce just a tiny error. The error is about one part in a thousand, which

Essay 10 The (Almost) Right Stuff 77

is hard for even a trained ear to detect. It certainly does not jar. Continue
adding notes at this ratio (halving frequencies from time to time to stay in
the same octave) and the series closes on itself. Since 7 and 12 are relatively
prime, the series closes after you have produced 12 distinct notes.

Each of the notes lies at a frequency 21112 above its lower neighbor, about
5.95 per cent higher. Among the twelve notes you will find reasonable
approximations to the seven notes of the traditional Western harmonic
scale - CDEFGAB. (Now can you guess why the interval from C to G is
called a fifth?) None are perfect, but all are close enough not to jar the ear.

This scheme of tuning an instrument is known as well tempering. It lets
you play music written in any key without having to retune the instrument
when you shift keys. It has been known since the time of Bach, who wrote
The Well Tempered Klavier as a sort of promotional for the scheme. (There are
twelve preludes and fugues, each pair written in a different key.) Perhaps
this explanation of well tempering will help you see why music has such
an appeal to the mathematically inclined, including many good computer
types I know .
.0.... till one more diversion, this time from the world of astronomy. It is well
e:vknown that there is a North Star, a.k.a. Polaris, but there is no South
Star. It is less well known that Polaris is not exactly at due north. My copy
of Norton's Star Atlas puts it at declination 89 degrees, 2 minutes, almost a
full degree off due north. Nevertheless, it is close enough to true north that
we are happy to call it the North Star, even though it moves in a circle about
the pole whose diameter is about four times the width of the full moon.

The interesting exercise is to use this data to estimate the number of
visible stars in the sky. We have as samples two circles each about a degree
in radius. Each of the circles covers about one ten-thousandth of the area
of the sky. Within these two circles lies a grand total of one star. Ergo, we
would expect to see about 5,000 visible stars spread over the entire sky. And
indeed, that is approximately the generally stated figure. (It's not easy to
be exact, what with the tremendous variation in viewing conditions.)

So once again we have a number (the number of pole stars) that tells us
as much about the people who use it as it does about the universe being
observed. Human's can't feel a 2.4 per cent counting error well enough to
sweat the difference. They can't hear frequency errors well enough to
complain about the compromises made by piano tuners. And they can't see
a one degree error well enough to dethrone Polaris. All three numbers are
arguably close enough.
~ow let's get closer to home. A pet peeve of mine in language design is
»the length of identifiers (names) that a language should support.
Implementors have been known to pick rather small upper bounds, rang
ing from an obscene low of one character (BASIC), to a miserly six-ish
(FORTRAN, early C), to a fairly generous 30-ish (COBOL, PL/I). Purists

78 Programming on Purpose

repeatedly insist that there should be no limit whatsoever on the length of
identifiers. The question is, how do you pick a reasonable number as a
compromise when one of the values you must weigh is infinite?

When X3Jl 1 was standardizing C, I argued repeatedly (and successfully)
for picking a finite limit for name length. Implementors are, of course, free
to support names longer than the limit, but users are cautioned that some
implementations may support names no longer than the limit. (This is
another one of those treaty points that make up much of a language
standard. It is the meeting place between producers and consumers.)

The limit X3Jll agreed upon was 31 characters for internal names. (We
reluctantly retained the long-standing caveat that existing assemblers and
linkers may impose a 6-character, 1-case limit on external identifiers, but
that is another story.) We felt that 31 characters was long enough to
encompass nearly all sensible names created by human beings in the course
of writing computer programs. The idea was to pick a limit which was
essentially infinite, yet still finite enough to protect implementors from the
trouble makers.
11T"rouble makers come in two guises, in the world of programming
"'11languages at least. There are the amateurs, who literally stay up nights
looking for gotchas so that they can write arrogant letters to standards
committees. This tribe delights in keeping responsible adults busy sifting
through trivia. (They also keep us honest, and make sure we dot the "i" s
and cross the "t''s, so what the hell.) There are also the professionals.

The professionals write verification and validation suites for languages.
Serious customers buy these suites and insist that vendors pass all their
tests before they will shell out good money for the language implementa
tions. It doesn't matter how beautiful a job you do as implementor, if you
happen to fail three esoteric tests in a validation suite. You will be stigma
tized for those three failures, your successes forgotten. Professional imple
mentors quickly learn to tune their products for the extant validation suites
at whatever cost, just to stay in the ball game.

So what happens when a language imposes no limit on the length of
identifiers? The answer is simple. The author of the validation suite picks
a comfortably large length (or uncomfortably large length, from the imple
mentor's viewpoint) and writes a test to see if identifiers of that length are
accepted. Where the standard is silent, the only voice heard is that of the
validator. The net effect is that the most popular validation suite becomes
the de facto standard in this area. All customers look for the tested name
length and all smart vendors work to that specification.

The Pascal and Ada standards took the route of requiring arbitrary
length names. Their respective validation suites defined the finite enforced
limit. I have seen repeated references in the literature to those finite limits
as being the defined limits for identifiers in these languages. Nobody

Essay l 0 The (Almost) Right Stuff 79

bothers to point out that either of these limits is literally just one person's
opinion as to how long is long enough.

So while it seems like the right idea to insist on arbitrary-length identi
fiers in designing a language, in practice the ideal doesn't hold up. The
standards-forming body may as well take responsibility for determining a
finite limit. If they don't, someone will finish the job for them. Arbitrary
length identifiers are almost a good idea.
mnother one of those almost-good ideas is block-structured languages. I
.:cl.have read numerous paeans, particularly in introductory computer
texts, to the virtues of using block structure to control access to identifiers
on an as-needed basis. If you write your programs top-down (as all right
thinking programmers are supposed to do all the time), then you will
naturally form a hierarchy of functions and working data. Block structure
gives you just the scope and visibility you need for functions and data
shared in a hierarchy.

The ointment contains one or two flies, however. The first is that a pure
hierarchy almost never proves to be adequate for non-trivial programs. You
are probably going to make use of a library of functions. The same work
horse function will likely be called from several places in the hierarchy. You
are faced with an uncomfortable choice. Either you replicate the function
at each point in the hierarchy where you use it, or you push the function
up the hierarchy until it is high enough to be visible from all points that
need it. The first solution forces you to replicate the code in the interest of
doctrinal purity. The second weakens the information-hiding properties of
your hierarchy.

Even if you don't make use of an existing library (a rare and dubious feat
among large programs), you will probably end up inventing your own. The
process of abstraction and information hiding pushes you inexorably in the
direction of making common access functions that are callable from many
places within a hierarchy. And if you have to share static data among
functions, the problem is even worse. I have seen many a Pascal program
with pages of data declarations at the outermost block, yielding all the
maintenance problems of a 1960s COBOL program. All that beautiful
hierarchical scoping goes out the window when performance is on the line.
tlff:Ven if you stubbornly hold onto a pure hierarchy, you can't avoid the
~forward-referencing problem. Sooner or later, you are going to want to
declare two functions that call each other. Worse, you are going to want to
declare two data objects that refer to each other.

Every block-structured language I know must face the forward-refer
encing problem in at least one guise. And every block-structured language
I know indulges in its worst design kludges in this area. The Pascal rules
for declaring pointers to other types, for instance, contain some real eye
brow raisers. They impose scoping limitations on the type names that are

80 Programming on Purpose

designed to give you a fighting chance at writing mutually referencing data
types. But the cost is considerable head scratching in situations where
mutual referencing is far from your central focus.

The X3J11 committee indulged in one lulu of a kludge in this area. They
chose to address the problem of two structures that refer to each other, as
in:

struct x {
struct y *py;
. } ;

struct y {
struct x *px;
. } ;

This is mostly straightforward stuff, except when you wish to drop such a
pair of declarations blindly into the middle of a nested block of code. (The
declarations may be part of a generic macro that is expanded, for instance.)
Now you have a potential problem.
A_ hould the containing environment happen to have a declaration for
e:::1'struct y, then the first structure will point to an instance of the
existing structure definition, not forward to the (as yet undefined) follow
ing declaration. If you knew that was a possibility, you could reverse the
declarations. But then, what if the containing environment happens to have
a declaration for struct x? You're screwed again. And if both structures
might be defined at the start of the block, you have no way to write the
mutual reference safely.

So X3J11 introduced an artifice. When you write the declarations:

struct y;
struct x {

struct y *py;
. } ;

struct y {
struct x *px;
. } ;

you are guaranteed the behavior you want, because the first declaration
unconditionally introduces a new instance of struct y within the current
block. It cauterizes any references to the containing environment. It's a
kludge, pure and simple, but it does rescue an almost-right idea from a
nasty little black hole.

The fact remains that hierarchical decomposition is a good way to
construct many programs. And block structuring is a good way to control
most of the name scoping in those and other programs. Because block
structuring is almost the right stuff, we should not be quick to ignore it just
because it has a few annoying shortcomings.

Essay 10 The (Almost) Right Stuff 81

']'(can make a similar harangue about object-oriented programming. It
,JJ looks like a great organizing principle to first identify all of the data types
you're going to need, then define all of the operations you're going to
perform on them. You end up with a program that is at least as tightly
structured as one built by pure hierarchical decomposition. And you avoid
a number of the design and maintenance issues I touched on briefly above.

You also acquire a fresh set of headaches. I have been reading with
amusement the new breed of publications that have picked up the torch of
Better Program Design. There's the Journal of Object Oriented Programming,
the Journal of C, Ada, and Modula-2, and the newly arrived C++ Report. All
are worth reading, but all indulge in the same excuses that every other
revolutionary design method tried on for size:
• You don't really want to do that anyway. That's the old-fashioned

approach.
• Existing programmers have trouble understanding this stuff, but new

comers take to it naturally.
• The first few projects have a high learning cost, but then your produc

tivity goes up fivefold.
Yup. (See my essay, "Programming on Purpose: The Seven Warning

Signs," Computer Language, October 1989.) The simple fact is that object-ori
ented programming has something to offer, but it also gets in the way
sometimes. Just like every other method for organizing programs. Since
I'm one of those unreconstructed oldsters (and a C expert at that), I'll
sidestep any detailed criticism of OOPs. (What a lovely acronym!) When I
get a little more experience under my belt, and when the religious fervor
dies down a bit, I'll be back. o

t?{fterword: This, obviously, is the third in my series of April Fool's essays. I used
.:cl.it as an opportunity to trot out a number of numerical almost coincidences that
have fascinated me for years. (I left out 355/113 as a remarkably good approximation
ton, however.) It also offers a semi-humorous way to introduce the creative art of
approximation. John Archibald Wheeler taught me to appreciate this art in honors
freshman physics at Princeton. Ever since then, I've been trying different ways to
teach similar skills. I still can't come close to Wheeler's effectiveness. But I'll keep
trying.

11 Instant Lies

?ll?fltell, it's that time of year again. Regular readers should know by now
~that I celebrate only one holiday religiously in these essays. No
predictions for the year to come from me. No silly-season nonsense to make
it through the summer doldrums. No annual year-end wrap-up.

Instead, I save my special efforts for that one time of year that keeps us
all humble. I like to think of it as a kind of secular Day of Atonement, open
to Jew and gentile alike. It's the day upon which we can reflect upon our
past follies. And take a few salutary potshots at the follies of others.

I refer, of course, to April Fool's Day.
For my fourth annual April effort, I thought I'd examine a few of those

words and phrases in our field that have come to annoy. It's a semi-serious
gripe session about terms that never mean exactly what they say. I think of
them as instant lies.

An instant lie is not exactly the same as oxymoron. We've all laughed at
those phrases that appear to be self-contradictory. I suspect that "limited
nuclear war" is one of the best examples of oxymoron. (Some would say
"military intelligence," but I am more charitable than that.)

An instant lie goes beyond mere self-contradiction. Consider the state
ment, "I'll be with you in a moment." It is most often spoken by an airline
representative, waitperson, or bureaucrat. Whoever utters the phrase, you
can be sure of one thing. The speaker will most definitely not be with you
in a moment. Otherwise, said person would simply be with you. No need
to utter the temporizing lie.

A subtler instant lie is the Hollywood connective "starring." You see it
following the title of a movie or TV show. It alerts you that the name
following is supposed to be that of the star of the show. Only problem is,
that's not what star billing is all about. You get star billing when your name
comes before the name of the show. If it follows the word starring, you don't
have star billing. You are a participant in an instant lie.

Are you starting to get the drift? Then you understand why I dislike the
adjective "adult." It's almost invariably applied to fiction, movies, and
emotional positions that are demonstrably adolescent. Anyone who is truly
adult never says, "Look, let's be adult about this."

You might also understand why I blanche when a hospital reports that
a guy hit by a truck (or bullet) is in "good condition." Nobody admitted to

83

84 Programming on Purpose

a hospital is likely to be in good condition. Otherwise, he would be out
walking around. Right? Instant lie.

I could go on in this vein for some time, but I will stop with one final
non-computer example. Beware of the scientist who says that a result is
"correct within an order of magnitude." Since an order of magnitude is a
factor of ten, that can be pretty far from my notion of correct. Pay me an
eighth of what you owe me and the sum is correct within an order of
magnitude. I call it simply incorrect.

Now that you understand my bias, let's look at a few of those phrases I
warned you about earlier.
m good one to start off with is "reduced-instruction-set computer." We all
.Q.know that RISC machines are the wave of the present and our hope for
the future. (Yes, I know that "RISC machine" is redundant, since a computer
is a machine. But that's what everyone else says.) Any number of people
assure us that they are much better than the old-fashioned variety. I refer,
naturally, to CISC, or "complex-instruction-set computers."

The whole thing started at U.C. Berkeley several years ago. VLSI chip
design was just coming within reach of organizations that lacked highly
skilled designers and the odd million dollars to spare. It looked like it might
be possible to get an advanced class to design and fabricate a working CPU
chip in an academic year, more or less.

Of course, nobody expected to produce a commercially viable product.
Like those innumerable Pascal and Modula-2 compilers that come out of
universities, a few pieces had to be left out. A CPU can be said to work if it
can load, store, add, jump conditionally, and reset. Just getting a class to do
that with a real VLSI chip would be a major accomplishment. And indeed
it was.

All would have been fine had the result not been strongly hyped (to
commandeer Andy Koenig's choice phrase). Making a virtue of necessity,
the designers praised the simplicity of the chip. They argued that a stupid
computer can go faster than a smart one. This is believable. They argued
further that the speed advantage can more than offset the stupidity. This is
conceivable but by no means automatic.

Next thing you knew, every new computer architecture that came along
billed itself as a RISC design. Puns and pundits abounded. Of course, none
of these were nearly as RISCy as the original Berkeley offering. Some, in
fact, were downright CISCy. But the RISC aspects were what was touted.

I believe this happened for two reasons. One is that any new architecture
can and should be extensively simulated before it is finalized. (By contrast,
I am told that System/360 enjoyed at most a few thousand lines of trial code
before it was frozen.) Oodles of studies have shown that programs spend
most of their time doing simple things like moves, adds, and conditional

Essay 11 Instant Lies 85

branches. It is only natural that a well designed modern architecture should
do a handful of simple operations very quickly.

The other reason for emphasizing the RISC aspect is political. Customers
have developed considerable resistance to shifting to new architectures.
(Again, it was the move from the IBM 709X and 14XX class machines to
System/360 that first gave customers second-degree burns.) The advent of
retargetable C compilers has lowered this resistance, but it is still there.

You don't sell people on a new architecture just because it is nice. As the
saying goes, "Ya gotta have a gimmick." You need something to sell
management on why it's worth paying the steep, and open-ended, conver
sion costs. The hook these days is RISC.

I brand RISC an instant lie because no commercial computer is truly a
RISC design. Nor are RISC computers necessarily faster than CISC for
comparable VLSI technology. But it sure sounds nice.
Aow let's talk about "object oriented." It's a topic I have written about a
»great deal, lately. (See "Programming on Purpose: Abstract It," Com
puter Language, November 1989, "Programming on Purpose: Encapsulate
It," Computer Language, December 1989, and "Programming on Purpose:
Inherit It," Computer Language, January 1990.) I feel that I have to talk about
it, since everyone else seems to be. I also believe that the object-oriented
approach has something real to offer. But then I believe that adult is a
legitimate adjective. Both terms just get misapplied a lot.

Object-oriented programming goes back many years. Two obvious early
progenitors are the languages Simula and Smalltalk. Both lean hard on the
notion that objects are the central players in an executable program.

You don't call functions with copies of stored or computed values as
arguments. Instead, you "send a message to an object." The object decides
for itself how to carry out the action requested in the message. The same
message can have quite different effect on different objects.

What this gets you is systems that are incredibly extendible. Each object
has so much autonomy that you can defer all sorts of bindings to runtime.
That permits incremental construction of complex systems. It also encour
ages reuse of general-purpose objects. And it helps you erect debugging
scaffolding as you go.

In short, you have a tinkerer's paradise. Anything within the ken of a
single person (or a small, cooperative group) goes together with relative
ease. It is only when the number of objects begin to balloon that you begin
to see the limits. With enough tinker toys and enough authors, shared
conventions begin to break down. It is one thing to tailor the message
display__yourself to the peculiarities of a given object. It is quite
another when different objects choose different display devices.

86 Programming on Purpose

7Qut that's not what kept Smalltalk from taking over the world. The
(Wl'problem with this approach is that performance suffers badly. When
you defer binding, you pay more in runtime lookups. Do that once per
function call and you have serious problems. And that is indeed the case.

Nevertheless, the object-oriented approach has its merits. It is particu
larly good at limiting name-space clutter in some cases. One of those cases
is when you have a bunch of related data types and a bunch of functions
that work on them.

Graphics is a prime example. Window interfaces come dose behind.
When modern bit-mapped displays got cheap enough, there was a sudden
upsurge of interest in both topics. Start writing a C or Pascal interface for
either and you quickly go into overload. You soon have several hundred
functions with silly names like WinFlapMagentaShutter. You soon
begin to scream for help.

Some of those screams woke up the older programmers down the hall.
They saw the problem, smiled, and said, "Have we got the language for
you!" The screamers listened a bit, smiled tentatively, and said, "That's nice,
but can it mix with C code?"

The object-oriented hands winced and explained about paradigmatic
purity, or something equally pompous. The screamers tried to talk about
performance. (That's why the old hands were down the hall and not in the
main room, remember?) The alliance that formed was equal parts enthusi
astic and tense.

The result has been languages like C ++ and its brethren. All are much
more procedural than their purer antecedents. They tend to mix in enough
object orientation to make a difference. But none buy the whole package of
beliefs.

So that's why I say that object-oriented programming is an instant lie.
What has caught on these days is not exactly object oriented. It is more
"object preoccupied." Or perhaps "object tolerant." But you can't say that,
can you?
~ow let's consider that older standby, "What you see is what you get."
»Even marketing types wince at that chestnut now. The roots of the term
are honest enough. Back in the distant past there was a big difference
between the seeing and the getting. Brian Kernighan developed one of the
first document-formatting programs in the era of punched cards. He
worked out some neat conventions for specifying which letters to capital
ize. (Few keypunches made it easy to punch lower case letters.)

Thus was born one of the first runoff programs, if not the first. Punching
those card decks was not easy, but it produced nice results in the end. People
skilled in the art could earn extra money preparing input. Then along came
interactive time sharing and things got a little easier. More people could

Essay 11 Instant Lies 87

type directly into the computer. More terminals had lower-case characters.
Still, the terminal was a bottleneck.

When you can print only ten characters per second, you cut corners. The
first interactive text editors favored terse commands and a minimum of
feedback. Dennis Ritchie's ed, the first editor on UNIX, is probably the most
representative example of this class of editors. And you certainly didn't
want the computer to try to format as you typed. CPU cycles were too scarce
and paper was too permanent for the flexibility we now take for granted.

When document formatting moved onto the interactive systems, terse
ness prevailed. You prepared a text file with a minimum of markup. A
separate program used your markup hints and some preprogrammed
common sense to format pages to a printer. The turnaround took a bit of
time.

The famous WYSIWYG phrase evolved to describe the first programs
that would format as you typed in text. A dedicated personal computer has
the CPU cycles. A glass TTY can rewrite a line of text in reasonable time. A
printer is just another device for laying out a fixed set of characters on a
regular grid. You could at least see on the screen a chunk of the page you
would later get on the printed page.

It is a rare combination of display and screen that really look alike,
however. At the best of times, WYSIWIG involves a bit of hyperbole. I won't
even discuss the software that generates hard copy with different logic than
for the display. Too often, WYSI not quite WYG.

I have cheerfully moved into the era of PC typesetting and bit-mapped
displays. It's fun to see an approximation to the final copy take shape before
ones very eyes. I was dismayed, however, to find that the approximation
can be pretty shoddy at times.

It seems that screen fonts occasionally bear only a loose family resem
blance to what the PostScript printer gens up. And screen aspect ratio, size,
and dot resolution often matches the final output only in the loosest sense
of the word. Color has an even shoddier track record to date.

In short, very few systems today are honestly WYSIWYG. They're
certainly easier to use than a keypunch. And they certainly try. But they
don't do what they say.
11rhen you have phrases like "user friendly." Any software that is truly
\C.lluser friendly doesn't have to say so. It just is. Only when there is some
doubt do the manufacturers dust off this fib.

I am still grappling with the problem of classifying UNIX. It's a system
that I took to almost instantly back when it was first developed. It was very
clear to me, and a number of my colleagues, that this was one friendly
environment.

88 Programming on Purpose

I could get all sorts of things done under UNIX that I literally only
dreamed of with other systems. Kernighan and I endeavored to explain
part of the UNIX phenomenon when we wrote Software Tools (K&P76). We
succeeded in part, but we left out a large part of the story.

Then people started telling each other that UNIX wasn't friendly at all.
Its commands were too terse. It was so powerful as to be dangerous to mere
civilians. It was a system that only a programmer could love.

Well, maybe. But as I have remarked in the past, saying that UNIX is not
user friendly implies that some operating system out there is. MS-DOS
certainly doesn't fit the bill. It's a cheap imitation of UNIX at best. Some of
you might hasten to mention the Macintosh. I personally get tired of
pointing and clicking so much. I miss my shell scripts. User friendly is not
synonymous with simplistic, nor with condescending. Not in my book.

So maybe I don't know what is truly user friendly. But I certainly know
when something is not. And the one sure way to know a thing is not is when
its proponents insist that it is.
7{ have a few other terms on my list that I feel less strongly about. Take
..lJ"well documented," for instance. That is simply a synonym for "over
described and under explained." Anytime someone develops a five-foot
shelf of manuals for a product, this instant lie pops up. Government
contracts have a way of specifying documentation so elaborate that it is
worthless. Even worse, it soon gets out of phase with the code so that it
actively misleads.

My idea of good documentation begins with one paragraph of installa
tion instructions. It is followed by a three-page overview that describes the
product in general terms. Any reference material that follows has an index
that is almost as big as the text itself. And the three terms I want to look up
are in the index.

In a similar vein, "real-time" is usually a misnomer. It means, "preoccu
pied with performance." Or, "pushing the state of the art in a way that
should impress you."

"Strongly typed" refers to languages that get in your way. The term is a
clue that you'll have to write something truly unreadable to get good
performance. What is weakly typed by comparison is a language like C. C
is a blue-collar language suitable only for writing programs. It is clearly
inferior to any language that endeavors to protect you from writing bad
programs.

Last on my list is the adjective "structured." I won't even bother to
lambaste it, however. Criticizing that term is like shooting at life rafts.
Everyone knows it's a lie. o

Essay 11 Instant Lies 89

(.Tffterword: This essay started out as a gripe session of sorts. I quickly recast it,
.Q.however, as a techie's version of "The Emperor's New Clothes." So many simple
concepts get hyped to the point where otherwise sensible adults start soberly
debating their merits. Sometimes we need to reclaim a bit of ground lost to the
marketing types.

12 What Meets the Eye

7{ recently described my evolution from physicist to programmer. (See
;JJ "Programming on Purpose: The Physicist as Programmer," Computer
Language, June 1990.) I now take the opposite perspective. I want to talk
about the times when a programmer should think like a physicist.

Most of the time, of course, you don't have to bother. Your assignments
are sufficiently clear cut, or your latitude is sufficiently constrained, that
you just do what you must. But every once in awhile, you should take a
look at the world outside. It just might affect how you write your next
program.

For example, I have long been concerned with the production of images
by computer. Interactive displays deal with one class of imaging problems.
Printers deal with another. It would be nice if the two classes were not so
disjoint, but right now they are. I am happy to see so many people working
on making displays and printed output look more alike.

It was not so long ago that character-oriented images were considered
acceptable for most applications. Certainly they are simple enough to deal
with. You only have one or two hundred distinct little pictures to generate.
(They're called glyphs in the trade.) You only have to display them at a
couple of thousand distinct places within a page image.

That makes it much easier to ensure that what you see on an interactive
display resembles what you get on the printed page. It also makes for much
less traffic along serial communication lines to transmit page images. And
it greatly simplifies the processing of text with multiple filter programs, as
in a UNIX-style pipeline. Or clipping and pasting text between windows.

But the world did not stand still at that level of technology. Too many
people demand multiple fonts or colors instead of just one. Too many
programs benefit from being able to display arbitrary graphics along with
text. Too many new applications need gray scale or color images as well.

We are well into the era of the graphical user interface (GUI) and the
bit-mapped image. Both have introduced a complexity into programming
that often dominates the writing of new applications. A typical GUI has an
interface defined by upwards of a thousand functions. A serious commer
cial application may have to produce bit-mapped images for dozens of
different devices. This does not make for elegant programming.

One of the least-appreciated successes of the UNIX operating system
was the way it tamed character streams. In the late 1960s and early 1970s,

91

92 Programming on Purpose

when UNIX was invented, displaying text was not so simple. Your program
had to be privy to various properties of the display device.

Is the first character of each line a FORTRAN-style carriage-control
character, or does it print? Do you provide a character count for each line,
or an explicit terminator? If so, do you terminate a line with a carriage
return, a line feed, or with both? And can the device handle horizontal tabs,
vertical tabs, and/ or form feeds? Write a program with one device in mind
and expect it to work horribly with another. Or be prepared to stuff the
output through some multipurpose reformatting program.
?ll?llt hat UNIX did was standardize on an internal representation for a
~stream of characters. It defined a mini-language for placing charac
ters within a succession of page images. The peculiarities of individual
devices were isolated at the edges of the system. A UNIX device driver
translates to and from this internal character-stream language as need be
for each device. The need for reformatting programs is largely eliminated.

Most programmers take that sort of device independence for granted
nowadays. They would scoff at the arguments used against the UNIX
approach in the early 1970s:
• We can't afford the overhead of another layer of mapping software

between the program and the device.
• Our mini-language is superior and contains features that many applica

tions will need.
• You should know what device you're driving anyway, so you can take

maximum advantage of it.
Nevertheless, we are now struggling through a similar process with

GUis. The need for device independence is more widely accepted, but the
preoccupation with performance necessarily remains. Several candidates
are contending for the leading role as device-independent GUI. All trade
off performance for some semblance of portability. And all still involve far
more complexity than I am comfortable with. We have yet to see the
breakthrough we need in the linguistics of graphical displays.

We cannot sit around and wait for the problem to be solved, however.
The need is too great for solutions now. Probably, we need more experience
with existing GUis before we learn how to isolate the complexity. So we
live with Windows, and PostScript, and Motif, and all the other bold
attempts at solving parts of a very difficult problem.

None of this current technology should blind us to what we really want
in the way of displayed images. That is a function of the human eye and
the brain behind it. It is not a question of whether Windows or Presentation
Manager makes better use of an Intel 386 with four megabytes of memory
and a VGA display. We should look on character-oriented devices and

Essay 12 What Meets the Eye 93

current graphical displays as just steps in the right direction. We want to
draw prettier pictures, and we want to draw them more elegantly.

11rhat's where the physics comes in. Pretty may be in the eye of the
\l.llbeholder, but pretty enough is determined primarily by the physics (or
physiology) of human vision. I assume, for now, that the images we
generate by computer are for human consumption. If our goal is to record
more detail than the eye can see, naturally different criteria apply. I also
assume, for now, that developing an elegant GUI language is a separable
problem. Certainly the solution will be shaped by the needs of the final
imaging devices.

Let's begin by looking at spatial resolution. That's a common enough
preoccupation these days. Usually, people talk in terms of dots per inch
(dpi), but that tells only part of the story. What counts to the human eye is
angular resolution.

For example, it is widely accepted in the printer industry that 300 dpi
produces (barely) adequate fine detail for mimicking the typesetters' art.
That assumes that you regard the output from a normal reading distance.
Call that distance 18 inches and you're talking about an angular resolution
of 200 microradians, or 1I100 of a degree.

Press your nose against the image and the angular resolution gets ten
times worse. You also lose if you project the image on a large screen and
stand too close. So whether you're generating slides, dart boards, or bill
boards, you know what you need. If you want to get the same effective
resolution as a 300 dpi laser printer on letterhead, you must provide at least
100 dots per angular degree of vision. Now you know why the typical
terminal screen looks crummy at 30 dots per degree.

That value of 300 dpi is slightly misleading. Printers have known for
years that you can get away with much less spatial resolution when
printing illustrations. Newspaper photographs are typically printed with
a halftone screen of 60 to 80 lines per inch. The screening process breaks up
the image into a grid of dots much like the pixels on a computer-generated
display. The major difference is that the dots on a halftone screen can vary
in size. Hence, the dots can represent a number of different shades of gray.
A laser-printer pixel is usually just a black dot or a white space, period (at
least until recently).

I will not pretend that newspaper quality is acceptable for reproducing
images in arbitrary applications. On the contrary, I find it to be about the
minimum tolerable. But even the glossiest of magazines needs nowhere
near 300 lines per inch. In fact, high-grade paper stock can't support that
much resolution. Ink from adjacent dots begins to run together and smear
once they get close enough. Printers say that the paper can't hold the ink. The
finest screens top out around 150 lines per inch. And they do a fine job of
reproducing the detail that the eye demands.

94 Programming on Purpose

11rhose shades of gray really make a difference in the number of dots you
\C.Vneed. They are also very necessary if you want to display an image
containing grays. Once you get beyond type and line drawings, the world
is seldom black and white.

You can make shades of gray even if your display produces only black
dots. Halve the spatial resolution of a 300 dpi printer and you have four
dots at each printing position. Print differing numbers of dots in a given
position and you generate three shades of gray between black and white.
That's not many shades, so try halving the resolution again. Now you have
newspaper resolution at 75 dpi and 16 dots to play with at each position.
You now have 15 intermediate shades of gray.

There are 16 different ways of displaying only a single dot at a given
printing position. There are even more ways of producing other interme
diate shades. (Hint: Think about Pascal's triangle and its role in combina
torics.) It would be nice to do something useful with those 65,536 different
ways to represent 17 shades.

It turns out there is. If you always use the same pattern for each shade
of gray, the human eye quickly detects your laziness. The repetition stands
out, particularly in a region of uniform shading. It can distract. Unless your
goal is to add a touch of surrealism, you want to avoid this sort of thing.

The answer is to choose bit patterns at random for each shade of gray.
The eye sees only noise and filters it out without fuss. This technique is
known in the trade as dithering.

I haven't commented yet on whether our trusty 300 dpi printer can do
a decent job of reproducing photographs. Certainly, newspaper resolution
is the best you can hope for. The question is, do 17 distinct shades suffice
to simulate a halftone screen? Some people might think so, but I don't. The
eye can detect far more than 16-odd shades of gray. Worse, it is not
particularly pleased by the set of shades you get this way.
){}OU have to remember that the eye is tremendously adaptable to vari
~ ations in light. Those of us who were photographers before cameras
became so automatic had to learn about shutter speeds and lens apertures.
On a sunny day, you might have to set your camera at 1 /1000 sec. at £16. In
a dimly lit room, you might try for a shot at 1/8 sec. at fl.4 to deliver the
same amount of light to the film. Those two exposures differ by a factor of
16,000. Yet your eye can tolerate brighter sunlight and function in much
darker situations. In fact, the human eye can respond to individual photons,
detecting one in ten that hit the eye.

We are far from being able to produce computer images that span much
of this tremendous range. Fortunately, we don't have to. Through several
mechanisms, the eye adjusts its sensitivity in response to ambient light. At
any given adaptation, it can distinguish only a limited range of intensities.

Essay 12 What Meets the Eye 95

Any light that is too dark looks black. Any light that is too bright looks
white. The ratio of light intensities between barely black and barely white
is about 1 to 1,000.

That's still a pretty broad range. The eye deals with it by another trick
used widely in the sense organs of animals. Its response to variations in
intensity is logarithmic. That means that the eye detects ratios of intensity,
not differences. Say light B produces twice the energy of light A. Your eye
sees it as a lighter shade of gray. Now adjust light C so that it is brighter
than light B by the same shade. Light C must have twice the intensity of
light B, or four times that of light A, to look one shade brighter.

Your eye can distinguish about ten such shades, or doublings of intensity,
between barely black and barely white. We old photographers used to call
a factor of two change in light intensity one f-stop. Disciples of Ansel Adams
learned to use a related but different terminology in the darkroom. He
called each doubling one zone. His Zone System helped print makers make
accurate exposure decisions without the confusion of logarithms or f-stops.

A slide in a projector can reproduce the full ten zones our eye is prepared
to distinguish. A photographic print on glossy white paper can reproduce
about eight. (That's one reason why slide presentations have more punch
than posters - provided they do not record your Uncle Louie's vacation).
These are the criteria by which we must judge computer displays and
printed output. Not enough dynamic range of intensities and an image
looks flat and lifeless.

Another important parameter is the number of different shades the eye
can detect. Ansel Adams taught us to split a zone into much smaller pieces
than was customary in the past. His richly detailed prints were proof of the
pudding. My experience with printing color negatives was that I could
barely discern 1 /30 of a zone. That fits well with the growing popularity of
scanners that distinguish 256 shades of gray. (Thirty steps times eight to ten
zones yields 240 to 300 discernible shades.)
7f et's get back to those 17 shades of dithered gray from the laser printer.
14.First, it's clear that we need many more shades to please the eye. Even
newspaper halftones do better than that. Second, it's now apparent that the
eye sees even fewer shades than 17. There's only one step between a density
of one dot and two dots. There are eight steps between eight dots and 16
dots, even though it looks like the same total change in shade. Dithering
does not come off as a good way to trade angular resolution for gray
shading.

So a good display will cover ten zones of intensity, or a thousand-fold
change. It will display 256 different shades along the way. And it will
distribute those shades along a logarithmic scale of intensity. It might also
give you some control over the exact shape of the gray scale.

96 Programming on Purpose

high contrast

~
low contrast

log(exposure)

Figure 12.1: Density/exposure curoes with three different values of y.

Photographic films and papers are characterized by how they respond
to various degrees of exposure. Plot the logarithm of exposure intensity
along the X-axis. That's the shade of gray you want to capture. Plot the
logarithm of the density of the image produced along the Y-axis. That's the
shade of gray you get. A good film or paper will have a response curve that
lies close to a straight line over a wide range of exposures. Photometricians
traditionally refer to the slope of this line by the Greek letter gamma (y). See
Figure 12.1.

A gamma greater than one indicates high contrast, or an overreaction of
the film to changes in shading. X-ray film is often designed this way to
emphasize detail. A gamma near one characterizes a film that accurately
reproduces the range of grays it sees. Slide film perforce aims for accurate
reproduction.

A gamma less than one indicates low contrast, or a compression of
shades. Most of the negative film you buy in a drugstore has a gamma of
about 0.6. That lets it capture additional information in case you overexpose
or underexpose the subject of interest. You can rescue an improperly
exposed negative where you can't save a slide. The printing paper you use
with such film has a gamma of about 1.6 to compensate. You can even get
black-and-white papers with gammas above and below this value, to alter
the effective contrast of the scene.
7{ recite all this technology as an existence proof. We know we want to
;.nfiddle with contrast because people have been doing so for the century
and a half since photography was born. The software that runs the newer
scanners often lets you alter the effective gamma of the scanner. Good
gray-scale editing software even lets you work over the shape of the
response curve. It is not unreasonable to want similar control over the
images produced by a computer.

Essay 12 What Meets the Eye 97

I am pleased to see that scanners are, in fact, starting to capture publica
tion-quality images at home-office prices. All you need is the megabytes of
memory and disk to hold all those bits. Printers aren't quite there yet. You
can get production-quality gray-scale images, but they don't come cheap.
What is in reach for many of us can be good for black and white, but
inadequate for gray-scale. Interactive displays have a long way to go.

One reason for this recitation is to show that there is real room for
improvement. I weary of the perennial articles that question why comput
ers need to keep getting faster. If you can't see beyond running a simple
word processor on an EGA screen, don't deny the rest of us our ambitions.
We can think of uses for lots more power.

Another reason is to show that there is such a thing as enough. At least
for awhile. At least in a given direction. Once you deliver all the quality in
an image that the eye can appreciate, it's time to put your energies into
some other part of the system. Like dirt-cheap memories, or lots more
specialized processors.

For all the numbers I have bandied about, I still have only touched the
surface. Image quality is important, but so is image size. Have you though
about how big a display you'd really like to work with? And what would
you do if your workstation had lots more horsepower for producing
images? You might think more seriously about color, and high-fidelity
sound. And perhaps even 3-D pictures, and stereo, and animation. Then
you could start thinking about how to address your other three senses. But
more on all that later. o

(-11fterword: This essay turned out to be the first of a four-part series. (See Essay
.Q.13: Technicolor and Cinemascope, Essay 14: What Meets the Ear, and
Essay 15: Warm Fuzzies.) Each explores a different aspect of the human senses
from the standpoint of computer input and output. I've never seen all this
information put in one place before. As my commentary reveals, I acquired it from
a variety of sources over many years. We need to gather this much information just
to answer such simple questions as, "How good a display is good enough?" With
computers growing ever more ubiquitous and powerful, such questions are becom
ing paramount.

13 Technicolor and Cinemascope

7{ talked at length in the previous essay about computer displays and
;.nprintouts. (See Essay 12: What Meets the Eye.) Starting from the physi
ology of human vision, I discussed what we need to reproduce adequate
resolution over an adequate range of shades of gray. I ended that essay with
a brief list of other considerations when interfacing computers to people. I
continue that discussion by addressing some of the items on the list.

Let's begin with color. Human vision can distinguish many thousands,
perhaps millions, of different colors. We know that color is an important
signal. Hashing red lights warn us of danger. Subtle hues add an important
sense of realism. Lots of us want good color for lots of good reasons.

The human eye is sensitive to light with wavelengths between about 400
and 700 nanometers. (A nanometer is one billionth of a meter, or ten
Angstroms. It has also been called a millimicron.) We see the shorter
wavelengths as blue and the longer ones as red. In between lie all the colors
of the rainbow. Different mixtures of light at different wavelengths yield
oodles of additional hues.

You probably know by now that the eye constructs the sensation of color
from three kinds of sensors. One kind is most sensitive to red light, another
to green, and a third to blue. (Discrimination between red and green is a
recent evolutionary invention. A small genetic hiccup leads to the common
est form of color blindness, a failure to distinguish red and green.) For a
person with normal color vision, all mixtures of wavelengths that stimulate
the three sensors appear to be the same color.

That means that you can reproduce nearly all colors by mixing three light
sources that address the eye's sensors independently. (Life is never quite
that simple, but I don't want to get any more detailed right now.) Press your
nose against a color TV screen while it's on. You will see the red, green, and
blue dots that make up the image. Even better, watch the stage lights the
next time you're in a theater. I'm continually amazed to see red and green
lights combine to produce yellow, with no sensation of either primary color.

Red, green, and blue are the colors you use when mixing lights. They are
called the additive primaries. When you mix pigments to produce colored
inks, however, you need a different set of primaries. Press your nose against
the Sunday comics and you will see the three colors. Your kindergarten
teacher probably taught you that these subtractive primaries are red, yellow,
and blue. Your kindergarten teacher was wrong.

99

100 Programming on Purpose

That alleged red is really magenta, a mixture of red and blue. You can
also think of it as the absence of green. The alleged blue is really cyan, a
mixture of green and blue. You can also think of it as the absence of red.
Yellow is correct, a mixture of red and green. It is also the absence of blue.

In principle, you can mix varying quantities of cyan, yellow, and ma
genta pigments to make an arbitrary color. In practice, it's hard to produce
the full range of grays that's possible with black ink and gray-scale repro
duction. (Last month I observed that glossy paper can capture eight zones,
or density doublings.) The blacks just aren't as black as you'd like. Printers
solve this problem by adding black ink to the soup. Equal quantities of cyan,
yellow, and magenta are effectively replaced with the proper measure of
black, to good effect. That's why printers talk about four-color reproduc
tion, even though our eyes work on only three primaries.

1~olor displays have been with us for some time. We have the technology
~of television to thank for that. They generally lack the snap and sharp
ness of gray-scale displays, however. And they cost considerably more.
That's because of the need to stuff three color dots into each pixel. But
resolution and cost are improving rapidly.

Also important is the number of distinct hues that a display can repre
sent. The more hues, the more bits you need for each pixel. At 300,000 pixels
for conventional VGA, eight bits per pixel takes nearly a third of a million
bytes. And that gives you just 256 distinct colors. Cost and writing time
both go up as you increase the number of distinct hues.

One popular trick lets you dramatically increase the number of distinct
colors you can display without increasing bits per pixel. Each display is
accompanied by a palette that maps the code stored in each pixel to the color
you wish to display. At eight bits per pixel, you need a 256-entry palette.
At 16-bits per pixel, you can display 65,536 distinct colors. You just can't
display all those colors at once. Instead, you choose which subset of 256
does the job well enough for each picture. That's what you store in the
palette.

But let's say you're not in the mood to compromise. How many bits do
you have to store in each pixel to represent all the colors your eye can
distinguish? In the previous essay, I concluded that 256 shades of gray are
probably sufficient if you don't care about color. It helps if you can also map
code values to shades of gray by some nonlinear scale. (The human eye
responds logarithmically to light intensity.)

It makes sense, then, that 256 shades of each primary should do a good
job of covering all the colors the eye can distinguish. And indeed, that seems
to be the case. It is probably more than enough. The eye is noticeably less
sensitive to changes in blue shades than to changes in red and green. (Blue
vision seems to have evolved earlier and is more primitive in several ways.)
You might cut corners here. You might also cut corners in the almost-black

Essay 13 Technicolor and Cinemascope 101

or almost-white regions. The eye is fussiest about color near the middle
grays.

People have tried a variety of encodings with these thoughts in mind.
Some 16-bit encodings give good coverage, in part by short changing the
blues. The simplest brute force approach is simply to allocate eight bits to
each of the three primaries. That yields the 24-bit color you hear more about
every day. Adding to the confusion, some people set aside 32 bits per pixel.
The additional eight bits don't participate in the color information. They
just help round the storage size up to four bytes, a size beloved of much
computer hardware.

Today you can buy scanners and displays that support 24-bit (or 32-bit)
color. That's wonderful, except that displays still need better spatial reso
lution. Color printers have the spatial resolution, but typically lack the color
resolution. I will be happy only when the norm for scanners, displays, and
printers uniformly meets the demands of human vision. That means 100
dots per degree and 24-bits of color information per dot.
Aow let's talk a bit about image size. The conventional output device
»these days is the page printer. In the U.S., the de facto standard page
size for letterhead is 8.5 by 11 inches. All the rest of the nominally civilized
world uses the metric standard A4. It is a little skinnier and a little longer
than the American page. The differences are just enough to drive you up
the wall if you have to reproduce a mixed bag of correspondence from
around the world. (Sorry, I promised not to gripe about my problems with
standards activities for awhile.)

Naturally, there are other widely used paper sizes as well. U.S. lawyers
insist on a slightly longer legal-size page. Some applications need the larger
11-by-14-inch page. The metric world has its AS, B4, etc. At least these tend
to be even multiples or divisions of each other. For now, however, I confine
my attention to standard letterhead pages.

When I discussed resolution in the previous essay, I was careful to
distinguish spatial and angular resolution. Spatial resolution is about how
many dots per inch you use to construct an image. Angular resolution is
about how many dots per angular degree you see, regardless of viewing
distance. The same spatial resolution can yield quite different angular
resolutions under different viewing conditions. It is angular resolution that
your eye cares about.

The same is true of image size. Words typed in ten-point Courier on a
sheet of letterhead are easily read at arms length. Post the same sheet near
the top of a bulletin board and you'd better write larger. The larger print
size regains the angular resolution you need to make the words legible. But
now you can write fewer words per page. Nail that same sheet to a
telephone pole across the street and you can convey even less information.

102 Programming on Purpose

Anything more detailed than a single peace sign or smiley face will go
unrecognized.

What's changing here along with angular resolution is called solid angle.
It is a measure of field of view that is independent of viewing distance.
Imagine yourself suspended inside a sphere one mile in radius. By looking
in all directions, you can see the entire inner surface of that sphere. The area
of the sphere is 41t square miles. Saw the sphere in half and each part has
an area of 21t square miles. In fact, any field of view you can delimit can be
projected onto the spherical surface. The projected area in square miles is
a measure of the solid angle of the field of view.

The sphere on which you project the field of view can of course be any
size. Just divide the projected area on the sphere by the square of the radius
of the sphere. You will obtain a dimensionless number between zero and
4n. People nevertheless ascribe a unit of measure to this dimensionless
number - the steradian. I will present all solid angles in units 1 /1000 as
large, or millisteradians.
~ow let's get back to our sheet of letterhead. Held at arm's length, it
~subtends a solid angle of about 300 millisteradians (msr). Double the
viewing distance and it subtends only a quarter as much, or about 75 msr.
Ten times the viewing distance yields one per cent of the original solid
angle, or 3 msr. As you can see, you lose a lot of viewing angle if you have
to step back.

The problem with current interactive displays is just the opposite.
They're not big enough. The VGA display on my Compaq SLT /286 is rather
nice, and it's pretty much state of the art. At normal viewing distance, it
subtends about 15 msr, or about half a sheet of letterhead. That's fine for
many uses, but it's maddening when I compose page images with Ventura
Publisher or Corel Draw. I feel like I'm looking at the world through the
porthole of a ship.

Then I see ads for various windowing environments. Invariably, they
show a standard terminal screen decorated with half a dozen or more
images overlapped in various ways. We are supposed to feel reassured by
this clutter because it follows the infamous "desktop metaphor." Just as we
push bits of paper about on our work desks, we can manage our computer
hosted work the same way. No need to learn any scary new ways of doing
business.

The multiple images are supposed to convince us that we can share
information between any number of applications that are active simulta
neously. They give me a headache. I already have eyestrain from peering
through the porthole. Why should I obscure the limited view with an
assortment of sticky yellow notes?

Essay 13 Technicolor and Cinemascope 103

,.,.:-red Brooks, of The Mythical Man-Month fame (Bro75), puts it even better.
,,JJ He says that the desktop metaphor is misleading. It should be called an
airplane-seat metaphor. You are sitting in one of those horrid middle seats
in coach class. Hefty people are seated on either side of you. You are trying
to organize your work on that tiny little tray table in front of you. You have
no elbow room and no place to put extra papers, except possibly your shirt
pocket. I have indeed worked that way more often than I care to count. But
it is not my favorite environment.

My idea of a desktop environment is far more ambitious. I have tried
full-page displays and I find them little better than conventional ones. A
typical desktop has room for a dozen sheets of letterhead, without overlap.
You can tolerate even more clutter, with overlapping piles, for short periods
while you are organizing papers. If you want to sell me on the desktop
metaphor, give me a display as big as a desktop. That means a viewing
angle of of at least 2,000 msr. And give me 100 dots per degree resolution
over the entire view, with 256 shades of gray at every pixel. (Even better,
give me 24-bit color.) Oh yes, and keep it cheap, please.

Actually, I am even more ambitious than that. I attended an engineer
ing-preparatory high school in Baltimore. There I learned to love drafting
tables. I like to really sprawl when I work. My study desk through college
was a drafting table, and I still have one or two kicking around the house.
My idea of a CAD/CAM station is a drafting table with an active surface.
Now we're talking around 4,500 msr.

Some people are beginning to experiment with artificial realities. A (very
hot) computer generates everything you eyes see and everything your ears
hear. You manipulate this world through gloves that sense your hand
motions and offer believable resistance to those motions. Artificial realities
make many demands on the human interface. Some I will eventually
discuss further. For now, I simply observe that each eye must be presented
with an image that subtends over 6,000 msr.

If it's any consolation to hardware designers, there is a limit to my
ambition. A solid angle of 12,500 msr is an acceptable upper bound. That
controls everything you see in all directions, except for a small hole for the
projector lens. I'll settle for that.
tnne of the special demands of artificial realities is to produce realistic
"173-D images. The challenge is to produce two distinct images and to
present them independently to different eyes. Where the eyes must focus
provides depth information out to about twenty feet. Small differences in
the perspective of the two images provide additional depth cues, particu
larly for distant objects.

If you can slap goggles on the observer, you have the easiest solution. A
small imaging device can subtend a large solid angle. Clever optics can
produce images at a variety of perceived distances. And it is easy to keep

104 Programming on Purpose

the signals for the two eyes separate. The problem is that even the wispiest
of goggles can annoy. I assure you that current technology requires goggles
that are a long way from wispy.
tft'\ne way to keep the goggles wispy is to separate the imaging function.
"'7Do the hard work out front on a screen or some other active device.
Leave the goggles the lesser job of keeping the images separate. The earliest
3-D movies achieved this noble goal with red and green cellophane filters
in cardboard frames. They sorted out red and green monochrome images
projected onto the same screen. Photographs of audiences from that era are
often more entertaining than the movies they watched.

A later improvement supported color. The filters are neutral gray polar
izers aligned at right angles to each other. They separate the two images
projected with appropriately polarized light sources. As far as I know, that
remains the most inexpensive approach that can be considered at all
adequate. Holograms and "xenon mists" are still just the stuff of science
fiction. As for me, I am willing to wait a bit longer for three-dimensional
displays to become commonplace.

I am less willing to wait for animation. By that term, I mean moving
displays in general. My living desktop should be able to display a few
TV-quality pictures of various sizes. Some can be from broadcasts, some
from a large online data store. (I won't bother restricting the store to being
a VCR or optical disk.)

It should also be able to compute and display graphs evolving in real
time. I want to unleash subatomic particles in various potential fields and
watch the probability waves slosh back and forth. And it should let me
storyboard a presentation and interpolate the intermediate frames of ac
tion. (Cartoonists call this tweening, a process often still performed by
platoons of human in-betweeners.)

If the display goes dark after it shows each frame of animation, it had
better show the next one soon after. Otherwise, you get perceptible and
annoying flicker. Countries that favor 50 Hz power also tend to favor
television sets with 50 Hz refresh rates. To me, they constitute just one more
source of headaches in a headache-infested world. I feel that 60 Hz is a
better minimum refresh rate. Some folks consider 100 Hz a more tolerable
minimum.
tft'\ne trick for lowering flicker is to increase the persistence of each image.
"'7With phosphors painted by flying electron beams, you must strike a
delicate balance. Persistence that is too long blurs motion and smears scene
changes. Of course, a display that doesn't fade between frames has fewer
problems in this area.

A remaining problem is simulating smooth motion. (This is not the same
as eliminating flicker.) The 60 Hz scan of American TV actually offers only

Essay 13 Technicolor and Cinemascope 105

30 new frames of information per second. If the broadcast source is a movie,
the rate drops to 24 distinct frames per second. (Some get shown twice.)
That seems to be enough to do the job.
7{ suspect that by now I have lost most of the pragmatists among you.
;Jl Asking for an active display with 300 dpi is pretty ambitious. Insisting
that each of those dots display any of 16 million different sends the cost
way up. Demanding an active area a yard on a side makes the cost
outrageous. Then requesting that the display be refreshed 60 times per
second simply puts the icing on a very expensive cake.

For memory, I'm talking a hundred million pixels, each with three bytes
of color information. That's 300 megabytes just for the active screen mem
ory. Refresh it at 60 Hz and you need to process 1.8 gigabytes per second.
Some people would consider that a serious data-processing load.

I can only observe that display demands have been soaring all along.
Twenty years ago, ten bytes per second was all you could stuff into a Model
33 Teletype. Ten years ago, you were happy to get 1,000 bytes per second.
Today, 100,000 bytes per second is a not-uncommon display load. I'll bet
that those 1.8 gigabytes have lots of redundancy. Specialized processors will
handle most of them as a matter of course. We can probably get away with
a traffic of a mere 10 megabytes per second. That keeps us closer to the
exponential growth curve.

The main point is that we really do need displays like this. Many of you
won't believe that until you see them, but I am absolutely convinced they're
vital. Human vision is such an important communication channel, we need
to make full use of it when we interact with computers.

Of course, the other four senses are also important. And I still haven't
talked about them. o

mfterword: I knew I'd have to build up to the conclusion I reached in this essay .
.a.By today's standards, the numbers are staggering. Still, I'm convinced that my
"desktop computer" will one day have a display as big as a desktop - and it will
be an active one. I can hardly wait.

My happiest artifice here was to express all solid angles in millisteradians. I
confess that I got the idea from reading any number of essays by Isaac Asimov.
Immortality takes many forms.

14 What Meets the Ear

ll have spent the last two essays discussing the physiology of human
,JJ vision. (See Essay 12: What Meets the Eye and Essay 13: Technicolor
and Cinemascope.) A computer display or printer must, in the end, meet
the needs of that very demanding consumer, the typical person. Until we
consistently hit the limits of visual perception, we can expect steady pres
sure to improve displays. And we have a long way to go.

On the other hand, we at least know when we get there. There is no point
in providing significantly more resolution, for example, than the eye can
discern. (I continue to ignore for now the problem of storing large quantities
of information for future machine processing. That is a subject for a differ
ent set of essays.) We have a good idea when enough is enough.

As important as vision is to people, we do have four other senses. At the
very least, they supplement what we see with additional cues that add
realism. At the most, they convey information or sensation that cannot be
communicated by pictures alone. We should consider all possible ways that
computers can present data to people.

Hearing is second only to vision as a sensory channel. It is only fitting
that we consider it next. That is the topic for this essay.

1Long before there was commercial television, radio was painting verbal
pictures in the minds of listeners. I am old enough to have cut my teeth

on Sky King and Fibber McGee. I can attest that it can rival TV in dramatic
impact. Today, we rely on radio primarily for music, news, and the modern
equivalent of back-fence gossip with the neighbors. The emphasis has
changed, but the importance of radio remains.

The booming business in audio recordings attests to the powerful grip
that sound has on our aesthetic sensibilities. (I refuse to haggle over the
relative merits of the Boston Symphony and Madonna.) And the telephone
dominates many of our lives. Just try to ignore yours the next time it rings.

Despite all this, computers have been slow to exploit sound. The earliest
interactive terminals were equipped with a simple bell. Send an ASCII BEL
code (decimal 7 or control-G) and the bell would ring. Send a sequence of
BEL codes and many terminals would jam for the duration. The best ones
would ring the bell two or three times per second until the codes ran out.
It is hard to achieve elegant communication with this sort of machinery.

107

108 Programming on Purpose

When CRTs began displacing mechanical terminals, they simply mim
icked existing functions. Dings turned into beeps or boops. A series of dings
usually ended up as a protracted boop. Big deal.

The first computer I encountered with a programmable speaker was the
SDS (later Xerox) Sigma 7, built in the late 1960s. You could toggle a flip-flop
to make square waves. Timing was a matter of delay loops and watching
the real-time clock tick away. Nevertheless, my friend John Kopf contrived
several video-gameish fweeps with it. (See Essay 9: It's (Almost) Alive.) He
even generated a passable rendition ofBach' s "Jesu, Joy of Man's Desiring."

When IBM planted a speaker in its first PC, it was not significantly
smarter. You can make a few tinny sounds, if you work at it. No dog would
mistake it for his master's voice, however. Later computers have invested
steadily more in sound generation hardware and firmware. But only a
handful can honestly claim acceptable fidelity or flexibility in program
ming.
A. o how good is good enough? My bet is that more of you know the
e:::1'parameters of human hearing than know vision. Home and car sound
systems have been a technical sell for several decades now. Still, it's inter
esting to put all the numbers in one place.

The analog of brightness in light is loudness in sound. Human vision can
encompass a tremendous range of light intensities, as I discussed two
essays back. (See Essay 12: What Meets the Eye.) Human hearing has an
even more astonishing dynamic range for loudness. In both cases, our
senses respond logarithmically to the powers they detect.

I talked about the stop and the zone in photography. Both are ways of
describing a doubling in the intensity of light from a subject or a reproduc
tion. Each doubling looks to the eye like a uniform step along the gray scale.
That's the effect of the logarithmic response.

Naturally, it is too much to expect sound measurement to share any
technology with light. The power of a sound signal we call loudness. The
unit of loudness (or power amplification) is the bel, after Alexander Gra
ham Bell. Never heard of it? Then perhaps you know its little brother, the
decibel. Increase sound power by a factor of ten and you increase loudness
by one bel. Or more commonly, by ten decibels. That makes a decibel
equivalent to a power ratio of the tenth root of ten, or about 1.26.

It turns out that the smallest detectable change in loudness is about one
decibel. That means you have to increase sound power by 26 per cent,
roughly, to make a noticeable difference to a human listener. If you interpret
that to mean that the human ear is not very sensitive, you've missed the
point. The tradeoff for this relatively coarse incremental sensitivity is a
broad dynamic range.

Essay 14 What Meets the Ear 109

A person with normal hearing can hear sounds of just a few decibels.
That same person can probably tolerate sounds as loud as 120 decibels, at
least for short periods. Sound becomes pain if it's loud enough, and
prolonged loud sound is literally deafening.
m computer need not produce such a broad range of sounds to make
~credible noises. I pointed out that the human eye, for all its dynamic
range, distinguishes at most ten zones in any given scene. Similarly, the
human ear is content with about 80 decibels variation in loudness in a given
program. That seems to do justice to either the Boston Symphony or
Madonna.

Paltry as it sounds, 80 decibels still represents a change in sound power
of one hundred million to one. Compare that to the thousand-to-one ratio
of powers that the eye can distinguish in a given scene. Little wonder that
it has taken decades of aggressive research and development to perfect
high-quality sound recording and playback.

The current state of the art in sound recording, in fact, is the compact
disk, or CD. To do its magic, it represents sound amplitude as a regular
sequence of digital samples. Each digital sample is a 16-bit unsigned
integer. That provides for 65,536 different amplitudes.

During playback, a CD player has to do some pretty fast arithmetic on
those samples. It basically turns the sequence of samples into a voltage
signal whose amplitude is directly proportional to the sample values at
each instant. If a speaker is a purely resistive load (and engineers keep
trying to better approximate that ideal), the resultant sound power is easy
to compute. It is proportional the square of the voltage amplitude at each
instant.

For each bit you add to the digital sample, you double the range of
voltage amplitudes you can represent. Double the range of amplitudes and
you quadruple the range of sound powers. A factor of four in sound power
is very dose to six decibels. (That's another consequence of the interesting
numerical accident that 210 is very dose to 103, which I discussed awhile
back. (See Essay 10: The (Almost) Right Stuff.) Thus, 16-bit samples can
represent a dynamic range of 96 decibels. That's more than enough.

It's not as much overkill as it seems, however. When I talked about gray
scales, I observed that a linear increase in density has its drawbacks. The
eye sees the darker shades as coarser steps than the lighter ones. Logarith
mic response strikes again.

Those linear steps in sound amplitude cause similar problems. Some
distortion occurs because the amplitude can assume only a finite number
of distinct values. The smallest representable change, naturally, occurs
when you add one to a sample value. Add one to a small sample value and
you get a bigger apparent change in loudness than if you add one to a large

110 Programming on Purpose

sample value. Go 80 decibels down from the loudest sounds in a recording
and the sampling distortion gets significantly worse.

An earlier digital recording technique used 14-bit samples. It had
enough dynamic range, but not enough resolution at low sound levels. We
should all be happy that the industry decided to indulge in the apparent
overkill of 16-bit samples. It turns out that you need much of that headroom
in dynamic range to keep the ear happy about distortion.
A. o we have a good notion about how good is good enough when it
~comes to representing sound amplitudes within a computer. Whether
the program plays back captured sounds or generates them internally
doesn't matter. We want 16-bit sample values.

The next question is, how frequently must the samples occur? That is a
function of the range of frequencies that the ear can detect. Human hearing
varies considerably, but we know some acceptable outer limits.

If your goal is to reproduce human speech adequately, you should study
the telephone. A century of experience tells us that you can get away with
a remarkably narrow band of frequencies. The band corresponds roughly
to the middle seven octaves of the piano keyboard, topping out at about 3
KHz. (That's 3 KiloHertz, named in honor of Heinrich Hertz. In earlier
times, people would say 3,000 cycles per second.)

Our more ambitious goal is to present the ear with all the sound infor
mation it can handle. That is generally taken to be a frequency range of 20
Hz to 20 KHz. Of course, the ear is less sensitive at the extremes of this
range. It is also less sensitive to variations in sound power at the extremes.
Errors as large as 3 decibels (a factor of two in power!) can be hard to discern
at the lowest and highest frequencies.

To reproduce a pure tone at 20 KHz, you have to provide samples at more
than twice that frequency. That means you have to provide more than
40,000 samples per second. You can cut corners some, but only by introduc
ing a rather nasty form of distortion at higher frequencies. This particular
form of distortion is called aliasing.
11T"hink back to those Western movies with the Conestoga wagons crossing
\tllthe plains. Perhaps you've noticed that rolling wagon wheels almost
invariably look funny. Either they appear to be moving too slowly forward
or they appear to be moving crazily backward. Occasionally, they even
appear to be stationary. Only slowly moving wagons have wheels that look
sensible.

The illusion is an artifact. A movie camera samples the view 24 times per
second. Our eye and brain stitch samples together and endeavor to make
sense out of the changes between samples. (Persistence of vision eliminates
the flicker.) We expect to see each spoke of a wagon wheel progress in small
steps around a circle, in the direction that the wheel is rolling.

Essay 14 What Meets the Ear 111

At low speeds, each spoke makes a very small step. We stitch the pictures
together just the way we expect to. But when a spoke rotates more than
halfway around to where the next spoke was, we get confused. It is easy to
confuse those identical spokes. We mistake "this spoke moving a bit for
ward" with "that spoke moving a smaller bit backward." The eye and brain
conclude that the wheel is rolling backwards, against all common sense.

When a spoke rotates exactly to the position of the next spoke between
samples, the wheel appears stationary. When a spoke goes just a bit farther,
the wheel appears to be moving more slowly than it really is.

In all cases, the captured sequence of frames has at least two distinct
interpretations. (Actually, there are an infinite number of interpretations,
depending upon how fast you are willing to believe that the wheel is truly
spinning.) You could say that the faster motion appears under an alias. Any
noun can be verbed, and eventually will be by some American bureaucrat
or engineer. So what people usually say is that the faster motion is aliased,
or distorted by aliasing.

The same thing happens when you sample audio signals. A pure tone is
a simple sine wave. Sample it at more than twice its frequency and you can
reconstruct it adequately. Sample it less often and it looks just like a lower
frequency sine wave. That is its alias. A high pitched tone comes through
as a low pitched tone. This does not sound good.

The net effect of all this is that you have to be careful when digitizing
sound. You must pick a sampling frequency more than twice as high as the
highest frequency you wish to reproduce. You must filter out any frequen
cies higher than this before sampling, lest they alias back in band. And you
must filter out those frequencies yet again when you reconstruct the signal.
Fortunately, none of these steps is particularly onerous. But they do add up
to a nontrivial package of operations.
A. o now you should know how many samples a computer must generate
e=vto make good sound. We want at least 40,000 per second to match
human hearing. As a matter of fact, CDs are a bit more meticulous than that.
They capture 44, 100 samples per second. And they sound pretty good to
my (fairly sensitive) ear.

But we're still not done, because we have two ears. Those ears have
evolved to determine the direction of a sound as well as its loudness and
mix of frequencies. They determine direction by comparing the signals that
reach the different ears. Small differences in arrival time and loudness serve
as cues. For many sound sources, you can close your eyes and point toward
them with an accuracy of perhaps thirty degrees.

That's not very many bits of information, at least for a single sound
source. For a roomful of sources, however, it starts to add up. Echoes and
reverberations add to the sense of realism or presence. By the time you

112 Programming on Purpose

capture them as well, you need a lot more bits. The easiest thing to do is to
capture separate signals for each ear. That's called stereophonic sound, or
stereo for short.

So now we can add up the information required to please our ears. We
want two signals. Each signal should be sampled at 44. l KHz. Each sample
should occupy 16 bits, or two bytes. That's a total data rate of over 175,000
bytes per second. Good sound doesn't come cheap.

Compared to the demands of an active visual display, however, this is
small potatoes. In the last essay, I estimated the data demands of a real
desktop metaphor. I postulated a fully animated display the size of a real
desktop, a meter square with full spatial and color resolution. That gobbles
up 1.8 gigabytes per second, or ten thousand times as much information as
our ideal sound machine.

Would you like your workstation to play the "Pastoral Symphony" (or
"Like a Virgin") in the background while you work? Would you like an icon
to whistle for your attention when you get mail? Would you like an active
computation to mumble reassuringly while it runs? I know that I would.
At the very least, I want to know the cost incurred when I ask for it.
71" et me conclude this essay with two observations. The first is one I also
14-made in conjunction with generating pictures. Most sound contains lots
of redundancy. Generated music probably has the most. The number of
bytes you have to present to a MIDI interface can be substantially less than
a CD delivers, if you are content to synthesize the voices of various
instruments. Human speech is a lightweight load, if you synthesize it as
you go.

Even when you record arbitrary material, you can save a lot of band
width. Speech compression techniques go way back. Better coding tech
niques are appearing with exciting regularity. As digital signal processors
increase in power, we can afford to trade even more computational com
plexity for information bandwidth.

In short, we should not let that figure of 175,000 bytes per second loom
too large. Such data rates may appear only in dank corners of future sound
systems. Data compression techniques are also fascinating, but I will save
their discussion for another time.

My final point goes the other way. It increases the demands made on
future workstations. So far, I have discussed primarily the production of
pictures and sounds. We also want computers to see and to hear, however.
And we already know that those operations are not easy.

It's hard enough to scan pictures and record sounds. Those activities
have only recently moved from the research lab to the personal worksta
tion. They still have not reached the limits of human perception, as I have
been talking about here. At least not at civilian prices.

Essay 14 What Meets the Ear 113

It's much harder for a computer to interpret what it sees and hears.
Optical character recognition was once neither cheap nor reliable. Now, at
least, you get to choose between cheap and reliable. It will be nice when
you can have both. Speech recognition is even further up the pipeline, but
it's coming.

I won't even talk about the problems of having a computer understand
what it sees and hears. At least not in the human sense. At least not right
now.o

t?{fterword: Compact-disk technology made this essay easier to write than the
x::iprevious one. People had already worked out the technical parameters of good
digital sound. (I'm only glad they didn't compromise at almost good enough.) All
I had to supply was a bit of physiology. And some perspective. That makes this essay
another of my Asimov-inspired treatises.

15 Warm Fuzzies

11rhis is the fourth in a series of essays on interfacing computers to people.
~(See Essay 12: What Meets the Eye, Essay 13: Technicolor and Cine
mascope, and Essay 14: What Meets the Ear.) So far I have talked about
vision and hearing. In both cases, I have explored the limits of what each
sense can detect.

I don't care (for now) about what is minimally acceptable. I want to know
how much information, in what form, is required to give each sense all the
data it can process. Only when we reach such limits will we be able to
simulate reality believably. Only then will we be able to refine the hu
man/ computer interface to the utmost.

Vision and hearing are the two best sensory channels for conveying
detailed information. We know quite a bit about the energy sensitivity,
frequency response, and discrimination of our eyes and ears. We are
sophisticated at making effective sounds and pictures. A generation of
television addicts might even tell you that sound and light are all you need
to reach out and touch someone.

But then why use that word "touch?" Sure, it's a figure of speech. But all
figures of speech are deeply rooted in our experience of the world. It's one
thing to hear someone out. It's better to get the picture. But only rarely are you
also touched by what you experience.

Touch, smell, and taste are three powerful senses. They certainly convey
much less information than vision and hearing. Perhaps for that very
reason, their impact is all the more profound.

Smell is an ancient sense. Its roots go deep into our animal brains. And
taste is a close cousin to smell. A peculiar aroma or flavor can invoke crystal
memories long lost to other associations. More than once, I've been yanked
back to childhood by an impudent clover blossom or apple pie. I suspect
you have had similar experiences.

Touch has to be at least as ancient. The earliest organisms had to care as
much about what was poking at them as what chemistry experiments they
stumbled into. Whatever its etymology, touch is a heavy-duty channel to
the human psyche. Babies know this, with the nearest thing to instinct that
our speci~s has. If you've lost touch with your sense of touch (as it were),
try to spend an afternoon making mudpies with a two-year-old. You will
be grounded in practically every sense of the word.

115

116 Programming on Purpose

I see a real growth industry in computer peripherals that address these
three primitive senses. Frankly, I'm not prepared to discuss how to exploit
taste and smell. At least not yet. But I can see many ways that touch is under
utilized, even with today's technology.

So my topic in this essay is the sense of touch. How is it used to interface
people to computers? How can it be used? What are the limits of informa
tion processing with this sense? I don't pretend to be very knowledgeable
about this area of physiology. That has never deterred me, however, from
having opinions on a subject.
7Qefore computers became interactive, you couldn't touch them at all.
;J4'You clutched your deck or cards, or box of cards for a large program,
until the operator snatched it away. You fondled the listing you got back
while you worked at squeezing the maximum information from it. Two or
three submissions a day was felt to be good turnaround.

Then one day the keyboard went on-line. That became your point of
physical contact with the abstract world of data processing. Your fingers
push the keys, your eyes (and occasionally your ears) get the feedback.

Feedback through the fingertips is largely passive with most keyboards.
Good ones have little bumps on the F and J keys. Or maybe ASDF and
JKL; are dished a little deeper. (Go take a look at yours.) Many people learn
to find these home keys by touch without ever becoming consciously aware
of their education.

Good keyboards also reward a keystroke with a satisfying thunk. You
feel slight resistance as you push against the key. Once it passes the point
of no return, its resistance suddenly drops. The key hits ground decisively.
You don't know how nice that behavior is until you have to live for a bit
with one of those toy affairs designed by a non-typing Philistine.

Really good keyboards tell you when you strike two or more keys at
once. Depressing one key mechanically locks all the others. My all-time
favorite keyboard in this regard is the one on the old electromechanical IBM
Selectric typewriters. Push a key and a metal tab elbows its way into a
raceway full of ball bearings, displacing one bearing. The raceway contains
only N-1 bearings to accompany the N keys. Try to push another key and
the bearings firmly resist. Elegant.
11T"he trend today is to resolve roll-overs electronically. One key wins the
\tllrace and has its code latched. No new keystrokes are recognized until
all are released. That approach neatly avoids curdling codes, but it doesn't
tell your fingers which one won.

I should tell you that I learned how to type as a college freshman reporter.
On an old Royal portable. Sitting on bleachers typing summaries of lacrosse
and soccer games. In the rain. My audience was my fellow members of the
Princeton University Press Club, and the Western Union operator. We put

Essay 15 Warm Fuzzies 117

a premium on speed and semantic accuracy. Aesthetics got murdered in a
hail of Xes.

As a result of this upbringing, typing is a particularly sensuous experi
ence to me, I want my keyboard to communicate with me by touch. I don't
want to have to look at the screen or the paper to see the result. I don't want
to have to look down to see where the backslash key is on this particular
keyboard. So I welcome almost any form of tactile feedback, even if it is
only a local conversation between me and the keys.

I have encountered one form of feedback from computer to human via
the keyboard. Unfortunately, it is not my idea of user-friendly interaction.
Some systems can mechanically lock all the keys when the computer
doesn't want to be distracted. You try to type and the keyboard tries to break
your thumbs. A kindly system may warn you with a loud snick, and/ or a
"Kbd Lock" indicator, before it rebuffs you. I prefer to have my typing
ignored to having my fingers bruised.
A. o much for keyboards. Fortunately for all of us, hardware designers
e=vhave been willing to experiment with other ways for us to use our
fingers. One of the earliest alternatives I got to play with was the light pen.

A light pen is a device that you hold up against a CRT display screen. It
is designed to be an absolute pointing device. The computer determines
exactly where you are holding the pen on the screen. The software relates
this position to whatever it is currently displaying. A typical light pen also
has a trigger button so you can input the one-bit message (in time and
space), "Now."

I liked using a light pen. I liked the natural motion of reaching out to
touch the thing I wanted to select. True, the thing was just an abstract
picture. It had no tactile feedback to reassure me that it was more than a
shadow. But it was right there at my fingertips. I didn't even mind the tired
arm I got from holding up a light pen to a vertical screen for several hours.

Light pens are largely passe, of course. I think that's because they are
such a nuisance to program. The pen has to see an illuminated dot on the
screen for the computer to know where it's pointing. That calls for extra
logic intimately associated with the display to sensitize the pen at just the
right instances. It also calls for messy software to hunt for the pen if you're
drawing freehand or pointing at a dark area.

A modern incarnation of the light pen is the so-called touch-sensitive
screen. A halo of infrared emitters and detectors frames the screen. Your
pointing finger interrupts horizontal and vertical beams. That gives both X
and Y coordinates and the "Now" signal.

Such gadgets are useful for displaying multiple-choice menus without
too many options. Resolution tends to be too coarse for drawing - the
devices I've played with seem to have about 30 to 60 lines in each dimen-

118 Programming on Purpose

sion. And you can't simulate a proper keyboard - they detect the presence
of your finger, now how hard you push. I find touch screens cute, but no
substitute for other pointing devices.
'l::lideo games taught me to like joy-sticks. Good ones have resistance that
?;I increases the further you deflect the wand from dead center. Really
good ones send a signal to the computer that accurately reflects how far
you deflect the wand. Once again, the tactile feedback is local. What the
computer is thinking or doing has no effect on it. Still, I find it helps.

I have saved for last the most popular hand-operated pointing device.
The mouse has largely displaced light pens and joy-sticks. It has held at bay
such workalikes as track balls and sketch pads. It is as cheap to make and
interface as any of these alternatives. It is arguably as easy to use as any for
pointing, selecting, and coarse free-hand sketching.

Sadly, it also ranks near the bottom in terms of tactile feedback. All a
mouse tells you is where it is on the work surface. The proprioceptors in
your hand and arm supply that information when they tell your brain how
muscles and bones are deployed. You have to look at the screen to relate
that to where the computer thinks you're pointing.

The newest mice have variable ballistics. The faster you move your hand,
the coarser the motion specified by the mouse. That's a real help in moving
around a large screen. But it means that the cursor doesn't return to the
same spot when you return the mouse to the same spot. Once again, you
need loosely coupled hand/ eye coordination where a direct touch is more
natural.

I have reviewed this technology in detail to emphasize a simple point.
We currently make very limited use of our sense of touch. It is confined to
the hand, often just to the fingertips. It is used more to help generate input
than to interpret output from the computer. Even for those limited goals, it
often fails to make the best use of our sophisticated hand/ eye coordination.

JLet's look at the various ways that touch can be used to convey informa
tion. You can probably find an instance where each way has been used

as part of a computer interface. Some are common enough, but limited.
Some are used only in exotic devices. None have come close to being fully
exploited.

I should say up front that I'm not looking for high channel capacity here.
Braille writing is proof that you can read with your fingertips. It is not a
skill easily learned, however. If you are blind, you have a strong motivation
to learn that skill. I understand that most sighted people read Braille with
their eyes, rather than educate their sense of touch. We should not expect
civilians to embrace a difficult discipline.

We can estimate the spatial resolution of human skin. It is measured in
small numbers of millimeters, or fractions of an inch. It is doubtless finest

Essay 15 Warm Fuzzies 119

on our fingertips, somewhat coarser on palms and face. It is probably
coarsest where you sit down. The actual limits don't matter too much, for
the reasons I indicated above. Few people educate their skins to distinguish
dis.tances smaller than the width of a Band Aid.

There are still a variety of signals we can exploit, however coarse their
dimensions. The first one that springs to mind is simple resistance to
motion. You push against something, it pushes back. How hard it pushes
back can be a measure of its mass, if it continues in motion. Or it can
measure its springiness, if it bounces back. Or it can measure its viscosity,
if it remains deformed. All are useful cues for animals evolved to manipu
late their environment.

Imagine a joy-stick, mouse, or trackball that fights back. Its contribution
to a flight simulator is obvious, but there are others. Drag a big document
toward the printer icon and the pointing device resists more than for a small
document. Or mass up an icon by its execution priority, or the number of
edits since the last backup. My ideal desktop display would create a similar
sense of gumminess (don't ask me how) when you press your hand against
a page image and push it to one side.
m device that can vary its resistance is but a step away from one that can
.:cl.move on its own. Here you have to be careful. The goal is not to move
things about. Robots do that and are best given a wide berth. I'm talking
about gadgets that can nudge, twitch, or tickle.

The problem with most computer-controlled motion is the lack of pres
sure-sensitive feedback. You don't want to be poked by something that
doesn't know its own strength. Or that can't distinguish a poke in the ribs
from a poke in the eye. A flight simulator is more realistic if it can make a
joy-stick dance like a Cessna in a down draft. But it shouldn't be allowed
to break your kneecap.

Vibration is a subtler form of motion more easily controlled. It also comes
in many distinguishable flavors. An icon can hum reassuringly while it
computes or buzz a nasty warning for errors. You can take in half a dozen
such summaries where you rest your arms. No need to look away from the
business at hand.

In the early days of UNIX on minicomputers, I used to tune systems by
feel. I found it most useful to sit astride two disk drives and stare at the
console lights. The lights told me which part of the system was active, the
shaking told me what each drive was doing. Even if that part of my
anatomy had only coarse spatial resolution for touch, it was more than
enough. I could literally work by the seat of my pants.

Your skin is also sensitive to changes in temperature. Heat a spot ten
degrees above ambient temperature and just about anybody will get a
strong signal that something is out of the ordinary. Chilling a spot is

120 Programming on Purpose

generally harder and not quite so loud, but that too is effective. The neat
thing is that hot and cold are cues with many cross cultural meanings. Red
says, "Watch it" to cultures with traffic lights, but hot says it louder to
everyone.
)ll es, I know that heating and cooling take lots of energy. I understand
~that thermal inertia severely limits how fast the signal can vary. I have
no idea how to make a practical display, or even a pointing device, that has
hot spots. Still, I can dream.

While I'm dreaming, I can also hope for a device that can change its
texture. That's even harder than generating vibrations or temperature
changes. Still, it would be nice to commandeer the warm fuzzies and cold
pricklies of pop psychology. They are freighted with useful overtones. And
they are just part of an open-ended set of sensations that can help comput
ers communicate with people.

When you look at this list of stimuli, you develop a fresh respect for your
skin. It's amazing what a variety of sensations you can get from something
counted as a single sense. It's a pity we haven't devised more ways to
exploit touch as a form of computer output.

I confined most of my usage examples to things you can do with your
hands. Certainly, they are a principal portal for tactile sensations. And
certainly, we all feel most comfortable keeping many contacts at arms
length, as it were. You can almost always wash your hands.

Still, there are applications where people would gladly accept a wider
range of tactile stimuli. (You can supply your own leers and sniggers at this
point.) We are heading steadily in the direction of full reality simulation by
computer. Sight is very important for that, and hearing is close behind. But
until you introduce touch, you're well short of the mark. And whatever
sensation comes next is a distant fourth. o

mfterword: I couldn't be nearly as quantitative in this essay as in the previous
;ct.three. That tells you, more than anything else, how little we have exploited our
sense of touch. I believe we will see great strides in this area in the near future. We
may also see progress in the use of smell and taste, but I am less sanguine about
that prospect. That's partly why I chose to limit this study of the human senses to
three out of five. Anything I could say would be too speculative even for my catholic
taste.

16 Font Follies

]'(t'S that time of year again. Regular readers of these essays know that
,JJ April is the cruelest month. I set aside my usual saint-like compassion
and focus more intently on the foolishness that pervades the software
business. Pagans used to celebrate the summer and winter solstices. I feel
it more fitting that programmers paint themselves blue and dance about
naked on April Fool's Day.

My topic this time around is font software. If you've ever dug into the
stuff, you already know what a rich vein of complexity awaits the strike of
a pickax. I long suspected as much, but managed to put off any serious
delving until about half a year ago. Then, fool that I was, I jumped in feet
first. I am still waiting to hit bottom.

My descent into this particular mine shaft began many years ago. Upon
reflection, I realize that it probably began with two recurring daydreams
that I indulged in as a child. At the time, I saw no connection between the
two dreams. I now know better.

The first was part of my dream of becoming a writer. Who knows what
makes a particular vocation look appealing - what turns some of us into
computer programmers and others into accountants or publicans. Maybe,
in my case, it was my early introduction to science fiction. I somehow got
the notion that science fiction writers were godlike creatures with profound
insights who, incidentally, attracted hordes of admiring women. (I have
since learned better, on all counts.)
A. o I wanted to write, for whatever misguided reasons. But that wasn't
e=vthe end of it. From early on, I dreamed of having strict control over
what I wrote, from inception to black marks on paper. Twenty years before
the first commercial word-processing software hit the dealers' shelves, I
was determined to do my own document formatting.

It's not that I'm above having my work edited. I recognize the need for
someone to tone down my hyperbole and catch grammatical lapses. Some
of my best work has been with co-authors who fill in my perceptual
lacunae. I just want to be responsible for the final product. If it contains any
typos, they had better be my fault.

Fortunately, I was at Bell Labs when some of the earliest document-for
matting software came into being. Neglecting an abstruse paper or two in
nuclear physics, I can report that all my published work went through a
computer. Every textbook that I've written or helped write came out of a

121

122 Programming on Purpose

phototypesetter under my control or that of my co-author. I am grateful
that the technology fell into place in time, if only barely, to satisfy my early
dream of control.
11rhe second childhood dream was to make the perfect character set. On
~rainy days, I used to take a sheet of graph paper and divide it up into
dozens of equal-size boxes. The challenge was to make easily distinguish
able, and pretty, letters and digits with an economy of dots or lines. I spent
a significant chunk of the 1950s pushing the limitations of seven-bar digit
displays and bit-mapped character sets.

In time, all sorts of vendors were repeating my childhood studies in
pursuit of serious profits. I could buy terminals and printers that exhibited
the best and worst of economical character sets. That's probably why my
interest has drifted, over the years, away from the minimalist toward the
more aesthetic. I no longer care much what a designer can do with a
16x16-dot matrix. I want to see Goudy Old Style rendered well enough to
compete with hand-set type on vellum.

My two daydreams began to merge a few years ago when I bought the
first release of Ventura Publisher. This is a typesetting package for the IBM
PC family that rivals the early successes of the Apple Macintosh family. It
lets you format documents containing mixed type faces, line drawings, and
bit-mapped graphics. A document can be as simple as a single-page flier or
as complex as a book divided into numerous chapters. Ventura Publisher
is a complex program that is hard to learn, but for my needs it is well worth
the effort.

Before Ventura came along, I did all my serious document formatting
with the nroff/troff package that comes with UNIX. To back up to the
beginning, roff stands for "run off," as when you run off a good draft. Brian
Kernighan developed the first program of that ilk (at least that I know of)
as a graduate student at Princeton. You had to submit the paper on punched
cards, but you got pretty output on the high-speed IBM chain printer. Brian
solved the problem of specifying mixed-case printout using single-case
input and a minimum of markup, or meta-information, interspersed in the
printable text.
~oe Osanna wrote a "new runoff" program at Bell Labs, based loosely on
;JJ prior experience with several versions of roff. His nroff became the
vehicle of choice for formatting papers to computer printers. It had gazil
lions of commands, which you can bundle into macros that defined your
own nifty markup language. Model 37 Teletypes eliminated the fuss about
single-case input. They also opened the door to Greek letters and half-line
vertical spacing. With nroff, you could work minor miracles of formatting.
Provided, that is, you were content with a couple hundred printable
characters all of the same width.

Essay 16 Font Follies 123

Along came the first of the (relatively) inexpensive phototypesetters that
could be driven by minicomputers. Joe mucked over nroff extensively to
produce troff, for "typesetting runoff." It had gazillions more commands
and still more macro capabilities. You could contrive macro sets that nroffed
a document onto a printer with one version or troffed it onto the photo
typesetter with another. Suddenly, we had oodles more characters to dis
play, in a myriad of sizes. The world is now awash with laser printers. It is
hard to imagine today the thrill we got back then producing papers, letters,
even mock ransom notes without involving professional printers.

Input was still a problem. Sure, you had lower-case letters by then, but
it was all computerese. And the markup didn't help readability. It's hard to
see \fiwow\fP as italicized wow, or \(em as an em-dash(-). It's even
harder to debug page layout if you have to run a separate formatting
program every time you want to see the effect of a change.

That's where Ventura Publisher really makes a difference. You can still
type those files with markup if you want to. The markup is still hard to read
- <MI>wow<D> and <197> are no better than their precursors. But you
can load a file into Ventura and watch it format before your very eyes. Make
a change and the effect percolates through instantly. Ventura even saves the
changes as a file with markup codes. That lets you muck it over with a more
powerful text editor, between Ventura sessions.
11ro make all this magic happen, you need a new flavor of software. A
~common barbarism for it is fontware. It is the stuff that specifies the
shapes of all those pretty letters on the screen and on the printed page.
Fontware goes far beyond the 95 ASCII graphics built into most character
mode terminals and letter-quality printers. It includes hundreds of glyphs
(the proper term for the visible form of a character), possibly in hundreds
of different fonts (the proper term for a type face at a given point size).

The printer needs fonts. A typical PostScript printer these days has 35
different type faces stored in an internal ROM. Essentially all have at least
13, including variations on Times, Helvetica, and Courier. (Helvetica,
Helvetica Italic, Helvetica Bold, and Helvetica Bold Italic count as four
faces.) Each face is scalable almost continuously from ridiculously tiny to
ridiculously huge. You can specify a seeming infinity of fonts.

For some of us, however, an infinite number is not enough. We want
access to even more faces. The very fact that these 35 faces are in so many
printers has made them shopworn. I weary of books and papers set in Times
Roman with Helvetica Bold head$ and computer text in Courier. Perhaps
that is variety for its own sake, but so be it. We want more choices than you
can possibly count.

A number of companies are happy to address this growing hunger. Some
printers take plug-in cartridges with additional fonts in ROM. You can buy
them from lots of sources. Others, such as the PostScript jobs, will let you

124 Programming on Purpose

download soft fonts from the computer. That can be slower, but it's a lot
more flexible. Just know that if your printer doesn't have the fonts you want
on board, you will have to pay extra to get them there.
mour display screen also needs fonts. At 80 dots per inch, or thereabouts,
~the screen can't make characters look nearly as pretty as the printer
should. A letter quality printer needs at least four times that much linear
resolution, or 16 times as many dots per hectare. But what you see on the
screen should be a reasonable facsimile of what you get on the printer.
Otherwise, much of the power of a package like Ventura Publisher is
wasted. Worse, bad screen fonts can drive you up the wall. Place the cursor
here, do an edit, and watch some characters over there twitch. That's worse
than reading markup language.

The first version of Ventura Publisher I bought ran under GEM, a
windowing environment from Digital Research. GEM needs screen fonts
in fixed point sizes. That doesn't sit well with an application that traffics in
a continuum of sizes. Even if you set a document all in ten-point limes
Roman, you need three different screen fonts. Ventura has three levels of
magnification for displaying typeset pages.

So you compromise. You give GEM an assortment of fonts for each face.
Try to display one that isn't there and GEM has to guess. Should it choose
one that's close enough, by some metric? Or should it scale an existing font?
Too often, GEM goes for close enough. The result is the misaligned cursor
madness I described above (hereinafter MCM).

Another kind of substitution also occurs. Try to display a face that has
no fonts at all and GEM really has to guess. It maps every face onto one of
the three standbys from the early days of PostScript. Some faces have serifs,
those little nubbins on the comers of letters. (Roman stonemasons carved
serifs two millennia ago to minimize cracking. Talk about form outliving
function.) All such faces display as Times.

Some faces are sans-serif, literally "without serifs." They display as
Helvetica. A monos paced font has fixed-width letters, just like a typewriter
or a standard computer printer. They display as Courier. The result works,
but it can often be nowhere near what you get on the printer. Particularly
for the more ornamental faces that are sometimes fun to use. MCM again.
7{ lived with this clunky machinery for over a year. Then, one day, I took
..Dthe first step toward the bottomless pit. I saw an ad that promised GEM
screen fonts for all 35 common PostScript faces, in a rich assortment of point
sizes. The cost was a pittance. I got them, managed to install them, and was
amazed at the transformation. Zapf Chancery appeared in all its scrawly
elegance. Dingbats looked dingbatty. All it cost me was another chunk of
disk real estate and an extra fifteen seconds startup time for Ventura. I was
hooked.

Essay 16 Font Follies 125

Then I got an excuse to expand my horizons. I edit a computer magazine
that displays its computerese in Letter Gothic 12. That's not one of the 35
infamous faces in my PostScript printer. So it's not among my GEM screen
fonts either. The magazine uses Ventura Publisher, lucky for me. But
without Letter Gothic 12 screen fonts, I was back at MCM.

So I finally broke down and bought some soft fonts from Bitstream. They
had a decent rendering of Letter Gothic 12. While I was at it, I bought a
bunch of other faces I had always admired. Bitstream cleverly gives away
a sampler with each copy of Ventura Publisher. (I think they learned
marketing from a drug dealer.) I already had a copy of Fontware, the
program that generates the various font files from the diskettes that Bit
stream ships.

Only Fontware didn't work right. After a day of fussing, I started making
phone calls. Seems I had failed to upgrade to the absolute latest version of
Fontware. Ventura, or GEM, was gagging over some subtle change in file
format. Fine. I got the new version, installed it, and made my fonts. I now
had a reasonable assortment of screen fonts plus downloadable soft fonts
for my NEC PostScript printer. For almost two weeks, I was in pig heaven.

Then I heard that Ventura Publisher was moving to Microsoft Windows.
I didn't hesitate. After all, Windows 3.0 works pretty hard to look like a
Macintosh. (No copyright infringement implied.) And the Mac has done
more than most gadgets to make font a household word. I got Windows 3.0
and learned how to use it. When Ventura for Windows came along, I got
that too.
~nly then did I learn that all my beautiful fonts were dead meat. After
~all, they were in GEM format. Windows demands its own format.
Reasonable, I suppose. It's a bit early for ANSI to belt out a common
font-interchange format for low-to-medium resolution screens. Maybe I
could rescue the Bitstream stuff with another day of work, but I still needed
facsimiles of the 35 standard fonts. I had to do something.

That was when I tripped across a copy of Bitstream Facelift. This is a
wondrous product that works with Microsoft Windows. Forget all those
tough decisions about what point sizes to install. Facelift lets you install a
single outline file for each type face. Then it scales them on the fly. Evidently,
Windows has a hook in its screen driver that gives packages like this a
chance to intercede. If a character owned by Bitstream goes by, Facelift steps
in and contrives the appropriate-size glyph while-u-wait. Naturally, it takes
a bit of caching to make all this stuff go fast enough.

On top of everything else, Facelift came with a fistful of type faces that
I didn't yet own. They're the sort of thing you use for wedding invitations
and fliers that sell used cars, but what the heck. More fonts.

126 Programming on Purpose

A. o I bought Facelift and hurried home to install it. It came right up, with
e:::1'all its fancy type faces working with Windows Write and Ventura.
Mazeltov. Then I tried to reinstall my existing Bitstream fonts. No go.

After two days of frustration and reading the manual from cover to cover
five times, I broke down and called Bitstream. They live 15 miles from my
home in Concord, Mass. The nice folk there explained that they had
changed file formats with the release of Facelift. Diskettes with a diamond
logo were digestible by Facelift, older ones were not. On the other hand,
they were willing to ship me my old wine in new bottles if I could show
proof of recent purchase. So I did and they did.

I got the scalable screen fonts working and set about making download
able printer fonts. No go. Seems I now owned three flavors of fonts. The
old ones could be stuffed through Fontware to make downloadable printer
fonts. The diamond-logo jobbers could not. The ones I got with Facelift
proper also came with downloadable versions, but in a different flavor. (I
won't bore you with the differences among PostScript-compatible font file
formats.)

I camped on Bitstream until they sent me files in enough different
formats to do the trick. In the end, I had to obtain a still later version of
Fontware to get around some bugs. But all the fonts are now installed, both
as screen fonts and as downloadable. It bugs me that the same information
has to appear in two different forms on the disk. At 50 kilobytes per type
face, two dozen faces eat over a megabyte. I hate to pay that tariff twice. At
least it's all in and working. Mostly.

Then I ran across Adobe Type Manager. This is a package that does for
Adobe fonts what Facelift does for fonts from Bitstream. Remember those
35 faces I kept babbling about earlier? Well, they come from Adobe along
with PostScript. I still needed good screen fonts for my original set. Why
not get them straight from the horse's mouth? I figured that Adobe Type
Manager would have to give me accurate replicas of the printer fonts on
the screen.
J11art of me knew I was insane. Windows 3.0 is a new and complex piece
-ifiiJof software. I have already reported a fistful of bugs in it. The same is
true of Facelift and Type Manager. What are the odds that two (count 'em,
two) complex packages can share a complex hook into Windows and not
try to kill each other? I've been writing software for nearly thirty years. I
should know better than to put my writing and editing productivity at the
mercy of such a combination.

Well, guess what. They work together. I'm sure that Type Manager
occasionally savages Windows. Type Manager goes nutty from time to
time, but stumbles on. Windows screws Facelift all too often. But then,
Facelift more often screws itself. I have never caught Type Manager and

Essay 16 Font Follies 127

Facelift harming each other. The whole mess hangs together often enough
for me to get serious work done.

Adobe Type Manager comes with the Original Stale Thirteen faces. You
can buy a supplemental pack to flesh out the standard 35. So I did that.
Naturally, I had to give up yet another chunk of memory for Adobe to cache
expanded characters. You could hardly expect it to share a cache with
Bitstream. I discovered that Type Manager could, however, manage some
of the Bitstream faces. But not all. In the end, I decided to keep each in its
own ghetto as much as possible. I was getting headaches from chasing
installation bugs.

It took me a full two weeks of full-time work to get Facelift and Type
Manager working. Ventura didn't start working right until Adobe told me
about a patch I needed. (Xerox gave me the same news under my mainte
nance agreement, two months later.) I downloaded the patch from Com
puServe and got it going .
.JflltY story is not over. I also use Corel Draw, a wonderful drawing
.JJ~lpackage for the PC. I use it to make textbook illustrations that are
beyond the capabilities of Ventura Publisher. (In fairness, Ventura is great
at letting you import stuff from fancier word processors, drawing pro
grams, and image manipulators.) Corel can also bend, stretch, and twist
type in marvelous ways.

Corel comes with a rich set of faces for you to mangle. Only problem is,
none of these exactly match the Adobe 35, much less any of my Bitstream
acquisitions. When I make textbook illustrations, I want the type faces to
agree.

Corel nicely provides a font-file reformatter called WFNBOSS. I un
leashed it on my miscellaneous assortment of font files. No go. Some files
seemed to translate okay, but Corel crashed when I tried to use them. Others
substituted funny characters. Still others came out with funny spacing.

After another day of struggling, I called Corel. Guess what. I needed a
later version of WFNBOSS. They let me download it and most of my
problems disappeared. The rest I worked around. Two more days gone.

At this point, I had a wobbly mass of software that mostly worked. Every
once in awhile, Facelift shut down without warning. I learned the incanta
tions that brought it back to life. Type Manager developed a funny interac
tion with Windows. Even with the Windows flavors of Courier and Times
disabled, some part of Windows still seemed to be second guessing Type
Manager. Both Microsoft and Adobe agree that bugs remain. To date,
nobody has called me with a fix or work around.

I was left with one fundamental problem. My Compaq SLT /286 was now
too slow. After two years of noble service, it finally found itself outclassed.
I conferred with my wife, studied my checkbook, and ordered a Compaq

128 Programming on Purpose

SLT /386-s20. It arrived in due course and I shifted my software over. I was
back in pig heaven.
7{ am now in Australia for a year, fonts and all. For the price of a small car,
.:.n1 have Ventura Publisher running under Windows with two flavors of
scalable screen fonts. Six megabytes of disk real estate and half a megabyte
of RAM are devoted to helping my 20 MHz 386 paint screens fast. Some
fonts exist in three different forms. The software kicks up from time to time,
but it mostly works. When it works, it is great. When it doesn't, I spend
time making expensive phone calls. Or I do without.

For example, I installed Facelift with my NEC PostScript printer con
nected to LPTl. I am now using an Apple LaserWriter II connected to
COM2. Facelift flatly refuses to download fonts to the new printer. Or to a
file. Or to anything except a PostScript printer connected to LPTl. I can get
Facelift to scale fonts on the fly for the printer as well. That takes five
minutes per page instead of five pages per minute.

The Australian rep for Bitstream has yet to answer the phone. But then
it's summer here. If you've ever seen a Sydney beach in summer, you know
why nobody answers phones.

Where does the folly lie? Decide for yourself. o

mfterword: The fun never stops. Since I wrote this rambling diatribe, I have
~discontinued use of Bitstream Facelift. Many of the troubles I blamed on Adobe
Type Manager turned out to be insidious Facelift bugs. One by one, I eliminated
the bugs described here, acquiring new ones at a mercifully slower rate. Over time,
I have been able to get Adobe Type 1 versions of all my fonts. That lets me depend
on Type Manager alone for screen fonts.

Then along came Windows 3.1 with the new TrueType format. After a bit of
experimenting, I turned off most of True Type and stuck with Type Manager. Better
the devil you know. But the font business is far from settled down.

The real reason for this essay, of course, in not just to talk about fontware. Rather,
it illustrated how ever more complex software can dominate our lives. For more on
that subject, see "Programming on Purpose: The Cycle of Complexity," Computer
Language, June 1992, and "Programming on Purpose: Piled Higher and Deeper,"
Computer Language, September 1992. It's a recurring theme because it's a
recurring problem.

17 Text Editors

~o topic stirs the passions of your average programmer half so much as
»the relative merits of different text editors. Folks who are otherwise
(mostly) sane and agreeable wax poetic about their editor of choice. They
heap scorn upon those who find other editors in any way preferable. They
marshal all sorts of intellectual arguments to support the conviction they
feel in their guts.

Arguments about text editors are usually branded as "religious." I think
that term is right on the money. The wellspring of religion is a deep and
abiding faith that transcends reason and logic. That's a pretty accurate
description of the mind set of your typical editor devotee as well. Both
demand respect. You get in trouble only when you insist on dragging
conviction into the realm of the rational. The issues are simply orthogonal.

I have long stood in awe of this phenomenon with text editors. What is
it about them that fires people up? Sure, you have your compiler devotees
and your spreadsheet loyalists. Brand loyalty is no stranger to the world of
computer software. Still, text editors seem to stand apart. They bring out
the zealots in all of us like no other tools we use.

One conjecture is that programmers use editors quite a lot. Your average
computer user may deal with a handful of applications. Many applications
generate files, to be sure. But they handle the formatting details for you.
The user speaks only a restricted language to the application.

A programmer, on the other hand, performs a broader spectrum of tasks.
Keying in and editing program source is just one job. Preparing test input
is another. Generating initial versions of configuration and database files is
yet another. As a programmer, you work daily with text files in a broad
assortment of formats. For that, you need a general-purpose text editor.

You don't want a text editor that is too presumptuous. Any structure it
imposes on a file may be fine in some cases but is sure to cause trouble in
others. About the only structure you can abide is the partitioning of the
character stream into lines. Each line should be .terminated in accordance
with local custom - carriage return plus line feed, line feed alone, or
whatever. Files generated by the text editor must be digestible by the local
assembler, compiler, display driver, and printer. Beyond that, the less said
the better.

Herein lies a fundamental dichotomy. What a programmer often wants
to control is the pattern of bytes stored in a file. What a text editor offers as

129

130 Programming on Purpose

feedback is a pattern of marks on screen or paper. You type at the editor, or
point and click with a mouse, and the display changes. Presumably, those
changes reflect changes in the pattern of bytes stored in a file.
11rhe design of a text editor defines the mapping between displayed
~marks, typed commands, and stored bytes. You as user of the editor
form some mental model of this mapping. If your mental model is reason
ably accurate, you use the editor with assurance. You build a history of
successes in defining the patterns of bytes you need in files of varied
formats.

At some point, you may even do more than understand the model
defined by the text editor - you get it. Here I use get in the colloquial sense
to describe that leap of faith (or joy, or love) that comes into our lives from
time to time, but probably never often enough. Once we get something, our
relationship to it transcends reason. We believe, pure and simple.

The more important a thing is, the stronger our need to form this
emotional attachment. It provides an important anchor when the sea of
uncertainty develops whitecaps. It saves us the need to rethink basic
decisions over and over. It becomes, in a real sense, a part of us.

Much of our lives as programmers involves controlling those invisible
bytes scribbled on disks. Ours is an exacting trade. A single byte wrong can
hold us hostages to frustration and boredom for days or weeks. We really
need faith that we can control those bytes with some certainty.

That's why I see a text editor as the meeting ground between emotions
and intellect for a programmer. It engages both our hearts and our brains.
But that's not the end of it. We have to buy into a text editor in a third
dimension as well.

Editing text is a mechanical operation. All that typing, pointing, and
clicking takes more than simple intellectual understanding. It takes more
than emotional conviction. It takes practice.
]'('m certainly no expert on education. I have no teaching certificates, I've
,JJ done no serious research on how people learn. Like most self-appointed
teachers, I'm self-taught in the skills of teaching. That has not deterred me
from studying the matter at least informally. And it has certainly not kept
me from forming opinions. (Some would argue that no force on Earth could
do so.) What I have observed is that there are (at least) three distinct ways
that people learn:

We learn intellectually by accumulating experience. We read, we listen,
we touch and feel. We make conjectures, perform experiments, and adjust
our beliefs accordingly. Eventually, we build a sufficient base of long-term
memories of salient facts. We also construct abstract models, as I described
above, and accrete evidence that supports them. Our expertise comes from
years of schooling and trial and error.

Essay 17 Text Editors 131

We learn emotionally in lurches. The process seems to require an
accretion of experience, but the response is far from linear. (See Essay 9: It's
(Almost) Alive.) We can learn some lessons from a single experience.
Sometimes what we learn from that experience is demonstrably wrong, yet
we cling to our convictions. We can be exposed to other lessons repeatedly
and still not learn the obvious. This is what I call getting it earlier in this
essay.

We learn kinesthetically only through repetition. Riding a bicycle,
playing Bach on the piano, typing 30 words per minute - all are skills that
take practice to master. To excel in this arena requires dedication. The best
of the best shoot baskets hours a day. Or practice the violin, or sing scales.
Nobody I know has found a shortcut to this form of learning.

The one consolation is that kinesthetic learning is as slow to fade as it is
to be acquired. I have gone years without sitting a bicycle, only to ride off
literally without a second thought. Whatever I learned is so far down my
spinal cord that my brain is just a bystander. (It's like those stock pictures
in company house organs of somebody being handed an award while the
president "looks on.")

A quarter century ago, I mastered the dubious art of writing tape marks
and rewinding tapes by flipping the keys on the console of an IBM 7090
data channel. To this day, I could still do it with my eyes closed. The skill
has passed from the dubious to the arcane, but it's still there.

Every text editor I've met demands its dubious skills as well. Don't
believe the bushwah you hear about intuitive operation. Nothing is really
a single mouse click away. To run any text editor I've ever encountered,
you've got to invest some time mastering its peculiarities. Some of those
often border on the arcane.
J11erhaps you can see where I'm heading. Text editors seem to be unique
-iflJamong the programs you use as a programmer. You have to invest a
nontrivial amount of time mastering the underlying mapping between
bytes in a file and marks on a display. You have to get that the editor is a
safe tool for your varied needs. And you have to master an assortment of
mechanical skills. That's quite an investment.

In my youth, I dabbled in the business of selling software. I sold compil
ers with reasonable success, to a broad assortment of customers. I sold
operating systems with much more limited success. The assortment of
customers I reached proved too narrow, at least for my ambitions. I have
commented more than once on why I think this came to pass.

It's relatively easy for a techie or a front-line manager to decide to buy a
compiler. You can tuck it in a corner, use it on a few projects, and ignore it
on all the rest. It is a very discretionary product.

132 Programming on Purpose

An operating system, on the other hand, requires a much greater com
mitment. The commitment extends well beyond individuals. It affects
entire groups. That's because operating systems generally eat whole com
puters. They dictate the kind of software you can buy to run on those
computers. I like to say that you don't simply buy an operating system -
you marry one.

In that sense, picking a text editor is also much like getting married. You
don't necessarily have to get a whole group to commit to the same text
editor, to be sure. I've been in shops where there were almost as many
different text editors as there were programmers. But each programmer
must make a major commitment to learning how to live with a given editor.
That commitment may start in the brain, but it extends to the heart and
further down the spinal cord as well. It is not a cheap decision .
.Jflltany of us fall in love with the first text editor we use. I suspect the
Pl process resembles what newly hatched chicks go through when they
fixate on a mother hen. We go through a similar process with our first
programming language. Edsger Dijkstra has long maintained that a person
weaned on FORTRAN is incurably damaged by the experience. I like to
think that I am not, although I'm willing to concede that my development
may have been retarded.

Certainly, I am still most comfortable with the first text editor I learned
to depend on. It seems to me that earlier editors were too primitive. Later
ones have too many whistles and bells, and they don't offer the dose control
I need.

I realize how much that sounds like the generic college valedictory
address. Ours was a generation of change. The college was a bit stuffy when we
got here. We brought about needed improvements. But things have gone a bit
radical for our tastes recently. Sound familiar?

Nevertheless, I still have pretensions at professionalism in this, my
chosen trade. That obliges me to at least try to change with the times. For
that reason, I keep fiddling with new text editors as they come along. In
some ways, they are distinctly better. In others, I feel they have lost ground.
It could be that I am simply stodgy, but I don't think so. I'll recite my list of
perceived pros and cons, then you can decide for yourself.

The best thing about newer text editors is that they offer a bigger window
on the world. They have come a long way from those first text editors that
popped up decades ago. The ones on mainframes mostly evolved from
older batch update programs. You punched up a set of change-request
cards and stuck them on the front of the deck you wanted to edit. The
computer punched out a new deck with the edits incorporated.

Essay 17 Text Editors 133

When the editors went interactive, they retained the card-deck mentality.
Maybe the deck to be updated came off a disk file, but the commands you
typed sure looked like those change-request cards of yore.
jf)ROre adventuresome were the programmers trying to tame the new
,JWlbreed of minicomputers In those days, memory was scarce and disks
were practically nonexistent on minis. One of the earliest text-editor hits
was a creature called TECO. It was modeled not on card decks but on paper
tape. Editor commands let you yank in as much tape as would comfortably
fit in the very limited memory, work on that chunk, then punch out the
edited section.

Compared to existing paper-tape editing machines, TECO was much
more flexible and powerful. Still, there was that notion of taking one pass
over a sequential file of characters, mucking it over a section at a time.
Commands were cryptic beyond belief. This was the days of Model 33
Teletypes running at 110 baud. The less you said that the computer had to
echo the better. But the editing language was remarkably powerful. To this
day, I still trip across the odd TECO devotee who mourns the good old days.

My career with TECO was mercifully short. Mostly, I got to play with a
series of editors put up by the now famous Ken Thompson and Dennis
Ritchie. You can still find their original work tucked in a dank corner of the
/bin directory of nearly every UNIX system shipped. I refer, of course, to
that venerable standby, the UNIX ed editor.

The design of ed profited, naturally, from earlier experiences with TECO.
The terse input remained, but got moderately less cryptic. The UNIX
version is actually a simplification of an earlier editor called qed. That beast
was so powerful that you could actually write programs for it. Perhaps the
worst thing I did to Bell Labs was write a relocating linker in qed, then
describe the tricks I'd learned in a tutorial memo. I wouldn't be surprised
if unmaintainable qed programs are still consuming enormous quantities
of CPU time in backwaters of that organization.

I think the main conceptual advantage of ed over TECO came about
because disks became more commonplace. That paper tape turned into a
ring of text, all of which was quickly available to the editor commands you
typed. You didn't feel quite so inhibited about taking multiple passes over
a file.

A secondary advantage came from the UNIX host environment. UNIX
standardized the representation of text streams inside the computer. The
sequence of bytes inside the editor could be exactly the same as in the disk
file, which was the same sequence you read and wrote. Any needed
reformatting got pushed out to the edges of the system. That made it much
easier for the editor to present an accurate representation of the underlying
byte patterns.

134 Programming on Purpose

Still, ed made you peer at the text a line or so at a time. It still carried the
implicit conviction that the display device was a slow printer. When 9,600-
baud CRT terminals appeared on the scene in quantity, a few folks grew
impatient with ed.
11rhat led to the development of vi and its ilk. These screen-oriented
~editors are still popular in many circles. They can work in character
mode across serial links, yet they offer many new advantages. Most impor
tant, the conceptual model got friendlier. That paper-tape ring of characters
has now widened into a ribbon of lines. You view the ribbon through a
window that shows upwards of 2,000 characters at a time. You don't have
to ask to see the effect of a command because you're always treated to a
view of the current text that fits in the window.

Editors like vi have had to live with a vast range of character-oriented
terminals. They need packages like curses and termcap to isolate them from
the peculiarities of individual terminals. That restricts them to a set of
screen-drawing primitives that comprises a lowest common denominator.
If you only have to do battle with one flavor of screen, life can get easier.

And it did. The advent of the personal computer has brought the latest
improvement in text-editor technology. Bit-mapped screens support mul
tiple fonts. Fonts can vary in size and can have proportional spacing.
Characters on the screen can be designated by a mouse as well as by
keyboard commands. Even commands can be selected by mouse dicks on
menus, so you have less to remember. The new conceptual model is often
characterized by that overworked phrase, "What you see is what you get."

That's the good news. I can cheerfully report that I'm typing this text
into one of those modern text editors. It uses windows, mouse, clipboard,
menus, and all the other wonderful features you hear touted so aggres
sively today. Mostly I like it.

The bad news is that I couldn't do the whole job using just that editor.
At least not comfortably. From time to time I put the file down with the new
editor and picked it up with my ancient ed clone. Let me tell you why.
~n one occasion, I had to drop a broad range of text lines. I first tried
"17 selecting the text by dragging the mouse across the entire range. The
window neatly scrolled along as I dragged, for many many seconds. Then
I goofed and bounced a mouse button at the wrong time. All gone. I started
over from bottom to top. Many seconds later, I'd forgotten where the top
was. Scrub the dragging and go looking for the right place again. You get
the drift. Sometimes it's easier to just type a command than it is to point
and click.

Here's a variation on that theme. Try a global search and replace with a
menu-driven system. It's like filling in one of those landing cards they hand
you when you take an international flight. Even if you get it right, you still

Essay 17 Text Editors 135

have to outsmart the editor's helpful presumptions. No, I don't want a
case-insensitive match, thank you. Yes, I would like to specify a match
pattern with metacharacters, not just a match of letters and digits. Some
times it's easier just to type a one-line command, no matter how cryptic it
may appear.
7{ reserve my biggest gripe for the last. When I use a text editor, I want to
.:.nedit text. I don't want to format a document. I don't want to fill in a form
letter. I don't want to simulate a $600 typesetting package at a fraction of
the cost.

People who write text editors these days are going off in the wrong
direction, at least for my needs. They have confused "What you see is what
you get" with "What you see is what you want." What I want is a display
that helps me form an accurate mental model of the underlying bytes in the
text file.

I don't want trailing spaces to disappear. Instead, give me some way to
make them visible if they're there. I don't want long lines to fold automat
ically. I certainly don't want them to truncate. I want feedback and control.

Brian Kernighan deserves the last bon mot on this topic. He was touting
the advantages of markup languages over the new breed of document
formatters, but his point applies equally to this diatribe. You can suffer a
major loss of information if you edit text with some of the newer user-over
friendly editors. If you're not careful, in fact, you will find that "What you
see is all you get." o

mfterword: Text editors for programmers have become a hot marketplace lately .
.a.some know the syntax of the programming language you're editing. Others
try to be extremely flexible. I have tried several of them since I wrote this essay. I'm
happy to see so much effort directed toward helping programmers. But I still haven't
found an editor I like.

18 Approximating Functions

mn amazing number of computer people are frightened of mathematics .
.:cl.Yes, I know that you don't have to know calculus to write a computer
program. But both disciplines require a level of precision and a style of
abstract thinking that are quite similar. You'd expect a familiarity with one
would instill a level of comfort with the other. Nevertheless, I continually
trip across folks in our profession who shy like a wounded stag at the sight
of an unfettered cosine.

To be fair, I find equal numbers of mathematicians who view computer
programming as only slightly above and to the right of plumbing. They
gripe about the wages that both programmers and plumbers command,
but feel moved to learn about neither trade. Suggest to such mathemati
cians that computer science may be at times a real discipline, that it may
have occasional brushes with elegance, and they glaze over. It's like arguing
the relative merits of acid-core versus rosin-core solder at a wine tasting.

Programmers averse to mathematics display an assortment of irrational
behaviors. An extreme case is the occasional programmer who will do
anything to avoid an operation more elaborate than add, subtract, divide,
or multiply. I once ran across a FORTRAN program that contained a loop
that looked something like:

x = -1
y = 0
DO 10 J = 1, N
x = x + 2

10 y = y + x

It took me a moment or so to realize what was going on. This code
meticulously sums the first N terms of the series 1, 3, 5, 7, 9, ... You don't
need to know a lot of mathematics to notice that the results for increasing
N form the series 1, 4, 9, 16, 25, ... Those are just the squares ofN.

I pointed this out to the programmer, an undergraduate liberal arts
major. He blanched when I expressed the result of the loop in terms of the
FORTRAN power operator - N2 • When I told him he could also write this
as N*N, he brightened a bit. That he could understand. Then he looked sad.
Seems he had spent a whole evening working out this method of obtaining
the desired result. He was reluctant not to make use of his wondrous
discovery.

137

138 Programming on Purpose

~ow that is a feeling that I can sympathize with. One of the beauties of
~mathematics is that it is a rich source of happy insights. Sure, it's nice
when you can discover something before anybody else. Newton and Gauss
must have led enviable inner lives. But even us pedestrian explorers can
delight in our finds. As old as they may be to others, they are new to us. I
have learned to savor each aha! however shopworn the discovery later
proves to be.

On the other hand, sometimes you just have to get a job done. In that
case, your travel budget may not cover safaris into well-explored territory.
If you're working for others, as is often the case, they have a right to expect
you to know the basics. Few customers willingly and knowingly pay your
tuition.

More commonly, programmers averse to understanding mathematics
treat formulas as incantations. Copy the stuff out of a book, they figure, and
you can't go wrong. Somehow, the computer will turn all those exponen
tials and logarithms into elliptical integrals, or catenary curves, or whatever
the problem at hand demands from the world of mathematics. The magic
spell must work right because it came out of the Big Book.

It doesn't take much experience with floating-point arithmetic, however,
to develop second-degree burns. As an approximation to the set of real
numbers, floating-point numbers fall a bit short. They can represent very
large and very small values, at least compared to integers in a computer,
but at a price. That price is finite precision. You soon learn all the ways,
subtle and not-so-subtle, that finite precision can curdle the result of a
calculation that looks straightforward in the world of pure mathematics.

I find it interesting that programmers adapt quickly to the finite range
of integer variables. Sure, the world is full of programs that overflow in
stupid places. But by and large, programmers accept the fact that counting
much past a billion is chancy. The good ones develop an assortment of
techniques for living within that fairly narrow range.

The same bunch of programmers become quite incensed, however,
when their floating-point calculations sink. In this arena, they don't want
to have to think. They just want useful answers delivered up in response
to the appropriate magic spell.
m more sensible attitude toward using math, as always, lies somewhere
.Q.in the middle. Opportunities abound for you to use simple math to
advantage in many of your programs. Hide from those opportunities and
they don't wait around - they pass you by. You are left to write a brain
damaged program, or to rediscover on your own the law of cosines. And
most of the time you can use the functions in the math library as incanta
tions. They summon up the appropriate demons for you and deliver the
result you desire.

Essay 18 Approximating Functions 139

You have to be alert only when the machinery supplied with your
favorite programming language doesn't deliver the goods. Sometimes the
formula you copied is so ill-behaved with finite-precision (or finite-range)
arithmetic that it is worthless. You need to find an alternate way to compute
the function that is safer, at least over the limited range you care about.
More often, the functions from the math library work fine, thank you, but
they eat computer time like candy. They're busy computing 53 bits worth
of precision when all you need, or have time for, is 16 bits.

For those reasons, and others, I have found it useful over the years to
accrete an assortment of techniques for approximating mathematical func
tions on a computer. I presented some of them in earlier essays. (See Essay
5: Safe Math and Essay 6: Do-It-Yourself Math Functions.) As you may
have guessed by now, I intend to revisit that ground and share a few more
of these techniques with you. I think you'll be surprised how often you can
bend one or more of them to your needs, even in programs that don't
appear to have much of a mathematical slant.

Some of the techniques are remarkably simple, despite the mathematical
trappings. Even so, I use them to produce production-quality functions to
add to math libraries for general use. I also use them to make quick-and
clean approximations for specialized needs within a given program. (Please
notice that I did not say quick-and-dirty. I don't know about you, but I don't
have time to write programs that fast.)

You may recall that I am trained as a physicist. A chemist once introduced
me to her fellow graduate students as "one of those guys who knows the
math." Well, sort of. Unfortunately, I share with many experimental physi
cists a very utilitarian attitude toward mathematics. Like amateur carpen
ters, we will use a chisel as a screw driver if that happens to get the job done.
So don't look for elegant proofs in what follows.
'lf et's say, for openers, that you have a function that you need to compute
14over a given domain of input values and to a given precision of output
values. The nastiest case is when the domain spans all representable
floating-point values and the precision is the maximum that the floating
point representation can retain. That's what I call production quality. Even
that extreme is not as hard to achieve as it sounds. With careful analysis
and simple hygiene, you can easily keep a function sane over its entire
domain (the range of input values over which it is defined). You can also
retain all but the least-significant one or two bits of precision.

More likely, however, you can get by with considerably less than the
maximum range and precision. That's even true within production code.
You compute many functions only over a small range, then apply various
(computationally safe) identities to derive answers for the rest of the range.
You begin many computations with a fairly coarse approximation, then
iterate to improve precision.

140 Programming on Purpose

The square root function is a classic example that I have used before. To
review briefly, it is defined for all non-negative values of its argument (call
it X). It is also defined for negative values of x, but that gets you into the
world of complex numbers. I choose to avoid that world for the moment.
For all positive values of x that you can represent in floating-point, you can
also represent the value of the function. That's because SQRT (X) lies
between X and 1 for all positive nonzero values of x.
11T"here's a way to compute the square root that loosely resembles doing
"1.tlong division. I learned it in high school, many years ago, then forced
myself to relearn it in college. I haven't used it since. Isaac Newton devel
oped a much more powerful, and more general, approach while he was
mucking about inventing calculus.

Newton's Method is an iterative technique that converges like crazy to
the right answer. You simply guess an answer (call it Y), divide it into X,
and average the quotient with Y to obtain a better guess. If Y is correct to N
bits of precision, the newer Y is correct to about 2*N+1 bits. Start out with
a guess accurate to only six bits - less than two decimal digits of precision
- and you get 13 bits, then 27, then 55, and so on. The widely-used IEEE
754 Standard for floating-point arithmetic represents double precision to
53 bits, or over 16 decimal digits. That means you can compute a double
precision square root with only three iterations of Newton's method. Wow.

The obvious way to write SQRT, then, is something like:

SQRT(X):
IF (X < 0)

<despair>
ELSE IF (X == 0)

RETURN (0)
ELSE

Y = <guess>
WHILE (2-53 < I Y - X*X I)

y = (Y + x I Y) I 2
RETURN (Y)

Nobody with any sense does so, however. That test for convergence is a
nuisance to compute. It is also a bit perilous if you are too demanding -
the code can end up looping forever for some values of x. Better you should
know the quality of your guess. Then you can simply iterate a fixed num
ber of times and return whatever you get. Keep the number of iterations
small enough and you can write them out in line, thus eliminating the loop
as well.

Say you want to do the job in three iterations. Then you need to approxi
mate SQRT to within six bits on your initial guess. That sounds almost as
hard as writing the function in the first place. Well, it can be, unless you
first solve a more restrictive problem.

Essay 18 Approximating Functions 141

mou need to know most modern computers represent a nonzero float
~ ing-point value as a binary fraction times two raised to some integer
power. You can write a floating-point value X as FRAC*2EXP, where FRAC is
in the half-open interval [1/2, 1). (In other words, 1/2 <= X AND x <
1.) That's certainly true for IEEE 754 format. Older encodings, proprietary
to various hardware vendors, look enough like this that the differences are
usually unimportant.

If you rip x apart to get at FRAC and EXP separately, you have two smaller
problems to solve. (The programming language C comes with a function
called frexp that peels a floating-point number apart just so.) Find the
square root of each part and multiply the two results to get the final answer.
It's easy to take the square root of 2zXP. If EXP is even, the result is simply
2EXP12• If EXP is odd, the result is SQRT (2) *2czXP-1 >12• All that remains is to
take the square root of FRAC, which lies on a much smaller interval than
the original x. As you shall soon see, it's fairly easy to contrive a six-bit
approximation to the square root between 1 /2 and 1.

This is why I consider SQRT to be such a classic example. There are
several ways to compute the function, but the more obvious ones are
computationally naive. A little knowledge of a function's behavior, and the
properties of floating-point representations, can gain you considerable
leverage. You can arrive at computationally stable, and efficient, algorithms
with a minimum of effort.

Of course, SQRT is not a perfect example, as I have emphasized before.
Of all the functions in a given math library, this is the one you are most
likely to use unmodified. It is typically the cleanest, stablest, fastest function
of the lot. You might replace it only if you need much less than full precision.
Or you might want a fixed-point version - where you pretend, say, that a
32-bit integer has ten bits to the right of the binary point to represent a
limited range of fractional values. Or you might have a need for a cube root
function. The technique is basically the same, but the iteration is messier:

y = (2 * y + x I (Y * Y)) I 3

7f et's get back to approximating the fraction. We have reduced computing
14-the square root to the problem of approximating the function between
1 /2 and 1. We know that once we get six bits of precision, we are only three
iterations away from a full-precision result. All the rest of the SQRT function
is simply testing, cutting, and pasting.

A very simple approach, at this point, is to make a very simple guess for
Y. We know that the function value ranges smoothly between SQRT (1I2) ,
about 0.7071, and SQRT (1), exactly 1. What if we split the difference and
guess 0.85 initially? The result is not bad. You have more than two bits of
accuracy, so it only takes a couple of extra iterations to get full double-pre
cision accuracy.

142 Programming on Purpose

You can do better, however. The equation for a straight line is:

Y = M * X + B

A well-chosen straight line should track the square-root curve over this
interval much better than the simple guess Y = O . 85. That guess, after all,
is just a horizontal straight line. By picking good values for M and B, we
ought to get a much better starting guess for only a little more computa
tion. If that saves us two iterations, it is well worth it.
?ll?llte have our criterion for "well-chosen" or "good." It's whatever
~values of Mand B minimize the number of iterations. That's not easily
expressed mathematically, however. (It can be done, but it leads to a lot of
work.) What we want is some criterion that comes close to the best-possible
choice, but that leads to a simpler computation of M and B.

There is such a criterion. At each point along the X-axis we can draw a
vertical line between the square root curve and our straight line approxi
mation. Sometimes the vertical lines go up and sometimes they go down
as the curve wiggles about the line. We could add up all these line lengths
algebraically and insist they sum to zero. Unfortunately, that allows big
swings below the curve to cancel big swings above, with no penalty for
badness of fit.

You can penalize a bad fit simply by squaring the lengths of all the
verticals and adding them up. Now you can't hope to get a zero sum -all
the contributions are positive. Only an exact fit gives a zero sum-of-squares.
But you can minimize the sum-of-squares deviations between the straight
line and the curve you want to approximate well. That leads to the formula:

SUMSQ = SUM((M * X + B - X1' 2) 2)

In this case, we are fitting a smooth function whose mathematical
formula we know. The proper way to compute SUM is to integrate its
argument over the interval in question (between 1 /2 and 1). It turns out
that all the integrals you have to evaluate here are easy ones:

1

SUMSQ = f (M * X + B - x%)2 dX
112

I was able to do them without using a table of integrals, despite the fact that
I haven't had a calculus course since sometime before Lyndon Johnson was
president.

Sometimes the function is not so nice as the square root, however. Or
you may not even have a function - just a set of sample points that you
know the function passes through. In either case, you can evaluate SUM by
summing over a finite set of (X, Y) pairs (the points). Either way, you still
apply the least-squares criterion.

Essay 18 Approximating Functions 143

You want to choose the values of Mand B that minimize SUMSQ. Differ
ential calculus tells you to differentiate SUMSQ with respect to each parame
ter and set the result to zero. You end up with two equations in two
unknowns. The solution gives you the best values for M and B. (Strictly
speaking, the solution to these equations may not even exist. But, unless
you try to fit a straight line through a single point, or something equally
stupid, you'll get what you're looking for.)

What's nice about this approach is that the equations you get are linear
in Mand B. They're the sort of equations you can solve even if you don't
remember how to spell determinant. In this particular case, you get:

i i i

M * f x2 dX + B * f xi dX = f XJ;, dX
11, 1/2 1/2
i i i

M * f xi dX + B * f xo dX = f xi;, dX
112 11, 1/2

I intentionally wrote the left sides in all their silly generality so that you can
see the pattern it follows. Skipping lots of steps, I present the final equation
for the straight-line approximation to SQRT (X) between 1 /2 and 1:

y = 0.5823 * x + 0.4252

It varies between 0.7164 (where you'd like 0.7071) to 1.0075 (where you'd
like 1.0000). In between, the line dips below the curve by a similar amount.
11rhe purpose of this exercise was not to encourage all programmers to
\C.llwrite their own square root functions. Far from it. If you didn't know
what was going on under the hood before, you should have a greater
respect for math functions by now. You should know to use what's there
whenever possible. Chances are, the author of the math library has already
devoted more energy to getting right answers than you have time to divert
from what you should be doing.

Rather, I wanted to illustrate several useful techniques for doing your
own approximations when you must. These include ripping floating-point
numbers apart, pasting results together from separately-computed pieces,
developing simple approximations by least-squares, and precomputing
precision rather than testing for convergence. I have a few more techniques
in my bag of tools, but this is a good sampler to start with. o

mfterword: This essay and the next are companion pieces. (See Essay 19:
.(::I.Economizing Polynomials.) Not all programmers care about numerical
programming at this level of detail. Nor should they. But then, not all programmers
should care about parsing theory as much as many schools think they should. I
figure a working programmer should be exposed to the basic techniques of numeri
cal programming. I find they come in handy at least as often as parsing theory.

19 Economizing Polynomials

7{n the previous essay, I began a discussion of mathematical techniques in
;.nprogramming. (See Essay 18: Approximating Functions.) I used com
puting the square root as an example of several techniques for evaluating
functions safely, robustly, and accurately. The techniques include disman
tling floating-point numbers, working on their pieces, and gluing the
answer together at the end. That often reduces the problem to a smaller
range, where it is relatively easy to approximate the function with some
thing easier to compute.

I showed how you can approximate a function (the square root in this
case) over a small range by a polynomial (a straight line in this case). You
minimize the sum of the squares of the differences between the function
and the polynomial to determine the "best" coefficients of the polynomial.
The advantage of this technique is that you get N linear equations in N
unknowns for a polynomial of order N-1. You can get coefficients that give
a slightly better fit by other means, but they often involve considerably
more work. The minimum-sum-of-squares approach does remarkably well
for being so easy.

I continue in this essay with a few more techniques for calculating
functions on a computer. They are more goodies from the bag of tricks I
have accreted over several decades of programming. I know that few
readers of this column are in the business of writing professional math
libraries. It is not my intention to train more people for that elite (and
limited) profession. Most of the current practitioners know more than I
about the topic anyway. Rather, I want to pass on an assortment of tech
niques that I have found generally useful. Math creeps into programming
in many subtle ways. The more comfortable you are with how to deal with
it wisely, the less likely it is to scare you, lead you astray, or bite.
311olynomials are extremely important in approximating functions be
-tFJcause they wiggle so nicely. Given enough coefficients, you can write a
polynomial that approximates just about any smooth function as closely as
you'd like. The more coefficients, the higher the order of the polynomial.
The higher the order, the more control you have over the shape of the curve.

Polynomials are also important for another reason. You can compute a
polynomial P (X) for any X by a series of multiplies and adds. Computers
can compare, negate, add, subtract, divide, and multiply floating-point
numbers. A few have hardware instructions that let you rip numbers apart

145

146 Programming on Purpose

and put them back together the way I did for SQRT. A very few have
hardware instructions that compute SQRT or (pieces of) the fancier func
tions such as SIN or EXP. As a rule, however, you should expect to reduce
all function computations to the basic arithmetic operations.

Homer's Rule leads to a compact loop for evaluating a polynomial of
orderN-1:

I = N-1
P = C [I]
WHILE (0 < I)

I = I - 1
P = P * X + C[N]

Here, the coefficients of the polynomial are stored in C [0] through c [N-
1] , and c [I] is the coefficient of XI.

11rhe DEC VAX has a POLY instruction that performs a loop very much
~like this - you need to store the coefficients in the reverse order. Even
machines that lack such a nifty instruction perform this loop quite rapidly.
Homer's Rule is suboptimal, in fact, only for machines that can perform
several multiplies and adds in parallel. Other ways of expressing the
polynomial evaluation lead to higher degrees of parallelism.

I use a function with a name like POLY only to evaluate polynomials of
reasonably high order. For smaller polynomials, I prefer to write the expres
sion out in-line, as in:

P = ((C3 * X + C2) * X +Cl) * X +CO

That avoids the cost of a function call, which can be a measurable part of
total execution time for many functions. It also exposes the expression to
anybody who feels moved to rewrite it for better operation on a parallel
architecture.

Of course, few of the basic functions in mathematics look like
polynomials. Part of the reason why we have SQRT, SIN, and EXP is that
each wiggles in its own unique way. And none of them wiggle like a
polynomial, over the long haul. Another reason why we have SQRT, SIN,
and EXP is that so many other functions can be expressed in terms of these
and a few of their buddies. We can often build what we want by combining
the basic functions, and polynomials, in the expressions that constitute
much of our programs.

But that approach breaks down sometimes. The mathematical formula
that looks fine on paper may take too long to compute. Or it may lose
precision because it is full of almost equal terms that cancel, but not before
destroying the smaller terms that matter. Or it may involve instabilities that
cancel out mathematically but blow up on a computer. Forman Acton gave
me my first serious exposure to numerical computation while I was at

Essay 19 Economizing Polynomials 147

Princeton. I still remember his favorite dictum -if you're near a singularity
mathematically, you're at a singularity computationally. (See Act70.)

Here's where polynomials come to the rescue. They may not track an
arbitrary function over a wide domain. Over a narrow enough domain,
however, they can do just what you need. They are, in the bargain, numeri
cally stable and easy to compute.
m great source of polynomial approximations in this sense is various
.Q.infinite series. Consider a function that you want to compute in an
interval around X = 0, for example. Unless it is particularly perverse, you
can usefully expand it as a Taylor series about the origin. This yields a
polynomial in X that contains all possible powers. You don't want to
compute that, of course. Even on a Cray 2, evaluating an infinite series eats
too much computer time. But it does make a good starting point for
determining an adequate approximation.

There is a value of X (call it A) that is the largest value for which you wish
to compute the function. All you care about is getting good answers for, say,
the interval -A <= X <= A. (You can also write this as [-A, A].) Finally,
there is some limit to the precision you can retain (call it N bits), given the
floating-point representation on the computer you're using. There is no
point in generating more than N bits - the extras just get dropped when
you store the result.

Now inspect the coefficients of the Taylor series. For high enough powers
of x, they'd better start getting smaller. Otherwise, the series describes a
function that blows up rather impressively. Some functions do, the
arctangent being a classic example. If that is the case, you're probably better
off with a continued-fraction approximation or a ratio of polynomials.
Nothing matches a function that blows up better than an approximation
that flirts with division by zero.

For now, let's stick with tamer functions. You should know the value
YMAX, which is the largest magnitude value that the function Y attains over
[-A, A]. (Often it is Y (A) .) You need to identify the largest power of X that
you need to keep to generate a respectable approximation to Y (X) . Discard
all higher-order terms and you have a finite polynomial in x. If you have
chosen your cutoff point wisely, you will obtain the same answers as the
infinite series, only much sooner.

A simple technique usually gives a good-enough answer. Inspect higher
order terms in succession until their contributions to the sum begin to drop
off. Then look for the first term that is small compared to the value of the
function. By small, I mean:

LOG2 (C [M] *xt') - LOG2 (YMAX) < -N

In English, the M-th term doesn't contribute to the high-order N bits of
YMAX. If a term is right on the edge, you may want to keep it. Also, be

148 Programming on Purpose

particularly wary of a series whose successive terms alternate signs. (There
are many of these.) You may have to consider pairs of adjacent terms to
choose a wise cutoff point.

1Let's revisit a concrete example. (See Essay 6: Do-It-Yourself Math
Functions.) Say you want to compute the sine function, SIN. Yes, I know

it's another questionable example, just like SQRT. Of all the functions you' re
likely to tackle, these two are very low on the list. You're almost invariably
better off using a version written by a pro. Still, it is a function that many
people know. And it nicely illustrates many useful principles.

The series representation we care about for sine starts out as:

Y = x - X3 /3! + X5 /5! - X7 /7! + ...
Those factorials in the denominators do a wonderful job of getting big fast.
It's never long before they swamp out the growing powers of x, however
big x gets. In this particular case, the news is even better. The largest value
of x that you absolutely have to compute is n/ 4, or about 0.7854. Since that
is less than one, higher powers of X also get steadily smaller. You can see
why the sine is such a nifty candidate for a polynomial approximation
based on its series expansions.

The trick, of course, is to avoid computing SIN (X) for IX I > 7t/ 4.
Remember that sine and cosine are aptly named circular functions. They
cycle through the same set of values repeatedly as x changes by 27t. And
even over one cycle, both of these functions have additional symmetries. If
you are also willing to compute cos (X) for Ix I < 7t/ 4, it is easy to construct
either SIN or cos for any x. (The series for cos is similar to that for SIN.)
The result is always SIN (X) or COS (X), possibly negated, for x reduced
to this smaller angle.

The obvious way to reduce the angle is to subtract some multiple of n/ 4
from X. All but the low two bits of the multiplier are useless - they just
count how many times x went around the circle. The low two bits deter
mine the quadrant that x inhabits. Hence, it selects whether to compute
SIN or COS and whether to negate the result. I won't bother to show the
logic here. Unfortunately, the obvious way to reduce the angle is not the
best way. Every time you add 27t to x, you push some fraction bits off the
end. SIN (X) gets "grainier" as Ix I gets larger. For large enough Ix I, no
information remains about where you are within a quadrant, or possibly
even around the circle. You'd think, therefore, that subtracting those mul
tiples of 2n can't make matters any worse. But it can.

Unless you do a careful job of extracting the reduced angle, the function
gets jerky as well as grainy. That can lead to surprising artifacts when you're
computing lots of sines and cosines for related angles. I won't discuss the
matter further here. I just wanted to warn you about a problem that people
often overlook.

Essay 19 Economizing Polynomials 149

7Q ack to the series representation of SIN (X) . The largest value is assumes
?JPover the interval we care about is SQRT (1/2), about 0.7071, at
SIN (7t/ 4) . The xis term contributes at about bit 45, xi 7 contributes at about
bit 54, and xi9 contributes at about bit 63. If we want to compute a
double-precision result on a modern computer that adheres to the IEEE 754
Standard, we need 53 bits of precision. We can certainly drop the last of
these and all the terms that follow. The middle term is iffy. We certainly
want to keep the xis term.

We can, and should, rewrite the polynomial as X*P (X2) to get rid of all
those zero coefficients for even-powered terms. We then need an eighth-or
der polynomial in X2 to get full precision over the entire range of interest.
What's sad is that the last term or two are needed only for the largest
argument values. The approximation is superb near the origin. All the error
is concentrated out at the ends.

As you might expect, this is not the best way to approximate a function.
The ideal is to pick an approximation that wiggles back and forth around
the curve you want to fit. All wiggles should deviate by about the same
(small) amount. There are techniques for finding such a curve that is ideal
or nearly so. They can take a lot of work. It's too bad that the truncated
power series does such a poor job because it takes so little work. Wouldn't
it be nice if you could split the difference? Do just a little more work and
get a more economical approximation.

You can. A technique called economizing starts with an adequate approxi
mation to a function. It tells you how to eliminate one or more of the
high-order terms and still keep an adequately precise fit. You basically
smear the contribution of each of these higher-order terms over the lower
order ones. And you do so in a way that also smears the big error at the
ends into smaller errors along the curve.

The trick is to express the polynomial in terms of Chebychev
polynomials. (You can find several alternate spellings of Chebychev, de
pending on how folks translate Cyrillic letters to Roman. Tchebychev is one
of them, which explains the common use of T to designate his polynomials.)
The first few Chebychev polynomials, written T1, are:

To = 1
Ti = x
T2 = 2*X2 - 1
T3 = 4*X3 - 3*X

They have several important properties. First, they are orthogonal. You
can express a polynomial of order N as a linear combination of the Ti up
through TN. Second, they wiggle nicely, at least over the interval [-1, 1]. TN,
in fact, passes through zero N times over that interval. Between zero cross
ings, every wiggle tops out at + 1 or bottoms out at -1.

150 Programming on Purpose

.0:.... o let's see what we can do with the approximation to SIN. First,
e:1'transform it to the interval [-1, 1]. Introduce the new variable z =
(4/7t) *X. Then Z ranges over [-1, 1] as X ranges over [-7t/4, 7t/4]. The
polynomial in x replaces each 1/N! with (4/7t)N/N!. Now we have
entered the world of Chebychev polynomials.

Next, express the polynomial in z is a linear combination of Chebychev
polynomials. The first few powers of X are:

xo = To
xi = T1
x2 = (To + T2) /2
x3 = (3*T1 + T3) /4
x4 = (3*To + 4*T2 + T4) /8

For more on this topic, see R.W. Hamming's, Numerical Methods for
Scientists and Engineers, (Ham62). Many authors endeavor to explain Che
bychev polynomials. I've yet to find one that beats this master explainer at
his best. He shows you how to construct all the tables you need to econo
mize polynomials of any order.

You now have a set of coefficients for the various Ti. Those powers of
two in the denominators above ensure that the high-order coefficients drop
off rapidly. It turns out, in fact, that you can approximate SIN to our
self-inflicted standards with just the polynomials through Ts. You can
translate that back to a polynomial in X over the interval [-7t/ 4, 7t/ 4]. You
end up with a fifth-order polynomial that is an adequate approximation to
the eighth-order one we started out with.

That's only part of the good news. Think what happens when you drop
that linear combination of T6 through Te. Each of the T is a curve that
wiggles uniformly about zero. Multiply it by a small coefficient and it
represents a small but uniform wiggle about zero. The terms that you drop
represent the error between the initial and final approximations. So the
error you introduce in discarding the higher-order contributions is a small
error that wiggles roughly uniformly about the desired curve. That was
what we were looking for.

The errors are not perfectly uniform, of course. We made a transforma
tion of coordinates and threw away more than one term. Both introduce
small distortions in the wiggles. But the solution is quite good, thank you.
It is almost as good as the best job you can do with considerably more work.

For the record, here are the coefficients of the polynomial approximation
to SIN over the interval [-7t/ 4, 7t/ 4]:

C[O] = 0.99999 99999 99999 99953
C[l] = -0.16666 66666 66671 27453
C[2] = 0.00833 33333 33333 37205
C[3] = -0.00019 84126 98315 81921

Essay 19 Economizing Polynomials

C[4] = 0.00000 27557 31921 88977
C[5] = -0.00000 00250 52617 59934
C[6] = 0.00000 00001 60592 57791

151

These coefficients differ only slightly from 1 /N ! for odd values of N. That
small differences makes all the difference, however. I computed these by
writing a script for the UNIX utility de. It is not a program. It contains no
loops or tests. I simply constructed all the keystrokes needed to get de to
compute these coefficients to 20 decimal places.

It was an easy matter to edit the script to do the same job for COS. I put
the whole works together and verified that the approximation is indeed
adequate even at multiples of 7t/ 4.

I conclude with my repeated reminder. I don't encourage you to write
your own SIN and COS functions. Use the ones in the library of your
favorite programming language. If you find the need for a polynomial
approximation, however, you can see the steps involved. Find a series
approximation that converges. Determine where it's safe to truncate the
series. Then economize it to get a smaller polynomial with better error
properties.

I can't say it's a breeze, but it certainly isn't very hard. For some of us,
it's almost fun. o

(.Tffterword: I confess to an ulterior motive in writing this essay and the previous
.a.one. It took me a long time to gather the information presented here. It took even
longer to understand it well enough to use it. I wanted to see if I could explain it
in such a way that someone else could pick up the material much faster. For those
with a pragmatic bent (like me), I think I succeeded. For those with more of a
mathematical bent, however, I suspect that this presentation is annoyingly and
hopelessly colloquial.

I had an additional motivation. When I wrote The Standard C Library (Pla92),
I needed approximations to a number of math functions. I was distressed to learn
that not all publishers were quick to grant the rights I needed to coefficients listed
in their books. At the eleventh hour, I found myself generating my own, using the
techniques outlined here. Sometimes economics is more fundamental than mathe
matics.

20 Technical Writing

]'(like to explain things. That much should be obvious by now. Over the
,JJ past five years, I have written a couple of books and well over a hundred
essays like this one for various trade publications. I have been known to
give the odd seminar as well.

Fortunately for me, my technical passions have come into vogue these
past few years. Not only do I get to prattle about topics I love, I get decent
compensation for my efforts. That encourages me to write and speak still
more. I even make a point of picking up a new fact from time to time, to
avoid being completely repetitious.

I understand that not all technical types like to explain things. I have
known programmers who bravely face a 250-kilobyte core image at three
in the morning. They don't flinch at chasing an intermittent bug, while
armed only with a hexadecimal calculator and a cup of coffee. Yet those
same programmers blanch when told to write two paragraphs describing
how a module works.

The problem is partly one of practice. Many of the technical types I have
hired over the years - and even more of the non-technical ones - could
barely paste sentences together. They were bright, or I wouldn't have hired
them. Forced to write regular reports and odd bits of documentation, most
of these people got steadily better. A few hundred more hours of writing
assignments in high school and college would have made all the difference.

I don't pretend that writing is easy. I became a writer because I love to
have written. Doing the actual writing often comes hard, even after the
million-odd words I've published since leaving school. Occasionally I get
caught up in a topic. Several hours and several thousand words later, I
notice that I missed lunch. Such moments of passionate engagement are a
delight, but sadly rare. Writing is easier than digging coal, at least to me,
but it is no snap.

This essay could easily degenerate into a harangue about the state of
education in America. I believe that education can and should be better for
a host of reasons. But I do not believe that we can train masses of people to
write with ease. We can teach grammar, discipline, and critical thought.
Writing gets better with practice, but not necessarily easier. For many of us,
it never gets dose to effortless.

My concern for now is somewhat narrower. I want to address the
business of technical documentation. That is a fairly stylized genre that is

153

154 Programming on Purpose

well within the reach of anyone with a technical education. Or at least it
should be. I'm not talking Pulitzer Prize material here. I'm talking about
the straightforward narration needed to describe a technical topic simply
and dearly.
7{ confess to a vested interest in improving this form of literacy. For one
~thing, I edit about a hundred articles a year for one publication or
another. It sure would be nice if the techies who write those articles stopped
making the same mistakes over and over. My fellow copy editors and I
would welcome even a decrease in the frequency of barbarisms.

For another thing, I buy software and textbooks along with all the rest
of you out there. Don't think I'm any better than you are at re-hanging a
dangling participle to resolve an ambiguity. Particularly not when I'm
trying to figure out how to rescue three-hours' work before I dare turn off
the machine. I thrive on simple explanations and dear directions.

I also confess to having committed my share of sins against the English
language. I look back at my earlier writing and occasionally cringe. As my
own best fan, I delight in much of it. But as my own worst critic, I see all
sorts of places where it could and should have been made dearer.

Several years ago, my company got a contract from IBM to overhaul one
of our compilers to their specifications. I took on the task of rewriting the
documentation. They presented us with this style guide that I found
absolutely asinine. It called for prose written to an eighth-grade reading
level. It disallowed parenthetic remarks, passive voice, phrases that begin
with "e.g." or "i.e.", and numerous other useful constructs.

I tackled the job with teeth clenched. I'd show them that I could write
that way, however silly the final product. I shipped off the first 50 pages
and got it back dripping with copy corrections. Seems I had missed the
intent of some of the rules. A few iterations later, I learned the art of sliding
stuff past the IBM copy editors. Eventually, I finished the rewrite.

Along the way, however, something magical happened. I began to
appreciate most of the silly rules laid down by IBM. They began to make
sense. My writing got less highfalutin and easier to read. Even more
surprising, the resultant manual was the most usable one I had produced
to date. I could actually find things in it on the first try, and understand those
things on the first reading. (Yes, I use my own manuals and textbooks for
reference. I can't remember everything.)

As a writer with a success or two under my belt, I did not take kindly to
criticism, constructive or otherwise. As a confirmed gadfly, I still do not like
to concede that corporate dogma can ever be a good thing. As a speaker I en
tertainer, I get more mileage out of zinging IBM than praising such a big
and bright blue target. Please don't spread it around too much that I found
an occasion when they were right.

Essay 20 Technical Writing 155

7{ said earlier that a lack of practice was part of the reason for bad writing,
;.ntechnical or otherwise. With technical documentation, another factor
looms at least as large. Seems most of us were actively taught in school to
write badly.

If it's clear writing, there must be something wrong with it. Make a direct
statement and you're more likely to be challenged. Never use first person,
lest you be accused of bragging or not sharing credit properly.

Believe those rules (and their inevitable companions) and you will write
verbal Jello. It will be shapeless and semi-opaque. Try to pin it down and
it will quiver. Seek nourishment in it and you will surely hunger within the
hour. Anything substantial you mix in gets lost, like the tasty bits in an aspic.

Having worked that metaphor to death, I will now essay some positive
advice. What follows is my personal guide to writing clearer technical
documentation. As is my custom, I present the material in terms of a
handful of principles. Most of them rehash what everybody else says, but
with critical differences. As is also my custom, I put a top spin on each. The
trick, of course, is to rescue the principles from being mere platitudes. And
to encourage you to keep your eye on the ball.
311 rinciple: Qualify your writing, not your audience. Everybody tells you
-fFJto begin a technical document by outlining the qualifications you
expect of your audience. That's basically the right idea. You need to make
clear what prerequisites you assume on the part of the reader. You need to
define some starting point. You can't begin every document assuming that
the Earth is without form, and void. (The writer who did that first has much
better credentials than you or I.)

What you have to be on the alert for is condescension. A reader may not
know the intricacies of a given technical field and still be quite intelligent.
Assume that is the case. Avoid smiley faces and stick figures inserting
diskettes in the drive right way 'round. (Show the diskette properly ori
ented, ditch the stick figure.) Never confuse ignorance with stupidity, lest
you be shown up as the stupid one.

Beginners may not be stupid but they are often insecure. That means you
must be alert for obscure jargon and incomplete explanations. Try to
remember everything you do when performing a given operation. Spell it
out. Let an innocent test drive your documentation. (That only works once
with a given subject, sadly. Such is the fleeting nature of innocence.)
Nothing reassures better than clear and complete instructions.

I state the qualification principle backwards for another reason as well.
You can expect people of all levels of ability to read what you write. Tell
them where you're coming from and they can adapt. The unqualified will
more quickly forgive when you aim over their heads. The overqualified
will be more patient of your detailed explanations.

156 Programming on Purpose

Fail to qualify your writing properly, however, and you win no sympa
thy. Each reader calibrates you by a separate set of standards. Only those
whom you reach at just the right point in their personal development will
be happy. That's a narrow audience to count on.
Jllrinciple: Build a skeleton for your presentation, not just an outline .
.-fr' Your high-school English teacher probably taught you to outline every
thing before you write it. If you' re like me, you probably wrote the outline
to hand in after you wrote the essay. In extremis, you outline an occasional
large document. Most of the time you wing it.

Well, I'm here to confess that I outline more and more as I get older. Any
serious technical document has to have a clear notion of where it's going
and how it's going to get there. If that is not clear from the table of contents
and the introduction, expect your readers to get lost frequently.

I make one major concession to my intrinsic laziness. I outline absolutely
no more than I must in order to stay on track. For this essay, I got everything
on one of those little yellow Post It notes. (How did the pioneers ever cross
the plains without them?) For a heavyweight manual or book, I write an
outline that varies between two and six levels deep. (Some subtopics lend
themselves to structuring much better than others.)

Another concession I make is to deviate from pure outline form when
ever I choose. Like block-structured code, a neatly indented outline has a
seductive order about it. But both disciplines break down from time time
to time. You should be ready to adopt other forms when that happens.

One of my favorites is the two-dimensional grid. If I want to say the same
sorts of things about a list of related topics, I've got the grid labeled right
off the bat. An example is my book, The Standard C Library (Pla92). It
contains a separate chapter for each of the fifteen standard headers in C,
plus an introductory overview. Each chapter has the same subsections:
background, quotes from the C Standard, advice on usage, code to imple
ment the functions in the header, how to test the code, references, and
exercises. The chapters vary from eight to over 100 pages, but the structure
works fine for all of them.

Another good structure is the spiral. You can introduce a difficult topic
by first touching all its aspects in broad overview. Then revisit these aspects
in greater detail. Then revisit them again in all their intricate glory. Each
time around the spiral you climb one level of sophistication. A good tutorial
often follows such a path.

Whatever structure you use, make it sufficiently visible to serve as a
guide both to you and the reader. You are building a skeleton, the bones on
which to hang all the meat. Do it right and you know exactly where to put
each concept. Each has one right place. Not only that, your reader knows
where to look to find each concept. That beats a 40-page index every time.

Essay 20 Technical Writing 157

311rinciple: Define your jargon early, then stick with it. Here is a rare
-tFJplace where the poets cause more trouble than the pedants. We all know
how boring it is to say the same thing the same way over and over again.
We are all taught to vary our sentence structure, our word order, our choice
of phrasing. That's fine if your goal is to entertain with the written word.
If your goal is to write good technical prose, it stinks.

One of the few things that distinguishes technical writing is the need for
exquisite precision. You don't say it almost right, you say it exactly right.
Elegance and precision both demand that you define an economy of terms
and use them religiously. Variety is best left to fashion magazines.

People assume that jargon is the bane of technical writing. Not so. That
caveat applies only to obscure jargon. Your goal is to develop an appropriate
jargon for whatever you write. Define it clearly. Then reinforce each defini
tion by using your terms repeatedly and consistently.

When I write about high-level languages, for example, I tune my jargon
to the particular topic. If I am describing a particular compiler, then I
consistently talk about "compiling source files and linking them with the
library to produce an executable file." If I am describing the same language
in general terms, then I talk about "translating source to executable form."
You will find no mention of generic source in the former, no mention of
source files in the latter. Get the idea?

This is often an iterative process. You start out writing from one human
being to another. Hit a concept with subtle technical implications and the
techie takes over. Create a term for the concept. Define that term precisely
and use it ever after. If you find a need to refine the term, go back and look
at every use of the term you have indulged in so far. Push the refinement
back as early as you can. Make sure that all uses agree with your refined
meaning.

For a large enough document, don't hesitate to build a glossary. Use it
yourself to stay consistent. Publish it as part of the document if you can.
Omit it only if it appears wholly inappropriate.
311rinciple: Use the active voice to give blame where blame is due.
-fFJEverybody tells you to write in the active voice. Such writing, those
anonymous bodies say, is more direct and forceful. While I have no quarrel
with that sentiment, I can't endorse it as a justification for hamstringing
your technical writing style. You need a more compelling reason.

We all know why the passive voice has been adopted. It obscures what
was done by whoever it was who may have done it. It leaves nobody to
blame for whatever has been said.

I prefer to commit sins of omission. I will tell you that I did something
even if it annoys you that I claim credit for it. I will even avoid secondary
passives as much as possible. Look at the previous paragraph. Every

158 Programming on Purpose

sentence apparently begins with a subject and a strong verb. Yet every
sentence contains a passive construct. Blame me for the ambiguity.

There's an even more important reason to avoid passive constructs. Just
as you need jargon in technical writing, you need active agents. Who writes
the program? Who translates it to executable code? Who executes that
code? If you say the program is written, then translated, and then gets
executed, how is the poor novice ever to guess?

Now introduce a few active agents. You write the program. The compiler
translates the program to executable form. The computer executes your
program (or the program executes). Now we know whom to blame at each
stage. Find a passive construct and ask yourself whodunit. Rewrite the
passive with the agent as the subject of an active verb and your descriptions
suddenly get clearer.

I still indulge in the passive voice from time to time (just as I can't resist
an occasional parenthetic remark). I use it when I really do want to obscure
the active agent. Perhaps one of three different agents can be acting. I said
so earlier and you probably still remember what I said. I don't want to
repeat the list of three agents for precision. So I just let the action happen.
Still, I try not to be vague by accident.

Jllrinciple: Write to be understood, not admired. Some people write like
-tFJEnglish majors. Some people write like newspaper reporters. I was
fortunate. At the tender age of 17, I was taught to write like a chameleon.
Between the Princeton English department and the Princeton University
Press Club, I was forced to master a dozen different writing styles. Between
my penchant for partying and New Jersey weather, I was forced to write
quickly, even while hung over, even in the rain.

As a result, my heroes are the writers who express themselves clearly
with an economy of prose. They include Ernest Hemingway (fiction), Isaac
Asimov (nonfiction), and C.S. Forester (both). I can admire Roger Zelazny
for his erudition and verbal gymnastics, but I have little desire to emulate
him. (Well, maybe just a little.)

My experience with technical writing reinforces that early training. You
are trying to communicate ideas that are often complex and subtle. You
don't want the words to stand between the ideas and the reader. Rather,
you want to write what is called transparent prose. You don't see the words
slide by until well after the ideas have lodged firmly in your brain.

One way to achieve transparent prose is to imitate spoken language. In
graduate school, I somehow developed the reputation as the writing con
sultant in residence to my fellow graduate students. (Maybe it was the
gracious arrogance that I affected so demurely.) People would repeatedly
come to me for help in phrasing a sentence properly.

Essay 20 Technical Writing 159

Every time I would ask, "What is it you want to say?" Every time they
would tell me in words simple and to the point. Every time I would reply,
"Then why don't you write down what you just said?" Every time my reply
came as a mini revelation.

Naturally, I use this technique on myself. On those rare occasions where
it draws a blank, I fall back on the surest technique of all. I get angry (at
myself, in this case). Ever notice how eloquent you become when you're
really teed off? You can hold your focus and make your points with
undeflectable zeal. Harness this energy and you can say anything.

The hardest application of this principle I save for last. Every once in
awhile, you emit a phrase or a paragraph that seems to have a life of its
own. It has just that mix of aptness and cleverness you wish you could pull
off all the time. When you write stuff like that, swallow hard and throw it
away. Two months later, you will recognize it for the irrelevant purple prose
it really is.
Jllrinciple: Use writing-analysis software, but don't trust it. I'm always
-tFJon the lookout for software that will really help me as a writer. I was
once a good speller and an adequate typist, but the liters of gin and tonic
have taken their toll. Now when I get a word wrong in my head, it sticks
there for years on end. (My current bugaboos are concensus for spelling and
funciton for typing.) I have thus learned to be more accepting of spelling
checkers.

I also buy almost every grammar and style checker that comes along.
Sometimes they give good advice. Sometimes they are off the wall. I figure
they are always worth a check to see how I stack up against the more
popular rules of the trade. After all, I do fancy myself a professional writer
these days.

But I have one final confession to make. I run all these programs
repeatedly and ignore most of what they have to say. Spelling checkers
catch about one error in ten thousand words for me. They produce about
fifty "false positives" in the same stretch of code. It's tedious to wade
through the trash for that one gem of genuine garbage.

I also refuse to trust that these programs tell me everything. Use the
wrong word (spelled properly) and they won't notice. Mistype one word
to look like another and they are equally blind. Don't forget to check for the
"false negatives" as well.

Similarly, grammar checkers mostly tell me when I'm being colloquial
or when I've written a sentence fragment. My usual response is, "Thanks
for sharing, but I already knew that." What I watch the closest is the various
measures of reading level and complexity. If my sentences start getting too
long, the numbers go up. I go back and chop until the metrics come down.

160 Programming on Purpose

I intentionally favor a style with many short sentences. It seems to help get
points across.

If you share my overweening pride and self-confidence, you can treat
such software the same way. If, on the other hand, you find writing more
of a chore, listen to what they have to say. Like those silly IBM guidelines,
much of their advice seems artificial and pedantic, but it does help. Once
you find yourself repeatedly saying "Thanks for sharing," you know
they've inadvertently taught you how to write better technical prose. o

mfterword: This was one of my more successful essays. More than one person has
:a.told me that it has become an informal writing guide within some technical
enterprise or other. I also enjoyed writing it. A final confession, however. I produce
spelling errors at a much higher rate now than I reported here. Either I was
deluding myself then or my brain has decayed further in the interim. I suspect that
both conjectures are true. At any rate, I now use spell checkers and other writing
aids religiously.

21 All I Want to Do Is

11rhey say that necessity is the mother of invention. That may be so, but I
\C.llknow who the father is. He's the guy who begins some conversation
with those fateful words, "Look, all I want to do is ... "

No, I'm not talking about disingenuous seduction. That's the stuff of
novels and short stories. The fictitious guy I'm describing here has his mind
elsewhere. He has some problem he wants solved. He also has some
partially baked notion about how to solve it. He is trying to rally assistance
in implementing his solution.

Why is he rallying assistance? Probably because the thing he needs
changed is too big for him to change by himself. Or it is a thing that is used
by others who must also consent to the change. In our business, that "thing"
is often a large piece of software. Or it may be a standard specification for
a programming language or an operating system.

All I want to do is add this one small feature. I know just how I want to
use it. I don't care if it does anything else useful at all. How about it, folks?

The trouble with that approach is that it is single minded. Tinker with a
complex system and you introduce all sorts of surprises. The less concerned
you are with the secondary ramifications of a change, the more likely those
ramifications will be disastrous.

There's a difference between "all I want to do" and "all I have to do."
The latter finishes the job. It deals with important concerns such as ortho
gonality, completeness, and consistency. It addresses that elusive concept
called elegance.

One small change probably won't break a system, however poorly it is
integrated into the whole. Keep adding such small changes, however, and
they soon add up. You get a system that surprises at every tum. It gets
progressively harder to make each new change. It suffers a form of hard
ening of the arteries.

A particularly atherosclerotic system is the nroff/troff typesetting pack
age that grew up under UNIX. It is still a powerful workhorse, in use at
sites all over the world. But it can be a challenge to use, chock full of
surprises.

My colleague and office mate when I was at the University of New South
Wales was Professor John Lions. He's the bloke who turned the source code
of the UNIX V6 kernel into a readable study guide. He actually taught an

161

162 Programming on Purpose

operating systems course by exposing students to a real, working operating
system. Even in 1977, he had this to say about the document-formatting
software that came with UNIX:

The co-operation of the nroff program must also be mentioned. Without it, these
notes could never have been produced in this form. However, it has yielded some of
its more enigmatic secrets so reluctantly, that the author's gratitude is indeed
mixed. Certainly nroff itself must provide a fertile field for future practitioners of
the program documenter's art.

I know some programmers who would have put that less politely.
7{t was such a beautiful baby. Brian Kernighan, I am told, conceived the
~first runoff program while in graduate school at Princeton. He began by
saying, "All I want to do is punch text on computer cards in free form. The
computer should be able to reformat that input to look good on the printed
page."

Thus was born roff, the granddaddy of many modern document format
ters. Of course, Brian couldn't do exactly what he purportedly said in the
previous paragraph. In those days, common keypunches punched only
upper case letters. The program had to guess where each sentence started.
It would leave the first letter upper case, then force remaining letters to
lower case. Brian had to add special escape sequences to signal exceptions
to this rule.

He also had to add additional markup. There's more to formatting a
document than squaring up the right sides of paragraphs. Brian wired in
an assortment of formatting commands, each signaled by a line beginning
with a funny character. (Traditionally, it is a dot.) To the best of my knowl
edge, Kernighan invented the concept of a document markup language. If
he didn't, he refined the concept better than anybody else I know.

It was Joe Osanna at Bell Labs who decided to soup up roff for UNIX.
He liked the markup notation but found it too restrictive. He said, "All I
want to do is make it possible for people to define their own markup
commands in terms of the existing ones." That meant adding macros to roff
to make a "new roff." Hence nroff.

It's easy enough to add macros, providing you're not too ambitious. Add
a command that names the macro and signals the start of its definition. Add
another that signals the end of the definition. Everything in between gets
memorized. Name the macro later and the definition gets played back.

But what if you want macros that accept arguments like some of the
existing formatting commands? Then you have to invent a set of escape
sequences to name the arguments within the definition. Each escape se
quence gets replaced by its argument definition when the definition is
played back.

Essay 21 All I Want to Do Is 163

But then what happens if an argument can contain macros that need
expanding? You need rules for when the expansion occurs. It can happen
once, before the definition starts playing back. It can happen each time the
corresponding escape sequence pops up during play back. Whichever way
you decide can make sense. But you get different languages, with quite
different properties, depending on how you choose.

If you' re ambitious (and Joe always was), you'll want to add conditional
expressions. Depending on how a test turns out, the playback includes
different chunks of definition. That leads to some pretty powerful macros.
If you also allow recursive calls on the same macro, you have most of the
trappings of a serious programming language. It's not always very read
able, but it's potential power is impressive. Given enough aspirin, you can
rule the world.
'l(Oe did all this and one thing more. He added the capability to divert the
,JJ output of the formatter into a macro definition. I suspect someone came
to him and said, "Look, all I want to do is write my footnotes directly in
line. When you get to the bottom of the page, dump' em out." Sounds neat.
Until you deal with footnotes formatted by different rules than the running
text. And footnotes that don't all fit on the current page. And so forth, and
so forth.

I have no idea how many mortals have written footnote processors for
nroff. I happen to be one of them. Getting all that nonsense to come out
right is a real challenge. It also invokes a heck of a lot more machinery than
Brian Kernighan ever stuffed into roff.

And it leads to further design decisions. You can find yourself writing
macros that define macros. Great. Then how do you include an argument
escape sequence within such a nested definition? You need to escape
escapes. Guess wrong on the notation and you have a programming
nightmare. An early text editor written by Dennis Ritchie had powers
comparable to nroff. But you had to write 2N-1 escapes to defer processing
of an escape sequence N-1 times. I wrote editor scripts that sometimes had
fifteen escape sequences in a row!

Joe got that part mostly right. The biggest problem with macros in nroff
was the power they accreted over the years. Combine terse notation with
the power to cloud people's minds and you have a debugger's nightmare.
Imagine staying up half the night finding bugs in a program transliterated,
without comments, from APL to C. Get the idea?

The second biggest problem with nroff was the irregularity that is
intrinsic to document formatting. For example, most of the time you want
to suppress any blank lines that occur at the top of a page. Except when you
don't. I never did figure out a reliable recipe for telling nroff when to keep
such space. And that is one of perhaps two dozen such issues.

164 Programming on Purpose

Mike Lesk and a few others eventually hammered out a set of standard
macros that tamed nroff. Mostly. You could hide behind them and avoid
the raw power of the underlying machinery. We were just getting comfort
able with using them, in fact, when the world of computer typesetting
dawned.
Aaturally, somebody said something like, "Look, all I want to do is take
»my nroff documents and typeset them unchanged." And naturally, Joe
Osanna rose to the challenge. Thus was born the "typesetting roff ," or troff.
(Eventually, these two distinct programs were brought back together. The
current instantiation, written in C, is called nroff/troff, among other
things.)

After a decade of ten-point Courier, the switch to ten-point limes Roman
was a real improvement. It was a proportionately spaced font that gave
documents a real typeset look. And many existing nroff documents did,
indeed, typeset well unchanged. The biggest problem was the occasional
table whose layout depended upon all characters having the same width.
Smarter tab stops fixed that.

But of course, that was not all we wanted to do. Even the earliest
typesetters held multiple type faces. You could display them in multiple
font sizes. Everybody wanted to produce documents that used more than
one font.

Most of the machinery was already in nroff. Joe added a richer set of
escape sequences to specify fonts and funny characters. He wired in an
nroff I troff switch that let you write smart macros. You could have the same
macro mean one thing when speaking nroff to a conventional printer. It
meant something similar, but smarter, when speaking troff to a typesetter.
People became wise in the ways of writing documents that both printed
and typeset well.

Still, that machinery began to strain in many small ways. Remember the
underlying model. You feed in mostly free-form text. The program makes
various intelligent guesses about how to rewrite it to print prettier. You
intersperse occasional markup. The program executes builtin commands
and defined macros to augment the intelligent guesses. You also divert
occasional chunks of formatted text from the printer into macro definitions.
Later, the program is expected to eat this refried text and like it.

In the case of nroff, refried text differs little from the original. Printers
eat much the same characters that terminals produce and consume. The set
may be a bit richer, but it still fits in an eight-bit byte. The text may also take
its interspersed white space more seriously. But that is not such a big
difference either. Occasionally, you tell nroff to honor the spacing in the
input text anyway. (This is "no fill" mode.)

Essay 21 All I Want to Do Is 165

In the case of troff, however, the output is much richer than the input.
Each character has an associated type face and point size. The spacing
between characters is no longer some integral number of space characters.
This is not the sort of thing you want to divert into a macro for later
reconsideration.

Whatever the program diverts into a macro, it must be palatable as typed
input. It must also capture various aspects of how it should appear when
emitted to a typesetter. That leads to some nasty encoding decisions within
nroff I troff. Those decisions shine through to the user in various ways. They
determine the conceptual model that you must understand to program
macros correctly.
]'(t is a tribute to Joe Osanna that he got this beast working at all. It is a
,JJ greater tribute that he improved it over a period of years to make it useful
for an ever-growing constituency. Brian Kernighan and I typeset our first
few books using troff. As pioneers, we relied heavily on Joe's responsive
ness. We weren't disappointed.

When Joe died, Brian inherited nroff/troff for a spell. What he found
inside that program was a classic case of hardening of the arteries. Too much
had been done for too many different reasons over too long a period.

Here is an example. One of the neat things that a good type face gives
you is a set of ligatures. These are groups of letters mushed together to look
prettier. Common ligatures are "fi," "fl," and "ffl." You will find them more
often in the older type faces than in the newer ones. (Such is progress.)
Naturally, Joe taught troff how to look for ligatures automatically in text to
be typeset. The program replaces each one with a funny internal code that
typesets appropriately. You can, of course, turn this machinery off if you
are a Philistine.

The tough design decision is where in the processing of text to introduce
ligatures. Do it too early and you corrupt text that might not be destined
for the printed page. Do it too late and you might miss opportunities to
recognize ligatures. It's a hard enough decision to make to a newly specified
program. Retrofitting it to existing code is much harder.

What Brian found inside nroff/troff was revealing. The main loop for
processing markup commands had some funny code in it. First it memo
rized the current state of ligature processing. Then it turned such processing
off. Only then did it eat a line and process it as a command. When it was
done, it reverted ligature processing to the appropriate state. (That state
might change as a result of executing the command, of course.)

You can guess why. The ligature filter was obviously inserted upstream
from the command processor. A "fill" command, written as . fi, gets
turned into a ligature before it can be recognized. The machinery has to be
temporarily shut down for each command.

166 Programming on Purpose

I don't pretend that this state of affairs is anything less than horrid. I used
to cite it as a classic case of bad program design. That was years ago, before
I watched some of my own code silt up. Now I'm more understanding. Bad
as it is to process ligatures in the wrong place, I can forgive Joe for doing
so. He knew better than anybody what sort of compromises were necessary
to do the job at all. Everyone around him was busy starting sentences with,
"Look, Joe, all I want to do is ... " Few cared what he had to do to make it
work.
':I~ ernighan once said, "Look, all I want to do is typeset equations simply.
IA.Let me describe what they look like instead of trying to parse what
mathematicians insist on saying about them." He went on to invent the eqn
language, which was an instant and lasting hit. Ventura Publisher has
adopted it almost intact for their equation-setting markup. (I've yet to find
any credit given to Brian in any of their documentation, however.)

Brian's implementation of eqn was as a preprocessor that filters troff
input. It spots equations, eats them, and spits out the most astonishing
troff-ish critters you are likely ever to see. Seeing all those macro expansions
squirming about in eqn output is like lifting a rock in moist soil. Again, it
is a tribute to the willing beast called troff that it will eat such worms. Just
to make life easier for those of us who must typeset the occasional equation.

Mike Lesk did a similar thing for typesetting tables. I'm sure that tbl also
evolved from somebody saying, "All I want to do is typeset tables without
a lot of hassle." It too utters troff obscenities behind your back to get the job
done. And table formatting has also become one of those specialized
add-ons to modern typesetting packages.

Those modern typesetting packages are pretty impressive. They have
menu-driven command input, WYSIWYG displays, and output drivers for
a gazillion different printers. They are generally easier to use than
nroff/troff, with fewer surprises. (Note: I said generally.) But they are also
weaker than nroff/troff in important ways. Few endeavor to provide the
powerful macro capabilities that gave the older package its flexibility.
Instead, the newer packages wire in the successful machinery built atop
nroff/troff. What you don't see, you can't get.
7{ have rambled back and forth between history (as I saw it) and design
,JJ issues. In case the critical points got lost, let me summarize:
• Users tend to be single-minded in asking for what they want. They are

indifferent to the need for elegance - until they later get bitten by its
lack.

• Programs silt up with change. The cleaner you make them up front, the
longer they last. Even the best of programs eventually loses its elasticity,
however.

Essay 21 All I Want to Do Is 167

• The people who write the programs that are popular today love to
chortle over the errors made by their predecessors. They quietly imitate
their successes. But don't worry about the apparent lack of justice. Their
day will come. o

mfterword: My original intentions in writing this essay were much more
x::iambitious. I was going to start with nroff/troff, then go on to various aspects
of programming-language design. I soon found, however, that I had more than
enough to say just about document formatting. I also felt it important to recite in
one place the history of these programs. Both Kernighan and Osanna have been
slighted more than once by the very people who have profited most from their
pioneering work in this area.

The overarching lesson here is one of caution. By all means, listen to your
customers. But don't think you can simply give them what they want. Wherever
possible, give them what they need instead.

22 Programming for the Billions

7{ have been fretting about portability almost since the day I began
.nprogramming computers. In the early 1960s, computers tended to be
large, expensive, and manufactured by IBM. I often found it necessary to
run the same FORTRAN programs on several different machines, if only
to dodge the regular operators and do what I wanted. I quickly saw the
advantage of producing card decks that could move unchanged from one
IBM FORTRAN environment to another.

Nevertheless, I couldn't succeed in producing a universal card deck. I
won't repeat all the reasons why. See my essay, "Standard C: Evolution of
the C I/O Model," in The C Users Journal (Pla89) if you care. That goes into
the gory details a bit more.

Portability was hardly a big market issue in those days. Quite the
contrary. Each major computer vendor did its best to lock you into its
particular flavor of hardware and software. Those were the days of FOR
TRAN IV PLUS, FORTRAN V, Extended FORTRAN, and other contrived
dialects. It was hard to avoid the trap of using the cute little extras. It was
harder still to climb out of the trap when a different vendor came along
with faster and cheaper hardware.

UNIX and C were born in the early 1970s. Both have done more to
support portable software than any other single factor I can name. Never
theless, neither was put forth originally as an aid to portability. Each solved
some neat little design issues on DEC minicomputers. Each was a boon to
serious programmers. That UNIX and C both surpassed their particular
origins is a tribute to the insights of Ken Thompson and Dennis Ritchie. It
was not in their original business plan.

I started my company, Whitesmiths, Ltd., in the late 1970s. I did so
because I believed in UNIX and C as vehicles for hosting and writing more
broadly usable code. At the time, AT&T was limited in its ability to sell
commercial software. For a time, interest and opportunity merged for me.
I spent a decade with Whitesmiths writing and selling numerous C com
pilers and the occasional Idris (UNIX-compatible) operating system.

I was almost fanatical about writing portable code. Exactly the same C
source files went into the software we sold to run on a Z80 or a DEC VAX.
We had layered libraries, the bulk written in portable C. Under that came
system-specific functions, usually written in nonportable C. At the bottom
lay an irreducible minimum of assembly language for each target system.

169

170 Programming on Purpose

We could thus move the C compiler, or even the Idris operating system,
with remarkably little work.
m small fraction of our customer base appreciated this support for ma
.a.chine-independent programming. They had products that had to run
on two or more platforms. They were happy they could buy compatible
products from a single vendor. They were willing to code for the common
denominator to get a greater degree of portability.

Most of our customers, however, were at best indifferent. They wanted
our products on their favorite system. If we could keep the price down by
moving portable code, fine. If we kept the features down by avoiding
nonportable code, not so fine. They wanted access to the peculiar features
of their favorite system.

Eventually, we lost the focus on portability. Versions proliferated inter
nally as we chased each different market opportunity. It costs money (read:
internal time and effort with no immediate payback) to keep code portable.
Whitesmiths was never as much fun for me once that happened.

And that leads me to several important points. Portability is as much a
statement about economics as it is about technology. A program is portable
when it is cheaper to move it between platforms than to rewrite it for the
new platform.

Thus, portability is not a Boolean attribute for each program. It is a figure
of merit, a cost. A program may be portable in one context and not portable
in another. Or it may not be portable enough to warrant the investment. It
costs more to write and maintain a portable program than one tailored
for a specific environment.

Finally, it is cheaper to write a program with portability in mind than to
retrofit portability. That is also true of correctness, robustness, testability,
and several other virtues. Unlike those virtues, however, you are not
assured of a payoff. Unless you actually move the program between
platforms one day, you lose the investment. Writing portable code involves
an up-front risk that you can seldom afford to defer.

The last few years have seen an upsurge in interest in portability.
International standards are now all the rage. Trade groups are forming "de
facto" standards where the formal bodies can't move fast enough. The ads
for compilers and support libraries tout platform independence.

Most of the people who care about portability occupy fairly small market
niches. If you sell only a few hundred packages a year, you care about every
single sale. You can't stay on just one UNIX platform, the market is too
diverse. You can't even afford to stay on just PC compatibles, not if your
typical customer needs workstation power. So you write in portable C to
lower the cost of moving to several platforms.

Essay 22 Programming for the Billions 171

Traditionally, the big hitters have been able to afford code that is less
portable. Lotus could tailor 1-2-3 for each new platform because they could
prorate the support and development costs over a large number of units.
In fact, they couldn't afford not to tailor. The competition has long been too
fierce in each arena.
7fi? ut even the large-market vendors are starting to feel the pinch. Today's
;f'IJmajor products involve megabytes of code, not kilobytes. You need to
ship that much complexity to be competitive in many areas. The cost of
parallel support and development is expensive enough for the bits that
must be tailored. Nobody wants to pay two to five times over for the
common core. So even products with significant nonportable components
are developing significant portable foundations.

The large-market vendors are also facing their own problems with
proliferating versions. An area of significant growth for American compa
nies is overseas sales. That often outpaces the growth of domestic markets.
Traditional American insularity is succumbing to the need for ever more
sales prospects.

The historic changes in Eastern Europe and Russia will eventually
accelerate that trend. These new kids on the block may be broke now, but
they are determined to develop their economies. They recognize the need
to use computers to maximum advantage. So if you want to make a buck
in the software business, be prepared to collect in marks, rubles, or dinars.

You'd also better be prepared to make your software speak German,
Russian, or Croatian. Programmers are accustomed to learning English to
use program-development software. That's not a major added burden,
since English is an important second language for many professionals. But
you don't get major market penetration with word processors and spread
sheets that speak only English.

I'm not just talking about spelling checkers and hyphenation algorithms.
Every nontrivial application needs some degree of cultural adaptability. You
can get a lot of mileage (kilometrage?) out of icons, to be sure. The highways
of Europe demonstrate that. But you also need to utter an occasional error
message. Or prompt, or date, or monetary amount, or some other culture
dependent utterance.

What software vendors want to do is produce a single product in a
shrink-wrap package for dealers' shelves. (PC compatibles and Macin
toshes are thus desirable platforms. There are so many of the little critters
out there.) If the French marketplace requires a different version, however,
you can't adopt that simple approach. You must develop, package, and ship
a special French version. The market size is smaller and your parts count
is larger. Thus, your costs go up and so does the package price.

172 Programming on Purpose

I learned that you can drown in packages. For many years, Whitesmiths
created every package we were capable of producing. With success came a
geometric increase in package varieties. Soon, it was taking as long to
produce all the packages as it did to develop each release. Portability
notwithstanding. We learned to prepackage only the most popular combi
nations. Any other flavor we sold at a premium.

?1171\t hat the world now needs is a way to deal with the combinatoric
~explosion of cultural marketplaces. It's sad that the smallest and
newest markets are the ones that cost the most to service. Better we address
the economic problems from a technical perspective. We need to factor out
as many cultural specifics as possible to keep the parts count down. We
want one market that numbers in the billions, not thousands that number
in the millions.

Similar problems have been solved well in the past. We take for granted
that computers come in varied sizes, speeds, and configurations. Do you
know who manufactured your diskette or hard disk drives? Do you care?
I can assure you that you don't want to have to care.

An important role for an operating system is to smooth over broad
differences among computers. An application can read and write all disk
files through a standard set of system calls. It can use memories of various
sizes and displays of various flavors with similar ease. Ambitious applica
tions can play the CGA/EGA/VGA alphabet game, to be sure. But most
don't have to.

To solve the cultural problem, then, you need similar machinery:

• The machinery must be standardized across platforms.

• Actual cultural support must be tailorable separately for each user's
machine.

• The information about a given culture must be decoupled from each
application.

None of this is news. People have been working on various aspects of cul
tural adaptability for years. You will often find useful stuff tucked away in
the more popular operating systems. All you have to do is look for it and
make a point of using it.

UNIX, for example, has long been helpful about time zones. Each user
can log in from a different time zone. Dates, times, and the names of time
zones all print properly. The system records all times in universal form
(UTC), so no confusion exists between users.

More recently, various groups have been working to make UNIX more
of a cultural chameleon. Several companies now have versions of UNIX
that speak Japanese. Standards groups such as POSIX and X/Open have
been hammering out how to specify character sets and collating sequences
that vary among (and even within) language groups.

Essay 22 Programming for the Billions 173

311c compatibles and Macintoshes fret about a variety of cultural issues.
-tFJYou can adapt keyboards for those funny characters with accents that
exist in every language but English, Hawaiian, and Swahili. You can
exercise some control over date formats. You can sometimes stir up an
occasional error message in German.

None of these facilities are uniform across many platforms, however. It
helps if you can isolate the cultural dependencies in your code. But you still
must write bespoke code for each platform to obtain the information you
need and smuggle it into the code. To eliminate such difficulties requires a
new level of standardization.

That level of standardization now exists, or at least a good beginning for
it. You will find it in the new ANSI/ISO Standard for the C programming
language. C is the first language to make a serious stab at supporting
programs that want to adapt to varied cultures. It even worries about
cultures with very large character sets, such as Japanese, Chinese, and
Arabic.

X3J11 is the ANSI-authorized committee that developed the C Standard.
From the outset, in 1983, the membership expressed a strong desire to assist
programmers in writing portable C programs. Character-set independence
was also an early and oft-stated goal. (The IBM representative kept remind
ing us that EBCDIC was also an important character set, not just ASCII.)
That made it easier to accommodate the various ISO 646 variants of ASCII
used with different European languages.

Rather late in the standardization process, the Europeans expressed a
strong desire to add cultural adaptability to C. They were unhappy that so
many Americanisms were wired into the C library. At the least, they wanted
some way to circumvent such wired-in behavior. At the most, they wanted
to be able to rewire the library on the fly to adapt to different cultures. They
got both, in the form of a facility dubbed locales.

Very late in the standardization process, the Japanese expressed a very
strong desire for language support for manipulating large character sets in
C. ISO adopted a Japanese motion that all future programming language
standards support such operations. C could have been the last language not
to include large character set support. Instead, it became the first standard
language to do so.

Locales and large character sets form a significant new component to the
C language. Together, they represent the internationalization of C. (That's
such a big word that most people write it as IlBN. The 18 stands for the 18
omitted letters.) Let's look at each of the pieces separately.

A locale is a collection of conventions peculiar to a given cultural group.
At first blush, you might think that "locale" and "language" are synony
mous. If you travel between America, England, and Australia, however,

174 Programming on Purpose

you soon learn better. It is no joke that the English-speaking world is often
divided by a common language. I still misread dates in Australia because
the locals insist on writing numeric dates backwards from the way I was
taught to read them. At best, language is but one component of a locale.
IO'ven within a given country, you will find varying locales. Most civilians
~rite negative numbers with a leading minus sign. Accountants often
favor surrounding parentheses instead. Or they write a trailing DB, for
example.

You may think you know how to sort text. Look up words in a dictionary
and you know to ignore case distinctions. Look up names in a telephone
book and watch out for funny rules about ordering Mcintyre and MacWil
liams. Neither of those documents match the default output you're likely
to get from your favorite computer sort utility. See what I mean about
subcultures?

A locale involves useful lore about character sets, collating sequences,
date formats, and currency formats. It certainly doesn't cover all the differ
ences that exist between cultures, but it includes many important aspects.
You can write many application programs that avoid text messages. A
judicious use of icons can go a long way. But it's hard to avoid displaying
the odd date, currency amount, or sorted name list. That's what many
people use computers to manipulate. So that's what is included in a C
locale.

The set of locales is open-ended. The C Standard doesn't say how many
there are. All it requires is a 11 C 11 locale that behaves like the C language and
library of yore. It also defines a native locale, named by the empty string 11 11 •

The native locale is presumably the locale favored by the locals for a given
computer system.

Beyond that, an implementation can specify as few or as many locales
as it chooses. It can also name them as it sees fit. Nor does the C Standard
say how an implementation must specify a locale. The Standard only says
that it must.

That may not sound like much of a standard, but it is more useful than
you might think. The best analogy is to files and file systems. The C
Standard imposes quite a few requirements on the properties of files. That
way, programs can read and write files on a broad assortment of computers.
But the standard says little about how you name files. And it lets an
implementation provide many other file services as well.

Support for large character sets is a similar combination of the specific
and the general. X3J11 introduced the concepts of multibyte character and
wide character. Those are the two popular ways of representing large char
acter sets:

Essay 22 Programming for the Billions 175

• A multibyte character is a sequence of one or more characters that
represents one character from a large character set. It can occur in a string
that includes locking shift sequences. Thus, the interpretation of a given
byte can depend on what has gone before. Multibyte characters are most
useful for sending large character sets along single-byte pathways -
serial communication lines and text files on diskettes and hard disks.

• A wide character is a fixed-size integer, typically 16- to 32-bits wide, that
holds a distinct code for each member of a large character set. Wide
characters are most useful for manipulating text within a program.

Both forms have their uses.
The C Standard lets you put funny characters in comments and character

strings within C source code. These take the form of multibyte character
sequences. It provides additional library functions for converting between
multibyte and wide character forms and for manipulating these new crea
tures at run time. It specifies how you can switch among coding schemes
(within limits) by using the locale machinery. That seems to be the irreduc
ible minimum that must be standardized to permit uniform handling of
large character sets.
~3Jll refused to mandate a specific encoding for conventional one-byte
~character sets. (The committee could have done so - Ada is defined in
terms of ASCII.) It is hardly surprising, then, that the committee refused to
mandate a specific encoding for large character sets. Thus, the C Standard
imposes several constraints on how you can encode large character sets,
but it permits various encodings.

In fact, all the popular encodings of Kanji fit this scheme. Some are
multibyte codes without shift states, some are multibyte codes with shift
states, and some are wide-character codes. The proposed ISO 10646 univer
sal character set works as a wide-character code. So too does Unicode, from
which ISO 10646 was derived. You get in trouble only if you try to use an
encoding for the wrong choice of representations.

The major weakness with the Standard C approach to internationaliza
tion is a lack of practical experience. Some prior art exists for each compo
nent, to be sure. But nobody has proved that this particular combination of
ingredients will truly enhance portability.

I decided to address the issue by implementing all this stuff. I have just
published a book, The Standard C Library (Pla92). It includes a complete
implementation of locales and support for large character sets. You can get
the machine-readable code, compile it, and link it into applications without
paying a royalty. My hope is that this will stimulate wider experimentation
with coding for the international marketplace.

Of course, I had to make up a few things as I went along. I defined a
format for a "locale file." You can use a conventional text editor to specify

176 Programming on Purpose

as many locales as your heart desires. If a program asks to change locales,
the library reads this file to find the required information. Such a scheme
is indeed open-ended. But it may not be as efficient as necessary for some
applications. And it may not fit well with culture-specific support provided
by other vendors and standards groups.

It's still too early to judge the success of the C Standard, this implemen
tation, or any serious applications in the area of cultural adaptability. I am
optimistic that the C Standard takes basically the right approach. I like to
think that my implementation is a good one. But until we get feedback from
the writers of applications - and their users - we can't pass final judg
ment. Stay tuned. o

mfterword: Since I wrote this essay, standards activity has increased dramatically
.cl.in the area of internationalization. Countries and companies, large and small,
now look to such standards to ensure the proverbial "level playing field." As a
result, I believe that too much is going on now. We still need to analyze what the
world needs, even as pressure mounts to synthesize new standards right away.
Fifteen years ago, some of us worried about portability among machines. Now we
worry about portability among cultures. The issues are similar, but the market
forces have become much stronger.

This is the first of three essays on writing culture-dependent code. (See Essay
23: All Sorts of Sorts and Essay 24: Transforming Strings.)

23 All Sorts of Sorts

.0... orting once dominated computing. In the days when mainframes
e::1'ruled, I am told that the largest single task occupying many of the big
machines was sorting. All night long, operators mounted multi-reel data
sets a reel at a time on multiple tape drives. They sorted the day's transac
tions and applied them (via a merge) to gigantic data bases. The result was
a new set of tapes for processing the next night.

We now live in an era where "gigabyte" is a common noun. Most of those
multi-reel data sets have migrated to online disk files. Many of them now
live on departmental, or even personal, computers. The very large data sets
now inhabit optical jukeboxes and other modern approximations to infinite
storage. You can access in milliseconds what once took a day or more to
read from archival storage.

Sorting has not gone away, however. It gets smeared out across all those
accesses. The data base is kept in sort by some criterion. So each access
knows how to cut corners to find the record in question. (This corner-cut
ting is called searching.) Insertions and deletions must maintain the sort
criteria, of course.

The algorithms for sorting and searching are a fascinating topic. For an
encyclopedic reference, see Donald Knuth, The Art of Computer Program
ming, Volume 3, "Sorting and Searching" (Knu73). Much as I love to explore
that topic, however, I sidestep it for now. My concern at the moment is a
different aspect of sorting and searching.

At the heart of every sort or search is a function that determines the
ordering criterion. The function compares two items to be ordered and
yields a three-valued result. The first item is either less than, equal to, or
greater than the second item. Clever algorithms may minimize the number
of comparisons they make. In the end, however, they depend on a compari
son function to define the sort order.

That function must play fair. It cannot, for example, cop out and return
"I don't know." That can be a reasonable response for certain comparisons
in other contexts. An IEEE 754 floating-point value can be a code that
represents "not a number" or NaN. Compare a NaN with a finite value,
such as 3.2, and the answer is, "I can't say how these two values are
ordered."

In a sort or search, however, the result must be augmented. It may make
sense to sort a NaN before any finite value. Or it may make sense to sort a

177

178 Programming on Purpose

NaN after all other values. It may also make sense to have allNaNscompare
equal, regardless of their codes. So long as the comparison function returns
one of three answers, as above, the sort or search can proceed.

The answer had better be reproducible as well. Every time you call the
comparison function with a given pair of items, it must yield the same
answer. Much of the cleverness in sorting and searching algorithms de
pends on this property. Even a pedantic algorithm that repeatedly com
pares pairs of items can get testy if the sort order changes under foot.
~nally, the answer had better be consistent with all other answers. That

,.JJ means, for example, that comparisons must be transitive. If A is less
than Band Bis less than C, then A must be less than C. Seem obvious? Then
consider the ancient game of scissors, paper, and rock: scissors cut paper,
paper covers rock, rock smashes scissors. The dominance is circular. Try to
sort by dominance with this function and most algorithms will produce
fruity results. I suspect that some may even loop forever.

I am amazed at how seldom these properties are spelled out for com
parison functions. I suppose they are sufficiently obvious to most program
mers that they are hard to see as important semantic constraints. It's only
when you violate one or more, and spend three days debugging a program,
that you are reminded of their importance.

A classic failure is to change ordering functions in the middle of the
stream. For example, the Standard C library has a function called bsearch.
You specify an array that is in sort, an item to look up, and a comparison
function. The bsearch function returns a pointer to an array element that
compares equal, or a null pointer if it can find none. As the b in the name
implies, bsearch presumably speeds its search by performing a binary
chop. Thus, it can search an array with 1,000 elements with at most ten
comparisons.

The binary-chop algorithm assumes that the array is sorted by the same
criterion as is enforced by the comparison function you specify on the call
to bsearch. You can use another Standard C library function called qsort
to ensure that this is so. One argument to qsort is a comparison function
that behaves much like the one for bsearch. The arguments to both are
nearly identical. With a bit of care, you can ensure that both functions use
exactly the same comparison function.

What many people do, however, is initialize the search table statically,
right in the C source code. They sort the initializers for each element by
hand. Or they use a sort utility that comes with their development system
of choice. Usually, that works fine. Probably, the sort utility and your
comparison function specify the same ordering. The "key" is often just a
text string that sorts in one obvious way. Right?

Essay 23 All Sorts of Sorts 179

Move the code to a machine with a different character set and you can
be surprised. Character data in sort on the original host no longer sorts the
same on the new target. The comparison function yields answers inconsis
tent with the ordering of the table. Disaster ensues.

I have learned to be wary of arrays whose order depends on character
codes. I still initialize them statically, but I no longer make them constant.
Instead, I sort such tables at program startup, using the same comparison
function that I use for later searches. (I also comment each such table clearly
so that future maintainers retain this discipline.) That saves all sorts of nasty
surprises.
mou find similar problems among the UNIX utilities. The sort command
~lets you specify all kinds of special options for the comparison function.
You can specify multiple keys, or ordering criteria. (Later keys are tested
only when earlier ones compare equal.) Each key can specify a different
subfield of the text lines to be sorted. Each subfield can be interpreted in
different ways. The main thing wrong with all this flexibility is its complex
ity. It usually takes me between ten minutes and an hour of experimentation
to get all the keys right for a specialized sort.

There is another thing wrong, however. Several other UNIX utilities also
require a comparison function. For example, you drop duplicate adjacent
lines from a file by piping the sorted file through uniq. And you identify
lines common to two files (or unique to just one of them) by sorting both
files and passing them through comm. Both uniq and comm have some
notion of ''before" and "equal" when comparing two text lines. If that
differs from the notion imposed by the earlier sort, these utilities often
misbehave.

My knowledge of UNIX is admittedly out of date. But the last time I
looked, the utilities uniq and comm lacked all the ordering options of sort.
I have slammed into that incompatibility with annoying regularity over the
years. That inspired me many years ago to write library functions for
parsing sort keys and using them in comparisons. I still have versions of
sort, uniq, and comm that can agree on fairly ornate sort criteria. They have
proved their worth many times over.

In summary, the comparison functions you use with sorts and searches
are critical pieces of code. They tailor standard algorithms for particular
applications. Coded properly, comparison functions help you order data
sets efficiently and robustly. Done wrong, they cause all sorts of pernicious
errors.

The set of all useful comparison functions is very large. I have used
dozens of distinct ordering criteria with various sort utilities over the years.
I would gladly have used more, had the sort options been more flexible. I
have written more comparison functions in C than I care to count. It is
clearly hard to guess the parameters you need for a flexible parametric

180 Programming on Purpose

comparison function. It is also onerous to require users to specify compari
son functions by writing C code.
71il oth of those problems came back to haunt me recently. As I mentioned
;fiW'in the previous essay, my latest magnum opus is a book on the Standard
C library (Pla92). (See Essay 22: Programming for the Billions.) One of the
interesting features added to C is the concept of locale-dependent collation.
In other words, you can specify how to compare two text strings using
ordering rules that vary across cultures (and subcultures).

The workhorse function is called strcoll. You call it with pointers to
two null-terminated strings. It returns the usual three-way value you need
to order strings by pairwise comparisons. If you expect to repeat such
comparisons often, another function can speed the process. You call
strxfrm to translate a string into an alternate form. Byte-by-byte compari
son of two such transformed strings yields the same ordering as calling
strcoll with the untransformed strings.

The C Standard says that an implementation must contain the functions
strcoll and strxfrm. It says that changing the locale category LC_ COL
LATE can change the behavior of these functions. But that's all it says. It
gives no hints about:
• how to specify various "collations"
• what names to give them
• how to implement the functions
• how to change their behavior when the locale changes
Those were the issues I tackled when I chose to implement a complete ver
sion of the Standard C library.

My approach to locales was to introduce a locale file. This is a text file that
you can prepare with your favorite text editor. You use it to describe one or
more locales. Each specifies a number of culture-dependent parameters.
For example, here is a sensible locale entry for Australia:

LOCALE AUSTRALIA
currency_symbol
decimal_yoint
qroupinq "3"

"$"
" "

int_ curr _symbol "AUD "
mon_decimal_yoint " "
mon_qroupinq "3"
mDn _thousands_ sep ", "
neqa tive_siqn "-"
positive_siqn
thousands_sep
frac_diqits
int_frac_diqits
n_cs_yrecedes

"+"
" " ,
2
2
1

Essay 23 All Sorts of Sorts

n_sep_by_space
n_sign_yosn
p_cs_yrecedes
p_sep_by_space
p_sign_yosn
dst rules ":010

0
4
1
0
4

100:042802:102702"
time_zone ":AST:ADT:-540"

181

time formats "1%d %b %H:%M:%S %Yl%d/%b/%Yl%H:%M:%S"
LOCALE end

A. ome of these fields speak for themselves. Some are downright cryptic.
e=v1 don't pretend that casual users can or should learn the mysteries of
locale files. More likely, a system administrator or programmer would
modify an existing locale file for each peculiar need. The point is that you
can capture many of the peculiarities of a given culture with just a few
hundred bytes of text.

A program can read this file at program startup and adapt in several
critical ways to the preferences of the locals. Or it can adapt repeatedly to
various locales as it runs, if it is more ambitious. Or it can tailor a specialized
locale by choosing French dates, say, and accountants' conventions for
formatting monetary values. A program that is shared in a multiprocessing
system, such as UNIX, can even adapt simultaneously in different ways to
different users.

This example specifies how the locals prefer to format monetary and
non-monetary amounts, and how they write their dates. That's probably
the information of widest interest to programmers writing adaptable ap
plications. The locale file can also specify:
• additions to various character classes, such as letters with accent marks

or additional punctuation characters
• the encoding of multibyte character strings and their corresponding

wide-character codes, for large character sets
• the ordering rules for strcoll and strxfrm

It is this last item that I wish to focus on for now.
Despite what I said earlier, strcoll is not the fundamental function.

You can write strcoll in terms of strxfrm, but not the other way around.
Each ordering rule is thus defined in terms of a string transformation. How
the transformed strings sort determines the behavior of the ordering rule.
So you want some flexible way to specify string transformations.

Perhaps you can see the quandary I faced. I want people to be able to
specify a large assortment of ordering rules by adding text to a locale file.
That rules out writing a predetermined set of functions. Each may be very
fast at enforcing a given ordering rule, but it is also limited. Choosing
among a finite set of ordering rules is not a happy solution.

182 Programming on Purpose

I have already described my frustration at using parametric sort pack
ages. And I can't say I've done any better than others with my own designs.
The sort-key parser that I wrote was nice, but it was hardly more flexible
than the UNIX sort utility. Unless the locale-file reader includes a C com
piler, it is hard to provide adequate flexibility. And having written the odd
C compiler over the years, I knew better than to try anything that ambitious.
~ evertheless, I did design and write several parametric versions of
~strcoll and strxfrm. Each worked for an interesting subset of
cases. Each foundered on the shoals of cultural diversity. The problem was
that I knew too much about what people wanted, but I didn't know enough
about how to deliver. What I knew was courtesy of IBM and the POSIX
subcommittee on internationalization. Both of those organizations have
studied collation rules used around the world. Both have a stake in helping
computer users implement those rules. Let me give you a few examples.

The easiest collation rule to implement is one where strxfrm trans
forms each string unchanged. That makes strcoll equivalent to the old
war-horse C function strcmp. The ordering is determined by the codes
assigned to the execution character set. I chose that behavior for the "C"
locale you get at program startup. I figured it was most culturally neutral.

A rule almost as simple is to make letter comparisons case insensitive.
You get this behavior by translating all upper-case letters to lower case (or
the other way around). The mapping still produces one character for each
character in the input string.

That leaves you one step away from a dictionary sort. Such an ordering
rule is case insensitive, but it also ignores any punctuation. In the extreme
version of a dictionary sort, you discard all characters other than letters.
Thus, "can't" and "cant" sort equal, and "cane" sorts before "can't" regard
less of the values assigned punctuation codes. (I assume that letters sort in
alphabetical order.)

On a visit to Stockholm, I discovered a peculiarity with Swedish tele
phone directories. Seems they treat "i" and "j" as equivalent in determining
sort order. You can handle such rules by an obvious variation on the
dictionary sort. Simply map equivalent characters to the same character in
the transformed string.

Most languages other than English have characters with accent marks.
Occasionally, these are encoded as a sequence of two characters - an accent
mark followed by the letter. That derives from the days of mechanical
typewriters with dead keys for the accent marks. The carriage spaced only
after you struck the letter following. The modern trend, however, is to
define separate character codes for each combination of letter and accent.
Display a binary file on your terminal screen and you will probably see
some of them.

Essay 23 All Sorts of Sorts 183

The ordering rules for accented characters (and other funny characters)
strain the bounds of creativity. Some simply sort the same as their unac
cented cousins. That's easy to deal with. Some sort as if they were some other
combination of letters. (The German "fS" often sorts as if it were "ss.") That's
still not bad.

Where life gets exciting is when you get to the disambiguating rules.
Seems some cultures are happy to order accented characters the same as
unaccented, provided the rest of the two strings differ. If they prove to be equal,
then one form of the letter precedes the other. That's somewhat messier to
capture in a transformed string.

What you have to do is transform the string more than once. Take one
pass over the string replacing each character with its sorting equivalent.
Then tack a distinctive marker on the end. Then take a second pass over
the string adding characters only for each one that may have to be disam
biguated.
7h ere is an example that you can read. Let's say that you want to order
Rstrings by dictionary order as above. That means ignoring case distinc
tions among letters and effectively discarding non-letters. But you also
want distinct strings to compare unequal. Effectively, you want to take a
second look at strings that sort equal by the dictionary rule. On the second
pass, you want to perform a comparison of the original text.

One way to do so is:
• change all upper case letters to lower case
• append a period to this string
• append the original string following the period
Thus, the string "Can't Happen" becomes "canthappen.Can't Happen" as
a sort key. It sorts very close to "can't happen" (which becomes "canthap
pen.can't happen") but doesn't compare equal to it.

The reports I read from IBM and POSIX go on for pages. Every time you
think you know all possible sorting rules, some central European country
throws you another breaking fast ball. It's fun reading, if you're perverse.

My final solution was almost as extreme as allowing C code in locale
files. I went back to the simplest programmable system that is also power
ful, fast, and flexible. I coded strcoll and strxfrm in terms of a table
driven, finite-state machine. What you put in the locale file is the
specifications for the code tables. Here, for example, is how you specify the
modified dictionary sort I showed above:

collate[O, O] / /
collate[O, 1:$#]
collate[O, 'a':' z'] $@
collate [0, 'A' : 'Z'] $@+'a'-' A'
collate[l, 0:$#] $@

$0 $I $1
$I $0

$0 $I $0
$0 $I $0
$0 $I $1

184 Programming on Purpose

Again, I don't pretend that this is readable. I won't even try to interpret it
for you at present. That's my topic for the next essay.

All I will say for now is that this approach has proved fruitful. I have
been able to encode a wide variety of comparison rules with this (albeit
cryptic) scheme. It is satisfyingly terse, so as not to bulk up a locale file. And
I think it is even reasonably efficient. o

(7ffterword: As I warned in this essay, there seems to be no end to complexities in
;a.collation rules. I have since learned that sorting French text requires an added
refinement. You ignore any accents on the first pass. Then you consider any accents
in reverse order. The rationale I've heard is that accents near the end of a word
often change its meaning dramatically. Those near the beginning merely change
its pronunciation. It is clear that we have much to learn about the needs of various
constituencies in sorting text.

24 Transforming Strings

7{n the last two essays, I have been describing some of the features added
..JJ to Standard C to adapt programs to different cultures. (See Essay 22:
Programming for the Billions and Essay 23: All Sorts of Sorts.) My interest
in that topic has driven me to implement the Standard C library and flesh
out support for locales and large character sets. (See Pla92.)

I ended the last essay by sketching the way I chose to specify a wide
variety of collation sequences. I implemented the critical functions
strcoll and strxfrm in terms of a table-driven finite-state machine. You
specify the tables as part of a locale in a text file. If a C program changes
locales, it scans this file and encodes the relevant locale to alter the behavior
of various library functions.

Here is a brief review of the problem. You specify a collation as a
transformation of one string to another. The function strxfrm performs
this transformation for you. Its behavior can change when you change
locale. Compare two transformed strings byte by byte and you get the
desired ordering of the untransformed strings. The function strcoll will
transform two strings and compare them all at once, if you prefer.

Ordering rules vary greatly among cultures around the world. In many
cases, you can nevertheless capture the local ordering rule with a charac
ter-by-character mapping of the input string to the transformed string. In
some cases, however, you must rescan the input string to produce a suffix
for the transformed string. This suffix defines the order when, say, two
strings differ only in an accent mark on one of the letters. The accent mark
matters only if the character sequences following the accented character are
identical. Yup, that's right.

To perform these transformations, I defined a simple machine with up
to sixteen states. At any given moment the state determines which table of
actions to use. The next (eight-bit) input character serves as an index to
select which table entry to use. A table entry consists of an eight-bit
translation value, a four-bit successor state, and four one-bit action flags:
• $F - Fold the translation value into the 16-bit accumulator.
• $I - Consume the Input character.
• $0-0utput a character (the translation value if it is nonzero, otherwise

the less-significant byte of the accumulator).
• $R - Rotate the accumulator left eight bits.

185

186

'A'-'Z':
eat,

put lower case

Programming on Purpose

'a'-'z':

other:

null
Figure 24.1: State-transition diagram for simple dictionary sort.

Consuming the terminating null character starts a rescan of the input
string. Outputting a null character stops the translation normally. An
invalid transformation or silly table entry terminates the transformation
with extreme prejudice. The machine starts in state 0 with a 0 accumulator.
7& ere once again is the ordering rule I showed in the last essay. It sorts
R strings by dictionary order - ignoring case distinctions between let
ters and discarding non-letters. Two strings that compare equal by this rule
are then compared byte-by-byte. Figure 24.1 shows a state-transition dia
gram for this ordering rule. What you write in the locale file is:

collate[O, 0] ' ' $0 $I $1
collate[O, 1:$#] $I $0
collate[O, 'a' :'z'] $@ $0 $I $0
collate[O, 'A' :'Z'] $@+'a'-'A' $0 $I $0
collate[l, 0:$#] $@ $0 $I $1

The first line sets the collation rule for state 0, character code 0 to
consume the null input character ($I) put out a period in its place (' . ' and
$0), then enter state 1 ($1). Consuming the null input character starts a
rescan of the input string.

The second line sets the collation rules for all nonzero character codes (1
through$#, which is 255) in state 0. The action is to consume the input ($I)
without producing any output and remain in state 0 ($0).

The third line rewrites the entries for the lower-case letters. The action
is to transform the character to itself($@), output this transformed value
($0), consume the input ($I), and remain in state 0 ($0). Of course, this
notation works properly only if the lower-case letters have adjacent codes,
as in ASCII.

The fourth line rewrites the entries for the upper-case letters. The action
is to transform the character to its lower case equivalent ($@+'a' - 'A')
then consume and put the letter as immediately above. The last line sets all
collation rules for state 1. The action is to put the character unchanged,

Essay 24 Transforming Strings

any:
put

eat,
put 'm'

'a'

Figure 24.2: Additions to state-transition diagram for Mc/Mac equivalence.

187

consume it, and stay in state 1. Emitting the terminating null ends the
transformation.

I wrote the rules in a slightly illogical order to keep them shorter. It is
easier to flood a state table with the "otherwise" case, then go back and
overwrite the special cases. Note that this particular transformation makes
no use of the accumulator. Some messier transformations need it to retain
a character code or two and reduce the number of distinct states .
..n::-or a more complex example, we can add a Celtic flavor. Many phone
,,JJ books sort names beginning with Mac interchangeably with those
beginning with Mc. Thus, Mcintyre sorts before MacWilliams, not after.
That makes it easier for most of us to find such names when we're not sure
of the exact spelling.

Figure 24.2 shows what you have to add to the state-transition diagram
in Figure 24.1. Note that half the added complexity lies in undoing the
damage for names such as Mallory. Here are the lines you have to add to
the earlier ones in the locale file to define this ordering rule:

collate[O, 'M'] $I $2
collate[2, 0:$#] 'm' $0
collate[2, 'c'] $I $3
collate[2, 'a'] $I $4
collate[3, 0:$#] 'c' $0 $0
collate[4, 0:$#] 'm' $0 $5
collate[4, 'c'] 'm' $0 $I $3
collate[S, 0:$#] 'a' $0 $0

188 Programming on Purpose

A little arithmetic will tell you that this set of state tables occupies over
3,000 bytes of storage. Half of that is used simply to emit the letters m, a,
and c. I'm sure that you can write a comparison function that is much
smaller than this, and doubtless considerably faster. I know that I could.

But why should you? If you have an application that applies this sort
rule all the time, it may be worth coding in C. That will give you improved
performance, if that matters. It also will let you tailor the comparison more
than a mere 16 states allows.

Otherwise, you are better off coding in this higher-level language. It still
requires programmer-type skills. But you can sit at a keyboard for ten
minutes with a suitable test harness and beat on it until it works. That's the
same sort of investment I make in getting the command line right for a hairy
UNIX sort. And you can use it, just like a shell script that drives a sort, with
programs available only as executable binaries. No need to compile and
link-in chunks of code.

You can stockpile dozens, or even hundreds, of ordering rules such as
this. Give each a mnemonic name and a descriptive comment line or two.
Put the most-used ones in your standard locale file. Keep the rest handy in
a directory of files you can scan with grep. Add them to your active locale
file as needed. That, to me, is a sensible way to deal with the telephone
directories of Europe.
mnother important addition to C is support for large character sets. The
.el.Japanese, Chinese, and Arab cultures all have character sets that num
ber in the thousands. They have become, or are becoming, major new
markets for applications software.

The C Standard lets you encode large character sets two different ways.
Multibyte characters are sequences of one or more bytes, each typically eight
bits. Each sequence specifies one character in the larger character set. Wide
characters are fixed-size integers, each typically 16 to 32 bits, that can
represent all the characters in the large character set as distinct codes.

The Standard C library provides the functions mbtowc and mbstowc to
translate from multibyte to wide-character forms. The first delivers a single
wide character. The second translates an entire null-terminated multibyte
string to a null-terminated wide-character string. The library also provides
the functions wctomb and wcstombs to translate the other way.

None of these functions has to worry about rescanning a string, as
strcoll and strxfrm must. But they face a different nasty problem.
Some encodings of Kanji, the large set of Chinese characters used by the
Japanese, employ multibyte strings with locking shift states.

Some of you may have encountered a similar encoding used on ASR 37
Teletypes and equivalent terminals. The ASCII control code shift out (SO)
puts the terminal in an alternate shift state. Type a letter b and you get a

Essay 24 Transforming Strings 189

Greek ~ instead, for example. The terminal continues to speak Greek until
you send it the control code shift in (SI). It then reverts to its initial shift state,
speaking the approximation to English favored by programmers.

Not all popular encodings of Kanji (or other large character sets) use
locking shift states. For the rest, each multibyte sequence is self determin
ing. As you inspect each character starting with the first of a sequence, you
know:
• whether it is a valid character
• whether an additional character follows
And given a valid multibyte sequence, you know its corresponding wide
character code.

The C Standard offers several additional anchors in this sea of varied
character sets. It specifies that multibyte strings within a program (such as
comments and format strings) begin in the initial shift state. In the initial
shift state, the common characters such as a are the one-byte codes you
know and love. And most important, the null character (code value zero)
can never occur as part of a multibyte code. It always stands for a one-byte
null character .
.0:... till, there are problems. Large character sets abound, as I keep empha
~sizing. Major vendors have, in recent years, adopted Kanji encodings
across much of their product lines. They thus have a stake in supporting
their particular encoding very well. Sadly, differences often exist between
vendors.

I chose to implement the Standard C library without choosing a particu
lar large character set. That put me in the position of having to support
(potentially) all the more popular encodings. I couldn't ignore codes with
locking shift states. Nor could I assume they would always be present. I
thus had to write mbtowc, mbstowcs, wctomb, and wcstombs to be as
general as possible.

As with the collation functions, I mucked about for awhile with different
ways to parametrize these transformations. And as with the collation
functions, I found myself repeatedly thwarted by cultural diversity. I
couldn't easily encode all the ways that European cultures have chosen to
sort text. Nor could I encompass all the ways that Japanese programmers
have contrived to encode Kanji.

My solution, once again, was to introduce two more table-driven finite
state machines. One translates a multibyte sequence to its equivalent
wide-character code. The other does the reverse. Both have to fret about
state memory, in case the multi byte code involves locking shift states. And,
of course, both must be defined together. You want to translate back and
forth between multibyte sequences and wide characters with some degree
of consistency and sanity.

190 Programming on Purpose

I find it sad that I ended up with three different finite-state machine
drivers. Perhaps if I were smarter, I would have found some way to
combine them into one. All are similar enough to use the same notation in
their locale-file specification. But each differs enough from the others to
warrant separate treatment. Consider:
• The collation functions map a string of characters to another string of

characters.
• The multibyte functions map a string of characters to a string of wide

characters.
• The wide-character functions map a string of wide characters to a string

of characters.
I suppose that's difference enough to warrant three distinct sets of func
tions. Two particular differences are:
• The multibyte functions output an entire wide character.
• The wide-character functions copy each input wide-character to the

accumulator, then index into the current state table using the less-sig
nificant byte of the accumulator.
The drivers for the three sets of functions also differ in how they return

control part way through a transformation. But that involves low-level
programming details that I choose not to address here.
7h ere is a practical example. One popular Kanji multibyte encoding is
Rcalled Shift JIS:
• A character code in the interval [Ox81, Ox9F] or [OxEO, OxFC] signals the

first of a two-character sequence. Any other code is a single character.
• The second character must be in the interval [Ox40, OxFC].

A variety of wide-character codes for Kanji also exist. The string trans
formations supported by this implementation are, of course, limited. I thus
endeavor to define a wide-character code set that is adequate and within
the capabilities of table-driven finite-state machines. In this case, I chose:
• The wide-character code for a two-character sequence is the first byte

shifted left eight bits and ORed with the second byte.
• The wide-character code for a single character is that character code with

high-order bits zero.
This encoding meets two important constraints that the C Standard im
poses on wide-character codes:
• The wide-character code for a common character such as a (written

L' a' in C source code) equals the one-byte code ' a' .
• The wide-character code for the null character is zero.

Figure 24.3 shows the state-transition diagram for the multibyte func
tions. Figure 24.4 shows the corresponding state-transition diagram for the
wide-character functions. Each requires three states, and each reports an

Essay 24 Transforming Strings

any:
fold in 0,

rotate

other:
put

81-91", 60-FB:
eat, fold, rotate

put

other:
error

Figure 24.3: State-transition diagram for translating Shift]IS to wide character.

191

error for any invalid codes. What you write in the locale file to implement
these string transformations is shown in Figure 24.5.
11rhe entry mb _cur_ max defines the current value of a macro accessible
\tLlto the C programmer. It promises that no multibyte sequence in this
locale need be longer than two bytes. That can be invaluable in allocating
buffers for assembling and disassembling multibyte sequences.

The only other peculiarity I will explain here is the symbol x. I use it to
mark those table entries that report an erroneous transformation when
executed. Beyond that, I leave it to your new-found knowledge to interpret
what's going on (assuming, of course, that you still care).

any:
fold in O,

rotate

other:
put

81-91", 60-FB:
eat, fold, rotate

put

other:
error

Figure 24.4: State-transition diagram for translating wide character to Shift]IS.

192 Programming on Purpose

NOTE JIS codes with Ox81-0x9F or OxEO-OxFC
NOTE followed by Ox40-0xFC
SET A Ox81
SET B Ox9f
SET c OxeO
SET D Oxf c
SET M Ox40
SET N Oxf c
SET x 0
mb cur max 2
mbtowc[O, 0:$#] $@ $F $0 $I $0
mbtowc[O, A:B] $@ $F $R $I $1
mbtowc[O, C:D] $@ $F $R $I $1
mbtowc[l, 0:$#] x
mbtowc[l, M:N] $@ $F $0 $I $2
mbtowc[2, 0:$#] 0 $F $R $0
wctomb[O, 0:$#] $R $1
wctomb[l, 0:$#] x
wctomb[l, 0] $R $0 $I $0
wctomb[l, A:B] $@ $R $0 $2
wctomb[l, C:D] $@ $R $0 $2
wctomb[2, 0:$#] x
wctomb[2, M:N] $0 $I $0

Figure 24.5: Locale file for translating shift]IS.

I have developed locale specifications for two other popular Kanji
encodings:
• Extended UNIX Code (or EUC) is a variant of Shift JIS, at least in its

simplest form. It also requires two three-state machines.
• /IS is an older encoding with locking shift states. It requires six- and

nine-state machines.
I won't bother to show you either of these additional locales. The points I
emphasize are the same as for the collation functions. You can certainly
write code that is smaller and faster for any given encoding of a large char
acter set. The machinery I have implemented can do the job, however,
often with adequate efficiency in space and time. If you need the flexibility,
this may be the only way to fly.
7{ conclude with a brief polemic. It seems that ISO is finally getting serious
;Jl about standardizing a "universal" large character set. It is intended to
provide a unique code to every glyph scrawled by humankind since graffiti
first appeared on the walls of caves. Basically, I agree that this is a good idea.

An early effort along these lines was tentatively dubbed ISO 10646. It
represents the widely-used Latin alphabet in four characters, as three
spaces plus the usual single character. Standard C, in its current form, can

Essay 24 Transforming Strings 193

tolerate this provided we can also represent the common characters as
single-character forms. As a 32-bit wide-character encoding, it can be made
to work with similar additions.

ISO 10646 appears to be losing out, however, to an alternate scheme
called Unicode. Unicode represents Latin as three null characters plus the
usual single character. As a 32-bit wide-character encoding, that's just fine
for Standard C. Unfortunately, it is being put forth as a multibyte code. That
leads to character sequences with embedded null characters.

C programmers have learned over the years that null is well worth
reserving as a string terminator. It is certainly not essential, but it is often
convenient. Our protests, however, have fallen on deaf ears within ISO.
Their attitude is basically that C is a twenty-year-old language, and just one
of many. We will have to grow up and learn to use whatever the character
set experts devise for us.

My attitude is rather different. I believe that C is the quintessential
language for manipulating text. Look what's been accomplished in the past
two decades with C and UNIX. We have experience that is well worth
listening to. And we have a culture that is broad and deep enough to truckle
to with any new standard.

Every one of the constraints on character sets that I've outlined here has
been challenged, at one time or another, by other standards bodies. My
experience implementing the Standard C library only reinforces my preju
dice that we chose those constraints wisely.

As far as I know, the ISO large character set encoding is still not frozen.
I only hope that the C community gets a proper hearing before that
happens. o

mfterword: I can now report that ISO 10646 is frozen. It corresponds closely to
~UNICODE. And it meets the rules of C for forming sets of wide-characters.
Mostly. A few problems remain to be reconciled between ISO 10646 and various
programming-language standards (including C). But I have hopes now that the
marriage will be fruitful.

The software technology outlined in this essay is another matter. It seems that
the POSIX Standard takes a somewhat different approach to specifying locales. I
am still investigating how to reconcile these differences. The rapid evolution of other
standards on internationalization only adds to the confusion. You may not care
about all this activity now, but I suspect that within a few years many of you will.

25 Books for Our Times

(?Ypril first marks the beginning of my fiscal year, morally speaking at
.Q.least. lt's the time when I take stock of the previous twelve-month. I pay
my taxes by atoning for any excess hubris. I plan the year to come with all
the humility I can muster. I also indulge in a bit of noise making and
fireworks, to avoid an excess of sobriety.

In short, April Fool's Day combines the best of New Year's Day, Rosh
Hashanah, and Chinese New Year. To me at least. It has the added advan
tage that hotels and restaurants are less crowded. And I figure I'm better
off in the company of a few fellow fools.

Books are heavy on my mind this time around. I've spent much of the
past couple of years churning out technical books on the business of
computer programming (P&B89, P&B92, Pla92). I still have a backlog of
several more. Ten years of running a software company kind of got in the
way of this particular passion. I have a lot of catching up to do.

It's easy to lose perspective, however. We book authors do considerable
churning for each book we get out. When we're not home writing, we're
off giving lectures. We talk to fellow authors and lecturers about the latest
ideas and techniques. We work hard to stay at the cutting edge.

We tend to forget about all the poor programmers who must live well
back from the cutting edge. They work with inadequate tools and spotty
training. They have goals that are shapeless and shifting at best, impossible
at worst. For many, programming is not a creative attempt to bind ever
greater complexity with ever greater reliability. It's more like being an
accountant for a mediocre chain of restaurants in the middle of a deep
recession.

It's about time somebody started writing books that tell the truth. No
point in discussing data-flow diagrams when most programmers can't
even find all the data they're supposed to be processing. Why teach CASE
tools to people who don't even have access to all the source code and
compilers they need? Forget reliability measures if survival is the principal
measure of success.

What follows is a list of book proposals. They are aimed at the belea
guered masses, for a change. Software engineers need not apply. Look them
over. If you see some that you might like to buy, let me know. I'll pass the
most popular ones on to my publishers. Who knows, they just might end
up on my future projects list.

195

196 Programming on Purpose

By the way, some of the themes may seem familiar to you. You may have
run across a book with a similar title in the past. Don't think I'm stealing
other people's bright ideas, however. Remember that all great minds think
alike.
~roposed title: Algorithms - Data Structures= Assembly Language.
-tFJThe problem with most programming languages is they get in the way.
They insist that you commit to some data type for each area of storage that
you set aside. That's fine if you want to treat pointers as pointers all the
time, or floating point as floating point. It's a real nuisance if you want to
fiddle bits to your heart's content.

Data structures cause even more problems. Your typical compiler insists
on leaving holes between some members where you might not want them.
It insists that you add bogus elements to put holes where you really want
them. It makes you create unions wherever you use storage more than one
way. You can't just make a list of byte and bit offsets on the back of a napkin,
the way you really want.

This book teaches you how to implement algorithms with code that is
as compact and speedy as possible. It shows you how to avoid the silly
preoccupation with data structure that is costing the industry so many
megabytes and microseconds. It de-emphasizes readability and maintain
ability in favor of truly important goals. The title says it all - assembly
language is the key to ignoring data type and structure.

For the advanced student, you will also find discussions of:
• writing self-modifying code
• protecting trade secrets through obscure names and comments
• job security in an uncertain marketplace
The book contains numerous untested code fragments. About 500 pages.
No illustrations.
~roposed title: The Programming of Art's Computer. Why is it that 80
-tFJper cent of all software project managers, and essentially all purchasers
of contract software, have names like Art, Mike, or Susan? And why is it
that Art (or Mike or Susan) always picks the hardware before talking to any
software types? The reasons are shrouded in mystery. The fact remains that
most programmers work on projects that are doomed from the outset. We
don't get to pick tools and equipment that suit the job. Instead, we spend
nearly all our time programming Art's computer.

I envision this as a multi-volume series, to be produced over a number
of years. The topic is simply too vast to cover in a single book. Programming
the wrong equipment goes to the very heart of what many of us do for a
living. I haven't had time to work out the entire series, but here are the first
three offerings:

Essay 25 Books for Our Times 197

• Fundamental Aggravations that you have to put up with in getting the
hardware to work at all

• Semiliterate Auditors and how to keep them at bay while you're strug
gling to get the job done

• Sorting and Searching through documentation to get hints about how
to make the hardware work right
All code in the series is presented in an artificial assembly language for

a nonexistent machine. Unsupported assemblers and interpreters are avail
able from various third parties for a wide assortment of prices. No correla
tion exists between price and reliability of this software. The idea is to
model your normal work environment as accurately as possible.

The first volume will consist of about 400 pages. The second edition of
the third volume will be released just after the third edition of the second
volume.
Jl1roposed title: Strictured Design. Nobody likes to talk about the real
~constraints on designing computer software. We hide behind Pert
charts and reliability measures. We talk glibly about cohesive modules and
performance guarantees. What we really care about, however, are the
practicalities. Let's face it, nobody is going to let you write programs if you
tell the bald truth.

The trick is to concoct prices and delivery schedules that are at once
believable and easily disposed of. You need to get the decision makers to
commit, naturally. Then you have to string them along until you can really
get the job done.

Being a bald-faced liar is a help, but it's not enough in these competitive
times. You have to learn enough technical mumbo jumbo to avoid paying
penalties when the project comes in late. (Notice that I did not say if the
project comes in late.) That's what this book is about.

Strictured Design discusses the real-world strictures that plague any
well-meaning effort to deliver the software goods. It ignores the mundane
details of actually writing the code - you know how to crank out a few
thousand lines of code, for heaven's sake. Instead, it emphasizes those
interpersonal skills that many programmers learn too poorly or too late.
You learn, for example:
• back-to-front scheduling - "I want it in six months. When can I have

it?"
• capacity planning- "My brother-in-law sold me this machine. Is it big

enough?"
• creative equivocation - "These specs seem a little vague here. Can you

tighten them up?"
Maybe 300 to 600 pages. Possibly with illustrations. Expected delivery,

fourth quarter of the fiscal year.

198 Programming on Purpose

~roposed title: Disciplining Programmers. For those of you who have
-iFJmade it to the ranks of management, this book is for you. You know
from first-hand experience just how unmanageable programmers can be.
They'll spend all their time playing Tetris and flaming each other via e-mail
if you don't keep them in line. They certainly don't believe in the project,
the schedule, or the company style guidelines. (Why should they? You don't
either.)

Nevertheless, there are ways to keep them in line. To paraphrase Mo
handis Gandhi:
• The best leaders are those who get the programmers to say, "We messed

it up ourselves."
• The next best are those who get them to say, "We love our boss regard

less of who messed up."
• The next best are those who rule by hatred or fear.

Third best is generally good enough for most programming projects.
Thus, this book focuses on ways to control a programming staff by playing
to their basic hatreds and fears. Emphasis is on generalities, naturally.
Nevertheless, the book can't help but give an occasional piece of concrete
advice.

A central theme is boredom as a management tool. Some programmers
actually fear for their jobs, particularly in these hard economic times. But
all programmers detest boredom. Consider, for example, Chapter One:
Bringing Your Staff to Heel. It describes how to escalate meetings and
progress reports until even the burnt-out cases beg for mercy. Appendix A:
Dealing with Smart-Asses, shows several more subtle ways to inflict
boredom on individual trouble makers.

You will find no space wasted here on conventional management wis
dom. None of that Harvard Biz School hoity-toity nonsense. Instead, em
phasis is consistently on ruling the unruly while avoiding blame for the
inevitable failures. If you wanted an easy job, you'd be an accountant for a
mediocre chain of restaurants.

Six hundred pages, including 150 pages of useless forms with wide
margins as an appendix.
~roposed title: Sin and the Maintenance of Art's Motorcycle. Here's the
-iFJsurreal member of the set. The idea is to teach the realities of software
maintenance through allegory.

The protagonist in this philosophical narrative is recovering from a
nervous breakdown after five years of managing failed software projects.
She is working her way back up the ranks by performing telephone
customer support for the products she helped develop. (It's the latest thing
from California- a combination of tough love and aversion therapy.)

Essay 25 Books for Our Times 199

Meanwhile, our protagonist (call her Hydra) is also working on her
long-standing fear of hardware. She is moonlighting at a nearby garage
doing tune-ups and rotating tires. Then fate takes a double-helical twist.
The chief mechanic puts her in charge of maintaining the vintage Harley
driven by her boss, the notorious Art. (See above.)

Christian guilt wars with her natural desire for revenge. Should she
loosen an occasional bolt? Set the timing off by five degrees? Hide his
9 /16-inch wrench? All would serve him right for the way he treats his staff.
(See immediately above.)

But Hydra also realizes thett vengeance, like inadequate maintenance, is
a never-ending cycle (no pun intended). She moralizes at length about the
duties of the mechanic, and the programmer, to do a proper job. Students
of Japanese manufacturing practices will enjoy her droll comparisons
between Harleys and Kawasakis.

The climax comes when Art discovers Hydra's dual role in his life. He's
still struggling with the teleological implications even as Hydra quits both
jobs. With several friends, she buys a mediocre restaurant from a failing
chain and turns it around. It becomes the most successful vegetarian taco
place in town. The only male employee is the dishwasher, who was once
the accountant for the restaurant chain.

That rather obscures the points made earlier in the book, but feminists
will love it. Three hundred pages, paperback only. o

mfterword: This is the last of my April Fool's essays in this collections. It is also
.a.the most off-the-wall. In case you missed the point, this essay spoofs a handful
of the more popular books in our field. (See if you can recognize all the originals.)
Unfortunately, several readers agreed that a number of these books are truly needed.
The most votes went to The Programming of Art's Computer. I don't know
whether to laugh or cry.

26 Through the Grapevine

7{ finally installed a network at home. That's an exercise I've put off
;.nrepeatedly. You can only deal with so many pockets of complexity at any
one time. No point in adding new ones until the need is clear and present.

For me, the need became clear and present with surprising suddenness.
I found myself the owner of an assortment of computers. All are PC
compatibles, of various shapes and sizes. Each assumes a different support
role for me and other members of my household. All seem to need to
exchange great quantities of data every day. You can only run from com
puter to computer with stacks of diskettes for so long. Then you start
thinking about the problems you wanted to solve with computers in the
first place. When the putative solution starts taking more time than the
original problem, it's time to shift gears.

Like many of you, I center my working life around a computer. First
thing in the morning and last thing at night, I use a Compaq laptop to collect
my Internet electronic mail. Filing mail, composing responses, and noting
action items can take anywhere from ten minutes to an hour. Part of my
day often goes into typing in essays like this one. I send them to magazines
via e-mail and get the galleys faxed back to me on a Compaq desktop
computer. I also use e-mail and fax to review proposals and edit articles for
The C Users Journal.

I typeset all the textbooks I write using Ventura Publisher. Quick proofs
go to a Hewlett-Packard DeskJet SOOC. Serious PostScript goes to a NEC
laser printer. Production quality output goes onto diskettes and down to a
service bureau in Cambridge. The same machinery produces listings, let
ters, and illustrations. (My son Geoffrey does most of the latter, in both color
and gray scale.)

What I write about is computer programming. Years ago, I adopted the
silly constraint that I should stay experienced in what I write about. (Yes,
we can all name several experts who earn far more than I, partly by wasting
little time on such frivolities. I didn't say I was smart.) That self-imposed
discipline means that I keep writing code and testing it. And that means
that I keep buying compilers, installing them, and using them.

I really shouldn't call them compilers. What people sell these days are
program development systems. They combine compilers with source-code
control, text editing, interactive debugging, on-line help systems, and
libraries galore. You have heard me gripe on several occasions about the

201

202 Programming on Purpose

tens of megabytes of disk capacity that each of these wondrous packages
commandeers. I should also gripe about the computer power they need to
perform adequately. I had to buy a 50 MHz 486 from Gateway just to store
and run all these packages. Still, many of them do happen to perform minor
miracles of code generation as a useful side effect.
.1flltY wife, Tana, and I also keep checkbooks, budgets, and tax records
Plonline. Then there's telephone numbers, calendars, lists of things to
do, and so forth. Last and hardly least come computer games. I use them
to procrastinate, when the adult in me says "write" and the child says "no."
For Geoffrey, they are simply a way of life. (See "Programming on Purpose:
Piled Higher and Deeper," Computer Language, September 1992.)

Perhaps our household is a bit more computer centered than average.
As a high-tech enterprise, however, it is hardly unique. Many an office or
work group faces similar problems. Multiple people need access to multiple
computers and printers to access multiple data files for multiple reasons.
Sometimes they cooperate, sometimes they compete for limited resources.
In all cases, they want to do their jobs with a minimum of running around
and knocking into things.

Once upon a time, large companies bought mainframes to solve this
problem. Nobody else owned computers. Later on, smaller companies and
departments bought minicomputers with multi-user operating systems.
The answer today is to buy lots of single-use computers for individuals.
That minimizes conflicts, but at the cost of isolation.

To overcome the isolation between computers, you have to hook them
together somehow. I have gotten by for years with a powerful product
called Laplink. It comes with a cable that ties two machines together by
either their serial or parallel ports. Fire it up on both machines and it lets
you shovel data reliably back and forth at prodigious rates. So long as the
need is occasional and one machine is portable, it's hard to want more than
what Laplink provides.

Many people find that their principal need for interconnection is to share
printers. Where that is the case, you can cut corners all sorts of ways. Oodles
of gadgets exist for multiplexing printers across two or more computers.
Some do a serious amount of buffering for you. Most are pretty good at
resolving conflicts safely and automatically. All are typically much cheaper
than a full-bore network. (Nevertheless, my friends tell me that many an
office has laid out $10,000 or more for a network that only shares a laser
printer among multiple PCs.)

As an erstwhile computer expert, I am supposed to know all sorts of
stuff. Nevertheless, I have managed to stay remarkably ignorant about
certain pockets of our broad and turbulent field. Not even my penchant for
soaking up trivia has led me to peer inside a few of those pockets. One

Essay 26 Through the Grapevine 203

pocket of ignorance I confess to is data-base technology. Another, until very
recently, has been networking.
~nee I committed to installing a network, I began reading voraciously.
"17The trade magazines, surprisingly enough, were not of much help.
They are aimed primarily at network managers. These folk want to be
reassured that their jobs are indeed thankless. Or they want to know about
the latest in boards, boxes, and software packages that help them spy on
legitimate users of the network. Or they want detailed rationales for
upgrading from version 2.x to 3.x of whatever network they' re running on.
(Have you noticed lately that two thirds of all software products have just
introduced version 3.x?)

I did find a trade book that fit my needs remarkably well. It's PC
Magazine Guide to Connectivity by Frank J. Derfler, Jr. (Der91). The author
assumes that you know nothing about networks, but that you're not stupid.
He takes you from a standing start to where you can talk sagely about PC
networks at a cocktail party. And he feeds you considerable data from PC
Magazine's thorough product reviews.

I learned that Novell's NetWare dominates the market for server-based
networks. Such networks require that you dedicate one machine to running
the network. Typically, that machine serves as a central repository for lots
of files. You put your big disks, and maybe your printers as well, on the
server. All the other machines on the network are clients. They can get away
with little or no disk storage of their own. Transfers over the network are
fast enough that clients don't mind using the server's disks. That, of course,
also eliminates duplication of resources. And it makes it easier to control
access to shared resources.

Novell is hardly alone in this important field. Microsoft's LAN Manager
and Banyan's VINES are two tough competitors. The payoff for us consum
ers, as usual, is twofold. Prices are held in check and the products keep
improving at a rapid rate.

But I didn't want to dedicate one of my computers to running a network.
That would over stretch an already strained equipment budget. What I
wanted was a peer-to-peer network. Such a network lets any of the ma
chines on the network behave as a client, a server, or both. All machines
still behave mostly as standalone PCs. Occasionally, a server gets boggy
when someone else pokes at one of its files or printers. Otherwise, being a
server just costs you a little of your precious RAM.

The most important thing I learned about from Derfler's book was
Artisoffs LANtastic. It's a peer-to-peer network for PCs that has consis
tently earned top marks from PC Magazine's product reviews. It has good
performance and reliability, and it makes fairly modest demands on mem
ory, even for servers.

204 Programming on Purpose

So I knew I wanted to install LANtastic. You'd think I'd be home free.
Nothing is easier than convincing someone in the computer business to sell
you hardware or software. The only trouble is, I didn't know exactly what
to buy.
f7r network is a devil's brew of hardware and software. You need wires to
.:clship the data around. You need boards and boxes to send signals along
the wires. Each computer needs a device driver that talks to its particular
network board or box. Then you need several layers of software atop those
drivers to make the network hum.

Boards and boxes are boring to software types. Derfler wasted little space
describing such critters. Even the literature I got from Artisoft was remark
ably unspecific. Hardware designers have performed minor miracles with
these network boards. Now nobody wants to look twice at them. They are
part of the wallpaper.

If you've ever stuck a board inside a PC, you understand some of the
issues. Does it need an 8- or a 16-bit slot? Does it occupy address space in
the upper 384 kilobytes of RAM? What choices do you get for setting IRQ
and 1/0 port addresses? Get a board that's too rigid or too demanding and
you'll never get it to work right in a heavily loaded PC.

Networks add a further complexity. Even after I settled on Ethernet, I
found I still had decisions to make. You can wire Ethernet three different
ways. The original "frozen yellow garden hose" has evolved to thick Eth
ernet - a multi-wire cable. You can also use thin Ethernet - a coaxial cable
similar to TV cable (but different, naturally). And the newest option is to
use lOBaseT - a group of four twisted-pair telephone wires.

As usual, there are gazillions of tradeoffs among these choices. I soon
determined, however, that any of them would meet my modest needs. So
naturally I leaned toward the cheapest and easiest of these wiring schemes.
With computers spread all over the house, I didn't want to have to tear up
too many walls to run the network wiring.

Our house is an early Victorian monster that dates back to 1850. We
renovated it extensively when we sold Whitesmiths. Part of the improve
ment was to replace a clunky old ITT phone system with a sleek new AT & T
Merlin system. All those 25-pair cables disappeared, along with their fat
telco connectors poking out of holes in the floor. They got replaced by
demure wall-mounted phone jacks.

By some uncanny stroke of good fortune, I had the sense to demand two
phone jacks in most rooms (to the utter confusion of our Yankee electri
cians). Merlin requires RJ45 4-pair jacks. That wiring also happens to
support Ethernet lOBaseT. So the worst part of installing a network was
already solved. We wouldn't have to butcher the walls to run still more
wires.

Essay 26 Through the Grapevine 205

11rhe next worst part was buying the right boards and boxes. Artisoft will
~sell you several different "starter kits." These include two driver
boards, a length of cable, and all the software you need. But I needed to
hook up a laptop. And I was running machines in several rooms. For these
and other reasons, their lOBaseT starter kit just didn't meet my needs. So I
got one of their fancier starter kits that also happened to support lOBaseT.

I also bought a neat box called the Artisoft Central Station. I connect the
parallel port of my laptop to the Central Station, which connects in turn to
the network. I can also drive my printer through the Central Station as if it
were directly connected to the laptop. Artisoft also promises to do all sorts
of neat things with the extra connectors on the back, one of these days. The
Central Station has something else that is invaluable to us programmer
types. It provides lots of flashing lights on the front panel. That way I can
convince myself that the network is actually doing something.

The last box I needed connected everything together. It's called a
lOBaseT hub and it squats in the basement where all the RJ45 cables come
together. It used to hang by a couple of Velcro strips, but I gave up on them.
Twice the network went down - literally - when the adhesive on the
strips failed.

I accumulated all this stuff over a period of weeks and slowly pasted it
together. (Misco supplied the paste in the form of various RJ45 cables and
connectors.) I'd like to say that it worked right off the mark, but it didn't.
The first Central Station was DOA. Artisoft replaced it practically over
night. I had to take the Compaq desktop apart and rebuild it from scratch
to eliminate various hardware conflicts. That was probably good hygiene
anyway.

The LANtastic software came right up, but with an assortment of idi
osyncrasies. One by one, I chased them down by repeated scans of the
manuals and READ_ ME files. Still, the various printers behaved erratically
over the network. In the end, I spent 40 minutes on the phone with a patient
techie from Artisoft. Since then (months ago) the network has been mostly
invisible. And that, to me, is high praise.
?ll?llthat I have now is remarkably close to what I wanted. Each computer
~can use any of the printers on the network with little or no perform
ance penalty. Each can treat disks on another computer as extra disks of its
own. Sloshing data around is nearly as fast as reading and writing the local
disks.

It's not perfect. I still haven't packed all the network software into the
upper 384 kilobytes on some of the machines. I like to back up files with
La plink, but it refuses to talk over the network. A few other bits of software
seem to be similarly "network half-aware." Aborting a printout is fraught
with peril, particularly for the H-P DcskJet. I have learned that it is often
easier to waste paper than to try to save time. And about once a week, I find

206 Programming on Purpose

it easier to reboot all the computers than to disentangle a perplexed net
work. It gets broody when it's upset. Still, it's mostly a friendly ghost.

I didn't install my own network to save money. Nor should you. Part of
the exercise was to advance my education. If there's a network in your
immediate future, you face two choices. Either start learning about the
technology now, to spread your tuition payments, or get help. Configuring
and installing computer networks is an active subindustry. Many are eager
to take your money and some are competent. Most are more competent
than you are likely to be. Think of it this way - buying a network for your
office is no worse than buying aluminum siding for your home. And no
better. o

(7f fterword: My journey through network land continues. The network keeps
;a.getting better, but never quite settles down. There's always some reason to
perturb it, or to try something new with it. And you know what that means with
any complex system.

Looking back over these essays, I see any number of continuing journeys. I still
muck about with computer arithmetic, encryption, human interfaces, international
standards, and a dozen other topics I've yet to write about. The glory of our business
is that it offers such a rich mixture of problems at once pragmatic and theoretical.
For someone who never really wanted to leave college, it's a great way to stay in
school - without the bane of student wages.

The buggy whip is a common symbol of obsolete technology. Those who worked
to improve that mundane tool doubtless mourned its passing. Some, I'm sure,
passed from the commercial scene along with the whips they made. Others found
something new to make, and to make better. You can make whips or you can make
hand-held implements. You can sell carriages or be in the transportation business.
All it takes to change with the times is a willingness to learn new things.
Continuously.

This collection is intended as a sampler, to stimulate thought. I don't pretend
that it's a coherent body of knowledge. It has no niche in the ACM Curriculum.
But it does give a flavor of several interesting topics in computer software. And it
might stimulate a few new journeys.

Appendix A List of Columns

The following list gives the publication date, destination, and title of each
installment of "Programming on Purpose" published in Computer Language
through December 1992. For example, the entry

Jul 1986 Design 1 Which Tool is Best?

tells you that the essay "Programming on Purpose: Which Tool is Best?"
was first published in the My 1986 edition of Computer Language. You can
also find it as Essay 1 in the collection Programming on Purpose: Essays on
Software Design, Prentice-Hall, 1993. The other two collections are Essays on
Software People and Essays on Software Technology.

Date Collection # Title
Jul1986 Design 1 Which Tool is Best?
Aug 1986 Design 2 Writing Predicates
Sep 1986 Design 3 Generating Data
Oct 1986 Design 4 Finite-State Machines
Nov 1986 Design 5 Recognizing Input
Dec 1986 Design 5 Recognizing Input, Part 2

Jan 1987 Design 6 Handling Exceptions
Feb 1987 Design 7 Which Tool is Next?
Mar 1987 Design 8 Order Out of Chaos
Apr 1987 Technology 1 You Must Be Joking
May 1987 Design 9 Marrying Data Structures
Jun 1987 Design 10 Divorcing Data Structures
Jul1987 Design 11 Who's the Boss?
Aug 1987 Design 12 By Any Other Name
Sep 1987 People 1 Honestly, Now
Oct 1987 Design 13 Searching
Nov 1987 Design. 14 Synchronization
Dec 1987 Design 14 Synchronization, Part 2

207

208 Programming on Purpose

Date Collection # Title
Jan 1988 Design 15 Which Tool is Last?

Feb 1988 Technology 2 Computer Arithmetic

Mar 1988 Technology 3 Floating-Point Arithmetic

Apr 1988 Technology 4 The Central Folly

May 1988 Technology 5 Safe Math

Jun 1988 Technology 6 Do-It-Yourself Math Functions

Jul 1988 Design 16 A Designer's Bibliography

Aug 1988 Design 17 A Designer's Reference Shelf

Sep 1988 People 2 You Can't Do That

Oct 1988 Technology 7 Locking the Barn Door

Nov 1988 Technology 8 Half a Secret

Dec 1988 People 3 Protecting Intellectual Property

Jan 1989 People 4 What and How

Feb 1989 People 5 Skin and Bones

Mar 1989 Technology 9 It's (Almost) Alive

Apr 1989 Technology 10 The (Almost) Right Stuff

May 1989 People 6 Product Reviews

Jun 1989 People 7 Awaiting Reply

Jul 1989 Design 18 A Preoccupation with Time

Aug 1989 Design 19 Structuring Time

Sep 1989 People 8 Soup or Art?

Oct 1989 People 9 The Seven Warning Signs

Nov 1989 Design 20 Abstract It

Dec 1989 Design 21 Encapsulate It

Jan 1990 Design 22 Inherit It

Feb 1990 People 10 The Politics of Standards

Mar 1990 People 11 Setting the Standard

Apr 1990 Technology 11 Instant Lies

May 1990 People 12 All the Standard Reasons

Jun 1990 People 13 The Physicist as Programmer

Jul 1990 Technology 12 What Meets the Eye

Aug 1990 Technology 13 Technicolor and Cinemascope

Sep 1990 Technology 14 What Meets the Ear

Oct 1990 Technology 15 Warm Fuzzies

Nov 1990 People 14 Shelfware

Dec 1990 People 15 It's Not My Fault

Appendix A List of Columns 209

Date Collection # Title
Jan 1991 People 16 Customer Service
Feb 1991 Design 23 Heresies of Software Design
Mar 1991 People 17 Heresies of Software Management
Apr 1991 Technology 16 Font Follies
May 1991 Technology 17 Text Editors
Jun 1991 Technology 18 Approximating Functions
Jul1991 Technology 19 Economizing Polynomials
Aug 1991 People 18 Watching the Watchers
Sep 1991 People 19 Washing the Watchers
Oct 1991 Technology 20 Technical Documentation
Nov 1991 Technology 21 All I Want to Do Is
Dec 1991 Technology 22 Programming for the Billions

Jan 1992 Technology 23 All Sorts of Sorts
Feb 1992 Technology 24 Transforming Strings
Mar 1992 Design 24 Remedial Software Engineering
Apr 1992 Technology 25 Books for Our Times
May 1992 People 20 Who's Always Right?
Jun 1992 People 21 The Cycle of Complexity
Jul1992 People 22 Pity the Typist
Aug1992 People 23 Criticism
Sep 1992 People 24 Piled Higher and Deeper
Oct 1992 Technology 26 Through the Grapevine
Nov 1992 People 25 Lawyers
Dec 1992 People 26 Bankers

Appendix B Bibliography

The references that follow are all cited in the essays in this collection. I
do not include references to "Programming on Purpose" - Appendix A
summarizes all of those essays.

A&S65 - M. Abramowitz and I. Stegun, Handbook of Mathematical Func-
tions, Dover Publications, Inc., 1965 (and later).

Act70 - F. Acton, Numerical Methods that Work, Harper and Rowe, 1970.

Bro75 -F. Brooks, The Mythical Man-Month, Addison-Wesley, 1975.

D&H76 -W. Diffie and M. Hellman, "New Directions in Cryptography,"
IEEE Transactions on Information Theory IT-22, p. 644, November 1976.

Der91 - F. Derfler, Jr., PC Magazine Guide to Connectivity, Ziff-Davis Press,
1991.

Elk88 - T. Elkins, "Safe and Sound," Computer Language, p. 36, September
1988.)

Ham62 - R. Hamming, Numerical Methods for Scientists and Engineers,
McGraw-Hill, 1962.

Har78 - J. Hart, E. Cheney, C. Lawson, H. Maehly, C. Mesztenyi, J. Rice,
H. Thatcher, Jr., and C. Witzgall, Computer Approximations, Robert E. Kri
eger Publishing Co., 1978.

Hel79- M. Hellman, "The Mathematics of Public-Key Cryptography,"
Scientific American, August 1979 (reprised in Scientific American Trends in
Computing, Special Issue, Vol. 1, 1988).

Hoa81- C. Hoare, "The Emperor's Old Clothes," Communications of the
ACM 24:2, p. 75, February 1981.

IEE85 - IEEE Standard for Binary Floating-Point Arithmetic, Institute of Elec
trical and Electronics Engineers, 1985.

Knu68 - D. Knuth, The Art of Computer Programming, Volume 1: Fundamen
tal Algorithms Addison-Wesley, 1968.

Knu73 - D. Knuth, The Art of Computer Programming, Volume 3: Sorting and
Searching, Addison-Wesley, 1973.

Mas88 - J. Massey, "An Introduction to Contemporary Cryptography,"
Proceedings of the IEEE, p. 533, May 1988.)

NBS77 - National Bureau of Standards, Data Encryption Standard, PIPS
Publications 46, 74, and 81, NTIS, Springfield VA, 1977.

211

212 Programming on Purpose

P&B89 - P. Plauger and J. Brodie, Standard C, Microsoft Press, 1989.
P&B92 - P. Plauger and J. Brodie, ANSI and ISO Standard C, Microsoft

Press, 1992.
Pla87 - P. Plauger, "Son of PC Meets the C Monster,'' Computer Language,

p. 41, February 1987.
Pla89 - P. Plauger, "Standard C: Evolution of the C l/0 Model,'' The C

Users Journal, August 1989.
Pla91 - P. Plauger, "State of the Art: floating-Point Arithmetic,'' Embedded

Systems Programming, August 1991.
Pla92 - P. Plauger, The Standard C Library, Prentice-Hall, 1992.
RSA76 - R. Rivest, A. Shamir, and L. Adleman, "A Method for Obtaining

Digital Signatures and Public-Key Cryptosystems,'' Communications of
the ACM 21:2, p. 120, February 1976.

Sim88 - G. Simmons, "How to Insure that Data Acquired to Verify Treaty
Compliance are Trustworthy,'' Proceedings of the IEEE, p. 621, May 1988.)

Ste72 - P. Sterbenz, Floating-Point Computation, Prentice-Hall, 1972.
Sto88 - C. Stoll, "Stalking the Wily Hacker,'' Communications of the ACM

31:5, p. 484, May 1988.
Tho84 - K. Thompson, "Reflections on Trusting Trust,'' Communications

of the ACM 27:8, p. 761, August 1984.

Index
~
Abramowitz, M. 45, 211
ACM 206, 211-212
Acton, F. 48-49, 146, 211
Ada

See programming language
Adams, Ansel 95
additive primary

See color
Adleman, L. 60, 212
Adobe Type 1

See font
Adobe Type Manager

See program
Algol60

See programming language
Algol68

See programming language
aliasing

See sound
American

See language
angular

See resolution
AN'SI 35, 125, 173,212
APL

See programming language
Apple Macintosh

See computer
April Fool's Day 1, 8, 26, 75, 81, 83,

121, 195, 199
Arabic

See language
arithmetic

fixed-point 14-16, 21-23
floating-point 15-24, 33, 38, 49,

138, 140
integer 1, 6, 9, 13-16
modulus 10, 12-14, 17, 62-63
ones-complement 11

arithmetic (continued)
overflow 10, 12-17, 21-23, 33,

37-39,42,46-48,69-70, 138
positional encoding 9-10
preshift 15
right shift 12, 14
signed-magnitude 11, 17, 36
twos-complement 1, 11-14, 36
unsigned 10-13

Art's computer 196, 198-199
Artisoft LANtastic

See network
ASCII

See character
Asimov, Isaac 105, 113, 158
assembly

See programming language
AT&T Corporation 169, 204
Australian

See language

Ji
Bach, J.S. 67, 77, 108, 131
back-to-front scheduling 197
Banyan VINES

See network
Barnes, Clive 8
BASIC

See programming language
BEL

See character
Bell, Alexander Graham 108
Bell Laboratories 121-122, 133, 162
Berkeley, U.C. 53, 84
binary

See point
binary-coded decimal

See representation
bit-mapped

See interface

213

214

Bitstream
See font

Bitstream Facelift
See program

block-structured
See programming language

Boston Globe 72
Boston Symphony 107, 109
Brodie, Jim 212
Brooks, Fred 103, 211
bsearch

See function
byte swapping 2

((
c

See programming language
C Users Journal 169, 201, 212
C++

See programming language
C++ Report 81
CAD/CAM 103
Caesar, Julius 56
capacity planning 197
carriage return

See character
carry 10-12
CASE tools 195
Celtic

See language
Central Folly 26-32
Central Station, Artison 205
CGA

See display
Chandler, David L. 59, 72
character

ASCII 55, 107, 123, 173-175,
186-188

BEL 107
carriage return 92, 129
EBCDIC 173
form feed 92
horizontal tab 92
ISO 10646 175, 192-193
ISO 646 173
Kanji 175, 188-192
line feed 92, 129

Programming on Purpose

character (continued)
multibyte 1-3, 174-175, 181,

188-193
set 122, 172-175, 179, 181-193
shift in 189
Shift JIS 190-192
shift out 188
Unicode 175, 193
vertical tab 92
wide 174-175, 188-190

Chebychev
See polynomial

Cheney, E. 211
Chinese

See language
Christ, Anti- 66
CISC

See computer
client

See network
COBOL

See programming language
color 91, 95, 97-101

additive primary 99
subtractive primary 99

comm
See program

common sense 71
compact disk

See sound
Compaq desktop

See computer
Compaq SLT /286

See computer
Compaq SLT /386s-20

See computer
compression

See sound
computer

Apple Macintosh 88, 122, 125,
171, 173

CISC 84-85
Compaq desktop 201, 205
Compaq SLT /286 102, 127
Cray 2 147
DEC PDP-11 2, 35, 45
DEC VAX 2, 35, 45, 49, 146, 169
Gateway 202

Index

computer (continued)
IBM 14XX 85
IBM709X 85
IBM System/360 1, 27, 84-85
IBM System/370 1-2, 21, 35, 38,

45
Intel 8088 5
Intel 80X86 3-6, 92, 102, 127-128
National Semiconductor

NSC32016 2
parallel 146
RISC 84-85
Zilog Z80 6, 169
Zilog Z8000 6

Computer Language 22, 43, 52, 59, 76,
81,85,91, 128,202,207,
211-212, 215

condition code 12-13
Constantine, Larry 69-70
Consumer Reports 25
continued fraction 49
copyright 52, 125
Corel Draw

See program
cosine

See function
Cray2

See computer
creative equivocation 197
cryptograms 55-56, 64-65
cryptography

lapstrake 56
public-key 52, 57-60, 65
RSA 60-65, 212
single-key 52, 55-56

cybernetics 67, 72

Data Encryption Standard 56-57,
62-64, 211

de
See program

dead keys
See keyboards

debugging
See software

DECPDP-11
See computer

DEC VAX
See computer

decimal
See point

density
See zone

Department of Defense
See U.S.

depth perception 103

215

Derfler, Frank}. 203-204, 211
desktop metaphor 76, 102-105, 112,

119, 201, 205
development system

See program
dictionary

See sorting
Diffie, W. 60, 211
Digital Equipment Corporation 1-2,

28,35,45,49, 146, 169
Digital Research Inc. 124
Dijkstra, Edsger 8, 132
Disney, Walt 59
display

CGA 172
EGA 97, 172
flicker 104, 110
palette 100
refresh 104
television 25-26, 83, 99-100, 104,

107, 115, 204
touch-sensitive 117
VGA 92, 100, 102, 172
xenon mist 104

dithering 94-95
Divine, St. John the 66
DNA molecule 68-69, 72
documenting

See software
domain

See function
domain

See error
double-precision

See floating-point

216

e-mail 198, 201
EBCDIC

See character
economizing

See polynomial
ed

See program
EGA

See display
Elkins, T.A. 59, 211
emacs

See program
Embedded Systems Programming 212
emotional

See learning
Emperor's New Clothes 89, 211
end-around

See carry
English

See language
eqn

See program
EQUIVALENCE 34-35
error

domain 42-44
range 42

escape sequence 162-164
Ethernet

See network
exception handling 22-23 43
exclusive-OR 55, 60-61 '
exponent 17-22, 34-39, 44, 61, 105,

138

jf
f-stop 95
fabs

See function
fax 201
finite-state machine 183-185

189-190 '
fixed-point

See arithmetic
See representation

Programming on Purpose

flicker
See display

floating-point
See arithmetic
double-precision 14-15 18 21

35, 140-141, 149 1
I

1

guard-digit 23
hidden bit 20-21
IEEE 754 2, 17, 20, 140-141, 149

177, 211 '
implied base 17-18, 21
normalized 19-21
postnormalized 20
precision 12, 14-23, 27, 36-38,

44-48, 137-149, 157-158
See representation
rounding digit 23
scale factor 15, 17, 23, 27
signed-exponent part 17-22
signed-value part 17-21
sticky bit 23
underflow 22-23, 33, 37-39, 42,

46
wobbly precision 21

fmod
See function

font 87, 91, 121-128, 134, 164
Adobe Type 1 128
Bitstream 125-128

fontware 123-128
footnotes 163
form feed

See character
FORTRAN

See programming language
four-color

See reproduction
Fox, Br'er 59
fraction 14-23, 34-38, 44, 48-49, 72,

118, 135, 141, 147-148, 170
French

See language
frexp

See function
frozen yellow garden hose 204
function

bsearch 178
cosine 47-48, 137-138, 148

Index

function (continued)
domain 43

fabs 33
fmod 23, 38, 48
frexp 23, 37-39, 44, 141
GCD 60,63
hypot 46
ldexp 23, 38-39, 44
logarithm 33-36, 61, 95-96, 100,

108, 138
longjmp 23
mbstowcs 189
mbtowc 188-189
modf 23, 38
one-way 62
polynomial 49, 146
_prod 22-23, 33-34, 37, 39, 46-47
production quality 139
qsort 178
_range 23, 43
setjmp 23
sine 47-48, 111, 148
square root 41-47, 140-149
strcmp 182
strcoll 180-185, 188
strxfrm 180-185, 188
trap-door 62-63
wcstombs 188-189
wctomb 188-189

gamma 96
Gandhi, Mohandis 198
Gateway

See computer
Gauss, Christian 138
GCD

See function
GEM

See interface
German

See language
glyph 91, 123, 125, 192
graphical user

See interface
Gray code

See representation

gray scale 51, 91-109, 201
grep

See program
guard-digit

See floating-point

1!>
halftone

See reproduction
Hamming, R.W. 23, 150, 211
harmony 76-77
Harris, Joel Chandler 59
Hart, John F. 45, 48, 211
Hawaiian

See language
hearing

See human
Hellman, M.E. 60, 62, 211
Hemingway, Ernest 158
Hertz, Heinrich 110
Hewlett-Packard DeskJet

See printer
hidden bit

See floating-point
Hoare, C.A.R. 8, 211
holding ink 93
holograms 104
horizontal tab

See character
Homer's Rule 146
human

hearing 107-111, 115, 120, 193
smell 115-116, 120
taste 115-116, 120
touch 94, 115-120, 130
vision 92-94, 99-101, 107, 109

hypot
See function

3l
l18N

See internationalization
IBM 14XX

See computer
IBM 709X

See computer

217

218

IBM Corporation 1, 27, 35, 45, 85,
108, 116, 122, 131, 154, 160,
169, 173, 182-183

IBM Selectric
See keyboards

IBM System/360
See computer

IBM System/370
See computer

Idris
See operating system

IEEE 754
See floating-point

image size 97, 101
implied base

See floating-point
in-betweeners 104
indefinite

See machine
infinity

See machine
integer

See arithmetic
Intel 8088

See computer
Intel 80X86

See computer
Intel Corporation 2-6, 26, 35, 92
intellectual

See learning
interface

bit-mapped 86-87, 91, 122
graphical user 91-93
Motif 92
Presentation Manager 92
Windows 92, 125-128

internationalization 173-176 182
193 I I

118N 173
ISO 10646

See character
ISO 646

See character

Japanese
See language

Programming on Purpose

Journal of Object-Oriented
Programming 81

joy-stick 118-119

Kanji
See character

Kernighan, Brian 86-88, 122, 135,
162-167

keyboards 76, 110, 116-118, 124,
134, 173, 182, 188

dead keys 182
IBM Selectric 116
roll-over 116

kinesthetic
See learning

King, Sky 107
kitchen sink 27-30
knobs 25-32
Knuth, Don 63, 177, 211
Koenig, Andy 84
Kopf, John 68, 70, 72, 108

1L
Langdon, Christopher G. 72
language

American 171-173
Arabic 173, 188
Australian 173-174 180
Celtic 187 '
Chinese 173, 188, 195
English 171-174, 182, 189
French 171, 181, 184
German 171-173, 183
Hawaiian 173
Japanese 172-173, 188-189
Swahili 173
Swedish 182

La plink
See program

lapstrake
See cryptography

Lawson, C. 211
LC COLLATE 180
ldexp

See function

Index

learning
emotional 131
intellectual 130
kinesthetic 131

lens aperture 94
Lesk,l\.1ike 164, 166
letter quality

See reproduction
ligature 165-166
light pen 117-118
line feed

See character
Lions, John 161
locale 173-176, 180-188, 190-193
locking shift states 188-189, 192
logarithm

See function
login

See program
lonqjmp

See function
Lotus 1-2-3

See program
loudness

See sound
Louis XIV 25

machine
indefinite 43
infinity 43, 123

l\.1ad Libs 69
l\.1adonna 107, 109
l\.1aehly, H. 211
maintenance

See software
markup 87, 122-124, 135, 162-166
l\.1assey, James L. 62, 211
mb cur max 191
mbstowcs

See function
mbtowc

See function
l\.1cGee, Fibber 107
l\.1erlin 204
l\.1esztenyi, C. 211
l\.1ichigan State University 67-68

219

microcode 15-16
l\.1icrosoft Corporation 125-127, 203,

212
l\.1icrosoft LAN l\.1anager

See network
middle C 76
l\.1IDI

See sound
militant segmentism 3, 6
misaligned cursor madness 124-125
modf

See function
l\.1odula-2

See programming language
modulus

See arithmetic
l\.1otif

See interface
l\.1otorola Inc. 2, 6, 35
l\.1otorola l\.1C680XO

See computer
mouse 118-119, 130-131, 134
l\.1S-DOS

See operating system
multi byte

See character
multiplexing

See printer

Jl
NaN 177-178
National Bureau of Standards

See U.S.
National Security Agency

See U.S.
National Semiconductor NSC32016

See computer
natural philosophy 67
NEC

See printer
network 53, 201-206

Artisoft LANtastic 203-205
Banyan VINES 203
client 203
Ethernet 204
l\.1icrosoft LAN l\.1anager 203
Novell NetWare 203

220

network (continued)
peer-to-peer 203
server 203
lOBaseT 204-205

Newton, Isaac 43, 46, 138, 140
non-local GOTO 23, 43
normalized

See floating-point
Norton's Star Atlas 77
Novell NetWare

See network
nroff

See program
NUXI problem 1-3

object-oriented
See programming language

one-time pad 55
one-way

See function
ones-complement

See arithmetic
operating system

Idris 3, 169-170
MS-DOS 32,88
POSIX 172, 182-183, 193
UNIX 2-3, 7, 32, 52-55, 87-92,

119, 122, 133, 151, 161-162,
169-172, 179-182, 188, 192-193

optimization
See software

order of magnitude 84
Osanna,Joe 122, 162-167
overflow

See arithmetic
overloading 30-31, 86

~
palette

See display
parallel

See computer
Pascal

See programming language
password 53-55

Programming on Purpose

peer-to-peer
See network

physics 67-68, 72, 81, 93, 121
Physics Today 72
Pistol Principle 25
pixel 93, 100-105
PL/I

See programming language
Plauger, Geoffrey 201-202
Plauger, P.J. 212
Plauger, Tana 202
point

binary 14-15, 19, 141
decimal 14

Polaris 77
polynomial 48-50, 143-151

Chebychev 48, 149-150
economizing 48-50, 143-151
See function

portable
See software

positional encoding
See arithmetic

POSIX
See operating system

Post It notes 156
postnormalized

See floating-point
PostScript

See programming language
precision

See floating-point
presence

See Sound
Presentation Manager

See interface
preshift

See arithmetic
Princeton University 67, 81, 116,

122, 146, 158, 162
printer

Hewlett-Packard DeskJet 201,
205

multiplexing 202
NEC 125, 128, 201

yrod
See function

Index

production quality
See function

program
f\dobe Type Manager 126-128
B1tstream Facelift 125-128
Corel Draw 102, 127
de 151
development system 178, 201
ed 133-134
emacs 54
eqn 166
grep 188
Laplink 202, 205
login 53-55
Lotus 1-2-3 171
nroff 122-123, 161-167
roff 122, 162-164
runoff 86, 122-123, 162
tbl 166
TECO 133
text editor 87, 123, 129-135, 163

175, 180 I

troff 122-123, 161-167
uniq 179
vi 134
WFNBOSS 127
writing-analysis 159
Xerox Ventura Publisher 102

122-128, 166, 201 I

programming language
Ada 8, 27, 30-31, 78, 81, 95, 175
Algol 60 28
Algol 68 27-31, 45
APL 163
assembly 13, 68, 169, 196-197
BASIC 77
block-structured 79, 156
c 1, 6-7, 13-16, 23, 28-37, 41,

54-55, 76-77, 81, 85-88, 95, 141,
151, 156, 169-193,201,212

C++ 32, 81, 86
COBOL 27, 77, 79
FORTRAN 1, 7, 27-28, 33-35, 45,

77,92, 132, 137, 169
Modula-2 81, 84
object-oriented 81, 85-86
Pascal 1, 28-32, 78-79, 84-86, 94
PL/I 27-28, 77

221

programming language (continued)
PostScript 87, 92, 123-128, 201
Smalltalk 85-86

"Programming on Purpose" 22, 43,
52,59,81,85,91, 128,202,207
211 I

public-key
See cryptography

Pulitzer Prize 154

qsort
See function

Rabbit, Br'er 59
railroad-track diagram 29
_ranqe

See function
range

See error
real-time

See software
refresh

See display
representation

binary-coded decimal 9-10 173
fixed-point 14-15 '
floating-point 20, 33-38, 139 141

147 I I

Gray code 10
Sterling fixed-point 27-28

reproduction
four-color 100
halftone 93-95
letter quality 124

resolution
angular 93-95, 101-102
spatial 93-94, 101, 118-119

Revelations, Book of 65
Rice,J. 211
right shift

See arithmetic
RISC

See computer

222

Ritchie, Dennis 2, 6-7, 31, 54, 87,
133, 163, 169

Rivest, R.L. 60, 212
RJ45 204-205
roff

See program
roll-over

See keyboards
Rooney, Andy 8
rounding digit

See floating-point
RSA

See cryptography
runoff

See program

Saltus, Richard 72
sampling

See sound
scale factor

See floating-point
Scientific American 62, 69-70, 211
secrecy 53-65, 162, 196
serif 124
server

See network
set

See character
set-user-ID 54
setjmp

See function
Shamir, A. 60, 212
shift in

See character
Shift JIS

See character
shift out

See character
shutter speed 94
signed-exponent part

See floating-point
signed-magnitude

See arithmetic
signed-value part

See floating-point
Simmons, G. 212

Programming on Purpose

sine
See function

single-key
See cryptography

singularity 49, 147
skeleton 156
Smalltalk

See programming language
smell

See human
software

debugging 4, 42-43, 85, 178, 201
documenting 26, 88, 153-155,

166, 197
maintenance 10, 18-19, 28, 31,

34, 41, 46, 53, 79, 81, 127,
132-133, 170, 177-179, 196-199

optimization 2, 13, 32, 46
portable 3, 19-23, 33-43, 51, 79,

92, 116, 120, 132, 145, 164,
169-176, 202

real-time 88, 108
user friendly 87-88
validation 78

Software Tools 88
solid angle 102-105
sort

See program
sorting 177-184, 197, 211

dictionary 174, 182-183, 186
sound

aliasing 110-111
compact disk 109, 111-113
compression 96, 112
loudness 108-111
MIDI 112
presence 111
sampling 110-111
stereophonic 97, 112

spatial
See resolution

square root
See function

Standard C library 23, 37, 41, 151,
156, 175, 178-180, 185-193, 212

starring 83
Stegun, I. 45, 211
Sterbenz, Pat 23, 212

Index

stereophonic
See sound

Sterling fixed-point
See representation

sticky bit
See floating-point

Stoll, Clifford 53-54, 212
strcmp

See function
strcoll

See function
street smarts 71
Strictured Design 197
strongly typed

See programming language
strxf rm

See function
subtractive primary

See color
sum-of-squares 142, 145
SWAB instruction 2
Swahili

See language
Swedish

See language

taste
See human

Taylor series 48, 147
tbl

See program
Tchebychev

See Chebychev
TECO

See program
Teletype 87, 105, 122, 133, 188
television

See display
10BaseT

See network
text editor

See program
Thatcher, H. 211
Thompson, Ken 54-55, 133, 169, 212
3-D image 97, 103-104

time
See zone

touch
See human

touch-sensitive
See display

trackball 119
transparent prose 158
trap-door

See function
troff

See program
Trojan horse 54-55
True Type

See font
Turing Award 8, 54
tweening 104
twos-complement

See arithmetic
type cast 28, 34

223

type face 122-127, 164-165
typesetting 87, 122-123, 135, 161-166

underflow
See floating-point

Unicode
See character

uniq
See program

U.S.
Department of Defense 30
National Bureau of Standards

56, 62, 211
National Security Agency 56-57

UNIX
See operating system

unsigned
See arithmetic

user friendly
See software

Valeo, Tom 72
validation

See software

224

vertical tab
See character

VGA
See display

Vl

See program
vision

See human
VLSI 84-85

wcstombs
See function

wctomb
See function

Western Union 116
WFNBOSS

See program
"What you see is what you get."

86-87, 134-135, 166
Wheeler, John Archibald 81
Whitesmiths, Ltd. 169-172, 204
wide

See character
Windows

See interface
Wirth, Nicklaus 31
Witzgall, C. 211
wobbly precision

See floating-point

Programming on Purpose

Wolfe, Tom 75
writing-analysis

See program

X/Open 172
X3Jll committee 7, 13, 35, 78, 80,

173-175
xenon mist

See display
Xerox Corporation 108, 127
Xerox Ventura Publisher

See program

~
Yourdon, Ed 70

Zelazny, Roger 158
zero divide 22
Zilog Z80

See computer
Zilog 28000

See computer
zone

density 95, 100, 108-109
time 172, 181

	Programming on Purpose III (Cover)
	Copyright 1994 P. J. Plauger
	Dedication
	Table of Contents
	Preface
	1: You Must Be Joking
	2: Computer Arithmetic
	3: Floating-Point Arithmetic
	4: The Central Folly
	5: Safe Math
	6: Do-It-Yourself Math Functions
	7: Locking the Barn Door
	8: Half a Secret
	9: It's (Almost) Alive
	10: The (Almost) Right Stuff
	11: Instant Lies
	12: What Meets the Eye
	13: Technicolor & Cinemascope
	14: What Meets the Ear
	15: Warm Fuzzies
	16: Font Follies
	17: Text Editors
	18: Approximating Functions
	19: Economizing Polynomials
	20: Technical Writing
	21: All I Want to Do Is
	22: Programming for the Billions
	23: All Sorts of Sorts
	24: Transforming Strings
	25: Books for Our Times
	26: Through the Grapevine
	Appendix A: List of Columns
	Appendix B: Bibliography
	Index

