

PROGRAMMING ON
PURPOSE

II
(f ggapg on ~ofttuart

~toplt

P.J. Plauger

PTR Prentice Hall
Englewood Cliffs, New Jersey 07632

Acquisitions editor: Paul Becker
Editorial assistant: Noreen Regina
Cover design director: Eloise Starkweather
Cover designer: Lundgren Graphics
Manufacturing buyer: Mary E. McCartney

©1993 by P.J. Plauger

Published by PTR Prentice-Hall, Inc.
A Simon & Schuster Company
Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this book may be reproduced,
in any form or by any means, without permission in writing
of the author.

The publisher offers discounts on this book when ordered in
bulk quantities. For more information, contact Corporate Sales Department,
PTR Prentice Hall, 113 Sylvan Avenue, Englewood Cliffs, NJ 07632.
Phone: 201-592-2863; FAX: 201-592-2249.

Printed in the United States of America
10 9 8 7 6 5 4 3 2 1

ISBN 0-13-328105-1

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia, Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Simon & Schuster Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brazil, Ltda., Rio de Janeiro

In memory of Joan Hall,
who taught us

that both adults and children
need steady supplies

of kindness and ice cream

PERMISSIONS

The essays in this book originally appeared as installments
of the monthly column "Programming on Purpose" by P.J. Plauger

in the magazine Computer Language, published by Miller Freeman Inc.
All are reprinted by permission of the author.

The excerpt (on page 53 of this book) from page 29 of Jane Wagner,
The Search for Signs of Intelligent Life in the Universe,

Harper Collins Publishers, New York, 1986,
is reprinted by permission.

TRADEMARKS

Corel Draw is a trademark of Corel Systems.
DeskPro andSLT /386s-20 are trademarks

of Compaq Computer Corporation.
IBM PCis a trademarks of IBM Corporation.

Lotus 1-2-3 is a trademark of Lotus Development Corporation.
Macintosh is a trademark of Apple Computer.

MS-DOS and Windows are trademarks of Microsoft Corporation.
QEMM386 is a trademark of Quarterdeck Office Systems

UNIX is a trademark of AT & T Bell Laboratories.
VAX and VMS are trademarks of Digital Equipment Corporation.

Ventura Publisher is a trademark of Ventura Software Inc.

TYPOGRAPHY

This book was typeset in Palatino, Avant Garde,
Bitstream Cloister, and Courier bold by the author
using a Compaq SLT /386s-20 computer running

Ventura Publisher 4.0.1 and Corel Draw 2.01 L
under Microsoft Windows 3.1.

Table of Contents

Preface ...

1 Honestly, Now .
2 You Can't Do That .
3 Protecting Intellectual Property
4 What and How .
5 Skin and Bones .
6 Product Reviews
7 Awaiting Reply .
8 Soup or Art? . . .
9 The Seven Warning Signs .

10 The Politics of Standards .
11 Setting the Standard . . .
12 All the Standard Reasons .
13 The Physicist as Programmer .
14 Shelfware
15 It's Not My Fault
16 Customer Service
17 Heresies of Software Management
18 Watching the Watchers .
19 Washing the Watchers . .
20 Who's Always Right? ...
21 The Cycle of Complexity .
22 Pity the Typist
23 Criticism
24 Piled Higher and Deeper .
25 Lawyers
26 Bankers

Appendix A List of Columns
Appendix B Bibliography .

Index

v

vii

. 1

.9
17
23
29
37
45
53
61
69
77
85
93

. 101

. 109

. 117

. 123

. 131

. 139

. 147

. 153

. 159

. 165

. 171

. 177

. 183

. 191

. 195

. 197

Preface

7{ began a journey in July, 1986, that continues to this day. That month
..lJmarks the first installment of my column "Programming on Purpose"
in the magazine Computer Language. Many years and many issues later, I
find myself still writing those monthly columns. And, mirabile dictu, I have
yet to miss an issue.

Do something every month for six or more years and material accumu­
lates. I have been asked repeatedly by readers to make some of that
accumulated material more widely available. For many years my excuse
was that I was too busy to do so. I was president of my own software
company, Whitesmiths, Ltd. Then I sold the company to become a full-time
writer. Packaging these essays has at last risen to the top of the queue.

This particular collection concerns itself with the people who write
software. I began by poking gentle fun at them (and myself). But before I
knew it, I was poking into all sorts of people-related matters - from
business ethics to pragmatics, from our search for artificial intelligence to
our desire to be loved. Writing and selling computer programs is a most
human activity. It has brought out the best, and the worst, in many of us
these past few decades.

You will find some technical content here. I can hardly resist, being a
techie at heart. You will find more than a little humor. You will also find lots
of useful advice for surviving in the business world. I speak as someone
who has worked for the largest corporation in the known universe (AT&T
before divestiture), and the smallest enterprise (myself). In between, I spent
several years at a rapidly growing seminar company (Yourdon inc.) and
started my own company (Whitesmiths, Ltd.). I sold the latter a few years
ago, content that ten years as an entrepeneur was enough for me.

Frankly, I believe this collection represents my best writing in many
ways. Much as I love a good computer program, people are my principal
interest in life.

Thus, you will find this collection suitable for supplemental reading in
an intermediate or advanced course in software engineering or engineering
management. For "remedial software engineering," it can be quite useful.
The independent reader can read for pleasure or for a unique perspective
on the people side of making computer software. That can help you as an
entrepeneur, a manager, or one of these creatures in waiting.

vii

viii Programming on Purpose

I follow each essay with a brief Afterword. That gives me the opportunity
to fill in historical context where necessary. It also lets me excuse away the
worst naivetes. I chose to present these notes as Afterwords rather than
Forewords so as not to bias the reader up front. Mostly, the essays speak for
themselves.

Other collections from "Programming on Purpose" deal with other
themes. Besides people issues, I have written essays on (among other
things): software design, programming technology, and software standards
development. Some essays are humorous, some are deadly serious. A few
are gems, but I like to think that all are worth reading. If you enjoy what
you find here, please consider the other collections as well.
11rhe magazine business sees considerable turnover of editorial staff.
~Miller Freeman, the publisher of Computer Language, is no exception. I
have thus enjoyed the services of many editors over the years. All have
worked hard to rescue my prose from its more florid excursions. They have
nevertheless permitted me to retain a certain colloquial illiteracy that I find
comfortable. I thank all the people at Miller Freeman who, over the years,
have helped make these essays more readable. You should too.

Two people in particular deserve oak-leaf clusters. Regina Starr Ridley,
now a publisher at Miller Freeman, was one of my earliest editors. And
Nicole Freeman, now a managing editor there, has cheerfully haunted my
career in many editorial guises. I am happy to acknowledge their continu­
ing assistance in making "Programming on Purpose" better. I am also
happy to count both as good friends.

Having given credit where it is due, I must issue a warning. I re-edited
these essays from the original machine readable. I certainly strove to
recapture the spirit of Computer Language edits, but I make no pretense at
following them to the letter. If any have lost ground as a result, you can
blame me.

P.J. Plauger
Concord, Massachusetts

1 Honestly, Now

JLet' s talk about ethics. Some of you may find this a boring topic. If so,
then I suspect you are probably masking discomfort with boredom.

Some of you may be more open about your discomfort. If so, then it's about
time you took a close look at your own ethical position. Some of you may
simply wonder what ethics has to do with computer programming. If so,
then you're very much at risk. Ignorance is not bliss, in this arena.

I was pleased to discover, in the early 1960s, that I could work my way
through college as a computer programmer. To me, this was much less of
an effort than delivering pizzas or shelving library books. I was bemused
to discover, upon earning a Ph.D., that I could command twice as much
salary as a purported computer scientist as I could with full-blown creden­
tials in nuclear physics. I was astonished to discover, as a budding entre­
preneur, that I could parlay a few tens of thousands of dollars into a
business with an annual turnover in the millions, in just a few short years.

Understand, if I had chosen to open a restaurant or a dry-cleaning shop
in Manhattan, it would have been next to impossible to do so on the same
amount of money. And there isn't a banker alive who would have loaned
me the stake necessary to get off to a proper start. I had no experience in
running a business, much less in starting one. I didn't even have any
courses on business or accounting in school. It turned out, however, that
there were any number of people prepared to educate me, in trade for
varying size chunks of the cash I found myself administering.

You'd be surprised how dishonest some people can be for a mere
hundred thousand dollars. Well, maybe you wouldn't, but I certainly was.
And you might be surprised at how numerous and varied are the tempta­
tions put your way in the course of everyday business. Even if your
programming career has been confined to working salaried jobs, I'm sure
you've faced situations where just a little dishonesty could earn (or save)
you a significant sum of money. As the old joke goes, we've established
what you are, now we're arguing about the price.

In summary, computer software is a high-paying business. Technically
trained people tend to be naive about business matters. It is not uncommon
now for techies to end up tending a cash engine much larger than the real
world would ordinarily entrust them with. There are people who prefer to
divert an existing flow of money their way, by whatever means, rather than
generate wealth directly themselves. This is an explosive situation.

2 Programming on Purpose

?ll?lltriting computer software is all the more perilous because it is so easy
~to steal the final product. Software is an intellectual creation only
loosely tied to concrete representation - much like recorded music, or
lithographs. It is even easier to steal than those art forms, because it doesn't
degrade when copied. And its per-copy value is substantially higher than
its per-copy cost. (The makers of digital sound recordings are just coming
to grips with these selfsame problems. Witness the maneuverings sur­
rounding the introduction of digital tape recorders.)

On top of everything else, producing software is a new industry. We are
all learning, a day at a time, what works and what doesn't. How do you
balance licensing protection against the need to expedite a sale? There's
been a different answer every year for the last decade. How much should
you charge for the use of a computer program? Beats me-the only formula
I've seen that I believe involves the relative humidity and the Dow Jones
Industrial Average. When does a program infringe on someone else's
design, and when can you build on technology that has gone before? That's
a hot topic of debate today, particularly with Lotus suing and being sued
for copying the "look and feel" of successful software.

The software industry is too important to wait for scholars and judges
to puzzle out a coherent set of laws. We need pragmatic answers now, even
if they form a patchwork of guidelines that sometimes conflict. Needless to
say, there are those who cheerfully exploit the current inconsistencies, as
an excuse to be morally lax in a profitable field.

Ethics touches computer programming in many different places. This
essay is a not-quite-random walk past some of those places where I have
found myself face to face with ethical lapses. I begin with lapses that are
most peculiar to larger companies. It is easier to distance ourselves from
those nameless people who try to screw us in the name of United Whatever,
even though the actual decisions are made by people just like you and me.
I end painfully close to home, discussing the sins that you and I struggle
with every day. Are you ready?
IAne of my first shocks as a fledgling business person came just a few
"'7months into the mission. My company, Whitesmiths, Ltd., offered a
compiler that attracted the eye of several techies working in different
branches of a major computer hardware manufacturer. (The company shall
remain nameless. Let's just call it the MCHM.) Plagued with a fear of
outside software, that company throttled all such purchases, even when the
per-copy price was a mere $550. Eventually, however, the central purchas­
ing department felt moved to act upon this repetition of requests, and they
sent us a purchase agreement.

It was not the agreement we sent to each of the techies. It did not contain
our standard software license. It made no attempt to replace the license with
any similar protections. Instead, it offered to purchase a single compiler

Essay l Honestly. Now 3

from us at the full price of $550 - with the understanding that this MCHM
could purchase two additional compilers from us each at half price. Further,
once we had been paid the princely sum of $1,100, the MCHM would
subsequently have unlimited internal use of our compiler.

I sent back a letter stating that I would be happy to sell our software on
the terms they outlined - with the understanding that they would sell us
their most popular superminicomputers on exactly the same terms. I sent
a copy of the letter to the president of the MCHM. I got back a letter from
the public-relations department. It explained politely that these were the
terms initially offered to all software vendors who wanted to sell to the
MCHM. We had to understand (it said) that some vendors accepted those
terms.

I drafted a letter pointing out that merchant shipping did not truly
flourish in the Caribbean until rampant piracy was suppressed. It is true
that some merchants permitted pirates to board their ships and make off
with their gold, valuable cargo, and assorted female passengers. That did
not mean that the merchants necessarily approved of this practice. That
certainly did not make the practice right. I reread this letter with relish three
times, then I threw it away.

It was just as well, because several years later we had occasion to explore
a joint marketing agreement with this MCHM. One of the first things I had
to deal with was the file that the MCHM had accumulated on dealings with
our tiny company. A prominent entry in the file was the letter I sent to their
president back in the previous decade. Even though the representative of
the MCHM with which I was dealing was in full sympathy with our earlier
stance, he still had the task of justifying why the MCHM should do business
with us! We were, after all, known troublemakers.
11rhis is a clear application of the well known principle, "Might makes
"""1right." Being part of a large enterprise can be a heady experience, and
it is easy for employees to become enamored of wielding that sort of clout.
There are, of course, companies in the business of going out of business,
like some famous shops on Times Square. But the good ones treat each deal
they strike as if it were the first of many with that party.

You face an ethical dilemma when a large company offers you piratical
terms and you really need the business. Your duty, to yourself and to the
ownership of your enterprise, is to say no. Don't be a victim, don't blame
it all on the big guys. It does you no good to strike a deal that is not
profitable. As the old saying goes, you can't lose money on every sale and
make it up on volume. So the principle to keep in mind is:

Just because tbep can get ab:Jap b:Jitb it,
tbat boesn't make it rigbt.

4 Programming on Purpose

We at Whitesmiths were fortunate at that time that we did not need a
potential $1,100 bad enough to sell our birthright for a mess of pottage.
(Eventually, the MCHM came back and bought compilers on our standard
terms anyway.) Still, it was a sobering experience.

It's nice to know that there are laws to protect your person and your
property. Gone are the days when pirates roamed the high seas with
impunity and robber barons distorted markets to their personal advantage.
If you believe that, then eat your cookies, drink your milk, and go to bed.

I read in the Wall Street Journal every week about modern-day robber
barons who still stay one step ahead of the SEC. I read in the Boston Globe
almost as frequently about modern-day pirates who prey on merchant
ships, despite the protection offered by dozens of well equipped navies.
And we all see daily how ineffective the courts are as civil referees.

You'd think that if people owe you money, they have to pay it. Try
collecting from someone who either hasn't got the money or who is willing
to fight you for it. It can cost you so much time, additional money, and
aggravation that the game is simply not worth the candle. Prudent people
have learned the wisdom of safeguards. You run credit checks, you insist
on down payments, you ship the software COD. Even then, you still must
set aside some fraction of revenues as a provision for bad debt. Some folks
are just masters at stiffing us more honest folk.

It's bad enough to have to sue someone and know the suit is not cost
effective. It's far worse to be sued and know that you can't afford to defend
yourself. Yes, the courts are supposed to throw out nuisance suits, but most
judges bend over backwards to entertain any suit that has the least whisper
of merit. (Would you want it any other way, if you were the wronged party?)
mgain, the software business is at a disadvantage here, because the
.:ct.product is both complex and intangible. You've read those horrible
disclaimers that come with the software you buy. Would you buy a car on
similar terms? Probably not. I anguished for weeks, when Whitesmiths first
got started, over how to write a software license that promised something
other than delivery media that was more or less free of defects. But what
can you promise, in simple terms, about a product as complex as a compiler
or an operating system? You can say that its quality is high, and that you
will fix bugs as quick as you can, but you can't quantify either of those
statements. In the end, prudence and a litigious society led me to adopt the
same arrogant boiler plate that everyone else uses.

But even that doesn't keep you from being sued. There are all sorts of
laws about implied warranties of merchantability and fitness of a product
for its advertised purpose. If a customer decides, even after months of using
your product, that it's no good, there's a fair chance you will be asked to
refund the purchase price. (And how do you know when a customer has
destroyed all copies of your product and has stopped using it?)

Essay l Honestly. Now 5

Whitesmiths was once sued by a customer who had been using a product
for two years! And he admitted that he was still making good use of part
of what he'd bought. Yet he sued for a complete refund, plus unspecified
damages, mostly because he no longer had any use for the rest. And we
had to spend time and money preparing a defense. In the end, at the strong
urging of the judge, we settled the matter by making a partial refund. That
was far cheaper than proving that we were right in the courts.

The simple fact is that the civil courts can be used as a blunt instrument
by anybody who wants to give you a hard time. It's a form oflegal blackmail
that is widely practiced. It can also be used, by someone who doesn't want
your money, to consume your precious time and psychic energy. But if you
need to use the courts to redress your own grievances, you will find them
to be an equally blunt instrument. You can bludgeon but you can't easily
compel. So the principle to keep in mind is:

Just because pou're rigfjt,
tbat boesn't mean tbep can't get ab:Jap b:Jitb it.

Does this mean you're hopelessly at risk when you sell software? Not at
all. First, you have an ethical responsibility to produce the best product you
can. You are responsible for obeying the law. You are responsible for striking
fair agreements and keeping your end of the bargain. If you simply do these
things, you greatly reduce your need to sue and your risk of being sued.

Beyond that, I have found two principal ingredients in every lawsuit
with which I have become entangled:
• There was an ambiguous understanding, so both sides could argue that

they were right before a court of law.
• Someone had a stake in being right at all costs, either because there was

a lot of money involved or because his or her feelings got hurt.
And when you come right down to it, the ambiguity and the money are

mere excuses. I believe all lawsuits stem from hurt feelings. If you contrive,
in any way, to say to someone, "Look, I don't respect you and I don't have
to respect you," then that person will find some way to respond, "Oh,
yeah?" It's as simple as that.
A. o far, I've focused on other people who might do you wrong. Now let's
2C:Vget more personal. When was the last time you copied some commer­
cial software rather than pay for a legal copy? Maybe you just made an extra
diskette for a friend to try out, or to use on your PC at home. Maybe you
bought one copy for the office and put the software on all the machines. We
all know that software is overpriced, and they pad the price even more to
cover this sort of thing. Right?

Hogwash.

6 Programming on Purpose

If you write software for a living and you steal other people's software,
then you're fouling your own nest. It costs money to make this stuff, and it
costs more to keep it alive and evolving. Some of that money pays your
salary, or your rent. Some is invested in making better software for tomor­
row. The shadowy fat cat raking in the dough is shadowy because he
doesn't really exist. The money comes back to you, and the person at the
next desk, and your great aunt Amelia who invests in high-tech stocks. Or
it doesn't come back at all.

The cynics among you are already muttering that I'm probably not a
saint in this area either. You're right. I played fast and loose with licensed
software in the past. Then I wised up and went back and paid for it. I still
am pretty casual about putting PC software on one machine before I delete
it from another. But if I find myself using multiple copies, I pay for them.
It's worth it for the extra manual set, not to mention the clear conscience.
And I flatly refuse to let my company violate software licenses. Otherwise,
how can we expect others to respect ours?
r.;irnother delicate area - when you left your last job, what did you take
.:cl.with you? Did you take listings of source code? Internal memos?
Diskettes? Dump tapes? Many programmers feel that all the software they
have ever written (or worked on) is their personal property. Their employ­
ers simply exploit it for their own nefarious purposes. Even if they sign a
confidentiality agreement that clearly spells out who owns what, there are
programmers who feel ill used when asked to leave behind their toys.

I reviewed a manuscript, a few years ago, about how to get started in
your own software business. The author chose as a unifying theme three
typical examples of software startups. One was a guy who wrote a useful
program for his employer, but his employer was not in a position to exploit
it. So he quietly reworked it to run on a PC, then left his job to start selling
the program. Another was a person who moonlighted for a year or so while
building up cash flow in his new enterprise. A third was someone who
bootstrapped his operation by luring away a customer or three from his
previous employer.

It was a well written book. And it did indeed show three typical ways to
start a company. But every one of those examples involved a clear violation
of ethics, if not a clear violation of law. Even if you have a wash-and-wear
conscience, you'd better not emulate any of these examples. As soon as
you're at all successful, your previous employer has a golden opportunity
to sue you blind. (See previous discussion.)

I was pleased that the author heeded my advice and replaced his
examples with three that were morally more defensible. He even added a
brief essay on the need for ethics in business, for what that is worth.

The principle that applies here is:

Essay l Honestly. Now 7

Just because pou can gtt ab:Jap b:Jttb tt,
tbat botsn't make tt rtgbt.

11rhe last topic is the touchiest of all. Under what circumstances are you
~at liberty, or even obliged, to defy the law? The victors in World War II
made it very clear, at Nuremberg, that we each have an obligation to be
ethical, even if the current powers that be have perverted the law of the
land. If you know that your company is intentionally selling defective
software, then you have a moral obligation to stop it, even if that means
violating the confidentiality requirements of your work agreement. It's no
fun being a whistle blower, and martyrdom is rewarding only to those who
can take the very long view.

But to do nothing is ethically untenable.

You may feel that the society you live in is supporting some unethical
behavior. Richard Stallman, of Project GNU fame, has stated loudly and
repeatedly that he feels software should be "free." I use quotes because his
definition of free is a rather precise one that is easily misinterpreted. Read
his writings to see just what he means (Gar90).

Now, I personally disagree with him. I think he is a person who delights
in stirring up a roomful of responsible adults by calling them names. But I
also respect the fact that he has a consistent belief, that he works hard to
make it a reality, and that he causes no bodily harm in working toward it.

If you want to defy law and society for a living, then I strongly urge you
to do your homework. Reread the Declaration of Independence. Read
Henry David Thoreau's essay "On Civil Disobedience." Read a book on the
life of Gandhi. Above all, be so in touch with the rightness of your position
that you are willing to endure ostracism and financial discomfort to prevail.
If you feel, however, that it is okay to damage property or hurt people to
get your reform, then you're off base. That makes you an anarchist. Anar­
chists are unhappy people, boring at parties, and seldom effective in
achieving their goals .

..,n::-inally, what do you do when the bad guys have you cornered? (Remem­
,.JJ ber, of course, that this is a relative term. To them, you are probably the
bad guys.) More than one naive techie has signed away rights that later
proved to be worth serious money. More than one naive entrepreneur has
been driven out of his or her own enterprise by a barrage of legalese. No
matter how legal the machinery, you know that the inevitable end result
just ain't right.

You can either be a victim or take responsibility for obtaining an accept­
able outcome. To do the latter, you have to be willing to exploit the
clumsiness of law enforcement as much as the other guys (if not more).

8 Programming on Purpose

At one low point in my checkered career I called a board meeting with
just enough notice to satisfy the articles of incorporation, but not enough
to inform everyone in time. (The meeting took place, aptly enough, right
next door to Disneyland.) Needless to say, I got just the mix of attendees I
needed to pass some very unfriendly resolutions. Were the resolutions
valid? Well, sort of. I can say that they achieved the desired effect.

I also asked several loyal employees, relatives, and friends to pay an
evening visit to a company office. They were accompanied by a locksmith
and several moving vans. They nearly ended up in jail. Were they entitled
to make that visit? Well, mostly. I can say that they achieved the desired
effect.

I also was very slow to respond to a judge's order. I was sufficiently slow
that my attorney advised me not to set foot in the state of New Jersey until
we had talked the matter through from a safer distance. (Okay, New
Yorkers, you can go ahead and say that that was no hardship.) Was I obeying
the law? Well ... You get the drift.

The operative ethical principle is:

Just bttaust tbtp'rt rtgbt,
tbat botsn't mean pou can't gtt atuap tuitb it.

It was not until I realized that the law is a two-edged sword, with both
edges dull, that I began to take responsibility for cleaning up the mess I put
myself in. And that's what ethics is really all about, being responsible for
the consequences of your actions.

I have give you four ethical principles in this essay. I'm convinced they're
correct and complete, because they appear to contradict each other. If you
can figure out which one to apply each time you face an ethical dilemma,
you can't go wrong. o

mfterword: This was my first foray into writing about the people side of the
):;t.software business. It was a difficult essay to write. Several of the incidents I
allude to here occurred during a fight for control of Whitesmiths, Ltd., the company
I founded. It would be easy to say that I was naive and got took, but that is not
entirely ticcurate. More to the point, I was driven by several emotional needs that
mixed not at all well with business. Thus, I often failed to take responsibility for
my actions.

I paid a high price for that fight, both in money and in emotional battering. It
was arguably worth it, however. I grew up in some important ways and I eliminated
some serious stresses from my life. (I even ended up in control of Whitesmiths, Ltd.)
Writing this essay helped me realize how much I had learned about myself and
about people in general.

2 You Can't Do That

~ enius makes its own rules. When presented with a seemingly intracta­
~ble problem, most people flounder about for a spell, then despair. They
divert their energies to justifying why the problem cannot be solved. The
truly ingenious apply their energies in a different direction, however. They
focus on the rules instead of the problem. They challenge all of the assump­
tions, both explicit and implicit, until they find a weak spot to attack.

When presented with an ingenious solution to a seemingly intractable
problem, most people simply respond, "But you can't do that!" To some, it
is more important that the apparent rules be obeyed than it is to discover
the meta-rules that set you free.

Alexander the Great is the prototype of all ingenious problem solvers.
In the city of Gordium, he was shown the chariot of king Gordius. The
chariot was lashed to a pole with a rope containing an intricate knot. You
couldn't even see the end of the rope within the knot. Legend held that only
the conqueror of Asia could undo this knot. Alexander had already dem­
onstrated an obvious zeal for conquest which was not about to be deterred
by a mere legend.

What did Alexander do? He certainly did not waste time, as so many
others had done, trying to puzzle out the intricate way the rope was tied.
Instead, he drew his sword and cut the Gordian knot.

You can be sure there were many in the crowd of onlookers who came
to scoff at this upstart, but ended up bleating with wounded civic pride,
"That's cheating. You can't do that!" You can be equally sure that Alexander
was unimpressed by such objections. He was solving the general problem
of advancing his cause - the conquest of the civilized world. With charac­
teristic directness, he eliminated one small difficulty that lay in his path.
']'{n the more aethereal sphere of mathematics, ingenious solutions are
:.D often more abstract than the stroke of a sword. Hence they are harder to
share with a general audience, even when the author of the solution is just
as audacious (in his or her own way) as Alexander the Great. Once upon a
time, however, I saw a friend solve a math problem with an annoying
directness that is not too hard to convey. The problem is one you may have
seen. It crops up regularly on calculus and solid-geometry tests to this day.

Consider a sphere with a hole bored right through its center. I will tell
you the diameter of neither the sphere nor the hole. All I will tell you is that

9

10 Programming on Purpose

the height of the cylindrical hole left inside the sphere is 6 cm. Your job is
to compute the volume remaining in the sphere.

The approach I took was to draw several pretty pictures involving
triangles and arcs of circles, then dust off my high-school calculus. After
several false starts, I set up the integrals properly. After several more false
starts, I solved the integrals correctly. To my surprise, the result was
independent of the diameter of the sphere (or of the hole, naturally). In fact,
the residual volume is just the volume of a sphere whose diameter is 6 cm.

Flushed with success after only three hours of labor, and pleased at the
result, I began to explain the problem to a friend. Before I could even begin
reproducing my (correct and final) drawing, he told me the solution.

He reasoned that, since I was pleased with the elegance of the problem,
and since the diameter of the sphere was not specified, the result must be
independent of the diameter. For a sphere whose diameter is less than 6 cm,
you can't possibly drill a hole with the required properties. For a sphere
whose diameter is exactly 6 cm, however, you can drill a hole of zero
diameter through the center of the sphere. The height of the (nonexistent)
hole is 6 cm, as required. The volume of the hole is zero. Therefore the
residual volume is the entire volume of a sphere whose diameter is 6 cm.

My first reaction was to say, "You can't do that." My second, I am happy
to say, was to appreciate the elegance of his short cut to the proper solution.
I have since seen others use the same approach to solving this problem, but
nothing can diminish the pleasure of being present when that one warrior
took a sword to this particular knot.
.JflltY favorite example of ingenious problem solving involves neither
~~I.legends, nor mathematics, nor great names from the past. Credit,
instead, goes to a young man who was a graduate student at Fordham
University, in the Bronx, back in the 1960s. He was faced with the well
known problem of meeting girls. (Pardon me ifl don't give explicit citations
from the literature for this problem. See, for example, the entire fiction
section of your local library or book store.)

For reasons that I will not go into here, thi!" young man was not content
to meet just any girls. Far from it. He imposed additional criteria, which I
believe are shared by a few hundred million other young men:
• He wanted to meet girls who were sexually active. You can probably

guess why.
• Notwithstanding the above, he wanted to meet girls who were likely to

be free of sexually transmitted diseases. Even in that simpler time (after
penicillin and the birth control pill, and before herpes and AIDS) this
was an important consideration.

• He was constrained to meeting girls who would tolerate a cheap date.
Graduate students have never been overpaid.

Essay 2 You Can't Do That 11

So while his friends were joining the choir and the outing club, or
hanging around smoky bars, this enterprising fellow did something com­
pletely different. He frequented the waiting room of the public VD clinic.
(I have no knowledge that he ever told his mother about this practice, but
you can guess what she would have said.)

Just in case the glorious elegance of this tactic is lost on you, let me
explain. Among the patrons of such a clinic will be a certain number of
attractive young girls. Only a few of those girls will be "those kind" that
your mother warned you about. Many will be very nice people who made
an unfortunate choice of boyfriends.

Our ambitious young graduate student learned that a few words of
compassion, plus large doses of commiseration, broke the ice quickly.
Having established a rapport with a girl who was demonstrably active
sexually (the first and most important criterion), he could trace the progress
of her treatment with occasional sympathetic questions. By the time the girl
met the second criterion, their friendship was usually well advanced. Oh
yes, and since it was a public VD clinic, the clientele were generally in the
same economic straits as our hero. That satisfied the third criterion. Quod
erat demonstrandum.

Ingenious, no?
11rhis essay is nominally about computer programming and not world
\tllconquest, solid geometry, or (uh) socializing. My aim therefore is to
show you a few solutions to problems in data processing that demonstrate
varying degrees of ingenuity. These are all cases where your first reaction
is to say, "You can't do that." But once you admit that you can, indeed, do
that, then you have a clever addition to your kit of tools.

The exclusive-OR operator lies at the heart of more than one ingenious
trick. (The British, who talk funny, also call this the not-equivalence operator,
for fairly good reasons. Circuit designers, who think funny, call this the
half-add operator, also for good reasons.) In C, you write A"B to form the
bitwise exclusive-OR of the operands A and B. Each bit of the result is 1 only
if the corresponding operand bits differ, otherwise the result bit is 0. Thus
(in binary, octal, or hexadecimal) 0011 "0101 has the value 0110.

The exclusive-OR operator preserves information. No matter how cur­
dled the result of A"B may appear to the human eye, you can recover the
value of A simply by evaluating (A"B) "B. Equally, you can recover the
value of B by evaluating (A"B) "A. This property forms the basis for the
various tricks. Many methods for encrypting data, for instance, involve an
exclusive-OR operation that is later undone by another exclusive-OR using
the same value. The intermediate result is satisfyingly obscure.

Perhaps the simplest trick is also one of the oldest. I have no idea who
originated it. It provides a clever way to exchange the data in two arbitrarily

12 Programming on Purpose

large regions of storage. Now, it is well known that the way you exchange
the values in two data regions is to make use of a temporary region that can
hold data of the same type as in either of the two regions to be exchanged.
You permute the values among the three data regions, taking care to first
copy one value to the temporary. The common idiom for swapping two
values in C is:

t = a, a = b, b = t;

But if you can perform an exclusive-OR directly into storage, you can elimi­
nate the temporary. In C, you can do this with integers a and b of any type:

a A= b, b A= a, a A= b;

Since integers are relatively small, this is cute but not very useful.
System/370, however, has a nice instruction that lets you exclusive-OR one
region of storage directly into another. You can operate on 1to256 bytes of
contiguous storage with a single instruction. So for large enough regions,
it can make sense to swap them by performing three exclusive-OR opera­
tions instead of allocating a temporary of the same size:

xc dest (len) , src
xc src (len), dest
xc dest (len) , src

It's a small trick, but an ingenious one nevertheless.
(.;'W' much more clever use of the exclusive-OR is storing two pointers in a
.a.storage cell large enough to hold only one. I believe this is one of the
exercises in Knuth's The Art of Computer Programming (Knu68). You say you
can't do that? Watch.

Let's say you have a list of data elements that can be very long, and that
you need to scan either backwards or forwards. The usual technique is to
declare each data element as a structure that contains both backward and
forward pointers. So if p points to the current element (again speaking C),
p->left designates the element to the left, and p->right designates the
element to the right.

If you feel you can't afford to set aside space for two pointers within the
structure, what you do instead is set aside a single integer large enough to
hold all the bits of a pointer. (Yes, I know there are implementations of C
that may require two or more long integers to represent a pointer. And I
know that converting between integer and pointer representations can
cause a change of representation. If you want maximum portability, you
should write all this stuff with macros so you can localize the machine-de­
pendent parts.) What you store in the integer is the exclusive-OR of the
pointers to the left and right elements. Let's call that integer cell link, and
assume it has some defined integer type INT that can represent all values
of the type PTR, which is a pointer to a list element.

Essay 2 You Can't Do That 13

Instead of a pointer to a single list element (such asp above), you must
now maintain pointers to two adjacent list elements. Let's say pleft points
to the left element and priqht points to its neighbor to the right. Then you
can move your two-element window on the list to the left by writing:

ptemp = (PTR) (pleft->link A (INT)priqht);
priqht = pleft;
pleft = ptemp;

And you can move your two-element window to the right by writing:

ptemp = (PTR) {priqht->link A (INT)pleft);
pleft = priqht;
priqht = ptemp;

It is a fun exercise to write full blown versions of these functions. You
need to make them safe for lists with zero and one elements. You need to
ensure that stepping left or right will not take you off the end of the list.
And you need to add functions for adding and deleting elements. Try it.

You can extend this ingenious trick to two dimensions. Say you have to
represent the grid points within an arbitrarily large contiguous blob on a
plane. Again, the usual solution requires that each element have four
pointers, for the neighbors you reach by going up, down, left, and right
from the current element. You can replace these four pointers in each
element by two integers, one for each axis. To walk the list, you must
maintain four pointers, to adjacent elements that form a square. You ad­
vance in any direction by sliding the square about the plane.

To span three dimensions, you need to store only three integers within
each data element, instead of six pointers. But you must maintain eight
pointers to walk the list in any direction. As you go to higher dimensions,
you can see the classic tradeoff between storing information and recom­
puting it as needed. The exclusive-OR trick lets you squeeze considerable
redundancy out of your stored data, but at a cost in computation.
mnother technique that I dearly love lets you count up to a million in one
.a.8-bit byte. I learned it years ago from Bob Morris, at Bell Labs, Murray
Hill. Morris is an endless source of algorithms that take you from, "You
can't do that," to "I wish I'd thought of that," in a matter of milliseconds.

Now, it is well known that you can represent only 256 distinct states in
an 8-bit byte. To count to a million, you usually allocate a 20-bit counter,
and increment its stored value by 1 for each count. It's kind of hard to
imagine where you steal those extra 12 bits.

Let's say that you need to maintain a fairly large histogram, as an array
of integers that we will call hist. It is so large that you can afford to allocate
only one 8-bit byte for each element. From time to time an event occurs that
results in an index i. For all i that are valid subscripts of hist, you want
to increment the value stored in hist [i].

14 Programming on Purpose

You can obtain an execution-time profile of a program that you run, for
example, if you can convince your operating environment to interrupt the
execution of your program at regular intervals. The index i is (a possibly
scaled version of) the program counter that was stored when your program
was interrupted. Assuming that there are no nasty correlations between the
timer interrupts and the execution of your program, you can obtain a good
representative profile of where your program spends its time. Unlike
profiles that count the number of times each function is called, an execu­
tion-time profile is automatically weighted by the amount of time your
program spends in each function. Separately and together, both profiles are
invaluable in measuring, debugging, and tuning your programs.

The pseudo code for a typical profiler reads something like:

IF (<i in ranqe>)
hist [i] := hist [i] + 1

This works fine if none of the counters overflow. It's even tolerable if
counters overflow once or twice, provided that the peaks in the histogram
spread over enough adjacent counters that the wraparound is obvious to
the eye. You can also add logic to make the counts saturate, as in:

IF (<i in ranqe> AND hist[i] < MAX_VAL)
hist[i] := hist[i] + 1

That way, you don't miss sharp peaks, or mistake a broad peak for two
smaller adjacent ones. All peaks get flat tops if they grow big enough.
7fit ut what if you need to distinguish between peaks that have 10 counts
~and those that have 1,000 and those that have 100,000? If you have to
trade off counting range against the range of program counters that you
can profile, you can end up running a lot of tests that are messy to correlate.
Over such a broad range, you would cheerfully trade off an exact repre­
sen ta ti on of any one count (or of certain counts, at least) to be able to capture
the entire dynamic range in a single run.

What you would clearly like to do is capture in each element of the
histogram not the total count, but a function of the total count. If that
function is monotone increasing, and if it increases much more slowly than
the total count itself, you can represent a broader dynamic range in each
element. An obvious function that suggests itself is the logarithm. Let's say
that you store in each cell the value of the function f (N), defined as:

f(N) = A * ln(N + 1)

You need to add 1 to N because ln (0) has annoying properties, and you
do want to represent a count of zero. The coefficient A you adjust to obtain
the desired dynamic range. For a count of one million to give f (N) the
value 255, for example, A should be about 18.45.

Essay 2 You Can't Do That 15

Now your range problem is solved, because you can store in each
element function values that correspond to counts between zero and one
million. Granted, there are only 256 distinct values, but that is often plenty
of magnitude resolution. It is almost as if you are representing the values
in floating point, by keeping only the exponent and a few magnitude bits.

There is one small remaining problem. How do you increment the stored
value? Adding one to a count is easy. Knowing when to change the state of
f (N) takes a bit more thought. Consider, for example, when hist [i]
contains the value 100. That corresponds to a total count of 224.89. If you
change the stored value to 101, the corresponding count is 237.47. Clearly,
you only want to increment the stored value after 12.58 events have
occurred for the index i.

7b ere is the trick. You need to call a function that generates a random
,1li!number. If the numbers returned by the function are uniformly distrib­
uted between 0 and RAND_ MAX, inclusive, you simply test whether the
random number is less than RAND_MAX/12. 58. On average, the test will
be true once every 12.58 times. When it is true, you increment the value
stored in hist [i] .

So in principle, all you need is a table of 256 threshold values, one for
each possible stored value of f (N) . And the increment code becomes:

IF (<i in ranqe> AND rand() < thres[hist[i]])
hist [i] : = hist [i] + 1

Note that you can set thres [255) to zero if you want to prevent
wraparound on overflow, as above. You don't need a special test to ensure
that peaks get flat tops.

In practice, the logarithm is not the ideal functional form for f (N) . Until
N exceeds about 80 counts, this form wastes a number of codes on fractional
values that you don't need to represent. Worse, it requires you to muck up
the simple code shown above, to deal with cases where you may have to
add more than one to hist [i]. But remember, the only real requirement
on f (N) is that it be monotone increasing. You can define each value of
hist [i] to represent any count your heart desires.

A good definition for f (N) is:

.f1fil represents
0-15 0-15
16-31 17-47
32-48 51-111
49-64 119-239

And so on. In other words, the first 16 states represent exact counts. If you
set thres [j] to RAND_ MAX+l, then an event always causes a count. There
is no statistical uncertainty. For the next 16 states, you count by two. You
do this by setting each of the thres [j] to RAND_ MAX/ 2. Then you count

16 Programming on Purpose

by four, then by eight, and so on. If I have done my arithmetic correctly,
this scheme lets you count up to just shy of one million with an 8-bit
counter. If you don't care about flat tops, you need to maintain only 16
distinct thresholds:

IF (<i in range> AND rand() < thres[hist[i]/16])
hist[i] := hist[i] + 1

And there you have it. You can vary this scheme in many ways. You may
want, for example, to maintain exact counts up to 200, then progressively
coarser approximations for code values up to 255. If rand () is an expen­
sive function, you can call it only when thres [j] doesn't have a degen­
erate value. All of that is icing on the cake, once you learn how to count
with bits that you don't own.

11T"here is yet another area that has seen a lot of ingenuity these past few
"-Vyears that I think more people should know about. It lets you prove to
someone else that you know a secret, without revealing what that secret is.
It lets you receive secret messages from your friends over public channels,
even when your enemies know as much as your friends do about how you
want your messages made secret.

You say it can't be done? Then you don't know about the exciting world
of public key cryptography. It is a topic that is worth far more than just part
of an essay on assorted clever tricks. It is, in fact, the subject of another essay
or two. (See my essays, "Programming on Purpose: Locking the Barn
Door," Computer Language, October 1988, and "Programming on Purpose:
Half a Secret," Computer Language, November 1988.) o

mfterword: I think this essay is interesting for the tricks is presents. More
;ci.important to me, however, is the examples it gives of how people can be
ingenious. Too many people decide early on that they're not creative. So they stop
trying to solve problems that appear intractable. The rewards of persistence should
not be so quickly sacrificed.

3 Protecting Intellectual Property

11rhe information that you traffic in has a value that you must protect.
"""1Typically, you protect the value of your information by limiting access
to it. Some of the information you own may be extremely difficult to hide,
however. I am referring to intellectual property, the kind embodied in the
hardware or software you may be selling for a living.

The single largest problem in our volatile and cash-rich business is the
out-and-out rip-off. Computer software shares the same weakness as vide­
otapes and music. All are very cheap to copy, if the copier feels no obligation
to pay a royalty to the creators of the recorded information. Software is
particularly bad because you can copy bits exactly. There is no degradation
of signal you get when copying analog signals. (Digital recording tech­
niques now pose a similar threat to the entertainment industry.)

Even hardware can be knocked off, of course. Avoid the costs of devel­
opment, use cheaper components, piggyback on someone else's advertis­
ing budget and a pirate can turn a tidy profit at just a fraction of the price
that the legitimate vendor must charge. Everything from Apple computers
to Yves St. Laurent fashions are vulnerable to cheap imitation.

Most fast-buck artists have no interest in obscuring what they do. They
are not going to reimplement your algorithms from disassembled binaries,
or alter your screens in subtle but significant ways. Nosiree, they're going
to knock off exact copies, sell them, and move on when the heat arrives.
This is a classic industry in 2 1 /2th world countries that are scrabbling to
raise the standard of living of their citizens (or at least a select few of those
citizens). You can get all the big sellers for a fraction of the fair market cost,
because the copiers keep their R&D overheads low. The same service is
available in the U.S. through various unscrupulous bulletin boards, com­
puter clubs, and enterprising individuals.

The good news here is that you've got lots of law on your side. Once you
detect someone ripping you off, your major concern is to document as
clearly as possible that someone is making money selling products without
proper authorization. You want to work your way up the chain until you're
sure you can implicate the principals. You don't want to nail a few under­
lings and leave the instigators free to start over in the next county.

You must suppress the urge to make angry phone calls, or tip off the
pirates in any way, until you have an iron-dad case. Get a lawyer to help
you, and be sure to work through the appropriate law-enforcement agen-

17

18 Programming on Purpose

des. When you strike, you want the case to be open and shut. Despite what
you see on TY, lawyers seldom rush to defend people who are caught red
handed. It is the gray areas, the equivocal evidence, that encourages people
to fight it out in court.

I have never produced a product so wildly popular as to attract the
attention of mass-production pirates. (At least nobody tipped me off if that
ever happened, and someone almost invariably does.) On occasion, how­
ever, I have been alerted to someone shipping the odd compiler without
bothering to secure permission. Or pay a royalty. Usually, such fair-weather
pirates are just trying to move some hardware. Free software makes a good
lubricant. Faced with the choice of paying up or getting sued, they usually
blush, stammer, and pay.

Copy protection seems to be going the way of the buggy whip. It
interferes too much with the usability of your product by your legitimate
customers. You can't afford to deter a few thieves at the cost of your
customer base. You must tolerate a few losses, but keep a weather eye out
for the mass producers. There's where the real hemorrhaging must be
stanched.
m more pernicious problem, in the long run, is not the verbatim copiers
.:cl.but the idea thieves. If you make hardware that is enjoying good sales,
you can be sure that one or more agents will eventually reverse engineer it
to find out what you did so well. They will then endeavor to profit from
your discovery and subsequent hard work by bringing a competing prod­
uct to market. Since they have to invest less hard work, they can often
undersell you.

If you write software that sells well, you have more to fear than just
reverse engineering. Rare is the software package that depends upon some
secret algorithm to perform commercial magic. More often than not, the
calculations are obvious given the black-box behavior of the program. Even
more often, there are several possible ways to do the same job. The value
of a software package frequently lies in providing a convenient collection
of functions with a sufficiently friendly user interface. Once you demon­
strate the utility of a given package, you can be almost certain that they'll
send in the clones.

You can protect valuable technology by limiting access to it. Require each
customer to sign a license that grants only limited use of the intellectual
property contained in your product. Have the license oblige the customer
to protect your property from the assaults of would-be imitators. You may
not actually prevent people from finding out your secrets that way, but
should a competing product appear you have more ammunition to shoot
it down.

You can argue in a court of law that the knowledge required to make the
competing product is available only under license. Either the competitor

Essay 3 Protecting Intellectual Property 19

has wrongfully obtained access to your proprietary information or one of
your licensees has violated the terms of the license. One way or the other,
you have someone to sue. If you understand just how costly and ineffective
it can be to rely on the courts for protection, that may be small consolation.
(See Essay 1: Honestly, Now.) But it's far better than no protection at all.
?11?1\then I started my company, Whitesmiths, Ltd., ten years ago, one of
~the first things I did was go to a lawyer. I asked him to tell us how
best to protect our software when we sold it so that we could stay in control
of the products. He came back with a three-page license agreement. It
promised the customer next to nothing, and permitted limited use of the
licensed product for only fifteen years. I found the terms disgusting.

On the other hand, I couldn't think of a safe way to liberalize any of the
clauses in the license. At least not without exposing my fledgling company
to an open-ended liability from an angry and litigious customer. For a
product as complex as a compiler, how do you define when it is working
correctly? There are always bugs. How much maintenance support can you
promise and be sure that you can deliver? The simplest looking bugs are
often the hardest to fix.

I sat still for that license, and so did our first thousand-odd customers.
Remember, this was back before the days of computer stores in every mall.
You bought your software (if you didn't build everything yourself, or pay
an arm and a leg for custom work) from just a handful of suppliers. There
were no computer magazines selling software the way Vogue sells cosmet­
ics. You took what you could get, on the offered terms.

As time wore on and the industry grew, however, we had to change our
approach. The license got slimmed down, then slimmed down again.
Eventually, IBM got in the volume software market. They used a shrink­
wrap license (you open it, you agree to the terms) that fit on a single page.
We figured that, since IBM doubtless pays lawyers more in a week than we
grossed in a year, they knew what they were doing. So we imitated their
shrink-wrap license and fell back on the protection of the copyright laws.

I want to emphasize that we weakened our protection out of commercial
necessity. It was not just a matter of following the latest legal fashion.
Getting those licenses signed was a real impediment to sales. We could no
longer afford the extra one to four weeks in the sales cycle, compared to
people who were willing to ship the same day on a telephone purchase
order.

You can make your intellectual property arbitrarily safe. All you have to
do is keep it from the light of day. If you do, however, you won't the rewards
of your labors. A technological lead is not like a bar of gold. You cannot
hoard it against a future need. It is more like a good harvest of wheat. You
must live off it now, before it rots. Sell some and feed yourself on the rest.
Use your added health and strength to prepare for future harvests.

20 Programming on Purpose

..f1:'0r centuries, the more enlightened countries of the world have endeav­
,.JJ ored to overcome this natural tendency to hoard knowledge. A loyal
subject with a bright idea (and the right connections in court) could get the
king to grant "letters patent," that bestowed an exclusive right to exploit
the bright idea in commerce. Armed with this protection from the highest
reaches of government, the subject need no longer fear disclosing any trade
secrets. Trade flourished and knowledge spread.

The U.S. has had a patent office since its earliest days. It was designed
to give people exclusive use of an invention for a 17-year periods. (To keep
the patent alive, you must make maintenance payments at 31/2,71 /2, and
11 1 /2 years.) In trade, the inventor had to disclose enough information
that someone skilled in the art could reproduce it. Nominally, it grants
patents only to individuals, but that is a sham. An individual has the power
to sign away rights to a patent. I don't know exact figures, but my guess is
that the overwhelming majority of patents issued today are owned by
corporations, and large ones at that. For the large corporations that I know
about, you sign away your patent rights to your employer the first day you
are on the job.

There is nothing sinister here. It costs a lot of money to support the kind
of research and development you need to make commercially useful inno­
vations. Just keeping up with your field, so that you don't attempt to patent
something covered by an earlier grant, takes more effort than any individ­
ual can muster-particularly in a field as vital as computers. Filing a patent
application is also an art form. Large high-tech corporations typically
maintain a staff of lawyers who specialize in patent law, just to maximize
return on the research dollar. This is a game for the big guys.

Chances are that you, as an individual or an employee of a small
company, will not have occasion to pursue patent protection for the fistful
of innovations you stuff into products every year. This field simply moves
too fast for most of us to indulge in the leisurely pursuit of a patent. The
process can take months of your time, cost tens of thousands of dollars, and
spread out over years.
~n the contrary, your worry should be that you do not inadvertently
"'1infringe on patents held by some large corporation. These outfits collect
patents like Green Stamps, even in areas not directly related to their current
business lines. Corporate patent factories like AT&T Bell Labs and IBM
routinely trade bouquets of patent rights back and forth, so that they can
go about their business without fear of reprisal.

They are also continually on the lookout for people (possibly you) who
might bring a product to market without having secured all necessary
agreements. Perhaps you have read about IBM demanding, and collecting,
royalties from a variety of clone makers for use of patents on various aspects
of their PCs. Nothing sinister here, either. IBM's list of innovations in the

Essay 3 Protecting Intellectual Property 21

computer industry should garner awe, or at least grudging respect, from
true-blue customers and competitors alike. So if you think you see a
business opportunity in doing something cheaper than the big guys, check
twice for hidden royalty costs.

Assuming you do have a piece of hardware that warrants a patent, don't
let that make you too cocky. If you try to charge your competitors too much,
you will only stimulate them to innovate you out of business in the area
you think you own. I once heard the tale of a guy in the HVAC (heating,
ventilation, and air conditioning) business who developed a duct with
superior sound deadening properties. He found that a duct shaped like a
sine wave, and suitably lined, was optimal in some ways for absorbing
transmitted noises. Since this solves a perennial and important problem in
HVAC design, particularly for expensive concert halls and broadcast stu­
dios, he felt he could charge a pretty penny for the right to install wiggly
ducts.

His competitors found, however, that they could get most of the benefit
he had discovered by shaping duct in the form of a square wave. Now, if
you know anything about Fourier analysis, you know that a square wave
can be represented as a sum (albeit infinite) of sine waves with multiples
of the period of the square wave. The dominant term, the one with the
largest amplitude, is the sine wave with the same period as the square wave.
Perhaps a judge knowledgeable in both HVAC and spectral analysis, as
well as patent law, could have been convinced that a square wave duct
infringes on a sine wave patent. But that was not to be. Square ducts, to the
unmathematical among us, look altogether too much like prior art.

No royalty.
]'{f you come up with a bright idea in software, you face even greater perils .
.J.f First off, it's much harder to convince the patent office to grant you a
patent on software. You can't get a patent on a mathematical formula, or a
bright idea. Besides being recognizably inventive, an invention must also
be "reduced to practice." Patent courts tend to take a pretty mechanistic
view of what constitutes reduction to practice. If you think Fourier analysis
is lost on this crowd, try explaining some of the subtleties of computer
software.

Arthur C. Clarke, the well known science-fiction writer, fell afoul of this
gap in the patent law. Back in the late 1940s, he figured out that there were
good uses for satellites orbiting over the equator 22,000 miles above the
Earth. In such an orbit, a satellite appears stationary above a given spot on
the equator. It is also visible over a large fraction of the surface of the Earth.
What better place to hang repeaters for beaming telephone calls and TV
broadcasts to the remotest corners of the globe?

Clarke invented the synchronous satellite, to be sure. But he could not
get a patent unless and until he reduced the idea to practice. Since that was

22 Programming on Purpose

an enterprise well out of his financial reach (royalties for SF being what they
are), he had to wait for the major nations of the world to do the job for him.
Once they had done so, however, his chances for a patent evaporated.
Hanging synchronous satellites in space then became prior art, which is not
patentable. After some grumbling in print, Clarke resigned himself to
owning just a footnote in the history books for his vision.
~evertheless, a clever patent attorney can sometimes outsmart the sys­
»tem. Dennis Ritchie, for example, was granted a patent on the basic
protection mechanism of the UNIX file system. The patent office decided
that his set-user-ID bit was sufficiently inventive to warrant patent protec­
tion. (Fortunately, AT&T has been gracious enough to waive royalties for
use of this clever invention. That has opened the way for much innovation
in operating-systems design, not to mention the IEEE POSIX interface
standard.)

I had occasion to read that patent. It described a mechanical device for
storing information. The set-user-ID indicator was a mechanical toggle that
the device could use to determine whether or not to yield up its stored
information. Buried deep within the patent application was a paragraph of
the "Oh, by the way" variety. It mentioned in passing that you could, of
course, simulate such a mechanical device by programming a general-pur­
pose computer to do all these things electronically. Naturally, the patent
should cover this choice of implementation as well.

Very clever.
Chances are, however, that patent protection will prove to be inappro­

priate for any bright ideas you may generate in the course of writing
programs. You should keep patents in mind for the hardware side of your
enterprise, but don't waste too much time dreaming about being the
founder of the next Polaroid or Xerox Corporation.

My personal opinion is that copyright protection is exactly the right
shield for most of the intellectual property in computer products. That and
trade mark protection, to keep others from misleading your customers into
thinking that their products are connected somehow with yours. There is
still a lot of contention, however, over where to draw the line in both of
those arenas. I plan to address those areas of contention in the next essay.
(See Essay 4: What and How.) o

(?tfterword: My feelings toward patent protection for software have become
::cisomewhat less benign in recent months. More and more, I hear of patents
granted for silly bits of software technology. Many techies could demonstrate that
these bits are commonplace in prior art, hence not worthy of a patent. Nevertheless,
holding companies continue to exact royalties from software vendors for use of these
questionable patents. It's often simpler to pay tribute than to seek justice.

4 What and How

']'{ ran across a new slant on the old ruse for getting patents on software .
.:lJin the previous essay, I told you about the clever way that AT&T Bell
Labs worded their patent application on the UNIX set-user-ID protection
mechanism. (See Essay 3: Protecting Intellectual Property.) The attorneys
described a mechanical device that no one is likely ever to build, then
pointed out in passing that you could program a computer to emulate such
a device. Coverage for the mechanical device, they asserted, should extend
to the computer program.

But now we have the case of Pennwalt Corp. v. Durand-Wayland, Inc. I
read about it in a brief article by Joseph S. Iandiorio (lan88). The case arose
because a competitor produced a computer-driven conveyer system that
does the same job as a patented mechanical system. The mechanical system
determines sorting criteria (weight and color) for items on a conveyer as
they pass a testing station. It then sends the information down a hard-wired
shift register that is synchronized with the conveyer. At appropriate sta­
tions, items of a particular weight or color are kicked off the conveyer
according to information provided from the shift register. The computer
system does the same job using internally stored data in place of the
hard-wired shift register.

The Court of Appeals for the Federal Circuit ruled that the software
system does not infringe the hardware patent. The court evidently felt that
there were sufficient differences in the way the two systems processed data.
Since the differences identified in the suit are the inevitable differences
between hardware and software processing, the ruling appears to have
broad implications. And since this is the court that hears all patent appeals,
the ruling appears to have clout.

If the precedent holds up, there is now a deeper schism between hard­
ware and software patents. You can write programs to emulate patented
hardware, or you can build machines that implement patented software,
and have an arguable case that you are not infringing. Before you start
raising venture capital, however, I suggest that you wait and see what
happens. And don't take on AT & Tor IBM on the strength of this one ruling.
Aow let's continue the discussion of various ways to make sure that
»others do not profit from your clever ideas at your expense. The sermon
in this essay centers on copyright protection. For those of us in the software
business, I believe that this corpus of law is the most appropriate form of

23

24 Programming on Purpose

protection. To see why, we need to identify more clearly just what we need
most to protect.

I think it is fair to say that never before in history has intellectual property
been so important to trade. Chip layouts, computer designs, and software
packages simply must be protected. The profitability of the largest corpo­
rations in the world depends on it. Some would even argue that the future
strength of the U.S., Japan, and most European nations is also at stake.

It is easy to decry the current litigious society, and to make rude jokes
about lawyers, but the fact remains that we as a culture have a whole new
set of rules that we have to work out. As the case above illustrates so well,
the U.S. courts are the current battleground for the clash between old ideas
and new needs. But it is also easy to get needlessly caught up in the
skirmishing at the edges of patent and copyright law. Despite all this
ferment, you shouldn't overlook the simple fact that many protections are
already firmly in place. I can attest that you can run a computer software
business for years with little fear that you will become the center of an
interesting test case.

Great chunks of law exist _that deal with the two fundamental compo­
nents of a high-tech product:
• What the product does can be protected by trade secret or, in some cases,

by patent.
• How the product does its job can be protected by trade secret or by

copyright.
Despite all the current talk about look and feel, and whether such aspects
of a product should enjoy protection, I believe that the distinction between
what and how lies at the heart of the matter.
?ll?llte discriminate between what and how all the time. Your boss comes
~to you with the specifications for the competitor's latest product. A
spec sheet describes the what of a product. If you are told to match, or even
exceed, those specifications with a new product, you would hardly take
such orders amiss. Thousands of games of technological leap frog are going
on in every corner of the computer business. Competition is a principal
driving force behind the rapid advances of the past few decades.

But say your boss comes to you with blueprints for the competitor's
latest product, or with source-code listings. These documents describe the
how of a product. If you are told to imitate these details in a new product,
you should smell a rat. Chances are you will be violating a trade secret,
patent, or copyright in the process of duplicating such details. Never mind
that some people do this all the time. Never mind that too many get away
with it. This is not how you build a business, or a career.

So when we discriminate between what and how, we partition a design
into two components. One is the black-box specification of the product, the

Essay 4 What and How 25

part that is fair game for emulation (in the older sense of the word). Even
if the what is protected by trade secret or patent, chances are that the
specification can be stated at some level of abstraction that permits compe­
tition. The other component includes the details of implementation, the
part that most of us agree is the intellectual property of the designer. Even
if the how is not protected by trade secret or copyright, we feel a certain
repugnance at simply knocking it off.

You may be surprised to learn that that sense of repugnance is a fairly
modem conceit. The first copyright law on record was passed in Britain in
1709. Earlier history is replete with examples of intellectual borrowing
unaccompanied by any apparent need for justification. There was little
thought in the past that an artist or writer should profit from exploitation
of his or her works. I learned about this from an excellent essay by Alvin B.
Kernan (Ker88)

Copyright law in the U.S. was built into the Constitution (Article 1,
Section 8). The protections offered owners of intellectual property have
steadily and significantly increased over the years. Some would say that
the balance has swayed too far in favor of the copyright owner. When I read
about artists suing to prevent alterations to their works after they have sold
them, I tend to agree. Others would say that the balance has not yet swayed
far enough. When I see pirated copies of my books sold dirt cheap in
countries that depend upon good relations with the U.S., or when I'm sent
a publishing contract that would make Shylock blush, I tend to agree.
~n balance, however, I'd say that the copyright law has been strength­
"1:7 ened and clarified as it has proved to be good business to do so.
Keman's essay, which I cited above, ascribes the increased protections to a
romantic view that art is somehow sacred. He sees modem technology as
a serious assault on this view. I see instead a society with sufficient material
wealth that it can (and must) give ever greater value to intellectual property.
Prosperity requires that the merchants be protected from the thugs. Just as
the U.S. Navy has long protected shipping from pirates, now the courts
must protect computer programmers from copiers.

You might be surprised to learn, however, that you can't just copyright
anything. You can only protect the expression of an idea if there is more
than one way to express it. At one extreme, that means that you can't protect
something if it is too simple. Or to put it another way, you don't infringe
someone else's copyright if you express an idea in the only sensible way.
Let me give you an example from personal experience.

In the process of working for three different employers, I have had
occasion in the past to write the same set of functions. These functions
performed 32-bit integer arithmetic on the PDP-11 family of computers. (A
C compiler typically generates in-line calls to such functions when the
operation is too complex to be performed directly in-line.) Being moder-

26 Programming on Purpose

ately honest and meticulous, I wrote the second and third versions of these
functions without consulting my earlier work. I also, of course, avoided
looking at similar function sets written by Dennis Ritchie and others.

I have since had occasion to compare those three implementations of the
long-integer functions. Most of the functions produced executable code
that was bit-for-bit identical. Moreover, most of the common functions were
functionally identical to the ones that Dennis Ritchie wrote for the original
PDP-11 C compiler. None of these discoveries troubles my conscience in the
least.

If your goal is to write a function that performs a given job, if the job is
small and precisely defined, and if you are constrained to do it the best
(fastest and/ or smallest) way possible, there is arguably only one right way
to do the job. I may have drawn upon my memory of work done for earlier
employers. I may even have seen Ritchie's code before I wrote my own. But
I don't think so. And if I did, I feel I stayed well within both the spirit and
the letter of the copyright law.
J'~ompare that small potential transgression with what Franklin Com­
~puter once did to arouse the wrath of Apple. When you copy a design
down to the contents of the control ROMs, it's hard to argue that you did
it from memory. (Not that Franklin advanced such an argument, to my
knowledge.) Apple did not have to stress the edges of copyright law very
hard to convince the courts that its intellectual property rights were being
compromised.

I mention the Apple v. Franklin case partly because it was reasonably
clear cut. But one aspect of the case that received little publicity was far
from clear cut. It shows the other extreme of the limitation on copyright
protection, where complexity can be just as deadly as simplicity was in the
case of my refried functions.

You're probably familiar with how to call upon system services under
MS-DOS. You load various parameters into registers, load a service request
number into the AL register, and execute one of the software-interrupt
instructions. It is a moderately clean interface, sufficiently so that Phoenix
Technologies and others have had good success at matching its black-box
specification without having to peek inside MS-DOS or the ROM BIOS. The
Apple II ROM, on the other hand, is not nearly so narrow an interface. You
jump to absolute locations in the ROM to perform various system services.

Franklin argued that, because the interface was so diffuse, there was only
one way to express the functionality of the Apple ROM. That was by
copying the ROM contents verbatim. If there is only one way to express the
function, then the expression cannot be protected by copyright. I under­
stand that this argument gave the court pause. In the end, the court ruled
that the ROM was protected because you could duplicate its functionality
without duplicating it completely. But the hesitation was thrilling.

Essay 4 What and How 27

I have preached for years that you should keep interfaces clean for many
good reasons. Maintainability and ease of use are two of the principal
reasons. Until the Apple v. Franklin case, however, it never occurred to me
that ownership protection was also an important reason. Just think, if a
design is sufficiently ugly that you can't possibly replicate its features and
bugs in any other way, then it can't be protected by copyright. Good design
is building a clean fence between what and how.
~ne of the attempts at extending the reach of copyright protection
"1:7 recently received a setback. At issue is whether copyright law, or
additional constraints imposed by a shrink-wrap license, can prevent a
competitor from reverse engineering a product. The decision was handed
down by the Federal Court of Appeals in New Orleans, in the matter of
Vault Corp. v. Quaid Software (LGU88).

It seems that Quaid Software developed a copy program that subverts
PROLOK, a copy-protection device sold by Vault. To do so, Quaid had to
violate the terms of the shrink-wrap license protecting PROLOK (under
Louisiana law). Quaid also had to copy the program into computer memory
for other than its intended purpose. And Quaid used this knowledge to
produce a product that can clearly be used to violate the copyright protec­
tion of other software products.

The court, however, found that Quaid had not acted improperly. The
Louisiana shrink-wrap licensing law was pre-empted by federal copyright
law in this particular case. Federal copyright law does not preclude anyone
copying a program into memory for other than its intended purpose, nor
was the court inclined to read such a meaning into the law. And the federal
law does permit copying protected software for the purpose of making
backup or archival copies. So long as there is a legitimate use for the Quaid
product, the court ruled, Quaid is not just in the business of helping others
infringe copyrights.

The net effect of all this was to once again clarify the distinction between
what and how. Copyright does not protect your product from reverse
engineering, no matter how badly software companies want such protec­
tion, and no matter how cooperative state legislatures are in endeavoring
to provide it. Your competitors can read your secrets, if they are expressed
in the product, to determine the what behind the how. So long as they avoid
copying your expression, they can use the what to determine the specifica­
tions for their own product.
11rhe center ring of the copyright circus, these days, is occupied by
"1.tcombatants on either side of the look-and-feel issue. We see Apple
Computer v. Microsoft and Hewlett-Packard, with Apple claiming protec­
tion for the external appearance of its Macintosh software. We see Lotus
suing and being sued over the external appearance of Lotus 1-2-3. (Some
of the excitement in the Lotus case has been dissipated now that the court

28 Programming on Purpose

has ruled that Software Arts gave up its right to sue Lotus when it sold
substantially all of its assets to Lotus. That may well avoid any determina­
tion of who originated the look and feel of 1-2-3.)

At issue, of course, is where specification leaves off and expression
begins. Look and feel stands right at the interface between what and how.
When there is more than one way to lay out a screen, for instance, the courts
generally look askance at programs that exactly replicate the screen. When
screen layouts, command sets, or other external characteristics derive in a
similar way from common ideas, however, the courts generally find no
infringement. A classic example is the "H" gearshift pattern used in many
cars- it's a good functional solution to a common problem, and hence not
protected. See Peter Waldman's article in The Wall Street Journal, March 21,
1988, for an overview of court decisions prior to the Apple suit (Wal88).

I'm not about to take sides when titans like these clash. All I care about
is that the basic philosophy behind the copyright law survive intact. As one
who has frequently reimplemented software products by working to a
published specification, I'd hate to see competition compromised by exces­
sive protection of the what. And as one who delights in expressing ideas
both in code and in words, I'd hate to see a loss of protection of the how. At
times like these, I'm glad I'm not a judge. o

f?rfterword: Much has changed since I wrote this essay, but much has also stayed
.Q.the same. Lotus won its lawsuit against Borland, possibly lending support to
legal protection for look and feel. On the other hand, most of the Apple case has been
dismissed against Microsoft and Hewlett-Packard. I wrote this essay as kind of a
progress report on the education of the U.S. judicial system, courtesy of several
informative articles I tripped across in quick succession. It's probably the sort of
report that someone should produce every year or so for the foreseeable future.

5 Skin and Bones

']'{ have devoted the past two essays to various aspects of protecting
.JJ intellectual property, particularly when that property involves computer
software. (See Essay 3: Protecting Intellectual Property and Essay 4: What
and How.) This is the third and last installment on that topic, so let's begin
with a brief summary of what has gone before.

When software is expensive, it makes sense to license it. You can limit
usage in any way that suits your needs. You can avoid disclosing any trade
secrets contained in the software. If your customers abuse your trade
secrets, you can sue them (for what that may be worth). The problem with
licensing software is that it takes longer to close a sale if you have to obtain
a signed license before you can ship and bill. As prices come down, volume
goes up, and competition intensifies, the cost, complexity, and inconven­
ience of licensing gets out of hand.

When a product is sufficiently inventive, you can patent it. The patent
lets you disclose your secret invention (in fact, a patent requires disclosure)
and ensures that you alone can profit from the commercial exploitation of
your bright ideas. The problems with patenting are numerous, particularly
for computer software. You can spend years and thousands of dollars
obtaining the patent, which has a lifetime of only 17 years. And there are
all sorts of ways to circumvent computer patents, by reimplementing
hardware in software or conversely.

When the expression of an idea is more important than the mere idea
itself, you should copyright it. Copyright law covers everything from sheet
music to plumbing catalogs. The law has been recently updated to cover
some of the specific issues related to computer software. The problem with
copyrighting software is that you must be prepared to disclose your source
code (by sending a copy to the Library of Congress) to obtain full protection
under the law. And the comers of the law are still being illuminated by some
pretty heavy-duty litigation.

Those are the basic forms of protection that you're likely to consider
when making a computer hardware or software product. For another slant
on the subject, read Glenn Groenewold' s "Rules of the Game," Unix Review,
October 1988 (Gro88). As both a lawyer and a writer, he spells out your
options pretty clearly.

But let's assume that you've worked out the appropriate protections for
your product. You've got the bare bones of a new money maker. It's time

29

30 Programming on Purpose

to put some skin on it, dress it up, and push it out the door. Compared to
making a complex hi-tech product, you'd think that making up a name,
designing the artwork for the box, and laying out the advertisements would
be child's play. If you think that, you'd be wrong.
~rst there is the matter of a name. You want something that indicates

,,JJ what the product does. That limits you to naming rules similar to the
ones that existing competitors have followed. On the other hand, you want
to stand out from the crowd and present your product with an upbeat
image. That opens up a new set of possibilities, but closes down many more.
As Tom Plum has so aptly put it, "We want the absolute latest in cutting
edge technology - that's tried and true and safe." Your job as namer of
names is to convey that contradictory image.

Your job is also to come up with a name that does not too closely resemble
that of any potential competitors. You can't call your new clone Joe's IBM
PC (unless your idea of a good time is stepping in front of freight trains).
Equally, you can't (or shouldn't) call it The Rosebud Colossus, because
nobody will have any notion as to what it is or does.

So you find yourself pawing through books on mythology, looking for
little-used names of minor deities. (Idris, after whom my company named
an operating system, is the Persian god credited with having invented most
tools and crafts, including the art of sewing things together.) Or you try
predatory birds, mammals, fish, or mitochondria. The more desperate have
been known to pull Scrabble tiles out of a sack and try rearranging them to
make something pronounceable.

Chances are, however, that someone has beaten you to the punch.
Whether you're naming a company, a piece of hardware, or a software
package, someone somewhere has likely come close enough to your pet
name to cause you trouble.

I thought of the name Whitesmiths, Ltd., for instance, as an obvious
enough pun. If blacksmiths work on hardware, then surely whitesmiths
must work on software. The extent of my research was to paw through the
white and yellow pages of the Manhattan telephone book. It is well known
that if you are looking for that one person in a million, there are eight
candidates in New York City (and the one you want lives on the Upper West
Side). Since there were no Whitesmiths in the phone book, I figured that I
had created a genuine neologism, which is the best starting point for a trade
name.

I later had occasion to browse through the Oxford English Dictionary, a
dangerous but delightful pastime for those of us who are in love with words
and their etymologies. I learned that a whitesmith is (among other things)
one who polishes or finishes the work of a blacksmith. That proved to be a
happy name for a software company, if an accidental one.

Essay 5 Skin and Bones 31

.a... o I was still content, except for a nagging concern. The name of any
e:vtrade that has survived in the English language for several centuries
ought surely to be someone's surname. Sure enough, when we started
selling overseas in quantity, we ran into a problem. It seems that there is an
engineering firm in Manchester, England called Whitesmith (no "s") Lim­
ited, that also happened to sell the odd software package. There went any
hope of locking up the name Whitesmiths throughout the European Com­
mon Market.

(Ed Yourdon claims that he first tried to call his new company Superpro­
grammers Inc. But the powers that be in New York State decreed a possible
conflict with a Superior Produce somewhere upstate. Those folks were
happy to give him permission to use the name he wanted - for a fee. So
he called the company Yourdon inc. instead.)

Finding new names for software products has gotten much tougher in
recent years. Partly this is because there are so many of them now. Partly
it's because companies are more aggressive in protecting their trade names
against the remotest possibility of infringement. And partly it's because the
smart players have learned to tie up all of the obvious variations on names
of successful products. (Have you ever wondered why nobody has named
a programming language PL/2? Or why no multi-purpose PC package
calls itself 4-5-6? Guess.)

My company tried and failed on two occasions, in recent years, to come
up with clever new names for software products. We even tried contests
among our staff, hoping that the often unbeatable combination of numbers,
youth, and greed would succeed where we nominal leaders had failed. To
no avail.

I was cheered to learn, however, that we are not alone in this difficulty.
See Ronald Alsop's, "It's Slim Pickings in Product Name Game," Wall Street
Journal, p. Bl, 29 November 1988 (Als88). According to Alsop's article,
federal legislation is in the works to limit the ability of companies to tie up
unused trademarks. That can only help the current difficult situation for
the makers of new products.
:7Qut let's assume that you've contrived a name for your wonderful new
~product. You've put skin on the bones, so all it needs is a new suit of
clothes and it's ready to face the world. With its own unique name, and its
own set of fingerprints, you need worry no longer about further identity
conflicts. Right?

Wrong. There's another little matter of trade dress. People don't read the
fine print on boxes. Often, they don't even read the large print. They see
the colors, the artwork, and perhaps the type faces used. If enough of this
stuff looks familiar, they assume they know who made it. That's a great way
to piggy back the sales of your product on someone else's reputation.
Except that there are laws against imitating the trade dress of a competitor.

32 Programming on Purpose

Trade dress is a pretty encompassing concept. Lawrence Welk, on his
way to becoming a band leader of some renown, at one time tried selling
chewing gum. He called it Welk's, naturally enough, and packaged it in a
green wrapper, as luck would have it. That was enough to attract the
attention of Wrigley's, who felt their trade dress was being too closely
copied. Welk eventually capitulated, and settled for making champagne
music instead of gum.

On the other hand, I bought one of those children's plastic table and
chairs for my son a few years ago. The logo on the side of the cylindrical
table base was the word "Crayon" in Helvetica within an elongated ellipse.
I'm sure I bought it because of the strong subliminal message that this was
a Crayola product from Binney and Smith. Any company that doesn't
change its logo in the near half-century that I have eaten its products, and
that has resisted the urge to rename itself BSC Industries or some such, will
get my business every day of the week. It disturbed me to learn that I had
been snookered by a trade cross dresser.

When you package a software product these days, there are several
"hafta"s you hafta obey. You hafta put the documentation and diskettes in
a binder that fits in a box that sits neatly on a dealer's shelf (or on a
customer's shelf, preferably). You hafta make the box appealing to look at,
sturdy enough to hold up under use, and reveal some hint of its contents
on the spine of the binder. All of those are reasonably functional haftas.

But you'd better not put IBM across the bottom of the spine in 48-point
stripy block letters. In fact, you'd better not put anything on the spine in
48-point stripy block letters. You'd better not even pick one of those
nauseous beige or interior-decorator greens beloved of everyone's largest
competitor. Trade dress has its "what and how" just like software design.
7aut let's assume that you have survived the pitfalls of naming and
~packaging your product. Now all you have to do is advertise it and
wait for the orders to come rolling in. What else can go wrong? Several
things.

First, you have to protect that clever name you spent so much energy
thinking up. Get it registered as a trade mark if you haven't done so already.
That is a process that I have found to be not particularly time consuming
or expensive. And it gives you some clout once you find that you are the
established company and some upstart is tromping all over your hard­
earned image.

Once you register a trade mark, make sure you use it right. The tales are
legion of trade marks that have lost their reserved status because they have
found their way into the language as common nouns. I'm told that the
makers of Escalator-brand moving stairs hit the deck running (as it were)
with an advertising campaign that doomed the name as a trade mark from
the outset. The ads referred to "an escalator" as if it were a generic name

Essay 5 Skin and Bones 33

for moving stairs. Perhaps the idea was to give the impression that this
upstart product (at the cutting edge) had been around (and was therefore
tried and true and safe), but the effect was to strip the proprietary clothing
off the term and deliver it as a naked noun to the public domain.

I use florid language to emphasize a point. It can now cost you a serious
investment of time and money to concoct a good trade mark. If you blow
it by not caring for it properly, the people whose money you are spending
will have florid faces to match.

You have probably noticed the recent trend toward defending trade
marks. Robert Young orders Sanka-brand decaffeinated coffee, not just a
cup of sanka. (As a businessperson, I would never intentionally weaken
another person's trade mark. But as a writer, I could equally not put such
words in the mouth of a fictional character. Robert Young will have to carry
on the fight for General Foods without me.) Large companies have even
taken to running ads in Writer's Digest to remind budding writers that their
brand names have special status and demand proper care.
A. o the second thing you have to look out for when you write your ads
e:l'is that you do not misuse the trade marks of others. I would never write,
"Idris is the best UNIX you can buy." Or, "If you're looking for a UNIX,
we've got just the thing for you." The first suggests that Idris is some form
of the proprietary product called UNIX, which is not true. The second
suggests that UNIX is a generic term for a certain class of operating systems,
of which AT&T sells just one instance. Also not true.

If you've been living in a tree house for the past decade, or if you're really
new to computing, you may not yet have heard that UNIX is the name of
a proprietary operating system owned and licensed by AT&T Bell Labs.
And AT&T has made it perfectly clear that they intend to keep UNIX under
their control and out of the dictionary. Since UNIX has become a pretty
important product, AT&T has my complete understanding and respect in
this regard.

(The name UNIX was coined by Brian Kernighan, by the way. Ken
Thompson had taken what he felt were the best ideas from the foundering
MULTICS project and reimplemented them in miniature on an unused DEC
minicomputer at Bell Labs. At lunch one day he asked for a name that
would suggest the best of MULTICS for a single user. The rest is history.)

If you play fast and loose with the UNIX name in any of your ads, you
will get a letter from AT&T. The letter will remind you that UNIX is a
proprietary etc. etc. and suggest ways that you should refer to it in the
future so as not to introduce the least element of uncertainty in the minds
of readers of your ads. It is a very polite letter and looks good framed. It
should also serve as a warning to you if you truly intend to misuse the
name.

34 Programming on Purpose

But I must let you in on a dirty little secret. You are not obliged to write
that little superscript TM every time you mention UNIX. You don't have to
tell the world repeatedly that UNIX is a trade mark of AT&T Bell Labs. All
you have to do is not misuse the name in the obvious ways I cited above.

If you leave off the odd TM and AT&T sends you a letter, that's the end
of it. They have a copy of the letter in their files to prove that they are
assiduously defending their trade mark. You have a letter suitable for
framing. The same goes for anybody else out there defending Sanka,
Kleenex, or proprietary software.

Personally, I am tired of this recent mania for identifying trade marks in
everything from scientific papers to help-wanted ads. A product that plays
with half a dozen others can have so many pigeon droppings on the words
(in the form of tiny TMs and ®s) that I can barely make out the sense of the
main text. And all those footnotes in five-point type got lost on me shortly
after my fortieth birthday. If any of this helped one whit in making com­
merce safer for honest business people, I would be all for it. But it doesn't.

So your third and final obligation is not to go off the deep end in
defending your trade marks and those of others. Make your ads readable.
Encourage others to mention your products as much as possible. Don't
oblige them to license the right to mention your name when they talk in
their sleep.
Jllerhaps the silliest extreme of trade mark mania was when the Depart­
"'1fi'Jment of Defense (a not-for-profit organization) decided to protect the
name Ada for the programming language they paid to have developed.
The idea was to discourage subsetting of the language. So DOD would only
let you call your product Ada if it was validated as a full implementation.

Ada, in case you didn't know, was named after Ada, Lady Lovelace. She
worked for a time with Charles Babbage on ways to put his analytical
engine through its paces. So she was arguably the first computer program­
mer, and pioneered a practice which has since become widespread. That's
not a great origin for a trade mark, but it will do.

When I read of OOD's incursion into the world of commercial trade
marks, the habitual opposer in me woke up (as was too often the case in
my misspent youth). I immediately set about planning a subset of Ada that
I felt would yield most of the advantages of Ada while avoiding most of
the cost. Since I couldn't call the product Ada, my plan was to call it Linda
(after another lady named Lovelace who pioneered a practice that has since
become widespread). Fortunately for all of us, I dropped those plans. Soon
after, DOD dropped the trade mark on Ada.

I call it a draw. o

Essay 5 Skin and Bones 35

mfterword: Techies tend to have little patience with mere matters of appearance .
.a. When the software business was new, we could mostly afford forgettable names
and slipshod presentation. That has all changed now, but the word still seems to be
spreading too slowly. It took me years to learn what I summarized here. I figured
this essay could help others pay much less tuition than I did.

6 Product Reviews

7{'ve decided with this essay to branch out into the exciting world of
..lJproduct reviews. That seems to be the big thing these days in computer
magazines, and I was beginning to feel a bit left out. It looks like a terrific
racket, if you can pull it off.

In what other trade can you get vendors to part with their hard-wrought
wares so easily? You get to play with all the latest toys, even keep a few of
them from time to time, then turn around and bite the hand that feeds you.
Like Broadway critics, product reviewers seem to thrive on finding bad
things to say about works that they are themselves incompetent to produce.
And like predators in other ecologies, reviewers have learned the advan­
tages of squatting atop the food chain.

What set me down this new path was a clever product I saw mentioned
in passing in one of the many magazines I slog through each month. I called
the company that makes it and found myself talking to the president. All I
had to do was mention my affiliation with Computer Language and I was
able to extort a free copy out of him. (I'm sure I can phrase that more
graciously, but probably not more honestly.) I can't help but wonder if Al
Capone started out half as easily.

The product is called Nerd Perfect. It's produced by VaporSoft, Inc. (510
S.W. 3rd, Suite 400, Portland OR 97204) and it will set you back $9.95 plus
$1.00 shipping, unless you can convince them that you are one of several
thousand additional reviewers out there itching to give them free publicity.
I also got a free poster of the Super Nerd on the cover of the manual, a $3.50
value to you people who have to pay full freight. (Admittedly, $14.45 ain't
much in the way of extortion, but you have to start somewhere.)

So what is this Nerd Perfect? It's a charming blend of the novel and the
traditional. Vaporware is hardly a new concept. Some of the largest soft­
ware companies have been known to preannounce products by months or
even years. One can't help but suspect that some of these announcements
are merely trial balloons - the software gets produced only if sufficient
interest appears. Meanwhile, the preannouncer has created an anticipation
that often blocks the sale of real products, which never have the yummy
specifications of a product that has faced no real-world compromises.

Nerd Perfect is vaporware to be sure. For your eleven bucks you get a
manual and a 5 1I4-inch diskette. The diskette is not just write protected,
it's not just copy protected, it's also read protected. The folks at VaporSoft

37

38 Programming on Purpose

achieve this triple level of protection by a simple innovation - they supply
no magnetic medium inside the diskette jacket. Here we have vaporware
raised to a new level. Not only do you get no software, the vendor still walks
off with your money.
?11?11.thether VaporSoft gets the last laugh, however, depends upon your
~sense of humor. The manual consists of 35 pages of rambling satire.
The humor is collegiate at best, sophomoric at worst, but it definitely has
its moments. Your cubicle may well benefit from the cover poster with its
stirring motto: "Software Before Its Time." The motto is allegedly trade
marked, as is the name of the product, but you have already heard my
position on promulgating the pigeon droppings that remind you of your
putative duties to the owners of intellectual property. (See Essay 5: Skin
and Bones.) You can at least clock some time at the coffee machine reciting
some of the choicer bits to your peers.

The vendor calls this technology WYGIWYG, for "What You Get is What
You Got." It is a refreshingly honest update of that old Latin standby,
"Caveat Emptor." Either way, they've got your money and you've got what
you've got.

The computer industry has a long tradition of letting the little guys prove
in the innovations. Then the large corporations move in and take over the
marketplace. I can't wait to see what the MBAs and corporate attorneys do
to exploit this concept. Meanwhile, I wish the folks at VaporSoft all the best.
May they never stop reminding us of our foibles.

Honesty compels me, however, to probe a little deeper in this, my first
product review. Surely a comparative study is more revealing than a simple
run-down on just one product in isolation. A novel product like Nerd
Perfect demands to be put in perspective.

But what are the proper products to compare it to? I could stack it up
against the twice-delayed release of Lotus 1-2-3 that is still not available.
Or I could match it spec for spec against the 1,000 products that were
supposed to be available by now for operation under OS/2. Somehow, that
strikes me as being about as honest as debating an empty chair. Vaporware
is a tough beat.

So let's focus instead on the more tangible aspects of Nerd Perfect:
• It supplies a modicum of humor.
• It provides you with an empty diskette jacket.
From that vantage point, two obvious competitors spring to mind:
• A box of 3M diskettes.
• Ventura Publisher 2.0 with Professional Extensions.
Now we can get concrete.

Essay 6 Product Reviews 39

~rst let's look at prices. You already know about the eleven bucks list
,,JJ you have to shell out for Nerd Perfect. I haven't seen it discounted yet,
but give it time to percolate through the channels. Rome wasn't burnt in a
day. The latest box of 3M diskettes I bought has a marked list price of $37.10.
I got it discounted for $17.81, clever shopper that I am. Ventura Publisher
lists for about $895 these days, plus an additional $595 for Professional
Extensions. If you buy it in one of those dress shops in the Fontainbleu Hotel
in Miami Beach, you may pay that much. The rest of us go discount and
slice at least a third off of list. (Too bad I hadn't honed my skills at extortion
earlier. That's still a lot of cabernet sauvignon.)

As with any new technology, we find prices all over the map. You have
to consider, however, the number of manuals and diskette jackets you get
from each vendor. The 3M offering, for example, has no manual (more on
that later), but it does deliver ten high-quality jackets. Ventura Publisher
comes with extensive documentation as well as 22 jackets. So even if you
ignore the manuals, you're looking at:

PRODUCT COST PER JACKET
Nerd Perfect $11.95
3M $ 3.71
Ventura $67.73

Much more sensible.
To make the comparison even more honest, you have to look at what's

involved in getting the same final product. Nerd Perfect requires no addi­
tional work on your part. You get an empty diskette jacket just by breaking
the shrink wrap. (Don't forget to read the licensing terms first.) The other
products make you work. You have to read the license, remove the shrink
wrap, then pull the annoying magnetic medium out of the jacket and
discard it. This is hard for the average consumer to do without wrinkling
the jacket in a most unsatisfactory manner. I trust the folks at 3M and
Ventura will accept this positive criticism in the spirit in which it is intended
and address this problem in future product releases.

I should point out before I go on that all testing for this product review
was performed at Gedanken Laboratories. I favor them because they take
an imaginative approach to difficult testing problems, they give quick
results, and they are cheap. They also have an excellent reputation in the
physics community.
~'(n the humor department, Nerd Perfect has a definite edge. Admittedly,
..Dhumor is a subjective matter. (The letters people write to Computer
Language about "Programming on Purpose" are proof of that.) It's hard in
this case to evade the objective facts, however. First of all, the box of 3M
diskettes comes with no documentation. That eliminates most opportuni­
ties for a bon mot right off the bat. In this era of increasing attention to user
friendliness, you'd think a major vendor like 3M would wise up and

40 Programming on Purpose

produce a proper set of manuals for their product. The possibilities for
humor are endless in a five-foot shelf of documentation for a blank diskette.
I think they're missing a real opportunity here.

As for Ventura, they have certainly provided lots of material. If you like
your humor dry, you'll find any number of passages to chuckle over. I
especially enjoyed the part about installing the extra Bitstream Fontware
for automatic down loading to a PostScript printer. And the description of
frame anchors is still good for a laugh ever since I tried to get Ventura to
do what I wanted at 3 a.m. one morning. In many cases, though, you really
had to be there to appreciate the humor in the text. So I would have to say
that, on balance, Ventura errs too much on the side of trying to convey
information. Some people just can't tell a joke.
A. till another important point of comparison is weight. Nerd Perfect, as
e:vshipped, is 2.5 oz. The box of 3M diskettes is 8.0 oz. Ventura Publisher
weighs in at a hefty 7 lb. That should tell you a lot right there.

If the significance of these numbers is lost on you because you lack the
broad base of experience that we product reviewers have, I will deign to
explain. The weight of a package has an obvious psychological influence,
as has been well known in the proposal-writing business for many years.
Simply put, the heftier the better for maximum impressiveness.

But there are other considerations that can lead to tradeoffs. One consid­
eration often dominated by weight is terminal velocity. Unless the vendor
has chosen a package that looks like a glider (or an Apollo re-entry capsule),
a heavier package will generally fall faster.

That may not matter to you, but it does to some of us. You're probably
still thinking about upgrading to a faster 80286 PC (or a Macintosh SE). We
reviewers are ready to trade up from an 80386 PC (or Mac II) to something
that's really new and fast. And I'll bet you're just getting used to usingFed-X
and other next-day air-delivery services without feeling guilty at the cost.
We reviewers are already pushing the limits of same-day air delivery.

You can see how important it is to keep the terminal velocity of a package
as high as possible for same-day air delivery. Why bother to kick a package
out the bomb bay at 5,000 feet if it's going to flutter slowly to the ground?
That costs you productivity while you sit around waiting for it to hit. You
want something that will really drop, and packaged software vendors had
better wise up to this requirement soon or they're going to be left hanging
in the air. So here are the terminal velocities of our three competitors:

PRODUCT TERMINAL VELOCITY
Nerd Perfect 110 MPH
3M 115 MPH
Ventura 163 MPH

Essay 6 Product Reviews 41

Here, Ventura Publisher has a clear advantage. That's the sort of perform­
ance you can expect from a professional package.

But as I warned above, there can be tradeoffs. Just as important in
delivering a product fast is a factor that we reviewers call splatter radius. On
the face of it, it is an easily understood phenomenon. When the package
arrives at your site via same-day air, it undergoes a rapid deceleration. That
deceleration is invariably accompanied by a rearrangement of the contents
of the package. If you circumscribe a circle around the final distribution of
contents, the radius of that circle is called the splatter radius. (This is a slight
oversimplification, but it will do for the lay reader.)
mssigning a figure of merit to a given splatter radius takes some expertise .
.a.If your goal is to use all of the material from the package at one site,
then you'd like to keep the splatter radius small. If, on the other hand, you
need to distribute empty diskette jackets to the various users connected to
your LAN, then there is a clear advantage to a package that really splatters.
Know your needs and don't be automatically swayed by large splatter
radii. With that in mind, here are the performance figures for the products
under test:

PRODUCT
Nerd Perfect
3M
Ventura

SPLATTER RADIUS
3.7 ft.
1.3 ft.

25.4 ft.

The data indicates that Nerd Perfect out performs 3M in this important
dimension, but don't be fooled. The extra splatter is caused by the manual
- with only one diskette jacket, there is no improvement in jacket distri­
bution throughout a LAN. If anything, spraying the manual across your
front lawn diminishes the humor somewhat. There is a definite loss of con­
tinuity, which can be fatal to many forms of satire.

Again, you can see that Ventura Publisher is in a class by itself. The tests
indicate a most satisfactory spread of diskette jackets. Moreover, the manu­
als became even more amusing to read once their pages were thoroughly
shuffled. If you own a LAN, this might be the solution for you.

So to summarize, each of these products has its individual strengths and
weaknesses. Nerd Perfect does a good job of delivering on its stated
promise. A box of 3M diskettes may not be very entertaining, but it is the
cheapest way to obtain a stack of diskette jackets. And Ventura Publisher
justifies its premium price in several ways. You can even do some pretty
respectable desktop publishing with it, provided you load the software
before you destroy the diskettes. On balance, however, I have to label Nerd
Perfect a Best Buy. (They gave me the largest payoff.) But you can't go
wrong with any of these offerings. It looks like the consumer is the winner.

42 Programming on Purpose

~ espite what you may think after reading the foregoing, I take product
~reviews very seriously. As a product vendor, I awaited each review of
my products with a queasy mixture of fear and anticipation. I am keenly
aware of the influence they have on sales. As a consumer, I lean on them
heavily. This is an important part of the computer software business.

At their best, product reviews serve several noble purposes. They inform
consumers of the broad array of choices that we now enjoy, in a way that
cannot be matched by product announcements and advertisements. Good
reviews can put related products in context and in perspective. They are
free of the hype that perforce accompanies any presentation by vendors of
their own products.

The movie Moscow on the Hudson contains a telling scene. In it, Robin
Williams portrays a Russian defector faced for the first time with an
American supermarket. After years of waiting in endless lines to buy
goods, and having few choices available when he can buy them, Williams
must choose a brand of coffee from a score of offerings. He suffers an
anxiety attack.

I suffer a similar paralysis when I have to buy commercial software or
hardware these days. My natural stinginess rebels at the thought that I
might shell out even $50 for a software package that is not the best possible
choice for my needs. As a result, I skim ads endlessly, in search of the elusive
details that will convince me my money will be well spent. A well crafted
product review, like nothing else, can break my mental log jam and help
me get moving again.

I'm sure that I'm not alone in depending heavily upon product reviews.
And that places a heavy burden of responsibility on the writers of reviews.
A poor review can cost vendors of good products many of the sales that
they deserve. It can also cause many buyers to waste their money on
suboptimal choices. And it tends to weaken everyone's faith in the whole
process. An irresponsible reviewer is a loose cannon on a heaving deck.

I still bristle at the memory of one of the first reviews my company was
subjected to. It was printed ten years ago, by a magazine that is still popular,
authored by a reviewer who is still plying his trade. In that review, he
indulged in a bit of offhand hyperbole. He intimated that the compile time
of a test program on a Z80 was about half an hour, when in fact it was less
than five minutes. For months afterward, potential customers would ask
us why our compiler took half an hour to compile simple programs. We'll
never know how many people just never bothered to call as a result of that
irresponsible remark.

Another major magazine savaged one of our products several years ago.
The reviewer characterized it as "written by sadists for masochists." As the
sadist in question, I couldn't help but take the attack personally. The
reviewer turned a blind eye to all the ways in which the product excelled.

Essay 6 Product Reviews 43

He failed to mention that he had spent an hour on the telephone being
obnoxious and irrational with our most polite and able customer-support
programmer. He (and the magazine) also soft pedaled the fact that he
headed up the users' group for a competing product. That magazine and
that reviewer are also both still in business.
,.n::oortunately, experiences such as these seem to be the exception rather

,,JJ than the rule. When reviews fall short of perfection, the causes are
generally less pathological. In case you missed the point, I have been
parodying the elitism that many veteran reviewers fall into. They lose touch
with the criteria that we mortals apply. Often they fall in love with the latest
and flashiest offerings, and forget to notice that they have little relevance
to the real world. Honesty in a reviewer is paramount, to be sure. Intelli­
gence also helps a lot. But a common-sense perspective is at least as
important as brains in the making of a reviewer that I can depend on.

The last venal sin that I will carp about is being wishy washy. I want my
reviews to arrive at a few simple conclusions. Maybe I won't agree with the
opinions, but if they are accompanied by a brief set of reasons then I can
happily decide for myself. Tables of numbers tell part of the story, but in
the end it is the gestalt that I most depend on a reviewer to supply. If I trust
the reviewer, then I trust that my overall reaction will probably be the same.

So let me end with just the briefest review of the reviewers. PC Magazine
works harder at covering the exploding PC marketplace than any other
magazine that I know of today. I have come to trust them from repeated
personal experience. For the more specialized corners of our trade, I have
a high regard for Computer Language and the other Miller Freeman publica­
tions. (Otherwise, I wouldn't be writing for them all these years.) I have
found them to be consistently honest and meticulous. The various "com­
puter shopper" magazines are a waste of time if you want to study com­
parative anatomy. They owe first allegiance to their advertisers, not their
readers.

If I've left out your favorite source of product reviews, don't treat it as a
slight. There are many good folks out there providing this essential service,
more than I can read and far more than I can mention here. If you find a
source you can trust, stick with it. And tell all your friends. o

mfterword: I can cheerfully report that the hyperbolic reviewer I mentioned in
~this essay has cleaned up his act. I now read his advice with (sometimes
grudging) respect. Even more cheerfully, I can report that the magazine that
savaged my company's product is no longer in business. If the reviewer himself is
still writing for the magazines, I haven't noticed his presence lately. All changes
for the good, in my opinion.

7 Awaiting Reply

.1flltY college roommate was a slob. At least by my standards he was. He
.JrVlcould live for weeks in a dorm room paved with laundry, decaying
through various stages from unused to unredeemable. He viewed waste
baskets more as targets than as repositories. He made his bed every time
his parents came to visit.

Pete's minimalist approach to housekeeping was awe inspiring. (He is
the only person I know who can wash dishes without getting his hands
wet. Think about it.) When it was his tum to straighten up, he believed
firmly in objective specifications. He would preselect a vantage point,
usually somewhere near the door. Then he would pick up, dust off, or
rearrange as little as possible to set the scene. Once the room looked neat
from his preselected vantage point, he defined the room as clean.

On the other hand, he almost invariably got better grades than I did.
True, he is somewhat smarter than I am, but he was also much better
organized. Pete knew just where to expend energy on organizing his notes,
or his reading, or his experiments, so that he could indulge in a physics
major at Princeton with a minimum of effort. I didn't like his strategy as
applied to keeping our shared space clean, but I had to admit its superiority
in the paper chase.

You see, as fastidious as I fancied myself when it came to housekeeping,
in most other ways I was a slob. My first few years as a programmer, in
FORTRAN and assembly language at that, forced me to develop tidier work
habits. It was that or perish. Only after I drifted into the world of business,
and became willy nilly an entrepreneur, did I let my creeping neatness spill
over into my daily record keeping.

I learned to write notes to myself and leave them in places where I would
trip over them in time. I used my physicist's training at making first-order
estimates to anticipate cash-flow problems and to plan for taxes. I even
learned to outline documents before I started writing, just like they teach
in junior high school. In short, I developed the knack for looking organized
from a preselected vantage point with the exertion of a minimum of effort.

Somewhat later in life, I learned another Great Truth. We are all slobs
when you get right down to it. Those people who appear superbly organ­
ized and make us all feel bad about ourselves either are more adept at
faking it or are so insecure they waste effort looking organized when
nobody's watching.

45

46 Programming on Purpose

(There may be exceptions to this general rule. One of my classmates at
Princeton was one William Warren Bradley, a.k.a. Basketball Bill, or more
recently Senator Bill Bradley, (0) New Jersey. He used to play superb
basketball, get good grades, and teach Sunday school. If he was faking it,
he sure had a lot of us fooled. I have to say the same for the likes of Ken
Thompson and Dennis Ritchie as well.)
11rhe basic message of this Great Truth is that you don't have to overhaul
'L!lyourself completely to be more effective at getting things done. You just
have to learn where to expend that minimum extra effort to up your
efficiency in the areas that really count. The rest of the time you can continue
being the good-natured slob you've always been.

One of the small tricks that I still use is to carry around half a dozen files
in my briefcase. Every bill, every letter to write, every item to file perma­
nently goes in one of those files. Quickly, before it gets lost. Periodically, I
know to go through the files and pay bills, write letters, and get caught up
on filing. A little time spent daily filtering mail and phone messages lets me
be a lot lazier and still look organized.

My favorite file in this collection is the one marked Awaiting Reply.
That's where I put a copy of any correspondence that requires an answer
before I can lay the matter permanently to rest. Putting something in that
file gives me the same sense of satisfaction you get when you lob the ball
back over the net in tennis. You've demonstrated that you're still in the
game and you've got a brief respite while the other person has to take
action. This indoor version of tennis is otherwise known as passing the buck.

Most of the time, items stay in Awaiting Reply for a matter of a few days
to a week or so. I usually truck around half a dozen to a dozen items at any
one time, but the population changes continually. Some items, however,
find their way into that folder and stick there for months at a time. When
that happens, it almost invariably signals that the other player has dropped
the ball. And when repeated reminders fail to dislodge an item from this
folder, I know I have run afoul of a fellow slob who has not learned where
to expend energy wisely.

Let me treat you to some of the items currently yellowing in my Awaiting
Reply folder. I think they provide an illustrative cross section of the state of
our industry. Since I am in a nasty mood, I will name names.
~rst we have the bingo-card black hole. Months ago I circled a bingo

,..}} card requesting additional information about an ASCII to PostScript
translator called Trading Post and a LaserJet gray-scale conversion package
called Visual Edge. Nothing.

Now I know that bingo card processing takes time. The magazine wants
to add your name and profile to its mailing list, since it makes good money
peddling extracts from that list to various junk-mail generators. Then the

Essay 7 Awaiting Reply 47

labels go from magazine to vendor, who may choose to rekey the data for
other nefarious purposes.

Eventually, however, someone should stuff relevant literature into an
envelope and send it your way. If the vendor is sufficiently aggressive, you
might even get telemarketed to qualify your level of interest and ability to
fork over serious money. If you don't get any sort of contact within a couple
of months, that tells you either that someone lost your name along the way
or the vendor was just not prepared to pursue the leads generated by the
ad you read.

Since I've long since received replies from contemporaneous bingo
queries, I have to assume that the magazine is not at fault. It does not raise
my faith in either of these companies that they cannot pursue a serious lead.
If their sales effort is disorganized, what does that suggest about product
support? Or even the original product engineering?

I confess that in the early days of running my company I let us get caught
out more than once. We'd run an ad, then suddenly find ourselves awash
with bingo card replies and no promotionals to send out. (In our earliest
days, we were foolish enough to disdain reader service numbers. We felt
that responding to bingo cards was a nuisance!) I have since learned to plan
the promotionals at the same time as the ads, so everything is ready when
needed.

As for the two requests for information that are still unfulfilled, I can't
say who is to blame for the lapses or what caused them. I can only suspect
that both vendors dropped the ball. Maybe I've got the wrong impression
in either or both of these cases. But in this competitive marketplace, the
onus is on the vendor not to let that happen. I can just go to another supplier,
instead of just sitting around awaiting reply.
mnother item in my folder is a note that I ordered a $50 software product
~called Axe from an outfit in Wayne, New York. It's supposed to do a
nifty job of compressing your . COM files, to save disk space on your laptop.
Zipadeedoodah. It could be that the order got lost along the way. If it got
lost inside their order-processing department, I'm not excited about ever
getting the product, for the reasons cited above. It could also be that the
order is held up awaiting "a few software improvements."

Again speaking from experience, I can report that few internal tensions
are worse in a company than that between sales and marketing, who have
orders piling up, and development, who must make packages that won't
get kicked back by irate customers. Sometimes you start advertising a
product when it is "almost debugged." Come scheduled ship date, you're
still shaking out bugs one at a time. Other times you ship a package for
awhile, then get a report of a truly serious flaw. Schedules go to hell while
you scurry to repair, repackage, and reship.

48 Programming on Purpose

One of the hardest things for a salesperson to do is tell a customer that
an order is in limbo for some unspecified time. Every conversation is an
opportunity for the customer to cancel and go elsewhere. That's why you,
as a customer, suddenly find your correspondence and phone calls going
unanswered by the folks who normally love to talk your ear off. You sit
around awaiting reply.

I don't know whether this is the case with my . COM compressor. I can
only guess. I don't hear anything from the vendor.
~ext we have two examples of what you might call "Holy Grail-itis." I
~have been trying for half a year to refit my Compaq DeskPro with a
high-resolution screen and driver board. I want something that will ease
operations with Ventura Publisher and be standard enough to work with
newer graphics-oriented software packages. Every time I think I've covered
all the bases with a given product, I discover one or two flaws. Were the
marketplace less active, I probably would have picked something good
enough months ago and settled for it. But since every feature I want is in
some product out there, it's hard to resist shopping until all the good
features come together in one place.

For that reason, I have interrupts pending for information on the newest
video board from STP and the newest display from Microvitec. It is now
well past the time when each of these enterprises assured me that their
latest and greatest enhancements would be available, deftly sweeping
away my remaining objections to purchasing their products.

As annoyed as I am for being strung along, I can sympathize to some
extent. Sales people know that they can fill twice as many orders if only
development would add a small list of enhancements. Developers wince
at the length of the laundry list you get when you merge the wishes of as
few as three different sales people. Doesn't anybody appreciate the need
for design tradeoffs? Do you know how much this thing would weigh (or
cost, or sprawl) if we put all that stuff in? Doesn't anybody want to buy
what we've got, to subsidize making the next version?

All a poor salesperson can do with a customer like me is to hint darkly
that the Next Release will have what I want. (Next Release is salesperson
talk for Holy Grail.) When pressed for a date, a salesperson will quote the
most optimistic date that can sustain a third-party audit, holding the phone
with all fingers crossed. That leaves me sitting at home awaiting reply.
mnother form of the Holy Grail is the preannounced product. There's this
.a.wonderful board called the Complete Communicator which is sup­
posed to do triple duty as a fax board, a 2400-baud modem, and a voice
messager. Only trouble is, it seems never to be quite ready to ship. I ask for
technical details and I get glossies. (Wake up, America! You don't sell to us
techies with pretty pictures and punchy prose. Give us numbers and specs
every day. Either it sells itself or you're out of luck.)

Essay 7 Awaiting Reply 49

Still, the product looks good. And it looks like it can fill a real need that
I have and that I share with a number of my friends. I'd love to kick the
tires, or at least have more fine print to read.

What worries me is that one of my calls to a distributor inadvertently
got routed to an honest man. He told me that the product was aggressively
preannounced. All he could do was feed me glittering generalities and take
my name for future reference. That's all anyone else has done, but they
haven't been nearly as forthcoming as my one refreshingly frank contact.
Mostly I sit around (you guessed it) awaiting reply.
7(am writing this essay on my latest toy, a Compaq SLT /286. It does just
.:Dwhat Compaq advertises, I'm very happy with it, and I even got it at a
good price. What it has cost me in place of money is aggravation.

I bought the laptop from an outfit called RP Systems in Oak Brook,
Illinois. Let me say up front that their prices are wonderful, their people
polite if harried, and their support all I could ask for. I did something
colossally stupid with the 5 1I4-inch add-on drive, shipped it back to them,
had them sort out my stupidity, and ship it back to me. The whole process
took less than a week, they paid the shipping back to me, and they resisted
the temptation to point out what a twit I was. Good service.

What keeps them languishing in my Awaiting Reply folder is the one­
megabyte add-in board that I ordered with the machine, lo these many
months ago. My impression is that this outfit started out on a shoestring,
like so many mail-order houses, and is growing slightly out of control. They
take orders for items that have never graced their shelves, then wait for
them to come dribbling in from Compaq or other suppliers. As the items
come in, the shipping folks hurriedly stuff them into baggies and boxes and
send them on to impatient customers.

Because they can't afford an inventory, and because they evidently have
zero clout with Compaq, RP Systems has been consistently unable to quote
me honest delivery dates. They promise to call me with updates, but the
calls only come when they have something to ship. I can understand that
they're afraid I'll cancel. I just wish they would understand that I would
much rather have an honest, pessimistic estimate than a dishonest, opti­
mistic one. That way, I don't sit around awaiting reply.
7(end this list with the prize gem in my collection. Many months ago I
..lltook delivery of a high-resolution monitor and board from an outfit
called Elite Business Systems in Philadelphia, Pennsylvania. They prom­
ised super performance with Ventura Publisher for a mere $1,700. Satisfac­
tion guaranteed or your money back.

Well, I got the thing and worked with it for several weeks. Mostly, it did
what they said. It annoyed me that the driver board would not coexist with
my EGA color board. (The Next Release is supposed to fix that.) I had some

so Programming on Purpose

problems with display fonts not reflecting reality closely enough to support
on-screen text editing. They tried hard to make things better by shipping
me replacement fonts.

In the end, I decided that, good as it was, it got in my way too much to
use every day. So I called up Elite, eventually got someone to agree to accept
the return, and sent it back. The only problem is, they forgot to refund my
money.

Now in case there is any doubt, I regard $1,700 as a serious amount of
money. I have tried polite letters, firm letters, and nasty letters. No answer.
The poor women who must answer the phone at Elite can only report that
"everyone is out of the office right now." No one ever returns my phone
calls. I am too pigheaded to let this matter drop, so I will keep escalating
until I get satisfaction. That obviously involves throwing good time and
money after bad.

In my latest letter to the ephemeral president of Elite, I said, "I suspect
you are a typical small hardware company struggling with tight cash flow
and an excess of competition. As the former owner of a small company, I
can sympathize with your problems. I cannot, however, sympathize with
your tactic of failing to honor your business debts."

The hardest thing in the world is to return a phone call to someone who
is angry at you. It is particularly hard when you know you're in the wrong
and fear that you cannot do anything to dispel that anger. What you have
to learn is that not talking to angry customers is even worse. They can only
assume the worst and get progressively madder. The one thing worse than
an angry customer is an irrational angry customer.

I have learned to force myself to make those calls. There's a moral
advantage in being the one to initiate the contact. And there's a tremendous
sense of relief when you've finally laid all the cards on the table and can
get on to working out a resolution, however uncomfortable that resolution
may be. If you are indeed programming on purpose then you have custom­
ers. They may pay you in brownie points, internal funny money, or hard
cash, but you have customers. Dealing with limited resources and dealing
with irate customers both come with the territory. Get used to it.
r.;irs for your role as customer, let caveat emptor be your guide. I used to buy
.:cl.all my cameras from those Manhattan mail order houses. One of them
once charged me over $200 for a camera they failed to ship. I never did get
them to pay me back. I used to buy duty-free liquor whenever I flew home
from overseas. A Winnipeg duty-free shop once failed to put my $40 worth
of booze on the plane. Never convinced them to reimburse me. Those two
failures obliterated most or all of the savings I had accrued to date by
buying discount. I now buy much more from local merchants. It's often
worth the markup to have a shin to kick.

Essay 7 Awaiting Reply 51

I thought I had learned my lesson, but I guess not. Mr. President of Elite
Business Systems, I am still awaiting your reply.

This column is not meant to be a diatribe against all the people who have
caused me grief lately (at least not completely). Its purpose is to illustrate
all the ways that you as a supplier of services can leave potential customers
in the lurch. As tempting as it is to avoid the unpleasant, you must learn to
make that extra effort to respond. Otherwise, you lose your customers. With
customers, you can afford to spend most of the day being the lazy slob you
want to be. Without customers, you may have to really get organized. o

mfterword: I got my money back from Elite. Shortly thereafter, they stopped
~advertising under that name, but I suspect they popped up in another guise.
RP Systems also went bust. Even more revealing, I'm not using any of the products
I was pursuing when I wrote this essay. Somehow others convinced me, by being
more responsive, to buy from them instead. I was in a bitchy mood when I wrote
this essay, but somehow I managed to deliver an important message along the way.

8 Soup or Art?

1'{ was going to stay away from "look and feel" and the whole issue of
.J.f software protection for awhile. I have already devoted several essays to
the subject. (See Essay 3: Protecting Intellectual Property, Essay 4: What
and How, and Essay 5: Skin and Bones.) The big lawsuits started by Apple
and Lotus are still working their way through the courts. Since what the
judges perceive is far more important than my myopic viewpoint, it ap­
peared most seemly to wait until I could second guess my betters.

Unfortunately, stuff keeps happening. (I believe there is a popular
bumper sticker that makes the same observation, albeit with more vulgar
and direct language.) Several recent experiences have got me thinking on
this subject again. You should know by now that the inevitable consequence
is that you get treated to another 3,000-word essay on the topic.

The fundamental issues currently being debated are highlighted beau­
tifully by Lily Tomlin in her one-woman play, The Search for Signs of
Intelligent Life in the Universe. You might find more accessible the book of
the same title by the playwright, Jane Wagner (Wag86). It begins with the
bag lady Trudy describing her conversations with extraterrestrials:

We think so different.
They find it hard to grasp some things that come easy to us, because they simply

don't have our frame of reference. I show 'em this can of Campbell's tomato soup.
I say, "This is soup." Then I show' em a picture of Andy Warhol's painting of a can
of Campbell's tomato soup. I say, "This is art."

"This is soup.
"And this is art."
Then I shuffle the two behind my back.
Now what is this?
No, this is soup and this is art!
The parallels with our business are staggering. Have you ever tried to

get a lawyer or judge to understand the distinction between software
specification and implementation? It's like trying to get an extraterrestrial
to distinguish between soup and art. It's not that they're stupid or they
don't try. They just think so different.

Fictitious aliens generally come equipped with fictitious death rays.
They can zap you because of a silly misunderstanding. Unfortunately,

53

54 Programming on Purpose

real-world judges come equipped with real-world powers. They can zap
our industry if they misunderstand the issues.

Soup versus art is a recurring theme throughout Wagner's play. I believe
she is emphasizing that art is nourishment to the spirit, just as vital as the
soup we eat to nourish our bodies. While I agree wholeheartedly, that is not
part of the parallelism that I celebrate here. I also won't disclose the
charming way she has Lily Tomlin return to the theme to wrap up the play.
Go see it, or at least read the book.
?11?1\t hat I want to focus on is the relative importance of protecting soup
~versus art. Commercial food recipes are traditionally kept secret.
Should you get your hands on a copy of the recipe, you cannot sell copies
of it without risking trade-secret violations or copyright infringement.
Should you reverse engineer the contents of a can of fish soup, however,
nothing prevents you from selling the same mix of ingredients. Soup, being
"usable," is not a mode of expression that can be protected by copyright.

Paint a picture of a can of soup and you have a different kettle of fish, as
it were. Aside from the fact that it is not very usable for physical nourish­
ment, it is also arguably a work of art. Andy Warhol managed to convince
a number of people of this premise, at least. Should someone stuff your
picture through a copier, you can demand a royalty on any sale of the
copies. Should someone paint a similar picture, you have a case that the
work is a derivative of yours.

Someone can even contrive to make your picture "usable," by making a
window shade out of it, for instance. You still have a protected work of art,
however, because it can be admired independent of its function.

Most judges eat soup, admire art, and appreciate the distinctions be­
tween the two as expressed by centuries of copyright law. They understand,
in fact, that there is a continuum of works protectable by copyright. At one
extreme there are purely aesthetic works, such as pictures of saints and
soup cans. At the other there are fairly functional writings, such as engi­
neering drawings and recipes for soup.

While the whole spectrum is protected, functional writings enjoy con­
siderably less protection under copyright law than aesthetic works. Since
the law does not protect the machine represented by the drawing, or the
soup represented by the recipe, all it can cover is the unique expression
captured in the functional writing. Many people could generate almost
identical drawings or recipes in their zeal to describe the underlying
function. So unless you can demonstrate that another drawing or recipe
contains gratuitous detail that is also identical, you have a hard case
claiming infringement of your copyright.

Fewer judges write software, design it, or appreciate the goals sought
when Congress explicitly spelled out copyright protection for software

Essay 8 Soup or Art? 55

only a decade ago. Just where software belongs on the continuum of
protections is critical to determining what constitutes infringement when
you reimplement someone else's highly successful product. If the courts
broaden the current notions about what constitutes infringement, we'll all
have to be much more careful.
A. o the question is, does a piece of executable software constitute a
~functional writing that captures an underlying unprotected set of
concepts, and hence is protected only against fairly flagrant copying? Or is
it an aesthetic expression that demands broad protections? Is a software
concept soup, or is it art?

You'd think that the very use of the word "concept" would end the
debate. Copyright law has long been clear that you cannot protect a
concept, only a particular expression of the concept. Unfortunately, some
courts have been known to judge infringement of aesthetic works based on
similarity of "total concept and feel."

For an excellent discussion of this and other topics in this essay, see
Pamela Samuelson's CACM article "Why the Look and Feel of Software
User Interfaces Should Not Be Protected by Copyright Law" (Sam89). I am
endeavoring to paraphrase some of what she says, but please remember
that she is a lawyer and I am not. (I don't know law, but I know what I like.)
Go read her article if you want to get the uncorrupted version.

Anyway, Samuelson cites a case in which McDonald's was taken to task
for creating advertising characters that bore a strong resemblance to those
from H.R. Puf'n'stuf. The court chose not to confine the comparison to the
usual analytic dissection of similarities and differences. It went on to judge
whether the total concept and feel were substantially similar, irrespective
of details. Moreover, the established pattern in such matters has been to let
experts do the dissection, but to rely on the untrained impressions of judges
or jurors to decide similarity of total concept and feel.

I should emphasize that total concept and feel have not been recognized
by all of the different courts in the U.S. Nor has it been applied to any cases
except those involving aesthetic works. Nevertheless, there are those who
are eager to stretch such notions to broaden the copyright protections
extended to computer software.

mn important first step in this direction was taken by Jack Russo and
~Doug Derwin in 1985. These two lawyers introduced the concept of look
and feel, which avoids the dirty word "concept" while embracing the same
goals. In doing so, they made a case for extending copyright protection to
the user interface of a piece of software.

Look and feel does not cover just the aesthetics of how a screen is drawn.
It also involves the patterns of interaction that the software supports and
the underlying conventions that encourage those patterns of interaction. In

56 Programming on Purpose

other words, it covers the very things that everyone wants to knock off
when they run across a very successful software product.

If you are the author of the successful software product, you under­
standably want all the protection you can get. Often, a large part of your
value added is discovering what patterns of interaction help people make
best use of the functionality the program provides. It is noticeably easier to
reimplement (and improve on) an existing success than to achieve success
in a new area. As someone who has reimplemented other folks' designs,
and seen my own reimplemented in turn, I sympathize with the desire to
control a market long enough to get a good return on investment.

There is a fundamental problem with protecting look and feel, however.
How do you separate out your innovations from those you inherited from
others? Apple benefited from work done at Xerox, and Lotus benefited
from Visicalc. Even if these two beneficiaries have obtained clear rights to
the obvious key concepts (and there is evidence that each has), both have
also profited from many other sources as well. We all have, each and every
one of us who has produced a commercial software product in the past
twenty years.

If either Apple or Lotus prevails in their current legal efforts to protect
look and feel, the courts will have opened Pandora's box. I can't imagine
how a ruling can extend copyright protection to look and feel without
leaving most of the industry wide open to claims of infringement from
owners of older software products. And you can bet that Apple and Lotus
will be prime targets for such legal aftershocks. Being zapped by a death
ray might be pleasant by comparison.
A. amuelson apparently regrets that software was ever subsumed under
eg1copyright law. She rightly observes that copyright protection, by its
very nature, discourages the adoption of the kind of standards that soft­
ware needs to improve usability. It forces each author to find a different
way of expressing the same old concept. She points out that patent law is
better equipped to deal not only with technology, but with technology that
is continually enhanced by incremental improvements on existing pro­
tected works. And mostly I agree with her.

I lack Samuelson's faith, however, that software patents will be adjudi­
cated any better than software copyrights. The trade press lately has been
filled with reports of patents granted to companies for software concepts
that many of us consider less inventive than does the patent office. Maybe
the lucky patent recipients can collect some license fees until some company
big enough and persistent enough can prove in court that the key concepts
exist in prior art. Meanwhile, the patent grants just make everyone run a
little scared. I favor the patent court's earlier reluctance to issue software
patents, on the grounds that most software innovations are largely (unpat­
entable) mathematical concepts.

Essay 8 Soup or Art? 57

On the other hand, I feel that copyright protection is exactly appropriate
for computer software. That's assuming that software has much more the
status of functional writing than an aesthetic work. I wince when I see my
clever programs reimplemented by a competitor. But to me, that's what
competition in the high-tech business is all about. I scream in righteous
indignation only when I see someone copy my source or binary verbatim,
or perform just a simple obscuring translation on the code. That is where
(and only where) I look to the law for protection.

But then, what do I know? Most of my encounters with the court system
have ended up with me on the side that did not prevail. (Think about that
before you ask me to testify as an expert witness. And never get in line
behind me at a bank or a toll booth. I guess wrong there, too.) As I said
earlier, albeit parenthetically, I don't know the law, but I know what I like.

More precisely, I think I know what the industry needs and doesn't need.
It does not need to have a dozen big software companies get a lock on the
look and feel of most popular applications. It does not need to have every
would-be software startup merge with a law firm out of self defense. It
needs protection from obvious rip-offs and encouragement to develop
broader standards for interacting with computers.

We must not let people pretend that an accumulation of software con­
cepts constitutes some form of art, so that it can be locked up in a private
collection. This stuff is soup and we all need to be nourished by it.
?11?11that makes it soup, to me at least, is a fundamental concept that has
~come to be called drivability. For an automobile, the term is fairly
obvious. It refers to those features that must be common to all cars so that
a typical driver can operate it safely without retraining. All cars have
steering wheels placed in front of a seated driver. They rotate clockwise to
turn the car to the right. The driver's right foot falls naturally on the
accelerator, with the brake to its left. Once you learn how to drive one car,
you can drive many others without conscious thought.

Some items affect drivability only marginally. You may have to grapple
for the headlight switch on a rental car. You may have some trouble finding
the wiper control. And some items are downright arbitrary, or even aes­
thetic. You may not like the location of the hood release, or the shape of the
horn buttons, but neither is likely to interfere severely with your ability to
drive the car safely.

You can bet that the first automobiles were not drivable by such univer­
sal rules. It took the industry awhile to standardize on steering wheels and
pedal placement. Even today we still see two major standards for pedals,
one for automatic transmissions and one for stick shift. And you may well
need special training before you drive a large truck or bus. Nevertheless,
standardization is the rule more than the exception. It is a critical ingredient
in the success of the automobile industry.

58 Programming on Purpose

An obvious analog in the world of computers is keyboard layout. The
world has standardized on the familiar QWERTY layout, even though the
engineering reasons that led to its creation have long been subverted by
other considerations. An occasional die-hard will still put forth a Dvorak
keyboard, which sells mostly to other die-hards. A few more produce cheap
or tiny keyboards in pure alphabetical order. All of the variants destroy the
ability of a trained typist to "drive" the keyboard, reducing everyone to the
same slow hunt-and-peck strategy of the untrained. (I personally yearn for
the day when the brackets, backslash, and a few other nomadic keys settle
down and take up farming as well.)

One of the significant successes of the Macintosh, of course, was the
greater attention paid to the drivability of all its applications. The uniform
use of the mouse for pointing, with pull-down menus and icons to click on,
has helped many a beginner or casual user past the usual hurdles involved
in getting started with software. It would be a shame, in fact, if the lessons
learned at Xerox and Apple cannot be used to make all computers more
drivable by the public at large.

Drivability issues abound in computer software these days. How do you
navigate about a spreadsheet? Is there any compelling reason to do it
different than Lotus does it? How do you manipulate the objects in a
drawing program? Can you beat pointing and dragging with a mouse?
Why not let everyone standardize on the same conventions for climbing
over menus?
?IJ?llthat is at stake here is the whole business of computer literacy.
~Literacy comprises a whole collection of common skills and shared
meanings. Where you don't have literacy you need experts. And where you
have a shortage of experts you have stunted growth.

I believe it was R.W. Hamming who used to lecture anyone who would
listen about the days of scriveners and reckoners. Before there was univer­
sal literacy you wrote a letter by dictating it to a scrivener (for a fee,
naturally). When you got an answer, you took that to the scrivener as well
to get it read to you (for another fee). Similarly, you depended upon
reckoners to do hairy calculations such as dividing up a crop into seventeen
equal parts.

When the need for scriveners and reckoners became too widespread,
society discovered the wisdom of teaching reading, 'riting, and 'rithmetic
to all and sundry. That permitted most people to serve as their own
scriveners and reckoners most of the time. It did not eliminate those
professions completely. It simply elevated the level of competence needed
to ply those particular trades. Today, we call such people copy writers and
CPAs (among other things).

The same thing happened with postilions and chauffeurs at the turn of
the century. The gasoline-powered automobile with electric self starter

Essay 8 Soup or Art? 59

eliminated the need for such employees among a large class of people. They
learned to perform the functions for themselves. Today most chauffeurs
drive taxis and buses. But they're still around. Meanwhile, the rest of us
have learned all sorts of things about traffic signals, self-serve gas stations,
reading road maps, and so on and so on. Just try listing all of the synonyms
you know for "automobile" and you'll see how much transportation cul­
ture you've absorbed.

The same thing happened with telephones. When the need for operators
began to exceed the supply, along came the automatic central office. We still
have lots of operators, but not nearly the astronomical number predicted
early in the century. And we can all talk knowingly about dial tones, area
codes, toll calls, and other arcana once understood only by an inner circle.

With computers we are still in the phase oflearning what makes software
more drivable. We are still lamenting the shortage of experts who can
master the arcane skills needed to drive unwieldy code. We are still making
dire predictions of the effect of such shortages on various important parts
of our society.

This is hardly the time to begin stifling standardization. Or innovation.
I believe that any company that pushes for control of a good user interface
convention is being extremely short sighted. On the other hand, American
business has demonstrated itself to be progressively more short sighted.
All that counts is what maximizes profitability in the next six months. We
can hardly expect individual businesses to be sufficiently altruistic, or even
sensible, to work toward the common goal of making computers more
widely usable.

That's why it's particularly critical that the courts understand the issues
involved in protecting computer software. They need to know how to
distinguish soup from art in our very technical field. Otherwise, they can
zap our ability to make soup. And without soup, there can be no art. o

t?rfterword: The jury is still out on the protection of look and feel, as I mentioned
.a.in conjunction with the earlier essays on this topic. For that reason, I hope the
points I raise in this essay get a hearing. We in the software business have to help
the courts understand where software lies along various axes - practical to
theoretical, mechanical to aesthetic. Until we accrete a fabric of sensible rulings,
we face altogether too much excitement with each lawsuit.

9 The Seven Warning Signs

7{\ow do you know when you're being had? Sometimes it's pretty obvi­
R ous. The software you want to buy has wonderful specs, but the vendor
refuses to give you a demo. And the technical literature isn't back from the
printers. And all the satisfied customers insist on remaining confidential.

Sales and marketing types have only a few stale techniques like these to
fall back on if they know the product is not up to snuff. All of these
techniques are based on a theorem first enunciated by P.T. Barnum: "The
flux density of credulous customers corresponds to a time-averaged crea­
tion rate of 1I60 per second." (He put it more bluntly, as I recall, but it
sounds more elegant this way.)

Technical types have greater resources to draw upon, however. Wrapped
in a cloak of innocent sincerity, they can tell a tale with a straight face that
even a retread appliance salesman would blush to emulate. They can pull
it off because they have already sold themselves on the wonders of the
technology they have chosen to flog. Whether it is a software package, a
programming language, or a new coding aid, you can bet that some techies
somewhere will fall in love with it to the exclusion of all reason.

The human mind is truly marvelous. It seems that the more highly
trained you are in cold logic and reason, the easier you succumb to emotion
when logic yields only gray answers. This is the basis of yet another
theorem, of uncertain authorship - "The fewer clear facts you have in
support of an opinion, the stronger your emotional attachment to that
opinion."

I touched on this phenomenon at the end of one of my April Fool's essay.
(See my essay, "Programming on Purpose: The (Almost) Right Stuff,"
Computer Language, April 1989.) Proponents of object-oriented program­
ming tend to repeat several pronunciamentos when pushed for confirming
evidence that their discipline will massively revolutionize computer pro­
gramming. I gave three quick examples, almost in passing.

That got me to thinking about other rationalizations I have seen techies
fall back on in defending their latest religious conversions. I confess to
having used most of them myself, back when I was less cynical and less
humble. With a little soul searching, I was able to come up with an
additional four perceptual lapses to which it is all too easy to fall prey. That
makes a round seven stock defenses for positions that cannot be absolutely
defended.

61

62 Programming on Purpose

As a public service, I happily share those seven mind benders. The next
time you hear one beamed your way, you should know to crank up your
defenses. It should warn you that someone has chosen to substitute an
excess of emotion for an insufficiency of reason. Remember that your
priorities may vary from those of the speaker, and that you are being sold
in the guise of being informed.
11rhe first warning sign is the "bear with me" defense. The speaker
\Ll.lexplains to you patiently that the technology is incredibly new. It's
going to take you av:hile just to absorb all the facts, then a bit longer to learn
how to think in new ways. But you needn't worry, because the payoff for
scaling the steep learning curve will be a dramatic improvement in your
productivity. Eventually.

I once visited a startup software company that was preparing to revolu­
tionize the process of developing computer programs. Don't ask me to tell
you their plans, though. For one thing, I was acting under a nondisclosure
agreement. If they tum out to be right, I don't want to be sued by anyone
who can afford to pay high-class lawyers. For another thing, I had a lot of
trouble understanding what they were saying.

The principals in this startup company kept reassuring me that I could
grasp the profundity of their approach with enough study. I was (and
remain) less sanguine. What fueled my doubts was that they themselves
were not using their beautiful new system to design the complex software
they were planning to sell to support the new approach. You see, it's kind
of complicated to apply to simple problems. (The simple problem in
question was weighing in at 100,000 lines of C++ code.)

On the other hand, none of the first fifty-odd programmers whom I saw
switch to UNIX did so because he or she was forced to do so. Each found a
number of simple jobs that were easier to get done in the UNIX environ­
ment and so switched over voluntarily. I saw people switch from FOR­
TRAN and assembly language to Pascal and C for much the same reasons.
You get feedback that is both positive and immediate in trying new tech­
nology that is good.

Brian Kernighan taught me to appreciate the need for giving potential
customers quick rewards. He has a particular gift for implementing the
most useful part of a complex system first. (His successes include the
RATFOR language and the eqn and pie typesetting preprocessors.) With
guidance from early satisfied customers, he then knows where to spend his
time adding complexity. As a result, his products tend to be highly usable
and remarkably simple.

I have learned to be suspicious of any technology that you can't ease into
a bit at a time. If the "gulp factor" is too large, I despair of finding the time
to gamble on an uncertain payoff. I also sympathize with cautious manag­
ers who refuse to risk projects and/ or budgets on technology with a large

Essay 9 The Seven Warning Signs 63

front-loaded cost. Keep that in mind when you're busy adding whistles and
bells to your latest product. You may be pricing yourself out of the market.
m variation on "bear with me" is "beware of old dogs." The enthusiast
.a.explains that the approach is so new, all you old timers are going to have
to unlearn a lifetime of bad habits. If you present the same material to
novices, they grasp the essence right away. That shows you how much more
natural this new stuff is, and how ossified you have become. Baloney.

If I have learned one thing over the years, it is that programming is a
nontrivial skill that must be learned. Like skiing, none of us is born with all
the right reflexes for performing this somewhat unnatural act. Anyone who
has had career successes as a professional programmer has skills that are
not to be taken lightly. They are going to make a difference on the next
project that requires computer programming.

If I have learned two things over the years, the second is that all
programming has much in common. Whether you code in 8086 assembly
language, Lisp, or Ada, you must express flow of control and operations
on data with no small amount of precision. I have seen systems that try
(and fail) to disguise the programming process behind helpful menus and
lots of narrative description. When the statement of work gets complex
enough, however, it takes a programmer to get it right.

The argument that a novice has an advantage in any sort of program­
ming task just doesn't hold water. It is true that an intelligent novice can do
better than an incompetent person working as a programmer. It is also true
that a novice is more likely to replicate the simple examples that work right,
rather than stress the edges the way we programmers do almost reflexively.
You'd better not gamble the success of your next project, however, on
innocence unchained.

What I usually find when I hear the old dogs being put down is quite
the opposite. Novices are easily snowed. They lack the experience to know
what is inherited technology and what is new and untried. They believe
the enthusiasts when they're told how much better the world just became.
Experienced programmers, on the other hand, home in on the weak spots.
They know where to be suspicious and where to tread carefully. If that
slows them down, then it should. I shouldn't have to remind you of the
theorem about the relative velocities of fools and fearful angels.
11rhen there's the "wrong problem" defense. You ask the enthusiast how
"1.tto perform some pedestrian operation that no longer looks so pedes­
trian. The enthusiast replies, "That's the wrong problem to address at this
point. You want to look at the world entirely differently now." The English
translation is, "You're right. My approach can't deal with that problem. But
if you just content yourself with solving a loosely related problem instead,
or if you'll buy this ornate circumlocution in place of the obvious solution,
then I can still sell you something."

64 Programming on Purpose

Back when software developers were so scarce they could call the tune,
you had to listen to this song and dance all too often. But now that most
good packages have several competitors, you can just keep shopping
around. Eventually you will find some vendor hungry enough to want to
solve your problem. You don't need to be told that you don't have the
problem you clearly have.

The obvious example that springs to mind is programming in C on the
Intel 8086 family. Those of us who wrote the first C compilers were appalled
at the problems presented by this chip family. For a succinct discussion of
those problems, see my Computer Language article "Son of PC Meets the C
Monster" (Pla87). All we wanted to do was compile C for what is now called
the "small" memory model. Function and data pointers are then all 16-bit
entities, the compiled code is reasonably efficient, and you avoid all the
nonsense involved in juggling segment registers.

Customers, however, wanted to write programs bigger than 64 kilobytes
worth of code plus an equal amount of data. Even if the code got twice as
big and ran half as fast, they wanted to manipulate an arbitrary number of
64-kilobyte segments, not just two. So we vendors swallowed our bile and
gave 'em what they asked for.

Then they came back and asked for pointers of different sizes in the same
module. We swallowed even harder, muttered a few laments about the
dying Spirit of C, and complied again. Never mind that any C expert can
explain that mixing pointer sizes is solving the wrong problem. That's what
implementors wanted and that's what they now have. With all the good
applications written in C that are now available for PC compatibles, it is
clear with hindsight that the customer was always right. But then, the
correctness of customer wishes is a well known tautology.
r.;ir subtler warning sign is one that I like to call the "spherical cow." The
.:cl.name derives from a shaggy-dog story that made the rounds of the
nuclear-physics community many years ago.

It seems that a theoretical nuclear physicist at a midwestern university
found himself without a supporting grant one summer. So he went to a
prosperous dairy farmer not far from campus and talked him into offering
the physicist a summer job. The farmer was dubious at first, but was finally
swayed by the status of having a theoretical physicist on staff. Besides, all
the guy asked for was an office in one corner of the dairy barn with a desk
and a blackboard.

As Labor Day approached, however, the farmer's doubts returned. His
fellow farmers began to suggest that he'd been had, since the physicist had
done nothing to improve milk production (much less get his hands dirty
on anything other than chalk). When the farmer delicately broached the
subject, however, the physicist had a ready solution. He would give a
seminar.

Essay 9 The Seven Warning Signs 65

So on the last day of August, after milking, the farmer and all his hands
arrayed themselves on the grass beside the dairy barn. The physicist stood
up before them and, by way of introduction, drew a large chalk circle on
the side of the barn. With practiced confidence he began, "Consider a
spherical cow of uniform density."

Physicists can afford to poke fun at themselves for some of the simplify­
ing assumptions they must make from time to time. They have a good track
record for making progress that way, filling in the complexities only after
they get the basics down pat. Software designers, however, tend to intro­
duce spherical cows for less defensible reasons. Usually, they act more out
of ignorance of the customers' needs than out of a real need to simplify.

We've all tripped over software packages that contain unrealistic over­
simplifications. You have only fifteen characters to write a street address.
You can't delete a customer account unless the balance is zero. An organi­
zation chart must be a pure tree with all management boxes filled. Spherical
cows, every one. They may have a graceful symmetry, but they don't give
milk.
~idway between the spherical cow and the wrong problem is the
.JIVl"Procrustean bed." Procrustes was a robber of note in the ancient
Greek city of Eleusis. He is best known for his rather rigid notions of
hospitality. He constrained his guests to lie in an iron bed. Short guests were
stretched to fit, long guests were chopped short. (Standards are so much
easier to develop if you have proper enforcement procedures.)

Perhaps you have heard Bob Newhart' s routine where Abner Doubleday
is trying to sell the sport of baseball to a modern-day executive in a
corporation that sells packaged games. The executive's first question to
Doubleday is, "How many couples?" You can guess who gets stretched to
fit the iron bed.

The techies of today are not quite so bloodthirsty as Procrustes. Nor do
they have the economic clout of the games publisher. But they can be as
rigid in their thinking as either of those worthies. They insist on defining
the problem in their own terms instead of the customers' terms. They forget
to meet the customer more than half way.

At the risk of beating object-oriented programming to death, let me give
another example from that discipline. It is clear that many programs get
cleaner and more maintainable if you identify and isolate the principal
objects that the program manipulates. It is also true that you can make every
datum an object and every operation a method. There is even a certain
elegance in using the same descriptive machinery to define operator over­
loading that you use to disambiguate methods with similar names and
properties.

66 Programming on Purpose

The enthusiasts quickly conclude that a pure object-oriented language
(such as Smalltalk) must be somehow superior to one that has the discipline
pasted on (such as C++). The zealots go further and insist that only pure
object-oriented languages provide acceptable support for writing good
computer programs.

So what if you add one and two by sending the "add" message and the
value of the "two" object to the "one" object? (Or is it the other way
around?) You just stretch the short program with extra instructions to fit
the pretty model. So what if a particular program does not benefit by being
divided into objects? You just chop it up to fit anyway.

The long and the short of it is that computer programs come in all sizes.
And they have highly varied needs as well. If you believe that one size fits
all, you're living in a panty-hose commercial.
11T"he spherical cow represents oversimplification and the Procrustean bed
"'1.ia rigid viewpoint. Still a third aberration is the skewed world view
caused by "future shock" (to borrow Alvin Toffler's catch phrase). My
favorite illustration of this lapse is yet another shaggy dog story that I heard
years ago at Bell Labs.

It seems that a distinguished visitor was being given the usual tour of
the labs. He made appreciative noises at all the innovations being paraded
before him, at least until he came to the microcomputer lab. There he was
shown a one-inch cube containing a 5 MIPS processor, 10 megabytes of
RAM, and a multi-user real-time OS in ROM. He appeared unimpressed,
to the surprise and disappointment of the engineers.

Outside in the corridor, the tour guide asked the distinguished visitor
why he discounted this miracle of microminiaturization. The visitor
snorted and replied, "I don't know why you'd want to make a computer
so small. That just makes it harder to change the vacuum tubes."

I have seen menu-driven interactive software packages on mainframes
that maintain data in 80-column blank-padded card images. I still trip over
microcomputer software that is beautifully engineered, except that you
invoke it by typing an ornate command line as cryptic as anything you'd
find in RSX-llM land. Like the apocryphal visitor to Bell Labs, the software
designers apparently forgot to update a few of their assumptions to match
the rest of the technology.

I acquired a free copy of Carbon Copy Plus when I bought my Toshiba
TlOOO laptop. It turned out to be only half a gift, however. The documen­
tation made clear that you were expected to buy a separate copy of the
software for each machine on which you ran it. When you're shipping files
between machines, it takes two to tango. If I wanted to use my freebie, I'd
have to go buy another copy.

Essay 9 The Seven Warning Signs 67

No, I am not terminally naive. Naturally I tried to install the one copy
on two of my machines, if only to try it out. The software proved to be as
paranoid as the manuals, however. It managed to thwart every attempt I
made to install more than one copy. The authors evidently put more energy
into protecting their investment from misuse than they put into convincing
customers that it is worth using. So I stuck the box on the shelf, where it
lives to this very day.

I bought a competing product called Laplink, instead. It contained no
such archaic caveats or protections. In fact the newest version, Laplink III,
can even download itself to a bare machine over the same cable you then
use to ship files at blinding speed. As a result, I have convinced half a dozen
of my friends to buy copies of La plink. You decide whether minicomputer­
think in software protection is consistent with microcomputer software
marketing.
11rhe last aberration on my list is called "the man behind the curtain." The
"1.tname derives from the climactic confrontation in L. Frank Baum' s "The
Wizard of Oz." Dorothy, et al. are cowering before the great Oz until they
espy a poorly hidden man working the controls that produce the impres­
sive effects. In a futile attempt to cover up his discovery, the all too human
Wizard of Oz booms out through the showy machinery, "Pay no attention
to that man behind the curtain."

I always get suspicious of simple examples that contain inexplicable
lumps of superstructure. The enthusiast showing the example usually says
something like, "Never mind these lines of code here. I'll explain the reason
for them later." (Translation: "Pay no attention to that man behind the
curtain.")

You can be sure that those lines are vital to the correct working of the
example. Otherwise why clutter a supposedly simple example with stuff
that is hard to explain? You can be equally sure that you will have to learn
a heck of a lot more about the subject before you can contrive similar
"simple" examples. Magic lines have a habit of needing subtle changes
when you change other parts of an example.

Remember what I said earlier about keeping the gulp factor low? If an
enthusiastic proponent of a product can't show you an obvious way to use
the product simply, that way probably doesn't exist. Techies can blind
themselves to the difficulties they have swept under the rug, but you have
to live with the lumpy carpet (or a man behind the curtain, to stick with the
original metaphor).

Watch your step.
That's the list. If you have any favorites, I'd love to hear about them. I

figure reality is a subtle enough concept, we need all the help we can get to
hold onto it. (There's probably a theorem to that effect, but I don't know it.)

68 Programming on Purpose

I end with one blanket caveat. If some guy tells you that his method,
language, or product will increase your productivity by a factor of four to
ten, listen carefully for any of these seven warning signs. And don't even
think of believing him unless he drives a Maserati. o

mfterword: I enjoyed writing this essay. It let me summarize in one place a
~quarter century of accrued skepticism. It also underscored for me how faddish
our supposedly rational discipline has always been. I have since found the taxonomy
convenient for characterizing specious arguments more rapidly.

1 0 The Politics of Standards

7{ have devoted a significant portion of my professional energies over the
..JJ past six years to the formation of a standard for the programming
language C. During most of that period, I met quarterly with 50 other
dedicated souls at various venues around the country. We would spend
four and a half days meeting in a hotel conference room, discussing
esoterica and haggling out wording. My duties as Secretary, subcommittee
chair for the C library, and self-appointed technical gadfly consumed at
least an additional four weeks a year back at the ranch. Helping make the
C Standard has proved to be a much larger investment than I could have
imagined when I first got into it.

Naturally, I have strong feelings about the C Standard in particular and
the work of standards committees in general. It annoys me when I read
sophomoric flames about our work over the various electronic-mail net­
works. It is much easier to toss off accusations of stupidity, or even greedy
short-sightedness, than it is do the work. It really makes me angry when I
see people delay the adoption of the C Standard out of an inflated sense of
their own importance. (The temptation is overwhelming to accuse them of
stupidity, or even greedy short-sightedness.)

As I write this, the draft C Standard is in the hands of the ANSI Board
of Standards Review. It has been delayed nearly a year by the stubborn
maneuverings of a single individual. He has managed to exercise every piece
of statutory machinery on the books to press his lone opposition. The
creakiness of this seldom used machinery, coupled with a zealous dedica­
tion to fairness among the standards administrators, has significantly
added to the delays.

It's conceivable that there will be a formal ANSI Standard for C by the
time you read this. It's most likely there will not be, however. I have no
reason to believe that our nemesis has thrown in the towel. I have no
assurance that the remaining avenues of appeal will be traversed with any
greater dispatch. There must always be a balance between the needs of the
majority and the rights of the individual. In this case, the balance still seems
to lean heavily toward the individual.

Meanwhile, on the international front, a similar battle has been brewing.
For reasons that now escape me, several years ago I assumed the role of
ISO Convenor when Steve Hersee had to leave that post. My goal was and

69

70 Programming on Purpose

is to ensure that the ANSI C Standard will meet the needs of the interna­
tional community so that the ISO Standard can be identical.

I charged into the role fairly dripping with enthusiasm and good inten­
tions. The American C standards committee, X3J11, had already shifted
gears to address international concerns. (We could have had a C Standard
two years ago had we been willing to let ISO change Clater to make it more
international.) It is a well documented flaw in my character that I think I
can win consensus through hard work and sacrifice. (If you share that flaw,
get over it.)
.a.., ome people just have their own agendas. In this arena, there has been
e:vgrowing resentment that programming language standards too often
emerge from the U.S. as God given. Americans are blessed with a single
language and a simple alphabet. Europeans have had to live with English
mnemonics and missing accent marks, to name just two deficiencies they
perceive in hand-me-down programming tools. Now the Japanese are
getting feisty as well, given their new I y won economic clout. And they really
have language and character-set problems.

The whole issue of synchronizing the development of computer stand­
ards to meet everyone's needs is a topic of hot debate within ISO. And well
it should be. I have pleaded for guidance in this area at every opportunity.
Like the appeals machinery within ANSI, however, the synchronization
machinery within ISO has been more discussed than exercised. I've long
since stopped counting the months of cumulative delay that Chas suffered
within ISO because I was given incorrect advice. (Or worse, no advice.)

Two countries are unhappy with the state of the C Standard. The U.K.
has repeatedly asserted that the draft C Standard lacks precision. They have
offered several rounds of comments to X3J11, many of which were accepted.
(Some were rejected because they lack precision.) They still want to take
another round or two before they are content to leave well enough alone.

Meanwhile, Denmark has asked for more support in C for ISO 646, the
international character set based on ASCII. The problem is that C uses
nearly all of the graphics in ASCII because it has so many operators and
punctuators. Some of the important notation in C has been recycled within
ISO 646 as letters with accent marks (among other things). X3Jl 1 addressed
this problem by adding trigraphs to C. For example, you can represent a left
brace either as { or as??< interchangeably.

The Danes argue that trigraphs are unreadable. Many people sympa­
thize. They have proposed several alternate spellings of the more critical
operators and punctuators. Several people have found flaws with their
proposals. They have insisted that C is unacceptable unless their latest
proposal is adopted (once debugged). Almost everyone disagrees.

Essay l 0 The Politics of Standards 71

11rhe latest parliamentary maneuverings occurred at an ISO meeting in
"""1Berlin last September. I, in my naivete, went to the Embedded Systems
Conference instead of attending that meeting. There the U.K. and Denmark
roundly criticized the U.S. for being uncooperative in developing an inter­
national C Standard. Nobody else was present to offer an informed alter­
nate viewpoint.

These two countries won the right to commence work on "normative
addenda" to the C Standard from the U.S. These addenda, if adopted, will
have the force of a standard. Hence, ISO can well end up with a different
standard for C than the U.S.

I should point out that the U.S. is not alone in its desire for identical
standards. Several nations have stated the same desire in no uncertain
terms. The clarifications requested by the U.K. are not intended to alter the
definition of C. It is very hard to change words in the C Standard proper
without doing so, however. And the Danes are outspoken in their determi­
nation to "improve" the current draft. How we are going to resolve these
tensions within ISO is something I cannot predict.

All I can say now is that an ISO Standard for C may be delayed
indefinitely. I am trying hard not to take personally the remarks made in
my absence by representative from the U.K. and Denmark. (It's not easy.) I
am determined to keep working toward an international Standard for C.

If that Standard differs from the one we have labored on tor so long in
the U.S., so be it. All I require personally is that the members of ISO who
vote for a changed Standard be properly informed when they do so.

The biggest lesson that I have learned from all these years of standards
work is that standards involve more politics than technology. (I sort of knew
this intellectually, now I really know it.) By that I mean that any number of
different standards can be good enough technically. The one that wins in
the end is seldom technically the best. It is seldom even close to the best. It
is the one that is politically successful, by definition.
mou may detect a plaintive note in some of my remarks. That is a
~reverberation from the last vestiges of my techie idealism. We techies
like to believe that the technical issues are most important. Particularly in
something as complex as a programming language standard, functionality
and suitability must be paramount virtues. So much of our future produc­
tivity (and fun) depends on the elegance of the languages we use. We'd
better get it as right as possible.

That viewpoint ignores an important truth, however. Each of us has his
own notion of what constitutes the best technical solution. Put 50 techies in
a room with a 300-page document and you'll get an amazing spectrum of
opinions. Opinions about issues on almost every page. Just try to resolve

72 Programming on Purpose

each difference with a rational discussion aimed at achieving unanimity. I
assure you the process will never converge.

The simple fact is, we techies are human. (Perhaps some of your cowork­
ers are suspect, but I don't want to hear about it.) We have emotional
attachments to certain ideas that are impossible to factor out. As I've often
remarked, the fewer facts we can marshal in defense of a technical opinion,
the more zealous we become in arguing that opinion.

Something has to give. Either the majority prevails by main force. Or a
determined minority uses parliamentary jiu jitsu to its advantage. Or one
eloquent speaker sways people long enough to hold the day. Those are all
traditional "I win, you lose" ways to reconcile differences.

There are also "I win, you win" solutions. Someone can bridge opposing
views by showing the way to a common ground. Someone even brighter
can show the narrowness of both opposing views and suggest a creative
alternative. Someone even more saintly can agree to back down in the
interest of the common good.

All of this stuff is what our elected lawmakers call "politics." If that word
strikes a cynical chord within you, it shouldn't. The problem with the word
is that it trucks around at least three diverse meanings. Unless you have
developed the ear of a politician, you may fail to tune into the appropriate
one for a given context.

~rst we have "just politics." That's the maneuvering that I and my
,,JJ buddies do every day just to keep things moving. Sure, you have to
pressure a little. Sure, you have to compromise a little. But you know that
I am basically a person of good will, so you will forgive a bit of manipulation
on my part. It's just politics.

Then there's "damned politics." That's what your opponents indulge in
when they pull out all stops to keep you from getting your way. It's too bad
the system can be perverted that way. It's too bad that some people are so
underhanded that they take advantage of the checks and balances in the
system. You and I know that these people are acting from base motives
when they pull those tricks. They're resorting to damned politics.

Finally, there's "enlightened politics." That's where you and your oppo­
nents manage to soar above petty differences, if only for a moment, and
achieve something almost noble. Both of you are willing to turn a blind eye
to the maneuverings you indulged in to get there. Both of you are happy
that you can compromise on something unimportant to achieve something
important. Both of you are willing to concede that the other has at least a
streak of nobility. Everyone is proud to participate in enlightened politics.

The next time you hear the word "politics" bandied about, listen more
carefully. (We have congressional elections coming up, and a perennially
unbalanced federal budget. You will have ample opportunity for practice.)

Essay l 0 The Politics of Standards 73

Supply the missing adjective to complete the conjugation. For predictable
politicians, the pronoun will suffice:
• I indulge in just politics.
• You indulge in damned politics.
• We indulge in enlightened politics.
A few politicians, however, actually think before they speak. You will un­
derstand them better if you can hear the silent qualifier.

You will understand the process of forming standards better as well. Bear
in mind that the best solution to your way of thinking may not meet
someone else's needs. Remember that those needs encompass far more
than technical concerns. (The most powerful needs have nothing to do with
technology.) Try to believe that someone can disagree with you and still
have defensible motives.
mn important bit of tactical machinery in the world of politics is Roberts'
~Rules of Order. Ostensibly, they simply form a set of rules designed to
keep a parliamentary body moving. The precedence of motions and ma­
jorities needed for each vote have evolved a certain elegance over the years.
They ensure that the majority cannot keep a minority from being heard.
They keep a minority from indefinitely thwarting the will of the majority.

But what really makes Roberts' Rules work is the culture that goes with
them. You must not, for example, accuse your opponents of dishonesty
during a debate. You are expected to display a modicum of politeness even
to those with whom you strongly disagree. If you understand people, then
you know that even a patina of civility is worth a lot. (At the least, it elevates
bullying to a higher plane.)

The standards folk go even farther than Roberts' Rules, however. Com­
mittees may run their meetings by those rules, but final acceptance of a
standard occurs in a different forum. For a standard to be accepted, either
within ANSI or ISO, it must achieve consensus among all concerned parties.

That is an interesting word, consensus. It does not mean majority vote.
That could oppress an important minority. No matter how large a fraction
of votes you require to be yes, you run the risk of an industry ganging up
on an individual company. Or academia ganging up on industry. Or con­
versely.

Equally, consensus does not mean unanimity. That runs the risk of letting
the minority thwart the needs of the majority. The most likely outcome of
a heterogeneous group that demands unanimity is stalemate. It is too easy
for any individual to delay completion rather than lose.

So the standards process puts considerable emphasis on getting every­
one to agree. If you disagree, you have a strong obligation to the whole. You
must state as clearly as possible what changes will permit you to agree.
Then you must not renege. If the majority agree to your changes, you must

74 Programming on Purpose

capitulate. You must not say, "Yes, but..." You must not introduce a fresh
slate of issues.

This is still not sufficient machinery to ensure closure. The process must
also tolerate the occasional die hard. If someone insists on changes to a
standard that the majority simply cannot swallow, it must be possible to
proceed anyway. In this case, the majority has a strong obligation to
demonstrate (to a disinterested third party) that it has exercised due proc­
ess. The minority viewpoint must have its day in court.

My colloquial definition of consensus is as follows:
• At best, everyone agrees.
• Barring that, the majority who agree also agree that the minority who

disagree are being disagreeable.
The effect of requiring consensus in the end is to outlaw damned politics.

Just politics works fine. It advances the standard toward that fine day when
everyone has a concrete document to pass judgment on. People come to
forget the petty maneuverings if the final product is acceptable. Enlight­
ened politics is even better. It gives all participants a rosy glow that adds to
the shine of consensus.

Damned politics borrows heavily against the future. When the time
comes to make the final push for acceptance, the coercive majority and the
tricky minority are both heavily in debt. They must run the gauntlet of
obtaining unanimous support or defending its lack. And they must face
people who are ready to cash in on their right to be heard.
7(n the early days of X3J11, we were all pretty unskilled in applying
;JJ Roberts' Rules. As we began to understand them, a few people learned
to use them as a blunt instrument. Some of those early minutes are full of
motions to amend the amended motions and other such nonsense. Even­
tually, however, we all wised up.

What became apparent was that every parliamentary victory was Pyr­
rhic. It did no good to bludgeon folks into submission at this meeting if you
had to earn their good will (and consensus) in the long haul. The interesting
discovery, to me, was that it didn't even matter if the victor was right.
Frequently, one or two meetings later, everyone agreed on the technical
merit of a particular vote. But if the vote was in any way wangled, it would
probably be reversed at least once along the way.

We learned that every new idea needs time to cook. Let the participants
think about it and trace its implications. Let them take it home and talk it
over with coworkers between meetings. Only after people get comfortable
with an idea are they ready to come to true consensus. That's politics. (You
supply the adjective.)

Essay l 0 The Politics of Standards 75

I cling to these basic principles in my current hour of frustration. At the
ANSI level, I genuinely believe that we have formed a consensus. X3Jl 1
thinks so. Its parent committee, X3, thinks so. Now ANSI must decide.

As much as I chafe at the delays, I take pride that everyone in authority
has bent over backwards to avoid stifling dissent. The dissenter is one
person. He has won no allies for all his arguing. That encourages me to
believe that we are safe in agreeing that he is being disagreeable.

On the ISO front, I have several thoughts. I can sympathize with the
Europeans who came late to the party. They haven't had time to build
consensus the way we veterans have. They mistake our desire for closure
for simple tiredness. True, we are tired. We also think we're done. We also
(rightly or wrongly) dislike being second guessed by people who have not
sat through all the discussions of the issues they raise yet again.

If X3Jl l, with its current control of the C Standard, is oppressing minori­
ties within ISO, they have ample opportunity to demonstrate that to the
rest of ISO. All they have to do is produce normative addenda that are
compelling. If, on the other hand, a minority is blocking adoption of a good
standard, then all they can do is delay. Eventually, the process of consensus
formation will grind through.

I'm too close to the matter to know which is reality. What is just politics
to me may well be damned politics to another. And vice versa. We all need
to hold onto our faith that the process will converge. o

mfterword: Well, we got ANSI to approve the C Standard, but it took most of a
.a.year from the time I wrote this essay. ISO adopted the same Standard within
the year following. As I write these words, the normative addenda are still working
their way through WG14, the ISO C standards working group. I find myself
becoming ever more a political animal, within the standards arena at least. This
essay is truer now than when I wrote it. If I had my way, it would be required
reading of anybody who serves on a standards committee.

11 Setting the Standard

1ln the previous essay, I harangued at length about the politics involved
.Jlin developing the C programming-language Standard. (See Essay 10:
The Politics of Standards.) I endeavored to explain why politics, that much
maligned field, must necessarily spill over into technology. Much as you
might like to believe that only technical decisions should matter in forming
a programming-language standard, the real world simply doesn't work
that way. It takes the machinery of politics to work out many of the
differences that inevitably arise.

I continue that discussion in this essay with a different emphasis. I want
to impart some of the pragmatic lessons that I and other members of X3J11
learned in the process of producing the draft Standard for C. If you should
find yourself involved in a similar activity, you can benefit from a few
pointers. (Trust me.) Even if you don't get involved, you should learn to
respect the efforts of those who do.

Making a standard is not easy. It is made worse by the fact that few
people participate in more than one standards effort. (I have a theorem that
a sane person moves between zero and one pianos in a lifetime. You may
never have occasion to move one. But once you move a piano, you learn
never to do it again.) That means that each committee must start afresh in
learning how to build a standard.

Occasionally, an old hand will drift into a new venture. X3J11 was
fortunate to have one or two veterans of FORTRAN and Pascal to give us
occasional guidance. But we didn't use them enough because of another
impediment to developing a language standard - there are no standards
for making standards. That makes it very easy for each new committee to
decide to ignore the past and do it "right" this time.

Look at the major language standards and you will see what I mean.
FORTRAN is on its third iteration. It is evolving under control of a commit­
tee that feels obliged to reinvent the language every dozen years or so.
COBOL is rather similar, except that it is broken into a dozen components
each with different levels of support permitted. The last I looked, there were
4,096 acceptable configurations for a COBOL implementation.

Then you have PL/I, where the committee decided to invent a formal
language to describe the semantics more precisely. It may be more precise,
but it is much less approachable than the narrative descriptions favored for
FORTRAN and COBOL. And PL/I is still more easily understood than the

77

78 Programming on Purpose

Algol 68 Standard. That committee invented a language to describe a
language to present a grammar that expands to a grammar that defines
Algol 68!

C comes closest in spirit to the Pascal Standard. The latter was based
heavily on the classic language description by Jensen and Wirth (J&W74).
The Pascal committee worked it over, but left many parts intact. They also
chose not to address the many commercial extensions needed to make
Pascal a more pragmatic language.

1~ommittee X3J11 began with the widely accepted definition of C given
~in Appendix A of Kernighan and Ritchie (K&R78). We worked the
wording over quite a hit, but left the language remarkably intact. Our major
additions were to describe the C operating environment and runtime
library in detail. Neither of these issues was addressed in Appendix A.

We spent much of the first few meetings just learning how to proceed.
One subgroup did a study of formal specification methods. After a bit of
anguish, the committee chose to stick with a narrative description. The C
Standard contains very precise notation for the formal grammar. Other­
wise, it relies on reasonably precise English descriptions for constraints and
semantics. A few people regret this decision, but it was generally agreed
that the job would have been much harder had we tried for more formality.

To me, the most important early decisions we made bordered on the
philosophical. For example, we accepted from the start that a standard is a
treaty. On the one side you have the implementors. A standard dictates
certain features that implementors must provide. It also provides latitude
in how some features are provided. On the other side you have the custom­
ers. A standard promises certain features that customers can rely on. It also
warns about permissible variations in some features.

Every statement in a standard must help delineate the meeting ground
between implementors and users. Otherwise, the statement is dead wood.
There can be areas intentionally left gray. It is a rare treaty that does not
provide for some form of demilitarized zone where neither side can safely
tread. But there must be no wishy washy clauses that constrain neither side.

It does you no good, for example, to have a standard say what an
implementation or a program should do. The operative verbs are shall and
must. Equally, a standard must not have constraints so weak that they are
trivially circumvented. These provide rubber teeth at best.

Having said that, I must report that the C Standard has its wimpy
moments. On several occasions, we describe what we intend to have
happen, without really requiring it. Those occasions are places where C
encounters a varied and sometimes ill-suited external environment. We did
not want to say that an implementation is nonconforming, for example,
because it lets you write to a printer that fails to expand horizontal tabs.

Essay 11 Setting the Standard 79

The C Standard is at its wimpiest in attempting to mandate certain
capacity requirements on every conforming implementation. In the end, all
we could agree on was that each implementation must demonstrate that it
can successfully translate and execute a test program. That test program
must contain at least one example of every translation limit being met. Each
vendor is at liberty to contrive a unique test program. We all agreed that
this is worse than rubber teeth. It is rubber gums.
~n the other hand, the C Standard is not the only arbiter in the choice of
\W'C translators. There is a very competitive marketplace out there. You
can contrive an implementation that manages simultaneously to conform
to the C Standard and still be useless. That's a wonderful joke on X3J11 and
an intellectual curiosity. But it is not a salable product.

We had to admit that quality of implementation was one vast area that the
C Standard simply could not address. We couldn't mandate that C be
compiled into efficient code, nor that C use the native data types of a
machine in the obvious way. We couldn't even dictate that a given imple­
mentation of C be minimally useful. We could argue about where to draw
the line (and we often did), but we all admitted that every issue has a line
beyond which the C Standard must give up and let market forces reign.

Closely allied to these considerations was something we came to call the
as-if rule. It reminded us that we could only specify so much in telling
implementors where to get off. We could specify what an implementation
must accomplish. We could not specify how it accomplishes it. This is true
even when the language seems to require specific underlying machinery.
All the C Standard can dictate is that an implementation behave as if the
machinery were present.

A telling example is the requirement for separate compilation. Central
to the design of C, and one of its strengths, is that it lets you translate a
program in pieces and later paste them together. All sorts of concepts are
artifacts of separate compilation, such as external identifiers, constant
expressions, and libraries. Nevertheless, more than one company offers C
as an integrated environment centered around an interpreter.

An interpreter has many advantages in developing and debugging
programs. The C Standard does not outlaw such interpreters. It merely
requires that they perform certain operations as if they had separate trans­
lation and linking phases. (They can produce smarter diagnostics in many
cases, but they don't have to.) And it lets traditional compilers and linkers
off the hook in several critical ways. The C Standard requires no diagnostics
or other checks that are beyond the capability of traditional compilers.

Once we got comfortable with the as-if rule, we found it to be quite
liberating. It let us describe semantics in several areas in terms of simple
machinery. The machinery need not be efficient in its own right. It need not
even correspond to any likely implementation. It merely has to give a clear

80 Programming on Purpose

and complete operational definition of compliance. So long as an imple­
mentation can do a good job and still behave as if it encompasses the simple
machinery, it is blessed as conforming.
11rreaty points, quality of implementation, and the as-if rule all are delicate
~concepts. They are easily misconstrued in the heat of debate. More than
one discussion within X3Jll chased its tail until all the parties involved got
in sync with the meanings of a few words. Surprisingly, once the issues
were clearly delineated, they were often quickly dispatched.

Occasionally people found they all agreed. Sometimes there was a clear
choice where a majority decision was acceptable to all. On a few critical
points, several rounds of debate were needed to form consensus. Rarely
did deep rifts appear that took years to resolve.

What this taught us was the need for precise terminology in certain
critical areas. The two most critical areas involved how we determined the
conformance of programs and how we determined the conformance of
implementations. Neither area is as black and white as you might at first
believe.

The problem with characterizing programs is one of sorting accusations.
Say, for example, that a particular program contains a function call with
two argument expressions. Correct execution of this program occurs only
when the first argument expression is evaluated before the second argu­
ment expression. That requirement happens to conflict with a latitude that
has been in C since Dennis Ritchie's first compiler. An implementation has
traditionally been free to evaluate arguments in whatever order it chooses.

The committee chose to continue this license in Standard C. So here is a
case where the treaty says that implementors have fewer obligations than
programmers. The program is ill formed. The problem is, how do you
characterize such a deformity?

If a deformity is serious and easily detected, it may be desirable to require
each implementation to diagnose the flaw. (It's not easy to detect order
dependence among function argument expressions, serious as it may be.)
Or it might be preferable to require no diagnostic, but to require instead
that each implementation document what it does. (It's not advisable to give
programmers any assurance in this arena.)

The committee might also elect to let the implementors off the hook
altogether. It might be desirable to permit each implementation to vary, but
not require it to say what it does. (An implementation might even do
something different as the barometric pressure changes.) Then the issue is
whether the program is branded as flawed simply because it uses a feature
that can vary. (In this case, programs call functions with multiple arguments
all the time. A program should be flawed only if it is a sucker for order
dependence, not simply because it contains order dependencies.)

Essay 11 Setting the Standard 81

?11?1\that all this means is that every sin that a program can commit must
~be sorted into some bin. (Yes, we're talking sin bins.) The bin has a
name that gives some hint as to the nature of the transgression. The bin also
has a set of requirements that guides both implementor and programmer.
Here are the bins that X3Jll eventually settled on:

Erroneous behavior is incorrect program behavior that must be diagnosed.
Any C program containing the sequence if if must be erroneous. It is
detectable with known technology by single-pass compilers with separate
linkers. It is too serious to ignore.

Implementation-defined behavior is correct program behavior that can vary
among implementations. Each implementation must, however, document
what it does in this area. The code value for the character constant ' a' is
implementation-defined.

Locale-specific behavior is like implementation-defined, except that it is
specifically permitted to vary among international locales. How characters
collate is locale specific.

Unspecified behavior is also like implementation-defined, except that an
implementation need not document what it does. The order of evaluation
of argument expressions, cited above, is unspecified.

Undefined behavior is incorrect program behavior that an implementation
can, but need not, diagnose. Arithmetic overflow during program execu­
tion is undefined behavior. On some implementations it is easily diagnosed.
On others the cost of diagnosing every potential overflow would be pro­
hibitive. So the C Standard puts the burden entirely on the programmer.

It took the committee awhile to determine all these bins, and a little bit
longer to tweak them into shape. Even now, there remain minor disagree­
ments over interpretation. Some people think you can document imple­
mentation-defined behavior, for example, by saying, "One of the following
three things will happen." Or, "The computer will halt and catch fire."
Others feel that these are copouts not in the spirit of the C Standard.
711? ut let this not distract you from the overwhelming importance of the
~bins. By defining them early on, the committee had a specialized
vocabulary with which to discuss the C language. Such a specialized
vocabulary lets people capture subtle thoughts with fewer words.

That saves reinventing the same thought repeatedly, with a hundred
variations. It also keeps the new ideas from getting lost in the welter of old
debates about bins. We might argue about which bin a given lapse should
occupy, but such arguments converge.

The arguments that do not converge are the ones rooted in fear. A sure
recipe for heated debate is for someone to cry, "If the C Standard says that,
it will break my program." That happens to be a C programmer's short­
hand for a more long-winded statement:

82 Programming on Purpose

"My program works fine right now, thank you, and I want to keep it that
way. Require me to change my compiler to conform to this standard and
the compiler will cough on my program. I'll have to change a million lines
of code in unspecified places."

Now it so happens that the C Standard classifies the vast bulk of existing
code as potentially nonportable. That's not news to anyone with experience
porting C code. You may have code that works fine with ten compilers and
that fails on the eleventh. A principal reason for developing the C Standard
is to increase your chances of writing truly portable C code if you want to.

It also so happens that the C Standard ''breaks" remarkably little code.
Only where a practice has been made erroneous must every implementa­
tion cough on a program. (Many of these are clean breaks, as when one of
your identifiers now collides with a new keyword. They are easily caught
and cured.) Otherwise, existing implementations are generally at liberty to
translate nonportable constructs just as they always have. The code is no
more broken than it ever was.

I can't assert that all tail-chasing debates ceased once the bins got
defined. But they sure helped. Creating the bins and sorting the program­
ming gaffes into bins was probably one of the biggest contributions the
committee made to clarifying C.
11rhe other major problem I mentioned above was characterizing imple­
\tJ.tmentations. That problem centers around extensions. Everybody has
them. Everybody wants to keep them. (Or you break their code, in the true
sense of the phrase.) If a standard doesn't permit extensions, it will be
ignored. If a standard permits too many extensions, it is toothless. How do
you strike a satisfactory balance?

The trick we settled on involves a sexy little three-step dance. First we
define a strictly conforming program as a program that uses no extensions.
Furthermore it produces no output that depends upon behavior that is
unspecified, undefined, or implementation-defined. In other words,
strictly conforming is essentially synonymous with portable.

The next step in the dance is to define a conforming implementation. (The
implementation can be either hosted or freestanding, but that is another
matter.) A conforming implementation must successfully translate and
execute any strictly conforming program. (The implementation can fail
because the program exceeds one of its limitations, but that too is another
matter.) So far so good.

The final step in the dance is the cute one. It defines a conforming program
as one that is acceptable to a conforming implementation. The program
need not be portable. It can take advantage of all sorts of extensions. It just
has to translate and run.

Essay 11 Setting the Standard 83

At first blush, this looks like more rubber teeth. What's to prevent a C
compiler from accepting COBOL and BASIC programs as extensions? Well,
there are two important limitations on how an implementor can extend C.

The first comes from the definition of conforming implementation. You
cannot extend C in any way that alters the meaning of a strictly conforming
program. You can give meaning to undefined behavior, since no strictly
conforming program can indulge in undefined behavior. You cannot, for
example, redefine if or printf.

The second limitation comes from the definition of erroneous behavior.
The C Standard lists as erroneous behavior any violation of the syntax rules
or specifically stated constraints. An implementation is obliged to diagnose
such violations. That makes it hard for an implementor to extend C to parse
laundry lists and old programming languages.
11rhe effect of this balancing act is to leave room for extensions. At the
"""1same time, the form and scope of extensions are curtailed. You can trust
a conforming implementation to compile programs that you intend to be
portable. You can also trust it to diagnose obvious nonsense. But you also
know the areas where you can stumble across extensions.

And that illustrates the final bit of philosophy that committee X3J11
decided on from the outset. We knew that C lets you write portable
programs that are surprisingly powerful. We wanted to increase the poten­
tial power of such programs. We also knew that C lets you write programs
that are intentionally not portable. We wanted to endorse this practice and
not penalize its practitioners.

Our goal was thus to give programmers a fighting chance at writing
portable programs. Not a safe ticket by outlawing nonportable constructs.
Not a free ride by requiring heroic measures of runtime systems. Just a
fighting chance.

That's more than most languages give. That's all that most C program­
mers ask for. I think we gave it to them. o

mfterword: I still am amazed that X3/11 had to invent so much technology to
~write the C Standard. I am also saddened to see how poorly some of it is still
understood by people working on C-related standards. The latest fad within ISO
is to develop cross-language standards, and even standards for writing standards.
Yet none of them deal with the shape of a standard, or the methods for developing
a standard, at the level I discuss in this essay.

Software-related standards require far more "people" technology than any other,
in my opinion. They are invariably complex, which makes them time consuming
to produce. And they are steadily growing in importance, thanks to the rapid
increase in the world market for computer software. Anything that can improve
the process of making such standards is worth serious attention.

12 All the Standard Reasons

7{ promise that this will be my last essay about the C Standard, at least for
;.n awhile. I have produced two recent essays on the subject. (See Essay 10:
The Politics of Standards and Essay 11: Setting the Standard.) You've
heard me gripe about the politics that inevitably accompanies any group
effort. You've heard me opine on the ground rules that helped bring the C
Standard to closure. Now I want to look at some of the craziness that
inevitably plagues efforts of this sort.

First, let me report gleefully that the ANSI C Standard is now official.
Despite my pessimistic bleatings, the process converged sooner rather than
later. The ANSI Board of Standards Review unanimously approved the
efforts of X3Jll. The protests ran down and stopped. People ran out of
reasons not to have an ANSI C standard.

So before I start casting oily aspersions on troubled feathers (or what­
ever), let me just say thanks. Thanks to all those people who felt strongly
enough about C to write diatribes for X3Jll to answer. Thanks to all those
who participated in endless committee meetings. And thanks most of all to
my fellow officers, Jim Brodie and Tom Plum, who gave fresh meaning to
the shopworn adjective "tireless." The final product is a victory for us all.

I freely confess that there were times over the past six plus years when
I didn't feel so thankful. Dennis Ritchie had the luxury of developing C
when almost nobody gave a damn about the language. Many's the time
when I wish that X3Jll could have enjoyed a comparable obscurity. If just
a handful of us right-thinking folk could have been left alone for half a year,
we would have cheerfully dispatched the standard without nearly so much
son et lumiere.

But as I pointed out earlier, that scenario was simply impossible. Seems
there were a couple hundred other people who thought that they were the
right thinkers. Those of us busy cobbling up words had it wrong and were
busy ruining an otherwise fine language. It took years of haggling to build
the shared meaning needed to achieve consensus.

Mostly, I didn't mind the haggling. I went into more than one discussion
absolutely convinced that only I saw the true nature of the issue. It was a
repeated annoyance to learn that other people could cling to differing
opinions. It was a repeated shock to discover that their views, once I
understood them, actually contained some compelling logic.

85

86 Programming on Purpose

Any time that I found myself educated as a result of debate, I was elated.
Any time that I could get disparate factions to align on my world view, I
was pleased. Any time we could all understand each other well enough to
hammer out a compromise, I was satisfied. Those are all good outcomes of
a debate, at least to my way of thinking.
A ome things drove me up the wall, however. Easily the worst was
e:vhysterical blindness. Some faction would become convinced that their
special interest was endangered. They would go out of business should the
majority hold sway. Threats of veto collided with accusations of selfishness
and/ or stupidity. In this inhospitable climate, reasoned dialog quickly
withered. The only remedy that consistently worked was an enforced
cooling-off period. Actually, it was more like the time outs that kindergarten
teachers have to call occasionally. Everyone would go off to separate
corners until the sniffles died down. When the incendiary issue came up
again, it usually settled out with remarkably little debate.

The next worst, to me, was persistent myopia. The people who mani­
fested this syndrome weren't being difficult to be self serving. They just
couldn't see the negative implications of a feature that looked otherwise
quite sexy.

Achieving a happy consensus was most difficult in the presence of
persistent myopia. Incredible amounts of committee time were consumed
in this process. Sometimes we even gave up before we resolved issues
properly. The worst lapses in the C standard, I believe, arose from issues
where people just got tired of arguing. For a summary of these lapses, see
my column "Standard C: Wha Gang Agley" the April and May 1990 issues
of The C Users Journal (Pla90).

The most commonplace lapse, however, was selective viewpoint. It
seemed that people would first stake out an emotional position on an issue.
Only then would they start searching for reasons to justify their particular
stand. I found it grimly amusing that a highly intelligent techie could argue
one issue from a given philosophical perspective in the morning, then
argue another issue from the opposite perspective that afternoon.

About four years ago, in fact, I left a meeting feeling particularly over­
whelmed. Sitting on an airplane going home, I drafted the following paper
for distribution to X3Jll. I called it "A Modest Proposal for Encoding
Debate." It was a mini-hit at the next meeting. I got additional mileage out
of it as a talk at one of the Software Development seminars. People still
quote from it occasionally.

So I thought I'd recycle the paper one more time and share it with you
here. It is a fitting complement to my more pompous musings on the
process of forming language standards. For those of you not up on your C
trivia, I have added some illumination. Remarks in italics are my editorial
additions for the unenlightened.

Essay 12 All the Standard Reasons 87

?11?1\te have had enough experience with the deliberations of X3J11 that I
~feel we can now introduce a number of abbreviations in place of
frequently used arguments. An interesting discovery I made in the process
of summarizing these popular arguments is that, like elementary particles,
each is accompanied by its anti-argument; and the anti-argument has as
much claim to being fundamental as its anti-anti. An equally interesting
discovery is that certain members of the committee are adept at using both
sides of a complementary pair, depending upon which flavor supports the
desired outcome of a given issue.

So herewith are some suggested numeric codes, handed out in no
particular order, and their complements. The assignment of + and - signs
to members of a pair is likewise arbitrary, and should not be construed as
favoring one argument over its opposite.

The base document was our starting point for drafting the C Standard. For the
language, it was Appendix A of Kernighan & Ritchie's notorious opus, The C
Programming Language (K&R78). For the library, it was the 1984 /usr/group
standard for a UNIX interface library, now the POSIX Standard IEEE 1003.1
(minus the part we stole).
01 + It's in the base document.
01- It's a flaw in the base document that must be corrected.

02+ It's not in the base document.
02- It's an oversight in the base document that must be corrected.

Dennis Ritchie was the original author of the C language.
03+ Dennis Ritchie agrees with me.
03- Dennis Ritchie's opinion is irrelevant now.

C was born under UNIX. That made it particularly hard for UNIX enthusiasts to
see the C language as anything but a UNIX utility.
04+ UNIX does it that way.
04- How UNIX does it is irrelevant now.

AT&T owns and operates UNIX. See previous note.
05+ AT&T isn't going to like this.
05- Who cares what AT&T thinks?

88 Programming on Purpose

My company, Whitesmiths, Ltd., was the first serious commercial vendor of
non-UNIX C compilers. Despite my shy and reserved manner, the interests of
Whitesmiths were discussed all out of proportion to the size of its market share.
06+ Whitesmiths has done it that way for years.
06- What's a whitesmith?

See note under #04. The schism was made worse by the brashness of the MS-DOS
contingent. They felt that they more than made up in numbers what they may have
lacked in history.
07+ Most of the C compilers sold are under UNIX.
07- Most of the C compilers used are not under UNIX.

The second form is a direct steal from Adlai E. Stevenson. It was a sentiment he
attributed to one of his political opponents.
08+ These are the facts upon which I base my opinions.
08- These are the opinions upon which I base my facts.

09+ I like it, it must be good.
09- I don't like it, it must be bad.

1frhe greatest sin you could accuse anybody of within X3/11 was making a change
"'11in C that would "break" existing code. You break code when you cause it to
misbehave or fail to compile under an ANSI C compiler.
10+ It will break working code.
10- The working code that breaks shouldn't have been written that way in

the first place.

11 + It's an important addition to the language.
11- It's a major perturbation to an otherwise stable document.

12+ It only affects a small area.
12- It's a needless tweak to an otherwise stable document.

This is a specific application of one of my favorite theorems - Forty-two percent
of all statistics are made up on the spot.
13+ It will affect a large fraction of existing code, in my opinion.
13- It will affect a small fraction of existing code, in my opinion.

Essay 12 All the Standard Reasons 89

Much of the work of the committee lay in resolving ambiguities and fleshing out
lacunae in the base document. Where possible, we endeavored to identify current
practice as the de facto standard.
14+ Current practice is right, the base document is wrong.
14- Current practice is wrong, the base document is right.

15+ Current practice is mixed in this area.
15- There's one obvious right way to do it, regardless of current practice.

The difference between zero and nothing is more than the stuff of idle speculation
for philosophers. Why more programmers don't care about this is beyond me.
16+ Zero should behave just like any other number.
16-- Zero is a special case, different from any number.

17+ We should stay out of the way of sophisticated programmers.
17- We should protect the innocent programmers.

18+ C is a quick and dirty language, that's its heritage.
18-- C must become a safe language, that's its future.

19+ That's impossible to implement.
19- Anything can be implemented.

20+ That's inefficient.
20- Efficiency is not a consideration.

'"' is notorious for being a two-stage language. It's macro preprocessor is almost
~a pure string-substitution language. As such, it can do violence to the structure
and readability of the underlying code. You can also lie like a legal brief with
maliciously chosen preprocessor macros.
21 + That's impossible to understand.
21- Anything confusing can be hidden inside a macro.

22+ If my system can't handle it directly, it shouldn't be in the standard.
22- If you can lie to your system somehow, it belongs in the standard.

23+ The user community will laugh us out of town on this one.
23- The user community must be educated on this one.

90 Programming on Purpose

24+ That's gone unchallenged for two years, why bring it up now?
24- That's been broken for two years, it's high time we addressed it.

No comment.
25+ Ada does it that way.
25- Ada does it that way.

~ow let me tell you about an incident that illustrates several of these
~creative forms of reasoning. For all the air time it consumed, it had only
limited impact on the overall standard. That is fortunate, because it was a
disaster in the philosophical arena.

Chas a function called malloc that allocates storage for a newly created
data object. It supports a heap discipline, which means you can allocate and
free data objects in any order. You pass as an argument to malloc the size
in bytes of the data object you wish to allocate. You get back a pointer to
the new storage area if the storage can be allocated. Otherwise, you get back
a null pointer. The function ensures that any storage alignment require­
ments are met.

That's all clear enough, except for one minor boundary case. What
should be the effect of calling malloc with a size of zero bytes? If you're
convinced that only one behavior makes sense, think again. We found two
conflicting schools of thought in this small backwater.

One school holds that a data object of zero size makes eminent sense.
Say, for example, you want to allocate storage for an array of all the
outstanding debit records. On some occasions, there are no debits. You
process debits in a while loop that executes zero times. It is only natural
that the loop should process an array containing zero items.

This school views a zero-size dynamic data object as an analytic continu­
ation of other reasonable data objects. You want malloc to return a
non-null pointer because a null pointer conveys the wrong message. A null
pointer tells you that malloc couldn't find suitable storage for the data
object you requested. Under those circumstances, you usually have to shut
down operations. Your program is starved for storage and may commence
misbehaving in various strange ways.

Still another school holds a differing view. It sees a zero-size argument
as suspect. Surely, you didn't mean to allocate such a creature. Surely, you
want a good implementation to diagnose a malloc (0) call, not just bull
ahead as if all were well. An array with zero elements should be handled
as a special case anyway.

Essay 12 All the Standard Reasons 91

Were the C Standard to say that zero is a valid argument value to
malloc, an implementation would be denied the right to diagnose this
suspicious case. It would be labeled as nonconforming if it failed to return
a non-null pointer. But if an implementation has the right to complain, then
a program cannot depend upon the behavior ofmalloc (0). You can't have
it both ways.

f?'W'S you might expect, people argued positions 16+ and 16-at great length.
~And as you might guess, I argued in favor of 16+. Here was a clear-cut
case, I felt, where zero was simply just another value. It might be enlight­
ening to walk through code that results in a malloc (0) call, but it should
combine neatly with other reasonable situations.

The opposing viewpoint was championed by people with implementa­
tions that do lots of extra checking. Special debugging environments want
to restrict C as much as possible. These folk would rather not have to disable
many checks when conforming to the C Standard.

Such arguments were to be expected. What surprised and annoyed me
were the arguments that were not presented. Someone should have uttered
an occasional 4+, since UNIX has quietly fielded malloc (0) calls since the
world was young. But the representative from AT & T, Larry Rosier in those
days, was of the 16- school. He usually reminded the committee of the
importance of keeping C in sync with UNIX. On this subject, however, he
neglected to emphasize the prior art.

There was, of course, lots of 6+ and 6-. Whitesmiths' library was solidly
in the same camp as UNIX on this subject. That was hardly surprising, since
I had absorbed many lessons on robust programming during my years at
AT&T Bell Labs, from the very folks who gave birth to UNIX.

There was even a little 3+, once the folks at Bell Labs woke up to the
issue. Several of the wiser heads there saw fit to advise the committee that
this was solidly a 16+ issue. Sadly, they shared my handicap. The proper
answer was so clear cut to them, they saw no need to indulge in a long­
winded explanation.

The debate spread across several meetings. That gave ample time for
people to argue both sides of 9 through 13, 15, 17, 18, and 24. It also gave
me time to marshal more convincing arguments. I was sufficiently persua­
sive that I converted Larry Rosier. Since Larry and I habitually canceled
each other's votes on most major issues, I considered that a significant
victory.

The victory was hollow, however, for a fundamental reason. We lost our
audience. A small but ever more vocal minority got fed up with the whole
subject. Some of us felt strongly that this was a fundamental philosophical
issue that should not be compromised. (And we were right.) The loud

92 Programming on Purpose

minority felt that this was a minor issue that was taking time from more
important areas. (And they were right too.)

I don't remember how often the committee reversed its position on the
issue of malloc (0). The final outcome was one of those compromises
where everybody loses, however. In the end, the committee voted to label
such a call undefined behavior.

That means that an implementation can return a non-null pointer, but
the programmer cannot depend on it. It also means that an implementation
can diagnose such a call, but the programmer cannot depend on it. So the
programmers who were happy allocating zero-size data objects are in the
same boat as those who want their fingers smacked. They can't depend on
the behavior they enjoyed in the past.
7{ went over this escapade in detail for a reason. It was not to make fun of
;.n X3Jl l or to argue the one right viewpoint yet again. It was to show how
hard it can be to hammer out technical details in the teeth of conflicting
philosophies. Despite my strong bias in favor of 16+, I respect those who
argued 16- and their reasons for holding that position.

Now consider that X3Jll had to deal with perhaps a thousand technical
details in full committee. How many more were quietly handled off line is
hard to estimate. If only five percent of those details require protracted
debate, you still have 50 opportunities to make bad compromises. The
miracle is that the C Standard has nowhere near that many lapses. And we
got the technical work done in only five years.

I began this series of essays by talking politics. That is human interaction
at its most strategic level. Then I discussed the ground rules that X3Jll
settled on for forming the standard. That is the tactical level.

Any veteran soldier will tell you, however, that both strategy and tactics
are irrelevant when you get down to the basics of combat. That's where the
grubby details become important, not what the generals talk about.

The C Standard, like any standard, was hammered out by dedicated
people. In the end, they happened to do mostly the right things. Along the
way, they happened to do those things for many crazy reasons. It wasn't
exactly combat, but sometimes it felt like it. o

mfterword: This completes my trilogy of essays on what I learned from the making
):;t.of the C Standard. It was the most whimsical of the three, but probably also the
most effective. Several people active on other standards committees tell me that my
modest proposal was quoted frequently. I figure that if I can at least make people
aware of a few of their foibles, I will have encouraged more rational debate.

13 The Physicist as Programmer

11rhis essay marks my forty-eighth consecutive installment of "Program­
\tllming on Purpose." Had you told me four years ago that I would still
be writing for Computer Language, I would have been mildly skeptical. Had
you told me that I would not miss a single issue in all that time, I would
have been certain you were daft. My flirtations with deadlines are notorious
among the editors at Miller Freeman.

Nevertheless, I have made it this far. And the job has gotten to be more
fun as time goes on, not less. I can't say it has gotten any easier. I put a lot
of effort into each essay, and I hope it shows. But the job is at least as
rewarding as when I first started.

My perennial fear is that I will run out of things to say, or repeat myself
excessively. I vowed that I would quit if either of those fears became
sufficiently real. Yet somehow, I always have two or three ideas in the
pipeline. And somehow, I can find new slants even when I do revisit old
topics. My current plan is to keep writing "Programming on Purpose" for
the foreseeable future.

That is consistent with my latest career as a free-lance writer (read
"unemployed"). When I began this column, it was a minor sideline to my
principal role as head of Whitesmiths, Ltd. Then I sold the company to
Intermetrics Inc. and helped them with the transition. Now I have the
freedom to write as much as I have always wanted. It will be interesting to
see if I continue to enjoy that freedom as much as I have always dreamed.

My first love remains computer programming. I want to see the state of
the art keep improving. I enjoy learning about anything that helps people
program better. I enjoy explaining to others what works and what does not.
Whether I practice much more or merely preach, I can think of lots of things
that need saying.

That love of programming goes way back. I got into this business in 1963,
when I was a sophomore at Princeton. By then I had already started down
a different career path. Stubborn as I am, it took me many years to wise up
and focus on what I do best. It also took an outside nudge or two, as you
shall soon see.

Along the way, I earned a doctorate in experimental nuclear physics.
That may seem like wasted training for a putative expert on computers, but
it is less so than you think. To learn physics, you have to pick up quite a
number of analytical skills. These are generally applicable to many fields.

93

94 Programming on Purpose

To earn a doctorate, you have to develop quite a lot of self discipline, and
self confidence that you can complete major projects. Those attributes are
even more widely useful.

It is not unusual for a student of physics to acquire expertise in another
field. Experimentalists usually pick up a useful trade or two along the way
to acquiring academic credentials. They learn how to design and build
electronic circuits, detectors, vacuum systems, and/ or magnets. They learn
how to write computer programs.
~hysicists are particularly arrogant about their ability to charge into
-ifiJother fields and make useful contributions. Generally, I have found this
arrogance to be justifiable, except for one serious handicap. The process of
earning a doctorate does not acculturate you to solving other people's
problems, as most employers would want. Instead, it encourages you to
keep elaborating on your thesis research. At least it leads you to believe that
all the world's a research laboratory, equipped for your personal benefit.

I had to overcome that acculturation. It cost me my first job out of
graduate school learning how to shift gears. Few enterprises want to pay
you to solve your problems. They want you to solve theirs. The trick lies in
learning how to have fun solving problems thought up by other people.

I still take pride in being educated as a physicist. I maintain my mem­
bership in the American Physical Society. I endeavor to keep up with the
latest goings-on in physics research. (I confess, however, that much of
elementary-particle theory and cosmology goes over my head.) And I
bristle a bit when someone calls me an engineer, even though I also hold
memberships in ACM and IEEE.

The Department of Physics and Astronomy at Michigan State University
invited me to give a talk recently. I was pleased at the prospect of returning
to my graduate school alma mater. I was also a little trepidatious about what
I could say. Certainly I was in no position to lecture on anything in physics.

I decided instead to describe my personal evolution from nuclear physi­
cist to computer programmer. For any students interested in making a
similar career transition, I figured I could give a few useful pointers. For
anyone afraid of being lured away from physics research, I figured my life
could serve as a cautionary tale. Watch what you do, this could happen to
you. I began my talk by explaining what I mean by "programming on
purpose." This being an anniversary of sorts for the column, it doesn't hurt
to review the term for the entire class. Pencils ready?
11rhe first requirement to be programming on purpose is to have a focus.
"'11You have a use for the code you write. It is not an idle exercise. You are
not simply hacking. That potential use imposes some specifications on what
you write. Those specifications give you a touchstone to know what must
go into the final program and what can and should be left out.

Essay 13 The Physicist as Programmer 95

Those specifications also give you a way of testing for when you're done.
If the program doesn't do everything required, keep working. If it does
everything you need, quit and get onto the next project. You need to know
when you're done because you also have a timetable. The intended use
cannot be postponed forever. If the program is not ready in time, it's useless.

The second requirement to be programming on purpose is to have a
customer. The direct customer might be you, but you can usually identify
an indirect one as well. Your advisor, boss, or coworker is depending on
you to do something and the program will help you deliver. More often,
there is a clearly identifiable customer other than yourself whom you must
satisfy. It is remarkably unimportant whether the customer is someone
inside your enterprise or an outsider. Your purpose remains to convince
someone else that you have met specifications.

A characteristic of customers is that they pay you. That is an important
part of your reward for programming on purpose. (I ignore, for now, the
additional reward you get from knowing you have done a good job.) The
reason I say that the nature of the customer is unimportant is because
payment comes in many forms. An external customer will probably pay
hard cash. That is the most direct measure of accomplishment that our
society recognizes.

Within a large organization, however, you might see only funny money.
Your internal account benefits from your success as a programmer. Within
a smaller group, you might simply earn brownie points. These are seldom
quantitative, but they can be redeemed for prizes at a later date. Don't sneer
at either of these latter two forms of payment. Both are worlds better than
no payment at all, and neither is taxable.
11rhe final requirement to be programming on purpose is follow through.
~A program alone is incomplete, only part of a solution. You must
provide some form of documentation to make the program usable. Don't tell
me about self-documenting programs. I agree that all programs should aim
to minimize the need to refer to manuals while you're using them. That
does not, however, eliminate the need for documentation in various forms.

You need to capture for posterity a number of important facts not easily
retained within either the source or executable code. This includes infor­
mation on: how to install the program, what it's for, what a novice needs
to know, how to do the commonest operations, and subtle facts an accom­
plished user might need to know.

You also need to capture a similar set of facts to support maintenance. If
the program is any good, it's going to be complex enough to have bugs that
must later be removed. A bug is not necessarily a botch caused by an inept
designer or programmer. It might simply be an infelicity, or a shortcoming
that arises when usage patterns change.

96 Programming on Purpose

If those patterns change enough, we all agree to stop calling the changes
maintenance. Instead, we label them enhancements. Unless you code cleanly
and with future changes in mind, it will not be easy to add them. You will
also find that the code quickly silts up with maintenance changes and
enhancements. Once a program gets too expensive to change, it is effec­
tively dead. Your job is to give your programs a reasonably long life
expectancy.

A program does not become a product for a customer unless you touch
all these bases. You must focus on what is needed. You must get the
customer to admit that you have met specifications in a timely manner. And
you must provide sufficient follow through that the program retains its
value. That, my children, is programming on purpose.
?'11?11.t hat I have described here is a recipe for being professional about
~computer programming. I find that you have to spell the recipe out
in greater detail for programming than for other trades. Why? Because it is
harder to tell when you're dealing with amateurs, or with amateur prod­
ucts. It is also remarkably easy to get away with amateur behavior yourself
and still make a living.

A program consists of a lot of complexity hidden inside a black box. It
can take a lot of poking and prodding to determine how well a program
meets its specification. It can take even more to determine whether the
program is maintainable or enhanceable. While you are busy poking and
prodding, the amateurs who made it can scamper off to the next project.

Of course, not everyone who works with computers wants to be a
professional programmer. Not everyone should endeavor to be one. Believe
it or not, there are other things to do in life besides writing quality code.

What I told all those physics students is the same thing I tell many
people. Decide what level of involvement you want to have with comput­
ers. Then learn the behavior appropriate for that level of involvement. And
stick with it. I can identify at least three levels of involvement in computer
programming:
• The reluctant programmer is a person who views computer programming

as a necessary evil. Programming is a distraction from the real business
at hand. But you just can't buy everything.

• The determined programmer is a person who views computer program­
ming as a useful tool. Sure, programming is a nuisance and a time eater.
But you can do so many more interesting things if you're not afraid to
use computers.

• The enthusiastic programmer is a person who views computer program­
ming as a delightful challenge. It's nice that the job has so many inter­
esting problems connected with it. That creates such great excuses for
playing with computers along the way.

Essay 13 The Physicist as Programmer 97

'7f et's say that you classify yourself as a reluctant programmer. I don't
14.know whether you're reading Computer Language, but I'm glad if you
are. You needn't apologize for not wanting to get caught up in computer
programming. Even I have had periods in my life where I've felt that way.
The most important thing for you is to remember the cardinal rule for the
reluctant programmer:

1.!Bon't program.
You must defend your amateur status at all costs. For one thing, com­

puter programming is too complex to do by halves. You must be prepared
to invest serious time in it, because a half-hearted investment is too often
wasted. And once you get caught up in doing it right, you can easily find
yourself evolving into a determined programmer. You don't want that to
happen, now do you?

When you need a computer program, you have several choices.
• If at all possible, buy it. That gives you someone to yell at if it has bugs.
• Next best is to borrow it from a friend. Please note that I didn't tell you

to knock off an illegal copy. The last thing you want to do is starve out
anybody who actually wants to write code instead of you.

• If all else fails, bribe a determined or enthusiastic programmer to write
it for you. (If you are a manager or faculty adviser who holds power over
such a programmer, you can note that "bribe" is a euphemism.)
You should confine your reading to product reviews. Publications like

PC Magazine or Mac World are safe enough. Avoid articles in this magazine
that have snippets of code in them. Stan Kelly-Bootle is generally a safe bet,
if you can understand his puns. Just be careful you don't learn too much.

I end my advice to the reluctant programmer with an appropriate
inspirational quote - "To err is human. To really foul things up takes a
computer." (Anonymous)
~ow let's say you classify yourself as a determined programmer. You are
»probably at home reading Computer Language, because you can pick up
tricks of the trade without having to program all the time. You should also
be properly horrified at the tales of large projects that end in disaster. Those
tales underscore the cardinal rule for the determined programmer:

Jltbtr program anptbtng btg.
As I remind people periodically, computer programming is an exercise

in mastering complexity. If you are on your way to becoming a professional
programmer, you will find yourself tackling ever larger projects. Inevitably,
you will get in over your head. You will misjudge the size of a project and
the complexity will master you. If your goal is to stop short of becoming a
professional, you will want to avoid this trauma at all costs. It is a painful
rite of passage.

98 Programming on Purpose

If a job starts looking too big, consider buying someone else's solution.
(See above.) Resist the urge to write a better version yourself. If you must
write code, remember K.I.S.S. (Translation - "Keep it Simple, Stupid.")
Remember that your first love is your application, not the act of writing
code for it.

Besides Computer Language, you should be reading good trade books on
the development software you use. A little investment in learning your
favorite programming language and operating system can save you from
needless distractions. In short, be as good as you have to be to do what you
want. But no more.

My inspirational quote for the determined programmer is attributed to
Bill Wulf, though I don't know the exact source - "More computing sins
are committed in the name of efficiency (without necessarily achieving it)
than for all other reasons combined, including blind stupidity."
~nally, let's say you classify yourself as an enthusiastic programmer. I

,.}} make no secret of being in that category. I believe that many readers of
Computer Language are as well. We may not make the world go 'round, but
at least we keep it from hanging up quite so often. Our job, more than
anybody else's, is to be professional about what we do. The cardinal rule
for the enthusiastic programmer is:

Jleber gibe atuap anptbtng pou tan sell.
If you're going to pursue programming with enthusiasm, you won't

have time for another profession. Make sure you get paid for what you do.
Computer programming has the virtue of being worth a lot of money to
people who have money to spend. They too will be more comfortable if
they believe you're getting enough loot to stay focused on the job. Trust me.

You should also avoid writing programs that are available and cheap.
Even if your (ambitious) goal is to displace an existing market leader,
confine your energies to making code that is wonderfully new. There's just
too much to do for you to be reinventing wheels.

You should of course be reading just about anything that will improve
your skills as a programmer. Find an academic journal (or two) that has a
good impedance match with your level of education, then read it (them)
religiously. And don't forget trade publications, such as good old Computer
Language.

My inspirational quote for the enthusiastic programmer is aimed at
others who chose to switch careers. I heard it often from R.W. Hamming,
who delighted in repeating it in my presence - "Computing is full of
second-rate physicists."

And that brings me back to my personal history. I promised to tell you
earlier how I finally wised up and stopped pretending to be a physicist.
Credit for this transition goes to Prof. Edwin Kashy of Michigan State. I first

Essay 13 The Physicist as Programmer 99

met him as a sophomore at Princeton. He taught us a mean course in
electricity and magnetism. Tough taskmaster that he was, I chose him as
my junior-year advisor. When I graduated, I followed him out to MSU. He
was my Ph.D. research advisor as well.

~~ashy is an enthusiastic physicist the way I am an enthusiastic program-
1A.mer. Enough of his enthusiasm rubbed off on me to keep me going.
Nevertheless, I faced a real quandary when the time came for me to choose
my first job. Seems I could earn twice as much as a computer scientist at
Bell Labs as I could staying in physics research and teaching. It was time to
take a hard look at my identity.

I like to tell people that Kashy convinced me to switch by making a
simple statement, "I have seen you do physics for eight years. Take my
advice and get out of physics."

It's tempting to end on that note, but it's not the whole truth. What he
really said was more like, "I've seen you work for eight years. Anytime I've
given you a problem in physics, I've had to hold you into it until you get
some momentum. Then you do a decent job of solving it. But anytime I've
suggested a problem involving computers in your presence, you've had an
answer later that afternoon. Now, you decide what you like to do best."

More recently, he reminded me of something else he said at the time. "I
think you're a competent physicist. I think you can become a pretty good
physicist. But you're much better as a programmer. You can become very
good, even great, if you focus on that."

I realize that Kashy and Hamming were saying much the same thing,
each in his own way. I don't mind being called a second-rate physicist. It's
probably true. So long as I can aspire to being a first-rate programmer, I'm
happy.o

mfterword: I don't know which is worse, getting caught up with computers when
~your heart lies elsewhere, or not getting caught up with computers when that's
what you really want to do. I've seen people suffer from both mistakes. Much of my
motivation in writing this essay was to help a few people choose more deliberately.

14 Shelfware

']'{tis probably the dirtiest open secret in the software business. I'm not
.JJ talking about schedule slippages or cost overruns. I'm not talking about
excessive bug levels. Nasty as they are, those are all things that can be
overcome in time. Software can suffer a much worse fate than taking too
long, or costing too much, or even being too hard to debug. It can fail to
capture and hold your interest after you buy it. When that happens, you
purge it from your disks. You remove its diskettes from the handy carrier
and its manuals from the back corner of your desk.

If you're really annoyed at the software, you dump all traces of it in a
trash can. More likely, you retain some painful memory of what you paid
for it. So you feel obliged to retain some hope of resurrecting it in the future.
You pack diskettes and manuals into a cohesive lump and stow them
somewhere not too handy. Probably on a top shelf just out of reach.

Once a product makes this transition, it is no longer software. It has
acquired in recent years a more derogatory name. It is called shelfware.

No self-respecting programmer sets out to write shelfware. We all have
higher ambitions than that. We want to make products that change people's
lives for the better. We want to write software that people will use every
day and recommend to their friends. We want to acquire a following that
eagerly awaits each new release we contrive.

Even if your ambitions are purely mercenary, shelfware is bad business.
Computer software is more than one-shot publishing, like a book or an
audio recording. It requires on-going maintenance and enhancement. Put
another way, it gives you, the software vendor, numerous opportunities to
sell back to your client base. You can sell maintenance if the product is
complex. You can sell new releases of any software not dipped in epoxy.

Amarketing person will tell you that selling to happy customers is about
the easiest sell you can enjoy. That helps make it one of the most profitable
sells as well. And that pays the rent, and orthodontists' bills, year after year.
Unless you are in the business of going out of business, like the infamous
shops in limes Square, that's the kind of business you want to build.

I confess to having written my share of shelfware. Some of it found its
way to the top shelf by a reasonably honest path. It got old. Perhaps I could
no longer justify supporting and enhancing it for the few remaining cus­
tomers. Or perhaps I sold the rights to it and the new owners chose to
remainder it. That sort of thing happens a lot in our rapidly evolving field.

101

102 Programming on Purpose

Other software I wrote became shelfware for less defensible reasons. I
refused to listen to customers and make the changes they needed. Or I
guessed wrong about which customer feedback to respond to. Or I simply
got blown away by the competition because I didn't work hard enough to
keep up.

I found it hard to see the causes for my own shelfware. It was not until
I started acquiring commercial software in serious quantities that I wised
up somewhat. I could see other people's failures much easier than my own.
Funny how that works.

To help you see some of the origins of shelfware, I have tried to charac­
terize some of the principal causes. What follows is a series of caricatures.
Each emphasizes some shortcoming that can push a product over the line.
Or, more aptly, onto the top shelf. True shelfware often suffers from a
combination of shortcomings. But lets keep it simple for openers.
11rhe orphan is a product that has lost its support. It may have been a
"""1mainstay two years ago, but it hasn't seen an upgrade since. Mean­
while, the products it works with have been improved. The orphan knows
nothing about the new file formats, so it keeps crashing.

You call the service hot line. If it hasn't been disconnected, you get a
support person who's not really sure about the behavior of such an old
product. No patches are available. Questions about new releases get met
with embarrassed evasions.

Soon you figure out that the once wonderful product is trapped in a time
warp. If you want to stick with it, you'll have to discard anything newer
than your Sinead O'Connor CDs. Otherwise, you'd better kiss it good night
and shelve it.

I cited above some reasons why a product gets orphaned. You can't
expect a company to keep enhancing your CP /M word processor. And you
can't bring a company back from the dead if it goes out of business. But you
can gripe if a company simply moves too slow, or puts its energies into
products less important to you. That's when you vote with your feet by
climbing on a chair to reach the top shelf.
11rhe nest of vipers is worse than the orphan. It sops up all your gumption
"""1trying to get it to work the way you want. Every time you think you
have it under control, it finds a new place to bite.

The problem is not lack of support. Every time you call the hot line -
even after eight at night - techies are there to lend you a hand. Typically,
they are the actual folks who developed the product. They are always
willing to help you try one more patch, or another clever work around. You
can avoid buying diskettes for a year just by recycling the quick fixes they
ship you.

Essay 14 Shelfware 103

As you might guess, it is this freewheeling approach to software that
caused the problem in the first place. I know of one software company (no
longer major) that took pride in the continuing program of product en­
hancement conducted by several of the techie principals. Every shipment
embodied the very latest version of the product, often only a day old.

After two years of booming along this way, the company found itself
completely mired in supporting existing customers. Some of their custom­
ers tried to help each other, until they found that no two had exactly the
same product. Up to the very end, though, that company was happy to
provide patches.

The customers left because they couldn't afford all that assistance. What
they needed was a product with fewer bugs. Barring that, they at least
needed one with better version control. No amount of first aid will save
you from repeated injections of venom.
11rhe amnesiac doesn't poison you so much as it annoys you to death. You
~might have a product that does just what you want. It has all the
parameters you could possibly imagine, so you can tailor its behavior to
perfection. There is only one small problem. It flatly refuses to remember
any of your detailed conversations from run to run. You have to renegotiate
the desired behavior every time you want to use the product.

If you're lucky, you can wrap such forgetful critters in a cocoon. Com­
mand scripts are great for capturing invocation lines that contain a dozen­
odd unmemorable parameters. That's where the modern trend toward
menu-driven interfaces does you in. Not all of them provide keystroke
alternatives to pointing and clicking with a mouse. I have yet to see a really
good system for capturing mouse movements in a script.

The writing analyzer I favor is barely usable, at least to me. I spent a day
jiggering search paths, tailoring command scripts, and configuring what­
ever I could. That got me to the "doit file" style of invocation, with just an
occasional gratuitous return to reassure an asinine query.

I am now trying to convert completely to Windows 3.0. To say that I am
back to square one with this product is treating it with too much kindness.
Its principal competitor now comes in a special Windows version. However
reluctantly, I am tempted to turn an old standby into shelfware.
11rhe chatterbox shares many of the same problems with the amnesiac. It
~is a product of the "Don't be scared" school of user-interface design. No
matter how adept you get with this product, it refuses to wise up. That
sucker is going to talk to you, and ask you questions, until long after the
cows come home.

I am all in favor of an occasional" Are you sure?" The less I use a product,
the greater my chance of saying something rash. It's nice when a product
checks with you before it obliterates half the banjo players in Cleveland.

104 Programming on Purpose

Still, every such checkpoint should come with a "Trust me" override. I'll
use it at my peril, but please let me use it. I certainly need it to write scripts
that run unattended. I want it whenever I get tired of clicking OK buttons.
(If you want to be puckish, how about an occasional "Were you sure?" once
it's too late to undo the damage?)

Brian Kernighan and I preached the gospel of software tools for many a
year (K&P76). Our basic sermon was that programs should not be designed
differently for automatic and interactive operation. You should be able to
automate any interaction. You should be able to interactively debug any
automation. That calls for I/O that is at once clear and to the point.

I fear that the industry has lost sight of this laudable design principle
with its new-found love of user-friendly software. I just plain don't want
to interact with much of the software I use. I want to tell it what to do, go
get a cup of coffee, and digest the output when I get back. If it insists on
chatting, it can talk to the packages beside it on the top shelf.
11rhe fortress is more worried that you will steal it than that you will put
\tllit to good use. You invoke it and it paws at drive A for a key diskette.
No diskee, no washee. Or it asks you to prove you're the rightful owner by
entering esoteric information from some document that makes copy ma­
chines cough. I always feel like I'm renewing a loyalty oath when I reassure
one of these paranoid products.

I am all in favor of people getting paid for fair use of software. Illicit
copying was a concern when I owned my own software company. Abuse
of intellectual property is an ongoing concern to all of us who earn a living
capturing ideas in words and bytes.

I am also all in favor of customers getting fair value for their money. Treat
us like potential felons and you lose our sympathy. Put too many impedi­
ments in our way and you lose us as customers. You can protect a product
so well that it ceases to be a product.

I like to think that our industry has grown up over the past few years.
Don't ask me to show figures - it's just a feeling. No longer is the
Underground Computer Club of Dubuque the principal source of (illicit)
software for that fair city. Sources of reasonably priced software abound.
No longer can employees plead ignorance if a niggardly manager buys one
package for simultaneous use on 20 machines.

I personally can't afford either the time or the inconvenience of traffick­
ing in pirated software. For good software, the vendor has me on documen­
tation, support, and upgrades. For mediocre software, the vendor doesn't
hold my attention long anyway. I suspect that much of the market is more
like me than not.

I railed about one fortress package in an earlier essay. (See Essay 9: The
Seven Warning Signs.) It was a communications package that refused to

Essay 14 Shelfware 105

run on more than one machine. You're supposed to buy a separate copy for
each end of the communications link.
1'(wasn't about to do that until I was sure the package did what I wanted.
~Every attempt I made to install the same package on two communicating
machines was cleverly foiled. The package was great at protecting itself,
but lousy at winning hearts and minds. It quickly ended up on the shelf,
replaced by a package that encouraged your installing it on multiple ma­
chines.

More recently, I became addicted to a program that plays bridge. Yes, I
know this is not "programming on purpose," but I procrastinate occasion­
ally just like the rest of you. I found it perfect for sharpening my game and
idling away an unproductive mood.

Only problem is, it comes on two diskettes, one of which is a key diskette.
To make it usable, you have to copy the contents of both diskettes onto a
hard disk. To actually use it, you have to have the key diskette in drive A
when you start the program.

That means I have to tie up disk space, yet still be anchored to the diskette
drive to use the program. Worse, the diskettes are available only in 5
1I4-inch format. My laptop has such a drive that I hook up to when at
home. On the road, I have to leave it behind.

What I really want is a single 3 1 /2-inch diskette that holds all the files
for the bridge program. I can make one, but it won't work because the
vendor is certain that I'm trying to steal an extra copy. I'm even willing to
buy a second copy for the road, but the vendor chooses not to sell one in
the form I need.

I can no longer afford to devote hard disk-space to this minor indulgence,
so it has recently gone on the shelf. It's one thing to shelve packages related
to work. But when I'm reduced to shelving procrastinationware, you know
I'm annoyed.
11rhe disk hog believes that you can't get enough of a good thing. It comes
"11on fifteen diskettes, all of which you have to copy onto your hard disk.
But that's not the end of it. Some of those files are compressed. They puff
up like popcorn on their way into your system. Next thing you know,
you've given away megabytes of precious magnetic real estate. I won't even
discuss applications that generate three-megabyte temporary files with
little or no warning.

The designers of disk hogs forget that you have other uses for your
system besides running their package. They figure you'll really appreciate
all the extra whistles and bells they thought up while developing their pride
and joy. They cheerfully lade on examples, tutorials, help files, and cute
little utilities that you might have a use for some day.

106 Programming on Purpose

I think all those things are great, mind you. Put each group of related
files on a separate diskette. Provide a separate guide for each and a separate
installation procedure. Where possible, show a way to use the extras right
off the diskette. At the very least, you want to be able to pick and choose
the parts you want to keep.

What generally happens instead is quite the opposite. The installation
process pumps everything you could possibly need onto the hard disk.
Files have such cryptic names, and little or no documentation, that you
don't know which are used for what. I have paralyzed a large software
package more than once trying to trim its diet for disk space. Chuck the
wrong file and you get fruity behavior. Seldom is the package smart enough
to say, "Hey, what happened to C:\GOOBER\PEANUT.SHL?"

When I acquired my battery-operated laptop with a 40-megabyte disk,
I thought I was set for years to come. After all, didn't I produce hundreds
of thousands of lines of commercial software on a machine with a tenth as
much storage? Yeah, I sprawl a bit more with advancing age, but not all
that much. I thought I was in pig heaven.

Then I got elbowed aside by a few disk hogs. It never occurred to me
that a typical PC application eats half a megabyte or more of disk space. The
big ones demand five to ten times as much space. It wasn't long before I
found myself purging the disk on a weekly basis to avoid those nasty "disk
full" messages. Have you noticed that they usually occur half an hour into
a major run that cannot be resumed?

I soon learned that the quickest way to liberate disk space was to remove
the largest packages I could live without. Being a disk hog is the best way
to rise to the top of my hit list. It's worth reinforcing that top shelf to take
the weight of the package. Vendors, take note.
11T"he way of life is my last target. I apply this term to a broad spectrum of
"'1.ipackages. Their common denominator is denial. They want you to
forget you are running in your environment of choice and heartily embrace
the one they provide. They want you to do things the One Right Way.

I have seen C made to look like Algol 68, MS-DOS made to look like
UNIX, UNIX made to look like VMS, and VMS made to look like UNIX.
Each was a tour de force, in its own way. But each was also a perversion.
You can never completely turn a silk purse into a saw's ear, or conversely.

One problem in dealing with a way-of-life package is that it tends to snub
its neighbors. If you don't match the protocols and file formats of the
interloper, you can't talk to it. That makes it hard to combine packages to
get a job done. In this day and age, that makes it hard to solve a problem
cost-effectively.

Another problem follows directly from this inevitable isolation. The cost
of buying into a renegade package is necessarily high. You have to be

Essay 14 Shelfware 107

willing to invest in special versions of many tools and applications. You
also have to be willing to turn your back on a larger marketplace and shop
in more specialized boutiques. Or you have to learn to build for yourself
what you cannot buy.

My company had pretty good success selling compilers, but we never
did nearly as well selling operating systems. I finally figured out why.
Almost any engineer can get permission to buy a compiler and tuck it in
some corner of the development system. People can use it or not as they
see fit. They can often contrive some way to mix and match code from
different compilers and assemblers.

You don't just buy an operating system and tuck it in a corner, however.
Such creatures tend to take over the whole machine. They define the set of
applications that can run on the machine. That is a commitment with
far-reaching consequences. You don't just buy an operating system, you get
married to it. It becomes a way of life.

We even tried packaging our operating system in a less intrusive manner.
We made it run as a guest under several popular systems. That made it
easier for a single engineer to tinker with it. It stayed out of people's way.
But it still suffered from a dearth of applications written for it. You wrote
your own or did without.

I still trip across MS-DOS packages that endeavor to impose a unique
way of life on the MS-DOS environment. I use them where I must, but less
and less. It's not that I love MS-DOS- far from it. I've simply learned the
necessity of having a homogeneous environment where diverse products
work together. Those that don't end up sharing the top shelf of my book­
case.
11rhat's my menagerie. I'm sure you have your own beasties that belong
~in this zoo. We can all feel sorry for software that lacks staying power.
But we should also endeavor to learn from such failures. I don't want to
make any more shelfware, and I certainly don't want to buy any more. My
top shelf is almost full. o

mfterword: This proved to be a popular essay. I was asked to present it several
.a.times at conferences, after it appeared in print. I can also report that some of
the vendors I mentioned here have begun to see the light (not that I can take credit
for it). Carbon Copy now has a more reasonable license, though it is still fussier
than most. My favorite bridge program is no longer copy protected. And large
applications now provide more tailoring and space estimating at installation time.
Still, a significant fraction of the software I buy turns into shelfware.

15 It's Not My Fault

7{ always get a kick out of watching historical and sci-fi movies on the late
..Dshow. The game I play is to guess when they were made. Cleopatra has
shoulder pads and a Veronica Lake hairdo if ancient Egypt is revisited from
the 1940s. Buck Rogers sports a crew cut and a smug self-assurance if he's
filmed in the 1950s. Black cowboys confidently integrate Nineteenth Cen­
tury saloons thanks to the revisionism starting in the 1960s. In short, a
movie always tells you more about when it was made than when it was
made about.

For that reason, I was particularly struck by a recurrent theme in the
second of the Star Wars epics, "The Empire Strikes Back." Here we have
several rugged individualists charging about and defying a galaxy-wide
fascist state, usually surviving by the skin of their teeth. That takes oodles
of courage and unadulterated chutzpah. Nevertheless, these unapologetic
rebels fall back on the same excuse whenever their schemes stretch thin.
Over and over you hear them bleat, "It's not my fault!"

From a 1970s perspective, I found that drone string jarring and unpleas­
ant. It didn't fit my image of Han Solo or Luke Skywalker. Having watched
the 1980s run their course, however, I realize how much in tune with our
times that particular sentiment has become. If any one theme can charac­
terize the American attitude in the 1990s, it is a persistent unwillingness to
take responsibility for one's less admirable behavior.

Gone are the days when a public official feels the need to apologize for
getting caught out. Athletes renege on deals and behave rudely to women
reporters with unabashed confidence that their human worth is reflected
in their salaries. Business leaders and lawyers cheerfully espouse the ethics
of carrion birds - and get away with it.

Such behavior is hardly confined to the putative leaders of society. Your
average American has developed a knee-jerk reaction to any loss. Someone
should have protected me from my own stupidity. Someone, preferably
someone with money, should be obliged to shoulder the blame and com­
pensate me for my loss. Whatever I may have done to contribute to the
problem, it's not my fault.

That's how we can produce such a preposterous series of courtroom
charades. When my car hit the school bus, the kids didn't die - it was the
fire and smoke that did them in. If your only evidence of my crime is my
freely given confession, maybe I didn't give it as freely as it appeared. That

109

110 Programming on Purpose

ten-foot rowboat shouldn't have capsized when I stood up in it in the
middle of a storm. And so it goes.
ms you must have guessed by now, this attitude is a sore point with me .
.e:t.I find it injurious not only to society, but to the equivocating individual
as well. Consider - if you are not to blame when you fail, who should get
the credit when you succeed?

If you have struggled for years to make a relationship work-and I hope
for your sake that you have -you have probably learned a most important
lesson. Each party must take complete responsibility for successful com­
munication. That way, on those days where one of you can't pull off more
than a 30 per cent effort, the other willingly supplies the missing 70 per
cent. If you each commit to no more than a 50 per cent effort, you will have
many days when the gap looms large. If the relationship fails, it hardly
matters whose fault it is.

Years ago, I took one of those Califomia-ish seminars designed to help
you get your mind right. It was a mishmash of pop psychology and
seat-of-the-pants therapy, but it mostly worked. One of its strongest points
was the attitude it demanded about responsibility. You may as well assume
that you are responsible for everything, because given half an excuse you
will rationalize away any blame. I find that attitude a useful anchor. And
by accepting my gaffes, I can revel in the occasional victories as well.

I will now climb off my social soapbox and climb back on my program­
mer's soapbox. I hope you will come to see the obvious parallels. We live
in an exciting era, one where computers are improving the quality of life
on a thousand fronts. Every one of those fronts also introduces a risk.
Short-sighted programming can fail to improve the quality of life. It can
lower it, or cause economic loss, or even cause physical harm. In a few
extreme cases, bad programming practice can lead to death.

Just a few years ago, we programmers had a simpler constituency to
satisfy. We trafficked in calculations that only an engineer or an accountant
could love. Such customers are trained to be wary, particularly of new ways
of doing business. Give them good numbers and they are suspicious. Give
them bad ones and they are quick to discard anything that smacks of
nonsense. Your botches might have cost you the confidence of sophisticated
customers, but you seldom faced a lawsuit. The customers mostly kicked
themselves for ever trusting you and went away.

Your customers today are at once more numerous, more diverse, and
more litigious. You can't rely on camaraderie, sophistication, or under­
standing to save you when you blow it. You now have a greater obligation
to yourself as well as to your customers. You can't afford to code by the seat
of your pants anymore, if you ever could.

Essay 15 It's Not My Fault 111

This is not all bad. Despite my earlier examples of silly defenses, I accept
the reality of distributed responsibility today. Genuine abuses still exist that
are only now being rectified. A manufacturer who knowingly makes an
unsafe product, an individual who recklessly puts others at risk - both
must be held accountable for their behavior.
?IJ?llthen I was much younger, I learned how to cut weeds with a sickle.
~It is a wicked instrument that can be very effective in a trained hand.
It can also sever arteries and remove digits with a moment's inattention.
Grow up on a farm and you learn the pros and cons of sickles, scythes,
threshers, and a score of other cutting tools. You don't think to blame the
manufacturer for selling you sharp edges.

A few years ago, I bought my first gas-powered weed wacker. It came
festooned with caveats. The manual told me not to do several obviously
stupid things. It also told me how to refuel the beast, restring it, and service
it safely. Since it is one of several hundred gadgets that I use just a few times
a year, I find this more cautious packaging entirely appropriate today. I can't
depend on oral tradition and several days of close tutelage to teach me the
modern culture of wacking weeds. The manufacturer prudently saw to my
minimal education on the use of a potentially dangerous product.

In some ways, I regret this loss of innocence. The first serious camera I
owned I learned literally inside and out. I lovingly dismantled it and put it
back together. I read the manual until it became dog-eared. I memorized
the list of accessories and recited it before every gift-giving occasion. That
camera was a wonder and a wellspring of joy to me.

Today, I am awash with the toys that come with wealthier adulthood,
yet I am starved for that simple joy. I barely have time to master the basic
operation of the light mechanical devices that now surround me, let alone
become intimate with their many secrets. Please understand, I would no
more go back to a life dominated by a single prized possession than I would
go back to cutting weeds with a sickle. But I do appreciate the price you
pay in lost innocence when you have sophistication inflicted on your life.

As we inflict sophisticated computers on more and more lives, we must
learn to be more responsible. We must meet them far more than half way.
We must document the obvious and shield the sharp blades. We must make
our code ultra reliable and fail safe. We cannot fall back on the old excuses
that circumscribe the role of software in the usability of the finished
product. We cannot simply say that it's not our fault.

Whatever excuses we had in the early days of computing have worn
thin. We can't argue that we lack the horsepower, the know-how, or the
development tools. There's plenty of each to go around, should we choose
to make use of what's out there.

112 Programming on Purpose

7bere's another of those analogies that's not quite right. Think of the
Revolution of the airplane. What the Wright brothers first put into the
air was grossly under powered. You can buy garden tractors with more
horsepower than the engine that carried the first human being aloft. You
can hardly fault Wilbur and Orville for failing to enclose their cockpit.

An enclosed cabin is pretty much a necessity for commercial aviation.
Sure, a few hardy souls paid good money to travel in open biplanes, but
they were doughty pioneers, not your aunt Martha. As engines became
more powerful and airplane design became more of an engineering disci­
pline, passenger planes became much safer. And almost comfortable.

As late as the 1950s, however, stiletto heels were punching holes in the
thin aluminum floors of the biggest aircraft. The 20 Kg limit on baggage
was no joke. And in-flight movies were still an unfulfilled promise. In the
end, all these limitations sprang from a common root - aircraft engines
hardly had power to spare. Note that the commercial airplanes of today are
not 600-seat biplanes with open cockpits. With increasing power and better
materials came greater safety first, then greater comfort. Sure, capacity
went up, but not as fast as it could have.

Back to computers again. The first computer I programmed had the
smallest resident control program I have ever seen. One hundred 36-bit
words were set aside for recording the current date, counting down the
program's allotted time, and rebooting the batch control program from
magnetic tape. Many of us programmers begrudged even this tiny tax. We
wanted all the computer power we could get our hands on.

Then came multi-user systems that ran user programs in protected
mode. No single program could crash the entire system, which was a
definite improvement. The cost was a much larger resident and more
insulation between the user program and low-level 1/0. We sacrificed tens
of kilobytes of precious memory, and direct access to I/O devices, for
greater system integrity.

Today, the resident code imposed on us often measures in the hundreds
or thousands of kilobytes. Application programs work through standard
graphic display drivers, network interfaces, database access methods. We
may have 20 times the memory and processor speed, but we don't neces­
sarily run programs 20 times bigger or faster. Instead, we spend some of
that increased horsepower on improved file-system integrity, more reliable
data transfers, and so forth.

I warned you earlier that the analogy is not quite right. Analogies
between conventional engineering and software development seldom are.
It is much easier for an impartial observer to distinguish improvements in
the reliability of tangible things. Hence, it is much easier to measure
hardware reliability.

Essay 15 It's Not My Fault 113

.a..,. oftware quality is much more elusive. You can judge some of it by
~reading code. Other aspects you can determine only by developing a
nontrivial suite of tests. Such testing is often a significant fraction of the cost
of developing the code proper. And in the final analysis, no amount of
bench testing tells you what you need to know - will the code work
properly in the field?

You can breadboard a piece of hardware and test many parameters of its
behavior with confidence. Make a production version and it usually be­
haves even better. You can prototype a piece of software and test only a few
useful properties. Make a production version and you're back to square one
with regard to reliability testing.

That means that the accretion of working code is comparable in impor­
tance to the accretion of software-engineering knowledge. Making 50
bridges from one basic design is no big deal. Making 50 useful programs is
a big deal. Each is bespoke, a custom item, a useful addition to our
cumulative lore.

There is another difference. If a bridge falls down, an investigator can
quickly determine whether the engineering or the construction was at fault.
Less and less often are engineers caught out. They can rely on well known
properties of construction materials and generous safety factors. If a pro­
gram fails, however, it is a harder call. The conceptual distance between
software engineering and program construction is much less. It is not so
easy for any one player to assert confidently, "It's not my fault."

Software development is a maturing discipline, notwithstanding all
these caveats. We do have more horsepower to spare and we are using it to
make a more reliable product. We are getting smarter at developing reliable
products and we understand the importance of making them safer and
easier to use.

The "we" in the preceding paragraph is the computer industry in
general. I find that too many individual programmers have not yet inter­
nalized this attitude, however. Altogether too much code is still produced
like the Wright brothers' first flier - by hand, in a bicycle shop, with
inadequate materials and technology. That may be fun for the home tink­
erer, or the classic hacker, but it ain't professional. It's not "programming
on purpose."

I have preached at great length about the microscopic details of writing
more reliable code. (For an early essay, see "Programming on Purpose:
Writing Predicates," Computer Language, August 1986.) If you keep reliabil­
ity and testability in mind all the time, you are less likely to write spongy
code in the first place. You are also more likely to debug it successfully in
the end.

114 Programming on Purpose

']'(still believe that good coding techniques are important, but that is not
;Dthe brunt of this essay. A chain is only as strong as its weakest link. You
can forge many strong links, and you should, but that is merely necessary.
It is not sufficient. The way to improve overall system reliability is to avoid
delivering chains of components. You may not be able to speak for the
strength of the weakest link.

For all the promise of distributed computing, only a few forms have
proved generally successful. Those involving loosely coupled but other­
wise autonomous systems have fared the best. They can afford to be
suspicious of their links to other systems, and to invest in checking and
retry logic. Closely coupled systems, on the other hand, tend to fail like our
proverbial chain.

The more reliability we need in a computerized system, the more we
need parallelism, loose coupling, and reconfiguration strategies. The need
in hardware has long been obvious. The need in software is more slowly
becoming apparent.

A highly critical system like the space-shuttle guidance easily warrants
any expense that improves reliability. It makes sense to code the same
software with two independent teams, then fly with both versions checking
each other. Controlling a few dozen traffic lights is also important, but not
on such a scale. Designing for fail-safe behavior and coding for reliable
operation are the least we should expect from the software developers.

I do not mean to suggest that nobody in our field is coding responsibly
except under duress. I merely want to emphasize that we are entering yet
another era in the application of computers. More are being used as
appliances, rather than as tools for sophisticated users. More are appearing
in places that can cause loss or harm to unsophisticated customers.

You can look on defensive coding and reliable design as an exercise in
ass covering. Nobody buys insurance out of a love for insurance companies.
We do so to limit our exposure to extreme losses. More than a few doctors
still view diagnostic tests as protection against malpractice suits. Whether
your attitude is negative or positive matters less than your actions.

We programmers are well past the point where we can command the
tolerance afforded to back-yard tinkerers. If we want to be treated like
professionals, we'd better assume responsibilities commensurate with
those assumed by the other professions. Otherwise, we'll wake up one day
and find ourselves:

• over regulated
• under insured
• in hot water
• out in the cold
Or all of the above. If we do, we'll have no one to blame but ourselves. o

Essay 15 It's Not My Fault 115

mfterword: This essay was my attempt at a call to arms for programmers. I still
~find that many otherwise conscientious programmers look on reliability and
quality assurance as 11uisancy requirements imposed by management. Just let me
code it and debug it my way, in my own good time. That should be good enough
for everyone else. We'll never develop adequate technology for making responsible
software until we develop the widespread attitude that nothing less will do.

16 Customer Service

11rhe software business differs from others in several interesting ways. It
~is also more like other businesses than many programmers want to
admit. The business of business has one universal invariant - customers.
Without customers you have no business, whatever you're selling.

You'd think, therefore, that every business would put heavy emphasis
on customer relations. Sadly, this is not so. The world is full of surly shop
clerks, receptionists, and wait people. My fellow middle-aged adults be­
moan the lack of good manners among the nation's youth. That may or may
not be truer now than when we were surly youths. But it is not the true
source of bad customer relations.

Every enterprise has a distinct personality. Often, that personality de­
rives from the beliefs and attitudes of a founder or chief executive. It is
maintained by an ever renewing coterie of managers and loyal employees
who have bought into the culture. Those are the folks who, in the end,
determine whether rudeness toward customers is tolerated.

I have heard managers say that you can't get good help nowadays. What
they're really saying is that they refuse to demand enough from their
employees. And pay enough to keep the ones that will meet the demands.
Be indifferent to your employees and they will be indifferent to your
customers.

I have also heard managers say that you can't afford to be polite these
days. Too many customers are argumentative or even litigious. What the
managers are really saying is that they have a greater stake in being right
than in being considerate. "The customer is always right" is not a grovel.
It is a pragmatic observation. Customers don't have to be right, but they
don't have to be your customers either.

Of course, the worst offenders are the enterprises who think they have
a monopoly. You have to remain a customer whether you like it or not.
Theirs is the only news stand in the subway, or the only print shop in town,
or the only diner open after midnight.

What these outfits fail to realize is that their arrogance still costs them
business. You buy only what you have to when you begrudge the vendor
a profit. These outfits are likewise quick to sink as soon as any form of
competition sails over the horizon. If customer loyalty is a life raft, customer
dissatisfaction is lead overshoes.

117

118 Programming on Purpose

.Jfllt any companies fail to see the profit in caring for customers. It is typical
.JJ~Jof today's short-sighted economies to focus on the bottom line. Any
branch of the business that doesn't contribute in an obvious way invites
cutbacks. Managers often lose sight of the reason for doing business while
optimizing bean counts.

Indeed, the "customer service" department is an afterthought in many
enterprises, if it exists at all. Some managers see it as an arm of public
relations. You need a few people to answer silly questions and calm ruffled
feathers. The budget gets lumped under general marketing overhead.
That's about as far from the bottom line as you can get.

Here is where the software business begins to diverge. Customer service
is not an incidental part of what you sell. It can be as important as the
product itself. That's because software, by its very nature, is complex stuff.
Customers are more likely to need hand holding for a spreadsheet program
than for a Buick, even if the latter costs 50 times as much as the former.

Sure, Buicks are pretty complex in their own right. But our society has
had decades to build infrastructure for maintaining automobiles. Tens of
thousands of people are prepared to tune or repair your Buick. You have
to go back to General Motors only for original parts or warranty service.

We are building a similar infrastructure in computer software. Lots of
people are prepared to educate you on the more popular software pack­
ages. You don't have to go back to Lotus, or Borland, or Microsoft, for help
with your spreadsheet program. Don't count on similar support for the less
popular packages, however. The infrastructure is not that well developed.

The conclusion is inescapable. If you hope to be a vendor of a successful
software package, be prepared to support it. That means staffing a tele­
phone with folks competent to help customers with technical problems. It
means providing bug fixes and workarounds. It means producing regular
upgrades to stay ahead of the bugs and the competition.

For an inexpensive product, you have to do all of this stuff for little or
no money. That makes cost/benefits analysis painful. You know you need
to offer customer service. You don't know how to measure the return on
investment. So you can only guess what level of expenditure is appropriate
for software sold at a given price. And you can only guess how much, if
anything, to charge for software maintenance.

As an entrepreneur, I struggled with these issues throughout the past
decade. As a consumer, I see companies continuing to wrestle with the
parameters of appropriate customer support. I don't pretend to have
definitive answers, but I do have a few observations.
11T"he first observation is that arrogance is a waste of time. Techies delight
\U.lin recounting the foibles of the unwashed. Partly, this reinforces the
sense of superiority that any specialized group enjoys. Partly, it is a way for

Essay 16 Customer Service 119

the overworked to commiserate. Neither goal is well served, however, if
the price is making customers feel ill at ease.

You've heard all the cute anecdotes, probably several times over. A
novice rips the diskette out of its protective sleeve before stuffing the
wreckage in the drive. Or the diskette ends up in that little gap between
diskette drives A and B. Or a customer complains that the keyboard lacks
a key marked ANY, so how can one "Press any key to continue"?

I confess to having committed equally ignorant acts. As a lad, I borrowed
a camera from my father. (Naturally, it had no documentation.) I threaded
the first roll of film on the wrong side of a pressure plate. All the pictures
came out black, shielded as they were from any light passing through the
lens. My father thought I was particularly stupid at the time. I had sense
enough to know I was merely ignorant and momentarily confused.

After the third time I stuffed a diskette between the drives of my Compaq
Deskpro, I taped over the gap. Sure, I knew better. But I didn't realize I had
done something silly until DOS typed its familiar message at me several
times. I have never hunted for the ANY key, but I can recall early confusion
over the dubious synonyms RETURN, ENTER, LINE FEED, and NEW LINE.

A ever mistake ignorance for stupidity. The first is a temporary condition
..JJJ,that is easily corrected, should the ignorant be properly motivated. The
second is a more permanent affliction. It takes more than motivation to cure.
If you persist in making ignorant people feel stupid once you know better,
you are being stupid, not ignorant.

Don't think your attitude doesn't show. Even across several thousand
kilometers of telephone wire, I can detect a condescending techie. I have
sufficient self confidence in my technical abilities not to be intimidated by
such arrogance. But it does annoy me, and it makes me rather less eager to
do business with the company in question.

Even simple impatience can be off putting. I bought a rather good
package called UULINK about a year ago, from an outfit called Vortex
Technology. It lets me send and receive UNIX-style electronic mail from just
about any PC compatible. Together with the commercial UUNET service
operating out of Virginia, the package opens the world-wide Usenet to
those of us who can't or won't work under UNIX all the time. It just takes
a little tenacity to get the communication scripts working right.

I struggled for a day or two before calling Vortex. Lauren Weinstein, the
author of the package, answered the phone. That proved to be a mixed
blessing. While he was extremely knowledgeable about the code, he was
also rather defensive. Any suggestion that the package might be less than
perfect caused him to bridle. He was also impatient if I didn't get his
explanations completely on the first recitation. I got the distinct impression
that any failures were pilot error, pure and simple.

120 Programming on Purpose

I was inclined to agree, but that was beside the point. Software is no good
to us ignorant pilots if we can't figure out how to fly it. In fairness to
Weinstein, I must say that his advice was a help. I eventually got the
package going. Moreover, Weinstein called me unsolicited a day or two
later to see if I still needed help. That ranks as better than average customer
service.
?1rhis incident illustrates my second observation. The folks who develop
"'1.tthe code do not always make the best customer support types. For one
thing, their inevitable defensiveness gets in the way. For another, they don't
always have the best skill set for the job. What makes a good code developer
doesn't necessarily make a good code supporter.

When a company is young and small, it may well have to ignore this
observation. You can't hire specialists while you're still making one dollar
do the work of three. You should at least be aware, however, of the subtle
price you pay. If that cost is not in bad public relations, it pops up in other
places.

In the early days of Whitesmiths, Ltd., we had development program­
mers do double duty. All of us had to sign up for regular stints as Techie du
Jour. On the days when you were it, you fielded all telephone calls request­
ing any kind of technical assistance. Pre-sales calls were from potential
customers who wanted more details than the order desk could provide.
Post-sales calls were for installation assistance or ongoing maintenance.

I did my stints as Techie du Jour along with the rest of the crew. I can
attest that it is not an easy job. A typical day for one of us involved two
dozen calls, and it was exhausting. Half were pre-sales, half post-sales. Of
the latter, about a quarter were installation problems. Another quarter
involved difficult-to-use features and occasional bugs in the product. Fully
half of all post-sales technical calls were only incidentally related to the
compilers we sold. Mostly, they were people requesting advice on program­
ming problems in C or Pascal.

We did our best to answer all calls as politely and completely as possible.
I confess that we often gave technical support even to people not under
maintenance, just to keep customers happy. I also confess that a stint as
Techie du Jour seldom ended with close of business. Each day's calls
invariably resulted in another half day of follow-up work. We had to verify
bugs, make workarounds, and call back customers. All in all, it was an
expensive way to use development programmers.

When we finally got around to building a customer-support staff, I was
dubious. I couldn't see how anybody could support the code without being
intimately involved in its development. Boy was I wrong. Our developers
did a good job as Techies du Jour. But the folks who ended up doing it for
a living did as well or better.

Essay 16 Customer Service 121

A willingness to help is the primary prerequisite for a good technical­
support type. A love of problem solving is also important. Some technical
training is necessary, of course, but not as much as you think. Customers
are willing to hear, "I don't know, but I'll get right back to you with an
answer." Particularly if the staffer is telling the truth. And not being
arrogant in the bargain.

Customer-support types need access to the developers, of course. But
that access can and should be limited. Bug reports and a bug-tracking
system are vital to any software enterprise. Managers should use this
machinery to structure the interface between designers, coders, and cus­
tomer-support personnel. Do it right and you will minimize distractions
and hard feelings. (Do it really right and you won't have customer-support
people asking to transfer to development all the time. That means paying
the poor blokes on the phones enough to offset the enervating working
conditions.)

I as a customer prefer working with support types who are not overly
technical. Once upon a time, I called for support on Ventura Publisher. (I
pay good money for maintenance on this package.) Seems that the circles
I drew on screen didn't appear on a Postscript printer. The techie on the
other end of the line knew about the problem. He felt moved to point out,
however, that "the insides of the circles are fine - only the outsides don't
print." Since I was trafficking in white circles with black rims, as is my
custom, I was unimpressed. It did me no good to know that the white
insides were printing as white as they should be. That's the kind of
distinction that only a hard-core techie can delight in .

.JflltY third observation is that a company can go too far the other way.
;JJ ~I.Some customer-support desks are little more than animated answer­
ing machines. They are all smiles and friendliness, but they don't know
squat about the product. You describe the problem, they write it down.
Maybe one day they get back to you. Try to get past them to a real techie
and you drown in warm, friendly molasses. Outfits like these think their
purpose in life is to pat customers on the head until they go away. And to
insulate the company techies from any contact with the real world.

One of the worst offenders in this regard is Compaq Computer Corpo­
ration. Understand, I love their products. I gladly pay the premium they
command for a reassuring level of quality and reliability. My brand loyalty
borders on the canine. I even bought hardware religiously from Digital for
two decades, despite the best efforts of their extensive sales-prevention
force.

But I cringe every time I need technical information on a Compaq
product. If it ain't printed on glossy stock by the marketing department, it
ain't available. Compaq has this interesting belief that dealers should
provide all technical support for their products. Then they supply the

122 Programming on Purpose

dealers with infinitesimally more technical information than you can read
in their ads. Tum up a bug in a ROM, or a software incompatibility with
their hardware, and you're simply out of luck.

I've lost count of the number of different channels I've pursued into
Compaq. The only enterprises with more Byzantine phone systems are the
consumer-credit departments of major banks. Not once have I tripped
across a techie in any of my probes. I don't think they're permitted tele­
phones. (Voice-mail systems can be fun, by the way. Ignore the instructions
and dial digits at random. Or pretend you're playing Hunt the Wumpus on
a very small computer.)

The net result is that my Compaq computers are not as useful to me as
they should be. Microsoft Windows 3.0 does several fruity things on their
hardware. Naturally, the friendly folk on the Windows support desk can
only point an accusing finger at Compaq. I could work around the problems
with just a little inside information. As a youth, I might have spent three
days disassembling ROM code and performing experiments. As an adult,
I would pay list price for some decent customer support.
.JllltY last observation is about customers who call looking for support.
.JJ ~J You as a vendor must remember that these folks are not at their best.
If they're installing your package, their ignorance is profound. They don't
know your terminology yet. They don't know whether the product is any
good yet. They are feeling befuddled, embarrassed, and more than a little
insecure. It is an act of courage and desperation for most folks to yell for
help. Remember that, and you might find additional reservoirs of patience
and compassion in fielding their calls.

Customers who have been using your package are only slightly better
off. If they can't find what they need in a manual, they will be frustrated.
If they think they've tripped over a bug, they will be annoyed. If they're
dead in the water, they may well be frantic. You can hope that they've had
time to build some faith in your company and your product. But don't
expect them to be very tolerant by the time they get around to calling for
assistance.

After all, how tolerant would you be? o

mfterword: I wrote this essay as more than a gripe session. My intention was to
~impart some real and useful information on how to provide customer support.
The evidence is that it worked. Several people have since told me they modeled their
customer support on the advice in this essay. (With good success, by the way.) Some
adopted the Techie du four scheme for a short spell. Others used these words as
inspiration to set up a proper customer-support department. I have also been happy
to see a general improvement in customer support by computer companies of all
sizes. Even Compaq lets you talk to an occasional techie these days.

17 Heresies of Software Management

7{n a recent essay, I presented several principles of software design that
..lJmay at first appear heretical. (See "Programming on Purpose: Heresies
of Software Design," Computer Language, February 1991.) I did so to stimu­
late thought in an area that is not noted for consistent successes. I figure
any field that cannot reliably turn out a product needs a jaundiced glance
or two.

That material derives rather closely from a seminar of the same name. I
first presented the seminar at Software Development '90, sponsored by
Miller Freeman Publications. The other seminar I gave at that conference
was a similar approach to the management of software projects. I recycle
that one in this essay to complete the set.

Before I do, however, I need to provide a bit of background. What
inspired this essay was a personal failure I experienced many years ago. It
was on the occasion of one of my first attempts at consulting in the field of
software management. There's nothing like getting off on the wrong foot
to acquire an overdose of humility.

A major computer company, which shall remain nameless, was soliciting
outside advice on a new product. It was a product of intense interest to me,
so I contrived to get myself invited as one of the outside experts. I really
wanted this project to succeed, since it promised a new plateau of hardware
and software integration.

The product was a new line of minicomputers, complete with all new
software to match. You could hang multiple processors on a single bus.
They could share memories, disk drives, and other peripherals. You could
edit FORTRAN code interactively. (This was before the days of C domi­
nance.)

If the compiler caught an error, it bounced you right into the editor at
the appropriate spot. You could see the diagnostic and the offending line
both at once, use the former to fix the latter, and retry the compile in a trice.
All this magic could happen even when the editor and compiler ran on
different CPUs.

To those of you accustomed to today's integrated development environ­
ments, this may not seem such a great deal. But this was about ten research
projects and 50 interim products back. All those concepts were more dream
than reality in those days. To tackle advances on so many fronts was most
ambitious.

123

124 Programming on Purpose

11rhat was exciting enough, but it wasn't the end of the story. It seems that
"'11the hardware and the software were being developed in parallel. The
software folk had limited access to a target simulator that ran at a tiny
fraction of the proper speed. They had essentially no access to the lone
prototype. The hardware types were busy shaking down all the peripherals
and the distributed bus on that.

The project plan did provide for a period of integration at the end. Two
or three months were set aside to shake down all the hardware and software
components after they were brought together for the first time. That was
about all the marketing folk would allow before they unleashed a major
promotional campaign.

I recall sitting through a morning of presentations by various front-line
managers. Each reported the usual small successes and the usual delays.
They explained where they could make up time, mostly during the inte­
gration phase. In many cases, the code for a chunk of software was "90 per
cent written, with just a few more bugs."

Most of us are sophisticated enough today to see that this was a disaster
in the making. I was a bit precocious at the time, or perhaps simply infected
with a rare insight. In either case, I drifted through the morning's presen­
tations with growing unease.

Finally, I tried a simple experiment. I wrote down the ten most common
reasons I could think of for the failure of some past programming project.
Then I went through the presentations and noted places where one of these
reasons seemed to be present on this particular project. The result was
disheartening. The project scored a solid 7.0 on my mini-Richter scale. A
major upheaval was on the way, by my reckoning.

So far so good. I had useful data for this company, the kind that only a
knowledgeable outsider can sometimes provide. It looked like I was going
to justify my presence at this presentation. Then I proceeded to blow it. Big
time.

What I should have done was talk privately to the vice president running
the meeting. I could have taken him aside during lunch and aired my
concerns. That would have given me the opportunity to elaborate on my
reasons for smelling disaster. It would have given him the time to perform
a few sanity checks. And it would have given him the latitude to intervene
in several non threatening ways to avert the worst of the disaster.
11rhat's not what I did. Instead, I let lunch go by without acting. At the
"'11start of the afternoon session, the V.P. asked for comments from us
outsiders. It was clear that the assembled managers were expecting enthu­
siasm and praise. And several of the outsiders were willing to oblige.

When my turn came, I laid my cards on the table. I explained about the
common causes for software disasters and what I saw on this project.

Essay 17 Heresies of Software Management 125

Silence. I realized suddenly- but much too late - that I had done entirely
the wrong thing.

One by one, the front-line managers explained why my conclusions were
wrong. I didn't really have a proper picture of the project status from the
brief overview I had seen. There were mitigating circumstances to explain
away every apparent problem. Enthusiasm was high enough to overcome
a few shortfalls.

Pretty soon, it was me against the room. The V.P. was conciliatory, but he
was pretty much forced to back his managers. By the end of the day, I had
to allow as how they might be right. My superficial outsider's view was
probably no match for their detailed knowledge of the status of the project.

You can probably guess what happened next. The project was indeed a
disaster. A subset of the product came out several years late. By then, it had
lost its competitive edge. Exactly how they muddled through, I'll never
know. I was never allowed to see the inside of that company again.

One of the managers in that room went on to head a startup company
that has since become a major player in the computer business. He was kind
enough to pass on to me, through a third party, a bit of intelligence. He
wanted me to know that I was right and that essentially all of my predic­
tions had come to pass.

Hearing that made me even sadder than before. It was bad enough that
I was right but ineffective. It was worse that this highly competent manager
didn't seem to understand the depth of my failure. Being right is small
consolation if you do not make a difference.
11rhat experience taught me several important lessons. You do have to be
"11right. If you don't understand the forces at work when you manage
software projects, your successes will be based largely on luck. But you also
have to apply what you know in ways that will work. It does no good to
form antibodies against ideas that will help a project to succeed.

I also learned how hard it is for managers to hear. That's not because
they're stupid, but because they're often under stress. It's too easy for them
to hide behind a chain of "yes-but"s when they're hemmed in on all sides.
As an outsider, you must often resort to heroic measures to get those folks
to hear you. Particularly when they need to hear you the most.

And that, my friends, is why I'm not afraid to indulge in heresies. If they
grab your attention the least little bit, they have served a useful purpose.

That particular minicomputer project was hardly an exception. Manag­
ing software projects is a field that has a checkered record of successes, just
like designing software. Hence, I find it just as worthwhile to examine a
number of heretical management principles, even though heresies gener­
ally deserve their bad reputation.

126 Programming on Purpose

The rest of this essay takes an open-minded look at software manage­
ment principles both in and out of vogue. The goal is similar to the one for
my design essay - to formulate an approach to management that works,
for whatever reason.

A heresy is a belief that opposes the common view. Some people gravi­
tate to heresies simply because they like to oppose. They (erroneously)
assume that opposition is the mark of the independent thinker. Others do
so because they have lost faith in the common view. They (erroneously)
assume that a heretical view must be right because it differs from a view
that is wrong.

The common view generally becomes common, however, because it is
mostly right. Heresies are worth examining only when the common view
has a poor track record. In that situation, even erroneous heresies serve a
useful purpose. They force you to think.

With that in mind, let's trot out a few heresies:
7b eresy: Every software project must be just slightly out of control. We
Rall pay lip service to reducing software development to an engineering
discipline. Making another system should be just as predictable and reliable
as designing yet another highway bridge. That may be a laudable goal, but
it is unattainable. What puts it out of reach is a simple fact - the only
computer program that you know exactly how to write is one you have
already written.

Engineers can make a good living applying the same algorithm to
building dozens of bridges. Software developers, on the other hand, are in
the business of capturing algorithms in executable code. Do that once and
there is little need to do it again. The only need comes when you need to
rewrite it to take advantage of something new, in which case you have
something new in the equation.

Put more cutely, the only programs that are commercially worth writing
are the ones you don't exactly know how to write. If it's easy, there's no
market for it.

Notice that I said a software project must be just out of control. If a
program pushes the state of the art too much, it is a research project. The
unknowns are so great that you can't afford to bet your company on
success. The commercial balancing act is always to find software projects
that are hard enough to be worthwhile but not dangerously hard.

If you don't like uncertainty, get out of the software business.
7b eresy: Your goal as a manager is to make software projects boring.
RNever mind all that junk you hear about challenging your program­
mers. If you stay properly at the edges of control, they will have plenty to
make their work interesting. Your problem is to keep projects from being
so "interesting" that you and your boss get ulcers.

Essay 17 Heresies of Software Management 127

So the idea is to get the researchy bits out of the way up front. Let your
bright programmers have their freedom, by all means. They will solve
problems for you, innovate, and generally add value. The skill you must
develop is to know when they have innovated enough to achieve the project
goals. Then clamp down.

At some point in every project, management must declare a moratorium
on adding clever new features. If you don't, you'll never achieve closure.
If you do, the bright programmers will get quickly bored. Then their only
hope to get on to interesting stuff once again is to push this project out the
door.

Mature programmers will not only put up with such crass manipulation,
they will welcome it. They know what pays the bills.

7" eresy: Your obligation to your programmers is to answer their tele­
.1lf/ phone calls. Seriously, the best thing you can do for a hard-working
group of programmers is to protect them from interruptions. Creative
people need several hours at a stretch with no fear of distraction. Otherwise,
they never achieve the depth of concentration required to do the tough bits.
And they need days at a stretch of staying on the same task. Otherwise,
they spend too much time getting back up to speed. See Peopleware, by Tom
DeMarco and Tim Lister, for an excellent discussion of this topic (D&L87).

If you think managers make high-level decisions and issue orders to
minions all the time, you're in the wrong business. (That's true no matter
what business you' re in.) The best managers spend much of their time doing
grundgy chores. That frees up their subordinates to get the real work done.
The managers handle the interruptions and knock down obstacles to
productivity so the workers don't have to.

Don't worry about getting credit for doing grundge work. Nothing looks
better on your record than heading a project that succeeds. For whatever
reason.
7" eresy: Your indispensable programmers are your greatest liability .
.1tf?Sooner or later, we all fall into this trap. One person on your staff
becomes the reigning expert on a particularly abstruse bit of software.
Everyone else breathes a deep sigh of relief. Soon, the expert is raised to
sainthood by general acclaim. It is easier to dole out praise than risk dealing
with the hard stuff yourself.

This is a dangerous situation. What if your reigning expert quits? Or
walks under a bus? Or just loses interest in maintaining yucky code? Or
isn't the expert that everybody likes to imagine?

Hard liners tell you to fire indispensable people. My approach isn't
nearly so Draconian. (I have experienced a few recessions, and watched my
friends grow older, even though I haven't. I no longer take it as axiomatic
that you can always get another job.) I prefer to make them document what

128 Programming on Purpose

they know. If necessary, teach them how to write. Put someone else on
maintenance and put the expert in the role of mentor. After a few months
of this, force the expert to use up some vacation time.

I know this approach works. I've dethroned myself as reigning expert
several times now.

7b eresy: Teaching BAL programmers C++ is a waste of time. You're
Rbetter off buying them a Coke machine. One of the concrete findings
in software engineering is that software organizations evolve through
various stages. Some shops have barely begun to understand the basic lore
they bring to bear on each task. Others are comfortable using one or more
design methods (a.k.a. methodologies). Only the most advanced plan for
testing and maintenance as part of the analysis and design phase.

It is important that you know the stages of evolution. It is even more
important that you have an unclouded picture of where your shop fits on
the evolutionary scale. Armed with that knowledge, you then know what
technology your shop is capable of using to advantage. Anything more than
one level removed from where your shop now stands will be useless, or
even detrimental. The Software Engineering Institute, for example, is at­
tempting to delimit the stages of evolution more precisely (Hum89).

I do not demean BAL programmers when I say they shouldn't bother to
learn C++. Rather, I emphasize that they must advance through a few
intermediate steps. You don't appreciate the need for object-oriented lan­
guages until you're comfortable with high-level languages in general. You
need to master control flow and data structuring along the way.

Skip steps and you only engender cynicism and confusion in the ranks.
7b eresy: Staying within budget on a software project is more important
Rthan making a profit. I realize this is the purest of heresies. After all, if
a company is not profitable, it will not long endure. Surely that must be
your highest goal. Well, it is the company's highest goal, but it is not yours.

Management comes in three layers. Top management is answerable to the
shareholders. They must make a good return on investment by choosing
wisely what goals to pursue. They are profit minded.

Middle management is answerable to top management. They are given
goals and budgets. They win only if they achieve their assigned goals within
budget. It is the job of middle management to oppose change. Change
threatens budgets. Middle managers lack the discretion, or the inclination,
to alter their own budgets to pursue unexpected opportunities.

Front-line management talks to the troops. As a front-line manager, your
obligation is to do your job. You are answerable to a budget-conscious
middle manager. Stay within budget and you make your boss's job easier.
You also look more like middle-management material. You must trust that
doing your job will help the grand scheme of things.

Essay 17 Heresies of Software Management 129

If you lack faith in the managers above you, go get another job. Or try
starting your own company.
7" eresy: Writing software must be fun, but not too much fun. Once upon
Ra time, programmers worked for companies because computers were
too expensive. Now, the average programmer can well afford a comfy
program-development environment at home. You will keep many of your
programmers because they prefer a salary to the thrills of independence.
You will keep a few more because they like to work on large projects or as
part of a team. But it is harder than ever to keep programmers if the work
isn't fun.

Just as you must keep your boss happy by staying within budget, so
must you keep the troops happy. You do that with programmers by giving
them fun things to do. The trick comes in balancing the fun against the
needs of the project. Programmers must be challenged, but not to the point
of certain failure. They must have freedom, but not to the point of project
anarchy. Err to either extreme and you lose.

To me, this last heresy is probably the most important. Here is where
programmers and entrepreneurs have a commonalty of interest. What
makes software development so exciting is that it has to involve a certain
amount of fun. Otherwise, it's not worth doing. There's no pleasure in it
for the programmers and no money in it for the entrepreneurs.

That may be delicate grounds for an important partnership, but some­
how it works. o

mfterword: This essay has a companion on software design. (See "Programming
.cl.on Purpose: Heresies of Software Design," Computer Language, February
1991.) Both were written only 0.2 in jest. Too often, both programmers and
managers subscribe to the same non functional beliefs about software management.
Programmers see themselves as managed by Philistines. Managers see themselves
as herding cats. Neither caricature helps get a difficult job done. An unvarnished
view of reality can, however. The resultant rules are cast as heresies, but I believe
in them religiously.

18 Watching the Watchers

1'{ like writing complex bits of software. Over the years, I have turned out
.JI an assortment of compilers, operating systems, and various software
tools. It hasn't always been easy. I haven't always been as successful as I'd
hoped to be. But it has been fun.

One of the least fun aspects of writing complex software is testing it.
Some folks have a knack for it, but I don't. Over the years, I have developed
an adequate skill in this area. Still, I prefer to let others write the more
thorough test packages.

Those test packages often rival the software they test in overall complex­
ity. True, a typical test suite consists of many small tests. Each is simple
enough in its own right. But it takes lots of tests to add up to a comprehen­
sive suite. And those tests have to play together in sensible ways.

There is no virtue in large numbers when it comes to testing. Any jerk
can write a program that performs the same stupid test a billion times. A
clever tester can span a thousand varied but sensible combinations with a
different program. The former program does not make you feel a million
times more confident than the latter. Quite the contrary. I have learned to
respect the test-designer's art.

Testing has become an important sub-industry. With the explosion of
software customers - and vendors - has come a new phenomenon.
Customers now have a choice. In the past, often your only choice was which
company to trust to write your custom package. If you wanted something
off the shelf, you had a choice of at most one. Now it is not uncommon to
have three to 30 vendors to choose from, all with software that nominally
meets a common specification.

How do you choose? If you are lucky, you can find someone who has
done the relative comparison for you. Computer Language and other maga­
zines devote considerable real estate to comparing compilers and other
essential development products. The service can be invaluable. (See Essay
6: Product Reviews.) All you have to do is calibrate the reviewers. If you
trust their criteria and their methods, you can usually trust their results.

If you have to do your own testing, you face a second dilemma. You now
must choose among test programs as well. Want to validate a C compiler
for conformance to the ANSI/ISO Standard? Several vendors offer you test
suites to do just that. Want to verify that a corpus of C code is highly
portable? All sorts of commercial tools will pass judgment on the stuff line

131

132 Programming on Purpose

by line. You will even find an assortment of useful public-domain offerings
that purport to help. You simply have to decide which to invest your time
and money in.
?11.l'nlike compilers and operating systems, however, you can usefully
\U:tadopt more than one set of tests. There is a difference between repeat­
ing the same test pattern a million times and performing two sets contrived
by different authors. Even if the two tests purport to check for the same
things, their coverage is bound to differ. You catch more problems with
multiple test packages. Your limitation with testing, as with so many things,
is the personal resources you can afford to invest in this particular area.

I'm not talking just money. The large commercial test packages aren't
cheap, but they are often worth every penny you pay. You get a well-engi­
neered test harness and some hand holding in setting up and using the
package. The "free" packages are often harder to get on the air. They may
contain bugs. (See Essay 19: Washing the Watchers.)You must be prepared
to invest an open-ended amount of support time if you choose to save
money here. Other testing costs include disk space, the time to run all those
tests, and the time you spend evaluating the results.

The testing sub-industry provides a useful service, but it also creates yet
another dilemma. How do you know if a validity test is itself valid? A bad
suite can miss serious flaws and encourage you to buy a defective product.
Or it can falsely diagnose problems and discourage you from buying a good
product. In either case, a few terse messages from a complex piece of
software can carry considerable clout. It would be nice to have some
confidence that the messages are valid.

Well, that's what testing is about. But who tests the testers? Do you shop
around for yet another validation suite to validate your validation suite?
That seldom happens. Instead, vendors of test packages try to convince us
that there's safety in numbers. They point to all the compilers they've
passed judgment on. Or they cite astronomical numbers of lines of code
that people have laundered with their product. If you think about it, that's
exactly the sort of blather we compiler writers indulged in before validation
suites came along.

The question remains, who watches the watchers? I'll spare you the
Latin, but not the reminder. That question has been with us for millennia.
We have learned in politics never to trust blindly in the judgments of a small
group of people. Particularly if the group is self appointed. We need to be
equally cautious in the technical arena. So stand by for a little watcher
watching .

.JllltY first experience with a comprehensive validation suite was back in
,JJ~lthe days of Pascal. Seems some blokes at the University of Tasmania
saw fit to paste together a set of tests. You could get them fairly cheaply and
run them in a few hours at most. They poked at the dark corners of your

Essay 18 Watching the Watchers 133

Pascal translator and gave you reams of output to pore over. With enough
patience, you could learn quite a bit about the strengths and weaknesses of
a given translator.

I got the Tasmanian suite to test the Pascal compiler I wrote. Pascal was
definitely not my favorite language, so I was not steeped in the lore of the
language. The suite introduced me to much of that lore, if only through the
back door. I was amazed to learn what some of those vague sentences in
Jensen and Wirth (J&W74) were commonly held to imply.

Part of the suite was a very comprehensive set of tests for the math
functions. I have since learned that they derive from work done in FOR­
TRAN by William Cody, Jr. and William Waite (C&WSO). Those tests do a
superb job of unearthing problems. I learned just how ignorant I was about
the subtleties of approximating functions on a computer. (See "Program­
ming on Purpose: Approximating Functions," Computer Language, June
1991 and "Programming on Purpose: Economizing Polynomials," Com­
puter Language, July 1991.) As a result, I was able to improve considerably
the functions that we shipped with our C and Pascal compilers.

The suite also had its idiosyncrasies, to be sure. It was pedantic about
testing some of the really dank corners of the language. It placed a premium
on run-time checking, to the annoyance of this old-line C programmer. It
also had a few bugs. But it was only an informal offering, so what the heck.
No government agency or corporate purchasing department could take us
to task if we chose not to pass the more esoteric tests.
11rhen along came the ISO Pascal Standard and the situation changed. The
~Pascal Validation Suite got more capital letters in its name. It was
updated to reflect the niggling alterations made in standardizing the lan­
guage. The price went up a bit, as I recall. Worse, people started talking
about official certification.

You'd think I would welcome such certification. I should have. After all,
we had a good product (or so I felt). We had been tracking the Tasmanian
suite for a couple of years. We were in a good position to achieve complete
compliance with a Suite based on that suite. It would be something to brag
about in our ads. All we had to do was find out:
• how much it cost to get certified
• what the criteria were for certification

I was astonished to find that I couldn't get either question answered
unequivocally. The guy setting up the certification process didn't seem to
understand about portable software. He quoted a price to come certify a
single Pascal compiler running on a single operating system. We had Pascal
and C running on five computer architectures, under two dozen operating
systems. He sort of felt we should pay full price for each target, but he
wasn't sure. He never did quote an exact price for multiple certification.

134 Programming on Purpose

Fine, I was willing to certify our most popular combination. I'd worry
about the others later. So what do we have to do to pass? Well, the guy really
wanted to reserve judgment on that. Huh? Look, said I, the tests come in two
lumps. One lump directly addresses conformance to the standard. The second tests
"quality of implementation." I assume we have to pass all the tests in the first lump?
Of course.

What about the tests with bugs? What bugs? We can show that some of the
tests are buggy. I'll have to get back to you on that one. Then what are the rules
for passing the quality tests? I dunno yet. Beg pardon?
?fl?llthat eventually emerged was that this guy believed strongly in Pascal
~as a "safe" language. He didn't approve of the proliferation of
commercial implementations that omitted any of the run-time checks. Not
even when the checks were optional. Hence, he was disinclined to certify
any implementation that exhibited certain profiles on the quality tests.
Only problem was, he couldn't quantify his criteria. He wanted us to lay
our money down first, then he'd decide whether we did a nice enough job.
Baloney.

Admittedly, we caught the Pascal certifiers just as they were setting up
shop. Other companies, with a heavier investment in Pascal, had the
patience to work with this guy and his minions in establishing reasonable
test criteria. But I lacked both the patience and the resources to deal with
such an un-business-like attitude. No way would I commit to pay for a
certification process when I couldn't assure a successful outcome.

Fortunately for us, Pascal was already on the decline commercially. We
could afford to walk away from this snafu. Our business depended less and
less on credentials in the Pascal marketplace. Had the same thing happened
with Cat the time, I can assure you that the fight would have been bloodier.

What has emerged with C has, in fact, been a different kettle of fish.
Several vendors have seen fit to develop commercial validation suites for
the C language. Most have tracked the language from the days of
Kernighan and Ritchie (K&R78) to the modern world of Standard C. You
don't have to rely on AT&T, the original developer of the C language. Nor
do you have to hope that some computer-science department will see fit to
build a suite with student labor. You have a genuine commercial market­
place to shop .
.Jflltany people agree that the Plum Hall Validation Suite is technically
.JJ ~I.superior among these suites (Plu91). I am fortunate to count Tom
Plum as a close friend for many years. He beat on the compilers I sold to
prove in his suite. That gave me lots of useful feedback on subtleties I had
overlooked in tracking the C Standard. I believe that both compiler and
validation suite got better as a result of this protracted testing.

Essay 18 Watching the Watchers 135

I was pleased when both BSI in the U.K. and AFNOR in France (the two
standards bodies for those countries) agreed to adopt the Plum Hall suite
for validating C translators in Europe. For once, official government agen­
cies were following the market instead of trying to dictate it. They were not
writing their own suite or canvassing the universities for a free one. They
were not hitting up a major vendor with a vested interest for a donation of
software and labor. They were actually choosing a market leader with a
profit motive behind delivering and maintaining a good validation suite.

Government decisions don't always turn out so right. Some watchers
are easier to watch than others. You can boycott a poor commercial product.
You can take free software with a grain of salt, or not take it at all. Once the
government gets into the act, however, you have many fewer options. In
some cases, the only act that can follow is an act of Congress.

For historical reasons, the validation of programming languages for U.S.
government purchase lay with the National Bureau of Standards (NBS). Its
current instantiation is now called NIST (pronounced "nasty"). I have long
been impressed with many of the achievements of NBS in the development
of physical standards. My experience with NBS and NIST in the area of
programming standards, however, has been less comforting.

NBS/NIST are the folks who issue FIPS standards. You want to comply
with a FIPS standard to sell software to the U.S. Government. Otherwise,
the paperwork can be enormous instead of merely huge. That gives NIST
considerable clout in the marketplace. A FIPS standard is supposed to
follow an existing U.S. standard, but it doesn't have to. NIST has the
discretion to make changes, and it does so.

1{ attended the first meeting or two at NBS concerning the development
..nof a FIPS standard for POSIX. POSIX is the nominally vendor-inde­
pendent specification of the UNIX system interface. I had already gotten
embroiled in the issue of whether the U.S. Air Force could require UNIX as
a "vendor-independent" software standard. I was disturbed that the POSIX
effort was being swept aside in the communal zeal to close a potential
multi-billion dollar deal. I became even more disturbed at the easy way the
people at NBS were apparently willing to ignore the work of other stand­
ards bodies.

The original POSIX standard was designed to cover an assortment of
implementations. To do so, it intentionally left certain details unspecified.
For some aspects of conformance, a system could comply in one of two (or
more) ways. That makes it harder to write certain portable programs, but
it is a practical necessity in a commercial marketplace. You can't always
deny a serious product the cachet of standards conformance, or require it
to change, just because the designers found a different solution to a moot
design issue.

136 Programming on Purpose

But the folks at NBS considered these choice points to be mere lapses in
the POSIX standard. They were prepared to "fix" them by nailing down the
choices once and for all. They were happy to accept free labor from one or
two concerned vendors to help them make their choices.

I admit that cooler heads were beginning to prevail even as I left this
process behind. (I saw the handwriting on the wall and realized that my
commercial interest in the POSIX standard was rapidly waning.) It was the
tendency toward precipitate, and unchecked, action at NBS that bothered
me then. And it still seems to be there, at least from my perspective.

More recently, NBS decided to make a PIPS standard from the ANSI C
Standard. They left the language essentially unchanged, thank heaven. But
they saw fit to lob in several extra requirements in the area of translation­
time options and error reporting. Committee X3Jll debated such require­
ments while making the ANSI Standard. We omitted them for good
reasons. I don't know of any attempt by NBS to consult us about those
reasons before they chose to override them in making the PIPS Standard .
.JflltOSt recently, NIST has chosen to adopt a different C validation suite
,ll-.ilfrom BSI and AFNOR. They did so despite a handshake agreement to
follow the lead of BSI, who first performed a careful study of competing
products. They seem to have done so because they got a better business
deal. That's not a good reason to part company with the international
community on the important issue of C validation.

You may want to test your compiler against various suites, but you don't
want to have to in order to sell to major customers around the world. ISO
makes a point of requiring member nations to accept each other's certifica­
tions. Otherwise, a small company can go broke obtaining multiple certifi­
cations.

I still don't know the status of BSI certification in the U.S. My bet is,
however, that no self-respecting bureaucrat is going to take on the paper
work to prove that it's okay. International treaties go out the window when
red tape meets commercial hunger. Equally, I suspect that PIPS certification
will not be received with unqualified joy in the international community.
ISO member nations are rightfully distrustful of second guessing by the
U.S. government.

I can't comment on the technical merit of the suite chosen by NIST. The
vendor has threatened litigation against people who offer to discuss the
evaluations. Nobody has told me that the chosen suite is superior to the
Plum Hall Suite. Obviously, I can be accused of bias in favor of Plum Hall.
I make no bones about that.

My concern with NIST predates this flap, however. I have spent years of
my professional career writing software products. I have also spent years
helping develop good standards for such products. Both efforts are com-

Essay 18 Watching the Watchers 137

promised when official certification gets out of step with the community at
large. If that happens once, it's regrettable. If it happens repeatedly, it's
worrisome. In my book, here are some watchers who definitely need
watching. o

mfterword: I wrote this essay and the next (See Essay 19: Washing the
~Watchers.) because standards have grown so much in importance. A decade
ago, you conformed to a FIPS standard to sell to the U.S. Government. Now you
must conform to ANSI and ISO standards to sell to countless customers around
the world. Standards are seen as an important mechanism for assuring a level
playing field in international trade. Both companies and countries complain when
the standardization process gets perverted. Beat that against changing market
forces and shrinking government budgets and you have numerous opportunities
for conflict.

19 Washing the Watchers

7{n the previous essay, I discussed the business of validating complex
..Dsoftware products. (See Essay 18: Watching the Watchers.) I focused on
my experience with validation suites for Pascal and C compilers. I ex­
pressed concern that official certification can be based on standards, and
software, not widely accepted by the community. When that happens, it
can be hard to rectify. Government agencies under attack combine the best
defenses of turtle, porcupine, and skunk.

I continue my harangue in this essay, but on politically safer turf. My
focus is on technical issues this time. I describe my experience using a
variety of testing and validation tools. Some are public domain, some are
commercial. All are useful in various ways. But all have also caused me
problems.

I have spent entirely too much time lately finding and fixing bugs in
other people's software. That's not unusual, except that this software is
supposed to help me find and fix bugs in my software. And that's why I
call this essay "Washing the Watchers." Sometimes you have to wash the
magnifying glass to get a clear view of your own problems.

Over a year ago, I decided to write the entire Standard C library in
Standard C. My primary goal was to write a book that concentrated on the
C library (Pla92). I figure the world doesn't need yet another book explain­
ing the C language proper. I also figure there's nothing like working code
to illustrate how something works. If the narrative doesn't make a point
clear, you can at least see what one implementation does.

A secondary goal rapidly evolved. There seems to be a market for the
code. One corner of that market is among companies who sell C compilers.
True, most have a library of their own. But the C Standard has mandated a
number of additions. A thorough implementation should support multiple
locales - collections of cultural conventions - and let you switch among
an open-ended set. It should support large character sets such as Kanji. And
it should have a top-quality math library. The code I wrote implements the
Standard C library in all its excruciating detail. It also offers these special
added features.
11ft%arly in this project, Tom Plum put me in touch with Compass Inc. of
~Wakefield, Mass. They needed a full library for an Intel 860 C compiler
they were developing. They were prepared to test thoroughly whatever
they bought from me. We soon agreed that I would license them the code.

139

140 Programming on Purpose

They became my first customer. Plum Hall Inc. has since rounded up
several additional customers, even before the first release was ready to go
out the door. Willy nilly, I was back in the business of developing software.

It was nice to have somebody run the Plum Hall Validation Suite against
my library for me. I conned a fresh copy out of Tom Plum, but I didn't want
to invest my then limited disk space and CPU cycles in running my own
tests. Better that a serious customer should do so in conjunction with a
serious product.

What was really nice, or so I thought at the time, was the additional
testing that Compass planned. These folks are serious about their math
libraries, have been for years. We agreed up front that my math library must
yield sane answers for whatever arguments you throw at it. In the world
of IEEE 754 floating-point arithmetic, that includes accepting and produc­
ing infinities and various flavors of NaN (for "Not a Number"). Even more
stringent, a finite result must agree with the best internal representation of
the correct result within two bits of precision. That's essentially the state of
the art for high-quality math functions.

The Compass compiler runs in a mixed FORTRAN/C environment. So
they obtained the ELEFUNT (for "elementary function") tests written in
FORTRAN by Bill Cody. (Mail the request "send index from elefunt" to
netlib@research. att. com to get a copy.) This is the granddaddy of
the math tests I first ran across in the Tasmanian validation suite for Pascal,
as I mentioned in the previous essay. They derive from the book by Cody
and Waite that I also mentioned there (C&WSO).
']'(cheerfully sent Ian Wells at Compass my first batch of math functions.
;DHe not so cheerfully reported back that the precision stank. ELEFUNT
reported horrid loss of precision all over the place. That helped me find any
number of bugs. It also taught me a fresh respect for some of the tedious
safeguards recommended by Cody and Waite in their excellent book. I
stopped cutting corners.

Still, certain functions kept reporting serious loss of precision. I rewrote
them. No better. I rewrote them again. They kept getting cleaner and more
elegant, but they weren't getting any more precise. Deadlines came and
passed, both at Prentice-Hall and at Compass. (There were other reasons
for the overruns, to be sure, but the math library was a major time eater.)

The worst offender was the sin/ cos function. For small arguments it
was just fine. For larger arguments, however, the relevant ELEFUNT test
was reporting a loss of 12-15 bits of precision. The problem clearly involved
how I reduced angles greater than 27t to their equivalent smaller angles.
(See "Programming on Purpose: Economizing Polynomials," Computer
Language, July 1991, for a few more words on this topic.)

Essay 19 Washing the Watchers 141

Now here was my quandary. Even the stupidest approach to reducing
angles should give better accuracy than this for the tests in question. Cody
uses a triple-angle relationship to compare sines near 27t to related sines
near 67t:

sin(x) = sin(x/3) (3 - 4*sin(x/3)*sin(x/3))

It is a nasty test, but one carefully contrived to test the function properly. I
spent days analyzing the test results. One whole day went into computing
64-bit floating-point values by hand to check my code. The code was pro­
ducing exactly what it should to the nearest bit. Only problem was, the
fifteenth-nearest bit was not what the test demanded. Where was I going
wrong?
1''{fl sheer desperation, I finally did what every programmer dreads. I read
.JI the documentation. Cody and Waite end each chapter of their book with
a description of their test methods. Under sin/ cos, my eye caught a
remark about "purifying arguments." You can't just pick any old X near 67t
and expect to get a satisfactory X/3 to go with it. Not in the eerie world of
floating-point arithmetic. You have to perform a clever dance step to adjust
X slightly. In FORTRAN:

Y = x I 3.0
Y = (Y + X) - X
x = 3.0 * y

This code sequence ensures that both X and X/ 3 are exactly repre­
sentable in the chosen floating-point format. Otherwise, the test shows you
the error in the argument pair, not in the function itself.

Fine, ELEFUNT does that. But how it does so contains a caveat. My eye
caught an even briefer remark about how you must write the purification
code. Cody and Waite cite an article by W.M. Gentleman and S.B. Marovich
(G&M74). The code relies on an expression that truncates intermediate
results to the final stored precision. On a machine that keeps intermediate
results to higher precision, you have to rewrite the dance step:

Y = x I 3.0
y = y + x
y = y - x
x = 3.0 * y

The test machine was a Sun 3 workstation with a Motorola MC680XO
processor. It performed floating-point arithmetic with a Motorola MC68881
math coprocessor. That follows the IEEE 754 Standard for floating-point
arithmetic. It even supports the 80-bit extended-precision format for inter­
mediate results. Aha!

Unfortunately, I was now in Australia for the year. The source for
ELEFUNT was back in Wakefield, Mass. All I had to go on was the one value
for X that Ian Wells had sent me with the ELEFUNT results. Fortunately,

142 Programming on Purpose

my computer is an Intel 80386 with the Intel 80387 math coprocessor. It
supports the same IEEE 754 formats, but with different byte order in
storage. I checked the purification of my nasty test case. X changed by one
bit. The fifteenth bit of the result fell into line.

I had been spending months of my life rewriting code that was correct.
And all because of an implementation bug in a piece of free validation
software. A careful perusal of Cody and Waite turned up the same caveat
in several other places. One by one, other persistent test failures also proved
to be bogus. Had I thought to challenge the test reports sooner, I could have
been done months earlier. That was yet another important life lesson
learned the hard way.

Please understand, I think the ELEFUNT tests are wonderful. They have
taught me a lot. They have saved me from shipping many a bug. They
perform an invaluable service to people who buy software. But even the
best piece of code needs maintenance and support. Without it, "free"
software can prove to be very expensive for all concerned.
7{ can gripe about other packages as well. W.M. Kahan has written a nasty
;JJ little item called PARANOIA. (Mail the request "send paranoia.c from
paranoia" to netlib@research. att. com.) It does a wonderfully mali­
cious job of stressing the floating-point arithmetic in a C implementation.
That's fine. It is also rather opinionated about how good is good enough.
That's less fine.

PARANOIA complains even about single-bit errors. It will write out an
extreme floating-point value, for example, with print£. If scanf doesn't
yield exactly the same bit pattern, the program gripes. That may be desir­
able from a user's standpoint, but it's not always easy to do. Two papers
that illustrate this point are in the Proceedings of the ACM SIGPLAN '90
Conference on Programming Design and Implementation. See William D. Clin­
ger, "How to Read Floating-Point Numbers Accurately," for one side of the
issue (Cli90). Also see Guy L. Steele, Jr. and Jon L. White, "How to Print
Floating-Point Numbers Accurately," for the other side (S&W90).

I said earlier that a maximum loss of two bits of precision is state of the
art. That's almost true. For certain functions, you can expect a maximum
loss of one bit, at least over certain intervals. Square root is in that category,
as are sine and cosine for small angles. Nevertheless, PARANOIA com­
plains about single-bit errors for other functions too.

And it contains bugs. Or at least it is a sucker for bugs in floating-point
hardware. Compass sent me a gripe that my sqrt function was botching
the square root of the smallest representable number. I couldn't reproduce
it on the PC. Ian Wells verified my conjecture- the Motorola floating-point
hardware was incorrectly setting the squared result to zero. Naturally,
PARANOIA blamed the software, not the hardware. That is much less fine,
in my book.

Essay 19 Washing the Watchers 143

I have some other open issues with this program. Right now, it looks like
the MC68881 gives inferior results compared to the 80387. I can't confirm
that, however. It could be operating-mode problems or code-generator
errors for all I know. My major gripe is that the program trumpets pecca­
dilloes with the same intensity as serious errors. That makes it hard for a
customer to properly weigh the seriousness of a diagnostic. And that makes
it hard for a poor vendor like me to defend my craft.
7{ have passed my library code through several compilers to test for
..Dportability. My original plan was to turn on every test imaginable and
rewrite the code until all the critics went silent. I soon gave up on that goal.
Every compiler I used has bugs in its error checking.

Most get some aspect of Standard C type compatibility wrong. (The new
rules are admittedly subtle, particularly to old-line C programmers.) That
includes products that claim conformance to Standard C. It also includes
products that claim "lint-like" error checking. The program lint, in case you
didn't know, is an early product of the compiler folk at AT&T Bell Labs. It
substitutes for the usual code-generator back end an extended checker that
generates no code at all. Instead, the lint back end looks for portability
gaffes and other questionable usages to kvetch about.

What you have to do to quiet these deranged products is introduce
gratuitous type casts. Even if they optimize away to no code, such type casts
are a nuisance. They make the code harder to read and understand. They
also weaken the type checking considerably. Old C compilers let you type
cast practically any scalar type to any other. Standard C is more restrictive,
but still generous compared to the restrictions of most other contexts. You
give up a lot of hard-won ground when you have to indulge in unnecessary
type casts.

Nearly all of the compilers I used issue spurious complaints about
uninitialized data objects. Some are downright stupid about the flow
analysis they perform. One I used didn't even understand the order in
which expressions execute in a for statement.

The best of them were easily thrown whenever I use a pair of scalars in
tandem. If the first scalar has some funny value, such as zero, I know not
to access the value stored in its companion. Invariably, these half-smart
analyzers warned me that the second scalar might be used before it is
initialized. I can quiet them only by adding gratuitous, and misleading,
assignments. The state of the art of flow analysis is none too good.

Fortunately for me, I can ignore spurious messages from these compil­
ers. Some shops have adopted more stringent rules. All code you write
must keep the compiler quiet for a given set of testing options. You have to
write silly or suboptimal code sometimes to shut it up. Even more fortu­
nately for all of us, nobody has promulgated official standards for source

144 Programming on Purpose

code. At least not yet. Given the state of the art, I hope that day does not
come soon.
11rhis is not directly related to testing, but I should also point out the
~widespread capacity problems I encountered. When I first wrote the
library, I paid no heed to any size limits. A few functions weighed in
between 150 and 250 lines. Most were 100 lines or smaller. I soon found,
however, that every compiler I used choked on at least one of the functions.
(Different compilers choked on different large functions.)

I had to carve these functions up artificially to get them to go through
all the translators of interest. Along the way, I made a virtue of this necessity.
I decided to ensure that all functions could be displayed in my book on a
single page or on a pair of facing pages. That took just a bit more carving
beyond the initial butchery. In the end, I ran across one testing tool that still
coughed on one of the largest remaining functions. I don't intend to dice
any finer, however.

I mention this surprising limitation because it is a significant impedi­
ment. Both translators and test tools should nowadays handle source files
that comprise 1,000 lines at least. I confine my attention only to host
computers that have 32-bit addresses and many megabytes of usable
memory. In reality, I see no reason why the upper limit should not be 10,000
source lines or more.

As a final user report, I must say that I also found several bugs in the
Plum Hall Validation Suite. Fortunately, that is a commercial product
supported by a motivated vendor. All I had to do with those was report the
problem or, in some cases, the suspicion of a problem. It also helped that
Tom Plum spent a month visiting me in Australia. (Our wives are twin
sisters.) He and I spent a couple of intense days reducing our respective
bug lists to zero. Admittedly, not everyone can get such direct support from
software vendors.

Let me emphasize once again that all these various testing tools are most
helpful. I don't mind a few false negatives if I get enough true positives to
improve my product. To paraphrase an old country-and-western tune,
even a bad test is better than no test at all. The hard part is explaining to a
customer why the nasty messages that appear should be taken with a grain
of salt. Customers are naturally suspicious of any apparent attempt to
sweep problems under the rug. With or without salt, to thoroughly mix the
metaphor.

I recite this history primarily to pass on useful lore. I also hope to raise
the general level of skepticism about software that purports to test other
software. Remember, the testing software was also written by people as
error prone as you and me. o

Essay 19 Washing the Watchers 145

mfterword: Testing the math functions for The Standard C Library probably
;cirequired the biggest use of outside validation suites of any project I have
undertaken. Were I nat so finicky about the code, I could have glossed over any
number of errors. I'm glad I didn't, in the end. Along the way, however, it was one
of the more frustrating periods in my career as a programmer.

Sadly, I must report the demise of Compass, Inc. Their parent company, Softech,
laid them to rest during the recent recession. I like to think that their using my code
did not deal the death blow.

20 Who's Always Right?

11rhere's more to a computer-based business than the software. However
"""1complex or novel, software is but one component of a larger enterprise.
The goal of that enterprise must be to perform a useful service to some base
of customers. If you don't serve your customers, you lose them. If you lose
your customers, you don't have a business. If you lose your business, it
doesn't matter how wonderful your software may be.

To a business type, this sentiment should be obvious. Technical types
often get led astray, however. They take for granted that an intricate piece
of technology will be admired for what it can do, whether or not it actually
delivers reliably. They assume that new technology can make its own rules,
whether users like it or not. You can get away with that kind of thinking for
awhile. (I should know, having committed both sins.) In the long haul,
though, the competition will grind you down.

I've discussed some aspects of this topic in earlier essays. See Essay 7:
Awaiting Reply, on the need to respond promptly to customer problems.
Essay 14: Shelfware describes how programs become so annoying they end
up on the shelf. And Essay 16: Customer Service talks about supporting
software. Two recent experiences have encouraged me to revisit the topic.
Both concern companies that sell good software products. But in each case,
I found myself flabbergasted at the response I got to a service request.

Perhaps I am getting crustier with advancing age. I know I am less
tolerant of poor service. Perhaps I resent having to buy so much software
these days. I know I enjoyed writing my own for two decades. Or perhaps
I am just sensitized to such issues by the ongoing trade debate between
America and Japan. Certainly good service is essential to maintaining a
good competitive position. Whatever the motivation, I feel the experiences
are worth reciting here. Both make good cautionary tales for those of you
who would program on purpose.
11rhe first concerns Xerox Ventura Publisher. I have been using this type­
"""1setting software since its first release many years ago. With it I typeset
letters, lecture materials, and all the books I publish these days. It has the
heavy-duty capabilities I need and it mostly works fine.

At the end of 1990, I left home for a year in Australia. Just before leaving,
I upgraded to the Windows version of Ventura. (See "Programming on
Purpose: Font Follies, Computer Language, April 1991.) My plan was to finish
writing a new book and revise another during my sojourn.

147

148 Programming on Purpose

The new book was The Standard C Library (Pla92). As is so often the case
for a large project, it took several months longer than I'd planned. A
contributing factor was that Ventura under Windows (VPWin for short)
began crashing as my chapters got larger. I assumed that I was hitting some
capacity problem and began to dread each added word.

The problem eventually got so bad that I stopped trying to hide from it.
I spent a whole day isolating the problem. Seems that the hyphenator
couldn't digest cross references. Start editing a line and heaven help you if
a cross reference jumped from one line to another. I finally got a two-line
chapter to crash predictably. (The only reason that large chapters got more
fragile was because they tended to accrete more cross references.) At least
now I knew what to avoid.

Then I noticed that my borrowed Apple Laserwriter wasn't kerning
properly. Kerning is the practice of squeezing together certain pairs of letters
to improve appearances. A classic kerning pair in almost any font is "VA."
My draft copy showed that certain pairs were squeezed too much. But a
given pair would sometimes kern properly, then other times overdo it, even
on the same page.

I could only hope that the problem was peculiar to the Laserwriter. The
final page images were to come out of a 1200 dpi Monotype system. Well,
they came out about as bad as ever. I was running late and on the wrong
side of the planet for quick support. The book came out chock full of typos
(my fault) and kerning gaffes (thanks to VPWin).
~ow, I have paid for maintenance on Ventura Publisher for many years.

,,j[J,, That gives me the right to camp on hold, at my expense, until a
telephone support person can talk to me. Perhaps it was a false economy,
but I couldn't abide a week of half-hour trans-Pacific calls to chase down
assistance. So I waited for the lull between book projects to pursue the
matter.

I wrote a letter to Ventura Support outlining my problems. I asked for a
fax number that I could use to chat with them. A couple of weeks later
(normal Pacific delays) I got a reply. The first paragraph set the tone nicely:

Neither of the problems you briefly describe in your letter represent "bugs" in
the software. They seem more likely to occur as a result of the configuration of your
system. There is not enough information in your letter to enable us to do so at this
point [sic]. Changing width tables as well as kerning work without problems if
there aren't system conflicts.

The letter went on to observe that the serial number I gave in my letter
was for a pre-Windows version of Ventura. Besides, my support agreement
provided support only in the U.S.A.. What was I doing in Australia with
such an agreement, anyway? It concluded with the address of the Austra­
lian sales office for Ventura. It did not include the fax number I requested.

Essay 20 Who's Always Right? 149

The first sentence made me so angry that I had trouble reading the rest
of the letter. You simply do not tell a customer that the bugs he is reporting
aren't really bugs. As for the rest of it, I had to admit they were right. I'd
sent them the wrong serial number from the wrong country. They didn't
have to help me and they'd proved it. Congratulations.
7{ keep a small folder labeled, "Who's Always Right?" It's small because
..Dit seldom contains more than one letter from any given company. A
typical letter is from my former insurance agent. She took a year and a half
to stop charging me for a car I'd sold. Her letter demonstrated conclusively
that it wasn't her fault. Prosecution so stipulates. Big deal.

Unfortunately, only Ventura sells support for VPWin. I had no competi­
tor to go to. So I drafted a blistering reply and filed the letter. In fairness, I
must report that I got back a fairly contrite letter. It allowed as how I might
really have bugs and suggested a few things to try. It even included a fax
number. Along the way, I learned that my bugs were hardly unique to me.
Maybe Ventura hadn't heard of them, but quite a few other customers had.
More than one had shelved VPWin in place of the GEM version because of
the persistent kerning bugs. But it took me months to get such an admission
out of Ventura support.

Meanwhile, my second book project was coming to a boil. Jim Brodie
and I were reissuing our Standard C (P&B89) as ANSI and ISO Standard C:
Programmer's Reference (P&B92). Time was getting tight and the kerning
problems remained. In the end, I typeset the book by turning kerning off
globally. I then hand-kerned the worst offenders. I have now upgraded to
a newer version of VPWin with lots of neat new features. But it still can't
kem reliably.

I should say that the Ventura support staff can be very helpful. When it
comes to showing folks how to use Ventura Publisher, they are often quite
good. But when it comes to finding and pushing through bug fixes, they
can only wait on their betters. I am still waiting too.
~y second experience concerns Checkfree. Their software lets you send
Jl~lout checks by electronic mail, just like the big guys. It's a fairly new
service, and slightly scary. How do you trust that a few typed commands
and a mysterious dataphone call will really pay your mortgage on time?
How do you prove you tried if a few bytes go astray? Clearly, this is a
business that must put a high priority on building consumer confidence. I
waffled more than once before I finally sent in my application.

But eventually I did. Two weeks later (with no Pacific delays) I got my
System Identification Number (SIN for short). I was ready to join the
modem world of banking. There was only one small problem. My SIN was
supposed to be my Social Security Number (SSN). But the folks at Check­
free had changed the first of two 7s in my SSN to a 9. What a nuisance.

150 Programming on Purpose

So I called the Checkfree support number. They asked for my SSN. I told
them they didn't want it. They asked again. I gave it to them. They told me
I didn't exist. I explained the problem. At this point I got a set lecture about
the difference between SINs and SSNs. Seems the two don't really have to
match. That's just a convenient starting point. (Same tone of voice as those
folks who announce unavoidable flight delays.)

I explained that I could understand that. (Programmer training can help
you in real life, sometimes.) But I really want my SIN and SSN to match, since
that was my original intention. Oh, that's easy (cheerfully). All you have to
do is cancel this account and reapply. In another couple of weeks, you'll
have your new SIN.

Isn't there some way you could just fix the problem, I asked in all innocence.
Out of the question. You mean, I have to go to all this trouble because you made
a mistake? Well, let me ask. After a delay, the cheerful voice again. No
problem, if it's our mistake we'll just go ahead and fix it. You should be
straightened out in just a day or two. That's more like it.

So I waited two days and sent a small batch of transactions under my
corrected SIN (my SSN). They were accepted and acknowledged. Great.
This service is not so bad. I got into the swing of things and began paying
bills in earnest.
('.;'I' week later I got a letter from Checkfree (dated a week earlier). It warned
.:cl.me that I had sent a batch of transactions under the wrong SIN. They
were now in limbo awaiting clarification from me. No list of transactions.
No mention of later batches. Yikes! My worst fear realized. Visions of angry
creditors danced in my head.

I immediately called Checkfree. They asked for my SSN. I went through
an abbreviated version of my earlier pas de deux. When I confessed to my
"correct" SSN, the customer-support person was most helpful. He ex­
plained that they had re-examined my application and concluded that there
was no need to change it. That 9 could be read as a 7, so the error was my
fault. They were right and I was wrong.

I said I was led to believe they were going to fix the problem. My mistake
again. I said I really didn't want to go through life with a SIN that was
almost but not quite my SSN - particularly when they kept asking for the
latter. He repeated the set lecture about why they don't have to be the same.
I said I wanted them to match anyway. He repeated the drill about canceling
my current account and reapplying. I asked for a list of transactions in limbo
so I could unwind from the current mess. He allowed as how he couldn't
tell me.

Somewhere around here, my voice went up half an octave and about ten
decibels. My customer service person offered to hang up on me. I calmed
down and asked to speak to his supervisor. He cheerfully passed me on to

Essay 20 Who's Always Right? 151

her like the proverbial buck. She was icy calm, but unbending. I got the
same lectures from her as her minions. It was clear that I had unearthed a
nugget of unalloyed Company Policy. I began to see how I would get
treated if a $5,000 transaction ever went astray.

At that point, I was mad enough to drop Checkfree forever. But I was
worried about those transactions. And I was curious. Was this treatment
the aberration of a mismanaged customer-service staff? Or did it reflect
policy passed down from on high? So I did what the letter told me to do. I
sent e-mail under my "correct" SIN requesting reinstatement of the trans­
actions sent under my "incorrect" SIN (my SSN). I also requested confir­
mation of all the transactions, so I could start to sort out my electronic
checkbook. Then I sent my customary blistering letter, this time to the
president of Checkfree.
~ ver the next week or two I got two replies. One was a letter from the
"17icy supervisor. It documented in detail how Checkfree was right and I
was wrong. It even included a photocopy of my offending application.
(That'll treat me to cross my 7s for clarity.) I filed it under "Who's Always
Right?" and forgot about it.

The second reply was a phone call, but not from the president. Instead,
the woman explained that she wanted to understand why I was so upset.
She then repeated all the lectures I had heard several times before. No doubt
about it, I was wrong and they were right. I asked for a list of pending
transactions. She could only tell me about those that had cleared the bank.
Not much help.

I asked about my confirmation request. She assured me that all e-mail is
logged and gets a response. Couldn't prove it by me. She hung up to investi­
gate the matter. Called back to say that my e-mail had been logged, sure
enough, but got no response. But please understand, that sort of thing Just
Doesn't Happen.

Yup.
As of this writing, I have send out a couple dozen transactions via

Checkfree. I have yet to receive a bank statement showing what has
happened to any of them. Probably, they're all just fine. I worry from time
to time, though, about what will happen if my proverbial $5,000 check goes
astray. And I can't wait for someone to go into competition with Checkfree.

I repeat the moral of these two tales for emphasis. Even for a business
built around computer software, the software is not central to the business.
It is the service you provide to willing customers that counts most. Those
customers don't have to be right. But then again, they don't have to be your
customers either. o

152 Programming on Purpose

mfterword: These two encounters proved to be more than just isolated incidents .
.:ct. The Ventura kerning bug disappeared only when Microsoft upgraded Windows
to version 3.1. Evidently the Windows PostScript driver was the culprit. Ventura
has yet to fix any bugs I've sent their way. I do get occasional useful advice from
them. And I find their maintenance fees cost effective if only for the discounts they
earn me on upgrades.

As for Checkfree, I found that they had to write and mail conventional checks
altogether too often. That led to a mishmash of check numbers and electronic
transactions on my monthly bank statement, plus a few missed payment dates. I
was spending more time balancing my monthly statement than I was saving over
printing all checks with Quicken. It took me months to get my account under
control after I canceled Checkfree. A few letter writers agreed with my conclusion
that consumer electronic banking in the U.S.A. is not quite ready for prime time.

I believe these incidents also prove to be more than just cautionary tales. I find
them altogether too typical of how customers get treated these days. If we' re moving
to a service economy, we'd better learn how to deliver service.

21 The Cycle of Complexity

?11?11.t hen I started programming, almost thirty years ago, the in thing was
~FORTRAN II. By the standards of those days, it was a reasonably
elegant language. You could write horrendous expressions using a notation
that strongly resembled conventional mathematics. The FORTRAN com­
piler managed to translate those expressions to code that was usually
correct and not all that inefficient. It sure beat writing assembly language
most of the time.

Of course, dedicated assembly-language programmers sneered at FOR­
TRAN programmers. The big machines in those days had a shade over 100
kilobytes of memory and a clock rate just over 200 KHz. (Yes!) It was clear
to the old timers that you couldn't afford to waste space or time running
suboptimal programs. FORTRAN was an amusing little sideline to the
main stream of computing. Clearly, you had to wallow in the full complex­
ity of assembly language if you wanted to write serious programs.

Nevertheless, FORTRAN flourished and assembly-language program­
ming began its long, steady decline. True, FORTRAN left you little spare
capacity. But it was fast enough. FORTRAN made computers available to a
large group of new users - scientists and engineers who didn't have the
time or the inclination to become assembly-language experts. As a result,
computers got used more and the business of making those computers
flourished.

That led the computer makers to design ever more ambitious FORTRAN
compilers. (There was no separate software industry to speak of in those
days. A hardware vendor provided an operating system and compilers at
no extra cost.) FORTRAN II gave way to FORTRAN IV and its many
variants. You could specify device-independent 1/0, even asynchronous
1/0. That led to richer job-control language (JCL) to tailor each execution
of your FORTRAN program to a different set of 1/0 devices.

It wasn't long before all those scientists and engineers began to get a bit
off balance. If you think assembly-language programming is bad, try
coding JCL. Engineers walked around with little packets of JCL cards in
their shirt pockets. These provided the incantations needed to run a FOR­
TRAN program and print the results sensibly. Some shops even employed
full-time JCL programmers (magicians) who made such talismans for the
uninitiated.

153

154 Programming on Purpose

11rhen IBM introduced System/360. It blended the technology, and cul­
~ture, of both scientific and commercial programming into one heady
stew. (Other companies did too- I cite OS/360 only as a leading example.)
JCL got even more complex and the underlying OS ballooned. Running
FORTRAN II on an IBM 7090, you gave up about 500 bytes of storage to the
operating system. (Yes!) Under OS/360, you could kiss good-by hundreds
of kilobytes of precious storage. (I use "precious" literally - memory cost
tens of thousands of times more then than it does now.)

Still, the marketplace seemed to be demanding ever more complex
operating systems and programming languages. How else to meet the
needs of a growing and ever more diverse constituency? Each new software
release offered still more complexity to provide still more ways to use these
wondrous new computers.

Then along came the minicomputer. Scientists and engineers gave a
shout of glee. Here, once again, were computers they could understand. No
ornate operating systems or multiple languages. You got a toy OS, an
assembler, and a FORTRAN compiler. An individual user could conceive,
and even write, all the software for a nontrivial application.

Not only that, a single department or laboratory could afford its own
computer. You could dedicate a machine to acquiring data or running an
experiment. And it was all under the control of a handful of non experts.
(Well, quite a few of us scientist types did get tainted with a love for writing
complex computer programs.) No need to depend on the comp center staff
- either the techies or the bureaucrats.

Of course, the comp center staff sneered at minicomputers. The big
machines in those days were growing ever more powerful. Some even
offered a megabyte or more of storage. (Yes!) It was clear to the main
framers that you couldn't afford to waste your time playing with minicom­
puters. They were an amusing little sideline to the main stream of comput­
ing. Clearly, you had to wallow in the full complexity of a main-frame
operating system if you wanted to write serious programs.

Nevertheless, the minicomputer flourished and the main frame began
its long, steady decline. True, those smaller machines had little spare
capacity. But they were fast enough. The minicomputer made computers
available to a large group of new users - scientists and engineers who
wanted to do hands-on computing, either interactive, embedded, or real
time. As a result, computers got used more and the business of making
computers flourished.
11rhat led the computer makers fo design ever more ambitious minicom­
~puter systems. (There was still no separate software industry to speak
of.) The simple operating systems gave way to clones of their main-frame
predecessors, albeit somewhat scaled down. You could run COBOL pro­
grams, even specify multiple processes that cooperated or competed for the

Essay 21 The Cycle of Complexity 155

limited shared resources. That led to richer system interfaces to invoke all
these wondrous new services.

It wasn't long before all those scientists and engineers began to get a bit
off balance. If you think writing for a main-frame operating system is bad,
try working with a cheap imitation. Engineers accumulated shelves full of
manuals. These provided the incantations needed to run a FORTRAN
program and print the result sensibly (if only you knew where to look).
Some shops even employed full-time systems programmers (magicians)
who made such talismans for the uninitiated.

Then Digital introduced VAX/VMS. It brought the technology, and
culture, of both scientific and commercial programming into the world of
minicomputers. (Other companies did too - I cite VMS only as a leading
example.) The system interface got even more complex (if somewhat more
orderly) and the underlying OS ballooned. Running a program under
DEC's RT-11 operating system, you gave up about 2 kilobytes of storage.
(Yes!) Under VMS, you could kiss good-by hundreds of kilobytes of pre­
cious storage. (Now "precious" means that memory cost only hundreds of
times more then than it does currently.)

Still, the marketplace seemed to be demanding ever more complex
minicomputer operating systems. How else to meet the needs of a growing
and ever more diverse constituency? Each new software release offered still
more complexity to provide still more ways to use these wondrous new
computers.
11rhen along came the UNIX operating system. Scientists and engineers
"1.tgave a shout of glee. Here, once again, was a system they could
understand. You got a trim little operating system, a C compiler, and a set
of killer little programs called software tools. An individual user could
conceive, and even write, all the software for an extremely nontrivial
application.

Not only that, a small group of people could concoct all its own software.
You could write simple C programs, even shell scripts, to do things un­
dreamed of with other systems. And it was all under the control of a handful
of non experts. (Well, quite a few of us had to learn how to become UNIX
system administrators.) No need to depend on the arcane knowledge of a
bunch of minicomputer systems programmers - or the latest whims of the
vendor.

Of course, the minicomputer vendors sneered at UNIX. The vendor-sup­
plied operating systems in those days were growing ever more powerful.
Some even began to rival main-frame systems in capabilities - not to
mention storage requirements. It was clear to the minicomputer vendors
that you couldn't afford to waste your time playing with UNIX. It was an
amusing little sideline to the main stream of computing. Clearly, you had

156 Programming on Purpose

to wallow in the full complexity of a minicomputer operating system if you
wanted to write serious programs.

Nevertheless, UNIX flourished and the minicomputer systems began
their long, steady decline. True, those early UNIX systems were primitive
in many important ways. But they were sophisticated enough. UNIX made
computers available to a large group of new users - scientists and engi­
neers who wanted to develop powerful software applications without
becoming steeped in the arcana of any particular set of hardware. As a
result, computers got used more and the business of making computers
flourished.
11rhat led the UNIX folks to add ever more elaborate capabilities to the
~system. (There was now a software subindustry separate from the
hardware vendors.) The simple operating system gave way to clones of its
main-frame and minicomputer predecessors, albeit made somewhat more
elegant. UNIX accreted oodles of specialized utilities, in addition to its more
general software tools. Each system call, it seemed, needed an extra pa­
rameter or two to give it greater power. Some just couldn't be extended
enough. That led to even more system calls to invoke all sorts of wondrous
new services.

It wasn't long before all those scientists and engineers began to get a bit
off balance. Slowly, UNIX began to look like all those complex minicom­
puter operating systems that it had worked so hard to displace. The
three-ring binder no longer served as an adequate repository of all UNIX
documentation. Engineers accumulated shelves full of manuals. Worse,
UNIX shops started requiring experts. These provided the incantations
needed to run a simple C program and print the result to the proper printer
on the network. Some shops even employed full-time gurus (magicians)
who interpreted the entrails of system crashes and made talismans for the
uninitiated.

Then the UNIX community discovered "open systems." These were an
excuse to dump even more complexity into a once graceful little operating
system. Naturally, multiple groups are vying for the right to define what
constitutes openness. (The group in charge of an open system can thus
better close the UNIX market to its competitors.) These groups compete by
adding complex subsystems to UNIX at a prodigious rate. Presumably, the
open system with the greatest potential for doing something, and the least
likelihood of doing anything, will win. (But please don't think I'm biased
against this way of defining the platform we're all supposed to use for
writing future applications.)
?ll?fithile UNIX was evolving along these lines, along came the personal
~computer. Everybody gave a shout of glee. Here is a system that
many people can understand. You get a tiny little operating system and a
handful of utilities. Your neighborhood software store will gladly sell you

Essay 21 The Cycle of Complexity 157

lots more programs ready to run. If you want, you can even buy a C
compiler and make your own without a lot of fuss.

Not only that, the computer is all yours. No need to compete with other
time-sharing users for response time and disk space. Each individual or
small group can tailor the hardware, software, and data storage to meet
individual requirements. No need to depend on the whims and policies of
a bureaucracy in charge of a shared resource.

Of course, those bureaucracies initially sneered at the personal com­
puter. Serious computers require serious organizations to manage them.
You can't expect individuals to make sensible decisions about what to buy
or how to use computers properly. The personal computer was initially
viewed as an amusing little sideline to the main stream of computing.
Clearly, you had to wallow in the full complexity of computer arcana if you
wanted to make adequate use of a computer.

Nevertheless, the personal computer has flourished and central control
over computers has seen a long and steady decline. True, those early
personal computers were primitive in many important ways. But they were
sophisticated enough. The personal computer has made computing available
to an enormous group of new users - ordinary civilians who have practi­
cally any kind of data to process from words to numbers to pictures. As a
result, computers are getting used more and more every day and the
business of making computers continues to flourish.
11rhat has led the makers of personal computers, both hardware and
"""1software, to add ever more elaborate capabilities to their systems. The
simple early operating systems have given way to graphical interfaces,
multiprocessing, and networking. In some ways, that has made computers
easier to use. But it has certainly made them much harder to program. It
takes far more than a C compiler and a 200-page MS-DOS manual to turn
out a state-of-the-art application these days.

I think it is fair to characterize many programmers of personal comput­
ers these days as being more than a bit off balance. The complexity you
have to master to write for a windowing system is staggering. A typical
graphical user interface has nearly a thousand services. These manipulate
dozens of different data types. You can use an object-oriented language to
structure this complexity to some extent, but it's still there. You have a lot
of semantics to master to perform even the simplest of operations.

Still, the marketplace seems to be demanding even more complexity.
Multimedia throws sound, animation, and tighter clocking into the stew.
Pen-based systems and optical character recognition are growing in impor­
tance. Each such subsystem demands its own specialized interface. Where
will it end?

158 Programming on Purpose

7{ don't have a specific answer to that question, but I can make a rough
..lJguess. Look back over the cycles of complexity I just recited. They are
but a few of a dozen or so I have witnessed in my adult career. You can
probably sketch similar cycles in the development of computer chips,
architecture, or programming languages. All follow a similar pattern.

Start with a simple design. If it's a good design, it will flourish. As it
flourishes, it inevitably becomes embellished. That's the way most people
think to improve on something they like. It seldom occurs to such people
that the goodness of a design may stem from its elegance. Embellish it
enough and the elegance gets lost somewhere along the way. Beyond that
point, the original design can no longer be rescued. It takes a new departure,
with a clean new design, to begin the cycle over again.

The trouble is, few of us can see that wonderful new design before it's
ready to be born. (A lucky few of us can recognize it for something new and
important when it finally does arrive.) We have to keep embellishing what
we have to find out what works and what doesn't. Given enough experi­
ence, some insightful person will then give us that new departure. (And
those heavily invested in the current complexity will assuredly pooh-pooh
the new design as trivial and unimportant to the main stream of comput­
ing.)

Plus i:;a change, plus c' est la merne chose. D

mfterword: I intended this essay as a ray of hope for today's programmers. It
.a.seems like the accretion of complexity will never end. Only a faith in historical
cycles, and our limited tolerance for complexity, gives us hope that the accretion
will become more tolerable. Note that past complexity never goes away. It just gets
packaged better, so we can ignore most of it even as we profit from it.

22 Pity the Typist

7{ am a touch typist. My typing rate is a steady 50 words per minute on
.:nhuman-oriented text. For computer programs, data files, and other
arcana, it is naturally much lower. Even for this sort of gibberish, however,
my fingers still know mostly where to go. Or at least they want to think
they do.

A pet peeve of mine for several decades is the whimsical attitude that
hardware designers take toward keyboard layouts. (For my gripes about
tactile feedback from keyboards, see "Programming on Purpose: Warm
Fuzzies," Computer Language, October 1990.) They act as though there is
something creative, perhaps even decorative, in a novel layout of keys.
Sure, most of them (but not all) preserve the standard QWERTY layout of the
letters. It's all those odd keys that computers delight in that keep us on a
semipermanent scavenger hunt.

I suspect that your average keyboard designer is a bad typist. Most
hardware types I've observed at the keyboard favor the Columbus method
- discover a key and land on it. A few have their typing done by that most
famous of typists,mtf- "my two fingers." Seldom do you see an engineer
engage multiple fingers and thumbs.

How else do you explain all those new palmtops with keys that are:
• in alphabetical order
• in QWERTY order but with rows misaligned
• too cramped or unresponsive for any approach but Columbus or mtf

Much as I love my Compaq laptop, I'd also love to write essays like this
one on a palmtop computer. But I won't not until the designers meet us
trained typists halfway.
11rhe problem goes back a long way, of course. Christopher Sholes made
"11the first practical typewriter back in 1867. It is now well known that the
current QWERTY layout was adopted as a mechanical compromise. Seems
those first typists were getting ahead of the hardware and repeatedly
jamming the keys. The QWERTY layout is intentionally suboptimal to slow
us all down. Over a century later, the form has long outlived its original
function. In fact, it now interferes with the push to improve typing speed.

You probably also know that better layouts exist. The Dvorak keyboard
has been shown repeatedly to be more sensible from a human standpoint.
People can type noticeably faster with a Dvorak layout than with QWERTY,

159

160 Programming on Purpose

all other things being equal. Nevertheless, Dvorak remains a hobby horse
ridden by only a dedicated and tiny minority.

I know of no better example of standards at work than typewriter
keyboards. Here is living proof that a standard doesn't have to be techni­
cally superior to endure. It merely has to be good enough. That's always a
hard lesson for us techies to swallow.

The Royal portable I hauled off to college differed only in insignificant
ways from the mechanical clunke:s of the nineteenth century. (Yes, they still
made mechanical typewriters in the 1960s.) It had few punctuation keys
that could be misplaced, at least compared to your typical computer
keyboard of today. As I recall, the layout bore a remarkable resemblance to
the typical IBM typewriter keyboard of the day.
?ll?llte have IBM to thank for most of the stability, and sensibility, of
~typewriter keyboards. That company certainly understands the prin­
ciple of good enough better than most enterprises. And every once in awhile,
IBM even unleashes some first-rate designers. They rightly dominated the
office equipment marketplace for many decades. The influence of the IBM
Selectric keyboard still persists well into the era of computerized word
processing.

There have been a few setbacks, make no mistake. I remember when the
first hobbyist keyboards appeared in the 1970s. They committed numerous
barbarisms in the interest of controlling hardware costs. You could, for
example, save a gate or two by shifting for the equals sign(=) instead of the
plus(+). And so some folks did. (Who cares, anyway? Remember, Christo­
pher Columbus was looking for India when he stumbled across America.)

The minicomputer vendors were hardly any better. They had bigger
budgets, but no better sense of the practical. They found more places to
hide the backslash(\) than you could possibly imagine. That probably was
of more concern to us early UNIX types than to others. But everybody had
to paw around for the more widely used control and alt shift keys.

Besides the extra shift keys, ASCII introduces over half a dozen charac­
ters not found on your Selectric golf-ball typing element. Each of these
suffers the same fate as the wandering Jew who taunted Christ. They will
probably not find a resting place until the Second Coming.

IBM struck again about a decade ago. The PC again showed that Big Blue
could define a marketplace - and a slew of de facto standards in the
bargain. Most keyboards started looking like the PC offering. My fingers
began to feel at home once again. I even began to learn where to find all
those new function keys and funny scrolling arrows. The PC keyboard
wasn't a perfect standard, by any means, but it was good enough.

Then IBM introduced the "enhanced" AT keyboard. Some keys got
rearranged just for the fun of it, I think. And Apple started pushing the

Essay 22 Pity the Typist 161

Macintosh. They had to prove they weren't slavishly imitating Big Blue.
And Sun redefined the workstation market. Everyone knows that a work­
station has different, and more serious needs, than a mere PC. Just when
you thought it was safe to work on your touch-typing skills once again.
7{f you think I'm speaking just for the typing pool here, think again. Even
..lJpeople who believe that computers should talk and listen acknowledge
that keyboards won't go away. We all use them to talk to a host of applica­
tions. (You can't point and click to say everything.) The more we can make
our typing skills portable, and second nature, the more computers will fit
smoothly into our daily activities. To the extent that computers are intimi­
dating, their legitimate uses will remain stunted.

A particularly important application to us programmers is editing text.
I have already harangued on that general topic in an earlier essay. (See
"Programming on Purpose: Text Editors," Computer Language, May 1991.)
We each form a mental model of what's happening to the text we edit. We
rely on the screen display to reassure us that the text is changing the way
we expect. If what we see is what we want to get, that's useful feedback.
Any means is justified if we get the pattern of marks we want on screen
(and later paper).

When we want to do more than generate marks, however, the job gets
tougher. Not every keystroke can or should generate a printable character.
We need a set of "meta keys" to give instructions instead of directly
generating text. Sensible patterns of meta keystrokes constitute a language
in their own right. It becomes yet another thing we need to learn as touch
typists.

A typewriter has only a limited set of meta keys. You leave space between
words with the space bar. You start a new line with the return key. You skip
over to a tab stop with the tab key. Maybe you back up to overstrike a letter
with the backspace key. You also switch between two interpretations of the
keyboard by judicious use of the shift and shift-lock keys. (European
typewriters also have "dead keys" to ease overstriking letters with accent
marks.)

That's the document formatting language known to typists for over a
century. Throw in a correcting key, or a bottle of White Out, and you've got
the full set of editing commands. Not a lot to learn, but good enough to
generate literally mountains of office correspondence over the years.
11rhe computer has changed all that. From its earliest days, it has sup­
"1.tported character and line deletion, usually with single-character com­
mands. Those simple commands soon gave way to ever more complex
meta-languages. At first, the editing commands consisted of printable
characters. That necessitated a mode-sensitive editor. You had to make a
point of switching between entering text and modifying what you'd en-

162 Programming on Purpose

tered. Start entering text in edit mode and the most fascinating things could
happen - and often did.

So programmers began to favor modeless editors. Commandeer some
keystrokes not likely to be entered by your average typist. Give each a
useful meaning, and preferably one with some mnemonic value. You have
three combinations of the control and alt shifts to apply to dozens of other
keys, alone and shifted. The sky's the limit.

The sky, however, is no place for a touch typist. Your fingers can memo­
rize only so many operations. If they differ between editors, you're in a
bind. One response, a common one, is to stick with the editor you've
learned to love, however old fashioned it becomes. Another is to learn little
or nothing about the peculiarities of any one editor. However fast you type
running text, you're sailing uncharted waters when you edit.

I'm pretty firmly in the second camp. I've seen too often what happens
to people who master too much arcana. They become so invested in their
knowledge that they resist learning anything new. I also move among
various systems a lot. That keeps me from devoting much typing time to
any one peculiar editor. I prefer being able to do a few simple edits rapidly
to over specializing.
11rhe WIMP interface is supposed to have fixed these problems. (WIMP
'L!lstands for "windows, icons, menus, and pointing devices.") No funny
keystrokes to memorize any more. Now you can perform natural, human­
oriented operations to edit text. Everything is so intuitive that even begin­
ners get it right. You can edit rapidly with few errors. Right?

If only that were true. What I find instead is just enough variation among
text editing schemes to disrupt typing skills. Here, I use "typing" in the
more general sense. It includes pointing and clicking with a mouse and
navigating with cursor keys, not just striking keys on a keyboard. (Perhaps
I should call it "touch mousing.")

What should the down-arrow key do, for instance? Move the cursor
down to the next line, to be sure. But where on that line? If the cursor ends
up within the line of text, the answer is fairly obvious. You want the cursor
to stay in the same column. If it's beyond the current end of the line,
however, you have to think harder. The answer you get depends on the
model you assume for the displayed text.

One model is the "histogram of text." Each line has a length determined
by its current contents. Position the cursor past the end of the line and it
whangs back to the end. You can type trailing spaces if you want, but you
can only feel them out by moving the cursor around. What goes into the
file is what you type, period.

Another model is the "two-dimensional array of text." You can navigate
anywhere around the array and drop new characters where you will.

Essay 22 Pity the Typist 163

Spaces presumably fill any untyped expanse of line. Similarly, trailing
spaces presumably disappear when you write the file.

As you might guess, I favor the first model. The second involves too
many presumptions for my deterministic tastes. Borland's Turbo CIC++
editor seems to follow the second model. It keeps dumping me in interstel­
lar space when I navigate a source file. I find that to be odd behavior for a
package that favors an economy of keystrokes.
7fi! ut even within the histogram model you can find unfortunate variety.
~The Microsoft Windows Notepad utility whangs back to the end of the
line. Then it decides that that's the column you want to be in. Windows
Write has a different notion. It remembers the column you started out with,
and clings to the ends of any shorter lines. I kinda prefer that behavior, but
I'd rather have consistency.

I thought I'd like WinEdit. It has huge capacity, supports multiple file
windows, and even searches with UNIX-like regular expressions. Then I
discovered that it treats horizontal tabs as input-only characters. It writes
the expanded spaces back to a file. I spent one afternoon repairing a dozen
damaged files, then deleted WinEdit from my hard disk.

Of the half dozen editors I switch among, my favorite is a surprising one.
Laplink Pro includes an MS-DOS-based, character-mode text editor almost
as an afterthought. It has two file windows and an optional emacs-style
split screen. It supports cut and paste to a clipboard as well as file merges.
It is fast, has large capacity, and seldom crashes. It even counts words for
me.

The author(s) of this handy editor took obvious pains to make it look
like most GUI-based products. But they left out one operation. You can't
specify a range of text by a mouse click, move, shift-click. You can only drag
the mouse across the range. That has burned me any number of times. I
now find myself avoiding the shift-click method even on editors that
support it. Conditioned reflexes work both ways.

Yes, I know that some systems have style guides. They're supposed to
eliminate unwanted variation among applications. Generally, they focus on
the "user friendly" aspects of the WIMP interface. Less attention is paid to
users who are more than naive. My experience is admittedly far broader
than it is deep here. Still, I can't say I've discovered an island of sanity yet.
At least not for us beleaguered touch typists. o

mfterword: There's a lot more I could say on this topic, but I've probably said
~enough here. If you aren't a touch typist, you encounter only a few of the
problems I've harangued about. If you are, you're probably accustomed to such
impediments. I just hope a few system designers (with some clout) are listening.

23 Criticism

.l1) ecently, I've been on the receiving end of a lot of criticism. That happens
~to all of us from time to time. Performance reviews are an inevitable
part of any job. Even the president is answerable to the board of directors.
And the board is answerable to the stockholders. Whatever your position
in life, you can always find someone in a position to subject at least part of
your behavior to critical review.

You may have seen the old cartoon of the university as a multi-story
outhouse. Freshmen get the ground floor, sophs the next, and so on up the
line. Professors aren't at the top, though. There are deans, trustees, then
alumni. If there is a top, it is lost in the clouds. Different barnyard from the
business world, but the same pecking order.

I happen to be "self employed." That doesn't make me immune to
criticism, whatever you may think. It simply means that I have any number
of bosses. My constituency is all the people for whom I write, edit, or give
talks. Each has the opportunity, from time to time, to tell me where to get
off. I may not always want to hear it, but I dare not tune it out. I ignore such
information at my peril, just like everybody else.

It is unfortunate in many ways that my chosen constituency is highly
technical. In principle, engineers and programmers are trained to be both
analytical and rational. You'd think that techies would be just the sort of
critics you need. They can provide a balanced perspective on your perform­
ance. They can focus on constructive criticism. They can distinguish objec­
tive measures from the purely subjective.

Think that and you would be wrong.
:nf there is a more critical group than a bunch of computer programmers,
..lJI've yet to find it. Programmers delight in finding bugs. A "bug" in the
general sense can be any sort of behavior of which they disapprove. But it
is not enough for a programmer to find a bug and point it out. Nosiree. That
bug must be squashed once and for all.

As a consequence, programmers are not only hypercritical, they often
overreact. Anything not amenable to objective measurement becomes a
lightning rod for religious zealotry. Your opinion doesn't merely differ from
mine, it is dangerously wrong. You are leading innocents astray with your
ill-considered prattle. Shut up and go away.

I suspect there is also some truth in the nerd stereotype that the world
imposes on all us techies. Many of us do indeed lack various social graces.

165

166 Programming on Purpose

It never occurs to us to waste any air time broadcasting politeness or
consideration. Our job is to deliver the unvarnished truth (as we see it).
Leave it to the touchy-feely types to wallow in supportive blather.

It doesn't help that a technical education tends to be highly competitive.
Few schools give brownie points for helping out fellow students (sadly
enough). Even working in groups gets short shrift - until you get in the
real world, that is. Little wonder that most of us are better at slicing up our
fellow techies than helping them out.
7{ first became deeply aware of this aberration when I began attending
...lJstandards meetings. I was appalled at the emotional frenzies stirred up
by the most abstract and equivocal of issues. (I was chagrined when I got
caught up in the emotional fray myself.) In the heat of the moment, the
debate sometimes got personal. I once had to leave the room when someone
accused me of deliberately lying to make my point. (I can indeed lie.
Otherwise, being truthful is more a handicap than a virtue to me. But I save
my lies for more important matters than mere programming language
standards.)

It wasn't long before I formulated a basic law of technical debate - the
strength of a techie's emotional attachment to a position varies inversely as
the amount of objective evidence supporting that position. When emotions
run high enough, the distinction between personalities and abstract ideas
evaporates.

I saw a similar insensitivity while selling computer software. One man
approached me at a trade show and smiled politely. He asked me why my
company produced such mediocre software that was so full of bugs. He
could have been asking after the health of a mutual acquaintance in the
same tone of voice. I'm sure he was unaware of the gross unfairness of his
characterization. He was certainly unaware of the personal hurt he caused.

If that were an isolated incident, it would be but a sad anecdote. Unfor­
tunately, I had such encounters regularly. People who have never written
a major piece of software, or brought it to market, are quick to make glib
pronouncements. Tell me what you want as a consumer, by all means.
That's your right and you honor me with your marketing data. But don't
make offhand value judgments about a process you don't understand.

You can imagine how an olympic runner feels when a pudgy journalist
asks her why she only came in second.

I have read reviews of my products that border on libel. To this day, I
don't know what puts reviewers into an occasional feeding frenzy. I can tell
you that the effect is personally painful. It can also hurt sales severely. I
believe reviewers have a particular obligation to criticize wisely and fairly.
That makes the pain of a bad review all the worse to me.

Essay 23 Criticism 167

I notice that anonymity of any sort makes it easier for many to be critical.
It offers an emotional distance that can be pernicious. Electronic mail seems
to bring out the worst in some people, for example. The art of "flaming" is
now widely practiced. It's bad enough to send a rude message to another
via such an anonymous channel. To flame someone on an open forum is,
to me, the height of insensitivity. Yet I see it all the time .
.JflltY son just recently joined The Sierra Network. It's a nationwide
;JJiJ.lgaming arena loosely akin to, say, Prodigy. People can chat by sending
comments to each other a line or two at a time. I note with interest that each
message you receive comes with a "complain" button. (Social note - there
is no "praise" button.) It seems to have at least some tempering effect on
the dialog I have observed.

I edit a monthly magazine. The publisher and I recently sat down
together for our first face-to-face since I'd gone off to Australia over a year
ago. I fished for a compliment or two, got none. Instead, he told me that my
responses to letters were too negative, too defensive. I wasn't providing
enough positive feedback to readers.

I left our interview feeling depressed. Finally it hit me. The publisher
had been too negative. He didn't provide me enough positive feedback. He
at least had the decency to acknowledge what happened when I pointed it
out. I got the reassurance I needed.

I am a product of competitive schools and work environments, like many
of you. I can dish it out with the best of them. When I get zinged, I've learned
long since to stuff the hurt fast. You won't catch me betraying any weakness.
The net effect is that I have spent a good part of my life walking around
numb. (If you're busy not feeling pain you're also busy not feeling much
anything else.)

More recently, I have learned a simple trick. If I notice that I am numb
or depressed, I seldom know why. So I think back to the last time I felt good.
Then I look at what happened to change my mood. Invariably, it was some
assault on my ego that shut me down. Often, the assault took the form of
heavy-handed criticism. (Once you acknowledge the hurt and let yourself
feel it, it passes.)
11rhe stimulus for this essay was a batch of critiques that just came in the
~mail. They were for a series of talks I gave at Software Development
'92. Many were positive and made me feel good. Some were constructive
and made me feel grateful, if a bit chagrined. A few, however, were simply
backhanded slurs. The one that hurt the most characterized one of my talks
as "useless." Not "useless to me," mind you. Just "useless." Given the
questions and comments of others in the room, the criticism was patently
untrue. At the least, it was a gross overstatement.

168 Programming on Purpose

Now I am more self confident than the average bear. I can convince
myself intellectually that this person had his or her head wedged. I can even
beat down any fears that I am rationalizing away the truth. But I can't stop
the remark from hurting.

The big secret is that none of us ever really grows up. Inside every adult
is a little kid who wants to have fun and, above all, wants to be loved.
Pretend that kid isn't there and he just gets bratty. Treat him nice and he's
the wellspring of much of your happiness and spontaneity.

One of the perversions of modern society is to deny the importance of
our little kids. We pretend to rational debate when our little kids are
throwing mudballs. We want to cry and get officious instead. We befuddle
being right or being rich with being loved.

Back in the 1930s and 1940s there was an intellectual movement called
general semantics. It argued that people were captive to fantasies about the
world. That made them behave irrationally and, sometimes, self destruc­
tively. You should not, for example, punch somebody in the nose just for
calling you names. While there is much truth to what the semanticists said,
I believe they overstated the case. It is not true that "Sticks and stones may
break my bones but names will never hurt me." An important part of our
existence is in that "fantasy" world of images and beliefs. Names and other
words are the very stuff of our reality.

There are people and principles that I would die for. From the standpoint
of personal survivor, that is simply unsane. Nevertheless, I have no interest
in curing myself of such aberrations.
7{ am not, by the way, opposed to all forms of criticism. Quite the contrary,
..DI believe it is absolutely necessary. Rare is the person who can see all his
or her shortcomings. We all profit from feedback from those with a cooler
perspective.

The little kid in me revels in unstinting praise. He wants the same
absolute approval that we all deserve from our parents, just for being who
we are. The adult caretaker knows better, however. Yes-men are just as
unhealthy as unlimited quantities of jelly beans.

The trick of criticism lies in how you express it. You need to deliver a
message that can be heard by the adult without unduly arousing the child.
Fail to do so and it matters not how right you are. You fail as a critic if you
fail to make a difference.

Properly packaged, criticism can be seen for the gift that it truly is. I have
colleagues who critique with a scalpel in each hand. Run their gantlet and
you know you've got a thing worth publishing. Their remarks don't hurt
because they're uniformly constructive. (Just be warned if any of these
people politely decline to offer criticism. That means they don't think it's
worth the effort.)

Essay 23 Criticism 169

7{ hope that by this point I've convinced you to be more cautious with your
.:lJcritical words. Zinging your friends is a hard habit to break, but it can
be done. And it should be. Withholding useful advice can be just as bad.
You owe it to your friends and colleagues to learn when and how to criticize.

Here are a few guidelines:
Never confuse the person with the idea. Remember that little kid inside,

who wants to be liked as much as you do. There's a world of difference
between "You're wrong" and "I don't agree with what you just said."

State the positive first. Emphasize what's good about another person's
ideas, or what you agree with. This may seem artificial at first, at least to
people outside California. But it keeps the positives from getting lost in a
shouting match. And it helps everyone find the common ground that much
faster.

Try to state ways to improve an idea instead of tearing it down. One
way to identify constructive criticism is to first list the three most important
things to keep the same. Then list the three things you'd most like to change.
(I didn't say "fix," I said "change.")

Try the Hegel approach - thesis, antithesis, synthesis. Is there a
positive way you can combine viewpoints that apparently conflict? This is
not the same as compromise the way most politicians practice the art. That
is more a matter of relative capitulation, with the greater victory going to
the stronger or smarter party.

Be humble. If you disagree with the majority, accept the possibility that
your opinion might not be as compelling as you want to believe. Each of
us is entitled to a private opinion. And in a democracy, the majority is
entitled to rule in most matters.

Finally, go for consensus. This is not the same as unanimity. A minority
can go unsatisfied in a consensus if the majority agrees that it has received
a fair hearing. If you are that minority, save your tantrums for issues that
are truly important to you. Don't sweat the small stuff.

Follow these guidelines and you will find that you're a more agreeable
person. You may even be surprised to find that you get your way more
often. In a cooperative work place, that can help everyone succeed. In an
intertwined economy, it can help everyone prosper. I'm not saying that a
sensible use of criticism is sufficient to bringing world peace. But it is
necessary. o

mfterword: This was one of my more successful essays. It stimulated an outpour­
.a.ing of letters from readers - uniformly supportive - that convinced me I
touched a nerve. Interestingly enough, it was also easy to write. I just had to
assemble a number of thoughts that had long begged for expression. Evidently,
many others were waiting for similar thoughts to be expressed as well.

24 Piled Higher and Deeper

7{t's funny how the realization creeps up on you. Just a few short years
;JJ ago, my software needs were much simpler. I used a C compiler, a
home-grown operating system modeled on UNIX, and a host of software
tools with similar roots. The most elaborate of these tools was a document
formatter, and that was certainly no more complex than the C compiler.
Printers and terminals were all character oriented, so I had no need for
graphics software or pointing devices.

I wrote a large fraction of that software myself. What I didn't write was
developed by other programmers in my company. True, one or two ma­
chines ran licensed copies of UNIX. Beyond that, however, we used next to
no commercial software. And we managed to get quite a lot of work done,
thank you.

One reason why we used so little outside software should be obvious. It
simply wasn't available. UNIX is still a Balkanized marketplace, spread
across multiple computer architectures. Only a few platforms are suffi­
ciently numerous to support volume pricing of shrink-wrapped software.
Before the advent of Sun workstations and the Intel 386, there were next to
none. Even today, you often pay a premium for software that runs under
UNIX.

I anguished about this situation when I struck off on my own. It didn't
take me long to decide to switch to IBM PCs and compatibles. I hated to
give up multi-tasking and UNIX-style command language. And MS-DOS
is not a dream system by any standards, even for refugees from CP /M. But
the economic payoff was unbeatable. I could actually buy software at
reasonable prices instead of writing my own.
11rhe first thing I learned was the importance of buying a PC with a "full"
"11640-kilobyte memory. Software had just escaped the shackles of the
CP /M 64-kilobyte limit. (The PDP-11 was only slightly better in supporting
separate 64-kilobyte code and data segments.) Pent up demand for larger
address space sent programmers into a feeding frenzy. Overlaid programs
spread out through memory. Pipelines got merged into monoliths. A mere
factor of ten increase in memory size evaporated like morning dew.

Still, the kind of software I wanted to buy in those days fit comfortably
in 640 kilobytes. Competing for that space was MS-DOS itself and any
special device drivers, but that wasn't so bad. I soon learned to avoid
"terminate and stay resident" (TSR) utilities. They ate memory like candy,

171

172 Programming on Purpose

fought civil wars with each other, and sooner or later did something
surprising and not nice to my valuable data. In fact, the only problem
software I had to live with was the PC-based games my son Geoffrey
insisted on buying. They inevitably pushed to the limits memory capacity,
CPU speed, and any notions of portability across PC clones.

It is now well known that the notorious 640-kilobyte boundary was set
rather arbitrarily. The original PC engines, the Intel 8088 and 8086, could
address 1,024 kilobytes with ease. IBM simply set aside a generous upper
third of the address space for assorted ROMs and memory-mapped 1/0
controllers. Such spendthrift designs are hardly uncommon in our busi­
ness, but they still cause grief. (See Pla87.) Incredible quantities of ingenuity
go into workarounds for such limitations, rather than into the applications
themselves.

In some ways this is simply a quibble, however. An extra 384 kilobytes
would often be nice, but it's only a small percentage improvement. An
application that needs more than a megabyte is still hurting. You're back in
the world of overlays and pipelined execution. Or some other trickery.
Burdened as it was with unexpected success, the PC marketplace grew with
only a minimum of planning. People attacked the problem of limited
memory on multiple fronts.
IAne approach was to offset the Intel 8088 limitations with a kind of
"'7bank-switching scheme. You can install additional expanded memory
that is visible through a narrow window in the upper 384 kilobytes.
Applications equipped to take advantage of expanded memory can man­
age this window to scribble throughout megabytes of additional storage.
It ain't a flat address space, but it still beats swapping overlays on and off
a disk.

Still another approach came for free with the Intel 80286 and later more
powerful upgrades to the original 8088 and 8086. These newer CPUs could
directly address 16 megabytes or more of extended memory. It is almost as
easy to address as that first megabyte, except that you must also muck with
a separate set of memory-management registers.

I won't go into all the intricacies. Many of you live with them more
intimately than I ever want to. Suffice it to say here that the IBM PC
architecture started out rococo. It has since grown more ornate. Trust me
when I tell you that extended memory is generally better than expanded.
But that doesn't stop software developers from using both with seeming
whimsy, at least to this bystander.

I started caring about this stuff when I found I couldn't buy a C compiler
that fit in 640 kilobytes anymore. Then I started typesetting with Ventura
Publisher and kissed small computers good-by forever. Suddenly, I was
spending days reading about memory boards and memory-management
software. Next thing I knew, I was anguishing over how to partition

Essay 24 Piled Higher and Deeper 173

memory between expanded and extended. (This was at a time when
memory was selling at $600 per megabyte.) Enough was enough.

Programmers know well what to do when you have too much software.
You add more software to manage the overload. Then you add still more
software to monitor the manager and to optimize it. It's just like the old
joke about college degrees. We all know what B.S. stands for (and it's not
necessarily "Bachelor of Science.") M.S. is simply "More of the Same." And
Ph.D. stands for "Piled Higher and Deeper." Willy nilly, I was starting to
earn advanced degrees in PC-compatible software .
.JflltY first attempt at controlling the memory eaters was a neat little
.Jl~'product called Quarterdeck DesqView. It has the gall to turn a PC into
a multi-tasking system. Given all the dirty tricks that MS-DOS and various
applications play, this is seemingly futile. Managing a birthday party for
seven-year-olds is civilized by comparison. Nevertheless, DesqView can be
amazingly robust. I used it for some time with good success. In fact, the
only serious problems I had with it came when I tried to run some of
Geoffrey's games. They pushed the state of the art much too hard to cohabit
with any software as responsible as DesqView.

In the end, I abandoned most ofDesqView. The part I kept is its memory
manager, called QEMM. On a sufficiently powerful CPU, it can blur the
distinction between expanded and extended memory. I still use QEMM386,
Version 6.02, because it makes my life simpler. Quarterdeck can keep trying
to outsmart all that nasty hardware and software. I gladly pay for the extra
RAM that QEMM386 inhabits so long as it keeps winning those battles for
me. (That's easier to say now that memory is selling for $50 per megabyte,
of course.)

In fact, the only serious problem I've had lately with QEMM386 is caused
by one of Geoffrey's newest video games. Seems ULTIMA VII insists on
using its own memory manager. (It's called Voodoo, for what that's worth.)
I spent an evening crafting a special boot diskette to eliminate all sorts of
useful software I normally run. Even then, ULTIMA VII crashes on our old
Compaq Deskpro (and many other machines, I'm told). Not a wise market­
ing choice.
A. o why did I abandon DesqView? Mostly because Microsoft finally got
e:vwindows more or less right. I needed Windows to run Corel Draw. And
I began acquiring a taste for the bit-mapped graphics interface and pointing
devices. When Ventura Publisher finally came out in a Windows edition, I
figured what the hell. It was time to make Windows my principal base of
operations.

In the end, it came down to power politics. Quarterdeck can fight the
good fight for years to come. I'm sure they'll keep solving problems about
as fast as hardware and software types keep making new ones for their
product. Some vendors even make an effort to maintain compatibility with

174 Programming on Purpose

DesqView. But herein lies the difference. You can be sure that all vendors
will work hard to maintain compatibility with Windows. (I'm certainly not
a fan of "might makes right." But I still carry an AT&T calling card.)

Next thing I knew, I was trucking around nearly 40 megabytes of
software. That got me Windows running with QEMM386, and all the
utilities that come with Windows for openers. Throw in Ventura Publisher,
Corel Draw, and hundreds of assorted fonts, and you're talking serious disk
real estate. (I don't even count the megabytes of games that magically
accrete on any system that runs Windows.)

I should also point out that Windows applications make reasonable use
of extended memory. That's yet another way to blur the 640-kilobyte
boundary. Of course, that boundary is still there. Windows itself needs a
reasonable amount of lower memory to work properly. You also want lots
of lower memory so that MS-DOS sessions work decently under Windows.
Still, you do make better use of extended memory. So much so that you
have to keep buying more. My laptops have gone from 3.5 megabytes to 6,
then to a current 10 megabytes because Windows enjoys using memory so
much. At today's prices, I guess you can call that progress. In fact, the only
problem I've found is with some of Geoffrey's video games. Either they
don't cohabit well with Windows or they need the last ounce of memory
when running in an MS-DOS session.
11T"he past year has seen the growth of yet another pernicious trend,
\U.lhowever. No longer do applications gobble a megabyte or two of disk
space. Now each one sprawls over ten to 40 megabytes. The worst offenders
in my little backwater are the latest C/C++ compiler packages. Each comes
with oodles of libraries- for Windows and MS-DOS, for every conceivable
memory model. They also have integrated environments, interactive
debuggers, and special interfaces of all descriptions. (Seldom do the ven­
dors provide clear guides to pruning this largess.) My latest book project
requires that I exercise all the popular compiler packages. But I keep
running out of room on my tiny little 120-megabyte disk!

My first response was, you guessed it, to buy more software. I installed
Stacker on my laptop, but only after reading half a dozen reassuring
reviews. Yes, it really does take good care of your data. Yes, it really does
double your disk space (essentially) with no cost in performance. Trade off
just a bit more RAM (and money) and you can pack ten pounds in a five
pound sack. In fact, the only problem I've found with Stacker is with some
of Geoffrey's video games. The latest ones come with ten or more mega­
bytes of precompressed files. Often, Stacker can only compress them another
five or ten per cent. (And ULTIMA VII, naturally, will have nothing to do
with Stacker.)

Stacker bought me some breathing space, but at a price. I now carried
around much too much software to back up easily. Diskettes were out of

Essay 24 Piled Higher and Deeper 175

the question. I have tried cartridge tapes in the past, with mixed success.
What I really wanted was a removable cartridge disk drive.
7{ took two laptops to Australia last year and a docking station that worked
..Dwith both. While there, I bought a 44-megabyte Syquest cartridge drive
that plugged into the docking station. That would have been ideal, except
that the system never got to working reliably. In the end, I sent back the
Syquest drive and sold the smaller laptop and docking station. Waiting at
home was my old Compaq Deskpro 386. It looked like a better host for a
cartridge drive. And Syquest was now offering an 88-megabyte version. So
I crossed my fingers and bought the newer drive. After a few initial flakies,
it has proved to be about as robust as I could hope for.

So I put up the latest versions of Windows, QEMM386, and Stacker on
the Deskpro to make it a decent backup machine. The only problem was,
my wife Tana decided that the Deskpro was now a usable machine. She
took it over to do our accounting with Quicken and her own work with
Microsoft Word. Now my problem was one of logistics. Periodically, I had
to schlep the laptop from my office to Tana's. Once there, La plink Pro makes
it a breeze to copy files from laptop to cartridge disk. But I still found myself
slopping compilers and book images all over hell. And Tana found herself
competing for disk space with Geoffrey, who keeps buying ever larger
video games.

I anguished for a spell, then capitulated. It was past time that we installed
a network in the house. It was also past time that we bought the latest and
greatest in PCs. These days, that translates to a 50 MHz 80486 with an EISA
bus, a 320-megabyte drive, a super high-speed modem, etc., etc. I figured I
could store my compilers on the 486 and ship data around the house on the
network. Tana figured that Geoffrey would naturally gravitate to the most
powerful computer in the house and leave her alone. Geoffrey figured that
a 486 would make an adequate starting point for a serious computer. (He's
been eyeing games that need a CD-ROM and a heavy-duty sound card.)

Only trouble is, the network software also eats RAM. You try to cram all
the pieces into the upper 384 kilobytes, but they don't always fit. (Remem­
ber all those ROMs and device registers.) What doesn't fit steals space from
the lower 640 kilobytes. And that's where we came in, if you recall.
7{nstalling that network makes a story unto itself. (See "Programming on
.:.nPurpose: Through the Grapevine," Computer Language, October 1992.)
For now, I'll end this saga with a few simple observations:

Complexity breeds complexity. Much of the software I now load every
day is there to do battle with overly complex hardware. Still more does
battle with the complex software that has gone before. Rarely does any
improvement lead to less software.

176 Programming on Purpose

The more flavors of storage you have, the more opportunities you have
to run out of something. My computers all have lower memory, upper
memory, extended memory, and disks. (They could also have expanded
memory, but I don't let them.) Each causes a different set of problems. Most
solutions steal from one resource to feed another.

Finally, there is no such thing as enough computer for an ambitious
and resourceful twelve-year-old who loves video games. o

mfterword: You might look on this essay as a continuation of an earlier one on
:et.growing complexity. (See Essay 21: The Cycle of Complexity.) Like all good
tongue-in-cheek humor, it is more than half serious.

I can report that all this hardware and software has been working fine. Tana
insisted on her own 486 laptop, so the Deskpro has reverted to being a general utility
machine. On the other hand, Geoffrey has tightened his grip on the most powerful
machine. And his games keep getting bigger.

25 Lawyers

~ on't get your hopes up. This essay is not going to be a pastiche of lawyer
"""'jokes. (I do have some humdingers, though.) It's not even a diatribe on
the evils of unbridled litigation. (But feed me two martinis and you'll hear
all you ever need on that topic as well.) Think of it more as a user's guide
to legal services in the computing profession.

When I started this series of essays almost six and a half years ago, I
planned to talk about program design methods. I did so primarily for the
first year or so. Then I succumbed to an overwhelming urge and wrote an
essay on ethics. (See Essay 1: Honestly Now.) I have since wandered farther
and farther afield. I still cover technical issues of interest to programmers.
But I am just as likely to discuss matters of business, culture, or personal
growth.

Believe it or not, all these essays have a common theme. Developing
software for computers is a nontrivial enterprise. It differs from other
professions in important ways. It endeavors to control more complexity
than any other undertaking I know. And, despite legitimate criticism, it has
been remarkably successful at building on its earlier accomplishments.

The software business has also become a generator of considerable
wealth. You can try to capture some of that wealth, just watch it go by, or
get screwed out of it. I find no particular virtue or vice in any of those
postures. But I favor those who would be captains of their souls. Whatever
you do, do it with malice aforethought. In particular, if you write computer
programs, then program on purpose.

1~omplexity and cash make a heady brew. It attracts sharks. Even the
~nicest people get a little strange when the sums get serious. And
software is so hard to protect from thievery. That's why it's important for
you to delimit clear boundaries. Employees and contractors need to know
who owns the fruits of their labors. Customers need to know what they
bought and what they can do with it. Competitors need to know what is
proprietary and what is public domain.

That's where the lawyers come in. It's their job to give advice and to
make paper. The advice should warn you when you start to swim outside
the shark nets. Or when you're leaving blood in the water. (Sorry for the
raw images- that's what a year of living on a beach in Australia does to
your imagination.) The paper should protect you from your own stupidity.

177

178 Programming on Purpose

Or from predators who walk on two legs. (More than one three-piece suit
hides a dorsal fin.)

Lawyers should take a more aggressive role only when you screw up.
Annoy someone else enough and you've got a lawsuit on your hands. Then
you need lots of advice and paper, not to mention lots of hours of your
precious time briefing lawyers and reviewing those stacks of paper. You
may as well hand your Day Timer over to the legal department. Even if you
don't end up in court, you can kiss good-by enough time, money, and
psychic energy to renovate downtown Newark.

Americans spend altogether too much time and money on lawyers. We
all know that. But you shouldn't blame the lawyers completely. Sure, some
of them instigate unnecessary litigation. And they all have a vested interest
in playing Let's You and Him Fight. But they wouldn't get away with it if
the demand wasn't there.

To me, it's much like blaming drug dealers for the vast demand that
exists for drugs. Bleach is bad for you too, but you don't see too many jerks
flogging quart bottles outside school yards. Nobody wants the stuff, except
to make sweat socks whiter. Sadly, lots of people, in and out of school, feel
the need to curdle their brains on a regular basis. Decrease that need and
your friendly neighborhood pusher will soon switch to another nefarious
trade.
11T"he American love affair with litigation predates its drug habit by well
"'1.iover a century. I learned this fascinating tidbit on one of my visits to
Sturbridge Village in southern Massachusetts. Sturbridge is a working
recreation of a generic New England town from the early 1800s. Seems the
early United States set great store by lawyers and judges. After all, this was
a nation of laws, and the law was supposed to be the impartial arbiter of
social conflicts. So people took their squabbles to the town lawyer, and the
local judge, at the least excuse.

Sound familiar? Well, it isn't. The practice of law differs fundamentally
between then and now. In those simpler times, you made your case, got a
judgment, and lived with it. Delays were less likely and appeals were much
rarer. Neglecting the inevitable pockets of corruption among judges, you
can say that the system basically worked as intended.

Today, the system has been largely perverted. Delays, injunctions, and
other pretrial maneuvers let people with money intimidate those without.
It is the long pending threat of a trial that wears down many a party with a
legitimate case. The trial itself becomes an exercise in trickery and obfusca­
tion. Seldom is the race to the swift or the battle to the strong. Instead, time
and chance happeneth to them all. And both time and chance are bad
business investments in this arena.

Essay 25 Lawyers 179

If it were done when 'tis done, then 'twere well it were done quickly­
to steal from Shakespeare as well as the Bible. But nothing happens quickly
in the legal process. And nothing is ever done when 'tis done. There are
appeals, counter claims, and no end of motions. Once again, the party who
can afford legions of lawyers has the intrinsic advantage.

If enough money is at stake, most managers dare not stop the legal
process until all avenues have been exhausted. Better to win a Pyrrhic
victory and keep your job, or go down fighting with the stockholders'
money. In either case, you can always move on to the next company if you
don't like what's left of the one you're nominally defending.

That's why I feel that an excess of lawyers is a symptom, not a cause. It's
the managers who start fights and who keep them going. Too often, they
defer to legal advice to the detriment of the enterprise because that is safer
for their short-term goals. Or worse, they get caught up in being right and
lose all business perspective. (I won't even discuss the endemic lack of
ethics or sense of social responsibility. That's a topic for another diatribe.)

So let's pretend that you don't want to get eaten alive by legal fees and
follies. We will also pretend that you are fairly honest and plan to run a
legitimate business within the letter and spirit of the law. (That's actually a
necessary attribute of any long-term business, but you'll never convince
the weasels of the world.) How then do you keep a high-tech business such
as computer software well clear of the shoals of litigation?

It's not as hard as you might think. (Of course, I speak as one who has
pissed away a large fraction of a million dollars over the past decade on
legal fees that I should have avoided. Who are you going to believe, me or
the guy who's never had to kick himself?) Just remember a few simple
principles when you deal with lawyers.
Jllrinciple: Lawyers do law, you do the business. If you get nothing else
-tFJout of this essay, hang onto this principle. It is the one I find least
understood among techies. Even business types lose track of it altogether
too often.

The problem begins when you ask a lawyer for advice. It may concern
a single business deal. Or you may be devising licensing terms to offer all
comers. What you want is terms that are attractive enough to meet cus­
tomer needs. They must also be safe enough to ensure that you stay in
business. In either event, you must steer a narrow course.

On the one side, you can fail to protect your own interest. That may cost
you ownership of your intellectual property. Or it may leave you open to
large and growing liabilities. Whether revenues go down or expenses go
up, you go out of business when the profits disappear.

On the other side, you can fail to be competitive. Your customers may
find your licensing terms too arbitrary or restrictive. Or a competitor may

180 Programming on Purpose

be willing to settle for fewer protections. Whether you're an ambitious
tortoise or a reluctant hare, you can lose the race.

Lawyers are most comfortable helping tortoises thicken their shells.
Partly that is their training. They are taught to write ironclad language, then
dig a moat and throw in a couple of guard dogs for good measure. It is a
rare lawyer who meditates long upon the ways of the rabbit. There are too
many risks involved when your only defense is staying light and moving
fast. But that is the essence of good business. You have limited windows of
opportunity and limited resources to pursue them. You must move fast and
get a good return on your investment. Otherwise, you'll lose out sooner or
later to someone who can do more with less.

The worst lawyer I ever met, at least for giving business advice, believed
in the bogey man. Ask him whether a course was prudent and he would
dredge up the most outlandish dangers you could imagine. He delighted
in fashioning protections against the least likely of occurrences. Of course,
he did so on his client's nickel. And he always left you feeling like you were
on the verge of being sued by IBM and the Justice Department, in tandem.

The best lawyer I ever met, at least in the same sense, understood the
distinction between law and business. He would tell you the most probable
risks and the worst-case exposure you had to plan for. He would point out
the place where extra legal protection began to cost substantially more than
the likely savings. And he tried to leave you with the kind of protections
developed by IBM for their own enterprises.

Most lawyers, naturally, fall in the vast middle ground. Just know that
typical legal advice errs on the conservative side. The next principle ex­
plains why.
Jllrinciple: Lawyers can't win. Let's say that a corporate lawyer encour­
..fFJages a bit of risk taking. If all goes well, the business types will pat
themselves on the back for being daring enough to take that advice. If the
company loses in any way, however, guess who gets the blame.

A conservative stance is much easier for a lawyer to defend. That's the
prudent course, and a lawyer's job is to preach prudence. You can't blame
Legal if the customer balks at the terms. Everyone knows that customers
demand the sky. Someone has to look out for the best interests of the
company.

Of course, Marketing doesn't see it that way. They are convinced that
they can sell anything, if only the engineers stop nattering about irrelevant
performance limitations and the lawyers stop insulting the customers. And
guess who's better represented at the next meeting of the board of directors.
You can bet that the case for the lawyers won't be as persuasive as for those
who make the real profits.

Essay 25 Lawyers 181

Combining these two principles puts you back in the driver's seat. Stop
trying to get good business advice from the lawyers you consult. They don't
often think that way. More to the point, they don't dare give advice based
on sound business principles. Accept the fact that lawyers can only give
you legal advice. You must take the responsibility for interpreting it and
acting on it as you see fit.

You can gripe if a lawyer fails to apprise you of a legal risk. You have no
gripe if you fail to act on it. You also have no gripe if you act so conserva­
tively that you queer the business. Use the lawyers where they're useful.
Otherwise, run the business yourself.
~rinciple: Lawyers talk to lawyers, you talk to people. I cringe when­
.-fF' ever I get a call or a visit from a lawyer acting on behalf of another client.
That's because I know that much will get lost between me and the client. It
doesn't matter whether I'm buying or selling. In either case, I can expect to
waste time and money better spent otherwise.

Lawyers have their own ways of proceeding- and their own goals. For
the reasons I cited above, these often interfere with the business at hand.
However many legalisms must be hammered out for a given deal to go
down, you don't want to let them set the initial agenda. When and if you
have a good business deal, you can then generate the paper to match.

Good lawyers know this and stay out of the way. They enter the nego­
tiations only when the other side gets their lawyers involved. Then lawyers
talk to lawyers, to make paper that both sides can agree on. But the business
terms are the province of the business decision makers. They must talk to
each other. If they hide behind lawyers, it's probably because some of them
are cowardly or insecure. Possibly, one or more participants don't want the
deal to happen at all. So they egg the lawyers on until somebody (inevita­
bly) queers things.

~rinciple: Lawyers should keep you out of court, not in it. A popular
.-fFiJmyth is that a good contract lays the groundwork for a successful court
case. Your lawyers are supposed to rig things so that you will win, at least
on all the important points. At least so the theory goes. But that is about as
far from the truth as you can get.

First of all, no deal of any significance can survive without a fair measure
of good will. (I might exclude certain drug deals, but just barely.) Both sides
need some assurance that the other party is acting mostly in good faith, if
only out of "enlightened self interest." (That's "selfishness" translated into
1990s double speak.) A contract full of gotchas is not a good foundation on
which to build such faith.

Second and more important, a contract should not be written for the eyes
of a judge or jury. Consider, if it's clear to both parties who will win and
who will lose a court case, the case will never end up in court. The stuff of

182 Programming on Purpose

litigation is ambiguity. Only when both sides can delude themselves into
thinking that each can win do they end up squaring off in court. Then the
air fills with conflicting interpretations and counter charges of bad faith.

A lawyer's job is to make paper that is as clear as possible to all
concerned. Legalisms should be used only to improve precision, never to
obfuscate. Nothing should be left to the imagination, or to some future
"friendly" resolution. Friendship goes out the window when serious sums
start to fire the imagination of one or more participants in a business deal.

Your lawyer should be able to tell you what an agreement says about
every possible future eventuality. You as a technical type should be able to
develop an exhaustive list and check it through. If you don't understand
something, don't write off your confusion as legal ignorance. Hang in there
until you understand (and approve) the business terms. If necessary, find
another lawyer who can see you through to a clear understanding.
Jllrinciple: Once you go to court, you've lost. I think I made this point
..fFJclearly enough in my introductory remarks. I simply close with two
supporting observations.

First and most important, there are no Perry Masons in the legal profes­
sion. Your lawyer will not stay up nights trying to figure out who really
copied the code (or whatever). Expect no dazzling cross examinations or
dramatic confessions on the witness stand. You'll be lucky if your lawyer
remembers the names of the principal protagonists. Don't even hope that
anybody besides you (and your opponent) understand any technical is­
sues.

Second, even if you win big, you might not collect anything. Lawyers
are remarkably powerless to enforce court judgments. The best ones bluster
and intimidate. The worst ones just walk away. All of them collect their fees
whether you get paid or not. And why shouldn't they? A lawyer's job is to
help you with the law. Straightening out your business, or your life, is up
to you. o

(?tfterword: Believe it or not, this column garnered good feedback from lawyers .
.a.More than one said that it cast their profession in an unusually fair light. I just
wanted to break the traditional dependency/despondency cycle between client and
lawyer. No profession should be saddled with so much responsibility, or so much
acrimony.

26 Bankers

.J!lltany years ago, two of my friends were ardent feminists. Wherever
.Jltllpossible, they sought out other women when they needed various
professional services. In the 1970s, however, they couldn't always succeed.
They grudgingly admitted that two men were important in their lives. A
woman in her twenties in suburban New Jersey couldn't survive without
an auto mechanic and a gynecologist.

More recently, I have heard echoes of that complaint from some of my
technical friends who would be entrepreneurs. Male or female, techies
share a disdain for "suits" - those people who insist on wearing neckties
even to picnics. In this modern era of growing informality, you can go a
long time between suits. But some are still unavoidable, at least outside
California. Rarely can you start and run a business without dealing with
two quintessential suits, lawyers and bankers.

I discussed lawyers in the previous essay. (See Essay 25: Lawyers.) I even
managed to do so without telling a single lawyer joke. In this essay, I discuss
those people who have the money you need. Some are called bankers, some
investors, some venture capitalists. (Some are called other names as well
by people who don't share their values. Of these, "vulture capitalists" is
the most printable.)

The worst problem with people who wear suits is that they expect you
to do the same. You can get away without if you're paying the bills, but not
if you need to make a good impression. And when you put on a suit, you
have to adopt an attitude to match. You have to convey just the right
combination of maverick self confidence and groveling humility. Other­
wise, the money people won't believe that you'll earn enough to pay them
back what you borrow.

We technical types tend to be single minded when it comes to money
matters. We see a chance to make a wonderful new kind of product or
service and we're gone. Just give us some money and stand out of the way.
A year or three of hard work will make us all millionaires.

The money types have heard all this before. They're happy to see you
get rich, provided they also get a bit richer in the bargain. But they want
some assurances that you can pull off your ambitious dreams. That's why
they demand annoying details such as market studies and business plans.
They need to believe that you can run a business as well as start one.
Otherwise, they'll put their money somewhere safer.

183

184 Programming on Purpose

)()OU may be shocked to learn who your biggest competitor is for the
~money you need. It's the U.S. Government. Last time I looked, Uncle
Sam was paying out $50 billion per month in interest on treasury bills. That's
over a million dollars a minute. Plenty of that to go around. And T-bills are
widely regarded as a safe investment. (Put another way, when the U.S.
Government starts reneging on its debts, the world will have lots of finan­
cial problems.)

Anybody with a few hundred thousand to spare can park it in T-bills,
collect the interest, and pay the taxes. Your job is to convince one or more
of those bodies that you can yield a better return after taxes than Uncle Sam.
If you can't, why should they let you play with their money?

It's worse than that, of course. You are bound to be a bigger risk than
your basic T-bill. A startup in search of seed money is a bigger risk still than
a small company looking to finance growth. The greater the perceived risk,
the greater the expected return.

You should be grateful that you have access to money at all. Once upon
a time, people had no incentive to loan money. (Usury was originally the
crime of charging any interest on a loan, not excessive interest.) The only
way to accumulate a large sum was by hard work and hoarding. You
couldn't even earn interest on the money that you were saving. In fact, your
biggest hope was that nobody would find it and steal it.

Over the past few centuries, money has become steadily easier to borrow.
The real explosion in borrowing began just a few decades ago, however.
Where our grandparents saved to buy cars and houses, we sign our names,
pay large quantities of interest, and pray for inflation. Bankers have grown
ever more creative in finding ways to create liquidity (and earn interest, of
course). The good news is that the world economy now offers us all many
more opportunities for success. The bad news is that the failures have
become all the more spectacular.

But you don't care about that, except when discussing politics. What you
want is a chance to pursue your own personal dreams. That's why you're
willing to talk to the suits. They have money and you need it.

What follows is a brief guide to dealing with money people. It is aimed
at the technical entrepreneur, and his or her henchpeople. Like the guide
to using lawyers that I presented in the last essay, I cast it in the form of a
handful of guiding principles. As before, I start with the most important.
Jllrinciple: Never raise money to start a business just to make money. It
..fFJsaddens me whenever I see a friend take out a second mortgage to set
up an office. Desks, postage meters, and secretaries are important trappings
of a business, to be sure. But they are not the most important. Anyone who
focuses on appearances first usually does so because the basics aren't in
place.

Essay 26 Bankers 185

The most basic of basics is customers. Somebody out there must want to
buy what you want to sell. The next most basic is a drive to excel in your
chosen business. Remember what I said about return on investment above.
You'd better have something going for you if you expect high profit and/ or
growth.

Real entrepreneurs succeed because they really want to build something
new and special. Getting rich is a nice side effect. It vindicates their efforts
and provides a neat way to keep score. But it is not the driving force. If you
can get rich by the mechanical application of money, so can the people who
have lots of money. They don't have to share the wealth with you.

I started my company in the living room of our two-bedroom apartment
in Manhattan. We had a healthy positive cash flow before we hired any
support staff. Perhaps we wasted coding talent stuffing software in ship­
ping bags. On the other hand, we didn't fret that our limited cash was going
to pay interest on borrowed money.
~rinciple: Venture capitalists are only interested in high-risk ventures
--tfiiJthat are safe. If you need cash to start a company, or grow it rapidly,
chances are that your local bank won't lend you the money. (You can use
your house as equity, perhaps, but not your newborn business.) The canoni­
cal way to fund a high-tech startup is to sell part of the stock to venture
capitalists. These are people who specialize in high-risk ventures. As I
explained before, they expect a high return for their troubles.

Dozens of books will tell you how to start a company. Nearly all take for
granted that you will begin by raising hundreds of thousands, even mil­
lions of dollars of venture capital. Thus, they talk at length about how to
package your business plan, resumes, and so forth for maximum appeal.
They describe the venture-capital community, its putative psychology and
current fads. In doing so, they are almost as bad as my friends who hock
their homes to buy rosewood desks. The longer you can wait before you
have to raise capital, the less that capital is going to cost you in terms of
ownership.

My company was almost four years old before I talked to my first
venture capitalist. I was fortunate in many ways, but I was also careful with
cash flow. The software business doesn't require high overheads, at least
until maintenance becomes a serious burden. If you can live without all the
trappings, you can really start many such enterprises on a shoestring.

But if you have to raise venture capital, don't despair. The money is still
out there, waiting to be placed. It will do you more good than you can
possibly imagine to prepare all the documents that serious investors de­
mand. And, despite horror tales to the contrary, venture capitalists are not
all ogres.

186 Programming on Purpose

Again, I was fortunate in this area. I got to do business with several of
the best venture capitalists in the Boston area. And Boston is second only
to Silicon Valley in its selection of investors. I never felt pressured to make
the quick buck - these people were willing to grow a business over many
years. And I felt the investors respected my efforts, despite all the mistakes
I made.

One thing I noted with amusement was the lemming-like nature of
venture capitalists. They all know each other and they all gossip. As a result,
they all chase fads with teen-age abandon. If you have the enterprise of the
month and a good tale to tell, you can be overrun with suitors. Hit the
wrong month and you'll clock a lot of time in reception areas.

That's why I state this principle as I do. Venture capitalists want high
risk opportunities because they want high return on investment. But they
also want some assurance that the risk is not foolhardy. Thus, they look for
safety in numbers.
Jllrinciple: Venture capitalists know how to run a business, but they
ir"don't know how to run your business. What disappointed me most
about venture capitalists was their limitations. I confess that I have a
tendency to look for white knights. I keep hoping that someone will come
along, take one look at my problems, and say confidently, "Step aside, kid,
I'll handle this." By now, I have learned that the people who will fill that
role usually want your soul as collateral.

The good thing about venture capitalists is that they tend to be active
investors. That means they want to attend board meetings several times a
year, even if they have little or no voting power. Since they see the insides
of many companies with problems similar to yours, they bring a lot of
experience to the party. And since they have a stake in your success, they
are seldom shy about sharing that experience.

The problem is, nearly all that experience is generic. They don't know
squat about writing software, or overhauling laptops, or whatever it is you
do. They just bought into your dream enough to take a chance on you.
Remember, if they really knew how to make a tidy profit doing what you're
doing, they wouldn't have bothered with you in the first place.

Generic experience is still useful. A lot of the business of running a
business is strictly business. It has nothing to do with whether you're
producing document formatters or plumbing fixtures. In such matters, you
should listen to professional advice whenever possible. You must then
make the tough decision about whether your enterprise is an exception.

My investors were very gentle in such matters. Often they would re­
spond to my plans by saying, "Well, that's an interesting approach. We've
seen it tried a dozen times before and it's always failed. It will be interesting

Essay 26 Bankers 187

to see if you succeed." Want to guess what usually happened? But even
when I ignored the warnings, I still appreciated the advice.
~rinciple: Bankers don't want to lend money to people who need it.
--tfiiJYou don't always have to trade equity to get money. Once you have a
running cash-flow engine, you should qualify for more conventional busi­
ness loans. Rarely will your banker volunteer this information, however.
You have to ask. Sometimes you have to threaten to take your business to
another bank to get decent terms.

Bankers tend to be much more conservative with loans than are venture
capitalists with investments. (Third-world countries and patently crooked
real-estate developers are obviously exempt from this conservatism, for
reasons that escape me.) You will be asked for personal guarantees, which
you should resist as much as possible. You will be zinged with fees and
hamstrung with constraints more ways than you can count. Your only
defense is to shop around, then take the best deal offered.

What you have to realize is that bankers don't want to lend you money
for the same reason you want to borrow it. They're happy to bleed interest
from a well-oiled cash generator. They're sometimes willing to smooth the
growth of a company that is already successful. What they do not want to
do is provide you with venture funds to pursue new opportunities. And
they do not want to give you a cushion of credit against bad times. But those
are exactly the reasons why you want to borrow someone else's money
whenever possible.
~rinciple: The time to arrange a line of credit is when you need it least.
--tFJThis principle follows directly from the previous one. Once you get in
a cash-flow pinch, your options get severely limited. Bankers don't want
to loan you money then, because the risk is higher that you might fold
before you pay it all back. Even if they're willing to take your loan applica­
tion, you have a speed mismatch. You want the loan to clear fast so you can
make the next payroll. They want to take extra time to be extra safe. (It's
called "due diligence" in the financial trade, and heaven help the loan
officer who can't demonstrate due diligence in investigating a loan that
later goes sour.)

So what you do is cultivate your banker when times are good. Get a line
of credit in place while you both have the leisure time and warm fuzzy
feelings to pull it off. Secure it with a lien on your receivables, or your
equipment if you have enough. Pay a maintenance fee to keep it alive if you
must. Don't put up your house, your kids' college fund, or control of the
company.

Even then, you should know that banks are great at reneging when times
get bad. Credit lines evaporate like fairy gold when bank vice presidents
get scared. Which leads in turn to the next principle.

188 Programming on Purpose

Jllrinciple: Bankers hate surprises more than they hate missed pay­
..fFJments. About a decade ago, I ran into a spate of trouble with my
company. The first call I made was to my lawyer, who battened down the
hatches. The second was to my contact at the Bank of Boston. Over breakfast
the next morning, I told him all the sordid details. Those were the sanest
two acts I committed that month. (As you might guess, it was largely my
stupidity that caused the spate to begin with.)

As it turned out, we missed no loan payments in the ensuing months of
turmoil. But our financial figures performed gyrations that would have
scared a Mafia loan shark. Having the bankers involved in the solution
saved them from being a major part of the problem. The bank was even
instrumental in helping clean up the mess once the troubles eventually got
resolved.
Jllrinciple: The money people are looking out for your best interests,
ir"believe it or not. I end with this principle because it's the thought you
should take with you. Venture capitalists and bankers stand to profit only
if you succeed. Even more important, they stand to lose if you go under.
(Seizing your collateral offers some comfort, but it still costs loan officers
major brownie points within the bank.)

Still more important, the pros can make a harsher assessment of your
financial prospects than you can when times get tough. They have the
experience. They are not blinded by your optimism. And they are not
muddled by your fears. Keep them properly informed and they will even
respect your right to hang on as long as possible.

My investors didn't get near the return they were looking for when I sold
the company. The days of rapid growth were ending even as they bought
in. Nevertheless, I felt that they gave me good advice - advice good for
me, personally, that is - right up to the end. And I believe we parted
friends.

I value that friendship, even with people who wear suits to picnics. o

mfterword: With this essay, I come fuJI circle from the first member of this
~collection. (See Essay 1: Honestly, Now.) I began with several hard-earned
lessons in ethics. Along the way, I visited an assortment of people issues in this
interesting trade. I end with some useful lore about the people I've met in the
computer software business.

When I started my own company, I didn't know where I was going. I had no
vision of how large I wanted the company to be, or what it would be doing in ten
years, or what my role should be then. I knew enough to be scared by that lack of
vision. You can't complain if things don't go as you'd hoped - not if you didn't
know what you were hoping for early enough to make a difference.

Essay 26 Bankers 189

IAne thing I did get right from the start. I knew that a company was a thing of
"'7 people. Not money, not technology. They are mere ingredients. So I was careful
to enjoy the people I've met along the way - be they employees, customers, or
competitors. And I still enjoy the people I work with at least as much as the
technology that fascinates me.

Making money is nice. Making good software and good words is better. Making
friends is the best reward of all.

Appendix A List of Columns

The following list gives the publication date, destination, and title of each
installment of "Programming on Purpose" published in Computer Language
through December 1992. For example, the entry

Jul 1986 Design 1 Which Tool is Best?

tells you that the essay "Programming on Purpose: Which Tool is Best?"
was first published in the h!!y 1986 edition of Computer Language. You can
also find it as Essay ! in the collection Programming on Purpose: Essays on
Software Design, Prentice-Hall, 1993. The other two collections are Essays on
Software People and Essays on Software Technology.

Date Collection # Title
Jul 1986 Design 1 Which Tool is Best?
Aug 1986 Design 2 Writing Predicates
Sep 1986 Design 3 Generating Data
Oct 1986 Design 4 Finite-State Machines
Nov 1986 Design 5 Recognizing Input
Dec 1986 Design 5 Recognizing Input, Part 2

Jan 1987 Design 6 Handling Exceptions
Feb 1987 Design 7 Which Tool is Next?
Mar 1987 Design 8 Order Out of Chaos
Apr 1987 Technology 1 You Must Be Joking
May 1987 Design 9 Marrying Data Structures
Jun 1987 Design 10 Divorcing Data Structures
Jul 1987 Design 11 Who's the Boss?
Aug 1987 Design 12 By Any Other Name
Sep 1987 People 1 Honestly, Now
Oct 1987 Design 13 Searching
Nov 1987 Design 14 Synchronization
Dec 1987 Design 14 Synchronization, Part 2

191

192 Programming on Purpose

Date Collection # Title
Jan 1988 Design 15 Which Tool is Last?
Feb 1988 Technology 2 Computer Arithmetic
Mar 1988 Technology 3 Floating-Point Arithmetic
Apr 1988 Technology 4 The Central Folly
May 1988 Technology 5 Safe Math
Jun 1988 Technology 6 Do-It-Yourself Math Functions
Jul 1988 Design 16 A Designer's Bibliography
Aug 1988 Design 17 A Designer's Reference Shelf
Sep 1988 People 2 You Can't Do That
Oct 1988 Technology 7 Locking the Barn Door
Nov 1988 Technology 8 Half a Secret
Dec 1988 People 3 Protecting Intellectual Property

Jan 1989 People 4 What and How
Feb 1989 People 5 Skin and Bones
Mar 1989 Technology 9 It's (Almost) Alive
Apr 1989 Technology 10 The (Almost) Right Stuff
May 1989 People 6 Product Reviews
Jun 1989 People 7 Awaiting Reply
Jul 1989 Design 18 A Preoccupation with Time
Aug 1989 Design 19 Structuring Time
Sep 1989 People 8 Soup or Art?
Oct 1989 People 9 The Seven Warning Signs
Nov 1989 Design 20 Abstract It
Dec 1989 Design 21 Encapsulate It

Jan 1990 Design 22 Inherit It
Feb 1990 People 10 The Politics of Standards
Mar 1990 People 11 Setting the Standard
Apr 1990 Technology 11 Instant Lies
May 1990 People 12 All the Standard Reasons
Jun 1990 People 13 The Physicist as Programmer
Jul 1990 Technology 12 What Meets the Eye
Aug 1990 Technology 13 Technicolor and Cinemascope
Sep 1990 Technology 14 What Meets the Ear
Oct 1990 Technology 15 Warm Fuzzies
Nov 1990 People 14 Shelfware
Dec 1990 People 15 It's Not My Fault

Appendix A List of Columns 193

Date Collection # Title
Jan 1991 People 16 Customer Service
Feb 1991 Design 23 Heresies of Software Design

Mar 1991 People 17 Heresies of Software Management
Apr 1991 Technology 16 Font Follies
May 1991 Technology 17 Text Editors

Jun 1991 Technology 18 Approximating Functions

Jul 1991 Technology 19 Economizing Polynomials
Aug 1991 People 18 Watching the Watchers
Sep 1991 People 19 Washing the Watchers
Oct 1991 Technology 20 Technical Documentation
Nov 1991 Technology 21 All I Want to Do Is
Dec 1991 Technology 22 Programming for the Billions

Jan 1992 Technology 23 All Sorts of Sorts
Feb 1992 Technology 24 Transforming Strings
Mar 1992 Design 24 Remedial Software Engineering
Apr 1992 Technology 25 Books for Our Times
May 1992 People 20 Who's Always Right?

Jun 1992 People 21 The Cycle of Complexity
Jul 1992 People 22 Pity the Typist
Aug 1992 People 23 Criticism
Sep 1992 People 24 Piled Higher and Deeper
Oct 1992 Technology 26 Through the Grapevine
Nov 1992 People 25 Lawyers
Dec 1992 People 26 Bankers

Appendix B Bibliography

The references that follow are all cited in the essays in this collection. I
do not include references to "Programming on Purpose" - Appendix A
summarizes all of those essays.

Als88 - R. Alsop, "It's Slim Pickings in Product Name Game," Wall Street
Journal, p. Bl, 29 November 1988.

C&W80 - W. Cody and W. Waite, Software Manual for the Elementary Func­
tions, Prentice-Hall, 1980.

Cha89a - D. Chandler, "A paradox of the body: Order may be un­
healthy," Boston Globe, p. 4, 16 January 1989.

Cha89b - D. Chandler, "Fractals: Out of the studio, into the lab," Boston
Globe, p. 45, 16January1989.

Cli90 - W. Clinger, "How to Read Floating-Point Numbers Accurately,"
Proceedings of the ACM SGPLAN '90 Conference on Programming Design
and Implementation, p. 92, ACM, 1990.

G&M74 - W. Gentleman and S. Marovich, "More on Algorithms that Re­
veal Properties of Floating-Point Arithmetic Units," Communications of
the ACM, 17:5, p. 276, May 1974.

Gar90 - S. Garfinkel, "Get Ready for GNU Software," Computerworld, p.
102, 6 August 1990.

Gro88 - G. Groenewold, "Rules of the Game: As Simple as ABC," Unix
Review, p. 42, October 1988.

Hum89 - W. Humphrey, Managing the Software Process, Addison-Wesley,
1989.

Ian88 - J. Iandiorio, "Pennwalt Corp. v. Durand-Wayland, Inc.," The Re­
flector, p. 4, Boston Section IEEE, August 1988.

J&W74 -K.Jensen and N. Wirth, PASCAL User Manual and Report, Sprin­
ger Verlag, 197 4.

K&P76 - B. Kernighan and P. Plauger, Software Tools, Addison-Wesley,
1976.

K&R78 - B. Kernighan and D. Ritchie, The C Programming Language, Pren­
tice-Hall, 1978.

Ker88 -A. Kernan, "Art and Law," Princeton Alumni Weekly, p. 34, 12 Oc­
tober, 1988.

195

196 Programming on Purpose

Knu68 - D. Knuth, The Art of Computer Programming, Volume 1: Fundamen­
tal Algorithms Addison-Wesley, 1968.

Lan89 - C. Langdon, Editor, Artificial Life: The Proceedings of an Interdisci­
plinary Workshop on the Synthesis and Simulation of Living Systems Held
September, 1987 in Los Alamos, New Mexico, Addison-Wesley, 1989.

LGU88 - Lucash, Gesmer & Updegrove, "Vault Corp. v. Quaid Soft­
ware," Technology Law Bulletin, p. 2, October 1988.

P&B89 - P. Plauger and J. Brodie, Standard C, Microsoft Press, 1989.
P&B92 - P. Plauger and J. Brodie, ANSI and ISO Standard C, Microsoft

Press, 1992.
Pla87 - P. Plauger, "Son of PC Meets the C Monster," Computer Language,

p. 41, February 1987.
Pla90 - P. Plauger, "Standard C: Wha Gang Agley," The C Users Journal,

April and May 1990.
Pla92 - P. Plauger, The Standard C Library, Prentice-Hall, 1992.
Plu91 - T. Plum, "Building a Standard is Hard; Testing it is Just as Diffi­

cult," Computer Language, p. 38, May 1991.
S&W90 - G. Steele, Jr. and J. White, "How to Print Floating-Point Num­

bers Accurately," Proceedings of the ACM SGPLAN '90 Conference on Pro­
gramming Design and Implementation, p. 112, ACM, 1990.

Sal89 - R. Saltus, "Scientists link attitude to course of AIDS," Boston Globe,
p. 3, 16 January 1989.

Sam89 - P. Samuelson, "Why the Look and Feel of Software User Inter­
faces Should Not Be Protected by Copyright Law," Communications of the
ACM 32:5, p. 563, May 1989.

Val89 - T. Valeo, "A glimpse of how mind produces art," Boston Globe, p.
45, 16 January 1989.

Wag86 - J. Wagner, The Search for Signs of Intelligent Life in the Universe,
Harper and Row, 1986.

Wal88 - P. Waldman, "Software-Copyright Laws are in State of Confu­
sion," The Wall Street Journal, p. 21, 21March1988.

Y &C79 - E. Yourdon and L. Constantine, Structured Design, Prentice-Hall,
1979.

Index
~
ACM 55, 94, 142, 195-196
Ada

See language
See Lovelace

AFNOR 135-136
Air Force

See U.S.
Alexander the Great 9
Algol 68

See language
Alsop, Ronald 31, 195
American Physical Society 94
amnesiac 103
ANSI 69-75, 85- 88, 131-137, 149, 196
Apple Computer Corporation 17,

26-28, 53-58, 148, 160
Apple II

See computer
Apple Laserwriter 148
Apple Macintosh

See computer
as-if rule 79-80
ASCII

See character set
assembly

See language
AT&T Corporation 20, 22-23, 33-34,

87,91, 134, 143, 174
Axe

See software

1S
Babbage, Charles 34
BAL

See language
bankers 1, 183-188
Barnum, P.T. 61

BASIC
See language

Baum, L. Frank 67
bear with me 62-63
behavior

implementation-defined 81-82
locale-specific 81
undefined 81, 83, 92
unspecified 81

Bell Laboratories 13, 20, 23, 33-34,
66, 91, 99, 143

Bible 179
Binney and Smith 32
Borland 28, 118, 163
Boston Globe 4, 195-196
Bradley, Bill 46
Brodie, Jim 85, 149, 196
BSI 135-136

((
c

See language
C Standard 69-71, 75-92, 134, 136,

139
C Users Journal 86, 196
C++

See language
Campbell's Soup 53
Capone, Al 37
Carbon Copy

See software
Chandler, D. 195
character set

ASCII 46, 70, 160
IS0646 70

chatterbox 103
Checkfree

See software
Christ,Jesus 159-160
Clarke, Arthur C. 21-22

197

198

Cleopatra 109
Clinger, William D. 142, 195
COBOL

See language
Cody, William 133, 140-142, 195
Columbus method 159-160
Communications of the ACM 55,

195-196
Compaq Computer Corporation

48-49, 119-122, 159, 173-175
Compaq DeskPro

See computer
Compaq SLT /286

See computer
Compass Inc. 139-142, 145
Complete Communicator 48
computer

Apple II 26
Apple Macintosh 27, 40, 58, 161
Compaq DeskPro 48
Compaq SLT /286 49
DEC PDP-11 25-26, 171
DECVAX 155
IBM PC 5-6, 20, 30-31, 40, 43, 64,

97, 106, 119, 142, 160-161,
171-175, 196

Intel 8088 172
Intel 80X86 40, 49, 63-64, 142,

171-175
Intel 860 139
main-frame 154-156
Motorola MC680XO 141
Toshiba TlOOO 66
Zilog Z80 42

Computer Language 16, 37, 39, 43,
61, 64, 93, 97-98, 113, 123, 129,
131, 133, 140, 147, 159, 161,
175, 191, 196

conformance 78-83, 91, 131,
134-135, 143

consensus 70,73-75,80,85-86, 169
Constantine, Larry 196
Constitution

See U.S.
copyright

See protection
Corel Draw

See software

Programming on Purpose

cosine
See function

CP/M
See operating system

Crayola 32

Day Timer 178
dead keys 161
debugging

See software
DEC PDP-11

See computer
DEC VAX

See computer
DeMarco, Tom 127
Department of Defense

See U.S.
Derwin, Doug 55
DesqView

See software
determined

See programmer
Digital Equipment Corporation 17,

33, 121, 155
disclosure 20, 29, 54, 62
disk hog 105-106
Disneyland 8
documentation 32, 39-40, 66, 95,

104, 106, 119, 141, 156
Doubleday, Abner 65
drivability 57-58
Durand-Wayland, Inc. 23, 195
Dvorak

See keyboard

(f
ELEFUNT

See software
Elite Business Systems 49-51
Embedded Systems Conference 71
enthusiastic

See programmer
eqn

See software

Index

erroneous
See behavior

Escalator 32
ethics 1-8, 109, 177-179, 188
European Common Market 31
exclusive-OR

See opera tor

jf
fighting chance 83
FIPS 135-137
floating point 15, 140-142
FORTRAN

See language
fortress 104
Franklin Computer 26
function

cosine 142
logarithm 14-15
malloc 90-92
random 2, 15, 122
sine 21, 141-142
square root 142

future shock 66

Gandhi, Mohandis 7
Garfinkel, S. 195
General Foods 33
General Motors 118
general semantics 168
genius 9-13, 16
Gentleman, W.M. 141, 195
GNU 7, 195
Gordian knot 9
Government

See U.S.
Groenewold, Glenn 29, 195
GUI 163
gulp factor 62, 67

~
half-add

See operator
Hamming, R.W. 58, 98-99

Hegel 169
heresies 123-129
Hersee, Steve 69
Hewlett-Packard 27-28

LaserJet 46
histogram 13-14, 162-163
Humphrey, W. 195

Iandiorio, Joseph 23, 195

199

IBM Corporation 19-20, 23, 30, 32,
154, 160, 171-172, 180

IBM PC
See computer

IBM Selectric 160
Idris

See operating system
IEEE 22, 87, 94, 140-142, 195
IEEE 754 Standard 140-142
implementation-defined

See behavior
Intel 8088

See computer
Intel 80X86

See computer
Intel 860

See computer
intellectual property 17-29, 38, 104,

179
ISO 69-75, 83, 131-137, 149, 196
ISO 646

See character set

31
Japan 24, 70, 147
JCL 153-154
Jensen, K. 78, 133, 195

1!
K.I.S.S. 98
Kahan, W.M. 142
Kashy, Edwin 98-99
Kelly-Bootle, Stan 97
Kernan, Alvin B. 25, 195

200

Kernighan, Brian 33, 62, 78, 87,
104, 134, 195

kerning 148-149, 152
keyboard

Dvorak 58, 159-160
QWERTY 58, 159

Knuth, Don 12, 196

1L
Lake, Veronica 109
LAN 41, 142, 195-196
Langdon, C. 196
language

Ada 34, 63, 90
Algol 68 78, 106
assembly 45,62-63, 153
BAL 128
BASIC 83
c 11-13, 62-64, 66, 69-92, 106,

120, 133-145, 157, 171, 174
C++ 62, 66, 128, 163, 174
COBOL 77, 83, 154
FORTRAN 45, 62, 77, 123, 133,

140-141, 153-155
Lisp 63
object-oriented 61, 65-66, 128,

157
Pascal 62, 77-78, 120, 132-134,

139-140
PL/I 77
PostScript 40, 46, 121, 152
RATFOR 62

LaserJet
See Hewlett-Packard

lawyers 17-20, 24, 29, 53-55, 62,
109, 177-184, 188

Library of Congress 29
license

See software
Linda

See Lovelace
Lisp

See language
Lister, lim 127
locale-specific

See behavior

Programming on Purpose

logarithm
See function

look and feel 2, 24, 28, 53-59
Lotus 1-2-3

See software
Lotus Development Corporation 2,

27-28, 38, 53-58, 118
Lovelace

Ada 34
Linda 34

Lucash, Gesmer & Updegrove 196

;.fll1
Mafia 188
main-frame

See computer
malloc

See function
man behind the curtain 67
management 65, 115, 123-129, 172
Marovich, S.B. 141, 195
Maserati 68
Mason, Perry 182
McDonald's 55
Michigan State University 94-99
Microsoft Corporation 27-28, 118,

122, 152, 163, 173-175, 196
Miller Freeman Corporation 43,

93, 123
moonlighting 6
Morris, Robert 13
Moscow on the Hudson 42
Motorola MC680XO

See computer
Motorola MC68881 141, 143
MS-DOS

See operating system
mtf method 159
MULTICS

See operating system

jl}
NBS 135-136
Nerd Perfect

See software
nest of vipers 102

Index

New Jersey 8, 46, 183
New York 8, 30-31, 47
Newhart, Bob 65
Next Release 48-49
NIST 135-136
not-equivalence

See opera tor
Notepad

See software

O'Connor, Sinead 102
object-oriented

See language
operating system

CP /M 102, 171
Idris 30, 33
MS-DOS 26, 88, 106-107, 157,

163, 171-174
MULTICS 33
OS/360 154
POSIX 22,87, 135-136
RSX-llM 66
RT-11 155
UNIX 22-23, 33-34, 62, 87-91,

106, 119, 135, 155-156, 160, 163,
171

VMS 106, 155
Windows 103, 122, 147-148, 152,

163, 173-175
operator

exclusive-OR 11-13
half-add 11
not-equivalence 11

orphan 102
05/360

See operating system
Oz, Wizard of 67

~
Pandora 56
PARANOIA

See software
Pascal

See language

patent
See protection

PC Magazine 43, 97
pie

See software
piracy

See software
PL/I

See language
Plauger, Geoffrey 172-176
Plauger, P.J. 195-196
Plauger, Tana 175-176
Plum Hall

See validation suite

201

Plum, Tom 30, 85, 134-136, 139-140,
144, 196

Polaroid Corporation 22
politics 71-77, 85, 92, 132, 173, 184
POSIX

See operating system
Postscript

See language
Prentice-Hall 140, 195-196
Princeton 45-46, 93, 99, 195
Procrustean bed 65-66
Procrustes of Eleusis 65
Prodigy 167
profiler

See software
programmer

determined 96-98
enthusiastic 96-99
reluctant 96-97, 103, 180

Programming on Purpose 16, 39,
61,93, 113, 123, 129, 133, 140,
147, 159, 161, 175, 191, 195

PRO LOK
See software

protection
copyright 19, 22-29, 54-57, 196
patent 20-25, 29, 56, 167, 187
trade-dress 31-32
trade-mark 22, 32-34, 38
trade-secret 20, 24-25, 29, 54

Puf'n'stuf, H.R. 55
purifying arguments 141

202

~
QEMM386

See software
Quaid Software 27, 196
quality of implementation 79-80,

134
Quarterdeck Office Systems 173
QWERTY

See keyboard

random
See function

RATFOR
See language

reluctant
See programmer

Ritchie, Dennis 22, 26, 46, 78, 80,
85, 87, 134, 195

Roberts' Rules of Order 73-74
Rogers, Buck 109
Rosier, Larry 91
RP Systems 49, 51
RSX-llM

See operating system
RT-11

See operating system
rubberteeth 78-79,83
Russo, Jack 55

Saltus, R. 196
Samuelson, Pamela 55-56, 196
Sanka 33-34
set-user-ID 22-23
Shakespeare, William 179
shelfware 101-107, 147
Sholes, Christopher 159
Shylock 25
Sierra Network 167
sine

See function
Skywalker, Luke 109
Softech 145
software

Axe 47

Programming on Purpose

Carbon Copy 66, 107
Checkfree 149-152
Corel Draw 173-174
debugging 14, 47, 70, 79, 91, 101,

104, 113, 115, 174
Desq View 173-17 4
ELEFUNT 140-142
eqn 62
license 2, 4, 6, 18-19, 27-29,

33-34,39,56,80, 107, 139, 171
Lotus 1-2-3 27-28, 38
Nerd Perfect 37-41
Notepad 163
PARANOIA 142
pie 62
piracy 3-4, 17-18, 25, 104
profiler 14
PROLOK 27
QEMM386 173-175
Stacker 17 4-175
Trading Post 46
ULTIMA VII 173-174
UULINK 119
VaporSoft 37-38
Ventura Publisher 38-41, 48-49,

121, 147-152, 172-174
Visicalc 56
Voodoo 173
WinEdit 163

Software Arts 28
Software Development Conference

86, 123, 167
Software Engineering Institute 128
Solo, Han 109
spherical cow 64-66
splatter radius 41
square root

See function
Stacker

See software
Stallman, Richard 7
Star Wars 109
Steele, Guy L. 142, 196
STP 48
Sturbridge Village 178

Index

Tasmanian
See validation suite

Techie du Jour 120-122
Thompson, Ken 33, 46
Thoreau, Henry David 7
3M diskettes 38-41
Toffler, Alvin 66
Tomlin, Lily 53-54
Toshiba T1000

See computer
trade-dress

See protection
trade-mark

See protection
trade-secret

See protection
Trading Post

See software
treaty 78-80
trigraphs 70
TSR 171

It
U.S.

Air Force 135
Constitution 25
Department of Defense 34
Government 135-139, 184

ULTIMA VII
See software

undefined
See behavior

UNIX
See operating system

unspecified
See behavior

UULINK
See software

l1
Valeo, T. 196
validation suite

Plum Hall 134-136, 140, 144
Tasmanian 132-133, 140

VaporSoft
See software

Vault Corporation 27, 196
VD clinic 11
Ventura Publisher

See software
venture capitalists 23, 183-188
Visicalc

See software
Visual Edge 46
VMS

See operating system
Voodoo

See software
Vortex Technology 119

m
Wagner, Jane 53-54, 196
Waite, William 133, 140-142, 195
Waldman, Peter 28, 196

203

Wall Street Journal 4, 28, 31, 195-196
Warhol, Andy 53-54
way of life 106-107
Weinstein, Lauren 119-120
Welk, Lawrence 32
Wells, Ian 140-142
WG14 committee 75
White Out 161
White, Jon L. 142, 196
Whitesmiths, Ltd. 2, 4-5, 8, 19,

30-31, 88, 91, 93, 120
Williams, Robin 42
WIMPinterface 162-163
Windows

See operating system
Win Edit

See software
Wirth, N. 78, 133, 195
Wright, Orville 112
Wright, Wilbur 112
Writer's Digest 33
wrong problem 63-65
Wulf, Bill 98

204

X3Jll committee 70, 74-75, 77-81,
83, 85-88, 92, 136

Xerox Corporation 22, 56, 58, 147

~
Young, Robert 33
Yourdon,Ed 31, 196

Zilog Z80
See computer

Programming on Purpose

	Programming on Purpose II (Cover)
	Copyright 1993 P. J. Plauger
	Dedication
	Table of Contents
	Preface
	1: Honestly, Now
	2: You Can't Do That
	3: Protecting Intellectual Property
	4: What & How
	5: Skin & Bones
	6: Product Reviews
	7: Awaiting Reply
	8: Soup or Art?
	9: The Seven Warning Signs
	10: Politics of Standards
	11: Setting the Standard
	12: All the Standard Reasons
	13: The Physicist as Programmer
	14: Shelfware
	15: It's Not My Fault
	16: Customer Service
	17: Heresies of Software Management
	18: Watching the Watchers
	19: Washing the Watchers
	20: Who's Always Right?
	21: Cycle of Complexity
	22: Pity the Typist
	23: Criticism
	24: Piled Higher & Deeper
	25: Lawyers
	26: Bankers
	Appendix A: List of Columns
	Appendix B: Bibliography
	Index

