

151 J
Ji

The

FILE FORMATS
Handbook

The

FILE FORMATS
Handbook

Giinter Born

THOMSON
COMPUTER PRESS

INTERNATIONAL THOMSON COMPUTER PRESS

l(T)P An International Thomson Publishing Company

London • New York • Bonn • Johannesburg • Boston • Madrid • Melbourne • Mexico City

Paris • Singapore • Tokyo • Toronto • Albany, NY • Belmont, GA • Cincinnati, OH • Detroit, MI

The File Formats Handbook

Copyright ©1995 Giinter Born

TfT)P ^ division of International Thomson Publishing Inc.
The ITP logo is a trademark under licence

All rights reserved. No part of this work which is copyright may be reproduced or used in

any form or by any means - graphic, electronic, or mechanical, including photo
copying, recording, taping or information storage and retrieval systems - without the
written permission of the Publisher, except in accordance with the provisions of the
Copyright Designs and Patents Act 1988.

Whilst the Publisher/Author has taken all reasonable care in the preparation of this book
the Publisher/Author makes no representation, express or implied, with regard to the
accuracy of the information contained in this book and cannot accept any legal respon
sibility or liability for any errors or omissions from the book or the consequences
thereof.

Products and services that are referred to in this book may be either trademarks and/or

registered trademarks of their respective owners. The Publisher/s and Author/s make no
claim to these trademarks.

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

First printed 1995

Reprinted 1995 and 1997

Printed in the UK by Clays Ltd, St Ives pic

ISBN 1-85032-U7-5

International Thomson Computer Press

Berkshire Mouse

High Holborn

London WC1V 7AA

UK

International Thomson Computer Press

20 Park Plaza

14th Floor

Boston MA 02116

USA

http://www.thomson.com/itcp.html

Imprints of International Thomson Publishing

Table of contents

Preface xiv

Introduction xvi

PART 1 Database file formats

1 File formats in dBASE II 2

1.1 dBASE II - Format of DBF files 2

1.2 Index file structure in dBASE II 6

1.3 MEM file format in dBASE II 9

2 File formats in dBASE III 10

2.1 DBF file format in dBASE III and dBASE III+ 10

2.2 Index file structure (NDX) in dBASE III 15
2.3 Clipper index file format (NTX) 18

2.4 MEM file format in dBASE III 22

2.5 DBT files in dBASE III (Memo files) 24

2.6 FRM files in dBASE III 25

2.7 LBL files in dBASE III 28

2.8 Format of the file DBPRINT.PTB 28

3 File formats in dBASE IV 31

3.1 DBF file format in dBASE IV 31

3.2 DBT file format in dBASE IV 36

4 File formats in FoxPro 38

4.1 FoxPro format of DBF files 38

4.2 The structure of a FoxBase+ DBT file (memo file) 42
4.3 The structure of FoxPro FPT files (object files and memo files) 43

4.4 The structure of uncompressed IDX index files 46

4.5 The structure of a compact IDX index file 49

4.6 The format of multi-index files (GDX) 53
4.7 The structure of a FoxPro 1.0 label file (LBX) 53

5 Data exchange using the SDF format 55

5.1 The DELIMITED option 56

5.2 Import/export of external formats 57

5.3 The structure of a CSV file 58

PART 2 Spreadsheet formats
6 LOTUS 1-2-3 WKS/WKl file format 62

6.1 WKS/WKl formats in LOTUS 1-2-3 (up to version 2.01) 62

6.2 Record types in Lotus 1-2-3 (versions 1.1 to 2.01) 68

7 LOTUS 1-2-3 WK3 format 105

7.1 Lotus 1-2-3 WK3 file format 105

7.2 LOTUS 1-2-3 FRM file format 145

vi Contents

8 LOTUS 1-2-3 PIC format 146

8.1 File header 146

8.2 Record descriptions 146

9 LOTUS Symphony format 151

9.1 Record types in Symphony 152

10 Data Interchange Format (DIF) 188

10.1 The structure of the DIF header 189

10.2 The DIF data record structure 194

11 Super Data Interchange format (SDI) 200

11.1 The header of an SDI file 201

11.2 Data section of an SDI file 204

12 Standard Interface format (SIF) 209

13 Symbolic Link Format (SYLK) 211

13.1 Record descriptions 212

14 SYLK format extensions for CHART 230

14.1 Pseudo-records 230

14.2 GS record 236

14.3 GC record 236

15 Excel binary interchange format (BIFF) 252

15.1 The BIFF record structure in versions 2.0-4.0 252

15.2 Record types in BIFF2-BIFF4 253

PART 3 Word processing formats
16 MS-Word format 356

16.1 Word headers (versions 3.0, 4.0, 5.0) 360

16.2 The Word text area 362

16.3 Format area in Word 363

16.4 Winword file format (1.0-6.0) 379

17 WordStar format 381

17.1 Symmetrical code sequences 386

17.2 Structure of a paragraph style library 402

18 WordPerfect format 405

18.1 WordPerfect header (version 5.0) 407
18.2 WordPerfect data areas 412

18.3 The WordPerfect 5.x/6.x format 464

18.4 WordPerfect Header (version 5.1+) 464

18.5 Text area in WordPerfect 5.1 467

19 Rich Text format (RTF version 1.2) 507

19.1 Destination control words 510

19.2 Revision and information group 515

19.3 Document formatting properties 516
19.4 Section formatting 521

Contents vii

19.5 Headers and footers 529

19.6 Paragraph formatting properties 529
19.7 Tabs formatting 532
19.8 Bullets and numbering 532
19.9 Paragraph borders 536
19.10 Paragraph shading 537
19.11 Paragraph positioning 539
19.12 Table definitions 541

19.13 Character formatting properties 543
19.14 Special control words 548

19.15 Picture control words 551

19.16 Object control words 553

19.17 Drawing objects control words 554
19.18 Miscellaneous control words 554

19.19 Bookmark 556

20 Standard Generalized Markup Language (SGML) 557

20.1 Structure of an SGML file 557

20.2 Structure of a document 558

21 AMI Pro version 3.0/4.0 file format 566

21.1 The contents of a SAM file 566

21.2 Document section 567

21.3 Text area 592

21.4 Embedded graphics 601

Part 4 Graphic Formats
22 ZSOFT Paintbrush format (PCX) 605

22.1 Structure of the PCX header 607

22.2 Coding of PCX data 611

22.3 Format of the PC Paintbrush bitmap character 612

22.4 CAPTURE File Format (SCR) 615

23 GEM Image format (IMG) 616

23.1 IMG header 617

23.2 Storage of IMG data 620
23.3 Image compression in IMG files 621

24 GEM Metafile format (GEM) 628

24.1 Structure of the GEM Metafile header 628

24.2 Format of Metafile objects 630

25 Interchange File Format (IFF) 658

25.1 IFF header 659

25.2 IFF Blockstructure (CHUNK) 662

25.3 CHUNKs: ILBM FORM 664

25.4 CHUNKs: 8SVX FORM 671

25.5 CHUNKs: AIFF FORM 674

viii Contents

25.6 CHUNKs: SMUS FORM 675

25.7 CHUNKs: FTXT FORM 677

25.8 CHUNKs: WORD FORM 678

25.9 Other text CHUNKs 679

25.10 Miscellaneous CHUNKs 683

26 Graphics Interchange format (GIF) 684

26.1 GIF header 685

26.2 Logical Screen Descriptor block 686

26.3 Global Color Map block 688

26.4 Image Descriptor block 689

26.5 Local Color Map block 690

26.6 Extension block 690

26.7 Raster Data block 691

26.8 LZW Compression 692

26.9 Modified LZW Process for GIF Files 696

26.10 Sub-blocks with Raster Data 697

26.11 Block Terminator 697

26.12 Graphic Control Extension block (GIF89a) 697

26.13 Comment Extension block (GIF89a) 699

26.14 Plain Text Extension block (GIF89a) 700

26.15 Application Extension Block (GIF89a) 701

26.16 GIF Terminator 702

27 Tag Image File Format (TIFF) 703

27.1 TIFF header 704

27.2 Structure of the Image File Directory (IFD) 705

27.3 TIFF Compression Processes 748

28 Computer Graphic Metafile format (CGM) 755

28.1 Binary CGM Coding 756
28.2 Coding as ASCII text 762

28.3 Character coding with ISO characters 766
28.4 Metafile Commands 768

29 WordPerfect Graphic format (WPG) 779

29.1 WPG header 779

29.2 WPG records 780

30 AutoCAD Drawing Exchange format (DXF) 796

30.1 Structure of a DXF file 796

30.2 DXF Header 806

30.3 DXF TABLE section ' 807

30.4 BLOCK section of a DXF file 814

30.5 DXF ENTITIES Section 816

30.6 AutoCAD Binary DXF 829

31 Micrografx formats (PIC, DRW, GRF) 830

31.1 Graphic File Record Types 834

Contents ix

32 TARGA format (TGA) 865

32.1 TARGA header 866

33 Dr. Halo format (PIC, CUT, PAL) 874

33.1 PIC format 874

33.2 CUT format 878

33.3 PAL format 878

34 SUN Raster format (RAS) 880

34.1 RAS header 881

34.2 Palette data area 882

34.3 RAS data area 883

35 Adobe Photoshop format (PSD) 885

35.1 Photoshop header 886

35.2 Mode data block 887

35.3 Resource data block 887

35.4 Image data area 888

35.5 MAC Packbit Coding: 888

36 PCPAINT/Pictor format (PIC) 889

36.1 PCPAINT/Pictor header 889

36.2 PIC data area 891

37 JPEG/JFIF format (JPG) 895

37.1 Start Of Image (SOI) marker segment 896
37.2 End Of Image (EOI) marker segment 896
37.3 Application (APPO) marker segment 897

37.4 Extension APPO (SOI) marker segment 898

37.5 Define Huffman Table (DHT) marker segment 900
37.6 Define Arithmetic Coding (DAC) marker segment 901

37.7 Define Quantization Table (DQT) marker segment 901
37.8 Define Restart Interval (DRI) marker segment 902
37.9 Start of Frame (SOF) marker segment 902
37.10 Color coding 904

37.11 Start Of Scan (SOS) marker segment 905

38 MAC-Paint format (MAC) 906

38.1 MAC header 907

38.2 MAC Data Area 909

38.3 MAC Packbit coding 910

39 MAC-Picture format (PICT) 911

39.1 PICT header 912

39.2 PICT data area 913

39.3 Image data records (PICT 1,2) 915

40 Atari NEOchrome format (NEO) 924

40.1 NEOchrome header 924

40.2 Data area of the NEOchrome file 927

x Contents

41 NEOchrome Animation format (AM) 928

41.1 NEOchrome ANI header 929

42 Animatic Film format (FLM) 930

42.1 Animatic Film header (FLM) 930

43 ComputerEyes Raw Data format (CE1,CE2) 932

43.1 ComputerEyes Raw Data header (CEx) 932

44 Cyber Paint Sequence format (SEQ) 934

44.1 Cyber Paint Sequence header (SEQ) 934

44.2 Structure of the frame 935

44.3 Compression process 936

45 Atari DEGAS format (PI*,PC*) 937

45.1 DEGAS PI* files 937

45.2 DEGAS Elite PC* files 938

46 Atari Tiny format (TNY, TN*) 940

47 Atari Imagic Film/Picture format (IC*) 943

48 Atari STAD format (PAC) 946

49 Autodesk Animator format (FLI) 948

49.1 FLI header 949

49.2 FLI frames 950

49.3 Animator CEL and PIC Format 954

50 Autodesk 3D Studio format (FLC) 955

50.1 FLC header 956

50.2 FLC frames 957

51 Amiga Animation format (ANI) 963

51.1 ANI header 964

51.2 ANI CHUNKs 964

52 Audio/Video Interleaved format (AVI) 969

52.1 Resource Interchange File Format (RIFF) specification 969
52.2 Structure of a RIFF CHUNK 970

52.3 AVI structure 971

52.4 Other data CHUNKs 980

53 Intel Digital Video format (DVI) 981
982

982

983

984

986

987

988

54 MPEG Specification 989

53.1 AVSS format

53.2 DVI header

53.3 AVL header

53.4 Stream header

53.5 Audio stream header

53.6 Video stream header

53.7 Frame structure

55 Apple QuickTime format (QTM)

55.1 Movie Directory atom

55.2 Movie Header atom

55.3 Track Directory atom

55.4 Track Header atom

55.5 Media atom

55.6 Media Header atom

56 CAS Fax format (DCX)

56.1 DCX header

57 Adobe Illustrator format (AI)

57.1 AI header comments

57.2 Script Setup

58 Initial Graphics Exchange Language (IGES)

58.1 Start section

58.2 Global section

58.3 Directory Entry section

58.4 Parameter Data section

58.5 Termination section

58.6 Elements of an IGES file

PART 5 Windows and OS/2 file formats

59 Windows 2.0 Paint format (MSP)

59.1 The MSP header

59.2 The index table

59.3 The data area

60 Windows 3.x BMP and RLE format

60.1 Windows 3.x Bitmap format (BMP)

61 OS/2 Bitmap format (BMP, version 1.2)

61.1 The data area

62 OS/2 Bitmap format (BMP, version 2.x)

62.1 The data area

63 Windows Icon format (ICO)

64 Windows Metafile format (WMF)

64.1 The Metafile header

65 Write binary format (WRI)

65.1 The Write header

65.2 Text and image areas

65.3 Pictures in the text area

65.4 OLE objects in the text area

65.5 The format area

65.6 Character property (CHP)

65.7 Paragraph property (PAP)

Contents xi

990

992

992

994

994

995

996

997

998

999

1000

1003

1020

1021

1022

1024

1025

1026

1026

1036

1036

1037

1038

1040

1040

1046

1048

1049

1053

1055

1057

1057

1085

1086

1087

1088

1089

1090

1091

1092

xii Contents

65.8 Section property 1093
65.9 Font table (FFNTB) 1095

66 Windows 3.x Calendar format (CAL) 1097

66.1 The header 1097

66.2 The data area 1098

66.3 Day-specific information area 1099

67 Windows Cardfile format (CRD) 1101

68 Clipboard format (CLP) 1103

69 Windows 3.x group files (GRP) 1105

PART 6 Sound formats

70 Creative Music Format (CMF) 1110

70.1 CMF header 1110

70.2 Instrument block 1112

70.3 Music block 1114

70.4 Structure of a Pause command 1115

70.5 Commands within the music block 1115

70.6 Data repetition in the music block 1120

71 Soundblaster Instrument format (SBI) 1121

72 Soundblaster Instrument Bank format (IBK) 1125

73 Creative Voice format (VOC) 1126

73.1 VOC header 1127

73.2 VOC data area 1127

74 Adlib Music format (ROL) 1133

74.1 ROL header 1133

74.2 ROL data area 1134

75 Adlib Instrument Bank format (BNK) 1138

75.1 Instrument name list 1139

75.2 Instrument data list 1139

76 AMIGA MOD format 1140

76.1 MOD header 1141

76.2 Note block 1141

76.3 Instrument data area 1142

77 AMIGA IFF format 1145

78 Audio IFF format (AIFF) 1146

79 Windows WAV format 1147

79.1 WAV header 1148

79.2 FMT CHUNK 1148

79.3 DATA CHUNK 1149

80 Standard MIDI format (SMF) 1150

80.1 MIDI Header CHUNK 1151

80.2 Track CHUNK 1152

Contents xiii

80.3 Structure of a Delta time command 1153

80.4 Commands of the Track CHUNK 1153

80.5 MIDI events 1154

80.6 Meta events 1166

81 NeXt/Sun Audio format 1171

PART 7 Page description languages
82 Hewlett Packard Graphic Language (HP-GL/2) 1174

82.1 Configuration and Status Group 1178

82.2 Vector Group 1180

82.3 Polygon Group 1183

82.4 Line and Fill Attributes Group 1185

82.5 Character Group 1187

82.6 Technical Graphics Extension 1192

82.7 Palette Extension 1195

82.8 Dual Context Extension 1196

82.9 Digitizing Extensions 1197

83 Hewlett Packard Printer Communication Language (PCL) 1198

83.1 Print Commands 1198

83.2 Page Description Commands 1199

83.3 Cursor Commands 1202

83.4 Font Selection 1204

83.5 Font Management 1207

83.6 Creating Loadable Fonts 1208

83.7 Graphics Commands 1209

83.8 Print Mode 1212

83.9 Macros 1215

83.10 Programming References 1216

83.11 PCL-Access Expansion 1217

84 Encapsulated PostScript format (EPS) version 3.0 1218

84.1 EPS structural conventions 1221

84.2 Necessary DSC header comments 1222

84.3 Optional header comments 1223

84.4 Body Comments 1225

84.5 Trailer comments 1227

84.6 Platform-specific formats for preview images 1227
84.7 Platform-independent formats for preview images 1228
84.8 PostScript instructions 1228

Appendices
A Format conversion programs 1244

B ISO 646 Character Set 1254

C References 1256

Index 1257

Preface

In the beginning, mankind shared a common language. One day, the

proud people of Babylon decided to build a huge tower. As punishment
for their hubris, God smote them with confusion. Since that time, a

multitude of languages has existed. This is the story of the Tower of Babel.
Back in the good old days, there was only one file format. This was used by
a single computer, the ENIAC. As time went by, people with different ideas
built new towers (of computers). Thus, computers now use a multitude of
differentfile formats....

In 1987 and 1988 I became involved in projects that required the exchange of data between
spreadsheets, databases and the software that I was developing. Whilst working on these projects, I
came across expressions such as DIF format, SYLK format and SDF format. At that time, detailed
information about these formats was not available. A survey of the existing literature produced no

results, simply because there was no published information. And so at the beginning of 1989, my
editor, Georg Weiherer, and I came to the conclusion that a definitive text on file formats was
badly needed. I took on this challenge. At that time I could not have foreseen the amount of
trouble that this idea would cause me!

During the next two years, I collected all available information on the subject. This proved to
be extremely difficult and frustrating. Many companies refused to release any information about
the structure and contents of their file formats. Some companies ignored my queries, while others

tried to use their legal advisers to discourage me from pursuing the project. But to be fair, I should
mention that companies like WordPerfect, Lotus, Microsoft, Micrografx and GSS supported me by
providing the required information.

After two long and painful years, the first edition of my file formats book was released for the
German market. The book became a standard and, so far, several revised and extended editions

have been released. The book will also be published in Russian.

My intention was to translate the book into English, to allow more programmers access to the
information. Historically, however, translation has tended to be a one-way system, as many an

xiv

Preface xv

English language book has been rendered into other languages, but seldom the reverse. So it took
some years for my project to see the light of day in English. I began to write the English version of
the book in 1993. In the autumn of that year I met Bob Bolick of International Thomson

Publishing, who agreed to publish the book. It took another year for me to complete the English

version and include all the planned extensions.

Now the book is ready and I would like to thank my family for their patience, inspiration and

support during the past year. My thanks also go to Bob Bolick, for deciding to go ahead with the

project and to my editors Jonathan Simpson and Liz Israel for their cooperation and patience. Last

but not least, I wish to thank the many reviewers who read the manuscript and helped to improve

its clarity and simplicity.

I hope that this book will be a valid and helpful reference for everyone concerned with file

formats. Collating the different file formats for publication has been a huge and sometimes

frustrating task, both from a logistical and commercial viewpoint. Notwithstanding the difficulties,

I would like to continue to improve future editions of this book; and for this I'm going to need all

the help I can get. If you can help me, please send any comments or suggestions to me at the
following address:

International Thomson Publishing Europe

Berkshire House

168-173 High Holborn

London WCIV 7AA

United Kingdom

E-mail (Internet): jonathan.simpson@ITPUK.CO.UK

This book is dedicated to all those involved in file formats, who would like to overcome the
'Tower of Babel' syndrome.

Giinter Born

Introduction

W'ord processing, databases, spreadsheets, graphics, multimedia
and so on are of growing importance for many people, and there
are a huge number of programs available to carry out these tasks.

The problem is, how do you exchange data created by one program with
another program? Data exchange between programs from several vendors,
or sometimes between programs from the same vendor, is quite often
impossible. Many programs use their own vendor-specific file formats.
Newer software for Windows or UNIX comes with import and export filters
for different file formats, but not all formats are supported. To make your
own software compatible with other file formats, information about the
internal structure of these formats is needed. Unfortunately, most of the
information about file formats is either confidential, not well documented,
or not available for public use. This book puts an end to this situation and
describes file formats for different platforms (DOS/Windows, OS/2, UNIX,
Mac, Atari, Amiga). The goal is to support developers, consultants and
users with a vendor- and product-independent reference forfile formats.

The book is divided into several parts:

Part 1

This part describes various dBASE compatible formats. The applications covered are dBASE,

Clipper and FoxPro.

Part 2

This part deals with formats used by a number of spreadsheet programs. The formats used by
LOTUS 1-2-3 and EXCEL are described, together with the specifications of data exchange formats
such as DIFF, SYLK and so on.

Part 3

In the area of word processing, the number of formats is huge. This part describes the formats for
MS-WORD, WordPerfect and AMI PRO. Program-independent formats such as Microsoft's Rich

Text Format (RTF) and the SGML standard are also discussed.

xvi

Introduction xvii

Part 4

Storing and exchanging graphics data is one of the most important areas. Part 4 describes the most
popular formats for graphics, animation and multimedia.

Part 5

Since the release of Windows 3.0 the formats used by this software have become more and more
popular. This part describes formats such as BMP, WMF, WRI, CRD and so on. The OS/2 BMP
formats are also discussed.

Part 6

Part 6 describes sound formats, including the formats for the Sound Blaster and Adlib cards as well
as the MIDI file format.

Part 7

Many output devices use PostScript, HP-GL/2 or PCL commands. This part deals with the formats
of these commands.

Appendices
The appendices contain additional information about conversion programs and a summary of
several file formats.

Database file formats

File formats discussed in Part 1

dBASE II

dBASE III/III+

dBASE IV

FoxPro

Data exchange using the SDF format

2

10

31

38

55

dBASE is one of the most successfid database programs in the PC
sector. The first version of the program (dBASE II), whose file formats
were partly published by Ashton Tate, was launched in 1983; the

most recent version is dBASE V.

Part 1 deals with dBASE, Clipper and FoxPro file formats and with data
exchange using the SDFformat.

en

File formats in dBASE II

^1though more recent versions of the program,
/^(/i t/<e form of dBASE III and IV, are

Jl. ^k^available, dBASE IIformat is still used. The
file formats of this early version are therefore
described briefly below.

1.1 dBASE II - Format of DBF files

dBASE II stores data in files with the suffix .DBF. These files have been structured in such a way

that both data and the definitions of that data can be stored. Each DBF file therefore consists of
three parts: the header, the field descriptions and the actual data records (Figure 1.1).

Header data

Header record

Field descriptions

Data records

Figure 1.1
dBASE DBF file

structure

The header record, which contains the header and the field descriptions, is 520 bytes in length
and is structured as shown in Table 1.1:

File formats in dBASE II 3

Offset Bytes Remarks

00H 1 dBASE version number

02 H dBASE II DBF file

01H 2 Number of data records

(0-FFFFH)

03H 3 Date of last write access

Binary format (DDMMYY)
06H 2 Record length in bytes

(up to 1000)

08H-207H 16*n 16 bytes per field description;
n is a maximum of 32

16*N+9 1 End of header marker (ODH)
Table 1.1

Format of a

DBF header in

dBASE II

The header occupies bytes 0 to 7. The first byte always contains the value 02H, which indicates

a file created by dBASE II. Later versions of dBASE contain different identifiers. Bytes 1 and 2
contain the number of data records in the file. This value includes data records that have been

marked for deletion but not yet removed with pack (this will be discussed in greater detail later).
Up to 65535 data records can be stored using dBASE II.

dBASE II stores the date of the last write access in bytes 3 to 5. One byte each is used to

represent the day, the month and the year. For example, the hex-values OFH 07H 59H represent 15
July 1989.

The length of the data record is stored in bytes 6 and 7. The maximum record length allowed
by dBASE II is 1000 bytes, and each record can be divided into a maximum of 32 fields. In general,

the field limit is reached before the record length limit.
The header is followed by the descriptions of the data fields. A maximum of thirty-two 16-byte

entries, each containing the name, type, length and other data relating to a field, are allocated. The
layout of a field description is shown in Table 1.2:

Offset Bytes Remarks

00H 11 Field name (ASCIIZ string)

OBH 1 Field type (in ASCII)
OCH 1 Field length in bytes

(binary 0 up to FFH)
ODH 2 Field data address in memory

OFH 1 Number of decimal places

in field

in dBASE II

Table 1.2

DBF field

description

4 Database file formats

The first 11 bytes are allocated to the field name, which is stored as an ASCIIZ string (ASCII
Zero String). If the name is shorter than 11 characters, the remaining bytes should be set to 00H.
In case of an undefined name, all bytes are set to 00H.

Thefield type is stored in byte 11 (OBH), and is one of the ASCII characters C, Nor L. The ASCII
characters that may appear in the actual data fields are shown in Table 1.3.

Char Field type ASCII characters

c

N

L

Character

Numeric

Logical

ASCII character

-.0...9

YyNnTtFf20H

Field 1 Field 2

Data fields

20H undeleted record

* deLeted record

Field n

Table 1.3

Field types in
dBASE II

The length of the field is stored in byte 12 (OCH). For strings, the length is the maximum length
of the text in this field. Logical fields always have a length of 1. With decimal numbers and
integers, the length indicates the maximum field width. The number of decimal places, including
the decimal point, is stored in byte 15 (OFH). (With dBASE II, decimal accuracy of calculation is
limited to 10 places.)

The data address in bytes 13-14 (ODH-OEH) is used internally by dBASE II and is of no interest
to other programs.

The field descriptions occupy bytes 8-519 (08H-207H). If all 32 fields are defined, the character
ODH (CR, Carriage return), which indicates the end of the field definitions, appears in byte 520
(208H). If fewer than 32 fields are defined, the character ODH is positioned after the last field
description used, and the remaining bytes up to and including byte 520 are filled with zero (00H).

The header record is followed by the data records. These records each have the same structure,
shown in Figure 1.2:

Figure 1.2
Structure of a

dBASE II data

record

The first byte of each record indicates whether it is valid (undeleted) or deleted. All valid
records contain the value 20H (blank) in this byte. A command of the type append blank

automatically puts this value in the first byte, since it is implemented simply by adding a record
containing blank characters at the end of the file. As soon as a record is deleted by the user,
dBASE II overwrites the first byte with the character *. In a subsequent pack operation, this

File formats in dBASE II 5

record will be removed from the database. If the user wishes to retrieve (undelete) a deleted
record, dBASE simply overwrites the * entry with a blank. Table 1.4 indicates the structure of the
DBF file shown in Figure 1.3 as a memory dump.

-dBi>lSE II file
— 2 data records

— Date write access
^— Ti i t.i\i\ /if-*yr*T"ii^f ifitnPRecord length r iciu cichci ijjlilhi

Field type
character

FipIH lpntftli

r
02 02 00 17 07 59 25 00-46 49 45 4C 44 31 00 00

F I E L D 1
•

•| 20byte
|_ Field decimal

count

End field

1

00 00 00 43 14 15 B7 00-46 49 45 4C 44 32 00 00

C F I E L D 2

00 00 00 4E 0A 29 B7 00-46 49 45 4C 44 33 00 00

N F I E L D 3 • .

00 00 00 4E 05 33 B7 02-46 49 45 4C 44 34 00 00

N 3 F I E L D 4

00 00 00 4C 01 38 B7 00-0D 00 00 00 00 00 00 00

L 8 1
description

Start data records

Field 1

Field 2

1?] ill 1

00 00 00 00 C0 00 00 00-00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

I

00 00 00 00 00 00 00 00-00 20 47 61 72 64 65 6E

G a r d e n

77 61 79 20 20 31 38 20-20 20 20 20 20 20 20 20

way 18

r ieiQ o

2nd Record
I

20 20 31 32 33 34 35 36-31 32 2E 30 30 74 20 52

12 3 4 5 6 12.0 0 t R

65 63 2E 31 20 20 20 20-20 20 20 20 20 20 20 20

e c . 1

20 20 20 20 20 20 20 20-20 33 34 35 32 20 31 2E

3 4 5 2 1 .

30 30 74 1A 57 69 6C 6C-69 20 20 20 20 20 20 20

0 0 t I
t l_jllll ltd lit 111(11 l\

Figure 1.3
TEST.DBF

memory dump

6 Database file formats

Name Type Length Decimals

Fieldl C 020

Field2 N 010

Field3 N 005 2

Field4 L 001
Table 1.4

Structure of the

DBF file

TEST.DBF

The configuration of the database on the DOS file system is of particular interest. dBASE II
initially creates the header record. Then the program begins to load the actual data. Every append
blank adds a record containing n blank characters to the file, where n corresponds to the record
length calculated from the field definitions. Next, the blank characters are overwritten by the
actual field data. There are no field separators between data fields because the field boundaries are
described exactly in the field descriptions. Only the first byte is administered by dBASE II. As
stated above, the value 20H (blank) indicates valid records, while an asterisk (*) indicates entries
released for deletion. However, the records marked for deletion are still in the database, and this
fact is reflected in the number of records stored in the header. The records marked * are only
removed after a pack operation, in which dBASE simply searches through all the records and
moves the valid entries up so that the deleted records are overwritten. The end of the valid data
area is always indicated by the byte 1AH. However, the size of a DBF file is not altered by the pack
operation although - according to the user's manual - the records have been removed.

The explanation is that dBASE II retains the deleted records at the end of the file. They can no
longer be addressed by dBASE II because the byte 1AH at the end of the valid data effectively

indicates the end of the file. However, appropriate auxiliary tools can be used to display the data
and possibly even to reconstruct it. The size of the file is not reduced to the correct value until the

database is copied into a second database by the dBASE copy command. In the context of data
protection, this feature is clearly not without importance. In effect, data can only be deleted by

using the commands pack and copy.

1.2 Index file structure in dBASE II

The database uses its own index files - known as . NDX^Zes - to access the data via a key. In dBASE
II, they support both index-sequential access and sequential search. Figure 1.4 shows the structure

of these files.

The file starts with an anchor node, which contains a pointer to the following nodes containing

the key data. These nodes are followed by the data nodes, in which pointers to the data records in
the DBF file are stored. The NDX files have a fixed 512-byte record structure, the first record
acting as the anchor node. The structure of the anchor node is shown in Table 1.5.

The pointer in bytes 2-3 indicates which node is being used as a root node. Additional pointers

are used to navigate through the file. Pointers are also used to locate the next free entry when new
records are being added. For example, the address of the next free node is shown in bytes 4-5, and
other pointers are stored in the individual key records.

File formats in dBASE II 7

Bytes 6 and 7 indicate the size of a key, although the significance of this parameter is not
always absolutely clear. The records containing the actual keys have a fixed length of 512 bytes,
and n keys can be stored in each node. The maximum number of keys per node is stored in byte 8.

anchor node

root node

Offset Bytes Remarks

OOH 2 Reserved

02H 2 Pointer to root node

04H 2 Pointer to next free node

06H 1 Key length in bytes + 2 (Key_Length)
07H 1 Size of key entry = 2 + 2 + bytes in

key expression
08H 1 Maximum number of keys per node
09H 1 Numeric key flag = OOH if character

key, otherwise it is a numeric key
0AH-6EH 100 Key expression as ASCIIZ string

(maximum 100 bytes)
6FH-1FFH Unused

Figure 1.4
Structure of

an NDX file in

dBASE II

Table 1.5

Format of an

NDX anchor

node in dBase II

The key type is stored in byte 9. A value of OOH indicates a character key; any other value
indicates a numeric key.

The last entry in the anchor node is an ASCIIZ string containing the key expression, whose
maximum length is 100 bytes. Shorter key expressions are padded with the value OOH. Bytes

110-511 (6EH-1 FFH) of the anchor node are not used in dBASE II NDX files.
Table 1.6 shows the format of nodes containing keys.
The first byte of a key node contains the number of keys in the node. Thus, each node can

contain a different number of keys; the maximum number, however, is determined by the value of
byte 8 of the anchor node. The remainder of the node contains n key records. The structure of

these records is shown in Table 1.7.

8 Database file formats

Offset Bytes Remarks

OOH

01H-1FFH

1

510

Number of keys in node
Array of key records Table 1.6

Key node format
(dBASE II NDX
file)

Bytes Remarks

0-1

2-3

4-n

Pointer to following key (lower level)
Record number in DBF File

Key expression (ASCII text)
Table 1.7

Key record
format (dBASE II
NDX file)

Free

Root node —

node —

r— vey

—

len

<ey size

- Keys per node
— Character key

00 00 01 00 02 00 16 18-15 00 66 65 6C 64 31 00

Key ♦♦♦♦♦ f i e I d 1

r this node
_J

Next record

I _r- dBASE DBF
record04 00 00 01 00 47 61 72 74 65 6E 73 74 72 2E 20

Key ♦♦♦♦♦ G a r d e n w a y
number

31 38 20 20 20 20 20 20-20 00 00 04 00 52 65 63 — 2. Record

18 R e c

2E 31 20 20 20 20 20 20-20 20 20 20 20 20 20 20

. 1

20 00 00 03 00 57 69 6C-6C 20 20 20 20 20 20 20 :— 3. Record

Will

20 20 20 20 20 20 20 20-20 00 00 02 00 74 65 73 •— 4. Record

t e s

74 20 20 20 20 20 20 20-20 20 20 20 20 20 20 20

t

20 00 00 9A 99 00 99 1D-9A 2B 00 67 1D 8D 66 F8

Figure 1.5
Part of a

dBASE II

NDX file

memory

dump

File formats in dBASE II 9

In the first word, there is a pointer to the following key record. The second word contains a
pointer to the associated data record in the DBF file. The remainder of the record contains the
relevant key expression in ASCII characters.

Further information can be obtained from actual NDX files with a dump program (for example,

debug).

1.3 MEM file format in dBASE II

dBASE II enables the contents of the currently defined variables to be stored in a special file, the
MEM file. New variables can then be defined, or existing values overwritten. 'Original values' which
have been overwritten in this way can be recovered from the MEM file, if necessary. The internal
structure of a MEM file is as follows:

Bytes Remarks

0-10 Variable name (ASCIIZ string)
11 Variable type

C3H Character variable

CEH Numeric variable

CCH Logical variable
12 Length of the stored value
13-14 Unknown

15 'E' marks the start of a definition

16 Number of decimals

17-18 Zero bytes
19-n Value of the variable

Table 1.8

The format of

a MEM file in

dBASE II

Character variables are stored as ASCIIZ strings. If the text is shorter than the length of the
field, the leading positions are filled with zero bytes. With logical variables, dBASE II reserves 17
bytes for the value, but only uses the last byte to store the value OOH (false) or 01H (true). Numeric
values are coded in an internal dBASE II notation. The end of the valid data in a MEM file (EOF) is

indicated by a byte containing 1AH.
The above information was obtained by means of reverse engineering. It is therefore quite

possible that certain bytes have other meanings in addition to those listed.

File formats in dBASE III

^shton Tate developed dBASE III and dBASE
/^7J7+ as successors to dBASE II. Internally, the

JL. ^Lfile formats are practically identical;
consequently, only the file structure of dBASE III+
will be described here.

2.1 DBF file format in dBASE III and dBASE 111+

The structure of these files is based on that of dBASE II, although the capacity of the newer

versions is considerably enhanced. The following table indicates the differences between the two

Parameter dBASE II dBASE III

Records 65535 1 billion

Record length 1000 4000

Fields per record 32 128

Length of character field 256 256

Length of logical field 1 1

Decimal places in numeric field 10 15

Data field - 8

Memo field
- 10

Table 2.1

Differences

between

dBASE II and

dBASE III (+)

In dBASE III, every DBF file consists of a headerfield description and data (see Figure 1.1).

10

File formats in dBASE 11

The length of the header record, comprising the header and field descriptions, depends on the
version of the program and the number of fields defined. This structure is shown in Table 2.2:

Offset Bytes Remarks

OOH 1 dBASE version

02H dBASE II DBF file

03H dBASE III DBF file

83H dBASE III DBF memo file

01H 3 Date of last write access

(binary format YYMMDD)
04H 4 Number of data records

08H 2 Header length in bytes

OAH 2 Record length in bytes
OCH 20 Reserved

20H 32*N 32 bytes per field containing
the field description

32 * N+1 1 ODH header end Table 2.2

The format of a

DBF header in

dBASE III

As with dBASE II, the information is stored in a mixture of ASCII and binary formats.

The first byte is used to identify the dBASE version. For dBASE II it is 02H. From dBASE III
onwards, the value stored in the lower nibble (bits 0...3) is 3H. The highest bit (7) indicates

whether there are memo fields in the file. If there are, a DBT file containing the memo texts is
associated with the DBF file, and the byte thus contains the code 83H. In all other cases, the value
in the first byte is 03H. If dBASE discovers any other value it will refuse access, since the file
cannot be a DBF file.

The next field is three bytes long and contains the date of the last write access coded in binary
form. The format used is YYMMDD - the year is stored first.

The next field comprises 4 bytes which indicate the number of data records in the DBF file.

These bytes are interpreted as an unsigned 32-bit number. The Intel convention on memory
allocation (lowest byte of the number assigned to the lowest address) applies. The number of
records includes both valid records and those already marked for deletion.

Bytes 8-9 contain an unsigned 16-bit number giving the length of the header in bytes. This
information is significant because the DBF file can contain a variable number of field descriptions
(see below).

Bytes 10-11 (OAH-OBH)contain the length of a data record in bytes, as an unsigned 16-bit
number. This value is always one more than the sum of the individual field lengths. This is because
the first byte of a data record is always reserved for marking deleted records.

From byte 12 (OCH), there is a 20 byte reserved area for internal use. In the network version, 13
bytes in this area are used (but not documented). The 20 reserved bytes ensure that the header
occupies exactly 32 bytes.

12 Database file formats

Information on the structure ofthe data records follows the header, as with dBASE II. Here too,
there are individual field descriptions, but from dBASE III onwards, up to 128 fields can be defined.
For every field in the database, there is a 32-byte record whose format is shown in Table 2.3:

Offset Bytes Remarks

OOH 11 Field name in ASCII

OBH 1 Field type in ASCII (C, N, L, D, M)
OCH 4 Field data address in memory
10H 1 Field length in bytes (binary)
11H 1 Decimal count field

12H 2 Reserved

14H 1 ID working area
15H 2 Reserved

17H 1 Set fields flag
18H 8 Reserved

Table 2.3

DBF field

description
in dBASE III

The first 11 bytes of the field description contain the field name, as an ASCIIZ string. In this
respect, dBASE shows clear resemblance to the C programming language, which also terminates
character strings with a zero byte. If the field name does not require all 11 characters, the remaining
bytes are set to OOH.

The next byte contains the ASCII character indicating thefield type. Table 2.4 shows the valid field
types from dBASE III onwards. By contrast with dBASE II, date and memo fields are now included.

Character Field type Characters

C

N

L

D

M

Character

Numeric

Logical

Date

Memo

ASCII

-0...9

YyNnTtFf ?

YYYYMMDD

DBT block number
Table 2.4

Coding for field
types in dBASE
III

Bytes 12-15 (OCH-OFH) are used internally by dBASE for storing the field address. This address
is of no significance to the user.

Thefield length is given in binary in byte 16 (10H). The maximum number of characters per
field is therefore 255. This length is only used for character fields; for numeric fields, the value

indicates the number of decimal places including the decimal point (however, the calculation
accuracy for numbers in dBASE III is still limited to 15 places). For memo fields, the field length is
always 10 bytes, as it contains the block number of the memo text stored in the associated DBT

File formats in dBASE III 13

file. Further details are given in the description of the DBT format. Logical fields have a length of 1
byte, while 8 bytes are reserved for date fields.

With numeric fields, byte 17 (11H) specifies the number of places after the decimal point. For
all other field types, this byte has the value OOH. It is important to note that the number of places
after the decimal point is always smaller than the field length.

The remaining 14 bytes are reserved for internal purposes. They simply need to be skipped in
order to reach the next field description. The set fields byte is of no relevance, since dBASE

clearly uses this entry only in memory.

Each defined field in the data structure has its own 32-byte field description record in the

header of the DBF file. The end of the field descriptions is indicated by the character ODH.

As in dBASE II, the actual data records in dBASE III and dBASE III+ are appended to the field
description section. The record length is stored in the file header, as explained above. A data
record is stored in pure ASCII format without field separators, which considerably simplifies the

import and export of data using the SDF option.

Data in character fields is represented by a sequence of ASCII characters. If the text is shorter

than the length specified in the field definition, blank characters (code = 20H) are assigned to the

remaining bytes.

Numeric values are also stored as ASCII strings. The number of character positions is specified

in the field description, as is the number of places after the decimal point, where relevant. It
should be noted that the decimal point is included in this value and that one digit is therefore

'lost'. If the number is smaller than the field length provided, the number is right-justified within
the fields and the leading zeros are replaced by blanks (20H) (for example " 999.99").

Logical values are represented in one byte, using the characters F or T.
The date field contains the date as an 8-character ASCII string in the format YYYYMMDD.
A memo field contains a 10-byte number specifying the block in the DBT file that contains the

associated text. Leading zeros are replaced by blanks. If the field contains 10 blank characters,
then no text record exists in the associated DBT file.

Furthermore, all fields, regardless of their type, can be processed as ASCII text.
As soon as a new record is added to the file by the command append blank, dBASE fills this

record with blanks. The first byte in the record is used to mark deleted data, and since a blank is
stored there for new records, these cannot be deleted. Only if the first byte contains the character
* will the record be removed from the DBFfile when the next pack command is given. This means
that delete operations are very fast and it also enables reasonably trouble-free undelete
operations. Records handled in this way do, however, remain in the database, and it is quite likely
that several hundred such records, none of which is valid, may be retained. Access without using
an index is naturally very slow because all records (deleted and undeleted) must be read. The
remedy for this weakness is to use pack to remove deleted records from the DBF file as often as

possible. Records marked for deletion are overwritten by subsequent valid records and the entry in
the header is reduced to the number of undeleted records.

The end of the valid data in the file is indicated by the character 1AH. It is important to realize
that this EOF marking is managed not by DOS but by dBASE. Since the pack operation does not
alter the size of the DBF file, there will still be deleted records behind the EOF marker. Appropriate
tools can be used to restore these. The dBASE command copy f i le to transfers only valid records
into another file, thereby reducing the length of the file. Figure 1.7 shows an extract from a DBF
file in dBASE III as a hex-dump.

14 Database file formats

dBASE III file with Memo field

I— Date last write access
Records Header length

.— Record length

Reserved_ I I =
83 58 OB 1E OA 01 00 00-C1 00 2D 00 00 00 00 00

00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

t tela name

I
r leiu type

Address

17: ~1 J 1 ~— ^*U

46 49 45 4C 44 31 00 00-00 00 00 43 11 00 AO 47

F I E L D 1 . . .

r lciu len^in

in bytes
r~

1— Decimals = 014 00 00 00 01 00 00 00-00 00 00 00 00 00 00 00

46 49 45 4C 44 32 00 00-00 00 00 4E 25 00 AO 47

FIELD2 N...G

05 02 00 00 01 00 00 00-00 00 00 00 00 00 00 00

46 49 45 4C 44 33 00 00-00 00 00 44 2A 00 AO 47

F I E L D 3 D . . . G

08 00 00 00 01 00 00 00-00 00 00 00 00 00 00 00

46 49 45 4C 44 34 00 00-00 00 00 4C 32 00 AO 47

FIELD4 L2..G

01 00 00 00 01 00 00 00-00 00 00 00 00 00 00 00

46 49 45 4C 44 35 00 00-00 00 00 4D 33 00 AO 47

OA 00 00 00 01 00 00 00-00 00 00 00 00 00 00 00

OD 20 20 20 20 20 20 20-20 20 20 31 20 20 20 20

JJCtilll Lio.Lcl 1 C^L^l CI -L

End of header

20 20 20 20 20 20 20 31-2E 30 30 31 39 38 38 30

1 .0019880

33 31 32 54 20 20 20 20-20 20 20 20 20 20 20 20

3 1 2 T

20 20 20 20 20 20 20 20-32 20 20 20 20 20 20 20

2

20 20 20 20 32 2E 30 30-31 39 33 33 30 33 31 32

2.0 01 933031 2

46 20 20 20 20 20 20 20-20 20 20 20 20 20 20 20

F

20 20 20 20 20 33 20 20-20 20 20 20 20 20 20 20

Figure 2.1
Memory

dump of a
dBASE III file

(TEST.DBF)

File formats in dBASE 15

2.2 Index file structure (NDX) in dBASE III

dBASE uses its own index files (NDX) to enable access to data via keys. dBASE NDX files use a
modified B-tree structure for the management of index data. (There are, however, a number of
differences from the clipper NTX structure).

2.2.1 Structure of the NDX header

The NDX file is divided into pages each comprising 512 bytes. The first page is used as a header
and is followed by the index pages. The structure of the header is shown in Table 2.5.

Offset Bytes Remarks

OOH 4 Start_key_page (root page)

04H 4 Total_pages

08H 4 Reserved

OCH 2 Index_key_len

OEH 2 Max_keys_page

10H 2 NDX_key_type

12H 4 Si ze_key_record

16H 1 Reserved

17H 1 Unique_flag

18H 488 Key_name
Table 2.5

Format of the

dBASE NDX

header

The 512-byte header describes the structure of the index pages and contains a pointer to the
root of the B-tree.

The Start_key_page field (offset OOH) contains the record number (4 bytes) of the root_page.

This is the first page (root) of the B-tree. To determine the offset in bytes, multiply the value by the
record length of 512 bytes.

t
Because the DOS file system is limited to 4-byte offset pointers, the (theoretical) value of
7FFFFFH (corresponding to 8388607 pages) is the largest usable number. In practice, this
limit is never reached when using DOS because of the restricted capacity of the hard disk.

During the structuring of the index pages, the B-tree is frequently re-sorted. If the record
number of the start page (root of the B-tree) changes, the record number of the start page in the
header must be updated.

The number of 512-byte pages in the NDX file is stored in the 4-byte field Total_pages (offset
04H). The Index_key_len field (offset OCH) specifies the length of the key on which the NDX file is
based, in bytes.

16 Database file formats

The maximum number of keys that can be stored in one 512-byte page is given in
Max_keys_page (offset OEH) and is determined by the length of the key. The actual number of
entries in a page is stored at the start of the page (see Section 2.2.2: The structure of index pages).

The type of index is stored in the NDX_key_type field (offset 10H). Numeric keys(code = 01H) or
alphanumeric keys (code = OOH) may be used. How keys are represented in the pages of the tree
depends on the type of key involved. Numeric indices and indices based on the date are entered as
floating-point numbers in IEEE format (8 bytes). Alphanumeric indicesare stored as ASCII strings. If
the string is shorter than the length of the key, it is padded (to the right) by blanks.

The length of a key record in bytes is stored in the Size_key_rec field (offset 12H). This field
dictates the distance between two key entries in the index page (see Section 2.2.2: The structure
of index pages).

The byte field unique (offset 17H) acts as a flag. If the flag contains the value 1, the index was
created with the option unique on. The value 0 indicates that the index was created with unique off.

At offset 18H (24 decimal), there is a 488-byte area which is used to extend the page to 512
bytes. The name of the key is stored in this filler area as an ASCIIZ string. This string is given
when the index file is defined (set index on ...).

2.2.2 The structure of index pages

The NDX header is followed by n 512-byte index pages. The number n is defined in the header at
offset 04H. The keys to the associated data records in the DBF file are stored in the index pages.
The structure of an index page is given in Table 2.6.

The first 4 bytes of an index page (the Key_record_page field) contain the number of key
entries in the page. If the page is empty, the value OOH OOH OOH OOH is shown.

Offset Bytes Remarks

OOH 4 Key_record_page

04H 4 Left_page_num_1

08H 4 DBF_rec_num_1

OCH Len Key_data_1 (key)

..H 4 Le f t_pag e_num_2

..H 4 DBF_rec_num_2

..H Len Key_data_1 (key)

..H 4 Left_page_num_n

..H 4 DBF_rec_num_n

..H Len Key_data_n (key)
Table 2.6

Structure of a

dBASE NDX

index page

File formats in dBASE 17

This is followed by n entries containing the key values, where n is the value given in
Key_record_page. Each key entry consists of a data structure containing the fields Lef t_page_num,
DBF_rec_num and Key_data.

Lef t_page_num contains a pointer to the page located to the left of the current key in the B-
tree (see Figure 2.2). This index page contains all the keys that in the sort sequence are smaller
than or the same size as the key required. The pointers to these pages are stored as record
numbers, that is, the page offset is calculated by multiplying the record number by the record
length of 512 bytes. (In clipper NTX files, by contrast, absolute record addresses are used.)

DBF_rec_num contains the record number of the associated DBF file data. Within the nodes of
the B-tree, this 4-byte entry is set to 0, which indicates that there is another index page in which
the actual key is stored. Reference to the DBF record is not made until the leaf of the tree is
reached, where the field contains the relevant record number. To determine the offset of the data

(in bytes), multiply the record number by the length of the record from the DBF header (offset
OAH) (see Table 2.2).

The actual key is stored in Key_data. The length of this field is determined by the length of the
index field (offset 12H in the header of the NDX file). With ASCII fields in the index, spaces to the

right are filled with blanks. Numeric indices and the date index are stored as 8-byte IEEE floating
point numbers. A schematic representation is given in Figure 2.2.

By contrast with the NTX files (clippers), the individual pages do not have a pointer field
containing pointers to the following keys. The entries in the index pages should themselves be
interpreted as references to other index pages. This is shown schematically by the keys indicated
in Figure 2.2. The entry:

0:E

A A

Recordnumber- -Key

in a page consists of a number, which should be interpreted as a record number in the DBF file. If
the value is 0, there is a reference to another index page. If 3:E is indicated, the required
expression E is stored in the third DBF record. The text after the colon indicates the actual key.
The example given in Figure 2.2 is restricted to one letter here for reasons of space. (Please note
also that the colon has been used in the above figure only for illustration. In the NDX file, the data
structure described in Table 2.6 exists for every entry.)

The entry 0: E thus means that another index page exists where all keys that in the sort
sequence are less than or equal to the required expression are stored. This index page is the left-
hand branch (viewed from the node) of the B-tree and may, in its turn, refer to other pages.
However, if the required key is larger than the current value in Key_data_n, the next entry
Key_data_n+1 of the current index page must be examined according to the procedure described
above. If the last entry in the page is reached without the key being found and without branching
to a subsequent page, then there is no entry in the index file.

The structure of the index pages means that the search for the key is carried out sequentially,
which is not the most efficient method. Furthermore, dBASE cannot reuse empty pages in an NDX
file. In this respect, the clipper NTX structure presented below is considerably more efficient.

18 Database file formats

Header (Page 0)

XX

' Inde> P age 1 (root)

0:E 0:L
•• ••

r Index page n (End no de) v

8:A 1:B 7:C 10:D 3:E 12: F 2:G 9:H 6:L

Rec. Entry

1 B

2 G

3 E

4 M

5 S

6 L

7 C

8 A

9 H

10 D

11 P

12 F

DBF Records

4:M 11:P 5:S

2.3 Clipper index file format (NTX)

Figure 2.2
Structure of an

NDX B-tree

For dBASE III users, the company Computer Associated offers its own compiler which converts
programs into executable code. For reasons of performance, developers have defined another (more
efficient) index file structure (NTX), alongside the dBASE NDX index structure.

These NTX files consist of n pages each containing 1024 bytes. The first page contains the NTX
header, while the remaining pages store the keys and the pointers of the B-tree.

File formats in dBASE III 19

2.3.1 The structure of the NTX header

The header of the NTX file is also 1024 bytes long. Its format is shown in Table 2.7:

Offset Bytes Remarks

OOH 2 Clipper signature (sign)

02H 2 Compiler version (version)

04H 4 Pointer to root node

08H 4 Pointer to first empty page

OCH 2 Item size

OEH & Key size

10H 2 Key decimals

12H 2 Maximum items

14H 2 Half page size

16H 256 Key expression (ASCIIZ)

272H 1 Unique flag

Table 2.7

The NTX header

The 2-byte sign field contains the signature 0003H for valid clipper 87 index files and 0006H for

clipper 5.x files. Because of the data storage method, the byte sequence in the file is 03H OOH for
clipper 87 and 06H OOH for clipper 5.x.

The version number of the clipper compiler is entered in the version field (offset 02H). This
indicates the software version that created the index.

The root node field (offset 04H) contains a 4-byte pointer which indicates the offset (in bytes)
from the start of the field to the beginning of the first index page. The index keys are stored from
this index page onwards.

Empty index pages are managed using the empty page field (offset 08H). A clipper index file
consists of individual pages of 1024 bytes each. The first page containing the header information is
followed by the pages containing index entries. However, a number of pages within the index file
may be empty and these pages are kept in a linked list. The 4-byte pointer empty page defines the
offset (in bytes) from the beginning of the file to the first empty page. The first 4 bytes of an empty
page contain a pointer to the next empty page. The end of this list is indicated by the value OOH
OOH OOH OOH in the first four bytes of the page. If the empty page field contains 0, there are no
empty pages available. (Note: this technique enables unused pages to be used again. dBASE does
not acknowledge this form of memory management, and empty pages can therefore no longer be
used. An empty page arises when all the index entries for a page have been deleted from the
database.)

The item size field takes 2 bytes and defines the size of a key entry in an index page. The
value is determined according to the formula:

20 Database file formats

item size = index_key_len + 2*4 bytes

Two pointers (page, record number) of 4 bytes each are added to the memory requirement for
the actual index. The resulting value is the step size needed to gain access to the individual entries
in an index page.

The word key size (offset OEH) defines the size of the actual key from which the index was
structured. For example, if the key field contains 10 characters (C*10), key size is also set to the
value 10. This value is 8 bytes smaller than the value in the field i tern size.

The key dec field (offset 10H) contains 2 bytes indicating the number of decimal places for
numeric keys. It is not used for alphanumeric keys.

The index page is managed using the max key field (offset 12H). For each index page, n index
entries (key expressions + associated pointers) can be stored. The number of entries depends on
the index length, since the page contains 1024 bytes. The 2-byte field max key indicates the
maximum number of index entries per page.

The 2-byte field ha If page specifies the number of key expressions per page divided by 2. This
value determines the minimum number of entries to be stored in one page of the B-tree. This
information is important when structuring the B-tree, because it should be a balanced tree if

possible.

The following field key expr (offset 16H) contains the key expression as an ASCIIZ string. A
maximum length of 256 characters is allowed. The string ends with the character OOH.

Unique is a byte flag defined as a Boolean (offset 272H), which indicates the status of the
Unique flag when the index was created. The value 1 defines UNIQUE ON; 0 indicates UNIQUE OFF.

The remainder of the 1024-byte header is reserved for filler bytes.

2.3.2 The structure of the index page

The NTX header is followed by the index pages. Each 1024-byte page contains a number of entries
(keys), which refer to the data records of the DBF files. Table 2.8 shows the structure of an index
page.

Offset Bytes Remarks

OOH

02H

xxH

2

x *

4

4

n

2

Number of items (count-1)

Pointer fields

(refCmaxitem+13) to next

n entries (items)
n key records (items) containing:
Offset of left page
Record number

Key Table 2.8

Structure of an

NTX index page

File formats in dBASE III 21

The first field in the index page occupies 2 bytes. This field contains the number of occupied
entries -1 in the page (items). This value must lie between half page and max item. Only the first
index page may contain values between 1 and max i tern.

From offset 02H onwards, there is a number of 2-byte fields containing pointers to the key
records (items) in the page. In accordance with Table 2.8, key records consist of 3 fields (page,
record number, key). The meaning of these fields will be described below, max item+1 words are
reserved for the pointers, and (count+1) words used. The value 0 in a pointer field indicates that
there is no associated key record in the page. A positive value denotes the offset from the
beginning of the page to the key record within the page.

The pointer fields are followed by the actual key records (items). The number of items is stored
in the first word (count+1) of the index page. Each key record (item) consists of three fields (page,
record number, key). The first field page contains a 4-byte pointer to the logically preceding index
page (the offset in bytes from the start of the file). The record number field may contain a 4-byte
pointer to the data record of the DBF file (offset in bytes from the start of the DBF file to the data
record). The key field, which holds the key, is of variable length. Its actual length is defined in the
header of the NTX file in the key size field (offset OEH).

When comparing the search expression with the entry in the key field, three situations
may arise:

♦ The search expression matches the key. In this case, the record number (offset in bytes) of the
DBF file is located in the record number field.

♦ The search expression comes logically before the key. In this case, the search must be
continued in another node of the tree. The page field indicates the 4-byte offset in the NTX file
of the next (logically preceding) index page. All the entries in the index pages of a tree section
addressed by page are less than the current index in the field key.

♦ The search expression comes logically after the key. Here, page cannot be used, because it

refers to preceding nodes. Instead, access to the next key record must be gained (via the
pointer field at the start of the index page). This record must then be analyzed according to the
rules described above.

If the end of the page is reached without the key agreeing, the index file does not contain the
search expression. This method enables a very rapid search of the B-tree to be made.

The key field contains the key of the relevant data record in the form of an ASCII string. This
also applies to numeric keys. The length is defined in the header of the NTX file, in the key size
field. A date index (such as 1 December 1991) is stored as an 8-byte string of characters
(19911201). Numeric index values are also treated as strings (because DBF fields are also stored as
strings). The number of places after the decimal point is defined by the key dec field in the NTX

header. It should, however, be noted that the decimal point is included in the key (for example,
999.99), that is, the number of decimal places is 1 less than defined in key size. If the numbers

are smaller than the size of the key field, preceeding positions are filled with blanks. These details

are shown graphically in Figure 2.3.

All pages are 1024 bytes long. At the start of a page, there is a pointer field indicating the

entries in the index page. These entries contain the key expressions (for example, A, E, L and so
on) and the pointers to subsequent pages. One pointer also refers directly to the associated data

record in the DBF file. To take an example, the entry 3: E means that the third record in the DBF

22 Database file formats

file is associated with the key E. The number 3 is thus the record number of the DBF file. The
logically preceding page contains all the keys that come before E in the sort sequence. (The index
in this example is restricted to 1 character.) All keys greater than E are located either in one of the
following entries in the page, or in the following pages. This index page structure is considerably
more efficient than the NDX pages of dBASE III.

Header(1024 byte)

Page 1

ptr 3:E 5:L

T>T->T->1
7:A 1:B 8:C 10:D 12: F

Rec. Entry

1 B

2 G

3 E

4 M

5 S

6 L

7 C

8 A

9 H

10 D

11 P

12 F

DBF-Records

2:G 9:H

2.4 MEM file format in dBASE III

4:H 11:P 6:S

Figure 2.3
Structure of an

NTX B-tree

In dBASE III and dBASE III+, it is possible to save the current variables in a file. For each variable
stored, the file contains a record consisting of a 32-byte header, followed by the contents of the
variable. The header is structured as shown in Table 2.9:

File formats in dBASE 23

Bytes Remarks

1-11 Variable name (ASCIIZ string)

12 Variable type

13-16 4 filler bytes (unused)

17 Variable length in bytes

18 Valid decimal places

19-32 Filler bytes (unused)

32-n Variable value
Table 2.9

Format of a

dBASE III MEM

file

The first 11 bytes contain the name of the variable as an ASCIIZ string, that is, the last byte is
terminated with OOH. This is followed by the type of the variable, which must be one of the following:

C = Character

D = Date

L = Logical

N = Numeric

The variable type field contains the ASCII code for the type (for example, C
highest bit is always set. The following value for the character C is thus derived:

C =>43H OR 80H => C3H

43H), and the

and stored as the code for the variable type. The same process is applied to the other variable

types. The next 4 bytes are not used; they act as filler bytes. The length of the variable is stored at
offset 17 (11 H) and the number of places after the decimal point (for numeric values) at offset 18
(12H). The remaining 14 bytes of the header are unused. These are followed by n bytes containing
the value of the variable. Character variables are stored as ASCIIZ strings. If the text is shorter
than the field reserved, the trailing positions are filled with zero bytes. For logical variables, dBASE
III reserves 1 byte for the value, which contains either OOH (false) or 01H (true). For numerical
values, coding is carried out according to a notation internal to dBASE III (8-byte floating-point
number). Date variables are also treated as floating-point numbers. The end of the valid records
(EOF) is indicated by the code 1AH.

24 Database file formats

2.5 DBT files in dBASE III (Memo files)

Memo files to accommodate text were first introduced in dBASE III. In the actual database files

(DBF files), there is just one field containing a pointer to the memo file or to a block of text within
the file (Figure 2.4).

DBF-File

Pointer to

Memo-File

Record n 2 Block 1

Block

Block 2

Memofield

A

L Figure 2.4
Block reference

in a memo tile

The pointer in the memo field of the DBF file is not visible to the user. If there is no text block
for this record, the DBF file will contain a blank entry in the memo field. Otherwise, the field will

contain a 10-byte pointer, which is interpreted as an ASCII number. dBASE III opens a second file
alongside the DBF file; it has the same name but the DBT extension. The texts of the relevant
memo fields are stored here. The memo file consists of 512-byte blocks. Only the first 4 bytes of
the header records are used, and they indicate the next free block in the memo file (Figure 2.5). It
can be seen from Figure 2.5 that the pointer at the head of the memo file always points to the end

of the file.

Block length = 512 Byte

II

-•

04 00 .. Header = Block 0

Text Block 1

Text Block 2

Text Block 3

Empty Block
Figure 2.5
Block structure

in a memo file

File formats in dBASE 25

If new text is to be stored in a memo field, dBASE reads the header pointer of the memo file
and stores the value in the corresponding memo field of the DBF file. The pointer in the memo
field of the DBF file thus specifies the 512-byte DBT block from which the associated text begins.
The text is then simply appended to the end of the memo file. If the text is longer than 512 bytes,
a multiple of this number is added. The end of the text is indicated by two bytes with the code 1AH.
If necessary, the remainder of the block is filled with filler bytes. The header pointer is adjusted to
point to the next free block.

A serious weakness in memo file management becomes evident if alterations to memo texts are
carried out, because the altered text is simply added to the end of the file and the new pointer
stored in the memo field of the DBF file. The old text is retained in the memo file - but without a

pointer, which means that it can no longer be found. Also, this method increases the size of the
memo file considerably, if frequent text alterations are made. The only way out of this dilemma is
to use the dBASE III command COPY..., which enables unused texts to be removed from the
memo file.

2.6 FRM files in dBASE III

In dBASE III, report formats can be stored in FRM files, which are described briefly below. The
data structure of one FRM file is shown in Table 2.10.

The 2-byte sign field contains the signature 0002H for valid FRM files. Because of the data
storage method, the byte sequence in the file is 02H OOH.

The expressions for the reports are stored in their own data area, the exp_area in the file. This
is simply a 1440-byte text string. The texts may be static texts or formulas containing variables
and so on. Formulas are evaluated by dBASE at run time. There is a pointer in the 2-byte exp_end
field (offset 02H) indicating the first free character in the expressions area (exp_area).

Offset Bytes Remarks

OOH 2 Signature (sign)
02H 2 Pointer to end of expressions (exp_end)
04H 55*2 Length of expressions (exp_lengthC551)
72H 55*2 Expression indices (exp_indexC553)
EOH 1440 String containing expressions (exp_area)
680H 25*x Data structure 25 : FRM_FIELD:

2 width

2 padl

1 pad2

1 total

2 dec

2 exp_contents

Table 2.10

Structure

of an FRM

file

(continues
over...)

26 Database file formats

Offset Bytes Remarks

7ACH 2 title_exp_num

7AEH 2 grp_on_exp_num

7B0H 2 sub_on_exp_num

7B2H 2 grp_head_exp_num

7B4H 2 sub_head_exp_num

7B6H 2 page_width

7B8H 2 line_per_page

7BAH 2 left_margin

7BCH 2 right_margin

7BEH 2 num_pf_cols

800H 1 dbl_space

801H 1 summary

802H 1 eject

803H 1 plus_bytes

804H 2 sign2

total

This field defines whether a numeric field is to be output as a total (Y or N).

Table 2.10

Structure

of an FRM file

(cont.)

The field exp_lengthC551 is made up of 55 2-byte entries and contains the length in bytes of
every expression within the text area.

The field exp_indexL55] contains, for each expression, a pointer to the beginning of the
expression text. This field implicitly indicates the sequence of expressions to be evaluated.

The field containing these indices is followed by a 1440 byte area in which the actual
expressions (static texts or rules for calculation) are stored as texts. The end of the occupied area
is indicated in the field exp_end (offset 02H). The beginning of each individual expression and its
length in bytes is stored in the two fields exp_indexC] and exp_lengthr.il.

The expressions area is followed by a data structure of 25 elements which is known as the
FRM_FIELDC25]. This data structure contains one entry for each field used in the report. However,
the first field (index 0) remains unused. Each element of FRM_FIELD contains the following
variables:

width

This 2-byte variable defines the field width (number of characters) in which the field value is to be
printed.

padl, pad2

These variables are used as fill patterns; padl occupies 2 bytes, while pad2 consists of 1 byte.

File formats in dBASE III 27

dec

With numeric fields, this variable indicates the number of decimal places.

exp_contents

Some outputs may be the result of a calculation. The exp_contents field contains the number of

the corresponding expression.

exp_header

This variable contains the number of the text string (from the expressions field) that is associated
with the field.

This concludes the description of the elements of the FRM_FIELD. The following comments
relate to file-structure entries.

The 2-byte field ti t le_exp_num contains the number of the expression for the title line of the

report. This expression is a simple string.

The 2-byte field grp_on_exp_num contains the number of the GROUP ON expression. The 2-byte
field sub_on_exp_num contains the number of the SUB GROUP ON expression. The 2-byte field
grp_head_exp_num contains the number of the GROUP ON header text (stored as an expression).
The 2-byte field sub_head_exp_num contains the number of the SUB GROUP ON header text (stored
as an expression).

The following five fields each occupy 2 bytes and relate to the formatting of the printed page.
The number of characters per line (page width) is given by the page_width field. This is followed
by line_per_page which defines the number of lines on each printed page. The lef t_margin and
right_margin fields specify the width of the left margin and right margin respectively (in
characters). The num_of_cols field indicates the number of columns in the report. This also

corresponds to the number of fields used in the expression.
The next four fields, which have only one byte each, deal with control of the output. The

dbl_space field is used to select whether characters are to be double-spaced or not: double
spacing mode is switched on if there is a Y in this field, and off if there is an N. In the summary

field, Y indicates that the total is to be positioned below the output column Nand that no total
is required.

The eject field defines whether a page-feed is required after outputting a group: Y indicates
carry out a page-feed; Ncancels the page-feed.

The plus_bytes field is not used prior to version III+. From dBASE III+, it contains three bits

which control the output of a report:

BitO

Bit 1

Bit 2

Page-feed before the report

Page-feed after the report
Simple report without page-feed (plain report)

The option is switched on if the relevant bit is set to 1. The end of the file is indicated by a word
containing the signature 0002H (byte sequence 02H OOH).

28 Database file formats

2.7 LBL files in dBASE III

In dBASE III, format instructions for labels can be stored in LBL files. The data structure of an
LBL file is shown in Table 2.1.

Offset Bytes Remarks

OOH 1 Signature (sign)

01H 60 Remarks

3DH 2 Height

3FH 2 Width

41H 2 Left margin
43H 2 Label line

45H 2 Label space

47H 2 Label across

49H 16*60 Label text (infoCI6]C60:)

409H 1 Signature 2 (sign2)
Table 2.11

Structure of an

LBL file

The 1-byte sign field contains the signature 02H for valid LBL files. This is followed by a
comment text of up to 60 characters which specifies the predefined size of the label. This text is
usually filled with blanks.

The height field contains the number of lines in the label, while the width field defines the
print width of the individual lines of the label. The number of blanks for the left margin of the label
is indicated in left_margin.

The following parameters control the printer when printing out one sheet containing several
labels. The label_line field defines the space (in lines) between each row of labels. The label_space
parameter defines the number of blanks between individual labels on one line. This number is im

portant for controlling the print header at the start of the next label (to the right). The label_across
parameter indicates how many labels are to be printed in each row on the printed page.

An area containing the text of the label begins at offset 49H. The label may contain 16 lines of
text, with 60 characters per line. The text area is thus arranged as a field containing 16 strings of
60 characters. The expressions required to produce the printed line are contained in these strings.

The file is terminated at offset 409H with a second signature 02H (1 byte).

2.8 Format of the file DBPRINT.PTB

Printer compatibility represents rather a problem when using dBASE III. The user is often faced
with the difficulty of printing special characters or accents. In dBASE III+, a certain amount of
assistance is provided by the file DBPRINT.PTB; however, the structure and function of this file are
largely undocumented. The following paragraphs take a closer look at this file (Table 2.2):

File formats in dBASE 29

Byte Code Meaning

1 00 Header - start of record

2 XX First code byte (dBase character)

3 XX Second code byte

(printer code) optional Table 2.12

Record structure

ofDBPRINT.PTB

The contents of this file are used to adapt the connected printer to the characters to be printed.

This is always necessary if, for example, the printer is not directly compatible with the character
set of a PC running MS-DOS. In such cases, it is not usually possible to print out special characters

and accents. Instead of the German umlaut A, a square bracket [will be printed; the German letter

ft does not exist at all. The reason for this problem is that all characters above ASCII 128 in the

ASCII table are not standardized. It is thus quite possible for the computer to send the correct
code for the character ft to the printer and also to represent it correctly on screen, because the
code corresponds with the computer's character set. However, a differently configured printer will
output its own character in response to the code received. In order to be able to represent a

character to which a different code is ascribed in the printer's character table, the dBASE

character must be converted into this code via a translation table. Such a translation table is

stored in the file DBPRINT.PTB. If this file is available at the start of dBASE III+, it will be loaded

and used for recoding printer commands.
As a rule, the file consists of several bytes which are stored in records of variable length. Each

record begins with a 1-byte header which specifies the record type. Two different header types are
permissible:

Header Remark

OOH

08H

Data record: 2-3 bytes (including the header)

Comment record: n bytes

Table 2.13

Header types

If another header (OOH or 08H) appears in the file, the current record is terminated. The end of
the file is indicated by a blank record (OOH OOH). The file generally starts with the header 08H,

followed by a comment text with notes on printer compatibility (see Figure 2.6).
The comment text is followed by the actual records containing the printer codes, according to

the structure shown in Table 2.2. The ASCII code for the character to be converted is stored in the

second byte (for example, the value 41H for replacement of the letter A). The ASCII code for the

replacement letter is given in the third byte. For example, if the value 40H is entered, dBASE will
output the letter with the code 40H (@) on the printer.

30 Database file formats

If one of the characters to be printed is not included in the printer character set or is to be
omitted in the printout, its code must be included in the table. A record containing only the
header and the second byte is stored for this character. Since the third byte is missing, dBASE
suppresses the character in the printer output.

Entries can be removed from DBPRINT.PTB very simply by placing the value 08H in the header
byte instead of OOH. dBASE will interpret this entry as a comment. Subsequent re-activation can be
effected by altering the header byte.

— Comment with printer name

08 45 70 73 6F 6E 20 46 58 20 47 65 72 6D 61 6E

Epson FX German

00 A0 61 00 82 65 00 A1 69 00 A2 6F 00 A3 75 00

a..e..i..o..u.

85 61 08 60 00 8A 65 08 60 00 8D 69 08 60 00 95

a . ' . . e . ' . . i . ' . .

6F 08 60 00 97 75 08 60 00 83 61 08 5E 00 88 65

o.'..u.'..a.A..e

08 5E 00 8C 69 08 5E 00 93 6F 08 5E 00 96 75 08

A..i.A..o.A..u.

5E 00 84 84 00 89 65 00 8B 69 00 94 94 00 81 81
Figure 2.6
Memory dump of
the file

DBPRINT.PTB

File formats in dBASE IV

The natural successor to dBASE III+ developed
by Ashton Tate was dBASE IV which removes
many of the limitations of its predecessors.

The structure ofDBF files in this program version are
described below.

3.1 DBF file format in dBASE IV

The structure of these files is based on that of dBASE III, although the performance of this version
has been enhanced. As in the older versions, each DBF file consists of three parts: the header, field
descriptions and the actual data.

The length of the header record containing the header and field descriptions depends on the
configuration of the program. For example, in network versions, the header requires a larger number
of bytes. The structure is shown in Table 3.1.

As in dBASE III, this information is stored as a mixture of ASCII and binary formats.
The first byte is used to identify the dBASE version. In dBASE II, the value entered here is 02H;

from dBASE III onwards the value 3H is contained in the lower nibble (bits 0...3), and the highest
bit (7) indicates whether the file contains memo fields. If it does, a DBF file containing the memo
texts is associated with the DBF file, and the byte accordingly contains the code 83H. In all other
cases, the value in the first byte is 03H.

I have information that some dBASE versions write the code for 7BH for DBF files with memo

fields. In this cases, the version is set to 1.t

However, there are indications that dBASE IV versions may use the value 7BH for DBF files with
memo fields. In such cases the value 01H is used as the version number.

The next field consists of 3 bytes containing the date of the last write access coded in binary
form with the format YYMMDD - the year (0.. .99) is thus placed in the first byte.

31

32 Database file formats

The following 4-byte field contains the number of data records in the DBF file. These 4 bytes
are interpreted as an unsigned 32-bit number, based on the normal Intel conventions on memory

allocation (lowest value byte of the number at the lowest address). The number of records includes
those already marked for deletion.

Offset Bytes Remarks

OOH 1 dBASE version

Bit 0-2 dBASE version

Bit 3 Memo field indicator

Bit 4-6 Reserved for SQL

Bit 7 Flag for dBASE III+ memo files

01H 3 Date of last write access

(Binary format YYMMDD)

04H 4 Number of records in DBF file

08H 2 Header length in bytes

OAH Record length in bytes

OCH 2 Reserved

OEH 1 Transaction flag

OFH 1 Encryption flag

10H 12 Reserved

1CH 1 Working index flag

01H = MDX file

OOH = No multi-key index

1DH 3 Reserved

20H 32*N 32-byte description for each field

32 *(N+1) 1 Header end (ODH)
Table 3.1

Format of a

dBASE IV DBF

header

The next field is an unsigned 16-bit number giving the length of the header in bytes. The

header contains 32 bytes plus n 32-byte records containing field descriptions plus a terminating
byte, coded ODH. This header length was adopted from dBASE III+.

The length of a data record is stored in bytes 10-11 (0AH-0BH) as an unsigned 16-bit number.

This number is always one more than the sum of the field lengths, because one byte is reserved at
the start of a data record to mark deleted records.

From byte 12 (OCH), there is a 20-byte area reserved for internal use. At offset 14 (OEH), for
example, there is a flag indicating the success or failure of a transaction. The flag remains set if
there are incomplete transactions. The command BEGIN TRANSACTION sets the value of the flag to
01H. The END TRANSACTION and ROLLBACK commands unset the flag. The status of this flag can be

checked using the dBASE IV function ISMARKEDO.
Byte 15 (OFH) indicates whether the data within the file has been encrypted by dBASE. The

value 0 indicates unencrypted data, while 1 indicates that data has been stored in encrypted form.

File formats in dBASE IV 33

However, resetting the value from 1 to 0 does not decode this data; this can only be carried out by
dBASE itself. Encryption is only possible with dBASE IV

Byte 28 (1CH), which is reserved in dBASE III, is used in version IV to indicate multi-key index

files. If this type of file has been set up by dBASE, the byte contains the value 01H. Otherwise the
value is set to OOH.

Information on the structure of the data records follows the header, as with dBASE III. Here,

too, there are individual field descriptions, with a maximum of 255 fields available in dBASE IV

For every field in the database, there is a 32-byte record, whose format is shown in Table 3.2:

Offset Bytes Remarks

OOH 11 Field name (ASCII characters)

OBH 1 Field type (in ASCII C, N, F, L, D, M)

OCH 4 Field data address in memory

10H 1 Field length in bytes
11H 1 Decimal places (in bytes)

12H 2 Reserved for multi-user access

14H 1 ID for working areas

15H 10 Reserved

1FH 1 Working index flag

01H MDX with subindex
Table 3.2

DBF field

description in
dBASE IV

The first 11 bytes of the field description contain the field name (10 characters + OOH), which is

stored as ASCIIZ text. In this respect, dBASE relies heavily on the C language, which also
terminates character strings with a zero byte. If the field name does not extend to 11 characters,

the remaining bytes are filled with OOH.

The next byte contains the ASCII character for the field type (Table 3.3 shows the coding for
the valid field types for dBASE IV). Compared with dBASE III+, dBASE IV offers an extended
floating-point format (F).

The field type is followed by 4 bytes, which are used internally by dBASE to store the field
address. This value is of no importance for external purposes.

The field length is stored in binary in byte 16 (10H). One field can contain a maximum of 255
characters; however, this can only be exploited by character fields (which in any case are a
maximum of 154 characters). For numeric fields, this value specifies the number of decimal

places, including the decimal point.
From version IV onwards, dBASE offers two options for representing floating-point numbers:

♦ With the new F-format, the data is processed internally in a floating-point representation using
binary arithmetic; this leads to greater precision.

♦ As an alternative, the data can be represented in decimal in the N-format which is already

familiar from dBASE II. Precision in this case is limited to approximately 15 places.

34 Database file formats

Character Field type Characters

C Character ASCII-characters

N Numeric 1 -0...9

F Numeric 2 -0...9

L Logical YyNnTtFf ?

D Date YYYYMMDD

M Memo DBT block number
Table 3.3

Coding field
types in dBASE

IV

For memo fields, the field length is always 10 bytes, in order to store the block number of the

memo text held in the associated DBT file (further details are given in the description of the DBT
format). The length of logical fields is 1, and 8 bytes are reserved for a date field.

For numeric fields, byte 17 (11H) specifies the number of places after the decimal point. For all
other types of field, this byte has the value OOH. The important factor is that the number of
decimal places is always smaller than the field length.

The remaining 14 bytes are reserved for internal purposes. They should merely be skipped in

order to access to the next field description. The set fields byte is also of no further relevance,
since dBASE IV uses this entry only in memory.

Every defined field in the data structure has its own 32-byte field description record in the
header of the DBF file. In dBASE IV, up to 255 fields per record can be defined, with a record

length of up to 4000 bytes. The last field description in the header is terminated by the character
ODH (carriage return). If not all fields are defined, this character is located after the last field
definition.

Like dBASE III, the data records in dBASE IV are appended to the definition section. The

record length is stored in the file header, as explained above. A data record is stored in pure ASCII
format without field separators, which considerably simplifies the import and export of data using
the SDF option. All fields can be processed as ASCII text, regardless of their type.

As soon as a new record is added to the file by the command APPEND BLANK, dBASE fills this
record with blanks. The first byte in the record is used to mark deleted data, and since a blank is

entered even for new records, these cannot be deleted. Only if the first byte contains the character

* will the record be removed from the DBF file when the next PACK command is given. This means

that DELETE operations are very fast, and it also enables reasonably trouble-free UNDELETE
operations. Records handled in this way do, however, remain in the database, and it is quite likely
that several hundred such records - none of which is valid - may be retained. Access without

using an index is naturally very slow because all records (deleted and undeleted) must be read.
The remedy for this weakness is to use PACK to remove deleted records from the DBF file as often

as possible. Records marked for deletion are overwritten by subsequent valid records, and the
entry in the header is reduced to the number of undeleted records.

The end of the valid data area is indicated by the character 1AH. In contrast to earlier dBASE

versions, dBASE IV also alters the physical size of the file. After this operation, the DOS EOF

marker is positioned directly after the character 1AH, and the deleted records are finally removed.

Figure 3.1 shows an extract from a DBF file in dBASE IV represented as a hex-dump.

File formats in dBASE IV 35

-dBAE E IV File wi

— Date last

hout Memo field

write access

- Number of records

r— Header length
- Record length

Reserved

"L- Decryption
flag

1
I

03 58 OB 1E 02 00 00 00-01 00 2D 00 00 00 00 00
I

Transaction

flag

— MDX flag
Field name

i i

00 00 00 00 00 00 00 00-00 00 00 00 01 00 00 00

Field type

r~ Address

Field length
in bvtes

46 49 45 40 44 31 00 00-00 00 00 43 11 00 AO 47

F I E L D 1 . . .

I Decimal
places = 0

14 00 00 00 01 00 00 00-00 00 00 00 00 00 00 00

46 49 45 40 44 32 00 00-00 00 00 4E 25 00 AO 47

FIELD2 N...6

05 02 00 00 01 00 00 00-00 00 00 00 00 00 00 00

46 49 45 4C 44 33 00 00 00-00 00 44 2A 00 AO 47

F I E L D 3 D . . . G

08 00 00 00 01 00 00 00-00 00 00 00 00 00 00 00

46 49 45 40 44 34 00 00-00 00 00 40 32 00 AO 47

FIELD4 L2..G

01 00 00 00 01 00 00 00-00 00 00 00 00 00 00 00

46 49 45 40 44 35 00 00-00 00 00 4D 33 00 AO 47

FIELDS H3..G

OA 00 00 00 01 00 00 00-00 00 00 00 00 00 00 00

OD 20 20 20 20 20 20 20-20 20 20 31 20 20 20 20
i

LJLCllL UdLd

record 1

— End of
header

20 20 20 20 20 20 20 31-2E 30 30 31 39 38 38 30

1 .0019880

33 31 32 54 20 20 20 20-20 20 20 20 20 20 20 20

3 1 2 T

20 20 20 20 20 20 20 20-32 20 20 20 20 20 20 20

2

20 20 20 20 32 2E 30 30-31 39 33 33 30 33 31 32

2.0019330312

46 20 20 20 20 20 20 20-20 20 20 20 20 20 20 20

F

20 20 20 20 20 33 20 20-20 20 20 20 20 20 20 20

1A 61 Figure 3.1
Dump of a
dBASE IV file

(TEST.DBF)

36 Database file formats

3.2 DBT file format in dBASE IV

Memo files are used to store texts. In the database files themselves (DBF files), there is only one
field containing a pointer to the actual memo file. The structure is as follows:

DBF-File

Ptr

Pointer to memo text

-•
Figure 3.2

Pointers to

memo text

in a DBT file

The value of each MEMO field in the DBF file should be regarded as a pointer (block number)

to an entry in the associated DBT file. The DBT file has the same name as the DBF file; the only

difference is in its extension. DBT files are subdivided into blocks on n bytes; in dBASE IV, the

block length can be determined with the command SET BLOCKSIZE. The pointer in the DBF file

indicates the offset in blocks in the DBT file. If no text is stored in the memo file, the associated

field in the DBF file will contain 10 blanks. In dBASE IV, deleted text in the MEMO file is released

and can be reused. The structure of the file is based on dBASE III and is defined as follows:

Offset Bytes Remarks

OOH 4 Pointer to first free block

04H 4 Unused

08H 8 DBF file name (no extension)

10H 1 Flag: 03H dBASE III Header, else OOH

11H 3 Reserved

14H 2 Block length in bytes

16H n Fill bytes OOH to end of block
Table 3.4

DBT header

(block 0) in

dBASEIV

The DBT file consists of a continuous sequence of blocks n bytes long. The length of a block

can be defined using SET BLOCKSIZE TO and is stored in block 0 in bytes 14-15H. It should be

noted, however, that dBASE III DBT files are given the block length 1 (for reasons of

compatibility).

Block 0 is followed by n blocks of fixed length, which may be occupied or free. Occupied blocks

are addressed by entries in the DBF database; their structure is shown in Table 3.5.

File formats in dBASE IV 37

The length of the memo field data is stored in the block at offset 04H, thereby dispensing with
the end marker (1AH) used in dBASE III. In the text, sections are terminated with the codes ODH
and OAH. Line-breaks are indicated by 8DH and OAH.

Offset

OOH

04H

08H

Bytes

4

4

n

Remarks

Reserved (FFH FFH 08H OOH)

Length of memo field entry in bytes
Memo field

Table 3.5

Header of a used

DBT block

(dBASE IV)

In block 0, there is a pointer at offset OOH to the first free block of the DBT file. In dBASE IV,

free DBT blocks can be reused. The free blocks are therefore managed by means of a pointer
structure (see Table 3.6).

The number of the first free block and the length of a block can be found starting from the DBT
header.

Offset Bytes Remarks

OOH

04H

08H

4

4

n

Pointer to next free block

Pointer to next used block

Filler bytes to end of block
Table 3.6

Empty DBT
block chaining
(dBASE IV)

File formats in FoxPro

The database program FoxPro is based on
the dBASE DBF file format, but also has a
number of extensions which will be

considered below.

4.1 FoxPro format of DBF files

In FoxPro, the following versions are available:

♦ FoxPro 1.0

♦ FoxPro 2.0

♦ FoxBase-i-

♦ FoxPro 2.5 and FoxPro for Windows 2.5a/2.6

The structure of FoxPro DBF files is based on that of dBASE III DBF files. As shown in Figure

4.1, each DBF file consists of three parts: the header, the field definition and the actual data.

Header (32 bytes)

Field definition

Data records Figure 4.1
Structure of a

FoxPro DBF file

The data in the file is stored in a mixture of ASCII text and binary format. The header consists

of binary data, while the data records are stored as pure ASCII text.

38

File formats in FoxPro 39

4.1.1 The DBF header

The header always contains 32 bytes. Its structure is shown in Table 4.1.

Offset Bytes Remarks

OOH 1 Version DBF file

03H dBASE III+/FoxBase+

without memo fields

03H dBASE IV/FoxPro 2.x

without memo fields

83H dBASE III+/FoxBase+ with

memo fields

8BH dBASE IV with memo fields

F5H FoxPro with memo fields

01H 3 Date of last change

04H 4

(binary format YYMMDD)
Number of data records in file

08H

OAH

0CH-1FH

2

2

20

Pointer to first record (offset in bytes)
Record length (including delete byte)
Reserved

20H

32*(N+1)

32*N

1

32 bytes per field description
End of header (ODH) Table 4.1

Format of a

FoxPro DBF

header

The first byte is used to identify the version of the program that produced the DBF file. In
dBASE III, the value 03H is stored here. The highest bit (7) is used by dBASE III to indicate
whether the file contains memo fields. In FoxBase+, the same notation has been adopted. The
same applies to FoxPro files that do not contain memo fields. However, if a FoxPro DBF file
contains memo fields, FoxPro enters the signature F5H in the first byte. In this case, associated
with the DBF file is an FPT file containing memo texts (or graphic data). If FoxPro finds any value
other than those listed in Table 4.1, it will refuse access, because the file cannot be a DBF file.

The next three bytes contain the date of the last write access (in the format YYMMDD). The
first byte contains the year (0 .. 99).

The 4-byte field at offset 4 contains the number of data records in the DBF file. This value is

interpreted as an unsigned 32-bit number, to which the Intel conventions on memory allocation
apply (lowest byte number at the lowest address). The value includes all records, even those
already marked for deletion.

The next field is an unsigned 16-bit number containing the length of the header in bytes. The
length of the header varies in accordance with the variable number of field descriptions that can
be contained in a DBF file (see below). The length of the header represents a pointer (offset in
bytes) to the first data record.

40 Database file formats

The length of a data record is stored at offset 10 (OAH) as an unsigned 16-bit number. This value
includes the first byte (blank, or * if the record is marked for deletion) and must correspond to the
sum of the individual field lengths +1.

At offset 12 (OCH) there is a reserved area of 20 bytes provided for internal management. For
example, dBASE IV uses this area for network management. FoxPro 2.5a (for Windows) stores the
code for the code page used in the byte at offset 31 (1 FH). Thus, the contents of text and data fields
can be represented using different character sets in FoxPro. Furthermore, sorting is also based on
the relevant code page. The coding has not been officially documented, but Table 4.2 presents a
list of codes used so far.

Code Code page Remark

01H 437 US MS-DOS

02H 850 International MS-DOS

03H 1251 Russian Windows

1252 Windows ANSI-Codes

64H 852 EE MS-DOS

65H 866 Russian MS-DOS

66H 865 Nordic MS-DOS

mKmmmmk i"""i'ii" ife5Itei;^H:wKi^;™^»™—m "'" i'""""* —iMiniMiiwiMi iiimiw BmMMMiimiitaMB^ -immmmmmmm

Table 4.2

Code pages
in FoxPro 2.5a

In FoxPro versions 2.5b and 2.6, additional code pages are supported. However, the coding for

these code pages is not currently known.

4.1.2 Field description

The field descriptions follow at offset 32 (20H). These are based on the parameters from dBASE III,
but new field types have been introduced. Each field definition contains 32 bytes and, in FoxPro,
255 fields are permitted. The structure of the field description is shown in Table 4.3.

Offset

OOH

0BH

OCH

10H

11H

12H-1FH

Bytes

11

1

4

1

1

14

Remarks

Field name in ASCII

Field type in ASCII (C,N,L,M,G,D,F,P)
Field position in record

Field length in bytes (binary)
Places after decimal point (in bytes)
Reserved

Table 4.3

FoxPro DBF

field description

File formats in FoxPro 41

The first 11 bytes of the field definition contain the field name as ASCIIZ text, that is, the name
is always terminated with a zero byte OOH. If the field name is shorter than 10 characters, the
remaining bytes are filled OOH.

The ASCII character for the field type is stored in the next byte. Table 4.4 shows the coding of
valid field types for FoxPro 2.x. In comparison with dBASE III, there are additional object fields,
floating-point fields and picture fields.

Character Field type Characters

C Character ASCII characters

N Numeric -0..9

L Logical YyNnTtFf ?
M Memo field DBT block number

G Object FPT block number

D Date YYYYMMDD

F Floating point no. 0..9

P Picture FPT block number Table 4.4

FoxPro 2.x

field types

As well as these supplementary field types, a field description in FoxPro differs in another
respect from dBASE. While dBASE saves the internal data addresses of the field at offset 12 (OCH),
FoxPro stores the position of the field in the data record. As a result, the sequence of field
descriptions no longer needs to agree with the sequence of fields in the data record. Furthermore,
the bytes from offset 18 (12H) onwards are reserved. The field length is stored in binary in one
byte at offset 16 (10H). Each field can thus contain a maximum of 255 characters. This length is
only fully exploited in the case of character fields. With numeric fields, this value indicates the
number of places including the decimal point. However, numbers can only be processed to an
accuracy of approximately 15 places in FoxPro. Memo fields, object fields and graphic fields always
have a field length of 10 bytes, because in these cases they contain the block number of the data
stored in the associated FPT file (or DBT file in FoxPro 1.0). Further details are given in the
description of FPT and DBT formats. Logical fields have a length of 1, while 8 bytes are reserved
for date fields. For numeric fields, the following byte at offset 17 (11H) specifies the number of
places after the decimal point. With all other types of field, this byte has the value OOH. It is
important to note that the number of places after the decimal point is always smaller than the field
length.

Every defined field in the data structure has its own 32-byte field description record in the
header of the DBF file. The end of the field description area is indicated by the character ODH.

4.1.3 DBF data records

The data records are appended after the field descriptions, as with dBASE. The record length is
determined by the length of the relevant fields and is indicated in the header of the file. This value

42 Database file formats

is always 1 more than the sum of the field lengths, because one byte is reserved for deletion
marking. The data is stored in pure ASCII format without field separators. An undeleted record
always contains a blank character (code 20H) in the first byte, while records marked as deleted
contain the character * (code 2AH) in this position. This makes the import or export of ASCII data
(for example, using the SDF option) very simple.

If a new record is added to the file with the APPEND BLANK command, FoxPro will fill this record
with blanks. Since there is a blank in the first byte in the record, the record cannot be deleted.
Only if the first byte contains the character *, the record will be removed from the DBF file when

the next PACK command is given. This means that very rapid DELETE operations are possible, and
also enables trouble-free UNDELETE operations.

The end of the valid data area is indicated by the character 1AH. This EOF indicator is managed
by FoxPro and not by DOS.

4.2 The structure of a FoxBasen- DBT file (memo file)

Memo data in FoxBase+ is stored in DBT files. The structure of these files was derived from dBASE

III, and they are less efficient than FoxPro memo files (FPT). These are described in the following
section. In the DBF file, in the relevant field of the data record, there is only one pointer to the

block of the memo file (see Figure 4.2).

DBF-File

Record n

Pointer

to Block

Memo-Fi Le

Block 1

Block 2

Memo field with block number DBF-File

Figure 4.2
Pointer to a

memo block

within a memo

field

The pointer in the memo field of the DBF file is invisible to the user. If there is no text block for
this record, the memo field will be blank.

The FoxBase+ memo file consists of 512-byte blocks. The first 2 bytes of the first block contain
the number of the next free block in the memo file (Figure 4.3).

The offset to the start of the free block is calculated as:

Offset := Block number * 512

File formats in FoxPro 43

It should be noted that the block number is in Intel format (low byte first). If a new text is to be
stored in a memo field, FoxBase+ reads the header pointer of the memo file and stores the value in
the appropriate memo field of the DBF file. The text is simply appended to the end of the memo
file. Then the number of the next free block is calculated and stored in the header of the memo

file.

Blocklength = 512 Byte

-•

04 00 .. Header = Block 0

Text block 1

Text block 2

Text block 3

Empty block Figure 4.3
Block structure

of a FoxBase+

memo file

Changes to MEMO texts are simply added to the end of the memo file and the new pointer
entered in the memo field of the DBF file. Thus, the old text is retained in the memo file. This has
the effect of seriously increasing the size of memo files, if texts are frequently altered. The only
means of ensuring that unused texts are removed from the memo file is to issue a COPY command.

If a text is longer than 512 bytes, FoxBase+ simply uses another 512-byte block. This process is
repeated until every byte of the text has been stored. The pointer in the DBF file points to the start
of the first block of the relevant text. The end of the text is indicated by the character 1AH. Any
remaining bytes up to the end of the 512-byte block remain undefined.

4.3 The structure of FoxPro FPT files (object files and
memo files)

From FoxPro 2.0 onwards, FPT files are available for memo texts and binary data (graphics).
FoxPro 2.5 additionally enables objects to be stored in FPT files. The data may represent the
object itself or merely a reference to the associated object (application with data).
In FoxPro 2.x, the FPT files have a unified structure and consist of a data header and n data

blocks. The length of the data header is fixed at 512 bytes. The remainder of the file is subdivided
into blocks of fixed length. The block length is preset to 512 bytes, but can be altered using the
command SET BLOCKSIZE.

44 Database file formats

4.3.1 The header of an FPT file

The structure of the data header is shown in Table 4.5.

Offset Bytes Remarks

OOH 4 Position of first free block

04H 2 Unused

06H 2 Block size in bytes
08H 504 Unused

1FFH Table 4.5

Header of a

FoxPro FPT file

The first 4 bytes contain an offset pointer to the first free byte of the memo file. The pointer is
stored in Motorola format (low byte last) rather than in Intel format. The offset 2000H is thus stored

as the byte sequence OOH OOH 20H OOH. The next two bytes at offset 04H are unused. The block size

in bytes is stored at offset 06H. This value is read as a hexadecimal number from left to right (02H
OOH corresponds to 200H). The value is used to define the length of the following data blocks and is
set via the FoxPro command SET BLOCKSIZE. The remaining bytes in the first block are unused.

4.3.2 The data area of the FPT file

The data blocks containing the memo texts or object data start at offset 512 (200H). The data blocks

are of a fixed length which is stored at offset 06H in the header of the FPT file. Each block must start
on an even address boundary. The position of the start of the block can be calculated by multiplying
the block number (from the DBF file) by the block size (from the header of the FPT file):

Offset block block number * block size

If there is no entry for a record, the DBF file for this record will have a blank entry in the memo
field or object field. Otherwise there will be a 10-byte block number, which is interpreted as an

ASCII number. Figure 4.4 shows extracts from a hex-dump of an FPT file.

The data (memo fields, graphics, objects and so on) is transferred as records to the individual
data blocks. Each record always begins at the start of a block and therefore on an even address
boundary. It is entirely possible for the record to occupy more than one block. It is, however,

important that the following record begins at the start of the next block. In this case, any
remaining bytes up to the end of the block remain undefined. The structure of a data record is

shown in Table 4.6.

File formats in FoxPro 45

free block block size

00 00 00 E3 00 00 40 00 00 <- > izz
...

rlr

L memo text
I i

00 00 00 01 00 00 00 35 44 69 65 73 20 69 73 ?4

20 65 69 6E 20

... | | ; length

00 00 00 02 00 00 02 F5 15 1C 2A 00 02 00 00)0 L objectdata

OF 00 07 00 14 00 23 00 4E 03 4E 03 46 6F 78 so

Offset Bytes Remarks

OOH 4 Record type
0: Picture

1: Memo

2: Object
04H 4 Length of memo field in bytes
08H..n n Memo text with n bytes

Figure 4.4

Dump of
an FPT file

Table 4.6

Structure of a

data block

The first 4 bytes contain the data type. A distinction is made between text (memo) and binary
data (graphics or object). For text the code 1 is entered. It should be noted that the values are
preset as hexadecimal numbers in Motorola format (for example, OOH OOH OOH 01H for the code 1).
In the data area, ASCII or ANSI texts are used. If the code 0 appears (OOH OOH OOH 00H), the data
area contains the binary data for a picture. In my experience, this is only possible on a Macintosh,
because FoxPro uses the object field type on DOS machines. However, as far as I can determine,
the code 2 (OOH OOH OOH 02H) is used for objects. This may involve a picture, a sound or an
embedded object. The structure of the data area, which is dictated by the linked application object
(Excel Table, Paintbrush Picture and so on), is not documented.

The length of the data area is stored at offset 04H as a 4-byte pointer. This value should also be
read from left to right as a hexadecimal number.

The data area, which may be of variable length, follows at offset 08H. This data area may
encompass several blocks of the FPT file. The area between the end of the data and the end of the
final block remains undefined, because the following record must be located on a block boundary.
With memo fields, FoxPro sometimes enters the memo field code here.

46 Database file formats

4.4 The structure of uncompressed IDX index files

FoxPro supports a number of different index files:

♦ Uncompressed IDX files

♦ Compressed (compact) IDX files

♦ Multi-index CDX files

The structure of uncompressed IDX files is dealt with below.
Uncompressed index files (IDX) have a tree structure. The keys (index entries) are distributed

across various index nodes, starting from the start (or root) node (see Figure 4.5). The leaves of
the tree (end nodes) thus contain references to the actual data records. To search for a record in
the tree, the tree must have a unique path from the start node to the end node. The entries at each

node are then successively compared with the search expression. If the search key is smaller than
the key in the node (for example, search expression = F, entry = G), the search has to be continued
in the next lowest node. For example, if a search is being carried out for the expression K in the
tree, the following operations must be implemented:

♦ Compare the expression Kwith the first entry F in the start node.

♦ Since the search expression is larger than the entry, the next entry must be analyzed.

♦ This entry is also smaller than the search expression.

♦ Since there are no more entries, the search expression is not present in the tree.

start node

left node M— -1 F,H -1 —• right node

-1 C,F H

-1 A,B,C *^ D,E,F % G,H -1

Figure 4.5
Tree structure

of IDX files

File formats in FoxPro 47

However, if the letter C is being searched for, the result of the first comparison will be that the
search expression is smaller than the entry. The search will branch off to the next lowest node in
the relevant section of the tree. Here, the first comparison scores a hit, because the entry is the
same as the search expression. A branch is now made to the next lowest node (end node). On the
third access to the data, the search expression is the same as the entry, and the record number is
available to the database.

Searching via the index tree enables rapid access to the data in the database. To optimize the
search procedures within the tree, each node has another two pointers to the directly neighboring
nodes on the same level. This means that when searching through index areas, it is not necessary
to go back to the various branching points of the tree. If the neighboring node does not exist, the
pointer will indicate the value-1 (FFFF FFFFH).

I should like to follow these initial considerations with an explanation of the structure of the
index file. The index file consists of a header and an unlimited number of nodes. The header and

the individual nodes are always 512 bytes long.

4.4.1 The header of the IDX file

The header of an uncompressed IDX file contains all the information on the start node, the current
file size, the length of the key and so on. The structure of the header is shown in Table 4.7.

Offset Bytes Remarks

OOH 4 Pointer to start node

04H 4 Pointer to free node list

(-1 no free nodes)

08H 4 Pointer to file end

OCH 2 Key expression length in bytes

OEH 1 Index options

1: Unique index

8: Index with FOR clause

OFH 1 Index signature (not used)

10H 220 Key expression (ASCII string)

ECH 220 FOR expression (ASCII string)
1C8H 56 Unused

Table 4.7

IDX header

record

The first 4 bytes contain a pointer (in Intel format) to the start node. This value is the offset
from the start of the file to the beginning of the start node and it must be a multiple of 512 bytes.

When processing the index file, new entries are added to the node and existing entries are
deleted. Thus, individual nodes may possibly have no entries. At offset 4, there is therefore a

48 Database file formats

pointer to the list of free index nodes. The pointer should be interpreted as an unsigned number in
Intel format. If there is no list of blank index nodes, the pointer will contain -1 (FFFF FFFFH).

FoxPro indicates the size of the index file at offset 8. The word at offset 12 (OCH) defines the
length of the key expression in bytes.

FoxPro can set up an index file via a unique key. Alternatively, search areas can be indicated
via a FOR clause. These two search options use different search expressions. For this reason, the
byte at offset 14 (OEH) indicates the relevant index option. The value 1 shows that the index has
been structured via a unique key, while 9 shows that the index was produced via a FOR clause.

The byte at offset 15 (OFH) is provided for index coding, but this is not used with uncompressed
IDX files. The key expression for unique indices is stored at offset 16 (10H) onwards. FoxPro
converts numeric index fields into character strings, thereby enabling the same search and sort
algorithms to be used. Numeric values are converted into an IEEE format, then into Intel format
and, in the case of negative values, converted to the absolute value. This value is then used as the
key, which may comprise up to 220 characters.

The file may also be structured on the basis of a FOR expression. In this option, the FOR
expression is stored at offset 236 (ECH) onwards with a maximum length of 220 characters.

The remaining bytes from offset 456 (1C8H) to 511 (1 FFH) are unused.

4.4.2 The structure of the node records

The header record is followed by the individual nodes, each of which is 512 bytes long. Each of
these data records contains an attribute, the number of keys stored, the pointers to the neighboring
nodes and the actual index entries. Table 4.8 shows the structure of an index node.

Offset Bytes Remarks

OOH 2 Node attribute

0: Index node

1: Start node

2: End node

02H 2 Key entries

04H 4 Pointer to left node

(same level, -1 no node)

08H 4 Pointer to right node

(same level, -1 no node)

OCH 500 Area for key entries; each entry

contains the key and a 4-byte pointer

Table 4.8

Structure of

an uncompressed
index node in

an IDX file

File formats in FoxPro 49

The first two bytes contain the attribute of the relevant node. The value can also be formed
from the sum of the individual attributes (0: index node, 1: start node, 2: end node). The number is
stored in Intel format (for example, 03H OOH).

The number of key entries in the node is stored at offset 2. This value is also stored in Intel
format. It is followed by the pointers to the neighboring nodes at the same level. Each of these

pointers occupies 4 bytes and is stored in Intel format. If there is no neighboring node, FoxPro will
enter the value -1 (FFFF FFFFH). The pointer to the left node begins at offset 4 and the pointer to
the right node at offset 8.

The 500 bytes from offset 12 (OCH) to the end of the node contain the index entries. Each entry
consists of an actual key expression followed by a 4-byte pointer (see Figure 4.6).

Key Pointer
Figure 4.6
Structure

of a key entry

The length of the key entry is contained in the header record. This key entry is followed by a
4-byte pointer in Motorola format (high byte first). The interpretation of this pointer depends on
the attribute of the node. If an end node is involved (attribute 2 or 3), the pointer contains the
data record number for the DBF file. With start and index nodes (attribute 0 or 1), the pointer
defines the offset of the next lowest node containing the section for the tree (see Figure 1.4). The
combination of key and pointer occurs n times within the node. The value of n is stored at offset

2 at the start of the node and must be between 0 and 100 (1-byte key and 4-byte pointer).
If n = 0, there is a blank node. The list of blank nodes is maintained via the pointer in the header
of the index file.

4.5 The structure of a compact IDX index file

FoxPro also offers the possibility of storing the contents of an IDX file in compressed form. This
reduces the file size and accelerates search access. When packing, double letters in the index are
compressed. However, the compact IDX files do have a somewhat modified structure, which is also
used in multi-index files (CDX).

4.5.1 The header of a compact IDX file

The header record of a compact index file is 1024 bytes in length and is structured as shown in
Table 4.9.

The first 4 bytes define the pointer to the start node, stored in Intel format. The next 4-byte
pointer at offset 4 refers to the start of the free index node list. The value is stored in Intel format
and contains the number —1 (FFFF FFFFH) if there is no list.

50 Database file formats

The 4 bytes at offset 8 are reserved for internal purposes. They are followed at offset 12 (OCH)
by a value in Intel format containing the length of the key expression.

The index options are stored in the byte at offset 14 (OEH). For compact index files the option
32 (20H) is also defined. As soon as this bit is set, FoxPro recognizes a compact index file. The
value 64 (40H) is used to indicate CDX files.

Offset Bytes Remarks

OOH 4 Pointer to start node

04H 4 Pointer to free node list

(-1 no free node list)

08H 4 Reserved for internal use

OCH 2 Key length in bytes

OEH 1 Index options

1: Unique index

8: Index with FOR clause

32: Compact index file

64: CDX index file

OFH 1 Index signature

10H-1F5H 485 Reserved (internal use)

1F6H 2 Sort direction

0: ascending

1: descending

1F8H 2 Reserved (internal use)

1FAH 2 Length of all FOR expressions

1FCH 2 Reserved (internal use)

1FEH 2 Length of all key expressions

200H 512 All key entries
Table 4.9

Header of a

compact IDX file

The byte at offset 15 (OFH) contains an index code, whose meaning is not clear. The bytes from
offset 16 (10H) to 501 (1F5H) are reserved for internal purposes. The word at offset 502 (1 F6H)
defines the sequence of index sorting:

0: ascending

1: descending

and is stored according to the Intel convention.

File formats in FoxPro 51

The word at offset 504 (1 F8H) is reserved for internal purposes. At offset 506 (1 FAH), there is a
word in Intel format containing the length of all FOR expressions in the index file. For IDX files,
this length is related to a FOR expression. The word at offset 508 (1 FCH) is reserved.

At offset 510 (1 FEH), there is a word in Intel format containing the length of all key expressions.
For IDX files, there is only one key. At offset 512 (200H), there is a 512-byte area containing the

actual index expression. With multi-index files, several key expressions can be stored here.

4.5.2 The structure of node records

The header record is followed by the index nodes. Each node comprises 512 bytes. However, it is
also possible to compress index data within the index node. Index nodes are therefore subdivided
into:

♦ internal index nodes

♦ external index nodes

Internal index nodes contain the information in uncompressed form (see Table 4.10).

Offset Bytes Remarks

OOH 2 Node attribute

0: Index node

1: Start node

2: End node

02H 2 Number of key entries

04H 4 Pointer to left node

(same level, -1 no node)

08H 4 Pointer to right node

(same level, -1 no node)

OCH 500 Area for key entries; each entry

contains the key and a 4-byte pointer
Table 4.10

Internal index

node structure

This structure corresponds to the structure of the nodes in uncompressed index files. Here,
too, the first word contains the attribute of the index node (0: index node, 1: start node, 2: end
node). This is followed by a word in Intel format containing the number of keys stored in the node.
Starting at offset 4, there are two 4-byte pointers to the nodes to the left and right, respectively, on
the same level. Non-existent nodes are indicated by -1. All the values from offset 12 (OCH) onwards
are stored in Intel format.

52 Database file formats

The area from offset 12 (OCH) to offset 511 (1FFH) is devoted to key entries. The key index and
the data record number are always contained in the node. The entry occurs n times.

A modified structure has been introduced for nodes with compressed index data (see Table 4.11).
With external index nodes, the first 12 bytes are the same as for uncompressed index files. At

offset 12 (OCH), there is a word in Intel format indicating the free space in the node. FoxPro
administers the area containing the index entries from offset 24 (18H) to 511 (1FFH) as shown
below:

♦ compressed index values are entered at the start of the area

♦ the actual index is entered at the end of the area

This enables new indices to be inserted at the end of the area. Masks for the compressed data

begin at offset 14. The 4-byte field at offset 14 (OEH) defines a binary mask for the data record
number. This data record number must be ANDed with the mask in order to add the record to the

database. In this way, records consisting of fewer than 4 bytes can be stored, which saves space in

memory.

Offset Bytes Remarks

OOH 2 Node attribute

0: Index node

1: Start node

2: End node

02H 2 Number of key entries

04H 4 Pointer to left node

(same level, -1 no node)

08H 4 Pointer to right node

(same level, -1 no node)

OCH 2 Free space in node

OEH 4 Mask for data record number

12H 1 Mask for double characters

13H 1 Mask for following characters

14H 1 Bits in record number

15H 1 Bits in double characters

16H 1 Bits in following characters

17H 1 Bytes per record number, double
characters and following characters

18H 488 Area for key entries and information
Table 4.11

The structure

of an external

index node

The bytes at offsets 18 (12H) and 19 (13H) define masks for the compressed characters of the
index. The individual bits must be ANDed with these masks in order to calculate the original index

value.

File formats in FoxPro 53

The byte at offset 20 (14H) defines how many bits are used within an entry to represent the
record number (for example, 16 or 32). The byte at offset 21 (15H) defines the number of bits used
for the representation of double characters in the index. The number of bits for following
characters is indicated at offset 22 (16H). The number of bytes for the record number, the number
of double characters and the number of following characters are indicated in the byte at offset 23.
The value 3 indicates that every entry in the area from offset 24 (18H) to 511 (1FFH) comprises 3
bytes. These three bytes are subdivided into bit sequences for the record number, the number of
double characters and the number of following characters. However, the means by which the
compression of characters is carried out is not documented.

4.6 The format of multi-index files (CDX)

FoxPro enables index files that can accommodate several indices to be produced. These index files
are always stored in compressed form. The structure is identical to that of compact IDX files. The
index option in the header (offset 14) contains the value 64 for a multi-index file. The end node
points to the index key of the multi-index file. For each index key within the index file, there is an
individual index tree which has the same structure as a compact IDXfile.

This information was obtained from the FoxPro programming manual. However, some aspects
of index files are not covered.

4.7 The structure of a FoxPro 1.0 label file (LBX)

In FoxPro 1.0 data for labels is stored in LBX files, the structure of which is shown in Table 4.12.

Offset Bytes Remarks

OOH 1 Version 03H for FoxPro 1.0 LBX file

01H 60 Comment (ASCII string)

3DH 2 Lines in label

3FH 2 Width of left margin

41H 2 Label width

43H 2 Number of labels per row

45H 2 Space between labels (blanks)
57H 2 Number of blank lines

between rows of labels

59H 2 Length of label text (in characters)

4BH n Label text, ODH = line separator Table 4.12

FoxPro 1.0

LBX structure

54 Database file formats

The data is stored in Intel format. The text containing the label data is stored at offset 75 (4BH)
onwards as an ASCII string, individual lines being separated by the character ODH. The length of
the ASCII string is indicated in the word at offset 73 (49H). The remaining entries in the table
define the output format (width, height, columns and so on) of the labels.

In FoxPro 2.0 and later, label data is stored in DBF files. The report generator then generates a

working file from this data. The same applies to report and mask files. The structure of DBF files is
described in the FoxPro documentation.

Data exchange using the
SDF format

The preceding sections have been devoted to
describing the internal structure of dBASE files.
In terms of systems programming it is clearly

important to gain direct access to these structures.
In many other cases, however, it is sufficient if the
data from dBASE is available in ASCII format or can
be read in ASCII format - for example, for data
exchanging with LOTUS 1-2-3. Multiplan, Word and
so on.

By using the SDF option (System Data Format) with the copy to command, dBASE II, dBASE III,
dBASE III+ and dBASE IV can be used to convert databases into ASCII files. The syntax for the
command is shown below:

COPY TO <File> [Fields: [FOR/WHILEl [SDFJ [DELIMITED With BLANK/<Delimiter>]

The parameters shown in square brackets are optional. In principle, the COPY command is used
to copy a database opened with USE into a file marked <File>. The fields parameter enables
specific fields of the database to be selected for the copying operation. Other conditions relating to
the selection of data records can be formulated using the FOR/WHILE option. Up to this point, a
normal dBASE database is produced; however, as soon as the SDF option appears, dBASE will
create an ASCII file from the data in the DBF file. The instruction shown below creates the ASCII

file ASCII .TXT, the records being terminated with the Return character:

COPY TO ASCII.TXT SDF

55

56 Database file formats

The data used in this example must have the following structure (Table 5.1)

Name Type Length Decimals

Fieldl

Field2

Field3

Fietd4

C 20

N 10

N 5

L 1

2

Table 5.1

Field format

of a dBASE file

The fields are set up with the originally defined lengths. If any value is shorter than the field
length, dBASE fills the remaining positions with blanks. The ASCII records will then have the
structure shown in Figure 5.1.

In this way, individual, fixed-length fields can be read record by record. This format is
particularly suitable for use with text-processing programs, because their output already has a
tabular structure.

Field 1 Field 2 Field 3 Field 4

< 20 Characters > < 10 Char. > < 5 Char. > <1 Char.>

JL

This is Field 1 10000

I I
1.23

I I
T

This is record 2 3234 0.98 F

List price 3 0.00 T

Waiting room 122 1233 1.98 F

5.1 The DELIMITED option

Figure 5.1
Output format
with the SDF

option

Since the formatting described above is not always desirable for input/output, it is possible to
define field delimiters in the data conversion process. This is achieved by selecting the following
option:

DELIMITED WITH

This parameter instructs dBASE to output delimiters between the fields or to use the characters

defined as delimiting characters.
The following instruction creates an ASCII file named HALL0.TXT, in which the fields of the

DBF file are separated by a comma:

Data exchange using the SDFformat 57

APPEND FROM <File> [FOR/WHILE] LSDF: DELIMITED WITH BLANK/<Delimiter>3

As shown in Figure 5.2, texts are also placed in inverted commas:

7000,'Stuttgart','WaLdstr.' ,13

8000,'Munich','Station' ,5

5000,'Cologne','Kalkstr.',10

Figure 5.2

Data output

using the
DELIMITED

option

In addition to normal delimiters, blanks, semicolons or inverted commas can also be used as

delimiters. The first of the two instructions shown below, for example, exchanges the inverted
commas in Figure 5.2 for single inverted commas; the second instruction produces output texts
separated by semicolons:

COPY TO HALL0.TXT DELIMITED WITH '

COPY TO HALL0.TXT DELIMITED WITH ;

A blank used as a delimiter can be problematic, because it is not always clear whether the
blank is marking the end of a field or is intended to be a component of a text field. In addition,
numbers from numeric and text fields can no longer be distinguished.

Conversely, there is another command for converting ASCII files into DBF files:

APPEND FROM <File> [F0R/WHILE:[SDF][DELIMITED.

The ASCII file must be formatted in such a way that the data is compatible with dBASE fields.

5.2 Import/export of external formats

From dBASE III+ onwards, it is possible to interchange data directly with other standard products
using the following file formats:

♦ DIF (Data Interchange Format), for example Visicalc

♦ SYLK (Symbolic Link Format), for example Multiplan

♦ WKS, for example LOTUS 1-2-3 format

The general form of the COPY command is shown below:

58 Database file formats

COPY TO <File>

FIELDS <Fieldlist>

FOR/WHILE <Condition>

TYPE <Type>

One of the options DIF, SYLK or WKS should be given as the file type. dBASE III+ will then
create the relevant file in the format required.

External formats can be read in by dBASE III using APPEND. The command is:

APPEND FROM <FiLe> [FOR/WHILE] [SDFJ [DELIMITED]

However, if a text file is to be read into a dBASE file, it must fulfill certain requirements:

♦ The structure of the text must exactly match the structure of the database.

♦ Every record must be terminated by CR/LF (Carriage Return or Line Feed).

♦ The number, sequence and length of fields within each line must agree with the database
definition. If the field length of the text is shorter than defined in the database, the transfer will
be carried out, but dBASE will truncate longer text fields, ignoring excess characters to the
right.

♦ Numeric fields are set to 0 in the database if no value is specified. This enables various
possibilities for data exchange with external programs. Further details are given in the user
manuals for the relevant version of dBASE.

5.3 The structure of a CSV file

Many programs permit the exchange of data in the form of ASCII text; the values are represented
as Comma Separated Values (CSV).

These files are structured very simply:

♦ The file is built up line by line as an ASCII string.

♦ The individual values are separated by commas.

♦ Texts are framed in inverted commas (').

Furthermore, three header lines are available for the definition of field names and data types. A
brief example from the Timeline product (Symantec), which contains data in CSV format, is given
below:

Data exchange using the SDF format 59

-110,5

-120,' Person',' Price' ,'Process','Units','Balance'

-130,1,2,6,6,5

-900,'Brown',150,'Resource','$ per hour','No'

-900,'Moore',100,'Resource','$ per hour','Yes'

-900,'Mi Her',250,'Resource','$ per hour','No'

-900,'Smith',150,'Resource','$ per hour','No'

The structure is very simple. In the first column, there is a negative number, which (specifically
for Timeline) describes the following data in the record. The value -900 indicates useful data,
while smaller values indicate definitions. The number 5 in the first line specifies that all the
following lines have 5 columns. The second line gives the names of the data fields (columns) to be
exported. These names are enclosed in inverted commas and separated by commas. The third line
contains 5 numbers which define the data type of each column. The structure of these field types
is shown below:

Type Remark

1 Text

2 Numeric values (positive or negative)
With decimal point

3 Integers without decimals

(signs allowed)
4 Cardinal values (no sign, no decimals)
5 Logical values (Yes or No)
6 Enumeration

7,9 Date field (start date)
8,10 Date field (end date)

Table 5.2

Field types

This representation is also specific to Timeline.

The data records (indicated by -900) start in the fourth line. All values are separated by
commas. Text must be enclosed in inverted commas ('), and if inverted commas appear in the
text, they must be doubled. The data sequence corresponds to the field names in the file header.
Within a date field, commas may exceptionally appear (for example, 1988, 12, 31, 9, 0 = 31
December 1988, 9:00).

In the case of alphanumeric fields, the fixed field width can be exceeded, and the text will be
truncated on the right. If the text is shorter than the defined column width, this will be ignored.
The field is not padded with spaces. Boolean fields contain the entries Yes or No and are not

60 Database file formats

influenced by the column width. Data in numeric fields are neither truncated nor padded;
complete values are presented.

It should, however, be noted that these definitions are software dependent. The data for other
CSV files may be coded differently.

Spreadsheet formats
File formats discussed in Part 2

LOTUS 1-2-3 WKS/WKl format 62

LOTUS 1-2-3 WK3 format 105

LOTUS 1-2-3 PIC format 146

LOTUS Symphony format 151
Data Interchange format (DIF) 188
Super Data Interchange format (SDI) 200
Standard Interface format (SIF) 209

Symbolic Link format (SYLK) 211

SYLK format extensions for CHART 230

EXCEL Binary Interchange format (BIFF) 252

Spreadsheets use their own formats to store calcidation tables. A
distinction is made between the internal representation of data and
the exchange of this data between various standard programs in DIF.

SYLK and SDIformat.

The various formats are described in this part.

61

LOTUS 1-2-3 WKS/WKl file format

Millions of copies of the spreadsheet program LOTUS 1-2-3 are now in
use. The contents of the calculation tables produced by this
program, including data and calcidation formulas, can all be stored

infiles. Depending on the version of LOTUS (1.0, l.A, 2.01, 2.2 or 3.0), these
files have the extension .WKS, .WK1 or .WK3. This chapter discusses the internal
structure of the WKS/WKl format, which is not widely understood.

6.1 WKS/WKl formats in LOTUS 1-2-3
(up to version 2.01)

Both LOTUS 1-2-3 and the spreadsheet program Symphony store data and calculation formulas in
what are known as binaryfiles. Texts from the spreadsheets are stored in the binary file in ASCII
format. Depending on the versionof the program used, these files have the extensionWKS or WK1.
Although there are some differences between the files in different versions ofLOTUS, they all share
a common record structure, which is also used by Symphony:

<Record type> <Record length> <Data>

The significance of the individual fields is as follows:

The 2-byte record type field defines the record type and determines the structure of the
following data field. For records containing data, this record type can be interpreted as an
opcode for calculations or for the structure of the spreadsheet. Both terms (record type/opcode)
are thus used synonymously. However, the record type field is stored in the Intel format (little
endian); the opcodes vary according to the version of LOTUS.
The 2-byterecord length field specifies the length of the following data field in bytes. The least
significant byte (LSB) is stored first.

62

Lotus 1 -2-3 format 63

♦ The length of the data field depends on the field type. Values, calculation formulas, definitions
of the structure of the spreadsheet and so on, are all stored in this field.

In interpreting a LOTUS or Symphony file of this structure, the individual records can easily be
recognized. Only certain opcodes, which are all upwardly compatible, vary between versions.
Further details of the format described here are given in the spreadsheet shown in Figure 6.1.

Test Spread Sheet

Product Pri ce Di sc. Net

Diskettes 5 1/4 15 10 13.5

Paper 25 7.8 23.05

Fi Les 3.5 5 3.325

Sum

A1:

C1:

C2:

A4:

C4:

D4:

E4:

A5:

A6:

C6:

D6:

E6:

A7:

C7:

D7:

E7:

A8:

C8:

D8:

E8:

A9:

A10

C10

E10

43.5

Formula

Test Spread Sheet

Product

Price

Disc.

Net

Diskettes 51/4

15

10

+C6*(100-D6)/100

'Paper

25

7.8

+C7*(100-D7)/100

' Fi Les

3.5

5

+C8*(100-D8)/100

: 'Sum

: aSUM(C6..C8)

: aSUM(E6..E8)

39.875

Figure 6.1

Test

spreadsheet

64 Spreadsheet formats

The contents of this spreadsheet have been stored as a WKl file and extracts are listed as a
hex-dump in Figure 6.2.

Even without knowing the meaning of individual opcodes, the record structure is easily
recognized. The text that appears in the spreadsheet is stored directly in ASCII strings.

The columns and rows of the spreadsheet are shown in Figure 6.3.
Rows and columns are given letters and numbers only for the convenience of the user.

Internally, LOTUS and Symphony use 16-bit row and column numbers. Each field position can be
unambiguously identified by two numbers. This numbering is also used within the file.

CPU?

RANGE

Cell Pointer

00 00 02 00 06 04 06 00 08 00 00 00 00 00 04 00

— Index
09 00 96 00 18 00 00 00 00 00 09 00 02 00 00 00

I GALCCOUNT

09 00 03 00 03 00 07 00 04 00 03 00 09 00 2F 00

I SPLIT

01 00 01 02 00 01 00 FF 03 00 01 00 00 04 00 01

— WINDOW 1

00 00 05 00 01 00 FF 07 00 20 00 00 00 0A 00 70

00 09 00 08 00 14 00 00 00 00 00 00 00 00 00 00

I HIGHVEG 1

00 00 00 04 00 04 00 48 00 00 00 64 00 20 00 00

[~~ J_ r— TABLE

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 18

00 19 00 00 FF FF 00 00 FF FF 00 00 FF FF 00 00

I 1— Q RANGE

FF FF 00 00 FF FF 00 00 FF FF 00 00 19 00 19 00

FF FF 00 00 FF FF 00 00 FF FF 00 00 FF FF 00 00

|
I 1— P RANGE

UNFOR-

FF FF 00 00 FF FF 00 00 00 1A 00 08 00 00 00 00

MATTED

I — FRANGE

00 04 00 09 00 30 00 01 00 00 1C 00 08 00 FF FF

I SRANGE

00 00 FF FF 00 00 1B 00 08 00 FF FF 00 00 FF FF

Figure 6.2
WKl file

hex-dump
(continues
over...)

Lotus 1 -2-3 format 65

S KAN Oh/

K RANGF1

1 — KRANGE 2

00 00 1D 00 09 00 FF FF 00 00 FF FF 00 00 00 23

I 1 — R RANGES

MATRIX
RANGES

00 09 00 FF FF 00 00 FF FF 00 00 00 67 00 19 00

FF FF 00 0 0 FF FF 00 00 FF FF 00 00 FF FF 00 00

I

FF FF 00 00 FF FF 00 00 00 69 00 28 00 FF FF 00

00 FF FF 00 00 FF FF 00 00 FF FF 00 00 FF FF 00

00 FF FF 00 00 FF FF 00 00 FF FF 00 00 FF FF 00

j — II RANGE

00 FF FF 00 00 20 00 10 00 FF FF 00 00 FF FF 00

I — PARSE
RANGES00 FF FF 00 00 FF FF 00 00 66 00 10 00 FF FF 00

I , — PRO 1 EC I

00 FF FF 00 00 FF FF 00 00 FF FF 00 00 24 00 01

I I — FOOTER

00 00 25 00 F2 00 00 00 00 00 00 00 00 00 00 00

i — HhADLK

00 00 00 00 00 00 00 00 26 00 F2 00 00 00 00 00

I

00 00 00 00 00 00 00 00 00 00 00 00 00 00 27 00

MARGINS

28 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

i

00 00 00 00 00 00 00 00 00 00 28 00 OA 00 04 00

LABEL FMT

I — TITLES

4C 00 48 00 02 00 02 00 29 00 01 00 27 2A 00 10

00 FF FF 00 00 FF FF 00 00 FF FF 00 00 FF FF 00

i
_L
00

I — GRAPH

— LABEL

2D 00 B7 01 FF FF 00 00 FF FF 00 00 FF FF 00

I

00 00 00 00 00 00 71 71 01 00 00 00 OF 00 08 00

I I — LABEL

FF 00 00 00 00 27 20 00 OF 00 18 00 FF 02 00 00

00 27 54 65 73 74 20 53 70 72 65 61 64 20 53 68

' T e s t S p read S h
Figure 6.2
WKl file

hex-dump
(cont.)

66 Spreadsheet formats

K RANOF1

I — K RANGE 2

00 00 1D 00 09 00 FF FF 00 00 FF FF 00 00 00 23

I — R RANGES

MATRIX

— RANGES

00 09 00 FF FF 00 00 FF FF 00 00 00 67 00 19 00

FF FF 00 00 FF FF 00 00 FF FF 00 00 FF FF 00 00

I I
FF FF 00 00 FF FF 00 00 00 69 00 28 00 FF FF 00

00 FF FF 00 00 FF FF 00 00 FF FF 00 00 FF FF 00

00 FF FF 00 00 FF FF 00 00 FF FF 00 00 FF FF 00

I I — H RANGE

00 FF FF 00 00 20 00 10 00 FF FF 00 00 FF FF 00

I I — PARSE
RANGES00 FF FF 00 00 FF FF 00 00 66 00 10 00 FF FF 00

r I . — FKUlbUl

00 FF FF 00 00 FF FF 00 00 FF FF 00 00 24 00 01

\~ I r— KJOlhR

= HEADER

00 00 25 00 F2 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 26 00 F2 00 00 00 00 00

I I — SETUP

00 00 00 00 00 00 00 00 00 00 00 00 00 00 27 00

I
28 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

I . I . — MARGINS

00 00 00 00 00 00 00 00 00 00 28 00 OA 00 04 00

I — TITLES

4C 00 48 00 02 00 02 00 29 00 01 00 27 2A 00 10

|
00 FF FF 00 00 FF FF 00 00 FF FF 00 00 FF FF 00

I

JL
00

1— GRAPH
2D 00 B7 01 FF FF 00 00 FF FF 00 00 FF FF 00

r I ,— LABEL

00 00 00 00 00 00 71 71 01 00 00 00 OF 00 08 00

I I ^ — LABEL

FF 00 00 00 00 27 20 00 OF 00 18 00 FF 02 00 00

I

00 27 54 65 73 74 20 53 70 72 65 61 64 20 53 68

' Test Spread Sh Figure 6.2
WKl file

hex-dump
(cont.)

Lotus 1-2-3 format 67

OB 05 64 00 OC 03 OF 00 OD 00 FF 00 00 07 00 27

46 69 6C 65 73 20 00 OE 00 OD 00 FF 02 00 07 00

Files

00 00 00 00 00 00 OC 40 OD 00 07 00 FF 03 00 07

00 05 00 10 00 24 00 FF 04 00 07 00 9A 99 99 99

99 99 OA 40 15 00 01 FE BF 00 80 05 64 00 01 FF

BF 00 80 OA 04 OB 05 64 00 OC 03 OF 00 32 00 FF

00 00 08 00 27 2D 2D 2D 2D 2D 2D 2D 2D 2D 2D 2D

00 OF 00 OC 00 FF 00 00 09 00 27 53 75 6D 20 20

'Sum

00 10 00 1B 00 FF 02 00 09 00 00 00 00 00 00 CO

45 40 OC 00 02 00 80 FC BF 00 80 FE BF 50 01 03

10 00 1B 00 FF 04 00 09 00 00 00 00 00 00 FO 43

I — EOF

40 OC 00 02 00 80 FC BF 00 80 FE BF 50 01 03 01

00 00 00

Figure 6.2

WKl file

hex-dump
(cont.)

01

02

03

A

User view

BCD E

00

01

02

00

Interna L

01 02

view

03 04

Figure 6.3
Column and row

numbers

68 Spreadsheet formats

6.2 Record types in Lotus 1-2-3 (versions 1.1 to 2.01)

The record types (opcodes) that occur in WKS files, which are used by both LOTUS and Symphony,
are presented below together with the relevant data structures. Each opcode occupies two bytes,

the LSB (least significant byte) being stored first. Later versions of the program always contain the
same opcodes, but a number of new record types have been added.

6.2.1 BOF (Opcode 0000H)

This field type marks the beginning of a valid WKSAVK1 file. The record is structured as follows:

Offset Bytes Remark

OOH 2 Opcode BOF = 0000H

02H 2 Length = 0002H

04H 2 Version number of file format

0404H 1-2-3 WKS format version l.A

0405H Symphony file 1.0
0406H 1-2-3 WKl format version

2.01 and Symphony 1.1
Table 6.1

LOTUS WKS

record structure

(Opcode 0000H)

The 2-byte data field contains the version of the file format. More recent versions of LOTUS
and Symphony continue this numbering system.

6.2.2 EOF (Opcode 0001H)

This record indicates the end of a WKS or WKl file. The record is structured as follows:

Offset Bytes Remark

OOH

02H

2

2

Opcode EOF = 0001H

Length = 0000H

The record is only 4 bytes long. There is no data field.

Table 6.2

LOTUS WKS

record structure

(Opcode 0001H)

Lotus 1 -2-3 format 69

6.2.3 CALC_MODE (Opcode 0002H)

In LOTUS, the user can specify whether recalculation of results is to be carried out automatically
after every entry (default setting) or only after a MANUAL request. The calculation mode is stored
in a record whose structure is as follows:

Offset Bytes Remark

OOH 2 Opcode CALC_M0DE = 0002H

02H 2 Length = 0001H

04H 1 Calculation mode

OOH = Manual recalculation

FFH = Automatic recalculation
Table 6.3

LOTUS WKS

record structure

(Opcode 0002H)

Bydefault, the data byte contains the value FFH for automatic recalculation after every entn

6.2.4 CALC_ORDER (Opcode 0003H)

Each time results are calculated it is possible to select the sequence in which the formulas in the
spreadsheet are to be used. This sequence is saved in a record with the following structure:

Offset Bytes Remark

OOH 2 Opcode CALC_0RDER = 0003H

02H 2 Length = 0001H

04H 1 Recalculation order

OOH = Natural recalculation order

01H = By column

FFH = By row
Table 6.4

LOTUS WKS

record structure

(Opcode 0003H)

In case of calculation by column (code 01H), only the formulas in the relevant column are
processed. LOTUS then begins calculation of the next column.

70 Spreadsheet formats

6.2.5 WINDOW_SPLIT (Opcode 0004H)

LOTUS enables the screen to be split into two halves (horizontal/vertical). A code byte specifying

the mode is stored in a record structured as follows:

Offset Bytes Remark

OOH 2 Opcode window_Spl.it = 0004H

02H 2 Length = 0001H

04H 1 Split window

OOH = No split

01H = Vertical split

FFH = Horizontal split
Table 6.5

LOTUS WKS

record structure

(Opcode 0004H)

By default, the value OOH is stored in the data field. The codes 01H and FFH appear only when
the screen is divided (split).

6.2.6 CURSOR_SYNC (Opcode 0005H)

This field type specifies whether the synchronization of cursor movements within a window is
switched on or off. The structure of the record is shown below:

Offset Bytes Remark

OOH 2 Opcode CURS0R_SYNC = 0005H

02H 2 Length = 0001H

04H 1 Code

OOH = Windows not synchronized

FFH = Windows synchronized

The one-byte data field contains the appropriate code.

Table 6.6

LOTUS WKS

record structure

(Opcode 0005H)

Lotus 1-2-3 format 71

6.2.7 SAVE_RANGE (Opcode 0006H)

In LOTUS, this record specifies the RANGE of cells to be stored in the file; as a rule, the whole
spreadsheet is saved. The following structure applies:

Offset Bytes Remark

OOH 2 Opcode SAVE_RANGE = 0006H

02H 2 Length = 0008H

04H 2 Start column

06H 2 Start row

08H 2 End column

OAH 2 End row
Table 6.7

LOTUS WKS

record structure

(Opcode 0006H)

The top left corner (row/column) and the bottom right corner are specified in the data field. If
the file has been opened via the file save command, all the fields in the spreadsheet will be saved
in the file. With file Xtract, only the cells in the section specified will be saved. In this case, the
section coordinates are entered in the data field. It should be noted that LOTUS defines the

column and row addresses as 16-bit numbers (the LSB being stored first). Empty fields at the end
of a column or row are not taken into account when the cells are stored. If there is no data in the

area described as the range, LOTUS sets the value of the start column in the data field to -1. The

06H record type is generally located directly after the BOF record. This should be particularly noted if
WKS or WKl files are created by external programs.

6.2.8 WINDOW1 (Opcode 0007H)

Two windows can be defined in LOTUS. The setting of the first window (WIND0W1) is stored under

opcode 07H. The record structure is shown in Table 6.8.

The information in the Offset column is in hexadecimal notation. All 16-bit values have the

LSB in the first byte. Record length varies between different versions of LOTUS. LOTUS l.A
creates WKS files with a WIND0W1 data range of 31 bytes (1 FH); the record length of WKl WIND0W1
records from LOTUS 2.01 onwards is 32 bytes (20H). However, as far as I can determine, the bytes

at offset 22 and 23 are unused and set to OOH in all versions.

In the first two words, LOTUS stores the current position of the cursor in the worksheet. One

byte at offset 08H describes the cell format in the worksheet. The structure of this byte is shown in
Figure 6.4. The most significant bit indicates whether the cells within the window are write-
protected, and is coded as shown in Table 6.9a.

72 Spreadsheet formats

Offset Bytes Remark

OOH 2 Opcode WIND0W1 = 0007H
02H 2 Length = 001 FH (WKS files)

0020H (WKl files)
04H 2 Current cursor column

06H 2 Current cursor row

08H 1 Cell format byte
09H 1 Unused (OOH)
OAH 2 Column width

OCH 2 Number of columns (on screen)
OEH 2 Number of rows (on screen)
10H 2 Leftmost column

12H 2 Top row

14H 2 Number of title columns

16H 2 Number of title rows

18H 2 Left column title

1AH 2 Top row title

1CH 2 Border width column

1EH 2 Border width row

20H 2 Windows width

22H 2 Unused (OOH OOH)

Bit 7 6 5 4 3 2 1 0

Bit 7 Function

Protected

Unprotected

Decimals (or format)

Format type

1: Cells protected

Table 6.8

LOTUS WKS

record structure

(Opcode 0007H)

Figure 6.4
LOTUS coding
of the cell

format byte

Table 6.9a

LOTUS coding of
bit 7 of the cell

format byte

Lotus 1 -2-3 format 73

Bits 4-6 contain three-figure binary numbers indicating the type of format to be used for pre
senting the values. The formats available are shown below:

Bits 6 5 4 Format

000 Fixed

001 Scientific notation

010 Currency

011 Percent

100 Comma

101 Free

110 Free

111 Special format Table 6.9b

LOTUS coding of
bits 4-6 of the

cell format byte

For format types 0-6, the remaining bits 0-3 specify the number of decimal places (between 0
and 15). Format type 7 represents a special format which is defined in bits 0-3 (Table 6.10).

Bits 3 2 10 Format

0000 +/-

0001 General format

0010 Date format: day, month, year
0011 Date format: day, month
0100 Date format: month, year
0101 Text formats

0110 Unused

0111 Unused

1000 Unused

1001 Unused

1010 Unused

1011 Unused

1100 Unused

1101 Unused

1110 Unused

1111 Standard Table 6.10

Coding of special
formats in

LOTUS

The remaining words contain additional information on the screen window, such as column
width, number of columns on screen and so on.

74 Spreadsheet formats

6.2.9 COLUMN_WIDTH_1 (Opcode 0008H)

In LOTUS, this record specifies the width of a column in window 1. The structure of the record is
shown below.

Offset Bytes Remark

OOH

02H

04H

06H

2

2

2

1

Opcode C0LUMN_WIDTH_1 = 0008H

Length = 0003H
Column number (16 bits)
Column width

Table 6.11

LOTUS WKS

record structure

(Opcode 0008H)

In the WIND0W1 data record, there is already an entry for the column width. However, this value
applies to all the columns in the spreadsheet, while record 08H is used to indicate the widths of

individual columns. The relevant column number (LSB first) is defined in the first word. The
following byte indicates the width of the column in characters.

The record type is only used if individual columns deviate from the global definition.

6.2.10 WINDOW2 (Opcode 0009H)

In LOTUS, this record saves the setting for the second window. The same record structure applies
as for WIND0W1 (Opcode 07H).

6.2.11 COLUMN_WIDTH_2 (Opcode 000AH)

If a WIND0W2 has been saved, it is possible to enter the column widths individually. These
definitions are saved in the C0LUMN_WIDTH_2 record type (Opcode OAH), which has the same

structure as the C0LUMN_wIDTH_1 record type (Opcode 08H).

6.2.12 NAME (Opcode 000BH)

This record can be used to store the name of a RANGE in LOTUS 1-2-3. The structure is shown in

Table 6.12.

A name can be allocated to each RANGE. This name may be up to 16 characters long and is
stored as an ASCIIZ string (text terminated by OOH) starting in the first data byte. This is followed
by the start and end coordinates of the range. A separate record is required for every range.

Lotus 1-2-3 format 75

Offset Bytes Remark

OOH 2 Opcode NAME = 000BH
02H 2 Length = 0018H (24 bytes)

04H 6 ASCIIZ string containing the name

14H 2 Start column of range
16H 2 Start row of range
18H

1AH

2

2

End column of range
End row of range

Table 6.12

LOTUS WKS

record structure

(Opcode 000BH)

6.2.13 BLANK (Opcode 000CH)

Normally, LOTUS does not store blank cells. This means that protected or formatted blank cells

are actually lost when the file is saved. Record type OCH saves this type of cell. It has the following
structure:

Offset Bytes Remark

OOH

02H

04H

05H

07H

2

2

1

2

2

Opcode BLANK = 000CH
Length = 000 5H

Format byte

Column number

Row number
Table 6.13

LOTUS WKS

record structure

(Opcode 000CH)

In the first data byte, LOTUS stores the format coding (shown in Table 6.9 under the WIND0W1
record). This is followed by two words containing the coordinates for the cell.

6.2.14 INTEGER (Opcode 000DH)

Directly entered integers are transferred from the spreadsheet to the file. The record is structured
as shown in Table 6.14.

This record has 7 data bytes. The first byte contains the numberformat. The coding is shown
in Table 6.9 (see WIND0W1). The following two words indicate the position of the cell containing the
integer value. This is followed by a 16-bit word containing the integer value itself. The highest bit
indicates whether the number is positive (bit = 0) or negative (bit = 1). This allows a range of
values for integers between -32768 and +32767.

76 Spreadsheet formats

Offset Bytes Remark

OOH 2 Opcode INTEGER

02H 2 Length = 0007H

04H 1 Format byte

05H 2 Column number

07H 2 Row number

09H 2 Integer value

000DH

Table 6.14

LOTUS WKS

record structure

(Opcode 000DH)

6.2.15 NUMBER (Opcode OOOEH)

LOTUS uses this record type to save floating point numbers. The structure is shown below:

Offset Bvtes

OOH 2

02H 2

04H 1

05H 2

07H 2

09H 8

Remark

Opcode NUMBER = OOOEH

Length = 000DH (13 data bytes)

Format byte

Column number

Row number

64-bit IEEE floating long real

Offset Bytes Remark

OOH 1 Sign

0 = positive

-1 = negative (-1 = FFH)

2 = Range byte

3 = String byte

01H 2 Exponent: signed integer

03H 8 64-bit unsigned fraction

Table 6.15

LOTUS WKS

record structure

(Opcode OOOEH)

Table 6.16

LOTUS 1-2-3

floating point
number

The record has 13 data bytes, the format of the number being defined in the first byte. The
relevant coding is given in Table 6.9 (see WIND0W1). The position of the cell containing the floating
point value (real value) is indicated in the next two words. These, in turn, are followed by 8 bytes

Lotus 1-2-3 format 77

in which the value is stored as a 64-bit IEEE floating point number. This representation
corresponds to the coding of the 8087 format. Internally, LOTUS uses its own representation, in
which 11 bytes are used for storing the floating point number (Table 6.16). The first byte contains
a value that specifies how the next number is to be interpreted. Codes 2 and 3 are used to indicate
range and string values.

If the cell contains the value ERR, LOTUS 1-2-3 will fill the 11 bytes as shown in Table 6.17.
The first byte is set to 0, and the exponent word to OFFFH. The 8 bytes of the mantissa are set to 0.
The same applies to the code NA (not available), except that the first byte is set to the value -1.

Offset Value

OOH

01H-02H

03H-10H

ERR = 0; NA = -1

2047 = OFFFH

8*0

Table 6.17

Internal

representation

for ERR and NA in

LOTUS 1-2-3

6.2.16 LABEL (Opcode 000FH)

Fixed texts within a spreadsheet are stored as labels by LOTUS. In the WKSAVK1 files, there is a
special record type for storing texts. It is structured as shown below:

Offset Bytes

OOH 2

02H 2

04H 1

05H 2

07H 2

09H 5-240

Remark

Opcode LABEL = 0OOFH

Length = OOxxH
(variable up to 245 bytes)
Format byte
Column number

Row number

ASCIIZ string containing LABEL text Table 6.18

LOTUS WKS

record structure

(Opcode 000FH)

Figure 6.2 shows examples of labels containing text constants (for example, Test Spreadsheet).
The length of the data record is dictated by the length of the label text. The format byte is coded
as shown in Table 6.9.

This is followed by two words containing the column and row numbers. The actual text begins
at offset 09H. It must be terminated by a null byte (OOH) and may have a maximum length of 240
bytes. The length of the field itself may vary between 5 and 245 bytes. The byte at offset 09H
always contains one of the following control characters:

78 Spreadsheet formats

Character Remark

Printer command string 'Parse Lineformat'
Repeating character
Align left
Align right
Centered Table 6.19

Printer control

character in a

label field

The character \ in LOTUS introduces repetitions. However, it is not clear to me when this

character is used because it does not occur in the text labels in the test sample.

6.2.17 FORMULA (Opcode 001 OH)

In LOTUS and Symphony, a cell may contain a calculation formula. The formula is stored in a
record with the opcode 10H, structured as follows:

Offset Bytes Remark

OOH 2 Opcode FORMULA = 001 OH

02H 2 Length = xxxxH
(variable up to 2064 bytes)

04H 1 Format byte

05H 2 Column number

07H 2 Row number

09H 8 Result 64-bit IEEE long real
11H 2 Length of the formula in bytes

13H 15-2048 Formula code (maximum 2048 bytes)
Table 6.20

LOTUS WKS

record structure

(Opcode 001 OH)

The cell format byte is stored in the first data byte, coded as shown in Table 6.9. This is
followed by the coordinates for the cell as two 16-bit values. The result of the calculation formula is
stored at offset 09H, as an 8-byte IEEE double-precision floating point number. The length of the
formula in bytes is stored in the following word. The data field ends with the formula code. The
length of the data field varies between 30 and 2064 bytes, and the formula occupies between 15
and 2048 bytes. LOTUS and Symphony convert a formula into inverse parenthesis-free (Polish)
notation. Each entry in this formula is represented by its own function code and an associated
data field:

Lotus 1 -2-3 format 79

Code,Data field, ,Code,Data field

The one-byte code specifies the type of the operator (variable, constant, brackets, addition and
so on), and is followed by the data for this operator. The relevant coding is shown in Table 6.21.

Code Bytes Remark

OOH 1 Constant

8 64-bit long real

01H 1 Variable

2 Column number (LSB first)
2 Row number (LSB first)

02H 1 Range

2 Start column

2 Start row

2 End column

2 End row

03H 1 End of formula code (return)
04H 1 Parentheses

05H 1 Integer constant

2 16-bit integer value
06H 1 String constant

X ASCIIZ string (variable length)
07H 1 -

08H 1 Unary -

09H 1 Addition +

OAH 1 Subtraction -

OBH 1 Multiplication *
OCH 1 Division /

ODH 1 Exponentiation A

OEH 1 Equals =
OFH 1 Not equal <>
10H 1 Less than or equal <=
11H 1 Greater than or equal >=

12H 1 Less than <

13H 1 Greater than >

14H 1 AND

15H 1 OR

16H 1 NOT

17H 1 Unary +

Table 6.21

Opcodes in a
LOTUS formula

(continues
over...)

80 Spreadsheet formats

Code Bytes Remark

18H-1EH 1 -

1FH 1 SNA (Notapplicable)

20H 1 8ERR (Error)

21H 1 SABS(Absolute value)

22H 1 31NT(Integer value)

23H 1 aSQRT (Square root)

24H 1 3L0G (Base 10)

25H 1 3LN(Natural log)

26H 1 8PI (Constant pi)

27H 1 asIN(Sine)

28H 1 acOS (Cosine)

29H 1 3TAN (Tangent)

2AH 1 3ATAN2 (Arctangent 4th quadrant)

2BH 1 8ATAN (Arctangent 2nd quadrant)

2CH 1 BASIN (Arcsine)

2DH 1 3AC0S (Arccosine)

2EH 1 aEXP (Exponential)

2FH 1 3M0D(X,Y) (Modulus)

30H 1 aCHOOSE

31H 1 aiSNA(x) (x=NATHENl)

32H 1 aiSERR(x) (x=ERRTHENl)

33H 1 3FALSE (Return 0)

34H 1 3TRUE (Return 1)

35H 1 BRAND (Random number 0...1)

36H 1 3DATE (Days since 1.1.1900)

37H 1 3T0DAY (Serial date number)

38H 1 3PMT (Payment)

39H 1 3PV(Present value)

3AH 1 3FV(Future value)

3BH 1 aiF (Boolean)

3CH 1 3DAY (Dayof month)

3DH 1 3M0NTH

3EH 1 3YEAR

3FH 1 3R0UND

40H 1 3TIME

41H 1 3H0UR

42H 1 3MINUTE

43H 1 aSECOND

44H 1 aiSNUMBER

45H 1 aiSSTRING

46H 1 3LENGTH

Table 6.21

Opcodes in a
LOTUS formula

(cont.)

Lotus 1-2-3 format 81

Code Bytes Remark

47H 1 aVALUE

48H 1 3FIXED

49H 1 3MID

4AH 1 aCHR

4BH 1 aAscn

4CH 1 3FIND

4DH 1 3DATEVALUE

4EH 1 3TIMEVALUE

4FH 1 aCELLPOINTER

50H 1 aSUM (Range 1cell 1constant)

51H 1 3AVG (Range 1cell 1constant)

52H 1 aCNT (Range 1cell 1constant)

53H 1 3MIN (Range 1cell 1constant)
54H 1 3MAX (Range 1cell 1constant)

55H 1 3VL00KUP (X,Range,OFFSET)

56H 1 3NPV(Int, Range)

57H 1 3VAR (Range)

58H 1 3STD(Range)

59H 1 3IRR (Guess,Range)

5AH 1 aHLOOKUP (X,Range,Offset)
5BH 1 DSUM (Database function)

5CH 1 AVG (Database function)

5DH 1 DCNT (Database function)

5EH 1 DMIN (Database function)
5FH 1 DMAX (Database function)

60H 1 DVAR (Database function)

61H 1 DSTD (Database function)
62H 1 aiNDEX

63H 1 acoLS

64H 1 3R0WS

65H 1 3REPEAT

66H 1 aUPPER

67H 1 3L0WER

68H 1 3LEFT

69H 1 BRIGHT

6AH 1 3REPLACE

6BH 1 3PR0PER

6CH 1 3CELL

6DH 1 3TRIM

6EH 1 3CLEAN Table 6.21 Opcodes
in a LOTUS formula

(cont.)

82 Spreadsheet formats

Code Bytes Remark

71H 1 aSTREQ

72H 1 aCALL

73H 1 -

74H 1 3RATE

75H 1 3TERM

76H 1 3CTERM

77H 1 3SLN

78H 1 3S0Y

79H 1 3DDB

7AH-9BH 1 -

9CH 1 3AAFSTART

CEH 1 3AAFUNK0WN (1-2-3, V 2.0)
FFH 1 3AAFEND (1-2-3, V 2.0)

6.2.18 TABLE (Opcode 0018H)

This data record is used for storing LOTUS tables. It has the following structure:

Offset Bytes Remark

OOH 2 Opcode LABEL = 0018H
02H 2 Length = 0019H (25 bytes)
04H 1 0 = No table

1 = Table 1

2 = Table 2

05H 2 Table range start column
07H 2 Table range start row
09H 2 Table range end column
OBH 2 Table range end row
ODH 2 Input cell 1 start column
OFH 2 Input cell 1 start row
11H 2 Input cell 1 end column
13H 2 Input cell 1 end row

15H 2 Input cell 2 start column
17H 2 Input cell 2 start row
19H 2 Input cell 2 end column
1BH 2 Input cell 2 end row

Table 6.21

Opcodes in a
LOTUS formula

(cont.)

Table 6.22

LOTUS WKS

record structure

(Opcode 0018H)

Lotus 1-2-3 format 83

Two data tables are stored in LOTUS, but the exact meaning of the data structure is not known.

6.2.19 QUERY_RANGE (Opcode 0019H)

This data record is used to store data from a QUERY range. The format of the data record is as
follows:

Offset Bytes Remark

OOH 2 Opcode QUERY_RANGE = 0019H
02H 2 Length = 0019H (25 bytes)
04H 2 Input range start column
06H 2 Input range start row
08H 2 Input range end column
OAH 2 Input range end row
OCH 2 Output range start column
OEH 2 Output range start row
10H 2 Output range end column
12H 2 Output range end row
14H 2 Criteria start column

16H 2 Criteria start row

18H 2 Criteria end column

1AH 2 Criteria end row

1CH 1 Command code

0 : No command

1 : Find command

2 : Extract command

3 : Delete command

4 : Unique command

Further information on the record structure is not available.

6.2.20 PRINTJRANGE (Opcode 001AH)

Table 6.23

LOTUS WKS

record structure

(Opcode 0019H)

This data record is used to store data from a PRINT range. The record is structured as shown in
Table 6.24.

This record contains the coordinates of a spreadsheet extract to be printed. Everycell shown in
the window will be printed when the print command is issued.

84 Spreadsheet formats

Offset Bytes Remark

OOH 2 Opcode PRINT_RANGE = 001AH
02H 2 Length = 0008 H
04H 2 Start column

06H 2 Start row

08H 2 End column

OAH 2 End row
Table 6.24

LOTUS WKS

record structure

(Opcode 001 AH)

6.2.21 SORT_RANGE (Opcode 001BH)

This data record is used to store the data from a SORT range. The format is shown in Table 6.25.
The record contains the coordinates of a spreadsheet area to be sorted.

Offset

OOH

02H

04H

06H

08H

OAH

Bytes

2

2

2

2

2

2

Remark

Opcode S0RT_RANGE = 001BH

Length = 0008H
Start column

Start row

End column

End row
Table 6.25

LOTUS WKS

record structure

(Opcode 001 BH)

6.2.22 FILL_RANGE (Opcode 001CH)

This data record is used for storing the data within a FILL range. The record is structured as follows:

Offset Bytes Remark

OOH 2 Opcode FILL_RANGE

02H 2 Length = 0008H
04H 2 Start column

06H 2 Start row

08H 2 End column

OAH . 2 End row

001 CH

Table 6.26

LOTUS WKS

record structure

(Opcode 001 CH)

Lotus 1-2-3 format 85

The record contains the coordinates of a section of the spreadsheet that is to be filled with data.

6.2.23 KEY_RANGE1 (Opcode 001DH)

This data record is used to store the data within a SORT KEY range. The record is structured as follows:

Offset Bytes Remark

OOH 2 Opcode KEY_RANGE1 = 001 DH
02H 2 Length = 0009H
04H 2 Start column

06H 2 Start row

08H 2 End column

OAH 2 End row

OCH 1 Search order

OOH: descending

•• •"• -"'•• '•:'• .

FFH: ascending
Table 6.27

LOTUS WKS

record structure

(Opcode 001 DH)

In this data record, a section of the spreadsheet is defined. The cells within this section are
sorted according to the primary key, in ascending or descending order.

6.2.24 H_RANGE (Opcode 0020H)

This data record is used to store the internal data within a range (distribution range). The format
of the record is as follows:

Offset Bytes Remark

OOH 2 Opcode H_RANGE = 0020H
02H 2 Length = 001 OH (16 bytes)
04H 2 Value range start column
06H 2 Value range start row
08H 2 Value range end column
OAH 2 Value range end row
OCH 2 Binary range start column
OEH 2 Binary range start row

10H 2 Binary range end column
12H 2 Binary range end row

The exact meaning of this data record is not known.

Table 6.28

LOTUS WKS

record structure

(Opcode 0020H)

86 Spreadsheet formats

6.2.25 KEY_RANGE2 (Opcode 0023H)

This data record is used to store a KEY2 range. The format of the record is shown below:

Offset Bytes Remark

OOH 2 Opcode KEY_RANGE2 = 0023H
02H 2 Length = 0009H
04H 2 Start column

06H 2 Start row

08H 2 End column

OAH 2 End row

OCH 1 Search order

OOH: descending
FFH: ascending

Table 6.29

LOTUS WKS

record structure

(Opcode 0023H)

A section of the spreadsheet is defined in this record. The cells in this section are sorted
according to the secondary key.

6.2.26 PROTECT (Opcode 0024H)

LOTUS indicates in this record whether the worksheet is protected or not.

RemarkOffset Bytes

OOH 2 Opcode PROTECT = 0024H

02H 2 Length = 0001H

04H 1 Code

OOH: Protection off

01H: Protection on
Table 6.30

LOTUS WKS

record structure

(Opcode 0024H)

The one-byte data field indicates whether the cells of the worksheet are write-protected or not.

Lotus 1-2-3 format 87

6.2.27 FOOTER (Opcode 0025H)

LOTUS uses this record to store the footer which will appear on the printout. The structure is as

follows:

Offset

OOH

02H

04H

Bytes Remark

2 Opcode FOOTER = 0025H
2 Length = 00F2H

(variable up to 242 bytes)
0-241 ASCIIZ string containing the footer

Table 6.31

LOTUS WKS

record structure

(Opcode 0025H)

At offset 4, there is an ASCIIZ string containing the text of the footer. The entry may be blank
or contain up to 241 characters, (the text must always be terminated by a null byte).

6.2.28 HEADER (Opcode 0026H)

In this record, LOTUS stores the header which will appear on the printout.
At offset 4, there is an ASCIIZ string containingthe text of the header. The entry may be blank

or contain up to 241 characters (the text must alwaysbe terminated by a null byte).

Offset

OOH

02H

04H

Bytes Remark

2 Opcode HEADER = 0026H
2 Length = 00F2H

(variable up to 242 bytes)
0-241 ASCIIZ string containing header

Table 6.32

LOTUS WKS

record structure

(Opcode 0026H)

6.2.29 SETUP (Opcode 0027H)

A set-up text can be defined for each printer used. This text is sent to the printer before printing
starts. The text is saved in a record structured as follows:

88 Spreadsheet formats

Offset Bytes Remark

OOH

02H

04H

2

2

40

Opcode SETUP = 0027H

Length = 0028H (40 bytes)
ASCIIZ string containing

the set-up text

The definition may be blank or contain up to 39 characters.

6.2.30 MARGINS (Opcode 0028H)

Offset Bytes Remark

OOH 2 Opcode MARGINS = 0028H

02H 2 Length = 000AH

04H 2 Left margin

06H 2 Right margin

08H 2 Page length

OAH 2 Top margin

OCH 2 Bottom margin

Table 6.33

LOTUS WKS

record structure

(Opcode 0027H)

Table 6.34

LOTUS WKS

record structure

(Opcode 0028H)

In this record, LOTUS stores information on the margins which will appear on the printout.
This information can be used to align the printed document.

6.2.31 LABEL_FORMAT (Opcode 0029H)

In this record, LOTUS stores details of label alignment. The relevant coding is shown in the
following table:

Lotus 1-2-3 format 89

Offset Bytes Remark

OOH

02H

04H

2

2

1

Opcode LABEL_F0RMAT =

Length = 0001H
Alignment

27H Left

22H Right

5EH Centered

= 0029H

Table 6.35

LOTUS WKS

record structure

(Opcode 0029H)

Labels are printed left-justified, right-justified or centered, according to the code byte.

6.2.32 TITLES (Opcode 002AH)

This data record is used to store margin dimensions. Fields are selected using the titles command.
However, the precise meaning of this definition is not known.

Offset Bytes Remark

OOH 2 Opcode TITLES = 002AH
02H 2 Length = 001 OH (16 bytes)
04H 2 Row margin start column
06H 2 Row margin start row
08H 2 Row margin end column
OAH 2 Row margin end row
OCH 2 Column margin start column
OEH 2 Column margin start row
10H 2 Column margin end column
12H 2 Column margin end row

6.2.33 GRAPH (Opcode 002DH)

LOTUS stores the definitions required to produce graphs in this data record.

Table 6.36

LOTUS WKS

record structure

(Opcode 002AH)

90 Spreadsheet formats

Offset Bytes Remark

00 / OOH 2 Opcode GRAPH = 002DH
02 / 02H 2 Length = 01B5H (437 bytes)
04 / 04H 2 X Range Start column

06 / 06H 2 Start row

08 / 08H 2 End column

10 / OAH 2 End row

12 / OCH 2 A Range Start column

14 / OEH 2 Start row

16 / 10H 2 End column

18 / 12H 2 End row

20 / 14H 2 B Range Start column

22 / 16H 2 Start row

24 / 18H 2 End column

26 / 1AH 2 End row

28 / 1CH 2 C Range Start column

30 / 1EH 2 Start row

32 / 20H 2 End column

34 / 22H 2 End row

36 / 24H 2 D Range Start column

38 / 26H 2 Start row

40 / 28H 2 End column

42 / 2AH 2 End row

44 / 2CH 2 E Range Start column

46 / 2EH 2 Start row

48 / 30H 2 End column

50 / 32H 2 End row

52 / 34H 2 F Range Start column

54 / 36H 2 Start row

56 / 38H 2 End column

58 / 3AH 2 End row

60 / 3CH 2 A Labels Start column

62 / 3EH 2 Start row

64 / 40H 2 End column

66 / 42H 2 End row

68 / 44H 2 B Labels Start column

70 / 46H 2 Start row

72 / 48H 2 End column

74 / 4AH 2 End row

76 / 4CH 2 C Labels Start column

78 / 4EH 2 Start row

80 / 50H 2 End column

82 / 52H 2 End row

Table 6.37

LOTUS WKS

record structure

(Opcode 002DH)
(continues
over...)

Lotus 1-2-3 format 91

Offset Bytes Remark

84 / 54H 2 D Labels Start column

86 / 56H 2 Start row

88 / 58H 2 End column

90 / 5AH 2 End row

92 / 5CH 2 E Labels Start column

94 / 5EH 2 Start row

96 / 60H 2 End column

98 / 62H 2 End row

100/ 64H 2 F Labels Start column

102/ 66H 2 Start row

104/ 68H 2 End column

106/ 6AH 2 End row

108/ 6CH 1 Graph type OOH = XY-graph

01H = Bar graph

02H = Pie chart

04H = Lines

05H = Stacked bars

109/ 6DH 1 Grid type OOH = None

01H = Horizontal

02 H = Vertical

03H = Both

110/ 6EH 1 Color OOH = Black and white

FFH = Color

111/ 6FH 1 A Range line format

OOH = No lines

01 H = Line

02H = Symbol

03H = Line + Symbol

112/ 70H 1 B Range line format

OOH = No lines

01H = Line

02H = Symbol

03 H= Line + Symbol

113/ 71H 1 C Range line format

OOH = No lines

01H = Line

02 H = Symbol

03H = Line + Symbol

Table 6.37

LOTUS WKS

record structure

(Opcode 002DH)
(cont.)

92 Spreadsheet formats

Offset Bytes Remark

114/ 72H 1 D Range Line format

OOH = No lines

01H = Line

02H = Symbol

03H = Line + Symbol

115/ 73H 1 E Range line format

OOH = No lines

01H = Line

02 H= Symbol

03 H = Line + Symbol

116/ 74H 1 F Range Line format
OOH = No lines

01H = Line

02H = Symbol

03 H= Line + Symbol

117/ 75H 1 A Range data label alignment

OOH = Center

01H = Right

02 H = Below

03H = Left

04H = Above

118/ 76H 1 B Range data label alignment

OOH = Center

01H = Right

02 H = Below

03 H = Left

04H = Above

119/ 77H 1 C Range data label alignment

OOH = Center

01H = Right

02 H = Below

03H = Left

04 H = Above

120/ 78H 1 D Range data label alignment

OOH = Center

01H = Right

02 H = Below

03H = Left

04 H = Above

Table 6.37

LOTUS WKS

record structure

(Opcode 002DH)
(eonf.)

Lotus 1-2-3 format 93

Offset Bytes Remark

121/ 79H 1 E Range data label alignment
OOH = Center

01H = Right

02 H = Below

03 H = Left

04H = Above

122/ 7AH 1 F Range data label alignment

OOH = Center

01H = Right

02 H = Below

03H = Left

04H = Above

123/ 7BH 1 Scale OOH = Automatic

FFH = Manual

124/ 7CH 8 X-axis lower limit

64-bit IEEE float

132/ 84H 8 X-axis upper limit

64-bit IEEE float

140/ 8CH 1 Y-scale OOH = Automatic

FFH = Manual

141/ 8DH 8 Y-axis lower limit

64-bit IEEE float

149/ 95H 8 Y-axis upper limit

64-bit IEEE float

157/ 9DH 40 Text first title (40 characters)
197/ C5H 40 Text second title (40 characters)
237/ EDH 40 Text X-axis (40 characters)

277/115H 40 Text Y-axis (40 characters)
317/13DH 20 Legend A-axis (20 characters)
337/151H 20 Legend B-axis (20 characters)
357/165H 20 Legend C-axis (20 characters)
377/179H 20 Legend D-axis (20 characters)
397/18DH 20 Legend E-axis (20 characters)
417/1A1H 20 Legend F-axis (20 characters)
437/1B5H 1 X format (text)
438/1B6H 1 Y format (text)

439/1B7H 2 Skip factor

Table 6.37

LOTUS WKS

record structure

(Opcode 002DH)

(conf.)

This table contains all the information required to create a graph in LOTUS format.

94 Spreadsheet formats

6.2.34 NAMED_GRAPH (Opcode 002EH)

LOTUS uses this record to store the definitions of a current graph, if the graph has a name.

Offset Bytes Remark

00 / OOH 2 Opcode NAMED_GRAPH = 002EH

02 / 02H 2 Length = 01C5H (453 bytes)

04 / 04H 16 Name (ASCIIZ string)

04 / 04H 2 X Range Start column

06 / 06H 2 Start row

07 / 08H 2 End column

10 / OAH 2 End row

12 / OCH 2 A Range Start column

14 / OEH 2 Start row

16 / 10H 2 End column

18 / 12H 2 End row

20 / 14H 2 B Range Start column

22 / 16H 2 Start row

24 / 18H 2 End column

26 / 1AH 2 End row

28 / 1CH 2 C Range Start column

30 / 1EH 2 Start row

32 / 20H 2 End column

34 / 22H 2 End row

36 / 24H 2 D Range Start column

38 / 26H 2 Start row

40 / 28H 2 End column

42 / 2AH 2 End row

44 / 2CH 2 E Range Start column

46 / 2EH 2 Start row

48 / 30H 2 End column

50 / 32H 2 End row

52 / 34H 2 F Range Start column

54 / 36H 2 Start row

56 / 38H 2 End column

58 / 3AH 2 End row

Table 6.38

LOTUS WKS

record structure

(Opcode 002EH)

(continues
over...)

_
A

A
SO

SO
s
o

s
o

•
o

0
0

o
o

0
0

C
o

o
o

-v
l

-s
l

-v
l

-N
|

-N
l

C
N

C
N

o
O

O
O

—
*

—
*

o
o

o
o

o
o

0
0

o
4>

-
r
\
j

a
0

0
O

s
*

-
r
\j

o
0

0
O

J
f~

t
o

a
0

0
o

4>
-

r\
>

o
—

a
O

s
o

0
0

o
*

>
t
o

o
V

5
^

s
.

~
^

^
^

•»
*»

*
-
•

*•
»*

~
-

^
—

*
^

^
—

"
~

-
"
-
-

~
-

^
-
«

»
-
s
*

*"
"»

-
-

^
~

~
~

—
*

"
>

~
~

~
-

*
»

*
.

*
">

o
o

o
o

o
O

o
o

o
o

-
U

l
u

i
U

l
u

i
U

l
U

l
U

l
U

l
-P

-
•P

-
4

>
4

>
4

>
4

>
4

>
4

^
O

J
O

J
l-

T

-
n

m
o

o
3

>
0

0
o

*
-

t
o

o
m

o
3

>
c
o

o
4

>
IN

J
a

m
o

>
0

0
t>

4
>

r
o

O
m

n

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

H
J

h
-»

1
—

'
1—

»
t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

C
O

l
o

t
o

C
O

>
o

Q
o

*
n

W
a

o
C

O
>

Jf
l

53
o_

24
p

r*
t
-

—
f

r*
r

re

8
o"

C
-

ts
p

g
p

p
p

p
3

>
-!

r
t

3
"

~
—

0
"

3
"

—
a

*
£2

(J
O

.
*-

<
c
_

c
c
_

c
^

C
_

re
_

M

re
•a

•
<

s
.

X
X

en
x
"

5T
?

r

3
?

re
—

3 re
re

o
o

o
o

>
-
n

t
l

o
a

o
a

o
a

o
o

o
o

re
r
.

»
~

s.
m

tS
C

O
C

O
r
^

—
Z

K
D

O
W

M
c
o

C
O

—
.

&
)

s
o

C
O

—
—

SO
.

C
O

O
J

r\
>

-
»

o
o

-
n

o
U

J
t
o

o
m

*
~

C
M

-
»

o
3

& -
1

3 P
L

3 a
.

r
^

f
t
-

3 a
.

3 3
-

r
t

—
r

3 3
-

3 a
.

r
t

t
-
t

3
^

r
^

3
3 3

-

r
t

X
X

X
X

3 p r
t

X
X

x
X

X
X

X
X

X
X

—
C

L
C

L
-i

g
P -
1

p
P -
1

P
P

3
.

p
P

P
p

II
II

II
II

II
II

II
II

II
ll

II
II

II
II

II
-
1 O =
5

O

0
O 1 3

~
,

o
r
t
-

r
t

~
.

O
>

->
o

r
t

>
i

o
>

-i
O

r
-
r

LineSymbolLine+S

0 5
'

re 0
9

to p* o v
r

p 3

C
O

O
H c 3

-

St S
'

o 3

3 o 3 re

C
O

o — ct

BargrapPiechar
Lines

s (T
O

.
—

.

P •d

c 3 3 3

0 3
0 3 3

0 <

O 0 i 3 3

0

3 § 3

-
1 0

re o 1 3

0
0 3 3 3

*
l

o
o 3" 3 3

o
c 3 3 3

--
* o

c 0 3
"

3 3

0
c 3 3 3

0
o o 3

•<
a
.

s_
—

""
tr

3
"

3 o

3 3-
'

re

8 a

—
•

o
.

r
r

co
os

3
S

!
!*

•
o

-
?

s
im

2.
c
c

S
p

re
ad

sh
ee

ts

o r
-
t-

c i U
l

96 Spreadsheet formats

Offset Bytes Remark

112/ 70H 1 B Range line format

OOH = No lines

01H = Line

02H = Symbol

03H = Line + Symbol

113/ 71H 1 C Range line format

OOH = No lines

01H = Line

02 H= Symbol

03H = Line + Symbol

114/ 72H 1 D Range Line format

OOH = No lines

01H = Line

02 H= Symbol

03 H = Line + Symbol

115/ 73H 1 E Range line format

OOH = No lines

01H = Line

02 H = Symbol

03 H= Line + Symbol

116/ 74H 1 F Range Line format

OOH = No lines

01H = Line

02 H= Symbol

03H = Line + Symbol

117/ 75H 1 A Range data label alignment

OOH = Center

01H = Right

02 H = Below

03H = Left

04H = Above

118/ 76H 1 B Range data label alignment

OOH = Center

01H = Right

02 H = Below

03H = Left

04H = Above

Table 6.38

LOTUS WKS

record structure

(Opcode 002EH)
(cont.)

Lotus 1-2-3 format 97

Offset Bytes Remark

119/ 77H 1 C Range data label alignment

OOH = Center

01H = Right

02 H = Below

03H = Left

04H = Above

120/ 78H 1 D Range data label alignment

OOH = Center

01H = Right

02 H = Below

03H = Left

04 H = Above

121/ 79H 1 E Range data label alignment

00H= Center

01H = Right

02 H = Below

03H = Left

04 H = Above

122/ 7AH 1 F Range data label alignment

OOH = Center

01 H= Right

02 H = Below

03H = Left

04H = Above

123/ 7BH 1 Scale

OOH = Automatic

FFH = Manual

124/ 7CH 8 X-axis lower limit

64-bit IEEE float

132/ 84H 8 X-axis upper limit

64-bit IEEE float

140/ 8CH 1 Y-scale

OOH = Automatic

FFH = Manual

141/ 8DH 8 Y-axis lower limit

64-bit IEEE float

Table 6.38

LOTUS WKS

record structure

(Opcode 002EH)
(cont.)

98 Spreadsheet formats

Offset Bytes Remark

149/ 95H 8 Y-axis upper limit

64-bit IEEE float

157/ 9DH 40 Text first title (40 characters)
197/ C5H 40 Text second title (40 characters)

237/ EDH 40 Text X-axis (40 characters)

277/115H 40 Text Y-axis (40 characters)

317/13DH 20 Legend A-axis (20 characters)

337/151H 20 Legend B-axis (20 characters)
357/165H 20 Legend C-axis (20 characters)

377/179H 20 Legend D-axis (20 characters)
397/18DH 20 Legend E-axis (20 characters)

417/1A1H 20 Legend F-axis (20 characters)
437/1B5H 1 X format (text)

438/1B6H 1 Y format (text)

439/1B7H 2 Skip factor
Table 6.38

LOTUS WKS

record structure

(Opcode 002EH)
(cont.)

This table contains all the information required to create a graph in LOTUS format, including
its name. The structure is therefore identical to Table 6.37 except for the additional field

containing the 16-character name.

6.2.35 CALC_COUNT (Opcode 002FH)

In this record, LOTUS stores information on how often a calculation (iteration) is to be carried out.

Offset Bytes Remark

OOH 2 Opcode CALC_C0UNT

02H 2 Length = 0001H

04H 1 Iteration counter

002FH

Table 6.39

LOTUS WKS

record structure

(Opcode 002FH)

Lotus 1 -2-3 format 99

6.2.36 UNFORMATTED (Opcode 0030H)

This record contains information on whether the printed document is to be formatted or not.

Offset Bytes Remark

OOH

02H

04H

2

2

1

Opcode UNFORMATTED = 0030H
Length = 0001H
Format code:

OOH = Formatted

01H = Unformatted
Table 6.40

LOTUS WKS

record structure

(Opcode 0030H)

The default setting is unformatted.

6.2.37 CURSOR_WINDOW_1_2 (Opcode 0031H)

This data record defines the window of the spreadsheet (Window 1 or Window 2) in which the
cursor is currently located. The record is structured as follows:

Offset Bytes Remark

OOH

02H

04H

2

2

1

Opcode CURS0R_WIND0W_1_2 = 0031H
Length = 0001H

Format code:

01H = Cursor in WINDOW 1

02H = Cursor in WINDOW 2 Table 6.41

LOTUS WKS

record structure

(Opcode 0031H)

This information is only relevant if the screen is in split-screen mode, that is, if it is divided into
sections.

6.2.38 WKS_PASSWORD (Opcode 004BH)

This record is used for decoding an encrypted worksheet. The record type is supported in LOTUS
1-2-3 from version 2.0 onwards and in Symphony.

100 Spreadsheet formats

Offset Bytes Remark

OOH

02H

04H

2

2

4

Opcode WKS_PASSW0RD = 004BH

Length = 0004H
Password

The precise meaning of this record is not known.

6.2.39 HIDDEN_VECTOR1 (Opcode 0064H)

Offset Bytes Remark

OOH

02H

04H

2

2

32

Opcode HIDDEN_VECT0R1 = 0064H

Length = 0020H (32 bytes)
Bit field

Table 6.42

LOTUS WKS

record structure

(Opcode 004BH)

Table 6.43

LOTUS WKS

record structure

(Opcode 0064H)

This data record contains 32 bytes, representing 256 individual bits. One column of the
worksheet is assigned to each bit. A hidden column is involved if the bit is set to 1, that is, the
column is not visible. The bit field is arranged so that the LSB is stored first. Bit 0 in byte 0 relates
to the first column. This function is available from LOTUS 1-2-3, version 2.0 onwards. If the

screen is split, the bits relate only to the columns in WINDOW 1.

6.2.40 HIDDEN_VECTOR2 (Opcode 0065H)

This data record also contains 32 bytes representing 256 individual bits. By contrast with the
HIDDEN_VECT0R1 record described above, one column of the worksheet that appears in WINDOW 2 is
allocated to each bit. If a bit is set to 1, a hidden column is involved, that is, the column is not

visible.

Lotus 1-2-3 format 101

Offset Bytes

OOH 2

02H 2

04H 32

Remark

Opcode HIDDEN_VECT0R2 = 0065H

Length = 0020H (32 bytes)
Bit field

Table 6.44

LOTUS WKS

record structure

(Opcode 0065H)

The bit field is arranged so that the LSB is stored first. Bit 0 in byte 0 refers to the first column.
The function is available from LOTUS 1-2-3, version 2.0 onwards. The values are valid only if the
screen is in split mode, that is, divided into sections.

6.2.41 PARSE_RANGES (Opcode 0066H)

This record contains 16 bytes, which are used from version 2.0 of LOTUS 1-2-3 onwards. The
following format applies:

Offset Bytes Remark

OOH 2 Opcode PARSE_RANGES = 0066H
02H 2 Length = 001 OH (16 bytes)
04H 2 Parse input range start column
06H 2 Start row

08H 2 End column

OAH 2 End row

OCH 2 Parse output range start column
OEH 2 Start row

10H 2 End column

12H 2 End row

The exact meaning of this record is not known.

Table 6.45

LOTUS WKS

record structure

(Opcode 0066H)

102 Spreadsheet formats

6.2.42 REGRESS_RANGES (Opcode 0067H)

This record contains 25 data bytes, which are used from version 2.0 of LOTUS 1-2-3 onwards. The
record defines the data range for the evaluation of linear regressions.

Offset Bytes Remark

OOH 2 Opcode REGRESS_RANGES = 0067H
02H 2 Length = 0019H (25 bytes)

Linear regression range
04H 2 Start column

06H 2 Start row

08H 2 End column

OAH 2 End row

Dependent variable range
OCH 2 Start column

OEH 2 Start row

10H 2 End column

12H 2 End row

Output range
14H 2 Start column

16H 2 Start row

18H 2 End column

1AH 2 End row

1CH 1 Zero intercept flag
0 = Zero intercept

-1 = Intercept at origin (FFH)
Table 6.46

LOTUS WKS

record structure

(Opcode 0067H)

Lotus 1-2-3 format 103

6.2.43 MATRIX_RANGES (Opcode 0069H)

This record contains 40 data bytes, which are used from version 2.0 of LOTUS 1-2-3 onwards. The
following format applies:

Offset

OOH

02H

04H

06H

08H

OAH

Bytes Remark

Opcode MATRIX_RANGES = 0069H

Length = 0028H (40 bytes)
Matrix inversion source

Start column

Start row

End column

End row

Offset Bytes Remark

Matrix inversion destination

OCH 2 Start column

OEH 2 Start row

10H 2 End column

12H 2 End row

Matrix multicand range
14H 2 Start column

16H 2 Start row

18H 2 End column

1AH 2 End row

Matrix multiplier range
1CH 2 Start column

1EH 2 Start row

20H 2 End column

22H 2 End row

Matrix product range
24H 2 Start column

26H 2 Start row

28H 2 End column

2AH 2 End row

This record defines the data range for matrix calculations.

Table 6.47

LOTUS WKS

record structure

(Opcode 0069H)
(continues
over...)

Table 6.47

LOTUS WKS

record structure

(Opcode 0069H)
(cont.)

104 Spreadsheet formats

6.2.44 CELL_PTRJNDEX (Opcode 0096H)

From LOTUS 1-2-3, version 2.0, this record contains the cell pointer index, which is structured as

shown in Table 6.48. The record contains a list of columns with active cells. The exact meaning of
this record is not known.

In version 2.2, LOTUS 1-2-3 uses the same record structure as in version 2.01. A number of

new functions are introduced, but their structure is not known at present.

Offset Bytes Remark

OOH

02H

04H

06H

08H

2

2

2

2

2

Opcode CELL_PTR_INDEX = 0096H

Length = 0006H

Column number (integer)
Row number of lowest active cell

Row number of highest active cell
Table 6.48

LOTUS WKS

record structure

(Opcode 0096H)

7.1

LOTUS 1-2-3 WK3 record

Lotus 1-2-3 version 3.x provides many extensions
(for example, three dimensional tables) which

J thefile format must reflect. Lotus 1-2-3 uses WK3
files for the calculation sheet and additional files for
worksheetformatting.

Lotus 1-2-3 WK3 File Format

LOTUS 1-2-3 version 3.x uses an extended format to store the new record types. The structure of

this format is similar to the older WKl format. Each record contains a header and a stream of data

bytes (Figure 7.1).

1 Ope ode

1— Record Length

r- Data

2 2 n

Figure 7.1
Structure

of WK3 records

The first word contains the opcode used to identify the record type. The next word defines the
length of the following data area. The various data records will be discussed in the following pages.

105

106 Spreadsheet formats

| All values in WK3 format are stored according to the Intel convention. The offset column
y in the tables always contains hexadecimal values. Other values are defined as decimal
• values.

LOTUS 1-2-3 stores the records in a predefined order in the WK3 file. Figure 7.2 shows a hex-
dump of a WK3 file.

-BOF

- CPA

- CALCSET

00 00 1A 00 00 10 04 00-00 00 00 00 05 00 00 00

|

01 00 00 00 01 0A 00 00-00 00 00 00 00 00 1F 00

I
08 00 00 00 01 01 01 00-05 00 03 00 06 00 01 00

r~
00 00 01 00 04 00 1C 00-02 01 01 00 00 00 02 1D

12 04 04 00 00 00 06 1D-36 1A 04 00 66 CA 02 00

.... r

01 00 00 00

Figure 7.2
Hex-dump

of a WK3 file

From LOTUS 1-2-3 version 3.0 onwards, it has been possible to divide the calculation table into

several worksheets. This structure must be recognized when the cells are being addressed. The

following pages describe the structure of WK3 data records.
Worksheets are numbered from 0 (sheet A) to 256. The column range is 0 to 255, and the row

range 0 (Row 1) to 65535.

7.1.1 BOF (Opcode 0000H)

This beginning offile record contains the WK3 file signature and some information about the
active worksheet range. Its structure is as follows:

LOTUS 1-2-3 WK3 format 107

Offset Bytes Field description

OOH 2 Opcode BOF = 0000H (version 3.x)

02H 2 Length = 26 (001 AH)
04H 2 File revision code (1000H)

06H 2 File revision subcode (0004H)

08H 4 Active worksheet range start

2-byte row

1-byte worksheet
1-byte column

OCH 4 Active worksheet range end
2-byte row

1-byte worksheet
1-byte column

10H 2 Counter

12H 2 Reserved (OOH OOH)

14H 1 LMBCS group number for the table
15H 1 Flag field
16H 8 Start of range/End of range

lead byte Table
Table 7.1

LOTUS WKS

record structure

(Opcode 0096H)

The BOF record contains 26 bytes and is longer than in WKl format. The first two bytes define a
signature (version code). LOTUS products use the signatures shown in Table 7.2.

Code

0404

0406

1000

0600

8007

0405

0406

Version

LOTUS 1-2-3 version 1A (WKS)

LOTUS 1-2-3 version 2.0 to 2.2 (WKl)

LOTUS 1-2-3 version 3.0 (WK3)

LOTUS 1-2-3/J (WJ1)
LOTUS 1-2-3 version 2.0 (FRM)

Symphony 1.0/1.01 (WRK)

Symphony 1.1/1.2/2.0 (WRI)
Table 7.2

Version codes for

LOTUS products

LOTUS 1-2-3 version 3 defines the file revision subcode (offset 06H) as 0004H.
The two 4-byte values (offset 8) use the data type CELLCOORD and define the beginning (start of

range) and the end (end of range) of the active worksheet.

108 Spreadsheet formats

The word at offset 16 (10H) contains a counter which is set to 0 when the file is created. Each

write access to the file increments the counter by 1. The counter will wrap around when it
overflows.

The word at offset 18 (12H) is reserved and is set to 00 00.

7.1.1.1 Multibyte Character Set (LMBCS)

The byte at offset 14H contains the LMBCS group number. LOTUS uses several character codes
within one worksheet (ASCII, special characters, German umlaut, Japanese Kanji characters, and
so on). These character sets are defined in the specifications for the LOTUS Multibyte Character
Set (LMBCS).134

♦ Code OOH is defined as a string terminator.

♦ All characters between 1 and 31 start a multibyte character sequence.

♦ Character codes between 32 and 128 define the US ASCII character set.

♦ The codes between 129 and 255 are used for optimized local character sets.

All strings that start with a code between 1 and 31, refer to LMBCS tables. These tables are
grouped from 1 to 31, like DOS code.

♦ The group numbers from 1 to 23 are used for country-specific character sets.

♦ Groups with numbers from 1 to 15 always contain two bytes (1-byte code group, 1-byte charac
ter code).

♦ Group 1 defines the IBM code page 850 (Latin alphabet languages).

♦ Group 2 defines the IBM code page 851 (Greek alphabet and mathematical symbols).

♦ Group 5 defines Cyrillic fonts.

♦ Groups 6 to 15 are undefined.

♦ Groups 16 to 23 are used for three-byte character codes (1-byte code group, 2-byte character
code). Group 16 represents the Japanese Kanji characters.

♦ Groups 19 to 23 are undefined.

♦ Groups 24 to 31 are defined for applications.

The LMBCS tables contain 1-byte characters (US ASCII character set) and 2-byte codes
(international character set). A character code between 31 and 128 should be treated as an ASCII
character. If the character is preceded by a group byte, the character code defines the code in the
table.

To optimize foreign languages, the codes between 128 and 255 are reserved for country-specific
characters. This code group is stored in a separate record.

LOTUS 1 -2-3 WK3 format 109

The byte at offset 20 (14H) in the BOF record defines the LMBCS group number. Offset 21 (15H)
contains a flag byte (see Table 7.3).

Bits Description

01H File was not saved with full IEEE 10-byte

floating point precision
02H Automatic reservation requested

04H Group mode turned on
08H Recalculation flag
FOH Precision bits

Table 7.3

Coding for the
flag byte

If bit 4 (value 08H) is set, LOTUS 1-2-3 will not recalculate after reading the file. If the flag is
off, 1-2-3 will recalculate all formulas while reading the file. If the bit is set but the precision bits
are different from those on the executing platform, 1-2-3 will recalculate all the formulas. Only
LOTUS 1-2-3 can set this bit. The precision bits allow access to files created by LOTUS products
on other system platforms. This setting is calculated using the formula:

18 - significant decimals

LOTUS 1-2-3 version 3.0 uses 18 decimals (all four bits are set to 0). LOTUS 1-2-3/J uses only
15 decimals (the bits are set to 3).

The 8 bytes at offset 22 (16H) define two pointers to the start and the end of the LMBCS table,
respectively.

? This record type is also used in LOTUS 1-2-3 FRM files, but the signature and the content
are different.

7.1.2 EOF (Opcode 0001H)

Offset

OOH

02H

Bytes File description

Opcode EOF = 0001H (version 3.x)
Length = 0 (0000H) Table 7.4

LOTUS WK3

record structure

(Opcode 0001H)

110 Spreadsheet formats

This record has no data fields and the lengthfield is set to zero. The record indicates the logical
end of a LOTUS 1-2-3 file type (WKl, WKS, WK3, FRM, and so on). Data after this record is
ignored by a reader.

7.1.3 PASSWORD (Opcode 0002H)

This record indicates an encrypted WK3 file. Table 7.5 defines the record structure:

Offset Bytes Field description

OOH

02H

04H

2

2

16

Opcode PASSWORD = 0002H

(version 3.x)
Length = 16 (001 OH)

Encrypted password

The data area is a string containing the encrypted password.

Table 7.5

LOTUS WK3

record structure

(Opcode 0002H)

7.1.4 CALCSET (Opcode 0003H)

Table 7.6 defines the structure of the CALCSET record. This record defines the method and order of

calculation and is a combination of the WKl record types 2 and 3.

Offset Bytes Field description

OOH 2 Opcode CALCSET = 0003H
(version 3.x)

02H 2 Length = 6 (0006H)
04H 2 Autocalc flag

0: Manual

1: Automatic (default)
06H 2 Calculation order

0 = Natural order

1 = Column-wise order

2 = Row-wise order

08H 2 Iteration Count (1-50)
Table 7.6

LOTUS WK3

record structure

(Opcode 0003H)

LOTUS 1 -2-3 WK3 format 111

If the autocalc flag is set to manual, 1-2-3 will recalculate the formula only after the user
presses the CALC button. In automatic mode, the recalculation will be carried out every time an
entry has been changed since the last recalculation.

If the calculation order is set to natural, before recalculation, LOTUS 1-2-3 will first recalculate
any formulas on which it depends. Column-wise calculation starts with cell A:A1 in the first active
file. Row-wise calculation starts in cell A:A1 in the first active file and processes the other cells row
by row. The last word contains the iteration counter (1-50).

7.1.5 WINDOWSET (Opcode 0004H)

This record contains information about the windows (1-3) setting at the time the file is saved. The
record structure is shown in Table 7.7.

This record must be stored in a WK3 file. The first byte (offset 4) defines the number of
windows displayed. The next byte indicates the synchronization of the windows. The byte at offset
6 defines the number of the current window. If a window was stored in zoomed mode, the flag at
offset 07H is set to 1. The window offset is computed from the top (window 1) to the bottom
(window 3).

The description of the active windows 1 to 3 starts at offset 8 (08H). This description contains
the number of columns per row, the window height in characters, the window width in characters,
and the left and top edge of the window in characters. The data for windows 2 and 3 are optional.
The WTO file contains only one WINDOWSET record.

Offset Bytes Field description

OOH 2 Opcode WINDOWSET = 0004H

(version 3.x)
02H 2 Length = 28 (001 CH)
04H 1 Number of displayed windows
05H 1 Windows synchronization mode

0: Unsynchronized
1: Synchronized

06H 1 Current window (value 1, 2 or 3)
In perspective mode values are:
0 = Front

1 = Middle

2 = Back

In vertical mode values are:

1 = Left Table 7.7

2 = Right LOTUS WK3

In vertical mode values are:

1 =Top

2 = Bottom

record

structure

(Opcode
0004H)
(continues
over...)

112 Spreadsheet formats

Offset Bytes Field description

07H 1 Window zoomed

0 = No

1 =Yes

OSH 2 Window 1 worksheet offset

OAH 1 Window 1 column count (per row)
OBH 1 Window 1 screen row count

(number of columns in one row)
OCH 1 Window 1 screen column count (in chars)
ODH 1 Window 1 left edge screen column

(in chars)
OEH 1 Window 1 top edge screen row (in chars)
OFH 1 Reserved

10H 2 Window 2 worksheet offset (optional)
12H 1 Window 2 cell column count (optional)
13H 1 Window 2 screen row count (optional)
14H 1 Window 2 screen column count (optional)
15H 1 Window 2 left edge screen row (optional)
16H 1 Window 2 top edge screen row (optional)
17H 1 Reserved

18H 2 Window 3 worksheet offset (optional)
1AH 1 Window 3 cell columns count (optional)
1BH 1 Window 3 screen row count (optional)
1CH 1 Window 3 screen column count (optional)
1DH 1 Window 3 left edge screen column

(optional)
1EH 1 Window 3 top edge screen row (optional)
1FH 1 Reserved

Table 7.7

LOTUS WK3

record structure

(Opcode 0004H)
(cont.)

7.1.6 SHEETCELLPTR (Opcode 0005H)

This record defines a cell pointer, the origin of the window and title information for a worksheet on
which the cell pointer has been moved.

Offset Bytes

OOH

02H 2

04H 1

05H 1

Field description

Opcode SHEETCELLPTR = 0005H
(version 3.x)
Length = 16 (001 OH)
Worksheet offset

Window 2 (horizontal/vertical) i\a£

Table 7.8

LOTUS WK3

record structure

(Opcode 0005H)
(continues
over...)

LOTUS 1-2-3 WK3 format 113

Offset Bytes Field description

0: not Window 2

1: Window 2

06H 2 Reserved

08H 2 Row of cell pointer
OAH 1 Column of cell pointer
OBH 1 Window origin (leftmost column)
OCH 2 Window origin (topmost row)
OEH 2 Topmost row that held a title row
10H 1 Leftmost column that held a title

column

11H 1 Number of title columns

12H 2 Number of title rows

Table 7.8

LOTUS WK3

record structure

(Opcode 0005H)
(cont.)

The first data byte defines the worksheet offset. The next byte flags the orientation of the
windows (horizontal/vertical). The entries at offsets 08H and OAH define a cell pointer (row word,
column byte). The next two entries define the origin of the window: leftmost column (byte) and
topmost row (word). The entries at offsets OEH and 10H describe the title of a worksheet. This

definition is not valid if the number of title columns is set to zero. This record is only needed if a
cell pointer has been moved (from the home position). In a WK3 file multiple entries are allowed.

7.1.7 SHEETLAYOUT (Opcode 0006H)

Table 7.9 describes the sheet layout record, which contains information about the default column
width.

LOTUS 1-2-3 uses this default value for all cells that do not have their own cell width

definition. The word at offset 8 defines the default column width in characters. This record is not

mandatory in a WK3 file, but there can be more than one.

Offset Bytes Field description

OOH 2 Opcode SHEETLAYOUT = 0006H
(version 3.x)

02H 2 Length = 5 (0005H)
04H 1 Worksheet offset

05H 1 Window 2 (horizontal/vertical) flag
0: Not window 2

1: Window 2

06H 2 Reserved

08H 1 Default column width
Table 7.9

LOTUS WK3

record structure

(Opcode 0006H)

114 Spreadsheet formats

7.1.8 COLUMNWIDTH (Opcode 0007H)

This record defines the column width of cells that differ from the default column width in the

SHEETLAYOUT record. The record has a variable length and contains information on a per
worksheet basis as follows:

Offset Bytes Field description

OOH 2 Opcode COLUMNWIDTH = 0007H
(version 3.x)

02H 2 Length = 6—516bytes, step width 2

04H 1 Worksheet offset

05H 1 Window 2 flag
0: Not window 2

1: Window 2

06H 2 Reserved

08H 1 First column offset (start at 0)

09H 1 First column width

OAH 1 Next column offset (optional)
OBH 1 Next column width (optional)

OCH 1 and so on...
Table 7.10

LOTUS WK3

record structure

(Opcode 0007H)

Each column set to a width other than the default value results in a two-byte entry in this
record (offset, column width). A WK3 file can contain multiple COLUMNWIDTH records. The number
of entries should be calculated as: No. = (length - 4)/2.

7.1.9 HIDDENCOLUMN (Opcode 0008H)

This record has a variable length and contains information about hidden columns in a worksheet.
Its structure is defined in Table 7.11.

Offset Bytes Field description

OOH

02H

04H

2

2

1

Opcode HIDDENCOLUMN = 0008H

(version 3.x)
Length = 5-260 bytes, step width 1
Worksheet offset

Table 7.11

LOTUS WK3

record structure

(Opcode 0008H)

(continues

over...)

LOTUS 1-2-3 WK3 format 115

Offset Bytes Field description

05H

06H

08H

09H

OAH

1

2

1

1

1

Window 2 (horizontal/vertical) flag
0: Not window 2

1: Window 2

Reserved

Offset of first hidden column

Offset of second hidden column

and so on...

Table 7.11

LOTUS WK3

record structure

(Opcode 0008 H)
(cont.)

This record indicates the hidden columns in a particular worksheet. Each worksheet defines its
own record. The number of hidden columns can be determined from the length of the record body
(No. = record length - 4). The first column specified in a window must be visible. The column
offsets are calculated from 0.

7.1.10 USERRANGE (Opcode 0009H)

This record is optionaland stores details of user-defined, named ranges (Table 7.12).

Offset Bytes Field description

OOH 2 Opcode USERRANGE = 0009H

(version 3.x)
02H 2 Length = 26-539 bytes, step width 1
04H 2 Range type

0: Regular user range
1: Unknown user range

06H 16 User range name (LMBCS characters)
16H 4 Upper left corner (as cell coordinates)

2-byte row

1-byte worksheet
1-byte column

1AH 4 Lower right corner (as cell coordinates)
2-byte row

1-byte worksheet
1-byte column

1EH n Note for the user range (up to 513 chars) Table 7.12

LOTUS WK3

record structure

(Opcode 0009H)

116 Spreadsheet formats

The coordinates of the user range (offsets 16H, 1AH) are not defined if the range type is 1
(unknown). If a note is defined, the string will be stored as an LMBCS sequence (maximum 513
bytes including a OOH terminator). A WK3 file may contain multiple records.

7.1.11 SYSTEMRANGE (Opcode OOOAH)

This record is optional and contains information about system ranges.

Offset Bytes Field description

OOH 2 Opcode SYSTEMRANGE = OOOAH

(version 3.x)

02H 2 Length = variable

04H 2 Range type

0: Coordinate pair

1: Range alias

06H 16 Name of system range

16H 4 Upper left corner

2-byte row

1-byte worksheet

1-byte column

or range alias, if range type is 1

1AH 4 Lower right corner

2-byte row

1-byte worksheet

1-byte column
Table 7.13

LOTUS WK3

record structure

(Opcode OOOAH)

Cell coordinates will be defined if the range type is set to 0. Otherwise the data at offset 16H is a
range alias. This is an LMBCS string (drive: \path\fi Le.wk3 rangename+OOH) up to 513
characters long.

7.1.12 ZEROFORCE (Opcode 000BH)

This record is optional and defines the force zero intercept flag for /Data Regression. The
structure is defined in Table 7.14.

LOTUS 1-2-3 WK3 format 117

Offset Bytes Field description

OOH 2 Opcode ZEROFORCE = 000BH

(version 3.x)
02H 2 Length = 1 (0001H)
04H 1 Force Zero Intercept Flag

0: Do not force zero intercept
1: Force zero intercept

Only one record per file is allowed.

7.1.13 SORTKEYDIR (Opcode 000CH)

This (optional) record contains the /Data Sort key directions.

Offset Bytes Field description

OOH 2 Opcode SORTKEYDIR = 000CH

(version 3.x)
02H 2 Length = 4-510 bytes, step width 2
04H n*2 1. Sort direction (1 byte)

0: Ascending
1: Descending

FFH: Unused

2. Reserved (1 byte)

Repeated 2-byte entries

for Sort directions

Table 7.14

LOTUS WK3

record structure

(Opcode 000BH)

Table 7.15

LOTUS WK3

record structure

(Opcode 000CH)

The record contains one entry for each sort key. If there is no /Data Sort key defined, there
will be no SORTKEYDIR record in the file. Each /Data Sort key is stored in a 2-byte entry within
the SORTKEYDIR record. Only one record is allowed in each file.

7.1.14 FILESEAL (Opcode 000DH)

This record describes the /Fi Le Admin Seal password. The record structure is defined in Table 7.16.

118 Spreadsheet formats

Offset Bytes Field description

OOH 2 Opcode FILESEAL = 000DH
(version 3.x)

02H 2 Length = 18 (12H)
04H 16 Password

(LMBCS string, 15 characters)
14H 2 Seal type

0: File sealed

1: Reservation setting sealed
Table 7.16

LOTUS WK3

record structure

(Opcode 000DH)

The password is stored as a string (maximum 15 LMBCS characters, zero terminated). Only one

record is allowed in each file.

7.1.15 DATAFILLNUMS (Opcode OOOEH)

This optional record contains the start, step and stop values for /Data Fill areas in a worksheet.

These values fill a range with data. The start, step, and end values are 10-byte real numbers,

whose structure is shown in Figure 7.3.

Offset Bytes Field description

OOH 2 Opcode DATAFILLNUMS = OOOEH
(version 3.x)

02H

04H

2

10

Length = 32 (20H)
Start value TREAL

OEH

18H

10

10

Step value TREAL
End value TREAL

22H 2 Step type
1 = Numeric

2 = Year

4 = Quarter

8 = Month

16 = Week

32 = Day
64 = Hour

128 = Minute

256 = Second
Table 7.17

LOTUS WK3

record structure

(Opcode OOOEH)

LOTUS!-2-3 WK3 format 119

9 8 7

79 78 64 63 62

0 Byte

0 Bits

S Exponent I Mantissa

S = Sign

I = Interbit mantissa
Figure 7.3

Coding of
TREAL number

The exponent contains a BIAS of 3FFFH. The value 0.0 must have exponent = 0, S = 0 or 1 and I
= 0. Values not equal to 0.0 produce an exponent greater than zero and 1 = 1. TREAL numbers can
contain special values (see Table 7.18).

Type Bytes 9-8 Bytes 7-0

Number

Blank

ERR

NA

String

0-FFFEH

FFFFH

FFFFH

FFFFH

FFFFH

Value

0

7 = COH, 6-0 = 0

7 = DOH, 6-0 = 0

7 = E0H, 6-0 = blank

7.1.16 PRINTMAIN (Opcode 000FH)

This record is only present if a print expression is defined.

Offset Bytes Field description

OOH 2 Opcode PRINTMAIN=000FH
(version 3.x)

02H 2 Length = 86 (56H)
04H 1 ID-Number print setting worksheet

1 = Current print settings
2-255 = Named print settings

05H 16 Print settings name
LMBCS string (null terminated,
maximum 15 chars)

15H 16 Driver suite name

LMBCS string (null terminated,
maximum 15 chars)

Table 7.18

Coding for
special values

Table 7.19

LOTUS WK3

record structure

(Opcode 000FH)
(continues
over..,)

120 Spreadsheet formats

Offset Bytes Field description

25H 16 Link suit name

LMBCS string (null terminated

maximum 15 chars)
35H 1 Line space

0 = Standard

1 = Compressed

36H 1 Format flag
0 = Unformatted

1 = Formatted

37H 1 Orientation

0 = Portrait

1 = Landscape

38H 1 Automatic linefeed

0 = No (default)
1 = Yes

39H 1 Wait flag
0 = No wait

1 = Wait

3AH 1 Range font type
0 = Default font

1 = Regular serif
2 = Bold serif

3 = Italic serif

4 = Bold italic serif

5 = Regular sans serif
6 = Bold sans serif

7 = Italic sans serif

8 = Bold italic sans serif

3BH 1 Header font type (see range font)

3CH 1 Border font type (see range font)

3DH 1 Frame font type (see range font)

3EH 1 Range color

0 = Default

1 = White

2 = Red

3 = Green

4 = Blue

5 = Yellow

6 = Magenta Table 7.19

7 = Cyan LOTUS WK3

8 = Purple record structure

(Opcode 000FH)
(cont.)

LOTUS 1 -2-3 WK3 format 121

Offset Bytes Field description

3FH 1 Blank header printing flag
0 = Suppress blank header

1 = Print blank header

40H 1 Character spacing

0 = Standard

1 = Compressed
2 = Expanded

41H 1 Reserved

42H 1 Priority (Background print)
0 = Default

1 = High

2 = Low

43H 1 Frame flag
0 = No frame

1 = Print frame

44H 1 Image size

0 = Margin fill
1 = Length fill
2 = Reshape

45H 1 GO type
0 = None

1 = Range

2 = Image

3 = Sample test page
46H 1 Image rotation

0 = No

1 =Yes

47H 1 Reserved

48H 1 Format type

0 = As displayed

1 = Cell formulas

49H 1 Image density

0 = High quality
1 = Draft quality

4AH 2 Left margin
4CH 2 Right margin
4EH 2 Top margin

50H 2 Bottom margin
52H 2 Image height (1-1000)
54H 2 Image width (1-1000)
56H 2 Page length in lines

Table 7.19

LOTUS WK3

record structure

(Opcode 000FH)

(cont)

122 Spreadsheet formats

Offset Bytes Field description

56H 2 Page length in lines
58H 2 Baud rate (serial printer)

0 = 4800 (standard)
1 = 110

2 = 150

3 = 300

4 = 600

5 = 1200

6 = 2400

7 = 4800

8 = 9600 Table 7.19

9 = 19200 LOTUS WK3

record structure

(Opcode 000FH)
(cont.)

This record is optional and occurs for each print expression in a worksheet.

7.1.17 PRINTSTRING (Opcode 001 OH)

This record is optional, but it must follow a PRINTMAIN record. The PRINTSTRING record contains
all the print settings in variable length strings.

The print string is a sequence of LMBCS characters occupying up to 512 bytes, terminated by
an additional null byte (OOH).

Offset Bytes Field description

OOH 2 Opcode PRINTSTRING = 0010H

(version 3.x)

02H 2 Length = 3-315, step width 1

04H 1 ID number print setting worksheet

05H 1 String type

0 = Header

1 = Footer

2 = Setup

3 = Image name

06H n PRINT string Table 7.20

LOTUS WK3

record structure

(Opcode 001 OH)

LOTUS 1 -2-3 WK3 format 123

7.1.18 GRAPHMAIN (Opcode 0011H)

This record is optional and contains all fixed length settings for a graph.

Offset Bytes Field description

OOH 2 Opcode GRAPHMAIN = 0011H
(version 3.x)

02H 2 Length = 178
04H 1 ID number graph settings worksheet
05H 16 Name graph settings

(LMBCS, 0 terminated)
15H 3 1,2,3 text field font types

0 = Default font

1 = Regular serif
2 = Bold serif

3 = Italic serif

4 = Bold italic serif

5 = Regular sans serif
6 = Bold sans serif

7 = Italic sans serif

8 = Bold italic sans serif

18H 7 Color values (A-F range)
0 = Default

1 = White

2 = Red

3 = Green

4 = Blue

5 = Yellow

6 = Magenta
7 = Cyan
8 = Purple

FEH = Hide

FFH = Use associated system range
1FH 6 Hatch values (A-F range)

0 = Default

1 = Solid

2 = Fine Crosshatch

3 = Diagonal triple
4 = Diagonal double
5 = Coarse Crosshatch

6 = Diagonal double
7 = Diagonal single
8 = Hollow

FFH = Use associated system range

Table 7.21

LOTUS WK3

record structure}

(Opcode 0011H)
(continues

over...)

124 Spreadsheet formats

Offset Bytes Field description

25H 6 1-2-3/M extended file name

(1st part, LMBCS)

2BH 3 l.,2.,3. text field with text size

0 = Default

1 = Smallest to 9 = Largest
2EH 1 Grid type

0 = None

1 = Horizontal

2 = Vertical

3 = Both

2FH 1 Color flag

0 = Use color if possible
1 = Do not use color

2 = Use color

30H 1 Graph type

0 = Line

1 =Bar

2 = XY

3 = Stacked bar

4 = Pie

5 = High-low-close-open
6 = Reserved

7 = Mixed

8 = Reserved

9 = Graph type extended

31H 3 Scale generation (X-, Y-, 2Y-axes)
0 = Automatic

FFH = Manual

34H 3 Exponent generation

(X-, Y-, 2Y-axes)

0 = Automatic

FFH = Manual

37H 3 Indicator generation (X-, Y-, 2Y-axes)
0 = Display indicator

1 = Do not display indicator

FFH = Display manually

entered indicator

3AH 3 Scale types (X-, Y-, 2Y-axes)

0 = Standard
Table 7.21

LOTUS WK3

1 = Logarithmic record structure

(Opcode 0011H)
(cont.)

LOTUS 1 -2-3 WK3 format 125

Offset Bytes Field description

3DH 3 Width generation offsets

(X-, Y-, 2Y-axes)

0 = Automatic

FFH = Manual

40H 6 Axis type (A-F range)

1 = Y-axis

2 = 2Y-axis

46H 6 Line formats (A-F range)

0 = Lines and symbols

1 = Lines

2 = Symbols

3 = Neither lines nor symbols

4 = Area

4CH 6 Label formats (A-F range)

0 = Center

1 = Right

2 = Below

3 = Left

4 = Above

52H 1 Horizontal Grid flag

0 = Display Y-axis grid lines

1 = Display 2Y-axis grid lines

2 = Display Y- and 2Y-axis grid lines

53H 1 Rotation flag

0 = Vertical

1 = Horizontal

54H 1 Autograph flag

0 = Permanent ranges

1 = Autograph ranges

55H 1 Percentage flag

0 = No graph data ranges as %

1 = Data graph as %of all ranges

56H 1 Stacked flag

0 = Not stacked

1 = Stack

57H 2 Reserved

Table 7.21

LOTUS WK3

record structure

(Opcode 0011H)
(cont.)

126 Spreadsheet formats

Offset Bytes Field description

59H 3 Text colors (X-, Y-, 2Y-axes)

0 = Default

1 = White

2 = Red

3 = Green

4 = Blue

5 = Yellow

6 = Magenta

7 = Cyan

8 = Purple

FEH = Hide

5CH 2 Skip factor for x-range (1-8192)

5EH 6 Label width 1-50 (X-, Y-, 2Y-axes)

64H 2 Graph name setting

range extender field
values from 0000H to FFFFH

66H 2 2nd part 1-2-3/M

extended file name (LMBCS)

68H 6 Exponents (X-, Y-, 2Y-axes)

6EH 12 Formats (X-, Y-, 2Y-axes)

7AH 30 Scale minima (X-, Y-, 2Y-axes)
as TREAL

98H 30 Scale maxima (X-, Y-, 2Y-axes)

as TREAL

Table 7.21

LOTUS WK3

record structure

(Opcode 0011H)
(cont.)

The structure of TREAL is defined in Figure 7.3. Variable length settings are stored in
GRAPHSTRING records. A WK3 file may contain multiple GRAPHMAIN records. The textfield font type
is one byte long. There are three bytes defined at offset 15H for the first, second and third font type
of a text field.

The six bytes at offset 25H define the first part of the 1-2-3/M extended file name, coded as
LMBCS characters. If this field does not contain a null terminator, the second part of the name is

defined in a word at offset 66H.

The exponents at offset 68H are coded as one word for each axis. The format description (offset
6EH) for the axes contains three entries of four bytes each. Figure 7.4 shows the coding of these
bytes.

LOTUS 1 -2-3 WK3 format 127

7.1.19 GRAPHSTRING (Opcode 0012H)

This (optional) record contains all graph settings with variable length strings.

Offset Bytes Field description

OOH 2 Opcode GRAPHSTRING = 0012H

(version 3.x)
02H 2 Length = 4-515, step width 1
04H 1 ID-Number graph settings worksheet

0 = No ID

FFH =ID

05H 1 Graph string type code
0 = Data Range A legend
1 = Data Range B legend
2 = Data Range C legend

3 = Data Range D legend
4 = Data Range E legend

5 = Data Range F legend
6 = X-axis indicator

7 = Y-axis indicator

8 = 2Y-axis indicator

9 = X-axis title

10 = Y-axis title

11 = 2Y-axis tide

12 = Graph title

13 = Graph subtitle

14 = Graph note

15 = Graph subnote
06H Tl Graph string, LMBCS

(maximum 513 chars) Table 7.22

LOTUS WK3

record structure

(Opcode 0012H)

This record must follow the associated GRAPHMAIN record. A graph string is stored as a variable
length LMBCS string with a null terminator (OOH). A WK3 file may contain multiple records.

128 Spreadsheet formats

7.1.20 FORMAT (Opcode 0013H)

This record stores cell and global formatting information in WK3 files.

Offset

OOH

02H

04H

05H

06H

08H

Bytes

2

2

1

1

2

n

Field description

Opcode FORMAT = 0013H (version 3.x)
Length = 4-1028

Worksheet number

Subtype (always 0)
Row

Array of format records
(up to 1024 chars)

Table 7.23

LOTUS WK3

record structure

(Opcode 0013H)

The format description is grouped separately from other cell information. This allows
information to be compressed within the format records. This format compression is carried out in
two ways:

♦ Sequences of identical, formatted cells in a row are compressed by run length encoding
(4-byte format descriptor, 1-byte repeat counter). Trailing sequences of default
formatted cells in a row are dropped.

♦ If a row of cell formats is identical to a previous row in the worksheet, it is represented by
a reference to the earlier row (using the D0PFMT record subtype).
Any row ofcells with default formatting (0FFH) is omitted. Rows are scanned and broken down

into sequences of identical formatted cells.

♦ Asingle cell format description requires four bytes and the high bit (R) ofthe format value
is zero (single cell indicator).

♦ Amultiple cell format description requires five bytes, the four-byte format descriptor with
the high bit (R) set to one, followed by a repeat count byte.
A format descriptor (FRMT string) uses four bytes and has the structure shown in Figure 7.4.

This format record is the same as for 1-2-3, Release 2.01. Within the WK3 file, there are three
types of format record:

♦ the FORMAT record describing a row format (subtype 0);

♦ the GBLFMT record describing the global format for the worksheet (subtype 1);

♦ the DUPFMT record to duplicate a FORMAT record for a different row ofa worksheet (subtype 2).

LOTUS 1 -2-3 WK3 format 129

31 30-11 10 9 8 7 6-4 3-0

R reserved H P n P Typ NN

P = Protection

H = Highlighted

P = Number in bracketsO

n = Color of cell contents if number is negative

R = Repeat count fol lows, if bit is set to 1

Figure 7.4
Format of a 4-

bvte FRMT string

These records are differentiated by their subtype byte (second byte in the data area). The
records must be written in ascending cell order, row by row. A WK3 file may contain multiple
records.

7.1.21 GBLFMT (Opcode 0013H)

This record has the same opcode as the FORMAT record. It describes the global format of the
worksheet. This record type is not mandatory. Multiple records may be stored in a file.

Offset Bytes Field description

OOH 2 Opcode GBLFMT = 0013H (version 3.x)
02H 2 Length = 12-525
04H 1 Worksheet number

05H 1 Subtype = 1
06H 2 Reserved (must be 0000H)
08H 4 Global format record (FRMT)
OCH 2 /Worksheet Global Label

prefix character code
OEH 2 Global zero suppression flag

0 = Display zeros

1 = Suppress zeros
10H n Global zero string

(up to 513 LMBCS chars) Table 7.24

LOTUS WK3

record structure

(Opcode 0013H)

130 Spreadsheet formats

The global format is stored in four bytes (see Figure 7.4). Valid entries for the /Worksheet
Global Label prefix character code are:

34 = "

39= '

94 = A

If the global zero suppression flag is set to 0, the record length is reduced to 12 bytes. If this
flag is set to 1, a variable length LMBCS string (containing the global zero string) will follow. The
minimum length is 2 bytes (1 character and the 00 terminator).

7.1.22 DUPFMT (Opcode 0013H)

This record is used to define a duplicated format for a row of cells. The format description must

exist in a previous record.

Offset Bytes Field description

OOH 2 Opcode D0PFMT = 0013H (version 3.x)

02H 2 Length = 8

04H 1 Worksheet number

05H 1 Subtype = 2

06H 2 Row

08H 2 Worksheet in a file containing

the row format

OAH 2 Row in a file containing the row format

Table 7.25

LOTUS WK3

record structure

(Opcode 0013H)

This record type is used to duplicate rows in a worksheet that have the same format as
preceding rows.

7.1.23 ERRCELL (Opcode 0014H)

This record defines a cell of type 'ERR', resulting from a /Range Value operation (where the value
was ERR), or a subsequent /Copy or /Move of another ERRCELL.

Offset

OOH

02H

04H

Bytes Field description

Opcode ERRCELL =
(version 3.x)

Length = 4

Cell coordinates

2-byte row

1-byte worksheet
1-byte column

0014H

LOTUS 1-2-3 WK3 format 131

Table 7.26

LOTUS WK3

record structure

(Opcode 0014H)

The cell is (numerically) identical to a formula cell containing the entry +3ERR. The advantage
of the ERRCELL record is that it is more efficient in use. The record type is optional, and a file may
contain multiple records.

7.1.24 NACELL (Opcode 0015H)

This record defines a cell of type 'NA', resulting from a /Range Value operation (where the value
was NA), or a subsequent /Copy or /Move of another NACELL.

Offset Bytes Field description

OOH 2 Opcode NACELL = 0015H (version 3.x)
02H 2 Length = 4
04H 4 Cell coordinates

2-byte row
1-byte worksheet
1-byte column

Table 7.27

LOTUS WK3

record structure

(Opcode 0015H)

The cell is (numerically) identical to a formula cell containing the entry +3NA. The advantage of
the NACELL record is that it is more efficient in use. The record type is optional, and a file may
contain multiple records.

7.1.25 LABELCELL (Opcode 0016H)

This record defines a label.

132 Spreadsheet formats

•; ;•: •

Offset Bytes Field description

OOH

02H

04H

06H

07H

08H

2

2

2

1

1

n

Opcode LABELCELL = 16H
(version 3.0)
Length = 6-518, step length 1
Row number

Worksheet number

Column number

Label as an LMBCS string
Table 7.28

LOTUS WK3

record structure

(Opcode 0016H)

There is a label record for every cell in the worksheet that contains a label entry. The label

string contains LMBCS characters (maximum 512) terminated by a zero byte (OOH).

7.1.26 NUMBERCELL (Opcode 0017H)

This record type defines a cell that contains a number that is not represented in the small number
format.

Offset Bytes Field description

OOH

02H

04H

06H

07H

08H

2

2
2

1

1

10

Opcode NUMBERCELL = 17H
(version 3.0)
Length = 14
Row number

Worksheet number

Column number

Cell value as a TREAL number
Table 7.29

LOTUS WK3

record structure

(Opcode 0017H)

This record can be used for numbers that could be saved in the SNUM format (the translate

utility uses this format). The format of a TREAL value is shown in Figure 7.3.

7.1.27 SMALLNUMCELL (Opcode 0018H)

This record type defines a cell containing an integer value stored in the small number format in a
WK3 file.

LOTUS 1 -2-3 WK3 format 1 33

Offset Bytes Field description

OOH

02H

04H

06H

07H

08H

2

2

2

1

1

2

Opcode SMALLNUMCELL = 18H

(version 3.0)
Length = 6
Row number

Worksheet number

Column number

Cell value as a small number
Table 7.30

LOTUS WK3

record structure

(Opcode 0018H)

The integer value (-16384 to 16383) is stored as a word at offset 08H. Bit 0 is always 0, bits 1 to

15 contain a signed integer.

7.1.28 FORMULACELL (Opcode 0019H)

This record describes a cell containing a formula.

Offset Bytes Field description

OOH 2 Opcode FORMULACELL = 19H

(version 3.0)
02H 2 Length = 14-2048, step width 1
04H 2 Row number

06H 1 Worksheet number

07H 1 Column number

08H 10 Formula value as a TREAL number

12H n Formula token stream (n opcodes)
Table 7.31

LOTUS WK3

record structure

(Opcode 0019H)

The formula token stream contains a sequence of operators and their operands. The last byte
in the token stream is the end offormula opcode (03H). Table 7.32 shows the operators defined for
a WK3 file. The operators from code 1FH to 6FH are the same as the WKl operators.

LOTUS and Symphony present formulas in parenthesis-free (Polish) notation. Each entry
starts with a formula code byte, followed by the operands:

formula code, operands, ,formula code, operands

134 Spreadsheet formats

The formula code defines the operator type (variable, constant, bracket, +, and so on)
operator is followed by zero, one or multiple bytes containing the operand values.

This

————

Code Bytes Formula

OOH 11 Constant + 1 TREAL argument

01H 6 Cell reference +

RELBITS (1 byte)

bit 0=1 Column 0 is relative

1=1 Row 0 is relative

2=1 Sheet 0 is relative

3=1 Column 1 is relative

4=1 Row 1 is relative

5=1 Sheet 1 is relative

CELLCOORDINATES (4 bytes)

2-byte row
1-byte worksheet
2-byte column

02H 10 Range + RELBITS + 2

* CELLCOORDINATES

03H 1 End of formula record (Return)

04H 1 Parentheses (no arguments)

05H 3 Integer constant (16-bit SNUM)

06H 1 String constant (LMBCS); the string
follows in a FORMULASTRING record

07H 4 Named range reference
with range name

08H 1 Absolute named range

09H 5 ERR range reference + 4 bytes garbage

OAH 6 ERR cell reference + 5 bytes garbage

OBH 11 ERR constant + 10 bytes garbage

OCH 1 dBASE field reference

ODH 1 dBASE field placeholder

OEH 1 Unary -

OFH 1 Plus +

Table 7.32

Opcodes in a
LOTUS formula

(continues
over...)

LOTUS 1 -2-3 WK3 format 1 35

——, ! , ., ':.«.

Code Bytes Formula

OOH 11 Constant + 1 TREAL argument
01H 6 Cell reference +

RELBITS (lbyte)
bit 0=1 Column 0 is relative

1=1 Row 0 is relative

2=1 Sheet 0 is relative

3=1 Column 1 is relative

4=1 Row 1 is relative

5=1 Sheet 1 is relative

CELLCOORDINATES (4 bytes)
2-byte row

1-byte worksheet
2-byte column

02H 10 Range + RELBITS + 2

* CELLCOORDINATES

03H 1 End of formula record (Return)
04H 1 Parentheses (no arguments)
05H 3 Integer constant (16-bit SNUM)
06H 1 String constant (LMBCS); the string

follows in a FORMULASTRING record

07H 4 Named range reference
with range name

08H 1 Absolute named range
09H 5 ERR range reference + 4 bytes garbage
OAH 6 ERR cell reference + 5 bytes garbage
OBH 11 ERR constant + 10 bytes garbage
OCH 1 dBASE field reference

ODH 1 dBASE field placeholder
OEH 1 Unary -
OFH 1 Plus +

10H 1 Minus -

11H 1 Multiply *
12H 1 Division /

13H 1 Power A

14H 1 Equals =
15H 1 Not equal <
16H 1 Less than or equal <=
17H 1 Greater than or equal >=
18H 1 Less than <

19H 1 Greater than >

Table 7.32

Opcodes in a
LOTUS formula

(cont.)

136 Spreadsheet formats

Code Bytes Formula

1AH 1 AND

1BH 1 OR

1CH 1 NOT

1DH 1 Unary + (not for recalculation)
1EH 1 8 (Concatenate)

1FH 1 3NA (Not applicable)
20H 1 3ERR (Error)

21H 1 9ABS (Absolute value)
22H 1 aiNT (Integer value)

23H 1 3SQRT (Square root)

24H 1 SLOG (Logarithm base 10)

25H 1 3LN (Logarithm natural)
26H 1 3PI (Constant pi)
27H 1 aSIN (Sine)

28H 1 aCOS (Cosine)

29H 1 3TAN (Tangent)

2AH 1 3ATAN2 (Arctangent 4th quadrant)

2BH 1 3ATAN (Arctangent 2nd quadrant)

2CH 1 3ASIN (Arcsine)

2DH 1 3AC0S (Arccosine)

2EH 1 3EXP (Exponentiation)

2FH 1 3M0D(X,Y) (Modulus function)

30H 1 3CH00SE (+ 2 variable)

31H 1 aiSNA(x) (x=NATHENl)

32H 1 aiSERRCx) (x=ERRTHENl)

33H 1 3FALSE (Return 0)

34H 1 3TRUE (Return 1)

35H 1 BRAND (Random number 0..1)

36H 1 3DATE (Days since 1.1.1900)

37H 1 3T0DAY

38H 1 3PMT (Payment)

39H 1 3PV (Present value)

3AH 1 3FV (Future value)

3BH 1 3IF

3CH 1 3DAY (Day of month)

3DH 1 3M0NTH

3EH 1 3YEAR

3FH 1 3R0UND

40H 1 3TIME

41H 1 3H0UR
Table 7.32

Opcodes in a
LOTUS formula

(cont.)

LOTUS 1 -2-3 WK3 format 137

Code Bytes Formula

42H 1 3MINUTE

43H 1 3SEC0ND

44H 1 3ISNUMBER

45H 1 3ISSTRING

46H 1 3LENGTH

47H 1 3VALUE

48H 1 3FIXED

49H 1 3MID

4AH 1 3CHR

4BH 1 3ASCII

4CH 1 3FIND

4DH 1 3DATEVALUE

4EH 1 3TIMEVALUE

4FH 1 3CELLP0INTER

50H 1 3SUM(Range 1Cell 1Constant)
51H 1 3AVG (Range 1Cell 1Constant)
52H 1 3CNT(Range 1Cell 1Constant)
53H 1 3MIN (Range 1Cell 1Constant)
54H 1 3MAX(Range 1Cell 1Constant)
55H 1 aVLOOKUP (X,Range,OFFSET)
56H 1 3NPV(Int,Range)
57H 1 3VAR (Range)
58H 1 3STD(Range)

59H 1 3IRR (Guess,Range)
5AH 1 3HL00CKUP (X,Range,Offset)
5BH 1 DSUM (Database function, 3 arguments)
5CH 1 AVG (Database function)
5DH 1 DCNT (Database function)
5EH 1 DMIN (Database function)
5FH 1 DMAX (Database function)
60H 1 DVAR (Database function)
61H 1 DSTD (Database function)
62H 1 3INDEX

63H 1 3C0LS

64H 1 3R0WS

65H 1 3REPEAT

66H 1 3UPPER

67H 1 SLOWER

68H 1 3LEFT

69H 1 BRIGHT
Table 7.32

Opcodes in a
LOTUS formula

(cont.)

138 Spreadsheet formats

Code Bytes Formula

6AH 1 3REPLACE

6BH 1 3PR0PER

6CH 1 3CELL

6DH 1 3TRIM

6EH 1 3CLEAN

6FH 1 3S

70H 1 3N

71H 1 3EXTRACT

72H 1

73H 1 33

74H 1 3RATE

75H 1 3TERM

76H 1 3CTERM

77H 1 3SLN

78H 1 3SYD

79H 1 3DDB

7AH 1 SSPLfunc

new opcodes

7BH 1 3SHEETS

7CH 1 aiNFO

7DH 1 aSUMPRODUCT

7EH 1 3ISRANGE

7FH 1 3DGET

80H 1 3DQUERY

81H 1 3C00RD

82H 1

83H 1 3T0DAY

84H 1 3VDB

85H 1 3DVARS

86H 1 3DSTDS

87H 1 aVARS

88H 1 aSTDS

89H 1 3D360

8AH 1

8BH 1 3ISAPP (Add-in)

8CH 1 3ISAAF (Add-in)

Japanese (nihon) Sfunctions

8DH 1 3WEEKDAY

Table 7.32

Opcodes in a
LOTUS formula

(cont.)

r
o

r
o

m
)

r
-

O

sjaaq
sp

esjd
s

|§
H

S

U
3

z

d>V
j

3ic
\)1

l-Hs01a
1—o

h
-H

t
n

=
>

c
e

2
:

1
-

o
L

U

1—
i—

i
2

C
O

C
O

•
"

C
O

o
L

D
>

-
u

_
C

O
O

C
_

J
U

3
_

•
X

z
Q

c
c

Q
q

:
r**^

1—
c
£

Z
C

K
a

C
O

C
O

«
1—

1
d

;
1—

•=
c

>
O

<
c

l-
H

K
-

<
c

1
-

<
t

K^
U

J
O

D
_

<
c

1—
L

U
c
t

q
:

£
2

C
O

C
O

o

3§
o

L
U

0
0

E
Q

-
Q

.
<

c
o

e
:

E
c
o

>
c
o

>
C

M
E_r

L
U

L
_

e
:

O
C

L
U

=
D

o
C

Q
<

c
h

-
O

C
o

N
O

U
J

v
t
o

L
L

I
i—

i
\
-
\

_
l

u
_

L
U

L
U

L
U

L
U

L
U

L
U

L
U

L
U

r
v

i
r
v

i
E

X
-Z

L
=

>
C

O
e
n

<
3

o
Q

>
c
o

<
c

1—
r
o

1
-

z
e
:

1—
o

X
H

-
i
-
i

_
l

_
1

_
:

n
:

O
C

a
c

o
;

O
C

D
i

c
e

H
1—

C
M

f
\l

—
:

^
•"

.
l-

H
o

o
H

H
I
d

Q
C

J
>

a
C

i
>

.
C

O
a

M
<

<
=

d
<

c
ix

l
L

U
m

s
:

0
-

Z
3

<
3

=
3

Z
D

=
D

r
a

Z
D

ID
=

D
E

s
:

>
>

U
J

^
|

1
1

1
I

I
I

I
i

1
1

I
O

_
O

C
z

Q
£

2
x

Q
Q

-
C

O
L

L
x

Q
_

E
L

.
Q

.
0

-
C

L
a

.
0

_
0

-
0

-
Q

-
0

-
—

.
I—

1
CM

C
\J

C
N

J
o

u
r
v

i
o

a
C

V
J

r
v

i
r
\
j

C
M

r
\
j

C
M

(M
C

3
C

B
C

B
C

3
C

B
C

B
C

o
C

3
c
a

C
S

c
a

c
a

C
B

C
3

C
3

C
B

c
a

c
a

C
B

c
a

C
3

C
3

c
a

c
a

oc3c
aS

O
C

O
C

O
C

O
C

O
C

a
c

a
c

a
c

C
i

a
c

O
C

D
C

a
c

w
•
*

-

0)
•
e

>
>

•a
0

3
—

I
—

1
—

—
1

—
1

i
—

r
l

—
1

—
I

I-1
—

i
—

i
—

1
I
-
I

—
1

—
—

<
i
-
i

t
H

H
—

1
—

i
—

i
—

<
^

—
1

l-H
1—

1
1-H

1
1

—
—

—
1

r-1
i—

1
H

^
r
-
l

—
1

—
i

M
T

3
X

X
x

X
X

X
3

:
x

X
X

x
X

X
X

X
o

r
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
O

L
U

L
l_

o
^
—

C
M

K
l

>
*

i
n

v
O

r
-

0
0

o
<

c
C

D
C

J
Q

L
U

L
L

o
_

•
^
—

n
n

•
*

t_
>

Q
U

J
U

-
o

^
—

r
v

i
K

>
<

f
i
n

o
h

-
C

O
o

u
o

o
0

0
O

o
O

o
o

o
o

G
-.

o
o

o
O

o
O

O
C

s
<

t
<

c
<

c
•a:

«
a
:

<
O

N
O

.
o

O
<

<
<

<
<

c
•=

c
<

:
<

t
<

<

140 Spreadsheet formats

Code Bytes Formula

AAH 1

ABH 1 R2_ISAPP

ACH 1 R2_ISAAF

ADH 1 R2_WEEKDAY

AEH 1 R2_DATEDIF

AFH 1 R2_RANK

BOH 1 R2_DGET

B1H 1 R2_DATESTR

B2H 1 R2_DECIMAL

B3H 1 R2_HEX

B4H 1 R2_DB

B5H 1 R2_PMTI

B6H 1 R2_SPI

B7H 1 R2_FULLP

B8H 1 R2_HALP

B9H 1 R2_PUREAVG

BAH 1 R2_PUREC0UNT

BBH 1 R2_PUREMAX

BCH 1 R2_PUREMIN

BDH 1 R2_PURESTD

BEH 1 R2_PUREVAR

BFH 1 R2_PURESTDS

COH 1 R2_PUREVARS

C1H 1 R2_PMT2

C2H 1 R2_PV2

C3H 1 R2_FV2

C4H 1 R2_TERM2

C5H 1 R2_DSUMDIFF

C6H 1 R2_DAVGDIFF

C7H 1 R2_DC0UNTDIFF

C8H 1 R2_DMINDIFF

C9H 1 R2_DMAXDIFF

CAH 1 R2_DVARDIFF

CBH 1 R2_DSTDDIFF

CCH 1 R2_INDEXDIFF
Table 7.32

Opcodes in a
LOTUS formula

(cont.)

The formula type (number, ERR, NA, string) is encoded in the formula value field. If the formula
type is STRING, the next record in the file must contain a FORMULASTRING. The string formula type
does not define a value for the TREAL value field (offset 08H).

LOTUS 1-2-3 WK3 format 141

7.1.29 FORMULASTRING (Opcode 001 AH)

This record follows a FORMULACELL record that specifies a string formula. The record contains the
string value of the previous record.

Offset Bytes

OOH

02H 2

04H 2

06H 1

07H 1

08H n

Field description

Opcode FORMULASTRING = 1AH
(version 3.0)
Length = 5-517, step width 1
Row number

Worksheet number

Column number

LMBCS string value
(up to 513 characters) Table 7.33

LOTUS WK3

record structure

(Opcode 001 AH)

The LMBCS string value contains up to 512 characters and a terminator (OOH). A WK3 file may
contain more than one such record.

7.1.30 XFORMAT (Opcode 001 BH)

This is a variable length record of up to 2048 bytes. The contents of this extended format record
have not vet been defined.

7.1.31 DTLABELMISC (Opcode 001 CH)

This record is optional and contains miscellaneous information for /Data Table commands.

Offset Bytes Field description

OOH 2 Opcode DTLABELMISC = 1CH (version3.0)
02H 2 Length = 6
04H 2 Type of the last /Data Table command

0 = No command

1 = /Data Table 1

2 = /Data Table 2

3 = /Data Table 3

4 = /Data Table Legend
06H 4 LMBCS label fill character

Table 7.34

LOTUS WK3

record structure

(Opcode 001 CH)

142 Spreadsheet formats

This record allows a user to execute the last /Data Table command by pressing the TABLE key [FS).
In a WK3 file, only one such record is allowed.

7.1.32 DTLABELCELL (Opcode 001 DH)

This record contains the description of the /Data Table input cell list.

Offset Bytes Field description

OOH 2 Opcode DTLABELCELL = 1DH

(version 3.0)
02H 2 Length = variable

04H 2 Type of cell
0 = Down

1 = Across

2 = Page/worksheet
06H 2 Cell count or continuation flag (N) Table 7.35

LOTUS WK3

record structure

(Opcode 001 DH)

If the value in the word at offset 06H is greater than 0, it represents the cell count. This record

is optional, and several records may occur in a file.

7.1.33 GRAPHWINDOW (Opcode 001 EH)

This record indicates a graph (hot graph) which is currently displayed.

Offset

OOH

02H

04H

Bytes Field description

Opcode GRAPHWINDOW = 1EH

(version 3.0)
Length = 1

Flag
0 = No graph window is present
1 = Graph window is present Table 7.36

LOTUS WK3

record structure

(Opcode 001 EH)

This record defines what is known as a 'hot graph'. This graph will change each time a new
value is entered in the worksheet. Only one record is allowed in a file.

LOTUS 1 -2-3 VVK3 format 143

7.1.34 CPA (Opcode 001 FH)

This record contains a cell pointer array, which is used to pre-allocate the cell pointer index.

Offset Bytes Field description

OOH 2 Opcode CPA = 1 FH (version 3.0)
02H 2 Length = variable 8-132
04H 1 Worksheet number 0-255

05H 1 Column number 0-255

06H 1 Number of entries 1-32

07H 1 Reserved

08H n Repeated number of entries:
2-byte row start

2-byte row end
Table 7.37

LOTUS WK3

record structure

(Opcode 001 FH)

7.1.35 LPLAUTO (Opcode 0020H)

This record defines bits for auto-invoke and key assignments.
The file descriptor defines the drive, path and name of the file to be loaded. This descriptor is a

null-terminated LMBCS string up to 130 characters long. There is only one bit defined in the bit
field at offset 04H. ;M1 other bits are reserved.

Offset Bytes Field description

OOH

02H

04H

06H

2

2

2

n

Opcode LPLAUTO = 20H (version 3.0)
Length = variable 8-132

Bit field (value 8000H = Auto-invoke)
File descriptor Table 7.38

LOTUS WK3

record structure

(Opcode 0020H)

144 Spreadsheet formats

7.1.36 QUERY (Opcode 0021H)

This optional record contains information for the /Data Query command and is stored (only once)
in the WK3 file.

Offset Bytes Field description

OOH

02H

04H

2

2

1

Opcode QUERY = 21H (version 3.0)
Length = 1
Last /Data Query type

0 = No command

1 = Find

2 = Extract

3 = Delete

4 = Unique

5 = Modify Table 7.39

LOTUS WK3

record structure

(Opcode 0021H)

The record allows the user to execute the last /Data Query command again, by pressing the
QUERY [FT] key.

7.1.37 HIDDENSHEET (Opcode 0022H)

This record indicates all hidden worksheets in the WK3 file.

Offset Bytes Field description

OOH 2 Opcode HIDDENSHEET = 22H
(version 3.0)

02H 2 Length = variable 1-255
04H 1 Worksheet offset

of first hidden worksheet

05H 1 Worksheet offset

of next hidden worksheet
Table 7.40

LOTUS WK3

record structure

(Opcode 0022H)

LOTUS 1 -2-3 VVK3 format 145

The record is optional and may occur only once in a file. This results in a maximum of 255
entries for the worksheet offsets in the record. Each entry defines the offset from the first
worksheet in the file. The offset value starts from 0.

7.2 LOTUS 1-2-3 FRM file format

LOTUS 1-2-3 version 3.x creates FRM files parallel to the WK3 files. The FRM files begin with a BOF
record (26 bytes long), which has a different signature (OOH OOH 1AH OOH 01H 80H 01H OOH....). The
file is terminated by an EOF record (code 01H OOH). In the file, there are several records with
structures similar to the WK3 file. The record structure for the FONTNAME record is shown in Table

7.41.

Offset Bvtes

OOH 2

02H 2

04H 1

05H n

Field description

Opcode FONTNAME = AEH (version 3.0)
Length = variable

Entry number (1 to n)
Font name (LMBCS string + OOH)

The meaning of the other record types is unknown.

Table 7.41

LOTUS FRM

record structure

(Opcode 00AEH)

LOTUS 1-2-3 PIC format

IOTUS graphs can be stored in PIC files and then
printed using PRINTGRAPH or imported into
4 external programs. LOTUS stores all the data in

PIC formats as vectors. There is also information in
the file on which fonts (and font sizes) to use. Figure
8.1 shows the contents of a PIC file as a hex-dump.

8.1 File header

A PIC file starts with a 17-byte header, which always contains the signature 01 00 00 00 in the first
4 bytes. The meaning of the remaining bytes is not known, but the sequence of bytes shown in
Figure 8.1 occurs in all PIC files.

8.2 Record descriptions

The header is followed by several records of differing lengths. The record type is specified by
the first byte (opcode). Table 8.1 gives a list of possible record types.

146

LOTUS 1 -2-3 PIC format 147

— Header

Beginning

1

01 00 00 00 01 00 08 00-44 00 00 00 00 OC 7F 09
first record (Font)

- Font Color

— Draw

06 A7 01 BO AO 01 90 08-20 A2 OB B8 08 20 A2 OB

| —

B8 01 2C A2 01 90 01 2C-A2 01 90 08 20 A7 00 AC

- 1st Text

Record

EOF

00 8C 00 78 AO 06 3F 09-06 A8 02 54 69 74 6C 65

Title

I

65 69 6C 65 20 31 00 A7-01 AC 00 46 00 3C AO 06

L i

3F OC

n e 1

78 A8 02 54 65 78-74 20 58 2D 41 78 69 73

20 00

Text X-Axis

AO 00 00 04 A6 A8-12 54 65 78 74 20 59 2D

Text Y -

41 78 69 73 20 00 AO 06-3F 08 3E A8 04 54 69 74

Axis. Tit

...

...

31 30 00 AO 04 F2 01 2C-A2 04 F2 01 OE AO 04 F2

1 0

1 . . .

00 1E AO 05 D2 00 1E A8-01 4C 65 67 65 6E 64 20

Legend

20 41 00 BO 60

[_

Type Remark

30H FILL (xl,yl) .. (xn,yn) draws a filled polygon
60H-6FH EOF-Mark (End of file, 1 byte)
AOH MOVE x,y (5 bytes)
A2H DRAW x,y (5 bytes)
A7H FONT n (2 bytes)
A8H TEXT (variable length ASCIIZ string)

Byte 2 specifies the subtype for text orientation
<A8><Subtype><ASCIIZ string>

ACH SIZE n,m (5 bytes)
BOH-BFH COLOR (coding lower 4 bits)
DOH FILLO (xl.yl) .. (xn.yn)

Figure 8.1
Dump of
a PIC tile

Table 8.1

Records in

LOTUS PIC files

148 Spreadsheet formats

8.2.1 FILL (x1,y1)...(xn,yn) (Opcode 30H)

The FILL command draws a filled polygon in the color currently set. The polygon has no outline.
An indefinite number of coordinate pairs (x,y) may be specified. Each coordinate is represented
as a 16-bit value. The opcode is followed by a byte showing the number of coordinate pairs
(starting with 0).

8.2.2 END OF FILE (Codes 60H to 6FH)

The end of the PIC file is indicated by one byte containing the EOF code. The numbers permitted
as EOF codes are 60H to 6FH, the most frequently used being 60H.

8.2.3 MOVE (X,Y) (Opcode AOH)

This record consists of 5 bytes and contains the opcode AOH, followed by two 16-bit numbers
indicating the X and Y coordinates for the new point. The cursor is moved to the appropriate point
without a line being drawn.

8.2.4 DRAW (X,Y) (Opcode A2H)

This record also consists of 5 bytes and contains the opcode A2H followed by two 16-bit numbers
indicating the X and Y coordinates for the new point. The cursor is moved from the present
position to the appropriate point, and a line (1 pixel wide) is drawn in the color currently set. The
new point then becomes the current coordinate.

8.2.5 FONT n (Opcode A7H)

This record occupies 2 bytes and defines the font to be used. The first byte contains the opcode
A7H, the second byte the definition of the font. The relevant coding is shown below:

0 = Type face 1

1 = Type face 2

Additional values have not yet been implemented.

LOTUS 1-2-3 PIC format 149

8.2.6 TEXT xxxx (Opcode A8H)

This record begins with the opcode A8H and is of variable length. The opcode is followed by a byte
defining the direction of the text. The upper 4 bits specify the direction of the output (D); the
position (P) is indicated in the lower 4 bits. The options shown in Table 8.2 apply to these bits.

Value Remark

- Bits 4-7 (direction)
0 Horizontal (left to right)
1 Vertical (top to bottom)
2 Horizontal (right to left)
3 Vertical (bottom to top)
- Bits 0-3 (position)
0 Center drawing rectangle
1 Center left

2 Center upper
3 Center right
4 Center lower

5 Left upper corner
6 Right upper corner
7 Left lower corner

8 Right lower corner Table 8.2

Coding text

alignment

The following points relate to the positioning of the text. The text is output at the current
cursor position. It can be assumed that the text will be framed in a rectangle which can only be
positioned relative to the current coordinate point. The text is also moved relative to the current
coordinate point. The code 0 positions the text so that its center is on the current coordinate
point.

The opcode A8H and the byte containingthe direction and position bits is followed by the text.
This is stored as an ASCIIZ string, that is, the last byte is followed by the terminator code OOH. The
length of the text may not exceed 64 kbytes, a restriction which is rarely met in practice. The text
is output at the current position in the direction indicated. The color and font settings also affect
the output of the text.

150 Spreadsheet formats

8.2.7 SIZE n,m (Opcode ACH)

This record determines the size of the characters. The opcode ACH is followed by two 16-bit
numbers which indicate the dimensions of a rectangle with the coordinates (0,0) and (n,m).
Within the character fonts, the size of the individual characters is fixed. The SIZE command

influences the scaling of the characters via the parameters (n,m), that is, the characters are
enlarged accordingly.

8.2.8 COLOR (Opcode BxH)

This 1-byte record is used to set the current color. The color is coded in the lower 4 bits. There
are 16 colors available, represented by the opcodes BOH to BFH. The actual color is then processed
for output via PRINTGRAPH.

8.2.9 FILLO (x1,y1)..(xn,yn) (Opcode DOH)

This is another record that produces a filled polygon. However, in this case the polygon is
highlighted with a border in the color selected. Several pairs of coordinates (X,Y) can be given,
represented as 16-bit numbers. The number of coordinates is stored in the second byte, after the
opcode.

Very simple drawings can be produced using this file type. All the coordinate data within the
PIC file takes the form of 16-bit numbers. The data refers to a virtual, rectangular, Cartesian
coordinate system with 3200 points in the X-direction and 2311 points in the Y-direction.
PRINTGRAPH adapts these coordinates to the coordinate system of the output device. The zero-
point (origin) of the coordinate system is located at the bottom left-hand corner. Thevalues for the
coordinates are not stored according to the Intel convention: the high byte of a coordinate value is
stored first. The number OFH OOH thus becomes the byte sequence 3F OOH in the file. (This number
is normally stored as OOH 3FH.)

LOTUS Symphony format

Symphony is an extension of the LOTUS 1-2-3
spreadsheet program and is also distributed by

LOTUS Development. As in the case of LOTUS
1-2-3, the contents of the spreadsheets, including data
and calculation formulas, can be stored in files.
Depending on the version of the program (1.1, 2.0),
these data can be stored in a format which complies
very precisely with the LOTUS specifications.
Symphony uses binary formats to store the data and
calculationformulas, while texts from the spreadsheets
are stored in ASCIIformat.

The record structure is the same as in LOTUS 1-2-3:

<Record Type> <Record Length> <Data>

This structure is retained throughout the various versions. The meaning of the individual fields
is given below:

♦ The record type field is two bytes long and - as the name suggests - contains information on
the record type. This determines the structure of the following data field. For records that con

tain data, this record type can be interpreted as an opcode specifying calculation instructions

or the structure of the spreadsheet. The terms record type and opcode are therefore treated
synonymously. In the record type field, the lowest byte is stored in the first byte of the file.

The opcodes vary according to the different versions of Symphony.

♦ The record Length field occupies two bytes and specifies the length of the following data field
in bytes. The LSB is stored first.

151

152 Spreadsheet formats

♦ The data field is of variable length, depending on the field type. This field contains values,
calculation formulas, definitions for the structure of the spreadsheet, and so on.

Depending on the version of the program, the file extension is either WKS (Symphony version
1.0) or WKl (version 2.0). A hex-dump of the WKl file is not given here, because its structure is
very similar to the LOTUS file. The same applies to the way the file is mapped onto the
spreadsheet. Rows and columns are only provided with letters and numbers at the user interface;
internally, LOTUS/Symphony operate with 16-bit row and column numbers. Each cell position can
thus be unambiguously identified by two numbers. This numbering system is also used in the file.

9.1 Record types in Symphony

The various types of record (opcodes) that appear in the WKS files are presented below together
with their data structures. Many of the opcodes are also used in LOTUS 1-2-3. However, in later
versions, new opcodes have been added. Each opcode consists of two bytes, where the low byte
(LSB) is stored first.

9.1.1 BOF (Opcode 0000H)

This record marks the beginning of a valid WKSAVK1 file. The record is structured as follows:

Offset Bytes Remark

OOH 2 Opcode BOF = 0000H

02H 2 Length = 0002H

04H 9 Version number file format

0404H 1-2-3 WKS format in version 1

040 5H Symphony file

0406H 1-2-3 file in WKl format

version 2.0 and Symphony 1.1
Table 9.1

Symphony record
structure (Opcode
0000H)

The data field contains two bytes which indicate the version code of the data format. More
recent versions of Symphony continue this numbering system.

LOTUS Symphony format 153

9.1.2 EOF (Opcode 0001H)

This record indicates the end of a WKS or WKl file. The record is structured as follows:

Offset

OOH

02H

Bvtes Remark

Opcode EOF = 0001H

Length = OOOOH

The record is only 4 bytes long, and the data field is omitted.

Table 9.2

Symphony
record structure

(Opcode 0001H)

9.1.3 CALC_MODE (Opcode 0002H)

In Symphony, the user can determine whether the results are to be recalculated automatically
after each entry (default setting) or only after a specific command. The calculation mode is stored
in this record, which is structured as follows:

Offset Bytes Remark

OOH

02H

04H

2

2

2

Opcode CALC_M0DE = 0002H

Length = 0001H
Recalculation mode

OOH = Manual

FFH = Automatic
Table 9.3

Symphony
record structure

(Opcode 0002H)

The default value for the data byte is FFH, for automatic recalculation after every entry.

154 Spreadsheet formats

9.1.4 CALC_ORDER (Opcode 0003H)

Each time the results are calculated, the sequence in which the formulas are to be processed can

be specified. The order is stored in a record structured as follows:

Offset Bytes Remark

OOH 2 Opcode CALCJDRDER Opcode ==0003H

02H 2 Length = 0001H

04H 2 Calculation order

OOH = Natural

01H = Column

-———•

FFH = Row
Table 9.4

Symphony record
structure

(Opcode 0003H)

For calculation by column (code 01), only the formulas in the relevant column are processed.
Symphony then begins calculating the formulas in the next column.

9.1.5 RANGE (Opcode 0006H)

In Symphony, this record is used to specify the RANGE of cells to be stored in the file. The whole
spreadsheet is usually saved. The record is structured as shown below:

Offset

OOH

02H

04H

06H

08H

OAH

Bytes Remark

Opcode RANGE = 0006H

Length = 0008H
Start column

Start row

End column

End row
Table 9.5

Symphony record
structure

(Opcode 0006H)

In the data field, the top left corner (row/column) and the bottom right corner are stored. If the
file was created using the Fi Le-save command, all the fields in the spreadsheet will be in the file.
If Fi Le-Xtract was used, only the cells in the specified extract will be stored, and the coordinates
for this extract will be stored in the data field. It should be noted that Symphony stores the
column and row addresses in the form of 16-bit numbers. The LSB is stored first. In storing the
cells, blank fields at the end of a column or row are not taken into account. If there are no data in

LOTUS Symphony format 155

the range specified, Symphony will set the value of the start column to -1. The 06H record type
generally comes immediately after the BOF record. This should be remembered if WKS or WK1 files
are created by external programs.

9.1.6 COLUMN_WIDTH_1 (Opcode 0008H)

This record is used in Symphony to define the width of the columns in the window described in
the next record. The structure is described below:

Offset Bytes Remark

OOH

02H

04H

06H

2

2

2

1

Opcode C0LUMN_WIDTH_1 = 0008H
Length = 0003H

Column number (16 bits)
Column width Table 9.6

Symphony
record structure

(Opcode 0008H)

The relevant column number (LSB first) is shown in the first word. The following byte indicates
the width of the column in characters.

9.1.7 BLANK (Opcode OOOCH)

Normally, Symphony does not store blank cells, so the information in protected or formatted blank
cells would be lost during the storage process. The record type OCH, which saves these cells, is
provided to avoid this problem. The following structure applies:

Offset

OOH

02H

04H

05H

07H

Bytes

2

2

1

2

2

Remark

Opcode BLANK = OOOCH

Length = 000 5H
Format byte

Column number

Row number

In the first data byte, Symphony stores the cell format coding:

Table 9.7

Symphony
record structure

(Opcode OOOCH)

156 Spreadsheet formats

Bit 7 6 5 4 3 2 1 0

Decimal places or memory format

Format type

CeLLs protected
Figure 9.1
Cell format

in Symphony

Bit 7 indicates whether the cells within the window are write-protected and is coded as follows:

Bit 7 Function

Protected

Unprotected

Table 9.8a

Coding formats

Bits 4-6 contain a binary number indicating the format to be used for presenting the value. The
following formats are available:

Bits 6 5 4

000

Format

Fixed

001 Scientific notation

010 Currency

011 Percent

100 Comma

101 Free

110 Free

111 Special format
Table 9.8b

Coding formats

For format types 0-6, the remaining bits 0-3 specify the number of decimal places (between 0
and 15). Format type 7 represents a special format, which is further specified in bits 0-3.

LOTUS Symphony format 157

Bits 3210 Format

0000 +/-

0001 General format

0010 Date format: day, month, year
0011 Date format: day, month
0100 Date format: month, year
0101 Text format

0110 Hidden

0111 Date + hours, minutes, seconds

1000 Date + hours, minutes

1001 Date, international 1

1010 Date, international 2

1011 Time, international 1

1100 Time, international 2

1101 Unused

1110 Unused

1111 Standard
Table 9.9

Coding for
special formats
in Symphony

This is followed by two words containing the cell coordinates. The record is only created if
protected cells are present.

9.1.8 INTEGER (Opcode 000DH)

Directly entered whole numbers (integers) are transferred from the spreadsheet to the file. In
Symphony, the record is structured as follows:

OOH

02H

04H

05H

07H

09H

Opcode INTEGER = 000DH

Length = 0007H

Format byte

Column number

Row number

Integer value
Table 9.10

Symphony
record structure

(Opcode 000DH)

158 Spreadsheet formats

The record contains 7 data bytes, the format of the number being stored in the first byte. (The
coding is listed in Table 9.9.) The following two words describe the position of the cell containing the
integer value. This is followed by a 16-bit word containing the value. The most significant bit
indicates whether the value is positive or negative (bit =1). An integer value between -32768 and

+32767 can be stored in one cell.

9.1.9 NUMBER (Opcode OOOEH)

Symphony stores floating point numbers in this record, whose structure is shown below:

Offset Bytes Remark

OOH

02H

04H

05H

07H

09H

2

2

1

2

2

8

Opcode NUMBER = OOOEH

Length = 000DH (13 bytes)

Format byte

Column number

Row number

64-bit IEEE floating-point value

Offset Bytes Remark

OOH 1 Sign

0 = Positive value

FFH = Negative value

2 = Range byte

3 = String byte

01H 2 Exponent (signed integer)

03H 8 64-bit unsigned fraction

Table 9.11

Symphony record
structure

(Opcode OOOEH)

The record contains 13 data bytes, with the format of the floating point number in the first byte.
(The coding is listed in Table 9.8) The next two words describe the position of the cell containing the
floating point number. These fields are followed by 8 bytes in which the value is stored as a 64-bit
IEEE floating point number. This representation corresponds to the coding of the 8087 format.
Internally, Symphony uses its own representation, in which 11 bytes are used for the storage of
floating point numbers. As shown in Table 9.12, the first byte contains a value which specifies the
interpretation of the following number. Range and string values are indicated by the codes 2 and 3.

Table 9.12

LOTUS

Symphony
floating point
representation

LOTUS Symphony format 159

If the value ERR is present in the cell, Symphony will set the 11 bytes to the values shown in
Table 9.13.

The value ERR contains the signature 0 in the first byte, while the exponent word contains
OFFFH. The 8 bytes of the mantissa are set to 0. The same applies to the code NA (not available),
except that the first byte is set to the value -1. The remaining bytes are coded as shown in
Table 9.13.

Offset

OOH

01H-02H

03H-10H

Value

ERR = 0; NA = -1

2047 = OFFFH

8*0

Table 9.13

Internal

representation of
the ERR and NA

values in

Symphony

9.1.10 LABEL (Opcode 000FH)

Symphony stores fixed passages of text from a spreadsheet in the form of labels. In the WKSAVK1
file, there is a special record type for storing text. Its structure is shown below:

Offset Bytes Remark

OOH 2 Opcode LABEL = 000FH

02 H 2 Length = OOxxH

(variable up to 240 bytes)

04H 1 Format bvte

05H 2 Column number

07H 2 Row number

09H 5-240 ASCIIZ string (LABEL text)
Table 9.14

Symphony
record structure

(Opcode 000FH)

An example of labels is shown in Figure 6.2, in the text constants (for example in Test
Spreadsheet). The length of the data record depends on the length of the label text.

The first data byte contains the format byte, coded as shown in Table 9.8. This is followed by
two words giving the column and row numbers. The text begins at offset 09H and must be
terminated by a null byte (OOH). The string may have a maximum length of 240 bytes. The length
of the field is between 5 and 240 bytes. The byte at offset 09H always contains one of the following
control characters:

160 Spreadsheet formats

Character Remark

Repeater

Left-aligned text
Right-aligned text

Text centered

Table 9.15

Control

characters

in a Symphony
LABEL record

The character \ is used in Symphony to introduce repetitions. However, exactly when this
character is used is not clear, because it does not occur in the text labels in the test sample.

9.1.11 FORMULA (Opcode 001 OH)

In addition to numeric values, a Symphony cell may also contain a calculation formula. This
formula is stored in a record with the opcode 10H, which is structured as follows:

Offset Bytes Remark

OOH 2 Opcode FORMULA = 001 OH

02H 2 Length = xxxxH
(variable up to 2064 bytes)

04H 1 Format byte

05H 2 Column number

07H 2 Row number

09H 8 Result as 64-bit IEEE long real

11H 2 Length formula in bytes

13H 15-2063 Formula opcodes (maximum 2048

bytes)
Table 9.16

Symphony record
structure

(Opcode 001 OH)

The first data byte contains the cell format coded as shown in Table 9.8
This is followed by the coordinates for the cell in the form of two 16-bit values. At offset 09H,

the result of the calculation formula is defined as an 8-byte IEEE double precision floating point
number. The length of the formula in bytes is stored in the following word. The last part of the data
field contains the formula code. The length of the data record varies between 23 and 2064 bytes,
and the length of the formula is between 15 and 2048 bytes. Both LOTUS and Symphony convert a
formula into inverse parenthesis-free (Polish) notation. Every entry in this formula is represented
by its own function code and an associated data field:

LOTUS Symphony format 161

Code,Data f ieLd, ,Code,Data field

The code comprises one byte and specifies the operator type (variable, constant, brackets,
addition, and so on). It is followed by the data for this operator. In this context, the coding is as
follows:

Code Bytes Remark

OOH 1 Constant

8 64-bit long real value
01H 1 Variable

2 Column number (LSB first)
2 Row number (LSB first)

02H 1 Range

2 Start column number (LSB first)

2 Start row number (LSB first)
2 End column number (LSB first)
2 End row number (LSB first)

03H 1 End of formula

04H 1 Parenthesis

05H 1 Integer constant

2 (16-bit integer value)

06H 1 String constant
x (variable length ASCIIZ string)

07H 1 -

08H 1 Negation (unary minus)

09H 1 Addition +

OAH 1 Subtraction -

OBH 1 Multiplication *
OCH 1 Division /

ODH 1 Exponential function A

OEH 1 Equal =

OFH 1 Not equal <>

10H 1 Less than or equal <=
11H 1 Greater than or equal >=

12H 1 Less than <

13H 1 Greater than >

14H 1 AND

15H 1 OR

16H 1 NOT

Table 9.17

Opcodes
within a

Symphony
formula

(continues
over...)

162 Spreadsheet formats

Code Bytes Remark

17H 1 unary +

18H-1EH 1 -

1FH 1 SNA (Not applicable)

20H 1 3ERR (Error)

21H 1 3ABS (Absolute)

22H 1 3INT (Integer)

23H 1 3SQ.RT (Square root)

24H 1 3L0G (Logarithm base 10)

25H 1 3LN (Natural logarithm)

26H 1 3PI (Constant pi)

27H 1 aSIN (Sine)

28H 1 aC0S (Cosine)

29H 1 3TAN (Tangent)

2AH 1 3ATAN2 (Arctangent 4th quadrant)

2BH 1 SATAN (Arctangent 2nd quadrant)

2CH 1 BASIN (Arcsine)

2DH 1 3AC0S (Arccosine)

2EH 1 8EXP (Exponential function)

2FH 1 3M0D(X,Y) (Modulus)

30H 1 aCHOOSE

31H 1 aiSNA(x) (x=NA then 1)

32H 1 aiSERR(x) (x=ERRthen1)

33H 1 a FALSE (Return 0)

34H 1 3TRUE (Return 1)

35H 1 BRAND (Random number 0..1)

36H 1 3DATE (Days since 1.1.1990)

37H 1 3T0DAY (Date)

38H 1 3PMT (Payment)

39H 1 3PV (Present value)

3AH 1 3FV (Future value)

3BH 1 3IF

3CH 1 3D AY (Day of month)

3DH 1 3M0NTH

3EH 1 3YEAR

3FH 1 3R0UND

40H 1 3TIME

41H 1 3H0UR

42H 1 3MINUTE

Table 9.17

Opcodes
within a

Symphony
formula

(cont.)

LOTUS Symphony format 163

Code Bytes Remark

44H 1 aiSNUMBER

45H 1 3ISSTRING

46H 1 3LENGTH

47H 1 3VALUE

48H 1 3FIXED

49H 1 3MID (Mean value)

4AH 1 aCHR

4BH 1 bascii

4CH 1 3FIND

4DH 1 3DATEVALUE

4EH 1 3TIMEVALUE

4FH 1 3CELLP0INTER

50H 1 aSUM (Range 1cell 1constant)

51H 1 3AVG (Range 1cell 1constant)
52H 1 3CNT (Range 1cell 1constant)

53H 1 3MIN (Range 1cell 1constant)
54H 1 3MAX (Range 1cell 1constant)

55H 1 3VL00KUP (X,Range,OFFSET)
56H 1 3NPV (Int, Range)
57H 1 3VAR(Range)
58H 1 3STD(Range)

59H 1 3IRR (Guess,Range)
5AH 1 3HL00KUP (X,Range,Offset)
5BH 1 DSUM (Database function)
5CH 1 AVG (Database function)

5DH 1 DC NT (Database function)
5EH 1 DMIN (Database function)
5FH 1 DMAX (Database function)
60H 1 DVAR (Database function)
61H 1 DSTD (Database function)

62H 1 3INDEX

63H 1 3C0LS

64H 1 3R0WS

65H 1 3REPEAT

66H 1 SUPPER

67H

68H

1

1

3L0WER

3LEFT

Table 9.17

Opcodes
within a

69H 1 3RIGHT Symphony
formula

(cont.)

164 Spreadsheet formats

Code Bytes Remark

6AH 1 3REPLACE

6BH 1 3PR0PER

6CH 1 aCELL

6DH 1 3TRIM

6EH 1 aCLEAN

6FH 1 as

70H 1 sv

71H 1 aSTREQ.

72H 1 3CALL

73H 1 3APP (Symphony 1.0)

3INDIRECT (Symphony 1.1)

74H 1 SRATE

75H 1 3TERM

76H 1 aCTERM

77H 1 SSLN

78H 1 3S0Y

79H 1 SDDB

7AH-9BH 1 -

9CH 1 3AAFSTART

CEH 1 -

FFH 1 SAAFMAX (Symphony 1.1)

Table 9.17

Opcodes
within a

Symphony
formula

(cont.)

9.1.12 TABLE (Opcode 0018H)

This data record is used to store Symphony data tables, and has the the following structure:

Offset Bytes Remark

OOH 2 Opcode TABLE = 0018H

02H 2 Length = 0019H (25 bytes)

04H 1 0 = No table

1 = Table 1

2 = Table 2

Table 9.18

Symphony record
structure

(Opcode 0018H)
(continues
over...)

LOTUS Symphony format 165

Offset Bytes Remark

05H 2 Table range start column number

07H 2 Table range start row number
09H 2 Table range end column number

OBH 2 Table range end row number

ODH 2 Input cell 1 start column

OFH 2 Input cell 1 start row

11H 2 Input cell 1 end column

13H 2 Input cell 1 end row

15H 2 Input cell 2 start column

17H 2 Input cell 2 start row

19H 2 Input cell 2 end column

1BH 2 Input cell 2 end row

Table 9.18

Symphony
record structure

(Opcode 0018H)
(cont.)

In Symphony, the record specifies the position of the if., .then tables. The exact meaning of
this data structure is not known.

9.1.13 PRINT_RANGE (Opcode 001 AH)

From Symphony 1.1 onwards, this data record is used to store the data from a PRINT range. The
record is structured as follows:

Offset Bytes Remark

OOH Opcode PRINT_RANGE
02H 2 Length = 0008H

04H 2 Start column

06H 2 Start row

08H 2 End column

OAH 2 End row

001 AH

Table 9.19

Symphony
record structure

(Opcode 001 AH)

The record contains the coordinates of a section of the spreadsheet which is to be printed out.
All the cells within the window are printed when the print command is given.

166 Spreadsheet formats

9.1.14 FILL_RANGE (Opcode 001 CH)

This record is used to store the data from a f i LL-range, that is, the coordinates of a section of

spreadsheet which is to be filled with data. The format is as follows:

Offset

OOH

02H

04H

06H

08H

OAH

Bytes

2

2

2

2

2

2

Remark

Opcode FILL_RANGE

Length = 0008H

Start column

Start row

End column

End row

001 CH

Table 9.20

Symphony record
structure

(Opcode 001 CH)

9.1.15 HRANGE (Opcode 0020H)

This record is used to store the internal data from a range in Symphony. The record is structured
as shown in Table 9.21 below.

The exact meaning of this record is not known.

Offset Bytes Remark

OOH 2 Opcode HRANGE = 0020H

02H 2 Length = 001 OH (16 bytes)

04H 2 Value range start column

06H 2 Value range start row

08H 2 Value range end column
OAH 2 Value range end row

OCH 2 Binary range start column

OEH 2 Binary range start row

10H 2 Binary range end column

12H 2 Binary range end row
Table 9.21

Symphony record
structure

(Opcode 0020H)

9.1.16 PROTECT (Opcode 0024H)

Symphony uses this data record to indicate whether the cells of a worksheet are protected or not.
Only one byte is stored, which is coded as shown below.

LOTUS Symphony format 167

Offset Bytes Remark

OOH 2 Opcode PROTECT = 0024H
02H 2 Length = 0001H

04H 1 Protection

0: Off

1:On
Table 9.22

Symphony
record structure

(Opcode 0024H)

9.1.17 LABEL_FORMAT (Opcode 0029H)

Symphony uses this data record to note how labels are aligned. The following coding applies:

Offset Bytes Remark

OOH 2 Opcode LABEL_F0RMAT == 0029H

02H 2 Length = 0001H

04H 1 Label alignment

27H Left

22H Right

5EH Centered

Labels can be left-justified, right-justified or centered.

9.1.18 CALC_COUNT (Opcode 002FH)

This data record specifies how often a calculation (iteration) is to be carried out.

Offset Bytes Remark

OOH 2 Opcode CALC_C0UNT = 002 FH

02H 2 Length = 0001H

04H 1 Iteration counter

Table 9.23

Symphony
record structure

(Opcode 0029H)

Table 9.24

Symphony
record structure

(Opcode 002FH)

168 Spreadsheet formats

9.1.19 WINDOW (Opcode 0032H)

This data record contains information on the structure of the window.

Offset Bytes Remark

00/ OOH 2 Opcode WINDOW = 0032H

02/ 02 H 2 Length = 0090H (144 bytes)

04/ 04H 16 Window name (ASCII string)

20/ 14H 2 Cursor column

22/ 16H 2 Cursor row

24/ 18H 1 Format byte

25/ 19H 1 Unused

26/ 1AH 2 Column width

28/ 1CH 2 Number of columns

30/ 1EH 2 Number of rows

32/ 20H 2 Start row of non-title area

34/ 22H 2 Start column of non-title area

36/ 24H 2 Number of title columns

38/ 26H 2 Number of title rows

40/ 28H 2 Title left column

42/ 2AH 2 Title top row

44/ 2CH 2 HOME position column

46/ 2EH 2 HOME position row

48/ 30H 2 Number of screen columns

50/ 32H 2 Number of screen rows

52/ 34H 1 Hidden status

OOH = hidden

FFH = not hidden

53/ 35H 1 Previous windows

OOH = SHEET

01H =DOC

02H = GRAPH

03H =COMM

04H =FORM

05H = APPLICATION

54/ 36H 1 Border display

OOH =Cell

FFH = No cell

Table 9.25

Symphony record
structure

(Opcode 0032H)
(continues
over...)

LOTUS Symphony format 169

Offset Bytes Remark

55/ 37H 1 Border lines display

OOH = Display lines

FFH = No lines

56/ 38H 2 Window range start column
58/ 3AH 2 Window range start row

60/ 3CH 2 Window range end column

62/ 3EH 2 Window range end row

64/ 40H 2 Offset

66/ 42H 1 Insert mode flag

OOH = Insert off

Other = Insert on

67/ 43H 16 Graph name

83/ 53H 1 Window type

OOH = SHEET

01H =DOC

02H = GRAPH

03H =COMM

04H = FORM

05H = APPLICATION

84/ 54H 1 Auto display mode flag

61H = ('a') Auto display on

Other values: Manual display
85/ 55H 1 Forms filter

OOH = Filter active

Other: No filter

86/ 56H 16 Associated form name

102/66H 2 FORMS current record number

104/68H 1 Space display flag

OOH = No spaces

Other: Display spaces

105/69H 1 Number of spaces

01H = 1 space

02H = 2 spaces

03H = 3 spaces

106/6AH 1 Text alignment

T = Left (code 6CH)

V = Right (code 72H)

'c' = Centered (code 63H)

'e' = Even position (code 65H)

Table 9.25

Symphony

record structure

(Opcode 0032H)

(cont.)

170 Spreadsheet formats

Offset Bytes Remark

107/6BH 2 Right margin
FFH = Default

00H-FEH: User defined

109/6DH 2 Left margin

FFH = Default

00H-F0H: Left margin
111/6FH 2 TAB interval

113/71H 1 Return display mode

OOH = Soft carriage return
Other: Hard return

114/72H 1 Auto justify
OOH = Off

ELse = On

115/73H 16 Application name

131/83H 17 Reserved

Table 9.25

Symphony record
structure

(Opcode 0032H)
(cont.)

The contents of the individual fields within this record are based on the functions of

Symphony.

9.1.20 STRING (Opcode 0033H)

Offset Bytes Remark

OOH

02H

04H

05H

07H

09H

2

2

1

2

2

XX

Opcode STRING = 0033H
Length = OOxxH (variable)
Format code

Column number

Row number

ASCIIZ string, variable length
Table 9.26

Symphony record

(Opcode 0033H)

This data record is used to store the result of a string function. The cell format is stored in the
first data byte, coded as shown in Table 9.8. The next two fields contain the cell coordinates.
These are followed by the string, terminated by a null byte (OOH). The length of the string may be
variable.

LOTUS Symphony format 171

9.1.21 LOCK_PASSWORD (Opcode 0037H)

This data record contains a password which is used to lock write-access to certain defined cells.

Offset Bytes Remark

OOH

02H

04H

2

2

4

Opcode L0CK_PASSW0RD = 0037H

Length = 0004H

Password
Table 9.27

Symphony
record structure

(Opcode 0037H)

9.1.22 LOCKED (Opcode 0038H)

This data record contains the lock flag, which indicates the write-protection status.

Offset By tes Remark

OOH 2 Opcode LOCKED = 0038H
02H 2 Length = 0001H
04H 1 Lock flag

0 = Lock off

1 = Lock on

9.1.23 QUERY (Opcode 003CH)

This data record describes the settings for the QUERY command.

Offset Bytes Remark

00 / OOH

02 / 02H

04 / 04H

2

2

16

Opcode QUERY = 003CH
Length = 007FH (127 bytes)
Name (ASCIIZ string)

Table 9.28

Symphony
record structure

(Opcode 0038H)

When the flag is set, Symphony locks write-access to certain cells. These cells can then only be
accessed by giving the correct password.

Table 9.29

Symphony

record structure

(Opcode 003CH)

(continues

over...)

S
p

re
ad

sh
ee

ts

1

•
o

^
o

o
n

o
o

o
o

o
o

o
0

0
C

O
-n

I
^

1
•
^
j

-v
l

-v
j

o
v

C
N

o
O

N
O

N
U

l
U

l
U

l
U

l
U

l
J
N

4>
-

J>
-

j>
-

4
>

U
J

O
J

U
l

U
J

U
J

IV
)

IN
J

IV
)

IV
)

r
o

O
O

N
*

-
r
o

o
C

O
o

~
*

-
I
V

o
C

O
f
>

.C
-

r
j

o
o

o
o

*
«

IV
)

o
C

O
O

s
-P

-
tv

i
a

C
O

O
N

JN
-

K
)

o
C

O
O

N
4

>
IV

)
O

o
o

O
N

*
•

IV
)

o

^
^

*
.

^
'—

.
-
»

.
^

-
»

-
^

—
^

s
-
.

*
^

.
-
«

.
*

>
.

^
•
^

-
>

.
>

«
*

•»
,

*
>

~
"•

V
-
-

••
*.

~
-

-
-

•>
,

^
.

*
^

*>
*

'—
-
-
.

*
v

-
-

•-
»

^
^

.
-
-

-
>

.
^

.
~

-
N

^
ft

)

O
V

U
l

U
l

U
l

U
l

U
l

U
l

U
l

U
l

J
>

JN
-

*
>

j
^

*
-

*
-

-P
-

•o
U

J
O

J
U

J
U

J
U

J
U

J
o

j
L

M
r
o

r
o

IN
J

r
v

i
P

O
IS

J
IV

!
IV

)
*"

*"

o
m

o
3

=
0

0
C

N
*

-
rv

>
o

r
n

o
>

0
0

o
n

j
>

IV
)

o
m

«
3

>
0

0
O

N
-
t-

I
V

O
m

o
J
>

o
o

O
N

JN
-

IV
)

o
m

o
3

>
0

0
O

N
4>

-

X
X

X
x

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o SO

l
o

t
o

t
o

t
o SO

t
o

t
o

t
o

t
o SO

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o O

t
o

to
t
o

t
o o

t
o

t
o

t
o

t
o

C
O

?
0

p
ff

i
to

h
o

O
2_

3 •
a c

•
3 r
t

fB
•a 3

c
r

•
a o

•
a o

o

r
t 3

•-
t g

f? 3
3 p

o
h

r
t
-

C
L

f
t

K
\"

1
i

IS
X

£
.

M
W

X

p 3 n
o

.
n>

—
—

•£
o

'
0 r
t

f
t

r
t

—
J

~
C

O
3

"
rt

>
B

ts
0

5
o 3

—
m

C
O

fp

—
~

0
5

3

W
—

X
P 3 JO

.:
to

m
K

z
c

P
W

m
0

5
P 3 g
o

.
fD

p
r

3 p c

p

p g

3
B a

.

o
(
4

3 a
.

1

a a
.

o

E
3 a

.

r
t

3 a o

3
P a
.

ft
>

r
t

3 1

3 a
.

o

r
t

r
t
-

3

3 a
.

3 a
.

o

r
t

B •A

3^ o"

3 a
3 p

.

o

P
•
< r
-
t

£ r
t
-

O O

3 i
l

3 a o

3 a
.

3 a o

r
t

P
3 0
0

.
3 P

-
i-

(

3 a
-

o

S r
t

o
. 1

i-
i 0 <

o
o 1

c E
~

5

3 3

» f
t
-

o o_ r
j g

O 3=

g

—
.

o 3
r
t

B

C
0 5

r
t

O
C

O P H

c S3
o p

* 5

r
t 0 3

:
r
*

P s r
t
-

o
o 3

3 %
3 P 3

0
o_ g- 3

C <

O
c 3 3

o

p 1

0
o 3* 3

3 <

e
n p t"
i

r
t

O 5=
o_ g- g

1 o
p i o o

3
3 3

3
3

O o c g 3

3
O o_ g 3

3
O o E

*
3 3

3
0

0
.

rt
>

r
t
-

p o

3

3

3
o g- 3 3

3
O o s" 3 3

3 3

o 3* 3 3

T
"

^
2

.
C

f
>-

3
2

O
i

"<
S

§
•a

3
3

£

re
3

§
io

C
D

O o
C r
.

C ~
.

\
l

IV
J

o
n

-
a —

i

fD 0
J

C
L

(•
)

=
T

fD •1
)

LOTUS Symphony format 173

Offset Bytes Remark

98 / 62H 2 End row

100/ 64H 2 1st Key range start column

102/ 66H 2 Start row

104/ 68H 2 End column

106/ 6AH 2 End row

108/ 6CH 2 2nd Key range start column

110/ 6EH 2 Start row

112/ 70H 2 End column

114/ 72H 2 End row

116/ 74H 2 3rd Key range start column

118/ 76H 2 Start row

120/ 78H 2 End column

122/ 7AH 2 End row

124/ 7CH 1 Last command

OOH = No command

01H = Find

02H = Extract

03H = Delete

04 H = Unique

125/ 7DH 1 1st Key order

OOH = Descending

FFH = Ascending

126/ 7EH 1 2nd Key order

OOH = Descending

FFH = Ascending

127/ 7FH 1 3rd Key order

OOH = Descending

FFH = Ascending

128/ 80H 1 Report records flag

OOH = Multiple records

FFH = One record

129/ 81H 1 Records flag

OOH = Multiple records

FFH = One record

130/ 82H 1 Marks

OOH = Yes

FFH = No

Table 9.29

Symphony
record structure

(Opcode 003CH)
(cont.)

174 Spreadsheet formats

9.1.24 QUERY_NAME (Opcode 003DH)

This data record is used to store the current QUERY name.

Offset

OOH

02H

04H

Bytes

2

2

16

Remark

Opcode QUERY_NAME = 003DH

Length = 001 OH

QUERY name (ASCIIZ string)

9.1.25 PRINT (Opcode 003EH)

This data record contains the definitions for the PRINT record in Symphony.

Offset Bytes Remark

00 / OOH 2 Opcode PRINT = 003EH

02 / 02H 2 Length = 02A7H (679 bytes)

04 / 04H 16 Name (ASCIIZ string)

20 / 14H 2 Source range start column

22 / 16H 2 Start row

24 / 18H 2 End column

26 / 1AH 2 End row

28 / 1CH 2 Row border start column

30 / 1EH 2 Start row

32 / 20H 2 End column

34 / 22H 2 End row

36 / 24H 2 Column border start column

38 / 26H 2 Start row

40 / 28H 2 End column

42 / 2AH 2 End row

44 / 2CH 2 Destination range start column

46 / 2EH 2 Start row

Table 9.30

Symphony record
structure

(Opcode 003DH)

Table 9.31

Symphony record
structure

(Opcode 003EH)
(continues
over...)

LOTUS Symphony format 175

Offset Bytes Remark

48 / 30H 2 End column

50 / 32H 2 End row

52 / 34H 1 PRINT Format

OOH = As displayed

Else: Formulas

53 / 35H 1 Page breaks

OOH = Yes

Else = No

54 / 36H 1 Line spacing

55 / 37H 2 Left margin

57 / 39H 2 Right margin

59 / 3BH 2 Page length

61 / 3DH 2 Top of page

63 / 3FH 2 Bottom of page

65 / 41H 41 Set-up string (ASCIIZ string, 40 bytes)

106/ 6AH 241 Header (ASCIIZ string, 240 bytes)

347/15BH 241 Footer (ASCIIZ string, 240 bytes)

589/24DH 16 Source database name (ASCIIZ string)

605/25DH 1 Attribute

OOH = No

Else = Yes

606/25EH 1 Space compression

OOH = No

Else = Yes

607/25FH 1 Destination file name

OOH = Printer

01H = File

02H = Range

608/260H 2 Start page

610/262H 2 End page

612/264H 70 Destination file name (ASCIIZ string)

682/2AAH 1 Wait flag

OOH = No

Else = Yes

Table 9.31

Symphony
record structure

(Opcode 003EH)
(cont.)

176 Spreadsheet formats

9.1.26 PRINT_NAME (Opcode 003FH)

This data record is used to store the current name of the PRINT record.

Offset Bytes Remark

OOH 2 Opcode PRINT_NAME = 003FH

02H 2 Length = 001 OH

04H 16 ASCIIZ string with PRINT name
Table 9.32

Symphony record
structure

(Opcode 003FH)

9.1.27 GRAPH_2 (Opcode 0040H)

This data record describes the settings for the production of graphs in Symphony.

Offset Bytes Remark

00 / OOH 2 Opcode GRAPH_2 = 0040H

02 / 02H 2 Length = 01F3H (499 bytes)

04 / 04H 16 Name (ASCIIZ string)

20 / 14H 2 X Range Start column

22 / 16H 2 Start row

24 / 18H 2 End column

26 / 1AH 2 End row

28 / 1CH 2 A Range Start column

30 / 1EH 2 Start row

32 / 20H 2 End column

34 / 22H 2 End row

36 / 24H 2 B Range Start column

38 / 26H 2 Start row

40 / 28H 2 End column

42 / 2AH 2 End row

44 / 2CH 2 C Range Start column

46 / 2EH 2 Start row

48 / 30H 2 End column

50 / 32H 2 End row

Table 9.33

Symphony record
structure

(Opcode 0040H)
(continues
over...)

t
o

tv
)

r
o

o

«
i
i
-
i
5

'
o

'
o

'
<

l
'
o

*
*

0
l
|
l
|
'
*

N
N

|
N

N
N

I
>

f
>

»
O

>
»

«
I
W

I
U

I
U

I
«

§
?

°
o

0
0

<
'
a

*
"
N

O
a

i
0

v
*

'
P

J

-N
l

"n
|

-N
l

">
(

-N
|

-V
|

>
o

o
o

v
*-

•
rv

)
o

X
X

X
X

X
X

2
^
?

?
2

;
0

>
O

N
^
O

X
^
^
^
N

f
l
U

l
U

l
U

l
U

l
J
^
J
^
J
>

J
>

*
N

4
N

*
~

4
N

.
U

J
U

J
U

J
U

J
U

4
U

j
m

o
^
M

O
N

4
N

r
o

o
r
T

,
0

>
o

o
c
^
^
K

)
0

m
o

3
>

O
O

O
N

^
r
v
i
0

r
n

o
J
>

o
o

o
s
^

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

t
o

t
o

w
t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

t
o

w
t
o

t
o

t
o

t
o

w
w

t
o

t
o

w
t
u

w
t
v

)
t
o

t
o

t
o

t
o

t
o

w

c fD

r p c
r

fD

r p c
r

fD

I
w

W
c
a

G
O

W
m

C
O

C
O

ff
l

M
C

O
C

O
w

w
r
r

p
a a

p r
t

p r
t

3 a
.

3 a
.

P r
t

B r
t

3 a
.

3 a
.

r
t

P
B

3 a
.

3 a
.

r
t

B

r
t

o
r
t

n
r
t

r
t

r
t

n
-

^

o
o

(J
o

O
r
t

o
o

o
r
t

o
O

r
t

3 3 3

3
o_ g 3

S3
C 3 3

U S3
g- 3 3

3
g- 3 3

O 3
o_ g 3

3
5" 3 3

0 <

K
2

-J
-a

re
^

.
w

C
rt

*
.

r
T

c/
>

O
•

™
q-

a
w

2
S

o p c
r

(t
>

B
r>

3
a

3 a
.

o O 3 3

C
O

t-
1

p c
r

fD

C
O

C
O

m 3 a
.

o
o o

3 a
.

o o_ 5" 3 3

t-
1

B T ft
!

p 3 0
0

,
fD

SO p 3 O
O

.
fD

c
c

co
m

m
eg

B
P

B
•|

3
e
*

r
*

.r
t

r
t

«
•

r
t-

m
r
t

3 a o o

s r
t

r
t

o 5=

3 a
.

•
i

o 3

3 a o c £" 5 3

a
.

a

5
-

•*>
C

1

o O

B 3

S
p

re
ad

sh
ee

ts

a SO p 3 0
0

.
fD

C
O

G
O

(r
t-

(r
t-

P
B C C

_
r
t 5 3

o c
a

SO fD 3 p

c u
i

o
o

^
<

"
a z
r

o 3 n
< c? 3 S
I

178 Spreadsheet formats

Offset Bytes

124/ 7CH 1

125/ 7DH 1

126/ 7EH 1

127/ 7FH 1

128/ 80H 1

129/ 81H

130/ 82H 1

131/ 83H 1

Remark

Graph type

Grid type

Color

OOH

01H

02H

04H

05H

XY-graph

Bar graph

Pie chart

Line

Stacked bar

OOH = No grid

01H = Horizontal

02H = Vertical

03H = Both

OOH = Black and white

FFH = Colors

A Range line format
OOH = No lines

01H = Line

02H = Symbol

03H = Line + Symbol

B Range line format
OOH = No lines

01H = Line

02H = Symbol
03H = Line + Symbol

C Range line format
OOH = No lines

01H = Line

02 H= Symbol

03H = Line + Symbol

D Range line format
OOH = No line

01H = Line

02 H= Symbol

03H = Line + Symbol

E Range line format
OOH = No line

01H = Line

02H= Symbol

03H = Line + Svmbol

Table 9.33

Symphony record
structure

(Opcode 0040H)
(cont.)

Offset

132/ 84H

133/ 85H

134/ 86H

135/ 87H

136/ 88H

137/ 89H

138/ 8AH

Bvtes

LOTUS Symphony format 179

Remark

F Range line format

OOH = No line

01H = Line

02 H= Symbol

03H = Line + Symbol

A Range data label alignment

OOH = Center

01H = Right

02 H = Below

03H = Left

04H = Above

B Range data label alignment

OOH = Center

01H = Right

02 H = Below

03H = Left

04H = Above

C Range data label alignment

OOH = Center

01H = Right

02 H = Below

03H = Left

04H = Above

D Range data label alignment

OOH = Center

01H = Right

02 H = Below

03H = Left

04H = Above

E Range data label alignment
OOH = Center

01H = Right
02 H = Below

03 H = Left

04H = Above

F Range data label alignment

OOH = Center

01 H= Right

02 H = Below

Tabic 9.33

Symphony
record structure

(Opcode 0040H)
(cont.)

180 Spreadsheet formats

Offset Bytes

139/ 8BH

140/ 8CH

148/ 94H

156/ 9CH

157/ 9DH

165/ A5H

173/ ADH 40

213/ D5H 40

253/ FDH 40

293/125H 40

333/14DH 20

353/161H 20

373/175H 20

393/189H 20

413/19DH 20

433/1B1H 20

53/1C5H 1

454/1C6H 1

455/1C7H 2

457/1C9H 1

458/1CAH

Remark

Scaling X-axis

OOH = Automatic

FFH = Manual

X-Axis lower limit

64-bit IEEE floating point

X-Axis upper limit

64-bit IEEE floating point

Scaling Y-Axis

OOH = Automatic

FFH = Manual

Y-Axis lower limit

64-bit IEEE floating point

Y-Axis upper limit

64-bit IEEE floating point

Text first title (40 characters)

Text second title (40 characters)

Text X-Axis (40 characters)

Text Y-Axis (40 characters)

Legend A-Axis (20 characters)

Legend B-Axis (20 characters)

Legend C-Axis (20 characters)

Legend D-Axis (20 characters)

Legend E-Axis (20 characters)

Legend F-Axis (20 characters)

X-Format

Y-Format

Skip factor

Scale factor X-Axis:

OOH = On

FFH = Off

Scale factor Y-Axis:

OOH = On

FFH = Off

Table 9.33

Symphony record
structure

(Opcode 0040H)
(cont.)

LOTUS Symphony format 181

Offset Bytes Remark

459/1CBH 1 Suppress:

OOH = On

Else = Off

460/1CCH 8 Origin bar graph

(IEEE floating-point)

468/1D4H 8 X linear scale (float)

476/1DCH 8 Y linear scale (float)

484/1E4H 1 X log scale

485/1E5H 1 Y log scale

486/1E6H 1 Color X graphic region (hue)

487/1E7H 1 Color A graphic region (hue)

488/1E8H 1 Color B graphic region (hue)

489/1E9H 1 Color C graphic region (hue)

490/1EAH 1 Color D graphic region (hue)

491/1EBH 1 Color E graphic region (hue)

492/1ECH 1 Color F graphic region (hue)

493/1EDH 2 Width Y-Axis

495/1EFH 8 Aspect

9.1.28 GRAPH_NAM E (Opcode 0041H)

This data record contains the current name of the GRAPH record.

Offset Bytes Remark

OOH

02H

04H

2

2

16

Opcode GRAPH_NAME = 0041H

Length = 001 OH

GRAPH name (ASCIIZ string)

Table 9.33

Symphony
record structure

(Opcode 0040H)
(cont.)

Table 9.34

Symphony
record structure

(Opcode 0041 H)

182 Spreadsheet formats

9.1.29 ZOOM (Opcode 0042H)

ZOOM describes the original coordinates of an enlarged window.

Offset Bytes Remark

OOH 2 Opcode ZOOM = 0042H

02H v 2 Length = 0009H

04H 1 ZOOM Flag

0 = ZOOM off

1 = ZOOM on

05H 2 X-coordinate

07H 2 Y-coordinate

09H 2 Column depth

OBH 2 Row depth
Table 9.35

Symphony record
structure

(Opcode 0042H)

9.1.30 SYMPHONY_SPLIT (Opcode 0043H)

This data record is used to store the number of split windows. The structure of the record is shown
below:

Offset Bytes Remark

OOH

02H

04H

2

2

2

Opcode SYMPH0NY_SPLIT = 0043H

Length = 0002H

Number of split windows
Table 9.36

Symphony record
structure

(Opcode 0043H)

9.1.31 NUMBER_SCREEN_ROWS (Opcode 0044H)

This data record determines the number of rows displayed on screen.

LOTUS Symphony format 183

Offset Bytes Remark

OOH

02H

04H

2

2

2

Opcode NUMBER_SCREEN_R0WS
Length = 0002H
Rows on screen

= 0044H

Table 9.37

Symphony
record structure

(Opcode 0044H)

9.1.32 NUMBER_SCREEN_COLUMNS (Opcode 0045H)

This data record determines the number of columns displayed on screen.

Offset Bytes Remark

OOH

02H

04H

2

2

2

Opcode

NUHBER_SCREEN_COLUMNS =

Length = 0002H
Columns on screen

= 0045H

Table 9.38

Symphony
record structure

(Opcode 004 5H)

9.1.33 RULER (Opcode 0046H)

This data record stores the ruler-range. The structure is as follows:

Offset Bytes Remark

OOH 2 Opcode ROLER = 0046H
02H 2 Length = 0019H (25 bytes)
04H 16 Name (ASCIIZ string)
14H 2 Range start column
16H 2 Range start row
18H 2 Range end column
1AH 2 Range end row
1CH 1 Range type

0 = Single cell
1 = Range

Table 9.39

Symphony
record structure

(Opcode 0046H)

The last byte specifies whether the data in the range field relates to a whole range or simply to
a single cell.

184 Spreadsheet formats

9.1.34 NAMED_SHEET (Opcode 0047H)

In this data record, the coordinate for a named data range is stored. The structure is defined as
shown in Table 9.40.

Offset Bytes Remark

OOH 2 Opcode NAMED_SHEET = 0047H

02H 2 '"•; Length = 0019H (25 bytes)

04H 16 Name (ASCIIZ string)

14H 2 Range start column

16H 2 Range start row

18H 2 Range end column

1AH 2 Range end row

1CH 1 Range type

0 = Single cell
1 = Range

Table 9.40

Symphony record
structure

(Opcode 0047H)

The last byte specifies whether the data in the range field relates to a whole range or simply to
a single cell.

9.1.35 AUTO_COMM (Opcode 0048H)

This data record contains the name of the communications file which is to be loaded

automatically.

Offset Bytes Remark

OOH

02H

04H

2

2

65

Opcode AUT0_C0MM = 0048H

Length = 0041H (65 bytes)

Path name (ASCIIZ string)
Table 9.41

Symphony record
structure

(Opcode 0048H)

The file name, including drive and path name, must be specified in the ASCIIZ string.
Symphony uses this file name to load the relevant communications file automatically.

LOTUS Symphony format 185

9.1.36 AUTO_MACRO (Opcode 0049H)

This data record specifies a range that contains a macro. The macro is executed automatically.

Offset Bytes Remark

OOH 2 Opcode AUTOJACRO
02H 2 Length = 0008H
04H 2 Start column

06H 2 Start row

08H 2 End column

OAH 2 End row

0049H

Table 9.42

Symphony
record structure

(Opcode 0049H)

9.1.37 PARSE (Opcode 004AH)

This data record contains the addresses for a range of cells containing information on the QUERY
command.

Offset Bytes Remark

OOH 2 Opcode PARSE = 004AH

02H 2 Length = 001 OH (16 bytes)

04H 2 Parse range start column

06H 2 Parse range start row

08H 2 Parse range end column

OAH 2 Parse range end row

OCH 2 Review range start column

OEH 2 Review range start row

10H 2 Review range end column

12H 2 Review range end row Table 9.43

Symphony
record structure

(Opcode 004AH)

186 Spreadsheet formats

9.1.38 WKS_PASSWORD (Opcode 004BH)

This data record is used for decoding an encrypted worksheet. The record type is supported from
LOTUS 1-2-3, version 2.0 onwards and in Symphony, from version 1.1.

Offset Bytes Remark

OOH

02H

04H

2

2

4

Opcode WKS_PASSW0RD = 004BH

Length = 0004H

Password
Table 9.44

Symphony record
structure

(Opcode 004BH)

The precise meaning of this record is not known.

9.1.39 HIDDEN_VECTOR (Opcode 0064H)

This data record contains 32 bytes, representing 256 individual bits. One column of the work
sheet is allocated to each bit. If the bit is set to 1, the column is hidden, that is, not visible.

Offset Bytes Remark

OOH

02H

04H

2

2

32

Opcode HIDDEN_VECT0R = 0064H

Length = 0020H (32 bytes)
Bit field

Table 9.45

Symphony record
structure

(Opcode 0064H)

The bit field is arranged so that the lowest byte is stored first. Bit 0 in byte 0 thus corresponds
to the first column. This function is only available from Symphony 1.1 onwards.

LOTUS Symphony format 187

9.1.40 CELL_POINTER_INDEX (Opcode 0096H)

From Symphony version 1.1 onwards, this data record contains the cell pointer index. It is
structured as follows:

Offset Bytes Remark

OOH

02H

04H

06H

08H

2

2

2

2

2

Opcode CELL_P0INTER_INDEX = 0096H

Length = 0006H

Column number (integer)

Number of lowest row active cell

Number of highest row active cell
Table 9.46

Symphony
record structure

(Opcode 0096H)

This record defines the range of active cells in a column. The exact meaning of this record is
not known.

In later versions of Symphony, additional opcodes are defined. The contents of the
corresponding records are, however, not yet known. It should be relatively simple to identify them
on the basis of the above information. Since the opcodes are upwardly compatible, data can
generally be read from future file versions.

Data Interchange Format (DIF)

The exchange of data between LOTUS 1-2-3
/Symphony and external programs via

WKS/WKl files presents considerable problems.
This is especially true if only the calculation data are
required. Some years ago, LOTUS Development
defined an ASCII format allowing data to be
interchanged between various applications,
regardless of the current program. This format is
called Data Interchange Format (DIF) and currently
represents a standard which is supported by many
other products.

DIF only enables the interchange of data in ASCII format between various applications. Program-
specific information such as cell formats or calculation formulas is not transferable.

The idea of the DIF standard is based on the transfer of data from spreadsheet cells in records,
by column or by row, in the form of ASCII text. In DIF, the columns are referred to as sectors and
the rows as tuples. A DIF file is composed of two sections, as shown in Figure 10.1:

Header

Data

Figure 10.1
Structure of a

DIF file

Before the actual data, there is a header containing information and definitions relating to the
spreadsheet. The basic structures of the header and data records are described below.

188

Data interchange format (DIF) 189

10.1 The structure of the DIF header

The DIF header consists of at least four mandatory entries and various optional entries. Each header
entry has the following format:

<Topic>

<Vector>,<VaLue>

"<String>"

The fields have been enclosed in angle brackets < > and have a special meaning.
Topi c contains the keyword - a name with a maximum length of 32 upper-case letters - which

specifies the record type. The following record types, at least, must occur in the header:

♦ TABLE

♦ VECTORS

♦ TUPLES

♦ DATA

Additional keywords for optional record types are presented on the following pages.
The vector field contains a numeric value, which specifies the interpretation of the subsequent

data. The entry 0 indicates that the record relates to the complete table. All positive non-zero
values specify the column to which the record relates. The numeric value in the next field must
always be set to 0, unless otherwise specified.

An optional text string can appear in the third line. If no text is to be transferred, two double
inverted commas ("" without any intervening space) appear in this position.

The four types of record TABLE, VECTOR, TUPLES and DATA are structured as follows.

10.1.1 TABLE

Information about the table is stored in this record. The format is as follows:

TABLE

0,<version>

"<Title>"

The vector field must be 0, no other value is permitted. The version number in the next field
must be set to 1. An ASCII string, for example the name of the program to be produced, can be
stored in the title line. If no text is entered, at least two double inverted commas with no spaces
between them should be output to complete the record. Angle brackets (< and >), such as those
used above for marking the fields, may not occur in the DIF file. A DIF file must start with a TABLE
record type.

190 Spreadsheet formats

10.1.2 VECTORS

The next record in the DIF header specifies the number of vectors (columns) in the table. The

format is as follows:

VECTORS

0,<Count>

In the vector field, the value 0 is compulsory, because the information relates to the whole table.
The count field specifies the number of columns in the transferred table. The text field remains
blank but its position must be indicated with two double inverted commas. A record of this type
must not follow directly after the TABLE record. However, it is important that it is positioned before
the first record containing vector definitions (for example, LABELS).

10.1.3 TUPLES

The number of tuples (rows) within a table is specified in a record whose format is as follows:

TUPLES

0,<Count>

The vector field must always contain the value 0, because the record relates to the whole
table. Count specifies the number of rows in the table. The text field remains blank but must be
indicated by inverted commas.

10.1.4 DATA

This record type is also required in the DIF header. It marks the end of the header and is
structured as shown below:

DATA

0,0

The record has a fixed structure as shown. It is followed by the records for the data section.

Data interchange format (DIF) 191

Figure 10.2 shows an example of the minimum required header for a DIF file.

TABLE
r
Header

0,1 F 0 = complete table, version 1

"Testdata"
f Title

VECTORS
r column definition

0,5
/ 5 columns

II M

/ no text

TUPLES r row definition

0,10
f 10 rows

II II

r no text

DATA
r End DIF Header

0,0
II II

Figure 10.2

Example of

a DIF header

The construction of this header is based on the data from the test spreadsheet shown in Figure
6.1. The comments (prefixed by a semicolon in the figure) do not belong to the DIF file and have
been added by way of explanation.

The DIF format specification permits further optional record types (for example column
headings), although these are not supported by all programs. For the sake of completeness, these
record types are listed below.

10.1.5 LABEL

This record type enables a heading to be defined for one or more columns. The structure of the
record is shown below:

LABEL

<Vector>,<Lines>

"<Text>"

The number of the relevant column is stored in the vector field. If the heading relates to several
columns, the appropriate number of columns should be entered in the next field - otherwise, enter
the value 1. The actual heading appears in the third line, enclosed in inverted commas.

10.1.6 COMMENT

This record can be used to store additional information (comment text) about a column. The
structure is shown below:

192 Spreadsheet formats

COMMENT

<Vector>,<Lines>

"<Comment>"

The vector field contains the number of the relevant column; it is possible to specify several

columns by placing the number of the last relevant column in Lines. The comment is given in the
third line enclosed in double inverted commas.

10.1.7 SIZE

This record type enables a fixed width in bytes to be specified for a column. The following structure
applies:

SIZE

<Vector>,<Bytes>

The number of the relevant column is given in the vector field; the following field contains the
length of the column in bytes. The text field remains blank.

10.1.8 PERIODICITY

When analyzing time sequences, information on the periodicity of the data is often required. This
can be indicated using the optional record type shown below:

PERIODICITY

<Vector>,<Period>

The vector field contains the number of the column that holds the readings; the following field
lives the time periods for these data. The text field remains blank.

10.1.9 MAJOR-START

When analyzing time sequences (for example, turnover figures), this record can be used to specify
the first year to which the data refer:

MAJORSTART

<Vector>,<Start>

Data interchange format (DIF) 193

The vector field contains the number of the column that holds the data. The following start
field contains the first year to which the data refer. The text field remains blank.

10.1.10 MINOR-START

This record type also enables time data to be specified for the data transferred.

MINORSTART

<Vector>,<Start>

The vector field contains the number of the column that holds the data. The following start
field contains the first time value to which the data refer. This may be hours, minutes, months,
and so on. The text field remains blank.

10.1.11 TRUE-LENGTH

Not all of the fields of a given column necessarily contain active values. The following record type
is used particularly for cases in which the last fields of a column contain no significant data.

TRUELENGTH

<Vector>,<Length>

The vector field contains the number of the column that holds the data. The following Length
field indicates the number of rows containing significant data. The text field remains blank.

10.1.12 UNITS

This optional record type enables the transfer of units for the data of a particular column. The
structure is shown below.

194 Spreadsheet formats

UNITS

<Vector>,0

"<Unit>"

The vector field contains the number of the column that contains the data. The value 0 should

be entered in the following field. The unit is transferred as ASCII text within double inverted
commas in the text field. If inverted commas occur in the text (for example, indicating inches), a
second set of double inverted commas may be used (for example, "5 1/4"").

10.1.13 DISPLAY-UNITS

This record type is used to specify the name of a column. The column will then be displayed with
the relevant name.

DISPLAYUNITS

<Vector>,0

"<Name>"

The vector field contains the number of the named column. In the third row, the name must

be enclosed in double inverted commas. This text is independent of any unit which may be

transferred.

This ends the description of optional record types. If a DIF file contains these record types,
they can easily be skipped by the program reading it, which means that the supplementary
information will be lost but the data can still be read.

10.2 The DIF data record structure

The header of a DIF file is terminated by a DATA record, to which the actual data records are
appended. These records consist of two rows and have the following format:

<Type>,<VaLue>

<String>

The data type specifies howthe following information is to be interpreted. A distinction is made
between different types:

Data interchange format (DIF) 195

10.2.1 Special Data (-1)

This type indicates a special format which marks the beginning or end of the DIF data range. In
both cases the vaLue field contains the number 0. The keywords BOT (Beginning of Tuple) or EOD
(End of Data) appear in the second row. They do not need to be placed inside double inverted
commas. The valid record structures are as follows:

-1,0

BOT

-1,0

EOD

The special type BOT marks the beginning of a row in the table. The record type EOD marks the
end of the data in the DIF file. All the information after this record is skipped as comment. It is
entirely possible for a file to have several BOT records; however, it should have only one EOD
record.

10.2.2 Numeric Data (0)

Numeric data is transferred using this data type, according to the following record structure:

0,<VaLue>

<VaLue indicator>

The code for the record type is 0. The value for the relevant cell is transferred in the following
field as an ASCII string. In the next row, there is an indicator specifying the type of the value field.
The following keywords are permitted for va Lue i ndi cator.

Indicator

V

NA

ERROR

TRUE

FALSE

Remark

Value

Not available

Error

Logical constant
Logical constant

Value

Any

0

0

1

0
Table 10.1

Value indicators

in DIF files

196 Spreadsheet formats

In case of the indicators NA and ERROR, the value field must contain 0. In all other cases, the

value for the relevant cell is given in this field. For example, the value 10.5 can be transferred as
follows:

0,10.5

V

10.2.3 String Data (1)

In addition to numeric data, texts and string constants frequently need to be transferred. To do
this, record type 1 must be used in the data field. Its structure is shown below:

1,0

"<String>"

With this record type, the value field must be 0. The string constant is enclosed in double
inverted commas and stored in the second line. The constant Price, shown in Figure 6.1, is

transferred as DIF data with the following record:

1,0

"Price"

In DIF files, data is always output by row; the data within one row relates to successive
columns. The beginning of a new row can be initiated at any time using the BOT (Beginning of
Tuple) record. The next value will relate to the first column of the relevant row. The interchange
always begins with row 1, column 1. As soon as all the columns of a row have been transferred, a
BOT marker for a new row appears. When interpreting a DIF file, this sequence should always be
observed, otherwise the results will appear as a transposed matrix (columns and rows inverted). As
a rule, a record corresponding to every column and row specified in the header must be present in
the data field. The end of the data range is indicated by EOD.

This concludes the description of the various data records in DIF files. Figure 10.3 shows the
spreadsheet from Figure 6.1 as a DIF file:

TABLE

0,1
II II

VECTORS

0,5

; Header

Figure 10.3
Test spreadsheet
as a DIF file

(continues
over...)

Data interchange format (DIF) 197

11 II

TUPLES

0,10
II II

DATA

0,0
II II

; Header end

-1,0

BOT

1,0
II li

; Beginning of 1st row

; Special data type (-1)

1,0
II II

1,0

'Test Spread Sheet'

1,0
M II

; Text constant (1)

1,0
ii ii

-1,0
BOT

1,0
II ii

; Beginning of 2nd row

1,0
ii ii

1,0
II II

1,0
II II

1,0
II II

-1,0

BOT

1,0
II II

; Beginning of 3rd row

1,0
II II

1,0
II II

1,0
II II

1,0
II II

-1,0
BOT

1,0

"Product"

1,0
M II

; Beginning of 4th row

1,0

Figure 10.3
Test spreadsheet
as a DIF file

(cont.)

198 Spreadsheet formats

"Price"

1,0

"Disc."

1,0

"Net"

-1,0

BOT

1,0
n II

1,0
n ii

1,0
II II

1,0
II II

1,0

""-1,0

BOT

1,0

"Diskettes 5 1/4"

1,0

Beginning of 5th row

; Beginning of 6th row

0,15

V

0,10

V

0,1.350000000000000E+01

V

-1,0 ; Beginning of 7th row

BOT

1,0

"Paper"

1,0
n n

0,25 ; Numerical value (0)

V

0,7.800000000000000E+00

V

0,2.305000000000000E+01

V

-1,0 ; Beginning of 8th row

BOT

1,0 Figure 10.3
Test spreadsheet
as a DIF file

(cont.)

Data interchange format (DIF) 199

"FiLes"

1,0
ii u

0,3.500000000000000E+00

V

0,5

V

0,3.325000000000000E+00
V

-1,0
BOT

1,0
II i

1,0
M ii

1,0
II II

1,0
II II

1,0

-1,0

BOT

1,0

"Sum"

1,0

; Beginning of 9th row

; Beginning of 10th row

0,4.350000000000000E+01
V

1,0
ii ii

0,3.987500000000000E+01
V

-1,0 ; End of data area
EOD

Figure 10.3
Test spreadsheet
as a DIF file

(cont.)

The comments (indicated by a preceding semicolon) do not belong to the DIF file; they have
been added by way of explanation.

Super Data Interchange format (SDI)

Transferring data in DIFfiles imposes a number
of limitations in terms of the information
transferred. For example, it may not be

possible to create the formula contained in an
individual cell or the corresponding format.

The company Computer Associates International expanded the DIF definition for the product
SuperCalc 3. The result is known as Super Data Interchange (SDI) format. In terms of its
structure, an SDI file is based on a DIF file: it consists of a header followed by the data section. The
keywords of the DIF definition have been adopted and expanded to include as a number of extra
definitions, columns are referred to as vectors and rows as tuples.

In SuperCalc (version 2.0) the rows are numbered from 1 to 9999 and the column range is
from 1 to 128. This numbering is reflected in the SDI format.

The records in the header and data section are of variable length, so that each row of an SDI file
is terminated by CR/LF (carriage return/linefeed). ASCII characters are used for the definition of
character and column formats. Table 11.1 lists the format characters for this type of file:

Characters Remark

L Numeric values left-aligned
R Numeric values right-aligned
TL Text left-aligned
TR Text right-aligned
$ Numeric values with 2 decimals and trailing zeros
* Display numeric values as *, for example

display 3 as ***; 0 is displayed as a space
I Display numeric values as integers
G Standard format with best fit to cell width

D Delete all formats and use standard format

E Display with exponent

200

Table 11.1

Control codes in

SDI format

Super data interchange format (SDI) 201

11.1 The header of an SDI file

The SDI header consists of a minimum of two entries and various optional entries. Each entry in

the header is structured as follows:

<Topic>

<Vector>,<Value>

""<String>""

The fields here have been enclosed in angle brackets < > and have a special meaning.
Topic contains the keyword specifying the record type. These keywords are names with a

maximum length of 32 upper-case letters. The header of an SDI file must contain at least the
TABLE and DATA records. Five additional, optional record types have been defined. By contrast with

the record types in DIF files, these include VECTORS and TUPLES. The possible record types are:

♦ TABLE

♦ VECTORS

♦ TUPLES

♦ GDISP-FORMAT

♦ COL-FORMAT

♦ ROW-FORMAT

♦ DATA

The VECTOR field contains a numeric value, which specifies the interpretation of subsequent
data. The entry 0 indicates that the record relates to the whole table. All positive non-zero values
specify the column to which the record refers. The numeric value in the next field must always be
set to 0, unless otherwise specified.

In the third row, an optional text string may be inserted. If no text is transferred, two double
inverted commas will be entered here ("", without any separating space between them).

The structure of the various record types is described below.

11.1.1 TABLE (mandatory)

This is the first record in an SDI file; it signals the beginning of the header. The format of the
record is fixed, as shown below:

TABLE

0,1

202 Spreadsheet formats

The keyword TABLE must appear in upper-case; the second and third rows must be output with
the parameters shown above. There must be no text between the inverted commas in the third

row; the SDI format deviates from the DIF description in this respect.

11.1.2 VECTORS (optional)

This record type specifies the number of vectors (columns) in the table. The format is as follows:

VECTORS

0,<Count>

The count field specifies the number of columns in the table transferred. The text field
remains blank and must be indicated bv two double inverted commas.

11.1.3 TUPLES (optional)

This record type specifies the number of tuples (rows) in the table. The format is as follows:

TUPLES

0,<Count>

Count specifies the number of rows in the table. The text field remains blank and must be
indicated by two double inverted commas.

11.1.4 GDISP-FORMAT (optional)

This record type is used for formatting the spreadsheet and has the following structure:

GDISP-FORMAT

<width>,0

<format string>

The record has no equivalent in the DIF format and is therefore structured somewhat
differently. The width field specifies the global column width for the whole spreadsheet. In the
third line, there is a string containing the formatting control character - the possible control

Super data interchange format (SDI) 203

characters are shown in Table 11.1. By contrast with the other record types, the text here must

not be placed in inverted commas, for example:

GDISP-FORMAT

10,0

LTR$

The formula sets the column width for all cells in the spreadsheet to 10 characters. All numeric
values are aligned with the left cell margin (L), while text must be right-justified (TR). All numeric
values are output with two decimal places ($).

11.1.5 COL-FORMAT (optional)

In addition to the global format display (GDISP-FORMAT) for all cells in the spreadsheet, COL-
FORMAT enables individual columns to have different formats; this can be repeated several times in
one header. Each record is structured as follows:

COL-FORMAT

<coL>,<width>

<format string>

The number of the relevant column is entered in the coL field, and the width in characters in
the following width field. The third row must contain a format string using the characters from
Table 11.1. This string must not be enclosed in inverted commas.

11.1.6 ROW-FORMAT (optional)

This record type is used to specify the format of a row. The record consists of three lines with the
following structure:

ROW-FORMAT

<row>,<width>

<format string>

The number of the relevant row is specified in the row field. The following width field defines
the width of the individual cells. In the third row, there must be a format string using the
characters from Table 11.1; the string must not be enclosed in inverted commas. This record type
may appear in the header several times. The format of each row can thus be set in any way
required.

204 Spreadsheet formats

11.1.7 DATA (mandatory)

This record type closes the SDI header and is mandatory. It indicates the beginning of the data
section and is structured as follows:

DATA

0,0

Figure 11.1 shows an example of an SDI header.
The comments (preceded by semicolons) do not belong to the SDI file; they have been added

by way of information.

TABLE ; Header

0,1
II II

; 0 = complete table, version 1

COL-FORMAT ; Column definition

0,5
II M

; Column 0, 5-character width

DATA ; End of SDI Header

0,0
ii n

Figure 11.1
Example of an
SDI header

11.2 Data section of an SDI file

The data section begins after the DATA record. In this section, there must be an entry for every cell
of the spreadsheet. Cell Al of the table is transferred first. This is followed by cells Bl to X2 of the
first row, each new row being started with the keyword BOT, a blank row (CR/LF) or some other
form of separator (for example a semicolon).

The actual data records are structured as follows:

<Typ>,<Value>

<String>

The record type is stored in typ, as shown in Table 11.2:

Super data interchange format (SDI) 205

Type Remark

1 Text

0 Numeric value

-1 Data definition

-2 GOTO specification

-3 Input display format

-4 Calculation formula

-5 Repeat counter
Table 11.2

Record types for
SDI data

Seven different data types are defined in SDI format; the meaning of the remaining fields
depends on the data type. The relevant structures are described below:

11.2.1 Text Entry (Typ = 1)

This data type is used for the transfer of texts in SDI format. The structure is as follows:

1,<Value>

<String>

The last row contains the text to be transferred. However, if this contains only blanks, they must
be enclosed in double inverted commas. The value field may contain 0 or 1. These values specify
how the subsequent text is to be interpreted. If the value is 0, the following row will contain a
regular text. This text is stored in the relevant cell. Value 1 specifies that the subsequent text is
repeated in several cells. Information on the number of repetitions is stored in record type -5
(repeat count entry).

11.2.2 Numeric Entry (Typ = 0)

In SDI, numeric values are transferred using this data type. The record is structured as follows:

0,<Value>

<Format>

206 Spreadsheet formats

The va lue field contains the number to be transferred. The format indicator in the second row

determines the representation in the relevant cell. The keywords shown in Table 11.3 are
permitted in this field, in accordance with the DIF definition.

Indicator Remark Va]

V Value All

NA Not available 0

ERROR Error 0

NULL Cell unused 0
Table 11.3

Format for a

numeric value in

SDI files.

Valid numeric values are indicated by the letter V; the value field contains the numeric value
as an ASCII string. With the format NA (not available) there is no numeric value available, and the
relevant field contains the entry 0. The same applies to the NULL and ERROR formats. The sample
shown in Figure 11.2 contains some SDI data records:

00,13 000 ; valid value 13.0

V

0,0 ; value not avai Lable

NA

0,0 ; cell unused

NULL

0,0 ; wrong value

ERROR
Figure 11.2
Data records in

SDI format

The comments do not belong to the SDI format; they have been added by way of explanation.

11.2.3 Data Definition Entry (Typ = -1)

This record type is used to indicate a new row (Beginning of Tuple) or the end (End of Data) of
the data section. The following variations are permitted:

-1,0 ; row start

BOT

-1,0 ; end of data area

EOD

Super data interchange format (SDI) 207

The keyword BOT (Beginnmg of Tuple) appears before the first data record for a new row in the

spreadsheet. This is particularly useful if there are only blank cells at the end of a row. The

keyword EOD (End of Data) marks the end of the data section. This record may be followed by

further entries, but these will be ignored. The value field must contain 0.

11.2.4 Origin Specifier (GOTO) (Typ = -2)

This record type enables individual cells to be addressed. The record consists of two rows with the

following structure:

-2,0

<String>

The field for the numeric values should always contain the value 0. The following row contains
the cell coordinates in this format:

Column:Row

The values are separated by a colon. The cell with the coordinates Column = 10, Row = 3

would thus be addressed with the following record:

-2,0

10:3

In SuperCalc 3, the values for the column numbers may be between 1 and 128 and the row

numbers between 1 and 9999. This record type enables the position of the next cell to be specified

directly, which enables unoccupied cells to be skipped.

208 Spreadsheet formats

11.2.5 Level Display Formatting Entry (Typ = -3)

This data type enables the format of the preceding cell to be referenced. The record structure is as

follows:

-3,0

<Format-String>

The characters shown in Table 11.1 are allowed as a format-string, where several characters

may be combined. The format instruction for the preceding row should be adopted - if there is no
preceding row, the SDI parser will issue an error message.

11.2.6 Formula Entry (Typ = -4)

SuperCalc can also read in formulas using the SDI format. The record structure is shown below:

-4,0

<Formula>

A valid calculation formula must be transferred in the formula field.

11.2.7 Repeat Count Entry (Typ = -5)

This record type uses the repetition factor which was ignored in a Text Entry record (Section
11.2.1), where string repetitions could be specified.

-5,Repetition factor>

<string format>

The repetition factor relates to the string in the preceding cell. Only the control character R
may appear in the string format field. The text in the preceding cell will be copied into the
following cells n times.

Standard Interface format (SIF)

In earlier versions of Open Access, an additional
format was defined for the transfer of data; this
transfers the contents of the spreadsheet as an

ASGIIfile.

As in the case of DIF and SDI, each element of the spreadsheet is transferred to its own cell.
The first row in the file contains a number indicating the row number in the spreadsheet. Each
item of information is separated by a comma, while the semicolon is used to mark the end of a
spreadsheet row. Texts are enclosed in apostrophes (single inverted commas). Figure 12.1 shows
the spreadsheet from Figure 6.1 in SIF format.

10

Test Spread Sheet';

Product',

r

Price',

Disc.',

Net';

Diskettes 5 1/4',

15.00,

10.00,

13.50;

Figure 12.1
Output of a
Test Spreadsheet
as a SIF file

(continues
over...)

209

210 Spreadsheet formats

1Paper',
i i

/•

25.0,

7.80,

23.50;

' Files',
i i

3.50,

5.00,

3.325;

'Sum',
i i

/

43.50,
i i

F

39.875;

Figure 12.1
Output of a test
spreadsheet as

a SIF file

(cont.)

The spreadsheet transferred in this way contains 10 rows terminated by semicolons. This is
specified in the first row of the SIF file, which is then followed by the individual records.

Symbolic Link Format (SYLK)

For Multiplan, Excel and Chart, Microsoft has
defined its own format for exchanging data
with external programs. This format is known

as Symbolic Link Format (SYLK). Not just data, but
all the information required for the definition of a
spreadsheet can be transferred.

SYLK has a row-oriented record structure, where each record is terminated by CR/LF. The
following basic structure applies to all records:

<Record typexField type><Fields>

Each record contains several items of information and is thus divided into individual fields.

Angle brackets (< and >) have been used here to distinguish the individual fields, but they should
not be entered in the data records themselves. The character ft is used below as a space marker for
blank characters (20H).

The first entry indicates the record type of the record. This type specifies the structure and
the meaning of the following fields and consists of one or two upper-case letters (for example ID, F,
B, Cand so on).

The second entry is optional and describes the field type. With certain record types, it is used
to select various sub-functions. A semicolon is always placed before the field type as a separator.
Further details are given in the description of record types.

Depending on the record type, these two entries are followed by additional fields containing
data.

211

212 Spreadsheet formats

13.1 Record descriptions

13.1.1 ID Record (ID)

The first record within a SYLK file is the ID record type which is structured as follows:

<Record type>;<Field type><Field>

ID ;P <Name>

The field type is predefined as ;P. This is followed by the name of the program that created the
file in the form of an ASCII string. A valid SYLK ID record is shown below:

ID;PdBASE II CR/LF

The field type P may be omitted, in which case any text that follows the semicolon is
considered to be comment.

The second field type (;N) occurs in Multiplan and Excel; it indicates that ;N protection is to be
used for the cells instead of ;P protection.

The field type ;E is only defined for Excel and indicates that NE records are present as
redundant formulas to support external references directly.

13.1.2 Format Record (F)

This record type describes the formatting of a cell or of the complete spreadsheet. Within the
record, various field types are permitted. The individual variations are shown below:

13.1.2.1 Cell Coordinates (;Xn;Yn)

The first field type enables an individual cell to be addressed; all further definitions will then relate
to this cell. The record has the following format:

<Record typexField type>

F ;Xn;Yn

The column number of the relevant field is indicated after the character X, while the number

following the letter Yspecifies the row number. The cell AlO can be addressed using the following
record:

Symbolic link format (SYLK) 21 3

F;X10;Y1

It should be noted that the letters used for addressing a row (A=l) are converted to numbers
and that each field type in SYLKformat is introduced by a semicolon.

13.1.2.2 Cell Format (;F<cl>#<n>#<c2>)

This field type enables the format of the cell to be indicated. The record itself is structured as
follows:

<Record type> <Field type> <Fields>

F ;F <d>#<n>#<c2>

The character # is used as a place-holder for a blank (20H). The first F is the record type, while
;F defines the format type Cell format. The field type is followed by several fields which are
enclosed in angle brackets (< and >). The field <c1> contains one of the format control characters
shown in Table 13.1, as an indication of the cell format of the spreadsheet.

Character Remark

D Default

C Continuous

E Exponent

F Fixed

I Integer

G General

$ Currency fcxx.xx
* Bar graph

Table 13.1

Format control

characters in

the <c1> field

of an F format

The format control character Cis used to produce a continuous cross-cell display in which the
data may, if necessary, extend beyond the cell margins. Texts and values are not cut short. The
letter E indicates representation in scientific exponential notation, while F indicates fixed
representation. I is used for integer values. Gselects the display format of the spreadsheet program
in such a way that the display fits into the cell in the best possible manner (standard
representation). SYLK selects currency representation by means of $; each value is preceded by
the character $ and the numbers have only two decimal places. The character * is used for the
transmission of data in bar-graph form; each asterisk represents one unit.

The field <n> contains a value which specifies the number of digits per cell. The last field <c2>
indicates how the display is to be arranged within the cell (see Table 13.2).

214 Spreadsheet formats

Characte r Remark

D Default

C Center

G General

L Left-aligned

R Right-aligned

Table 13.2

Format control

codes in the <c2>

field for text

alignment

The effect of the command depends on the preceding record. If this contains the cell

coordinates (F;Xn;Yn), the format code refers to the specified cell. With the record (F;Rn;Cn), the
code relates to the complete row or column.

13.1.2.3 Row/column formatting (;Rn;Cn)

This field type specifies the columns and rows to which the subsequent format record refers. The
structure is as follows:

<Recordtype><Fieldtype>

F ;Rn;Cn

The letter Rspecifies a row, whose number appears immediately after it. The letter Cspecifies a
column. This field type can be used for the definition of complete rows or columns.

13.1.2.4 Default Format (;D<cl>#<n>#<c2>#<c3>)

In a similar way to the Fformat, this field type enables the standard format for cells to be defined.
The record is structured as shown below:

<Recordtype> <Fieldtype> <Fields>

F ;D <d>#<n>#<c2>#<c3>

The character Uis used as a place-holder for a blank (20H). The first F is the record type, while
;D defines the default format. The field type is followed by several fields which are enclosed in
angle brackets (< and >). The contents of d and c2 are the same as for the F format. The <c3>
field contains the standard width of the columns.

13.1.2.5 Comma Format (;K)

This field type indicates that numbers are to be displayed with commas. The record is structured
as follows:

<Recordtype> <Fieldtype>

F ;K

The semicolon belongs to the field type.

13.1.2.6 Formula Format (;E)

Symbolic link format (SYLK) 215

This field type specifies the formula option, which enables Multiplan to read formulas. The
following structure applies:

<Recordtype><Fieldtype>

F ;E

The semicolon belongs to the field type.

13.1.2.7 Width Format (;W<cl>#<c2>#<c3>)

This field type enables the width of several columns of the spreadsheet to be indicated. The record
is structured as shown below:

<Recordtype> <Fieldtype> <Fields>

F ;W <d>#<c2>#<c3>

The character # is used as a place-holder for a blank (2OH). The first Fmarks the record type,
while ;W indicates the field type for the width definition. The d field specifies the first column to
which the format applies; c2 indicates the last column. The width of the column in characters is
given in c3.

13.1.2.8 Font Format (;N)

This field type is only implemented in EXCEL and defines the font to be used:

F;N Font_Id Size

The font name and font size must be defined as parameters.

13.1.2.9 Picture Format (;P)

This format also exists only in EXCEL; it refers to an EXCEL picture which is stored in an FP
record. The following syntax applies:

216 Spreadsheet formats

F;P Index

The index indicates the picture number in the FP record.

13.1.2.10 Style Format (;Sx)

This field type defines how the character font is to be used. The character x is used as a place
holder for one of the following letters:

I Italic

D Bold

T Gridlines Top

L Left

B Bottom

R Right

If F;SI is entered, the type faces will be displayed in italics. The format exists only in EXCEL.

13.1.2.11 Header Format (;H)

In EXCEL, this format specifies that the headings for columns and rows are to be suppressed (F;H).

13.1.2.12 Grid Format (;G)

This format is available only in EXCEL. As soon as the record F;G appears, the grid lines in the
display are suppressed.

13.1.3 Boundary Record (B)

This record type defines the number of columns and rows in the spreadsheet. The structure is
shown below:

<Recordtype> <Fieldtype> <Fields>

B ;X;Y

The field type Yspecifies the number of rows; the relevant value is placed immediatelyafter the
field type. Xspecifies the number of columns; the number is placed after this field type.

Symbolic link format (SYLK) 217

13.1.4 Cell Format Record (C)

This record specifies how numeric or textual values are to be represented. For example, it
indicates whether a cell is to be protected. Within the record, several field types are permitted.
These are described in detail below:

13.1.4.1 Cell Coordinates (;Xn;Yn)

The first field type enables an individual cell to be addressed, to which all other definitions apply.
The format of the record is as follows:

<Recordtype><Fieldtype>

C ;Xn;Yn

X is followed by the column number of the relevant field, while the number after the letter Y
specifies the row number. The structure corresponds to the Fformat.

13.1.4.2 Cell Value (;K)

This field type is used for transferring the value of a numeric cell - data, text or logical values can
be specified. The value is placed after the field type Kand text must be enclosed in double inverted
commas.

<Recordtype><Fieldtype>

C ;K"Turnover"

C ;K12345.45

The logical constants false and true also are placed in inverted commas; the value ERROR
must be preceded by the character #.

13.1.4.3 Protected (;P)

The field type P activates the protection of the current cell. Aprotected cell cannot be modified.

13.1.4.4 Not Protected (;N)

If this field type occurs, the cell is not locked or write-protected.

218 Spreadsheet formats

13.1.4.5 Expression (;E<expr.>)

Using SYLK, calculation formulas can be transferred. The field type Eenables the transfer of such
formulas. The record is structured a's follows:

<Recordtype> <Fieldtype> <Fields>

C ;E <expr.>

The field type ; Eis followed by a valid Multiplan calculation formula in ASCII text.

13.1.4.6 Row/column addressing (;Rn;Cn)

This field type enables rows and columns to be specified, which are referred to by the following
record (S; ..). The record is structured as follows:

<Recordtype><Fieldtype>

F;Rn;Cn

The letter Rspecifies a row, followed directly by its number. The letter Caddresses a column.

13.1.4.7 Shared Expression-Value (;S)

This record type indicates that the formula for this cell is to be collected from another cell. The
coordinates are taken from the preceding ;Rn;Cn record. If the ;S-type occurs, no E(Expression)
may be used in the same sequence. The field types ;D or ;G must precede the ;Rn;Cn record.

13.1.4.8 Shared Expression (;D)

This field type indicates a cell whose calculation formula is used by another cell (see also E
format).

13.1.4.9 Shared Values (;G)

This field type indicates a cell whose value is shared by another cell (see also Kformat). In this
case, the Eformat may not be used simultaneously.

13.1.4.10 Cell Hidden (;H)

This field type only occurs in EXCEL and indicates that the contents of a cell are not displayed
(that is, they are hidden). Ifthis attribute is set forallcells, the whole spreadsheet is protected.

Symbolic link format (SYLK) 219

13.1.4.11 Expression Matrix (;M)

This field type also is implemented only in EXCEL; it contains the expressions of a matrix. The
dimensions of the matrix relate to the data in the ;T record (top left corner) and the ;R and ;C
records (bottom right corner). If the ;M field type occurs, the ;K field type is ignored. In this case
no ; E field is written either.

13.1.4.12 Table Reference (;T)

In EXCEL, this field type indicates the coordinates of the top left corner of a table (see Expression

Matrix). The bottom right corner of the table is defined via ;R and ;C. The format of the record is
as follows:

C;Tx,y

where x and y define the column and row numbers.

13.1.4.13 Inside a Matrix (;I)

This format also is supported only by EXCEL; it defines values within a table. When using this
record type, the dimensions of the table must be defined beforehand with ;T and ;R;C. As soon as
an ;I field occurs, all records with the ;K type are ignored, and no ;E records are displayed.

13.1.5 Picture Record (P)

This record type is only supported by EXCEL and precedes all F records. The record has only one
entry for a picture. The format is as shown below:

P Picture

An EXCEL picture is defined in the picture range.

13.1.6 Name Record (NN)

This record type specifies the range (window) from a spreadsheet (for example, Multiplan) which
is to be allocated to a name. The range can then be addressed via the name; two field types are
necessary for this description.

220 Spreadsheet formats

13.1.6.1 Name (;N<Name>)

The first field type defines the name of the range. The format of this record is as follows:

<Recordtype><Fieldtype>

NN ;N<Name>

The name of the range appears directly after the character Nas an ASCII string.

13.1.6.2 Range (;E<Range>)

The corresponding range specified by defining the corner points should be transferred in a second
field type.

<Recordtype><Fieldtype>

NN ;E<Range>

The definitions for the section to which the name is allocated are contained in the range field.

An example of this type of range is shown below:

Rn11:n12Cn13:n14,Rn21:n22Cn23:n24,

R stands for row and C stands for column. The four numbers Rn11 :n12Cn13:n14 therefore

indicate a range in the worksheet.

13.1.6.3 Macro (;G)

This record type is only used with EXCEL; it describes the name of a macro to be executed. The
relevant syntax is as follows:

ii ii. wm^mm—^mmmmm —wii— wwwwww————m—

NN;G ch1 ch2

ch1 represents the name of the macro and ch2 represents the command key. With Macintosh
computers, only the first letter is used.

13.1.6.4 Ordinary Name (;K)

This record type is used in Multiplan 2.0 to indicate the names of unused commands and alias
names. The format is as follows:

Symbolic link format (SYLK) 221

NN;K ch1 ch2

ch1 represents the command and ch2 represents the alias name.

13.1.6.5 Usable Function (;F)

This record type is available in EXCEL; it is used to indicate a usable function. The record has no
parameters (for example, NN; F).

13.1.7 Options Record (O)

This record was introduced in the more recent versions of SYLK in order to transfer global options.
The record has several field types.

13.1.7.1 Iteration Count (;A)

This field type defines whether an iteration is switched on. The structure of the record is as
follows:

0;A clter numDelta

The parameter clter indicates whether the iteration is set. The step size for the iteration is
contained in numDelta. This field type is used only in EXCEL.

13.1.7.2 Completion Test (;C)

This field type is used only in the more recent versions of SYLK; it carries out a completion test on
the current cell. The record has no other parameters.

13.1.7.3 Protected (;P)

If this record (0;P) occurs in a SYLK file, the spreadsheet is protected (no password).

13.1.7.4 Al-Mode (;L)

This record type is used only in EXCEL; it indicates that Al mode references should be used.

222 Spreadsheet formats

13.1.7.5 Manual Recalc (;M)

This record type is used only in EXCEL; it indicates that a manual recalculation is to be carried
out. The record has no parameters.

13.1.7.6 Precision (;R)

In EXCEL, this record type indicates that the resolution is to be used in accordance with the

formatting. The record has no further parameters.

13.1.7.7 Executable Macro (;E)

This record type refers to EXCEL files and marks an executable macro SYLK file. The record type
should precede a ;G field or an ;F field. The same applies to the C record, which may also contain
macro definitions.

13.1.8 Name Link (NE)

This record type enables a connection to another inactive spreadsheet (external table) to be
specified. Three field types are permitted.

13.1.8.1 Name (;F<Name>)

The first field type defines the file name of the corresponding (source) spreadsheet.

<Recordtype><Fieldtype>

NE ;F<Name>

The character F is followed directly by the file name as an ASCII string.

13.1.8.2 Source Range (;S)

The corresponding range in the source spreadsheet should be indicated in a second field type.

<Recordtype><Fieldtype>

NE ;S<Range>

The range definitions are contained in the range field.

Symbolic link format (SYLK) 223

13.1.8.3 Range (;E)

The corresponding range, specified by defining the corner points in the target spreadsheet, should
be given in the third field type.

<Recordtype><Fieldtype>

NE ;E<Range>

The range definitions are contained in the range field.

13.1.9 File substitution (NU)

This record type enables one file name to be substituted for another. The name is replaced in two
stages.

13.1.9.1 File Name (;L<Name>)

The first field type defines the name of the file to be substituted.

<Recordtype><Fieldtype>

NU ;L<Name>

The character L is followed directly by the file name as an ASCII string.

13.1.9.2 Substitute Name (;F<Name>)

The name of the replacement file should be indicated in the second field type.

<Recordtype><Fieldtype>

NU ;F<Name>

13.1.10 Window (W)

This record type enables windows from the spreadsheet to be defined. The following field types
apply:

224 Spreadsheet formats

13.1.10.1 Window Number (;N)

The first field type defines the number of the corresponding window.

<Recordtype><Fieldtype>

W ;Nx

The character Nis followed by the window number.

13.1.10.2 Coordinates (;A y x)

The coordinates for the top left corner of the window given in the ;N field type must be given in
the second field type:

<Recordtype><Fieldtype>

W ;A y x

The letters y and x represent the coordinates of the cell in the top left corner.

13.1.10.3 Bordered Flag (;B)

If this field type is used, the window will be provided with a border.

13.1.10.4 Split Window (;ST)

This field type enables the window to be subdivided using a title. The following record format
applies:

<Recordtype><Fieldtype>

W ;ST cy ex

The character cy specifies the number of rows in the window, while ex specifies the cursor
position in the new window.

13.1.10.5 Split window, horizontal (;SH)

This field type enables the window to be split into two horizontal halves. The following record
format applies:

<Recordtype><Fieldtype>

W ;SH 1cy ex

Symbolic link format (SYLK) 225

The character cy specifies the number of rows in the window. If the value 1 is placed before it,
the range cannot be displayed completely in the window, but it can be scrolled. The position of the

cursor in the new window is indicated in ex.

13.1.10.6 Split window, vertical (;SV)

This field type enables the window to be split into two vertical halves. The following record format
applies:

<Recordtype><Fieldtype>

W ;SV cy 1cx

The character cy specifies the number of rows in the window. The position of the cursor in the
new window is indicated in ex. If the value 1 is placed in front of it, the window can be scrolled.

13.1.10.7 Colors (;C)

This record type determines the colors for the foreground, background and borders. The structure
is shown below.

;C n1 n2 n3

These parameters are defined as follows:

n1 = Color of foreground
n2 = Color of background
n3 = Color of borders

This color coding applies only to DOS, used with IBM computers or compatibles.

13.1.10.8 MAC R-Type (;R)

This record type is produced only on Macintosh machines using Multiplan.
The structure is as follows:

;R n1 n2 ... n14

226 Spreadsheet formats

The individual parameters are defined as follows:

n1 ..n8 Title freeze information

n9 ..n12 Scroll bar information

n13 .. n14 Split bar information

More detailed information on the meaning of these parameters is not available.

13.1.11 External Link Record (NL)

This record is only used by CHART for external communication (links). The following field types
are available:

13.1.11.1 Destination Index (;C)

This field type defines an index for an external link. The followingformat applies:

;C n

The parameter n specifies the index number for the link.

13.1.11.2 Dependent Area Name (;D)

This field type indicates an area with dependent variables (dependent variable source area). The
format is as follows:

;D expr

The entry expr defines either the name or an index for the area.

13.1.11.3 Dependent Area (;E)

This expression is used to indicate the dimensions of an area for a dependent name. The following
format applies:

;ECRC: n

R and C define the relative rows and columns of the area, while n indicates the index.

Symbolic link format (SYLK) 227

13.1.1.4 Independent Area Name (;I)

This field type refers to a name or an index for independent (source) variables. The following
format applies:

;I expr

expr is used to define either the name or an index for this range.

13.1.11.5 Independent Area (;J)

This expression is used to indicate the dimensions of an area for an independent name. The
following format applies:

;j:rc: n

Rand Cdefine the relative rows and columns of the area, while n indicates the index.

13.1.11.6 File Name (;F)

This field type indicates the file name of the source area. The following format applies:

;F Filename

The f i le name parameter must contain a valid file name.

13.1.14 End of SYLK (E)

This record type indicates the end of the SYLK file. A number of rules apply to the structure of a
SYLK file:

♦ The first record must be an ID record.

♦ The file must close with an E record.

♦ All record and field codes must be entered in upper-case letters.

♦ Record and field type are separated by a semicolon.

♦ Each record must be terminated by CR/LF.

♦ There must be no CR/LF characters within a record or field.

228 Spreadsheet formats

♦ Dand G records always relate to the last Ccommand.

♦ When using NE records, the file name must be defined beforehand using NU.

♦ The dimensions and subdivision of the window must be defined in logically ascending
sequence.

The first cell of a spreadsheet is always at the top left corner (1,1). Field coordinates are
indicated by the letters X (column) and Y (row). Texts must be enclosed in double inverted

commas, while numeric values are transferred as fixed-point numbers or with exponents. The size
and format of the table must be defined before the data transfer (B record). Data can generally be

transferred using the record type C.
Figure 13.1 shows the test spreadsheet from Figure 6.1 in SYLKformat.

ID;DEMO.SYLK

B;Y5;X10

F;W1 15

F;W2 2

F;W3 10

F;W4 10

F;W5 11

C;Y1;X3;K"TestSpread Sheet'

C;Y2;X3;K"=================

C;Y4;X1;K"Product"

C;Y4;X3;K"Price"

C;Y4;X4;K"Disc."

C;Y4;X5;K"Net"

C;Y5;X1;K" "

C;Y6;X1;K"Diskettes 5 1/4"

C;Y6;X3;K15.00

C;Y6;X4;K10.00

C;Y6;X5;K13.50

C;Y7;X1;K"Paper"

C;Y7;X3;K25.00

C;Y7;X4;K7.80

Figure 13.1
Test spreadsheet
(SYLK format)
(continues
over...)

C;Y7;X5;K23.05

C;Y8;X1;K"Files"

C;Y8;X3;K3.50

C;Y8;X4;K5.00

C;Y8;X5;K3.325

C;Y9;X1;K"

C;Y10;X1;K"Sum"

C;Y10;X3;K43.50

C;Y10;X5;K39.875

E

Symbolic link format (SYLK) 229

Figure 13.1
Test spreadsheet
(SYLK format)
(cont.)

The first line contains a comment which is not evaluated. The following rows containing the
F;W records specify the column widths. These are followed by the C records, which contain the
data and text. For clarity, the X and Y coordinates for each cell have been given in the C record,
which is not strictly necessary in the SYLK definition. The file is terminated with the E record.

en

SYLK format extensions for CHART

or the CHART program, Microsoft has defined
a number of extensions to the SYLK format.
These are described briefly below.F

14.1 Pseudo-records

These represent information which is contained within a text variable (quoted value) in the C
record in a normal SYLK file. Microsoft uses these records in CHART in order to code information

which is not to be altered by Multiplan.
The entries are structured in normal record format:

'<Recordtype>;<Fieldtype><Field>'

The first two letters of the name of the program that created the record are always taken as the

record type.

230

SYLK format extensions for CHART 231

14.1.1 Field types

14.1.1.1 Type of Data (;Ttyp)

This field type specifies the data type in one column. The record structure is as follows:

'xx;Ttyp'

The following letters may appear in typ:

A Text alphanumeric

D Date as text

N Numeric value

S CHART sequence

The letters xx are used as place-holders for the record type. However, further information is not
available.

14.1.1.2 Text Align (;Atext or ;Btext)

These are two different field types which define how the texts are to be aligned.

' xx;Atext' Text after string
' xx;Btext' Text before string

The exact meaning of this record type is not clear.

14.1.1.3 Highlighted data entry point (;Cn)

This field type specifies an index for entry fields which are visibly highlighted when in entry mode
(see below). The record is structured as follows:

'xx;Cn'

The relevant index value is contained in n.

232 Spreadsheet formats

14.1.1.4 Displayed Time (;Dn)

This field type indicates the unit for the time axis for a sequence of data which is to be displayed
(or printed).

xx;Dn'

The index n is coded as follows:

1 Year

2 Quarter

4 Month

8 Day

16 Weekday

The relevant scaling is then written into the time axis.

14.1.1.5 Display Entry Mode (;En)

This field type defines an index to a name in the top line of the screen. The record format is as
follows:

'xx;En'

The parameter n is the number of the name. In entry mode, entries can then be made in
this field.

14.1.1.6 Format (;F)

This field type defines the format of data sequences. The record format is as follows:

'xx;Fn'

The parameter n defines the index for the format of the data sequence. The following coding
applies:

0 Short

1 Medium

2 Long

The exact meaning of these formats is not known.

SYLK format extensions for CHART 233

14.1.1.7 Scaling (;G or ;H)

These field types define the scaling factors in units. The format is as follows:

xx;Gnum' for the value category (category, or X-axis)
xx;Hnum' for scaling the values (Y-axis)

The scaling factor is contained in num.

14.1.1.8 Included (;I)

This field type is defined as included for plotting. However, its meaning is not altogether clear.

14.1.1.9 Edited (;J)

This field type is defined as edi ted; its meaning is also unclear.

14.1.1.10 Linked (;L)

This field type defines the order of a series of values. The format is as follows:

xx;Ln'

The record occurs in conjunction with a series of values. If several series of values occur in the

SYLK file, the parameter n indicates the order of the associated value series. The value series are
then stored in the SYLK file in the order indicated.

14.1.1.11 Type (;M)

This field type defines the type of calculation for a result value which relates to a series of values.
The format:

'xx;Mn'

contains the parameter n which represents the following types of calculation:

234 Spreadsheet formats

Code Type

0

1

2

3

4

Average

Cumulative sum

Difference

Growth

Link to external file

5 Percent

6 Statistics

7 Trend

8

9

10

Copy
Entry

Copy from external file

The exact meaning of these individual functions is not currently known.

Table 14.1

Calculation type

14.1.1.12 Name (;N)

This field type defines a name for the series of values (title for the series). The format is as follows:

'xx;Ntext'

The appropriate title (name) is shown in text.

14.1.1.13 Origin (;0)

This field type defines the origin of a data series. The format is as follows:

'xx;0text'

The appropriate title (name) is shown in text.

14.1.1.14 Period (;P)

This field type indicates the period for a series of times or values. The format is as follows:

'xx;Pn'

SYLK format extensions for CHART 235

n defines the spacing between individual values (for example, daily values recorded each hour,
n = 1).

14.1.1.15 Dependent (;R)

This field type visibly highlights the values dependent on the entry. The record has no other
parameters.

14.1.1.16 Start Value (;S)

This field type defines a start value:

xx;Sn'

for a series of dates or values. The start value is given in the parameter n.

14.1.1.17 Time Unit (;U)

This field type defines the time unit for the series of values which relate to a date. The format:

'xx;Un'

contains an index in the parameter n with the following coding:

Code Time Unit

1

2

3

8

16

Year

Quarter

Month

Day

Weekday

Table 14.2

Time unit

This time unit can be used for presenting the values.

In addition to these pseudo-records, CHART has a series of extensions for describing a graphic
display. These records will be described briefly below. All of these record types begin with the
letter G. Records describing an extensive graphic object can be followed by other records
containing additional information. The sequence of the records is therefore important. The
preceding records describe the context for the subsequent data records.

236 Spreadsheet formats

14.2 GS record

The syntax of this record is as follows:

GS; In ;F1 ;Rn ;Cn ;Mn ;Nn

The record describes the complete worksheet. The F1 field contains flags, the first of which
indicates that only one character is used (0 or 1). In the record, the F is followed by a 0 or a 1. A 1
signifies:

Show borders field in split command

With the entry 0, borders are not shown. The number of rows is defined in Rn and the number
of columns in Cn. The parameters Mn and Nn indicate the width and height of the worksheet in

units of Vinaof an inch.

It is entirely possible for a SYLK file to contain several GS records. However, each GS record
must be followed immediately by GC records. The number of such records is indicated in the
parameter In.

14.3 CC record

The syntax of the record is as follows:

GC; F6 ;Tn; Xn ;Cn ;0n ;Gn ;Nn ;Ln ;En ;Un ;Rn ;An ;Dn ;Sn

and it describes a graphic display. The record must be followed by the records listed below:

GM, GL, GF, GX, GD, GN, GA (;An times), GA, GA, GE (;Sn times), GE

The parameter F6 represents a flag field with 6 entries which can be set to 0 or 1 (for example,
F011001). The following coding applies to the individual positions:

Legend defined
100% chart (format type)
Three-dimensional (stacked) chart
Bar graph or column graph
(1 = display bar or column as bar graph else
display column)
Chart series or points in category
Auto series assignment

Table 14.3

Position order

SYLK format extensions for CHART 237

The parameter ;Tn indicates the type of graph:

Code Type

1 Bar grap l or

2 Line

3 Pie

4 Area

5 Scatter

Table 14.4

Graph type

The parameter ;0n indicates the spacing within the bar graph as a percentage. In the case of
clusters, the parameter Gn indicates the intervening space as a percentage. The starting angle for a
pie chart is indicated in Nn.

The parameter ;An defines how many GA records containing labels are to follow. An additional
two GA records for the Master Series and the Master Value labels must also follow.

The parameter ;Dn defines the number of value series to be displayed.
The parameter ;Sn specifies how many GE records containing the points of a data series are to

follow. Another GE record containing the points of the master series must also follow.
The meaning of these records is shown below:

GM Graphic position

GL Link to other diagrams

GF Frame of a diagram

Gx Axis description

GD Legend description

GN Length of dropdown lines

GA Labels

GZ Defines value series

GE Defines value series with deviation from master series

The structure of these records is described on the following pages.

Table 14.5

Meaning of
Gx records

238 Spreadsheet formats

14.3.1 GL record

The syntax of this record is shown below:

GL ;Rn ;Sn ;F4

The record describes the links between individual fields and the format information. The

individual parameters are coded as follows:

;R 'Link to chart #' field in format link command;
diagrams are numbered

;s Box number as specified in'in box #'field
;f 4 flags with the following meanings:

1. Link height
2. Link width

3. Link value axis

4. Link category axis

Table 14.6

GL record

However, the exact meaning of the individual parameters is not known at present.

14.3.2 GE record

The syntax of this record is as follows:

GE ;Pn ;Cn ;In ;Mn ;F7 ;En

This must be followed by a GN record giving a description of the borders. The record describes a
series of points in a diagram (pie chart or single curve in one diagram). The meaning of the
individual parameters is as follows:

;p Pattern

;c Color points

;i Point or point row
;M Symbol
;F 7 flags
;e Exploded pie

Table 14.7

GE record

SYLK format extensions for CHART 239

With pie charts, the parameter ;E indicates a value, as a percentage, which determines how far
apart the segments are to be moved (exploded presentation).

The pattern is referred to as an index between 0 and 15; the following patterns are defined:

Code Pattern

0 Clear

1 Solid
2 Dense

3 Medium

4 Sparse
5 White
6 11

7 ss

8 w

9 //

10 ++

11 XX

12 Dark \\
13 Light \\
14 Dark //

15 Light //

Code Symbol

0 No symbol
1 . (point)
2 +

3 *

4 0

5 x

6 -

7 • (filled)
8 Empty rectangle
9 Filled rectangle

Table 14.8

Pattern

definition

The color is coded as a byte value; the individual bits indicate the intensity of the basic color.
The following coding applies:

Bits 0,1: Proportion of blue

2,3,4: Proportion of green
5,6,7: Proportion of red

The form of the symbol for the representation of the curve is defined using an index between 0
and 9. The following coding applies:

Table 14.9

Symbol form

240 Spreadsheet formats

The value for the flags contains seven characters coded as follows:

Code Flag

1. Auto marker style

2. -

3. Auto color

4. Auto pattern

5. Show series/point label
6. Show value Label

7. Show value LabeL in percent

Table 14.10

Flag code

The option is switched on if the character in the relevant position is set to 1.

14.3.3 GA record

This record describes the labels (lettering) in a diagram; the syntax is as follows:

GA ;Ttext ;F4 ;An ;Vn ;S2

This record must be followed by the records shown below in Table 14.11. The meaning of the
individual parameters of the GA record is shown in Table 14.12.

-..-.' ' '• '••"•:''•:

GP Relative position of label
GT Other text attributes

GW Label with arrow

GP Relative position of arrow head
GF Frame of a label

GM Absolute position of arrow head

;T Text for object (if AutoText <> 1)
;F 4 flags
;A Align
;v Vertical align
;s 2 flags

Table 14.11

GA record

Table 14.12

GA record

parameter

SYLK format extensions for CHART 241

The flags indicated in the parameter F are coded as follows:

1.

2.

3.

4.

Label deleted

Autotext (0 = text in alpha command)

Vertical alignment

The value for the ;A command defines the following text alignments:

For vertical alignment (;V), the following formats are defined:

0 Bottom

1 Center

2 Top

The parameter ;S defines the two flags:

1 show key

2 show value

Table 14.13

Flag coding

Table 14.14

Text alignment

Table 14.15

Vertical text

alignment

I do not currently have access to detailed information on the effect of these parameters.

242 Spreadsheet formats

14.3.4 GP record

This record describes the relative position of a label or an arrow. The following syntax applies:

GP ;Mn ;F2 ;0n ;Yn ;Xn

The individual parameters should be interpreted as follows:

;« Distance in Ymo inches

;f 2 flags

;o Label type

;Y Field for curve/point

;x Category field

The flags define two switches:

1 Set, if ' label for' field is free
2 AutoText flag

The type of label in the parameter ;0 is defined as follows:

1 Title text

2

3

Category X-axis

Value Y-axis

4 Series/point

14.3.5 GD record

This record describes the legend of a diagram and has the following format:

Table 14.16

GP record

Table 14.17

Label type

GD ;Tn ;Sn ;F1

The record must be followed by:

GT Legend text
GF Legend frame

SYLK format extensions for CHART 243

The contents of the individual parameters of the GD record are defined as follows:

;t

;s

;f

Legend type
Spacing field
Auto legend

The type of legend defines the position of the lettering:

0 Bottom

1 Corner

2 Top
3 Vertical

Table 14.18

Text alignment

Table 14.19

Legend position

The distance between different objects is set in the spacing parameter, as follows:

0 Close

1 Medium

2 Open

Table 14.20

Object distance

244 Spreadsheet formats

14.3.6 GW record

This record type describes an arrow which is allocated to an axis label. The syntax is as follows:

GW ;Tn ;Sn ;F1

The parameters of the GW record are as follows:

;t

;s

;f

Header field

Size of header text

Flag (1 = Open field)

The parameter ;T specifies how the header line is to be set out:

0 Narrow

1 Medium

2 Wide

The parameter ; S defines the size of the header text:

0 Off

1 Small

2 Medium

3 Large

Table 14.21

GW record

parameters

Table 14.22

Header line

Table 14.23

Header text size

This must be followed by a GN record describing the attributes of the arrow shaft.

SYLK format extensions for CHART 245

14.3.7 GX record

This record consists only of the letters GX and has no parameters. It introduces the description of
the axes, that is, it must be followed by the record types:

GY Style for category axis
GX Style for value axis
GR Value axis range

GI Category axis range

GF Frame plot area

14.3.8 GY record

This record describes the style for category axis and has the following syntax:

GY ;Jn ;Nn ;Tn ;F1 ;Mn ;Dn ;0n

The meaning of the parameters is as follows:

;J Major tick marks

;n Minor tick marks

;t Labels for tick marks

;f Auto label distance

;M Label distance (in Vmo inch)
;o Font type

;d Distance

The coding for the ; J and ;N parameters (tick marks) is:

0 None

1 Inside

2 Outside

3 Cross

Table 14.24

GY record

Table 14.25

Tick marks

246 Spreadsheet formats

The following applies to the parameter ;T (labels for tick marks):

0 None

1 Axis

2 Low

3 High

The GY record must be followed by:

GT Thickness label and text attributes

GN Line style axis

GN Major line style
GN Minor line style

Table 14.26

Labels for

tick marks

14.3.9 Gl record

This record describes the axis (category) to which the values relate (usually time or X-axis). It is
structured as follows:

GI ;Cn ;F3 ;In

The meaning of the parameters is:

;c

;f

;i

Category (group) number (at which other axes cross)
3 flags
Number of (value) groups per section

The following applies to the flags:

1.

2.

3.

Crossing between points
Crossing after last category
Reverse data sequence

Table 14.27

GI record

parameters

Table 14.28

GI record flags

SYLK format extensions for CHART 247

The GI record must be followed by a GR record, defining the range of the independent variables
(in case of interrupted diagrams).

14.3.10 GR record

This record describes the range (scaling) of an axis and is structured as follows:

GR ;In ;An ;Jn ;Nn ;Cn ;F7

The n values are given either as decimal numbers or in exponential form. The meaning of the
individual parameters is as follows:

;i Minimum

;a Maximum

;J Interval 1 (major)
;N Interval 2 (minor)

;c Cross axis

;f 7 flags
Table 14.29

GR record

parameters

The coding for the flags is as follows:

;i

;A

;J
;N

;c

;F

Auto minimum

Auto maximum

Auto interval 1 (major)
Auto interval 2 (minor)
Auto cross axis

The exact meaning of these flags is not clear.

14.3.11 GF record

This record describes the frame of a diagram and is structured as follows:

Table 14.30

GR record flags

248 Spreadsheet formats

GF ;Cn ;Pn ;F4 ;Rn

The individual parameters should be interpreted as follows:

;c Background color

;p Background pattern

;f 4 flags

;R Frame type
Table 14.31

GF record

parameters

The coding for the color and the pattern has already been described above (see GE record). For
the flags, the following coding applies:

1. Auto position

2. Auto size

3. Auto color

4. Auto pattern

The following definitions apply to the frame type:

Normal

Bevel

Double

Round

Shadow

The GF record must be followed by:

GN Line definition for margin

GM Position of bottom left corner

GM Size of frame (top right corner)

Table 14.32

GF record flags

Table 14.33

Frame type

SYLK format extensions for CHART 249

14.3.12 GT record

This record type describes the text attributes and has the following syntax:

GT ;Cn ;0n ;Sn ;F2

The meaning of the individual parameters is as follows:

The flags relate to:

Auto font

Auto color

Table 14.34

GT record

parameters

The coding for color has been described above; however, the coding for fonts is somewhat more
complex. A value between 0 and 255 is given; this defines both the font type and the style of
typeface. The style is subdivided as follows:

0-63

64-127

128-191

192-255

Normal

Italic

Bold

Bold italic

Table 14.35

Font stvles

Within these four ranges, various fonts are available, as shown below in Table 14.36. For
example, code 1 produces the font Modern B in normal style, while code 65 produces the same font
in italic style.

250 Spreadsheet formats

Modern A Modern P

Roman A -• Roman P

Script A - Script H
Decor A - Decor H

Foreign A Foreign H
Symbol A Symbol H

14.3.13 GN record

This record describes line attributes and has the following format:

GN ;Cn ;Pn ;Wn ;F2

The meaning of these parameters is:

;c Color

;p Pattern

;W Weight

;F 2 flags

The flags relate to:

1. Auto color

2. Auto pattern

Table 14.36

Fonts

Table 14.36

GN record

parameters

The codings for color and pattern have been described above. The parameter Weight defines
the thickness of the line:

0 Light
1 Medium

2 Heavy

Table 14.38

Line thickness

SYLK format extensions for CHART 251

14.3.14 GM record

This record type defines spacing in terms of pairs of coordinates which can be interpreted as point
coordinates or sides of a rectangle. The record is structured as follows:

GM ;Yn ;Xn

The parameters:

; Y Vertical spacing in Vhw inch
; X Horizontal spacing in Yma inch

should be interpreted as relative coordinate data.

14.3.15 GZ record

This record type defines a number for a (value) series in a diagram. The record has only one field:

GZ ;In

which indicates the number of the series to be adopted in the diagram.

This ends the description of the SYLK extensions for CHART. It has not been possible to
present all the information to the level of detail I would have liked. This is partly because very
little information on these extensions (some of it inaccurate) was available to me. Furthermore,
there was no CHART package available at the time of writing to test the individual records.
However, I have included the text as it stands in the hope that it may be of use to some readers.

cn

Excel binary interchange format
(BIFF)

This format is used in Microsoft EXCEL for
Windows and for Macintosh (and OS/2). Like
LOTUS 1-2-3, a BIFF file contains a series of

variable length records. These records store infor
mation (formulas, cell values, labels, and so on)
about the spreadsheet. The following section
describes the structure of these records.

15.1 The BIFF record structure in versions 2.0-4.0

All BIFF versions (2.0 - 4.0) use the same record structure, shown in Table 15.1. The length of a
BIFF record depends on the record type.

Offset Bytes Remarks

OOH 2 Record type

02H 2 Record length

04H n Record data Table 15.1

BIFF record

structure

The following general points should be noted:

♦ The first 16-bit field defines the record type. Most of the record types are upwardly compatible.
If a record structure changes, the value 200H is added to the record type for BIFF3, while 400H
is added for BIFF4. The BOF record changes from 09H OOH 04H OOH 07H OOH 01H OOH in BIFF2 to

252

Binary interchange file format (BIFF) 253

09H 02H 06H OOH OOH OOH 01H OOH 6AH 04H in BIFF3. In BIFF4 the BOF record has the signature
09H 04H....

♦ The second 16-bit field defines the length of the following data area in bytes. The maximum
length of a BIFF record is 2084 bytes (2080 data bytes + record type + record length). Objects
with more than 2080 data bytes are split into a parent record and several continuation records.

♦ EXCEL BIFF files are exchangeable across Windows (Intel 80x86) and Macintosh (Motorola
68xx0) platforms. These microprocessor families use different internal representations to store
16-bit words. EXCEL writes a BIFF file in the Intel format (low byte first). A Mac BIFF
reader/writer must swap the bytes of each word and the words themselves in a 32-bit value.
The data series 0209H 0070H 0000H 001 OH A3F0H is stored as 09H 02H 70H OOH OOH OOH 10H OOH

FOH A3H in the BIFF file.

♦ Some fields or bits in the record descriptions are marked as reserved. A program may not use
these bits. If a reserved value is given as 0, this value must be stored in the record.

♦ Cell numbering starts with 0 (not with 1). Cell Al is defined as row number OOH and column

number OOH. Cell B3 maps onto row number 02H, column number 01H.

♦ Undefined or unused cells are not stored in a BIFF file, to save space.

15.2 Record types in BIFF2-BIFF4

Table 15.2 lists the record types for BIFF2-BIFF4. The length of the data area may differ between

«—___

BIFF2 BIFF3 BIFF4 Record

OOH 200H 200H DIMENSIONS

01H 201H 201H BLANK

02H - - INTEGER

03H 203H 203H NUMBER

04H 204H 204H LABEL

05H 205H 205H B00LERR

06H 206H 406H FORMULA

07H 207H 207H STRING

08H 208H 208H ROW

09H 209H 409H BOF

0AH 0AH 0AH EOF

0BH 20BH 40BH INDEX

0CH 0CH 0CH CALCCOUNT

Table 15.2

BIFF records

(version 2.0-4.0)
(continues
over...)

T
OEoa
j

a
i

T
3a>Q

.
c
o

C
O

C
M

T
3Oofer
nfafa

0
3

(Mfafas

L
U

O
Q

i
-
l

U
J

o
c
o

a

E
i-

l
O

<
_

>
<

_
>

e
_

J
L

U
u

_

<
C

C
C

U
J

<
_>

a
.

a
:

1
-

a
.

O
O

a
1X

1
3

U
J

U
J

I—
c
o

a
K

-
O

c
o

<
o

a
:

<
c

u
j

o
i-H

a
.

D
.

x
u

-

zo

c
o

C
O

«
t

^
U

J
<

a
c

u
j

m
a

:
u

j

C
D

C
O

U
J

<
u

>
a

.
<

:
-
i

Q
.

«
t

<
Z

zo

U
J

O
I—

1
1

U
J

L
U

O
<

<
E

a
:

a
s

ox

a
:

c
c

o
o

>
-

=
»

«
«

*
—

I
c
c

O
o

c
c

o
c
j

«
c

*
—

z
o

.
c
c

I—
t

U
J

3
H

-
I

X
O

L
U

o

z
Z

i
-
l

H
(
3

Z
C

D
0

C
l-

l
0

£
<

C
C

D
•«

E
C

C
E

1
-

<
I
-

x
E

U
-

C
D

0
-

U
i

H
O

_
i

O
-

H
-

z
c
o

z
i-H

C
C

i
-
l

C
D

U
J

_
I

C
C

Q
O

<
:

<
c

i
h

E
H

I
K

E
X

C
D

O
I
-

H
-

I
-

z
z

H
-

»
-i

i-
l

©
c
c

c
e

m
a

.
a

.

c
o

<
:

a
.

U
J

I—
-
J

z
M

©

O
J

Z
U

J
U

J
1

-1

_
l

_
l

I
-

o
a

c
o

z
•
s

<
c

o
(
-

I—
o

on
1

•a
©

C
I

0
O

l

H
ao

U
P

x,
G

O

-C
ta

ci
gq

>

*
-

O
J

3
3

0
.

O
O

3
a

a
a

z
z

o
1-4

M
.::

<
C

3
3

m

X
X

X
X

X
X

X
X

X
rv

i
t
o

-
j-

l
o

s
o

n
-

Xo
<

c
c
q

c
j

a
xL

U
t
-

x
t
o

O
J

O
J

O
J

1
(M

im
r
\i

u
-
i
x
x
x
x
x
x
x

f
\
i
o

r
~

.
o

o
o

<
:
c
Q

u
-

*
—

-
o

X
X

L
U

X

t
o

t
o

C
J

a
t
o

o
O

J
O

J
t
o

tO
O

J
<

f
o

o
o

o
o

o

L
U

U
_

O

f
i
-
i
-
i
-
r
r
N

t
-
t
-

x
x
x
x
x
x
x
x
x
x
x
x

(
\
i
t
o

~
*

L
n

\
O

N
-
o

o
o

<
t
D

a
c
j
o

s+
aaq

sp
eajd

s

c
—

X
t
o

L
A

X
x

X
3

:
x

X
X

<
r
-

>
o

r
\
i

[
M

O
J

O
J

^
o

h
-

C
O

t>
<

C
D

u
_

t
o

t
o

o
j

o
g

o
j

O
J

O
J

O
J

O
J

0
J

0
J

O
J

C
\J

O
J

O
J

c
j

a
t
o

o
t
o

t
o

o
j

-
*

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

U
.
O

r
l
M

N
-
t
l
/
l
'
O

S
O

O
I
>

<
(
n

B
.
r

O
J

«
0

I"-
C

J
£

3
L

U
O

T
-
o

J
O

J
O

j
f
O

o
j
o

j
o

j
r
M

O
J
C

j
o

j
o

j
o

j
t
o

t
o

i
O

f
O

i
o

i
o

f
O

^
j
-

i
nC

D

a
)

cy£>
s

r
a

CC
D

UX

sjaaijsp
esjd

s

O

-r.
T

—
.

—

0
)

0
r
\

H
ou

P0

o
fc

x

J
2

t
.

[2
P

Q
>

Y
-

ZZ
D

O
X

C
J

C
D

C
O

h
-

t
-

Z
C

O
C

J
t
-

Q
s
:

I—
1

L
U

_
l

C
J

h
-

L
U

L
U

I
-
l

u
_

O
S

C
J

a
<

c
L

U
L

U
o

£
3

C
3

u
_

T
E

.
3

Z
<

C
C

J
L

U
C

J
1—

h
-

o
f
-

a
:

a
s

a
s

>
-

—
3

L
U

a
s

X
!

<
L

U
<

-
J

I—
I

X
<

c
C

J
L

U
<

C
o

L
U

<
r

-
J

L
U

L
U

L
U

a
_

a
s

0
3

l—
O

'—
a

.
I—

a
s

Z
O

t
-

C
O

L
U

_
1

a
:

_
l

a
s

z
t
-

o
C

O
I—

h
-

U
J

z
1—

o
I—

L
U

C
J

o
U

J
L

U
z

z
z

z
C

J
_

l
L

U
1

-
<

c
L

U
Q

-
_

1
a

.
1—

1
<

t
C

O
o

a
z

z
1

-
I
-
l

z
L

U
L

U
_

1
U

J
o

z
a

o
C

O
o

o
o

L
u

i
-
l

1—
z

_
J

l
-
t

—
s

C
J

>
E

1
-

—
3

_
l

O
.

h
-

C
Q

i
-
i

L
U

L
U

i
-
i

o
.

C
D

a
a

=
i

c
C

O
_

J
>

-
a

s
<

o
u

_
L

l_
_

1
C

J
C

J
o

L
U

=
>

C
J

O
S

I
-
l

a
s

C
O

z
<

L
U

z
0

3
o

^
s

E
3

C
O

a
s

o
C

J
a

s
Q

1=
1

=
>

X
o

l-H
Z

3
<

1—
X

0
-

c
j

X
L

U
O

L
Q

a
Q

a
O

D
X

C
J

U
-

3
o

Z
3

C
O

h
-

I
-
l

O
C

J
a

s
l-H

C
3

3
c
n

X
>

3
<

L
U

a
.

_
J

C
J

X
C

O
Q

-
C

O
_

i

•*fa
X

X

fa
X

X
t
o

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
L

U
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

T
—

O
J

«
*

a
o

^
~

O
J

L
O

S
O

O
s

<
c

0
3

C
J

Q
L

U
l
a

o
«

—
r
o

o
.

N
-

L
U

O
^
—

O
J

t
o

-
J
-

S
O

h
-

0
0

O
N

0
3

C
J

£
2

O
J

K
l

•s*
—

-
*

<
f

<
r

1
-d

-
L

O
L

n
L

O
L

O
L

O
L

O
L

O
L

O
L

O
L

O
L

O
i
n

S
O

S
O

S
O

r
s
-

O
J

N
-

C
O

C
O

C
O

C
O

0
0

C
O

0
0

0
0

C
O

o
o

0
0

C
O

O
S

o
O

N
o

c
o

.
fa

X
X

fa
X

X
r
o

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
L

U
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

p
a

*
—

O
J

<
f

o
.

o
*

—
O

J
L

O
o

O
<

0
3

C
J

a
U

J
u

_
o

r
—

t
o

a
fs

-
L

U
o

*
—

O
J

t
o

•
J
-

S
O

rs
-

o
o

o
-s

0
0

C
J

o
*

—
0

J
t
o

-
*

«
*

v
f

O
J

1
•*

i
n

L
O

L
a

L
T

V
L

O
L

O
L

O
L

O
i
n

L
O

L
O

i
n

s
o

S
O

S
O

r
-

O
J

t^
-

C
O

C
O

C
O

0
0

0
0

C
O

C
O

0
0

o
o

o
o

c
o

C
O

O
N

o
O

o

o
a

fafa
X

X
X

X
X

X
X

X
X

i—
i

t
—

O
J

r
o

<
f

a
a

T
—

O
J

L
O

o
a

s
j-

<
r

•o-
•
»

~
j-

L
O

C
O

L
O

L
O

256 Spreadsheet formats

BIFF2 BIFF3 BIFF4 Record

95H 95H LHNGRAPH

96H SOUND

97H SYNC

98H LPR

99H STNDARDWIDTH

9AH FNGROUNAME

9CH FNGROUPCOUNT

AOH SCL

A1H SETUP

A2H FNPROTO

A9H COORDLIST

ABH GCW
Table 15.2

BIFF records

(version 2.0^.0)
(cont.)

A BIFF file starts with a BOF record and terminates with an EOF record. The other records in a

BIFF file appear in a predefined order. Table 15.3 shows the record order in a BIFF3 file.

Type Remarks

209H BOF record, extended in BIFF 3

86H* WRITEPROT (Document is write-protected)

2FH FREPASS (Password protection)

60H* TEMPLATE (Document is a template)

87H* ADDIN (Document is a macro)

5CH* WRITEACCESS (Access user name)

5BH* FILESHARING (File sharing and encryption)

5EH* UNCALCED (Recalculation status)

20BH INDEX (Index record)

61H* INTL (Document is an international macro)

42H CODEPAGE (Code page)

OCH CALCOUNT (Iteration counter)

ODH CALCMODE (Calculation mode)

OEH PRECISION

OFH REFMODE (Reference mode)

10H DELTA (Interation step width)
11H ITERATION (Iteration mode)

22H 1904 (Date system)

Table 15.3

BIFF records

(version 3.0)
(continues
over...)

Excel binary interchange format (BIFF) 257

Type Remarks

2AH PRINT HEADERS

2BH PRINT GRIDLINES

5FH* SAVERECALC (Recalculate before storing)
82H* GRIDSET

83H* HCENTER (Center horizontal)

84H* VCENTER (Center vertical)
80H* GUTS (Row and column gutter)
225H DEFAULT ROW HEIGHT

8CH* COUNTRY (Index to country code)
8DH* HIDEOBJ (Object hide status)
81H* WSBOOL (Boolean status)

1BH HORIZONTAL PAGE BREAKS

1AH VERTICAL PAGE BREAKS

231H FONT

14H HEADER

15H FOOTER

26H LEFT MARGIN

27H RIGHT MARGIN

28H TOP MARGIN

29H BOTTOM MARGIN

4DH PLS (Environment-specific print information)
40H BACKUP

16H EXTERNCOUNT (Number of external references)
17H EXTERNSHEET (External sheets)
223H EXTERNNAME (External name)
59H* XCT (Counter CRN records)
5AH* CRN

56H BUILTINFMTCOUNT (Built-in format counter)
1EH FORMAT (Number format)
218H NAME

12H PROTECT (Protected cells)
19H WINDOW PROTECT (Protected window)
63H* OBJ PROTECT (Protected object)
13H PASSWORD

243H XF (Extended cell format)
93H* STYLE

92H* PALETTE

55H DEFCOLWIDTH (Default column width)

7DH* COLINFO (Column format) Table 15.3

200H DIMENSIONS (Table size) BIFF records

(version 3.0)
(cont.)

258 Spreadsheet formats

Type Remarks

208H ROW

27EH* RK (Cell with an RK number)
201H BLANK (Blank cell)

203H NUMBER (Cell with a number value)

204H LABEL (Cell with a label)

205H BOOLERR (Cell with a boolean/ERR value)

206H FORMULA (Formula cell)

221H ARRAY (Formula in a array)

3CH CONTINUE (Continue record)

207H STRING (Text in a formula)

236H TABLE (Input per DATA TABLE)

5DH* OBJ (Object description)

7FH* IMDATA (Image data)

1CH NOTE

50H DCON (Consolidation data check)

51H DCONREF (Reference data check)

52H DCONNAME (Name reference)

3DH WIND0W1

23EH WIND0W2

41H PANE

1DH SELECTION

94H* LHRECORD (Lotus help)

95H* LHNGRAPH (Lotus help graph)

88H* EDG

89H* PUB

91H* SUB

OAH EOF
Table 15.3

BIFF records

(version 3.0)
(cont.)

Records marked * were introduced in BIFF3. Record types greater than 200H were changed
BIFF3. The following sections describe the records in BIFF2-BIFF4.

15.2.1 ADDIN - Add In Macro (record type 87H, version 3.0-4.0)

A BIFF file can contain macros from a worksheet. This record type notifies the reader that Add In
Macros are stored in the file. The ADDIN record consist only of four bytes (record type and length)

and must follow the BOF record.

Excel binary interchange format (BIFF) 259

15.2.2 ARRAY - Array-Entered Formula (record type 21H, version 2.0-4.0)

This record type was defined in BIFF2 and has the opcode 21H. The record describes a formula,
entered in an array record. This record must follow a FORMULA record. The parsed formula is
stored in an internal format (see the FORMULA record, Section 15.2.42). In BIFF2 the record has the
following format:

Offset Bytes Remarks

OOH 2 Record type (21H OOH)

02H 2 Record length in bytes

04H 2 First row of the array
06H 2 Last row of the array

08H 1 First column of the array

09H 1 Last column of the array

OAH 1 Recalculation flag

>0: required recalculation

OBH 1 Length of parsed expression

OCH n Parsed expression

In BIFF3/BIFF4 a modified structure with opcode 221H is used:

Offset Bytes Remarks

OOH 2 Record type (21H 02 H)
02H 2 Record length in bytes
04H 2 First row of the array
06H 2 Last row of the array
08H 1 First column of the arrav

09H 1 Last column of the arrav

OAH 2 Option flag
OCH 2 Expression length
OEH n Parsed expression

Table 15.4

BIFF record

type 21H

(version 2.0)

Table 15.5

BIFF record

type 221H
(version 3.0/4.0)

From BIFF3, the expression can contain more than 255 bytes. The option flag is modified as
follows:

260 Spreadsheet formats

Bit Remarks

0

1

1: Recalculation always required

1: Recalculation when file is opened

(ignored in BIFF3)

All other bits are unused.

Table 15.6

Option flag

15.2.3 BACKUP - Save Backup Version (record type 40H, version 2.0-4.0)

This record specifies whether or not EXCEL should save a backup version of a file. The record
structure is used in all BIFF versions.

Offset Bytes Remarks

OOH

02H

04H

2

2

2

Record type (40H OOH)

Record length in bytes

1 = Save Backup Version
Table 15.7

BIFF record

type 40H

(version 3.0/4.0)

A value of 1 will store a BACKUP in a BIFF file.

15.2.4 BLANK - Blank Cell (record type 01H, version 2.0-4.0)

This record describes an empty cell. BIFF2 uses the following structure:

Offset Bytes Remarks

OOH 2 Record type (01H OOH)

02H 2 Record length in bytes

04H 2 Row number (starts from 0)

06H 2 Column number (starts from 0)
Table 15.8

08H 3 Cell attributes BIFF record

(version 3.0)

Excel binary interchange format (BIFF) 261

The row and column numbering starts from 0. Table 15.8 shows the cell attributes used in
BIFF2.

Offset Bit Remarks

OOH 7 1: Cell is hidden

6 1: Cell is locked

5-0 XF record index

01H 7-6 FONT record index

5-0 FORMAT record index

02H 7 1: Cell is shadowed

6 1: Cell has bottom border

5 1: Cell has top border

4 1: Cell has right border

3 1: Cell has left border

2-0 Alignment:

0 = General

1 = Left

2 = Centered

3 = Right

4 = Fill
Table 15.9

Coding of cell
attribute flag
in BIFF2

In BIFF3 and BIFF4 a pointer to an XF record is stored instead of the cell attribute flag. The
BLANK record has opcode 201H in these versions.

Offset Bytes Remarks

OOH

02H

04H

06H

08H

2

2

2

2

2

Record type (01H 02H)

Record length in bytes

Row number (starts from 0)

Column number (starts from 0)

Index to an XF record

containing the cell format

The row and column numbering starts from 0.

Table 15.10

BIFF record

type 201H
(version 3.0/4.0)

262 Spreadsheet formats

15.2.5 BOF - Beginning of File (record type 09H, version 2.0-4.0)

This is the first record in a BIFF file and identifies the BIFF version. In BIFF2 the following record
structure is used:

Offset Bytes Remarks

OOH

02H

04H

06H

2

2

2

2

Record type (09H OOH)
Record length in bytes
Version number

Document type (dt)
10H:Worksheet (.XLS)
20H: Chart (.XLC)
40H: Macro sheet (.XLM)

Table 15.11

BIFF record

type 09H
(version 2.0)

In BIFF3 and BIFF4 an extended record structure is used (Code 209H and 409H).

Offset Bytes Remarks

OOH 2 Record type (09H 02H or 09H 04H)
02H 2 Record length in bytes
04H 2 Version number

06H 2 Document type (dt)

10H: Worksheet (.XLS)

20H: Chart (.XLC)
40H: Macro sheet (.XLM)

100H: Workspace/workbook (.XLW)
08H 2 Reserved (OOH OOH) Table 15.12

BIFF record

type 209H
(version 3.0/4.0)

The version number is always 0 in BIFF3. The high byte of the version number is used in
Multiplan documents as a flag byte:

Table 15.13

Coding of the
version field

Excel binary interchange format (BIFF) 263

The document type field (dt) specifies the type of the BIFF file (BIFF2, BIFF3 and so on). The
last word in the record is used for internal purposes and should be ignored by a BIFF reader. Excel
uses different extensions (XLS, XLC, XLM) for the BIFF files. The last word in the record must be set

to 0.

15.2.6 BOOLERR - Cell with Err value (record type 05H)

This record describes a cell containing a boolean constant or an ERR value. The record structure is
defined in BIFF2 as:

Offset Bytes

OOH 2

02H 2

04H 2

06H 2

08H 3

OBH 1

OCH 1

Remarks

Record type (05H OOH)
Record length in bytes
Row number (starts from 0)
Column number (starts from 0)
Cell attribute

Boolean value or ERR value

Type flag
Table 15.14

BIFF record

type 05H

(version 2.0)

The coding of the cell attribute is shown in the BLANK record (Section 15.2.4). In BIFF3 and
BIFF4 the record is one byte shorter. The cell attribute field (offset 08H) is replaced by the XF
record index. The cell attributes are stored in the XF record.

Offset Bytes Remarks

OOH

02H

04H

06H

08H

OAH

OBH

2

2

2

2

2

1

1

Record type (05H 02H)
Record length in bytes
Row number (starts from 0)
Column number (starts from 0)
Index to an XF record

containing the cell format
Boolean or ERR value (bBooLErr)
Type

Table 15.15

BIFF record

type 0205H

(version 3.0/4.0)

This record describes a boolean constant or an error value in a cell. The field type depends on
the value at offset OBH (0 = boolean, 1 = error). The value is stored in the byte at offset OAH. Error
values are defined as:

264 Spreadsheet formats

Value Error type

OOH #NuU!

07H #DIV/0!

OFH #VALUE!

17H #REF!

1DH #NAME?

24H #NUM!

2AH #N/A

Boolean values are defined as 0 for false and 1 for true.

15.2.7 BOTTOM MARGIN - Bottom Margin Setting
(record type 29H, version 2.0-4.0)

This record defines the bottom margin in inches.

Offset

OOH

02H

04H

Bytes Remarks

Record type (29H OOH)
Record length in bytes
Bottom margin

The bottom margin value is stored as an 8-byte IEEE floating point value.

Table 15.16

Coding of the
error value

Table 15.17

BIFF record

type 29H
(version 2.0-4.0)

15.2.8 BUILTINFMTCOUNT - Number of Format Records

(record type 56H, version 3.0-4.0)

This record type is defined from BIFF3 and stores the number of format records.

ByOffset tes Remarks

OOH

02H

04H

2

2

2

Record type (56H OOH)

Record length in bytes

Number of format records

BIFF2 files use the F0RMATC0UNT record for this purpose.

Table 15.18

BIFF record

type 56H
(version 3.0-4.0)

Excel binary interchange format (BIFF) 265

15.2.9 CALCCOUNT - Iteration Count

(record type OCH, version 2.0-4.0)

This record is used in BIFF2-BIFF4 to store the maximum iterations option from the calculation

dialog box.

Offset

OOH

02H

04H

Bytes Remarks

2 Record type (OCH OOH)

2 Record length in bytes
2 Iteration counter

15.2.10 CALCMODE - Calculation Mode

(record type ODH, version 2.0-4.0)

This record stores the calculation mode defined in the calculation dialog box.

Offset Bytes Remarks

OOH 2 Record type (ODH OOH)
02H 2 Record length in bytes
04H 2 Calculation mode:

0 = manual

1 = automatic

-1 = automatic, except tables

15.2.11 CODEPAGE- Code Page for File
(record type 42H, version 2.0-4.0)

This record has the same structure in all EXCEL versions.

Offset Bytes Remarks

OOH

02H

04H

2

2

2

Record type (42H OOH)
Record length in bytes
Code page

Table 15.19

BIFF record

type OCH
(version 2.0-4.0)

Table 15.20

BIFF record

type ODH
(version 2.0-4.0)

Table 15.21

BIFF record

type 42H
(version 2.0-4.0)

266 Spreadsheet formats

The record stores information about the code page used for the sheet. The code pages are
defined in Table 15.22.

Code Remarks

01B5H

8000H

8001H

04E4H

437 IBM PC Multiplan
850 Presentation Manager

Macintosh

ANSI (Windows) BIFF2 and BIFF3

ANSI (Windows) BIFF4

EXCEL 4.0 uses the code 04E4H for the Windows code page.

Table 15.22

Code pages
used in EXCEL

15.2.12 COLINFO - Column Format (record type 7DH, version 3.0-4.0)

This record defines the format for a range of columns.

Offset Bytes Remarks

OOH 2 Record type (7DH OOH)

02H 2 Record length in bytes

04H 2 First formatted column

06H 2 Last formatted column

08H 2 Column width in 1/256 of

the character width

OAH 2 Index to the XF record

OCH 2 Options low byte

Bit 0: 1 Column range is hidden

1-7: Unused

ODH Options high byte

Bit 0-2: Outline level

column range

3: Reserved (must be 0)

4: 1 Column range

collapsed in outlining

5-7: Reserved (must be 0)

0EH 1 Reserved (must be 0)
Table 15.23

BIFF record

type 7DH

(version 3.0-4.0)

Excel binary interchange format (BIFF) 267

This record formats a range of columns. In BIFF2 the COLWIDTH record is used for this purpose.
In BIFF3 the COLWIDTH record is obsolete and the standard width of the cells is stored in a

DEFCOLWIDTH record. In BIFF4 the STANDARDWIDTH record is used to store the cell width.

15.2.13 COLUMNDEFAULT- Standard Cell Attributes

(record type 20H, version 2.0)

This record type is used in BIFF2 to store the standard cell attributes.

Offset Bytes Remarks

OOH 2 Record type (20H OOH)

02H 2 Record length in bytes

04H 2 First column with standard format

06H 2 Last column with standard format

08H n Field with standard cell attributes
Table 15.24

BIFF record

type 20H

(version 2.0)

The coding of the cell attributes is defined in the BLANK record (see Section 15.2.4).

15.2.14 COLWIDTH - Column Width (record type 24H, version 2.0)

This record type is used only in BIFF2 and defines the standard cell width.

Offset Bytes Remarks

OOH 2 Record type (24H OOH)

02H 2 Record length in bytes

04H 1 First column in a range

05H 1 Last column in a range

06H 2 Column width in Vzst of the

character width Table 15.25

BIFF record

type 24H
(version 2.0)

The column width is defined in Vise of a character width. In BIFF3 the COLINFO record is used to

store this information.

268 Spreadsheet formats

15.2.15 CONTINUE - Continue Record

(record type 3CH, version 2.0-4.0)

The maximum length of a BIFF record is 2084 bytes (including the header). If a data area is longer
than 2080 bytes, it is stored in a parent record and several CONTINUE records.

Offset Bytes Remarks

OOH

02H

04H

2

2

n

Record type (3CH OOH)

Record length in bytes

Data

The interpretation of the data depends on the previous parent record.

Table 15.26

BIFF record

type 3CH
(version 2.0-4.0)

15.2.16 COORDLIST - Polygon Coordinates
(record type A9H, version 4.0)

This record type is defined from BIFF4 and is used to store the vertex coordinates of a polygon.

Offset

OOH

02H

04H

Bytes

2

2

n

Remarks

Record type (A9H OOH)

Record length in bytes

Data
Table 15.27

BIFF record

type A9H
(version 4.0)

The coordinates are stored as X,Y pairs (unsigned integer words). The coordinates define a
bounding box of 4000 by 4000 points.

Excel binary interchange format (BIFF) 269

15.2.17 COUNTRY - Country Settings
(record type 8CH, version 3.0-4.0)

The COUNTRY record defines the standard country code or the settings from WIN. INI.

Offset Bytes Remarks

OOH 2 Record type (8CH OOH)

02H 2 Record length in bytes

04H 2 Standard country code

(iCountryDef)

06H 2 WIN. INI country code

(iCountrylni)
Table 15.28

BIFF record

type 8CH

(version 3.0-4.0)

The default settings are defined by the EXCEL version that writes the document. The US
version uses the entry 1. The field i Countrylni contains the WIN. INI settings for the country. The
index is calculated from the international telephone country code (1 = USA, 49 = Germany, 32 =

Belgium, 44 = GB, and so on).

15.2.18 CRN - Record Count (record type 5AH, version 3.0-4.0)

The CRN record describes non-resident formula operands in BIFF3/BIFF4.

Offset Bytes Remarks

OOH 2 Record type (5AH OOH)
02H 2 Record length in bytes
04H 1 Last column of

non-resident operand
05H 1 First column of

non-resident operand
06H 2 Row of non-resident operand

04H X Operand structure
Table 15.29

BIFF record

type 5AH
(version 3.0-4.0)

270 Spreadsheet formats

The operand structure depends on the stored values.

Cell operand is a number

Offset Bytes Remarks

OOH

01H

1

8

01H indicates a number

8-byte IEEE value

Cell operand is a string

Offset Bytes Remarks

OOH

01H

21H

1

1

X

02Hindicates a string
String length in bytes

String

Cell operand is a logical variable

Offset

OOH

01H

03H

Bytes

1

2

6

Cell operand is an ERROR value

Remarks

04H indicates a logical value
1 = true, 0 = false

Unused

Offset Bytes Remarks

OOH

01H

03H

1

2

6

10H indicates an ERROR value

Error number

Unused

Table 15.30

Operand
structure for

numbers

Table 15.31

Operand
structure for

strings

Table 15.32

Operand
structure for

logical values

Table 15.33

Operand
structure

for ERROR

values

Excel binary interchange format (BIFF) 271

For example, a formula's data are defined as:

=SUM(EXT.XLS!A1:A3)

The data are stored in the external file EXT.XLS. The formula creates a CRN record with the cell

description (A1 :A3). If a formula contains several rows or independent ranges, a CRN record is
created for each item. If several formulas use the same range, only one CRN record is created.

15.2.19 DCON - Data Consolidation (record type 50H, version 2.0^4.0)

This record stores information from the Consolidation dialog box, and is used in all BIFF versions.

Offset Bytes Remarks

OOH 2 Record type (50H OOH)

02H 2 Record length in bytes

04H 2 Index to the consolidate function

06H 2 1 = Left column option is on

08H 2 1 = Top row option is on

06H 2 1 = Create links to source

Data option is on

Offset 04H contains an index to the data consolidation function.

Value Function

0 AVERAGE

1 COUNT

2 C0UNTA

3 MAX

4 MIN

5 PRODUCT

6 STDEV

7 STDEVP

8 SUM

9 VAR

10 VARP

Table 15.34

BIFF record

type 50H
(version 3.0-4.0)

Table 15.35

Consolidation

function indices

272 Spreadsheet formats

15.2.20 DCONNAME - Data Consolidation Named Reference

(record type 52H, version 2.0-4.0)

This record stores a named range, which should be consolidated:

Offset Bytes Remarks

OOH 2 Record type (52H OOH)

02H 2 Record length in bytes

04H 1 Length of range name source data
05H n Range name source data

xxH 1 Length of document name
xxH n Document name Table 15.36

BIFF record

type 52H
(version 2.0-4.0)

15.2.21 DCONREF - Data Consolidation Reference

(record type 51H, version 2.0-4.0)

This record describes a cell range which should be consolidated, and is used in all BIFF versions.

Offset Bytes Remarks

OOH 2 Record type (51H OOH)

02H 2 Record length in bytes

04H 2 First row of source data

06H 2 Last row of source data

08H 1 First column of source data

09H 1 Last column of source data

OAH 1 Length of document name

OBH n Document name
Table 15.37

BIFF record

type 51 H

(version 2.0-4.0)

The document name field contains the name in an encoded format (see EXTRNSHEET record,

Section 15.2.31).

Excel binary interchange format (BIFF) 273

15.2.22 DEFAULTROWHEIGHT- Default Row Height
(record type 25H, version 2.0-4.0)

This record is available in all BIFF versions and defines the default cell height. The record
structure in BIFF2 is shown in the following table:

Offset

OOH

02H

04H

Bytes Remarks

Record type (25H OOH)
Record length in bytes
Default cell height

Table 15.38

BIFF record

type 25H

(version 2.0)

The cell height is defined in 1/20point. In BIFF3 and BIFF4 a modified record structure is used,
which has the opcode 225H.

Offset Bytes Remarks

OOH

02H

04H

06H

2

2

2

2

Record type (2 5H02 H)
Record length in bytes
Option flag

Default cell height Table 15.39

BIFF record

type 225H

(version 3.0-4.0)

The options are defined as a bitfield:

Offset

OOH

01H

Bit

1

2

3

4-7

0-7

Remarks

1: Font and row height
not compatible

1: Row height is 0
1: Thick border above row

1: Thick border below row

Unused

Unused
Table 15.40

Coding of the
option field

274 Spreadsheet formats

15.2.23 DEFCOLWIDTH - Default Column Width

(record type 55H, version 2.0-4.0)

This record defines the default column width.

Offset Bytes Remarks

OOH

02H

04H

2

2

2

Record type (55H OOH)

Record length in bytes

Default column width
Table 15.41

BIFF record

type 55H

(version 2.0-4.0)

The cell width is defined in characters. This value is valid for all cells that are not explicitly

formatted. The record structure is used in all BIFF versions.

15.2.24 DELTA - Iteration Increment

(record type 10H, version 2.0-4.0)

This record type is used in all BIFF versions:

Offset Bytes Remarks

OOH

02H

04H

2

2

8

Record type (1OH OOH)

Record length in bytes

Maximum iteration increment
Table 15.42

BIFF record

type 10H
(version 2.0-4.0)

The maximum iteration increment is stored as an IEEE 8-byte floating point number. The value
is set in the calculation option in EXCEL.

Excel binary interchange format (BIFF) 275

15.2.25 DIMENSIONS - Table Size (record type OOH, version 2.0-4.0)

The record describes the table size. In BIFF2 the following structure is defined:

Offset

OOH

02H

04H

06H

08H

OAH

Bvtes Remarks

Record type (OOH OOH)

Record length in bytes

First defined row of the document

Last defined row of the document

First defined column of the document

Last defined column of the document
Table 15.43

BIFF record

type OOH
(version 2.0)

Note that the current cell numbers are always 1 more than the values in the record (row A is
row 0, column 1 is column 0). In BIFF3 and BIFF4 the record contains an additional reserved word.

Offset Bytes Remarks

OOH 2 Record type (OOH 02H)

02H 2 Record length in bytes

04H 2 First defined row of the document

06H 2 Last defined row of the document

08H 2 First defined column of the document

OAH 2 Last defined column of the document

OCH 2 Reserved (0000H)

The reserved word must be set to 0.

Table 15.44

BIFF record

type 200H

(version 3.0-4.0)

276 Spreadsheet formats

15.2.26 EDG - Edition Globals (record type 88H, version 3.0-4.0)

This record is used from BIFF3 and contains information for the Publisher (Macintosh). EXCEL

ignores this record under Windows.

Offset Bytes Remarks

OOH

02H

04H

08H

OAH

2

2

4

2

2

Record type (88H OOH)

Record length in bytes

Count of section records created +1

Count of PUB records in file

Reserved (0000H)
Table 15.45

BIFF record

type 88H
(version 3.0-4.0)

15.2.27 EFONT - Extended Font (record type 45H, version 2.0)

This record type is used only in EXCEL 2.0.

—,

Offset Bytes Remarks

OOH

02H

04H

2

2

4

Record type (45H OOH)
Record length in bytes

Index to color table

0 Black

1 White

2 Red

3 Green

4 Blue

5 Yellow

6 Magenta

7 Cyan
Table 15.46

BIFF record

type 45H
(version 2.0)

BIFF3 stores the color information in the FONT record.

Excel binary interchange format (BIFF) 277

15.2.28 EOF - End of File (record type OAH, version 2.0-4.0)

This record type terminates all EXCEL files and is used in all BIFF versions.

Offset Bytes Remarks

OOH

02H

2

2

Record type (OAH OOH)

Record length in bytes

The record contains no data and must be the last record in the file.

15.2.29 EXTERNCOUNT - Number of External References
(record type 16H, version 2.0-4.0)

If EXCEL uses external documents, this record appears in the file.

Offset Bytes Remarks

OOH

02H

04H

2

2

2

Record type (16H OOH)
Record length in bytes

Number of external documents

Table 15.47

BIFF record

type OAH

(version 2.0-4.0)

Table 15.48

BIFF record

type 16H

(version 2.0-4.0)

The number of references includes external work sheets and DDE links. If the links are of the
same type, (.XLS) only one value is used in the counter. The record is used in all BIFFversions.

15.2.30 EXTERNNAME - External Reference Name (record type 23H)

This record contains the name of an external reference (document). In BIFF2 the following record
structure is used:

278 Spreadsheet formats

Offset

OOH

02H

04H

05H

Bytes

2

2

1

x

Remarks

Record type (23H OOH)
Record length in bytes
Length of name
Reference name

Table 15.49

BIFF record

type 23H
(version 2.0)

This record must follow an EXTERNSHEET record. An external reference in Windows is a macro,

a worksheet or a Windows DDE link. If the name is longer than 255 characters, it will be continued
in as many CONTINUE records as required. From BIFF3 an extended record structure is used:

Offset Bytes Remarks

OOH 2 Record type (23H 02H)
02H 2 Record length in bytes
04H 2 Option flags

Bit 0: 1 Built-in name

1-2: Reserved (0)
3-15: Unused

06H 1 Length of name
07H X Reference name

15.2.31 EXTERNSHEET - External Reference
(record type 17H, version 2.0-4.0)

This record defines the name of an external document.

Offset

OOH

02H

04H

05H

Bytes

2

2

1

x

Remarks

Record type (17H OOH)
Record length in bytes
Length of name
Document filename

Table 15.50

BIFF record

type 223H
(version 3.0-4.0)

Table 15.51

BIFF record

type 17H
(version 2.0-4.0)

Excel binary interchange format (BIFF) 279

For each external document a record is written to the BIFF file. The number of records is equal

to the value in the EXTERNCOUNT record. The order of the EXTERNSHEET records in a BIFF file

should not be changed. All document names are stored as ASCII strings. Whenever possible, the
filenames are encoded to make BIFF files exchangeable across different platforms. Encoded
filenames are identified by the first character in the name:

Code Filetype

Reference to an empty sheet name

Encoded filename

External reference, self-referential

DDE link
Table 15.52

Type of an
external

reference

If the first character is OOH, the reference points to an empty sheet (for example, =!A1). The
code 02H indicates a self-referential external reference (for example, SALES:XLS contains the
formula =SALES . XLS !A1).

The code 01H in the first character indicates an encoded filename, which is used to make the
name less system-dependent. The following table shows the codes used to encode the filename:

01H

02H

03H

04H

05H

06H

07H

08H

09H

The next byte represents an MS-DOS drive letter. On the

Macintosh, one-character drive names are not used.

Instead of code 01H, the value 05H is used.

The source document is on the same drive as the

dependent document.

The source document is in a subdirectory of the current

directory. The subdirectory name precedes the code, and

the filename follows the code.

The source document is in the parent directory.

Defines a LongVolume on the Macintosh. This code is
followed by a drive name.

The source document is in the EXCEL start-up directory.

The source document is in the alternate start-up directory.

The source document is in the library directory.
The source document is included in a workbook.

The code 02H indicates an external filename which is on the same drive as the dependent
document.

280 Spreadsheet formats

15.2.32 FILEPASS - Password Protected File

(record type 2FH, version 2.0-4.0)

This record type is used in EXCEL files if the contents are saved with a password. The record must

follow the BOF record. All records after the FILEPASS record are encrypted.

Offset Bytes Remarks

OOH

02H

04H

2

2

2

Record type (2FH OOH)

Record length in bytes

Password
Table 15.53

BIFF record

type 2FH
(version 2.0-4.0)

EXCEL uses a second record type (PASSWORD) to protect the document.

15.2.33 FILESHARING - File Sharing and Password
(record type 5BH, version 3.0-4.0)

This record stores information, from the Save as command. Also, the record contains the

encrypted access passwords.

Offset Bytes Remarks

OOH 2 Record type (5BH OOH)

02H 2 Record length in bytes

04H 2 ReadOnlyRec option flag

06H 2 Encrypted password

08H 1 Length of name

09H X User name

imssmmmmmmema^^mmmmmmMuu:mmmmjm»mmsm i*tmra*sfcraocraaraff~, w~*2*»BW0aimmm

Table 15.54

BIFF record

type 5BH

(version 3.0-4.0)

The word at offset 04H defines a flag which is set to 1 if the Read Only Recommended option is
set during the Save as operation. The next word contains an encrypted password. If its value is 0,
the file is written without access protection. The following bytes define the user name and its

length.

Excel binary interchange format (BIFF) 281

15.2.34 FNGROUPCOUNT - Built-in Function Group
(record type 9CH, version 4.0)

This record type is used from BIFF4 and defines the number of built-in functions (Financial,
Mathematical, Date, Time and so on) in the file.

Offset Bytes Remarks

OOH

02H

04H

2

2

2

Record type (9CH OOH)

Record length in bytes

Number of built-in functions

The word at offset 04H defines the number of built-in functions.

Table 15.55

BIFF record

type 9CH
(version 4.0)

15.2.35 FNGROUPNAME - Function Group Name
(record type 9AH, version 4.0)

This record is defined from BIFF4 and defines the name of a custom function created by a

REGISTERO or DEFINE.NAME macro.

Offset

OOH

02H

04H

05H

Bytes

2

2

1

n

Remarks

Record type (9AH OOH)

Record length in bytes

Length of name
Name of custom function group

The word at offset 04H defines the length of the following name.

Table 15.56

BIFF record

type 9AH
(version 4.0)

282 Spreadsheet formats

15.2.36 FNPROTO - Function Prototype (record type A2H, version 4.0)

This record is also defined from BIFF4 and contains the prototype functions.

Offset

OOH

02H

04H

06H

Bytes

2

2

2

n

Remarks

Record type (A2H OOH)

Record length in bytes

Size of prototype data array

Array of function prototypes

The field at offset 06H has the following data structure for each entry:

Table 15.57

BIFF record

type A2H
(version 4.0)

Offset Bytes Remarks

OOH 1 1: Name is a function or a

command in a macrosheet

01H 1 Index to function group

02H 1 Length of argument list

03H 1 Length of name

04H

xxH

n

n

Function name

Argument list
Table 15.58

Function

prototype

data structure

15.2.37 FONT - Font Description (record type 31H, version 2.0-4.0)

This record contains the font description. BIFF2 uses the following record structure:

Offset Bytes Remarks
Tahle 1 5 59

OOH

02H

4

2

Record type (31H OOH)
Record length in bytes

BIFF record

type 31 H
(version 2.0)
(continues
over...)

Excel binary interchange format (BIFF) 283

Offset Bytes Remarks

04H 2 Font height
06H 2 Font attribute

Bit 0-7: Reserved (0)
8: 1 Bold

9: 1 Italic

10: 1 Underline

11: 1 Strikeout

12-15: Reserved (0)

08H

09H

1

X

Length of font name
Font name

Table 15.59

BIFF record

type 31H

(version 2.0)
(cont.)

All reserved bits in the font attribute flag must be set to 0. In BIFF3 and BIFF4 an extended
structure is used to store additional color information (BIFF2 has its own record for this purpose).
The font can be changed with an XF record. The font height is defined in V20 point.

Offset Bytes Remarks

OOH 2 Record type (31H 02 H)
02H 2 Record length in bytes
04H 2 Font height
06H 2 Font attributes

Bit 0: 1 Bold

1: 1 Italic

2: 1 Underline

3: 1 Strikeout

4: 1 Outline

5: 1 Shadow

6-7: 0 reserved

8-F: 0 unused

08H 2 Index in color palette
OAH

OBH

1

X

Length of font name
Font name

Table 15.60

BIFF record

type 231H
(version 3.0-4.0)

Fonts are numbered from 0 to n and are specified in the font record. The font index in an XF
record is used to change the font in a document. The Outline and Shadow attributes are valid only
for the Macintosh.

284 Spreadsheet formats

15.2.38 FONT2 - Additional Font Information

(record type 32H, version 2.0)

This recoi'd type is only used in EXCEL 2.0 and defines additional font information for the FONT
record.

15.2.39 FOOTER - Print Footer on each Page
(record type 15H, version 2.0-4.0)

This record defines a text sequence for the footer printed on each page.

Offset

OOH

02H

04H

05H

Bytes

4

2

1

x

Remarks

Record type (15H OOH)
Record length in bytes

Length of text string (in bytes)
Footer text string

The text must be defined in the Footer Dialog Box.

Table 15.61

BIFF record

type 15H

(version 2.0-4.0)

15.2.40 FORMAT - Number Format (record type 1EH, version 2.0-4.0)

This record type defines the format for values in the document. BIFF versions 2.0 and 3.0 use the
following record structure:

Offset Bytes Remarks

OOH 2 Record type (1 EH OOH)

02H 2 Record length in bytes

04H 1 Length of format string
05H X Format string for numbers Table 15.62

BIFF record

type 1 EH
(version 2.0-3.0)

In BIFF4 a modified record structure is used:

Excel binary interchange format (BIFF) 285

Offset Bytes Remarks

OOH

02H

04H

06H

07H

2

2

2

1

X

Record type (1EH 04H)
Record length in bytes
Format index code

Length of format string
Format string for numbers

Table 15.63

BIFF record

type 41 EH
(version 4.0)

The format index code is used for internal purposes in EXCEL. All FORMAT records should be
stored together in a BIFF file and their order should not be changed. New format definitions should
be appended to the end of the list.

15.2.41 FORMATCOUNT - Number of Built-in Format Records

(record type 1FH, version 2.0)

This record type is used only in BIFF2 and defines the number of format records in a document.

Offset

OOH

02H

04H

Bytes Remarks

Record type (1 FH OOH)
Record length in bytes
Number of format records

The structure of the FORMAT record is described in Section 15.2.40 above.

Table 15.64

BIFF record

type 1 FH

(version 2.0)

15.2.42 FORMULA - Cell Formula (record type 06H, version 2.0-4.0)

A cell containing a formula is described in this record type. In BIFF2 the following structure is
used:

Offset

OOH

02H

Bytes Remarks

Record type (06H OOH)

Record length in bytes

Table 15.65

BIFF record

type 06H
(version 2.0)
(continues
over...)

286 Spreadsheet formats

Offset Bytes Remarks

04H 2 Row number (starts from 0)

06H 2 Column number (starts from 0)

08H 3 Cell attributes

OBH 8 Current value of formula

13H 1 Recalculation flag

Bit 0: Always calculate formula

1: Calculate formula if

file opened

2-15: Unused

14H 1 Length of parsed expression

15H n Parsed expression

Table 15.65

BIFF record

type 06H
(version 2.0)
(cont.)

The cell attributes are defined in the BLANK record (see Section 15.2.4). In BIFF3 and BIFF4 the
record structure is changed (see Table 15.66). In BIFF4 the opcode 406H is used.

Offset Bytes Remarks

OOH 4 Record type (06H 02H)

02H 2 Record length in bytes

04H 2 Row number (starts from 0)

06H 2 Column number (starts from 0)

08H 2 Index to XF record

(containing cell format)

OAH 8 Current value of formula

12H 1 Recalulation flag

Bit 0: Always calculate
formula

1: Calculate formula if

file open
2-15 : Unused

14H 2 Length of parsed expression

16H n Parsed expression
Table 15.66

BIFF record

type 206H
and 406H

(version 3.0-4.0)

Excel binary interchange format (BIFF) 287

The formula is stored as a parsed expression in the FORMULA record. The formula result is
stored as an 8-byte IEEE number. Boolean or ERROR values are stored as encoded 8-byte values

(the last word contains the value FFFFH). Boolean values are stored as:

Bytes Remarks

Type boolean (always 1)

Reserved (0)

Boolean value

Reserved (0)
Always FFFFH

An ERROR value is stored as:

Bytes Remarks

1

1

1

3

2

Type error (always 2)
Reserved (0)

ERROR value

Reserved (0)

Always FFFFH

A result string is stored in the record as:

Bytes Remarks

Type string (always 0)
Reserved (0)

Always FFFFH

Table 15.67

Coding of
boolean values

in a FORMULA

record

Table 15.68

Coding of an
ERROR value

in a FORMULA

record

Table 15.69

Coding of a
string result

The string itself is not stored in the FORMULA record; it is appended in a STRING record.
At offset 22H (BIFF3/BIFF4) the parsed string representing the formula is stored. EXCEL uses

reverse Polish notation to represent a formula. A formula is a sequence of tokens, where tokens
are operands and operators. Each token consists of a token type, followed by the value. The token
type is always a byte between 01 H and 7FH. The values from 80H to FFH are reserved. Tokens that

288 Spreadsheet formats

consist only of a token type are valid. Other tokens are followed by several bytes containing the
token value. The following table defines some token types:

2)

12H Unary plus (+)
13H Unary minus (-)
14H Percent (%)

Two operand tokens
03H Addition

04H Subtraction

05H Multiplication
06H Division

07H Exponentiation (Exponent =
08H Concatenation

09H Less than

OAH Less than or equal
OBH Equal
OCH Greater than or equal
ODH Greater than

OEH Not equal
OFH Intersection (space operator)
10H Union (comma operator)
11H Range (bounding rectangle)

Constant tokens

16H Missing argument
17H String (1-byte length + string
1CH Error value (1-byte)
1DH Boolean 0 = false, 1 = true
1EH Integer (2-byte unsigned)
1FH Number (8-byte IEEE-Float) Table 15.70

Coding of
simple tokens

EXCEL uses additional tokens to describe operands. These token structures are more complex
and are described below.

15.2.42.1 Array constant (Opcode 20H)

Offset

OOH

01H

..H

..H

..H

Bytes

1

6

7

1

2

n

Remarks

Opcode 20H
Reserved in BIFF2

Reserved in BIFF3/4

Number of entries

Number of rows in the array constant
Array values Table 15.71

Array constant
(20H)

Excel binary interchange format (BIFF) 289

The array values are coded as:

Bytes

1

1

n

Remarks

01H IEEE value follows

8-byte IEEE value

02H String value follows
String length
String

15.2.42.2 Name-Operand (Opcode 23H)

This token defines a named reference and has the following structure:

Offset Bytes Remarks

OOH

02H

2

5

8

Index to the reference

Reserved in BIFF2

Reserved in BIFF3/4

Table 15.72

Coding of an
arrav element

Table 15.73

Structure of a

name operand

The index points to a table containing the external reference names (EXTERNNAME).

15.2.42.3 Cell Reference (Opcode 24H)

This token defines a reference to a single cell:

Offset

OOH

02H

Bytes Remarks

Bit 0-13: Row number

Bit 14 : 1 Column relative

Bit 15 : 1 Row relative

Column Table 15.74

Structure of a

cell reference

operand

The column and row numbers are relative or absolute, depending on bits 14 and 15 of the
first word.

290 Spreadsheet formats

15.2.42.4 Area Reference (Opcode 25H)

A range of several cells is defined by this token:

Offset Bytes Remarks

OOH 2 Bit 0-13: Number of first row

Bit 14 = 1 Column relative

Bit 15 = 1 Row relative

02H 2 Bit 0-13: Number of last row

Bit 14 = 1 Column relative

Bit 15 = 1 Row relative

04H 1 First column

05H 1 Last column

Relative and absolute row and column numbers are allowed.

15.2.42.5 Constant Reference Subexpression (Opcode 26H)

This token defines a reference to an operand.

Offset Bytes Remarks

OOH

04H

06H

4

2

2

2

2

1

1

Reserved

Expression length
Number of rectangles to follow
Array of rectangles:

First row

Last row

First column

Last column

Table 15.75

Structure of an

area reference

operand

Table 15.76

Structure of a

constant

reference

subexpression-
operand

Each entry is 6 bytes long and defines a rectangle of cells. If the data cannot fit into one record,
CONTINUE records are used.

Excel binary interchange format (BIFF) 291

15.2.42.6 Erroneous Constant Reference Subexpression (Opcode 27H)

This token has the following structure:

Offset

OOH

Byte

3

4

1

2

Remarks

Reserved in BIFF2

Reserved in BIFF3/BIFF4

Expression length (BIFF2)

Expression length (BIFF3/BIFF4)

Table 15.77

Structure of an

erroneous

constant

reference

subexpression-
operand

The subexpressions follow in a Deleted Cell Reference or Deleted Area Reference token.

15.2.42.7 Deleted Cell Reference (Opcode 2AH)

This reference is the result of a change in the worksheet (delete, move, and so on). The opcode
byte is followed by three reserved bytes.

15.2.42.8 Deleted Area Reference (Opcode 2BH)

This referencedescribes a deleted area in a worksheet. The opcode byte is followed by six reserved
bytes.

15.2.42.9 Cell Reference within a Name (Opcode 2CH)

This reference occurs only within a parsed expression in a NAME record and defines a reference to
a single cell. The opcode is followed by the followingstructure:

!

Offset Bytes Remarks

OOH 2 Row

Bit 15: 1 = Row relative

0 = Row absolute

Bit 14: 1 = Column relative

0 = Column absolute

Bit 0-13: Row

02H 1 Column

Table 15.78

Structure of a

cell reference

within a NAME

operand

292 Spreadsheet formats

15.2.42.10 Area Reference within a Name (Opcode 2CH)

This reference occurs only within a parsed expression in a NAME record and defines a reference to
a range. The opcode is followed by the following structure:

Offset Bytes Remarks

OOH 2 First row

Bit 15: 1 = Row relative

0 = Row absolute

Bit 14: 1 = Column relative

0 = Column absolute

Bit 0-13: Row

02H 2 Last Row

04H 1 First Column

05H 1 Last Column

Control Tokens

An EXCEL expression can contain further tokens to control the data area:

Table 15.79

Structure of an

area reference

within a NAME

operand

The coding of the first and last row in a word is similar. The two most significant bits are used
to define a relative or absolute address. Bits 0-13 are used for the row number. The column
number is coded in one byte. The information about relative/absolute addressing is obtained from
bit 14 of the row number.

15.2.42.11 Array Formula (Opcode 01H)

This token defines an array which contains the formula. The token is used only in FORMULA
records. The following structure appears after the opcode byte:

Offset Bytes Remarks

OOH

02H

2

1

Row number of upper left corner

Column number of upper left corner

From BIFF3 the column number is stored in a word instead of a byte.

Table 15.80

Array Formula

Excel binary interchange format (BIFF) 293

15.2.42.12 Data Table (Opcode 02H)

This token indicates a data table in a worksheet and is used only in FORMULA records. The token is
the only token in a formula and has the followingstructure:

Offset

OOH

02H

Bytes Remarks

Row number of upper left corner
Column number of upper left corner

Table 15.81

Data Table

From BIFF3 the column number is stored in a word.

15.2.42.13 Parenthesis (Opcode 15H)

This opcode defines a pair of parentheses in an expression.

15.2.42.14 Special Attributes (Opcode 19H)

This opcode is used for different purposes. Depending on the BIFF version, the opcode byte
precedes the following structures:

Offset Bytes Remarks

BIFF2

OOH 1 Option flag

01H 1 Data byte

BIFF3 and BIFF4

OOH 1 Option flag

01H 2 Data word

BIFF4if Bit 6 in option flagis 1
OOH 1 Option flag

01H 1 Spacing attribute

02H 2 Number of spaces Table 15.82

Special
Attributes

294 Spreadsheet formats

The option flag is a bit field containing the following flags:

Bit Remarks

0 1: Formula contains volatile functions

1 1: Implement optimized IF function

2 1: Implement optimized CHOOSE function

3 1: Jump to another position in the expression

4 1: Implement optimized SUM function

5 1: Formula is a BASIC style assignment

6 1: Macro formula contains spaces after

the equal sign (BIFF3, BIFF4)

7 Unused

15.2.42.15 External Reference (Opcode 1AH)

This token has the following structure:

Table 15.83

Coding of the
option flags

Offset Bytes Remarks

OOH 4

6

Reserved in BIFF2

Reserved in BIFF3, BIFF4

..H 2 Index to worksheet

..H 1 Reserved (0) Table 15.84
MM External

Reference

15.2.42.16 End External Reference (Opcode 1BH)

This token has the following structure:

Offset Bytes Remarks

OOH 3

4

Reserved in BIFF2

Reserved in BIFF3, BIFF4
Table 15.85

End External

Reference

Excel binary interchange format (BIFF) 295

15.2.42.17 Incomplete Constant Reference Subexpression (Opcode 28H)

This token has the following structure:

Offset

OOH

Bytes Remarks

Reserved in BIFF2

Reserved in BIFF3, BIFF4

Length of reference in BIFF2

Length of reference in BIFF3, BIFF4

15.2.42.18 Reference Subexpression

EXCEL uses several opcodes for subexpressions:

FunctionOpcode

29H

2EH

2FH

Variable Reference Subexpression

Reference Subexpression

(only in a NAME record)

Incomplete Reference Subexpression

within a NAME record

The opcode byte is followed by:

Offset Byte Remarks

OOH 1

2

Length of reference in BIFF2

Length of reference in BIFF3, BIFF4

Table 15.86

Incomplete
Constant

Reference

Subexpression

Table 15.87

Opcodes for
Reference

Subexpressions

Table 15.88

Reference

Subexpression
Structure

296 Spreadsheet formats

Function operators

EXCEL expressions may contain operators for functions. In BIFF the following operators are used.

15.2.42.19 Function Operator (Opcode 21H)

This operator follows a function with a fixed number of arguments. The opcode is followed by a
byte (BIFF2) or a word (BIFF3, BIFF4) containing a function index.

15.2.42.20 Variable Argument Function Operator (Opcode 22H)

This operator indicates a function with a variable number of arguments. The opcode is followed
by:

Offset Bytes Remarks

OOH

01H

1

1

2

Bit 0-6: Number of arguments
Bit 7-1: Function prompts the user

Index of the function (BIFF2)

Bit 0-14: Index (BIFF3, BIFF4)

Bit 15: Function is command-

equivalent
Table 15.89

Variable

Argument

Function

15.2.42.21 Command-Equivalent Function Operator (Opcode 38H)

A command-equivalent function is followed by the number of arguments and a function index:

Offset

OOH

01H

Bvtes Remarks

Number of arguments

Index to the function

All other opcodes arc reserved for future extensions.

Table 15.90

Command-

Equivalent
Function

Excel binary interchange format (BIFF) 297

15.2.43 GCW - Global Column Width Flags
(record type ABH, version 4.0)

This record is defined from BIFF4 and has the following structure:

Offset Bytes Remarks

OOH

02H

04H

06H

08H

2

2

2

2

2

Record type (ABH OOH)

Record length in bytes

Length of the following structure

Global column width flag (A-P)

Global column width flag (Q-AF)

..H 2 Global column width flag (IG-IV)
Table 15.91

BIFF record

type ABH

(version 4.0)

The record defines a field containing 256 flag bits. Each bit represents a column in a
worksheet. If the bit is set, the column uses the standard width. If the bit is 0, the column width is
defined in a STANDARDWIDTH record.

The Global Column Width Flag word is defined as a bit field. Each bit defines a column (Bit 0 =
1st column, Bit 1 = 2nd column, and so on).

15.2.44 GRIDSET - State Change of Gridlines Option
(record type 82H, version 3.0-4.0)

The record defines the grid state and signals new user settings.

Offset Bytes Remarks

OOH

02H

04H

4

2

2

Record type (82H OOH)

Record length in bytes

1 = Changed settings
Table 15.92

BIFF record

type 82H
(version 3.0^1.0)

The settings are available in the page setup dialog box.

298 Spreadsheet formats

15.2.45 GUTS - Size of Row and Column Gutter

(record type 80H, version 3.0-4.0)

This record defines the row and column gutters:

Offset

OOH

02H

04H

06H

08H

OAH

Bytes Remarks

Record type (80H OOH)

Record length in bytes

Row gutter-left border

Column gutter-top border

Maximum outline level-row gutter

Maximum outline level-column gutter

The gutter is measured in screen units (pixels).

Table 15.93

BIFF record

type 80H

(version 3.0-4.0)

15.2.46 HCENTER - Horizontal Center between Margins
(record type 83H, version 3.0-4.0)

This record type is defined from BIFF3 and sets the option to center a sheet between the left and
right margins during printing.

Offset

OOH

02H

04H

Bytes Remarks

Record type (83H OOH)

Record length in bytes

1 = Center printout Table 15.94

BIFF record

type83H
(version 3.0-4.0)

15.2.47 HEADER - Print Header (record type 14H, version 2.0-4.0)

This record defines the header string for a document.

Excel binary interchange format (BIFF) 299

Offset

OOH

02H

04H

05H

Bvtes

2

2

1

n

Remarks

Record type (14H OOH)
Record length in bytes
Length of header string
Header string

15.2.48 HIDEOBJ - Object Display Options
(record type 8DH, version 2.0-4.0)

This record stores information about object visibility.

Table 15.95

BIFF record

type 14H

(version 2.0-4.0)

Offset Bytes Remarks

OOH 2 Record type (8DH OOH)
02H 2 Record length in bytes
04H 2 Display options

0: Show all options on
1: Place-holder option on Table 15.96

2: Hide option on BIFF record

type 8DH

(version 2.0-4.0)

15.2.49 HORIZONTAL PAGE BREAKS - Explicit Row Page Breaks
(record type 1BH, version 2.0-4.0)

This record contains a list of explicit row page breaks.

Offset

OOH

02H

04H

06H

Bytes Remarks

2 Record type (1BH OOH)
2 Record length in bytes
2 Number of page breaks
n*2 Array of row numbers

Table 15.97

BIFF record

type 1BH
(version 2.0-4.0)

The array (offset 06H) contains the 2-byte row numbers where page breaks occur, in ascending
order.

300 Spreadsheet formats

15.2.50 IMDATA - Image Data (record type 7FH, version 3.0-4.0)

This record type defines a complete bitmap picture.

Offset Bytes Remarks

OOH

02H

2

2

Record type (7FH OOH)
Record length in bytes

04H 2 Image format
02 H: Windows Metafile

Mac PICT

06H 2

09H: Windows Bitmap
OEH: Special format
Environment

1: Windows

2: Macintosh

08H

OCH

4

n

Length of data area in bytes
Data area

Table 15.98

BIFF record

type 7FH
(version 3.0-4.0)

If a Windows Bitmap image is stored, the data area begins with a BMP header
(BITMAPC0REINF0), followed by a Bitmap structure (see BMP description in Part 4).

If an image is stored in an application-dependent format, offset 04H contains the value OEH.
EXCEL ignores the image data in this case.

15.2.51 INDEX - Index (record type OBH, version 2.0-4.0)

This record appears in each BIFF file and describes an index. BIFF version 2.0 uses the following
structure:

Offset Bytes Remarks

OOH 2 Record type (OBH OOH)
02H 2 Record length in bytes
04H 4 Absolute file position

of the first NAME record

08H 2 First row in the document

OAH 2 Last row in the document

OCH X Array of absolute file positions
Table 15.99

BIFF record

type OBH
(version 2.0)

Excel binary interchange format (BIFF) 301

From BIFF3 an extended record structure is used:

Offset Bytes Remarks

OOH 2 Record type (OBH 02H)

02H 2 Record length in bytes
04H 4 Offset of the first NAME record

08H 2 First row in the document

OAH 2 Last row in the document

OCH 4 Offset of XF record

10H X Array of absolute file positions
Table 15.100

BIFF record

type 20BH

(version 3.0-4.0)

The record contains pointers (offset in bytes) to other records. The field at offset 04H defines a
pointer to the start of the first NAME record. The next two fields define the first and last row in a

worksheet used by the formula. The row numbers begin with 0 and the value for the last row will
be counted +1.

Offset OCH (BIFF3, BIFF4) contains a pointer to the start of the first XF record. The structure
ends with an array of 4-byte pointers which define the offset of the ROW records. If all the ROW
records are stored together, there is only one entry in the BIFF file.

15.2.52 INTEGER - Cell Value Integer (record type 02H, version 2.0)

This record defines an integer value in BIFF2.

Offset Bytes Remarks

OOH 2 Record type (02H OOH)

02H 2 Record length in bytes
04H 2 Row number (starts from 0)

06H 2 Column number (starts from 0)
08H

OBH

3

2

Cell attributes

Integer value
Table 15.101

BIFF record

type 02H
(version 2.0)

The row and column numbers start from 0. The cell value is stored as an unsigned integer. The
structure of the cell attributes is defined in the BLANK record (see Section 15.2.4). The record is
used only in BIFF2. From BIFF3 EXCEL stores integer values in RK records.

302 Spreadsheet formats

15.2.53 INTL - International Macro Sheet

(record type 61H, version 3.0-4.0)

This record signals that a macro is stored as an international macro sheet in a BIFF file.

Offset Bytes Remarks

OOH

02H

04H

2

2

2

Record type (61H OOH)

Record length in bytes

Reserved (OOH OOH)

15.2.54 ITERATION - Iteration Mode

(record type 11H, version 2.0-4.0)

The record sets the iteration mode:

Table 15.102

BIFF record

type 61H
(version 3.0-4.0)

Offset Bytes Remarks

OOH

02H

04H

2

2

2

Record type (11H OOH)

Record length in bytes

1 = Iteration On

Table 15.103

BIFF record

tvpe 11H

(version 2.0-4.0)

A value of 1 switches the iteration mode to On.

15.2.55 IXFE - Index Extended Format Record

(record type 44H, version 2.0)

In BIFF2 this record is used to define an index to an XF record.

Offset

OOH

02H

04H

Bvtes Remarks

Record type (44H OOH)

Record length in bytes

Index to the XF record

Table 15.104

BIFF record

type 44H
(version 2.0)

Excel binary interchange format (BIFF) 303

15.2.56 LABEL - Cell Value String (record type 04H, version 2.0-4.0)

A label is defined with this record type. BIFF2 uses the following structure:

Offset Bytes Remarks

OOH 4 Record type (04H OOH)
02H 2 Record length in bytes

04H 2 Row number (starts from 0)
06H 2 Column number (starts from 0)
08H 3 Cell attributes

OBH

OCH

1

X

Length of text string
Text string

Table 15.105

BIFF record

type 04H

(version 2.0)

For information about the cell attributes see the BLANK record (Section 15.2.4). BIFF3 and
higher use the following structure:

Offset Bytes Remarks

OOH 2 Record type (04H 02H)

02H 2 Record length in bytes

04H 2 Row number (starts from 0)
06H 2 Column number (starts from 0)

08H 2 Index to the XF record containing the
cell format

OAH 2 Length of the text string
OCH X Text string Table 15.106

BIFF record

type 204H

(version 3.0-4.0)

The row and column numbers start from 0. The label text is stored in a string with a maximum
length of 255 bytes.

304 Spreadsheet formats

15.2.57 LEFTMARGIN - Left Margin Measurement
(record type 26H, version 2.0-4.0)

This record defines the left margin in inches.

Offset

OOH

02H

04H

Bytes

2

2

8

Remarks

Record type (26H OOH)

Record length in bytes

Left margin

(8-byte IEEE floating point)
Table 15.107

BIFF record

type 26H
(version 2.0-4.0)

15.2.58 LH - Alternate Menu Key Flag
(record type 8BH, version 3.0-4.0)

This record is defined from BIFF3 and specifies the alternate menu key flag for LOTUS 1-2-3 Help.

Offset Bytes Remarks

OOH 2 Record type (8BH OOH)

02H 2 Record length in bytes

04H 2 Alternate menu key flag

1: LOTUS 1-2-3 Help

0: EXCEL Menu bar
Table 15.108

BIFF record

type 8BH
(version 3.0-4.0)

15.2.59 LHNGRAPH - Named Graph Information
(record type 95H, version 3.0-4.0)

From BIFF3, this record specifies a graph (the structure is similar to the LOTUS WKS-NGRAPH
record). The first 13 bytes contain integer values. These values flag all valid X-references A-F and
valid data labels A-F.

Excel binary interchange format (BIFF) 305

15.2.60 LHRECORD - .WKx File Conversion Info

(record type 94H, version 3.0-4.0)

This record is defined from BIFF3 and is used during import/export of LOTUS WKS, WKl and
WK3 files.

Offset Bytes Remarks

OOH

02H

04H

06H

08H

2

2

2

2

n

Record type (94H OOH)
Record length in bytes
Sub-record type
Length of data record
Data record

The following sub-record types are defined:

Table 15.109

BIFF record

type 94H

(version 3.0-4.0)

Code Type

01H Reserved

02H Header string for the /GRAPH SAVE
PRINT Help command

03H Footer string for the /GRAPH SAVE
PRINT Help command

04H Left border for the /GRAPH SAVE

PRINT command (IEEE value)
05H Right border for the /GRAPH SAVE

PRINT command (IEEE value)

06H Top border for the /GRAPH SAVE
PRINT command (IEEE value)

07H Bottom border for the /GRAPH SAVE

PRINT command (IEEE value)
08H Current /Graph View Data

(see LOTUS WKS GRAPH record, Section 6.2.33)
09H Global column width (Integer)
OAH Reserved

OBH Table type

0: None (standard)

1: Table 1

2: Table 2

OCH Reserved Table 15.110

Coding of
sub-records

306 Spreadsheet formats

15.2.61 LPR - Sheet Print with LINE.PRINT (record type 98H)

This record is used in BIFF4 if a LINE. PRINT macro is used to print a sheet.

Offset Bytes Remarks

OOH Record type (98H OOH)

02H 2 Record length in bytes

04H 2 Option flag

06H 2 Left border (in character)

08H 2 Right border (in character)

OAH 2 Top border (in character)

OCH 2 Bottom border (in character)

OEH 2 Lines per page

10H 1 Length of setup string

11H n Printer setup string

The option flag is a bit field with the following structure:

Bit Remarks

1: Alert user after printing each sheet

1: Print header/footer

1: Carriage return at end of page

Table 15.111

BIFF record

type 98H

(version 4.0)

Table 15.112

Coding of
option flag

15.2.62 NAME - Document name (record type 18H, version 2.0-4.0)

This record contains the document name. In BIFF2 the following structure is used:

Offset Bytes Remarks

OOH

02H

2

2

Record type (18H 02H)

Record length in bytes

Table 15.113

BIFF record

type 18H

(version 2.0)
(continues
over...)

Excel binary interchange format (BIFF) 307

Offset Bytes Remarks

04H 1 Name attributes 1

05H 1 Name attributes 2

06H 1 Keyboard shortcut
07H 1 Length of name text
08H 2 Length of name definition
OAH X Name text

..H X Parsed expression for the name's

definition

..H 1 Length of name definition

The name attributes 1 field is coded in BIFF2 as:

Bit

0

1

2

3-7

Remarks

Reserved (must be 0)
1: Name is a function or a command

in a macro sheet

1: Name contains a complex function

Reserved (must be 0)

The name attributes 2 field is defined only if bit 1 in name attribute 1 is set:

Bit

0

1

2-7

Remarks

1: Name of a macro function

1: Name of a macro command

Reserved (must be 0)

In BIFF3 the following record structure is used:

Table 15.113

BIFF record

type 18H
(version 2.0)
(cont.)

Table 15.114

Code name

attributes 1

Table 15.115

Code name

attributes 2

308 Spreadsheet formats

Offset Bytes Remarks

OOH 2 Record type (18H 02H)

02H 2 Record length in bytes

04H 2 Name attributes

06H 1 Keyboard shortcut

07H 1 Length of name text

08H 2 Length of name definition

OAH X Name text

..H X Parsed expression of name's definition

The attribute word is defined as follows:

Bit Remarks

0 1 Name is hidden

1 1 Name is a function

2 1 Name is a command

3 1 Name is a command or a function in a macro

4 1 The name contains a complex function

5 1 Name is a built-in name

6-15 Unused

Table 15.116

BIFF record

type218H
(version 3.0)

Table 15.117

Coding of the
attribtite word

If bit 4 in the attribute word is set, the name contains a complex function (TREND, MINVERSE,
and so on) that returns an array, or it is a user-defined function, or it contains a row/column
function.

BIFF4 uses the following record structure:

Offset Bytes

OOH 2

02H 2

04H 2

Remarks

Record type (18H02H)

Record length in bytes

Name attributes

Table 15.118

BIFF record

type 218H
(version 4.0)
(continues
over...)

Excel binary interchange format (BIFF) 309

Offset Bytes Remarks

06H 1 Keyboard shortcut
07H 1 Length of name text
08H 2 Length of name definition
OAH X Name text

..H X Parsed expression with name's

definition

The attribute word is defined as follows:

Bit Remarks

0 1: Name is hidden

1 1: Name is a function

2 1: Name is a command

3 1: Name is a command or a function in a macro

4 1: Name contains a complex function
5 1: Name is a built-in name

6-11 Index in function group
12-15 Unused

-::. •.;.: • :'..:'::;

Code Function name

OOH Consolidate_Area

01H Auto_0pen

02H Auto_CLose

03H Extract

04H Database

Table 15.118

BIFF record

typc218H
(version 4.0)
(cont.)

Table 15.119

Coding
of attribute

word in BIFF4

The parsed expression for a name is stored in the internal EXCEL format for formulas. All NAME
records should be stored together.

Built-in function names appear in BIFF2 as ASCII text. From BIFF3 the BIFF structure contains
only a byte giving the function name code.

Table 15.120

Coding
of built-in

function names

(continues
over...)

310 Spreadsheet formats

Code Function name

05H Criteria

06H Print Area

07H Print Table

08H Recorder

09H Data Form

OAH Auto Activate

OBH Auto Deactivate

OCH Sheet_Title

15.2.63 NOTE - Note Associated with a Cell
(record type 1CH, version 2.0-4.0)

This record contains notes entered for a cell.

Table 15.120

Coding
of built-in

function names

(cont.)

Offset Bytes Remarks

OOH

02H

04H

06H

08H

OAH

2

2

2

2

2

n

Record type (1CH OOH)
Record length in bytes
Row

Column

Length of note text (in bytes)
Note text

Table 15.121

BIFF record

type 1C280 280z
(version 2.0-4.0)

The row and column numbers start from 0. If a note contains more than 2048 characters, it is
split between a parent record and several child NOTE records. The first NOTE record has the
structure described in the table above. Offset 08H defines the length of the complete note. The
other NOTE records have the following structure:

Offset Bytes Remarks

OOH 2 Record type (1CH OOH)

02H 2 Record length in bytes

04H 2 FFFFH

06H 2 Reserved (0000H)

08H 2 Length of this section of note text
(bytes)

OAH n Note text (section) Table 15.122

NOTE

child record

Excel binary interchange format (BIFF) 311

15.2.64 NUMBER - Cell Value Float (record type 03H, version 2.0-4.0)

An 8-byte floating point value is stored in this record. In BIFF2 the record has the following
structure:

Offset Bytes Remarks

OOH 2 Record type (03H OOH)

02H 2 Record length in bytes

04H 2 Row number (starts from 0)

06H 2 Column number (starts from 0)

08H

OBH

3

8

Cell attributes

IEEE number
Table 15.123

BIFF record

type 03H
(version 2.0)

The row and column numbers start from 0. The cell attributes are described for the BLANK

record (Section 15.2.4). The value is stored as an 8-byte floating point number. In BIFF3 and
BIFF4 the following structure is used:

Offset Bytes Remarks

OOH 4 Record type (03H 02H)

02H 2 Record length in bytes

04H 2 Row number (starts from 0)

06H 2 Column number (starts from 0)

08H

OAH

2

8

Index to an XF record

IEEE floating point value
Table 15.124

BIFF record

type 203H
(version 2.0)

The record is one byte shorter than in BIFF2 because the cell attribute (3 bytes) is replaced by
the index to an XF record (2 bytes).

15.2.65 OBJ - Object Description (record type 5DH, version 3.0-4.0)

Objects (Line, Rectangle, Oval, Arc, Text, Image, Polygon, Group and Button) are described with
an OBJ record. The first 34 bytes in a record are the same for all object types.

312 Spreadsheet formats

Offset Bytes Remarks

OOH 2 Record type (5DH OOH)

02H 2 Record length in bytes
04H 4 Number of objects (begin with 1)
08H 2 Object type

0: Group

1: Line

2: Rectangle
3: Oval

4: Arc

5: Chart

6: Text

7: Button

8: Picture

9: Polygon (BIFF4 only)
OAH 2 Object ID number

OCH 2 Option flag
OEH 2 Column containing top left

corner of object's bounding box
10H 2 X position of top left corner

of bounding box in V1024
of the cell width

12H 2 Row containing top left corner
of the object's bounding box

14H 2 Y position of top left corner
of the object's bounding box

16H 2 Column containing bottom left

corner of the object's
bounding box

18H 2 X position of bottom right
corner of the object's
bounding box in 1/1024 of
the cell width

1AH 2 Row containing bottom right
corner of the object
bounding box

1CH 2 Y position of bottom right
corner of the object's
bounding box

1EH 2 Length of ASCIIZ string
containing a macro reference

20H 2 Unused
Table 15.125

BIFF record

type 5DH
(version 2.0-4.0)

Excel binary interchange format (BIFF) 31 3

The bounding box coordinates are defined relative to the left and upper border of the
underlying cell. The option flag is coded for all objects as follows:

Bit Remarks

0 1: Object is hidden

1 1: Object is visible

2-7 Unused

8 1: Object is selected

9 1: Object moves and varies in size with cells

10 1: Object moves with cells

11 0: Reserved

12 1: Object is locked when sheet is protected

13-14 Reserved

15 1: Object is part of a group Table 15.126

Coding
of option flag

The entries after offset 34 (22H) depend on the object type.

15.2.65.1 Line Object

A line object uses the following structure:

Offset Bytes Remarks

22H 1 Index to color palette

23H 1 Line style

0: Solid

1: Dashed

2: Dotted

3: Dash-dot

4: Dash-dot-dot

5: Unused

6: Dark gray

7: Medium gray

8: Light gray
Table 15.127

Line Object

(continues
over...)

314 Spreadsheet formats

Offset Bytes Remarks

24H 1 Line weight

0: Hairline

1: Single

2: Double

3: Thick

25H 1 Bit 0 = 1: Automatic option On

26H 2 Line end

28H 1 Quadrant index

0: Top left/bottom right

1: Top right/bottom left

2: Bottom right/top left

3: Bottom left/top right

29H 1 Unused Table 15.127

Line Object
(cont.)

The index to the color palette is between 08H and 17H. The value 18H defines the color Auto.

The line end is defined in the word at offset 28H:

Bit Line end

0-3 Arrowhead style

0: None

1: Open

2: Filled

4-7 Arrowhead width

0: Narrow

1: Medium

2: Wide

8-11 Arrowhead length

0: Short

1: Medium

2: Long

12-15 Unused Table 15.128

Attributes for

arrowhead

Excel binary interchange format (BIFF) 315

15.2.65.2 Rectangle Object

If the object is a rectangle, the bytes after offset 22H are defined as follows:

Offset Bytes Remarks

22H 1 Index to background color palette

23H 1 Index to foreground color palette

24H 1 Fill pattern

0: White

1-4: Grayscale

0EH,0FH: Grayscale

05H-0CH: Hatch

10H-12H: Vertical/horizontal hatch

25H 1 Automatic fill option 1= On

26H 1 Index in color palette for line color

27H 1 Line style (see Line Object)

28H 1 Line weight (see Line Object)

29H 1 1: Automatic border On

2AH 2 Frame style

Bit

0

1

2-9

10-15

Frame style

1: Rounded corners

1: Rectangle shadowed

Diameter of rounded corners

Unused

Table 15.129

Rectangle Object

The index to the color palette defines values between 08H and 17H. The code 18H defines the

color Auto. The line style codes are defined above (line object). The frame style contains 16 bits
and is defined at offset 2AH:

Table 15.130

Frame style for
rectangles

The fill pattern is between OOH and 12H and is defined as the fill pattern in the EXCEL select list
for frames.

316 Spreadsheet formats

15.2.65.3 Oval Object

If the object is an oval, the record uses the following structure for the entries after offset 34 (22H):

Offset Bytes Remarks

22H 1 Index to background color palette
23H 1 Index to foreground color palette
24H 1 Fill pattern (see Rectangle Object)
25H 1 Automatic fill option 1: On
26H 1 Line color index to color palette
27H 1 Line type (see Line Object)
28H 1 Line weight (see Line Object)
29H 1 1: Automatic border On

2AH 2 Frame style

Bit

0

1

2-9

10-15

Frame style

Unused

1:Shadowed

Unused

Unused

15.2.65.4 Arc Object

Arc objects have the following structure for entries after offset 34 (22H):

Offset Bytes Remarks

22H

23H

24H

25H

1

1

1

1

Index to background color palette
Index to foreground color palette
Fill pattern (see Rectangle Object)
Automatic fill option 1: On

Table 15.131

Oval Object

The index into the color palette is between 08H and 17H. The entry 18H defines the color Auto.
The codes for the line type are as defined for the line object (see above).

The frame style (offset 2AH) is defined as:

Table 15.132

Frame style
for ovals

Table 15.133

Arc Object
(continues
over..)

Excel binary interchange format (BIFF) 317

Offset Bytes Remarks

26H 1 Line color index to color palette
27H 1 Line type (see Line Object)
28H 1 Line weight (see Line Object)
29H 1 1: Automatic border On

2AH 1 Quadrant index:

0: Upper right

1: Upper left
2: Lower left

3: Lower right
2BH 1 Reserved (0)

15.2.65.5 Chart Object

A chart object has the following structure for entries after offset 34 (22H):

Offset Bytes Remarks

22H 1 Index to background color palette
23H 1 Index to foreground color palette
24H 1 Fill pattern (see Rectangle Object)
25H 1 Automatic fill option 1: On
26H 1 Line color index to color palette
27H 1 Line type (see Line Object)
28H 1 Line weight (see Line Object)
29H 1 1: Automatic border On

2AH 2 Frame style (see Rectangle Object)
2CH 2 Reserved (must be set to 0)
2EH 16 Reserved (must be set to 0)

liible 15.133

Arc Object
(cont.)

The color palette index is between 08H and 17H. The entry 18H is used for the color Auto. The
line style coding is shown in the line object definition.

Table 15.134

Chart Object

The index for the color palette has the same values as in other objects. The chart object record
is followed by an embedded CHART BIFF file. The CHART file begins with a BOF record and ends
with an EOF record (the chart record structure is defined in the EXCEL 4 SDK).

318 Spreadsheet formats

15.2.65.6 Text Object

If an OBJ record contains a text object, the following structure is used for entries after offset 34
(22H):

Offset Bytes Remarks

22H 1 Index to background color palette

23H 1 Index to foreground color palette

24H 1 Fill pattern (see Rectangle Object)

25H 1 Automatic fill option 1: On

26H 1 Line color index to color palette

27H 1 Line type (see Line Object)

28H 1 Line weight (see Line Object)

29H 1 1: Automatic border On

2AH 2 Frame style (see Rectangle Object)

2CH 2 Object text length

2EH 2 Reserved

30H 2 Length of all TXORUNS structures in

the record

32H 2 Index to FONT record,

if offset 30H = 0, else reserved

34H 2 Reserved

36H 2 Option flag

38H 2 Orientation flag

0: Left to right

1: Top down, character upright

2: Rotate 90 degrees counterclockwise

3: Rotate 90 degrees clockwise

3AH 8 Reserved (last field if text object is

empty)

42H n Object text

..H 8 TXORUNS structure

..H 8 TXORUNS structure

Table 15.135

Text Object

The index to the color palette is between 08H and 17H. The entry 18H defines the color Auto.
The codes for the line type are as defined for the line object. The word at offset 32H is only valid if
the entry in the previous word is 0 (no text object).

The TXORUNS structure contains information about the format of the text object. The TXORUNS

structure is used for each change in the text format.

Excel binary interchange format (BIFF) 319

Offset Bytes Remarks

0

2

4

2

2

4

Index to 1st character in new format

Index to FONT record

Reserved Table 15.136

The TXORUNS

structure

A text object contains at least two TXORUNS structures. The first word (index to the 1st character)
is set to the length of the text object (offset 2CH). The index to the FONT record is set to 0.

The option flag (offset 36H) defines the text orientation:

Bit Remarks

0 Unused

1-3 Horizontal text alignment
0: Left

1: Centered

2: Right
4-6 Vertical text alignment

0: Left

1: Centered

2: Right
7 1: Autotext size On

8 Unused

9 1: Lock text On

10-15 Unused Table 15.137

Coding of
Option flag

15.2.65.7 Button Object

An OBJ record for a button definition uses the same structure as a text object for the entries after
offset 34 (22H).

•
, .

Offset Bytes Remarks

22H

23H

1

1

1BH: Button

1BH: Button
Table 15.138

Button Object
(continues
over...)

320 Spreadsheet formats

Offset Bytes Remarks

24H 1 01H: Button

25H 1 01H: Button

26H 1 18H: Button

27H 1 OOH: Button

28H 1 OOH: Button

29H 1 01H: Button

2AH 2 50H: Button

2CH 2 Length of button name
2EH 2 Reserved

30H 2 Length of all TXORUNS
structures in the record

32H 2 Index to FONT record,

if offset 30H = 0, else reserved

34H 2 Reserved

36H 2 Option flag (see Text Object)

38H 2 Orientation flag

0: Left to right
1: Top down, text upright
2: Rotate 90 degrees counterclockwise
3: Rotate 90 degrees clockwise

3AH 8 Reserved (last field if empty button)

42H n Button name

..H 8 TXORUNS structure

..H 8 TXORUNS structure

All entries are used for the button object.

Table 15.138

Button Object

(cont.)

15.2.65.8 Picture Object

If a picture is included in an OBJ record, the following structure is used after offset34 (22H):

Offset Bytes Remarks

22H

23H

24H

1

1

1

Index to background color palette

Index to foreground color palette

Fill pattern (see Rectangle Object)
Table 15.139

Picture Object
(continues
over...)

Excel binary interchange format (BIFF) 321

Offset Bytes Remarks

25H 1 Automatic fill option 1: On
26H 1 Line color index to color palette

27H 1 Line style (see Line Object)
28H 1 Line weight (see Line Object)
29H 1 1: Automatic border On

2AH 2 Frame style (see Rectangle Object)
2CH 2 Image format

OOH: Text format

01H: No image data

02H: Windows Metafile or

Mac PICT

09H: Windows Bitmap
2EH 4 Reserved

32H 2 Length of FMLA structure
34H 2 Reserved

36H 2 Option flag
2EH n FMLA structure

The option flag has the following bit structure:

Bit Remarks

0

1

2-15

0: Picture sized manually

1: Reference in FMLA structure is a DDE reference

Unused(0)

Table 15.139

Picture object
(cont.)

Table 15.140

Coding of
option flag in
a picture object

The FMLA data structure contains a reference which is used by EXCEL to build the image.

Offset Bytes Field

OOH

02H

06H

2

4

n

Length

Reserved

Parsed expression
Table 15.141

FMLA data

structure

322 Spreadsheet formats

The length of the structure (in bytes) is defined in the first word. At offset 06H a parsed
expression in internal EXCEL format follows (see FORMULA record, Section 15.2.42).

15.2.65.9 Group Object

It is possible to group different objects in EXCEL. This information is stored in a group object with
the following structure after offset 34 (22H):

Offset Bytes Remarks

22H

26H

28H

4

2

16

Reserved

ID-number of the object that follows

the last object of this group

Reserved

Table 15.142

Group Object

15.2.65.10 Polygon Object

EXCEL stores a polygon description in an OBJ record. The OBJ record has the following structure
for entries after offset 34 (22H):

Offset Bytes Remarks

22H 1 Index to background color palette

23H 1 Index to foreground color palette

24H 1 Fill pattern (see Rectangle Object)

25H 1 Automatic fill option 1: On

26H 1 Line color index to color palette

27H 1 Line style (see Line Object)

28H 1 Line weight (see Line Object)

29H 1 1: Automatic border On

2AH 2 Frame style (see Rectangle Object)

2CH 2 1: Polygon closed

2EH 10 Reserved

36H 2 Number of vertex coordinates

38H 8 Reserved

The vertex coordinates are saved in a C00RDLIST record.

Table 15.143

Polygon Object

Excel binary interchange format (BIFF) 323

15.2.66 OBJ PROTECT - Protect Object
(record type 63H, version 3.0-4.0)

This record stores an option from the Options Protect Document dialog box.

Offset Bytes Remarks

OOH

02H

04H

2

2

2

Record type (63H OOH)
Record length in bytes

1 = Object is protected

15.2.67 PALETTE - Color Palette Definition

(record type 92H, version 3.0-4.0)

This record defines a color palette.

Table 15.144

BIFF record

type 63H

(version 3.0-4.0)

II Mllll ,,, „ IIIIN

Offset Bytes Remarks

OOH 2 Record type (92H OOH)
02H 2 Record length in bytes
04H 2 Number of entries

06H 4 First palette color
OAH

OEH

4

4

Second palette color
Table 15.145

BIFF record

type 92H

(version 3.0-4.0)

The palette entries are stored as 4-bytecodes. The first three bytes define the color (red, green,
blue). The fourth byte is empty. If the standard palette is used, the BIFF file contains no COLOR
records. In EXCEL 3.0 the palette defines 16 colors.

15.2.68 PANE - Number of Panes and Position

(record type 41H, version 2.0-4.0)

This record defines the number of panes and their position.

324 Spreadsheet formats

Offset Bytes Remarks

OOH

02H

04H

06H

08H

OAH

OCH

2

2

2

2

2

2

2

Record type (41H OOH)
Record length in bytes
Horizontal position of split (0 = none)
Vertical position of split (0 = none)
Top row visible in bottom pane
Leftmost visible column in right pane
Number of the active pane

Table 15.146

BIFF record

type 41H
(version 2.0-4.0)

The position of the horizontal and vertical split is defined in Vto point. The active pane is
defined in the last word:

Value Active pane

Lower right
Upper right
Lower left

Upper left Table 15.147

Coding the
active pane

A WIND0WS2 record is used if the document window associated with a pane has frozen panes. If
there is a vertical split, the first word defines the number of visible rows in the upper pane. If there
is a horizontal split, the second word defines the number of visiblecolumns in the left pane.

15.2.69 PASSWORD - Password Protection

(record type 13H, version 2.0-4.0)

This record contains the encrypted password.

Offset Bytes Remarks

OOH

02H

04H

2

2

2

Record type (13H OOH)
Record length in bytes
Encrypted password

The password is set in the Protect Document option.

Table 15.148

BIFF record

type 13H
(version 2.0-4.0)

Excel binary interchange format (BIFF) 325

15.2.70 PLS - Environment-Specific Print Record
(record type 4DH, version 4DH)

The PLS record is used on the Macintosh to store environment-specific print information.

Offset Bytes Remarks

OOH 2 Record type (4DH OOH)

02H 2 Record length in bytes

04H 2 Operating system

0 = Microsoft Windows

1 = Macintosh

2 = OS/2

06H X TPRINT structure

Offset Bytes Remarks

OOH 2 Record type (4DH OOH)
02H 2 Record length in bytes

04H 2 Operating environment

0 = Microsoft Windows

1 = Macintosh

06H 2 Orientation

1: Portrait

2: Landscape

08H 2 Paper size

OAH 2 Scale factor (Windows DEVMODE)

In BIFF4 additional information was added for Windows:

Table 15.149

BIFF record

type 4DH

(version 2.0-4.0
Macintosh)

This record type is used in BIFF2 only, on the Macintosh. From BIFF3 this record can also be
used under Windows with the following structure:

Table 15.150

BIFF record

type 4DH

(version 3.0
Windows)

326 Spreadsheet formats

Offset Bytes Remarks

OOH 2 Record type (4DH OOH)

02H 2 Record length in bytes

04H 2 Environment

0 = Microsoft Windows

1 = Macintosh

06H 2 Orientation

1: Portrait

2: Landscape

08H 2 Paper size

OAH 2 Scale factor

OCH 2 Printer resolution

OEH 2 Y-resolution of printer

Table 15.151

BIFF record

type 4DH
(version 4.0
Windows)

The paper size, scaling and resolution depend on the Windows DEVMODE data structure.

15.2.71 PRECISION - Precision (record type OEH, version 2.0-4.0)

This record stores the Precision As Displayed option.

Offset Bytes Remarks

OOH

02H

04H

4

2

2

Record type (OEH OOH)
Record length in bytes
0: Precision as displayed

option selected
Table 15.152

BIFF record

type OEH
(version 2.0-4.0)

15.2.72 PRINTGRIDLINES - Print Grid Lines

(record type 2BH, version 2.0-4.0)

This record stores the Gridline option.

Excel binary interchange format (BIFF) 327

Offset

OOH

02H

04H

Bvtes Remarks

Record type (2BH OOH)

Record length in bytes
1: Print gridlines

Table 15.153

BIFF record

type 2BH
(version 2.0-4.0)

15.2.73 PRINTHEADERS - Print Row/Column Header

(record type 2AH, version 2.0-4.0)

The record contains a flag for the row and column heading option from the page setup box.

Offset Bytes Remarks

OOH

02H

04H

2

2

2

Record type (2AH OOH)

Record length in bytes

1: Print row and column heading

Table 15.154

BIFF record

type 2AH

(version
2.0-4.0)

15.2.74 PROTECT - Cells protected (record type 12H, version 2.0-4.0)

The record stores the Protect Document option.

Offset

OOH

02H

04H

Bytes Remarks

Record type (12H OOH)

Record length in bytes
1 = Document is protected

Table 15.155

BIFF record

type 12H
(version
2.0-4.0)

328 Spreadsheet formats

15.2.75 PUB - Publisher (record type 89H, version 3.0-4.0)

This record type is used for the Macintosh only and stores information for Mac-Publisher.

Offset Bytes Remarks

OOH 2 Record type (89H OOH)
02H 2 Record length in bytes
04H 2 Option flag
06H 6 Reference structure

OCH 36 Section record associated with

the publisher area
30H n Contents of the alias pointed to by

the section record

The option flag uses the following bits:

Bit Remarks

0

1

2-15

1: Published appearance is shown when printed
1: Published size is shown when printed
Unused

Table 15.156

BIFF record

type 89H
(version
3.0-4.0)

Table 15.157

Coding of
the option flag

In Windows this record must be skipped. The data area is stored after offset 30H.

15.2.76 REFMODE - Reference Mode

(record type OFH, version 2.0-4.0)

This record stores the reference mode set in the Workspace option.

Offset Bytes Remarks

OOH

02H

04H

2

2

2

Record type (OFH OOH)
Record length in bytes
Reference mode:

0 = R1C1 Mode

1 = A1 Mode

Table 15.158

BIFF record

type OFH
(version
2.0-4.0)

Excel binary interchange format (BIFF) 329

15.2.77 RIGHTMARGIN - Right Margin Definition
(record type 27H, version 2.0-4.0)

This record defines the right margin of a printout in inches.

Offset

OOH

02H

04H

Bvtes Remarks

Record type (27H OOH)
Record length in bytes
Right margin (IEEE value)

15.2.78 RK - Cell With RK Number

(record type 27EH, version 3.0-4.0)

This record contains a cell value in an internal number format (RK).

Offset

OOH

02H

04H

06H

08H

OAH

Bytes Remarks

Record type (7EH 02H)
Record length in bytes
Row number (starts from 0)
Columns number (starts from 0)
Index to an XF record containing the
cell format

4-byte RK number

Table 15.159

BIFF record

type 27H
(version
2.0-4.0)

Table 15.160

BIFF record

type 27EH
(version
3.0-4.0)

EXCEL stores data in an internal 32-bit format to save space. An RK number is either a 30-bit
integer or the most significant 30 bits of an IEEE number. The two LSB (bit 0 and bit 1) are always
reserved for the RK field. This field encodes the RK type:

Code Priority

1

3

2

4

RKtype

IEEE number

IEEE number * 100

Integer number
Integer number * 100

Table 15.161

Coding RK types

330 Spreadsheet formats

In an IEEE number (RK type 0, 1) the MSB defines the sign. Bits 20-30 define the exponent and
the mantissa is stored in bits 2-10. Bits 0 and 1 are used to encode the RK type.

An integer value (RK type 2, 3) uses bits 2-31 for the value. Bits 0 and 1 are used for the RK
type.

EXCEL first tries to store a value in an RK record. The column Priority (Table 15.161) defines
the priority for coding a number. If EXCEL cannot store a number in the RK format, a NUMBER
record is used to store the number in IEEE floating point format. The INTEGER record type is
obsolete from BIFF3.

15.2.79 ROW - Row Description (record type 08H, version 2.0-4.0)

This record contains information about the cell size. In BIFF2 the following structure is used:

Offset Bytes Remarks

OOH 2 Record type (08H OOH)

02H 2 Record length in bytes

04H 2 Row number

06H 2 First defined column of a row

08H Last defined column of a row +1

OAH 2 Row height

OCH 2 Reserved (should be 0)

OEH 1 1: Row has standard cell attributes

OFH 2 Relative file offset to cell records for

the row

11H 3 Standard cell attributes

14H 2 XF record index number
Table 15.162

BIFF record

type 08 H
(version 2.0)

The cell attributes are described in the BLANK record (see Section 15.2.4). From BIFF3 a
modified structure is used:

Offset Bytes Remarks

OOH

02H

04H

2

2

2

Record type (08H 02H)

Record length in bytes

Row number

Table 15.163

BIFF record

type 208H
(version
3.0-4.0)
(continues
over...)

Excel binary interchange format (BIFF) 331

Offset Bytes Remarks

06H

08H

OAH

OCH

OEH

10H

12H

2

2

2

2

2

2

2

First defined column of a row

Last defined column of a row +1

Row height
Reserved (should be 0)
Relative file offset to the first cell

record of the row

Option flag
Index to XF record

Bit Remarks

0-2

3

4

5

6

7

8-15

Index to outline level row

Reserved

1: Row collapsed in outline
1: Row height is set to 0
1: Font and row height incompatible
1: Row formatted, even if contains all blank cells
Reserved

15.2.80 SAVERECALC - Recalculate before Save

(record type 5FH, version 3.0-4.0)

This record stores a flag which organizes the recalculation of a worksheet.

Table 15.163

BIFF record

type 208H
(version 3.0-4.0)
(cont.)

The word at offset 12H only contains a valid index to an XF record if bit 7 in the option flag is set.
The word at offset OCH is used internally and should be set to 0. The cell numbering starts at 0.

The following table shows the coding of the option flag:

Table 15.164

Coding of
option flag

The row height is defined in V20 point. If bit 15 in the row height is set, the standard row height
is used. The lower bits contain the original row height in V20 point.

Offset Bytes Remarks

OOH

02H

04H

2

2

2

Record type (5 FH OOH)
Record length in bytes
1: Recalculate before save

Table 15.165

BIFF record

type 5FH

(version 3.0-4.0)

332 Spreadsheet formats

15.2.81 SCL - Window Zoom Magnification
(record type AOH, version 4.0)

This record type is used in BIFF4 to store a zoom factor.

Offset

OOH

02H

04H

06H

Bytes

2

2

2

2

Remarks

Record type (AOH OOH)

Record length in bytes

Numerator of reduced fraction

Denominator of reduced fraction
Table 15.166

BIFF record

type AOH

(version 4.0)

The magnification is stored as a reduced fraction (75% = 3/4). Without an SCL record the
magnification is set to 100%.

15.2.82 SELECTION - Current Selection

(record type 1DH, version 2.0-4.0)

This record defines the selected cell in a split window.

Offset Bytes Remarks

OOH 2 Record type (1DH OOH)

02H 2 Record length in bytes

04H 1 Pane number

05H 2 Row number of the active cell

07H 2 Column number of the active cell

09H 2 Reference number of the active cell

OBH 2 Number of entries in the following field

ODH n Array of references

The byte at offset 04H defines which pane is used:

Table 15.167

BIFF record

type 1 DH

(version 2.0-4.0)

Excel binary interchange format (BIFF) 333

Number Pane

Bottom right
Top right
Bottom left

Top left
Table 15.168

Coding of the
pane number

If the window is not split, the code 3 is stored. The index to the reference array starts from 0.
The reference field has the following structure:

Offset Bytes Remarks

First row of the reference

Last row of the reference

First column of the reference

Last column of the reference

If a selection exceeds the record length, several SELECTION records are used.

Table 15.169

Structure of the

reference array

15.2.83 SETUP - Page Setup (record type Al H, version 4.0)

This record contains the page setup parameters.

Offset Bytes Remarks

OOH 2 Record type (A1H OOH)
02H 2 Record length in bytes
04H 2 Paper size
06H 2 Scale factor

08H 2 First page number
OAH 2 Fit to width

OCH 2 Fit to height
OEH 2 Option flag

The structure of the option flag is as follows:

Table 15.170

BIFF record

type A1 H
(version 4.0)

334 Spreadsheet formats

Bit Remarks

0

1

2

2

3-15

Print over, then down
0: Landscape, 1: Portrait
1: Paper size, scale and orientation

are not initialized

Black and white cells

Unused Table 15.171

Coding of the
option flag

15.2.84 SOUND - Sound Note (record type 96H, version 4.0)

This record is used to store a sound note.

Offset Bytes Remarks

OOH

02H

04H

06H

08H

OAH

2

2

2

2

2

n

Record type (96H OOH)
Record length in bytes
4257H Sound signature
Environment

1: Windows

2: Macintosh

Length of sound data
Sound data

15.2.85 STANDARDWIDTH - Standard Column Width

(record type 99H, version 4.0)

This record is defined from BIFF4 and contains the standard cell width.

Offset Bytes Remarks

OOH

02H

04H

2

2

2

Record type (99H OOH)
Record length in bytes
Standard cell width

The value is defined in Mae of the character width.

Table 15.172

BIFF record

type 96H
(version 4.0)

Table 15.173

BIFF record

type 99H
(version 4.0)

Excel binary interchange format (BIFF) 335

15.2.86 STRING - String Value of a Formula
(record type 07H, version 2.0-4.0)

If a formula has a string result, this result is stored in the STRING record following the FORMULA
record. BIFF2 uses the following record structure:

Offset

OOH

02H

04H

05H

Bytes

2

2

1

n

Remarks

Record type (07H OOH)
Record length in bytes
String length in bytes
String

From BIFF3 the field for the string length is stored in a word:

Table 15.174

BIFF record

type 07H
(version 2.0)

Offset Bytes Remarks

OOH

02H

04H

06H

2

2

2

n

Record type (07H 02H)
Record length in bytes
String length in bytes
String

Table 15.175

BIFF record

type 207H
(version 3.0-4.0)

A STRING record can follow an ARRAY record, if the formula is entered as an element in the

array (field).

15.2.87 STYLE - Style Info (record type 293H, version 3.0-4.0)

Each style in a worksheet is saved in a STYLE record.

Offset Bytes Remarks

OOH

02H

04H

06H

07H

2

2

2

1

n

Record type (93H 02H)
Record length in bytes
Style flag
Internal style number or the length of
the name of a user-defined style
1-byte level outline style or style name

Table 15.176

BIFF record

type 293H
(version 3.0-4.0)

•
•

336 Spreadsheet formats

The coding of the styleflag is shown in the following table:

Bit

0-11

12-14

15

Remarks

Index to the XF record

Unused

0: User-defined style
1: Built-in style

Table 15.177

Style flag

If bit 15 in the style flag is set, the style is user-defined. In this case the length of the style name
is defined in the word at offset 06H, followed by the name. Otherwise a style number is specified.

This number is coded as follows:

fNumDer otyie

0 Normal

1 RowLevel_n

2 ColumnLevel_n

3 Comma

4 Currency

5 Percent Table 15.178

Coding of the
style number

The outline styles RowLevel_n and ColumnLevel_n are defined by codes 1 and 2. These styles
are associated with level code n-1.

15.2.88 SUB - Subscriber (record type 91H, version 3.0-4.0)

This record type is used only for the Macintosh Publisher.

Offset

OOH

02H

04H

Bytes Remarks

Record type (91H OOH)

Record length in bytes

Reference structure

Table 15.179

BIFF record

type 91H
(version 3.0-4.0)
(continues
over...)

Excel binary interchange format (BIFF) 337

Offset Bytes Remarks

OAH 2 Number of rows in SUB range

OCH 2 Number of columns in SUB range

OEH 2 Option flag

10H 2 Size of alias range

12H 36 Section record

36H n Alias range

..H n String containing a path to the

Publisher + OOH

The option flag has the following structure:

Bit

0

1

2-15

Remarks

Reserved

1: Description in object layer

Reserved

Table 15.179

BIFF record

type 91H
(version 3.0-4.0)

Table 15.180

Coding of
option flag

15.2.89 SYNC - Sync Window (record type 97H, version 4.0)

This record type stores the scroll position, if the Sync option for horizontal or vertical split
windows is set.

Offset Bytes Remarks

OOH 2 Record type (97H OOH)
02H 2 Record length in bytes

04H 2 Row index to upper left row heading
06H 2 Column index to upper left Table 15.181

column heading BIFF record

type 97H
(version 4.0)

338 Spreadsheet formats

15.2.90 TABLE - Data Table (record type 36H, version 3.0-4.0)

A data table (defined with a /TABLE command) is stored in this record type. BIFF2 uses the
following structure:

Offset Bytes Remarks

OOH 2 Record type (36H OOH)

02H 2 Record length in bytes

04H 2 First row of the table

06H 2 Last row of the table

08H 1 First column of the table

09H 1 Last column of the table

OAH 1 Recalculation flag

0: Table is calculated

>1: Table needs recalculation

OBH 1 Flag

0: Column input table

1: Row input table

OCH 2 Row input cell

OEH 2 Column input cell
Table 15.182

BIFF record

type 36H

(version 2.0)

In BIFF2 the record describes a one-input data table. The TABLE2 record is used for a two-input
data table.

From BIFF3 the following structure is used:

Offset Bytes Remarks

OOH 2 Record type (36H 02H)
02H 2 Record length in bytes

04H 2 First row of the table

06H 2 Last row of the table

08H 1 First column of the table

09H 1 Last column of the table

OAH 2 Option flag

OCH 2 Row of the row input cell

OEH 2 Column of the row input cell

10H 2 Row of the column input cell

12H 2 Column of the column input cell
Table 15.183

BIFF record

type 97H

(version 3.0-4.0)

Excel binary interchange format (BIFF) 339

The option flag contains 2 bytes and is defined as:

Bit

0

1

2

3

4-15

Remarks

Always calculate formula

Calculate formula if file is opened
0: Input cell is a column input cell

1: Input cell is a row input cell

0: One-input data table

1: Two-input data tabic

Reserved
Table 15.184

Coding
option flag

The area in which the table is entered is defined from offset 04H to 09H. This area is the inner

part of the table and excludes the outer columns or rows with input values or table formats.

15.2.91 TABLE2 - Data Table 2 (record type 37H, version 2.0)

This record type is used to store two-input data tables (X,Y) in BIFF2.

Offset Bytes Remarks

OOH 2 Record type (37H OOH)
02H 2 Record length in bytes
04H 2 First row in table

06H 2 Last row in table

08H 1 First column in table

09H 1 Last column in table

OAH 1 Recalculation flag
0: Table calculated

x: Table needs recalculation

OBH 1 Reserved (must be 0)
OCH 2 Row of row input cell
OEH 2 Column of row input cell
10H 2 Row of column input cell
12H 2 Column of column input cell

Table 15.185

BIFF record

type 37H

(version 2.0)

340 Spreadsheet formats

15.2.92 TEMPLATE - Document is a Template
(record type 60H, version 3.0-4.0)

If this record occurs, the file is a template. The record consists only of the opcode and the record
length (60H OOH) and must follow the BOF record.

15.2.93 TOPMARGIN - Top Margin Settings
(record type 28H, version 2.0-4.0)

This record defines the top margin in inches for printer output.

Offset Bytes Remarks

OOH 2 Record type (28H OOH)

02H 2 Record length in bytes

04H 8 Upper margin in inches

(IEEE floating point)
Table 15.186

BIFF record

type 28H
(version 2.0-4.0)

The margin is defined in the File Page Setup command dialog box and is stored as an 8-byte
IEEE floating point value.

15.2.94 UNCALCULATED - Recalculation Status

(record type 5EH, version 3.0-4.0)

If this record is present, the calculation message was visible in the status bar when EXCEL saved
the file.

Offset Bytes Remarks

OOH

02H

04H

2

2

4

Record type (5EH OOH)

Record length in bytes
Reserved (must be 0)

Table 15.187

BIFF record

type 5EH
(version 3.0-4.0)

Excel binary interchange format (BIFF) 341

This occurs if a sheet is set to manual recalculation and the user changes the content of a cell.
The results are not valid until a recalculation is done.

15.2.95 VCENTER - Center Vertical (record type 84H, version 3.0-4.0)

This record centers a printed sheet between the top and bottom margins.

Offset Bytes Remarks

OOH

02H

04H

2

2

2

Record type (84H OOH)

Record length in bytes

1: Center output
Table 15.188

BIFF record

type 84H

(version 3.0-4.0)

15.2.96 VERTICALPAGEBREAKS - Column Page Breaks
(record type 1AH, version 2.0-4.0)

This record contains a list of page breaks for columns.

Offset Bytes Remarks

OOH

02H

04H

06H

2

2

2

n*2

Record type (1 AH OOH)

Record length in bytes
Number of page breaks
Field containing column numbers

Table 15.189

BIFF record

type 1AH

(version 2.0-4.0)

Offset 06H defines an array of 2-byte values, giving the column numbers where page breaks
occur, in ascending order.

15.2.97 WINDOW1 - Windows Information

(record type 3DH, version 2.0-4.0)

This record defines basic information for an EXCEL window.

342 Spreadsheet formats

Offset Bvtes

OOH 2

02H 2

04H 2

06H 2

08H 2

OAH 2

OCH 1

Remarks

Record type (3DH OOH)
Record length in bytes
Horizontal window position
Vertical window position
Window width

Window height
1: Window is hidden

Table 15.190

BIFF record

type 3DH
(version 2.0-4.0)

The window coordinates and its size in V20 point are defined.

15.2.98 WINDOW2 - Windows Information

(record type 3EH, version 2.0-4.0)

This record defines additional information for EXCEL windows. In BIFF2 the following structure

is used:

Offset Bytes Remarks

OOH 2 Record type (3EH OOH)
02H 2 Record length in bytes
04H 1 1: Window should display formulas
05H 1 1: Window should display gridlines
06H 1 1: Window should display row and

column headings

07H 1 1: Panes in the windows should

be frozen

08H 1 1: Window should display zero values
09H 2 Top row visible in the window
OBH 2 Leftmost column visible in the window

ODH 1 1: Draw column/row headings and
gridlines in the windows default
foreground color

OEH 4 Color grids and row/column heading

From BIFF3 the following record structure is used:

Table 15.191

BIFF record

type 3EH
(version 2.0)

Excel binary interchange format (BIFF) 343

Offset

OOH

02H

04H

06H

08H

OAH

Bvtes

The option flag is defined as:

Remarks

Record type (3EH 02H)
Record length in bytes
Option flag
Top row visible in the window
Leftmost column visible in the window

Color row/column heading
and gridlines

Bit Remarks

0

1

2

3

0

1

1

1

1

Window should display formulas
Window should display gridlines
Display gridlines
Window should display row/column headings
Panes in the window are frozen

4

5

1

0

Window should display zero values
Color definition at offset OAH

1 Standard color

6 1 Arabic EXCEL version
7

8-15

1: Display outline symbols
Reserved

15.2.99 WINDOWPROTECT - Windows are protected
(record type 19H, version 2.0-4.0)

This record stores the Protect Document option.

Offset

OOH

02H

04H

Bytes Remarks

Record type (19H OOH)
Record length in bytes
1 = Document windows protected

Table 15.192

BIFF record

type 23EH
(version 3.0-4.0)

Table 15.193

Coding of
option flag

Table 15.194

BIFF record

type 19H
(version 2.0-4.0)

344 Spreadsheet formats

15.2.100 WRITEACCESS - User Name (record type 5CH, version 3.0-4.0)

The user name entered during installation is stored in this record.

Offset Bytes Remarks

OOH

02H

04H

05H

2

2

1

X

Record type (5CH OOH)
Record length in bytes
Name length
User name

Table 15.195

BIFF record

type 5CH
(version 3.0-4.0)

The name is padded to a length of 31 bytes with blanks (20H).

15.2.101 WRITEPROT - Document Write-Protected

(record type 86H, version 3.0-4.0)

This record contains no data and signals that the worksheet is write protected. All other
information is stored in the FILESHARING record (Section 15.2.33).

15.2.102 WSBOOL - Workspace Info (record type 81H, version 3.0-4.0)

This record defines additional information for the worksheet area. BIFF3 uses the following structure:

Offset Bytes Remarks

OOH

02H

04H

2

2

2

Record type (81H OOH)
Record length in bytes
Option flag

The option flag has the following structure:

Bit

0

1-4

Remarks

1: Auto page break visible
Unused

Table 15.196

BIFF record

type 81H
(version 3.0)

Table 15.197

Coding of
option flag
(continues
over...)

Excel binary interchange format (BIFF) 345

Bit

5

6

7

8

9

10-11

12-15

Remarks

Auto Styles to Outline
Summary Rows Below Option On
Summary Columns to Right On
Fit to Page Option On
Save External Link Values Off

Outline Symbols displayed
Unused

The information stored in the flag comes from several option boxes.
In BIFF4 the same record structure is used, but the option flag is extended:

Bit Remarks

0 1: Auto Page Break visible

1-4 Unused

5 0: Auto Styles to Outline

6 1: Summary Rows Below Option On

7 1: Summary Columns to Right On
8 1: Fit to Page Option On

9 1: Save External Link Values Off

10-11 1: Outline Symbols displayed

12-13 1: Sync Vertical Option On

2: Sync Horizontal Option On

3: Both Sync Options On

14 1: Alternate Expression Option On

15 1: Alternate Formula Entry Option On

Table 15.197

Coding of
option flag
(cont.)

Table 15.198

Coding of
option flag in
BIFF4

15.2.103 XCT - CRN Record Count (record type 59H, version 3.0-4.0)

This record stores the number of CRN records in a BIFF file.

346 Spreadsheet formats

Offset Bytes Remarks

OOH

02H

04H

2

2

2

Record type (59H OOH)
Record length in bytes
Number of CRN records

Table 15.199

BIFF record

type 59H

(version 3.0-4.0)

The CRN records follow the XCT record.

15.2.104 XF - Extended Cell Format (record type 43H, version 2.0-4.0)

This record defines data for the extended EXCEL cell format. In BIFF2 the following record
structure is used:

Offset Bytes Remarks

OOH 2 Record type (43H OOH)
02H 2 Record length in bytes
04H 1 Index to FONT record

05H 1 Gridline codes (for Kanji EXCEL)
06H 1 Flags

Bit 0-5: Index in FORMAT record

6 = 1 Cell is locked

7 = 1 Cell is hidden

07H 2 Alignment flag
Bit 0-2:

0 General

1 Left

2 Center

3 Right
4 Fill

Bit 3=1 Cell has left border

Bit 4=1 Cell has right border
Bit 5=1 Cell has top border
Bit 6=1 Cell has bottom border

Bit 7=1 Cell is shadowed

In BIFF3 a modified structure is used:

Table 15.200

BIFF record

type 243H
(version 2.0)

Excel binary interchange format (BIFF) 347

Offset Bytes Remarks

OOH 2 Record type (43H 02H)
02H 2 Record length in bytes
04H 1 Index to the FONT record

05H 1 Index to the FORMAT record

06H 2 Flags

Bit 0:1 Cell is locked

1: 1 Cell is hidden

2: 1 For style XF

3-9: Unused

10: 1 Number check box is Off

11:1 Font check box is Off

12:1 Alignment check box is Off
13: 1 Border check box is Off

14: 1 Pattern check box is Off

15:1 Protection check box is Off

08H 2 Alignment Flag
Bit 0-2:

0 General

1 Left

2 Center

3 Right

4 Fill

5 Justify

6 Center across selection

Bit 3: 1 Text wrap in cell

4-15: Index to XF record

OAH 2 Flags

Bit 0-5: Fill pattern

6-10: Index to foreground

color palette Table 15.201

11-15: Index to background BIFF record

color palette type 243H
(version 3.0)
(continues
over...)

348 Spreadsheet formats

Offset Bytes

OCH

OEH

Remarks

Flags

Bit 0-2: Frame type (top line)
0 No frame

1 Normal line

2 Medium thick line

3 Dash (-—)

4 Dash short

5 Thick line

6 Double line

7 Dotted

Bit 3-7: Index to color palette
top frame

Bit 8-10: Frame type (left border)
Bit 11-15: Index in color palette

left frame

Flags
Bit 0-2: Frame type (bottom line)

Bit 3-7: Index to color palette
bottom frame

Bit 8-10: Frame type (right border)
Bit 11-15: Index to color palette

right frame

BIFF4 uses a modified structure:

Table 15.201

BIFF record

type 243H
(version 3.0)
(cont.)

Offset Bytes Remarks

OOH 2 Record type (43H 04H)
02H 2 Record length in bytes
04H 1 Index to the FONT record

05H 1 Index to the FORMAT record

06H 2 Flags
Bit 0: 1 Cell is locked

1: 1 Cell is hidden

2: OCellXF

1 Style XF
3: Alternate Key

Option Off

Table 2.202

BIFF record

type 443H
4-15: XFIndex (version 4.0)

(continues
over...)

Offset Bytes

08H

OAH

OCH

Excel binary interchange format (BIFF) 349

Remarks

Alignment flag

Bit 0-2:

0 General

1 Left

2 Center

3 Right

4 Fill

Bit 3: 1 Wrap text in cell

Bit 4-5: Vertical alignment

OTop

1 Center

2 Bottom

Bit 6-7: Text orientation

0 No rotation

1 Top to bottom (letters upright)
2 Rotate 90 degrees counterclockwise
3 Rotate 90 degrees clockwise

Bit 8-9: Unused

The following bits signal a changed
option compared to the parent XF

record:

Bit 10: Index FORMAT record

Bit 11: Index FONT record

Bit 12: Alignment or text wrap field

Bit 13: Border line field

Bit 14: Pattern field

Bit 15: Hidden or locked field

Flags

Bit 0-5: Fill pattern

6-10: Index to color

palette foreground
11-15: Index to color

palette background
Flags

Bit 0-2: Frame type (upper line)

0 No frame

1 Normal line

2 Medium thick line

3 Dashed (-—)

4 Dashed short

Table 15.202

BIFF record

type 443H

(version 4.0)
(cont.)

350 Spreadsheet formats

Offset Bytes Remarks

5 Thick line

6 Double line

7 Dotted

Bit 3-7: Index to color palette

Bit 8-10:

Bit 11-15:

top frame
Frame type (left side)
Index to color palette

left frame

OEH 2 Flags
Bit 0-2:

Bit 3-7:

Frame type (bottom line)
Index to color palette

bottom frame

Bit 8-10:

Bit 11-15:

Frame type (right side)
Index to color palette

right frame

Table 15.202

BIFF record

type 443H
(version 4.0)
(cont.)

The record extends the format description for one or several cell records in a BIFF file.

15.2.105 STYLE XF Record (record type 243H, version 3.0)

Style XF records have the following structure in BIFF3:

Offset Bytes Remarks

OOH 2 Record type (43H 02H)
02H 2 Record length in bytes
04H 1 Index to FONT record

05H 1 Index to FORMAT record

06H 2 Flags
Bit 0: 1 Cell is locked

1: 1 Cell is hidden

2: 0 For cell XF

1 For style XF
3-9: Unused

10: 1 Number option Off

Table 15.203

BIFF record

type 243H
Style XF record
(version 3.0)
(continues
over...)

Offset Bytes

08H

OAH

OCH

OEH

Excel binary interchange format (BIFF) 351

Remarks

11:1 Font Option Off
12:1 Alignment option is Off
13:1 Border option is Off
14:1 Pattern option is Off
15:1 Protection option is Off
Alignment flag horizontal
Bit 0-2:

0 General

1 Left

2 Center

3 Right
4 Fill

Bit 3:1 Textwrap in cell
4-15: FFFOH

Flags
Bit 0-5: Fill pattern

6-10: Index to color

palette foreground
11-15: Index to color

palette background
Flags
Bit 0-2: Frame type (top line)
0 No frame

1 Normal line

2 Medium thick line

3 Dashed (-—)
4 Dashed short

5 Thick line

6 Double line

7 Dotted

Bit 3-7: Index to color palette
top frame

Bit 8-10: Frame type (left side)
Bit 11-15: Index to color palette

left frame

Flags
Bit 0-2: Frame type (bottom line)
Bit 3-7: Index to color palette

bottom frame

Bit 8-10: Frame type (right side)
Bit 11-15: Index to color palette

right frame

Table 15.203

BIFF record

type 243H

Style XF record
(version 3.0)
(cont.)

352 Spreadsheet formats

In BIFF4 the style XF record has the following structure:

Offset Bytes Remarks

OOH 2 Record type (43H 04H)
02H 2 Record length in bytes
04H 1 Index to the FONT record

05H 1 Index to the FORMAT record

06H 2 Flags
BitO: 1 Cell is locked

1: 1 Cell is hidden

2: 0 CellXF

1 Style XF
3: Alternate Key

Option Off
4-15: FFFOH

08H 2 Alignment flag
Bit 0-2:

0 General

1 Left

2 Center

3 Right
4 Fill

5 Justify
6 Center across selection

Bit 3: 1 Wrap text in cell
Bit 4-5: Vertical alignment
OTop
1 Center

2 Bottom

Bit 6-7: Text orientation

0 No rotation

1 Top to bottom (letters upright)
2 Rotate 90 degrees counterclockwise
3 Rotate 90 degrees clockwise
Bit 8-9: Unused

Bit 10: Number option Off
Bit 11: Font option Off
Bit 12: Alignment option Off
Bit 13: Border option Off
Bit 14: Pattern option Off
Bit 15: Protect option Off

OAH 2 Flags
Bit 0-5: Fill pattern

6-10: Index to color

palette forerground
11-15: Index to color

palette background

Table 15.204

BIFF record

type 443H
(version 4.0)
(cont.)

Excel binary interchange format (BIFF) 353

Offset Bytes Remarks

OCH 2 Flags
Bit 0-2: Frame type (top line)
0 No frame

1 Normal line

2 Medium thick line

3 Dashed (- •-)
4 Dashed short

5 Thick line

6 Double line

7 Dotted

Bit 3-7: Index to color palette
top frame

Bit 8-10: Frame type (left side)
Bit 11-15: Index to color palette

left frame

OEH 2 Flags
Bit 0-2: Frame type (bottom line)
Bit 3-7: Index to color palette

bottom frame

Bit 8-10: Frame type (right side)
Bit 11-15: Index to color palette

right frame

Table 15.204

BIFF record

type 443H

(version 4.0)
(cont.)

15.2.106 1904 - 1904 Date Format (record type 22H, version 2.0-4.0)

This record type defines the date system used in the EXCEL document.

Offset Bvtes Remarks

OOH

02H

04H

2

2

2

Record type (11H OOH)

Record length in bytes
1 = 1904 Use date system

Table 15.205

BIFF record

type 11H
(version 2.0-4.0)

The date system is defined in EXCEL with the Calculatioyi option.

I Note that additional records are defined for charts and workbooks (seeMicrosoft EXCEL 4
• SDK). Microsoft EXCEL 5.0 uses a different file structure (see EXCEL 5 SDK).

Word processing formats

File formats discussed in Part 3

MS-Word format 356

Winword format 379

WordStar format 381

WordPerfect format 405

Rich Text format 507

Standard Generalized Markup Language 557
AMI-Pro text format 566

Texts produced by word processing programs are very rarely stored
in ASCII code. It is much more likely that information on text
formatting and various other control characters will be stored in

the same file as the text. Every word processing program thus has its own
format and, unfortunately, only very few companies are willing to publicize
their internalfile structures.

Part 3 describes the structure of text files used by some of the more well-
known and widely distributed programs such as MS-Word, WordPerfect and
WordStar.

355

cn

MS-Word format

S-Word for DOS was one of the most popular
word processing programs. This chapter
describes the file formatfor Word 4.0/5.0files.M

In versions 3.0, 4.0 and 5.0 of Word from Microsoft, a mixed ASCII/binary format is used for the
text files. These files are divided into three parts:

Header

Text

Format trailer Figure 16.1

Structure of an

MS-Word file

The data is stored in the file in 128-byte blocks. Some internal pointers take the form of block
numbers from which the offset to the first byte of the relevant block can be calculated, using the
following formula:

Offset = Block number * 80H

356

MS-Word format 357

Figure 16.2 shows a sample text produced using Word:

Soft hyphenation Soft hy-phen-ation IMJQ

Hyphenation 2 Hyphen-ation HE)

Paragraph block text

Bold on Bold text fflm

Normal on Normal text |Alt| jSpacebar]

Italics on Italic text [ffltjfT]

Underline on Underlined text iffl

Underline double Double-underlined text Hjrjrj

Small Capitals Small Capitals IE

Strike out Strike out text ffiffl
Superscript Superscript text (SID

Subscript
Subscript text SB 23

Hidden Hidden text IS
Centered Centered text mm
Left aligned Left-aligned text IE
Right aligned Right-aligned text Hum
Indent left 1.5 cm Indented text SHOD
Indent right Indented text tam

Indent variable HBGD

Standard paragraph

Indent for 1st line negative; all other lines of a
paragraph are indented left.

Double line spacing (Dm

Capital CAPITALS IB
Figure 16.2
Text samples
using

MS-Word 4.0

If a block is not completely filled with data, the remainder of the block is undefined. The first
block (block 0) of an MS-Word file contains an 128-byte header defining certain items of control
information. This is followed by the blocks containing the actual text. With very few exceptions,
these do not contain control codes. If there is no text, these blocks are omitted. The trailer
consists of a number of blocks containing the format information for the text. A hex-dump of the
corresponding Word file is shown in Figure 16.2.

358 Word processing formats

Signature < Header > _ Text_End_Ptr

Block_pointer

— Print-format-file

— Printer

driver

-Text

area

Text end

31 BE 00 00 00 AB 00 00 00 00 00 00 00 00 17 03

I

00 OC 09 00 0C 00 OC 00 OC 00 OC 00 OC 00 43 3A

C ^
^

5C 54 45 58 54 31 5C 53 54 41 4E 44 41 52 44 2E

\ 1 E X T 1 \ S T A N D A R D .

44 4* 56 00 00 00 00 00 00 00 00 00 00 00 00 00

D F V . . .

I
00 OC 45 50 53 45 58 00 00 00 OD 00 00 00 00 00

E P S E X . .

00 OC 00 00 00 00 00 00 00 00 00 00 00 00 00 00

1

54 65 73 74 20 54 65 78 74 20 77 69 74 68 20 57

T e st T e x t w i t h W

6F n 64 20 43 6F 6E 74 72 6F 6C 2D 43 6F 64 65

o r d Co n t r o I - Code

2E Ot 0A 0D OA 54 72 65 6E 6E 75 6E 67 20 77 65

73 62 68 72 69 66 74 20 41 4C 54 20 2B OD OA OD

OA OC OA OD OA OD OA OD OA OD OA OD OA OD OA OD

OA OC OA OD OA OD OA 20 20 20 20 20 20 20 20 20

I

Blocks
with format"

20 2C 20 20 20 20 20 20 00 00 00 00 00 00 00 00

00 OC 00 00 4E 00 22 08 2A 00 00 00 00 00 00 00

00 OC 00 00 00 00 00 00 FF 00 00 00 00 00 00 00

00 OC 25 00 00 00 00 00 3D 00 00 00 00 00 17 00

infnrm'itinn

- Block
with
character
format

—Paragraph

| I

80 01) 00 00 E5 00 00 00 FF FF 09 01 00 00 78 00

2A 0 00 00 FF FF 43 01 00 00 75 00 5D 01 00 00

70 0() 7F 01 00 00 6B 00 96 01 00 00 66 00 B1 01

00 0() 61 00 C9 01 00 00 5A 00 E1 01 00 00 53 00

59 0.> 00 00 FF FF 72 02 00 00 4E 00 11 03 00 00

FF F : 04 00 00 18 80 06 00 00 18 00 00 F4 06 00

00 1 5 00 00 OC 04 00 00 18 02 04 00 00 18 30 04

00 0) 18 04 04 00 00 18 01 02 00 02 02 00 01 OD

r~ I format

11 0 5 00 00 13 03 00 00 78 00 17 03 00 00 FF FF

Figure 16.3

Hex-dump of an
MS-Word 4.0 file

(continues
over...)

MS-Word format 359

2A 01 00 00 FF FF 43 01 00 00 75 00 5D 01 00 00

70 00 7F 01 00 00 6B 00 96 01 00 00 66 00 B1 01

00 00 61 00 C9 01 00 00 5A 00 El 01 00 00 53 00

59 02 00 00 FF FF 72 02 00 00 4E 00 11 03 00 00

FF FF 04 00 00 18 80 06 00 00 18 00 00 F4 06 00

00 18 00 00 OC 04 00 00 18 02 04 00 00 18 30 04

00 00 18 04 04 00 00 18 01 02 00 02 02 00 01 02
Section

I format

80 00 00 00 A3 00 00 00 FF FF AS 00 00 00 FF FF
block 1

BD 00 00 00 FF FF D3 00 00 00 FF FF E5 00 00 00

78 00 09 01 00 00 78 00 2A 01 00 00 78 00 43 01

00 00 78 00 5D 01 00 00 78 00 7F 01 00 00 78 00

96 01 00 00 78 00 B1 01 00 00 78 00 C9 01 00 00

78 00 E1 01 00 00 78 00 F6 01 00 00 6F 00 OC 02
Pointer

next

00 00 66 00 OC 04 00 00 18 02 08 3C 01 1E 00 00 block

00 C5 02 08 3C 03 1E 00 00 00 C5 02 02 3C 03 10
Next

I block

OC 02 00 00 22 02 00 00 72 00 3A 02 00 00 69 00

59 02 00 00 67 00 72 02 00 00 67 00 8F 02 00 00

59 00 9F 02 00 00 FF FF A1 02 00 00 FF FF BD 02

00 00 4E 00 BF 02 00 00 FF FF DE 02 00 00 41 00

96 01 00 00 78 OC 3C 00 1E 00 00 00 00 00 00 00

EO 01 OA 3C 00 1E 00 00 00 C5 02 3B FD OD 3C 00

1E 00 00 00 00 00 00 00 FO 00 FO 01 3C 08 3C 02

1E 00 00 00 C5 02 08 3C 00 1E 00 00 00 C5 02 OA

DE 02 00 00 FF 02 00 00 6E 00 01 03 00 00 6E 00

03 03 00 00 6E 00 05 03 00 00 6E 00 07 03 00 00

6E 00 09 03 00 00 6E 00 OB 03 00 00 6E 00 OD 03

00 00 6E 00 OF 03 00 00 6E 00 11 03 00 00 65 00

13 03 00 00 5C 00 15 03 00 00 59 00 17 03 00 00

FF FF 18 03 00 00 FF FF 00 C5 02 3B FD 02 3C 03

08 3C 03 1E 00 00 00 C5 02 08 3C 01 1E 00 00 00

C5 02 OC 3C 00 1E 00 00 00 00 00 00 00 EO 01 OE
Info-

I block

12 00 13 00 14 00 15 00 16 00 17 00 18 00 20 00

28 00 00 00 00 00 00 00 31 2E 31 2E 39 30 20 20

(1.1.90

31 2E 31 2E 39 30 20 20 97 02 00 00 00 00 00 00

1.1.90

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Figure 16.3

Hex-dump of an
MS-Word 4.0 file

(cont.)

360 Word processing formats

Various types of pointer are used in the file:

File pointers (4 bytes), which indicate the absolute position of a byte as an offset from the start

of the file.

Text pointers (4 bytes), which specify the relative position (from the start of the text) to a

character in the text area. These pointers can be converted to file pointers by adding 80H.

Block pointers (2 bytes), which point to a block. A block pointer is the number of a block

within the file and can be converted into a file pointer by multiplying by 80H.

The structure of the three sections of the Word file (header, text, formats) is described below.

16.1 Word headers (versions 3.0, 4.0, 5.0)

As shown in Figure 16.3, Word contains the header information in the first 128 bytes (block 0).

The first 4 bytes of the file always contain the hex codes 31H BEH OOH OOH. It is assumed that Word

uses these bytes as a signature for formatted files. Table 16.1 shows a detailed breakdown of the

header.

Offset Bytes Field description

OOH 4 Word signature 31H BEH OOH OOH

04H 8 Reserved (OOH ABH OOH OOH OOH

OOH OOH OOH)

OEH 4 Pointer to End-of-text

(1st character after text)

12H 2 Block pointer to the block containing

the paragraph format

14H 2 Block pointer to the block containing

the footnote table

16H 2 Block pointer to the block containing

the section formats

18H 2 Block pointer to the block containing

the nation table

1AH 2 Block pointer to the block containing

the table of page breaks

Table 16.1

Format of a Word

4.0/5.0 header

(continues

over...)

MS-Word format 361

Offset Bytes Field description

1CH 2 Block pointer to the block containing

file manager information

(author, date, and so on)

1EH 66 File name of print format, ASCII string
60H 2 Flag (reserved for Windows Write)

62H 8 Name of the printer driver,

ASCII string

6AH 2 Number of blocks used in the file

6CH 2 Bit field for corrected text areas

6EH 18 Reserved (in version 4.0 always OOH);

after version 5.0 used for unknown

code

Table 16.1

Format of a Word

4.0/5.0 header

(cont.)

The bytes column is in decimal. At offset OEH, there is a 4-byte pointer (file pointer) to the first
unused character after the text. The value is interpreted as an offset from the start of the file to the
relevant byte. The number of characters in the text can be calculated by subtracting the number
80H (length of block 0). The following 6 words contain 2-byte pointers which are interpreted as
block numbers. Information on the format of the text is contained in the specified blocks. A file
pointer to the first byte of the block can be calculated by multiplying the block number by 80H.
(The structure of format blocks is described below).

The path, including the drive and file name, for the print format template is stored at offset
1EH. This text is an ASCIIZ string, that is, the last character is OOH. In MS-DOS, the path is limited
to 65 characters, which explains why 66 characters are reserved in the header. Unused bytes must
be set to OOH. At offset 62H, there is an 8-byte field containing the name of the printer driver. If the
name is shorter than 8 characters, the remaining bytes must be set to OOH. The drive, the path and
the driver extension are not specified.

The field at offset 6AH indicates the number of blocks containing useful information. A Word file
may contain additional blocks, but these are usually filled with null bytes and are ignored.

The word at offset 6CH is interpreted as a 16-bitfield. It is used to store the format coding for
corrected areas of text and generally contains the value OOH OOH, but when a text is modified using
the command FORMAT/correction, Word stores the selected settings in the individual bits shown in
Table 16.2.

Up to version 4.0, bits 6 to 15 are unused. From Word 5.0 onwards, bits 6 and 7 are used, but
their exact meaning is not known. The remaining 18 bytes in the header are reserved and contain
the value OOH in version 4.0. From version 5.0, a number of pointers are found in this position, but
the significance of these is unknown.

362 Word processing formats

Bit Field description

0 Format bar: 1 = Yes, 0 = No

3-1 Inserted text

000 = Underline

001 = Large capitals

010 = Normal

011 =Bold

100= —

101 = —

110= Underline double

111 = —

5-4 Position of correction bar

00 = No bar

01 = Left

10 = Right

11 = Alternate (left, right)

15-6 Reserved (until version 4.0, unknown in 5.0)

16.2 The Word text area

Table 16.2

Coding for
FORMAT/

Corrections in

Word 4.0

In versions 3.0 to 5.0 of Word, the first byte containing text stored in ASCII format begins at offset
80H. This text may extend over several blocks. In the last text block, the area from the last valid
text character to the end of the block is undefined. The end of the text is indicated in the header

(offset OEH). If Word stores a blank text window, the text block is omitted, and immediately the
format information follows the header.

The text contains only a small number of control characters. Table 16.3 lists some of these
codes.

Codes 1-5 are used to mark text blocks created by Word. Footnotes are only marked in the text
if the user does not indicate footnote markers. If a footnote is allocated an automatic administra

tion number, Word will store this footnote as normal text and information on formatting the
footnotes is stored in a separate block in the trailer.

The characters CR/LF (carriage returnAinefeed) indicate the end of a paragraph in Word. It is
therefore possible to import ASCII files into Word, because many editors place a CR/LF after every
line. However, all Word paragraph commands will then be applied to individual lines, because Word
will interpret them as paragraphs. It may therefore be necessary to remove the CR/LF characters
at the end of individual lines.

MS-Word format 363

Word uses the ASCII code 31 (1 FH) to mark possible hyphenation points. The value 255 (FFH) is
used to protect the space between words in terms of hyphenation.

Code Field description

01H Text block page

02H Text block print date

03H Text block print time

04H Reserved

05H Footnote without a footnote marker

09H Tabulator

OBH Line feed

OCH Form feed

OD,0AH CR/LF as paragraph end

1FH Hyphenation conditional

C4H Hyphenation protected

FFH Space protected
Table 16.3

Interpretation of
control codes in

Word 4.0/5.0

16.3 Format area in Word

The last text block is followed by an area in which Word stores text formatting information. A
number of distinct regions can be distinguished:

♦ Blocks containing character formats

♦ Blocks containing paragraph formats

♦ Blocks containing the footnote table

♦ Blocks containing section formats

♦ Blocks containing the section table

♦ Blocks containing the page break table

♦ Blocks containing file management information

Each of these regions may extend over several 128-byte blocks. The numbers of the first block
in each region except the first are stored in the header, starting at offset 12H.

364 Word processing formats

Header

•4—

Text

Paragraph formats

Footnote table

Section formats

16.3.1 Character formats

Figure 16.4
Pointers to format regions

The first block after the text contains character formats. Word does not define a specific pointer to

this block in the header, because its position can be determined by means of the text pointer at
offset OEH. If there is no text area, the description of character formats begins in block 1. Word
uses a very sophisticated technique for storing the character formats. The number of possible
combinations for formatting a line (bold, italic, and so on) is predetermined from the start and
Word stores these format specifications in a table. Then all that is required is to note how the
individual sections of text are to be formatted, as shown in Figure 16.5.

The text shown in Figure 16.5 is to be given the character formats normal, bold and italic as
shown in the format table. Whenever bold appears in the text, the program merely refers to the
appropriate entry in this table. A pointer marks the start of the bold text. The next format specifi
cation cancels the bold. This process is used in Versions 3.0, 4.0 and 5.0. The details shown below
relate to Word 4.0 but, to a great extent, they also apply to version 5.0.

The block containing the character formats is structured as shown in Table 16.4. In the first
four bytes, there is an offset pointer to the first character in the text to which the format applies.
Since this character is always located in block 1, the pointer has the value OOH OOH OOH 80H, but in
MS-DOS, the lowest byte is stored first (80H OOH OOH OOH). At offset 04H, there is a pointer table
containing two pointers for each format area:

♦ a text pointer to the first character in a different format,

♦ a pointer to the format definition in the format table.

The 4-byte text pointer specifies the offset address of the first character to which the format
indicated by the second pointeFno longer applies. This text pointer also acts as a start pointer for
the new format specification. The next word in the data structure is the pointer to the format
definition in the format table at the end of the block. This value is interpreted as an offset from the
first text pointer (offset 04H) to the format entry in the format table (Figure 16.6).

MS-Word format 365

Poi nter Format

Pointer 1
Norma I

Bold

Pointer 2 Italic

Format

Pointer 3

Format

Pointer 4

Format

t "

Normal text and bold text and italic text

Text

Offset Bytes Field description

OOH 4 Pointer to the 1st character in the

1st format

Beginning of table containing text andformat pointers:

04H 4 Pointer to 1st char in 2nd format

08H 2 Pointer to format table for 1st format

OAH 4 Pointer to 1st char in different format

than 2nd format

08H 2 Pointer to format table for 2nd format

Beginning offormat table

7EH Last format entry
7FH 1 Number of text areas to be formatted

Figure 16.5
Text formats

Table 16.4

Structure of

a character

format block

366 Word processing formats

Since the number of sections to be formatted varies during word processing, Word begins
structuring the format table from the end of the block (that is, the last entry at offset 07EH is the
first format in the table). Word stores each new format definition before the previous entry. The
number of text areas to be formatted, and thus also the number of valid text pointers (excluding

the start pointer), is stored at the end of the block (offset 7FH). The structure of the format table is
described in more detail below.

Block

Start pointer

F

0

r

m

a

t

P

t

r

1st Text pointer

Pointer table

Format pointer

2nd Text ptr containing text and
format pointers

Format ptr

•

nth Format

1st Format

Entries Number of text ptr

Figure 16.6
Position of the table

containing the format
descriptions

With longer texts, the number of text and format pointers may exceed the space available in
the pointer table, which will cause the table to overflow. Word then creates a new block for
character formats and stores information on the existence of this additional block in the last text

pointer - if the value of this pointer is the same as the start address of the next block, an
additional block is involved. As soon as an additional block is required, Word copies the contents

of the current (last) block into memory and sets the number of entries (last byte) to zero. The
start pointer is set to the value of the last valid text pointer in the preceding block. Thus the copy
contains all the information from the preceding block, and Word fills up the new table with text

and format pointers as required.
In the pointer table, a 2-byte format pointer is allocated to every 4-byte text pointer. This

indicates the offset from the first text pointer to the relevant format definition at the end of the

MS-Word format 367

block. If 4 is added to this value, the result is the offset from the start of the block. If the format
pointer contains FFFFH, the text is to be displayed in standard format. For example, the format
pointer after the last valid text pointer may contain this value in order to switch back to standard

format. If the formatted text exceeds a block, the value FFFFH is stored in the following block.
Table 16.5 shows the structure of each entry in the format table.

Offset Bytes Field description

OOH 1 Number of following bytes for

01H 1

this entry

Coding print template:
Bit 0 = 1: char formatted with

a template,

Bits 1—7 define the modes

02H

03H

04H

05H

1

1

1

1

(see Table 16.6)

Format code (see Figure 16.8)
Font size in Vi point

Character attribute (see Table 16.7)
Reserved

06H

07H-0AH

1

4

Character position

(Superscript, subscript, and so on)
Reserved

Bit 7 6 5 4 3 2 1 0

0 No format template
1 Use template

Table 16.5

Structure of a

format table

entry

A format generally consists of several bytes. The first byte indicates the number of following
bytes in the definition. The minimum length of a format definition is 2 bytes (1 length byte, 1
format byte). However, if only one of the later bytes (for example, the character position) is
required, all the intervening fields must also be stored, even though they are not used.

The second byte of the character format specifies the appropriate variant of the print format
template, which describes how the text characters are to be formatted. Figure 16.7 shows the
coding of the second byte.

•Version of format template
Figure 16.7
Definition of a (format)
template

If the lowest bit (bit 0) is set, the remaining bits will contain the variant of the print format
template required. Table 16.7 shows some of the templates given in the Word manual:

368 Word processing formats

Code Field description

0 Standard character

1-12 Template number 1-12

13 Footnote reference

14-18 Template number 13-17

19 Number of pages
20-27 Template number 18-25

28 Short information

29 Line numbers

30-64 Unused
Table 16.6

Various (format)
templates

Additional information on this subject can be found in the standard Word documentation.
Word stores information on the format structure (bold, italic, font number) in the third byte (if
present). The coding is shown in Figure 16.8.

Bit 7 6 5 4 3 2 1 0

1 = Bold

1 = Italic

Font number

Figure 16.8
Font format coding

Bits 0 and 1 determine the typeface style (bold, italic), while the remaining bits are used for the
font number. The allocation of font and font number depends on the printer driver.

The fourth byte specifies the font size in Vi points. The remaining character attributes are
stored in the fifth byte. The coding is shown in Table 16.7.

So far, the byte at offset 05H has remained reserved. The same applies to the bytes at offsets
07H-0AH. The byte at offset 06H indicates whether a character is to be raised (superscript) or
lowered (subscript).

If byte 7 is not equal to 0, bit 7 defines how the character is formatted.

MS-Word format 369

Bits Field description

0 1 = Underline

1 1 = Strike out

2 1 = Strike out double

3 1 = Insert character in correction mode

4-5 Character size

00: Normal

01: Large capitals

10: —

11: Capitals

6 Special characters (page date, and so on)

7 Characters hidden

Byte 7 Description

OOH

01-7FH

80-FFH

Character normal

Superscript characters

Subscript characters

16.3.2 Paragraph format block

Table 16.7

Character format

attributes

Table 16.7

Character format

attributes

In the header, at offset 12H, there is a pointer to the block containing the paragraph formatting
details. The structure of this block is the same as that of the character format block. The start

pointer (4 bytes) specifies the first character of the first paragraph, which is generally the start of
the text. The pointer table then begins with a text pointer (4 bytes) and the offset (2 bytes)
indicating the relevant format information. The text pointer points to the next paragraph; the
format information offset relates to the first text pointer (the underlying structure is shown in
Table 16.4). The last byte in the block indicates the number of valid entries (text pointers). If the
last valid text pointer is the same as the start address of the next block, a following block
containing additional paragraph formats is involved.

370 Word processing formats

However, the structure defining the paragraph formats is somewhat different from the character
format structure. The number of following bytes is stored in the first byte. Table 16.8 gives the
structure of a paragraph format definition.

•• •• inmilium! iwiuwmmiwmtmwzmmvx ,,,...,„,:,..,;:.,. ... mmrnm*** , Wll,llt -aai

Offset Bytes Field description

OOH 1 Number of following bytes for
this entry

01H 1 Coding format template:
Bit 0 = 1:

Format template is used

to format this paragraph
Bits 1-7 define the template
number (see Table 16.9)

02H 1 Paragraph attribute (see Table 16.10)

03H 1 Number of standard paragraph format
(usually code 30 see Table 16.9)

04H 1 Heading level and representation
(see Figure 16.8)

05H 2 Right indent in V20 point

07H 2 Left indent in V20 point

09H 2 Left indent of first line in V20 point

OBH 2 Line spacing in V20 point
ODH 2 Heading space in V20 point

OFH 2 End space in V20 point

11H 1 Header/footer and frame details

12H 4 Position of lines round header/footer

13H 4 Reserved (OOH)

17H 80 Table of tab descriptions

Code Field description codes in bits 1-7

30 Standard format paragraph

31-38 Paragraph format templates 1-8

39 Paragraph footnote text
40-87 Paragraph format templates 9-56

88-94 Paragraph heading levels 1-7

95-98 Paragraph index levels 1-7

99-102 Paragraph table levels 1-7

103 Paragraph header/footer

Table 16.8

Paragraph format
in Word 4.0/5.0

Table 16.9

Format templates
for paragraphs

MS-Word format 371

The byte at offset 01H specifies the variant of the print format template. As in Figure 16.7, the
value 1 in bit 0 indicates that the paragraph is to be formatted with a print format template. In

case of retrospective direct formatting, this bit is zeroed, while the remaining bits containing the

variant code are retained. The code in bits 1 to 7 indicates the variant of the print format template

for paragraph formatting as shown in Table 16.9.

The next byte at offset 02H defines the attribute relating to the alignment of the paragraph (left,

right, and so on). Table 16.10 shows the coding for these attributes.

Bit Field description

0-1 Paragraph align
00 = Left

01 = Centered

10 = Right

11 = Block

2 Paragraph on same page
3 Next paragraph to same page
4 Use two columns for paragraph
5-7 Reserved

Table 16.10

Coding of

paragraph

attributes

The standard format is initially used for every paragraph. In case of retrospective direct
formatting ofa particular paragraph, Word stores the information on the paragraph print format in
the byte at offset 03H (see Table 16.9).

The byte at offset 04H specifies the classification level of the paragraph and whether the
paragraph is to be hidden. The coding of this byte is shown in Figure 16.9:

Bit 7 6 5 4 3 2 10

0 = Text block
Else heading level

1 = Hide paragraph

Figure 16.9

Coding heading levels

The next 6 bytes indicate the settings for indent, line spacing, and so on in Vm point units (see
Table 16.8). At offset 11H, header/footer and frame information is stored. The codingof this byte is
shown in Table 16.11.

If bits 4 and 5 contain the value 10, the sides of the frame will be displayed as single lines. The
byte at offset 12H specifies the position of these lines (Figure 16.10).

372 Word processing formats

Bit Field description

0 0 = Header

1 = Footer

1 1 = Header/Footer on odd pages

2 1 = Header/Footer on even pages
3 1 = Header/Footer on 1st page

4-5 Frame type

00 = No frame

01 = Frame

10 = Define frame with lines

11 = —

6-7 Frame lines

00 = Single frame
01 = Double frame

10 = Single frame bold
11 = —

Bit 7 6 5 4 5 2 10

L 1 = Line left

1 = Line right
1 = Line top
1 = Line bottom

Table 16.11

Coding of frame
attributes

Figure 16.10
Coding of a frame
composed of lines

The last part of a paragraph format definition (at offset 17H) contains any references to
tabulators in the text. Four bytes are provided for each entry, and the format of these entries is
shown in Table 16.12.

The last entry in the tabulator table is not necessarily 4 bytes long; it may contain between 2
and 4 bytes, because the number ofdirectly formatted tabs can be calculated from the length byte
at offset OOH.

MS-Word format 373

Offset Field description

OOH Indent in V20 points from left margin
02H Tab attributes

Bits 0-2: Alignment

000 = Left

001 = Centered

010 = Right
011 = ?

100 = ?

101 = ?

110 = ?

111 =?

Bits 3-5: Fill characters

000 = Space

001 = .

010 = -

011 =_

Bits 6-7: Reserved

03H Reserved (OOH OOH)

16.3.3 Format of the footnote block

Table 16.12

Coding of
tab format

Word stores footnotes and the associated references as normal ASCII strings in the text area. To
facilitate the management of footnote numbering in the printout, the program creates a separate
block for format information; the block number is stored in the pointer at offset 14H in the header.
This footnote block does not always exist. If the value of the pointer in the header is the same as
that of the pointer to the section format information (offset 16H), there is no footnote information.
Otherwise, the block contains a table in which all the footnotes are described. Table 16.13 shows
the structure.

The current number of footnotes + 1 present in the text is stored in the first word. The following
word contains the maximum number of footnotes ever used in the text (that is, it includes any
that have been deleted). Word uses this information to determine how much of the footnote
description table (starting at offset 04H) has already been used. This is important, for example, if
more than one block is used. For each footnote, a 4-byte text pointer to the position of the
footnote reference and a pointer to the actual text of the footnote are stored. The first pair of
pointers contains the start and end addresses of the last footnote text - which explains why the
table indicates the number of footnotes + 1. Word uses the first two entries to determine the length
of the last footnote text.

374 Word processing formats

Offset Bytes Field description

OOH 2

02H 2

Number of footnotes in text + 1

Number of footnotes in text + 1

(includes deleted footnotes)

Beginning of table containing footnote descriptions

04H 4

08H 4

Offset of footnote reference

(from beginning of text)

Offset of footnote text

(from beginning of text)

Table 16.13

Structure of a

footnote block

16.3.4 Format of the section table block

In Word, a document can be divided into several sections. As soon as the user defines these
sections, Word will create a block containing the section table and a block containing the section
formats. The pointer in the header at offset 16H is the number of the block containing the section
formats, while the number of the block containing the section table is stored at offset 18H. If the block
numbers are the same as the block number in the pointer to the page break table (at offset 1AH),
the section tables and format blocks do not exist. Otherwise, Word stores the relevant information
for each section in these two blocks. The structure of the section table is shown in Table 16.14.

Offset Bytes Field description

OOH 2 Number of sections

02H 2 Maximum number of sections

Beginning of table containing the section and format pointers

04H 4 Offset of 1st character after

this section

08H 2 Reserved

OAH 2 Offset to format description

in the section format block
Table 16.14

— Structure of a

block with a

section table

MS-Word format 375

The first word contains the total number of sections present; the following word indicates the

maximum number of sections created so far. In this way, Word can determine the extent to which
this table has already been structured. The actual section table begins at offset 04H. This table
contains three entries for each section. The first pointer marks the end of a section, and the last
entry is interpreted as a pointer to the associated format description, stored as the offset from the

start of the section format block to the format description. The middle (second) entry is
presumably not used in Word 4.0.

16.3.5 Format of the section format block

The number of the block containing the section formats is stored in the header, at offset 16H. Each
section format has the following structure:

Offset Bytes Field description

OOH 1 Number of following bytes in this entry

01H 1 Coding format template

Bit 0 = 1: a format template is used to

format this section;

Bits 1-7 define the template

(see Table 16.15)

02H 1 Attribute section (see Table 16.16)
03H 2 Page length in Vk point

05H 2 Page width in !4> point

07H 2 1st page number or FFFFH for

continuous page numbering

09H 2 Upper border in 54o point

OBH 2 Length of text field in J4o point
ODH 2 Left border in Via point

OFH 2 Text field width in 54o points
11H 1 Format section

(line number and footnotes)
12H 1 Columns in section

13H 2 Distance of header from top in Via point
15H 2 Distance of footer from top in 54o point
17H 2 Distance between columns in Ma> point
19H 2 Gutter width in !4o point

1BH 2 Distance of page numbers from top
border in !4> point

Tabic 16.15

Structure of

section format

(continues
over...)

376 Word processing formats

Offset

1DH

1FH

21H

Bytes

2

2

2

Field description

Distance of page numbers from left
border in J4o point

Distance of line numbers from left

border in Vw point

Line numbers interval
Table 16.15

Structure of

section format

(cont.)

The coding of the print format template for a section is as follows: if bit 0 = 1, a print format
template will be used. In this case, bits 1 to 7 contain the variant of the print format required as
shown in Table 16.16.

Code Field description

105 Standard format for a section

106-126 Section format templates 1-21

Bit Field description

0-2 Section change

000 = Continuous

001 = Column

010 = Page

011 = Even

100 = Odd

3-5 Page number

000 = Arabic numbers

001 = Large Roman capitals

010 = Small Roman capitals

011 = Large capitals

100 = Small capitals

Table 16.16

Variants of print
foi-mat templates
for sections

Table 16.17

The coding of
section attributes

(continues
over...)

Bit

6-7

Field description

Line numbers

00 = From beginning of page
01 = From beginning of section

10 = Continuous

MS-Word format 377

Table 16.17

The coding of
section attributes

(cont.)

Information such as the format of line numbers and so on is stored in an attribute byte, at offset
02H, coded as shown in Table 16.17.

At offset 11H, there is another byte dealing with footnotes and line numbering. The relevant
coding is shown in Figure 16.11.

Bit 7 6 5 4 3 2 1 0

-x = Reserved (0)

-1 = Line numbering on

x = Reserved

-1 = Print footnotes at end of text

Figure 16.11
The coding for
line numbering

16.3.6 Format of a page-break block

The number of the block containing details of page breaks is stored in the Word header, at offset
1AH. This block is not present if the entry is the same as the block numbers for other regions
(offsets 16H, 18H, 1CH). Table 16.18 shows the format for page breaks.

The first word contains the number of page breaks. The table containing the locations of the
page breaks begins at offset 04H.

Offset

OOH

02H

Bvtes Field description

Number of section with breaks

Maximum number of page breaks

Table 16.18

Block containing
details of page
breaks

(continues
over...)

378 Word processing formats

Offset Bytes Field description

Beginning of table containing page-break descriptions

04H

08H

4

4

Offset of 1st page break
Offset of 2nd page break

Table 16.18

Block containing
details of page
breaks (cont.)

16.3.7 File manager information block

The number of the block containing file manager information is stored at offset 1CH of the header,

up to version 5.0 of Word. Word uses this information, for example, when searching through a text
or when looking for a particular text. The structure of the block is shown in Table 16.19.

Dates are stored in the form month/day/year (for example, 01 .23.90) in ASCII format and
terminated with a null byte.

This information need not be present, and the fields can remain unused. In Word 5.0, unused

entries in the block are overwritten with DCH.

Information on the internal memory structure has not been published by Microsoft. It is
therefore possible that some of the details described in the above sections are not supported in all
versions of Word.

Offset Bytes Field description

OOH 2 Contains 12H OOH

Beginning of file manager information

12H

3AH

40

12

Document name

(ASCIIZ string, maximum
Author's name

(ASCIIZ string, maximum

40 chars)

12 chars)

Table 16.19

Structure of

file manager
information

block

(continues
over...)

MS-Word format 379

Offset Bytes Field description

46H 11 Reviser's name

(ASCIIZ string, maximum 12 chars)
51H 14 Keyword (ASCIIZ string, maximum

14 chars)

5FH 10 Comment (ASCIIZ string, maximum
10 chars)

69H 9 version number

(ASCIIZ string, max. 9 chars)
72H 8 Date of last change (MM/DD/YY)

(ASCIIZ string)
79H 1 OOH

7AH 8 Creation date (MM/DD/YY)

(ASCIIZ string)
81H 1 OOH

82H 4 Text size

16.4 Winword file format (1.0-6.0)

Table 16.19

Structure of

file manager
information

block (cont.)

Winword 1.0, 2.0, 6.0 uses a similar format to Word for DOS to store text. Each DOC file consists
of three sections (header, text, format) as described in Figure 16.1. The header and the internal
format structure depend on the Winword version. The formats are backward compatible in each
successive version. The header of a Winword file contains 384 (17FH) Bytes, followed by the text
area. The text area stores the text in ANSI characters. The structure of a Winword header is shown
in Table 16.20.

The complete structure of the Winword format is confidential and may not be published here.
The information above is public and easy to identify. For further information about the Winword
file format contact Microsoft. After signing a licence agreement, a copy of the specification is
available.

380 Word processing formats

Offset Bytes Remarks

00 2 Signature
9BH A5H(Winword 1.0)
DBH A5H (Winword 2.0)
DOH CFH (Winword 6.0)

02 2 version (Major)
04 2 version (Minor)
06 2 Language stamp

08 2 Next page number
OA 1 Flag

0B 1 Encryption (1 = Yes)
OC 6 Internal use

12 1 Platform

0: Windows

1: Mac

13 1 Reserved

14 2 Character set

0: ANSI

100H: Mac

16H 2 Internal character set

18H 4 Offset to 1st character in text area

1CH 4 Offset to text area end +1

20H 4 Offset to file end

— Other file pointers Table 16.20

Structure of

a Winword

header

c^

WordStar format

WordStar, which is produced by MicroPro,
was one of the first word processing pro
grams used with the IBM PC. The program

was originally developed for the CP/M 80 operating
system and subsequently transferred to MS-DOS. As a
result, it retains many of the features of the earlier
CP/M version. Although the performance of WordStar
has been superseded to a large extent by Word and
WordPerfect, it is included here because it is still very
widely used. The following information relates to
WordStar versions 2.2 to 6.x.

WordStar files do not have header or trailer blocks containing format information. The program
stores the text in ASCII format in its own file and inserts control data for formatting between the
individual characters.

54 68 69 73 20 69 73 20 61 20 57 6F 72 64 53 74

This is a WordSt

61 74 20 74 65 78 74 20 77 69 74 68 20 75 6D 6C

ar text with uml

61 75 74 73 20 1B 84 1C 1B E1 1C 0D 0A 0A 1A 1A

a u t s a 13

0D 0A 00 0A 1A 1A 1A 1A 1A 1A 1A 1A 1A 1A 1A 1A

Figure 17.1
Hex-dump of a
WordStar text

The file itself is divided into 128-byte blocks. Any unused bytes in the last block are set to 1AH,
the normal DOS character for end of file.

Since WordStar originated in the CP/M era, it uses only 7 bits to represent data. Characters
below 20H and above 80H are used as control codes (bold, underline, and so on).

381

382 Word processing formats

The program distinguishes various groups of control codes. For example, some control
characters act as toggles: the first occurence of the character switches a function on; the next
occurence switches it off again (see Table 17.1).

Character Code Code description

AB 02H Bold on/off

AD 04H Double strike printing on/off

AI 09H Tabulator (hard tab)

AJ OAH LF-character

AK OBH Page offset header/footer

AL OCH Form feed

AS 13H Underline on/off

AT 14H Superscript on/off

AV 16H Subscript on/off

AX 18H Strikeout on/off

AZ 1AH EOF-marker (end of text)

AC 1BH ESC begin literal

A\ 1CH End literal

A] 1FH Begin symmetrical sequence
AA 1EH Soft hyphenation
A 1FH Soft hyphenation line end

Table 17.1

WordStar

combination

control codes

However, there are problems when using multinational character sets which use codes above
80H. This occurs, for example, with the German umlaut accent. WordStar sets the switch function
(Table 17.1) for literal instructions. The special characters are then simply enclosed between the
control codes 1BH and 1CH. With the code 1BH in front of a character, the next character will be

printed literally. Code 1CH ends the literal mode, and the following characters are interpreted
normally again. The German umlaut a, for example, appears in the text as 1BH 84H 1CH. Without
these brackets, WordStar will subtract the number 80H from the relevant character and use the
code as a control command. Table 17.2 shows the control codes resulting from the umlauts.

This undesired conversion occurs, for example, when ASCII files are imported into WordStar.
In addition to the paired control codes mentioned above, WordStar also recognizes a number

of control codes that generally occur on their own and have an immediate effect on the printed
output (see Table 17.3).

A number of rules apply to the direct control codes above 80H. The 8th bit is set if the last
character of a line contains a line break. AOH creates a phantom space. The combination ODH,OAH is

converted into 8DH,0AH (line break). The end of a paragraph is marked with what is known as a
'hard return' (0DH,0AH); the end of a page is marked with 0DH,8AH. The position of word-breaks is
marked with a soft hyphen (code 1EH). At these points, the program can introduce a word-break. If
these occur at the end of a line, the code 1 FH is inserted as a separator.

WordStar format 383

Character Code Code description

u 81H 01H = AA

a 84H 04H = AD

A 8EH OEH = AN

6 94H 14H = AT

0 99H 19H = AY

U 9AH 1AH = AZ

fi E1H 61H = a

Table 17.2

Umlaut coding

Other control instructions occur in plain text within sections of text; these are known as point
commands. As the name suggests, these instructions are introduced by a point (full-stop) followed
by two letters.

Character Code Code description

Aa OOH Fix print position

AA 01H Alternate font

AB 02H Boldface type on/off

AC 03H Print pause

AE 05H Custom print control

AF 06H Phantom space

AG 07H Phantom rubout

AH 08H Overprint previous character
AM ODH Carriage return
AN OEH Normal character width

AF OFH Binding space
AQ 11H Custom print control

AR 12H Custom print control

AU 15H Reserved
Ay 17H Custom print control
Ay 19H Italics on/off Table 17.3

WordStar control

codes

Up to version 3.0 of WordStar, it was necessary to specify parameters after these point
commands as whole numbers. From WordStar 4.0, expressions are also allowed. In version 5.0,

dimensions can be defined in inches. From version 5.5 (C), dimensions in points or in centimeters
are also permitted. Data must be enclosed in single inverted commas (for example, ' CM'), from

384 Word processing formats

version 5.5 (C). The commands in the following tabic arc shown to aid understanding of the
abbreviations:

Command Remarks

.AV Ask variable

.AW Align and word wrap

.BN Bin select (1 to 4)

.BP Bidirectional print on/off

.CC Conditional column break

.CO Columns

.CP Conditional page break

.CS Clear screen and display message

.CV Convert note type

.CW Character width (in Ym inch)

.DF Data file to be merged into text format:

CSV, DBF, WKS, and so on

.DM Display a message

.E# Set endnote value

.EI End if

.EL Else

.F# Set footnote value

.FI File insert (up to 7 levels)

.FM Footer margin

.FO Footer

.F1 Footer (following pages)
-F2 Second footer

.F3 Third footer

.GO Go to top or bottom of document

.HE Header

.H1 Header (following pages)

.H2 Second header

.H3 Third header

.HM Header margin

.IF If

.IG Ignore (comment)

.IX Index

.KR Kerning

Table 17.3

WordStar

commands

(continues
over...)

WordStar format 385

Command Remarks

.L# Line numbering

.LH Line height (in 54s inch)

-LM Left margin

.LQ Letter quality on/off

.LS Line spacing

.MA Mathematical (store result of a calculation)

.MB Bottom margin

.MT Top margin

Remarks

.OC Centering on/off

.OJ Output justification on/off

-OP Omit page number

.P# Paragraph number

-PA Page break
.PC Page column

.PE Print endnotes

.PF Paragraph realignment while printing

.PG Number pages

.PL Page length (in lines)

.PM Paragraph margin

.PN Page number

.PO Page offset

.PR Printer information

.PS Proportional spacing on/off

.RM Right margin

.RP Repeat

.RR Ruler

-RV Read variable

.SR Sub/superscript roll (in Vm inch)

.SV Set variable

.TB Tab stops

.TC Table of contents .TC1 to .TC9

.UJ Micro justify

.UL Underline on/off

.xe .xa Custom print control, the hex sequence

.XR .XW defines a control code

.XL Form feed

.XX Strikeout character

Table 17.3

WordStar

commands

(cont.)

386 Word processing formats

17.1 Symmetrical code sequences

These code sequences were introduced from WordStar 5.0 onwards to provide functions that
cannot be represented using point commands. All these sequences begin with the character 1DH
and are structured as follows:

Offset Bvte

OOH 1

01H 2

03H 1

04H X

..H 2

..H 1

Field description

1DH beginning of sequence
Counter

Sequence type

Sequence data

Counter

1DH sequence end
Table 17.4

WordStar

symmetrical code
sequences

The number of characters in the sequence (minus 3) is stored in the word for the counter. All
codes (including EOF 1AH) may appear in the sequence. The following symmetrical sequences are
currently defined.

17.1.1 Header

17.1.1.1 Header Sequence (Type OOH)

This sequence defines the version and the name of the driver; it also contains a pointer to the style
library within the file. The sequence is structured as follows:

Bytes Field description

1 Header sequence (Type = OOH)
1 version number (BCD)

50H = WordStar 5.0

55H = WordStar 5.5

60H = WordStar 6.0

9 Driver n (ASCIIZ string)
2 Reserved

4 Pointer to style library in file
107 Reserved

^^^_^^^____^^^^^^^__^^^_^__^^_^^^^^^^^^^^^^^__^_^^_______

Table 17.5

WordStar header

sequence

The complete record thus comprises 130 bytes including the frame consisting of 1DH ... 1DH.

WordStar format 387

17.1.2 Print Controls

These sequences contain the definitions for the printed output (colors and fonts).

17.1.2.1 Color Sequence (Type OIH)

This sequence defines a color and is structured as follows:

Bytes Field description

1 Print control color (Type = 01H)
1 Color number (0 to OFH)

1 Previous color in file

Coding:

OOH Black

01H Blue

02H Green

03H Cyan

04H Red

05H Magenta

06H Brown

07H Light gray

08H Dark gray

09H Light blue

OAH Light green

OBH Light cyan

OCH Light red

ODH Light magenta

OEH Yellow

OFH White to black

The sequence thus occupies 9 bytes.

Table 17.6

WordStar color

sequence

388 Word processing formats

17.1.2.2 Font Sequence (Type 02H)

This sequence defines the font and is structured as follows:

Bytes Field description

Print control font (Type = 02H)

Font width in HMI (%««. inch)

Font height in VMI (Yuw inch)
Type style

Previous font width in HMI (Yiam inch)

Previous font height in VMI (54«o inch)

Previous type style Table 17.7

WordStar font

sequence

The word containing the type style is divided into individual bit fields (see Table 17.8):

Bit Field description

15 Proportional flag

14 Letter quality flag

13-12 Symbol mapping bits

00 = Code page 437

01 = Code page 850

10= Mathematical character

11 = Symbol font

11-10 Generic style bits

00 = Sans serif font

01 = Serif font

10 = Script font

11 = Display font

9 1 = Symmetrical sequence different from

previous versions

8-0 Number of type style

The coding shown below currently applies to the numbering of fonts:

Table 17.8

Coding type
styles

WordStar format 389

Number Font

0 LinePrinter

1 Pica

2 Elite

3 Courier

4 Helv (also Helvetica, CG Triumvirate

and Swiss)
5 Tms Rmn (also CG Times, Times Roman

and Dutch)

6 Gothic (or number 130 Letter Gothic)
7 Script

8 Prestige (or number 48 Prestige Elite)
9 Caslon

10 Orator

11 Presentations

12 Helv Cond (also Swiss Condensed)

13 Serifa

14 Blippo

15 Windsor

16 Century (or number 23)
17 ZapfHumanist

18 Garamond

19 Cooper

20 Coronet

21 Broadway
22 Bodoni

23 Cntry Schlbk (or number 16)
24 Univ. Roman

25 Helv Outline

26 Peignot (also Exotic)
27 Clarendon

28 Stick

29 HP-GL Drafting
30 HP-GL Spline

31 Times

32 HPLJ Soft Font

33 Borders

34 Uncle Sam Open

35 Raphael

36 Uncial Table 17.9

37 Manhattan Font numbering
^ C fJ 11L111IXCo

over...)

390 Word processing formats

Number Font

38 Dom Casual

39 Old English

40 Trium Condensed

41 Trium UltraComp

42 Trade ExtraCond

43 American Classic (also Amerigo)

44 Globe Gothic Outline

45 UniversCondensed (also Zurich Condensed)

46 Univers (also Zurich)

47 TmsRmnCond (Oki Laserline 6)

48 PrstElite (see also 8 Prestige)

49 Optima

50 Aachen (Postscript)

51 AmTypewriter

52 Avant Garde

53 Benguiat

54 Brush Script

55 Carta

56 Centennial

57 Cheltenham

58 FranklinGothic

59 FrstyleScrpt

60 FrizQuadrata

61 Futura

62 Galliard

63 Glypha

64 Goudy

65 Hobo

66 LubalinGraph

67 Lucida

68 LucidaMath

69 Machine

70 Melior (also Zapf Elliptical)

71 NewBaskrvlle (also Baskerville)

72 NewCntSchlbk

73 News Gothic (also Trade Gothic)

74 Palatino (also Zapf Calligraphic)
75 Park Avenue

76 Revue

77 Sonata Table 17.9

Font numbering
(cont.)

WordStar format 391

Number Font

78 Stencil

79 Souvenir

80 TrmpMedievel (also Activa)

81 ZapfChancery
82 ZapfDingbats
83 Stone

84 CntryOldStyle

85 Corona

86 GoudyOldStyle

87 Excelsior

88 FuturaCondensed

89 HelvCompressed
90 HelvExtraCompressed
91 Helv Narrow

92 HelvUltraCompressed
93 KorinnaKursiv

94 Lucida Sans

95 Memphis

96 Stone Informal

97 Stone Sans

98 Stone Serif

99 Postscript

100 NPS Utility

101 NPS Draft

102 NPS Corr

103 NPS SansSer Qual

104 NPS Serif Qual

105 PS Utility

106 PS Draft

107 PS Corr

108 PS SansSer Qual

109 PS Serif Qual

110 Download

111 NPS ECS Qual (daisy wheel)

112 PS Plastic (daisy wheel)
113 PS Metal (daisy wheel)

114 CloisterBlack

115 Gill Sans (also Hammersmith)

116 Rockwell (also Slate)
117 Tiffany (ITC) Table 17.9

Font numbering
(cont.)

392 Word processing formats

Number Font

118 Clearface

119 Amelia

120 HandelGothic

121 OratorSC (Star et al)
122 Outline (Toshiba)

123 Bookman Light (Canon)

124 Humanist (Canon)

125 Swiss Narrow (Canon)

126 Zapf'Calligraphic (Canon)
127 Spreadsheet (Quadlaser)

128 Broughm (Brother printers)
129 Anelia (Brother printers)

130 LtrGothic (Brother Definition)
131 Boldface (Boldface PS)

132 High Density (NEC)

133 High Speed (NEC)

134 Super Focus (NEC P2200)

135 Swiss Outline (Cordata)

136 Swiss Display (Cordata)

137 Momento Outline (Cordata)

138 Courier Italic (TI 855)

139 Text Light (Cordata)

140 Momento Heavy (Cordata)

141 BarCode

142 EAN/UPC

143 Math-7 (HPLJ)

144 Math-8 (HPLJ)

145 Swiss

146 Dutch

147 Trend (Nissho)

148 Holsatia (Qume Laser)

149 Serif (IBM Pageprinter)

150 Bandit (Cordata)

151 Bookman (Cordata)

152 Casual (Cordata)

153 Dot (Cordata)

154 EDP (Epson GQ3500)

155 ExtGraphics (Epson GQ3500)

156 Garland (Canon Laser)

157 PC Line Table 17.9

Font numbering
(cont.)

WordStar format 393

Number Font

158 HP Line

159 Hamilton (QMS)

160 Korinna (Cordata)

161 LineDrw (QMS)

162 Modern

163 Momento (Cordata)

164 MX (Cordata)

165 PC (Cordata)

166 PI

167 Profile (Quadlaser)
168 Q-Fmt (QMS)
169 Rule (Cordata)

170 SB (Cordata)
171 Taylor (Cordata)
172 Text (Cordata)
173 APL

174 Artisan

175 Triumvirate

176 Chart

177 Classic

178 Data

179 Document

180 Emperor

181 Essay

182 Forms

183 Facet

184 Micro (also Microstyle, Eurostile)
185 OCR-A

186 OCR-B

187 Apollo (Blaser)
188 Math

189 Scientific

190 Sonoran (IBM Pageprinter)
191 Square 3

192 Symbol
193 Tempora

194 Title

195 Titan

196 Theme

197 TaxLineDraw Table 17.9

Font numbering
(cont.)

394 Word processing formats

Number Font

198 Vintage

199 XCP

200 Eletto (Olivetti)

201 Est Elite (Olivetti)
202 Idea (Olivetti)

203 Italico (Olivetti)

204 Kent (Olivetti)

205 Mikron (Olivetti)

206 Notizia (Olivetti)

207 Roma (Olivetti)

208 Presentor (Olivetti)

209 Victoria (Olivetti)

210 Draft Italic (Olivetti)
211 PS Capita (Olivetti)

212 Qual Italic (Olivetti)
213 Antique Olive (also Provence)

214 Bauhaus (ITC)

215 Eras (ITC)

216 Mincho

217 SerifGothic (ITC)

218 Signet Roundhand

219 Souvenir Gothic

220 Stymie (ATF)

221 Bernhard Modern

222 Grand Ronde Script

223 Ondine (also Mermaid)

224 PT Barnum

225 Kaufmann

226 Bolt (ITC)

227 AntOliveCompact (also Provence Compact)

228 Garth Graphic

229 Ronda (ITC)

230 EngSchreibschrift
231 Flash

232 Gothic Outline (URW)

233 Akzidenz-Grotesk

234 TD Logos

235 Shannon

236 Oberon

237 Callisto Table 17.9

Font numbering
(cont.)

WordStar format 395

Number Font

238 Charter

239 Plantin

240 Helvetica Black (PS)
241 Helvetica Light (PS)
242 Arnold Bocklin (PS)
243 Fette Fraktur (PS)
244 Greek (PS (Universal Greek))

Table 17.9

Font numbering
(cont.)

The font numbers in Table 17.9 are in decimal notation. It should also be noted that the list of

fonts is constantly being updated and so more fonts than those specified are actually supported.

f
When compiling this list, I was amazed at how many font styles are currently in use in
computer applications. Many of these fonts represent well-known font families such as
Times, Helvetica, and so on but have had to be given different names because of license
restrictions.

17.1.3 Notes

The following sequences define footnotes and endnotes:

17.1.3.1 Footnote Sequence (Type 03H)

This sequence defines footnotes in the text and is structured as follows:

Bytes Field description

1 Footnote (Type = 03H)
2 Line count of footnote text
2 Offset of footnote number TAG

If bit 15 = 1: Other bits define the offset to an

internal sequence with the footnote TAG
0: Footnote number to use

1 Unused

X Text area for footnote
Table 17.10

Footnote

sequence

396 Word processing formats

If the footnote contains no tag, the sixth byte is used for the conversion flag. The text can
contain another footnote sequence to display or print the tag associated with the note. The
sequence uses the following structure:

Bytes Field description

1 Footnote (Type = 03H)

2 Unused (line count assumed 1)

2 Footnote number

1 Conversion flag - normally 0,
if . CV or . FV# then

Bits 0-3: 4 Convert note to an endnote

6 Convert note to a comment

Bits 4-7: Format type

0 Use symbols
1 Use upper case

2 Use lower case

3 Use numbers

X Text area for footnote
Table 17.11

Internal footnote

sequence

If the conversion flag is used, the lower 4 bits contain the conversion number of the footnote. If
the value is set to 4, the footnote will be converted into an endnote. If the value = 6, the footnote
will be converted into a comment. The format for the numbering (0 = symbols, 1 = capitals, 2 = lower
case letters, 3 = numbers) is contained in the upper bits.

17.1.3.2 Endnote Sequence (Type 04H)

This sequence defines the endnotes in the text and is structured as follows:

Bytes Field description

1 Endnote (Type = 04H)
2 Line count of endnote text

2 Offset of endnote TAG number

Bit 15 = 1: The other bits define the offset to the

internal sequence with the endnote TAG
0: Number endnote

1 Unused

X Text area of endnote
Table 17.12

Endnote

sequence

WordStar format 397

The text can contain another endnote sequence to display or print the tag associated with the
note. The sequence uses the following structure:

Bytes Field description

1

2

Endnote (Type = 04H)
Unused (line count assumed 1)

2 Endnote number

1 Conversion flag - normally 0,
if . CV or . FV# then

Bits 0-3: 3 Convert note to a footnote

6 Convert note to a comment

Bits 4-7: Format type

0 Use symbols
1 Use upper case
2 Use lower case

X

3 Use numbers

Text area for endnote

17.1.3.3 Annotation (Type 05H)

This sequence defines annotations in the text and is structured as follows:

Bytes Field description

1 Annotation (Type = 05H)
2 Line number of annotation

2 Offset of TAG annotation

Bit 15 = 1: Other bits define the offset to an internal

sequence with the TAG

0: Word is 0

1 Unused

X Text area for annotation

Table 17.13

Internal endnote

sequence

If the conversion flag is used, the lower 4 bits contain the conversion format. If the value is set to
4, the endnote will be converted into a footnote. If the value = 6, the endnote will be converted
into a comment. The format for the numbering (0 = symbols, 1 = capitals, 2 = lower case letters, 3
= numbers) is contained in the upper bits.

Table 17.14a

Annotation

sequence

398 Word processing formats

The text can contain another sequence of the same format. The structure of the sequence
within the text area is defined below.

Bytes

1

2

2

x

Field description

Annotation (Type = 05H)

Unused (line count assumed 1)

Unused

Text area for endnote

17.1.3.4 Comment (Type 06H)

This sequence defines comments within the text and is structured as follows:

Bytes

1

2

2

1

x

Field description

Comment (Type = 06H)

Line count of comment

Unused

Conversion flag (0 or same as footnote)
Text area for comment

Table 17.14b

Text in an

annotation

sequence

Table 17.15

Comment

sequence

If the conversion flag is used, the same conditions apply as for the footnote. If the value of the
lower 4 bits is set to 3, the comment will be converted into a footnote. If the value = 4, the
comment will be converted into an endnote. The format for the numbering (0 = symbols, 1 =
capitals, 2 = lower case letters, 3 = numbers) is contained in the upper bits. Comments do not
contain any other internal sequences.

The codes 07H and 08H are reserved.

WordStar format 399

17.1.3.5 Tabs (Type 09H)

This sequence describes tabulators in the text and is structured as follows:

Bytes Field description

Tabulator (Type = 09H)
Tabulator size in HMI

Absolute tabulator size in HMI

Tabulator type

Tabulator size in Vm

Table 17.16

Tab sequence

The details of the dimensions of a tabulator are not completely clear at present. Various
characters are used for different types of tab:

space Hard tab

soft space Soft tab
! Center line tab

Decimal tab

[Right-align line tab
. or * Dot leader

These characters define the alignment of tabs. The code OAH is reserved.

Table 17.17

Tab types

17.1.3.6 End of Page (Type OBH)

This sequence should be ignored since it is used by the WordStar editor to display the page break.

17.1.3.7 Page Offset (Type OCH)

This sequence is reserved for the printer driver and should not appear in a text document.

17.1.3.8 Paragraph Number (Type ODH)

This sequence defines the numbering of paragraphs and is structured as shown in Table 17.18.
WordStar can implement paragraph numbering up to 8 levels. Numbering is managed using the

sequence below.

400 Word processing formats

Bytes Field description

1

1

Paragraph number (Type = ODH)
Level increase

0 stay at current level
1 move forward in a level (2 -> 2.1)

>1 level moves forward from previous

1

paragraph number
Level decrease

0 stay at current level
1 move forward in a level (2.1 -> 2)

>1 level moves backward from previous

1

8*2

paragraph number
Level number of current paragraph (1-n)

Level numbers; 8 words (1-8)

each word defines a level number

31 ASCIIZ string containing the paragraph format

17.1.3.9 Index Entry (Type OEH)

This record contains a text giving the relevant index entry.

17.1.3.10 Printer Control (Type OFH)

This sequence stores control codes for driving the printer.

Bytes

1

2

1

x

y

Field description

Printer control (Type = OFH)

Number of HMI this sequence uses

Number of characters for screen display
Display string
Printer control characters

Table 17.18

Paragraph
numbers

Table 17.19

Printer controls

This sequence can be used to send text and control codes to the printer. The text can be
displayed on screen. The printer characters follow the text for the screen display.

17.1.3.11 Graphic (Type 10H)

This sequence defines the file name of a graphic which is to be merged.

Bytes

1

n

Field description

Graphic (Type = 10H)
File name of graphic file

WordStar format 401

Table 17.20

Graphic

The length of the file name can be determined from the length of the sequence.

17.1.3.12 Paragraph Style (Type 11H)

This sequence describes the style of individual paragraphs.

Bytes

1

2

2

2

2

Field description

Paragraph style (Type 11H)
New paragraph style number

Previously selected paragraph style number
Previous paragraph modified style number
Previous previous selected for reverting

Table 17.21

Paragraph style

The phrase 'New paragraph style number' acts as an index to the document style library. The
value defines the style selected by the user. The next entry is the index of the user's previously
selected style. The 'Previous paragraph modified style number' is the style condition before the
selection was made. Because the attributes and fonts may change, new temporary styles are
created in the library. The phrase 'Previous previous selected for reverting' is the style selected by
the user prior to the previous style. WordStar uses this to revert to the previous style.

The codes 12H to 14H are reserved.

17.1.3.13 Alternate Font Change (Type 15H)

This sequence occupies several bytes. One of the following values:

0 = Normal font

1 = Alternate font

402 Word processing formats

is stored in the first byte. The remaining bytes contain an additional symmetrical sequence that
defines the new font data (width, height, font number) and the previous font data (see Type 02H).

17.1.3.14 Truncation (Type 16H)

This sequence is only used if the characters of a symmetrical sequence do not fit into the main
memory (RAM).

The remaining codes 17H to FFH are reserved.

17.2 Structure of a paragraph style library

The library containing various styles can be stored:

♦ in the file WSSTYLE.OVR

♦ as a copy in the edited file

♦ as a copy in a temporary file

A 32-bit offset to the relevant style can be stored in the header sequence (see Subsection
17.1.1.1). The value must refer to a 128-byte block containing what is known as the Master Index.
The structure of this index is shown below:

Bytes Field description

1

2

1

1 AH EOF-mark

Next free 512-byte block

Offset relative to index start

Object count (current 1)

Beginning ofMaster Index

2

2

4

Number of index entries

Size of an object entry

(102 = paragraph style)
Pointer to object index

Beginning ofobject index

1

4

24

Number of index entries

(14 = paragraph style)
Link to next index block relative to the start

of the master index

Object name (left justified, padded
with blanks)

Table 17.22

Master index

(continues
over...)

WordStar format 403

Bytes Field description

Beginning of object index

5 Internal use

4 Pointer to style definition

Style definition

3*2

4

Font description (-1 = inherited)
Reserved

2

2

2

2

Left border in HMI (-2 = inherited)
Right border in HMI (-2 = inherited)

Paragraph limit in HMI (-2 = inherited)
Reserved

1

1

32*2

2

Number of regular tabs (0 = inherited)
Number of decimal tabs (0 = inherited)
Tab stops in HMI, regular tabs first
(If 1st tab stop = -1, tabs are inherited)
Reserved

1 Justify flag
0 No

-1 Inherited from another font

1 Left

2 Centered

3 Right

1 Word-wrap flag
0 Off

-1 Inherited from another font

1 On

2

1

2

Line height in VMI (-1 = inherited)

Line spacing 1-9 (-1 = inherited)
Print attribute on

2 Print attribute off

1

6

Color (-1 = inherited)
Reserved

Table 17.22

Master index

(cont.)

If the print attribute bits in both words are set to off, the relevant attribute is adopted
(inherited) from another font. The coding for the individual bits is shown in Table 17.23.

The coding for colors is described in Subsection 17.1.2.1.

404 Word processing formats

Strikeout 000000000000001B

Doublestrike 000000000000010B

Underlining 000000000001000B

Subscript 000000000010000B

Superscript 000000000100000B

Bold 000000001OOOOOOB

Italics 000000010000000B

Table 17.23

Print attributes

en

WordPerfect format

The WordPerfect Corporation offers the very
successful word processing program,
WordPerfect, which operates not only on DOS

PCs but also on DEC VAX computers and UNIX
machines.

Versions 4.x/6.x of WordPerfect use a mixture of ASCII and binary format for storing text files. In
version 4.x, format codes are embedded in the text; from version 5.0 the WPF files are divided into
two parts as shown in Figure 18.1:

Header

Text with

format info
Figure 1S.1

Structure of a

WordPerfect file

(version 5.0)

This chapter deals particularly with version 5.0. Figure 18.2 shows an extract from a WordPerfect
file in the form of a hex-dump.

405

406 Word processing formats

Signature -1 WPC

Offset beginning of text

Product type
1 File type

FF 57 50 43 E8 02 00 00 01 0A 00 00 00 00 00 00

W P C
lot- Tnddi. Klj->jllr

1
_li>L 11H.1L.A [JlU^lY

FB FF 05 00 32 00 AA 02 00 00 02 00 56 00 00 00

2 V

42 00 00 00 07 00 16 00 00 00 98 00 00 00 OC 00

B

57 00 00 00 AE 00 00 00 03 00 A5 01 00 00 05 01

w

00 00 00 00 FF FF 7A 00 4E 00 78 00 78 00 78 00

OA 00 01 00 00 00 00 00 F4 01 55 5E DB 01 78 00

14 1E OC 17 8C OA 00 00 00 04 11 40 C9 00 87 CF

01 00 01 00 FF FF FF FF FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF 43 6F 75 72 69 65 72 20

Courier

31 30 70 74 20 31 30 20 50 69 74 63 68 00 00 00

10pt 10 Pitch

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

11 00 00 00 00 D3 11 08 00 55 53 44 45 08 00 11

U S D E

D3 D3 00 OC 00 2E 00 2C 00 2C 00 2E 00 OC 00 00

D3 DO OB C5 00 90 33 D8 27 01 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 90 33 D8 27 01 08 53 74 61 6E 64 61

3 ' S t a n d a

72 64 00 00 00 00 00 00 00 00 00 00 00 00 00 00

r d

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 DO 36 C2 26 01 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 DO 36 C2 26 01 00 53 74 61 6E 64 61 72

6 8 Standar

64 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

mffni
Figure 18.2
Hex-dump of a
WordPerfect file

(continues
over...)

WordPerfect format 407

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 03 08 C5 00 OB DO D2 03 AO 00 00 01

C8 00 58 02 30 01 31 00 00 00 00 00 00 00 00 00

C3 05 C3 8D C4 05 C4 00 00 00 00 00 00 00 00 00

00 00 00 00 20 20 20 20 20 C3 05 C3 8D C4 05 C4

00 00 00 00 00 00 00 00 BO 04 BO 04 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 01 C8 00

58 02 30 01 31 00 00 00 00 00 00 00 00 00 C3 05

C3 8D C4 05 C4 00 00 00 00 00 00 00 00 00 00 00

00 00 C3 05 C3 8D C4 05 C4 00 8D C4 05 C4 00 00

00 00 00 00 00 00 BO 04 BO 04 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 AO 00 03 D2 DO 03

08 00 19 OA OF 08 08 00 03 DO D3 OB OC 00 3C 00

I
— 2. Index

block
90 01 50 00 C8 00 OC 00 OB D3 FB FF 05 00 32 00

00 00 00 00 09 00 02 00 00 00 DC 02 00 00 06 00

08 00 00 00 DE 02 00 00 08 00 02 00 00 00 E6 02

00 00 00 00 00 00 00 00 00 00 00 00 03 08 00 23
T-TfinHpr fsriH

Begintext
area

7C 00 3C 00 00 00 00 00 54 68 69 73 20 20 69 73

This is

20 61 20 74 65 78 74 20 69 6E 20 57 6F 72 64 50

a text in WordP

65 72 66 65 63 74 2C 20 77 69 74 68 20 63 68 61

erfect, with cha

72 2E 20 20 CO 1E 01 CO CO 3F 01 CO CO 46 01 CO

r . A 6 U

OA C4 01 C4 C4 02 C4 C4 03 C4 C4 04 C4 OA
Figure 18.2

Hex-dump of a
WordPerfect file

(cont.)

Format information in the text is enclosed between special codes such as COH...COH.

18.1 WordPerfect header (version 5.0)

As can be seen from Figure 18.3, WordPerfect stores a header at the start of the file containing
information about the contents of the file. The first 16 bytes contain an identification record
which is used in all products manufactured by WordPerfect.

The first 4 bytes contain a signature which identifies the file as a WP text file. This is followed
by a 4-byte pointer, indicating the offset from the start of the file to the first text character. The
next byte indicates the type of product produced by the file. The byte at offset 09H indicates the
document type. The first 10 numbers are reserved for general purposes; the numbers above 10 are
coded according to the product used (Table 18.1 shows the relevant codes). Version numbers,
which come next, are always indicated by the value 0.0 in WordPerfect 5.0. In the encryptionflag,
the value 0 indicates an unencrypted file; other values are interpreted as keys. Table 18.1 contains
a detailed description of the header:

408 Word processing formats

Offset Bytes Field description

File ID headerf or all WPCORP products

00H 4 WP signature -1,'WPC'

04H 4 Pointer to 1st text character

08H 1 Product type

1 WordPerfect

2 Shell

3 Notebook

4 Calculator

5 File manager

6 Calendar

7 Program editor
8 Macro editor

9 PlanPerfect

10 DataPerfect

11 Mail

12 Printer (PTR. EXE)

13 Scheduler

14 WordPerfect office

09H 1 File type

1 Macro file

2 Help file
3 Keyboard definition file
4 —

9 —

10 WP document

11 Dictionary file
12 Thesaurus file

13 Block

14 Rectangle block
15 Column block

16 Printer resource file (. PRS)

17 Setup file
18 Prefix information file

19 Printer resource file

(•ALL)

20 Display resource file
(.DRS)

21 Overlay file (WP.FIL)
22 WP graphic file (.WPG)

Table 18.1

Header prefix
of a WP file

(continues
over...)

WordPerfect format 409

Offset Bytes Field description

23 Hyphenation code module

24 Hyphenation data module

25 Macro resource file (MRS)

26 Graphic driver (WPD)

27 Hyphenation Lex module
OAH 1 Major version number
OBH 1 Minor version number

OCH 2 Encryption flag (0 = not encrypted)
OEH 2 Reserved (0)

p

t

r

—•

16 byte header

1st Index block | Index 1 | ...

Index 4 | Data ...

2nd Index block | Index 1 |

Index 4 | Data ...

Beginning of text

Table 18.1

Header prefix of
a WP file (cont.)

This 16-byte header is followed by one or more index blocks (WordPerfect 5.0) containing
additional product-specific information. These index blocks contain indices and data.

Figure 18.3 shows the structure of the WordPerfect header version 5.0:

Figure 18.3
The headers and

index blocks

The first 16 bytes of the ID header are followed by the header of the first index block; the
length and contents of this header vary according to the particular file. The offset in Table 18.2
refers to the beginning of the index block. The value 10H should be added to the offsets in the first
index block in order to calculate the offset from the start of the file.

The first word of the index block contains a signature identifying its type. For WP 5.0, this
value is always FFFBH. The codes FFFCH to FFFEH are reserved so far. The signature FFFFH indicates
a deleted index block which is still physically in the file. The number of indices in this block is
stored at offset 02H. For WordPerfect 5.0, this value is always 5, because the block accommodates
the header and 4 additional indices. The following word specifies the size of the index block in
bytes. This is followed by a 4-byte pointer to the next index block in the file header. WordPerfect
5.0 is capable of creating several index blocks within the file header. The last index block of the
series contains the value 00H 00H 00H 00H in this field.

410 Word processing formats

Offset Bytes Field description

OOH 2 Signature

OOOOH End of prefix area
FFFBH Next header index block

FFFCH Reserved (find next read)
FFFDH Reserved (find first)
FFFEH Reserved (matches any packet)
FFFFH Deleted packet

02H 1 Number of indices (including the header)
(for WP 5.0 always 5)

04H 1 Size of the index block

04H 4 File position of next index block

08H 2 Type of index 1

OAH 4 Length of data packet 1 in bytes

OEH 4 File position of data packet 1
12H 2 Type of index 2

14H 4 Length of data packet 2 in bytes
18H 4 File position of data packet 2
1CH Index 3...4

Data for index block
Table 18.2

Format of an

index block in

the header

The header of the index block is followed by the headers of the 4 indices. These headers
contain the type, length and address of the relevant data (Table 18.2 shows the corresponding data
structures). The first word gives the type of the data block. The entry OOH here indicates the end of
the index area. The appropriate coding is shown in Table 18.3:

Type Field description

Packet types in a document block

OOOOH End of index area

0001H Document summary

0002H Reserved

0003H Document standard values

0004H Reserved

0005H Reserved

0006H Document flags

0007H Font name string pool
Table 18.3

Index packet
types (continues
over...)

WordPerfect format 411

Type Field description

0008H Graphic image data
0009H Format hash table

000AH List of fonts used

000BH Reserved

000CH Document printer information
000DH Reserved

OOFFH Reserved

01 OOH Style packets

01FFH Style packets
0200H PS tables for fonts 0-FFH

02FFH Style packets

Packet types in SetUp-files

0001H Font list

0002H Font string pool
0003H PS table list

0004H

000FH Reserved

0010H Path names of Thesaurus/Dictionary
0011H Screen type information
0012H Miscellaneous (Backup time, etc.)
0013H [CtrTI and [Alt] key mappings
0014H System default values
001 5H Reserved

0016H Reserved

0017H Miscellaneous (for SetUp)
0018H Reserved

0019H Reserved

001AH Default printer selection
001BH Printer selection list

001CH Reserved

001 FH Reserved

0020H Screen attribute monochrome

0021H Screen attribute CGA

0022H Screen attribute PC 3270

0023H Screen attribute EGA (italics) Table 18.3

Index packet
types (cont.)

412 Word processing formats

Type Field description

0024H Screen attribute EGA (underline)

0025H Screen attribute EGA (small caps)

0026H Screen attribute EGA (reserved)

0029H Screen attribute EGA (reserved)

002AH Screen attribute Hercules RamFont (12 fonts)

002BH Screen attribute Hercules RamFont (6 fonts)

002CH Screen attribute Hercules RamFont Reserved

002FH
ii

Offset

OOH

02H

Bvtes Field description

Number of graphic images

Size of first graphic image

Size of last graphic image

Data for first graphic image

Data for last graphic image

18.2 WordPerfect data areas

Table 18.3

Index packet
types (cont.)

The length of the data packet is stored in the next 4-byte field; this is followed by a 4-byte field
containing the address of the data as an offset from the start of the file to the data area.

The packet type 0008H indicates graphic data within the file. This type of packet can appear
only at the end of the last block. The value in the length field is always either 0 or 2; 0 indicates
that there is no graphic data. Otherwise the data is located at the position given by the following
pointer. The format of this data area is shown in Table 18.4.

The structure of the remaining data areas is not known. In addition to the codes mentioned,
WordPerfect 5.0 already uses some of the codes marked as reserved.

Table 18.4

Graphic image
data packet

The text area consists of the actual ASCII characters and control codes positioned between these

characters. In version 5.0, the text area begins after the header; the start of the text is indicated by
a pointer at offset 04H. In version 4, there is no header, and the text area begins immediately at the
start of the file.

WordPerfect format 413

Only the ASCII characters between 20H and 7FH are used to represent text. The codes 0-1 FH

are used for formatting as are codes 80H-FFH.
WordPerfect 5.0 distinguishes between 1-byte control codes and multi-byte codes - for example

German umlauts are placed between COH characters. Since the format codes for versions 4.0 and

5.0 are broadly similar, the following information applies to both versions. Deviations from this
rule are indicated explicitly.

In the following text, various units of measurement are given for coordinates in WordPerfect
protocols. The wpu unit (WordPerfect unit) represents Vnm inch. The su (screen unit) represents 1
screen display column.

18.2.1 1-byte control codes from OOH to BFH

Codes lower than 20H are used for line feeds and tabs. In this respect, they correspond to the
codes used generally in text files. The relevant coding is shown in Table 18.5.

.

Code Version Field description

01H 4.0/5.0 Reserved

02H 5.0 Page number printed here
03H 5.0 Merge codes C
04H 5.0 Merge codes D
05H 5.0 Merge codes E
06H 5.0 Merge codes F
07H 5.0 Merge codes G
08H 4.0/5.0 Reserved

09H 4.0 Hard tab (Reserved in 5.0)
0AH 4.0/5.0 Hard return

0BH 4.0/5.0 Soft new page
0CH 4.0/5.0 Hard new page in 4.0

Hard return in 5.0

0DH 4.0/5.0 Soft new line

0EH 5.0 Merge codes N
0FH 5.0 Merge codes O
10H 5.0 Merge codes P
11H 5.0 Merge codes Q
12H 5.0 Merge codes R
13H 5.0 Merge codes S
14H 5.0 Merge codes T

15H 5.0 Merge codes U
16H 5.0 Merge codes V
17H 5.0 Reserved

1FH 5.0 Reserved
Table 18.5

Control codes

between OOH

and 1 FH

414 Word processing formats

Version 4.0 uses only a few of the codes shown in Table 18.5. Merge files are not given a start
code in version 4.0. The end is simply terminated with (Ctrl) [R] and |ReM (hard return).

The codes between 20H and 7FH represent the normal ASCII characters. Accents and special
characters appear between the codes COH. . . COH, from version 5.0 onwards. Further details of this
process are given in Subsection 18.2.2.

Table 18.6 gives the meaning of the control codes between 80H and BFH.
Version 4.0 defines the codes BCH (superscript), BDH (subscript), BEH (advance printer Yi line

up) and BFH (advance printer Vi line down). Version 5.0 no longer uses these codes.

Code Version Field description

80H 4.0/5.0 Temporary (always deleted)

81H 4.0/5.0 Right justification on

82H 4.0/5.0 Right justification off

83H 4.0/5.0 End of centered/aligned text

84H 4.0 End of aligned text

5.0 Reserved

85H 4.0 Temporary start point for a

calculation formula

5.0 Placeholder

86H 4.0/5.0 Center page top to bottom

87H 4.0/5.0 Columns on

88H 4.0/5.0 Columns off

(at top of page)

89H 4.0 Tab right border

5.0 Reserved in 5.0

8AH 4.0/5.0 Widow/Orphan on

8BH 4.0/5.0 Widow/Orphan off

8CH 4.0/5.0 Soft Page/Hard Return

8DH 4.0/5.0 Footnote/Endnote number

8EH 5.0 Figure number

8FH 5.0 Reserved

90H 4.0 Red line on

5.0 Deletable return at end of line

91H 4.0 Red line off

5.0 Deletable return at end of page

92H 4.0 Strikeout on

5.0 End of page

(deleted when forward formatted)

93H 4.0 Strikeout off

5.0 Invisible return in line

Table 18.6

Single-byte
functions (codes
between 80H and

BFH)
(continues
over...)

WordPerfect format 415

Code Version Field description

94H 4.0 Underline on

5.0 Invisible return at end of line

95H 4.0 Underline off

5.0 Invisible return at end of page
96H 4.0 Reverse video on

5.0 Block on

97H 4.0 Reverse video off

5.0 Block off

98H 4.0/5.0 Place holder (Table of Contents)
99H 4.0 Overwrite

5.0 Reserved

9AH 4.0 Cancel hyphenation next word
5.0 Cancel hyphenation

9BH 4.0/5.0 End of generated text
9CH 4.0 Bold on

5.0 Reserved

9DH 4.0 Bold off

5.0 Reserved

9EH 4.0/5.0 Hyphenation off
9FH 4.0/5.0 Hyphenation on
AOH 4.0/5.0 Hard space
A1H 4.0/5.0 Do sub-total

A2H 4.0/5.0 Sub-total entry
A3H 4.0/5.0 Do total

A4H 4.0/5.0 Total entry
A5H 4.0/5.0 Do grand total
A6H 4.0/5.0 Calculation column

A7H 4.0/5.0 Math on

A8H 4.0/5.0 Math off

A9H 4.0/5.0 Hard hyphen in line
AAH 4.0/5.0 Hard hyphen at end of line
ABH 4.0/5.0 Hard hyphen at end of page
ACH 4.0/5.0 Soft hyphen in line
ADH 4.0/5.0 Soft hyphen at end of line
AEH 4.0/5.0 Soft hyphen at end of page
AFH 4.0/5.0 Columns off at end of line

BOH 4.0/5.0 Columns off at end of page
B1H 5.0 Math negate
B2H 5.0 Reserved

BFH 5.0 Reserved

Table 18.6

Single-byte
functions

(codes between
80H and BFH)
(cont.)

416 Word processing formats

18.2.2 Fixed-length multi-byte control codes from COH to CFH

WordPerfect uses these control codes, for example, for representing special characters and
accents. Since there are considerable differences in coding between Versions 4.0 and 5.0, the

following description is limited to version 5.0.

18.2.2.1 Extended Character (code COH)

Version 5.0 uses this control code to enclose characters above 80H. The format is as shown in

Table 18.7.

Altogether, WordPerfect has 12 fonts, which must be taken into account in displaying special
characters. The third byte in the record therefore indicates the number of the font.

Offset Bytes Field

OOH

01H

02H

03H

1

1

1

1

Extended character on (Code COH)

Character code

Font number 1-12

Extended character off

18.2.2.2 Center, Align, Tab, Left Margin (code C1H)

In version 5.0, this record contains the following formatting information:

Offset Bytes Field

OOH 1 Begin function (Code C1H)

01H 1 Flags
Bits 7- -6: 00 Tab

01 Align

10 Left margin release
11 Center

Bit 5: 1 Center between margins,
Flush right

Bit 4: 1 for dot leader

Bit 3: 0 align on alignment char
1 right justify/center tabs

02H 2 Old current column number (su)

04H 2 Absolute center/align/tab position (wpu)

06H 2 Position of start column (su)

08H 1 End function code

Table 18.7

Opcode COH in
version 5.0

Table 18.8

Opcode C1H in
version 5.0

WordPerfect format 41 7

18.2.2.3 Indent (code C2H)

This record is used for indented text in version 5.0:

-

Offset Bytes Field

OOH 1 Begin function (Code C2H)
01H 1 Flags

Bit 0: 0 left indent

1 left/right indent
Bit 4: 1 dot leader

02H 2 Difference between new and old

temporary margins (wpu)
04H 2 Old current column number (wpu)
06H 2 Absolute indent position (su)
08H 2 Start column position (wpu)
OAH 1 End function code

18.2.2.4 Attributes On (code C3H)

This record switches the attributes on (version 5.0):

Offset Bytes Field

OOH 1 Begin function (Code C3H)
01H 1 Attribute type

0: Extra large
1: Very large
2: Large
3: Small

4: Fine

5: Superscript
6: Subscript
7: Outline

8: Italics

9: Shadow

10: Red line

11: Double underline

12: Bold

13: Strikeout

14: Underline

15: Small capitals
02H 1 End function code

Table 18.9

Opcode C2H in
version 5.0

Table 18.10

Opcode C3H in
version 5.0

418 Word processing formats

18.2.2.5 Attributes Off (code C4H)

This record switches the attributes off (version 5.0).

Offset Bytes Field

OOH

01H

1

1

Begin function code (Code C4H)
Attribute type

0: Extra large
1: Very large

2: Large

3: Small

4: Fine

5: Superscript

6: Subscript

7: Outline

8: Italics

9: Shadow

10: Red line

11: Double underline

12: Bold

13: Strikeout

14: Underline

02H 1

15: Small capitals

End function code

Table 18.11

Opcode C4H in
version 5.0

18.2.2.6 Block Protect (code C5H)

In version 5.0, this record protects a block from revisions.

Offset Bytes Field

OOH

01H

02H

04H

1

1

2

1

Begin function code (Code C5H)
0: Block protect on
1: Block protect off

Number of vertical wpu in block
End function code

Table 18.12

Opcode C5H in
version 5.0

WordPerfect format 419

18.2.2.7 End of indent (code C6H)

This record indicates the end of indented text in version 5.0.

FieldOffset Bytes

OOH

01H

03H

05H

1

2

2

1

Begin function code (Code C6H)
Old right temporary margin (wpu)
Old left temporary margin (wpu)
End function code

Table 18.13

Opcode C6H in
version 5.0

18.2.2.8 Different display character when hyphenated (code C7H)

In version 5.0, this record defines the characters displayed in a hyphenation zone.

Offset Bytes Field

OOH 1 Begin function code (Code C7H)
01H 1 Flags

BitO: 1 word is hyphenated

next to function

Bit 1: 1 this function precedes
hyphenation

0 this function follows

hyphenation
02H 2 Character when in line

04H 2 Character when hyphenated
06H 1 End function code

The codes between C8H and CFH are reserved in version 5.0.

Table 18.14

Opcode C7H in

version 5.0

18.2.3 Variable length multi-byte control codes between DOH and FFH

WordPerfect uses these control codes to store format information. All records are symmetrical, so
that the codes can be interpreted in both directions. The definitions given below are for version 5.0.

420 Word processing formats

18.2.3.1 Set lines per inch (code DOH, subcode OOH)

In version 5.0, WordPerfect uses this record to define the number of lines per inch. The function is
a sub-function of code DOH.

Offset Bytes Field

OOH 1 Set lines per inch (Code DOH)

01H 1 Sub-function code OOH

02H 2 Length word (value = 8)

04H 2 Old value of lines per inch
06H 2 New value of lines per inch

08H 2 Length word (value = 8)

OAH 1 Sub-function code OOH

OBH 1 End function code (Code DOH)

18.2.3.2 Set left/right margin (code DOH, subcode 01H)

In version 5.0, WordPerfect uses this record to define the left and right margins.

Offset Bytes Field

OOH 1 Set left/right margin (Code DOH)

01H 1 Sub-function code 01H

02H 2 Length word (value = 12)

04H 2 Old value for left margin (wpu)
06H 2 Old value for right margin (wpu)

08H 2 New value for left margin (wpu)

OAH 2 New value for right margin (wpu)

OCH 2 Length word (value = 12)

OEH 1 Sub-function code 01H

0FH 1 End function code (Code DOH)

Table 18.15

Opcode DOH, OOH
in version 5.0

Table 18.16

Opcode DOH. 01 H
in version 5.0

18.2.3.3 Set spacing (code DOH, subcode 02H)

In version 5.0, WordPerfect uses this record to define the line spacing. The spacing values occupy
two bytes. The low byte defines the space in Vise of the line height. The high byte defines the
multiple of the line height.

WordPerfect format 421

Offset Bytes Field

OOH 1 Set spacing (Code DOH)

01H 1 Sub-function code 02 H

02H 2 Length word (value = 8)
04H 2 Old value for line spacing
06H 2 New value for line spacing
08H 2 Length word (value =12)
OAH 1 Sub-function code 02 H

OBH 1 End function code (Code DOH)

18.2.3.4 Set hyphenation zone (code DOH, subcode 03H)

In WordPerfect 5.0, this record defines the hyphenation zone.

Offset Bytes Field

OOH 1 Set hyphenation zone (Code DOH)
01H 1 Sub-function code 03 H

02H 2 Length word (value = 8)
04H 1 Old value of left hyphenation zone
05H 1 Old value of right hyphenation zone
06H 1 New value of left hyphenation zone
07H 1 New value of right hyphenation zone
08H 2 Length word (value = 8)
OAH 1 Sub-function code 03 H

OBH 1 End function code (Code DOH)

Table 18.17

Opcode DOH, 02H
in version 5.0

Table 18.18

Opcode DOH, 03H
in version 5.0

The values of the hyphenation zone are defined as binary (0 to 255). These values will be recal
culated as percentages (128/256 = 50%).

18.2.3.5 Set tabs (code DOH, subcode 04H)

This record defines the tab outputs. The 20 bytes containing the tab types store each tab code in 4
bits. Each byte stores two codes. All tab positions are defined in wpu (WordPerfect units).

422 Word processing formats

Offset Bytes Field

OOH 1 Set tabs (Code DOH)
01H 1 Sub-function code 04H

02H 2 Length word (value = 204)
04H 80 40 entries for old tab positions
58H 20 40 old tab types (1 nibble/tab)

Coding for tab types
0: Normal left justified
1: Tab centered

2: Tab right aligned
3: Decimal aligned tab
4: Left justified tab

with dot leader

5: —

6: Right justified
with dot leader

7: Decimal aligned
with dot leader

6CH 80 40 entries for new tab positions

COH 20 40 old tab types (1 nibble/tab)

D4H 2 Length word (value = 204)

D6H 1 Sub-function code 04H

D7H 1 End function code (Code DOH)

18.2.3.6 Set top/bottom margin (code DOH, subcode 05H)

Offset Bytes Field

OOH 1 Set top/bottom margin (Code DOH)

01H 1 Sub-function code 05H

02H 2 Length word (value =12)

04H 2 Old value for top margin
06H 2 Old value for bottom margin

08H 2 New value for top margin
OAH 2 New value for bottom margin

0CH 2 Length word (value = 12)
0EH 1 Sub-function code 05H

OFH 1 End function code (Code DOH)

Table 18.19

Opcode DOH, 04H
in version 5.0

Table 18.20

Opcode DOH, 05H
in version 5.0

WordPerfect format 423

In version 5.0, WordPerfect uses this record to define the top and bottom margins. All values

are defined in wpu.

18.2.3.7 Suppress page characteristics (code DOH, subcode 07H)

WordPerfect uses this record to define page formatting information (page numbering, header, and
so on). The suppress code contains several bit fields. If the relevant bit is set, the line numbering
and/or the header/footer will be suppressed.

Offset Bytes Field

OOH 1 Suppress page characteristics
(Code DOH)

01H 1 Sub-function code 07H

02H 2 Length word (value = 6)
04H 1 Old suppress code

Coding:
1 = Suppress page numbering

2 = Suppress current page
numbering and print page
number at bottom center

4 = Suppress header A

8 = Suppress header B

10= Suppress footer A
20 = Suppress footer B

05H 1 New suppress code
06H 2 Length word (value = 6)
08H 1 Sub-function code 07H

09H 1 End function code (Code DOH)

18.2.3.8 Page number position (code DOH, subcode 08H)

This record type defines a new page number position.

Offset Bytes Field

OOH

01H

02H

1

1

2

Page number position (Code DOH)

Sub-function code 08H

Length word (value = 10)

Table 18.21

Opcode DOH, 07H
in version 5.0

Table 18.22

Opcode DOH. 08H
in version 5.0

(continues
over...)

424 Word processing formats

Offset Bytes Field

04H 1 Old position code (page number)
Coding:

0 = None

1 = Top left
2 = Top center

3 = Top right
4 = Alternate top left/right
5 = Bottom left

6 = Bottom center

7 = Bottom right
8 = Alternate bottom

left/right

05H 2 Old font size (vvpu)
07H 1 New position code

08H 2 New font size (wpu)
OAH 2 Length word (value = 10)

OCH 1 Sub-function code 08H

ODH 1 End function code (Code DOH)

18.2.3.9 Form (code DOH, subcode OBH)

This record defines the text format.

Offset Bytes

OOH 1

01H 1

02H 2

04H 2

06H 2

08H 1

09H 1

Field

Form (Code DOH)
Sub-function code OBH

Length word (value = 197)
Old desired length
Old desired width

Old desired type
Old desired type-name length

Table 18.22

Opcode DOH, 08H
in version 5.0

(cont.)

Table 18.23

Opcode DOH. OBH
in version 5.0

(continues
over...)

WordPerfect format 425

Offset Bytes Field

OAH 41 Old desired type name
33H 2 Old effective length
35H 2 Old effective width

37H 1 Old effective type
38H 1 Old effective type name length
39H 41 Old effective type name
62H 1 Old effective orientation

0 = Portrait, 1 = Landscape
63H 2 New desired length
65H 2 New desired width

67H 1 New desired type
68H 1 New desired type name length
69H 41 New desired type name
92H 2 New effective length
94H 2 New effective width

96H 1 New effective type
97H 1 New effective type name
98H 41 New effective type name length
C1H 1 New effective orientation

C2H 1 Matched form number

C3H 2 Matched form hash value

C5H 0 Length word (value = 197)
C7H 1 Sub-function code OBH

C8H 1 End function code (Code DOH) Table 18.23

Opcode DOH. OBH
in version 5.0

(cont.)

18.2.4 Font group sub-function (code D1H)

WordPerfect 5.0 uses this group of records to select the font and to define several other
parameters. A subcode defines the function of each record.

18.2.4.1 Color (code D1H, subcode OOH)

This record defines the color of the text output. The colors are defined with 3-byte values. Each
byte defines a value between 0 and FFH for the basic color (red, green, blue).

426 Word processing formats

Offset Bytes Field

OOH 1 Color (Code D1H)
01H 1 Sub-function code OOH

02H 2 Length word (value = 10)
04H 3 Old color as RGB with

3 bytes (red, green, blue) 0-FFH
07H 3 New color as RGB

OAH 2 Length word (value = 10)
OCH 1 Sub-function code OOH

ODH 1 End function code (Code D1H)
Table 18.24

Opcode D1H. OOH
in version 5.0

18.2.4.2 Font change (code D1H, subcode 01H)

WordPerfect 5.0 uses this record to define character sets. Some values are defined as WordPerfect

Units (wpu, /1200 inch). The unit psu (Point Size Unit) is Koooo of the associated character point size.
The typeface descriptor contains information on serif characters, grayscale, height, and so on.
Each item of information is stored in a 3-bvte data structure.

Offset Bytes Field

OOH 1 Font change (Code D1H)

01H 1 Sub-function code 01H

02H 2 Length word (value = 32)

04H 1 Old font number

05H 24 New font description:

2 Point size (in 3600ths)

2 Optimum width (in wpu)

2 Capital height (in psu)
2 x height (in psu)
2 Descender height (in psu)

2 Italic adjustment (in psu +/-)

3 Typeface descriptor

1 Typeface definition flag
1 Hash of typeface name
1 Reserved (always 0)

2 Hash of font name

4 Character set completeness bits

1 bit per character set in each word

Table 18.25

Opcode D1H, 01 H
in version 5.0

(continues
over...)

WordPerfect format 427

Offset Bytes

1DH 1

1EH 2

20H 2

22H 1

23H 1

Field

Matched font

Matched font hash value

Length word (value = 32)

Sub-function code 01H

End function code (Code D1H)
Table 18.25

Opcode D1H. 01 H

in version 5.0

(cont.)

In version 5.0, all other subcodes are undefined in function D1 H.

18.2.5 Group definition sub-function (code D2H)

This group of records defines various parts of a document (columns, paragraphs, and so on).

18.2.5.1 Define mathematical columns (code D2H, subcode OOH)

This record defines columns containing calculation formula.

Offset Bytes Field

OOH 1 Define math columns (Code D2H)
01H 1 Sub-function code OOH

02H 2 Length word (value = 212)
04H 24 Old math definition

1CH 20 Old calculation 0

30H 20 Old calculation 1

44H 20 Old calculation 2

58H 20 Old calculation 3

6CH 24 New math definition

84H 20 New calculation 0

98H 20 New calculation 1

ACH 20 New calculation 2

COH 20 New calculation 3

D4H Length word (value = 212)

D6H 1 Sub-function code OOH

D7H 1 End function code (Code D2H)
Table 18.26

Opcode D2H. OOH

in version 5.0

428 Word processing formats

18.2.5.2 Define columns (code D2H, subcode 01H)

This record defines columns in WordPerfect 5.0.

Offset Bytes Field

OOH 1 Define Columns (Code D2H)

01H 1 Sub-function code 01H

02H 2 Length word (value = 198)
04H 1 Old number of columns

05H 24*2 Old left/right columns margins
35H 1 New number of columns

Bit 0-4: columns 2-24

Bit 5: —

Bit 6: 1 parallel columns

Bit 7: 1 parallel columns
with block protected

36H 48 New left/right column margins
66H 2 Length word (value = 198)

68H 1 Sub-function code 01H

69H 1 End function code (Code D2H)
Table 18.27

Opcode D2H, 01H
in version 5.0

18.2.5.3 Paragraph number definition (code D2H, subcode 02H)

This record defines a new paragraph number as shown in Table 18.28.

The data structure at offset 2CH defines the punctuation characters in bytes 1 and 3. Byte 2
contains the code for paragraph numbering as shown in Table 18.29.

Offset Bytes Field

OOH 1 Paragraph number definition (Code D2H)

01H 1 Sub-function code 02 H

02H 2 Length word (value = 84)

04H 24 8 x 3-byte entries for old definitions

1CH 16 8 x 2-byte entries for old even numbers

2CH 24 8 x 3-bvte entries with new definitions

44H 16 8 x 2-byte entries for new even numbers

54H 2 Length word (value = 84)

56H 1 Sub-function 02H

57H 1 End function code (Code D2H) Table 18.28

Opcode D2H, 02H
in version 5.0

WordPerfect format 429

Character Numbering

I:

i:

A:

a:

1:

Uppercase Roman numerals
Lowercase Roman numerals

Capital letter
Lower case letter

Arabic numerals
Table 18.29

Paragraph
numbering
characters

Spaces are not included in paragraph numbers. If the first byte of an entry is 0, the second and
third bytes will represent the character used for a bullet.

18.2.5.4 Footnote options (code D2H, subcode 03H)

WordPerfect 5.0 stores footnotes in this record.

Offset Bytes Field

OOH 1 Footnote options (Code D2H)

01H 1 Sub-function code 03H

02H 2 Length word (value = 160)

04H 78 Old value

52H New value (78 bytes)

2 Spacing in footnotes

2 Spacing between footnotes
2 Number of footnotes kept together
1 Flags

Bits 0-1: 0 use numbers

1 use characters

2 use letters

Bit 2: 1 numbering starts on each page

Bit 3: 1 footnote continued mark

Bit 4: 0 footnotes after text

1 footnotes at bottom of page
Bits 6-5: 0 = no line separator

1=2 inch line

2 = line from left to right
margin

1 Number of chars used in place of
footnote numbers

Table 18.30

Opcode D2H. 03H
in version 5.0

(continues
over...)

430 Word processing formats

Offset Bytes Field

5*2 Chars for footnote number

(ASCII string, if n < 5)
20 String for footnote number in text
20 String for footnote number in note

2 Left margin for footnotes (in wpu)
2 Right margin for footnotes (in wpu)
2 Lines/inch for footnotes

2 Character width for footnotes

(0 = auto)
2 Space width in footnotes

2 Minimum space for footnotes
2 Maximum space for footnotes
2 Attribute for footnotes

3 Footnotes color

1 Footnotes font

AOH 2 Length word (value = 160)

A2H 1 Sub-function code 03H

A3H 1 End function code (Code D2H)

The fields containing old and new footnote settings have the same structure.

Table 18.30

Opcode D2H, 03H
in version 5.0

(cont.)

18.2.5.5 Endnote options (code D2H, subcode 04H)

WordPerfect 5.0 uses this record to store endnotes as shown in Table 18.31. This record structure

is similar to the structure of the footnote options record. The fields for old and new endnote
options have the same structure.

Offset Bytes Field

OOH 1 Endnote options (Code D2H)

01H 1 Sub-function code 04H

02H 2 Length word (value = 160)

04H 78 Old value

52H New value (78 bytes)

2 Spacing in endnotes
2 Spacing between endnotes

2 Number of endnotes kept together

Table 18.31

Opcode D2H, 04H
in version 5.0

(continues
over...)

WordPerfect format 431

Offset Bytes Field

1 Flags:

Bits 1-0: 0 use numbers

1 use characters

2 use letters

1 Number of chars in place of
endnote numbers

5*2 Chars used in place of endnote

numbers (ASCII string, if n < 5)

20 String for endnote numbers in text
20 String for endnote numbers in note

2 Left margin for endnotes (in wpu)
2 Right margin for endnotes (in wpu)
2 Lines/inch for endnotes

2 Character width for endnotes

(0 = auto)

2 Space width in endnotes

2 Minimum space for endnotes

2 Maximum space for endnotes

2 Attribute for endnotes

3 Endnote text color

1 Font for endnote text

AOH 2 Length word (value = 160)
A2H 1 Sub-function code 04H

A3H 1 End function code (Code D2H)
Table 18.31

Opcode D2H. 04H
in version 5.0

(cont.)

432 Word processing formats

18.2.5.6 Graph box options for figures (code D2H, subcode 05H)

This record is defined in WordPerfect 5.0 to store the graph box options for graphics in a
document.

Offset Bvtes

OOH 1

01H 1

02H 2

04H 62

42H

Field

Graph box options (Code D2H)
Sub-function code 05H

Length word (value =128)
Old values

New values (62 bytes)
Flags
Bits 1--0:Numbering style figures

level 1

1 Numbers

2 Upper case letters
3 Roman numerals

(upper case)
Bits 3--2:Numbering style figures

level 2

0 Unused

1 Numbers

2 Use letters (lower case)
3 Roman numerals

(lower case)

Bit4: 0 Position caption

below window

1 Position caption

above window

Bit 5: 0 Position caption

outside borders

1 Position caption

inside borders

Shading 0-100% (0 = no shade)
Border styles

0 = none

1 = single
2 = double

3 = dashed

4 = dotted

5 = wide

6 = unused

7 = unused

Table 18.32

Opcode D2H, 05H

in version 5.0

(continues
over...)

WordPerfect format 433

Offset Bytes Field

2 Minimum offset from start of

paragraph (in wpu)
4*2 Spacing between border and text

left, right, top, bottom (wpu)
4*2 Spacing between border and picture

left, right, top, bottom (wpu)
20 Text figure number in caption
2 Old figure number
2 Line spacing for captions
2 Lines/inch for captions
2 Character width for captions

(0 = auto)

2 Space width for captions
2 Minimum space for captions
2 Maximum space for captions
2 Attribute for captions
3 Color for captions
1 Font for captions

80H 2 Length word (value = 128)
82H 1 Sub-function code 05H

83H 1 End function code (Code D2H) Table 18.32

Opcode D2H, 05H
in version 5.0

(co?tt.)

18.2.5.7 Graph box options for tables (code D2II, subcode 06H)

This record stores the graph box options for tables. The structure is identical to the graph box
record described above.

18.2.5.8 Graph box options for text boxes (code D2H, subcode 07H)

This record is used to store the graph box options for text blocks. The structure is identical to the
graph box structure described above.

18.2.5.9 Graph box options for user-defined boxes (code D2H, subcode 08H)

This record is used to store the graph box options for user-defined text blocks. The structure is
identical to the graph box structure described above.

434 Word processing formats

18.2.6 Set group sub-functions (code D3H)

WordPerfect 5.0 uses this group of records to store control codes for text formatting. A subcode
defines the function.

18.2.6.1 Set alignment character (code D3H, subcode OOH)

This record defines the characters for hyphenation and alignment.

Offset Bytes Field

OOH 1 Set alignment character (Code D3H)

01H 1 Sub-function code OOH

02H 2 Length word (value = 12)
04H 2 Old alignment character

06H 2 Old hyphenation character

08H 2 New alignment character

OAH 2 New hyphenation character
OCH 2 Length word (value =12)

OEH 1 Sub-function code OOH

OFH 1 End function code (Code D3H)

18.2.6.2 Set underline mode (code D3H, subcode 01H)

WordPerfect 5.0 activates the underline function using this record.

Offset Bytes Field

OOH 1 Set underline mode (Code D3H)

01H 1 Sub-function code 01H

02H 2 Length word (value = 6)

04H 1 Old definition

05H 1 New definition

Bit 0 = 1: underline space

Bit 1 = 1: underline tab,

indents, and so on

06H 2 Length word (value = 6)
08H 1 Sub-function code 01H

09H 1 End function code (Code D3H)

Table 18.33

Opcode D3H, OOH
in version 5.0

Table 18.34

Opcode D3H. 01H
in version 5.0

WordPerfect format 435

18.2.6.3 Set footnote number (code D3H, subcode 02H)

This record defines a new number for the next footnote.

Offset Bytes Field

OOH 1 Set footnote number (Code D3H)
01H 1 Sub-function code 02 H

02H 2 Length word (value = 8)
04H 2 Old number

06H 2 New number

08H 2 Length word (value = 8)
OAH 1 Sub-function 02 H

OBH 1 End function code (Code D3H)

18.2.6.4 Set endnote number (code D3H, subcode 03H)

This record defines a new number for the next endnote.

Offset Bytes Field

OOH 1 Set endnote number (Code D3H)
01H 1 Sub-function code 03H

02H 2 Length word (value = 8)
04H 2 Old number

06H 2 New number

08H 2 Length word (value = 8)
OAH 1 Sub-function 03 H

OBH 1 End function code (Code D3H)

Table 18.35

Opcode D3H, 02H
in version 5.0

Table 18.36

Opcode D3H, 03H
in version 5.0

18.2.6.5 Set page number (code D3H, subcode 04H)

This function defines a new page number. If bit 15 in the word at offset 06H is set, the page
numbers will be displayed in Roman numerals.

436 Word processing formats

Offset Bytes Field

OOH 1 Set page number (Code D3H)

01H 1 Sub-function code 04H

02H 2 Length word (value = 8)

04H 2 Old page number

06H 2 New page number

08H 2 Length word (value = 8)
OAH 1 Sub-function 02H

OBH 1 End function code (Code D3H)

18.2.6.6 Line numbering (code D3H, subcode 05H)

In version 5.0, WordPerfect uses this record to store line numbers.

Offset Bytes Field

OOH 1 Line numbering (Code D3H)

01H 1 Sub-function code 05H

02H 2 Length word (value =14)

04H 1 Old spacing

05H 2 Old position

07H 2 Old starting number

09H 1 New spacing

Bits 4-0: Spacing

Line numbering (1-30)

Bit 5: 1 new numbers on

each page

Bit 6: 1 number only text lines

Bit 7: 1 numbering on

0 numbering off

OAH 2 New position for line numbers

(in wpu, left border to

right border of line number)

OCH 2 New starting number

OEH 2 Length word (value = 14)

10H 1 Sub-function code 05H

11H 1 End function code (Code D3H)

Table 18.37

Opcode D3H. 04H
in version 5.0

Table 18.38

Opcode D3H, 05H
in version 5.0

WordPerfect format 437

18.2.6.7 Advance to page position (code D3H, subcode 06H)

In version 5.0, this record moves forward to a new page position.

Offset Bytes Field

OOH 1 Advance to page position (Code D3H)
01H 1 Sub-function code 06H

02H 2 Length word (value = 9)
04H 1 Flags

BitO: 0 relative

1 absolute

Bit 1: 0 vertical

1 horizontal

05H 2 Old position (in wpu)
07H 2 New position (in wpu)
09H 2 Length word (value = 9)
OBH 1 Sub-function code 06 H

OCH 1 End function code (Code D3H)

18.2.6.8 Force odd/even page (code D3H, subcode 07H)

This record forces a new page on odd/even pages.

Offset Bytes Field

OOH 1 Force odd/even page (Code D3H)
01H 1 Sub-function code 07H

02H 2 Length word (value = 7)
04H 2 Old page number
06H 1 Flags: 0 = even

1 =odd

07H 2 Length word (value = 7)
09H 1 Sub-function code 07H

OAH 1 End function code (Code D3H)

18.2.6.9 Character/space width (code D3H, subcode OAH)

WordPerfect stores the width of character spacing within this record.

Table 18.39

Opcode D3H, 06H
in version 5.0

Table 18.40

Opcode D3H, 07H
in version 5.0

438 Word processing formats

Offset Bytes Field

OOH 1 Character space width (Code D3H)

01H 1 Sub-function code OAH

02H 2 Length word (value =12)

04H 2 Old % of character width

06H 2 Old % of space width

08H 2 New % of character width

OAH 2 New % of space width

OCH 2 Length word (value = 12)

OEH 1 Sub-function code OAH

OFH 1 End function code (Code D3H)

Values are defined as a percentage of the character width.

Table 18.41

Opcode D3H, OAH
in version 5.0

18.2.6.10 Space expansion (code D3H, subcode OBH)

WordPerfect can expand or compress a space to justify the right margin of a line. The parameters
for space expansion are stored in this record.

Offset Bytes Field

OOH 1 Space expansion (Code D3H)

01H 1 Sub-function code OBH

02H 2 Length word (value = 12)

04H 2 Old minimum % of space width

06H 2 Old maximum % of space width

08H 2 New minimum % of space width

OAH 2 New maximum %of space width

OCH 2 Length word (value = 12)

OEH 1 Sub-function code OBH

OFH 1 End function code (Code D3H)

Values are defined as a percentage of the standard space width.

Table 18.42

Opcode D3H. OBH
in version 5.0

WordPerfect format 439

18.2.6.11 Set graph box number for figures (code D3H, subcode OCH)

This record defines the numbers for figures.

Offset Bytes Field

OOH 1 Figure number (Code D3H)

01H 1 Sub-function code OCH

02H 2 Length word (value = 8)
04H 2 Old box number

06H 2 New box number

Bits 4-0: 2nd level number

Bits 15-5: 1st level number

08H 2 Length word (value = 8)
OAH 1 Sub-function code OCH

OBH 1 End function code (Code D3H)
Table 18.43

Opcode D3H, OCH
in version 5.0

18.2.6.12 Set graph box number for tables (code D3H, subcode ODH)

This record defines the table numbering options. The structure is identical to function OCH.

18.2.6.13 Set graph box number for text boxes (code D3H, subcode OEH)

This record defines the options for text blocks. The structure is identical to function OCH.

18.2.6.14 Set graph box number for user-defined boxes (code D3H, subcode OFH)

This record defines the options for user-defined text blocks. The structure is identical to function OCH.

18.2.6.15 Set language (code D3H, subcode 11H)

This record defines the language for a text region.

Offset Bytes

OOH 1

01H 1

02H 2

04H 2

Field

Set language (Code D3H)
Sub-function code 11H

Length word (value = 12)
Old language 2-char ID (ASCII)

Table 18.44

Opcode D3H, OCH
in version 5.0

(continues
over...)

440 Word processing formats

Offset Bytes Field

06H 2 New language 2-char ID (ASCII)
US = American English
DA = Danish

NE = Dutch

SU = Finnish

FR = French

DE = German

IC = Icelandic

IT = Italian

NO = Norwegian

PO = Portuguese

ES = Spanish

SV = Swedish

UK = British English

CA = Canadian French

08H 2 Length word (value = 8)

OAH 1 Sub-function code 11H

OBH 1 End function code (Code D3H) Table 18.44

Opcode D3H. 11H

in version 5.0

(cont.)

18.2.7 Format group sub-functions (code D4H)

WordPerfect version 5.0 uses this group of records to store format information. All records use

code D4H together with a subcode.

18.2.7.1 End of page function (code D4H, subcode OOH)

This record defines the end of a page.

Offset Bytes

OOH 1

01H 1

02H 2

04H 1

05H 1

Field

End of page function (Code D4H)
Sub-function code OOH

Length word (variable)

Group 0 marker
Group 0 length (OBH)

Table 18.45

Opcode D4H. OOH
in version 5.0

(continues
over...)

WordPerfect format 441

Offset Bytes Field

06H 2 Number of formatter lines at

end of page
08H 2 Actual page number of this page
OAH 2 Number of formatter lines used

for footnotes

OCH 1 Number of pages used for footnotes
ODH 1 Number of footnotes on this page
OEH 1 Conditional end of page flag
OFH 1 Suppress code
10H 1 Center page top to bottom
11H 1 Group 1 marker (optional)
12H 1 Group 1 length (variable)
13H Maximum number

xl Maximum screen lines from Col ON

for each column

— 2 Number of formatter lines for

last column

2 Screen lines from Col ON for last line

of last column

2 Screen lines column ON at top page
1 Group 2 marker (optional)
1 Group 2 length (variable)
1 Number of boxes formatter is tracking
x2 Formatter box table

— 2 Length word (variable)
1 Sub-function code OOH

... 1 End function code (Code D4H)

xl is calculated as (columns -1) * 2 bytes, x2 is calculated as 14 * boxes.

18.2.7.2 End of line function (code D4H, subcode 01H)

WordPerfect 5.0 marks the end of a line with this record.

Table 18.45

Opcode D4H. OOH
in version 5.0

(cont.)

442 Word processing formats

Offset Bytes Field

OOH 1 End of line function (Code D4H)

01H 1 Sub-function code 01H

02H 2 Length word (variable)

04H 1 Group 0 marker (optional)

05H 1 Group 0 length (4)

06H 2 Maximum top shoulder height for line

08H 2 Maximum bottom shoulder height

for line

OAH 2 Length word (variable)

OCH 1 Sub-function code 01H

ODH 1 End function code (Code D4H)
Table 18.46

Opcode D4H, 01H
in version 5.0

18.2.7.3 Graph box information function (code D4H, subcode 02H)

This record defines some of the parameters for a graph box.

Offset Bytes Field

OOH 1 Graph box information (Code D4H)

01H 1 Sub-function code 02 H

02H 2 Length word (variable)

04H 1 Group 0 marker

05H 1 Group 0 length (14H)

06H 2 Old left margin (wpu)

08H 2 Old temporary left margin (wpu)

OAH 2 Old right margin (wpu)

OCH 2 Old temporary right margin (wpu)

OEH 2 Old number of formatter lines (wpu)

10H 2 New left margin (wpu)

12H 2 New temporary left margin (wpu)

14H 2 New right margin (wpu)

16H 2 New temporary right margin (wpu)

18H 2 New number of formatter lines (wpu)

1AH 1 Group 1 marker

1BH 1 Group 1 length (boxes * 8 bytes)

Table 18.47

Opcode D4H, 02H
in version 5.0

(continues
over...)

WordPerfect format 443

Offset Bytes Field

1 Flags

Bit 0: 1 = top of box occurs on

this line

Bit 1:1 = middle of box occurs on

this line

Bit 2:1 = bottom of box occurs on

this line

Bits 5-3: box type

0 = figure

1 = table

2 = text box

3 = user-defined box

1 Box numbering mode

... 2 Box number

Bits 4-0: level 2 number

Bits 15-5: level 1 number

2 Box position left (wpu)

2 Box position right (wpu)

2 Length word (variable)

1 Sub-function code 02H

1 End function code (Code D4H)
Table 18.47

Opcode D4H, 02H
in version 5.0

(cont.)

Each box in group 1 uses 8 bytes (including flag and box data). The record length is variable.

18.2.8 Header/footer group sub-functions (code D5H)

WordPerfect 5.0 uses this record to store control information for the header/footer of a page.

18.2.8.1 Header A (code D5H, subcode OOH)

This record defines the parameter for header A. The record stores the header text and the position
of this text on the current page.

The occurrence flag defines the pages on which the header will be displayed. The value 0
suppresses the header display.

444 Word processing formats

Offset Bytes Field

OOH 1 Header A (Code D5H)

01H 1 Sub-function code OOH

02H 2 Length word (variable)

04H 1 Old occurrence flag

05H 2 Old number of formatter lines (in wpu)

07H 2 Old position of last header A function

09H 2 Old position of last header A function

OBH 1 New occurrence flag:
0 = never

1 = all pages

2 = odd pages
3 = even pages

OCH 2 New number of formatter lines (wpu)

OEH 2 New position of last header A function
(Unused)

10H 2 New position of last header A function
(Unused)

12H 2 Number of boxes inside header

14H 2 Formatter hash value

16H XX Header text as ASCII string

xxH 2 Length word (variable)

xxH 1 Sub-function code OOH

xxH 1 End function code (Code D5H)
Table 18.48

Opcode D5H, OOH
in version 5.0

18.2.8.2 Header B (code D5H, subcode 01H)

WordPerfect permits the definition of a second header, B (for even pages), which is stored in this
record. The structure of the record is identical to record D500H (Header A).

18.2.8.3 Footer A (code D5H, subcode 02H)

This record defines Footer A. The structure of the record is identical to that of the header defini

tion (Code D500H).

18.2.8.4 Footer B (code D5H, subcode 03H)

This record stores a second Footer B. The structure is identical to record D500H (Header A).

WordPerfect format 445

18.2.9 Footnote/endnote group sub-functions (code D6H)

These records are used to define footnotes and endnotes in WordPerfect 5.0.

18.2.9.1 Footnote (code D6H, subcode OOH)

This record defines a footnote and stores the footnote text and the information about the

numbering index. If bit 7 (flag) is clear, WordPerfect uses numbers. Otherwise letters (a,b,c.) will
be used. The field length at offset 08H is calculated as page numbers * 2 (each page uses one
word).

Offset Bytes Field

OOH 1 Footnote (Code D6H)
01H 1 Sub-function code OOH

02H 2 Length word (variable)
04H 1 Flag

Bit 7: 0 use numbers

1 use characters

Bits 3-0: number or character

if bit 7 = 1

05H 2 Footnote number or character

07H 1 Number of additional pages in footnote
08H xl Number of formatter lines for each

page of footnote (in wpu)
xxH 2 Number of formatter lines on page

(wpu)
xxH 2 Number of footnote lines on page

(wpu)
xxH 2 Number of footnote pages on page

(wpu)

xxH 2 Number of boxes inside footnote

xxH 2 Formatter hash value

xxH aa Text of footnote

xxH 2 Length word (variable)

xxH 1 Sub-function code OOH

xxH 1 End function code (Code D6H) Table 18.49

Opcode D6H. OOH
in version 5.0

18.2.9.2 Endnote (code D6H, subcode 01H)

This record stores the endnote text and the index information. If bit 7 (flag) is set, WordPerfect
uses numbers. Otherwise letters are used. The record structure is similar to the footnote record.

446 Word processing formats

FieldOffset Bytes

OOH 1 End note (Code D6H)
01H 1 Sub-function code 01H

02H 2 Length word (variable)
04H 1 Flag

Bit 7: 0 use numbers

1 use characters

Bits 3-0: number of characters

if bit 7 = 1

05H 2 Endnote number or character

07H 2 Number of boxes inside endnote

09H 2 Formatter hash value

OBH XX Text of endnote

xxH 2 Length word (variable)

xxH 1 Sub-function code 01H

xxH 1 End function code (Code D6H)

18.2.10 Generate group sub-functions (code D7H)

This record group stores text markers in a WordPerfect file.

18.2.10.1 Begin marked text (code D7H, subcode OOH)

This record defines the beginning of a text area.

Offset Bytes Field

OOH 1 Begin marked text (D7H)

01H 1 Sub-function code OOH

02H 2 Length word (value = 5)

04H 1 Flag:
Bits 7-4: 0 table of contents

1 list

Bits 3-0: table of contents level

number or list number

05H 2 Length word (value = 5)

07H 1 Sub-function code OOH

08H 1 End function code (Code D7H)

Table 18.50

Opcode D6H, 01H
in version 5.0

Table 18.51

Opcode D7H, OOH
in version 5.0

WordPerfect format 447

18.2.10.2 End marked text (code D7H, subcode 01H)

This record defines the end of a text block.

Offset Bytes Field

OOH 1 End marked text (D7H)
01H 1 Sub-function code 01H

02H 2 Length word (value =5)
04H 1 Flag

Bits 7-4: 0 table of contents

1 list

Bits 3-0: table of contents

level number, or list number
05H 2 Length word (value = 5)
07H 1 Sub-function code 01H

08H 1 End function code (Code D7H)

18.2.10.3 Define marked text (code D7H, subcode 02H)

This record defines a marked text region.

Offset Bytes Field

OOH 1 Define marked text (Code D7H)
01H 1 Sub-function code 02H

02H 2 Length word (variable)
04H 1 Flag

Bits 7-4: 0 table of contents

1 index

2 list

3 table of authorities

Bits 3-0: for table of contents

= level number (0-4)

for index:

0 = no concordance

1 = concordance

for list: list number (0-4)
for table of authorities

(section number (0-1 5)

Table 18.52

Opcode D7H, 01H
in version 5.0

Table 18.53

Opcode D7H, 02H
in version 5.0

(continues
over...)

448 Word processing formats

Offset Bytes Field

05H 5 5 x definition of level or list

for table of contents, index and lists:
0: no page numbers
1: page number after text

with 2 preceeding blanks
2: page number after text

in () with 1 preceding
space

3: page number flush right
4: page number flush right

with preceding dot

for table of authorities:

Bit 0: 1 insert blank lines

between authorities

Bit 1: 1 dot before page number
Bit 4: 1 underlining allowed

10H Concordance file name (optional)

xxH 2 Length word (variable)

xxH 1 Sub-function code 02H

xxH 1 End function code (Code D7H)
Table 18.53

Opcode D7H, 02H
in version 5.0

(cont.)

18.2.10.4 Index entry (code D7H, subcode 03H)

This record defines the entry for index numbering. The heading area and the subheading area are
ofvariable lengths which are defined in the length word (sum of the lengths + 1). The areas are
separated by a zero byte OOH.

Offset Bytes Field

OOH 1 Index entry (Code D7H)

01H 1 Sub-function code 03H

02H 2 Length word (variable)

04H XX Heading (variable length)

xxH 1 Null separator (always OOH)

xxH XX Subheading

xxH 2 Length word (variable)

xxH 1 Sub-function code 03H

xxH 1 End function code (Code D7H) Table 18.54

Opcode D7H, 03H
in version 5.0

WordPerfect format 449

18.2.10.5 Table of authority entry (code D7H, subcode 04H)

This record defines a table of authorization entries. Section number 32 is for the short form only.
All entries are separated by a null byte.

Offset Bytes Field

OOH 1 Table of authority entry (Code D7H)
01H 1 Sub-function code 04H

02H 2 Length word (variable)
04H 1 Section number (0-15 or 32)
05H X Short form

xxH 1 Null separator (OOH)
xxH XX Long form
xxH 2 Length word (variable)
xxH 1 Sub-function code 04H

xxH 1 End function code (Code D7H)

18.2.10.6 Endnotes print here (code D7H, subcode 05H)

This record defines the position of endnotes.

Offset Bytes Field

OOH 1 Endnotes print here (Code D7H)
01H 1 Sub-function code 05H

02H 2 Length word (value = 19)
04H 2 Column in old screen (su)
06H 1 Text lines to display
07H 2 Old number of formatter lines (wpu)
09H 2 Number of pages for endnotes
OBH 2 Number of formatter lines (wpu)
0DH 2 Position of last Endnote print

here function

OFH 2 Position of last Endnote print
here function

11H 2 Old number of endnotes to this point
13H 2 Length word (value = 19)
15H 1 Sub-function code 05H

16H 1 End function code (Code D7H)

Table 1S.55

Opcode D7H, 04H
in version 5.0

Table 18.56

Opcode D7H, 05H
in version 5.0

450 Word processing formats

18.2.10.7 Save page information (code D7H, subcode 06H)

This record is only used during the generation of text. The record contains various parameters.

Offset Bytes Field

OOH 1 Save page information (Code D7H)

01H 1 Sub-function code 06H

02H 2 Length word (value = 13)

04H 2 Number of formatter lines (wpu)

06H 2 Page number

08H 2 Page length of odd pages (wpu)

OAH 2 Page length of even pages (wpu)
OCH 2 Numbering mode

0 = numeric

1 = Arabic

OEH 2 Length word (value = 13)

10H 1 Sub-function code 06H

11H 1 End function code (Code D7H)

18.2.10.8 Auto reference definition (code D7H, subcode 07H)

This record stores text references.

Table 18.57

Opcode D7H, 06H
in version 5.0

Offset Bytes Field

OOH 1 Auto reference definition (Code D7H)

01H 1 Sub-function code 07H

02H 2 Length word (variable)

04H 1 Reference type
0 : page number
1 : paragraph number
2 : footnote number

3 : endnote number

4 : figure number
5 : table number

6 : text box number

05H

xxH 1

7 : U=user text box number

Tag ID text

Null separator (OOH)

Table 18.58

Opcode D7H, 07H
in version 5.0

(continues
over...)

WordPerfect format 451

Offset Bytes Field

xxH XX Text of referenced number

xxH 2 Length word (variable)
xxH

xxH

1

1

Sub-function code 07H

End function code (Code D7H)
Table 18.58

Opcode D7H, 07H
in version 5.0

(cone)

18.2.10.9 Auto reference tag (code D7H, subcode 08H)

This record stores auto reference tags in a WordPerfect file.

Offset Bytes Field

OOH 1 Auto reference tag (Code D7H)
01H 1 Sub-function code 08H

02H 2 Length word (variable)
04H XX Tag ID text

xxH 1 Null terminator (OOH)
xxH 2 Length word (variable)
xxH 1 Sub-function code 08H

xxH 1 End function code (Code D7H)
Table 18.59

Opcode D7H, 08H
in version 5.0

18.2.10.10 Include sub-document (code D7H, subcode 09H)

If a sub-document is included in a document, this recorddefines the file name and other parameters.

Offset Bytes Field

OOH 1 Include sub-document (Code D7H)
01H 1 Sub-function code 09H

02H 2 Length word (variable)
04H 2 Column in old screen (su)
06H 1 Number of text lines to display (wpu)
07H XX File name as ASCII string
xxH 2 Length word (variable)
xxH 1 Sub-function code 09H

xxH 1 End function code (Code D7H)
Table 18.60

Opcode D7H, 09H
in version 5.0

452 Word processing formats

18.2.10.11 Start of included sub-document (code D7H, subcode OAH)

This record defines the start of the file included in a document.

Offset Bytes Field

OOH 1 Start included sub-document

(Code D7H)

01H 1 Sub-function code OAH

02H 2 Length word (variable)

04H 2 Column in old screen (su)

06H 1 Number of lines to display (wpu)

07H ococ File name as ASCIIZ string

xxH XX Password structure, if encrypted

xxH 2 Length word (variable)

xxH 1 Sub-function code OAH

xxH 1 End function code (Code D7H)
Table 18.61

Opcode D7H. OAH
in version 5.0

18.2.10.12 End of included sub-document (code D7H, subcode OBH)

This record marks the end of a sub-document inserted within a text.

Offset Bytes Field

OOH 1 End included sub-document

(Code D7H)

01H 1 Sub-function code OBH

02H 2 Length word (variable)
04H 2 Column in old screen (su)

06H 1 Number of lines to display (wpu)

07H XX File name as ASCII string

xxH 2 Length word (variable)

xxH 1 Sub-function code OBH

xxH 1 End function code (Code D7H)
Table 18.62

Opcode D7H. OBH
in version 5.0

18.2.11 Display group sub-functions (code D8H)

WordPerfect 5.0 uses the function code D8H to store additional information (date, paragraphs,

and so on).

WordPerfect format 453

18.2.11.1 Date function (code D8H, subcode OOH)

This record contains a string field for date information.

Offset Bytes Field

OOH

01H

1

1

Date function (Code D8H)
Sub-function code OOH

02H

04H

2 Length word (variable)

Format string containing date
xxH

xxH

2

1

Length word (variable)
Sub-function code OOH

xxH 1 End function code (Code D8H)
Table 18.63

Opcode D8H, OOH
in version 5.0

Offset 04H marks the beginning of a variable length string containing the date information.

18.2.11.2 Paragraph number (code D8H, subcode 01H)

This record contains data on paragraph formatting.

Offset Bytes Field

OOH 1 Paragraph number (Code D8H)
01H 1 Sub-function code 01H

02H 2 Length word (variable)
04H 1 New level number paragraph

Bits 0-6: level number

Bit 7 = 1: fixed level number

05H 16 8 words containing old level numbers
15H XX Format text mark (screen & printer)
xxH 2 Length word (variable)
xxH 1 Sub-function code 01H

xxH 1 End function code (Code D8H) Table 18.64

Opcode D8H, 01H
in version 5.0

The byte at offset 04Hdefines the level number (bits 0-6). If bit 7 is set, a fixed level number is
used. Offset 15H defines a variable length string containing the text format mark.

18.2.11.3 Overstrike (code D8H, subcode 02H)

This record switches the overstrike mode on.

454 Word processing formats

Offset Bytes Field

OOH 1 Overstrike (Code D8H)

01H 1 Sub-function code 02 H

02H 2 Length word (variable)

04H 2 Maximum character width (su)

06H XX Overstruck characters

xxH 2 Length word (variable)

xxH 1 Sub-function code 02 H

xxH 1 End function code (Code D8H)

18.2.12 Miscellaneous group (code D9H)

WordPerfect uses the function D9H to store miscellaneous information.

Table 18.65

Opcode D8H, 02H
in version 5.0

18.2.12.1 Embedded printer command (code D9H, subcode OOH)

This record contains control information for the printer.
The flag (offset 04H) indicates that a file name is used (flag = 1). In this case, the control codes

are stored in this file. Otherwise control codes are stored within the record.

Offset Bytes Field

OOH 1 Embedded printer command

(Code D9H)

01H 1 Sub-function code OOH

02H 2 Length word (variable)

04H 1 Flag byte

0: command string

1: file name

05H XX Text string containing controls or

file name

xxH 2 Length word (variable)

xxH 1 Sub-function code OOH

xxH 1 End function code (Code D9H)
Table 18.66

Opcode D9H. OOH
in version 5.0

WordPerfect format 455

18.2.12.2 Conditional end of page function (code D9H, subcode OIH)

This record marks paragraphs or regions of text where the lines are to be kept together.

Offset Bytes

OOH 1

01H 1

02H 2

04H 1

05H 2

07H 1

08H 1

Field

Conditional EOP function (Code D9H)
Sub-function code 01H

Length word (value = 5)
Number of single spaced
lines to be kept together
Length word (value = 5)
Sub-function code 01H

End function code (Code D9H)
Table 18.67

Opcode D9H, 01H
in version 5.0

WordPerfect uses this value to insert a page break if the number of lines cannot be kept together.

18.2.12.3 Comment (code D9H, subcode 02H)

This record stores a comment in a WordPerfect file.

Offset Bytes Field

OOH 1 Comment (Code D9H)
01H 1 Sub-function code 02H

02H 2 Length word (variable)
04H 2 Old screen column (su)
06H 1 Number of text lines to display
07H XX Text string containing the comment
xxH 2 Length word (variable)
xxH 1 Sub-function code 02 H

xxH 1 End function code (Code D9H)

18.2.12.4 Kerning (code D9H, subcode 03H)

This record stores the kerning information and switches kerning on and off.

Table 18.68

Opcode D9H, 02H
in version 5.0

456 Word processing formats

Offset Bytes Field

OOH 1 Kerning (Code D9H)

01H 1 Sub-function code 03H

02H 2 Length word (value = 6)

04H 1 Old kerning value

0 = OFF

1 =ON

05H 1 New kerning value

06H 2 Length word (value = 6)

08H 1 Sub-function code 03 H

09H 1 End function code (Code D9H)

If the byte at offset 04H is set to 0, kerning is switched off.

Table 18.69

Opcode D9H, 03H
in version 5.0

18.2.13 Box group (code DAH)

The function code group DAH defines data for text boxes, figures, table borders, and so on.

18.2.13.1 Figure (code DAH, subcode OOH)

This record defines all the parameters for a box in which to insert graphics.

Offset Bytes Field

OOH 1 Figure (Code DAH)

01H 1 Sub-function code OOH

02H 2 Length word (variable)

04H 2 Box number xx. xx

Bits 15-5: number level 1 (xx.)

Bits 4-0: number level 2 (. xx)

06H 1 Position and type flag
Bits 1-0: box type

0 = paragraph
1 = page

2 = character (in-line)

Table 18.70

Opcode DAH, OOH
in version 5.0

(continues
over...)

WordPerfect format 457

Offset Bytes Field

Bits 4-2: Position option

0 = full page
1 = top

2 = middle

3 = bottom

4 = absolute

Bit 5 box bumped to next page

Bits 7-6: Reserved

07H 1 Alignment flags
Bits -0: Alignment option

0 = left

1 = right

2 = centered

3 = left and right justified
Bits 3-2: Alignment with

0 = margins

1 = columns

2 = absolute

Bit 4 scale width figure
Bit 5 scale height figure
Bit 6 reserved

Bit 7 0 = wrap text around

1 = disable wrap text
08H 2 Box width (wpu)
OAH 2 Box height (wpu)
OCH 2 X position of box (wpu)
OEH 2 Y position of box (wpu)
10H 2 Outside left spacing between

window and text (wpu)
12H 2 Outs ide right spacing between

window and text (wpu)
14H 2 Outs de top spacing between

window and text (wpu)
16H 2 Outside bottom spacing between

window and text (wpu)
18H 2 Insid e left spacing between

window and image (wpu)
1AH 2 Inside right spacing between

wind ow and image (wpu)
Table 18.70

Opcode DAH, OOH

in version 5.0

(cont.)

458 Word processing formats

Offset Bytes Field

1CH 2 Inside top spacing between

window and image (wpu)
1EH 2 Inside bottom spacing between

window and image (wpu)
20H 2 Horizontal offset (wpu)
22H 2 Vertical offset (wpu)

24H 1 Column X for column alignment
25H 1 Column Y for column alignment

26H 2 Source image width (wpu)

28H 2 Source image height (wpu) for text
boxes = number of format lines

2AH 2 Orientation

Bit 15: 1 = mirror

Bit 14: 1 = invert bits for

monochrome bitmaps

Bits 13-12: reserved

Bits 11-0: rotation angle (0...360)

2CH 2 Width scale factor (100 = 100%)
2EH 2 Height scale factor (100 = 100%)
30H 2 X crop offset (wpu) for text boxes

= formatter hash table

32H 2 Y crop offset (wpu) for text boxes

= rotation

0=0 degrees

1 = 90 degrees
2 = 180 degrees
3 = 270 degrees

34H 1 Format type of box contents
0 = empty box
1 = reserved

15= reserved

16 = WordPerfect text

17 = reserved

127 = reserved

128 = WPG format

129 = Lotus PIC format

130 = TIFF format
Table 18.70

Opcode DAH, OOH

in version 5.0

(cont.)

WordPerfect format 459

Offset Bytes Field

131 = PC Paintbrush

PCX format

132 = Windows Paint

(MSP) format

133 = CGI Metafile

(CGM) format
134 = AutoCAD

(DXF) format
135 = reserved

137 = reserved

138 = GEM Paint

(IMG) format

139 = HPGL format

140 = reserved

141 = PC Paint format

142 = Mac Paint format

143 = reserved

144 = reserved

145 = Dr. Halo II (PIC) format

146 = reserved

255 = reserved

35H 21 ASCIIZ string containing file name
4AH 37 Reserved

6FH 2 Amount of extra space between
caption and box (wpu)

71H 2 Image index number in

graphics temporary file
73H 2 Number of formatter lines

in caption (wpu)
75H 2 Formatter hash value for caption

77H 2 Length of caption in bytes
79H XX Text for caption
xxH XX Text for text box

xxH 2 Length word (variable)
xxH 1 Sub-function code OOH

xxH 1 End function code (Code DAH) Table 18.70

Opcode DAH, OOH
in version 5.0

(cont.)

460 Word processing formats

18.2.13.2 Table (code DAH, subcode OIH)

This record contains all the information for a table box in a text. The record structure is identical

to a figure box (see above).

18.2.13.3 Text box (code DAH, subcode 02H)

This record contains all the information for a text box in a document. The record structure is

identical to a figure box (see above).

18.2.13.4 User denned text box (code DAH, subcode 03H)

This record contains all the information for a user-defined text box in a document. The record

structure is identical to a figure box (see above).

18.2.13.5 Horizontal line (code DAH, subcode 05H)

This record defines horizontal lines and their position in a text.

Offset Bytes Field

OOH 1 Horizontal line (Code DAH)

01H 1 Sub-function code 05H

02H o
£. Length word (value = 121)

04H 2 Reserved

06H 1 Vertical position flags
Bits 1-0: reserved

Bits 4-2: position option

vertical lines

0 = full page
1 = top

2 = bottom

4 = absolute

Bit 5: bump bit (always 0)
Bits 7-6: reserved

07H 1 Alignment flags:
Bits 2-0: Alignment option

for horizontal lines

0 =left

1 = right
2 = centered

Table 18.71

Opcode DAH, 05H
in version 5.0

(continues
over...)

WordPerfect format 461

Offset Bytes Field

3 = left and right justified
4 = absolute for vertical lines

0 = left margin
1 = right margin
2 = between columns x, xl

3 = absolute position

Bits 7-3: Reserved

08H 2 Width of line (wpu)
OAH 2 Height of line (wpu)
OCH 2 X position of line (wpu)

OEH 2 Y position of line (wpu)
10H 20 Reserved

24H 1 Shading (% black)
25H 1 Column x for vertical lines only
26H 4 Reserved

2AH 2 Constant = 0

2CH 2 Constant = 100

2EH 2 Constant = 100

30H 2 Constant = 0

32H 2 Constant = 0

34H 1 Constant = 0

35H 66 Reserved

77H 2 Constant = 0

79H 2 Length word (value =121)

7BH 1 Sub-function code 05H

7CH 1 End function code (Code DAH) Table 18.71

Opcode DAH, 05H
in version 5.0

(cont.)

18.2.13.6 Vertical line (code DAH, subcode 06H)

This record defines vertical lines and their position in a text document. The structure is identical

to the horizontal line record.

18.2.14 Style group (code DBH)

WordPerfect 5.0 uses function code DBH to store information on text documents.

18.2.14.1 Begin style ON (code DBH, subcode OOH)

This record marks the beginning of a style.

462 Word processing formats

Offset Bytes Field

OOH 1 Begin style ON (Code DBH)
01H 1 Sub-function code OOH

02H 2 Length word (variable)

04H 2 Old file position of Begin ON
06H 2 Old file position of Begin ON high part

08H 2 Old formatter hash value

OAH 1 Old hard return type code

OBH 1 Old unique style number

OCH 1 New hard return type code

ODH 1 New unique style number

OEH 2 Formatter hash value for text in style

10H XX Style name (maximum 21 bytes)

xxH 2 Length word (variable)

xxH 1 Sub-function code OOH

xxH 1 End function code (Code DBH)

18.2.14.2 End style ON (code DBH, subcode OIH)

This record marks the end of a style.

Offset Bytes Field

OOH 1 End style ON (Code DBH)

01H 1 Sub-function code 01H

02H 2 Length word (variable)

04H 2 Old file position of Begin ON

06H 2 Old file position of Begin ON high part

08H 2 Old formatter hash value at Begin

OAH 1 Old hard return type code

OBH 1 Old unique style number

OCH 2 New file position of Begin ON

OEH 2 New file position of Begin ON high part

10H 2 New formatter hash of old values

12H 1 New hard return type code

13H 1 New unique style number
14H 2 Formatter hash value for text in

end style

Table 18.72

Opcode DBH. OOH
in version 5.0

Table 18.73

Opcode DBH, 01H
in version 5.0

(continues
over...)

WordPerfect format 463

Offset Bytes Field

10H XX Style name (maximum 21 bytes)

xxH 2 Length word (variable)

xxH 1 Sub-function code 01H

xxH 1 End function code (Code DBH)

18.2.14.3 Global ON (code DBH, subcode 02H)

This record switches the global style on.

Offset Bytes Field

OOH 1 Global ON (Code DBH)
01H 1 Sub-function code 02H

02H 2 Length word (variable)
04H 1 Unique style number
06H 2 Format hash value for text in style
08H xx Style name (maximum 21 bytes)
xxH 2 Length word (variable)
xxH 1 Sub-function code 02H

xxH 1 End function code (Code DBH)

18.2.14.4 Style OFF (code DBH, subcode 03H)

This record marks the end of a global style region.

Table 18.73

Opcode DBH. 01H
in version 5.0

(cont.)

Table 18.74

Opcode DBH, 02H
in version 5.0

Offset Bytes Field

OOH

01H

02H

04H

05H

07H

08H

1

1

2

1

2

1

1

Style OFF (Code DBH)
Sub-function code 03H

Length word (value = 5)

Flag: 1 = text modified by format
Length word (value = 5)
Sub-function code 03H

End function code (Code DBH)
Table 18.75

Opcode DBH. 03H
in version 5.0

464 Word processing formats

18.3 The WordPerfect 5.x/6.x format

WordPerfect defines a platform-independent format for all versions of the word processor. This
format has been available since WordPerfect version 5.1. The format uses the version 5.0 record

structure with several extensions. The differences are shown below. The format is used under

DOS, VAX/VMS, UNIX, Windows, OS/2 and Macintosh.

18.4 WordPerfect Header (version 5.1+)

Figure 18.1 shows the WordPerfect header. The first 16 bytes define global information. This prefix
is used by all WordPerfect products. Table 18.76 contains a description of the header structure.

Offset Bytes Field description

File ID Headerfor all WPCORP products

OOH 4 WP signature -1,'WPC
04H 4 Pointer to 1st text character

08H 1 Product type
1 WordPerfect

2 Shell

3 Notebook

4 Calculator

5 File Manager

6 Calendar

7 Program Editor
8 Macro Editor

9 PlanPerfect

10 DataPerfect

11 Mail

12 Printer (PTR.EXE)

13 Scheduler

14 WordPerfect Office

15 DrawPerfect

09H 1 File type
1 Macro file

2 Help file
3 Keyboard definition file
4 —

9 —
Table 18.76

Header prefix of
10 WP document a WP file (version

5.1+) (continues
over...)

Offset Bytes

OAH 1

OBH 1

OCH 2

OEH 2

WordPerfect format 465

Field description

11 Dictionary file

12 Thesaurus file

13 Block

14 Rectangular block
15 Column block

16 Printer resource file

(.PRS)

17 Setup file

18 Prefix information file

19 Printer resource file

(.ALL)

20 Display resource file
(.DRS)

21 Overlay file (WP.FIL)
22 WP graphic file (.WPG)
23 Hyphenation code module

24 Hyphenation data module

25 Macro resource file (.MRS)
26 Graphics screen driver

(WPD)

27 Hyphenation lex module

28 Printer Q. codes

(VAX and DO)
29 Spell code module -

wordlist

30 5.1 equation resource file

(WP.QRS)

31 VAX keyboard definition

32 VAX .SET

33 Spell code module - rules

34 Dictionary - rules

36 . WPD files

37 Reserved

40 Reserved

41 WP51. INS file

(install options)
Main version number

Sub-version number

Encryption flag (0 = not encrypted)
Reserved (0)

Table 18.76

Header prefix of
a WP file (version
5.1+) (cont.)

466 Word processing formats

The type of the product that created the file is stored at offset 08H. In version 5.1 type 15 has
been added for DrawPerfect. Future versions may have new product codes. In WordPerfect 5.1,
version numbers always have the value 0.1. If the encryption field contains the value 0, the file is
not encrypted, otherwise the value represents the encryption key.

This prefix is followed by a header trailer, already defined in WordPerfect 5.0 (see above). From
version 5.1, the codes shown in Table 18.77 may also appear in the index block.

Type Field description

WP5J SETfile packet

0001H Reserved

0002H Font string table

0003H List PS tables

0004H Font list

0005H Serial/license number

0004H Font string pool

0010H Path name for Thesaurus

0011H Information on screen type

0012H Miscellaneous (backup time, and so on)

0013H |Ctri|- and (AjtJ-key mappings

0014H System initial values

0015H Reserved

0016H Reserved

0017H Miscellaneous

0018H Reserved

0019H Reserved

001AH Default printer

001BH Selected printers

001CH Print options

001DH Default printer

001 EH Selected printers

001 FH Reserved

0020H Screen attribute Monochrome

0021H Screen attribute CGA

0022H Screen attribute PC 3270

0023H Screen attribute EGA (Italics)

0024H Screen attribute EGA (Underline)

0025H Screen attribute EGA (Small caps)

0026H Screen attribute EGA (Reserved)
II

0029H Screen attribute EGA (Reserved)

002AH Screen attribute Hercules RamFont (12 fonts)

Table 18.77

Packet types in
WP 5.1 index

block

(continues
over...)

WordPerfect format 467

Type Field description

002BH Screen attribute Hercules RamFont (6 fonts)

002CH Screen attribute Hercules RamFont

Reserved

002FH Reserved

0030H NEC 9801 PC

WP 5.1 packet types

0050H Reserved

0051H Information on screen type

0052H Miscellaneous (backup time, and so on)
0053H [Ctrl]- and [AjtJ-key mappings

0054H Default printer

0055H Miscellaneous

0056H Print options

0057H Font list

0058H Serial/license number

0059H Font string pool

005AH WP default values

005BH Reserved

005CH Selected printers

005DH

005EH

PS table list

Auxiliary path name
Table 18.77

Packet types in
WP 5.1 index

block (cont.)

18.5 Text area in WordPerfect 5.1

The WordPerfect header is followed by the text area. The text includes 1-byte or multi-byte control
codes containing the format descriptions. The 1-byte control codes use the same conventions as
WordPerfect version 5.0. The differences are described below:

Some single-by<tefunctions in the range 80H to BFH have been redefined (see Table 18.78).

Code Field description

8CH

B2H

99H

Hard/soft return

Outline OFF

Dormant hard return Table 18.78

New single-byte
functions (5.1+)

468 Word processing formats

18.5.1 Fixed-length multi-byte control codes (version 5.1+)

WordPerfect 5.1+ uses these control codes to describe German umlaut accents and special

characters. There are several differences between version 5.0 and 5.1. Table 18.79 shows the
unmodified opcodes (for a description of the record structure, see version 5.0, Subsection 18.2.2).

Opcode Command

COH Extended character

C2H Indent

C4H Attribute Off

C5H Block protect

C6H End of indent

C7H Different display character when hyphenated

Table 18.79

Unmodified

multi-byte

control

characters

The structure of the new/modified version 5.1 records is described below.

18.5.1.1 Center, Align, Tab, Left Margin (code C1H)

In version 5.1, WordPerfect uses this record to store information on text alignment.

•• • -:

Offset Bytes Field

OOH 1 Begin function code (Code C1H)

01H 1 Flags

Bits 7--6: 00

01

10

11

tab

align

left margin release
center

Bit5: 1 center between

2 margins

Bit 4: 1 dot leader

Bit 3: 0

1

align on alignment
character or center

on column

right justified tabs
Bit 2: 1 positioning within

table cell

Table 18.80

Opcode C1H in

version 5.1

(continues
over...)

WordPerfect format 469

Offset Bytes Field

Bit 1:1 if type (tab, align, and so on)
is hard

02H

04H

06H

08H

2

2

2

1

Old current column number (su)

Position of start column (0)
Absolute center/align/tab position
End function code (Code C1H)

Flag bit 1 is new in version 5.1.

18.5.1.2 Attribute on (code C3H)

This record switches the following attributes on (version 5.1+):

Offset Bytes Field

OOH 1 Begin function code (Code C3H)
01H 1 Attribute type

0: Extra large

1: Very large
2: Large

3: Small

4: Fine

5: Superscript

6: Subscript

7: Outline

8: Italics

9: Shadow

10: Red line

11: Double underline

12: Bold

13: Strikeout

14: Underline

15: Small capitals

16: Blink

17: Reverse video

02H 1 End function code (Code C3H)

Table 18.80

Opcode C1H in
version 5.1

(cont.)

Table 18.81

Opcode C3H in

version 5.1

This record defines two new attribute types, 10 and 11, which are not included in version 5.0.

470 Word processing formats

18.5.1.3 Attribute off (code C4H)

In WordPerfect 5.1, this record switches the attributes off.

Offset Bytes Field

OOH

01H

1

1

Begin function code (Code C4H)
Attribute type

0: Extra large
1: Very large
2: Large

3: Small

4: Fine

5: Superscript

6: Subscript

7: Outline

8: Italics

9: Shadow

10: Red line

11: Double underline

12: Bold

13: Strikeout

14: Underline

15: Small capitals
16: Blink

17: Reverse video

02H 1 End function code (code C4H)
Table 18.82

Opcode C4H in
version 5.1

The attribute types 10 and 11 are new in version 5.1.

18.5.2 Variable length multi-byte control codes (version 5.1)

WordPerfect uses multi-byte control codes to store format information within the text. Some
records differ between versions 5.0 and 5.1. Table 18.83 lists the records with opcode DOH that are

identical in both versions.

Subcode Command

OOH

01H

02H

Set lines per inch

Set left/right margin
Set spacing

Table 18.83

Unmodified

opcodes DOH
(version 5.1+)
(continues
over...)

WordPerfect format 471

Subcode Command

03H

05H

08H

Set hyphenation zone
Set top/bottom margin

Page number position

• • ••

The following records are new or have been changed in WordPerfect 5.1.

18.5.2.1 Set tab (code DOH, subcode 04H)

This record defines the tab set margins.

Offset Bytes Field

OOH 1 Set tabs (Code DOH)
01H 1 Sub-function code 04H

02H 2 Length word (value = 208)
04H 80 40 entries for old tab positions
54H 20 40 old tab types (1 nibble each)

Bit 1: unused

Bit 2: add dot leader

Bits 3-4: coding for tab types
0 normal left-justified tab
1 tab centered

2 tab right aligned
3 decimal aligned tab

68H 80 40 entries for new tab positions
B8H 20 40 new tab types (1 nibble each)
CCH 2 Old "M" value

CEH 2 New "M" value

DOH 2 Length word (value = 208)
D2H 1 Sub-function 04H

D3H 1 End function code (Code DOH)

Table 18.83

Unmodified

opcodes DOH
(version 5.1+)
(cont.)

Table 18.84

Opcode DOH, 04H
in version 5.1 +

The 20 bytes containing the tab types define the code for each tab in a 4-bit nibble. Each byte
defines two tab codes. Unused tab positions are set to 0.

18.5.2.2 Justification (code DOH, subcode 06H)

This record is new in version 5.1 and describes the justification of a text. The decimal aligned
mode is only available in tables.

472 Word processing formats

Offset Bytes Field

OOH 1 Justification (Code DOH)

01H 1 Sub-function code 06H

02H 2 Length word (value = 6)

04H 1 Old justification mode

05H 1 New justification mode

0 : left

1 : full

2 : center

3 : right

4 : decimal aligned (in tables)

06H 2 Length word (value = 6)

08H 1 Sub-function code 06 H

09H 1 End function code (Code DOH)
Table 18.85

Opcode DOH, 06H
in version 5.1

18.5.2.3 Suppress page characteristics (code DOH, subcode 07H)

WordPerfect 5.1 stores information about a page (page number, header, and so on) in this record.

Offset Bytes Field

OOH 1 Suppress page character (Code DOH)

01H 1 Sub-function code 07H

02H 2 Length word (value = 6)
04H 1 Old suppress code

Code:

1 = suppress page numbering
2 = suppress current page

numbering and print page

number centered at bottom

4 = suppress header A
8 = suppress header B

10= suppress footer A
20 = suppress footer B

80 = this code NOT at top of page

05H 1 New suppress code

06H 2 Length word (value = 6)

08H 1 Sub-function code 07H

09H 1 End function code (Code DOH)
Table 1S.86

Opcode DOH, 07H
in version 5.1 +

WordPerfect format 473

18.5.2.4 Form (code DOH, subcode OBH)

This record describes a form.

Offset Bytes Field

OOH 1 Form (Code DOH)
01H 1 Sub-function code OBH

02H 2 Length word (value = 290)
04H 2 Old desired length
06H 2 Old desired width

08H 1 Old desired type
09H 1 Old desired type name length

OAH 41 Old desired type name
33H 2 Old effective length
35H 2 Old effective width

37H 1 Old effective type
38H 1 Old effective type name length
39H 41 Old effective type name
62H 1 Old effective orientation

0 = Portrait

1 = Landscape
63H 2 New desired length
65H 2 New desired width

67H 1 New desired type
68H 1 New desired type name length
69H 41 New desired type name
92H 2 New effective length
94H 2 New effective width

96H 1 New effective type
97H 1 New effective type name length
98H 41 New effective type name
C1H 41 New effective orientation

EAH 1 Matched form number

EBH 2 Matched form hash value

EDH 2 Old left margin
EFH 2 Old right margin
F1H 2 Old top margin
F3H 2 Old bottom margin
F5H 1 Old flag indicating label form
F6H 2 Old page where label form is defined
F8H 1 Old number of rows per page
F9H 1 Old number of columns per page
FAH 2 Old left offset top left corner

Table 18.87

Opcode DOH. OBH
in version 5.1+

(continues
over...)

474 Word processing formats

Offset Bytes Field

FCH 2 Old top offset top left corner
FEH 2 Old logical page width

100H 2 Old logical page length

102H 2 Old distance between label rows

104H 2 Old distance between label columns

106H 1 New flag indication label form
Bit 0: 1 label form

Bit 1: 1 label matched all others

107H 2 New page where label form is defined

109H 1 New number of rows per page
10AH 1 New number of columns per page

10BH 2 New left offset top left corner
10DH 2 New top offset top left corner

10FH 2 New logical page width

111H 2 New logical page length

113H 2 New distance between label rows

115H 2 New distance between label columns

117H 2 Label left margin

119H 2 Label right margin

11BH 2 Label top margin

11 FH 2 Label bottom margin

121H 2 Length word (value = 290)

123H 1 Sub-function code OBH

124H 1 End function code (Code DOH)
Table 18.87

Opcode DOH, OBH
in version 5.1+

(cont.)

18.5.3 Font selection sub-function (code D1H version 5.1)

WordPerfect version 5.1 uses the D1H records to select a font. A subcode defines the function. Only

the function Color (Code D1H, Subcode OOH) is identical to version 5.0.

18.5.3.1 Font change (code D1H, subcode OIH)

In version 5.1 WordPerfect uses this record to select a font.

WordPerfect format 475

Offset Bytes Field

OOH 1 Font change (Code D1H)
01H 1 Sub-function code 01H

02H 2 Length word (value = 35)
04H 1 Old font number

05H 24 New font description:
2 Point size (in 3600ths)
2 Optimum width (in wpu)
2 Capitals height (in psu)
2 x height (in psu)
2 Descender height (in psu)
2 Italic adjustment (in psu +/-)
3 Typeface descriptor
1 Typeface definition flag
1 Hash of typeface name
1 Reserved (always 0)
2 Hash of font name

4 Character set completeness bits
1 bit per font in each word

1DH 1 Matched font

1EH 2 Matched font hash value

20H 2 Point size

22H 2 Typeface flags
20H 2 Length word (value = 35)
22H 1 Sub-function code 01H

23H 1 End function code (Code D1H)
Table 18.88

Opcode D1H, 01H
in version 5.1 +

The record stores information on the character set used (for the printer). Some values are
defined as WordPerfect Units (wpu, 1 wpu = /1200 inch). The descender height defines the distance
between the character baseline and the lower extremity of characters like g, y, and so on. The unit
psu (point size unit) is defined as Yum, of the font size (in points). The typefacedescriptor is a data
structure with information on serifs, character shapes, heights, and so on. The information is
stored in a 3-byte data structure.

18.5.3.2 Color (DrawPerfect) (code D1H, subcode 02H)

In version 5.1, WordPerfect uses this record to obtain color information from DrawPerfect.

476 Word processing formats

Offset Bytes Field

OOH 1 Color DrawPerfect (Code D1H)

01H 1 Sub-function code 02H

02H 2 Length word (value = 6)

04H 1 Old print color (0-FFH)

05H 1 New print color (0-FFH)

06H 2 Length word (value = 6)

08H 1 Sub-function code 02 H

09H 1 End function code (Code D1H)

All other subcodes are reserved in version 5.1.

Table 18.89

Opcode D1H, 02H
in version 5.1

18.5.4 Group definition sub-functions (code D2H, version 5.1)

These records define parts of a document (tables, paragraphs, and so on) as groups. Some records
use the same structure as version 5.0. Table 18.90 lists the records that have not been modified.

Code Function

OOH Define math columns

01H Define columns

03H Footnote options

04H Endnote options

05H Graph box options for figures
06H Graph box options for tables
07H Graph box options for text boxes
08H Graph box options for user-defined text boxes

18.5.4.1 Paragraph number definition (code D2H, subcode 02H)

This record defines a new paragraph number.

Table 18.90

Unmodified

records for

function D2H

(version 5.1+)

WordPerfect format 477

Offset Bytes Field

OOH 1 Paragraph number definition
(Code D2H)

01H 1 Sub-function code 02 H

02H 2 Length word (value = 140)

04H 24 8 x 3-byte entries containing
old definitions

1CH 16 8 x 2-byte entries containing
old level numbers

2CH 24 8 x 3-byte entries containing

new definitions

44H 16 8 x 2-byte entries with

new level numbers containing
54H 1 Old attach flag
55H 1 Old outline flag

Bit 0 = Oenter key inserts

paragraph number
Bit 1 = Otab to level of

previous paragraph number
56H 18 Old outline style name
68H 1 New attach flag
69H 1 New outline flag
6AH 18 New outline style name
7CH 16 8 level numbers from

previous definitions
8CH 2 Length word (value = 140)
8EH 1 Sub-function code 02 H

8FH 1 End function code (Code D2H)
Table 18.91

Opcode D2H, 02H
in version 5.1 +

The data structure at offset 2CH defines the characters for chapter punctuation in the first and
third bytes. The second byte defines paragraph numbering:

Notation Numbering

1

i

A

a

1

Roman capitals

Lower case Roman

Capital letter

Lower case letter

Arabic

478 Word processing formats

18.5.4.2 Graph box options for equations (code D2H, subcode 09H)

The graph box options enable new windows to be defined for equations. If a window is defined for
an equation, all positions are relative to this window. The structure is identical to function D2H,
05H in version 5.0.

18.5.4.3 Define tables (Table On) (code D2H, subcode OBH)

This record is new to version 5.1 and defines a table.

Offset Bvtes

OOH 1

01H 1

02H 2

04H 1

05H

06H

08H

OAH

OCH

OEH

10H

12H

14H

1

2

2

2

2

2

2

2

2

Field

Define tables (Code D2H)
Sub-function code OBH

Length word (value = variable)
Flags
Bits 0-2: table position options

0 = align with left margin
1 = align with right margin
2 = center between

margins

3 = full (adjust column
width)

4 = absolute offset from

left margin

Bits 3-4: —

Bit 5: 0 minus signs

1 display negative results
with parentheses

Bit 6: 1 auto adjust column
width

Bit 7: 1 expand column width

Shading (0-100%)
Number of columns (maximum 32)
Table number

Position left edge of table (wpu)
Left gutter space (wpu)
Right gutter space (wpu)
Top gutter space (wpu)
Bottom gutter space (wpu)
Row number after header rows

(0 = number header rows)

Table 18.92

Opcode D2H. OBH

in version 5.1+

(continues
over...)

WordPerfect format 479

Offset Bytes Field

16H 2 Formatter lines at start of table

18H 2 Page number at start of table
1AH 2 Offset from left edge of paper
1CH xx Column

(in Vuou)
widths (1 word/column)

xxH XX Column attributes (1 word/column)
xxH XX Column alignment (1 byte/column)

Bits 0-2: horizontal alignment
0 = left

1 = justified (left, right)
2 = center

3 = flush right
4 = decimal align

Bit 3: —

Bits 4-7: number of characters to

right of decimal alignment

for cells

xxH XX New values to repeat old flag values
(see offset 04H)

xxH 2 Null bytes (OOH)
xxH 2 Length word (value = variable)
xxH 1 Sub-function code OBH

xxH 1 End function code (Code D2H)

18.5.4.4 Define Unk start (code D2H, subcode ODH)

This function is new to version 5.1 and defines a link to another object.

Offset Bytes

OOH 1

01H 1

02H 2

04H 2

06H 1

07H 1

08H 2

Field

Define link start (Code D2H)
Sub-function code ODH

Length word (value = variable)

Old ufcur

Number of lines of text to display
Type (spreadsheet, text, ...)
Date of file when last linked

Table 18.92

Opcode D2H. OBH
in version 5.1 +

(cont.)

Table 18.93

Opcode D2H, ODH
in version 5.1 +

(continues
over...)

480 Word processing formats

Offset Bytes Field

OAH 2 Time of file when last linked

OCH 2 Start column of range
OEH 2 Start row of range

10H 2 End column of range
12H 2 End row of range

14H 81 File name with length byte
(maximum 81)

65H 21 Range name with length byte
(maximum 21)

7AH 16 Range reference with
length byte (maximum 16)

8AH 2 Length word (value = variable)

8CH 1 Sub-function code ODH

8DH 1 End function code (Code D2H)

18.5.4.5 Define link end (code D2H, subcode OEH)

This function marks the end of a link and is defined from version 5.1 onwards.

Offset Bytes Field

OOH 1 Define link end (Code D2H)

01H 1 Sub-function code OEH

02H 2 Length word (value = variable)

04H 2 Old ufcur

06H 1 Number of lines of text to display

07H 2 Start column of range

09H 2 Start row of range

OBH 2 End column of range

ODH 2 End row of range

OFH 81 File name with length byte

(maximum 81)

96H 2 Length word (value = variable)

98H 1 Sub-function code OEH

99H 1 End function code (Code D2H)

Table 18.93

Opcode D2H, ODH
in version 5.1+

(cont.)

Table 18.94

Opcode D2H, OEH
in version 5.1 +

WordPerfect format 481

18.5.5 Set group sub-functions (code D3H, version 5.1)

In version 5.1, WordPerfect uses these records to store format information on the text. All

functions use code D3H and a subcode. Table 18.95 lists the functions that are unchanged from
version 5.0.

Code Function

OOH Set alignment character
01H Set underline mode

02H Set footnote number
03H Set endnote number

05H Line numbering
06H Advance to page position
07H Force odd/even page
OAH Character/space width
OBH Space expansion
OCH Set graph box number for figures
ODH Set graph box number for tables
OEH Set graph box number for text boxes
OFH Set graph box number for user-defined boxes

18.5.5.1 Set page number (code D3H, subcode 04H)

This record defines the page number and the format of the number.

Offset Bytes Field

OOH 1 Set page number (Code D3H)
01H 1 Sub-function code 04H

02H 2 Length word (value = 10)
04H 2 Old page number
06H 2 New page number (bit 15 = Roman)
08H 1 Type of old page number
09H 1 Type of new page number
OAH 2 Length word (value = 10)
OCH 1 Sub-function code 02 H

ODH 1 End function code (Code D3H)

Table 18.95

Function group
D3H used from

version 5.0

onwards

Table 18.96

Opcode D3H. 04H
in version 5.1

If bit 15 in the word at offset 06H is set, the page numbers are displayed as Roman numerals.

482 Word processing formats

18.5.5.2 Character baseline in fixed fine height (code D3H, subcode 08H)

This function was defined after WordPerfect version 5.0 (after June 1989); it defines the character

baseline.

Offset Bytes Field

OOH 1 Character baseline definition

(Code D3H)

01H 1 Sub-function code 08H

02H 2 Length word (value = 6)

04H 1 Old definition

05H 1 New definition

06H 9 Length word (value = 6)
08H 1 Sub-function code 08H

09H 1 End function code (Code D3H)
Table 18.97

Opcode D3H, 07H
in version 5.1

18.5.5.3 Set graph box number for equations (code D3H, subcode 10H)

This record is defined from version 5.1 onwards and stores equation numbers. The structure is

identical to function D3H, OCH in version 5.0.

18.5.5.4 Set language (code D3H, subcode 11H)

This record defines the language for a text area.

Offset Bytes Field

OOH 1 Set language (Code D3H)

01H 1 Sub-function code 11H

02H 2 Length word (value = 12)

04H 2 Old language 2-character ID (ASCII)
06H 2 New language 2-character ID (ASCII)

AF = Afrikaans

CA = Catalan

CZ = Czechoslovakian

US = English US
OZ = English Australia
DK = Danish

Table 18.98

Opcode D3H, 11 H
in version 5.1

(continues
over...)

WordPerfect format 483

Offset Bytes Field

NL = Dutch

SU = Finnish

FR = French

DE = German

SD = Swiss

GR = Greek

IC = Icelandic

IT = Italian

NO = Norwegian

PO = Portuguese
BR = Portuguese Brazil

SU = Russian

ES = Spanish

SV = Swedish

UK = English UK
CF = Canadian French

08H 2 Length word (value = 8)
OAH 1 Sub-function code 11H

OBH 1 End function code (Code D3H)

18.5.5.5 Set page number style (code D3H, subcode 12H)

This record defines the style for a page number.

FieldOffset Bytes

OOH 1 Set page number style (Code D3H)
01H 1 Sub-function code 12H

02H 2 Length word (value = 64)
04H 30 Old page number style
22H 30 New page number style
40H 2 Length word (value = 64)
42H 1 Sub-function code 12H

43H 1 End function code (Code D3H)

Table 18.98

Opcode D3H, 11H
in version 5.1

(cont.)

Table 18.99

Opcode D3H, 12H
in version 5.1

484 Word processing formats

18.5.6 Format group sub-functions (code D4H, version 5.1)

WordPerfect defines this code from version 5.1 onwards to store format information. The function

code is D4H together with a subcode.

18.5.6.1 End of page function (code D4H, subcode OOH)

This record defines the end of a page.

Offset Bytes Field

OOH 1 End of page function (Code D4H)
01H 1 Sub-function code OOH

02H 2 Length word (variable)

04H 1 Group 0 marker

05H 1 Group 0 length (16H)
06H 2 Number of formatter lines at end

of page
08H 2 Actual page number

OAH 2 Number of formatter lines used

for footnotes

OCH 1 Number of pages used for footnotes
ODH 1 Number of footnotes on this page

OEH 1 Conditional end of page flag
OFH 1 Suppress code

10H 1 Center page top to bottom

11H 1 Page flags
12H 1 Page length
13H 1 Odd page size

14H 1 Even page size

15H 1 Odd top margin

16H 1 Even top margin

17H 1 Group 1 marker (optional)

18H 1 Group 1 length (variable)

19H xl Maximum number of formatter lines

for each column

..H xl Maximum screen lines from

column On

for each column

..H 2 Starting formatter lines for
last column

..H 2 Starting page for last column

Table 18.100

Opcode D4H, OOH
in version 5.1 +

(continues
over...)

Word Perfect format 485

Offset Bytes Field

..H 2 Screen lines from column On for

last line of last column

..H

..H

..H

..H

2

1

2

2

Screen lines column On at top of page
Suppress page state at column On

Number of formatter lines used

for footnotes at column On

Number of pages used for footnotes
at column On

..H

..H

..H

..H

1

1

1

x2

Group 2 marker (optional)

Group 2 length (variable)
Number of boxes formatter is tracking
Formatter box table

..H

..H

..H

2

1

1

Length word (variable)
Sub-function code OOH

End function code (Code D4H)

The value x1 is calculated as:

(Lines - 1) * 2 bytes

The value x2 is calculated as:

14 * number of boxes

Table 18.100

Opcode D4H, OOH
in version 5.1 +

(cont.)

18.5.6.2 Beginning of Une function (code D4H, subcode OIH)

In version 5.0, WordPerfect uses this record to mark the end of a line. From version 5.1, this
record marks the beginning of a line.

FieldOffset Bytes

OOH

01H

02H

04H

05H

1

1

2

1

1

Beginning of line function (Code D4H)
Sub-function code 01H

Length word (variable)

Group 0 marker
Group 0 length (6)

Table 18.101

Opcode D4H, 01H
in version 5.1 +

(continues
over...)

486 Word processing formats

Offset Bytes Field

06H 2 Maximum top shoulder height for line
08H 2 Maximum bottom shoulder height

for line

OAH 2 Old uflin (wpu)
OCH 1 Group 1 marker

ODH 1 Group 1 length (6)

OEH 2 Number of spaces on line

10H 2 Space adjustment (+/-)

12H 2 Justify margin (absolute)

14H 2 Length word (variable)

16H 1 Sub-function code 01H

17H 1 End function code (Code D4H)
*®tatl •IIHINIIMillllllllll! J Ill) .•mmmmmmmmm

Table 18.101

Opcode D4H, 01H
in version 5.1+

(cont.)

This record is not required for third-party software, because WordPerfect generates the
beginning of a line. Group 0 is only inserted if the maximum values are set differently from the
current values. Group 1 is only inserted iffull justification is required.

18.5.6.3 Graph box information function (code D4H, subcode 02H)

This record defines the parameters of a graph box.

Offset Bytes Field

OOH 1 Graph box information (Code D4H)

01H 1 Sub-function code 02H

02H 2 Length word (variable)
04H 1 Group 0 marker

05H 1 Group 0 length (14H)

06H 2 Old left margin (wpu)

08H 2 Old temporary left margin (wpu)

OAH 2 Old right margin (wpu)

OCH 2 Old temporary right margin (wpu)

OEH 2 Old number formatter lines (wpu)

10H 2 New left margin (wpu)

12H 2 New temporary left margin (wpu)
14H 2 New right margin (wpu)

16H 2 New temporary right margin (wpu)

18H 2 Signed change in new number

1AH 1 Group 1 marker

Table 18.102

Opcode D4H, 02H

in version 5.1+

(continues
over...)

WordPerfect format 487

Offset Bytes Field

1BH XX Group 1 length (boxes * 8 bytes)

XX Flags
BitO: 1 = top of box is on this line
Bit 1: 1 = middle of box is on

this line

Bit 2: 1 = bottom of box is on

this line

Bits 5-3: box type

0 = figure
1 = table

2 = text box

3 = user-defined box

4 = equation box

1 Box numbering mode
... 2 Box number

Bits 4-0: Level 2 number

Bits 15-!>: Level 1 number

2 Box position left (wpu)
2 Box position right (wpu)
2 Length v,'ord (variable)
1 Sub-function code 02 H

1 End function code (Code D4H)

Offset Bvtes

OOH 1

01H 1

02H 2

04H 1

05H 2

07H 1

08H 1

Field

Marker repositioning (Code D4H)

Sub-function code 03 H

Length word (value = 6)

Mask of marker

Length word (value = 6)

Sub-function code 03H

End function code (Code D4H)

Table 18.102

Opcode D4H, 02H
in version 5.1 +

(cont.)

Each box in group 1 defines 8 bytes containing a flag and the box data. The record is of variable
length.

18.5.6.4 Marker for repositioning (code D4H, subcode 03H)

The record defines a marker for the new position of a box.

Table 18.103

Opcode D4H, 03H
in version 5.1

488 Word processing formats

18.5.6.5 Function containing fixed text (code D4H, subcode 04H)

This record is defined from version 5.1 onwards; it defines fixed text, which is not displayed/edited.

Offset Bytes Field

OOH 1 Fixed text (Code D4H)

01H 1 Sub-function code 04 H

02H 2 Length word (variable)

04H 2 Hash value (reserved 0)
06H xl Text

xxH 2 Length word (variable)
xxH 1 Sub-function code 04H

xxH 1 End function code (Code D4H)

18.5.6.6 Justification information (code D4H, subcode 05H)

This new record is inserted for justified text.

Offset Bytes Field

OOH 1 Justification information (Code D4H)

01H 1 Sub-function code 05H

02H 2 Length word (value = 8)
04H 2 Start position (screen units)

06H 2 Start position (wpu)

08H 2 Length word (value = 8)
OAH 1 Sub-function code 05 H

OBH 1 End function code (Code D4H)

Table 18.104

Opcode D4H, 04H
in version 5.1

Table 18.105

Opcode D4H, 05H
in version 5.1

18.5.7 Header/footer group sub-functions (code D5H, version 5.1)

From version 5.1, WordPerfect uses the code D5H to store control information on the header/footer.
The record structure is the same as in version 5.0.

18.5.8 Footnote/endnote group sub-functions (code D6H, version 5.1)

This record structure is defined from WordPerfect 5.0 onwards; it contains the footnotes/endnotes.

WordPerfect format 489

18.5.9 Generate group sub-functions (code D7H, version 5.1)

WordPerfect 5.1 uses this group to store text markers in a file. Table 18.106 lists the functions that
are unchanged from version 5.0.

From version 5.1 onwards, the record Auto reference definition (Code D7H, Subcode 07H)

contains a new reference type (offset 04H, code 8: Equation box number).

Code Function

OOH Begin marked text
01H End marked text

02H Define marked text

03H Index entry
04H Table of authority entry
05H Endnotes print here
06H Save page information

08H Auto reference tag
09H Include sub-document

OAH Start of included sub-document

OBH End of included sub-document
Table 18.106

Unmodified

records D7H

(version 5.1)

18.5.10 Display group sub-functions (code D8H, version 5.1)

This record group stores information about the text output (date, paragraphs, and so on). A new
record type was defined for version 5.1.

18.5.11 Page number style insert (code D8H, subcode 03H)

This record stores information on the page number style. A variable length string containing the
style for page numbering is stored at offset 04H.

Bytes Field

OOH 1 Page number style (Code D8H)
01H 1 Sub-function code 03H

02H 2 Length word (variable)
04H xx Style string
xxH 2 Length word (variable)
xxH 1 Sub-function code 03H

xxH 1 End function code (Code D8H) Table 18.107

Opcode D8H, OOH
in version 5.1

490 Word processing formats

18.5.11 Miscellaneous group (code D9H, version 5.1)

This group contains several new records from version 5.1 onwards.

18.5.11.1 Outline ON (code D9H, subcode 04H)

This record stores control codes for paragraph numbering.

Offset Bytes Field

OOH 1 Outline ON (Code D9H)

01H 1 Sub-function code 04H

02H 2 Length word (value = 20)
04H 16 Old level numbers for

paragraph numbering

14H 2 Length word (value = 20)

16H 1 Sub-function code 04H

17H 1 End function code (Code D9H)

18.5.11.2 Leading adjustment (code D9H, subcode 05H)

This record contains information on the leading adjustment in a text.

Offset Bytes Field

OOH 1 Leading adjustment (Code D9H)

01H 1 Sub-function code 05H

02H 2 Length word (value = 12)

04H 2 Old srt and HRr leading (1200)

06H 2 New srt and HRr leading (1200)

08H 2 Length word (value = 12)

OAH 1 Sub-function code 05H

OBH 1 End function code (Code D9H)

Table 18.108

Opcode D9H, 04H
in version 5.1

Table 18.109

Opcode D9H, 05H
in version 5.1

WordPerfect format 491

18.5.11.3 Kerning (code D9H, subcode 06H)

This record defines the kerning values.

Offset Bytes Field

OOH 1 Kerning (Code D9H)

01H 1 Sub-function code 06H

02H 2 Length word (value = 6)

04H 2 Alter kerning value

100/kerning * (space width)

06H 2 Length word (value = 6)

08H 1 Sub-function code 06H

09H 1 End function code (Code D9H)

18.5.11.4 Kerning (code D9H, subcode 07H)

This record contains additional kerning options.

Offset Bytes Field

OOH 1 Kerning (Code D9H)

01H 1 Sub-function code 07H

02H 2 Length word (variable)

04H 4 Product type, file type,

main version, sub-version

08H XX Variable length information

used for format conversion

06H 2 Length word (variable)

08H 1 Sub-function code 07H

09H 1 End function code (Code D9H)

18.5.12 Box group (code DAH, version 5.1)

This group (code DAH) defines the data for text boxes, frames, tables, and so on.

Tabic 18.110

Opcode D9H, 06H
in version 5.1

Table 18.111

Opcode D9H, 07H
in version 5.1

492 Word processing formats

18.5.12.1 Figure (code DAH, subcode OOH)

This record defines all the parameters of a box for the insertion of pictures.

Offset Bytes Field

OOH 1 Figure (Code DAH)
01H 1 Sub-function code OOH

02H 2 Length word (variable)
04H 2 Box number xx. xx

Bits 15-5: number level 1 (xx.)
Bits'!h-0: number level 2 (. xx)

06H 1 Position and type flag
Bits 1 -0: Box type

0 = paragraph
1 =page
2 = character (in-line)

Bits'i—2: Position option

0 = full page
1 = top

2 = middle

3 = bottom

4 = absolute

Bit 5 Box bumped to next page
Bit 6 0 not offset

1 page offset appears
after page definition on

Bit 7 print equation flag
0 print as graphics
1 print as text

07H 1 Alignment flags:
Bits 1 -0: Alignment option

0 =left

1 = right

2 = centered

3 = left and right justified
Bits 3-2: Alignment with

0 = margins
1 = columns

2 = absolute

Bit 4 Scale width figure
Bit5 Scale height figure
Bit 6 Reserved

Bit 7 0 = wrap text around
1 = disable wrap text

Table 18.112

Opcode DAH, OOH
in version 5.1

(continues
over...)

WordPerfect format 493

Offset Bytes Field

08H 2 Box width (wpu)

OAH 2 Box height (wpu)

OCH 2 X position of box (wpu)

OEH 9
£ Y position of box (wpu)

10H 2 Outside left spacing between
window and text (wpu)

12H 2 Outside right spacing between
window and text (wpu)

14H 2 Outside top spacing between
window and text (wpu)

16H 2 Outside bottom spacing between
window and text (wpu)

18H 2 Inside left spacing between
window and text (wpu)

1AH 2 Inside right spacing between
window and text (wpu)

1CH 2 Inside top spacing between

window and text (wpu)
1EH 2 Inside bottom spacing between

window and text (wpu)
20H 2 Horizontal offset (wpu)
22H 2 Vertical offset (wpu)
24H 1 Column X for column alignment
25H 1 Column Y for column alignment
26H 2 Source image width (wpu)
28H 2 Source image height (wpu)

if text box = number of format lines

2AH 2 Orientation

Bit 15: 1 = mirror

Bit 14: 1 = invert bits for

monochrome bitmaps

Bits 13-12: reserved

Bits 11-0: rotation angle (0...360)
2CH 2 Width scale factor (100 = 100%)
2EH 2 Height scale factor (100 = 100%)
30H 2 X crop offset (wpu)

for text boxes = formatter hash value

32H 2 Y crop offset (wpu) for
text boxes = rotation

0=0 degrees

1 = 90 degrees
Table 18.112

Opcode DAH,
OOH in version

5.1 (cont.)

494 Word processing formats

Offset Bytes

34H

Field

2 = 180 degrees

3 = 270 degrees

Format type of box contents

0 = empty box

1 = reserved

2 = graphics of disk

3 = reserved

7 = reserved

8 = equation text

9 = reserved

14= reserved

15= reserved

16 = WordPerfect text

17 = ASCII text

18 = reserved

63 = reserved

64 = internal table format

65 = MathPlan 3.0 worksheet

66 = Lotus 1-2-3 worksheet

67 = DIF format

68 = reserved

126 = reserved

127 = reserved

128 = WPG format

129 = Lotus PIC format

130 = TIFF format

131 = PC Paintbrush

PCX format

132 = Windows Paint

(MSP) format
133 = CGI Metafile

(CGM) format
134 = AutoCAD (DXF) format
135 = reserved

Table 18.112

Opcode DAH,
OOH in version

5.1 (conf.)

WordPerfect format 495

Offset Bytes Field

136 = reserved

137 = MAC Paint file

138 = HPGL format

139 = Dr. Halo and

Halo DPE format

140 = PC Paint normal format

141 = PC Paint BSAVE format

142 = GEM IMG format

143 = EPS files

144 = PostScript files

145 = reserved

255 = reserved

35H 21 ASCIIZ string containing file name
4AH 28 Reserved

66H 1 Justification flag for equation

0 = center

1 =left

2 =right
67H 2 Absolute page number box appears on

(defined page + bumped + page offset)
69H 1 Number of pag es box is bumped

from page it is defined on

6AH 1 Number of pages page type box is

offset from pa| e it is defined on

6BH 2 Desired width

(wpu)

as entered by user

6DH 2 Desired height

(wpu)
as entered by user

6FH 2 Amount of extra space between

caption and box (wpu)

71H 2 Image index number in graphics
temporary file

73H 2 Number of formatter lines in caption
(wpu)

75H 2 Formatter hash value for caption
77H 2 Length of caption in bytes
79H XX Text for caption

Table 18.112

Opcode DAH, OOH
in version 5.1

(conf.)

496 Word processing formats

Offset Bytes Field

xxH XX Text for text box

xxH 2 Length word (variable)

xxH 1 Sub-function code OOH

xxH 1 End function code (Code DAH) Table 18.112

Opcode DAH, OOH
in version 5.1

(cont.)

18.5.12.2 Table (code DAH, subcode OIH)

This record contains the information for a table box and has the same structure as the picture box.

18.5.12.3 Text box (code DAH, subcode 02H)

This record contains the information for a text box and has the same structure as the picture box.

18.5.12.4 User-defined text box (code DAH, subcode 03H)

This record contains the information for a user-defined text box and has the same structure as the

picture box.

18.5.12.5 Equation (code DAH, subcode 04H)

This record contains the information for an equation box and has the same structure as the
picture box.

18.5.12.6 Horizontal line (code DAH, subcode 05H)

This record defines a horizontal line and its position.

Offset Bytes Field

OOH

01H

02H

04H

1

1

2

2

Horizontal line (Code DAH)

Sub-function code 05 H

Length word (value = 121)

Reserved

Table 18.113

Opcode DAH, 05H
in version 5.1

(continues
over...)

WordPerfect format 497

Offset Bytes Field

06H 1 Vertical position flags

Bits 1-0: reserved

Bits 4-2: position option

for vertical lines

0 = full page

1 = top

2 = middle

3 = bottom

4 = absolute

for horizontal lines

0 = baseline

2 = —

3 = —

4 = absolute

Bit 5: bump bit (always 0)

Bits 7-6: reserved

07H 1 Alignment flags:

Bits 2-0: Alignment option

for horizontal lines

0 =left

1 = right

2 = centered

3 = left and right justified

4 = absolute

for vertical lines

0 = left margin

1 = right margin

2 = between columns x, xl

3 = absolute position

Bits 7-3: Reserved

08H 2 Width of line (wpu)
OAH 2 Height of line (wpu)

OCH 2 X-position of line (wpu)
OEH 2 Y-position of line (wpu)

10H 20 Reserved

24H 1 Shading (96 black)
Table 18.113

Opcode DAH. 05H
in version 5.1

(cont.)

498 Word processing formats

Offset Bytes Field

25H 1 Column x for vertical lines only

26H 4 Reserved

2AH 2 Constant = 0

2CH 2 Constant = 100

2EH 2 Constant = 100

30H 2 Constant = 0

32H 2 Constant = 0

34H 1 Constant = 0

35H 50 Reserved

67H 2 Appearance page

69H 14 Reserved

77H 2 Constant = 0

79H 2 Length word (value = 121)

7BH 1 Sub-function code 05 H

7CH 1 End function code (Code DAH)
Table 18.113

Opcode DAH, 05H
in version 5.1

(cont.)

18.5.12.7 Vertical line (code DAH, subcode 06H)

This record is used to define a vertical line in the text. The structure is the same as for horizontal

lines.

18.5.13 Style group (code DBH)

This function group (code DBH) stores information on the text format. The record structure is
described in version 5.0 (see Subsection 18.2.14).

18.5.14 Table end of line codes group (code DCH, version 5.1)

These records are defined from version 5.1 onwards.

18.5.14.1 Beginning of column at EOL (code DCH, subcode OOH)

This record describes the beginning of a column.

WordPerfect format 499

Offset Bytes Field

OOH 1 Beginning of column at EOL

(Code DCH)
01H 1 Sub-function code OOH

02H 2 Length word (variable)
04H 1 Flags

BitO: 1 use cell justification
instead of column defaults

Bit 1: 1 use cell attributes

instead of column defaults

Bits 2-3: vertical alignment cell

0 = top

1 = bottom

2 = center

Bit 4: 1 = text type

0 = numerical type

Bit 5: 1 cell has formula

Bit 6: 1 cell is locked

Bit 7: —

05H 1 Column number

06H 1 Column spanning information
Bits 0-5: number of columns this

cell spans

Bit 7: 1 cell is continued from

row above

07H 1 Row span information

(number of rows/cell)
08H 2 Old maximum number of formatter

lines for row (uflin) (wpu)
OAH 2 Old maximum screen lines for row

(screen units)
OCH 2 Cell attributes

OEH 2 Cell justification
Bits 0-2: horizontal justification

0 =left

1 = flush right
2 = centered

3 = left and right justified
4 = decimal align

Table 18.114

Opcode DCH. OOH
in version 5.1

(continues
over...)

500 Word processing formats

Offset Bytes

1

XX

xxH 2

xxH 1

xxH 1

Field

Variable length subgroup information

Subgroup code

Subgroup length
Length word (value = 121)

Sub-function code OOH

End function code (Code DCH)
Table 18.114

Opcode DCH, OOH
in version 5.1

(cont.)

Each group uses a variable length list for the subgroup information. If the length is set to 15,
the group does not exist. The maximum length is restricted to 255 characters. In version 5.1 only
group 1 (cell formula) is defined.

18.5.14.2 Beginning of row at EOL (code DCH, subcode OIH)

This record marks the beginning of a row.

Offset Bytes Field

OOH 1 Beginning of row at EOL (Code DCH)

01H 1 Sub-function code 01H

02H 2 Length word (variable)

04H 1 Old row height flags:

Bit 0: 0 single line text
1 multi-line text (wrap)

Bit 1: 0 fixed height

1 auto height

Bits 2-7: —

05H 2 Old row height (wpu)

07H 1 Old number of bytes of border

information for this row

(bit 7 = 1:1 word per column,

bit 7 = 0: 1 byte per column)

08H - Old border information

(number of columns * 2 bytes)

Bits 0-2: for top border of cell

Bits 3-5: for left border of cell

Table 18.115

Opcode DCH, 01H
in version 5.1

(continues
over...)

WordPerfect format 501

Offset Bytes Field

Bits 6-7: —

High byte:

Bits 0-2: for bottom border of cell

Bits 3-5: for right border of cell
Bit 6: 1 if shaded cell

Bit 7: 1 if this word is really
a count word indication

next style applies to

number of words (number
is stored in bits 0-14)

xxH 1 New row height flags
xxH 2 New row height (wpu)
xxH 1 New number of bytes of border

information for this row

(bit 7 = 1:1 word per column,
bit 7 = 0: 1 byte per column)

xxH XX New border information

(number of columns * 2 bytes)
xxH 2 Old number of formatter lines at top of

row (wpu)
xxH 2 Length word (variable)
xxH 1 Sub-function code 01H

xxH 1 End function code (Code DCH)

18.5.14.3 Table Off at EOL (code DCH, subcode 02H)

This record is used to mark the end of a table.

Offset Bytes Field

OOH 1 Table Off at EOL (Code DCH)

01H 1 Sub-function code 02H

02H 2 Length word (variable)

04H 1 Flags:

Bits 0-1: old row height option

Bits 2-7: —

Table 18.115

Opcode DCH, 01H
in version 5.1

(cont.)

Table 18.116

Opcode DCH, 02H
in version 5.1

(continues
over...)

502 Word processing formats

Offset Bytes

05H 2

07H 1

08H XX

xxH 1

xxH 2

xxH 2

xxH 2

xxH 2

xxH 1

xxH 1

Field

Old row height (wpu)

Old number of bytes of border
information for row

Old border information for row

Old number of rows

Old number of formatter lines

at top of row (wpu)

Old size of header rows

Old number of columns

Length word (variable)

Sub-function code 02H

End function code (Code DCH)
Table 18.116

Opcode DCH, 02H
in version 5.1

(cont.)

18.5.15 Table end of page codes group (code DDH, version 5.1)

This group of sub-functions is defined from version 5.1 onwards. The subcode OOH is free.

♦ Subcode 01H is used for the function Beginning of row at end of page. The record structure is
identical to function DC01 H.

♦ Subcode 02H is used for the function Table off at end of page. The record structure is identical

to function DC02H.

♦ Subcode 03H is defined for the function Beginning of rowAhard page break and has a structure

identical to function DC01H.

18.5.16 Enhanced merge functions (code DEH, version 5.1)

This group is defined from version 5.1 onwards.

Offset

OOH

01H

02H

xxH

04H

xxH

xxH

Bytes

1

1

2

xx

2

1

1

Field

Enhanced merge (Code DEH)
Sub-function code xxH

Length word (value = 4)
Parameter of function

Length word (value = 4)
Sub-function code xxH

End function code (Code DEH) Table 18.117

Opcode DEH. xxH
in version 5.1

WordPerfect format 503

The length word is set to 4 for most functions. Only sub-function DE34H has the value 6 for
length. Table 18.118 shows the sub-functions that have been defined.

Subcode Subfunction

20H mrg_asgn (ASSIGN) var, expr

21H mrg_bell (BELL)

22H mrg_brk (BREAK)

23H mrg_call (CALL) Label

24H mrg_cncLf (CANCEL OFF)

25H mrg_cncLo (CANCEL ON)

26H mrg_case (CASE) exp, easel. Label..

(ELSE) label

27H mrg_casec (CASE CALL) exp, easel,

label.. (ELSE) label

28H mrg_chnmo (CHAIN MACRO) macroname

29H mrg_chnp (CHAIN PRIMARY) file name

2AH mrg_chns (CHAIN SECONDARY) file

2BH mrg_char (CHAR) var, message

2CH mrg_comt (COMMENT) comment

2DH mrg_cton (CTON) character

2EH mrg_dateo (DATE) Old AD

2FH mrg_doc (DOCUMENT) file name

30H mrg_else (ELSE)

31H mrg_endfl (END FIELD) Old AR

32H mrg_endfor (END FOR)

33H mrg_endif (END IF)

34H mrg_endrec (END RECORD) Old AE

Number of fields in record (1 Word)

35H mrg_endwhl (END WHILE)

36H mrg_field (FIELD) field old AF

37H mrg_for (FOR) var, start, stop, step

38H mrg_freach (FOR EACH) var, expr, expr...

39H mrg_go (GO) label

3AH mrg_if (IF) expr

3BH mrg_ifb (IF BLANK) field

3CH mrg_ifexst (IF EXISTS) var

3DH mrg_notb (IF NOT BLANK) field

3EH mrg_kybd (KEYBOARD) old AC

3FH mrg_label (LABEL) label

40H mrg_local (LOCAL) var, expr

41H mrg_look (LOOK) var

42H mrg_mid (MID) expr, offset, count

43H mrg_mrcmd (MRG CMND) codes (MRG CMND)

Table 18.118

Merge sub-
functions

(version 5.1)
(continues
over...)

504 Word processing formats

Subcode Subfunction

44H mrg_nestm (NEST MACRO) macroname

45H mrg_nestp (NEST PRIMARY) file name

46H mrg_nests (NEST SECONDARY) file name

47H mrg_next (NEXT)

48H mrg_nextr (NEXT RECORD) Old AN

49H mrg_ntoc (NTOC) number

4AH mrgjproc (PROCESS) codes (PROCESS)

4BH mrg_oncan (ON CANCEL) action

4CH mrg_onerr (ON ERROR) action

4DH mrg_pagef (PAGE OFF)

4EH mrg_pagen (PAGE ON)

4FH mrg_pmt (PRINT) Old AT

50H mrg_prompt (PROMPT) message

51H mrg_quit (QUIT) Old AQ

52H mrg_ret (RETURN)

53H mrg_retcan (RETURN CANCEL)

54H mrg_reterr (RETURN ERROR)

55H mrg_rwrite (REWRITE) Old AU

56H mrg_stepf (Step OFF)

57H mrg_stepo (Step ON)

58H mrg_subp (SUBST PRIMARY) file name

59H mrg_subs (SUBST SECONDARY) file

5AH mrg_sys (SYSTEM) sysvar

5BH mrg_text (TEXT) var, message

5CH mrg_var (VARIABLE) var

5DH mrg_wait (WAIT) Y10

5EH mrg_while (WHILE) expr

5FH mrg_sprmt (STATUS PROMPT) message

60H mrg_input (INPUT) message

61H mrg_len (LEN) expr

62H mrg_fldnm (FIELD NAME) name ...

63H mrg_end end of merge command

Table 18.118

Merge sub-
functions

(version 5.1)
(cont.)

WordPerfect format 505

18.5.17 Equation nested function group (code DFH, version 5.1)

The code DFH defines a new group of sub-functions in version 5.1. In this version only function OOH
is defined.

18.5.17.1 Equation nested function (code DFH, subcode OOH)

This record stores data for the output of equations.

Offset Bytes Field

OOH 1 Equation nested function (Code DFH)
01H 1 Sub-function code OOH

02H 2 Length word (variable)
04H 2 Flags, bits 6-15 unused

Bits 0-2: horizontal alignment

0 = left alignment
1 = right alignment

2 = center alignment
Bits 3-5: vertical alignment

1 = top alignment
2 = center alignment
3 = bottom alignment

06H 2 Memory requirements of equation
08H 2 Offset of equation text from this

location (0 in WP 5.1)
OAH 2 Equation base font size (graphic)
OCH OCX Equation text

xxH XX Equation compact stream
xx H 2 Length word (variable)
xxH 1 Sub-function code OOH

xxH 1 End function code (Code DFH)
Table 18.119

Opcode DFH. OOH
in version 5.1

506 Word processing formats

18.5.18 Unknown function (code FEH, version 5.1)

18.5.18.1 Unknown function (code FEH, subcode FEH)

This function is used to mark unknown functions in a file.

Offset Bytes Field

OOH

01H

02H

xxH

xxH

1

1

XX

1

1

Unknown function (FEH)

Sub-function code FEH

Variable length

Sub-function code FEH

End function code (Code FEH) Table 18.120

Opcode FEH, FEH
in version 5.1

The Wordperfect 6.x file format is backwardly compatible to earlier versions. A description is
available from the vendor after signing a license agreement.

en

Rich Text format
(RTF version 1.2)

This format was defined by Microsoft as a
method of encoding formatted text and
graphics for ease of transfer between different

applications. The RTF standard defines a format that
can be used with different output devices, operating
systems and environments. Most Microsoft products
support the RTF definition. RTF is also the exchange
format for the clipboard in Windows and for Word on
different platforms (DOS, Windows, Macintosh).

The Rich Text Format definition uses only the displayable characters of the ASCII, MAC and PC
character sets to control the representation and formatting of a document. An RTF file consists of
unformatted text, control words, control symbols and groups. The characters used can be coded as
7-bit ASCII characters, but in Word for Windows and Word for Macintosh, 8-bit characters should
be used for data exchange. Figure 19.1 shows a section of an RTF document.

The document starts with the initial control sequences for the RTF reader. These control
sequences are divided into control words and control symbols.

A control word is a specially formatted command (letter sequence) which starts with a
backslash and ends with a delimiter:

Uettersequence <delimiter>

The Lettersequence is made up of lower case alphabetic characters between a and z. All RTF
keywords should be lower case. A delimiter marks the end of a control word, and can be one of the
following characters:

♦ A space: in this case the space is part of the control word.

♦ A digit or a hyphen -: this indicates that a numeric parameter and a delimiter follows.
Delimiters are spaces and other characters excluding a hyphen and digits. The range for the
numeric value is -32767 to 32767. Word (DOS, Windows, Macintosh, OS/2) restricts the range
to-31680 to 31680.

507

508 Word processing formats

♦ All characters other than a letter or a digit. In this case the delimiting character terminates the
control word and is not a part of it.

A control symbol consists of a backslash (\) followed by a single (non-alphabetic) character:

\controL symbol

Only a few control symbols are defined. An RTF reader can skip unknown control symbols.

{\rtf1\pc

{\infot\revtim\mo06\dy05\yr1989H\creatim\mo05\dy18\yr1989}

{\nofchars4912}}\deffO{\fonttbU\fO\fmodern pica;}

C\f1\fmodern Courier;H\f2\fmodern elite;K\f3\fmodern

prestige;}

{\f4\fmodern lettergothic;H\f5\fmodern gothicPS;}

v\f6\fmodern cubicPS;H\f7\fmodern lineprinter;}

{\f8\fswiss Helvetica;H\f9\fmodern avantgarde;}

{\f10\fmodern spartan;H\f11\fmodern metro;}

{\f12\fmodern presentstion;H\f13\fmodern

APL;H\f14\fmodern OCRA;}

{\f15\fmodern 0CRB;H\f16\f roman boldPS;H\f17\froman

emperorPS;}

{\f18\froman madaleine;H\f19\f roman zapf humanist;}

{\f20\froman classic;H\f21\froman Roman f;M\f22\froman

Roman g;}

•C\f23\f roman Roman h;H\f24\froman timesroman;H\f25\f roman

century;}

{\f26\froman paLantino;H\f27\froman souvenir;H\f28\f roman

garamond;}
{\f29\froman catedonia;H\f30\froman bodini;}{\f31\froman

university;}

{\f32\fscript script;H\f33\fscript scriptPS;}-C\f34\fscript

script c;}

{\f35\fscript script d;H\f36\fscript commercial script;}

{\f37\fscript park avenue;}{\f38\fscript coronet;}

{\f39\fscript script h;H\f40\fscript greek;}{\f41\froman

kana;}

•C\f42\froman hebrew;H\f43\froman Roman s;}{\f44\froman

russian;}

{\f45\froman Roman u;}-C\f46\froman Roman v;}{\f47\froman

Roman w;}

{\f48\fdecor narrator;}-C\f49\fdecor emphasis;}

{\f50\fdecor zapf chancery;}{\f51\fdecor decor d;}

Figure 19.1
Part of a

Word RTF file

(continues
over...)

Rich Text format (RTF) 509

{\f52\fdecor old english;M\f53\fdecor decor

f;H\f54\fdecor decor g;}

{\f55\fdecor cooper black;}{\f56\ftech Symbol;H\f57\ftech

linedraw;}

{\f58\ftech math7;H\f59\ftech math8;H\f60\f tech

bar3of9;}

{\f61\ftech EAN;H\f62\ftech pcline;H\f63\f tech tech h;}}

\ftnbj\ftnrestart \sectd \linex576\endnhere \pard \sl-240

\plain MICROSOFT WORD VERSION 5.0\par

This file provides you with information on certain

limitations on the conversion between texts which were

formatted in Word and texts which were formatted in RTF

(Rich Text Format). You will also be shown how you can

adapt the conversion of typefaces to your needs by

producing special files; these files are used in

conjunction with the conversion program. \par
Figure 19.1
Part of a

Word RTF file

(cont.)

A group consists of text and control words or control symbols enclosed in braces O.

•C Begin group

} End group

Each group specifies the text affected by the group and the different attributes and formats of
that text. An RTF file can contain additional groups for fonts, styles, screen colors, pictures,
footnotes, annotations, headers, and other character-formatting properties. If font, style, screen
color and summary information are included, they must precede the first plain-text character in
the document. If a group is not used it should be omitted.

If one of the following characters is used as an ASCII character in the text:

\ { }

a preceding backslash is required:

\\

\i

\}

510 Word processing formats

This tells the RTF scanner that the following character is not a control code. Some codes are

used for the print format without interpretation (Table 19.1).

Code

09H

OAH

OCH

Field description

Tabulator (\tab)

CR character

LF character
Table 19.1

Special
characters in the

RTF format

A CR/LF character in an RTF file will be skipped by the scanner. The character is used only to

format the RTF file for printing. An RTF file should contain a CR/LF after 255 characters.
In a control word, the CR/LF character can have a special meaning (see the control word

descriptions).

19.1 Destination control words

The following control words initialize the RTF reader and may occur only at the beginning of a file
or group. All control words and parameters must be enclosed between braces:

{\rtfO\pc }

The following pages contain a short description of all destination control words.

\rtf <parameter>

This control word defines the header in the format \rtfN, where N is the version number (1 for

RTF specification 1).

{\rtf0.

This initial control word is followed by other control words.

\ansi. \pc, and so on.

The second control word in an RTF file is the specification of the character set used. The RTF

specification supports different character sets.
The \pca control word is not implemented in all versions of Word. For exchanging text between

different platforms, the \ansi code should be used.

Control

\ansi

\mac

\pc

\pca

Character set

ANSI (default)

Apple Macintosh

IBM PC with code page 437

IBM PC with code page 850

Rich Text format (RTF) 511

Table 19.2

Character coding

\fonttbl

This control word introduces the font table group. This group defines all the fonts available in the

document and associates a name with a font number. For the font definition the following entries

are defined:

♦ \f ni I: Is used for unknown or default fonts. This is the default setting.

♦ \f roman: This defines proportional spaced serif fonts from the Roman family (Times Roman,
Palatino, and so on).

♦ \f swi ss: With this control the fonts from the Swiss family (Helvetica, Swiss, and so on) are used.

♦ \fmodern: Defines fixed-pitch serif and sans serif fonts like Pica, Elite and Courier.

♦ \f scri pt: Associates script fonts (cursive, and so on) with a font number.

♦ \f decor: Uses decorative fonts (Old English, ITCZapf Chancery, and so on).

♦ \f tech: Defines technical, mathematical and symbol fonts (Symbol, and so on).

♦ \bi di: Defines bidirectional fonts for Arabic, Hebrew or other languages (Miriam, and so on).

A valid command to define a font table is:

{\fonttbl\fO\fnil default;}

{\f1\froman Roman h;}

{\f2\fswiss helvetica;}

The keyword \fonttbl is followed by the first font number \f0. After the font number, the

definition of the font family (\f ni I for default) is required. The next parameter indicates the font

name (Roman h for the second font number \f1). The parameter default tells the reader to use

the default font. The font name is terminated by a semicolon. The complete group is included in
braces i } (see Figure 19.1.)

The font definition is required before a \stylesheet control word or a text can occur. The

standard font is defined by the control word \def f n.

512 Word processing formats

\fcharset

The font table may be followed by a character set definition. This control word has a numeric
parameter (\fcharsetN), which can be one of the following:

N Character set

0 ANSI

2 Symbol

128 SHIFTJIS

161 Greek

162 Turkish

177 Hebrew

178 Arabic simplified

179 Arabic traditional

180 Arabic user

181 Hebrew user

204 Cyrillic

238 Eastern European

254 PC437

255 OEM

The control word \fcharset can be omitted.

\fprq

This control word defines thefont pitch request in the parameter N(\f prqN).

N Pitch

0 Default

1 Fixed

2 Variable

The control word is optional.

Table 19.3

Character sets

Table 19.4

Font pitch
request

\cpg

A font may have a different character set from the characters used in a document. The code page
support \cpgN control word defines the character set used. Valid values for \cpgN are:

Rich Text format (RTF) 51 3

N Description

437 IBM standard character set

708 Arabic (ASMO 708)
709 Arabic (ASMO 449+, BCON V4)
710 Arabic (Transparent Arabic)
711 Arabic (Nafitha enhanced)
720 Arabic (Transparent ASMO)
819 Windows 3.1 (US and Europe)
850 IBM bilingual

852 Eastern European
860 Portuguese

862 Hebrew

864 Arabic

865 Norwegian
866 Soviet Union

932 Japanese

1250 Windows 3.1 (East Europe)
1251 Windows 3.1 (Soviet Union)

Table 19.5

Code page
support

An RTF document must have an additional \characterset declaration (for example, \ansi or
\pc and so on) for backward compatibility.

\fontemb

The control word \fontemb supports font embedding inside a font definition. An embedded font
can be specified by a file name.

♦ \f tni I: This defines an unknown or default font type.

♦ \f ttruetype: Defines a TrueType font type.

If a file name is specified, it is contained in the font table group.

\filetbl

Thefile table control word defines a list of files referenced in the document. The following control
words are associated with the file table:

♦ \f i le: Marks the beginning of a file group. This is a destination control word.

♦ \f idN: The file ID number is referenced later in the document.

♦ \frelativeN: This control word defines the character position within the path (starting at 0),
when the referenced file is relative to the path of the document file. This allows the reader to
extract the complete path.

514 Word processing formats

♦ \fosnumN: This control word is currently inserted for the Macintosh file system. N is an

operating system-specific file number to identify the file (on the Macintosh it is the file ID).

♦ \fvalidmac: This defines the Macintosh file system.

♦ \fvaliddos: Defines the DOS file system.

♦ \fvalidntfs: Defines the NTFS file system.

♦ \fvalidhpfs: Defines the OS/2 HPFS file system.

♦ \f network: Defines a network file system.

The \f network control word may be used together with the other file source keywords.

\colortbl

This control word introduces the cofor table group, which defines screen and character colors.
The colors in the tables are defined by three values for the colors red, green and blue. After the
keyword \colortbl the RTF scanner searches for the definitions of the basic colors:

\red000

\green000

\blue000

The number 000 can be replaced by values between 0 and 255.

{\colortbl\red128\green64\blue128;;\red0\green64\blue128;}

The definition of a color is terminated by a semicolon. Two semicolons will leave an entry in a
table unmodified. The group is closed by a brace }. The parameter \cfn defines the foreground
color (n=0, Standard). \cbn defines the background color (n=0, Standard).

\stylesheet

The style sheet control word marks the beginning of the style sheet group. This group contains
definitions for the various styles used in the document:

♦ \additive: Used in a character style definition to indicate that style attributes should be
applied in addition to current attributes.

♦ \sbasedon000: Defines the number of the style on which the current style is based.

♦ \snext000: Defines the next style associated with the current style.

♦ \ keycode: This group is specified within the description of a style in the style sheet. The group
defines key codes to activate a style-t\sO-C*\keycode \shift\ Ctrl n}Normal;}.

♦ \a It: Used to describe (AjtJ short key codes for styles.

Rich Text format (RTF) 515

♦ \shi f t: Used to describe | Shift | short key codes for styles.

♦ \ c t r I: Used to describe (CtrT| short key codes for styles.

♦ \f nN: Specifies a function key (N is function number 1 to 12) to be used as a short key for style.

A valid example of a style sheet definition is:

{\stylesheet{\s0\f3\fs20\qj Normal;}

{\s1\f3\fs30\b\qc Heading Level 3;}

The styles are numbered from 0 to n (\s0..). The first definition associates the style 0 (\s0)

with the name Normal. Normal text will be displayed in font 3 (\f3), 10 point (\fs20). The
parameter \qj indicates justified text. The second line defines style 1 with the name Heading
Level 3. The font size is set to 15 point (\b for bold) and centered (\qc).

19.2 Revision and information group

\revtbl

This group consists of several subgroups to identify the author of a revision. If a revision conflict
occurs, the sequence CurrentAuthorV 00\.... PreviousRevisionTime is inserted.

\info

The information group is introduced with the control word \info. This group contains information
about the document (author, keyword, comments, and so on):

♦ \ t i 11e: Defines the title of the document.

♦ \subject: Defines the subject of the document.

♦ \operator: This indicates the person who made the most recent change to the document.

♦ \author: This defines the author of the document.

♦ \keywords: This entry stores selected keywords for the document.

♦ \comment: Comments are ignored by the RTF reader.

♦ \doccomm: This contains comments, displayed in Word's edit summary information dialog box.

♦ \version: Defines a version number for the document.

The RTF writer adds the following additional information:

♦ \vern000: This is an internal version number.

♦ \creatim: Defines the time the document was created. This control word is followed by the
date and time definition.

516 Word processing formats

♦ \yr000: Year the document was created.

♦ \mo000: Month the document was created.

♦ \dy000: Day the document was created.

♦ \hr000: Hour the document was created.

♦ \mi nOOO: Minute the document was created.

♦ \sec000: Second the document was created.

♦ \revtim: This control word defines the time and date of the last revision.

♦ \printtim: Defines the date and time of the last printout.

♦ \bupt i m: Defines the date and time of the last backup.

♦ \edmins000: Defines the total time for editing.

♦ \nof pagesOOO: Defines the number of pages in the document.

♦ \nofwords000: Defines the number of words in the document.

♦ \nof charsOOO: Indicates the number of characters counted in the document.

♦ \id000: This entry contains an internal ID number.

All control words without a numeric parameter describe a time and date in terms of \yr\mo

\dy\hr\min\sec.

19.3 Document formatting properties

These control words specify the attributes (margins, footnote placements, and so on) of a
document. The control words are inserted after the information group (if present) but before the
plain text region, and are divided into several categories:

♦ Control words that format a complete text.

♦ Control words that influence the format of the current paragraph.

♦ Control words that are valid for the current text output.

The control words are listed below.

VdeftabN

Ndefines the defaulttab width in twips (1 twip is equal to Vio point or Yim inch). The value is 720.

XhyphhotzN

The parameter Ndefines the hyphenation hot zone in twips.

Rich Text format (RTF) 517

XhyphconsecN

Nis the number of consecutive lines allowed to end in a hyphen (0 = no limit).

\hyphcaps

This control word toggles hyphenation of capitalized words (default is on; \hyphcaps 1 = on,

\hyphcaps 0 = off).

\hyphauto

This control word toggles automatic hyphenation on or off (0 = off, 1 = on).

MinestartN

This control word sets the begin line number; 1 is the default value.

\fracwidth

This control word is used only for QuickDraw; it specifies that fractional character widths should

be used.

*\nextfile

This control word specifies the name of the next file to print or index. The file name must be

included in braces.

*\template

This control word defines the name of a template file. The name must be included in braces.

\makebackup

This control word specifies an automatic backup copy when the document is saved.

\defformat

This control word tells the RTF reader that the document should be saved in RTF format.

\psover

This control word prints PostScript over the text.

\doctemp

With Word for Windows, the document is a template. With Word for Macintosh, this document is a

stationery file.

518 Word processing formats

\defLangN

This control word defines the language (N) for the plain text. The possible properties are defined in
the character-formatting properties area.

\fetN

N defines a footnote/endnote type (0 = no footnotes at all, 1 = endnotes only, 2 = footnotes and
endnotes).

\ftnsep

This control word defines a character to separate footnotes from the document.

\ftnsepc

This control word defines a character to separate continued footnotes from the text document.

\ftncn

This control word is a marker for continued footnotes.

\aftnsep

This control word defines a text argument which separates endnotes from the document.

\aftnsepc

This control word defines a text argument which separates continued endnotes from the document.

\aftncn

The text argument is a marker for continued endnotes in the document.

\endnotes

All footnotes should be printed at the end of the section (default).

\enddoc

All footnotes should be printed at the end of the document.

\ftnbj

Footnotes are bottom-justified on the page.

\ftntj

Footnotes are top-justified on the page.

Rich Text format (RTF) 519

\aendnotes

Position an endnote at the end of a section (default).

\aenddoc

Position an endnote at the end of a document.

\aftnbj

Position an endnote at the bottom of a page.

\aftntj

Position an endnote beneath the text (top-justified).

XftnstartOOO

This control word defines the start footnote number (default 1).

\aftnstartOOO

This control word defines the start endnote number (default 1).

\ftnrstp

This control word restarts footnote numbering at each page.

\fntrestart

Footnote numbering should restart at each section. (On the Macintosh the footnote numbering will
restart on each page.)

\fntrstcont

Switch to continuous footnote numbering (default).

\afntrestart

Restart endnote numbering at each section.

\ftnnar

Footnote numbering - Arabic (1,2,3...)

\ftnnalc

Footnote numbering - Alphabetic (a,b,c...)

520 Word processing formats

\ftnnauc

Footnote numbering - Alphabetic upper case (A,B,C.)

\ftnnrlc

Footnote numbering - Roman lower case (i,ii,iii...)

\ftnnruc

Footnote numbering - Roman upper case (I,II,III...)

\ftnnchi

Footnote numbering - Chicago manual of style (*,...)

\aftnnar

Endnote numbering - Arabic (1,2,3...)

\aftnnalc

Endnote numbering - Alphabetic (a,b,c.)

\aftnnauc

Endnote numbering - Alphabetic upper case (A,B,C...)

\aftnnrlc

Endnote numbering - Roman lower case (i,ii,iii...)

\aftnnruc

Endnote numbering - Roman upper case (I,II,III...)

\aftnnchi

Endnote numbering - Chicago manual of style (*,...)

XpgnstartOOO

This control word defines the page start number (default 1).

\paperw000

This control word defines the paper width in twips (1 twip is equal to Am point or K-ho inch). The

default value is 12240 twips.

Rich Text format (RTF) 521

XpaperhOOO

This control word defines the paper height in twips (default 15840 twips).

\pszN

This control word is used to distinguish between paper sizes with identical dimensions in Windows

NT. Values between 1 and 41 correspond to the defined paper sizes (in DRIVINI.H). Values greater
than 41 correspond to user-defined paper sizes.

\revprot

The document is protected against revisions.

\revison

This control word turns revision marking on.

\revpropN

The argument Ndefines how the revised text should be displayed: 0 no properties shown, 1 bold,
2 italic, 3 underlined (default), 4 double-underlined.

\revbarN

Display vertical lines for altered text (0 no marking, 1 left margin, 2 right margin, 3 outside
(left/right).

\annotprot

The document is protected against annotations.

\rtldoc

The document will be formatted using Arabic pagination (right to left).

Mtrdoc

The document will have English-style pagination (default, left to right).

19.4 Section formatting

The next group of control words is used for formatting document sections:

\sectd

Reset to default section properties.

522 Word processing formats

\endnhere

Endnotes are included in the section. The parameter 0 suppresses this option.

\binfsxnN

Nis the printer bin used for the first page of the section.

XbindsxnN

Nis the printer bin used for the pages of a section.

\dsN

This control word designates a section style.

\sectunlocked

The following section is unlocked for forms.

\sbknone

This control indicates no section break.

\sbkcoL

A section break starts a new column.

\sbkpage

A section break starts a new page.

\sbkeven

A section break starts at an even page.

\sbkodd

A section break starts at an odd page.

\coLs000

This control word defines the number of columns (default 1).

\colsx000

This control word defines the space between two columns in twips (default 720 twips).

\colno000

This control word defines the column number to be formatted (used in variable width columns).

Rich Text format (RTF) 523

\colsr000

This control word defines the space of the right column in twips. Used to specify formatting in
variable-width columns.

XcoLwOOO

This control word defines the column width in twips.

Minebetcol

This control word defines the line between columns.

MinemodOOO

This control word defines the line number interval (default 1).

UinexOOO

This control word defines the distance from the line number to left text margin in twips (default
360 twips, automatic is 0).

MinestartsN

Begin line numbering with N.

Minerestart

Reset the line number to MinestartsN.

Mineppage

Line numbers restart on each page.

\linecont

Continue line numbers from preceding section.

\pgwsxnN

This control word defines the page width in twips.

\pghsxnN

This control word defines the page height in twips.

XmarginLsxnN

This control word defines the left margin of a page in twips.

524 Word processing formats

XmarginrsxnN

This control word defines the right margin of a page in twips.

XmargintsxyN

This control word defines the top margin in twips.

VmarglN

This control word defines the left margin in twips (default 1800).

\margrN

This control word defines the right margin in twips (default 1800).

XmargtN

This control word defines the top margin in twips (default 1440).

VmargbN

This control word defines the bottom margin in twips (default 1440).

\fac1ngp

This control word activates the odd/even headers and the gutters.

\gutter000

This control word defines the gutter width in twips (default is 0).

\margmirror

This control word switches margin definitions on left and right pages.

VLandscape

This control word defines the orientation to be landscape. If the following parameter is 0, the

orientation is reset to portrait.

VpgnstartsN

This control word sets the start page number (default 1).

\widowctl

This control word enables widow and orphan control. The parameter 0 disables the control.

Rich Text format (RTF) 525

Minkstyles

This control word updates document styles automatically, based on the template definitions.

\notabind

This is the first control word in the group of compatibility options (used in Word 6.0). This control
word means 'do not add an automatic tab stop for hanging indents'.

Vwraptrsp

Wrap trailing spaces onto the next line.

\prcolbl

Print all colors black on black-and-white printers.

Vnoextrasprl

Do not add extra space to line height (for raised/lowered characters).

\nocolbal

Do not balance columns.

\cvmme

Old escaped quotation marks (\") are treated as current style ("").

Vsprstsp

This control word suppresses extra line spacing at the top of a page.

\sprsspbf

This control word suppresses space before a paragraph attribute, after a hard page or column
break.

\otblrul

This control word combines table borders like Word for Macintosh 5.x.

\transmf

Metafiles are considered as transparent.

\swpbdr

This control word swaps the border on the right for odd-numbered pages.

526 Word processing formats

\brkfrm

This control word shows hard page and column breaks in frames.

\formprot

This is the first control word of the forms formatting commands. This control word protects a
document for forms.

\allprot

All areas in the document are protected.

\formshade

This control word flags a form shaded form field.

Vformdisp

A document with a form drop down or check box is selected.

\printdata

The document has print form data only.

\margbsxnN

The parameter N defines the top margin of the page in twips. The value is reset with a \sectd
command.

\guttersxnN

Ndefines the gutter width of a section in twips.

\indscpsxn

This control word defines the page orientation as landscape.

\titlepg

The first page has a special format.

\headery000

This control word defines the vertical header position in twips from the top of the page (default

720 twips).

\footery000

This control word defines the vertical footer position in twips from the bottom of the page (default
720 twips).

Rich Text format (RTF) 527

XpgnstartsN

This is the first control word in the group of page numbering control words. It defines the start

page number (default = 1).

Xpgncont

This control word specifies continuous page numbering (default).

Xpgnrestart

This control word restarts the page number at \pgnstartsOOO.

XpgnxOOO

This control word defines the X-position of a page number in twips from the right margin (default

720 twips).

XpgnyOOO

This control word defines the Y-position of the page number in twips from the top margin (default
720 twips).

Xpgndec

Page numbers are in decimal format.

Xpgnucrm

Page numbers are in upper case Roman numerals.

Xpgnlcrm

Page numbers are in lower case Roman numerals.

Xpgnucltr

Page numbers are in upper case letters.

Xpgnlcltr

Page numbers are in lower case letters.

XpgnhnN

This control word indicates which heading level is used in the page number (0 = does not show
heading level, 1-9 correspond to the heading levels).

528 Word processing formats

Xpgnhnsh

This control word defines the hyphen separator character.

Xpgnhnsph

This control word defines the period separator character.

Xpgnhnsc

This control word defines the colon separator character.

Xpgnhnsm

This control word defines the em-dash separator character.

Xpgnhnsn

This control word defines the en-dash separator character.

XpnsecLvLN

This control word is used for multilevel lists; it sets the default numbering style.

XvertaLt

The next control words specify the alignment of a text, \verta It specifies vertical align at top of
page.

Xvertalc

This control word specifies vertical align centered.

Xvertalj

This control word specifies vertical justified.

Xvertalb

This control word specifies vertical align at bottom.

Xrtlsect

Treat columns in this section from right to left.

XLtrsect

Treat columns in this section from left to right (default).

Rich Text format (RTF) 529

19.5 Headers and footers

These control words define headers and footers in a section. Each section may have its own
header/footer.

Xheader

Headers should occur on all pages.

XheaderI

The header appears on left-hand pages only.

Xheaderr

The header appears on right-hand pages only.

Xheaderf

This control word defines thefirst page header.

Xfooter

This control word displays a footer on all pages.

Xfooterl

This control word displays a footer on left-hand pages only.

Xfooterr

This control word displays a footer on right-hand pages only.

Xfooterf

This control word defines the footer for thefirst page.

19.6 Paragraph formatting properties

The next section describes the paragraph formatting control words.

Xpard

This control word resets the RTF reader to the default paragraph properties.

530 Word processing formats

XsOOO

This control word designates paragraph style. The style must be specified with the paragraph.

Xhyphpar

This control word switches automatic hyphenation for the paragraph on or off (0 = off).

Xintbl

This control word defines the paragraph as a part of a table.

Xkeep

This control word keeps the paragraph intact.

XnowidctLpar

This control word specifies no widow/orphan control.

Xkeepn

|<JJ This control word keeps this paragraph with the next paragraph.

XleveLN

This control word outlines level Nof the paragraph.

Xnoline

This control word switches the line numbering off.

Xsbys

This control word switches the side by side paragraph option on (0 switches off).

Xpagebb

This control word sets page break before paragraph to on (0 switches the command off).

This control word specifies quad left aligned text.

Xqr

This control word specifies quad right aligned text.

Xqc

This control word specifies quad centered text.

\qj

This control word specifies quad justified text in a document.

XfiOOO

The first line is indented (default 0 twips).

Rich Text format (RTF) 531

XliOOO

Lines are left indented (default 0).

XriOOO

Lines are right indented (default 0).

XsbOOO

This control word defines spaces before (default is 0).

XsaOOO

This control word defines spaces after (default 0).

XslOOO

This control word defines the space between lines. XslOOO switches auto line mode on.

XslmultN

This control word specifies line spacing in a multiple of single line spacing. (0 = exactly, 1 =
multiple).

XsubdocumentN

This sub-document control word must be the only item in a paragraph and indicates that a sub-

document should occur here. N is an index to the file table.

Xrtlpar

This is a bidirectional control word and defines a paragraph with text displayed from left to right.

XLttpar

This is a bidirectional control word and defines a paragraph with text displayed from right to left
(default).

532 Word processing formats

19.7 Tabs formatting

The following control words are used to specify tabs in the document.

XtxOOO

This control word defines a tab position in twips from the left margin.

Xtqr

This control word stands for flush right tab.

Xtqc

This control word defines a centered tab.

Xtqdec

This control word defines a decimal aligned tab.

Xtldot

This control word defines a tab leader dot.

Xtlhyphen

This control word defines a tab leader hyphen.

Xtlul

This control word defines a tab leader underline.

XtLth

This control word defines the tab leader thick line.

XtbOOO

This control word defines a bar tab (vertical tab) position in twips from the left margin.

Xtleq

This control word defines a tab leader equals sign.

19.8 Bullets and Numbering

This group of controls is used in bulleted or numbered paragraphs.

Rich Text format (RTF) 533

Xpntext

This group precedes all numbered/bulleted paragraphs and contains the auto-generated text and
formatting. It should precede the {*\pn. .} to enable RTF readers to ignore the complete
preceding group.

Xpn

This control word turns the paragraph numbering on.

XpnIvIN

This control word sets the paragraph level (1-9).

XpnLvLblt

This is a bulleted paragraph (corresponds to level 11).

XpnLvLbody

This is simple paragraph numbering (corresponds to level 10).

XpnLvlcont

This is continued paragraph numbering, but the number is skipped (not displayed).

Xpnnumonce

This control word numbers each cell only once in a table.

Xpnacross

This control word numbers across rows (default across columns).

Xpnhang

This control word marks a paragraph with a hanging indent.

Xpnrestart

This control word restarts the numbering after each section break.

Xpncard

This control word specifies cardinal numbering (One, Two, Three).

Xpndec

This control word specifies decimal numbering (1, 2, 3).

534 Word processing formats

XpnucLtr

This control word specifies upper case alphabetic numbering (A, B, C).

Xpnucrm

This control word specifies upper case Roman numbering (I, II, III).

XpnLcLtr

This control word specifies lower case alphabetic numbering (a, b, c).

XpnLcrm

This control word specifies lower case Roman numbering (i, ii, iii).

Xpnord

This control word specifies ordinal numbering (1st, 2nd, 3rd).

P§j Xpnordt

This control word specifies ordinal text numbering (First, Second, Third).

Xpnb

This control word specifies bold numbering (from Word 6.0).

Xpni

This control word specifies italic numbering (from Word 6.0).

Xpncaps

This control word specifies all capitals numbering (from Word 6.0).

Xpnscaps

This control word specifies small capitals numbering (from Word 6.0).

Xpnul

This control word specifies continuous underlining (from Word 6.0).

XpnuLd

This control word specifies dotted underlining.

Rich Text format (RTF) 535

XpnuLd

This control word specifies double underlining.

Xpnulnone

This control word turns underlining off.

XpnuLw

This control word switches word underlining on.

Xpnstrike

This control word specifies strike-through numbering.

XpncfN

This control word defines the font size (in half points) for numbering.

XpncfN

This control word specifies the foreground color (N is an index to a color table).

XpnfN

This control word specifies the font number for numbering.

XpnindentN

This control word specifies the minimum distance from the margin to the body of text.

XpnspN

This control word specifies the distance from the number to the body of text.

Xpnprev

This control word is used for multilevel lists and includes information from the previous level to
the current level (1, 1.1, 1.1.1, and so on).

Xpnqc

This control word is used for centered numbering.

XpnqL

This control word is used for left-justified numbering.

536 Word processing formats

Xpnqr

This control is word used for right-justified numbering.

XpnstartN

This control word defines the start value for paragraph numbering.

Xpntxta

This control word specifies the text that follows the number (. for instance). This text is limited to

32 characters.

Xpntxtb

This control word specifies the text before the number ((for instance). This text is limited to 32

characters.

19.9 Paragraph borders

This control word describes the paragraph borders.

Xbrdrt

This control word defines the top border.

Xbrdrb

This control word defines the bottom border.

Xbrdrl

This control word defines the left border.

Xbrdrr

This control word defines the right border.

Xbrdrbtw

This control word defines paragraphs with individualformatting within a singlegroup of consecutive
paragraphs (with identical border formatting).

Xbrdrbar

This control word defines the outside border (left/right for even/odd pages).

Rich Text format (RTF) 537

Xbox

This control word defines a border around the paragraph.

Xbrdrs

This control word specifies a single thickness border.

Xbrdrth

This control word specifies a double thickness border.

Xbrdsh

This control word specifies a shadowed border.

Xbrdrdb

This control word specifies a double border.

Xbrdrdot

This control word specifies a dotted border.

Xbrdrhair

This control word specifies a border with a hair line.

XbrdrwN

This defines the width of a pen (in twips) used to draw the paragraph border line.

XbrdrcfN

This control word defines the color (N is an index to a color table) of the border.

XbrspN

This control word defines the space in twips between the border and the paragraph.

19.10 Paragraph shading

These control words define the shading of a paragraph.

XshadingN

This control word defines the paragraph shading (gray-level) in percent.

538 Word processing formats

Xbghoriz

This control word specifies a horizontal pattern drawn in the background of a paragraph.

Xbgvert

This control word specifies a vertical pattern drawn in the background of a paragraph.

Xbgfdiag

This control word specifies a forward diagonal pattern (\\\) drawn in the background of a paragraph.

Xbgbdiag

This control word specifies a backward diagonal pattern (III) drawn in the background of a paragraph.

Xbgcross

This control word specifies a cross background pattern for a paragraph.

Xbgdkhoriz

This control word specifies a dark horizontal background pattern for a paragraph.

Xbgdkvert

This control word specifies a dark vertical background pattern for a paragraph.

Xbgdkfdiag

This control word specifies a dark forward diagonal pattern (\\\) for the background in a paragraph.

Xbgdkbdiag

This control word specifies a dark backward diagonal pattern (///) drawn in the background of a
paragraph.

Xbgdkcross

This control word specifies a dark cross background pattern drawn in a paragraph.

Xbgddkdcross

This control word specifies a dark diagonal cross background pattern for the paragraph.

XcfpatN

This control word specifies the color of the background pattern.

XcbpatN

This is the background color (N) of the background pattern.

Rich Text format (RTF) 539

19.11 Paragraph positioning

The following paragraph formatting control words specify the location of a paragraph on the page.

XabswN

This control word specifies absolute width of a frame in twips.

XabshN

This control word specifies the height of a frame in twips.

Xphmrg

This control word specifies the margin as the horizontal reference frame.

Xphpg

This control word specifies the page as the horizontal reference frame.

Xphcol

This control word specifies the column as the horizontal reference frame (default if no horizontal
frame is defined).

XposxN

This control word positions the frame Ntwips from the left edge of the reference frame.

XposnegxN

This control word positions as \posxN, but allows negative values.

Xposxc

This control word centers the frame horizontally within the reference frame.

Xposxi

This control word positions the paragraph horizontally inside the reference frame.

Xposxi

This control word positions the paragraph to the left within the reference frame.

Xposxo

This control word positions the paragraph horizontally outside the reference frame.

540 Word processing formats

Xposxr

This control word positions the paragraph to the right within the reference frame.

XposyN

This control word positions the paragraph Ntwips from the top edge of the reference frame.

XposnegyN

This control word is the same as XposyN, but allows negative values.

XposyiI

This control word positions the paragraph vertically in line.

Xposyt

This control word positions the paragraph at the top of the reference frame.

Xposyc

This control word positions the paragraph vertically centered within the reference frame.

Xposyb

This control word positions the paragraph at the bottom of the reference frame.

Xpvmrg

This control word positions the reference frame vertically relative to the margin.

Xpvpg

This control word positions the reference frame vertically relative to the page.

Xnowrap

This control word belongs to the group of text wrapping commands. It prevents text from flowing
around absolute positioned objects (APO).

XdxfrtextN

This control word defines the distance in twips of an absolute positioned paragraph from text.

XdfrmtxtxN

This control word defines the horizontal distance in twips from text on both sides of the frame.

Rich Text format (RTF) 541

XdfrmtxtyN

This control word defines the vertical distance in twips from text on both sides of the frame.

XdropcapMN

This control word defines the number of lines to drop capital which should be occupied (1-10).

XdropcaptN

This control word defines the type of drop capital (1 = in text drop cap, 2 = margin drop cap).

19.12 Table definitions

The RTF specification does not have a table group. Tables are specified as paragraph properties (a
sequence of table rows; the rows are sequences of paragraphs partitioned into cells).

Xtrowd

This control word begins a table row and sets the default values.

XtrgraphN

This control word defines half the space between the cells of a table row in twips.

XceLLxN

This control word defines the right boundary of a table cell. This definition includes the (half)

space between the cells.

XcLmgf

This is the first cell (cell mergedfirst) in a range of table cells to be merged.

Xclmrg

This control word defines the contents of the table cell merged with a preceding cell.

XtrqL

This control word left-justifies a table row (but respects the containing columns).

Xtrqr

This control word right-justifies a table row (but respects the containing columns).

Xtrqc

This control word centers a table row (but respects the containing columns).

542 Word processing formats

XtrLeftN

This control word defines the position of the left edge of the table.

XtrrhN

This control word defines the height of a table row in twips.

Xtrhdr

This control word defines the table row header.

Xtrkeep

This table row cannot be split by a page break.

XrtLrow

Cells in this table row will have a right to left precedence.

Xlttrow

Cells in this table row will have a left to right precedence (default).

Xtrbrdrt

Table row border top.

Xtrbrdrl

Table row border left.

Xtrbrdrb

Table row border bottom.

Xtrbrdrr

Table row border right.

Xtrbrdrh

Table row border horizontal.

Xtrbrdrv

Table row border vertical.

Xcldrdrb

Bottom table cell border.

Rich Text format (RTF) 543

XcLbrdrt

Top table cell border.

Xclbrdrl

Left table cell border.

Xclbrdrr

Right table cell border.

XclshdngN

This control word defines the shading of a table cell in percent.

Xclbg...

These commands (\clbghoriz for instance) define the background pattern of a cell. The shading
commands are defined in the paragraph formatting section (see above). The prefix bg (\bghoriz)
is replaced by the prefix cl (\clhoriz).

19.13 Character formatting properties

The control words in this group define character formatting.

Xplain

This control word resets the character formatting properties to default values.

Xb

This control word writes the following text in bold. (Parameter 0 switches bold off.)

Xcaps

This control wordwrites the following text in capitals. (Parameter 0 switches the mode off.)

XdeLeted

This control word marks the text as deletion revision marked.

XdnN

This control word defines a subscript position in half points (default 6).

Xsub

This control word subscripts text and shrinks point size (according to font size).

544 Word processing formats

Xnosupersub

This control word turns off superscripting or subscripting.

XexpndN

This control word defines an expansion or compression factor (in quarter points) of the space

between characters. Negative values stand for compression (default is 0).

XexpndtwN

This control word defines an expansion or compression factor (in quarter points) of the space

between characters in twips.

XkerningN

This control word defines the point size (in half points) above which to kern character pairs.

(Parameter 0 switches kerning off.)

XfOOO

This control word defines the font number.

XfsOOO

This control word selects the font size in /4-points (default 24).

\i

The following text is italic. (Parameter 0 switches italic off.)

XoutL

This control word defines outlined characters (\out 10 switches this option off).

Xrevised

The text has been modified since revision marking was turned on.

XrevauthN

This control word defines an index to the revision table.

XrevdttmN

This control word defines the time of the revision.

Rich Text format (RTF) 545

Xscaps

This control word displays the text in SMALL capitals (\scapsO switches the mode off).

Xshad

The following text is shaded. Parameter 0 switches the mode off.

Xstrike

The following text is displayed with strike through (the parameter 0 switches this mode off).

XuL

This control word specifies continuous underlining (\ul0 switches underlining off).

Xulw

This control word switches underlining on for the following word.

XuLd

This control word switches dotted underlining on.

Xuldb

This control word specifies double underlining.

Xulnone

This control word switches underlining off.

XupOOO

This control word defines the superscript position in half points (default 6).

Xsuper

This control word superscripts text and shrinks the point size according to the font used.

\v

This control word defines a hidden text (\v0 switches this mode off).

XcfOOO

This control word defines the foreground color (000 is the index to the color table).

546 Word processing formats

XcbOOO

This control word defines the background color (000 is the index to the color table).

Xrtlch

The characters in this text will be treated from right to left.

Xltrch

The characters in this text will be treated from left to right (default).

XcsN

This control word defines a character style.

XcchsN

This control word indicates any character not belonging to the default document character set
(Macintosh characters > 255).

XLangN

This control word applies a language to a character. Nis the corresponding language.

ID

400H

41CH

401H

421H

813H

80CH

416H

402H

403H

41AH

405H

406H

413H

C09H

809H

Language

None

Albanian

Arabic

Bahasa

Belgian Dutch (Flemish)

Belgian French (Walloon)

Brazilian Portuguese

Bulgarian

Catalan

Serbo-Croat (Latin-script)

Czech

Danish

Dutch

English Australia

English UK
Table 19.6

Language support
(continues
over...)

Rich Text format (RTF) 547

ID Language

409H English US
40BH Finnish

40CH French

COCH French Canadian

407H German

408H Greek

40DH Hebrew

40EH Hungarian

40FH Icelandic

410H Italian

411H Japanese (Nihon)

412H Korean (Hongul)
414H Norwegian (Bokmal)

814H Norwegian (Nynorsk)
415H Polish

816H Portuguese
417H Rhaeto-Romanic

418H Romanian

419H Russian

81AH Serbo-Croat (Cyrillic)
804H Chinese (simplified)
41BH Slovak

40AH Spanish (Castilian)
80AH Spanish (Mexican)
41DH Swedish

100CH Swiss French

807H Swiss German

810H Swiss Italian

41 EH Thai

404H Chinese (traditional)
41 FH Turkish

420H Urdu Table 19.6

Language
support (cont.)

f To read negative \expnd values from Word for Macintosh, the reader should use only the
low-order six bits.

The RTF definition uses property association control words. These control words contain a
preceding letter a (Nab). The control word uses the same syntax as the character formatting
control words (Nab for bold, \ai for italic, and so on). The character formatting control words are
described above.

548 Word processing formats

19.14 Special control words

The RTF format defines several special control words for special characters. If a special character

control word is not recognized by the RTF reader, it will be ignored and the following text

interpreted as plain text.

Xchpgn

Current page number defines a new page number as in the header.

Xchftn

Currentfootnote activates the automatic footnote numbering function.

Xchdate

Current date defines the current date as in the header.

Xchtime

PJ Current time sets the current time as in the header.

Xchatn

This control word defines an annotation reference.

Xchftnsep

This control word anchors a character for a footnote separator.

Xchftnsepc

This control word anchors a character for footnote continuation.

XchdpL

This control word specifies the current date in long format.

Xchdpa

This control word specifies the current date in abbreviated format.

M

This control word starts a formula text.

X:

This control word defines a sub-index.

Rich Text format (RTF) 549

X*

The RTF reader can ignore the text.

This control word defines afixed space between two words.

X-

This control word defines a non-mandatory hyphen.

_

This control word defines a non-breaking hyphen.

X'hh

This control word defines a sequence of hexadecimal characters to represent a character.

Xpage

This control word forces a page break.

Xline

This control word forces a line break (no paragraph break).

Xpar

This control word indicates the end of a paragraph. Can be exchanged with \10 or \13.

Xsect

This control word defines the end of a section and paragraph.

Xtab

This control word defines the tab character (equivalent to ASCII code 09H).

XcelL

This control word defines the end of a table cell.

Xrow

This control word defines the end of a row in a table.

Xcolumn

This control word forces a column break.

550 Word processing formats

Xsoftpage

This control word inserts a non-mandatory page break.

XsoftcoL

This control word inserts a non-mandatory column break.

Xsoftline

This control word inserts a non-mandatory line break.

XsoftlheightN

This control word defines a non-mandatory line height (prefixed to each line).

Xemdash

This control word specifies a long hyphen (em-dash).

Xendash

This control word specifies a short hyphen (en-dash).

Xemspace

Thiscontrolword specifies a non-breaking space to the width ofthe characterm in the current font.

Xenspace

This control wordspecifies a non-breaking space to the width of the character n in the current font.

XbulLet

This control word specifies a bullet character.

\ (.quote

This control word specifies a left single quotation mark.

Xrquote

This control word specifies a right single quotation mark.

XldbLquote

This control word specifies a left double quotation mark.

Xrdbiquote

This control word specifies a right double quotation mark.

Rich Text format (RTF) 551

Xzwj

Zero width joiner (used to ligate words).

Xzwnj

Zero width non-joiner (unligate a word).

All 255 characters may be inserted without backslashes for a shorter RTF file. ASCII 9 is

treated as a tab, ASCII 10 as a line feed and ASCII 13 as a carriage return. In Word for Windows

the following (decimal) codes are defined: 149 =\bullet, 150 = \endash, 151=\emdash,
145=\lquote, 146=\rquote, 147=\ldblquote, 148=\rdblquote.

19.15 Picture control words

RTF files can include pictures from other applications (QuickDraw, Paintbrush, and so on). As a
default setting, these pictures are stored in hexadecimal format, but binary format can be defined.
Some measurements are in twips (1 twip is V20 th of a point).

Xpic

This control word defines the picture and must be followed by the control words brdr, shading,
picttype, pictsize, metaf i leinfo and data. The data area is defined as a string of hexadecimal

values (default) or a binary sequence. In binary sequences no spaces between the control word
and the data are allowed because the RTF reader would interpret these as delimiters. The following
control words are optional and define the picture:

♦ \pich000: Defines the picture height in pixels. If this parameter is omitted, the height is
calculated from the graphic.

♦ \pi wOOO: Defines the picture width in pixels (see \pi ch).

♦ \pi wgoa 1000: Defines the desired picture width in twips.

♦ \pi hgoa 1000: Defines the desired picture height in twips.

♦ \picscalex000: Horizontal scaling, Nis the scale in percent.

♦ \pi csca leyOOO: Vertical scaling, Nis the scale in percent.

♦ \pi csca led: This control word is used only with \macpict and scales the picture to fit within
the specified frame.

♦ \piccropt000: Top cropping value in twips (default 0). Positive values crop toward the center,
negative values crop away from the center.

♦ \piccropb000: Bottom cropping value in twips (default 0). Positive values crop toward the
center, negative values crop away from the center.

♦ \piccropl000: Left cropping value in twips (default 0). Positive values crop toward the center,
negative values crop away from the center.

♦ \pi ccroprOOO: Right cropping value in twips (default 0). Positive values crop toward the center,
negative values crop away from the center.

552 Word processing formats

♦ \pi csca leyOOO: Vertical scaling, N is the scale in percent.

♦ \pi cbmp: Specifies a metafile which contains bitmap data.

♦ \pi cbppN: Specifies the bits per pixel in a metafile bitmap (1, 4, 8, 24).

♦ \binN: Defines a picture with data in binary format. The parameter N (32 bits) defines the
number of following bytes.

Xmacpict

This control word defines the picture as a QuickDraw picture.

XpmmetafiLeN

This control word defines an OS/2 metafile picture with type N as the picture source. The type is
one of the following items:

N Type

04H PU_ARBITRARY

08H PU_PELS

OCH PU_LOMETRIC

10H PU_HIMETRIC

14H PU_LOENGLISH

18H PU_HIENGLISH

1CH PU_TWIPS Table 19.7

PM metafile

picture type

XwmetafiLeN

This control word defines a Windows metafile picture with type Nas the picture source.

N Type

1 MMJText

2 MM_LOMETRIC

3 MM_HIMETRIC

4 MM_LOENGLISH

5 MM_HIENGLISH

6 MM_TWIPS

7 MM_IS0TR0PIC

8 MM_ANIS0TR0PIC Table 19.8

Windows metafile

picture type

Rich Text format (RTF) 553

A space after the control word is not allowed; it is interpreted as a delimiter in binary format.

XdibitmapN

This control word defines a Windows device-dependent bitmap, where Nis the type of the bitmap
(0 = monochrome, color, and so on).

XwbitmapN

The source of the picture is a Windows device-independent bitmap. N is the type of the bitmap
(default, 0 = monochrome).

19.16 Object control words

Microsoft OLE objects are described using control words from this group.

Xobject

This control word indicates the start of an object definition. This definition must be followed by
the control words:

♦ \objemb: The object type is embedded.

♦ \objlink: The object type is linked.

♦ \objautlink: The object type is auto-linked.

♦ \objsub: This is a Mac Subscriber

♦ \ob j i cemb: This is a Mac IC embedder.

♦ \linkself: The object is linked to another part of the same document.

♦ \obj lock: Locks the object for updates.

♦ \objclass: Specifies the object class as a text argument.

♦ \objname: Defines the name of the object.

♦ \ob j t i me: Describes the time of the last update of the object.

The following control words describe the object size and position:

♦ \ob j hN: Defines the object height.

♦ \objwN: Defines the object width.

♦ \ob j setsi ze: Forces the object server to set the object to the dimensions defined by the client.

♦ NobjalignN: Defines the align distance in twips from the left edge of the object to tab stop
(used for equations).

♦ NobjtransyN: Is the distance in twips the object should be moved vertically (y) from the
baseline (used for equations).

♦ \objcroptN: Defines the top cropping distance in twips.

554 Word processing formats

♦ \objcropbN: Defines the bottom cropping distance in twips.

♦ \obj croplN: Defines the left cropping distance in twips.

♦ \obj croprN: Defines the right cropping distance in twips.

♦ \ob j sea LexN: Defines the horizontal scaling in percent.

♦ \ob j sea leyN: Defines the vertical scaling in percent.

♦ \objdata: Contains the data for the object.

♦ Nobjalias: Contains the object alias record (Macintosh publisher).

♦ \objsect: Contains the object section record alias record (Macintosh publisher).

♦ \rsltrtf: Forces result to RTF, if possible.

♦ \rsltpi ct: Forces result to Windows metafile or MacPict, if possible.

♦ \rsltbmp: Forces the result to be a bitmap, if possible.

♦ \rslttxt: Results in a plain text, if possible.

♦ Nrsltmerge: Uses the formatting of the current result.

♦ \result: The result destination is optional in the object definition.

The Macintosh uses the control words \bkmkpub (Bookmark Publisher Object) and \pubauto

(Publisher object automatic update).

19.17 Drawing objects control words

Drawing objects and drawing primitives use control words with \do... (Drawing objects), \dp...

(Drawing primitive), \co... (Call out objects) and \f i 11... (Fill). These objects are described in

the RTF specification, version 1.2.

19.18 Miscellaneous control words

The RTF specifications define several other control words for miscellaneous parts.

Xfootnote

This control word introduces a footnote.

Rich Text format (RTF) 555

Xannotation

This control word introduces an annotation. If the annotation is associated with a bookmark, the

control words {*\atrfstart Nl {*\atrfend N> embed the bookmark. N is the name of the

bookmark.

♦ \annotid: Defines the annotation ID.

♦ \atnauthor: Defines the annotation author.

♦ \atntime: Defines the time the annotation was created.

Some additional control words for annotation parameters are defined in the RTF specifications.

XfieLd

This is a group to describe Word fields. The following control words are defined to describe field
parameters:

♦ \f Iddi rty: The field has been changed since the last update.

♦ \f Ldedit: Text has been edited since the last update.

♦ \f Id lock: Field locked.

♦ \f Idpriv: Result is not displayable.

Xxe

The index group starts with Xxe. It is followed by several control words:

♦ \xef N: Allows multiple indices within the same document.

♦ \bxe: Formats page numbers in cross-reference bold.

♦ \ixe: Formats page numbers in cross-reference italic.

♦ \txe text: Uses text argument instead of a page number.

♦ \rxe bookmark: Uses a text marker to define a range.

Xtoc

This control word defines the table of contents. The following control words are allowed for

building up the table of contents:

♦ \tcf N: Compiles the table (N is mapped to A-Z, default is C).

♦ \tclN: Level number (default = 1).

556 Word processing formats

19.19 Bookmark

The bookmark group contains only a few control words:

♦ *\bkmkstart: Beginning of a bookmark.

♦ *\bkmkend: End of a bookmark.

The \bkmkcolN is used to denote the first column of a table covered by a bookmark.
\bkmkcol IN denotes the last column.

Standard Generalized

Markup Language (SGML)

Thefile formats defined in the previous chapters are

vendor-specific. To facilitate document
exchange, the ISO Standard 8879 Standard

Generalized Markup Language (SGML) was defined in
1986. The 1988 modified version is now available as a

global standardfor textexchange.

20.1 Structure of an SGML file

SGML is a meta-language for describing text format. It contains elements for defining:

♦ the structure of a document

♦ the character set used

♦ parts of text used frequently

♦ external information used in the text

♦ techniques for the creation of layouts

♦ formatting commands

SGML is based on the ISO 646 7-bit character set, which ensures that document exchange is

possible. All definitions, control commands and texts are written in plain text. The file is divided

into an SGML declaration section and a section relating to the actual document. The declaration

section contains information to initialize the SGML parser. This information is used by the SGML

parser, and includes details of the character set, definitions of the scopes and syntax used and data

on the amount of memory required for formatting. SGML definitions are enclosed in angle

brackets <>. A declaration always begins with an exclamation mark followed by the keyword

SGML. Figure 20.1 shows an extract from a valid SGML declaration:

557

558 Word processing formats

<!SGML 'ISO 8879-1986"

Dec aration f or a Basic SGML Document

CHARSET BASESET "ISO 646- 1983//CHARSET International

Reference Version (IRV)//ESC 2/5 4/0"

DESCSET 0 9 UNUSED

9 2 9

11 2 UNUSED

CAPACITY PUBLIC 'ISO 8879- I986//CAPACITY Reference//EN"

SCOPE DOCUMENT

SYNTAX SHUNCHAR CONTROLS 0 12 3 4 5

127 255

BASESET "ISO 646- 1983//CHARSET International

Reference Version (IRV)//ESC 2/5 4/0"

DESCSET 0 128 0

FUNCTION RE 13

RS 10

SPACE 32

...

A detailed definition is given in ISO Standard 8879.'

Figure 20.1

Part of an SGML

declaration

20.2 Structure of a document

The SGML declaration is followed by the actual text document, which comprises pure text and
additional embedded control commands specifying the format of the text. Characters from the ISO
646 7-bit character set defined in the header are permitted for both text and control commands.
There is an extension to this character set for multinational characters such as the German

umlaut accent. The relevant character is preceded by and terminated by a semicolon or a blank.

The coding for the German umlaut is shown in Table 20.1

SUuml; U

Suuml; ii

SAuml; A

Sauml; a

SOuml; O

ö 6

Sszlig; 6 Table 20.1

German umlaut

coding in SGML

Information processing - Text and Office Systems. ISO 8879, Standard Generalized Markup Language (SGML)

Standard Generalized Markup Language (SGML) 559

A document in SGML notation is divided into three parts:

♦ the SGML header defining of the title

♦ the actual text

♦ the appendix containing the index, and so on.

The document must be structured hierarchically. To ensure exchangeability, the structures of a
number of document types have been defined and published (public),2 but it is possible to define
new document types for private use (private).

Initially, the type of document (report, letter, book, and so on) is specified via an SGML
declaration. This is followed by additional control commands giving information on the text
format. Control commands in SGML always consist of letters and are enclosed between angle
brackets <>. The end of each control command is indicated by repeating the same command, but
with an oblique in front of it. Figure 20.2 shows an example in which a list is defined with the
following sequence of commands:

 .

<!D0CTYPE report PUBLIC"_">

<report>

<title>The SGML Standard

<author>Born Gunter

<p>SGML is a standardized language for the exchange of text

between different word processing programs and systems.

<p>SGML defines<li number=alpha>

<it>the structure of a document

<it>the character set used

<it>external information

<it>the text formats

<h1>the document structure

<p>A <hp1>document</hp1> consists of nested

<ix>elements</ix>.

</report>
Figure 20.2
Part of an SGML

document

2 Martin Bryan: SGML:An Author's Guide to the Standard Generalized Markup Language
Addison Wesley, 1988, Wokingham, England, ISBN 0-201-17535-5

560 Word processing formats

The following table lists some of the SGML commands:

Command Description

<abstract> Abstract of contents

<acknowls> Acknowledgments

number = number

i d = identifier for cross-reference

st i t le = short version title

<adr> Address

<appendix> Appendices to main body of text

number = number

i d = identifier for cross-reference

s t i 11 e = short version title

<artwork> Space for insertion of artwork

si zex = width of artwork

si zey = depth of artwork

file = name of artwork file

<author> Author of publication

<bibliog> Bibliography

number = number

i d = identifier for cross-reference

s t i 11 e = short version title

<body> Main body of text

<book> Defines a book

<bt> Body of table

col = number of columns

<c> Cell of table row

straddle = number of columns cell straddles

<cit> Citation (reference to another publication)
i d = identifier for cross-reference

<citref> Citation references

ref i d = referred to identifier

page = yes (add page number to reference)

<colophon> Printer's colophon

<copyright> Copyright details

<date> Date of publication

<dedicate> Dedication of book

<details> Publication details

Table 20.2

Commands

in SGML

(continues
over...)

Standard Generalized Markup Language (SGML) 561

Command Description

<dd> Definition of defined term

<ddhd> Heading for definition column

style = type style for heading

<docnum> Number or other identifier of document

<dt> Defined term

i d = identifier for cross-reference

<dthd> Heading for defined terms column

style = type style for heading

<editor> Editor of publication

<eqn> Equation

type = type of notation used

<fig> Figure

i d = identifier for cross-reference

number = figure number (if fixed)

frame = type of frame (box or rules)

position = position in page (top, bottom, ...)

type = column

a I i gn = type of alignment (left, right, ...)

<figbody> Body of figure

form = runon

<figcap> Caption for figure

<f igdeso Description of figure

<figlist> Position of list of figures

<f igref> Cross-reference to figure

ref id = referred to unique identifier

pages = yes (add page number to reference)

<fn> Footnote

i d = identifier for cross-reference

<fnref> Cross-reference to footnote

ref id = referred to unique identifier

pages = yes (add page number to reference)

<foreword> Foreword

number = number

d = identifier for cross-reference

s t i 11 e = short version of title

<from> Defines the sender
Table 20.2

Commands

in SGML

(cont.)

562 Word processing formats

Command Description

<front> Front matter of book

<ft> Foot of table

co I = number of columns covered

<gd> Definition of glossary term

source = source of definition

see = cross-reference to other definition

seealso = link to further definition

<gdg> Group of glossary definitions

number = form of numbering required

<gl> Glossary list

form = compact (no space between entries)

termhi = level of highlighting for terms

<glossary> Start of glossary

number = number

i d = identifier for cross-reference

sti 11e = short version title

<gt> Glossary term

i d = identifier for cross-reference

<h0> Highest division of text

number = number

i d = identifier for cross-reference

sti t le = short version title

<hOt> Part title

<h1> Main division of text

number = number

i d = identifier for cross-reference

s t i t Le = short version title

<h1t> Chapter title

<h2> Section within main division of text

number = number

i d = identifier for cross-reference

st i t le = short version title

<h1t> Section title

<h3> Subsection within main division of text

number = number

i d = identifier for cross-reference

s t i 11 e = short version title

Table 20.2

Commands

in SGML

(cont.)

Standard Generalized Markup Language (SGML) 563

Command Description

<h3t> Subsection title

<h4> Sub-subsection within subsection of text

number = number

i d = identifier for cross-reference

s t i 11 e = short version title

<h4t> Sub-subsection title

<h5> Lowest level of numbered heading

number = number

i d = identifier for cross-reference

s t i 11 e = short version title

<h5t> Low level title

<hc> Heading for table columns

cols = number of columns covered

<hd> Other type of heading

i d = identifier for cross-reference

<hdref> Cross-reference to heading

ref i d = identifier for cross-reference

page = yes (add page number)

<hpO> Highlighted phrase, style 0

<hp1> Highlighted phrase, style 1

<hp2> Highlighted phrase, style 2

<hp3> Highlighted phrase, style 3

<ht> Heading of table

<index> Position of index

<ISBN> International Standard Book Number

type = serial (ISBN number)

<it> Item list

i d = identifier for cross-reference

<itref> Cross-reference to item in list

ref id = referred to identifier

pages = yes (add page number)

<ix> Index entry

i d = identifier for cross-reference

pri nt = printed form of entry

linkwith = listed under ...

andwith = also listed under ...

see = cross-reference to other definition
Table 20.2

Commands

in SGML

(cont.)

564 Word processing formats

Command Description

<l> Line of text

position = position

<letter> Defines a letter

 List

number = type of numbering required

form = compact (no space between entries)

<LibCong> Library of Congress Cataloging in Publication data

<tq> Long quotation

<m> Defines a memo

<name> Name of author/editor

<note> Note

<nt> Number of table

<others> Other matter within preliminary pages

number = number

i d = identifier for cross-reference

s t i 11 e = short version title

<p> Paragraph of text

<poem> One or more poems

<position> Position held by author

<preface> Preface

number = number

i d = identifier for cross-reference

stitle =short version title

<pt> Poem title

<publishr> Publisher

<q> Quotation within text

<r> Row in table

<report> Defines a report document

<related> Related publications

<subtitle> Subtitle of the document

<table> Table within text

i d = identifier for cross-reference

cols = maximum column numbers

tabs = string with tab positions

<tableref> Cross-reference to table

ref id = referred identifier to reference

pages = yes (add page numbers)

<terms> List of term definitions

style = columns (terms and definitions)
Table 20.2

Commands

in SGML

(cont.)

Standard Generalized Markup Language (SGML) 565

Command Description

<textbook> Name of main document type

version = version number or date

status = status of document

security = classification

<th> Topic heading

<titte> Title of the document

h t i 11 e = alternative form of half title

runni ng = alternative form of running headline

<titlep> Title page

<tline>- Line within document title

<to> Defines the receiver

<toc> Position of table of contents

<top1> First level topic

i d = identifier for cross-reference

<top2> Second level topic

i d = identifier for cross-reference

<top3> Third level topic

i d = identifier for cross-reference

<v> Verse of poem

no = number of verse

<xmp> Example

style = name of required format

keep = number of lines kept on first page

form = run on (ignore line ending in example)
Table 20.2

Commands

in SGML

(cont.)

A detailed description of the SGML specification is given in the ISO standard3 and in Bryan.

3 Information Processing - Text and Office Systems. ISO 8879, Standard Generalized Markup Language (SGML)
4 Martin Bryan: SGML: An Author's Guide to the Standard Generalized Markup Language

Addison Wesley, 1988, Wokingham, England, ISBN 0-201-17535-5

cr\

AMI Pro version 3.0/4.0
file format

AMI Pro is a word processing program from
Lotus. An AMI Pro document is stored in a file

Lian't/i the extension .SAM. To ensure that thefile
can be edited by a text editor, the contents of this file
are held in 7-bit ASCII characters (with some
exceptions).

The AMI Pro file format is compatible across several versions. In AMI Pro versions prior to 2.0,
graphics included in documents are stored separately in . Gxx files, where xx stands for continuous
numbers (00, 01, 02, and so on). From AMI Pro version 2.0, graphic data is stored at the end of a
.SAM file. This section is marked by an [embedded] section header.

AMI Pro uses style sheets to format the document. The contents of these . STY files are identical
to a . SAM file with the exception that there is no reference to a style sheet. An additional command
Cnewmacl is used to specify a macro name. This macro is executed when the style sheet is opened.

21.1 The contents of a SAM file

All AMI Pro document files contain three sections:

♦ A structured section in the header defines all the information required to format the document.

♦ The structured section is followed by an unstructured section containing the main body of the
text. This section includes headers, footers, notes, and so on.

♦ The last section is reserved for embedded data (pictures, equations, and so on).

The structured section at the beginning of the document is divided into parts, describing the
components of the document (frames, layouts, styles, and so on).

566

AMI Pro version 3.0/4.0 formats 567

♦ Each part begins with a keyword, embedded in brackets C...] (similar to the Windows init
files).

♦ The C... J must be at the beginning of a line.

♦ The keyword is followed by a variable number of lines defining the data. These lines are
indented by one or more tabs, to introduce a hierarchical structure to the text.

♦ Numeric fields in a line are defined as signed ASCII values.

♦ Dimensions and measurements are always in twips (1440 twips = 1 inch or 20 points).

♦ Flags and bitfields are stored as ASCII strings. To obtain the value of a bitfield, all the values
should be added to produce the whole binary number.

♦ If a line contains bulleted text or a style name containing 8-bit characters, an escape sequence
is used to preserve the 7-bit character of the file.

Details of these parts are defined in the next section.

21.2 Document section

All parts in this section have a keyword in the first line:

[keyword]

tab data line 1

tab data line 2

Table 21.1

The structure of

an AMI Pro part

The following lines are indented by one or more tabs and contain the part data.

[encrypt]

This part is only present if the file is encrypted. The second line contains the password. In this
case everything in the . SAM file is encrypted.

Ever]

This part indicates the version number of the software that created this file, and must precede the
[sty] keyword. The line after the [ver] keyword contains the number of the AMI Pro file. This is
not the version number of the software release; it is the version number of the file format used.
AMI Pro 1.0 uses version 3.0, while AMI Pro 1.1 uses version 4.0 which is a superset of version 3.0.
This chapter describes version 4.0 of the AMI Pro file format, making reference to the differences
between this and the older versions.

568 Word processing formats

[sty]

This part must follow a [ver] description and defines the name of the style sheet file for the
document. If the file is a . STY file, the part is omitted. If the . SAM file was saved with the Keep the
format with document option, the line after the keyword is blank. If this line is not present, the
program displays an error message.

[files]

This part defines the names of additional files (imported graphics such as TIFF or PCX) used in the
document. Imported files are defined with a full path, if they are stored on disk. Clipboard bitmaps
are shown with the .Gxx extension. File names for drawings or DDE file links are also defined in
this part.

[revision]

This part describes a flag, which is set to 1 if revision marking is on. If the line following the
keyword contains a 0, there is no revision marking.

[reefiles]

This part describes a record file to merge with the document. The lines after the keyword describe
the file name or the merge options. AMI Pro prints labels through merges (labels are treated as
miniature pagesfiled on the label sheet). The lines after the keyword are in the following format:

Parameter

Record file name (maximum 80 bytes)
Description file (maximum 80 bytes)

used only if the record file is not an AMI Pro file
Flags (ASCII)

Merge Print
Merge View Print
Merge Save As
With Conditions

As Label

New Wave Object
New Wave Description Object
centimeters, 3 = pica, 4 = points)

1

2

4

8

16

64

128

Units (1 = inch, 2
Label Across (small number)
Label Down (small number)
First Down (<= 32 768 twips, 1 twip = 1/1440 inch)
First Right (<= 32 768 twips)

All values are defined in ASCII characters.

Table 21.2

[rectiles] data

AMI Pro version 3.0/4.0 formats 569

[toe]

This part defines the table of contents and is only present in an AMI Pro file if the user has
generated such a table in the document.

Parameter

Style for level one (name of the style used)
Style for level two
Style for level three
Separator for level one (string)
Separator for level two
Separator for level three

Flags
1 Use page number on level 1
2 Right-align level 1 number
4 Use page number on level 2
8 Right-align level 2 number

16 Use page number on level 3
32 Right-align level 3 number

This part defines the options for regenerating the table of contents.

[master]

This part contains the master document information.

Parameter

Table of Contents name (maximum 78 characters)
Index name (maximum 78 characters)
Index flag (1 if separate rows for index)
Length of file list in bytes
Number of files

File list

This part appears in each master document.

Table 21.3

[toe] data

Table 21.4

[master] data

570 Word processing formats

[sequence]

This part describes a section sequence.

Parameter

Page number at which to start
Footnote number at which to start

Note number at which to start

Number of section sequences
Number of styles
For each section

Section number

Section name

For each style

Style number

Stvle name

Table 21.5

[sequence] data

This part will appear in each sub-document corresponding to a master document.

[desc]

This part specifies a document description containing several user-defined comments, the revision
date, and other information.

Parameter

Description (maximum 120 characters)
User-defined field 1 (maximum 34 characters)

User-defined field 2 (maximum 34 characters)
User-defined field 3 (maximum 34 characters)

User-defined field 4 (maximum 34 characters)

Last revision date (in seconds since 1/1/1980, 12:00 a.m.)

Number of edits

Creation date (in seconds since 1/1/1980)

Edit time (total minutes to edit)

Number of pages in the file
Number of words in the file

Number of characters in the file

File size in Kbytes
Table 21.6

[desc] data

(continues
over...)

AMI Pro version 3.0/4.0 formats 571

Parameter

Size of text (no longer used)
Keywords

Locked flag (if locked , the user name is given here,

otherwise the field is empty {blank line))

Description field 5

Description field 6

Description field 7

Description field 8

This data is used from version 4.0 (AMI Pro 1.1) onwards.

[book]

This part lists bookmarks in tables. Each bookmark is separated by spaces.

Parameter

Name of the bookmark

Number of the frame holding the table (user)
Row

Column

Table 21.6

[desc] data

(cont.)

Table 21.7

[book] data

[prn]

This part contains the name of the printer for which the document is formatted. The name is the

logical name listed in the Windows control panel. The driver name may also be listed (separated
from the printer name by a comma).

Future versions of AMI Pro will use the driver name. If the line after [prn] is blank or if the
part is missing from the file, AMI Pro uses the default printer from the Windows control panel.

[stpg]

This part is used in older versions and defines the first page number for the page numbering
option. If the part is missing, AMI Pro starts with number 1. In version 4.0 the page number is
stored in each page number mark.

572 Word processing formats

[Lang]

This part defines the language for the document. This definition is used for hyphenation and
proofing.

Code Language

1 American English
2 British English
3 French

4 Canadian French

5 Italian

6 Spanish
7 German

8 Dutch

9 Swedish

10 Norwegian

11 Danish

12 Portuguese
13 Finnish

14 Medical

15 Legal
16 Greek

17 Portuguese Brazil
18 Australian English
19 Polish

20 Russian

mmmmmmmmmmmmmm•'"'" ••Il"""1"1'"" '"."'I'llllll lllllllllllillil«MMM«IIUL4.,li™™^lllllllill»»l«lll«llllll Table 21.8

Language coding

All values are in ASCII. If this part is omitted, AMI Pro uses American English.

[fopts]

This part defines the footnote options in AMI Pro and has the following structure:

Parameter

Options flag
1: Gather at end of page
2: Reset page number on each page
4: Separator line

Start number (<= 9999)
Separator line length (<= 32767 twips)
Starting indent for footnotes (<= 32767 twips)

Table 21.9

[fopts] data

AMI Pro version 3.0/4.0 formats 573

[newmac]

This part only appears in style sheets and it designates the macro to be executed if the style sheet
is opened.

Parameter

Macro name

Flag
0: Do not run the macro on open
1: Run the macro on open

Table 21.10

[newmac] data

[Inopts]

This part defines the line-numbering options in AMI Pro and has the following structure:

Parameter

Options flag
1 Number lines

2 Every line

4

8

16

32

Every odd line
Every fifth line
Reset each page
Everv nth line

TAG name for

nth line distal

formatting line numbers (<= 13 bytes)
ice

Table 21.11

[Inopts] data

[docopts]

This part defines document options in AMI Pro. These options provide information which does not
belong to the paragraph style or page layout (hyphenation, kerning, and so on).

574 Word processing formats

Hyphenation hot zone (number of characters, maximum 9)
Flags:

Kerning

Widow/orphan control

Background printing
Background flowing
Snap always

Snap when open
Snap never

1

2

4

8

16

32

64

These options apply to formatting throughout the document.

[tag]

The tag part defines the paragraph style.

Parameter

Tag name (maximum 13 characters)
Function key number (<=16, not 1 or 10)

Table 21.12

[docopts] data

Table 21.13

[tag] data

Each style sheet and each document without a style sheet is required to have one body text.

[fnt]

This part defines font information (typeface, font size, and so on).

Parameter

Typeface name (maximum 32 characters)
Size (in twips)
Color in standard RGB values

Black 0
Table 21.14

[fnt] data

(continues

over...)

AMI Pro version 3.0/4.0 formats 575

Parameter

Blue 16711680

Red 255

Magenta 16711935

Green 65280

Yellow 65535

Cyan 16776960
White 16777215

Flags:
1: Bold

2: Italic

4: Underline

8: Word underline

16: Capitals
32: Small capitals (Not in AMI Pro 1.0)
64: Double underline (Not in 1.0)
128: Strike through (Not in 1.0)
256: Superscript
512: Subscript
1024: All lower case

2048: Initial capitals
4096: First line bold

16384: Variable pitch
32768: Serif font

Table 21.14
:.•' [fnt] data

(cont.)

Variable pitch and seriffont are used when the exact font is not available. The colors are
defined as valid RGB colors from Windows 3.0.

[algn]

This part contains alignment information and has the following structure:

Parameter

Flags:
Left align
Right align
Centered

Justify alignment Table 21.15

[algn] data

(continues
over...)

576 Word processing formats

Parameter

16: Indent both sides equally

256: Hyphenation
512: Indent tab

Align units (1: inch, 2: centimeters, 3: pica, 4
Indent all (<= 32767 twips)
Indent first (<= 32767 twips)
Indent rest (<= 32767 twips)

points)

Indent all applies from right and left if the flag both sides is set.

[spc]

This part defines the spacing between lines parameter.

Parameter

Flags:
1 Single spacing

2 l'/2 spacing

4 Double spacing

8 Custom spacing

16 Add space always (applies to paragraph)
32 Add space not at break (applies to paragraph)

Line spacing (<= 32767 twips)
Spacing u nits (1,2,3,4)

Paragrapri above spacing (<= 32767 twips)
Paragrapfi below spacing (<= 32767 twips)

Paragrapfi spacing units (1: inch, 2: centimeters, 3: pica, 4: points)
Line tightness (90,100, 115)

[brk]

This part defines the page and column breaks.

Table 21.15

[algn] data

(cont.)

Table 21.16

[spc] data

The add space option is applied to the paragraph spacing, not to the line spacing. For line
tightness, all values can be entered, but only three values are accepted.

AMI Pro version 3.0/4.0 formats 577

Parameter

Flags:
1 Page break before
2 Page break after
4 Page break within
8 Keep with previous

16 Keep with next

32 Use tabs

64 Next style
128 Column break before

256 Column break after

The parameters for page breaks control paragraph formatting.

[line]

This part defines lines within a paragraph.

Flags:
1

2

4

8

16

Line above paragraph
Line below paragraph
Width of text line

Width of margin line
Custom line width

Line length (<= 32 767 twips, if custom line)
Length units (1: inch, 2: centimeters, 3: pica, 4: points)
Line color (any valid Windows RGB value)

Black

75% gray

50% gray
25% gray

10% gray

0

12566463

8355711

4144949

1644825

Table 21.17

[brk] data

Table 21.18

[line] data

(continues
over...)

578 Word processing formats

Parameter

Blue 16711680

Red 255

Magenta 16711935
Green 65280

Yellow 65535

Cyan 16776960
White 16777215

Reserved

Line above stvle

1 Vz point
2 1 point

3 2 point

4 4 point
5 5 point

6 8 point
7 12 point
8 Double 1 pt-1 pt
9 Double 2 pt-2 pt

10 1 pt-2 pt-lpt
11 2 pt-1 pt
12 1 pt-2 pt

Line below style (same values)
Line above spacing (<= 32767 twips)
Line below spacing (<= 32767 twips)
Line units (1: inch, 2: centimeters, 3: pica, 4: points) Table 21.18

[line] data

(cont.)

The part defines the line style and the distance between the paragraph text and the line.

[spec]

Special characters (bullets, and so on.) used in the document are defined in this part.

Unused (was bullet type in version 3.0)

Outline level (0-6 for numbering)
Bullet text (maximum 31 characters)

Unused

Table 21.19

[spec] data

(continues
over...)

AMI Pro version 3.0/4.0 formats 579

Parameter

Space units (1: inch, 2: centimeters, 3: pica, 4: points)

Tab after flag (not used in 2.0)

0: Yes

1: No

Bullet attributes

Numbering flag
2: After lesser level

4: After intervening level
8: For legal (cumulative) Table 21.19

[spec] data
(cont.)

The bullet text may include the special characters below normal ANSI characters with
(decimal) codes 8, 10-30. The bullet attributes are defined in the TagFont Flag.

[nfmt]

This part defines the format of a numeric value in a table cell.

Parameter

Alignment flag:
1 Top of cell (not in AMI Pro 1.1)
2 Middle of cell (not in AMI Pro 1.1)
4 Bottom of cell (not in AMI Pro 1.1)
8 Use thousands separator

16 Use leading minus
32 Use trailing minus
64 Use parentheses for negative

128 Use red for negative
256 Use leading currency symbol

Cell format flag
1 General

2 Fixed

3 Currency
4 Percent

Number of decinlal places (maximum 15)
Decimal symbol (1 character)
Thousands sepai•ator (1 character)
Currency symbc1 (3 characters)

Next style name
Table 21.20

CnfrntD data

(continues
over...)

580 Word processing formats

Parameter

Number of tabs

For each tab one of the following elements:
type

offset in twips

Indent from right

The tab type coding is the same as in the [f rmlay] part.

CfrmJ

This part contains the frame description.

Parameter

Page number (<==32767)

Flags:

1 Bitmap (imported or clipboard)

2 Draw (not in AMI Pro 1.0)

4 Table (not in AMI Pro 1.0)

8 Internal use

16 Revision mark created

32 In a table cell

64 Opaque

128 Wrap around

256 Repeating

512 Text frame

The next bits are us ed onlyforframes containing text

1024 Internal use (initialized to 0)

2048 Header

4096 Footer

8192 Odd page (not in AMI Pro 1.0)

16384 Internal use (initialized to 0)

32768 Imported

65536 : Has line around frame

121072 : No wrap beside

Table 21.20

[nfmt] data

(cont.)

Table 21.21

[f rm] data

(continues
over...)

AMI Pro version 3.0/4.0 formats 581

Parameter

262144 Metafile (not in AMI Pro 1.0)

524288 Anchored (floating, not in AMI Pro 1.0)

1048576 Page table (table file 0, not in AMI Pro 1.0)

2097152 DDE frame (not used in AMI Pro 1.0)

4194394 Even page repeat (not in AMI Pro 1.0)

8388608 Grouped (not in AMI Pro 1.0)

16777216 First frame in group (grouped field

must be set, not used in AMI Pro 1.0)

33554432 Last frame in group (grouped field

must be set, not used in AMI Pro 1.0)

67208864 Table of contents (table and page table

must be set, not used in AMI Pro 1.0)

134217728 Internal use (initialized to 0)

268435456 New wave frame

536870912 ISD frame

1073741824 EPS frame

2114783648 Revision mark deleted

Left offset (<= 32 767 twips)

Top offset (<= 32767 twips)

Right offset (<= 32767 twips)

Bottom offset (< = 32767 twips)

Line around frarne borders flag

1 All sides

2 Left side

4 Right side

8 Top side

1 5: Bottom side

Not used

Border line posit ion

1 Middle

2 Inside

3 Outside

4 Close inside

5 Close outside

Border line type (see Tag Line Style: Table 21.18) Table 21.21

[frm] data

(cont.)

582 Word processing formats

Parameter

Shadow left (in twips)
Shadow top (in twips)
Shadow right (in twips)
Shadow bottom (in twips)
Rounded corners flag (% of width and height to round)
Shadow color (RGB value)
Border line color (see Tag Line Color: Table 21.18)
Background color (see Tag Line Color: Table 21.18)
If the frame is anchored:

ordinal number of anchor escape field in text
desired indent in twips from column margin
desired frame width in twips

If the frame is a DDE target:
application
topic

item Table 21.21

[f rm] data

(cont.)

The shadow rectangle values are always non-negative. The specified amount of shadow should
be displayed from the frame in each direction.

[frmmac]

This part contains the name of the macro to be run when the frame is selected.

[frmname]

This part contains the frame name (frame number) in ASCII.

[frmLay]

This part defines the layout of the (page) frame (width, margins, gutter, and so on) for the document.

Parameter

Length (<= 32 767 twips, to bottom of frame)
Width (<= 32 767 twips, frame right to frame left)
Not used

Left margin (<= 32 767 twips, from left of frame)
Bottom margin (<= 32 767 twips, from bottom of frame)

Table 21.22

[frmlay] data

(continues
over...)

AMI Pro version 3.0/4.0 formats 583

Parameter

Margin units (1: inch, 2: centimeters, 3: pica, 4: points)

Top margin (<= 32767 twips, top of frame + top margin)

Right margin (<= 32 767 twips, from right of frame)

Flags:

Column balance

Gutter line

Gutter line type (see Tag Line Above Style: Table 21.18)
Gutter color (see Tag Line Color: Table 21.18)

Not used

Not used

Not used

Number of columns (<= 32767)

For each column:

Left (offset from left of page, <= 32 767 twips)

Right (offset from left of page, <= 32767 twips)
Number of tabs (<= 32 767 tabs in this column)

For each tab in the column

Type Flag:

1: Left tab

2: Center tab

4: Numeric tab

16384: Leader hyphen

32768: Leader dot

49152: Leader underline

Offset from current column (<= 32 767 twips) Table 21.22

[frmlay] data

(cont.)

The frame definition is followed by parts containing a description of the frame contents.

[txt]

This part follows a [frmlay] part if the frame is a text frame. The text is formatted according to
the normal rules for text formatting. The End Of Text marker must be at the left margin of the file
without tabs.

[btmap]

This part follows a frame structure, if the frame contains a bitmap. This part is not used in the
version 2.0 specification.

584 Word processing formats

Parameter

Bitmap type (set to 0, is used by Windows)

Width (in pixels, <=32 767)

Height (in pixels , <= 32 767)

Width in bytes (rounded to whole number from width in pixels)

Bit planes (for color)

Bits/pixel (must bel)

XOffset for cropping (-32 716 to 32 767 twips)

YOffset for cropping (-32 716 to 32 767 twips)

XSize of the image (scaling)

YSize of the frame (scaling)

XSize of the original bitmap

YSize of the original bitmap

Flags:

1 Original size

2 Fit in frame

4 Percentage

8 Custom size

16 Maintain aspect

32 Internal use (0)

64 Internal use (0)

128 Internal use (0)

256 Rotated

512 Internal use (0)

1024 EPS file

2048 Gray level TIFF file

4096 EPS with no display image

Units (1: inch, 2 centimeters, 3: pica, 4: points)

Name (duplicate for compatibility with older versions)

Path name (blank if pasted bitmap, path name if

the graphic is an imported bitmap)

Image processing flag (not for AMI Pro 1.0):

1 Edge enhancements

2 Smooth edge

4 Negate

8 : Brightness

16: Contrast

•W;:<:- /''

Table 21.23

[btmap] data

(continues
over...)

AMI Pro version 3.0/4.0 formats 585

Parameter

remaining bits used internally

Image processing brightness (0-255)
Image processing contrast (0-255)
Image processing gray level (2, 4, 6, 8 bits per sample)
Scaling percentage (1-page size%)

If the image is a drawing (not used in version 2.0)

Internal use

XSize of the original frame scaling use - Xsize of image
YSize of the original frame scaling use - Ysize of image
Units (1: inch, 2: centimeters, 3: pica, 4: points)
XSize of the image (for scaling)
YSize of the image (for scaling)
Scaling percentage (1-page size%)

If it is a NewWave object

Internal use (0)

Object reference number
View (given by NewWave)
Object opened (was in zoomed mode)
Opened (object is opened)

Table 21.23

[btmap] data

(cont.)

[ISD]

This part follows a table structure, if the table contains an ISD (Image Structure Descriptor).

Parameter

Source file name c

Data format (file e
Snapshot name (e
Scale flags:

1

2

4

8

r . Gxx or . Xxx, where xx is a number
xtension)
tnpty if no snapshot, use . Gxx or . Xxx)

Original size
Fit in frame

Percentage

Custom size

Table 21.24

[i sd] data

(continues
over...)

586 Word processing formats

Parameter

Scale units (1: inch, 2: centimeters, 3: pica, 4: points)

Scale rectangle left (-32 757 to 32 767 twips)

Scale rectangle top (-32 757 to 32 767 twips)

Scale rectangle right (-32 757 to 32 767 twips)

Scale rectangle bottom (-32 757 to 32 767 twips)

Scale percent (only if scale in percent)

Rotation (clockwise in Vw degree)

Context size (library context size in words)
Context

Context format (context creator format)

Crop point X (in twips from left of frame, -32 767 to 32 767)

Crop point Y (in twips from top of frame, -32 767 to 32 767)

Filter context size

Filter context contents Table 21.24

[isd] data

(cont.)

[tbl]

This part follows a table structure. The following fields are on a single line, separated by spaces.

Parameter

Number of rows (1-4000)

Number of columns (2, initialized to 0)

Default row height (<= 32 767 twips)

Default gutter height (<= 32 767 twips)

Default column width (<= 32 767 twips)

Default gutter width (<= 32 767 twips)

Flags:

1: Auto row grow

2: Internal use (2, initialized to 0)

4: If page table is centered

8: Honor protection

The part describes a table.

Table 21.25

[tbl] data

AMI Pro version 3.0/4.0 formats 587

[h]

This part follows a table structure and describes customized rows.

Parameter

Row number (0 based)

Height (<= 32767 twips)

Gutter height (<= 32 767 twips)

Flags:

1:

2:

4:

16:

32:

64:

128:

Internal use (initialized to 0)

Internal use (initialized to 0)

Internal use (initialized to 0)

...additional lines with the same fields

[e] end of [h] record

Contains connected cell

Unique row height

Unique gutter height

Row is in heading

Page break after row

Created row with revision mark

Deleted row with revision mark

Table 21.26

[h] data

These seven fields are all on one line, separated by spaces. The part contains a line for each
customized row and is terminated by the [e] keyword.

[w]

This part follows a table structure and describes customized columns.

Parameter

Column number (0 based)
Width (<= 32767 twips)
Gutter width (<= 32767 twips)

Flags:

Contains connected cell

Unique cell width

Unique gutter width
Table 21.27

[w] data

(continues
over...)

588 Word processing formats

Parameter

16: Columns in heading

32: Page break after cell
64: Created cell with revision mark

128: Deleted cell with revision mark

Internal use (initialized to 0)

...additional lines with the same fields

[e] end of [w] record Table 21.27

[w] data

(cont.)

These fields are on one line, separated by spaces. The part contains a line for each customized
column and is terminated by the [e] keyword.

[data]

This part contains cell data.

Parameter

Row number (0 based)
Column number (0 based)
Flagl

1 Internal use

2 Internal use

4 Internal use

8 Left-aligned cell
16 Right-aligned cell
24 Center-aligned cell
32 Justify cell
64 Formula cell

128 Part of a connected cell

256 Top, left connected cells
512 Cell with background shade

1024 Internal use

2048 Internal use

4096 Internal use

Formula references in flags
8192 Invalid cell

16384 Leader dots in this cell

32768 Leader hyphen in this cell
49152 Leader underline in this cell

Table 21.28

[data] data

(continues
over...)

AMI Pro version 3.0/4.0 formats 589

Parameter

Joined row information

Joined column information

Cell shade (1-based index to tag line colors, 1-8)
Cell borders (word based on tag line style)

low four bits for left line

next four bits for right line
next four bits for top line
next four bits for bottom line

Flag 2

Protect flag
1: cell contains text

1: cell is protected. Table 21.28

[data] data

(cont.)

The joined row information contains the number of rows in a connected cell if it is the top left
cell. For interior cells, this line contains the number of rows from the top row.

The joined column information contains the number of columns in the connected cell, if the
cell is at the top left. For interior cells, the number of columns from the left column is specified.

[Lay]

This part defines the page layout. AMI Pro uses only one page layout for a document.

Parameter

Name of the layout (<= 13 characters, STANDARD for 1.0)
Flags:

1 Letter

2 Legal
3 A3

4 A4

5 A5

6 B5

7 Custom

128 Internal use

256 Landscape
512 Non-alternating

1024 Mirror-imaged
2048 2nd header

4096 2nd footer

Table 21.29

[lay] data

AMI Pro uses multiple styles for even/odd headers and footers and facing page layouts.

590 Word processing formats

[rght]

This part contains information for the right page.

Parameter

Length (<= 32767 twips)
Width (<= 32 767 twips)
Units for length and width (1: inch,
Left margin (<= 32767 twips)
Bottom margin (<= 32767 twips)
Top margin (<= 32 767 twips)
Right margin (<= 32 767 twips)
Flags:

2: centimeters, 3: pica, 4: points)

Columns balance

Gutter line

Page border line
Gutter line type
Gutter color

Page border type
Border units (1-4, see length units)
Border space (<= 32767 from text)
Number of columns (<= 32767)

For each column:

Left (offset from left of page, <= 32 767 twips)
Right (offset from left of page, <= 32767 twips)
Number of tabs (tabs in this column, <= 32767 twips)

For each tab:

Type flag:
1 Left tab

2 Center tab

3

4

Right tab

Numeric tab

16384

32768

49152

Leader hyphen
Leader dot

Leader underline

Offset (in column, <= 32767 twips)
Table 21.30

[rght] data

The gutter line type uses the same bitfield for coding as the line above style in the [line] part.

The type of the gutter color is the same as for the tag line color in the [line] part. The page
border type uses the same code as the line above style.

AMI Pro version 3.0/4.0 formats 591

[Ift]

This part defines the information for the left page facing layout. It has the same structure as the
right page layout (see above). In AMI Pro 1.0 this part is not used.

[hrght]

This part describes the right header and has the same structure as the text frame part (see above).

[frght]

This part describes the right footer and has the same structure as the text frame part (see above).

[hlft]

This part describes the left header and has the same structure as the text frame part (see above).

[flft]

This part describes the leftfooter and has the same structure as the text frame part (see above).
For version 1.0 there is no alternating left and right header/footer layout, so the right header/

footer layout is used. The headers and footers have the same structure as a text frame, except that

the keyword is [lyf rm] and the layout data is [frmlay] instead of [lay].

[repfrm]

All repeating frames will be listed as [repf rm] with the flag bits set as repeating. The structure is
the same as the headers and footers.

[11]

This part defines the layout number of the first page.

Parameter

Number of layout used (<= 13 bytes)
—. —, > Table 21.31

[11] part

If the value in the field is greater than 0, a layout is inserted at the beginning of the first page.

[pg]

This part defines some page hints for browsing quickly through the file. The format of these hints
depends on the AMI Pro version and is not published.

592 Word processing formats

[edoc]

This part defines the end of the document section. The document text begins after this section. If
there is text in the document, this part must be present.

21.3 Text area

Text is stored in ASCII paragraphs after the document section. All character attributes and escape
sequences are embedded in the paragraph text.

♦ The start of an escape sequence is a < sign and the end of an escape sequence is indicated by >.

♦ All characters in an escape sequence are enclosed between the characters <...>.

♦ If a < character appears as normal text, it must be doubled «. If an escape sequence ends
without a > character, the « and » characters should be interpreted as escape delimiters

(example: index page break escape sequence <:p<*!»).

Paragraphs are followed by an empty line (except in the special case of an empty paragraph).
Each paragraph may start with the style name of the paragraph. The style name begins with an a
character.

The (character is another special escape character. If this character occurs in the text, it is
placed between the start and end escape characters <(>. The < character in the text is replaced
with <;>.

There are two types of embedded escape in the text file. The first type deals with characters
below 20H and above 80H. These characters are translated as follows when stored to the disk:

♦ If the character code is below 20H, a * followed by a value will be written to the disk. The
character is the value written minus 20H.

♦ Character codes between 80H and BFH are represented by a / character followed by a value.
The actual character code is the stored value minus 40H.

♦ If the character code is between COH and FFH, the escape sequence is the \ character, followed
by a value. The actual character code is the stored value minus 80H.

Using this coding results in the disk file containing only 7-bit ASCII codes.
Other embedded escapes are special codes used as character attributes or format information.

The first of these has a start sequence (+ followed by the escape code). The end of the sequence is
indicated by the - character followed by the escape code. Codes defined are shown in Table 21.32.

The semicolon (;) is a special escape sequence. This character should be translated into a
single > sign in the document.

The other type of escape sequence always begins with a colon (:) followed by an escape code.
Table 21.33 shows the escape codes defined.

AMI Pro version 3.0/4.0 formats 593

liiMimiimuiilijL mmmmmmmmm. iiiinirnimnrirniinr-iTMwiinr- :-

Code Remark

• i Plain text (space)
1 Bold text

22H Italic text

n Underlined text

$ Word underlined text

% Strike-through text

s Superscript text

27H Subscript text

(Small capitals text

) Double underlined

* Protected text

+ All upper case

f All lower case

- Initial capitals

a Left-aligned paragraph

A Right-aligned paragraph

B Centered paragraph

C Justified paragraph

P Trail (only in index page)

Q Lead (only in index page)

R Occurs in same paragraph (only index page)

Code Remark

D System date and style

P Current page number and style

S Line spacing

P Page break

c Column break

f Text font change

R Tab ruler

Table 21.32

Escape codes
starting with +
in AMI Pro

Table 21.33

Escape codes
starting with : in
AMI Pro

(continues
over...)

594 Word processing formats

Code Remark

H Merge
N Notes

F Footnote

H Header

h Footer

0 Overstrike

A Anchor

t Table

s Spelling
V Revision marking for paragraph
T Table of contents entry
X Power field

Z Bookmark

d Add document description variable
e DDE link

n New Wave object
r Insert last revision date

k Insert creation time

V Revision marking
X Table footnote
•5 Unknown

Table 21.33

Escape codes
starting with : in
AMI Pro

(cont.)

The escape codes start a record containing fields and format codes. The following section
describes the escape sequence syntax. Capital letters enclosed in brackets for example [STYLE],
indicate fields in the escape sequence and must be filled in.

21.2.1 Escape records

<:D[STYLE]>

This escape record defines the date, followed by the date style (letters from a to I). Table 21.34
defines the different formats.

Style Format

a

b

c

8/1/94

June 3, 1995

2 October 1993

Table 21.34

Different

date styles
(continues
over...)

AMI Pro version 3.0/4.0 formats 595

Style Format

d Friday, May 1,1994
e August 2

f Saturday August 2

g 8/2

h 8/2/1991

i 2nd August

j 2nd August 1994
k 1993 July 9
I July, 1993 Table 21.34

Different

date styles
(cont.)

The letters a, g and f appear in lower case only. All other letters can appear in lower or upper

case. Where applicable, the date order depends on the setting in the Windows control panel.

<:P[STYLE&PAGENUM],[PHYSICALPAGE],[PREFIX]>

This record defines the page numbering and style. The three fields are separated by commas. The
first field contains two items of information. The first letter following the P defines the page
number style:

Style Format

1

I

i

A

a

Arabic numeral

Upper case roman numerals

Lower case roman numerals

Upper case letters

Lower case letters
Table 21.35

Page number
stvle

The second part of the first field contains the first page number as an ASCII string. The second
field contains the ASCII number of the physical page to start numbering. The third field contains
an ASCII string (maximum 31 characters) which appears before the page number.

<:S+[SPACING]> or <:S->

This is the line spacing command. The command <:S+xxxx> turns the line spacing on. The
pattern xxxx represents the ASCII number to set the amount of line spacing in twips.

596 Word processing formats

Value Spacing

Oxffff single line
Oxfffe VA line

Oxfffd double line

The command <: S-> turns the line spacing off.

<:p[FLAG]>

Table 21.36

Values for line

spacing

This command flags a page break escape, followed by a flag field. This field may be an escape
sequence because some values are out of the ASCII character range (20H to 80H).

Value

0

1

2

3

64

128

Remark

Plain text

Index page

Table of contents

End notes

Page is vertically centered
Layout change with page break

Table 21.37

Page break flag

<:f[PTSIZE]<:f> or, [WINPITCH+FACE],[RED,GREEN,BLUE]>

This is the font exchange escape which takes two forms. If the <: f > string is used, the font reverts
to its paragraph style settings. In other cases the escape string contains three fields separated by
commas. The first field defines the font size in points (ASCII value). The second field defines the
font pitch for Windows in the first character. The offset 20H is added to the value to shift the
character into the ASCII code range. The following characters define the name of the type face.
The last field contains three ASCII values, separated by commas; these define the font color mixed
from red, green and blue (values between 0 and 255). If any of the three fields is omitted, the
setting in the paragraph style applicable is used.

<:R> or <:R[C0LS],[NUMTS1],[TABTYPE,0FFST],..,[NUMTS2]..>

This is the tab ruler escape which reverts the tab settings to the page layout (form <:R>). The
second form defines new tab settings and contains several ASCII fields, separated by commas. The

AMI Pro version 3.0/4.0 formats 597

first field contains the number of columns. For each column, there is a field indicating the number
of tab stops in that column. For each tab in the column there will be a structure containing two

fields (TABTYPE, OFFST) which describe the tab settings.

TABTYPE

1

">

3

4

16384

32768

49152

Left tab

Center tab

Right tab
Numeric tab

Leader hyphen
Leader dot

Leader underline

OFFST (<=32 767 twips)
Table 21.38

Tab definition

fields

The first four values in the TABTYPE field are mutually exclusive. The last three values are also
mutually exclusive. The tab and the leader values can be added. The result is stored in the file as

an integer value. Tabs with certain leaders are stored as negative numbers (-16 383 is -16 384
leader hyphen + 1 for left tab). The OFFST field defines the relative offset in twips from the
beginning of a column to the tab position.

<:M[MERGEVARNAME>

This is a merge escape, followed by the merge variable name.

<:N[EDITDATE]\n-Text-\n\n>

This escape defines a note, followed by a long ASCII number that represents the last edit date of
this note. The next sequence defines a line feed followed by the text for this note. The text can
span several paragraphs.

<:F\n-Text-\n\n>

This is afootnote escape, followed by the text (can span several paragraphs).

<:H[FLAG]-Text-\n\n>

The header andfooter escapes (H, h) are followed by a flag which defines the type of the sequence:

598 Word processing formats

Flag

1

2

4

8

16

Remark

Footer

Header

Odd page header/footer
Even page header/footer
Odd/even page header/footer

Table 21.39

The header/

footer flag

The first two values in Table 21.39 are mutually exclusive. The flag is followed by the header/

footer text string. This string can span several paragraphs and may include other escape sequences.

The string cannot contain other header/footer strings or footnotes.

<:0+[OVERSTRIKECHAR]> or <:0->

The first form switches the overstrike mode on. The sequence contains a field specifying the

overstrike character. The sequence <: 0-> switches the overstrike mode off.

<:t[FRAMENUM> or <:A[FRAMENUM>

These commands define a frame for tables (<:t. .>) and for anchor escapes (<:A. .>). The

following field contains the zero-based ASCII number of the frame that it anchors.

<:X[TYPE],[FLAG],[FIELDTEXT]>

The fields escape (X) is made up of three parts.

♦ If the X escape sequence contains a text, the resulting text, which would appear in the

document, will follow. The text ends with a trailing Xescape sequence.

♦ The second Xescape sequence is identical to the first with the exception that a tilde (*") follows

the X. This tilde marks the terminating escape sequence.

TYPE defines the type of the field:

Value Remark

1

2

3

DDE field

Bookmark

General result field

Table 21.40

Field type

(continues

over...)

AMI Pro version 3.0/4.0 formats 599

•

Value Remark

4

5

6

7

8

9

Sequence field

Sets a global variable
Button field

Printer escape
Index entry

User-defined marker

Flag Remark

0x1000 Auto evaluation field

0x2000 Locked

0x8000 Field is in main body

Table 21.40

Field type

The field types 4, 5, 7 and 8 do not use the two-escape formats (there is no text to delimit).
The FLAG field may contain the following entries:

Table 21.41

Flag variables

The FIELDTEXT field is optional and contains the text. The structure is documented in the AMI
Pro macro manual.

<:Z[B00KMARK]>

This escape sequence defines a bookmark name.

<:e[APPNAHE],[TOPIC],[ITEM]>

This is the DDE escape sequence and is made up of three parts (:e[APPNAME],[TOPIC],[ITEM]
resultant text :e):

♦ The first sequence is written as <:e>, followed by the text that will appear in the document file.

♦ The next <: e> sequence designates the end of the text.

The third DDE escape sequencecontains the application name, the topicand the item.

<:d[FORMAT][DESCFIELD][NULL]>

This is the document description field escape sequence. This sequence contains several
parameters (file names, date, time, and so on) which are used to describe a document. The FORMAT

600 Word processing formats

field consists of only one byte containing the character a. The first byte in the DESCFIELD defines
the following entries:

Value Format

1 File name

2 Path

3 Style sheet name
4 Date created

5 Date last revised

6 Total number of revisions

7 Document description

8-15 User-defined fields

16-19 —

20 Time created

21 Time last revised

22 Total edit time

23 Number of pages

24 Number of words

25 Number of characters

26 Document size Table 21.42

Code of the

DESCFIELD

The entries in the field will be in the escape code format (to ensure that only ASCII codes
appear). The NULL field contains OOH or <*>.

<:n[OBJREFNUM]>

This escape sequence defines a New Wave object, followed by an ASCII number giving the New
Wave object reference number (double word).

<:k[F0RHAT]>

The creationdate escape sequence is followed by a format byte (see <d. .> sequence).

<:b[NULL]>

The creation time escape sequence is followed by OOH or <*>. A resulting string is determined by
the Windows control panel.

<:r[F0RMAT>

The last revision date escape sequence (r) is followed by this record. The FORMAT field is
documented in the <:d. .> escape sequence.

AMI Pro version 3.0/4.0 formats 601

<:VCS or EDC+ or -3>

The revision marking escape sequence (V) is followed by two bytes. The S marks the escape as the
beginning of a revised text. The E character marks the end of a revised text. The second byte
marks the revised text as inserted (+) or as deleted (-).

<:vC+ or -1>

The paragraph revision marking escape sequence (v) is followed by one byte. The + marks the
revised text as inserted and the - as deleted.

<:xCFOOTNOTENUM],CF00TN0TER0W3>

This escape sequence defines table footnotes and is followed by two ASCII numbers. The first
number defines the footnote number. The second number is the row of the table in which the
footnote will appear.

21.4 Embedded graphics

In versions 1.1 and 1.2 AMI Pro stores all its embedded objects in separate files. These files have
the document name and the extensions .GOO, .G01, and so on.

In release 2.0, AMI Pro appends all the object data to the end of the document file (after the
text region). All AMI Pro versions treat a > which is not matched with a preceding < as the end of
the document. The objectdata stored after this mark is in the native form (which means that this
part does notconsist ofonly 7-bit ASCII characters). AMI Pro also appends a final object directory
after all the objects. The directory is written in ASCII with one line per object. Each line contains
the object name and file type (numbering starts with 1), the file offset and length (0 is an external
reference), and the file offset and length of the snapshot for the object (0 = none). The six fields
are coded in ASCII, separated by spaces. Numbers are written in decimal notation. For external
objects the path name is added at the end of the line.

In order to find a section, the directory seeks ten bytes from the end of the file and reads 8
ASCII hex digits, followed by a CR/LF. This number is the offset to the first ASCII line in the file. If
that line starts with a C, it is a section title, which could be:

♦ [embedded] for the object directory

♦ [glossary] for a glossary index which is stored after the text region

♦ [macro! for a pcode macro which is also stored at the end of the file

To find the next (previous) section, the directory seeks 10bytes before this lineand repeats the
search process. The search is complete if the 10bytes read are not a hex ASCII sequence or if they
do not point to a [character.

The file type for ISDs (Image Structure Descriptor) are shown in Table 21.43.
The file typecan also be any 3 character extensions forexternalobjects (1. pcx 0 0 12334 1024

c:\pcx\pict1 .pcx).

602 Word processing formats

For future compatibility, these structures will be retained but new fields may be added. If a
reader finds an unknown command, it will be ignored and the reader will search for the next [..]
keyword.

.ole OLE link

.bmp Windows bitmap

.wmf Windows metafile

. tex AMI equation

.sdw AMI Draw or Chart

.tgf AMI Image Processor (grayscale TIFF) Table 21.43

File extensions

for embedded

objects

Graphic formats
File formats discussed in Part 4

ZSOFT Paintbrush format (PCX) 605
GEM Image format (IMG) 616
GEM Metafile format (GEM) 628
Interchange File Format (IFF) 658
Graphics Interchange Format (GIF) 684
Tag Image File Format (TIFF) 703
Computer Graphic Metafile format (CGM) 755
Wordperfect graphic format (WGP) 779
AutoCAD drawing exchange format (DXF) 796
Micrografx formats (PIC, DRW, GRF) 830
TARGA format (TGA) 865
Dr Halo format (PIC, CUT, PAL) 874
SUN Raster format (RAS) 880
Adobe Photoshop format (PSD) 885
PCPaint/Pictor format (PIC) 889
JPEG/JFIF format (JPG) 895
MacPaint format (MAC) 906
MAC-Picture format (PICT) 911
Atari NEOchrome format (NEO) 924
NEOchrome Animation format (ANI) 928
Animatic Film format (FLM) 930

603

604

ComputerEyes raw data format (CE1, CE2) 932
Cyber Paint Sequence format (SEQ) 934
Atari DEGAS format (PI*, PC*) 937
Atari Tiny format (TNY, TN*) 940
Atari Imagic Film/Picture format (IC*) 943
Atari STAD format (PAC) 946
Autodesk Animator format (FLI) 948
Autodesk 3D Studio format (FLC) 955
AmigaAnimation format (ANI) 963
Audio/Video Interleaved format (AVI) 969
INTEL Digital Video format (DVI) 981
MPEG specification 989
Apple Quick Time format (QTM) 990
CAS Fax format (DCX) 997
Adobe Illustrator format (AI) 999
Initial Graphics Exchange Language (IGES) 1020

^n extensive range offile formats has been developedfor the storage of
/% graphic data. In addition to GEM and Windows, the Paintbrush

A m program has had a significant influence on the design of these
formats, and the PCXformat is now supported by many products. Since it
is not possible to exchange graphics with manufacturer-specific formats,
a number of companies decided to define a universal graphic format
(TIFF). Part 4 describes the most important graphic formats for the PC,
the Macintosh and other platforms.

ZSOFT Paintbrush format
(PCX)

Paintbrush is supplied with mouse drivers from
Microsoft. This program was originally
developed by ZSOFT and is used for creating

and modifying graphics and pictures. The associated
support program FRIEZE enables pictures from other
applications such as LOTUS 1-2-3 to be imported. A
special format, known as the PCXformat, is used for
storing graphic information. Since Paintbrush is so
widely distributed, many programs support this
format, including other graphics programs such as
PC Paintbrush+ and Publishers Paintbrush and
desktop publishing software such as Ventura
Publisher (Xerox) and PC Pagemaker (Aldus).
Graphics data read with a scanner is often stored in
PCX format, to enable it to be incorporated into
desktop publishing programs at a later stage.

There is, however, a problem with describing the PCX format. Since the original definition for PC
Paintbrush, five different versions have been introduced. This problem is particularly evident in
the coding of color data and in storing bitmap character sets in font files. The initial versions of PC
Paintbrush^ and Publishers Paintbrush were especially affected by these changes. However,
ZSOFT now uses the original format, which is described below.

Agraphic is divided into individual dotsby means of rows and columns, as shown in Figure 22.1:

I mage

R

0

w

s

Planes

Red

Storing

(Row wise)

h 1st

Scan-

Line

Figure 22.1

Image scan for
PCX images

605

606 Graphics formats

Each dot in the original image, addressed via row and column numbers, is referred to as a pixel
(picture element). The whole image is created by stringing these pixels together row by row. With
monochrome images, each pixel corresponds to one bit; if the bit is set, a dot will be created at the
relevant position.

The whole process becomes more complex with the introduction of color. It is no longer
possible to represent one pixel with one bit; the image is broken down into individual color planes
(red, green, blue). The color representation of the image is then composed by adding these planes
together. Unfortunately, the coding of this color information is dependent on the graphics card
used. With EGA and VGA adapters, the color levels are generally called bit planes. As shown in
Figure 22.1, a three-dimensional image representation can be achieved by breaking the original
picture down into color planes. In PCX files, picture information is stored row by row. A complete
row contains pixels from the relevant plane in the sequence plane 0 = blue, plane 1 = green, plane
2 = red, plane 3 = intensity. The resulting picture in the file is as follows:

Image row 0: n bits color plane 0

n bits color plane 1

n bits color plane 2

n bits color plane 3

Image row 1: n bits color plane 0

n bits color plane 1

n bits color plane 2

n bits color plane 3

Image row n: n bits color plane 0

n bits color plane 1

n bits color plane 2

n bits color plane 3
Figure 22.2
PCX color planes

Since the bits composedof graphic elements must be copied into the bytes of the file, the PCX
format describes a rectangular image area consisting of n rows with x pixels in each row. The
pixels are stored in words, so the number ofbits (x) mustbe even and divisible by 16. If the image
does not conform to this requirement, it may be necessary to leave individual bits unused at the
end of the row. The same applies to the number of rows per image, which must be divisible by 8 or
16. It may be necessary to insert a number of blank rows at the bottom of the image. This
principle is demonstrated in Figure 22.3:

ZSOFT Paintbrush format (PCX) 607

PCX-Image

XMIN /
T

«- Image area -» «- empty -»

YMIN

nnnuuunnuunuuuuu

uunnmuuu#uunttu#

ttUUMMtttittUUUUUtiMM

MttitUUMUUtitiHMtltiUU

uumu#nu#n###mu xmax /

YMAX
Empty

Figure 22.3
Mapping of
a PCX image

The marked area (###) corresponds to the area of the original image, which is described by the
coordinates (XMIN,YMIN) and (XMAX,YMAX). There may be empty bits at the right and bottom edges
of the image.

22.1 Structure of the PCX header

In all versions, the header of a PCX file is structured uniformly and contains 128 bytes. This also
applies to excerpts of images which are stored in PCC files. Table 22.1 shows the format of the PCX
header.

Offset Bytes Remarks

00H 1 ID byte: OAH = PCX file
01H 1 PCX file version

0 = Version 2.5

2 = Version 2.8 with palette

3 = Version 2.8 without palette

5 = Version 3.0

02H 1 Encoding flag
0 = uncompressed

1 = RLE compression
03H 1 Bits per pixel (per plane)
04H 8 Picture dimensions in words

XMIN, YMIN, XMAX, YMAX

OCH 2 Horizontal pixel resolution
in dpi (dots per inch)

Table 22.1

Structure of a

PCX header

(continues
over...)

608 Graphics formats

Offset Bytes Remarks

OEH 2 Vertical pixel resolution

in dpi (dots per inch)
10H 48 Color map (palette) 16 x 3 bytes

40H 1 Reserved

41H 1 Color planes (maximum 4)
42H 2 Bytes per scan line (even)
44H 2 Palette data

1 = color - BAV

2 = grayscale

46H 58 Fill bytes
Table 22.1

Structure of a

PCX header

(cont.)

The first byte is used to identify a valid PCX file. ZSOFT established the value 10 (OAH) as a
signature, and other manufacturers tend to follow this convention.

The second byte contains the Paintbrush version that created the file. The value 0 indicates
version 2.5. From version 2.8 onwards it is possible to store the palette data in the PCX file. If this
information is not present (for example in a BAV representation), the byte is set to 03H. For color
graphics, the palette data is stored at offset 68, and the second byte contains 02H to indicate
version 2.8 with palette data. From version 3.0, the byte contains 05H.

The third byte indicates whether the data in the PCX file is compressed. If the byte is 0, there
is no compression. The value 1 indicates that the data has been compressed using the Run Length
Encoding process (RLE). This is described in more detail below.

The number of bits per pixel (or planes per pixel) is shown at offset 3. However, this value does
not take into account any color planes that may be present, and the number shown is generally 1.

A table containing 4 words (2 bytes each) begins at offset 04H. This table defines the
dimensions of the image window (see also Figure 22.1). The coordinates of the tipper left and
lower right corner of the relevant section of the image are stored in the following sequence:

XMIN, YMIN XMAX, YMAX

This is important in the case of image excerpts in which the coordinates need to be defined
separately. The number of valid pixels per image often does not correspond exactly to the number
of words. In this case, there will be empty bits at the right and lower edges of the image. When
reading the PCX files, the invalid area can be masked.

The horizontal resolution (H_Res) of a pixel in dpi (dots per inch) is defined at offset 12 (OCH),
while the vertical resolution (image height) in dpi is stored at offset 14 (OEH). Within the different
versions of Paintbrush, there are several modifications, introduced to make the representation of
the image device-independent. These values should therefore be treated with circumspection.

At offset 16 (10H), there is a 48 byte area for the color map. The definition of the individual
colors for color graphics is contained here. The following information on color representation
relates to the structure of this table. Any colors can be created by mixing or adding the three

primary colors.

ZSOFT Paintbrush format (PCX) 609

A color pixel can be represented by three bits, but this restricts the number of colors to 8 = 2 .
The addition of one further bit, the intensity bit, gives 16 colors. A considerably finer gradation of
colors is possible via color graphics adapters, and this has also had an influence on the storage of
color information. The approach used by painters when they mix color is generally adopted,
achieving different color tones by varying the intensity of the primary colors red, green and blue.
The method used for color graphics cards is very similar. If the primary color is represented by a
byte, its intensity can be varied through 255 shades. With three primary colors, three bytes per
color are required. Thus three bytes would be required to represent the color of each individual
pixel, which would demand a huge memory capacity. The problem is solved by storing the
definition of the color in a table, so that only the table index has to be stored with the image data.
For 16 colors, only 4 bits are needed, and for 255 shades, only 8 bits. The table in which the colors
are defined is named after the artist's palette. How this palette is stored depends on the graphics
card used.

22.1.1 CGA color palette information

With the standard CGA card from IBM (and other compatible cards), the storage of the color map
is very complex. The 48 bytes in the header are subdivided into 16 groups of three bytes (triples).

The first byte of each of the first two triples contains the data.

CoLor 1

CoLor 2

Color 16

Red Green Blue

...

Figure 22.4
CGA color map

As a result, not all the bytes in a triple are used. With the CGA adapter, the background color is
given in the first byte of the first triple (offset 16, 10H) and only the upper four bits are used. This
enables the representation of 16 different colors. The upper three bits of the first byte of the
second triple (offset 19, 13H) contain information on the foreground palette. The coding is as
follows:

610 Graphics formats

7 6 5 4 3 2 10

n ~ AAm

1 = bright

Palette 0 = palette 0 (yellow)
1 = palette 1 (white)

rnlr"' kin.»* n - ~„i„„

Mod S 1 = monochrome

Palette Colors

0

1

Green, Red, Brown (Yellow)

Cyan, Magenta, White

These three bits enable a total of 8 different combinations to be defined.

Figure 22.5

Coding of the
second byte of
the color map
(CGA)

Information on the color (monochrome/color) is stored in bit 7. Bit 5 indicates the intensity of
a pixel. One of the two CGA palettes can be selected using bit 6.

Table 22.2

CGA color

palette

22.1.2 ECA/VGA 16 color palette

In standard EGAA^GA mode, only 16 colors are available. The color map is again divided into 16
triples of 3 bytes. Each primary color is allocated a byte in which the color intensity is stored. The
values for one byte may lie between 0 and 255. This means that it is necessary to convert to the
RGB palette of the adapter. With 16 colors, only the upper two bits per byte tend to be defined.
With the IBM EGA adapter, four grades are possible for the RGB palette. The values stored in the
three bytes should be divided by 64 before processing to give values of 0, 1, 2 or 3.

22.1.3 VGA 256 color palette

For each byte it is possible to code 256 different color grades. In order to support the VGA color
mode, ZSOFT extended the color map, from version 3.0 onwards. Because the table in the header
contains only 16 x 3 bytes, a special table containing 256 entries of 3 bytes each is appended to
the end of the file. This table contains information on the color palette, which should be
interpreted in the same way as the values of the (16 color) EGA palette (divide by 64). In the case
of the VGA-BIOS palette, the bytes in the table should be divided by 4. If this mode is supported,

ZSOFT Paintbrush format (PCX) 611

the value 05H must be stored at offset 2 in the header (version 3.0). The last 769 bytes in the file
can then be read into a buffer. If the signature OCH is stored in the first byte of the buffer, there is
valid information on the color palette in the following bytes.

This concludes the description of the Color Map field in the header.
The byte at offset 64 (40H) in the header is reserved for extensions.
The byte at offset 65 (41H) contains the number of color planes per pixel. At present, the

maximum number of color planes is four (red, green, blue, intensity); for monochrome
representation, this byte is set to 1.

At offset 66 (42H), there is a word indicating the number of bytes per image line. This number

must always be even, because the image data is stored in words. If necessary, appropriate fill bits
are used. For color images, the value in this byte corresponds to the row length of one color plane.

The word at offset 68 (44H) is not always used. It contains information on the interpretation of
the palette values in the color map. The value 1 means that the data in the BAV or color graphic

should be interpreted. If the value is 2, all points are stored as graylevels. If other values are
entered here, the field is unused.

At the end of the header, from offset 70 (46H) onwards, there are an additional 58 unused bytes,

making up the prescribed length of 128 bytes.

22.2 Coding of PCX data

The header is followed by the image data. Each picture is scanned row by row and broken down
into its color planes (red, green, blue and intensity). Then, all the bits in the first row of the blue
color plane are assembled into words and stored. Unused bits in the last word are filled with 0. The

first row of the green color plane is stored next, followed by the red plane and the intensity plane.
Only then can the processing of the second row of the blue color plane (for the second row of the
images) be started. This is repeated until all rows have been stored. Any areas at the right and
bottom edges of the image are filled with null bytes and must be masked when processing the
image data.

»The ZSOFT user's manual states that the sequence of color storage is red, green, blue.
In fact, colors are stored in the file in the sequence blue, green, red.

•

Information on the valid picture excerpt is stored in the PCX file header (XMIN, YMIN, XMAX,
YMAX).

Figure 22.6
Original PC
Paintbrush

picture

612 Graphics formats

For PCX files, there are now two methods of storing picture data in the file. In the first method,

all bits are stored in uncompressed form, and a value other than 1 is stored at offset 02 H in the

header. Unfortunately, the memory requirement for this method is extremely high. Since many

pixels are identical in pictures containing several uniform areas, it is clearly appropriate to

compress the image data. Using the Run Length Encoding method, the value 1 is stored at offset

02H in the header, and the image data is compressed.

The RLE method simply means that identical bits are grouped together and their repetition

rate is indicated. The coding is as follows:

♦ If the two upper bits (6, 7) are set (bit = 1), a compressed item of information is involved. Bits 0

to 5 are then interpreted as counters which indicate the repetition factor for the pattern stored

in the following byte.

♦ If the two upper bits of a byte are not set (0), a pure data byte is involved and bits 0 to 7 can

then be processed directly as image data. Thus when storing uncompressed bytes, care should

be taken that the two upper bits are set to 0 in pixel sequence.

This compression has a number of consequences. Using the RLE method, up to 63 data bytes

or 504 bits can be coded in 2 bytes, provided all bits have the same value (0 or 1). Sequences of

pixels with alternating bits are grouped together by the byte and stored (in uncompressed form).

In order to avoid confusion with RLE coding, data bytes with values greater than COH must not be

stored directly, and the compression method is used. For example, if an image row contains the bit

pattern given by the following hex numbers:

FFH FFH FFH FFH 00H 00H 13H C9H

the RLE coding will be as follows:

C4H FFH C2H 00H 13H C1H C9H

Data byte 13H can be stored in uncompressed form. However, the value C9H brings about a

conflict with RLE coding. The data byte C9H is therefore coded as an RLE sequence with the codes

C1H C9H. In the case of pictures without repeating patterns, the compression procedure necessarily

makes the file longer than it would be with pure, uncompressed storage of the image data, because

bits 6 and 7 of a byte are not used. For this reason, PC Paintbrush can also store data in

uncompressed form.

Figure 22.7 shows an extract from a PCX file. The original picture is shown in Figure 22.6. The

information presented above enables the contents of a PCX file to be decoded relatively simply.

22.3 Format of the PC Paintbrush bitmap character

In PC Paintbrush, texts are inserted into the picture as bit patterns. The definition of the

characters is stored in individual font files of a straightforward format (see Table 22.3).

The signature AOH is stored in the first byte, together with the font width in pixels. To

determine the character width, subtract AOH from the value of the first byte.

ZSOFT Paintbrush format (PCX) 61 3

PC X-Il

Ve

) byte (Signature)
rsion 3.0

RLE-decoding
Bits per pixel (no color)

XMIN YMIN XMAX YMAX

I I I I

Resolution

- Color map
with 16
entries

- Reserved

- Bit planes

- Byte per line
(uncompressed)

Palette Info
(reserved)

Reserved area

_ Compressed
data

OA 05 01 01 00 00 00 00-7F 02 C7 00 80 02 C8 00

00FF 01 20 00 01 20 FF 01-20 00 01 20 FF 01 20

01 20 FF 01 20 00 01 20-FF 01 20 00 01 20 FF 01

2

_L
0 00 01 20 FF 01 20 00-01 20 FF 01 20 00 01 20

I

00 01 50 00 07 07 07 C8-00 07 07 07 07 07 07 07

07 02 07 05 07 07 07 07-07 07 07 07 07 07 07 07

07 05 07 07 07 05 07 05-05 03 03 03 03 03 04 04

04 03 04 04 04 04 04 04-04 04 04 04 04 04 04 04

FF FF D1 FF FF FF D1 FF-FF FF D1 FF FF FF D1 FF

FF FF D1 FF FF FF D1 FF-FF FF D1 FF FF FF D1 FF

FF FF D1 FF FF FF D1 FF-FF FF D1 FF FF FF D1 FF

FF FF D1 F F FF FF D1 FF-FF FF D1 FF FF FF D1 FF

FF FF D1 FF FF FF D1 FF-FF FF D1 FF FF FF D1 FF

I

FO C1 FF 07 C1 FE 07 C1-C1 C1 F8 3E 1F C1 FF 07

Figure 22.7
Hex dump of a
PCX file

614 Graphics formats

Bvte

1

1

256

XXX

Remarks

AOH + font width in pixels
Character height in pixels
256 * (Character width + 1)
Character images

Table 22.3

Structure of a

PCX character

file

The second byte contains the height of a character matrix. This information is required because
there are various font definitions with 5 x 7 or 9 x 14 pixels per character. A character matrix is
broken down into individual rows. With a matrix in 5 x 7 format, 7 bytes are used for storage, while
the 9 x 14 pixel representation uses 2 bytes per row and therefore needs 28 bytes per character. The
individual characters are defined on the basis of the ASCII table and are stored at offset 258. Each

character is left-justified in the character block. All characters in a font take up the same number of
bytes. This data area with the character images is preceded by a field containing 256 entries in which
the character width + 1 is stored. This is particularly important for user-created fonts, since these
may occupy any size up to a maximum of 10 Kbytes. Figure 22.8 shows the hex dump of a 5 x 7 font:

Font width in pixels

Character height in pixels

I (Character
width + 1)A5 07 01 01 01 01 01 01-01 01 01 01 01 01 01 01

01 01 01 01 01 01 01 01-01 01 01 01 01 01 01 01

01 01 06 02 04 06 06 06-06 03 03 03 06 06 03 06

03 06 06 04 06 06 06 06-06 06 06 06 03 03 05 06

05 06 06 06 06 06 06 06-06 06 06 04 06 06 06 06

06 06 06 06 06 06 06 06-06 06 06 06 06 04 06 04

06 06 03 06 05 05 05 05-05 05 05 04 05 05 05 06

06 05 05 06 05 05 06 05-06 06 06 06 06 05 02 05

06 06 01 01 01 01 01 01-01 01 01 01 01 01 01 01

01 01 01 01 01 01 01 01-01 01 01 01 01 01 01 01

01 01 01 01 01 01 01 01-01 01 01 01 01 01 01 01

01 01 01 01 01 01 01 01-01 01 01 01 01 01 01 01

01 01 01 01 01 01 01 01-01 01 01 01 01 01 01 01

01 01 01 01 01 01 01 01-01 01 01 01 01 01 01 01

01 01 01 01 01 01 01 01-01 01 01 01 01 01 01 01

01 01 01 01 01 01 01 01-01 01 01 01 01 01 01 01

01 01 00 00 00 00 00 00-00 00 00 00 00 00 00 00

I
definition00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00-00 80 80 80 80 80 00 80

A0 A0 00 00 00 00 00 50-50 F8 50 F8 50 50 20 78
Figure 22.8
Hex dump
of a 5x 7

character file

ZSOFT Paintbrush format (PCX) 615

This information enables customized character sets to be planned and included in PC Paintbrush.

22.4 CAPTURE File Format (SCR)

The program CAPTURE is supplied with MS-Word. The purpose of this program is to prepare
screen shots for Word. The program recognizes two possible modes for screen shots.

♦ Text mode in which the screen is stored as ASCII text. In this case, the files have the extension
.LST. The advantage of this mode is that the screen shot requires only a small amount of
memory. The disadvantage is that the image attributes are lost. Also, it is not possible to store
excerpts from the screen display.

♦ As an alternative, it is possible to store a text screen as a bitmap file. The text is then converted
into a bitmap pattern and stored in a file with the extension .SCR. The same applies to screen
shots in graphics mode. However, there are disadvantages. The conversion from text to bitmap
takes a long time and the bitmap file requires a considerable amount of space on the disk. The
advantage is that a bitmap file contains the attributes and the colors. It is therefore ideal for
reconstructing a screen shot.

The only problem is that so far no programs support the Word SCRformat. Even in Word, the
files cannot be displayed; they can merely be printed.

However, a glance at the file structure shows a close resemblance to the format of the PCX file.
The 128 byte header is structured similarly to the PCX format (see Table 22.1). The only
differences are as follows:

♦ In PCX files, the first byte (offset 00H) is set to 10 (OAH). An SCR file contains the value 205 in
this byte (CDH). If this byte can be converted to the value OAH using a debugger (for example
DEBUG . COM), the SCRfilecan be read and displayed with the Windows program Paintbrush.

♦ The second difference relates to screen shots. In PCX files, each row is terminated with a fill
byte in order to reach the 16 bit limit. With the SCR format, this fill byte is not used; that is, a
row will have the number of bytes per row defined in the header (offset 67, 68).

♦ Data is stored in the SCR file using RLE coding.

Given these facts, it is relatively easy to convert and display SCRfiles in the PCX format.

GEM Image format
(IMG)

A number of GEM programs such as DR PAINT,
DR DOODLE and Publishers Paintbrush use

LGEM IMG files for storing graphics. This is
basically a pixel-oriented method of storing the
screen window.

This window is divided into rows and columns of pixels as shown in Figure 23.1.

I mac e

R

0

w

CoLor

Planes

Red

Raster

format

1st

Image

Line Figure 23.1
Image scan

Each element of the original image addressed by a row and column number is designated a
pixel (picture element). The complete picture is formed by joining these pixels together. In black
and white representation, each pixel corresponds to one bit, which may be set or unset. However,
as a rule, color images are processed and stored. In this context, additional color information is
assigned to each pixel, which can no longer be coded in one bit.

Depending on the coding used, the color of a pixel can generally be created from red, green,
and blue togetherwith information on intensity. This means that the actual image must be broken
down into four partial images representing these three colors and the intensity. For example, a
partial image in which all the pixels of the original image have a certain intensity of red may be
produced. The same would apply to the partial image containing green taking accountofpixels. By
mixing the primary colors and the intensity bit, it is possible to reproduce the original picture in
16 colors.

The image is stored as a number of individual lines. For each line, the pixels of the individual
color planes are recorded row by row. This means that the rowcontainingall the red bits is stored

616

GEM Image format (IMG) 61 7

first, then the row of green pixels, then the row of blue pixels and finally the intensity bits. Only
when all this information has been stored can the next image line be processed. The process is
shown schematically in Figure 23.1.

As mentioned in the discussion of other formats (PCX, TIFF, and so on), there are a number of
difficulties connected with the memory requirements for this type of storage. A graphics screen
with a resolution of 640 x 200 pixels needs 128,000 bits to store a BAV image. Here, each pixel is
represented by one bit which is either set or unset. In the case of color graphics, each pixel (coded
as described) requires four bits (red, green, blue, intensity). This requires four times the memory
or 512 Kbits per image. To reduce the memory requirement, various data compression processes
are used in IMG files. These are described below, together with the associated memory format.
Figure 23.2 shows the basic structure of an IMG file:

Header

Records containing pixels for the 1st scan Line

Records containing pixels for the 2nd scan line

•

Records containing pixels for the nth scan line Figure 23.2
Record structure

of an IMG file

The file consists of a header containing initialization data, followed by the actual image data in
the relevant coding, divided into records ofvarying length depending on the method ofcompression.

23.1 IMG header

In the current versions of GEM (up to 2.x), the header consists of 8 words (16 bytes). This format
allows the use of a standard color palette of 16 colors. Ventura Publisher uses an extended header
with 9 words (18 bytes), to support a 256 color palette. Both headers are coded as follows:

File version

Header length (in words)
Bits per pixel (color planes)
Pattern length
Pixel width (in micrometers)
Pixel height (in micrometers)
Length of scan line in pixels (image width)
Number of scan lines (pixel height)
Ventura Extension (Bit Image Flag)

Table 23.1

Structure of an

IMG file header

618 Graphics formats

A Important note: Header data is stored contrary to the usual Intel convention. The higher
T value byte in the word is stored at the lower byte address. When stored according to the
• Intel convention, the value FFH 03H is interpreted as 03H FFH. In the IMG header, this

value is interpreted as FFH 03H. This should always be borne in mind when processing IMG files.

The first header entry indicates the version number of the GEM program that created the
image. In versions up to 2.x, this is OOH 01H. This is followed by the field containing the header
length. GEM stores the value OOH 08H here, at least up to version 2.x. However, Digital Research is
keeping its options open regarding the length of the header. The extended Ventura Publisher
header keeps 9 words. For this reason, applications programs should always read the header length
to avoid problems with later GEM versions.

The third field contains the number of bits per pixel, which is relevant in the case of color
graphics. The value 1 indicates monochrome, while values between 2 and 16 indicate color images.

This information is needed when storing and decoding image data in order to establish the
number of color planes. The picture is stored line by line, each line containing the four rows of the
pixel color planes. In GEM, the sequence of color planes is as follows:

Red, Green, Blue, Intensity

In the file, all the bits relating to the color red for the first line are stored first; these are
followed by the bits for the green color plane, then the blue color plane and finally the intensity
bits, all for the same line. Only then can the next image line be processed.

The fourth word determines the length of a pattern. This relates to the standard patterns (for
example, a brick-wall pattern) which are available in graphics programs for filling areas. The
information on the length of the pattern is required for the Pattern Run compression process. In
many versions of GEM, this is fixed at 2 bytes; however, it may vary between 1 and 8.

The size of an individual pixel naturally depends on the properties of the device used. To
enable the transfer and adaptation of existing pictures to other devices, the dimensions of a pixel
are stored in the file header. The width of a pixel in micrometers is stored in field 5 and the pixel
height in field 6. Using these parameters, it is generally possible to represent images independently
of the device used. The entries must be appropriately adapted to the device that created the file.

Word 7 contains the number of pixels per image line (image width in pixels). This information
is important because the image is stored by line/row. This field is therefore evaluated by various
compression processes.

Word 8 contains the number of pixel rows in the IMG file. This value defines the image height
in pixels.

Word 9 is only available if the header length (second entry) shows 9 words. Word 9 is used as a
Bit Image Flag in Ventura Publisher. This flag controls the interpretation of multi-plane images as
coloror gray-scale images. If word 9 is present and the file contains more than 2 planes (word 3>2),
the flag is valid. Avalue of0 indicates color image data. Afixed color palette of 16 entries is used.

GEM Image format (IMG) 619

0: C3F,3F,3F3 1: C3F,00,001 2: [00,3F,00J 3: C3F,3F,00]

4: [00,00,3F1 5: C3F,00,3F] 6: C00,3F,3F1 7: C2B,2B,2B3

8: [15,15,151 9: r.2B,oo,oo: 10: COO,2B,001 11: C2B,2B,00:

12: C00,00,2B1 13: C2B,00,2B] 14: C00,2B,2B3 15: [00,00,001 Table 23.2

GEM standard

16 color palette

The palette entries in the [] are hexvalues stored in the order red, green and blue. The value 1
in the Bit Image Flag (word 9) indicates a grayscale image. In this case, a fixed graylevel palette is
used. The palette values for grayscales are defined as follows:

0:FF 1:7F 2:BF 3:3F 4:DF 5:5F 6:9F 7:1F 8:EF 9:6F

10:AF 11:2F 12:CF 13:4F 14:8F 15:0F 16:F7 17:77 18:B7 19:37

20:D7 21:57 22:97 23:17 24:E7 25:67 26:A7 27:27 28:C7 29:47

30:87 31:07 32:FB 33:7B 34:BB 35:3B 36:DB 37:5B 38:9B 39:1B

40:EB 41:6B 42:AB 43:2B 44:CB 45:4B 46:8B 47:0B 48:F3 49:73

50:B3 51:33 52:D3 53:53 54:93 55:13 56:E3 57:63 58: A3 59:23

60:C3 61:43 62:83 63:03 64:FD 65:7D 66:BD 67:3D 68:DD 69:5D

70:9D 71:1D 72: ED 73:6D 74:AD 75:2D 76: CD 77:4D 78:8D 79:0D

80: F5 81:75 82:B5 83:35 84:D5 85:55 86:95 87:15 88:E5 89:65

90:A5 91:25 92:C5 93:45 94:85 95:05 96:F9 97:79 98:B9 99:39

100:D9 101:59 102:99 103:19 104:E9 105:69 106:A9 107:29 108:C9 109:49

110:89 111:09 112:F1 113:71 114:B1 115:31 116:D1 117:51 118:91 119:11

120:E1 121:61 122:A1 123:21 124:C1 125:41 126:81 127:01 128:FE 129:7E

130:BE 131:3E 132:DE 133:5E 134:9E 135:1E 136:EE 137:6E 138:AE 139:2E

140:CE 141:4E 142:8E 143:0E 144:F6 145:76 146:B6 147:36 148:D6 149:56

150:96 151:16 152:E6 153:66 154:A6 155:26 156:C6 157:46 158:86 159:06

160:FA 161:7A 162:BA 163:3A 164:DA 165:5A 166:9A 167:1A 168:EA 169:6A

170:AA 171:2A 172:CA 173:4A 174:8A 175:0A 176:F2 177:72 178:B2 179:32

180:D2 181:52 182:92 183:12 184:E2 185:62 186:A2 187:22 188:C2 189:42

190:82 191:02 192:FC 193:7C 194:BC 195:3C 196:DC 197:5C 198:9C 199:1C

Table 23.3

GEM standard

256 grayscale
palette

(continues
over...)

620 Graphics formats

200:EC 201:6C 202:AC 203:2C 204:CC 205:4C 206:8C 207:0C 208:F4 209:74

210:B4 211:34 212:D4 213:54 214:94 215:14 216:E4 217:64 218:A4 219:24

220:C4 221:44 222:84 223:04 224:F8 225:78 226:B8 227:38 228:D8 229:58

230:98 231:18 232:E8 233:68 234:A8 235:28 236:C8 237:48 238:88 239:08

240:F0 241:70 242:B0 243:30 244:D0 245:50 246:90 247:10 248:E0 249:60

250:A0 251:20 252:C0 253:40 254:80 255:00

Table 23.3

GEM standard

256 grayscale
palette
(cont.)

A value FF for index 0 means that all three entries (red, green, blue) use the same value
(FFH,FFH,FFH). The grayscale palette is never stored in an IMG file. All palette values in Table 23.3
are given in hexadecimal.

23.2 Storage of IMG data

As mentioned above, GEM partitions an image into rows and columns, and each element in this
matrix corresponds to one pixel. The images are stored line by line, the data from each color plane
of the current line being stored in turn, in the case of color images. Only when the preceding line
is complete will the next line be processed.

1

2

3

4

Columns

1 2 3

R G B

R = Red

B = Blue

G = Green

Rows

R G B

R G B

R G B

Figure 23.3
Pattern with red,

green, blue

To store the pattern, 3 columns x 4 rows x 4 colors = 48 bits are required. The number of color
bits is indicated in the header of an IMG file, and the pattern is scanned row by row before being

stored in a file (Figure 23.4).
Using this information (Figures 23.4 and 23.5), the original picture can subsequently be

reconstituted. The number of pixels per row is contained in the header of the IMG file (word 7).

GEM Image format (IMG) 621

The number of color bits per pixel is also shown in the header (word 3). If the value is 4, for
example, every pixel is broken down into four color planes and stored.

Pixel 1st row (Red)

Pixel 1st row (Green)

Pixel 1st row (Blue)

Pixel 1st row (Int.)

Pixel 4th row (Red)

Pixel 4th row (Green)

Pixel 4th row (Blue)

Pixel 4th row (Int.)

1 0 0

0 1 0

0 0 1

0 0 0

...

1 0 0

0 1 0

0 0 1

0 0 0 Figure 23.4
Storing uncoded
patterns

23.3 Image compression in IMG files

Even with a resolution of 640 x 300 pixels, the memory requirement for a picture is very high. If
the resolution and quality of color are improved, it increases dramatically. For this reason, GEM
uses various compression processes to reduce the volume of data:

♦ Solid Run

♦ Bit String

♦ Pattern Run

♦ Vertical Replication Count

The appropriate method is chosen for the various elements in the picture.
The header is followed by an area containing the image data, which is stored line by line,

taking into account the color planes. The pixels are stored in records according to the following
format:

622 Graphics formats

I—Record containing image data—'

Header containing record type
Figure 23.5
Record structure

The structure of the records varies according to the coding method used.

23.3.1 Pixel Coding

One obvious solution is to divide the individual pixels into their respective color planes and store
them bit-wise. The four color bits per pixel and 640 pixels per row create the following memory

demand per row:

640 pixels x 4 color planes / 8 bits = 320 bytes

Here, GEM attempts to save space in the memory by using appropriate coding.

23.3.2 Solid Run format

The simplest case is when several pixels within a line are identical. In breaking down the pixels
into the individual bits of the color planes, there are often several consecutive bits with the same
value (0 or 1). To represent this section, it is only necessary to indicate the value and the number
of bits involved. If one byte is reserved as a repetition counter and bit 7 is used as a marker for
Solid Run, the maximum number of bits represented is 127 per data byte. This constitutes a good
level of compression. However, the specification goes one step further: bits with the same setting
are taken in groups of 8 (1 byte). In Solid Run format, consecutive bytes with the same values are
stored as shown in Figure 23.6:

Bit 7 6 5 4 3 2 10

I

same value

Figure 23.6
Solid run record

format

GEM Image format (IMG) 623

The basis for this code is always one byte. The upper bit of this byte indicates the value of the

compressed pixel (1 or 0). The remaining bits 0 to 6 indicate the number of compressed bytes. For
instance, if there is a series of 320 bits with the value 1, this represents exactly 320/8 = 40 bytes.
The same applies to series of bits containing the value 0. The following codes are therefore
possible:

Bits = 0: 01H (1 byte or 8 bits)

7FH (127 bytes or 1016 bits)
Bits = 1: 81H (1 byte or 8 bits)

FFH (127 bytes or 1016 bits)

Entry 83H, for example, means that the following three bytes are represented with the value 1.
This method enables a maximum of 127 similar bytes (corresponding to 7FH or FFH) to be
compressed. The record is just one byte long and contains values between 01 Hand FFH.

The value OOH is not permitted as a count because it is meaningless and leads to conflicts with
the header bytes in the Bit String (80H) and Pattern Run (OOH) formats. A value of 80H is also
invalid; it defines 0 repetitions of a byte of value FFH.

23.3.3 Bit String format

This format is used to represent uncompressible sections of an image. It enables non-repeatable
patterns to be stored as a bitstring. The bit string records are structured as shown in Figure 23.7:

'-n Data bytes containing image area—'

Number of following data bytes
Figure 23.7

Bit String
record format

The record begins with the code 80H in the first byte. The second byte indicates the number of
following bytes containing the record data. The pixels are stored in these bytes as bit strings. Only
an integer multiple of 8 can be stored as a pixel number. A maximum of 255 bytes (2040 bits) per
record can be represented using the Bit String format. For longer patterns, a second record must
be used. GEM only uses this format if no other coding method is possible.

624 Graphics formats

23.3.4 Pattern Run format

One other form of coding is used for the representation of patterns. Patterns used for filling areas and
for backgrounds to pictures are generally supplied by the toolboxes of the graphics programs. They
tend to have geometrical structures and can be represented using the format shown in Figure 23.8:

Data bytes pattern

Length of run (repetitions)

Header with record ID (OOH) Figure 23.8
Pattern Run

record format

The record begins with the value OOH as an identification code. This is followed by a byte
indicating the repetition rate of the pattern. The value 5 indicates that the pattern should be
created 5 times in consecutive bits in the relevant line. The remainder of the record contains the

data bytes of the actual pattern. Each pixel of the pattern is represented by one data bit. It should
be borne in mind that, here too, a pattern must consist of a number of pixels which is divisible by
8. In fact, GEM defines a fixed data length in IMG files for all patterns offered. This is stored in
word 4 of the IMG header, and the value is usually limited to 2 bytes. A pattern must therefore be
represented by 2 x 8 = 16 bits.

A pattern consisting of n bytes can be repeated up to 255 times in PatternRun format, before a
new record has to be created.

23.3.5 Vertical Replication Count format

The coding methods described so far relate to the representation of individual pixels in a string.
However, images often contain identical lines. The top and bottom edges of a picture, for example,
are often filled with the same color. In such cases, it is sufficient to describe this line once and
copy it several times. Vertical Replication Count format was introduced to support this technique.
It is only used when several consecutive image lines can be represented with the same coding. The
image data is still coded using one of the formats described above (Pattern Run, Bit String, Solid
Run). When using Vertical Replication Count, a second header, structured as shown in Figure
23.9, is placed before the header of the data record:

GEM Image format (IMG) 625

00 00 FF N Data record

1 1 1
1 1

Data record in Pattern Run

Bit String or Solid Run
Format

D

Figure 23.9
Vertical

Replication
Count record

format

The record always begins with a four-byte header. The first three bytes contain the following
signature:

OOH OOH FFH

This code is not used by any other coding method and is employed only when several lines can
be represented using Vertical Replication Count. The fourth byte contains the number of lines to
be displayed. The entry FEH will cause the same line to be displayed 254 times. The maximum
number of lines in the same representation is 255. The individual pixels are coded in accordance
with the methods described above. When creating a picture in IMG format, all graphic objects
(rectangles, circles, text) are represented in pixel format and stored in the formats described.
Figure 23.10 shows a picture created with DR PAINT. It contains several objects, which have been
stored in a file as pixel graphics. GEM even represents texts in individual pixels. As soon as a text
is saved, the representational attributes (size, style) can no longer be changed. In black and white
representation, the text GEM produces the following pixel pattern:

00111100 11111110 11000110~

01100110 01100010 11101110

11000000 01100100 11111110

11001110 01111100 11111110 -Pixel rows

01100110 01100100 11010110

00111110 01100010 11000110

00000000 00000000 00000000_

G E M Figure 23.10
Bit pattern of the
text GEM

Colored letters can be produced by mixing the primary colors (red, green, blue and intensity).
In this case, the bits will be distributed across the four color planes. Superimposing the bits then
produces one of the 16 possible colors for the relevant letters. When processing an IMG file, the
various record formats are easy to recognize. Figure 23.11 shows an example of this type of file:

626 Graphics formats

Figure 23.11
Original image in
DR PAINT format

The IMG file can be displayed as a hex dump. A section of this display is shown in Figure 23.12
When constructing an image from the IMG file, each row of the corresponding color plane is

produced separately, followed by the data for the next color plane of the same scan line. As soon as
an image string is produced, it can be decided whether repetition using Vertical Replication count
is possible.

GEM-Version

• Header length in words (8)
Bits per pixel

Pattern length

I— Pixel width in micrometers

Pixel height in micrometers

Pixels per line

Numher of scan lines

00 01 00 08 00 04 00 02-00 A9 01 74 01 30 00 7C

I I I
03 80 02 38 20 02 80 02-20 04 02 80 05 80 00 F8

l 1 |

L00 10 16 03 80 02 38 20-02 80 02 20 04 02 80 05

I I I

80 00 F8 00 10 16 03 80-02 38 20 02 80 02 20 04 l_

02 80 05 80 00 F8 00 10-16 03 80 02 38 20 02 80

02 20 04 02 80 05 80 00-F8 00 10 16 03 80 0D 24

E1 87 00 E1 CF 00 63 8E-00 21 89 3C 16 03 80 0D

24 E1 87 00 E1 CF 00 63-8E 00 21 89 3C 16 03 80

00 24 E1 87 00 E1 CF 00-63 8E 00 21 89 3C 16 03

80 0D 24 E1 87 0Q E1 CF-00 63 8E 00 21 89 3C 16

Header record

Bit string
records

Solid run
records

Bit string
records

Solid run

records

Figure 23.12

Hex dump
of an IMG file

(continues
over...)

GEM Image format (IMG) 627

03 80 OB 24 22 CC 00 23-04 00 BO 89 00 22 C6 10

16 03 80 00 24 22 CC 00-23 04 00 BO 89 00 22 C6

10 16 03 80 00 24 22 CC-00 23 04 00 BO 89 00 22

C6 10 16 03 80 00 24 22-CC 00 23 04 00 BO 89 00

22 C6 10 16 03 80 00 24-22 03 00 20 C4 00 80 89

00 22 06 10 16 03 80 00-24 22 03 00 20 C4 00 80

89 00 22 06 10 16 03 80-00 24 22 03 00 20 C4 00

80 89 00 22 06 10 16 03-80 00 24 22 03 00 20 C4

00 80 89 00 22 06 10 16-03 80 00 38 F1 CE 00 F3

83 00 73 C9 00 21 C9 OC-16 03 80 00 38 F1 CE 00

F3 83 00 73 C9 00 21 C9-0C 16 03 80 00 38 F1 CE

00 F3 83 00 73 C9 00 21-C9 OC 16 03 80 00 38 F1

I

CE 00 F3 83 00 73 C9 00-21 C9 OC 16 00 00 FF 05

26 26 26 26 17 80 01 38-OE 17 80 01 38 OE 17 80

01 38 OE 17 80 01 38 0E-17 80 01 44 OE 17 80 01

44 OE 17 80 01 44 OE 17-80 01 44 OE 16 80 02 03

82 04 80 02 OF 80 08 16-80 02 03 82 04 80 02 OF

80 08 16 80 02 03 82 04-80 02 OF 80 08 16 80 02

Header of a
Vertical
Replication
Count record
with 5 repeats

r

00 00 FF 03 10 80 01 01-00 04 FF 3F 80 01 EO OC

00 07 55 55 1F 1E 07 80-01 1F 1E 07 80 01 1F 1E

07 80 01 1F 1E 08 80 01-FO 1D

Vertical

Replication
Count record

header
with 3 repeats

Bit String
Record

Solid run

Pattern Run

Record

(Pattern = 2 Byte) Figure 23.12
Hex dump
of an IMG file

(cont.)

GEM Metafile format (GEM)

In addition to the IMG format, there is another
method for describing image data in GEM. This
format does not store image data directly; it

describes the objects of an image (circle, rectangle,
line, text, and so on) together with their attributes
(color, font style, line width, and so on). In this way,
the output device is responsible for preparing the
image. This has the advantage of creating a
representation of the image description which is
adapted to the output device. Metafile Format is used
by the GEM program DRAW and also by many DTP
programs such as Pagemaker and Ventura Publisher,
which now also support this format.

24.1 Structure of the GEM Metafile header

A GEM Metafile contains a header n bytes long, followed by the records describing the graphic
objects. The header data consists of 15 fields of 2 bytes each. These are interpreted as shown in
Table 24.1

Offset Bytes Remarks

OOH 2 Signature FFFFH for GEMMetafiles

02H 2 Header length in words

04H 2 GEM version

06H 2 Coordinate system (RC or NDC)

08H 2 X-Minimum

OAH 2 X-Maximum

OCH 2 Y-Minimum

628

Table 24.1

GEM Metafile

header

(continues
over...)

GEM Metafile format (GEM) 629

Offset Bytes Remarks

OEH 2 Y-Maximum

10H 2 Page size X-axis
12H 2 Page size Y-axis
14H 2 X-Minimum

16H 2 X-Maximum

18H 2 Y-Minimum

1AH 2 Y-Maximum

1CH 2 Bit image opcode flag
1EH 18 Reserved

Value Coordinate system

NDC (Normalized Device Coordinates)
RC (Raster Coordinates)

Figure 24.1 shows the origin of each of these coordinate systems:

(0,0)
-32767

32767

RC-System NDC-System

32767 (0,0)
•32767

Table 24.1

GEM Metafile

header

(con..)

The first word contains the signature FFFFH. This is followed by the header length field. At
present, this field contains 0018H; later versions may have different values. The version of GEM
that created the file is stored in the third word, with the main version in the upper byte and the
sub-version in the lower byte (021 OH = 2.1).

The entry at offset 06H, which specifies the coordinate system used, is of particular interest. In
GEM, the following variants are used:

Table 24.2

GEM coordinate

systems

Figure 24.1
RC and NDC

coordinate

systems

The origin for the two coordinate systems is different. In the NDC system, resolution is related
to a virtual coordinate system, whereas in the RC system resolution is determined by the output

630 Graphics formats

device used. While a virtual device has a resolution of 0-32767 dots, the resolution is reduced to

640 x 200 dots with a CGA card.

The following four fields specify the image area in which graphic objects may be represented.
However, this information is not absolutely necessary, and the value 0 is often found in these
fields.

The page size of an image in Vw millimeters is indicated at offset 10H. The first field specifies the
image width and the second the image height. These dimensions can be used for rescaling the
picture if the output device has different dimensions.

The following four words define a window within the metafile. These fields generally contain 0.
The next word is interpreted as a 16 bit flag, in which GEM notes whether bit image data is

stored in the later metafile definitions. The coding is as follows:

BitO Coding

0

1

No bit image opcode in file
Bit image opcode in file Table 24.2

Data storage
coding

The remaining bits of the flag have not so far been defined, and the remaining 9 words in the
header are reserved.

24.2 Format of Metafile objects

The header is followed by the records containing the object descriptions. Each object description
is structured as shown in Table 24.3.

Word Remark

OOH Object opcode
01H Number of XY-data pairs (vertices)

02H Number of other integer values

03H Object sub-opcode

04H 1st XY-values

nth XY-values

1st integer value

nth integer value
Table 24.3

Structure

of an object
description

GEM Metafile format (GEM) 631

The record begins with the opcode for the relevant graphic object. Word 1 defines the number
of XY pairs. These values start at word 4. In the case of a rectangle, for example, they indicate the
corners. Two words are available in the record for each pair. Word 2 contains the number of other
integers relating to the object; the actual values are stored after the XY pairs. If words 1 or 2 are
set to 0, the relevant fields (XY pairs or integer values) are not defined. The information stored in
these fields depends on the object involved.

Table 24.4 lists the opcodes defined, and the corresponding graphic objects.

Type Subtype Object

03H - Clear Workstation

04H - Update Workstation
05H 02H Exit Alphanumeric Mode

03H Enter Alphanumeric Mode
14H Form Advance

15H Output Window
16H Clear Display List
17H Output Bit Image File
19H Output Printer Alphanumeric Text
63H Set Bezier Quality (GEM/3)

06H - Polyline
07H - Polymarker
08H - Text

09H - Fill Area
OBH - Generalized Drawing Primitives (GDP)

01H Bar GDP

02H ARC GDP

03H PIE GDP

04H Circle GDP

05H Ellipse GDP
06H Elliptical Arc GDP
07H Elliptical Pie GDP
08H Rounded Rectangle
09H Filled Rounded Rectangle
OAH Justified graphics Text
13H Enter Alphanumeric Mode
14H Form Advance

17H Output Bit Image File
19H Output Printer Alphanumeric Text

OCH - Set Character Height
ODH - Set Character Baseline Vector

OEH - Set Color Representation
OFH - Set Polyline Line Type
10H - Set Polyline Line Width
11H — Set Polyline Color Index

Table 24.4

Opcodes for
meta-objects
(continues
over...)

632 Graphics formats

Type Subtype Object

12H Set Polymarker Type
13H Set Polymarker Height
14H Set Polymarker Color Index

15H Set Text Font

16H Set Text Color Index

17H Set Fill Interior Style
18H Set Fill Style Index
19H Set Fill Color Index

20H Set Writing Mode
27H Set Graphic Text Alignment
68H Set Fill Parameter Visibility
6AH Set Graphics Text Special Effects
6BH Set Character Height (Points Mode)
6CH Set Polyline End Styles
70H Set User-defined Fill Pattern

71H Set User-defined Line Style Pattern
73H Fill Rectangle
81H Set Clipping Rectangle

The parameters of the most important objects are described below:

Table 24.4

Opcodes for
meta-objects
(cont.)

24.2.1 Poly Line (Opcode 06H)

This object describesa line drawn betweenseveralpoints. The record structure is shown in Table 24.5:

Word Remark

OOH Opcode 06H

01H Vertex (X,Y) count

02H Integer parameter count (0)
03H Sub-opcode (0)

04H X-coordinate 1st point

05H Y-coordinate 1st point

X-coordinate nth point

Y-coordinate nth point Table 24.5

Record format

object 06H

GEM Metafile format (GEM) 633

This object has no integer values, and the XY coordinates of n points are stored from word 4
onwards. The number of parameters is stored in word 1.

" In GEM/3, the function Output Bezier has been introduced as subcode 13.

24.2.2 Poly Marker (Opcode 07H)

This object enables several points to be marked. The object has no integer values, and the XY
coordinates of n points are stored from word 4 onwards. The number of parameters is stored in
word 1.

Word Remark

OOH Opcode 07H
01H Vertex (X,Y) count
02H Integer parameter count (0)
03H Sub-opcode (0)
04H X-Coordinate 1st point
05H Y-Coordinate 1st point

X-Coordinate nth point
Y-Coordinate ?ith point

Table 24.6

Record format

object 07H

24.2.3 Text (Opcode 08H)

This object enables an ASCII text to be displayed at a given position. The format is as follows:

Word Remark

OOH Opcode 08H
01H Vertex (X,Y) count (1)
02H Integer parameter count (x)
03H Sub-opcode (0)
04H X-Coordinate first character
05H Y-Coordinate first character

06H ASCII string

Table 24.7

Record format

object 08H

634 Graphics formats

The start coordinates for the text and the actual text string are stored in this record. The length
of the text is stored in the integer parameter count word.

24.2.4 Fill Area (Opcode 09H)

This object specifies a filled area. The XY coordinates for the area to be filled are stored in the
record.

Word Remark

OOH Opcode 09H
01H Vertex (X,Y) count (x)
02H Integer parameter count

03H Sub-opcode (0)
04H X-Coordinate 1st point

05H Y-Coordinate 1st point

X-Coordinate nth point
Y-Coordinate nth point

t In GEM/3, the sub-function 13 (output filled Bezier) has been added.

Table 24.8

Record format

object 09H!

24.2.5 Generalized Drawing Primitives (GDP Opcode OBH)

A number of basic graphic elements (circle, rectangle, and so on) are combined under this opcode.
The sub-opcode is used to distinguish between elements. Angles are given in Vw degree and
calculated counterclockwise.

24.2.5.1 Bar GDP (Opcode OBH Subcode 01H)

Word

OOH

01H

02H

03H

04H

05H

06H

07H

Remark

Opcode OBH

Vertex (X,Y) count (2)
Integer parameter count (0)

Sub-opcode (01H)
X-Coordinate corner 1 of bar

Y-Coordinate corner 1 (diagonal)

X-Coordinate corner 2

Y-Coordinate corner 2 (diagonal)

GEM Metafile format (GEM) 635

Table 24.9

Record format

object OBH, 01H

This object draws a rectangle and fills it with a selected area attribute. The record contains the
XY coordinates for two diagonal corners of the rectangle to be filled.

24.2.5.2 Arc GDP (Opcode OBH Subcode 02H)

This object uses the current polyline attribute and the selected drawing mode to produce an arc.

Word Remark

OOH Opcode OBH

01H Vertex (X,Y) count (4)

02H Integer parameter count (2)

03H Sub-opcode (02H)

04H X-Coordinate arc center point

05H Y-Coordinate arc center point

06H 0

07H 0

08H 0

09H 0

OAH Radius of arc (in axis units)

OBH 0

OCH Start angle in Vw of degree (0-3600)

ODH End angle in Vw of degree (0-3600)
Table 24.10

Record format

object OBH. 02H

636 Graphics formats

In the record, the start and end angles of the arc are defined in angular degrees x 10. The XY

coordinates and the radius of the arc are also defined. The scaling of the X axis is used for the
radius.

24.2.5.3 Pie GDP (Opcode OBH Subcode 03H)

This object creates a segment of a circle in the current write mode and fills the area with the
pattern selected.

Word Remark

OOH Opcode OBH
01H Vertex (X,Y) count (4)

02H Integer parameter count (2)

03H Sub-opcode (03H)

04H X-Coordinate arc center point

05H Y-Coordinate arc center point

06H 0

07H 0

08H 0

09H 0

OAH Radius of arc

OBH 0

OCH Start arc (Vio degree, 0-3600)
ODH End arc (Vio degree, 0-3600)

Table 24.11

Record format

object OBH, 03H

In this record, the start and end angles of the arc are defined in angular degrees x 10. The
angle is indicated in the counterclockwise direction. The XY coordinates and the radius of the arc,
which is based on the scaling of the X axis, are also defined. The fill attribute for the area can be
selected using the meta-object 25H.

24.2.5.4 Circle GDP (Opcode OBH Subcode 04H)

This object draws a circle in the current drawing mode and fills the area with the color selected.

Word Remark

OOH

01H

Opcode OBH

Vertex (X,Y) count (3)

Table 24.12

Record format

object OBH, 04H
(continues
over...)

GEM Metafile format (GEM) 637

Word Remark

02H Integer parameter count

03H Sub-opcode(04H)

04H X-Coordinate arc center point

05H Y-Coordinate arc center point

06H 0

07H 0

08H Arc radius

09H 0
Table 24.12

Record format

object OBH, 04H
(cont.)

The coordinates for the center and the radius of the circle are stored in the record. The fill

attribute can be set via the meta-object 25H.

24.2.5.5 Ellipse GDP (Opcode OBH Subcode 05H)

This object uses the selected drawing mode to display an ellipse, which is filled with the current
pattern. The center of the ellipse and the radii in the relevant scaling are also stored in this record.

Word Remark

OOH Opcode OBH

01H Vertex (X,Y) count (2)

02H Integer parameter count

03H Sub-opcode(05H)

04H X-Coordinate ellipse center point
05H Y-Coordinate ellipse center point

06H Radius in X-axis units

07H Radius in Y-axis units

24.2.5.6 Elliptical Arc GDP (Opcode OBH Subcode 06H)

This object uses the selected drawing mode and displays an elliptical arc.

Table 24.13

Record format

object OBH, 05H

638 Graphics formats

Word Remark

OOH Opcode OBH

01H Vertex (X,Y) count (4)
02H Integer parameter count (2)
03H Sub-opcode (06H)
04H X-Coordinate elliptic arc center point

05H Y-Coordinate elliptic arc center point

06H Radius in X-units

07H Radius in Y-units

08H Start angle (Vw degree, 0-3600)
09H End angle (Vw degree, 0-3600) Table 24.14

Record format

object OBH, 06H

The center point of the ellipse and the radii in the relevant scaling are stored in this record,
together with the angles in degrees xlO.

24.2.5.7 Elliptical Pie GDP (Opcode OBH Subcode 07H)

This object uses the selected drawing mode and displays an elliptical pie, which is filled with the
current pattern.

Word Remark

OOH Opcode OBH

01H Vertex (X,Y) count (2)

02H Integer parameter count (2)
03H Sub-opcode (07H)

04H X-Coordinate elliptic arc center point

05H Y-Coordinate elliptic arc center point

06H Radius in X-axis units

07H Radius in Y-axis units

08H Start angle (Vio degree, (0-3600)

09H End angle (Vio degree, (0-3600)
Table 24.15

Record format

object OBH, 07H

The center point of the ellipse and the radii in the relevant axis scaling are stored in this
record, which also contains the angles in degrees xlO.

GEM Metafile format (GEM) 639

24.2.5.8 Rounded Rectangle GDP (Opcode OBH Subcode 08H)

This object draws a rectangle with rounded corners in the type of line selected. The record
contains the XY coordinates for two diagonal corners of the rectangle to be displayed. The object
uses the line selected via code 23H to draw the shape.

Word Remark

OOH Opcode OBH

01H Vertex (X,Y) count (2)

02H Integer parameter count (0)
03H Sub-opcode (08H)

04H X-Coordinate corner 1

05H Y-Coordinate corner 1

06H X-Coordinate corner 2

07H Y-Coordinate corner 2 Table 24.16

Record format

object OBH. 08H

24.2.5.9 Filled Rounded Rectangle GDP (Opcode OBH Subcode 09H)

This object draws a rectangle with rounded corners and fills it with the selected color pattern.

Word Remark

OOH Opcode OBH

01H Vertex (X,Y) count (2)
02H Integer parameter count (0)
03H Sub-opcode(09H)
04H X-Coordinate corner 1

05H Y-Coordinate corner 1

06H X-Coordinate corner 2

07H Y-Coordinate corner 2 Table 24.17

Record format

object OBH, 09H

The XY coordinates of two diagonal corners of the rectangle to be filled are stored in the
record. The object uses the color attributes selected via code 25H for filling the shape.

640 Graphics formats

24.2.5.10 Justified Graphics Text GDP (Opcode OBH Subcode OAH)

This object describes a string, which is left and right justified between two points. The current
write mode and attributes selected are used.

Word Remark

OOH Opcode OBH
01H Vertex (X,Y) count (2)
02H Integer parameter count (n+2)
03H Sub-opcode (OAH)
04H X-Coordinate text alignment point
05H Y-Coordinate text alignment point
06H String length in X-axis units
07H 0

08H Word spacing flag (modify if not 0)
09H Char spacing flag (modify if not 0)
OAH ASCII string Table 24.18

Record format

object OBH, OAH

The record contains the XY coordinates for the beginning of the string and the length of the
string, in the units of the X scale. The Word spacing flag specifies whether the space between
words in the string may be altered. If the flag is set to 0, the spacing must not be altered. The Char
spacing flag fulfils the same function for the spacing between individual characters. From word
OAH the ASCII string is stored as integer parameter. The length of the string +2 is stored in word

02H (integer parameter count).

! In GEM/3, the sub-opcode ODH (Enable/Disable Bezier capabilities) has been added.

24.2.6 Set Character Height (Opcode OCH)

This object defines the character size for text displays.

Word Remark

OOH

01H

Opcode OCH
Vertex (X,Y) count (1)

02H

03H

04H

Integer parameter count
Sub-opcode
0

05H Character height
Table 24.19

Record format

object OCH

The height of the character is indicated in the units of the current coordinate system (NDC, RC).

GEM Metafile format (GEM) 641

24.2.7 Set Character Baseline Vector (Opcode ODH)

This object defines the angle through which the base line of a character set may be rotated.

Word Remark

OOH Opcode ODH

01H Vertex (X,Y) count

02H Integer parameter count (1)
03H Sub-opcode

04H Angle (Vio degree, 0-3600)
Table 24.20

Record format

object ODH

The angle is indicated in degrees x 10.

24.2.8 Set Color Mode (Opcode OEH)

This object defines a color index for the display.

Word Remark

OOH Opcode OEH

01H Vertex (X,Y) count (0)
02H Integer parameter count (4)
03H Sub-opcode
04H Color index

05H Red color intensity (Vio%, 0-1000)
06H Green color intensity (Vio%, 0-1000)
07H Blue color intensity (Vio%, 0-1000)

Table 24.21

Record format

object OEH

For the given index, a color pattern based on the three primary colors is defined. The color
intensities are indicated in parts per thousand.

24.2.9 Set Polyline Type (Opcode OFH)

This object defines the line type for multiple lines.

642 Graphics formats

Word

OOH

01H

02H

03H

04H

Remark

Opcode OFH
Vertex (X,Y) count (0)
Integer parameter count (1)
Sub-opcode
Line type

The line type is coded as follows:

Code Line type

FFFFH Solid

FFFOH Long dash
E0E0H Dot

FE38H Dash-dot

FF00H Dashed

F198H Dash-dot-dot

Additional user-specific codes can be defined via the object code 71H.

24.2.10 Set Polyline Width (Opcode 10H)

This object defines the line width for polylines.

Word Remark

OOH Opcode 10H

01H Vertex (X,Y) count (1)

02H Integer parameter count

03H Sub-opcode

04H Line width

05H 0

Table 24.22

Record format

object OFH

Table 24.23

Line types

Table 24.24

Record format

object 10H

The line width indicates the thickness of the line in units of the X axis (NDC/RC units). The
value is an odd number and begins with 1.

GEM Metafile format (GEM) 643

24.2.11 Set Polyline Color Index (Opcode 11H)

This object defines the color of a polyline. The color index in the record will have been previously
defined via object 20H.

Word Remark

OOH Opcode 11H

01H Vertex (X,Y) count (0)
02H Integer parameter count (1)
03H Sub-opcode
04H Color index

24.2.12 Set Polymarker Type (Opcode 12H)

This object defines the symbol the Polymarker function uses to mark an object.

Word Remark

OOH

01H

02H

03H

04H

Opcode12H

Vertex (X,Y) count

Integer parameter count (1)

Sub-opcode

Polymarker type

The polymarker type is coded as follows:

Table 24.25

Record format

object 11H

Table 24.26a

Record format

object 12H

644 Graphics formats

Code Marker type

01H Point

02H Plus

03H Asterisk (default)

04H Square

05H Diagonal cross

06H Diamond

Values greater than 6 are reserved for user-specific markers.

24.2.13 Set Polymarker Height (Opcode 13H)

This object defines the height of a Polymarker.

Word Remark

OOH Opcode 13H

01H Vertex (X,Y) count (1)

02H Integer parameter count

03H Sub-opcode

04H 0

05H Height

The Height parameter indicates the height in Y axis units (NDC/RC units).

24.2.14 Set Polymarker Color Index (Opcode 14H)

This object defines the color of a marker.

Table 24.26b

Polymarker
type coding

Table 24.27

Record format

object 13H

GEM Metafile format (GEM) 645

Word Remark

OOH

01H

02H

03H

04H

Opcode 14H

Vertex (X,Y) count

Integer parameter count (1)
Sub-opcode

Color index

A predefined color index value is stored in this record.

24.2.15 Set Text Font (Opcode 15)

This object selects the font for the text to be displayed.

Word Remark

OOH Opcode 15H

01H Vertex (X,Y) count
02H Integer parameter count (1)

03H Sub-opcode

04H Font index

Code Font Face

01 System Face

02 Swiss 721

03 Swiss 721 Thin

04 Swiss 721 Thin italic

05 Swiss 721 Light

06 Swiss 721 Light italic

07 Swiss 721 Italic

08 Swiss 721 Bold

Table 24.28

Record format

object 14 H

Table 24.29

Record format

object 15H

Table 24.30

Font index

(continues
over...)

646 Graphics formats

Code Font Face

09 Swiss 721 Bold italic

10 Swiss 721 Heavy

11 Swiss 721 Heavy italic

12 Swiss 721 Black

13 Swiss 721 Black italic

14 Dutch 801 Roman

15 Dutch 801 Italic

16 Dutch 801 Bold

17 Dutch 801 Bold italic Table 24.30

Font index

(cont.)

Font numbers 1 to 13 relate to Swiss fonts; numbers 14 to 17 define the Dutch fonts. Further

details are given in the GEM documentation.

24.2.16 Set Text Color Index (Opcode 16H)

This object defines the color of a font.

Word Remark

OOH Opcode16H

01H Vertex (X,Y) count

02H Integer parameter count (1)

03H Sub-opcode

04H Color index
Table 24.31

Record format

object 16H

A predefined color index value is stored in this record. The colors are coded as shown in
Table 24.32.

GEM Metafile format (GEM) 647

Code Color

0 White

1 Black

2 Red

3 Green

4 Blue

5 Cyan

6 Yellow

7 Magenta

8 White

9 Black

10 Dark red

11 Dark green

12 Dark blue

13 Dark cyan

14 Dark yellow
15 Dark magenta

16-n Device-dependent

Color 0 is defined as the standard background color.

Table 24.32

Standard color

index

24.2.17 Set Fill Interior Style (Opcode 17H)

This object defines the fill pattern. Code 4 is reserved for user-defined fill patterns.

Word Remark

OOH

01H

02H

03H

04H

Opcode17H

Vertex (X,Y) count
Integer parameter count (1)

Sub-opcode
Fill index

The fill index is coded as follows:

Table 24.33

Record format

object 17H

648 Graphics formats

Index Remark

OOH Hollow

01H Solid

02H Pattern

03H Hatch

24.2.18 Set Fill Style Index (Opcode 18H)

This object defines the index of the pattern filling an area.

Word

OOH

01H

02H

03H

04H

Remark

Opcode18H
Vertex (X,Y) count
Integer parameter count (1)
Sub-opcode
Pattern index

Table 24.34

Fill index

Table 24.35

Record format

object 18H

The index for the fill pattern is interpreted together with the index object 17H. It applies to
patterns and hatching in GEM. Fill index 0 produces a hollow area for allpattern indexvalues. Fill
index 1 creates a solid area for all pattern index values. Fill index 2 can be used with pattern index
values 0-8 to produce a grayscale (8 = black). Pattern index values 9-24 define several fill patterns
(brick wall, and so on). Fill index 3 is defined with the pattern indices for hatch patterns.
Additional information is given in the GEM reference manuals.

24.2.19 Set Fill Color Index (Opcode 19H)

This object defines the color to be used to fill areas.

Word Remark

OOH Opcode 19H
01H Vertex (X,Y) count
02H Integer parameter count (1)
03H Sub-opcode
04H Color index Table 24.36

Record format

object 19H

GEM Metafile format (GEM) 649

A predefined color index value is stored in this record (see Table 24.32).

24.2.20 Set Writing Mode (Opcode 20H)

This object defines the current writing mode. The values permitted for this parameter mode are
listed in Table 24.37. The mode selected then determines how a displayed object is to be presented
against an existing background.

Word Remark

OOH

01H

02H

03H

04H

Opcode 20H

Vertex (X,Y) count (0)
Integer parameter count (1)
Sub-opcode
Mode

1 Replace
2 Transparent
3XOR

4 Reverse transparent
Table 24.37

Record format

object 20H

24.2.21 Set Graphic Text Alignment (Opcode 27H)

This object defines the alignment of texts in graphics mode.

Word Remark

OOH Opcode 27H
01H Vertex (X,Y) count (0)
02H Integer parameter count (2)
03H Sub-opcode
04H Horizontal justify (X)
05H Vertical justify (Y)

Table 24.38

Record format

object 27H

The two integer parameters in words 4 and 5 indicate the alignment of the text in the X and Y
directions. The following codes apply to horizontal justification:

650 Graphics formats

X-value Alignment

Left (standard)
Centered

Right Table 24.39

Alignment
codes (X)

The values shown in the next table apply to vertical alignment. The half line (or x-height) of a

font defines the top edge of the small letters a, c, v, x, and so on, the descend line defines the
bottom edge of small letters such as y, g, q, and so on, and the ascend line defines the top edge of
large letters and many small letters (according to font) such as d, t, b. The base line is the line
upon which characters without descenders, such as a, c, v, sit. The bottom line and top line mark
the upper and lower edge of the character field. Most fonts adhere to these definitions.

Y-value Alignment

Base line

Half line

Ascend line

Descend line

Bottom line

Top line

The followingvalues are permitted for this parameter mode.

Code Remark

1

2

3

4

Replace

Transparent

XOR

Reverse transparent

Table 24.40

Alignment
codes (Y)

Table 24.41

Background
mode

The mode selected determines how a displayed object is to be represented against the existing
background.

GEM Metafile format (GEM) 651

24.2.22 Set Fill Parameter Visibility (Opcode 68H)

This object switches the function for drawing a frame around areas on or off.

Word Remark

OOH Opcode 68H

01H Vertex (X,Y) count (0)
02H Integer parameter count (1)
03H Sub-opcode
04H Flag

Tabic 24.42

Record format

object 68H

If the flag contains the value 0, the outline of a figure will not be drawn. Any value not equal to
0 will produce an outline around the figure in a continuous line, drawn in the selected color.

24.2.23 Set Graphic Text Special Effects (Opcode 6AH)

This object enables the text display to be modified (bold, underline, italic, and so on).

Word

OOH

01H

02H

03H

04H

Remark

Opcode 6AH

Vertex (X,Y) count (0)
Integer parameter count (1)

Sub-opcode

Effect flag
Table 24.43

Record format

object 6AH

The flag in word 4 specifies the font display mode (Figure 24.2). If the relevant bit is set to 0,
this font effect function is switchedoff. Combinations of bits enable combined font functions (such
as italic, bold).

652 Graphics formats

Bit 7 6 5 4 3 2 10

L— 1 = thickened

i - in tens i ly

i - SKeweu

I - unuei'L nieu

I - OU L L i neu

Figure 24.2
Coding font
effects

24.2.24 Set Character Height (Opcode 6BH)

This object defines the height of the character to be displayed as a multiple of a point (printer
point). The character height in points is stored as an integer parameter.

OOH

01H

02H

03H

04H

Opcode 6BH

Vertex (X,Y) count (0)
Integer parameter count (1)

Sub-opcode
Character cell height in points

24.2.25 Set Polyline End Style (Opcode 6CH)

This object defines the form of the start and end points of a line (polyline).

Table 24.44

Record format

object 6BH

GEM Metafile format (GEM) 653

Word Remark

OOH Opcode 6CH

01H Vertex (X,Y) count (0)

02H Integer parameter count (2)

03H Sub-opcode

04H End style of start point

05H End style of end point
Table 24.45

Record format

object 6CH

The parameter for the form may have the values 0 (squared), 1 (arrow) and 2 (rounded). Using
these parameters it is possiblefor a line to have two different forms of end point.

24.2.26 Set User Defined Fill Pattern (Opcode 70H)

This object defines a user-defined fill pattern. For each color plane, 16 words containing the
relevant bit pattern are stored. In the case of monochrome graphics, only one plane is needed (16
words). Coded bits indicate that the pixel is to be drawn in the foreground color. The pattern
defined can be used for filling areas.

Word

OOH

01H

02H

03H

04H

Remark

Opcode 70H

Vertex (X,Y) count (0)

Integer parameter count (x)
Sub-opcode

Fill pattern color planes

Table 24.46

Record format

object 70H

24.2.27 Set User Defined Linestyle Pattern (Opcode 71H)

This object enables the line style pattern to be defined by the user (see object OFH). The pattern
for a line is defined in one word in the integer parameter. For each bit set, one pixel is displayed in
the line drawn.

654 Graphics formats

Word Remark

OOH

01H

02H

03H

04H

Opcode 71H
Vertex (X,Y) count (0)
Integer parameter count (1)

Sub-opcode

Line style pattern
Table 24.47

Record format

object 71H

Figure 24.3
Example of
a GEM Metafile

— Signature

Header length

Version

FF FF 18 00 65 00 02 00-27 F1 50 E2 B9 09 90 F2

71 07 EC 09 90 E8 40 1F-70 17 CO EO 00 00 00 00

00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

20 00 00 00 01 00 64 00-01 00 OF 00 00 00 01 00

64 00 01 00 10 00 01 00-00 00 64 00 01 00 01 00

11 00 00 00 01 00 64 00-01 00 6C 00 00 00 02 00

64 00 00 00 00 00 12 00-00 00 01 00 64 00 01 00

13 00 01 00 00 00 64 00-01 00 01 00 14 00 00 00

01 00 64 00 01 00 0D 00-00 00 01 00 64 00 00 00

15 00 00 00 01 00 64 00-01 00 16 00 00 00 01 00

64 00 01 00 27 00 00 00-02 00 64 00 00 00 00 00

6A 00 00 00 01 00 64 00-00 00 6B 00 00 00 01 00

64 00 0C 00 17 00 00 00-01 00 64 00 01 00

20 00 00 00 01 00 63 00-02 00 0B 00 02 00 18 00

0A 00 27 F1 E0 E3 92 18-18 E8 01 00 01 00 47 00

G

45 00 4D 00 20 00 44 00-52 00 41 00 57 00 20 00

E . H . . D . R . A . W .

45 00 78 00 62 00 73 00-70 00 6C 00 65 00 20 00

E . x . a . m . p . t e
• •

66 00 69 00 6C 00 65 00-20 00 20 00 00 00 01 00

f . i . I . e . . .

FF FF
T

GEM Metafile format (GEM) 655

Header

Set writing
mode

XY parameter

Integer
parameter

Subcode

Mode

Set poly
line type

End
Metafile

Figure 24.4
Part of a

GEM Metafile

hex dump

656 Graphics formats

The end of a metafile is marked with the code FFFFH. Figure 24.3 presents a sample image, and
the metafile for this image is shown in Figure 24.4 as a hex dump. Further information on the
structure of GEMMetafiles is given in the second volume of the GEM Programmer's Toolkit2.

24.2.28 Extensions for GEM/3

GEM/3 defines the following extensions.

24.2.28.1 Output Bezier (Opcode 06H)

This object draws a hollow Bezier curve.

Word

OOH

01H

02H

03H

04H

Remark

Opcode 06H

Vertex (X,Y) count

Integer parameter count (x)
Sub-opcode (ODH)

Coordinates (n)

Point types (m)

The number of coordinate points is defined in word 1.

24.2.28.2 Output filled Bezier (Opcode 09H)

This object draws a filled Bezier curve.

Word Remark

OOH Opcode 09H

01H Vertex (X,Y) count

02H Integer parameter count (x)

03H Sub-opcode (ODH)

04H Coordinates (n)
Point types (m)

The number of coordinate points is defined in word 1.

1 GEM Programmer's Toolkit Volume 2, Digital Research, 1986

Table 24.48

Record format

object 06H

Table 24.49

Record format

object 09H

GEM Metafile format (GEM) 657

24.2.28.3 Disable/Enable Bezier Capabilities (Opcode OBH)

This object switches the Bezier capabilities on and off.

Word Remark

OOH Opcode (OBH)

01H Vertex (X,Y) count (0)
02H Integer parameter count (0)

03H Sub-opcode(ODH)

04H Flag

0 Bezier capabilities off
1 Bezier capabilities on

05H 0 (Integer)

24.2.28.4 Set Bezier Quality (Opcode 05BH)

This object defines the quality of Bezier curves.

Word Remark

OOH Opcode(05H)
01H Vertex (X,Y) count (0)

02H Integer parameter count (0)

03H Sub-opcode (63H)

04H 32 = Bezier quality

05H 1

06H Quality in percent

Table 24.50

Record format

object OBH

Table 24.51

Record format

object 05H

Interchange File Format (IFF)

T^is standard was introduced by Electronic
Arts for the storage of graphics and sounds in
files. Originally, IFF files were used on Amiga

computers. However, since the appearance of the
DeLuxe Paint and DeLuxe Paint II programs, this
format is also available to PCs.

IFF files generally have the extension . LBH and are similar to GIF or TIFF files in terms of their
block oriented structure (Figure 25.1).

Header (FORM)

CHUNK 1

....

CHUNK 2

658

Figure 25.1
Structure

of an IFF file

Interchange File Format (IFF) 659

I— Header signature

File length

Data type
Header 1st CHUNK

46 4F 52 4D 00 00 34 8C 38 53 56 58 56 48 44 52

FORM 4 8SVXVHDR

00 00 00 14 00 00 01 A8 00 00 00 00 00 00 00 04

29 1E 05 00 00 01 00 00 4E 41 4D 45 00 00 00 OB

N A M E

62 61 73 73 20 67 75 69 74 61 72 00 42 4F 44 59

bass guitar BODY

00 00 34 50 CB 29 E7 B8 6F 6B 1E E8 C9 49 DC AB

2B 1F 0A 00 E2 3D D7 B3 1E 1A OC FC E4 3C D8 B7

1D 1A OB FB E4 3D D7 B9 1C 1A OC F9 E6 3C D6 BC

Blocklength

Figure 25.2
Part of an IFF file

as a hex dump

The first block of an IFF file contains the header, in which information on the file length and
type of data is stored. This is followed by one or more blocks of variable length, which are referred
to as CHUNKs. These CIIUNKs contain the specifications for data decoding, as well as the actual
data. An extract from an IFF file is shown in Figure 25.2. The data is in AMIGA format, that is,
high and low bytes are exchanged. The exact structure of the records is described below:

25.1 IFF header

At the start of the file, there is a 12 byte header containing the file length and two signatures. The
structure of this header is shown in Table 25.1:

Offset Bytes Remarks

OOH

04H

08H

4

4

4

Signature 1 IFF header (example: 'FORM')

File length in bytes (Motorola format)

Data type as ASCII string (example: 'ILBM') Table 25.1

Structure of an

IFF header

660 Graphics formats

The first 4 bytes of the header (and also of the IFF file) always contain a signature as a 4-byte
ASCII string, which enables valid IFF files to be identified. If an IFF file contains only one image,
the signature 'FORM' is used. In this case the CHUNKs with the image description follow the header.

'FORM' <len>

'ILBM'

'BMHD' <len>

data

'CMAP' <len>

data

CO]

'BODY' <Len>

image data

Figure 25.3
Structure of a

FORM file

Sometimes it is necessary to merge several images into one IFF file (for example, a picture
library). In this case, the CAT (ConcATenate) structure is used. The structure of this file is shown
in Figure 25.4.

'CAT' <len>

'ILBM'

'FORM' <len>

'ILBM' <len>

'FORM' <len>

'ILBM' <len>

A CAT file may hold several ILBMs.

Figure 25.4
Structure of a

CAT file

Interchange File Format (IFF) 661

The signature 'LIST' in the file header indicates a file with several pictures. A CAT file contains
just several objects (pictures). The LIST structure with the 'PROP' block makes it possible to share
default properties in the file. With a LIST structure it is possible to share the same color map
across many pictures. The structure of a LIST file is shown in Figure 25.5.

LIST' <len>

'ILBM'

'PROP' <len>

'ILBM'

'BMHD <len>

data

'CMAP <len>

data

I0]

'FORM' <len>

'ILBM'

'BODY' <len>

image data

FORM' <len>

'ILBM'

'BODY' <len>

image data

Figure 25.5
Structure of a

LIST file

The signatures 'LIST' and 'CAT' are rarely used, so an IFF reader may skip this and process only
'FORM' structures.

This signature (FORM, CAT, LIST) is followed by a 32 bit value at offset 04H, which specifies the
file length in bytes. (Counting starts from 1, and the bytes are stored in big endian format -
Motorola convention.) This value is required in order to determine the end of the last CHUNK. It
should, however, be borne in mind that a file may contain several FORMs.

662 Graphics formats

Signature Data type

'WORD' Word data (text file)
'ILBM' Interleaved bitmap

'PBM' Graphic like'ILBM'

'FTXT' Text file (IFF format)

'AIFF' Audio IFF (Mac Sound manager)
'SMUS' Sample music

'8SVX' 8 bit sample voice Table 25.2

IFF header

signatures

The IFF header is terminated at offset 08H with another 4 byte signature. This is an ASCII
string, specifying the type of data (graphics, text, music) contained in the following blocks. Table
25.2 gives a list of valid signatures. It should also be pointed out that there are a number of
manufacturer-specific extensions (around 50), which are often inadequately documented. Only
the options shown in Table 25.2 are described below.

The above information enables the storage of texts, graphics and sounds in an IFF file. For
example, if the header contains the signature 'WORD', one of the following CHUNKs contains text
data. However, the signature 'ILBM' generally occurs for graphics, as in the case of Deluxe Paint,

because this package stores only graphics. Music data and sounds are prefixed with the signatures
'SMUS' and '8SVX'.

Normally, an IFF file contains only one FORM header and the associated CHUNKs, but it is
possible to combine graphics, text and sounds in one file. In this case, the file will contain several
sets of FORMs and CHUNKs (see Figures 25.4 and 25.5).

25.2 IFF Block structure (CHUNK)

Name (4 bytes)

Length (4 bytes)

Data (n bytes)

Figure 25.6
Structure of

IFF CHUNKs

Interchange File Format (IFF) 663

The header is followed by several blocks (CHUNKs) containing information on the graphics
mode, color tables and image data. These CHUNKs have a schematic structure as shown in Figure
25.6.

The first entry contains a 4 byte signature in the form of an ASCII string indicating the type of
the relevant CHUNK (block). Table 25.3 gives a list of valid block names for graphic and music
data.

Name Remarks

Graphic (ILBM)

BMHD Bitmap Header

CMAP Color Map

CRNG Color Cycle CHUNK (DPaint)

CCRT Color Cycle CHUNK (Graphicraft)
GRAB Hotspot in a graphic

SPRT Sprite image

CAMG Amiga specific

BODY Bitmap data of the image

Music (8SVX)

VHDR Voice-data (tempo, octave and so on)
NAME Voice name

(c) Copyright

AUTH Author's name

ANNO Date

BODY Sound-data

ATAK Attack (envelope)

RLSE Release (envelope)
Table 25.3

IFF CHUNK

signatures

Depending on the program that created the file, other blocks with different names may also
occur, and the overall concept enables new block types to be defined in future. Each block
(CHUNK) always begins at an even address in the file. If the preceding block contains an odd
number of bytes, a null byte will be appended, but this will not be included in the length field for
the block. The first entry in the following block contains the 4 byte ASCII signature. The next
entry in the block contains a 4 byte pointer indicating the current block length in bytes. This is
followed by the data area, whose length can be calculated as the block length minus 8. If an
unknown block appears, this may be ignored by the reader program. DeLuxe Paint, for example,
creates additional blocks containing the areas for color processes.

664 Graphics formats

The color areas in the palette menu can be adjusted, but this information is not needed for the
display of image data and can thus be skipped. The structure of the individual CHUNKs is
described below.

25.3 CHUNKs: ILBM FORM

To store graphic data, an ILBM FORM is used with various CHUNKs. The structure of the most
common CHUNKs is outlined below.

25.3.1 Bitmap Header CHUNK (BMHD)

This CHUNK contains information on graphic mode, image size and so on, and must precede all
other CHUNKs. Table 25.4 shows the structure of this block.

Offset Bytes Remarks

OOH 4 Block name 'BMHD' as an ASCII string

04H 4 Block length in bytes (OOH OOH OOH 14H)

08H 2 Image width in pixels

OAH 2 Image height in pixels

OCH 2 X-coordinate upper left corner

(in DeLuxe Paint always 0)

OEH 2 Y-coordinate upper left corner

(in DeLuxe Paint always 0)

10H 1 Number of bitplanes

(for EGA always 4)

11H 1 Reserved (Masking)

12H 1 Image storing

0 = uncompressed

1 = compressed

13H 1 Reserved (Flags)

14H 2 Reserved (Transparency color number)

16H 1 X-aspect ratio

17H 1 Y-aspect ratio

18H 2 X-maximum (image width)

1AH 2 Y-maximum (image height)
Table 25.4

Structure of a

bitmap header
CHUNK

Interchange File Format (IFF) 665

The CHUNK begins with the ASCII string 'BMHD' as a signature. This is followed by a 4-byte
pointer indicating the block length in bytes. This entry should have the value OOH OOH OOH 14H. It
is also important to note that the pointer is stored in Motorola format (little endian).

The next two 2-byte vectors describe the current image dimensions using the pixel as the unit
of measurement. The coordinates of the top left corner of the image are stored at offset OCH as 2-
byte values (X,Y). The maximum dimensions possible are stored at offset 18H. In DeLuxe Paint, the
value (0,0) is always stored in this position. When storing extracts of images, other coordinates
may be stored here, under certain circumstances.

IFF files with ILBM CHUNKs are used principally for transferring color images. At offset 10H,
there is a byte giving the number of color planes (bitplanes). With black and white pictures, this
value is 1. As a standard for EGA cards, 16 different colors are provided, and the value is therefore
set to 4 bitplanes. The value FFH thus corresponds to 256 color levels. This information is
important for decoding the color map.

The byte at offset 17 (11H) is reserved for internal purposes. It defines what type of masking
(0 = none, 1 = has mask, 2 = has transparent color, 3 = lasso mask) is to be used for this image.
But, I suppose, this byte is never used.

At offset 12H, there is a byte flag specifying the image data compression. The value 0 indicates
that the uncompressed data is stored in the BODY block. Since 640 x 350 pixels and 4 bits per
color produce 112,000 bytes per image, there is a simple method of compressing the data. Values
greater than 0 indicate that the data in the BODY CHUNK is in compressed form. However, only
the codes 0 (uncompressed) and 1 (compressed) are defined at present. The compression
algorithm is described below in Section 25.3.5.

The byte at offset 19 (13H) is reserved to store the Amiga CMAP flag. This byte must be set to 0
for consistency.

The next word (offset 14H) is also reserved. Some software packages store the number of the
transparency color here. The value is only relevant if the lasso mask is used, but I have never seen
a specification for the lasso mask, so the word should always be 0.

The bytes at offset 20 (16H) define the pixel aspect ratio for the X and Y axes. This is important
for conversion to new image dimensions. The last two entries contain the width and height of an
image in pixels.

25.3.2 Color Map CHUNK (CMAP)

With standard applications, images are built up from 16 colors. In the case of EGA/VGA cards,
however, these colors can be derived from 16 million color combinations. Information on the
current color palette is stored in a separate table in the optional CMAP CHUNK block, which
follows the BMHD CHUNK and is structured as follows:

666 Graphics formats

Offset Bytes Remarks

OOH

04H

08H

4

4

3 xn

Block name 'CMAP' as ASCII string
Block length in bytes (3 x n)

Image table with n entries of
3 bytes each for the colors red, green, blue

Table 25.5

Structure of the

Color Map

CHUNK

f Amiga computers support 16 and 256 color graphic chips. In order to distinguish older
CMAPs with 4-bit values from newer CMAP CHUNKs with full 8-bit values, the BMHD flag

• field is used. If bit 7 is set to 1, the CMAP uses full 8-bit values.

The first 4 bytes contain the name CMAP to indicate the CHUNK type. They are followed by the
block length in bytes. At offset 08H, there is a table containing the color definitions. Three bytes
are allocated to each color to define the proportion of red, green and blue, between 0 and 255.
With 24 bits, 16 million color shades can be produced. With 16 selected colors, the table contains
16 x 3 = 48 bytes. In this case, each pixel is represented by 4 bits. In future versions of IFF files,
the table may contain 256 entries of 3 bytes each. The block length enables the number of entries
to be calculated. When evaluating the colors, it may be necessary to adapt or convert the colors,
depending on the screen mode.

25.3.3 CRNG CHUNK (DeLuxe Paint)

CRNG is the abbreviation for color register change.

Offset

OOH

04H

08H

OAH

OCH

OEH

OFH

Bytes

4

4

2

2

2

1

1

Remarks

Block name 'CRNG' (Color Cycle)
CHUNK length in bytes
Reserved (OOH OOH)

Color Cycle Rate

Flag: active/not active
Lower color value (color register)
Upper color value (color register) Table 25.6

Structure of a

CRNG CHUNK

The CRNG CHUNK is used by Electronic Arts DeLuxe Paint program. The CHUNK identifies a
contiguous range of color registers for shade and color cycling. This CHUNK is optional and must
appear before the BODY CHUNK. DeLuxe Paint normally stores 4 CRNGCHUNKs in an ILBM.

Interchange File Format (IFF) 667

If the low bit in the flag (offset OCH) is set to 1, then the cycle is active. The colors move to the
next higher position in the cycle. If the second bit in the flag is set, the color cycles move in the
opposite direction.

The fields at offset 14 (OEH) and 15 (OFH) indicate the range of color registers (color numbers).
The color cycle rate (offset OAH) determines the speed at which the colors will change. A rate of

60 steps per second is represented as 16384. Slower rates can be obtained with smaller values
(8192 = 30 steps per second).

25.3.4 CCRT CHUNK (Graphicraft)

Commodore's Graphicraft program has a similar Color Cycle CHUNK. This, however, contains the
signature CCRT and is structured as shown in Table 25.7:

Offset Bytes Remarks

OOH 4 Block name 'CCRT' (Color Cycle)
04H 4 CHUNK length in bytes

08H 2 Direction

0 no cycling

1 forward

-1 backward

OAH 1 Start color (color register low)
OBH 1 End color (color register high)
OCH 4 Delay (in seconds) for change
10H 4 Delay (in microseconds)
14H 2 Unused (OOH OOH)

The precise meaning of these fields was not available at the time of writing.

Table 25.7

CCRT CHUNK

structure

25.3.5 BODY CHUNK containing data

The actual image data is stored in the BODY CHUNK. The signature is followed by a 4 byte pointer
giving the block length, as shown in Table 25.8:

668 Graphics formats

Offset Bytes

OOH 4

04H 4

08H n

Remarks

Block name 'BODY' as ASCII string

Block length in bytes

Image data
Table 25.8

BODY CHUNK

structure

(data block)

The image data follows at offset 08H. The entry 0 at offset 12H in the BMHD CHUNK indicates
that the data is uncompressed; values greater than 0 indicate compressed data, but only the value
1 is used at present. The image data of one bitplane is stored row by row, in accordance with the
following record structure:

1st Byte = Control byte

2nd Byte = Data byte

nth Byte = "

The first byte is interpreted as a control byte.

♦ If it contains a value less than 128 (80H), it is followed by n different data bytes, where n is the
value of the control byte + 1.

♦ With values greater than 128 (80H), the following byte contains the compressed image sequence
which is to be decoded. This byte should then be duplicated n times. The number n is
calculated from the value of the control byte according to the following formula:

n = 10OH - value of the control byte

The entry FDH in the control byte produces a repetition factor of 100H - FDH + 1 = 3. This
enables efficient storage of uniform areas of the image (for example filled areas).

♦ A value of 80H in the control byte means that the byte will be skipped, and the following byte
will be interpreted as a control byte.

The pixels in the data area are stored row by row.

25.3.6 GRAB CHUNK

This CHUNK is optional. It is used very rarely and describes a 'hot spot' (for example, mouse
pointer). The CHUNK is structured as follows:

Interchange File Format (IFF) 669

Offset Bytes Remarks

OOH 4 Block name 'GRAB' as ASCII-string

04H 4 Block length in bytes

08H 2 X-coordinate in pixels (relative)

OAH 2 Y-coordinate in pixels (relative)

25.3.7 DEST CHUNK

Table 25.9

GRAB CHUNK

structure

This CHUNK is also optional. It describes how to scatter source bitplanes into a destination
bitmap. The CHUNK is structured as follows:

Offset Bytes Remarks

OOH 4 Block name 'DEST' as ASCII string
04H 4 Block length in bytes
08H 1 Number of bitplanes in the source
09H 1 Reserved (OOH)
OAH 2 Bits for destination bitplane

(planePick)

OCH 2 Bitplane flag (planeOnOff)
OEH 2 Mask destination bitplane (planeMask)

Table 25.10

DEST CHUNK

structure

The low order bits in planePick, planeOnOff and planeMask correspond one-to-one (bit 0 with
bitplane 0, and so on) with the destination bitplanes. The higher bits should be ignored.

A bit set to 1 in planePick means to put the next source bitplane into the destination bitplane.
The number of 1 bits must be equal to the number of bitplanes. If the bit in planePick is set to 0,
the corresponding bit in planeOnOffmust be inserted in the destination bitplane.

The last entry, planeMask, controls the writing to the destination bitmap. If a bit is set to 1,
writing to the corresponding destination bitplane is allowed. Otherwise, the bitplane is left
unmodified.

670 Graphics formats

25.3.8 SPRT CHUNK

The optional SPRT CHUNK defines the priority of a Sprite. The CHUNK is structured as follows:

Offset Bytes Remarks

OOH 4 Block name 'SPRT' as ASCII string

04H 4 Block length in bytes

08H 2 Sprite priority (0-7)
Table 25.11

SPRT CHUNK

structure

The value 0 indicates the maximum priority, that is, the sprite supersedes all other sprites.

25.3.9 CAMG CHUNK

The CAMG CHUNKis specific to the AMIGAand indicates the graphic mode:

Offset

OOH

04H

08H

Bytes

4

4

4

Remarks

Block name 'CAMG' as ASCII string

Block length in bytes

View mode register

25.3.10 CLUT CHUNK

The CLUT CHUNK defines a Color Look Up Table:

Table 25.12

CAMG CHUNK

structure

Offset Bytes Remarks

OOH 4 Block name 'CLUT' as ASCII string

04H 4 Block length in bytes
08H 4 Table type

OCH 4 Reserved

10H 256 Color table (8 Bit) Table 25.13

CLUT CHUNK

structure

Interchange File Format (IFF) 671

The type of table (mono, RGB, and so on) is indicated at offset 08H. The following bytes are
reserved. At offset 10H, there is a table containing 256 entries for the 8-bit color definitions. There
are other CHUNK names reserved for the ILBM FORM, but these tend to be either very specifically
coded or inadequately documented. For example, DPaint II uses the DPPV CHUNK to store
information on the perspective of individual rotating objects. The PC version of DeLuxe Paint II
Enhanced also contains a TINY CHUNK which can store partial images. (According to various
sources, the length indicator in the CHUNK is said to be 1 too low in some cases.)

The program DeLuxe Paint II expects the CHUNKs in a fixed sequence: BMHD (offset OCH),
CMAP (offset 28H), BODY. If this sequence is not adhered to, the image cannot be read. But if the
IFF specification says that the CHUNKs may occur in any order, only the the BODY CHUNK should
be the last.

A third obstacle is that a new FORM ('PBM') has been defined for storing VGA pictures with 256
colors. The CHUNKs correspond to the structure of BMIID CHUNKs, but the bits stored are
interpreted differently. With the ILBM FORM, the individual bits makingup a pixel are divided into
color planes. With 256 colors, this produces 8 (bit) color planes. The image is then stored bit by
bit. In the first scan, bit 1 of each byte from the first row is collated and stored. In the next scan,
bit 2 of each byte is read and stored by row. As soon as all 8 bits of a line have been stored in this
way, the processing of line 2 of the image begins. This is a very laborious process. The PBM FORM
indicates that the data (8 bits) for each pixel is to be stored directly as bytes. In this way, each
pixel can beprocessed directly from thegraphic memory, which is considerably faster andsimpler.
The data is stored in the BODY block and compressed as described above.

25.4 CHUNKs: 8SVX FORM

As with graphics, it is also possible to store digitized sounds (sampled data) in 8-bit format, in IFF
files. The 8SVX CHUNK is provided for this purpose. The structure of the header is identical to the
ILBM FORM except that, at offset 08H, there is a 4 byte string 8SVX as a signature. The associated
CHUNKs are described below.

25.4.1 Voice Header CHUNK (VHDR)

This block contains information on the storage of digitized sounds in the BODY CHUNK. The
VHDR CHUNK is structured as shown in Table 25.14:

Offset

OOH

04H

08H

OCH

Bytes

4

4

4

4

Remarks

Signature 'VHDR' (Voice Header)

CHUNK length in bytes

OneShotHiSamples

RepeatHiSamples

Table 25.14

Structure of a

VHDR CHUNK

(continues
over...)

672 Graphics formats

Offset Bytes Remarks

10H 4 Samples per HiCycle

(Bytes per wave, even number)

14H 2 Samples per second

16H 1 Octaves in BODY CHUNK

17H 1 Coding

0 = unpacked

1 = packed

18H 4 Volume
Table 25.14

Structure of a

VHDR CHUNK

(cont.)

To interpret the BODY CHUNK, these values must be evaluated. At offset 17H, there is a flag
specifying how data is stored in the BODY CHUNK. The value 1 indicates that the data is packed
(Fibonacci delta). For the volume setting at offset 18H, the standard value is 0001H 0000H.

25.4.2 NAME CHUNK (Name)

In this CHUNK, a text can be stored to indicate the instrument creating the sound. The record
structure is shown in Table 25.15.

—

Offset Bytes Remarks

OOH 4 Signature 'NAME (Name)

04H 4 CHUNK length in bytes

08H 4 String containir

the instrument

ig the name of

Table 25.15

NAME CHUNK

structure

Any string may be stored in the text field because it will be treated as a comment text. If the
string occupies an odd number of bytes, a null byte (OOH) must be added to the CHUNK, but this is
not included in the length field for the CHUNK. The null byte enables the following CHUNK to
begin at an even-numbered offset address.

Interchange File Format (IFF) 673

25.4.3 BODY CHUNK (Data)

This CHUNK contains the digitized data. The structure is the same as for the ILBM BODY CHUNK
(Table 25.8). There are two possible ways of using the stored voice data:

25.4.3.1 One Shot Sound

In this case, a unique sound (effect) has been digitized and stored. The Voice Header CHUNK
contains information on the change rate in Samples per second, OneShotHiSamples and
RepeatHiSamples for the number of data. If the value SamplesperHiCycle is not known, zero is
used. The number of octaves is always set to 1.

25.4.3.2 Musical Instrument

The second use is for sampling and storing the sound of an instrument. The following digitization
strategy is adopted: first, the sound of the instrument is recorded as a OneShotHiSample. The next
stage is to store the duration of the sound in RepeatHiSamples. In order to reproduce the sound
authentically, the sounds are stored over several octaves. The data in the Voice Header always
relates to the highest octave stored. If the number of octaves in this header is greater than 1, the
sound data is stored one octave after another in the BODY CHUNK. It should be noted that for each
octave, n bytes are stored for OneShotSamples and n bytes for RepeatHiSamples. This means that
the memory requirement is doubled from octave to octave. In the SamplesperHiCycle field in the
Voice Header, the number ofbytes is indicated per vibration, for a sound in the highest octave.

In general, the data is uncompressed, in order to avoid distortion. If the value 1 is stored at
offset 17H in the Voice Header, the data is packed according to the Fibonacci-delta algorithm.

As described, the data is ordered sequentially by octave in the data block. Foreach sample, the
amplitude is stored, signed and coded in 8 bits. With negative values only the uppermost bit is
inverted. The smallest amplitude can be represented by 1000 0000B, while the largest amplitude
has the value 0111 1111B.

25.4.4 ATAK CHUNK

This CHUNK is optional and describes a rising envelope curve (attack). The chunk contains 6 data
bytes with the following structure:

Offset Bytes Remarks

OOH 4 Block name 'ATAK' as ASCII string
04H 4 Block length in bytes
08H 2 Volume delay time
OAH 4 Volume factor

Table 25.16

ATAK CHUNK

structure

The exact meaning of this data is not documented.

674 Graphics formats

25.4.5 RLSE CHUNK

This Chunk defines a falling envelope curve (release). The data area corresponds to the coding for
the ATAKCHUNK. This CHUNK is also optional.

25.5 CHUNKs: AIFF FORM

This is a manufacturer-specific FORM for the Apple Macintosh Sound Manager. It is used for
sampling music and language and offers many more options than the 8SVX form. Since the data
structure is documented, this format is only briefly described here.

25.5.1 COMM CHUNK

The COMM CHUNK describes the samples and is structured as follows:

Offset Bytes Remarks

OOH

04H

08H

OAH

OEH

10H

4

4

2

4

2

10

Block name 'COMM' as ASCII string

Block length in bytes

Number of channels

Number of FRAMES (in SNDD)

Bits in samples

Sample rate (frames/sec) Table 25.17

COMM CHUNK

structure

The Sample Rate value is entered as a 10 byte floating point number in Macintosh-Pascal
format.

25.5.2 SNDD CHUNK

The SNDD CHUNK describes the sound data of the individual sections:

Interchange File Format (IFF) 675

Offset Bytes Remarks

OOH 4 Block name 'SNDD' as ASCII string
04H 4 Block length in bytes
08H 4 Offset to beginning of first FRAME
OCH 4 Block size in first FRAME

12H X Data
Table 25.18

SNDD CHUNK

structure

The coding for this data is not included in the documentation.

25.5.3 INST CHUNK

The INST CHUNK specifies the instruments to be played for the MIDI interface.

Offset Bytes Remarks

OOH 4 Block name'INST'as ASCII string
04H 4 Block length in bytes
08H 1 Note base

09H 1 Pitch

OAH 1 Lowest musical note in range
OBH 1 Highest musical note in range
OCH 1 Smallest velocity
ODH 1 Highest velocity
OEH 2 Sound variation (in db)
10H 6 Sustain Loop

16H 6 Release Loop
Table 25.19

INST CHUNK

structure

The FORM contains other CHUNKs (MIDI, AESD, APPL, COMT), but these will not be
discussed further, since some of the codings are not known.

25.6 CHUNKs: SMUS FORM

This FORM (SMUS = Simple Musical Score) also stores data for music and sound which has been
produced using MIDI tools. The FORM contains the following CHUNKs:

676 Graphics formats

25.6.1 SHDR CHUNK

This CHUNK describes the SCORE header and is structured as follows:

Offset

OOH

04H

08H

OAH

OBH

Bytes

4

4

2

1

1

Remarks

Block name 'SHDR' as ASCII string

Block length in bytes
Tempo (V4 note per 128 minutes)
Volume (0..127)

Voices following track

The exact coding of this data is not documented.

25.6.2 INS1 CHUNK

Table 25.20

SHDR CHUNK

structure

This CHUNK contains information on the instrument used for the following tracks. It is structured
as follows:

Offset

OOH

04H

08H

09H

OAH

OBH

OCH

Bytes

4

4

1

1

1

1

x

Remarks

Block name 'INS1' as ASCII string

Block length in bytes
Register number instrument (0-255)
Instrument selection flag

0 Selection per name

1 Selection in following bytes

MIDI channel (if flag = 0)
MIDI preset (if flag = 0)
Instrument name

The exact coding of this data is not documented.

Table 25.21

INS1 CHUNK

structure

25.6.3 TRAK CHUNK

The TRAK CHUNK contains the music data for a MIDI track. It is structured as follows:

Interchange File Format (IFF) 677

Offset Bytes Remarks

OOH 4 Block name 'TRAK' as ASCII string
04H 4 Block length in bytes
08H n Data area

1 Byte interpretation

n Byte music notes
Table 25.22

TRAK CHUNK

structure

Two bytes are stored for each note. The first byte defines how the note stored in the following
byte is to be interpreted. The exact coding for this data is not currently available.

25.7 CHUNKs: FTXT FORM

The FTXT FORM was defined for formatted texts. However, this FORM has so far been used only by
the program TextCraft, which is not very widely distributed. There are two CHUNKs for this FORM:

25.7.1 FONS CHUNK

The FONS CHUNK describes the font used in the text:

Offset Bytes Remarks

OOH 4 Block name 'FONS' as ASCIIstring
04H 4 Block length in bytes
08H 1 Font number

09H 1 Reserved

OAH 1 Flag proportional font
OBH 1 Serif flag

0 = unknown

1 = serif font

OCH X

2 = font without serif

Font name

Table 25.23

FONS CHUNK

structure

(continues
over...)

The exact coding of this data is not currently available.

678 Graphics formats

25.7.2 CHRS CHUNK

This CHUNK contains the text. It is structured as follows:

Offset Bytes Remarks

OOH

04H

08H

4

4

X

Block name 'CHRS' as ASCII string

Block length in bytes
Text

The exact coding of the text formatting is not currently available.

25.8 CHUNKs: WORD FORM

Table 25.24

CHRS CHUNK

structure

The WORD FORM was defined for formatted texts. However, this FORM has so far only been used
in the program ProWrite from Horizon Software. By contrast with the FTXT format, formatting
instructions can also be stored. There are two CHUNKs for this FORM:

25.8.1 FONT CHUNK

The FONTCHUNK is optional and describes the font used in the text:

Offset Bytes Remarks

OOH 4 Block name 'FONT' as ASCII string

04H 4 Block length in bytes

08H 1 Font number (0-255)

09H 2 Font size

OBH X Font name Table 25.25

FONT CHUNK

structure

For every font used, a CHUNK of this kind should precede the data. However, the precise
coding of the data is not currently available.

Interchange File Format (IFF) 679

25.8.2 COLR CHUNK

This CHUNK describes the translation table for ISO colors. There are 8 entries altogether in the
table. However, the coding of these entries is not currently available.

25.9 Other text CHUNKs

Other CHUNKs are defined to store and format text in an IFF file.

25.9.1 DOC CHUNK

This CHUNK introduces the start of a DOCUMENT section. The instructions for formatting the text
follow this CHUNK.

Offset Bytes Remarks

OOH 4 Block name 'DOC' as ASCII string
04H 4 Block length in bytes

08H 0 First page number

OAH 1 Type of page numbering

OBH 5 Reserved
Table 25.26

DOC CHUNK

structure

Pages can be numbered with figures (1, 2) or letters (i, I, A, a). This option is indicated in the
field Type of page numbering.

25.9.2 FOOT/HEAD CHUNK

The structure of both of these CHUNKs is identical. They describe the header and footer lines of a

document.

Offset Bytes Remarks

OOH

04H

08H

09H

OAH

4

4

1

1

4

Block name 'FOOT' or 'HEAD'

Block length in byte
Position of header or footer

1st page (0 = not page 1)
Reserved

Table 25.27

FOOT/HEAD

CHUNK

structure

680 Graphics formats

If the value at offset 09H is 0, the header and footer texts on the first page of the document will
not be displayed. The text for header and footer lines applies until the next CHUNK of type DOC,
HEAD, FOOT or PCTS is encountered.

25.9.3 PARA CHUNK

This CHUNK describes the formatting of the following paragraph.

Offset Bytes Remarks

OOH 4 Block name 'PARA' as ASCII string
04H 4 Block length in bytes
08H 2 Indent (in Vw point)

OAH 2 Left margin
OCH 2 Right margin

OEH 1 Spacing

OFH 1 Line justify
10H 1 Font number

11H 1 Flag font style
12H 1 Normal, sub- or superscript

13H 1 Internal color number

14H 4 Reserved

The exact coding of the individual entries is not currently available.

25.9.4 TABS CHUNK

This CHUNKdescribes the position of the tabulators.

Table 25.28

PARA CHUNK

structure

Offset Bytes Remarks

OOH

04H

08H

OAH

OBH

4

4

2

1

1

Block name 'TABS'as ASCII string

Block length in bytes

TAB position in Vw point
Alignment (left, center...)
Reserved Table 25.29

TABS CHUNK

structure

The precise coding of the individual entries is not currently available.

Interchange File Format (IFF) 681

25.9.5 PAGE CHUNK

This page describes a page break in the text.

Offset Bytes Remarks

OOH

04H

4

4

Block name 'PAGE' as ASCII string

Block length in bytes

The CHUNK has no content; it merely defines a marker.

25.9.6 TEXT CHUNK

This CHUNK contains the text for a paragraph. It is structured as follows:

Offset Bytes Remarks

OOH

04H

08H

4

4

X

Block name 'TEXT' as ASCII string
Block length in bytes
Text

The text should contain no carriage returns or LF characters.

Table 25.30

PAGE CHUNK

structure

Table 25.31

TEXT CHUNK

structure

682 Graphics formats

25.9.7 FSCC CHUNK

This CHUNK defines the parameters FONT, STYLE and COLORfor the preceding text:

Offset Bytes Remarks

OOH 4 Block name 'FSCC' as ASCII string
04H 4 Block length in bytes
08H 2 Character position in paragraph
OAH 1 Font number

OBH 1 Flags for font style
OCH 1 Normal, subscript, superscript

ODH 1 Internal color number

OEH 1 Reserved

Further details are not currently available.

25.9.8 PCTS CHUNK

This CHUNK specifies that a picture is to be merged with the text:

Offset

OOH

04H

08H

09H

Bvtes Remarks

Block name 'PCTS' as ASCII string
Block length in bytes

Number of bitplanes
Reserved

The CHUNK is followed by the definition of the image data (see below).

25.9.9 PINF CHUNK

Table 25.32

FSCC CHUNK

structure

Table 25.33

PCTS CHUNK

structure

This CHUNK defines further information about the picture which is to be merged with the text:

Interchange File Format (IFF) 683

Offset Bytes Remarks

OOH 4 Block name 'PINF' as ASCII string

04H 4 Block length in bytes

08H 2 Width in pixels

OAH 2 Height in pixels

OCH 2 Page number of image
OEH 2 X-position of image

10H 2 Y-position of image

12H 1 Mask (see ILBM BMHD)

13H 1 Compression

14H 1 Transparent

15H 1 Reserved Table 25.34

PINF CHUNK

structure

This CHUNK is followed by the definition of the image data. The image data is stored in a BODY
CHUNK which corresponds to the coding of the ILBM FORM.

25.10 Miscellaneous CHUNKs

A number of additional CHUNKs have been defined which may appear in all FORMS. They define
commentaries and additional information on the data. The following table shows the name and the

structure of these CHUNKs.

Offset Bytes Remarks

OOH 4 Block name CHUNK as ASCII string

'(c)' copyright
'ANNO' annotations

'AUTH' author's name

'CHRS' text

'NAME' name for graphic, music, and so on
'TEXT' unformatted text

08H X n bytes containing text
Table 25.35

Miscellaneous

CHUNK

structure

This ends the description of IFF formats. Further details can be obtained from the literature

under references 3 and 4 below.

3 Morrison, Jery, EA IFF 85 Standard for Interchange Format Files, Electronic Arts, January 14, 1985.
4 Morrison, Jery, ILBM IFF, Interleaved Bitmap, Electronic Arts, January 17, 1986.

Graphics Interchange format
(CIF)

In 1987, CompuServe defined a protocol for
exchanging graphic data via e-mail. The
associated GIF format enables several

pictures to be stored in one file. Decoding and
compression guarantee good data compression
and rapid reproduction of images. The graphics
format is hardware-independent and enables
pictures with up to 16000 x 16000 pixels
composed of up to 256 colors to be stored in Intel
format (Big endian).
The GIF specification published in 1987 is referred
to as GIF87a. An extended version of the GIF
standard (GIF89a) was published in 1989.

A GIF file consists of several blocks containing the graphics and additional data. As with the TIFF

format, tag fields are also used. The blocks can be divided into three groups:

♦ Control blocks

♦ Graphic Rendering blocks

♦ Special Purpose blocks

The Control blocks (for example, Header, Logical Screen Descriptor, Graphics Control
Extension, Trailer) contain information on the control of the image representation. Graphic
Rendering blocks (for example, Image Descriptor, Plain Text Extension) contain the actual
graphics data. The Special Purpose blocks (for example, Comment Extension, Application
Extension) are manufacturer-specific and should be skipped by the decoder.

With the exception of the sub-blocks used for storing data, the block size is fixed. If the block
contains a Block Size field, this field indicates the number of following bytes in the block. This size
does not take into account any terminator that may be present.

684

Graphics Interchange Format (GIF) 685

Figure 26.1 shows the structure of a GIF file.

GIF Header Block

Logical Screen

Descriptor Block

Global Color Map (optimal)

Extension Block (optimal)

Image Descriptor Block

for each image

Local Color Map (optimal)

Extension Block (optimal)

Raster Data Block 1

...

Raster Data Sub-Block n

GIF Terminator

Figure 26.1
Structure

of a GIF file

For every picture in the GIF file, an Image Descriptor and one or more Raster Data blocks are
created. An optional Local Color Map block may also be present. Within this block structure,
there may be sub-blocks (for example, blocks containing image data). The sub-blocks consist of a
length byte, which defines the number of following bytes in the block (0-255), followed by the data

26.1 GIF header

A GIF file must always begin with a header. This header consists of 6 bytes and is structured as
shown in Table 26.1.

686 Graphics formats

Offset Bytes Field

OOH

03H

3

3

Signature 'GIF'

Version '87a' or '89a'

Table 26.1

GIF header

The first three bytes contain a signature ('GIF'); these are followed by three bytes indicating the
version of GIF. The following versions are currently defined:

♦ 87a GIF Definition May 1987

♦ 89a GIF Definition July 1989

The header may occur only once in a GIF file and it must be the first block in the file. The

subsequent block structure is the same for GIF87a and GIF89a, but additional block types are
defined in GIF89a. A number of the flags in the GIF89a version have also been modified. Reference
will be made to these alterations at the relevant point in the description. Older GIF87a decoders

can also process a GIF89a file, but the extended block types are skipped and information may
therefore be lost.

26.2 Logical Screen Descriptor block

The header must be followed (at offset 06H) by the 7 byte Logical Screen Descriptor block
containing data relating to the logical screen. This block is used in both GIF87a and GIF89a. The

data applies to the whole GIF file and is structured as follows:

Bytes Field

Logical Screen Width
Logical Screen Height
Resolution Flag
Background Color Index

Pixel Aspect Ratio Table 26.2

Structure of a

Logical Screen
Descriptor block

The first entry contains a 16 bit value indicating the width of the logical screen in pixels. Intel
notation (low byte first) is used for storage. The next field contains the screen height, also a 16 bit
value. Both values relate to a virtual screen, the origin of which is located in the top left corner. At
offset 04H, there is a bit field (Resolution Flag) coded as shown in Figure 26.2.

Bit 7 6 5 4 5 2 10

Graphics Interchange Format (GIF) 687

Bits per Pixel
Sort Flag/reserved in GIF87a

Color Resolution in Bits

Global Color Table Flag Figure 26.2

Coding
Resolution flag

Bit 7 indicates whether there is a Global Color Map. If bit 7 is set to 1, the Logical Screen
Descriptor block is followed by the Global Color Map. If this bit is set to 0, the Global Color Map
is missing and the bits relating to the Background Color Index have no meaning.

Bits 4 to 6 determine howmanybits are available in the colortable for the RGB representation
ofa primary color (Color Resolution). The value in the bitsshould be increased by 1 in each case.
The value 3 indicates that 4 bits are used per primary color in the corresponding palette.

In the GIF87a specification, bit 3 is marked as reserved and must be set to 0. In the GIF89a
specification, this bit contains the SortFlag. The value 1 indicates that the Global Color Table has
been sorted. This sorting is carried out in descending order of importance, that is, the more
frequently used colors are located at the start of the palette. This is useful for decoders that
support onlya few colors. The value 0 indicates that the Global Color Map has not been sorted.

In GIF87a, bits 0 to 2 indicate the number of bits per pixel. This value should be increased by
1. The maximum value of 7 means that 8 bits per pixel are available. 256 different colors can be
used in one image. If the Color Table Flag is set in the GIF89a specification, these three bits define
the size of the global color palette (Global Color Table Size) in bytes. Ultimately, this represents
the same value (bits per pixel) because the size of the color table can be calculated as follows:

Color Table Size = 2 ** (value + 1)

This value should be set even if the GIF file does not contain a Global Color Map as it enables
the decoder to select the corresponding graphic mode.

At offset 05H there is a byte indicating the background color (Background Color Index). This
color is selected from the 256 possible colors. The background color is used for those sections of
the screen not defined by the bitmap (for example, margins). If the Global Color Flag is unset (0),
the byte should be set to 0 and skipped by the decoder.

The byte at offset 06H defines thePixel Aspect Ratio. This byte is treated differently in GIF87a
and GIF89a. The codingfor GIF87a is shown in Figure 26.3:

Bit 7 6 5 4 3 2 1

Pixel Aspect Ratio

Sorted Global Map

Figure 26.3
Coding
Pixel Aspect
Ratio flag
(GIF87a)

688 Graphics formats

In GIF87a, bit 7 is used as a Sorted Global Color Map Flag. The remaining bits indicate the
Pixel Aspect Ratio of the original picture.

In GIF89a, the Sorted Global Color Map Flag is integrated into the Resolution Flag (see Figure
26.2) and all bits of the PixelAspect Ratio field are used. If the value of the field is not 0, the ratio
of the image dimensions can be calculated as follows:

Aspect Ratio = (Pixel Aspect Ratio + 15) / 64

The Pixel Aspect Ratio is defined as the quotient of the image width divided by the image
height. This specification allows a rangebetween4:1 and 1:4 in steps of V,a.

26.3 Global Color Map block

Immediately after the Logical Screen Descriptor block, there maybe an optional block containing
the Global Color Map. This is always the case if bit 7 of the Resolution Flag in the Logical Screen
Descriptor is set. The global color table is specified in the Color Map block and is used ifa picture
does not have a local palette.

A maximum of 8 bits are provided for each pixel, which enables only 256 colors or levels of
gray to be represented. True Color Representation isnot provided. The Global Color Map contains
one triple (3 bytes), giving the primary colors red, green and blue, for each of the 256 colors
(Figure 26.4).

Red

Green

Blue

Red

Green

BLue

-1 Byte-

1st color

— nth color

Figure 26.4
Structure of a

Global Color Map

One byte is allocated to each of these three primary colors. The value in the byte determines
the intensity of each primary color in thecombined color. With three bytes percolor, it is possible
to represent 16 million colors, but via the palette, only 256 colors canbe used for the picture. The
value ofa pixel is interpreted as an offset in the color table, and the graphics card then generates

Graphics Interchange Format (GIF) 689

the associated color value. The size of the color table and the number of bits per color are also
specified in the Resolution Flag (Palette size = 3 bytes * 2** bits per pixel).

26.4 Image Descriptor block

Every picture in the GIF file must be introduced by a 10 byte Image Descriptor block. This block
is used in both GIF versions. Its structure is shown in Table 26.3.

Bytes

2

2

2

2

Field

Image Separator Header

(ASCII 2CH= ',')
Coordinate Left Border

Coordinate Top Border
Image Width

Image Height

Flags Table 26.3

Structure of an

Image Descriptor
block

This block contains the most important key data relating to a picture, such as its dimensions,
and the coordinates of the top left corner.

The first byte contains the separator (' ,' 2CH). The two following fields contain the picture
coordinates for the top left corner ofthe image in pixels and occupy 16bits each (unsigned word).
This data relates to the logical screen, that is, in window environments the coordinates refer to a
window.

The image width is given in pixels in the fourth field (offset 05H in the block) and the image
height in pixels in the fifth field. Both values are defined as unsigned words.

The lastbyte is used for various flags, which are coded as shown in Figure 26.5:

Bit 7 6 5 4 3 2 1 0

Pixel Size

0 (Reserved)

Sorted Flag

Interlace Flag

Local Color Map Flag

Figure 26.5

Coding of flags in
the Image
Descriptor block
(IDB)

690 Graphics formats

If bit 7 = 1, the Image Descriptor Map is followed by a Local Color Map. In this case, the data
will be used for the color table of the following part of the image and a decoder must save the
Global Color Map and use the new data. After the image has been processed, the Global Color
Map is restored.

Bit 6 defines the Interlaced Flag, that is, the graphic image can be stored in sequential mode
(bit 6 = 0) or interlaced mode (bit 6 = 1). In sequential mode, the image is output line by line.
Interlaced mode was created in order to enable the fastest possible transmission of a rough picture
via telephone communication. In this mode, only every eighth line is transferred and output per
scan. After the first scan only lines 0, 8, 16, and so on will be present. The missing lines are then
completed in subsequent scans in the sequence 4, 2, 1, 3, 5, 7. After the second scan, lines 4, 12,
20, and so on, willbe produced and lines 2, 10, 18, and so on, after the third scan.

In GIF89a, bit 5 indicates whether the local color table is sorted. If the bit is set, the most
importantcolors are stored first in order of frequency ofuse. If the flag = 0, the colors in the table
are not sorted. However, bit 5 is used only in very few applications because the official GIF87a
documentation does not refer to this bit and sets it to 0.

Bits 3-5 in GIF87a are marked as reserved and must be set to 0.

The lower bits 0-2 define the number of bits per pixel (in GIF87a and GIF89a). The value of
the bits should be increased by 1; thus the value 7 indicates that 8 bits are used per pixel. The
number of entries in the color table (2**n) and therefore also its size (entries*3 bytes) can be
calculated from this value. If no Local Color Map follows, the value of these three bits should be set
to 0.

26.5 Local Color Map block

In addition to the global color table, local color tables can also be defined before the Raster Image
blocks of a partial image. If the Local Color Table Flag in the Image Descriptor block is set, this
block will be followed by theLocal Color Map block. The decoder must then save the data from
the Global Color Map and restore it after the image datahas been processed. The structure of the
Local Color Map is the same as that of the Global Color Map (see Figure 26.4). A GIF file may
contain several Local Color Map blocks. Local Color Map blocks are defined in both GIF
specifications.

26.6 Extension block

The block containing the Local Color Map may be followed by an optional Extension block. In
GIF87a, these Extension blocks provided a means of implementing future extensions and were
used for storing information about the device that produced the image, the software used, the
scanner, and so on. The Extension blocks are structured as shown in Table 26.4.

Bytes

1

1

n

1

n

1

n

1

Graphics Interchange Format (GIF) 691

Field

Extension Block Header

(ASCII 21 H= ' !')
Function code (0 ..255)
Length of data block 1 (in bytes)
Data block 1

Length of data block 2
Data block 2

Length of data block n
Data block n

OOH as terminator
Table 26.4

Structure of an

Extension block

(GIF87a)

The first byte of the Extension block contains the character ! as a signature. This is followed
by one byte containing the function code, which defines the type of the following data.

These bytes are followed by the data area, which may contain several records of the same
structure. The first byte of each of these records indicates the number of following data bytes. The
maximum number of data bytes in a data area is 255.

With longer sequences of data, several sub-blocks are stored. The end of the Extension blocks
is marked by a null byte (OOH).

In GIF87a, the function codes are not defined, and the internal structure is also left to the
developer of the encoder. In GIF89a, the situation is somewhat different because the specification
describes various Extension blocks. The structure of these GIF89a Extension blocks is described
in Sections 26.12, 26.13, 26.14 and 26.15.

26.7 Raster Data block

The actual image data is stored in one or more Raster Data blocks. If theLocal Color Map Flag is
set in the Image DescriptorFlag (Figure 26.5), the image data will follow after the color table. If
there is no Local Color Map, the data will follow the Image Descriptor block or an Extension
block. The first Raster Data block is structured as shown in Table 26.5:

Bytes

1

1

n

Field

Code size

Number of bytes in data block
Data bytes Table 26.5

Structure of a

Raster Data

block

692 Graphics formats

In the first byte of the first block, there is a byte referred to as the CodeSize. This value defines
the minimum code length required for the representation of the pixels in LZW (Lempel-Ziv and
Welch) compression. This byte is used to initialize the decoder. The value is generally the same as
the number of color bits per pixel. Code size = 2 is used only for black and white images (bits per
pixel = 1).

The second byte defines the number of bytes in the following data block. This value is between
0 and 255.

The compressed image data starts in the third byte. If the image data requires more than 255
bytes, additional sub-blocks are used (see Section 26.10). After decoding, the picture is built up
starting in the top left corner and working from left to right and from top to bottom. A slightly
modified form of the LZW algorithm is used for compression (see Section 26.8). This algorithm
constructs a table from the characters read. These characters are collated into strings wherever
possible and compared with patterns in the table. In the output file, only the Index to the position
of the pattern in the coding table is stored. Newly occurring patterns are constantly added to this
table. In the case of GIF files, the code sequences may be between 3 and 12 bits long. When the
table is full, a reset code is stored and the process of constructing the table is restarted.

26.8 LZW Compression

In programs and GIF graphics files, the LZW method is used. This algorithm breaks the stream of
characters into partial strings and stores these in a table. Only the indices into the relevant table
are stored as output codes. The original character stream is subsequently regenerated on the basis
of these output codes. Figure 26.6 shows the basic structure.

character string Table

ABA Hallo ABA., (0) ABA

(1) Hallo

code sequence

0 1 0

Figure 26.6
LZW Encoding

The character sequence in Figure 26.6 is broken down into partial strings (ABA, Hallo, and so
on). These character sequences also occur in the coding table, but instead of the partial strings,
the associated table index is output. The original character string of 11 characters (ABAHalloABA)
becomes a code sequence of3 characters. This very simple principle enables the compression of
any character sequence.

There are, however, still two problems to solve. Firstly, the code table can only be determined a
priori in very few cases; it is notstored with the code and it is notavailable for decompression. As
a result, the algorithm must reconstruct the code itself at the compression and decompression
stages. The second difficulty relates to the size of the table. In theory, the table must be infinitely
large in orderto accommodate all possible character combinations. However, for practical reasons,

Graphics Interchange Format (GIF) 693

the size of the table is limited. These problems are overcome when applying the LZW algorithm to
GIF files.

Before discussing the process, it is important to mention some of the terms involved:

<new> Memory cell containing the last character read

<old> Memory cell containing the penultimate character read

E.. 1 Character buffer for building the table

C.. JK Character buffer with appended character K

The buffer [. .] is important for the construction of the table. It may contain individual
characters or complete character strings. The aim of the algorithm is to store complete character
strings that have not already been stored in the table. Each time this occurs, the relevant partial
string is appended to the table and a code is output for the last partial string. In this way, the
coding table is built up and can be reconstructed using the output code at any time during
decompression.

The next question is the initialization of the table at the start of the compression process. The
size must be established arbitrarily. For example, 12 bits enable 4096 entries to be encoded.

Each entry later stores a character sequence, but only the 12 bit indices for the table are stored
as output codes. This achieves the desired compression. With a little knowledge of the possible
characters in the input code, the table can be partlyinitialized with startingvalues. If, forexample,
the input characters are taken from the alphabet of upper case letters, the first 26 entries in the
tablecan be assigned the codes for the characters (0 = A, 1 = B, 2 = C,and so on).

The LZW compression algorithm can then be described with the following pseudo-code
instructions:

initialize table

clear buffer C..]

WHILE Not EOF DO

read code in K

IF C..:k in table?

:..: < - [..IK

ELSE

add C..3K in table

write table index of L..1

r...: < - K

ENDIF

WEND

write table index of L..1

694 Graphics formats

First, the table should be initialized and the buffer C.. 1 should be cleared. The sequence of
input codes is then read in line by line. The character of the input sequence that has just been
read is placed to the right of the buffer as a post-fix (C.. IK). A check must now be carried out to
see if the partial string C. .IK already occurs in the table. If so, the algorithm processes the next
character. If the string is not yet in the table, the next step begins. The new string C. .]K is
appended to the first free position in the table. Then the table index for the partial string L..1 (not
C..DK) is stored as an output code. The old buffer content is then replaced by the last read
character K. The next character is read and the process is repeated. After reading all input
characters, the buffer code with the remaining string from the table can be determined and sent to
the output stream.

This process can be explained with a further example. From the set of letters A, B, C, D, the
character string ABACABA is to be formed. The table can be initialized with the letters A, B, C, D
in the first four entries. The following figure shows the individual stages of the compression
process.

input codes

ABACABA

[..UK Code

C-3A -

:a:b 0

cb:a 1

[AK 0

:c:a 2

[AlB

CABIA 4

CA3-

table

0 A

1 B

2 C

3 D

4 AB

5 BA

6 AC

7 CA

8 ABA

output codes

0 10 2 4 0

Figure 26.7
LZW

compression

The character sequence ABACABA produces the code sequence 010240. This sequence only
requires 6 codes, while the original string contains 7 characters. With longer character strings,
considerably improved compression rates can be achieved.

At the decompression stage, the code sequence must be transformed into the outputstring. An
algorithm described by the following pseudo-code instructions is used:

initialize string table

<code> := 1st code byte

tableCcode] - > output string

<old> := <code>

WHILE NOT EOF DO

<code> := next code byte

IF tableCcode] used?

tableCcode] - > output string

[..] < - tableCold]

K < - 1st character (tableCcode!])

write C..]K in table

<old> := <code>

ELSE

C..] < - tableCold:

K < - 1st character (..)

C..]K - > in output string

C..]K - > table

<old> := <code>

END IF

WEND

Graphics Interchange Format (GIF) 695

<old> and <code> are two variables representing the penultimate character and the last
character read. C..] defines a character buffer containing strings from the string table. The string
table is referred to as tablet. .]. The instruction -> output string indicates that strings are to
be written to the output unit.

The algorithm begins by initializing the string table with basic values. The first element of the
code sequence is then read. This value acts as an index to the string table. The relevant string (the
index points to the initialized section of the table) is written to the output stream. Next, the code
read is stored in the variable <old>. The WHILE loop ensures that all elements in the code
sequence are processed. As soon as a code element has been read, the algorithm checks whether
the index points to a table entry that is already coded. If it does, the string is appended to the
output stream. The string is then passed from tableCold] into a character buffer, and the first
character of the entry tableCcode] is appended (C. .IK). The new partial string C. .UK is entered
in the table at the first free position. The last character read is then simply copied from <code> to
<old>.

If the position in the table for <code> is still not occupied, the associated string must be
generated. This is achieved by copying the existing string from tableCold] to the buffer C..]. The
first character of the buffer C..] is then copied to the variable Kand appended to the buffer C..]K.
This new string is entered in the table and also copied to the output stream. Finally, the content of
<code> is saved in <old>. This process is repeated until all input codes have been read. The
original character sequence is then in the output stream.

696 Graphics formats

The following figure shows the individual stages of the decompression process:

Code sequence

0 10 2 4 0

<code> <old> C. .]K

0 - -

CA1B

CB1A

CA]C

CC1A

CAB1A

table

0 A

1 B

2 C

3 D

4 AB

5 BA

6 AC

7 CA

8 ABA

output codes

ABACABA

Figure 26.8

LZW decoding

The original character sequence ABACABA has been generated from the code sequence 010240.
At the start of the decompression process, the string table is initialized with the characters A, B, C,
D. These were the original initialization characters in the compression table. During the

processing of the input code, the complete character table is reconstructed. At the end of the
process, the complete table containing all the entries from the original compression table has been
created (compare the two examples).

26.9 Modified LZW Process for GIF Files

When compressing GIF files, the process described above is used with certain minor modifications.
Since the codes are bit sequences, the number of bits per read-access must be defined. However,
there is no point in reading just one bit (pixel). Even reading 8 bits per read-access is not without
problems. Therefore, in GIF compression, a variable code length, which may be between 3 and 12
bits, is used. The first byte of the Raster Data block contains the value Code size, which
corresponds to the number of bits per pixel, but is interpreted as a starting value for the code
length. At four bits per pixel, the number N = 3 will be stored in the relevant field. This means that
every time the input data is accessed, there will always be N + 1 = 4 bits to read. During
processing, the code length per access may be extended to 12 bits. As soon as this length is
reached, the table containing the output patterns is full, and must be reset.

The GIF compressor must therefore create a table with 4096 entries. At the start of the
process, this table is initialized with a few codes. The size of this initialization area is defined by
the value code size. At 1 bit per pixel, N must be set to N = 2. The entries #0 and #1 in the table
are then initialized. At positions 2**N and 2""N + 1, two special codes are stored. With N = 2,
these are the positions #4 and #5. The first entry at position #4 is referred to as a clear code <CC>.
If this entry is recognized during decompression, the table must be re-initialized. The compressor
will always output this code when the table is full. This code may also occur as the first character
of an output stream, in order to activate a reset in the decompressor. The second entry is referred

Graphics Interchange Format (GIF) 697

to as end of information <E0I>. It signals to the decompressor that the end of the code stream has
been reached and no more data follows.

During compression/decompression, new strings should be stored from the position <CC> + 2.
The code <CC> is written to the output stream at the start of compression and each time the table
overflows. The reader must then re-initialize the table. The variable code length of the data to be
read should present no major problems. Compression starts with the value indicated in the code
length, code size + 1. Whenever a code from the table position (2**(code length) - 1) is output, the
code length should be increased by 1. This is continued until a code length of 12 bits is reached.
Then the table has to be re-initialized. Decompression also starts with the code length code size +
1. The code length should always be increased by 1, while the table entry (2**(code length) -1) is
written into the output. It should also be pointed out that the bits in the code sequence
correspond to the bits of the string code in the table.

26.10 Sub-blocks with Raster Data

Since an image generally requires more than 255 data bytes, the compressed data is subdivided
into a Raster Data block and several (Raster Data) Sub-blocks. The sub-blocks are structured as

shown in Table 26.5, but the first byte (Code size) is missing. Each sub-block begins with a length
byte which defines the number of following bytes in the block (0-255). The maximum number of
bytes in a sub-block is 256.

26.11 Block Terminator

The end of the image data area is indicated by a Terminator block (OOH). This is simply a sub-
block in which the length byte is set to 0. The block contains only the length byte.

The Image Descriptor, Local Color Map and Raster Data blocks can be created several times in
one file. This enables several pictures to be stored in one file.

26.12 Graphic Control Extension block (GIF89a)

This block was defined in GIF89a and contains additional parameters relating to the image.
The block is optional and must be positioned after the Image Descriptor block, but before the
Raster Data blocks. The data applies only to the following (partial) image. The block is structured
as shown in Table 26.6:

698 Graphics formats

Bvtes Remarks

Extension Block Signature (21H)
Graphic Control Label (F9H)
Block Size (4)
Flags
Delay Time
Transparent Color Index
Block Terminator (OOH)

Table 26.6

Structure of the

Graphic Control
Extension block

(GIF89A)

The first byte contains the signature for the Extension block and contains the fixed value 21H
(='!').

Byte 2 contains the Graphic Control Label. This is simply the signature for a Graphic
Extension block and contains the fixed value F9H.

The field block Size indicates the number of following data bytes in the block. The block

terminator is not included in this calculation. In a Graphic Control Extension block, this field

always contains the value 4.
The flag byte (offset 03H) is structured as shown in Figure 26.9.

Bit 7 6 5 4 3 2 1 0

J^
Transparency FLag

User Input Flag

Disposal Method

Reserved

Figure 26.9

Coding of flags
in the Graphics
Control

Extension block

The Transparency Flag indicates whether the Transparency Index Field is defined or not. If it
is, the flag is set to 1. If the flag is set to 0, the Transparency Index Field does not contain a valid
value.

The User Input Flag defines whether the program will wait for a user input after the output of
the image. If the flag is set to 1, processing will not be continued until a user input is made. The
type of user input (return, mouse click, and so on) is defined by the application. If a delay time is
defined, processing will be continued after this time, even without a user input.

The Disposal Method defines what happens to the graphic after output, according to the
following options:

0 No disposal specified.

1 Do not dispose of the graphic. It is left in place.

Graphics Interchange Format (GIF) 699

2 Restore to background color. The area covered by the graphic must be restored to the

background color.

3 Restore to previous. The decoder must restore the previous screen image.

No other codes have yet been defined.
The Delay Timefield is defined as an unsigned word. If the User Flag is set, this field will define

the waiting time, after which processing of the data sequence will be resumed, in Vwo seconds. This
waiting time can be interrupted by a user input and begins immediately after the output of the
graphic.

The Transparency Index field contains one byte value. If this byte value occurs in the data

stream for the graphic, the pixel in question is not displayed. The decoder can go on to the next
pixel. The screen background is retained during this process. The index is only valid if the
Transparency Flag is set.

The last byte acts as a block Terminator and has the value OOH. This byte is not included in the
length of the Extension block. It is, in effect, an empty block which generally defines the end of
several sub-blocks.

26.13 Comment Extension block (GIF89a)

This optional block was defined in GIF89a. It can contain comments on the GIF file (for example,

author, credits). It is advisable to insert the block at the start or end of the GIF file. The contents
of the block have no influence on GIF images. Table 26.7 shows the structure of this block:

Bytes Remarks

1 Extension Block Signature (21H)
1 Comment Label (FEH)

1 Block Size

n Comment string as sub-blocks with

1 Length of sub-block

n Data Area of sub-block

1 Block Terminator (OOH)

Table 26.7

Structure

of the Comment

Extension block

(GIF89A)

The first byte contains the signature for the Extension block. The byte has the fixed value of
21H (=' !').

The second byte contains the signature for the Comment Extension block and is always FEH.
This signature is followed by a sequence of sub-blocks containing the actual comment text.

Each sub-block contains the number of following bytes in its initial byte, which may be followed
by between 0 and 255 data bytes. If the data string is longer than one block, it will be divided into

700 Graphics formats

several sub-blocks. The end of the Comment Extension blocks is marked by a terminator. This is a
sub-block of one byte, containing the value OOH.

The comment string should be produced using 7 bit ASCII characters. It is not possible to
represent multilingual characters (a, 6, u and so on). The contents of the block should not be used
for storing decoding information, so that the decoder may skip the block.

26.14 Plain Text Extension block (GIF89a)

This optional block was also defined in GIF89a. The block may contain texts and parameters for
the graphic representation of these texts. Table 26.8 indicates the structure of the block.

Bytes Remarks

1

1

1

2

Extension Block Signature (21H)
Plain Text (01H)

Block Size

Text Grid Left Position

2

2

Text Grid Top Position

Text Grid Width

2 Text Grid Height

1 Character Cell Width

1 Character Cell Height

1

1

Text Foreground Color
Text Background Color

n Sequence of Plain Text Sub-blocks with
1 Byte Length Sub-block

1

n Byte Sub-block with Plain Text

Block Terminator (OOH)

Table 26.8

Structure

of the Plain Text

Extension block

(GIF89A)

The first byte contains the signature for the Extension block. This byte has the fixed value 21H
(='!').

The second byte contains the signature for the Plain Text Extension block and is always 01H.
The third byte contains the length indicator for the following data area. With the Plain Text

Extension block, this value is fixed at 12 (OCH). The text is then stored in sub-blocks each with

their own length indicator.
A sequence of fields, which are interpreted as unsigned words, begins at offset 03H from the

start of the block. The first field defines the left margin (column number) for the text output grid.
The position is defined in pixels from the left edge of the logical screen.

The following field establishes the upper grid position (row number) for the text output in
pixels. It also relates to the logical screen.

Graphics Interchange Format (GIF) 701

The field Character Cell Width defines the width of a grid cell in pixels. This cell is then used
to accommodate a character. The height of a grid cell is defined in Character Cell Height. This
value is also indicated in a byte. The decoder must convert these values to the dimensions of the
virtual screen. The result of this conversion must be an integer value.

The last two fields require only one byte each. They indicate the color value (index in the color
table) for the foreground and background color of the text.

The actual text is stored in a sequence of sub-blocks which follow immediately after the
structure described above. Each sub-block contains the number of following bytes in its first byte.
This byte is followed by between 0 and 255 data bytes containing the text to be output. If the text
is longer than one block, it is divided into sub-blocks. The end of the Plain Text Extension block is
marked by a terminator, which is a one-byte sub-block containing the value OOH.

A grid of character cells is defined for the output of the text. Each cell accommodates a single

character. The parameters for the grid of character cells are indicated in the Text Extension block
in the Text Grid fields. The decoder must convert these parameters in such a way that the grid
dimensions represent integers. Any value after the decimal point should be removed (truncated).
For reasons of compatibility, the cell dimensions 8 x 8 or 8 x 16 (width x height) should be
selected.

The individual characters are read sequentially and entered into the individual cells line by
line, beginning at the top left corner of the grid. The best monospace font with a size appropriate

for the decoder should be used for the display. The text to be displayed must be coded in 7 bit
ASCII characters. It is not possible to represent multilingual characters (a, o, ii and so on). If
character codes below 20H and above 7FH appear, the decoder will output a space (20H).

26.15 Application Extension Block (GIF89a)

This optional block was defined in GIF89a. The block is used for application-specific information.
Table 26.9 shows the structure of the block:

Bytes Remarks

1 Extension Block Signature (21H)
1 Application Extension (FFH)

1 Block Size 11

8 Application Identifier

3 Application Authentication Code

n Sequence of Sub-blocks
1 Byte Length Sub-block

n Byte Sub-block with Data
1 Block Terminator (OOH)

Table 26.9

Structure of

the Application
Extension Block

(GIF89A)

702 Graphics formats

The first byte contains the signature for the Extension block. This byte has the fixed value 21H
(='!').

The second byte contains the signature for the Application Extension block and is always FFH.
The third byte contains the length of the following data area. In the Application Extension

block this value is fixed at 11 (OBH). The actual parameters are stored in sub-blocks each with its
own length indicator.

At offset 03H, there are 8 bytes containing the Application Identifier. This must consist of
printable ASCII characters and is used for naming the application that created the data.

These 8 bytes are followed by three bytes for the Application Authentication Code. A binary
code calculated by the application can be stored here, to ensure the unequivocal identification of
the original application.

This field is followed by the sub-blocks containing the application-specific data. Each sub-block
begins with a length byte, followed by up to 255 data bytes. The last block contains only the length
byte which is set to OOH and acts as a terminator.

26.16 GIF Terminator

The end of a GIF file is marked by a Terminator block. This is a one-byte block containing a

semicolon (code 3BH) as the terminator.

Tag Image File Format
(TIFF)

Aldus, the developer of the desktop publisher
i^^LPagemaker, defined aformatfor storing graphic

JL m data (TIFF) some time ago, and thisformat is
now supported by a number of manufacturers such
as Hewlett Packard, Microsoft, Data Copy and
Microtek. TIFF files are rapidly becoming the
standard on both Apple Macintosh and IBM-PC
compatibles, and this format is also used by scanner
manufacturers.

TIFF enables several levels of representation (Bilevel, Graylevel, Color...) and uses various
compression processes. A number of the functions of the standard version have subsequently been
extended. The information in this chapter relates exclusively to version 6.0.

A TIFFfile consists of a header and a variable number of data blocks of differing lengths, which
are addressed by a pointer (Figure 27.1):

rr Header

rr IFD 1

•*-

IFD 2

Data

IFD n

-4-IData Figure 27.1
Structure

of a TIFF file

The structure of the file is essentially based on blocks known as the Image File Directory (IFD).
The IFDs form an interconnected list within the file and contain information on the data types
stored, the image data, the graphic mode, and so on. Pointers from these IFDs may also indicate
the actual data blocks. Image data is stored between the IFDs, in free areas within the file. As a
result, the structure of TIFF files is very flexible, but it is also more complex than, for example,

703

704 Graphics formats

PCX files. More images or different variations of an image can be stored within a single file. Figure
27.2 shows an extract from a TIFF file as a hex dump.

— Inte1 Signature

— Version

'IT

= 42

— Pointer to 1st IFD

— 17 Tags

— 1st Tag Type

Data Type

Length

,- 1st IFD

- 2nd Tag

- 3rd Tag

r 4th Tag

49 49 2A 00 08 00 00 00 11 00 FF 00 03 00 01 00
I

00 00 01 00 00 00 00 01 03 00 01 00 00 00 0A 00
L

00 00 01 01 03 00 01 00 00 00 0A 00 00 00 02 01
i —l—

03 00 01 00 00 00 01 00 00 00 03 01 03 00 01 00

'

00 00 02 00 00 00
I

Figure 27.2
Part of a TIFF

file hex dump

27.1 TIFF header

The format of the header, which occupies the first 8 bytes of the file, is fixed. The structure is
shown in Table 27.1.

Offset Bytes Remarks

OOH 2 Byte Order
'II' = Intel

'MM'= Motorola

02H 2 Version number

04H 4 Pointer to first IFD
Table 27.1

TIFF header

structure

TIFF format is used both with Motorola processors (Macintosh) and Intel processors (IBM-PC).
Unfortunately, there are two methods of storing individual bytes (Table 27.2).

Tag Image Format (TIFF) 705

Processor Word 1st Byte 2nd Byte

Intel

Motorola

3F55H

3F55H

55H

3FH

3FH

55H
Table 27.2

Storing words
in Intel and

Motorola formats

In the case of Intel, the low byte is stored at the lower address (Big endian). This means that
the lower values are on the left in the output. With Motorola, the high byte is stored first (Little
endian), therefore low byte values appear on the right in the output.

The first two bytes contain a signature which specifies the byte order used. To avoid
unnecessary calculations, both bytes have the same signature. For Intel format, both bytes contain
the signature 'II' (4949H). The signature for Motorola is 'MM' (4D4DH). Both signatures are therefore
defined by ASCII strings. All other data within the file will be interpreted in the format selected.

At offset 02H, there is a 16 bit value indicating the version number of the TIFF file. In all
versions up to and including TIFF 6.0, this value is always set to 42 (2AH). The value is likely to
remain 2AH in future unless the TIFF structure is changed.

The last 4 bytes of the header contain a pointer to the beginning of the first Image File
Directory (IFD). The value of the pointer is the offset from the start of the file to the first IFD byte.
In Figure 27.2, the first IFD begins at offset 08H. The pointer chain is continued within the IFDs.

27.2 Structure of the Image File Directory (IFD)

Data within a TIFF file may be arranged in any number of ways. Reference to this data is made via
the IFDs. An IFD therefore functions as an index and as a header to the actual data areas. Starting
with the header, all IFDs are linked by pointers (Figure 27.3).

Header

IFD 1 IFD n

Figure 27.3
IFD chain

The second and subsequent pointers are located within the IFD data structure, which can be
divided into three parts (count, tag field, pointer), as shown in Table 27.3:

706 Graphics formats

;S - : ::-: ;;?; ; . :.:::::::: :c: :::.:•:;•:*

Offset Bytes Remarks

OOH 2 Number of entries

02H 12 Tag 0 (12 bytes)

OEH 12 Tag 1 (12 bytes)

12 Tag n (12 bytes)
4 Pointer to next IFD or 0,

if no next IFD Table 27.3

IFD block

structure

The length of an IFD is variable. It is determined by the number of tag entries. A tag is a 12-
byte data structure used to store information on the image data. (The structure of a tag is
described below.) The number of tag entries is stored in the first word of the IFD. After the last tag,
there is a 4-byte pointer to the following IFD. If there is no other IFD, the pointer contains the
value 0.

27.2.1 Structure of a tag

At offset 02H in an IFD, there is a list of tags. These are data structures with a fixed length of 12
bytes. They are used to store data relating to image dimensions, pixel resolution, and so on. If the
data does not fit into the tag structure, it will be stored in a free area elsewhere in the file, and the
tag will contain a pointer (offset from start of file) to this data area (Figure 27.4).

Header
>

IFD 1

-*-

Tag

IFD 2

Data

IFD n

Table 27.4 shows the structure of a tag:

Figure 27.4
Pointer from

a tag to the
data area

Tag Image Format (TIFF) 707

Offset

OOH

02H

04H

08H

Bytes

2

2

4

4

Remarks

Tag type

Data type

Length of data area

Pointer to data area,

or a value if no area exists

Table 27.4

Tag structure

The first word in a tag indicates the tag type (the possible types are described below). The
second word defines the data type of the values stored. At present, the definition is as shown in
Table 27.5:

Code Type Remarks

01H Byte 8 bit byte
02H ASCII 8 bit ASCII code

03H SHORT 16 bit unsigned integer
04H LONG 32 bit unsigned integer
05H RATIONAL 2 LONG numbers

1st LONG = number of a fraction

2nd LONG = denominator

06H SBYTE 8 bit signed integer
07H UNDEFINED 8 bit contain anything
08H SSHORT 16 bit signed integer
09H SLONG 32 bit signed integer
OAH RATIONAL 2 SLONG numbers

1st SLONG = numerator of a

fraction

2nd SLONG = denominator

OBH FLOAT 4 byte single precision
IEEE floating point

OCH DOUBLET 8 byte double precision
IEEE floating point

Table 27.5

Tag data types

The data types with codes 06H-0CH in Table 27.5 were defined in TIFF version 6.0.

At offset 04H, the length of the associated data area is stored. The unit used here depends on
the data type. A data type defined as LONG, for example, with a length of OAH occupies 10 x 4
bytes = 40 bytes. It should be noted that ASCII strings are always terminated with a null byte,

708 Graphics formats

which is not included in the length. If a string comprises an odd number of bytes, the next item of
data to be stored must begin on an even address boundary.

The last 4 bytes of a tag, at offset 08H, are used to store the value. For example, the resolution
of the X axis may be indicated here. If more than 4 bytes are required to store the data, the field
will contain a 4-byte pointer to the actual data area. The data area may be located at any free
position in the TIFF file.

For optimization reasons, the tags in an IFD must be arranged in ascending numerical

sequence. In addition to the tag types described below (public types), company-defined (private)
tag types may be used. For example, manufacturers may include additional information on special
compression processes for picture data. These private tags cannot be evaluated by general-purpose
read programs. When checking tag types, a program may stop as soon as it encounters a code
higher than the highest valid tag number. The alternative is to skip the tag and continue with the
interpretation of the file. The chances of success are particularly high if several images are stored.

27.2.2 Description of tag types

The tag definitions can be divided into several functional groups (Table 27.6). The TIFF version 6.0
specification also distinguishes between Baseline tags and Extension tags.

Code TagGroup Data type Values

Image Organization Tags

OFEH NewSubfile LONG 1

OFFH SubfileType SHORT 1

100H ImageWidth SHORT/LONG 1

101H ImageLength SHORT/LONG 1

112H Orientation SHORT 1

11AH XResolution RATIONAL 1

11BH YResolution RATIONAL 1

11CH PlanarConfiguration SHORT 1

128H ResolutionUnit SORT 1

Image Pointer Tags

111H StripOffsets SHORT/LONG StripPerlmage

117H StripByteCounts SHORT/LONG StripPerlmage

116H RowsPerStrip SHORT/LONG 1

142H TileWidth SHORT/LONG 1

143H TileLength SHORT/LONG 1 Table 27.6

144H TileOffsets SHORT/LONG TilesPerlmage Tag groups

(continues
over...)

Tag Image Format (TIFF) 709

Code TagGroup Data type Values

145H TileByteCounts SHORT/LONGTilesPerlmage

Pixel Description Tags

102H BitsPerSample SHORT SamplesPerPixel
106H Photometric

Interpretation SHORT 1

107H Tresholding SHORT 1

108H CellWidth SHORT 1

109H CellLength SHORT 1

115H SamplesPerPixel SHORT 1

118H MinSampleValue SHORT SamplesPerPixel
119H MaxSampleValue SHORT SamplesPerPixel
122H GrayResponseUnit SHORT 1

123H GrayResponseCurve SHORT 2**BitPerSample
12CH GolorResponseUnit SHORT 1

12DH ColorResponseCurves SHORT 1 orn

131H Software ASCII

132H DateTime ASCII

13BH Artist ASCII

13CH HostComputer ASCII

13DH Predictor SHORT 1

13EH WhitePoint RATIONAL 2

13FH PrimaryChromatics LONG 2*SamplesPerPixel
140H ColorMap SHORT 3*(2**BitsPerSamples)

Data Orientation Tags

10AH FillOrder SHORT 1

Data Compression Tags

103H Compression SHORT 1

124H T40ptions SHORT 1

125H T60ptions SHORT 1

152H ExtraSamples BYTE n

153H SampleFormat SHORT SamplesPerPixel
154H SMinSampleValue ANY SamplesPerPixel
155H SMaxSampleValue ANY SamplesPerPixel
156H TransferRange SHORT 6

Document & Scanner Descript on Tags

10DH DocumentName ASCII

10EH ImageDescription ASCII

10FH ScannerMake ASCII

110H ScannerModel ASCII Table 27.6

Tag groups
(cont.)

710 Graphics formats

Code TagGroup Data type Values

11 DH PageName ASCII

11EH XPosition RATIONAL

11FH YPosition RATIONAL

129H PageNumber SHORT 2

8298H Copyright ASCII

Storage Management Tags

120H FreeOffsets LONG

121H FreeByteCounts LONG

Ink Management Tags

14CH InkSet SHORT 1

14DH InkNames ASCII

14EH NumberOflnks SHORT 1

150H DotRange BYTE/SHORT n

151H TargetPrinter ASCII

JPEG Management Tags

200H JPEGProc SHORT 1

201H JPEGInterchange-

Format LONG 1

203H JPEGInterchange-

FormatLength LONG 1

204H JPEGRestartlnterval SHORT 1

205H JPEGLossLess-

Predictors SHORT SamplesPerPixel

206H JPEGPoint-

Transforms SHORT SamplesPerPixel

207H JPEGQTables LONG SamplesPerPixel

208H JPEGDCTables LONG SamplesPerPixel

209H JPEGAGTables LONG SamplesPerPixel

YCbCr Management Tags

211H YCbCrCoefficients RATIONAL 3

212H YCbCrSubSampling SHORT 2

213H YCbCrPositioning SHORT 1
Table 27.6

Tag groups
(con..)

The JPEG and YCbCr tags were introduced in TIFF version 6.0. The definitions of these tags
are given below.

Tag Image Format (TIFF) 711

27.2.2.1 NewSubFile tag (FEH)

This tag replaces the old SubFile tag, which was subject to too many limitations.

Tag type 254 (FEH)

Data type LONG

Length of data area = 1

Flag (Bitfield)

The data field contains individual flags with the following coding:

Table 27.7

NewSubfile tag

BitO

1

2

1 picture has reduced resolution compared with another picture in the TIFF file.

1 picture is a page of a multipage image

1 Transparency Mask for other pictures in the TIFF file. Photometric Interpretation
must then be equal to 4.

The remaining bits are not used and must be set to 0. The default setting for all bits is 0.

27.2.2.2 Subfile tag (FFH)

This tag contains the global description for the bitmap data used in the IFD. It is especially
necessary when more than one image is stored in the file. In the TIFF definition, this tag is not
compulsory. However, if it is used, the tags ImageWidth, ImageLength and StripOffset are also
required. The Subfile tag is structured as shown in Table 27.8.

Tag type 255 (FFH)

Data type SHORT

Length of data area = 1
Subfile type (value 1, 2, 3)

In the value field, the following entries are defined:

Table 27.8

Subfile tag

712 Graphics formats

Value Remarks

Image with full resolution

Image with reduced resolution

Single page image
Table 27.9

Values in the

Subfile tag

Value 1 indicates that the associated image was stored with full resolution. If the picture is
stored again with reduced resolution, the associated tag will have the value 2. There must be a tag
defining the image with full resolution. If the value 3 occurs, this represents an image page from an
image comprising several pages. This necessitates a PageNumber tag, specifying the page number
of the associated image. If the Subfile tag is missing from the TIFF file, the default setting is for full
resolution.

27.2.2.3 ImageWidth tag (100H)

This tag describes the image width in pixels. The structure of the tag is as follows:

Tag type 256(1 OOH)

Data type SHORT or LONG

Length of data area = 1

ImageWidth (value 0...65535)
Table 27.10

ImageWidth tag

The image width is always measured in the direction of the X axis. This tag is mandatory in a
TIFF file. The value can also be interpreted as the number of image columns.

21.2.2A ImageLength tag (101H)

This tag describes the image height (length) in pixels. It is structured as follows:

Tag type 257(101H)

Data type SHORT or LONG

Length of data area = 1

ImageLength (value 0...65535)
Table 27.11

ImageLength tag

Tag Image Format (TIFF) 71 3

The image height is always measured in the direction of the Y axis. This tag is mandatory in a
TIFF file. The value can also be interpreted as the number of image lines.

27.2.2.5 BitsPerSample tag (102H)

This tag indicates the number of bits that must be stored per pixel in one plane. The tag is
structured as follows:

Tag type 258 (102H)

Data type SHORT

Length of data area = 1

BitsPerSample (value 1...65535)
Table 27.12

BitsPerSample
tag

In black and white images, only one bit per pixel is needed. With 4 levels of gray, for example, 4
samples and therefore 4 bits per pixel are stored. For color images with 3 colors and 8 bits per

color, 24 bits per pixel may be necessary. Since the colors are stored in three planes (red, green,
blue), different bit numbers may be selected for each color (for example, red 8 bits, green 6 bits,
blue 4 bits). The BitsPerSample values (here 864H) for the colors red, green and blue are stored in
the first two bytes of the value field (offset 08H). 4 and 8 bits are permitted for grayscale images,
while color images use 8 or 12 bits per pixel.

27.2.2.6 Compression tag (103H)

This tag describes the compression process used to store the data belonging to the relevant IFD.

Tag Type 259 (103H)

Data type SHORT

Length of data area = 1
Compression (value 1...65535) (Standard 1)

Table 27.13

Compression tag

The compressed data is stored in a specific area and addressed via the Strip Data Pointer. The
value in the Compression tag specifies the coding format.

1: The data is in uncompressed form, but the pixel information is partially packed

by byte. The end of a data row is filled with empty bits, up to the byte limit.

If the number of bits per sample is greater than 8, TIFF will store the values in 16 or 32 bit
blocks. The Intel and Motorola storage conventions should be taken into account here. With

714 Graphics formats

uncompressed image data, appropriate values should be set for BitsPerSample, MinSampleValue
and MaxSampleValue. The value of BitsPerSample must always be the next suitable number 2n.
With 6 bits per sample, BitsPerSample is set to 8. MinSampleValue contains the value 0, and
MaxSampleValue contains the value 64 (6 bits) to enable the TIFF reader to calculate the correct

number of bits per pixel.

2: The data is compressed and stored using a modified CCITT/3 1-D process
(Huffman RLE). By contrast with the normal CCITT/3 1-D process, no end
characters are used and each new line is compressed independently of the
preceding line.

The two following compression methods are used for the transfer of image data in FAX mode.

3: FAX CCITT Group 3-compatible storage. Each strip begins at a byte boundary

and the data is stored by byte. End characters are used (T4 bi-level encoding).

4: FAX CCITT Group 4-compatible storage. Each strip begins at a byte boundary

(T6 encoding).

StripOffset tags can be used with compression processes in accordance with CCITT/3, to
increase efficiency.

5: LZW compression for monochrome, mapper color and color images.

6: JPEG compression (from TIFF version 6.0).

The values between 32768 and 65535 are reserved for manufacturer-defined (private)
compression processes. So far, two of these coding methods have been made public:

32771: corresponds to type 1, but each line begins at the next free word boundary.

32773: uses PackBit compression.

For bi-level images, only compression methods 1, 2 and 32773 are permissible. Grayscale
images can be stored using methods 1 and 32773. Information on the compression of image data is
given in the description of the image data area.

27.2.2.7 Photometriclnterpretation tag (106H)

This tag is considered together with the MaxSampleValue and MinSampleValue tags. It indicates
the way image data is interpreted.

Tag Image Format (TIFF) 715

Tag type 262 (106H)
Data type SHORT

Length of data area = 1
Photometriclnterpretation (value 0...8)

In the value field, the entries 0 to 8 are permitted to give the following modes:

Table 27.14

Photometric-

Interpretation

tag

0 For bi-level and grayscale images. The color level entered in MinSampleValue (for
example, 0), is interpreted as white; the color level entered in MaxSampleValue (for
example, FFH) is interpreted as black. In grayscale images, the image values are converted
to the corresponding intermediate levels. This is the standard setting for compression type
2.

1 For bi-level and grayscale images. The color level entered in MinSampleValue is interpret
ed as black, and the value entered in MaxSampleValue is interpreted as white. In

grayscale images, the image values are converted to the corresponding intermediate levels.
If this value is pre-set for compression type 2, the image must be inverted in the output.

2 The data in the bitmap is coded according to the RGB system. The value entered in
MinSampleValue represents the minimum color intensity. The value in MaxSampleValue
the maximum.

3 Palette Color. In this mode a color is described by a value (1 sample). This value acts as an

index to the Color Response Curve for the color intensity fields for red, green and blue. In
this case, SamplePerPixel must be equal to 1, and the Color Response Curve must be sup

ported.

4 Transparency Mask. This means that the image is interpreted as a mask (area) within

another image in the same TIFF file. The values SamplePerPixel and BitsPerSample must
be set to 1. Also, PackBit compression is required. If the bits of the mask are set (1), they

define an inner section of an area, while unset (0) bits indicate the perimeter. In this way,
it is possible to mark a partial image (region) within an image. The TransparencyMask
image must have the same values in ImageLength and ImageWidth as the original image. A
TIFF reader can evaluate the mask and display only the areas of the image located within

the mask (bits =1).

6 YCbCr Color Space. The image data is scaled according to the YCbCr color system. This
mode has been adopted from version 6.0 of TIFF onwards.

8 1976 CIEL'"'a::'b Color System. This value was also adopted in version 6.0 of TIFF.

There are no standard settings for this parameter. Information relating to the intensity of the
RGB representation is interpreted in accordance with NTSC specifications. This tag should not
appear if the data is coded according to the CCITT/3 method, since the coding already contains
the interpretation of the image data. The scanner or reading device must support at least modes 0

and 1.

716 Graphics formats

27.2.2.8 Thresholding tag (107H)

This tag is used for image data that has been processed. With a grayscale image, for example, it
indicates the method used.

Tag type 263 (107H)

Data type SHORT

Length of data area = 1

Thresholding (value 1, 2, 3)

Table 27.15

Thresholding tag

Three entries are permitted in the value field:

1 A Bi-level image (black and white picture) has been stored. The number of bits per pixel is
set to 1.

2 A grayscale image has been transformed into a black and white picture (dithered). The bits
per pixel are set to 1.

3 A grayscale image has been changed into a black and white picture using the Error-

Diffusion Method.

With this type of image, it is not possible to carry out retrospective re-scaling, otherwise the
image data would be altered.

27.2.2.9 CellWidth tag (108H)

Tag type 264 (108H)

Data type SHORT

Length of data area = 1

CellWidth (value 1, 2 3)

Table 27.16

CellWidth tag

This tag describes the dimensions of the matrix in the Dithering or Halftone processes. It only
occurs when the Thresholding tag (107H) specifies mode 2. The CellWidth tag indicates the width
of the matrix and is supported by relatively few TIFF scanners.

27.2.2.10 CellLength tag (109H)

This tag describes the dimensions of a matrix in the Dithering or Halftone processes. It can be
used with tag 107H, if mode 2 is specified.

Tag type 265 (109H)

Data type SHORT

Length of data area = 1

CellLength (value 1,2,3)

Tag Image Format (TIFF) 71 7

Table 27.17

CellLength tag

The tag indicates the height of the matrix. It is used with relatively few scanners.

27.2.2.11 FillOrder tag (10AH)

This tag specifies how the data for a pixel is stored in bytes. The tag is structured as follows:

Tag type 266(1 OAH)

Data type SHORT

Length of data area = 1

FillOrder (value 1, 2)

Table 27.18

FillOrder tag

The following modes apply to the entries in the value field:

1 The pixels are stored continuously in a byte. The first pixel to the left starts in the

uppermost bit, and the following pixels are stored in the bits of lower value. This is the
default mode.

2 The pixels are stored continuously in a byte. The first pixel to the right starts in the lowest
bit, and the following pixels are stored in the bits of higher value.

27.2.2.12 DocumentName tag (10DH)

This tag specifies the name of the document from which the picture was created. It is structured as

follows:

718 Graphics formats

Tag type 269(1 ODH)

Data type ASCII

Length of data area = n

Value: Pointer to the document name

Table 27.19

Document tag

The value field contains a pointer (offset from start of file) to the ASCII string containing the
document name. The string is terminated with a null byte (OOH) and may be stored anywhere in
the file.

27.2.2.13 ImageDescriptor tag (10EH)

This tag contains various information on the currently stored image. It is structured as follows:

Tag type 270(1 OEH)

Data type ASCII

Length of data area = n

Value: Pointer to document information
Table 27.20

ImageDescriptor
tag

The value field contains a pointer (offset from start of file) to the ASCII string containing the
information. The string is terminated with a null byte (OOH). There is at present no specification
for the coding of the information.

27.2.2.14 Make tag (10FH)

This tag defines the name of the manufacturer of the scanner.

Tag type 271 (10FH)

Data type ASCII

Length of data area = n

Value: Pointer to the make string

Table 27.21

Make tag

The value field contains a pointer (offset from start of file) to the ASCII string containing the
manufacturer's name. The string is terminated with a null byte (OOH).

27.2.2.15 Model tag (110H)

This tag defines the model and number of the scanner.

TagType272(110H)

Data type ASCII

Length of data area = n

Value: Pointer to the model string

Tag Image Format (TIFF) 719

Table 27.22

Model tag

The value field contains a pointer (offset from start of file) to the ASCII string containing the
model name of the scanner. The string is terminated with a null byte (OOH).

27.2.2.16 StripOffset tag (111H)

This tag specifies either the offset to the bitmap containing the image data or another pointer field.
It always contains a 4-byte pointer (offset from start of file) to the start of a data field containing
the Bitlmage data. Direct access to the data can be gained via this offset. At least one StripOffset
pointer is needed to determine the position of the image data.

Tag type 273 (111H)

Data type SHORT or LONG

Length of data area = n

Pointer (value 0...(2**32) - 1)

Table 27.23

StripOffset tag

To increase the speed of the image output, it is possible to process only every n th line. For test
purposes, a picture with a resolution of 300 dpi can be displayed at 75 dpi. Decoding of the
remaining lines is not carried out during the first scan. This enables a rough image to be displayed
very quickly. The missing lines can be added during subsequent scans. If this method is to be used,
the starting position of all image lines in the Bitlmage data field must be known. Here, too, the
StripOffset tag is useful, because the pointer in the value field need not refer directly to image
data; it may indicate a table containing the actual StripOffset pointers. This table contains one
such pointer for each image line.

The length field indicates which case applies. If the length field is 1, the pointer field contains a
pointer to the first StripOffset. If the value in the length field is greater than 1, the pointer refers to
a pointer table within the file. This table contains n entries, each pointing to the start of a strip
area. The number n is stored in the length field of the tag. The default value for the pointer is
LONG. SHORT data can only be stored in very small TIFF files in which this facility should not be
used.

720 Graphics formats

27.2.2.17 Orientation tag (112H)

Tag type 274 (112H)
Data type SHORT
Length of data area = 1
Orientation (value 1... 8)

Table 27.24

Orientation tag

This tag specifies the orientation of a bitmap graphic in the X and Y directions. There are
altogether 8 possible orientation directions for an image:

Code 1st bitmap row 1st column

1 Top border Left border

2 Top border Right border

3 Bottom border Left border

4 Bottom border Left border

5 Left border Top border

6 Right border Top border

7 Right border Bottom border

8 Left border Bottom border
Table 27.25

Image
Orientation tag

Value 1 is the default setting; the other values are, so far, rarely supported by scanners. A
change of values rotates the image around the origin.

27.2.2.18 SamplesPerPixel tag (115H)

This tag indicates the number of samples per pixel. It is structured as follows:

Tag type 277 (115H)
Data type SHORT
Length of data area = 1
SamplesPerPixel (Value 1. .65535)

Table 27.26

SamplesPerPixel
tag

With black and white images, the value is set to 1. For color pictures with three color planes,
the setting is 3. Grayscale pictures with 4 or 6 levels still only contain one color plane, and are
therefore set to value 1.

27.2.2.19 RowsPerStrip tag (116H)

This tag indicates the number of uncompressed lines in a strip.

Tag type 278 (116H)
Data type LONG or SHORT
Length of data area = 1
RowsPerStrip (value 0...(2**32)-1)

Tag Image Format (TIFF) 721

Table 27.27

RowsPerStrip tag

This tag is only valid if no data compression is used. The entry in the value field indicates the
number of uncompressed lines in a strip (partial image). However, all strips (except for the last)
must contain the same number of lines.

27.2.2.20 StripByteCounts tag (117H)

This tag is only used with data compression in accordance with the CCITT/3 method. It is used to
check whether the correct amount of data has been read. The structure is as follows:

Tag type 279 (117H)
Data type SHORT or LONG
Length of data area = n
StripByteCounts (value 0...(2**32) -1)

Table 27.28

StripByteCoun ts
tag

The tag is created for every compressed data record in the TIFF file to which a
StripOffsetPointer is pointing. The value field contains the number of bytes in the associated strip.

27.2.2.21 MinSampleValue tag (118H)

In conjunction with the MaxSampleValue tag, this tag describes how the bitmap data should be
interpreted as colors.

Tag type 280 (118H)
Data type SHORT
Length of data area = 1
MinSampleValue (Value 0...65535)

Table 27.29

MinSampleValue
tag

The default value entered in the data field is 0 - the smallest possible value for a pixel. The tag
is processed together with the Photometriclnterpretation tag.

722 Graphics formats

27.2.2.22 MaxSampleValue tag (119H)

In conjunction with the MinSampleValue tag, this tag describes how the bitmap data should be
interpreted as colors.

Tag type 281 (119H)

Data type SHORT

Length of data area = 1

MaxSampleValue (value 0...65535)
Table 27.30

MaxSampleValue
tag

The default value in the data field is 65535 - the maximum value for a pixel. For black and
white pictures, the minimum value is set to 0 and the maximum is defined as 1. In the case of a 4-
bit grayscale image, the values are between 0 and 15. This tag is processed together with
Photometriclnterpretation.

27.2.2.23 XResolution tag (UAH)

This tag specifies the image resolution in the X direction. It is structured as follows:

Tag type 282 (11AH)

Data type rational

Length of data area = 1

Value (1/((2**32) -1...(2**32) -1)

Table 27.31

XResolution tag

The resolution in pixels is particularly important for scanners that can operate with several
degrees of resolution. This enables the scaling to be adapted to the features of the device. The
range of resolution for normal devices is between 75 and 300 dpi (dots per inch). In the value field,
a resolution of 300 dpi can be specified as 300/1 or a value of 75 dpi can be defined as 150/2
(numerator/denominator). The field can be stored anywhere in the file, and a pointer to the value
is stored in the tag.

27.2.2.24 YResolution tag (11BH)

This tag specifies the image resolution in the Y direction. It is structured as shown in Table 4.124:

Tag type 283 (11BH)

Data type rational

Length of data area = 1

value (1/(2**32) -1...(2**32) -1)

Tag Image Format (TIFF) 723

Table 27.32

YResolution tag

The resolution in pixels is particularly important for scanners that can operate with several

degrees of resolution. This enables the scaling to be adapted to the features of the device. The
range of resolution for normal devices is between 75 and 300 dpi (dots per inch). In the value field,
a resolution of 300 dpi can be specified as 300/1. The field can be stored anywhere in the file, and
a pointer to the value is stored in the tag.

27.2.2.25 PlanarConfiguration tag (11CH)

This tag describes the organization of the data in color or grayscale images. The tag is not required
for black and white images.

Tagtype284(11CH)

Data type SHORT

Length of data area = 1

PlanarConfiguration (value 1,2) Table 27.33

Planar

Configuration
tag

Image data for color or grayscale pictures can be stored in two different ways: All the
information can be stored together in one pixel, that is, the color plane bits are positioned one
after the other. Alternatively, it is possible to store the information on the pixels in several color
planes or gray levels. In this case, all the pixels of one color plane are described before the next
color plane is dealt with.

The value 1 specifies that all the data for one pixel are stored together. Value 2 indicates that
the image data is subdivided into planes and stored by plane. The value of the
Photometriclnterpretation tag must be taken into account in the evaluation.

724 Graphics formats

27.2.2.26 PageName tag (11DH)

This tag specifies the name of the page from which the image was scanned. The tag is structured as
follows:

Tag type 285 (11DH)

Data type ASCII

Length of data area = n

Pointer to document name

Table 27.34

PageName tag

The value field contains a pointer to the ASCII string containing the document name. The
string is terminated with a null byte (OOH).

27.2.2.27 XPosition tag (11EH)

This tag defines the X offset of an image extract.

Tag type 286 (11 EH)

Data type RATIONAL

Length of data area = 1

Pointer to value

Table 27.35

XPosition tag

The value field contains a pointer to the actual value, which is stored as a rational number.
This number specifies the X coordinate of the top left corner of the image in inches.

27.2.2.28 YPosition tag (11FH)

This tag defines the Y offset of an image extract. The value field contains a pointer to the actual
value, which is stored as a rational number (numerator, denominator). The value 2.5 inches
should be stored as 5/2. In Intel notation, this corresponds to 05H OOH OOH OOH 02H OOH OOH OOH.

The number specifies the offset of the coordinate of the top left corner of the image in inches. In
TIFF format, the positive axis points downwards.

Tag Image Format (TIFF) 725

miHilln HII———••••< Hi 1 •0M9MMM

Tag type 287 (11FH)

Data type RATIONAL

Length of data area = 1

Pointer to value

Table 27.36

YPosition tag

27.2.2.29 FreeOffsets tag (120H)

This tag contains a pointer to a table containing additional pointers. Each of these pointers refers
to a free data area in the TIFF file. The tag is structured as shown below:

Tag type 288 (120H)

Data type LONG

Length of data area = n

Pointer to table

Table 27.37

FreeOffset tag

If only one free area exists, there willonly be one pointer. The number of entries in the pointer
table is indicated in the length field of the tag. This tag can be skipped.

27.2.2.30 FreeByteCount tag (121H)

This tag specifies the number of free bytes in a block. The tag is used in conjunction with the
FreeOffsets tag.

Tag type 289(121H)

Data type LONG

Length of data area = n

Pointer to data table
Table 27.38

FreeByteCount

tag

The value field contains a pointer to a data table. This table contains n 4-byte entries, which
each indicate the length of the associated free area. The position of these fr^e areas can be
determined via the FreeOffsets tag. The tag can be skipped.

726 Graphics formats

27.2.2.31 GrayResponseUnit tag (122H)

In conjunction with the value for the GrayResponseCurve, this tag indicates how the image data
should be interpreted. It is structured as follows:

Tag type 290 (122H)

Data type SHORT

Length of data area = 1
GrayResponseUnit (value 1. •5)

Table 27.39

Gray
ResponseUnit

tag

The entry in the value field specifies the value of the GrayResponseCurve tag. It is structured
as follows:

1/10

1/100

1/1000

1/10000

1/100000 Table 27.40

GrayResponse
Units

The grayscale can be determined via the relevant integer and scaling factor. If the value for the
GrayResponseUnit is set to 3 and the entry in the GrayResponseCurve is set to 345, the result will
be a grayscale of 0.345.

27.2.2.32 GrayResponseCurve tag (123H)

In conjunction with the value for the GrayResponseUnit this tag provides information on the
interpretation of image data. It contains a vector to the actual data. For every sample plane of
image data, there is an entry here which acts as the grayscale for interpreting the image data. The
levels indicated represent the thresholds for calculating the gray tones between the minimum and
maximum gray values.

Tag type 291 (123H)

Data type SHORT
Length of data area = 2"Bits/Sample
GrayResponseCurve (value 0...65535)

Table 27.41

Gray
ResponseCurve
tag

Tag Image Format (TIFF) 727

27.2.2.33 T40ptions tag (124H)

This tag is used for setting options when image data is coded according to the CCITT Group 3
method.

Tag type 292 (124H)

Data type LONG

Length of data area = 1

T40ptions (value = 32-bit flag)

Table 27.42

T40ptions tag

In the value field, the 4 bytes are interpreted as a 32-bit flag. All the unused bits are set to 0.
The coding is as follows:

BitO

Bit 1

Bit 2

0 for (standard) one-dimensional coding 1 for two-dimensional coding

1 uncompressed mode used

1 fill bits inserted to the end of a line

With a two-dimensional data coding, the first line of a strip must always be stored one-
dimensionally. In TIFF 5.0, this tag was referred to as Group30ptions.

27.2.2.34 T60ptions tag (125H)

This tag is used for setting options when image data has been coded according to the CCITT Group
4 method. In the value field, the 4 bytes are interpreted as a 32-bit flag. Any unused bits are set to
0. The coding is as follows:

Tag type 293 (125H)

Data type LONG

Length of data area = 1

T60ptions (value = 32-bit flag)

Table 27.43

T60ptions tag

Only two bits in the 32-bit flag are used:

Bit 0: unused

Bit 1: 1 uncompressed mode used

In the current TIFF specifications, the remaining bits are unused. In TIFF 5.0, this tag was
referred to as Group40ptions.

728 Graphics formats

27.2.2.35 ResolutionUnit tag (128H)

This tag specifies the unit used for the XResolution and YResolution tags. The value 2 indicates the
default setting of dots per inch. The tag is structured as follows:

Tag type 296 (128H)

Data type SHORT

Length of data area = 1

Resolution unit (value 1, 2, 3)

The following values are permitted in the value field:

Value Function

No absolute unit of measurement

Unit is inches

Unit is centimeters

Table 27.44

ResolutionUnit

tag

Table 27.45

Resolution Unit

If the value is 0, any values that may be set in the Resolution tags are simply used to determine
the ratio of the image dimensions. This tag is used very rarely.

27.2.2.36 PageNumber tag (129H)

This tag is used to indicate the (picture) page number for TIFF files consisting of several pictures.
This is particularly important for FAXtransmissions.

Tag type 297 (129H)

Data type SHORT

Length of data area = 2

PageNumber (value 1, value 2)

Table 27.46

PageNumber tag

The value field contains two 16-bit values. The first value indicates the current page number;

the second value specifies the number of pages in the file. Individual pages do not need to be in
order within the TIFF file.

Tag Image Format (TIFF) 729

27.2.2.37 ColorResponseUnit tag (12CH)

In conjunction with the value for the ColorResponseCurve, this tag provides information on the
interpretation of image data. It is structured as follows:

Tag type 300 (12CH)

Data type SHORT

Length of data area = 1

ColorResponseUnit (value 1...5) Table 27.47

Color

ResponseUnit tag

The entry specifies the value of the ColorResponseCurve tag. The following gradations are defined:

Value Unit

2 1/100

5 1/100000
Table 27.48

Unit Color

Response Curve

The color scale can then be determined via the relevant integer number and the scaling factor.
A value of 3 in the ColorResponseUnit field and an entry of 345 in the ColorResponseCurve
produce an intensity level of 0.345.

27.2.2.38 TransferFunction tag (12DH)

In TIFF version 5, this tag was referred to as the ColorResponseCurve. In conjunction with the
value for the Color Response Unit, it provides information on the interpretation of image data. The
structure of the tag is as follows:

Tag type 301 (12DH)

Data type SHORT

Length of data area = {1 or 3}*(2**Bits/Sample)

TransferFunction (value 0...65535)
Table 27.49

TransferFunction

tag

730 Graphics formats

The tag contains a pointer to the actual data tables. Each entry in the table is of data type
SHORT and therefore requires 16 bits. The table first contains all entries for the color red. This is
followed by the entries for green and then the entries for blue. The number of entries per color can
be calculated as:

2"BitsPerSample

With 4 bits, 16 entries are possible and with 8 bits 256 entries are possible. The value 0 in an
entry represents the minimum intensity for the relevant color; the number 65535 stands for
maximum intensity. The combination of values (0, 0, 0) describes the color black, while (255, 255,
255) represents white. The purpose of this Color Response Curve is to enable fine color gradation
in an RGB image.

27.2.2.39 Software tag (131H)

This tag was introduced in TIFF version 5.0. It indicates the name of the software package that
created the TIFF file.

Tag type 305(131H)
Data type ASCII

Length of data area = 1
Pointer to a string

Table 27.50

Software tag

The data field contains a pointer to the relevant text. The reference number of the software
that created the file may also be shown here.

27.2.2.40 DateTime tag (132H)

This tag indicates the date and time at which the TIFF file was created

Tag type 306 (132H)

Data type ASCII

Length of data area = 1

Pointer to a string

Table 27.51

DateTime tag

The string should have the format YYYY:MM:DD HH:MM:SS. The clock time is given in 24-hour
mode. The ASCII string requires 20 bytes (including the terminating OOH).

Tag Image Format (TIFF) 731

27.2.2.41 Artist tag (13BH)

This tag indicates the name of the person who created the picture.

Tag type 315 (13BH)

Data type ASCII

Length of data area = 1

Pointer to a string

Table 27.52

Artist tag

The string can be used, for example, to display a copyright message. This tag may follow
immediately after the header.

27.2.2.42 Host Computer tag (13CH)

This tag defines the name of the computer on which the TIFF file was created.

Tag type 316 (13CH)

Data type ASCII

Length of data area = 1

Pointer to a string

The tag is optional and refers to a text indicating the name of the computer.

27.2.2.43 Predictor tag (13DH)

This tag is used if the value Compression = 5 (LZW compression) is used.

Tag type 317 (13DH)

Data type SHORT

Length of data area = 1

Value: 1,2

Table 27.53

Host Computer
tag

Table 27.54

Predictor tag

732 Graphics formats

This tag enables future compression of various images to be optimized using the LZW process.
At present, the following values apply:

1 No prediction scheme used before coding

2 Horizontal differencing

If a TIFF reader finds an unknown value in this tag, the decoding of the image must be aborted.

27.2.2.44 White Point tag (13EH)

This tag defines a white point in the 1931 CIE xy color diagram (chromaticity diagram). Only the
color (chromaticity) is specified and not the brightness (luminance).

Tag type 318 (13EH)

Data type RATIONAL

Length of data area = 2

Pointer to the xy-data

The default setting for a white point is defined as follows:

D65:X = 0.313 X = 0.329

This value is used for calibrating a monitor or scanner.

27.2.2.45 PrimaryChromaticities tag (13FH)

This tag defines the chromaticities of primary colors.

Tag type 319 (13FH)

Data type RATIONAL

Length of data area = 6

Pointer to the data area

Table 27.55

White Point tag

Table 27.56

Primary
Chromaticities

tag

Tag Image Format (TIFF) 733

This value is defined in the 1931 CIE xy chromaticity diagram. The standard codings for the
primary colors are as follows:

Red: X = 0.635 Y = 0.340

Green: X = 0.305 Y = 0.595

Blue: X = 0.155 Y = 0.070

The value is used for calibrating a monitor or scanner.

27.2.2.46 ColorMap tag (140H)

This tag defines a specific color palette (color map)

Tag type 320 (140H)

Data type SHORT

Length of data area = 3*(2**BitsPerSample)

Pointer to the Color Map

Table 27.57

ColorMap tag

The value defines a pointer to the table containing the color map. This table begins with n
entries indicating the intensity of the color red for each of the colors in the color map. These are
followed by n entries for green, and then by n entries for blue. In this way, n colors can be defined
for the associated image. The number n is calculated as follows:

2**BitsPerPixel

that is, with 4 bits per pixel, 16 colors can be represented. There will therefore be 16
consecutive entries in the table for each of the colors red, green and blue. The value for a color
pixel is interpreted as an index to the relevant color table (palette). The actual color is mixed from
the three entries in the table.

Each entry consists of 16 bits. The value 0 defines the minimum intensity of primary color, and
the number 65535 indicates the maximum intensity of primary color. The combination (0,0,0)
represents black, while (65535, 65535,65535) indicates white. The color table can be used with the
Color Response curve to refine the color gradation. This tag must be used with all images that
require a palette.

27.2.2.47 HalftoneHints tag (141H, TIFF 6.0)

The purpose of the HalftoneHints field is to convey to the halftone function the range of graylevels
within a colorimetrically specified image that is to retain tonal detail.

734 Graphics formats

Tag type 321(141H)

Data type SHORT

Length of data area = 2

HalftoneHints field
Table 27.58

HalftoneHints

tag

The data field in the tag contains two 16 bit entries. The first word specifies the highlight gray

level which should be halftoned at the lightest printable tint. The second word defines the shadow
graylevel.

27.2.2.48 TileWidth tag (142H, TIFF 6.0)

The TIFF 6.0 specification provides for the division of an image into tiles instead of strips. This tag
defines the width of a tile in pixels.

Tag type 322 (142H)

Data type SHORT or LONG

Length of data area = 1

Tile width in pixels

27.2.2.49 TileLength tag (143H, TIFF 6.0)

This tag defines the height (length) of a tile in pixels.

Tag type 323 (143H)
Tile length in pixels

Data type SHORT or LONG
Length of data area = 1

Table 27.59

TileWidth tag

Table 27.60

TileLength tag

The value for TileLength must be a multiple of 16 if JPEG compression is to be used.

27.2.2.50 TileOffsets tag (144H, TIFF 6.0)

For every tile containing an excerpt of an image, an offset to the data in the TIFF file is stored.
This tag defines a table with the offsets in bytes.

Tag type 324 (144H)

Data type LONG

Length of data area = n

Pointer to offset table

Tag Image Format (TIFF) 735

Table 27.61

TileOffsets tag

This tag replaces the StripOffset tag. The offsets are arranged according to the associated tiles,
from left to right and from top to bottom.

For PlanarConfiguration = 1, the number of Tiles per Image is stored in the length field. With
PlanarConfiguration = 2 the length field contains the value:

SamplesPerlmage * TilesPerlmage

With PlanarConfiguration = 2, the offsets of the first color plane are stored first.

27.2.2.51 TileByteCount tag (145H, TIFF 6.0)

This tag indicates the amount of compressed image data per tile, in bytes.

Tag type 325 (145H)

Data type SHORT or LONG

Length of data area = n

Pointer to offset table
Table 27.62

TileByteCounts
tag

For PlanarConfiguration = 1, the number of Tilesper Image is stored in the lengthfield. With
PlanarConfiguration = 2 the length field contains the value:

SamplesPerlmage * TilesPerlmage

With PlanarConfiguration = 2, the offsets of the first color plane are stored first.

27.2.2.52 InkSet tag (14CH, TIFF 6.0)

This tag defines the color model (ink set) in an image with color separation (Photometric
lnterpretation = 5).

736 Graphics formats

Tag type 332 (14CH)

Data type SHORT

Length of data area = 1

Ink set

Table 27.63

InkSet tag

The following values are permitted:

1 CMYK color system

2 not CMYK color system

The default entry is 1 for the CMYK color system. In this way, each color pixel in the image
defines a color intensity (cyan, magenta, yellow, black).

27.2.2.53 InkNames tag (14DH, TIFF 6.0)

This tag is used in an image with color separation (Photometriclnterpretation = 5).

Tag type 333 (14DH)

Data type ASCII

Length of data area = 1

Pointer to string

Table 27.64

InkName tag

The names of the colors are defined as an ASCII character list. The number of entries must

agree with the NumberOflnks.

27.2.2.54 NumberOflnks tag (14EH, TIFF 6.0)

The purpose of this tag is to indicate the number of colors (inks).

Tag Image Format (TIFF) 737

Tag type 334 (14EH)
Data type SHORT
Length of data area = 1
NumberOflnks Table 27.65

NumberOflnks

tag

The value generally corresponds to the value of SamplesPerPixel. The ExtraSample tag, which
can define other values, is an exception. The standard setting for the number of inks is 4.

27.2.2.55 DOTRange tag (150H, TIFF 6.0)

This tag defines the range for the density of color dots.

Tag type 336 (150H)

Data type BYTE or SHORT

Length of data area = 2 or 2 "SamplesPerPixel

DotRange[1]

27.2.2.56 TargetPrinter tag (151H, TIFF 6.0)

This tag defines the name of the output device.

Tag type 337(151H)

Data type ASCII

Length of data area = any

Pointer to string

Table 27.66

DotRange tag

DotRangeCO: corresponds to a 0% dot and DotRange[1] corresponds to a 100% dot. If a
DotRange pair for each component (cyan, and so on) is included, the values for a component are
stored together.

Table 27.67

TargetPrinter tag

The tag contains a pointer to the text containing the name of the output device.

738 Graphics formats

27.2.2.57 Extra Samples tag (152H, TIFF 6.0)

This tag contains a description of supplementary data for an image.

Tag type 338 (152H)

Data type SHORT

Length of data area = m

Pointer to data Table 27.68

Extra Samples

tag

This tag refers to a data area, which holds m items of supplementary information for a pixel. In
this case, there is more data present than can be accommodated in Photometriclnterpretation. For
example, in an RGB image, more than three SamplesPerPixel may occur. The ExtraSamples tag
then defines the meaning of the supplementary data. Possible values for each entry in the data
area include:

0 Unspecified data

1 Associated alpha data (opacity information)

2 Unassociated alpha data (transparency information)

This extra information must be stored in the last bytes of the data area for a pixel. In the case
of RGB values with 24 bits per pixel, for example, the alpha value can be stored in the 4th byte.

27.2.2.58 SampleFormat tag (153H, TIFF 6.0)

This tag defines how each data point of a pixel is to be interpreted.

Tag type 339 (153H)

Data type SHORT

Length of data area = SamplesPerPixel

Pointer to data

The following codes have been defined for these values:

1 unsigned integer data

2 signed integer data (two's complement)

3 IEEE floating point data

4 undefined data format

The default code is 1.

Table 27.69

SampleFormat
tag

Tag Image Format (TIFF) 739

27.2.2.59 SMinSampleValue tag (154H, TIFF 6.0)

This tag defines how many image planes (samples) must be present for the picture.

Tag type 340 (154H)

Data type: best match for the data

Length of data area = SamplesPerPixel

Pointer to data
Table 27.70

SMinSample
Value tag

With 3 SamplesPerPixel, at least 3 values must be present for each pixel (for example, 3 bytes).

27.2.2.60 SMaxSampleValue tag (155H, TIFF 6.0)

This tag defines the maximum number of image planes (samples) that may be present for the
picture.

Tag type 341 (155H)

Data type: best match for the data

Length of data area = SamplesPerPixel

Pointer to data

With a value of 4, a maximum of 4 samples may be stored per pixel.

Table 27.71

SMaxSample
Value tag

27.2.2.61 TransferRange tag (156H, TIFF 6.0)

This tag expands the range of the TransferFunction (Photometriclnterpretation tag)

Tag type 342 (156H)

Data type SHORT

Length of data area = 6

Pointer to data
Table 27.72

TransferRange
tag

The first pair of values defines the TransferBlack and TransferWhite data. The arrangement of
value pairs corresponds to the sequence in the Photometriclnterpretation tag. This may be
followed by an RGB value as a real number.

740 Graphics formats

27.2.2.62 YCbCrCoefficient tag (211H, TIFF 6.0)

This tag is used for transforming an RGB value into the YCbCr color system.

Tag type 529 (211H)
Data type RATIONAL
Length of data area = 3
Pointer to data Table 27.73

YCbCrCoefficient

tag

The value field contains three coefficients:

LumaRed

LumaGreen

LumaBlue

The YCbCr data can be determined from these coefficients:

Y = (LumaRed*R + LumaGreen*G + LumaBlue*B)

Cb = (B - Y)/(2 - 2*LumaBlue)

Cr = (R - Y)/(2 - 2*LumaRed)

Recalculation of the RGB values is carried out as follows:

R = Cr*(2 - 2*LumaRed) + Y

G = (Y - LumaBlue*B - LumaRed*R)/(LumaGreen)

B = Cb*(2 - 2*LumaBlue) + Y

The CCIR 601-1 values 299/1000, 587/1000 and 114/1000 are used as the standard setting for
LumaRed, LumaGreen and LumaBlue.

27.2.2.63 YCbCrSubSampling tag (212H, TIFF 6.0)

This tag specifies subsampling factors for the chrominance components of a YCbCr image.

Tag type 530 (212H)
Data type SHORT
Length of data area = 2

Pointer to data Table 27.74

YCbCrSub

Sampling tag

Tag Image Format (TIFF) 741

The value field contains the two factors YCbCrSubsampleHoriz and YCbCrSubsampleVertic.
The first field (YCbCrSubsampleHoriz) may contain the following values:

1 ImageWidth of this chroma image is equal to the ImageWidth of the associated luma
image.

2 ImageWidth of this chroma image is half the ImageWidth of the associated luma image.

4 ImageWidth of this chroma image is one quarter of the ImageWidth of the associated luma
image.

The field YCbCrSubsampleVertic may contain the following values:

1 ImageLength of this chroma image is equal to the ImageLength of the associated luma
image.

2 ImageLength of this chroma image is half the ImageLength of the associated luma image.

4 ImageLength of this chroma image is one quarter of the ImageLength of the associated
luma image.

The standard setting for the field is 2,2.

27.2.2.64 YCbCrPositioning tag (213H, TIFF 6.0)

This tag specifies the position of the supplementary color components (subsampled chrominance
components) relative to the luminance data.

Tagtype53l(213H)

Data type SHORT

Length of data area = 1

YCbCrPositioning

The values for this field are:

1 centered

2 co-sited

The standard value for the field is 1.

Table 27.75

YCbCrPosi

tioning tag

742 Graphics formats

27.2.2.65 ReferenceBlackWhite tag (214H, TIFF 6.0)

This tag specifies the distance (headroom and footroom) of the black and white color information
from the maximum possible values. This technique is used in film and video technology.

Tag type 532 (214H)

Data type RATIONAL

Length of data area = 6
ReferenceBlackWhite

Table 27.76

Reference

BlackWhite tag

The value field contains value pairs for every color component. The first value defines the
black; the second defines the white.

27.2.2.66 JPEGProc tag (200H, TIFF 6.0)

This tag specifies that a JPEG compression has been applied to the image.

Tag type 512 (200H)
Data type SHORT

Length of data area = 1
JPEGProc

The following codes are permitted in the value field.

1 Baseline sequential process

14 Lossless process with Huffman coding

Other values for the field will be defined in the future.

Table 27.77

JPEGProc tag

27.2.2.67 JPEGInterchangeFormat tag (201H, TIFF 6.0)

This tag specifies whether the JPEG data has been stored in Interchange Format in the TIFFfile.

Tag type 513 (201H)
Data type LONG
Length of data area = 1
JPEGInterchangeFormat Table 27.78

JPEGInter

changeFormat
tag

Tag Image Format (TIFF) 743

If the data is in JPEG Interchange Format, the tag contains a pointer to the start of the data
(Start of Image, (SOI marker code)). If the field is 0, the data is not in Interchange Format.

27.2.2.68 JPEGInterchangeFormatLength tag (202H, TIFF 6.0)

This tag indicates the length in bytes of the JPEG Interchange Format data area.

Tag type 514 (202H)

Data type LONG

Length of data area = 1

JPEGInterchangeFormat

The field is only relevant if the JPEGInterchangeFormat tag is present.

27.2.2.69 JPEGRestartlnterval tag (203H, TIFF 6.0)

This tag defines the length of the restart interval used for data compression.

Tag type 515 (203H)

Data type SHORT

Length of data area = 1

JPEGRestartlnterval

Table 27.79

JPEGInter

changeFormat
Length tag

Table 27.80

JPEGRestart

lnterval tag

The interval is defined as the number of Minimum Code Units between restart markers. If the

field is not present or set to 0, the data does not contain any restart markers.

27.2.2.70 JPEGLossLessPredictors tag (205H, TIFF 6.0)

This tag refers to a list of Lossless Predictor Selection Values. One entry is allocated to each
component.

744 Graphics formats

Tag type 517 (205H)

Data type SHORT

Length of data area = SamplesPerPixel

Pointer to table

The values permitted as predictor factors are listed in Table 27.82:

Selection value Prediction

1 A

2 B

3 C

4 A + B- C

5 A + (B--C)/2
6 B + (A--C)/2
7 (A -B) 12

Table 27.81

.JPEGLossLess

Predictors tag

Table 27.82

Prediction values

A, B and C are sample values directly to the left of, above and diagonally to the left of the
current point which has just been coded. Further details can be obtained in the JPEG Draft (ISO
DIS 10918-1).

27.2.2.71 JPEGPointTransforms tag (206H, TIFF 6.0)

This tag refers to a list of transformation points. One entry is allocated to each component.

Tag type 518 (206H)
Data type SHORT
Length of data area = SamplesPerPixel
Pointer to table

This tag is only permissible for a lossless JPEG compression.

27.2.2.72 JPEGQTables tag (207H, TIFF 6.0)

This tag refers to a list of offsets for the quantization tables.

Table 27.83

JPEGPoint

Transforms tag

Tag type 519 (207H)
Data type LONG

Length of data area = SamplesPerPixel
Pointer to table

Tag Image Format (TIFF) 745

Table 27.84

JPEGQTables tag

Each table consists of 64 bytes. A description of the process is given in the JPEG specification
(ISO DIS 10918-1).

27.2.2.73 JPEGDCTables tag (208H, TIFF 6.0)

This tag refers to a list of offsets to the DC Huffman table.

Tag type 520 (208H)
Data type LONG

Length of data area = SamplesPerPixel
Pointer to table

Table 27.85

JPEGDCTables

tag

Each table consists of 16 bytes of code length 1...16, and up to 17 bytes containing values. A
description of the process is given in the JPEG specification (ISO DIS 10918-1).

27.2.2.74 JPEGACTables tag (209H, TIFF 6.0)

This tag refers to a list of offsets to the Huffman AC tables

Tag type 521 (209H)

Data type LONG

Length of data area =

Pointer to table

SamplesPerPixel

Table 27.86

JPEGACTables

tag

Each table consists of 16 bytes of code length 1...16, and up to 256 bytes containing values. A
description of the process is given in the JPEG specification (ISO DIS 10918-1).

27.2.2.75 Notes

From TIFF 5.0, four classes for the storage of image data have been defined (Table 27.87).

746 Graphics formats

Class Remark

TIFF-B Bi-level images

TIFF-G Grayscale images

TIFF-P Color Map images

TIFF-R Color RGB images
Table 27.87

TIFF classes

(since
version 5.0)

TIFF files contain the structural elements Header, Image File Directory and Image Raster Data.
The IFD contains the tags giving extra information on the image data. The image data itself is
stored in free areas of the TIFF file as Image Raster Blocks, and a complete image can be stored in

one block. In addition to the problem of long processing times for decoding the data, the memory
limitations of the evaluation device are often reached with larger images. A picture of 300 x 300
dpi requires 1 Mbyte of memory, which would overstretch a 640 Kbyte DOS computer. For this
reason, the TIFF manual recommends that a picture should be split up into strips for processing.
The StripOffset tags indicate the start of each strip in the Image Raster Block. Data in the
individual strips may be stored in compressed or uncompressed form, as required. Each strip can
be processed independently of the other image data.

With grayscale images, the pixel data is packed in bytes, one after the other. Color images can
also be stored consecutively, that is, all the color information for one pixel is stored together
sequentially. Alternatively, a color image can be divided into three planes: red, green and blue.
Then, the image data for each plane can be stored together. The SamplesPerPixel tag indicates the
number of color planes, and the PlanarCoyifiguration tag specifies the method of storage.

The entry in the value field of a tag requires 4 bytes and can be interpreted either as a pointer
or as a value. If the data area is greater than 4 bytes, there is a pointer to this data in the value
field. Otherwise, the values of the tag are stored directly in the last field. The length of the data
area is stored in the tag.

A TIFF file may contain several images. The technique is used, for example, to store an image
at various levels of resolution. This considerably speeds up the printing of sample copies, because
fewer dots need to be processed at lower resolutions.

TIFF version 6.0 divides the TIFF tags into a Baseline group and Extension tags. Different tags are
prescribed within the Baseline group for the individual groups (bi-level, grayscale, color, RGB color).

Tag Image Format (TIFF) 747

Tag Name Code Value

Bi-level Images

ImageWidth 100H

ImageLength 101H

Compression 103H 1,2,32773

Photometriclnterpretation 106H 0,1

StripOffsets 111H

RowsPerStrip 116H

StripByteCounts 117H

XResolution 11 AH

YResolution 11BH

ResolutionUnit 128H 1,2,3

Grayscale Images

ImageWidth 100H

ImageLength 101H

BitsPerSample 102H 4,8
Compression 103H 1,32773

Photometriclnterpretation 106H 0,1

StripOffsets 111H

RowsPerStrip 116H

StripByteCounts 117H

XResolution 11AH

YResolution 11BH

ResolutionUnit 128H 1,2,3

Palette Color Images

ImageWidth 100H

ImageLength 101H

BitsPerSample 102H 4,8

Compression 103H 1,32773
Photometriclnterpretation 106H 3

StripOffsets 111H

RowsPerStrip 116H

StripByteCounts 117H

XResolution 11AH

YResolution 11BH

ResolutionUnit 128H 1,2,3

ColorMap 150H

RGB Images

ImageWidth 100H

ImageLength 101H

Table 27.88

Required tags
for TIFF images
(continues
over...)

748 Graphics formats

Tag Name Code Value RGB Color

RGB Images

BitsPerSample 102H

8,8,8Compression 103H 1,32773
Photometriclnterpretation 106H 2

StripOffsets 111H

SamplesPerPixel 115H >=3

RowsPerStrip 116H

StripByteCounts 117H

XResolution 11AH

YResolution 11BH

ResolutionUnit 128H 1,2,3 Table 27.88

Required tags for
TIFF images
(cont.)

Every TIFF reader should be able to process these tags. In the case of the compression tag, only
a small number of coding processes are defined for the baseline TIFF files.

27.3 TIFF Compression Processes

Since image data is often in compressed form, the TIFF specification provides various coding
processes.

27.3.1 Uncompressed

All TIFF writers can store image data in uncompressed form. This generally guarantees that the
data can be read by other TIFF readers. However, such files occupy a great deal of space.

27.3.2 PackBit Coding

With the code 32773, this process is one of the private codings. It originates from the Macintosh
world. The image data is stored in records. The first byte of the records is the header, which

indicates the number of following data bytes. Depending on the value of this byte, there are two
different types of record:

Record

Header 0-7FH

Header 81H-FFH

Tag Image Format (TIFF) 749

Description

The record consists of a header and n + 1 data

bytes, where n is the value of the header byte.
The next n + 1 bytes of the input file will be read

and copied to the output. The record contains
uncompressed data.

The record consists of the header byte followed
by one data byte. 80H is subtracted from the

header byte value to give n. The data byte is then
copied to the output n + 1 times.

Table 27.89

Packbit

compression

The code 80H is not permitted in the header. If it is found, the byte will be skipped.
The TIFF 6.0 specification defines a number of supplementary requirements for Packbit

compression:

♦ Each line of image data must be compressed separately. The packed data must not extend
beyond one line.

♦ Uncompressed image data should be aligned to 16 bit boundaries. The number of
uncompressed bytes per line is calculated as: (ImageWidth + 7) / 8.

The size of the record header means that sequences of data containing more than 128 identical
data bytes must be divided into several records.

27.3.3 FAX Compression (Modified Huffman Compression)

Some of the coding methods in the TIFF specification are based on the FAX CCITT/3 group
compression. The scanner attempts to code continuous groups of white or black pixels wherever
possible. Two tables have been defined: one containing codes for image runs between 0 and 63
consecutive white pixels and one containing codes for 0 to 63 consecutive black pixels. These
tables also contain entries for discrete levels of black and white dot sequences with more than 63
dots. (The codes 64 to 2633 are provided for this purpose.) If a line is sampled, the scanner will
store in the output file table codes corresponding to the number of white or black dots. In TIFF
format, the following conditions apply:

♦ Each line within a bitmap is processed independently of the other lines.

♦ Fill bits at the edge of the image must not be compressed. The structure of the CCITT/3 tables
is shown in Table 27.90 and in the corresponding ISO documentation.

750 Graphics formats

♦ Every coded line must begin with a white bit pattern (for synchronization). In the case of
images that begin with black dots, the code for a white pattern of 0 pixels is inserted.

♦ The EOL (end of line) markings designed for FAXCCITT/3 applications are not used in TIFF.

Using the code tables, the pixels of one row are analyzed. White and black image sequences are
then assembled from the codes in the table. The resulting code sequences for these lines are of
variable length. To synchronize the reader for color images, every line begins with a code number
for a white pixel. If the original line begins with black pixels, the compression program will
generate the code for a white pixel sequence containing 0 elements.

♦ Image sequences between 0 and 63 pixels are coded with a terminator code (word).

♦ Pixel sequences between 64 and 2623 (2560 + 63) are introduced with a make-up code (run
length of the next smallest table entry). They are followed by the terminator code in which the
difference is stored.

♦ Sequences longer than (or equal to) 2624 are introduced with the start code 2560. If the
remaining number of pixels is equal to or greater than 2560, additional sequences with this

coding are generated. Only if the remaining number of pixels is less than 2560 will an
additional code be generated with the number of remaining pixels.

If, at the decoding stage, the number of pixels read does not agree with the entry in
ImageWidth, an insoluble error must have occurred.

No EOL codes are used in the compression process, and no fill bits are used at the right of the
screen to complete the last byte of a row. The following table shows the code words (in binary
values) for black and white pixel sequences.

Terminating codes

White Make-up White Make-up

& Black Code Word & Black Code Word

Run Run

Length Length

0 00110101 0 0000110111

1 000111 1 010

2 0111 2 11

3 1000 3 10

4 1011 4 011

5 1100 5 0011

6 1110 6 0010

7 1111 7 00011

8 10011 8 000101

9 10100 9 000100

10 00111 10 0000100

11 01000 11 0000101

Table 27.90

FAX coding
tables

(continues
over...)

U
l
(
A

*
A

*
4

i
i
|
i
*

*
.
*

.
i
|
i
*

.
0

J
O

)
t
J
0

J
t
)
0

)
0

)
0

J
t
J
0

J
M

W
W

W
W

K
)
N

)
|
i
J
K

)
N

)
M

M
H

H
H

l
-
'
l
-
'
H

M
O

\
0

0
0

^
I
O

>
W

r
t
>

U
t
0

H
O

v
O

0
5

-
J
0

^
U

l
*

.
O

)
K

J
H

O
\
0

»
v
l
0

v
U

l
*

.
U

M
M

O
\
0

0
5

^
C

i
U

l
J
i
O

)
W

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

-
»

—
»

-
»

-
»

o
o

-
i
-
»

-
*

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
^
»

0
-
»

-
»

0
0

0
0

0
-
i
O

O
-
>

-
i
O

O
O

O
O

O
O

O
O

-
*

—
*

—
»

-
»

—
a

—
i
O

O
O

O
O

O
O

O
O

O
-
^
O

—
»

o
o

o
o

—
»

o
o

o
—

*
—

»
o

o
o

—
*

-
»

-
»

-
»

0
O

O
O

O
O

O
O

O
O

—
»

-
»

-
»

-
»

-
»

-
»

—
»

—
»

0
'
0

-
»

0
0

-
»

-
-
»

0
0

0
-
i
-
i
O

O
'
0

-
»

-
»

;
0

0
o

o
o

-
»

-
»

o
o

-
»

-
»

-
»

-
»

-
»

-
»

o
o

o
o

o
o

-
»

-
»

o
o

o
-
»

o
o

o
-
»

o
-
*

o
-
»

-
»

-
»

-
»

o
o

-
»

o
—

»
o

o
o

o
—

*
—

»
-
*

—
»

o
o

o
o

—
»

—
»

-
*

—
^
o

o
o

o
o

o
o

o
-
*

—
^
o

o
-
^
-
^
o

o
-
i
-
^
o

—
*

o
-
*

o
O

—
»

-
»

-
»

-
»

0
O

O
O

-
»

-
*

O
O

-
»

-
»

0
O

-
*

-
»

-
»

-
»

-
»

-
»

0
0

-
»

—
»

o
o

-
»

-
»

o
o

-
»

O
—

i
O

-
^
O

-
^
O

—
»

o
—

>
o

—
»

o
—

»
o

—
»

o
—

*
o

—
^
o

-
^
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

C
I

o
o

o
o

o
C

J
(-

>
o

n
o

o
o

o
o

o
o

o
o

o
o

a
o

o
o

O
o

<
-)

o
a

o
n

o
n

o
n

a
o

a
o

o
o

<
_)

C
J

C
J

o
o

o
o

o
o

C
D

o
o

o
o

n
o

n
o

r
-
i

a
n

o
(
-
)

o
o

o
(_

)
C

-J
o

o
C

D
o

o
C

J
C

)
r
j

o
o

o
<

->
n

n
o

O
<

-)
o

n
o

(-
>

o
n

r~
>

a
<

_>
u

o
o

o
t_

)
o

—
^

•
i

O
o

—
a

—
A

_
&

—
i

&
&

n
o

a
O

n
_

i
—

A
—

i
—

*
*

—
1

—
i

—
1

—
&

—
*

^
A

a
a

a
^

^
—

A
_

a
^

^
i

.,
,
\

(
-
i

o
o

—
a

*
A

o
o

o
o

o
o

—
i

•~
a>

o
o

o
O

c
-
i

o
_

*
—

a
^

_
a

o
o

n
n

—
*

—
:
.

O
o

—
i

—
a

—
s
.

_
2

—
*

a
(
.J

o
—

i
a

—
a

—
a

—
a

—
i

o
C

!
n

o
n

o
r
>

O
^

o
o

C
_)

o
t_

>
<

_>
o

o
_

*
—

a
—

a
—

i
r

)
o

O
o

a
n

—
^

a
—

^
^

i
^

n
o

o
—

*
—

a
—

*
—

i
—

i
—

A
C

_>
C

J
—

a
—

i
—

i
—

a
—

a
—

a
o

n
o

o
o

o
*

%
a

n
o

—
^

—
*

C
J

o
1

—
a

C
J

o
i

_
i

<
_>

o
—

i
—

a
C

J
o

^
—

^
—

a
—

i
o

<
-]

n
<

->
^

_
a

a
—

*
o

_
i

o
—

*
o

—
*

a
—

^
o

-
*

C
O

—
i

o
a

o
-
»

o
—

»
o

—
1

o
—

>
o

i
o

r+
*T

l
*

J

H
i

w
o

re
o

to
Q

.
^
|

3
o

sr
c

0

G
ra

ph
ic

s

•i
ff

v
a

\
i
f

o
j

r
o

o
o
o
o
o
o
o
o
o
o
o
o
o

o
o
o
o
o
o
o
o
o
o
o
o
o

o
o
o
o
o
o
o
o
o
o
o
o
o

o
o
o
o
o
o
o
o
o
o
o
o
o

o
o
o
-
»
-
»
-
»
o
o
o
-
»
o
o
-
»

-
»

0
-
»

0
0

0
-
»

-
»

0
0

-
»

0
-
»

0
-
i
O

-
»

-
»

O
O

0
-
»

O
-
>

O
_

»
o

-
»

-
»

o
-
»

o
o

-
»

o
-
»

o
-
»

o
o

-
»

o
o

-
»

-
^

o
-
»

o
o

-
»

r
?d

SP
^

3 J
o

-

3 3
w

2?
c
r

o o
ff

l

r
js

#>

3
3

or
o.

o o fl
!w

5? ft
! C T
3

G
ra

ph
ic

s

H
H

M
\
0

C
0

0
C

N
l
-
J
O

7
l
U

l
A

U
U

M
H

t
-
'
l
>

.
H

-
'O

O
0

^
s
0

0
J
O

O
4

^
~

J
i
-
I
>

t
^

C
»

W
C

n
\
0

W
4

^
U

l
0

5
W

O
O

.
N

0
5

*
O

0
>

M
!
0

i
|
i
O

O
W

0
5

W
0

0
4

i

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
-
»
-
»

—
i

—
i

—
i

—
i

—
a

—
a

—
^

—
i

—
a

—
>

-J
fc

•
—

a
o

o
—

*
—

*
o

—
*

o
o

o
o

o
o

o
o

o
o

o
o

-
»

-
»

o
-
»

-
»

-
»

_
»

_
»

_
»

_
i
_

»
_

>
O

O
O

-
»

0
0

O
O

-
»

-
»

0
-
»

0
0

0
O

O
0

-
»

-
»

-
»

0
-
»

-
>

-
»

-
»

-
»

-
i

—
&

m
*

-
^

—
a

o
O

—
*

—
*

—
->

'
O

0
:
-
0

—
*

—
*

—
*

—
i

—
i

o
o

—
*

—
*

o
o

—
*

o
—

*
o

—
*

o
_

i
O

-
»

0
-
*

0
-
»

0

H
h

'
M

(
0

0
)
a
i
»

I
^

O
i
U

l
O

l
*

(
<

I
U

M
I
-
'
l
-
i
f
f
i

H
O

O
O

i
^

<
J
O

O
f
M

H
*

.
a
w

(
/
i
\
D

N
*

>
C

n
C

0
N

>
O

<
J
N

K
>

C
0

>
J
^

©
C

>
t
0

0
0

>
»

i
©

<
3

N
N

>
C

0
tO

C
O

4
^

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
-
*
-
*
o

o
o
o
o
o
o
o
o
o
o
o
o
o
o
-
*
-
»
-
»
o

_
»

_
»

_
^

_
a
_

a
_

»
_

»
_

»
_

»
_

i
_

»
-
j
>

_
»

_
»

0
0

0
-
»

_
a
_

»
_

»
_

j
.
_

»
0

0
0

0
-
»

-
»

-
»

-
»

-
^

-
»

0
0

-
»

_
»

_
»

_
*

_
»

_
»

o
o

o
o

o
o

o
o

o
-
»

-
»

-
»

-
»

o
o

o
o

o
-
»

-
j
>

-
»

—
»

-
»

-
»

-
»

-
»

o
o

o
o

-
»

_
a
-
»

-
i
O

O
-
»

-
»

0
0

-
»

-
i
O

O
-
»

-
»

0
0

_
»

O
0

-
i
-
»

O
0

-
»

-
»

0
O

-
»

O
-
*

-
»

-
»

0
0

-
»

0
-
»

0
-
»

0
-
»

0
-
i
0

1
-

><
2

s
_
^

0
M

g
.

-.
1

3
\
0

TO
.

q

t-
1

~
??

•53
K

3
a

0
3

gj
g

bs
»

—

c •
a 0

O
«

0
0

ta
(
j-

C
L

*
*

r
e

r
e

r
e 3 •a

re
~

*
<

3 O
re

3
ti

l
ft

!
J
T

(J — 0
g

0
SS

'
_

?
r

fl
>

CD

t
3 "
a

O
O

O
O

t
/
i
c
n

c
/
i
c
n

c
/
i
c
n

c
n

t
n

C
J
W

M
O

>
f
l
S

O
-
v

l
O

\
u

\
i
t
i
'j

J
t
O

0
0
0
0
0
0
0
0
0
0
0
0

o
o
o
-
»
-
»
-
»
-
»
-
»
-
»
o
o
-
»

-
»
-
»
-
»
o
o
o
o
o
o
-
»
-
»
o

_
»
_
»
_
»
o
o
-
»
-
»
-
»
-
»
o
o
-
»

o
o
o
-
»
-
»
-
*
-
»
-
»
-
»
o
o
o

—
a

o
o

o
o

o
o

o
o

—
*

—
•
*

—
*

o
-
»
-
»
-
»
-
»
-
»
-
»
o
o
o
o
o

o
—
»
o
-
»
o
-
»
o
-
l
o
-
»
o
-
»

c
>

o
\
o

\
o

i
u

i
o

i
'
j
i
a
i
y

i
w

o
i
u

i
W

t
O

i
-
i
O

O
O

O
-
J
O

C
n

^
W

M

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

-
»
-
»
_
»

O
o

—
a
.

-
A

O
-
^

—
*

o
o

-
»

o
o

o
o

-
»

-
»

-
»

_
»

_
»

o
-
»

o

-
»

o
o

o
-
»

0
0
0
0
0
0
0

0
0
0
0
0
0
0

0
0
0
0
0
0
0

o
o

o
o

o
o

o
0
0
0
0
0
0
0

-
»

-
»

o
o

o
o

o
o

o
-
»

-
»

-
1

-
»

-
»

_
*

_
»

o
o

-
»

-
>

o
_
»
_
»
_
»

o
-
»

o
o

o
o

o
-
»

o
-
»

-
»

o
o

o
-
»

o
-
»

o
-
»

o
o

-
»

o
-
»

o

— re
f?

9P
^

3 J
o

.
3

ff
l

37

If
re

c
r

0
*•"

8
£

.
re

re

^
£

3
3

cs
g;

J
O
. 3
-

r
e

O o a
.

r
e I-

Tag Image Format (TIFF) 753

White Make-up White Make-up

& Black Code Word & Black Code Word

Run Run

Length Length

1216 011011000 1216 0000001110111

1280 011011001 1280 0000001010010

1344 011011010 1344 0000001010011

1408 011011011 1408 0000001010100

1472 010011000 1472 0000001010101

1536 010011001 1536 0000001011010

1600 010011010 1600 0000001011011

1664 011000 1664 0000001100100

1728 010011011 1728 0000001100101

EOL 000000000001 EOL 000000000001

Additional make-up codes

White Make-up

& Black Code Word

Run

Length

1792 00000001000

1856 00000001100

1920 00000001101

1984 000000010010

2048 000000010011

2112 000000010100

2176 000000010101

2240 000000010110

2304 000000010111

2368 000000011100

2432 000000011101

2496 000000011110

2560 000000011111 Table 27.90

FAX coding
tables

(cont.)

If a line is scanned, the scanner will store the table codes in the output file according to the
number of white or black pixels. In TIFF format, the conditions described above apply.

Further information on the structure of the CCITT/3 tables is provided in the corresponding
ISO documentation.

754 Graphics formats

27.3.4 LZW Compression (Code 5)

This method of compression uses adaptive techniques to generate code tables. The algorithm itself
has already been presented in the description of GIF (see Chapter 26). The following conditions
apply to the TIFF compression process:

♦ With LZW, each strip must be compressed separately.

♦ A maximum of 8 Kbytes of uncompressed data may be contained in each strip

♦ The code length is variable, but must not exceed 12 bits. The table should be rebuilt for each
strip.

If BitsPerSample = 4, each LZW code byte contains two (4-bit) pixels. At the start, the table
can be initialized with the values 0 to 255. The first code issued is the clear code. Each strip

should be terminated with an EndOflnformation code. LZW compressed strips must begin on byte
boundaries. Alignment on word boundaries is not necessary. FillOrder is always taken to be 1. The

compressed codes are stored byte-wise.

f
The Unisys Corporation holds a patent on the LZW compression process. Software
developers who use this method for image compression require a license from this

• company.

27.3.5 JPEG Compression

From TIFF version 6.0 onwards, JPEG compression is incorporated in the specification. The JPEG
specification is an ISO standard and describes several compression variants. With Baseline
compression, image information can be lost. The alternative provided is therefore referred to as
the Lossless compression process. The prerequisite for the use of JPEG compression is that the
image data contains 8 bit values for each component. Otherwise, the image data should be coded
in bytes initially.

The compression variants are presented briefly in the TIFF 6.0 specification manual. A very
good secondary reference is provided by W.B. Pennebaker and J.L Mitchell, JPEG Still Image
Compression Standard, Van Nostrand Reinhold, ISBN 0-442-01272-1. The book contains the ISO
specification for the JPEG process in the appendix.

Computer Graphic Metafile format
(CGM)

Computer Graphic Metafile format enables the
exchange of graphics between different
computers. The definition of the metafile

format was internationally standardized in 1987
(ISO 8662). Many American software manufacturers
(for example, WordPerfect, Lotus) now support the
CGM definition for the description of graphic data.
This definition is closely related to the Graphic Kern
System (GKS), and GKS Level 0 outputs are
interchangeable with CGM. CGM files can also be
interchanged with the recent ISO 8613 standard
Office Document Architecture (ODA) and
Interchange Format. CGMfiles can also be imported
using the language SGML, as described in Chapter
20.

From a practical viewpoint, CGM driver implementations are currently available for MS-DOS,
OS/2, UNIX and VAX/VMS, the most well-known being the implementation by Graphic Software
Systems. Certain sections of the CGM format are described below. There are three different
methods of coding the CGM file:

♦ Coding in plain text as an ASCII file with embedded control sequences

♦ Binary coding of all data, parameters and commands

♦ Output using the 94 printable ISO 646 characters

Binary coding is ideal for storing and processing on computers, while plain text printout is
more suitable for manual processing. The ISO character coding was specified for data exchange
between computers.

755

756 Graphics formats

28.1 Binary CGM Coding

Commands and parameters in this coding are stored in records. A record always begins on a word
boundary. Records with an odd number of bytes are aligned with a word boundary by appending a
null byte. Figure 28.1 shows the structure of a record:

Opcode

Length of

Parameter List

Parameter

List

— Begin Metafile (0000 0000 0011 0000

5 Byte

Parameter

Lid 1

— list begin
Metafile

Len - continued

Len = 32 not

continued

— Metafile
Descriptor
Parameter list

Metafile
Descriptor

00 30 0E 43 3A 5C 46 4C-5C 42 4F 52 4E 2E 43 47

. 0. C:\FL\B0RN.CG

Metaf le Version

Metafile Descriptor
(0001 0000 0101 1111)

- Glass

I

-id = 2

= 1

I

4D DO 10 22 00 01 10 5F-00 20 1E 46 72 65 65 6C

M . . " F r e e 1

I
61 6E 63 65 20 4D 65 74-61 66 69 6C 65 20 56 65

ance Metafile Ve

r~

— Integer-
Precision

72 73 69 6F 6E 20 32 2E-31 00 10 62 00 00 10 82

rsion 2 . 1 . . b

00 10 10 A6 00 01 00 10-00 10 10 C2 00 10 10 E2

00 10 11 02 00 10 11 22-00 10 11 4C 00 00 00 00

00 00 00 64 00 64 00 64-11 7F 00 DE 00 37 00 00

00 01 00 00 00 02 00 00-00 03 00 00 00 04 00 00

00 05 00 01 00 01 00 01-00 02 00 01 00 03 00 01

00 04 00 01 00 05 00 01-00 06 00 01 00 08 00 01

Figure 28.1
Structure of a

CGM record

Figure 28.2

Hex dump of
binary CGM
records

(continues
over...)

Computer Graphic Metafile format (CGM) 757

" OU D4

00 09

OU

00

UI

01

uu

00

05

OD

00

00

Ul-UU

02-00

U6

01

00

00

UI

02

00

00

08

02

ulT

00

UI

02

T-v 1 > (i'-l

00 03 00 02 00 04 00 02-00 05 00 02 00 06 00 03

00 01 00 03 00 04 00 03-00 06 00 04 00 01 00 04

00 03 00 04 00 04 00 04-00 07 00 04 00 OB 00 04

00 OC 00 04 00 OF 00 04-00 10 00 04 00 11 00 04

00 12 00 04 00 13 00 05-00 02 00 05 00 03 00 05

00 04 00 05 00 06 00 05-00 07 00 05 00 08 00 05

00 OA 00 05 00 OE 00 05-00 OF 00 05 00 10 00 05

00 12 00 05 00 16 00 05-00 17 00 05 00 18 00 05

00 1B 00 05 00 1C 00 05-00 1D 00 05 00 1E 00 05

00 22 00 06 00 01 00 07-00 02 11 BF 00 60 11 53

. ' S

61 6E 73 2D 73 65 72 69-66 20 53 74 72 6F 6B 65

a n s - s e r i f s t p 0 k e

11 53 61 6E 73 2D 73 65-72 69 66 20 53 74 72 6F

. S a n s - s e r i f s t r 0

6B 65 11 53 61 6E 73 20-73 65 ?'? 69 66 20 53 74

k e S a n s - s e r i f S t

72 6F 6B 65 11 53 61 6E-73 20 73 65 72 69 66 20

r o k e S a n s - s e r i f

53 74 72 6F 6B 65 05 53-77 69 73 73 05 53 77 69

S t r 0 k e S w i s s S w i

73 73 05 53 77 69 73 73-05 53 77 69 73 73 70 44

s s S w i s 5 S w 1 s s P 0

4C 42 01 01 00 6A 08 50-49 43 54 55 52 45 31 00

L B i P I C T U R E 1

20 26 00 00 00 00 00 00-20 42 00 00 20 62 00 00

20 82 00 00 20 A2 00 00-20 C8 00 00 00 00 7F FF

60 B8 00 80 54 5F 00 4A-00 01 00 00 00 00 00 00

00 00 00 00 00 3F 00 00-00 3F 00 00 00 57 00 00

00 00 00 64 00 20 00 06-00 30 00 08 00 05 00 30

00 05 00 4C 00 05 00 5F-00 64 00 64 00 57 00 05

00 43 00 05 00 20 00 00-00 00 00 00 00 00 00 00

00 3F 30 22 00 10 30 82-00 01 30 C2 00 00 51 C2

00 01 51 42 00 01 51 E2-02 AA 52 08 00 00 02 AA

02 AA 00 00 52 4C 00 01-00 02 00 00 00 00 00 00

00 00 40 98 28 FO 30 84-00 01 11 54 68 69 73 20

3 (0 T h i s

69 73 20 61 20 54 65 78-74 20 20 20 20 20 00 01

i s 8 T e x t

50 42 00 01 50 62 00 01-40 28 29 6F 3E 27 42 18

P B P b

3E 27 53 A2 00 01 53 C2-00 01 53 62 00 01 53 82

00 01 52 E2 00 01 52 C2-00 04 41 68 OE CC 27 F4

23 05 39 B7 41 86 36 80-4B 28 OA 5B 52 C2 00 01

40 F4 56 8F 40 28 63 23-4D B2 63 23 42 97 53 1C

_L
bnd Metafile

(class 0, Id 1,
LenO)

42 97 53 1C 49 91 00 AO-00 40

B . S I a

Figure 28.2
Hex dump of
binary CGM
records

(cont.)

758 Graphics formats

Figure 28.2 shows part of a CGM file as a hex dump. With CGM files that have been created on
PCs, it should be noted that the higher value byte of a word is stored first (lower address), contrary
to the Intel convention. This is particularly clear in Figure 28.2.

The opcode and the length of the parameter list are stored in the record header as shown in
Figure 28.3:

Bit 15 1211

I I.I.IL
rr

5 4 0

i i i ill i~rn

Length of parameter List

ELement Identifier

ELement CLass
Figure 28.3

Short form of a

record header

In the form shown in Figure 28.3, the header requires only one 16 bit word to store a CGM
command. Bits 12-1 5 contain a code specifying the class of the metafile element. This is followed
by the code (id) for the actual element in bits 5-11. These two entries function as an opcode
within the header. Since a different number of parameters is defined for each opcode, these
elements are followed by the length of the parameter list in bytes. For lists containing up to 30
bytes, the length is stored in bits 0-4 of the first word (Figure 28.3). To enable longer parameter
lists to be stored, there is also an extended record header, as shown in Figure 28.4.

CLass ID 11111

P Length of parameter List Figure 28.4
Extended record

header

The extended record header occupies 2 words. As before, the first word contains the code of
the metafile element. Bits 0 to 4 of the length field contain the binary signature 11111. This
signifies that the following word is required by the header. The second word contains the length of
the parameter list in bytes, in bits 0 to 14. The top bit acts as a flag (P). If the parameter list
contains more than 127 bytes, its length cannot be accommodated in the length field. One solution
to this problem is to split the parameter list into several partial lists each containing a maximum
of 127 bytes. The P flag in the top bit of the second word indicates whether the parameter list is
followed by an additional partial list. The chain of partial lists continues until the P flag contains
the value 0 (Figure 28.5).

Negative values within the parameter list are stored in two's complement form and real
numbers in IEEE floating point format. In the short form, a string may contain up to 254
characters, with its length being stored in the first byte of the ASCII string. In the long form, the

Computer Graphic Metafile format (CGM) 759

string is stored as a series of partial strings. The first byte of a string contains the value FFH, and
the length of the first partial string is stored in the following two bytes. The top bit of this word
acts as an indicator for chained partial strings. If this bit is set to 1, the remaining bits indicate the
length of the partial string, and the string itself is followed by another string of the same structure.
The last character string has the top bit in the string header set to 0.

CLass ID 11111

1 Length of parameter List 1

Parameter List 1

1 Length of parameter List 2

Parameter List 2

0 Length of parameter List 3

Parameter List 3

In binary coding, a metafile contains opcodes as shown in Table 28.1.

Class ID Element Name

0 1 Begin Metafile
0 2 End Metafile

0 3 Begin Picture
0 4 Begin Picture Body
0 5 End Picture

1 Metafile Version

2 Metafile Description
3 VDCType

4 Integer Precision

5 Real Precision

6 Index Precision

7 Color Precision

8 Color Index Precision

9 Maximum Color Index

10 Color Value Extent

11 Metafile Element List

12 Metafile Defaults Replacements
13 Font List

Figure 28.5
Chained

parameter list

Table 28.1

Metafile opcodes
for binary
encoding
(continues
over...)

760 Graphics formats

Class ID Element Name

1 14 Character Set List

1 15 Character Coding Announcer
2 1 Scaling Mode

2 2 Color Selection Mode

2 3 Line Width Specification Mode

2 4 Marker Size Specification Mode
2 5 Edge Width Specification Mode
2 6 VDC Extent

2 7 Background Color

3 1 VDC Integer Precision

3 2 VDC Real Precision

3 3 Auxiliary Color
3 4 Transparency

3 5 Clip Rectangle

3 6 Clip Indicator

4 1 Polyline

4 2 Disjoint Polyline

4 3 Polymarker

4 4 Text

4 5 Restricted Text

4 6 Append Text

4 7 Polygon

4 8 Polygon Set

4 9 Cell Array

4 10 Generalized Drawing Primitive

4 11 Rectangle

4 12 Circle

4 13 Circular Arc 3 Point

4 14 Circular Arc 3 Point Close

4 15 Circular Arc Centre

4 16 Circular Arc Centre Close

4 17 Ellipse

4 18 Elliptical Arc

4 19 Elliptical Arc Close
5 1 Line Bundle Index

5 2 Line Type

5 3 Line Width

5 4 Line Color

5 5 Marker Bundle Index

5 6 Marker Type

5 7 Marker Size

Table 28.1

Metafile opcodes
for binary
encoding
(cont.)

Computer Graphic Metafile format (CGM) 761

Class ID Element Name

5 8 Marker Color

5 9 Text Bundle Index

5 10 Text Font Index

5 11 Text Precision

5 12 Character Expansion Factor

5 13 Character Spacing
5 14 Text Color

5 15 Character Height
5 16 Character Orientation

5 17 Text Path

5 18 Text Alignment
5 19 Character Set Index

5 20 Alternate Character Set Index

5 21 Fill Bundle Index

5 22 Interior Style
5 23 Fill Color

5 24 Hatch Index

5 25 Pattern Index

5 26 Edge Bundle Index
5 27 Edge Type
5 28 Edge Width
5 29 Edge Color
5 30 Edge Visibility
5 31 Fill Reference Point

5 32 Pattern Table

5 33 Pattern Size

5 34 Color Table

5 35 Aspect Source Flags
6 1 Escape
7 1 Message
7 2 Application Data

Table 28.1

Metafile opcodes
for binary
encoding
(cont.)

The following standard settings apply to the binary encoding mode:

♦ Real Precision values are represented as fixed point numbers in 32 bits
(16 bit numerator, 16 bit denominator).

♦ Integer Precision values are represented in 16 bits.

♦ For Color Precision, one byte is used per color.

♦ Index Precision values require 16 bits; ColorIndex Precision values require 8 bits.

762 Graphics formats

♦ The VDC EXTENT setting for REAL is (0.0,0.0), (0.999... ,0.999...); for Integers the setting
is (0,0),(32767,32767)

♦ The values for color extensions (Color Extent) are between (0,0,0) and (255,255,255).

The coding for the parameter lists can be found in the appropriate ISO documentation. A brief
outline is given at the end of this chapter.

28.2 Coding as ASCII text

The ASCII plain text mode was defined to enable metafiles to be created, printed and tested using

a text editor. The syntax for all commands is as follows:

Opcode <sep> Operand <sep> Operand...<term>

The end of each command is marked with a terminator <term>. Either a semicolon (;) or an

oblique (/) may be used here. Spaces, tabs or commas can be used as separators <sep>. Operands
are displayed in plain text and numbers can be enclosed in brackets to improve legibility. Real
numbers are represented in the usual Fortran notation, with a decimal point in exponential or
floating point notation (Em.n or Fm.n). Integer values may also be terminated with a decimal
point. Numbers can be indicated in any numbering system with a base between 2 and 16. So-
called zero characters (for example, the $ sign or an underline) can be included in the commands.
These characters are ignored by the CGM parser, but they may enhance the legibility of the text.

Strings must be enclosed in single (') or double (") inverted commas. Two of these characters
appearing consecutively indicate that one of them is an element of the string. There must be no
separator between strings and other operators.

Comments can be included in the CGM file by enclosing them between percentage signs (I).
They will be skipped by the parser. This type of comment may extend over several lines.

Table 28.2 lists the keywords in the ASCII coding:

Computer Graphic Metafile format (CGM) 763

Name Element Name

BEGMF Begin Metafile

ENDMF End Metafile

BEGPIC Begin Picture

BEGPICBODY Begin Picture Body

ENDPIC End Picture

INVERSION Metafile Version

MFDESC Metafile Description

VDCTYPE VDC Type

INTEGERPREC Integer Precision

REALPREC Real Precision

INDEXPREC Index Precision

COLRPREC Color Precision

COLRINDEXPREC Color Index Precision

MAXCOLRINDEX Maximum Color Index

COLRVALUEEXT Color Value Extent

MFELEMLIST Metafile Element List

BEGMFDEFAULTS Metafile Defaults Replacements

ENDMFDEFAULTS
u

FONTLIST Font List

CHARSETLIST Character Set List

CHARCODING Character Coding Announcer

SKALEMODE Scaling Mode

COLRMODE Color Selection Mode

LINEWIDTHMODE Line Width Specification Mode

MARKERSIZEMODE Marker Size Specification Mode

EDGEWIDTHMODE Edge Width Specification Mode

VDCEXT VDC Extent

BACKCOLR Background Color

VDCINTEGERPREC VDC Integer Precision

VDCREALPREC VDC Real Precision

AUXCOLR Auxiliary Color

TRANSPARENCY Transparency

CL1PRECT Clip Rectangle

CLIP Clip Indicator

Table 28.2

Metafile opcodes
for ASCII

encoding
(continues
over...)

764 Graphics formats

Name Element Name

LINE Polyline

INCRLINE

DISJTLINE Disjoint Polyline
INCRDISJTLINE

MARKER Polymarker
INCRMARKER

TEXT Text

RESTRTEXT Restricted Text

APNDTEXT Append Text
POLGON Polygon
INCRPOLYGON

POLGONSET Polygon Set

INCRPOLGONSET

CELLARRAY Cell Array

GDP Generalized Drawing Primitive
RECT Rectangle

CIRCLE Circle

ARC3PT Circular Arc 3 Point

ARC3PTCLOSE Circular Arc 3 Point Close

ARCCTR Circular Arc Centre

ARCCTRCLOSE Circular Arc Centre Close

ELLIPSE Ellipse

ELLIPARC Elliptical Arc

ELLIPARCCLOSE Elliptical Arc Close
LINEINDEX Line Bundle Index

LINETYPE Line Type

LINEWIDTH Line Width

LINECOLOR Line Color

MARKERINDEX Marker Bundle Index

HARKERTYPE Marker Type

MARKERSIZE Marker Size

MARKERCOLR Marker Color

TEXTINDEX Text Bundle Index

TEXTFONTINDEX Text Font Index

TEXTPREC Text Precision

CHAREXPAN Character Expansion Factor

CHARSPACE Character Spacing

TEXTCOLR Text Color

CHARHEIGHT Character Height

CHARORI Character Orientation

TEXTPATH Text Path

Table 28.2

Metafile opcodes
for ASCII

encoding
(cont.)

Computer Graphic Metafile format (CGM) 765

Name Element Name

TEXTALIGN Text Alignment

CHARSETINDEX Character Set Index

ALTCHARSETINDEX Alternate Character Set Index

FILLINDEX Fill Bundle Index

INTSTYLE Interior Style
FILLCOLR Fill Color

HATCHINDEX Hatch Index

PATINDEX Pattern Index

EDGEINDEX Edge Bundle Index
EDGETYPE Edge Type

EDGEWIDTH Edge Width
EDGECOLR Edge Color
EDGEVIS Edge Visibility

FILLREFPT Fill Reference Point

PATTABLE Pattern Table

PATSIZE Pattern Size

COLRTABLE Color Table

ASF Aspect Source Flags

ESCAPE Escape

MESSAGE Message

APPLDATA Application Data

28.2

Metafile opcodes
for ASCII

encoding
(cont.)

The following standard settings apply to the Plain Text Encoding method:

♦ Real Precision values lie between -32767 and 32767.

♦ Integer Precision values lie between -32767 and 32767.

♦ For Color Precision, the maximum value for a component is 255.

♦ Index Precision values lie between 0 and 127. The maximum integer value for Color Index
Precision is 127.

♦ The VDC EXTENT setting for REAL is between 0.0 and 1.0, with 4 digits set. For integers, it is
between -32767 and 32767.

♦ Values for color extensions (Color Extent) are between (0,0,0) for black and (255,255,255) for
white.

The coding for the parameter lists is shown in the relevant ISO documentation.

766 Graphics formats

28.3 Character coding with ISO characters

As a third option, closely related to the plain text coding described above, a metafile can be
displayed using the ISO 646 7 or 8 bit ASCII codes. In this case, the opcode is specified by one or
two characters from the relevant ISO 646 table. Table 28.3 lists the commands together with the

ISO characters used:

Codel Code2 Element Name

3/0 2/0 Begin Metafile

3/0 2/1 End Metafile

3/0 2/2 Begin Picture

3/0 2/3 Begin Picture Body

3/0 2/4 End Picture

3/1 2/0 Metafile Version

3/1 2/1 Metafile Description

3/1 2/2 VDC Type

3/1 2/3 Integer Precision

3/1 2/4 Real Precision

3/1 2/5 Index Precision

3/1 2/6 Color Precision

3/1 2/7 Color Index Precision

3/1 2/8 Maximum Color Index

3/1 2/9 Color Value Extent

3/1 2/10 Metafile Element List

3/1 Metafile Defaults Replacements

2/11 Begin Metafile Defaults
2/12 End Metafile Defaults

3/1 2/13 Font List

3/1 2/14 Character Set List

3/1 2/15 Character Coding Announcer

3/2 2/0 Scaling Mode

3/2 2/1 Color Selection Mode

3/2 2/2 Line Width Specification Mode

3/2 2/3 Marker Size Specification Mode

3/2 2/4 Edge Width Specification Mode

3/2 2/5 VDC Extent

3/2 2/6 Background Color

3/3 2/0 VDG Integer Precision

3/3 2/1 VDC Real Precision

3/3 2/2 Auxiliary Color

3/3 2/3 Transparency

Table 28.3

Metafile opcodes
for ISO 646

encoding
(continues
over...)

Computer Graphic Metafile format (CGM) 767

Godel Code2 Element Name

3/3 2/4 Clip Rectangle
3/3 2/5 Clip Indicator
2/0 Polyline
2/1 Disjoint Polyline
2/2 Polymarker
2/3 Text

2/4 Restricted Text

2/5 Append Text
2/6 Polygon

2/7 Polygon Set
2/8 Cell Array
2/9 Generalized Drawing Primitive
2/10 Rectangle
3/4 2/0 Circle

3/4 2/1 Circular Arc 3 Point

3/4 2/2 Circular Arc 3 Point Close

3/4 2/3 Circular Arc Center

3/4 2/4 Circular Arc Center Close

3/4 2/5 Ellipse
3/4 2/6 Elliptical Arc
3/4 2/7 Elliptical Arc Close
3/5 2/0 Line Bundle Index

3/5 2/1 Line Type
3/5 2/2 Line Width

3/5 2/3 Line Color

3/5 2/4 Marker Bundle Index

3/5 2/5 Marker Type
3/5 2/6 Marker Size

3/5 2/7 Marker Color

3/5 3/0 Text Bundle Index

3/5 3/1 Text Font Index

3/5 3/2 Text Precision

3/5 3/3 Character Expansion Factor
3/5 3/4 Character Spacing
3/5 3/5 Text Color

3/5 3/6 Character Height
3/5 3/7 Character Orientation

3/5 3/8 Text Path

3/5 3/9 Text Alignment
3/5 3/10 Character Set Index

3/5 3/11 Alternate Character Set Index

Table 28.3

Metafile opcodes
for ISO 646

encoding
(cont.)

768 Graphics formats

Codel Code2 Element Name

3/6 2/0 Fill Bundle Index

3/6 2/1 Interior Style

3/6 2/2 Fill Color

3/6 2/3 Hatch Index

3/6 2/4 Pattern Index

3/6 2/5 Edge Bundle Index
3/6 2/6 Edge Type

3/6 2/7 Edge Width
3/6 2/8 Edge Color

3/6 2/9 Edge Visibility

3/6 2/10 Fill Reference Point

3/6 2/11 Pattern Table

3/6 2/12 Pattern Size

3/6 3/0 Color Table

3/6 3/1 Aspect Source Flags

3/7 2/0 Escape

3/7 3/0 Domain Ring

3/7 2/1 Message

3/7 2/2 Application Data

Table 28.3

Metafile opcodes

for ISO 646

encoding
(cont.)

The ISO character coding was defined to enable the exchange of CGM files via communication
lines. There are two methods of coding the parameters:

In Basis Coding, each byte of an operand contains the reserved bits, which indicate whether
this is the last byte. In Bitstream Format, each parameter list is preceded by its length. Strings are
enclosed between the characters ESCX and ESC[. Control characters, such as Space, Tilde or
Delete, can be replaced by 2-character codes. This type of sequence always begins with the ISO
code 7/14 4-s.

28.4 Metafile Commands

Several images can be stored in one metafile. Appropriate separators are used to distinguish
between pictures in the file. All the details given below relate to Plain Text Coding. A metafile
contains certain structural elements, which are placed at the beginning and end of the file and the
image. Figure 28.6 gives an example ofa minimal metafile:

4) D.B. Araold/P.R. Bono: CGM and CGI, Metafiles and Interface Standards for Computer Graphics,
Springer Verlag, Berlin, 1988, ISBN 0-387-18950-5

5) Computer Graphics Metafile for theStorage and Transfer of Picture Descrition Information.
ISO 8632, Parts 1-4

Computer Graphic Metafile format (CGM) 769

BEGMF 'MetafiLe-•ExampLe f

MFVERSION 1;

MFELEMLIST drawingpLus;

°L first picture in the fi Le %

BEGPIC 'Picture V;

BEGPICBODY;

ENDPIC;

% second picture in the f i Le %

BEGPIC 'Picture 2';

BEGPICBODY;

ENDPIC;

ENDMF;

Figure 28.6
Example of a
Minimal Metafile

The file starts with a header containing the command BEGMF, the version number and the list
of elements. This is followed by an image delimited by the separators BEGPIC and ENDPIC. The
file contains two image areas. No image is displayed at this stage because the image description,
which would have to be positioned between BEGPICBODY and ENDPIC, is missing. The
commands MFVERSION and MFELEMENT are mandatory in every metafile. The individual
instructions are described in more detail below.

Metafile Version

This command, which indicates the version of CGM, is mandatory. All CGM files that comply with
the 1985 ISO 8632 standard must use version number 1.

Metafile Description

This command contains a string giving various additional items of information (for example,
author, place) as an optional parameter. The content of the strings is not standardized.

VDC Type

This command is optional and indicates whether the Virtual Device coordinates are to be shown
as real or integer values. The default setting is for integer values.

770 Graphics formats

Integer Precision

This optional command is used to establish the resolution of operands of type Integer, for various
coding processes.

Real Precision

This optional command is used to establish the resolution of operands of type Real, for various
coding processes.

Index Precision

This optional command is used to establish the resolution of operands of type Index, for various
coding processes.

Color Precision

This optional command is used to establish the resolution of operands of type Color, for various
coding processes.

Color Index Precision

This optional command is used to establish the resolution of operands of type Color Precision, for
various coding processes.

Maximum Color Index

This command indicates the upper limit of the index table for the metafile and enables the size of
the color table to be defined. The standard maximum value for this index is limited to 63.

Color Value Extent

This optional command contains two parameters (Minimum value, Maximum value), which
indicate the upper and lower limit for color values. The minimum value relates to the RGB setting
(0,0,0), the maximum value to the setting (1,1,1).

Metafile Element List

This command is mandatory. It lists each of the elements contained in the file. The standard
designators DRAWING SET (covers a number of elements) and DRAWING PLUS CONTROL SET
cover all the metafile elements. If these designators are used, it is not necessary to list the
elements explicitly.

Computer Graphic Metafile format (CGM) 771

Metafile Defaults Replacement

This command enables the transfer of a list of parameters which replace the default settings. The
commands are enclosed between the separators BEGMFDEFAULTS and ENDMFDEFAULTS. The
parameter LINEWIDTHxx, for example, enables the width of a line to be reset.

Font List

This optional command is used to indicate a list of fonts used. The list of font names is allocated
sequentially from FONT INDEX1 to FONT INDEX n.

Character Set List

This optional command contains the parameters Character Set Type and Designation Sequence
Tail and can be used in the Character Set Index and Alternate Character Set Index sequences. It
is used for selecting character sets (for example, Japanese characters, German Umlaut).

Character Coding Announcer

This optional command signals to the interpreter that code extensions are to be used. The
characters may be in the form of BASIC 7-bit, BASIC 8-bit, EXTENDED 7-bit or EXTENDED 8-bit.

Scaling Mode

This command contains the parameters mode and scalefactor. The mode may be ABSTRACT or
METRIC.

Color Selection Mode

This command selects the coding for the color ofan image (direct or by index). The default setting
is for just one color index to be indicated, so that the color has to be derived from a table, but it is
also possible to indicate colors directly as triples (red, green, blue).

Line Width Specification Mode

The line width of an image is set via the mode parameter. The default setting is for the line width
to be scaled by the interpreter.

Marker Size Specification Mode

The mode parameter is used to establish the size of markers in an image.

Edge Width Specification Mode

The mode parameter is used to determine the size of corners explicitly.

772 Graphics formats

VDC Extent

This command enables the VDC coordinate system to be set via the two parameters first comer
and second corner.

Background Color

This command contains the parameters red, green, blue and indicates the background color.

VDC Space and VDC Range

The space command indicates the coordinate system for the virtual metafile image space. Range
describes the coordinate system for the real output device.

Precision Parameter Encoding

The commands REAL PRECISION and INTEGER PRECISION indicate the resolution of the

relevant type of parameter.

Auxiliary Color

This command indicates an index or a color triple for the auxiliary color.

Transparency

This command switches the transparency function on or off. The function determines how lines
and shapes are to be drawn.

Clip Rectangle

The command contains two parameters: first corner and second corner. These are used to
determine the coordinates for the rectangle to which clipping operations refer.

Clip Indicator

This indicator enables the clipping function to be switched on and off.

Polyline

This command gives the XY coordinates for n points, through which a line is to be drawn.

Disjoint Polyline

This command contains a list of XY coordinates.

Computer Graphic Metafile format (CGM) 773

Polymarker

This command contains the XY coordinates of n marker points.

Text

The command contains the parameters point, flag and string. It enables the output of strings at
the point indicated.

Restricted Text

The command contains the parameters extent, point, flag and string. It enables a text to be
displayed.

Polygon

This command contains the XYcoordinates of n points, through which a polygon is to be drawn.

Polygon Set

This command contains a list with one XY coordinate and a flag for each element.

Cell Array

This command contains the parameters 3 corner points, number of columns, number of rows,
local color precision and cell color precision.

Generalized Drawing Primitive

The command contains an identifier, a point list and a data record.

Rectangle

This command describes a rectangle in terms of the two parameters corner-1 and corner-2.

Circle

Using the parameters center point and radius, this command describes a circle.

Circular ARC 3 Point

Using the parameters start point, intermediate point and end point, this command describes a
circular arc.

774 Graphics formats

Circular ARC 3 Point Close

Using the parameters start point, intermediate point, end point and close type, this command
describes a filled segment of a circle.

Circular ARC Center

Using the parameters center point, start point, end point and radius, this command describes an
arc.

Circular ARC Center Close

Using the parameters center point, start point, end point, radius and close type, this command
describes a filled sector of a circle.

Ellipse

This command describes an ellipse in terms of center point, 1st edge point and 2nd edge point.

Elliptical Arc

Using the parameters centerpoint, 1st edge point, 2nd edge point, start point line and end point
line, this command describes an elliptical arc.

Elliptical Arc Close

Using the parameters center point, 1st edge point, 2nd edge point, startpoint line, end point line
and cZose type, this command describes a sector of an arc.

Line Bundle Index

This command contains one parameter, with the default value of 1.

Line Type

This command determines the line type (continuous, dotted, and so on).

Line Width

This command contains one parameter specifying the line width.

Line Color

The command is used for determining the color of lines. Depending on the Color Selection Mode,
the parameter is either a color index or a triple (red, green, blue).

Computer Graphic Metafile format (CGM) 775

Marker Bundle Index

The parameter is generally coded with the value 1.

Marker Type

The command establishes the type of a marker. Normally, a marker is indicated as a point.

Marker Size

This command establishes the size of a marker.

Marker Color

The command contains one parameter to establish the color of a marker either a color index value

or a color triple.

Text Bundle Index

The default setting for the index is 1.

Text Font Index

The parameter of this command establishes the font used in the text.

Text Precision

One parameter determines how text attributes should be dealt with.

Character Expansion Factor

The geometry of a character can be varied via one parameter (standard 1.0).

Character Spacing

The spacing between two characters can be varied via one parameter (standard 0.0).

Text Color

This command is used to set the color of a text either as an index or as a color triple.

Character Height

Using one parameter, this command is used to set the height of a character.

776 Graphics formats

Character Orientation

This command influences the direction of the character output via the parameters up-vector-x,
up-vector-y, base-vector-x and base-vector-y. It is used for creating italic styles.

Text Path

The command enables the output direction to be indicated via a parameter. The default setting is
right, corresponding to the normal direction of writing.

Text Alignment

Using four parameters, this command determines the alignment of texts.

Character Set Index

The command uses one parameter to select the character set used. The ISO 646 character set is

selected via the index 1.

Alternate Character Set Index

This command sets the index of the alternate character set for ISO 2022 control characters.

Fill Bundle Index

The default setting for this parameter is 1.

Interior Style

The parameter of this command determines whether shapes are to be filled.

Fill Color

This command determines the fill color. The parameter is either an index or a color triple

depending on the mode.

Hatch Index

This command specifies the pattern for hatched areas. Index 1 selects a horizontal, hatched
pattern.

Pattern Index

The default setting for this value is 1. It is used for selecting the pattern.

Computer Graphic Metafile format (CGM) 777

Edge Bundle Index

The default setting for this value is 1.

Edge Type

The parameter of this command is used to determine the FORM of an edge around closed shapes.
The default setting is solid.

Edge Width

This command establishes the line width for the edges of shapes.

Edge Color

This command determines the color for the edges around shapes.

Edge Visibility

This command switches the boundary line around a shape on and off.

Fill Reference Point

This command specifies a reference point for filling shapes. The point is normally in the bottom
left corner.

Pattern Table

This command defines a pattern. The command contains the parameters index, number of
columns, number of rows, color resolution and n color patterns. The color resolution determines
the range of values for the following color pattern.

Pattern Size

This command contains four parameters. It determines the size of a pattern.

Color Table

This command defines the color table with n color triples. The number of color triples in the table
is indicated in the first parameter.

Aspect Source Flags

The command parameters represent a list of ASF types and ASF values.

778 Graphics formats

ESCAPE

This command enables the activation of device-specific features outside the CGM standard. The
first parameter contains the code for the function to be called. This is followed by the parameters
required by the function. The command should not be used.

Message

This command is used for displaying messages to the user. The first parameter contains a flag
which can be set to action. The following text is then displayed by the CGM interpreter.

Application Data

This command enables application-specific data to be included in a metafile. The structure of the
data area is not defined.

The above description of the structure of metafile elements is very brief. A comprehensive
discussion would far exceed the scope of this book. Further information is contained in the
reference books cited (see references on page 768).

WordPerfect Graphic format
(WPG)

The WordPerfect Corporation has defined its
own format for the storage of graphic files.
This format can be read, for example, by the

WordPerfect word-processing program and can be
used in documents.

29.1 WPG header

This file format starts with a 16 byte header, whose structure is the same for all WP products
(Table 29.1).

Offset Bytes Remarks

File ID-H jader for all WPGORP Products

OOH

04H

08H

09H

OAH

OBH

OCH

OEH

4

4

1

1

1

1

2

2

WP signature -1,'WPC
Pointer to start of graphic data
Product type (1 for WordPerfect)
File type (16H for WPG)
Major version number
Minor version number

Encryption flag (0 = unencrypted)
Reserved (0)

Table 29.1

Header Prefix

of a WPG file

The first 4 bytes contain a signature, identifying the file as a WP file. This is followed by a 4
byte pointer, indicating the offset from the start of the file to the start of the graphic data. The next

779

780 Graphics formats

two bytes contain information on the type of product that created the file and the document type.
In WordPerfect 5.0, the version numbers are always coded with the value 0.0 (1.0 in version 5.1).
In the Encryption field, the value 0 indicates an unencrypted file.

29.2 WPG records

The 16 byte header is followed directly by the graphic data. WordPerfect stores this data in a kind
of metafile format. The values are in records structured as shown in Table 29.2. The data is stored

in byte format after the record length.

Bvtes Remarks

Record type

Record length (0-FEH)

Record data
Table 29.2

Record format up
to 254 bvtes

It is possible to have records longer than 254 bytes. In this case the record length field is
extended to 2 or 4 bytes. Table 29.3 specifies the structure of records with a length of up to 7FFFH
bytes.

Bvtes Remarks

Record type

0FFH

Record length least significant byte
Record length most significant byte
(Value 0-7FH)

Record data
Table 29.3

Record format

up to 32767
bvtes

The value 0FFH in the second byte signals that the following 2 bytes are to be interpreted as a
length field. The top bit of the higher value byte is always set to 0.

WordPerfect Graphic format (WPG) 781

Bytes Remarks

1 Record type

1 OFFH

1 Record length least significant byte High Word
1 Record length most significant byte High Word (bit 8
1 Record length least significant byte Low Word
1 Record length least significant byte Low Word
n Record data

1)

Table 29.4

Record format

longer than
32767 bvtes.

If the record is longer than 32767 bytes, the length field is extended to 4 bytes (Table 29.4).
In this case, the second byte again contains the signature OFFH and is followed by the length

field. If the top bit of the most significant byte in the high word is set, the length field occupies 4
bytes. If this bit is set to 0, the record format is as shown in Table 29.3.

The following data field is structured as described below, depending on the record type. The
tables show only the contents of the data area. The header is always structured as described
above.

29.2.1 Fill Attributes (type 1)

Record type 1 defines the fill attributes and colors for rectangles, polygons and ellipses. The first
data byte describes the pattern which is to fill the shapes. The color of the area to be filled is
shown in the second byte as an index between 0 and 255. The record structure is as follows:

Offset Bytes

OOH

Remark

Fill pattern
0 = hollow

: solid

narrow spaced +45 degree lines
medium spaced +45 degree lines
widely spaced +45 degree lines
narrow spaced +45 degree lines
medium spaced ±45 degree lines
widely spaced ±45 degree lines

8 = narrow spaced vertical lines
9 = medium spaced vertical lines

10 = widely spaced vertical lines

Table 29.5

Format record

type 1

(continues
over...)

782 Graphics formats

Offset Bytes

01H

Remark

11= inter-spaced dots or density
12 = dots

13 = dots

14 = dots (medium density)
15 = dots

16 = dots

17 = dots (maximum density)
18 = medium-spaced dots
19 = widely spaced dots
20 = narrow-spaced horizontal lines
21 = medium-spaced horizontal lines
22 = widely spaced horizontal lines
23 = narrow-spaced vert. & horiz. lines
24 = medium-spaced vert. & horiz. lines
25 = widely spaced vert. & horiz. lines
26 = narrow-spaced 45-degree lines

medium-spaced 45-degree lines
widely spaced 45-degree lines
horizontal brick pattern
vertical brick pattern

27

28

29

30

31

32

33

35

= interwoven pattern

34 = -

= tiled roof pattern
36 = thick 45-degree lines, widely spaced
37 = checkerboard pattern
Fill color (0-FFH)

29.2.2 Line Attributes (type 2)

Record type 2 defines the attributes for lines to be drawn.

Offset Bytes Remarks

OOH 1 Line type

0 = no line

1 = solid

Table 29.5

Format record

type 1

(cont.)

Table 29.6

Format record

type 2
(continues
over...)

WordPerfect Graphic format (WPG) 783

Offset Bytes Remarks

2 = long dash

3 = dotted

4 = dash/dot

5 = medium dash

6 = dash/dot/dot

7 = short dash

01H 1 Line color (0-FFH)

02H 2 Line width (wpu)

29.2.3 Marker Attributes (type 3)

Offset Bytes Remarks

OOH 1 Marker style
0 = no markers

1 =dot

2 = +

3 = *

4 = circle

5 = square

6 = triangle
7 = upside down triangle
8 = diamond

9=X

01H 1 Marker color (0-FFH)
02H 2 Marker height (wpu)

Table 29.6

Format record

type 2
(cont.)

The first byte indicates the line type; the second defines the color. At offset 4, there is a word
containing the line width in wpu.

Table 29.7

Format record

type 3

Record type 3 defines the attributes for markers. The first byte indicates the form of the
marker, while the second byte specifies the color. At offset 4, there is a word indicating the size of
the marker in wpu.

784 Graphics formats

29.2.4 Polymarker (type 4)

Record type 4 enables several markers to be defined. The structure of the record is shown below:

Offset Bytes Remarks

OOH

02H

04H

2

2

2

2

Number of points
X-coordinate of 1st point (in wpu)

Y-coordinate of 1st point (in wpu)

29.2.5 Line (type 5)

This record type defines the lines drawn in a graphic image.

Offset Bytes Remarks

OOH

02H

04H

06H

2

2

2

2

X-coordinate of 1st end point (in wpu)
Y-coordinate of 1st end point (in wpu)
X-coordinate of 2nd end point (in wpu)
Y-coordinate of 2nd end point (in wpu)

Table 29.8

Format record

type!

The first word indicates the number of points marked. This is followed by a table containing n
XY coordinate pairs. All coordinate data is given in wpu units, from the top left corner. A marker is
drawn at each of the specified points with the attributes as selected.

Table 29.9

Format record

type 5

There are 4 words in the data area containing the XY coordinates for the two end points of the
line. This line is drawn with the attributes as selected.

WordPerfect Graphic format (WPG) 785

29.2.6 Polyline (type 6)

Record type 6 enables lines connecting a number of points to be drawn.

Offset

OOH

02H

04H

Bytes Remarks

Number of vertices

X-coordinate of 1st point (in wpu)

Y-coordinate of 1st point (in wpu)

Table 29.10

Format record

type 6

The first data word indicates the number of points required. This is followed by a table
containing n coordinate pairs. All coordinate data is given in wpu units, from the top left corner.
The points are joined by a line, which is drawn according to the attributes set (color, width,
pattern).

29.2.7 Rectangle (type 7)

Record type 7 defines rectangles within a graphic image.

Offset Bytes Remarks

OOH

02H

04H

06H

2

2

2

2

X-coordinate of lower left corner (in wpu)
Y-coordinate of lower left corner (in wpu)
Width of rectangle (in wpu)
Height of rectangle (in wpu)

Table 29.11

Format record

type 7

The first two data words indicate the coordinates of the lower left corner of the rectangle. The
dimensions are given in the next two fields. The rectangle is drawn according to the attributes set
(color, width, pattern).

786 Graphics formats

29.2.8 Polygon (type 8)

Record type 8 enables a closed line (polygon) with up to 65,535 points to be drawn.

Offset Bytes Remarks

OOH

02H

04H

2

2

2

2

Number of vertices

X-coordinate of 1st point (in wpu)
Y-coordinate of 1st point (in wpu)

Table 29.12

Format record

type 8

The first data word indicates the number of points required. This is followed by a table
containing n XY coordinate pairs. All coordinate data is given in wpu units, from the top left
corner. The points are connected by a line drawn according to the attributes set (color, width,
pattern). The result is an enclosed area.

29.2.9 Ellipse (type 9)

Record type 9 is used for drawing ellipses.

RemarksOffset Bytes

OOH 2 X-coordinate of center point (wpu)
02H 2 Y-coordinate of center point (wpu)
04H 2 Radius of X axis (wpu)
06H 2 Radius of Y axis (wpu)
08H 2 Rotation angle (horizontal)
OAH 2 Start angle of arc (0-360 degrees)
OCH 2 End angle of arc (0-360 degrees)
OEH 2 Flags

Bit 0: 1 = connect ends

to center

Bit 1: 1 = connect ends

to each other Table 29.13

Format record

type 9

This meta-object enables ellipses, circles and segments of circles to be drawn. The attributes
for drawing lines or for filling shapes will be used, depending on the element selected. The last data
word contains two bits indicating whether segments or sectors of a circle are to be drawn. If both

WordPerfect Graphic format (WPG) 787

bits are set to 0, only circular arcs or elliptical arcs will be drawn. The length and position of an
arc can be defined in terms of the angle. For an ellipse or a circle, the start angle should be set to 0
degrees and the end angle to 360 degrees.

Record type 10 is reserved for curved lines, but it is not currently used.

29.2.10 Bitmap (type 11)

Record type 11 (OBH) enables image data stored in bitmap format to be read.

•wmmr" ___

Offset Bytes Remarks

OOH 2 Image width in pixels
02H 2 Image height in pixels
04H 2 Number of bits per pixel (=colors)

1 = monochrome bitmap

2 = 4 color bitmap

4 = 16 color bitmap

8 = 256 color bitmap
06H 2 X resolution of source bitmap

(pixel/inch)
08H 2 Y resolution of source

(pixel/inch)
OAH X Bitmap data of image

Table 29.14

Format record

type 11

The first two data fields indicate the image dimensions in pixels. The word at offset 04H defines
how many bits per pixel are stored. The size of the bitmap data for the record can be calculated
from this information. The data is stored by byte, starting at offset OAH in the data area. To save
space, it may be compressed as follows:

♦ If the value of the first byte is between 81H and FFH, the value 80H should be subtracted. The
result (1-7FH) acts as a counter indicating how often the following data byte must be copied to
the output.

♦ A value between 01 Hand 7FH in the first byte indicates the number of following data bytes
which are to be transferred directly to the output.

♦ If the value of the first byte is 80H, there is a counter in the following data byte which indicates
how often the value FFH should be copied to the output as a pattern.

♦ If the value of the first byte is OOH, there is a counter in the following data byte which specifies
how often the last complete output line must be repeated.

788 Graphics formats

This compression process enables the amount of memory needed for the image data to be
reduced. However, this compression process is not supported by any other image format.

29.2.11 Graphic Text (type 12)

Record type 12 (OCH) enables texts to be displayed within a graphic image.

Offset

OOH

02H

04H

06H

Bytes

2

2

2

x

Remarks

Length of text (in bytes)
X-coordinate of text position (in wpu)

Y-coordinate of text position (in wpu)

ASCII string for graphic text
Table 29.15

Format record

type 12

The text attributes selected (size, color, and so on) are used for the text output.

29.2 12 Graphic Text Attributes (type 13)

Record type 13 (ODH) defines the attributes for texts to be displayed. The text attributes selected
(size, color, font, and so on) are used for text output. Using the rotation angle, texts can be
displayed in any direction required.

WordPerfect Graphic format (WPG) 789

Offsets Bytes Remarks

OOH 2 Nominal character cell width (in wpu)
02H 2 Character cell height (in wpu)

04H 10 Reserved

OEH 2 Font descriptor

0D50H = Courier font

1150H = Helvetica font (no serifs)

1950H = Times (serif) font
10H 1 Reserved

11H 1 Horizontal alignment

0 = left

1 = center

2 = right
12H 1 Vertical alignment

0 = base align
1 = center align

2 = cap align

3 = bottom align

4 = top align
13H 1 Text color (0-FFH)
14H 2 Rotation angle (0-360 degree)

29.2.13 Color Map (type 14)

Table 29.16

Format record

type 13

Codes 0 and 2 for vertical alignment were not defined until version 5.1 and were reserved in
earlier versions. The graphic text is displayed using vector fonts, which are supplied with
WordPerfect. Proportionally spaced fonts are not currently supported.

This record type (OEH) defines a table containing the colors used. The table contains three bytes
for each color, specifying the intensities of the primary colors red, green and blue. A triple of this
kind must be defined for each color.

790 Graphics formats

Offset Bytes Remarks

OOH

02H

04H

2

2

Start index color (0-255)
Number of entries in color map

Color map with 3 bytes for each color
index (red, green, blue)

Table 29.17

Format record

type 14

By varying the color intensities, it is possible to select around 16 million color gradations. The
color is defined via an index to this table, and all color specifications for shapes, lines, and so on
also relate to the table. If there is no color map record in a WPG file, WordPerfect will use the
standard settings for the colors. These conform with the settings for IBM VGAcards:

[| M||[„|M|.n |,.|,|,|,| I,

Code Color

0 Black

1 Blue

2 Green

3 Cyan

4 Red

5 Magenta

6 Brown

7 White

Table 29.18

Color indices

The color indices between 8 and 15 indicate the same colors with increased intensity (for

example blue - light blue).

29.2.14 Start WPG Data (type 15)

This record type (OFH) signals the start of a data area. It also contains the version number of the
WPG format and the image dimensions.

WordPerfect Graphic format (WPG) 791

Offset Bytes Remarks

OOH 1 WPG version number (current 1)

01H 1 WPG flags

Bit 0 = 0 PostScript data

included

Bit 1 = 1 PostScript data only

(no bitmap)

Bit 2-7: Reserved

02H 2 Width of image space (in wpu)

04H 2 Height of image space (in wpu)

29.2.15 End WPG Data (type 16)

Table 29.19

Format record

type 15

This record type is used in conjunction with record type 17 which enables PostScript data to
be imported. If bit 0 = 1, the EPS file does not contain a bitmap to display. The origin of the image
(0,0) is in the bottom left corner.

This record type (1 OH) terminates a data area within the WPG file. The record must occur at the
end of a WPG file and has no data area.

29.2.16 PostScript Data (type 17)

This record type (11H) enables PostScript commands to be integrated into the graphics file.

Offset Bytes

OOH xx

Remarks

Start of PostScript data Table 29.20

Format record

type 17

This record type can only be used if the output is to be via a PostScript printer.

792 Graphics formats

29.2.17 Output Attributes (type 18)

Record type 12H defines foreground colors, background colors and the clipping area of an image in
WPG version 5.0. In WPG version 5.1 the record type is reserved.

Offset

OOH

01H

02H

04H

06H

08H

Bvtes Remarks

Background color (0-255)

Foreground color (0-255)

X-coordinate of clipping window (in wpu)

Y-coordinate of clipping window (in wpu)

Width of clip window (in wpu)

Height of clip window (in wpu)
Table 29.21

Format record

type 18

The color values specify an index to the color table. The background table is used for black
dots in black and white pictures and for transparent representations. If this record is missing, the
entire image area is used as a clip window.

29.2.18 Curve (type 19, WPG version 5.1)

This record type (13H) is used for displaying curves. It uses the currently set (Bezier) line
attributes and was not defined before WPG version 5.1.

Offset Bytes Remarks

OOH 4 Size of equivalent WPG data

04H 2 Number of points

06H 2 X-coordinate (in wpu)

08H 2 Y-coordinate (in wpu)

OAH 2 Control point (X)

OCH 2 Control point (Y)

OEH 2
Table 29.22

Format record

type 19

The first field defines the size of the equivalent WPG data area. It was introduced in WPG
version 5.0 for reasons of compatibility.

WordPerfect Graphic format (WPG) 793

29.2.19 Bitmap 2 (type 20, WPG version 5.1)

This record type (14H) is used to indicate bitmaps with shifted coordinates and rotation angle in
WPG 5.1.

Offset Bytes Remarks

OOH 2 Bitmap rotation angle (0-360 degree)
02H 2 Lower left x location (in wpu)
04H 2 Lower left y location (in wpu)
06H 2 Upper right x location (in wpu)
08H 2 Upper right y location (in wpu)
OAH 2 Image width (in pixel)
OCH 2 Image height (in pixel)
OEH 2 Bits per pixel

1 = mapped pixel array
8 = byte pixel array

10H 2 Resolution across (pixel/inch)
12H 2 Resolution up and down (pixel/inch)
14H n Bitmap data (compressed)

29.2.20 Start Figure (type 21, WPG version 5.1)

This record type (J.5H) is used for describing an image object in WPG 5.1.

Offset

OOH

04H

06H

08H

OAH

OCH

Bytes

4

2

2

2

2

2

Remarks

Figure length

Rotation angle

XI coordinate of object

Yl coordinate of object

X2

Y2

Table 29.23

Format record

type 20

A header containing the rotation angle and the image coordinates precedes the data in this
record. From offset 10H, the structure corresponds to that of record type 11 and the same
compression method is used.

Table 29.24

Format record

type 21

794 Graphics formats

The value in the Figure length field indicates the length of the object data area relative to the
file position after reading the length field. The object data presumably follows at offset OEH.
However, information on coding is not currently available.

29.2.21 Start Chart (type 22, WPG version 5.1)

This record type (16H) is used for describing a diagram (chart) in WPG 5.1.

Offset Bytes Remarks

OOH

04H

06H

08H

OAH

OCH

4

2

2

2

2

2

Chart length

XI coordinate of object

Yl coordinate of object

X2

Y2

Start of chart data

29.2.22 Graphics text2 (type 24, WPG version 5.1)

In WPG 5.1, this record type (18H) is used to display a text as a graphic image.

Table 29.25

Format record

type 22

The value in the Chart length field indicates the length of the object data area relative to the
file position after reading the length field. The data for structuring the diagram is stored as WPG
commands from offset OCH onwards.

Record type 23 is intended for PlanPerfect data. However, information on the record structure
is not currently available.

WordPerfect Graphic format (WPG) 795

Offset Bytes Remarks

OOH 4 Size of equivalent WPG data

04H 2 Baseline rotation angle

06H 2 Text length (in bytes)

08H 2 XI coordinate for text (in wpu)

OAH 2 Yl coordinate for text (in wpu)
OCH 2 X2

OEH 2 Y2

10H 2 X scale factor (in wpu)

12H 2 Y scale factor (in wpu)
14H 1 Byte subtype (0-15)

0: window type

1: single line type

2: bullet text chart

3: simple text chart

4: free-format text chart

15H n Start of formatted string
Table 29.26

Format record

type 24

A scaling factor of 100% means that the text will be displayed in the point size indicated.
Functions may be embedded in the text.

29.2.23 Start WPG2 (type 25, WPG version 5.1)

Record type (19H) is used to introduce a WPG2 graphics file. The record type is defined from WPG
5.1 onwards.

Offset Bytes Remarks

OOH

01H

03H

1

2

n

Subtype ID

Subtype length

Subtype data
Table 29.27

Format record

type 25

This record only needs to be evaluated once. The foreground and background colors for a page
are defined as subtypes.

AutoCAD Drawing Exchange format
(DXF)

AutoCAD, the most widely distributed CAD system
iin the PC sector, has been on the market since
^1982. The DXF format for data exchange with

external programs, which was introduced alongside
it, is now supported by many other programs. A
closer look at the Drawing Exchange format is
clearly in order.

30.1 Structure of a DXF file

A DXF file consists of a series of commands in ASCII format. Each command occupies two lines:

<Group code>

<Command>

The first line contains the group code which indicates the type of the following command. The
group code may be in the range 0-999. Table 30.1 lists the AutoCAD group codes defined so far, up
to version 10.0.

Group Type Remarks

0 String Beginning of an element

(LINE, BLOCK and so on)

1 String Text value of a string (almost text)

2 String Name of an element

(LINE, BLOCK and so on)

3-4 String

796

Table 30.1

AutoCAD group

codes up to
version 10.0

(continues
over...)

AutoCAD drawing exchange format (DXF) 797

Group Type Remarks

5 String Entity handle

6 String Line type name

7 String Text style name

8 String Layer name

9 String Name of header variable

10 Real 1st X-coordinate

11-18 Real Other X-coordinates

20 Real 1st Y-coordinate

(follows the 1st X-coordinate)

21-28 Real Other Y-coordinates

(follows the X-coordinates)

30 Real 1st Z-coordinate (version 9.x)

31-37 Real Other Z-coordinates (since version 9.x)

38 Real Element height (up to version 9.x)
39 Real Object height/thickness

40-48 Real Size factors (text height and so on)
49 (text and so on)

An entry in groups 70-78 defines

the number of the 49 groups

50-58 Real Angles

62 Integer Color number (7 = white,

256 = standard)

66 Integer 1 = other elements follow

0 = no elements follow

67 Integer Entity is in model or paper space

68 Integer Identify view port (On, Off, and so on)
69 Integer Viewport ID number

70-78 Integer Other flags, counter and so on

210 Real X-component Z direction

220 Real Y-component Z direction

230 Real Z-component Z direction (version 10.0)

999 String Comments (since version 9.x)

1000 String Extended entity data

1001 String Registered application name

1002 String Extended entity data control string
1003 String Extended entity data layer name

1004 Byte Chunk of bytes in extended entity data

Table 30.1

AutoCAD group
codes up to
version 10.0

(cont.)

798 Graphics formats

Group Type Remarks

1005 Integer Extended entity data

database handle

1010, 1020, 1030 Real Extended entity data X, Y, Z,

1011, 1021, 1031 Real Extended entity data X, Y, Z,

coordinates of 3D world space

position

1012, 1022, 1032 Real Extended entity data X, Y, Z,

coordinates of 3D world space

displacement

1013, 1023, 1033 Real Extended entity data X, Y, Z,

coordinates of 3D world space

direction

1040 Real Extended entity data

Floating-point value

1041 Real Extended entity data distance value

1042 Real Extended entity data scale factor

1070 Integer Extended entity data

16-bit signed integer

1071 Integer Extended entity data

32-bit signed long

Table 30.1

AutoCAD group
codes up to
version 10.0

(cont.)

The Z components in AutoCAD are only supported from version 10.0 onwards. The
interpretation of commands 40-48, 50-58 and 70-78 depends on the element. (Further details are
given in the relevant section.) A number of commands, such as the commands for comments, are
only available from version 9.x. Command 38 (object height) is only supported up to version 9.x. The
commands in the DXF file are subdivided into a maximum of four sections (header, tables, entities,

blocks) and are terminated with the following command (group code 0 and ASCII string EOF):

0

EOF

The basic structure of the DXF file is shown in Figure 30.1.

AutoCAD drawing exchange format (DXF) 799

HEADER

(optional)

TABLES

(optional)

ENTITIES

(optional)

BLOCKS

(optional)

EOF

Figure 30.1
Structure of a

DXF file

The HEADER, TABLES, ENTITIES and BLOCKS sections are optional and can be omitted from DXF
files. They are used for storing the settings (color, pattern, and so on) for AutoCAD. The values
contained here can only be adopted if the internal settings have not yet been set. This will be the
case if no drawing operations have yet been carried out. Each of the sections HEADER, TABLES,
ENTITIES and BLOCKS is enclosed between these two commands:

0

SECTION

0

ENDSEC

The EOF, ENDSEC and SECTION commands have the group code 0. As shown in Table 30.1, all
commands with this code are treated as elements. Figure 30.2 contains an extract from a valid
DXF file.

0

SECTION

2

HEADER

Begin 1st section

Section = HEADER
Figure 30.2
Extract from a

DXF file

(continues
over...)

800 Graphics formats

SACADVER

1

AC1003

9

SINSBASE

10

0.0

20

0.0

9

$EXTMIN

10

0.805232

20

0.525617

9

SEXTMAX

10

12.104994

20

7.731443

9

$LIMMIN

10

0.0

20

0.0

9

$LIMMAX

10

12.0

20

9.0

$0RTH0M0DE

70

1

9

1st Header variable = Version

Text value element

Figure 30.2
Extract from

a DXF file

(cont.)

AutoCAD drawing exchange format (DXF) 801

SREGENMODE

70

1

9

$FILLM0DE

70

1

9

SQTEXTMODE

70

0

9

$DRAGM0DE

70

2

$USERR4

40

0.0

9

$USERR5

40

0.0

Size factor

0

ENDSEC HEADER end

0

SECTION Begin next section

2 I *******************************

TABLES Section = Table

0

TABLE Element = Table

2

LTYPE Type 1st element

70

1 Number of elements = 1

0

LTYPE Element LTYPE

2

Figure 30.2
Extract from

a DXF file

(cont.)

802 Graphics formats

EXTRACTED Element name

70

0 Number of elements

3

Solid ine • Description line type

72

65 • Justify code

73

0 Number of groups with code 49

40

0.0 Length sum in group 49

0

ENDTAB End of table

0

TABLE Begin next table

2

LAYER Table name

70

1 Number of elements

0

LAYER Element

2

0 Element name

70

0 Flag

62

7 Color number

6

EXTRACTED • Line type

0

ENDTAB Table end

0

TABLE I Begin next table
2

STYLE ' Table name

70

1 ' Number of elements

0

STYLE ' Element type

2

STANDARD ' Element name

70

0 J Flag
40

0.0 ' Text height

41

1.0 J Text width

Figure 30.2
Extraet from a

DXF tile

(eont)

AutoCAD drawing exchange format (DXF) 803

50

0.0 Text angle

71

0 Flags

42

0.2 Last used height

3

txt Font name

4

Bigfont file name

0

ENDTAB End of table

0

TABLE Begin next table

2

VIEW Table name

70

0 Number of elements

0

ENDTAB End of table

0

ENDSEC End of section tables

0

SECTION Begin next section

2 I *******************************

BLOCKS Section name = blocks

0

BLOCK Element type

8

0 Layer name

2

*X0 Element name (unnamed)

70

1 Number of elements

10

0.0 1st X-coordinate

20

0.0 1st Y-coordinate

0

LINE Next element

8

0 • Layer name Figure 30.2

Extract from a

DXF file

(cont.)

804 Graphics formats

62

0

10

6.609264

20

3.5

11

6.625

21

3.5

0

LINE

0

ENDBLK

8

0

0

ENDSEC

0

SECTION

2

ENTITIES

0

LINE

8

0

10

0.805232

20

5.195401

11

3.091228

21

7.731443

0

LINE

Color number

1st X-coordinate

1st Y-coordinate

Other X-coordinates

Other Y-coordinates

Next element

Block end

Layer name 0

End of section

Begin next section

Section name

Element name

Layer name

1st X-coordinate

1st Y-coordinate

Other X-coordinate

Other Y-coordinate

Figure 30.2
Extract from a

DXF file

(cont.)

AutoCAD drawing exchange format (DXF) 805

INSERT
] Element type

8

0
] Layer number

62

:
2 Color number

2

*X0
]

Element name (unnamed)

10

0.0

20 Coordinates

0.0

0

TEXT
] Element type

8

0
] Layer number

10

0.987175

20 Coordi nates

3.401942

40

]
0.2 Text height

1

Hello !
]

Text name (here Text)

0

TEXT
]

Other text

8

0

10

0.987175

20

3.068609

40

0.2

1

This is a DX F file.

0

CIRCLE
] Element type

8

]
0 Layer name

62

]
1 Color

Figure 30.2
Extract from a

DXF file

(cont.)

806 Graphics formats

10

3.818549

20 Center point

5.380913

40

]
0.883144 Radius

0

ENDSEC
] End of section

0

EOF
]

End DXF file
Figure 30.2

Extract from a

DXF file

(cont.)

The image contains a text, a pentagon, a line and a circle. In its original form the DXF file is
over 48 Kbytes long. The example has been shortened. The comments in Figure 30.2 have been
added retrospectively and are not part of the DXF file. The only compulsory command in the file is
EOF, which is necessary in order to create a defined end of file for AutoCAD.

30.2 DXF Header

The settings for the internal AutoCAD variables are stored in the Header section. However,
AutoCAD only evaluates this data if no other settings have been defined, that is, if no drawing
operations have yet been carried out. The section can therefore be omitted and for this reason is
ignored by many external programs. Figure 30.3 illustrates the structure of the Header section:

0

SECTION] Begin section

2

HEADER] Section = HEADER

9

SACADVER] Header variable

9

SUSERR5

40

0.0

0

ENDSEC] Header end Figure 30.3
Structure of a

HEADER section

AutoCAD drawing exchange format (DXF) 807

The section is framed by the two keywords SECTION and ENDSEC. The command following the
start of the section identifies the section with this code:

2

HEADER

This is followed by the commands containing the variable definitions, each of which has the
group code 9 followed by the relevant variable name. Each name begins with the character $. The
following lines may contain parameters giving the variable settings. The command shown below,
for example, defines the AutoCAD version that created the file:

SACADVER

1

AC1003

30.3 DXF TABLE section

This section contains tables giving the definitions of line types, layers, text modes, and so on (the
structure is shown in Figure 30.4). This information may be omitted from DXF files because
AutoCAD only evaluates this data if no relevant internal definition is available. As soon as a
drawing operation has been carried out, AutoCAD will ignore the TABLE section. This can cause
problems because the attributes of the objects used in the BLOCK and ENTITIES sections (lines, and
so on) are defined here.

0

SECTION] Begin next section
2

TABLES] Section = Table

0

TABLE] Element = Table

2

LTYPE] 1st table part

0

ENDTAB] Table end

0

TABLE] Begin next table

0

ENDTAB] Table end

0

ENDSEC] End of the tables section
Figure 30.4
Structure of a

TABLE section

808 Graphics formats

The commands are enclosed between SECTION and ENDSEC commands. Several partial tables
may be contained within the section. These must be enclosed between keywords such as TABLE

and ENDTAB. After the word TABLE, the command indicating the name of the table appears:

2

Name

The group code is 2, and the Name field may contain one of the key words shown in Table 30.2:

LAYER

LTYPE

STYLE

VIEW

VPORT (Version 10.0)

UCS (Version 10.0) Table 30.2

Keywords in
SECTION table

The name is generally followed by a command with the group code 70, which indicates the
number of table elements in the second line. Although the value entered here may not always be
correct, the group code 70 must be entered.

30.3.1 LAYER

This table is structured as shown in Figure 30.5. It contains information on the color, line type and
so on, of a layer.

0

TABLE Element = Table

2

LAYER Table name

70

1 •' Number of elements

0

LAYER 1 Element

2

0 ' Name of the element

70

0 ' Flags

62

7 ' Color number (white)

6

CONTIGUOUS ' Line type

0

ENDTAB ' End of table Figure 30.5
Example of the
LAYER table

AutoCAD drawing exchange format (DXF) 809

The LAYER definition shown in Figure 30.5 consists of just one element, an extended line. The
command with group code 62 defines the color. If this value is negative, the element in the layer is
switched off and not drawn. The line type (group code 6) must first have been defined in LTYPE.
Apart from this, the sequence of commands in the table may be in any order. The second
command with group number 70 indicates the bit-coded status of the layer.

Bit Function

0 = 1

6 = 1

Layer frozen

Layer contains elements

Table 30.4 contains the definitions of the group codes for the LAYER table.

Group

6

62

70

Remarks

Name of line type

Color number (negative = Layer off)
Flag: Bit 0 = 1 : freeze

The default setting for a layer provides the following values:

Color

Line type

Layer

White

CONTIGUOUS

On, not frozen

These values have been taken into account in Figure 30.5.

Table 30.3

LAYER status

Table 30.4

Group codes for
the LAYER table

810 Graphics formats

30.3.2 LTYPE

This table defines the appearance of lines within a layer. Figure 30.6 gives an example of an LTYPE
table.

0

TABLE ' Element = Table

2

LTYPE ' Type of 1st element

70

1 ' Number of elements = 1

0

LTYPE I Element LTYPE
2

EXTRACTED •' Name of element

70

0 I Status
3

solid line •' Other text

72

65 •' Justify flag
73

0 ' Number of groups
40

0.0 ' Sum of all lengths
0

ENDTAB ' End of table

Table 30.5 shows the codes used in Figure 30.'

Group Remarks

3

40

49

72

73

Description of line type
Sum of all lengths in group 49
Line length

negative = pen up

positive = pendown
0 = dot

Justify code = 1 (align)
Number of groups with code 49

Figure 30.6
Example of
an LTYPE table

Table 30.5

Group codes for
the LTYPE table

The group codes 72 and 73 define bit codes for the text alignment. The exact specification is
not known.

AutoCAD drawing exchange format (DXF) 811

30.3.3 STYLE

Information on font styles is stored in this table. Figure 30.7 gives an example of a style definition
within a table.

0

TABLE Begin table

2

STYLE Table name

70

1 Number of elements

0

STYLE Element type

2

STANDARD Element name

70

0 Flags

40

0.0 Text height

41

1.0 Text width

50

0.0 Text angle (direction)

71

0 Flags

42

0.2 Last used height

3

txt Font name

4

Bigfont file name

0

ENDTAB End of table

Table 30.6 lists the group codes available for STYLE.

Figure 30.7
Example of
a STYLE table

812 Graphics formats

Group Remarks

3 Name of character or symbol file
4 Bigfont file name
40 Text height defined (0 = not defined)
41 Factor width

42 Last used height

50 Slope angle (slope)

70 Flags

Bit 1 = 1: symbol table

Bit 3 = 1: vertical text

71 Text creation flags
Bit 1=1: output backwards

Bit 2 = 1: rotate 180 degrees Table 30.6

Group codes of
the STYLE table

Further details on the coding of the flags and fonts is not currently documented.

30.3.4 UCS

The UCS (User Coordinate System) is supported only from AutoCAD version 10.00. Table 30.7 lists
the group codes permitted with UCS.

Group Remarks

10,20,30

11,21,31

12,22,32

Origin (X,Y,Z) of coordinate system
in world coordinates (since version 10.0)
Direction of X-axis in world coordinates

Direction of Y-axis in world coordinates

30.3.5 VIEW

Table 30.7

Group codes of
the UCS table

This element enables various excerpts (regions) of a drawing to be selected. Table 30.8 lists the
group codes that can be used in conjunction with VIEW.

AutoCAD drawing exchange format (DXF) 81 3

Group Remarks

10,20 Center (X,Y) of the view
11,21,31 View direction

12,22,32 Destination point in world coordinates
(since version 10.0)

40 Height of view

41 Width of view

42 Lens length (since version 10.0)

43,44 Front and back plane (version 10.0)

50 Rotation angle

71 View mode (since version 10.0)
Bit 0 = 1 Perspective view active

Bit 1 = 1 Front plane active

Bit 2 = 1 Back plane active

Bit 3 = 1 'UCS follow' mode active

Bit 4 = 1 Front plane not in

——-__»_.

direction of vision Table 30.8

Group code
for VIEW table

In older versions of AutoCAD, the VIEW table does not contain any elements (Figure 30.2).

30.3.6 VPORT

This table is supported from AutoCAD version 10.0 onwards. Table 30.9 lists the group codes used:

Group Remarks

10,20 Lower left corner viewport

11,21 Upper right corner viewport

12,22 Coordinates of view center

13,23 Catch point

14,24 Catch distance in X- and Y-direction

15,25 Raster width in X- and Y-direction

16,26,36 View direction from destination point
17,27,37 Coordinates of destination point

40 View height

41 Aspect rotation viewport

Table 30.9

Group codes for
the VPORT table

(continues
over...)

814 Graphics formats

Group Remarks

42

43,44

50

Lens length
Shift front and back plane from destination point
Catch rotation angle

51 Rotation angle view
71 View mode (since version 10.0)

Bit 0 = 1

Bit 1 = 1

Bit 2 = 1

Bit 3 = 1

perspective view active

front plane view active
back plane view active
'UCS follow' mode active

Bit 4 = 1 front plane not in
direction of vision

72

73

Arc zoom percentage
Fast zoom factor

74

75

Coordinate system symbol
1 = SNAP on, 0 = SNAP off

76 1 = GRID on, 0 = GRID off
77

78

Catch style
Catch ISO pair Table 30.9

Group codes for
the VPORT table

(co?it.)

The exact coding is not currently documented.

30.4 BLOCK section of a DXF file

This table contains information on the elements used. In addition to AutoCAD blocks, other
unknown blocks may also occur. For this reason, the name is prefixed with an asterisk. The
command with group code 70 defines the Block Flag and is coded as shown in Figure 30.8:

Bit 7 6 5 4 3 2 10

•1 unknown block

1 attribute definition follows

1 used block

Figure 30.8
Coding block
flags

AutoCAD drawing exchange format (DXF) 815

As shown in Figure 30.9, a block is enclosed within a sequence of commands.

0

SECTION

2

BLOCKS

0

BLOCK

0

ENDBLK

8

0

0

ENDSEC Figure 30.9
Example of a
BLOCK section

The block consists of elements with group code 0: BLOCK, possibly ATTDEF and any number of
objects (line, circle, and so on), which are used in ENTITIES. The definition is terminated by the
element ENDBLK. Table 30.10 shows the allocation of group codes for BLOCK and ATTDEF:

Group Remarks

2

10,

70

1

2

3

7

10,

BLOCK

20, 30

Block name

Coordinates (X,Y,Z) of base point
Block type flag

Bit 0 = 1: Block is anonymous

Bit 1 = 1: Attribute definitions follows

ATTDEF

20, 30

Predefined attribute value (for requests)
Attribute name

Text attribute begin

Name of text styles

Coordinates (X,Y,Z) of text start point

Table 30.10

Group code

in BLOCKS

(continues
over...)

81 6 Graphics formats

Group Remarks

11,21,31 Coordinate (x,y,z) of justification point (if group 72)
40 Text height
41 X-size factor (if <> 1)
50 Rotation angle (if <> 0)
51 Slope angle
70 Attribute flag

Bit 0 = 1: invisible

Bit 1 = 1: constant (without request)
Bit 2 = 1: check request
Bit 3 = 1: use default attribute

71 Text creation flag (if <> 0)
Bit 1 = 1: backward

Bit 2 = 1: rotate 180 degrees
72 Text justify type (if <> 0)

Bit 0 = 1: left justified
Bit 1 = 1: centered at base line

Bit 2 = 1: right justified
Bit 3 = 1: between two points
Bit 4 = 1: centered

Bit 5 = 1: aligned between two points

73 Field length (if <> 0) Table 30.10

Group code
in BLOCKS

(cont.)

An attribute definition can be allocated to a BLOCK. In this case, bit 1 in the Block Type flag
(group code 70) is set. The element ENDBLK may also appear as a terminator.

30.5 DXF ENTITIES Section

This section contains the actual image description. The objects described in the BLOCKS are used
here. This section is framed by the sequence shown in Figure 30.10.

0

SECTION

2

ENTITIES

0

ENDSEC
Figure 30.10
Example of an
ENTITIES Section

AutoCAD drawing exchange format (DXF) 81 7

Various objects defined by group code 0 may appear within this section. Table 30.11 lists the
objects in the ENTITIES section defined so far:

Object Object Object

LINE SOLID VERTEX

3DLINE TEXT SEQEND

POINT SHAPE 3DFACE

CIRCLE INSERT DIMENSION

ARC ATTRIB

TRACE POLYLINE

—, ——.

Tabic 30.11

Elements in the

ENTITIES section

The meaning of the group codes varies somewhat according to the object used.

30.5.1 LINE

This command is used to introduce the description of a line:

0

LINE

It is followed by additional commands which describe the line. Table 30.12 lists the relevant
group codes:

Group

0

10,20,30

11,21,31

Remarks

Element = LINE

Start point (X,Y,Z) of line

End point (X,Y,Z) of line
Table 30.12

Group code for
the LINE element

The line is described as a vector between two points. Z coordinates are permissible only after
version 10.0. The line type, line width, and so on, are adopted from BLOCKS, but may also be set
explicitly, using specifically defined commands. Only the start and end coordinates of the vector
are contained in ENTITIES. The coordinates for one point are always stored consecutively (X,Y,Z)
and then followed by the coordinates for the next point.

818 Graphics formats

30.5.2 3DLINE

This command introduces the description of a three-dimensional line:

0

3DLINE

It is followed by other commands describing the line. Table 30.13 lists the relevant group codes:

Group Remarks

0

10,20,30

11,21,31

Element = 3DLINE

Start point (X,Y,Z) of line

End point (X,Y,Z) of line

Group

0

10,20,30

50

.'. "i?:::::,: :. . .:••;•

Remarks

Element = POINT

Point coordinates (X,Y,Z)

Angle of X-axis in world coordinates

(UCS, since version 10.0)

Table 30.13

Group code for
the3DLINE

element

The line is described as a vector between two points. Z coordinates are permissible only after
version 10.0. The line type, line width, and so on, are adopted from BLOCKS, but may also be set
explicitly, using specifically defined commands. Only the start and end coordinates of the vector
are contained in ENTITIES. The coordinates for one point are always stored consecutively (X,Y,Z)
and then followed by the coordinates for the next point.

30.5.3 POINT

This command introduces the description of a point in the coordinate area:

0

POINT

Z components are supported from version 10.0 of AutoCAD onwards. Table 30.14 shows the
group codes for the following commands:

Table 30.14

Group code for
the POINT

element

The command with group code 50 is supported from version 10.0 of AutoCAD onwards. It
indicates the angle of the X axis in the user coordinate system compared with the zero axis.

AutoCAD drawing exchange format (DXF) 819

30.5.4 CIRCLE

This command introduces the description of a circle:

0

CIRCLE

Z components are supported from version 10.0 of AutoCAD onwards. Table 30.15 shows the
group codes for the following commands:

Group Remarks

0

10,20,30

40

Element = CIRCLE

Arc center coordinates (X,Y,Z)
Arc radius

Table 30.15

Group code for
the CIRCLE

element

The command sequence may additionally contain commands for selecting the layer, the color,
and so on.

30.5.5 ARC

This command describes an arc:

0

ARC

The element is followed by other commands, as listed in Table 30.16:

Group Remarks

0

10,20,30

40

50

51

Element = ARC

Center coordinate (X,Y,Z)

Radius arc

Start angle of arc

End angle of arc
Table 30.16

Group code for
the ARC element

The Z coordinates are supported from version 10.0 of AutoCAD onwards. Additional commands
for the description of the color, the layer, and so on, may also be contained in the sequence.

820 Graphics formats

30.5.6 TRACE

This element introduces the description of a closed line between four points (band), which in turn
describes the outline of rectangles. The sequence begins with the element:

0

TRACE

This is followed by further commands describing the corner points, as shown in Table 30.17:

Group Remarks

0 Element = TRACE

10,20,30 Coordinate (X,Y,Z) of 1st point

11,21,31 Coordinate (X,Y,Z) of 2nd point

12,22,32 Coordinate (X,Y,Z) of 3rd point

13,23,33 Coordinate (X,Y,Z) of 4th point
Table 30.17

Group code for
TRACE

The Z coordinate is supported from version 10.0 of AutoCAD onwards. Additional commands
for describing the color, the layer, and so on may also be contained in the sequence. In the case of
triangles, two points contain the same coordinates.

30.5.7 SOLID

This element introduces the description of a closed area between four points, that is, a rectangle.

The sequence begins with the element:

0

SOLID

This is followed by further commands describing the corner points, as shown in Table 30.18.

Group Remarks

0 Element = SOLID

10.20.30 Coordinate (X,Y,Z) of 1st point
11.21.31 Coordinate (X,Y,Z) of 2nd point
12.22.32 Coordinate (X,Y,Z) of 3rd point

13.23.33 Coordinate (X,Y,Z) of 4th point
Table 30.18

Group code for
the SOLID

element

AutoCAD drawing exchange format (DXF) 821

The Z coordinate is supported from version 10.0 of AutoCAD onwards. Additional commands
for describing the color, the layer, the fill pattern and so on may also be contained in the sequence.
In the case of triangles, the two last points contain the same coordinates.

30.5.8 TEXT

The following command is defined in order to incorporate text into AutoCAD DXF files:

0

TEXT

This is followed by a sequence of additional commands for describing the text (Table 30.19):

Group Remarks

0 Element = TEXT

1 Text as ASCII string
7 Name of text style (standard = STANDARD)
10 Text insertion point X-coordinate
20 Text insertion point Y-coordinate

30 Text insertion point Z-coordinate
11 Text alignment point X-coordinate
21 Text alignment point Y-coordinate
31 Text alignment point Z-coordinate
40 Text height
41 Relative factor X-axis (standard = 1)
50 Rotation angle of text (standard = 0)
51 Character slope angle (standard = 0)
71 Generation flag (standard = 0)

Bit 1 = 1: Text backward

Bit 2 = 1: Rotate text 180 degrees
72 Justify

0: left

1: centered at baseline

2: right

3: aligned between 2 points
4: centered (between 2 points)
5: justified between 2 points

(variable text width)
Table 30.19

Group code for
the TEXT element

822 Graphics formats

The Z coordinate is supported from AutoCAD version 10.0 onwards. The commands for the
coordinates of the alignment point appear only if the justification type (code 72) is not equal to 0.
In AutoCAD, the text can be displayed at any angle required. If the angle is not equal to 0 degrees,
a command with the group code 50 or 51 appears. Group code 51 defines the angle of inclination
for letters (creation of italic script). Group code 7 is needed only if the text style deviates from
STANDARD. Bits 1 and 2 of the generation flag (group code 71) specify the direction of the text
display (backwards or upside down). The option for setting the alignment of the text can be
selected using group code 72. This code also determines whether a second point is required for
alignment. Further commands for describing the color, the layer, and so on may then follow.

30.5.9 SHAPE

This element is used in AutoCAD to define a symbol at the point indicated. The sequence begins

with the command:

0

SHAPE

It may contain the additional commands shown in Table 30.20:

Group Remarks

0 Element = SHAPE

2 Symbol name

10 Symbol insertion point X-coordinate

20 Symbol insertion point Y-coordinate

30 Symbol insertion point Z-coordinate

40 Symbol height

41 Relative scale factor (standard = 1)

50 Rotation angle (standard = 0)

51 Slope angle (standard = 0)
Table 30.20

Group code for
the SHAPE

element

The Z coordinate is supported from AutoCAD version 10.0 onwards. The commands for
rotation angle, scaling factor and slope angle are listed only if values that do not correspond to the
standard settings are used.

AutoCAD drawing exchange format (DXF) 823

30.5.10 INSERT

This element is used to re-insert into the drawing an object from AutoCAD that has already been

used. The start sequence may be followed by the commands shown in Table 30.21:

0

INSERT

The Z coordinate is supported from AutoCAD version 10.0 onwards. The commands for
rotation angle, number of columns, and so on are only listed if the values used do not correspond
to the standard settings. If bit 0 of the attribute flag (code 66) is set, a sequence of ATTRIB
elements, terminated with SEQEND, will follow the block commands. If an element from LAYER 0 of

the BLOCK section is described with INSERT, the attributes correspond to those of the insert layers.

Group Remarks

0 Element = INSERT

2 Inserted block name

10 Block insertion point X-coordinate

20 Block insertion point Y-coordinate

30 Block insertion point Z-coordinate

41 Scale factor of X-axis (standard = 1)

42 Scale factor of Y-axis (standard = 1)

43 Scale factor of Z-axis (standard = 1)

44 Column distance

45 Row distance

50 Rotation angle (standard = 0)

66 Attribute flag

Bit 0 = 1: ATTRIB follows the BLOCK

70 Columns (if multiple insertions, standard =1)
71 Rows (if multiple insertions, standard = 1)

30.5.11 ATTRIB

Table 30.21

Group codes for
the INSERT

element

This element follows an INSERT command if the attribute bit in this command is set. The table

begins with the command:

824 Graphics formats

0

ATTRIB

The Z coordinate is supported from AutoCAD version 10.0 onwards. The commands for field

length, rotation angle, and so on are listed only if values that do not correspond to the standard
settings are used. If the value of the element for group 72 is not equal to 0, the coordinates of the
second alignment point will be indicated. Table 30.22 lists all the other commands contained in
this element:

Group Remarks

0 Element = ATTRIB

1 Attribute text

2 Attribute name

7 Text style name (Standard = STANDARD)

10 Text insertion point X-coordinate

20 Text insertion point Y-coordinate

30 Text insertion point Z-coordinate

11 Alignment point X-axis if group 72 <> 0
21 Alignment point Y-axis if group 72 <> 0
31 Alignment point Z-axis if group 72 <> 0

50 Rotation angle of text (Standard = 0)
51 Slope angle of text (Standard = 0)

70 Attribute flag
Bit 0 = 1: BLOCK is anonymous

Bit 1 = 1: ATTDEF follows

71 Generation flag (Standard = 0)
Bit 1 = 1: Text backward

Bit 2 = 1: Rotate text 180 degrees

72 Justify
0: left

1: centered at baseline

2: right
3: aligned between 2 points
4: centered (middle between 2 points)
5: exact between 2 points

(variable text width)

73 Field length (Standard = 0)

~

Table 30.22

Group codes for
the ATTRIB

element

AutoCAD drawing exchange format (DXF) 825

30.5.12 POLYLINE

This element introduces the description of a connecting line between several points. The sequence
begins with the command:

POLYLINE

Further commands are listed in Table 30.23:

•

Group Remarks

0 Element = POLYLINE

40 Predefined start width

41 Predefined end width

66 Vertex point flag

Value = 1: Vertex elements follow

70 Polyline flag

Bit 0 = 1 closed polyline

Bit 1 = 1 curve fitted in polyline

Bit 2 = 1 curve fitted in polyline

Bit 3 = 1 3D-polyline (since version 10.0)

Bit 4 = 1 polygon line (since version 10.0)

Bit 5 = 1 polygon line close (version 10.0)

71,72 Counting polygon line maximum in 1st and 2nd

direction (value > 0) since version 10.0

75 Flag, if bit 4 in group 70 = 1

0: no plain curve

5: quadratic curve

6: cubic B-spline curve

8: Bezier curve (since version 10.0)
Table 30.23

Group code for
a POLYLINE

element

Group codes 71, 72 and 75 are supported from AutoCAD version 10.0 onwards. The polygon
line always consists of a sequence of point-specifying VERTEX elements. This sequence is
terminated with SEQEND. Codes 40 and 41 are used for all elements in VERTEX that do not have

their own group number 40 or 41.

826 Graphics formats

30.5.13 VERTEX

This element introduces the definition of the points of a polyline. The sequence begins with the
command:

0

POLYLINE

It is terminated with ENDSEQ. Several VERTEX elements with commands as shown in Table 30.24

may appear between these commands:

Group Remarks

0 Element = VERTEX

10 Position vertex X-coordinate

20 Position vertex Y-eoordinate

30 Position vertex Z-coordinate

40 Predefined start width

41 Predefined end width

42 Bulge (0 = even, 1 = semi-arc)

50 Direction of tan gent, if bit 1 in group 70 is set
70 Vertex flag

Bit 0 = 1: additional vertex with curve fit

Bit 1 = 1: Vertex with tangent definition for
curve fit

Bit 3 = 1: Curve vertext point created

with curve fit

Bit 4 = 1: Control point for curve

bounding box

Bit 5 = 1: 3D-polyline vertex point
(since version 10.0)

Bit 6 = 1: Polygon line vertex point
(since version 10.0)

Table 30.24

Group codes
for VERTEX

elements

30.5.14 SEQEND

This sequence terminates ATTRIB and VERTEX definitions.

AutoCAD drawing exchange format (DXF) 827

30.5.15 3DFACE

This element introduces the description of three-dimensional surfaces. The sequence begins with
the command:

0

3DFACE

The flags for invisible edges are supported from AutoCAD version 10.0 onwards. Table 30.25
lists the additional commands.

Group Remarks

0 Element = 3DFACE

10,20,30 Coordinate (X,Y,Z) of 3D-surface (1st point)

11,21,31 Coordinate (X,Y,Z) of 3D-surface (2nd point)

12,22,32 Coordinate (X,Y,Z) of 3D-surface (3rd point)

13,23,33 Coordinate (X,Y,Z) of 3D-surface (4th point)

70 Flags for invisible edges (since version 10.0)

Bit 0 = 1: 1st invisible edge

Bit 1=1: 2nd invisible edge

Bit 2 = 1: 3rd invisible edge

Bit 3 = 1: 4th invisible edge
Table 30.25

Group code for
3D FACE elements

30.5.16 DIMENSION

This element is supported from version 9.0 onwards. It describes the dimensions of a drawing. The

sequence begins with:

DIMENSION

and contains the commands shown in Table 30.26:

828 Graphics formats

Group Remarks

0 Element = DIMENSION

1 Dimension text

2 Name of an anonymous block

10,20, 30 Definition point (X,Y,Z) dimension types

11,21, 31 Center point (X,Y,Z) dimension text

12,22, 32 Insertion point (X,Y,Z) dimension copy

13,23, 33 Definition point
Special point: 1st subsidiary line for

linear dimension

End point of subsidiary line for angle dimension

14,24, 34 Definition point

Special point: 2nd subsidiary line for
linear dimension

Start point of subsidiary line for angle dimension

15,25 Definition point for diameter and radius

35 1st point dimension line for radius and diameter
Start point of 2nd subsidiary line for angle

dimension

16,26, 36 Specification point for arc and angle dimension

40 Direction length for radius

and diameter dimension

50 Angle of rotated horizontal or
vertical dimensions

51 Orientation dimension text

(since version 10.0)

70 Dimension type

0: rotate

1: align
2: angle

3: diameter

4: radius

Bit 7=1: Dimension position

user-defined
Table 30.26

Group code
for DIMENSION

elements

Code 51 is used only from version 10.0 onwards. It indicates the direction of the dimension text.

AutoCAD drawing exchange format (DXF) 829

30.6 AutoCAD Binary DXF

With version 10.0 of AutoCAD, a binary version of the DXF format was introduced. A binary DXF
file begins with the signature:

AutoCAD Binary DXF<0DH><0AH><1AH>00H>

In DOS, the code 1AH signals the end of a text file, that is, the binary DXF file cannot be
processed by an editor or printed.

The format of a binary DXF file corresponds to the structure of ASCII DXF files, but numerical
values are coded in binary notation.

• Group codes (2 bytes) are stored in Intel format (little endian).

• All floating point numbers are in 8-byte double-precision format.

• ASCII strings are terminated with a null byte 00 H.

As a result, binary DXF files are up to 30% shorter than the ASCII DXF files and can be loaded
more quickly.

t
From AutoCAD 10.0 onwards, there are also Drawing Exchange Binary files (DXB), which
begin with the signature:

AutoCAD DXB<0DH><0AH><1AH>00H>

However, the structure of these files is not currently documented.
Further information about the DXF format is available from the Autodesk company.

Micrografx formats (PIC, DRW, GRF)

M
icrografx has developed several drawing
tools. These tools use several Metafile
formats (.PIC, -DRW, .GRFj

This chapter describes the formats of the following file types:

Type Product

PIC

GRF

DRW

Windows Draw, In*a*Vision

Windows Graph, Graph Plus

Designer, Charisma and Draw Plus

Version 1

Version 2

Table 31.1

Micrografx file
formats

During the course of its development, the company has defined two different file formats (type
1 and type 2). This is reflected in the extensions .PIC on the one hand, and .DRW and .GRF on the
other. All the records are structured in the same way:

<Length><Record Type><Data>

There are, however, a number of peculiarities concerning the length field. The data area can be
longer than 255 bytes, so the format defines two methods of indicating length:

830

Micrografx formats (PIC, DRW, GRF) 831

Len Type Data

max. 254 bytes

1 byte

1 byte

FFH Len Type Data

up to 64 kbytes

1 byte

2 bytes

Signature for extended Length Figure 31.1

Structure for

short and long
records

Normally, the length field is one byte long and can accommodate values between 0 and 255
(FFH). This allows a maximum of 254 characters in the data record (FFH is reserved). With longer
data records, the length field must be extended, which is why the value FFH was reserved to act as
a signature. If the first byte contains FFH, it will be followed by another field containing the
extended length. This field consists of 2 bytes, which are interpreted as an unsigned integer,
thereby enabling the length of the data area to be up to 64 Kbytes. With values less than FFH in the
first byte, this additional length field is not required.

As a result of a programming error in Windows Draw and In*a*Vision, four bytes are displayed
for the length field of records that have a data area longer than 254 bytes. However, only the first
two bytes contain a value. The following two bytes remain empty. In order to maintain
compatibility, these two extra bytes are also displayed in all current Micrografx products.

The length field defines the number of bytes in the data area. This value does not include the
bytes occupied by the length field and the record type.

The length field is followed by one byte specifying the record type. The record types are
described below. These involve the description of both objects (circle, line, and so on) and
operations (select color, and so on). All coordinate data refers to a device-independent, logical
coordinate system with dimensions of 32,767 units in the X direction and 32,767 units in the Y
direction. These coordinates are converted to the resolution of the output device. The default
setting is for a conversion factor of 200 units per centimeter (or 480 units per inch). The
remaining bytes in the record contain data for the record type concerned. The number of bytes is
determined by the length field.

The files are structured in such a way that a given sequence of record types must be observed.
For the version 1 format, the structure is as follows:

832 Graphics formats

Record Position

Beginning of File Must be 1st record

Version Must be 2nd record

Background Color Any position in file

Font Name Any position in file

Color Flag Any position in file
Grid Settings Any position in file

Initial Value Any position in file

Current Overlay Any position in file

Overlay Header Before SYMBOL definition

Overlay Color After overlay header

Visible Overlay Follows associated overlay header

Symbol ID Must follow SYMBOL

Text Must follow SYMBOL

Polygon Points Must follow SYMBOL

End of File Must be last record
_ _ _

Table 31.2

Record position
(version 1)

The position of any other records in the file is arbitrary. The structure for the version 2 formats
(DRW, GRF) is shown below:

Record Position

Beginning of File Must be 1st record

Version Must be 2nd record

Background Color Any position in file

Font Name Any position n file

Initial View Any position n file

Current Overlay Any position n file

Resolution Any position n file

Dimension Any position n file

Ruler Any position n file

Grid Settings Any position n file

Page Any position n file

Font Any position in file

Pattern Any position m file

Color Flag Any position in file

File Annotation Any position m file

Comment Any position in file

Table 31.3

Record position
(version 2)
(continues
over...)

Micrografx formats (PIC, DRW, GRF) 833

Record Position

Overlay Header Before SYMBOL definition

Overlay Color After overlay header

Visible Overlay Follows associated overlay header

Locked Overlay Follows associated overlay header
Overlay Name Follows associated overlay header

Symbol Follows associated overlay header

Symbol ID Must follow a SYMBOL record

Text Must follow a SYMBOL record

Polygon Points Must follow a SYMBOL record

Bitmap Must follow a SYMBOL record

End of File Must be the last record

FFH Len Data

Table 31.3

Record position
(version 2)
(cont)

The position of the other records in the file is arbitrary. In DRW and GRF files, the following
records, at least, must appear:

Background Color
Color Flag
Current Overlay
Resolution

Dimensions

Version

Beginning of File

Version 2 files may contain record types which are unknown in version 1 (for example,
bitmap). There is also an upgraded variant of the SYMBOL data structure.

Compression processes may be used in version 2 files, in the data area. However, compression
is used only for data records that have more than 2 identical bytes and the run-length method is
used. A compressed data record always consists of 3 bytes and begins with the value FFH (Figure
31.2).

Figure 31.2
Data

compression

The second byte defines a counter indicating how often the following (data) byte is to be
duplicated. The sequence:

FFH 05H 47H

834 Graphics formats

thus becomes the byte sequence:

47H 47H 47H 47H 47H

If an uncompressed data byte contains the value FFH, it will be compressed according to the above
notation (FFH 01H FFH). Uncompressed data is stored consecutively and may have values between
OOH and FEH. Record types between 96 and 160 (60H to AOH) always contain uncompressed data areas.
Data compression is used with all other records if possible.

Micrografx offers a toolkit for creating version 2 files, ensuring that compatibility with Version 1
is maintained.

31.1 Graphic File Record Types

The following record types may appear in PIC, DRW and GRF files:

31.1.1 CHART_SKIP_SYMBOLS (type 44, 2CH)

This record type is generated only by Charisma and Graph Plus. It is structured as follows:

Bytes Remarks

1

2

Type 44 (2CH)

Number of symbols
Table 31.4

GHART_SKIP

_SYMBOLS

record

The two bytes in the data area define how many of the symbols following directly after the data
record should be skipped, before additional symbol information is loaded from the file.

31.1.2 DRWBACKGROUND (type 1, 01H)

This record type specifies the background color defined at the time the graphic image was saved:

Bytes Remarks

Typel (01H)

Background color (R,G,B,I) Table 31.5

DRW_BAGK-

GROUND record

Micrografx formats (PIC, DRW, GRF) 835

The background color is defined as a 4 byte value containing the (packed) intensities of the
colors red, green and blue. One byte is used for each color proportion and the fourth byte is either
unused or used for the intensity.

31.1.3 DRWBAND (type 32, 20H)

This record type defines a rectangular area containing a pattern (bitmap).

Bytes

1

1

16

Remarks

Type32(20H)

Index

Pattern
Table 31.6

DRW_BAND

record

The index is a one-byte value and specifies the index number by which the following pattern
can be addressed. Other records can then call up the pattern using this index.

The pattern itself is defined in a 16-byte field, as a bitmap. The bitmap is often duplicated in
order to fill given areas.

31.1.4 DRW BITMAP (type 20, 14H)

This record defines a bitmap image.

Bytes

1

n

Remarks

Type20(14H)
Bitmap data

Tabic 31.7

DRW_BITMAP

record

In the data area, the bitmap for a symbol is stored as a byte sequence. No compression is used
in this record type.

31.1.5 DRW COLOR (type 9, 09H)

This record type defines the color of the objects.

836 Graphics formats

Bytes Remarks

1

3

Type 9 (09H)

Color of following objects
Table 31.8

DRW_COLOR

record

An entry containing three bytes for the primary colors red, green and blue is stored in the data
area. The value indicates the color of the objects belonging to the relevant overlay. The record
must be present if the DRW_C0L0R_FLAG is set.

31.1.6 DRW_COLOR_FLAC (type 10, OAH)

This record type defines whether an object group uses one color only.

Bytes Remarks

1

1

Type 10 (OAH)

Flag Table 31.9

DRW_COLOR

_FLAG record

The flag is interpretedas a logical variable. If the byte is not set to 0, all objects in the following
overlay will be displayed in one color.

31.1.7 DRW_COLOR_TABLE (type 35, 23H)

This record type defines a color table.

Bvtes Remarks

Type 35 (23H)

Color table Table 31.10

DRW_COLOR
TABLE record

The record contains a color table for the Virtual Bitmap Manager (VBM) and influences the last
bitmap loaded.

Micrografx formats (PIC, DRW, GRF) 837

31.1.8 DRW COMMENT (type 18, 12H)

This record type defines a comment text.

Bytes Remarks

1

n

Typel8(12H)

Comment
Table 31.11

DRW_COM-

MENT record

In the data field, there is an ASCII string containing the comment text. The file may have an
unlimited number of comments.

31.1.9 DRW CURR OVERLAY (type 16, 10H)

This record type defines the number of overlays currently used to save the data.

Bytes Remarks

1

2

Type 16(1 OH)

Number of overlays
Table 31.12

DRW_CURR_

OVERLAY record

Only one such record may appear in the file. Permitted values are between 0 and 63.

31.1.10 DRW_DIMENSIONS (type 24, 18H)

This record type defines the format of the dimension used for storing the data.

Bvtes Remarks

Type24(18H)

Format
Table 31.13

DRW_DIMEN-

SIONS record

838 Graphics formats

31.1.11 DRW_EOF (type 254, FEH)

This record defines the end of a file.

Bytes Remarks

1 Type 254 (FEH)

The record has no data area.

31.1.12 DRW FACENAME (type 2, 02H)

This record type defines the names of the fonts used.

Bvtes

1

n

Remarks

Type 2(02H)

Font name

Table 31.14

DRW.EOF

record

Table 31.15

DRWJFACE-

NAME record

The data area contains an ASCII string of length LF_FACESIZE. (This constant is defined in the
WINDOWS.H file.) The name is used to select a valid font. Several font records may appear in one
record. They are indexed from 0 to n in sequence. Texts indicate the font required using the
relevant index.

31.1.13 DRW_FONT (type 21, 15H)

This record type defines a logical font which is used by several objects:

Bytes

1

1

1

n

Remarks

Type2l(15H)

Index

PitchAndFamily

FaceName CLF_Facesizel Table 31.16

DRW_FONT

record

Micrografx formats (PIC, DRW, GRF) 839

The index number by which other objects can refer to the logical font is specified in the index.
The following byte defines the size (pitch) and the font type (font family) coded as follows:

Bits 0-1:

Bits 4-7:

00 Default Pitch

01 Fixed Pitch

10 Variable Pitch

0000 Unknown

0001 Roman

0010 Swiss

0011 Modern

0100 Script

0101 Decorative
Table 31.17

Font size and

font type

This is followed by a text field containing the names of the relevant fonts. Using this definition,
a logical font can be defined from the family of fonts available.

31.1.14 DRW_GRADIENT (type 30, 1EH)

This record type defines how the symbols are to be filled using the fill function.

Bytes Remarks

1 Type 30 (1 EH)

1 Index

1 Flags

1 xPercent

1 yPercent

2 Angle
Table 31.18

DRW_GRADIENT

record

The fill function enables the surfaces of objects (circles, rectangles, and so on) to be filled or
hatched. This record describes the means by which an object is filled. The Index field specifies the
index of the relevant definition. Using this index, another object can subsequently activate the fill
function with the hatching required.

The following fields define the parameters for the gradients of the fill function. The Flags field
defines whether the hatching is to be linear or radial. The coding is as follows:

840 Graphics formats

00 radial

01 linear

02 square

Table 31.19

Flag coding

The two parameters xPercent and yPercent define the point of origin in the bounding box

object from which the hatching starts. The xPercent parameter is not used in linear gradient
mode, because shifts can only be made parallel to the Y axis. The Angle field indicates the angle
of rotation in linear gradient mode, expressed in Vw degree.

31.1.15 DRW GRID (type 22, 16H)

This record type defines a grid within the drawing.

Bytes Remarks

Type22(16H)
Horizontal grid

Vertical grid
Table 31.20

DRW_GR1D

record

The parameters define the number of gridlines per unit in the drawing. The units refer to the
ruler, which can be superimposed onto the image.

31.1.16 DRWJD (type 4, 04H)

This record type defines a text string which is ascribed to a symbol in a Micrografx drawing.

Bytes

1

n

Remarks

Type 4(04H)

ASCII string Table 31.21

DRWJD record

Micrografx formats (PIC, DRW, GRF) 841

31.1.17 DRW INFO (type 19, 13H)

This record type defines an ASCII string, which is interpreted as a global description of the file.

Bytes Remarks

1

n

Typel9(13H)

ASCII string
Table 31.22

DRWJNFO

record

The string is terminated with a null byte. Only one record may appear in the file.

31.1.18 DRW LOCKED (type 29, 1DH)

This record type contains a logical value indicating whether the last specified Overlay Record is
locked.

Bytes Remarks

Type 29 (1DH)
Locked Flag

Table 31.23

DRW_LOCKED

record

If the value is not 0, the relevant overlay will be locked. For every overlay described in the file,
one such record may appear.

31.1.19 DRW_MAX_LINK_ID (type 37, 25H)

This record is reserved for Micrografx products.

31.1.20 DRW_OLD GRID (type 15, OFH)

This record defines the start values for the grid, the ruler and the page.

842 Graphics formats

—

Bytes Remarks

1 Type 15 (OFH)

1 GridPosted

1 PagesPosted

1 RulersPosted

1 RulerType

1 SnapTo

2 HGridSize

2 HPageSize

2 HSnapSize
2 Rulerlncrement

2 RulerSize

2 VGridSize

2 VPageSize

2 VSnapSize Table 31.24

DRW_OLD_

GRID record

The entries define the settings. The following conditions apply:
GridPosted is used as a logical flag defining whether the grid is displayed or suppressed. The

same applies to the PagesPosted and RulersPosted fields, which influence the page display and
the ruler. The PageType field is not currently defined.

The Rulerlype field defines the unit (0 = inch, 1 = cm). SnapTo switches the Snap function on
and off. HGridSize defines the space between horizontal gridlines in the image area, while
HPageSize indicates the horizontal size of the page in logical coordinates. The same principle
applies to the fields beginning with V (vertical). The Rulerlncrement field specifies the size of the
steps used in the ruler.

31.1.21 DRW_OVERLAY (type 5, 05H)

This record type defines an overlay area.

Bytes Remarks

Type 5(05H)
Overlay number

Number of symbols Table 31.25

DRW_OVERLAY

record

Micrografx formats (PIC, DRW, GRF) 843

The first entry defines the number of the overlay. Overlays introduce a sequence of records,
which define a number of elements to be combined. For this reason the second parameter

indicates the number of linked elements. Combined symbols can be created with this record. Only
one such record may be used to introduce each overlay.

31.1.22 DRWOVERLAY NAME (type 23, 17H)

This record type defines the name of an overlay area.

Bytes Remarks

1

n

Type 23 (17H)

Overlay name

The entry defines the name of the overlay introduced in the previous record.

Tabic 31.26

DRW_OVER-

LAY_NAME

record

31.1.23 DRWPAGE (type 27, 1BH)

This record type defines the application-specific size of a page in logical coordinates.

Bytes Remarks

1 Type27(1BH)

2 PageWidth
2 PageHeight

2 Left Margin
2 Top Margin

2 Right Margin
2 Bottom Margin

The values for page size do not include the margins.

Table 31.27

DRW_PAGE

record

844 Graphics formats

31.1.24 DRWPATTERN (type 28, 1CH)

This record type defines a pattern which is to be displayed.

Bytes

1

1

16

Remarks

Type28(1CH)
Index

Bit pattern
Table 31.28

DRW_PATTERN

record

The first field contains the index with which the pattern is addressed. The following 16 bytes
specify the actual pattern.

31.1.25 DRW_POLYGON (type 6, 06H)

This record type defines a polygon which is to be displayed.

Bytes

1

n*4

Remarks

Type 6(06H)
X/Y-coordinates for polygon points

Table 31.29

DRW_POLYGON

record

The polygon is defined by a number of X/Y coordinates which are linked by lines. The
coordinates relate to the relative position of the previous symbol. This record only follows symbol
records for polygons and connected lines.

31.1.26 DRW_RESOLUTION (type 25, 19H)

This record type defines the resolution of the logical coordinates of a unit on the ruler.

Bytes Remarks

1

2

Type25(19H)

Resolution
Table 31.30

DRW_

RESOLUTION

record

Micrografx formats (PIC, DRW, GRF) 845

31.1.27 DRWRULER (type 26, 1AH)

This record type defines the type and the scale gradations of the ruler.

Bytes Remarks

Type 26(1 AH)

Metric (Boolean)

nHorzSubdivisions

nVertSubdivisions

Increment Table 31.31

DRW_RULER

record

The metri c field signals whether the ruler scale is to be metric (true) or in inches (false).
The Subdivision fields indicate the gradation of the ruler in X and Y directions, in units.

The Increment field defines the gradation for the main markers (1,2,3 or 2,4,6, and so on).

31.1.28 DRW SYMBOL (type 7, 07H)

This record type defines a symbol (circle, line, and so on).

Bytes Remarks

1

X

Type 7 (07H)

Record structure for the symbol type
..•.:.•.:.•.•.:••.:•:..••:.:•:::•:••:•:;.:.•.•..•••..,

Five different versions of this record type have been defined:

Version

1

2

3

4

5

Product

Windows Draw, In*a*Vision
Windows Graph, Graph Plus
Designer 2.x
Designer 3.x, Charisma 2.Ox
Charisma 2.1, Designer 3.1

The structure of each version of the record is described separately.

Table 31.32

DRW_SYMBOL

record

Table 31.33

Versions of the

SYMBOL record

type

846 Graphics formats

31.1.28.1 Record structure of version 1

This version of the SYMBOL record only occurs in PIC files. Its structure is relatively simple:

Bytes Name Remarks

1 Type Object type
1 Flags Line type, fonts, and so on
4 Pos Position in logical coordinates (X,Y)
8 Box Bounding box object (X,Y,dX,dY)
2 Angle Rotation in 0.1 degree

(counterclockwise)
2 XScale Additive X-scaling
2 YScale Additive Y-scaling
4 Color Line, text, border color
2 Handle Reserved

4 Next Reserved (next symbol in list)
4 Prev Reserved (previous symbol in list)

Arc and pie slice

1 Pattern Fill pattern
4 FColor Fill color

4 Start Start coordinates (X,Y)

4 End End coordinates (X,Y)
8 Frame Bounding box object

4 Endp End point if single line (X,Y)

Rectangle and ellipse
1 Pattern Fill pattern

4 FColor Fill color

8 Frame Bounding box object

The field for the type of symbol is coded as follows:

Code

0

22

13

27

Remarks

Elliptical arc

Monochrome bitmap

Closed ellipse, tillable
Clip path, single instance, closed

Table 31.34

Structure of a

SYMBOL record

type 1

Table 31.35

Symbol types
(continues
over...)

Micrografx formats (PIC, DRW, GRF) 847

Code Remarks

14 Elliptical arc, clockwise
24 Closed Bezier curve, tillable
15 Closed parabola, tillable
1 Closed polygon, tillable

16 Closed quadratic spline, tillable
17 Closed complex object, tillable

2 Collection of objects
29 Formatted text fitted along a curve
3 Circle, ellipse
5 Line with scalable text

6 Single line element
23 Open, not tillable Bezier curve
18 Parabola

20 Open, non-fillable complex polygon
8 Open, non-fillable simple polygon

19 Quadratic spline
9 Pie wedge

10 Rectangle
11 Rectangle with rounded corners
25 Rich text block

28 Closed clip path (tiled)
26 Virtual bitmap

Table 31.35

Symbol types
(cont.)

The Flag field contains information on the object. The lower 4 bits define the line form or the
font for the object. Ifbit 4 of the lower bits is set, the wi ndi ng fill mode will be used; otherwise,
the aIternate odd-even mode will beused. Foran object consisting oflines, the following applies
to the lines:

OOH

01H

02H

03H

04H

05H

Solid

Dashed

Dotted

Dash dotted

Dash dot dash

Invisible

Tabic 31.36

Line styles

848 Graphics formats

With text objects, the lower 4 bits are logically linked with logical OR. They are coded as
follows:

Bit Bold

Italic

Strikeout

Underline

The mask for the 4 upper bits defines the following modes:

Bit No rotate

Proportional stretch

Static ID

Opaque

Table 31.37

Text format

Table 31.38

Coding upper
four bits

Pos contains the position of the logical coordinates (X,Y) for the relevant object. If the object is
a component of a composed object, the coordinates are given in relative terms.

Box is the definition of the rectangle (X,Y,deltaX,deltaY) which can be drawn around the object.
Angle defines the rotation of an object in l/w degree, counterclockwise.

XScale and YScale are used only with stretch in order to maintain the original size of the
boundingbox. Color is a 4-byte value, containing the color definition (RGB) of the original.

31.1.28.2 Record Structure of Version 2

This version of the SYMBOL record appears in DRW and GRF files. The structure is as follows:

Bytes Name Remarks

1

1

4

8

2

Type

Flags

Pos

Box

Angle

Object type
Line type, fonts etc.
Position in logical coordinates (x,y)
Bounding box object (X,Y,dX,dY)
Rotation in 0.1 degree
counterclockwise

Table 31.39

Structure of a

SYMBOL record

type 2
(continues
over...)

Micrografx formats (PIC, DRW, GRF) 849

Bytes Name Remarks

2

2

XScale

YScale

Additive X-scale

Additive Y-scale

4 Color Line, text, border color
2 Handle Reserved

4

4

Next

Prev

Reserved (next symbol in list)
Reserved (previous Symbol in List)

Arc, chord, pie
1 Pattern Fill pattern
4 FColor Fill color

4

4

8

Start

End

Frame

Start coordinates (X,Y)
End coordinates (X,Y)
Bounding box object

2 HBitmap

Bitmap

Reserved

8

2

2

2

2

2

Rect

BitPxl

BytesL

Planes

Height

Width

Clipping region
Bits per pixel
Bytes per scanline

Number of color planes
Bitmap height (in lines)
Bitmap width (in pixels)

6

1

8

4

List

Flags

Rect

Composed object
Symbol list
Reserved

Contracted bounding box
Reserved

2 Handle Reserved

4

4

1

End

Start

Format

Line segment
End point line
Start point
Line thickness

2 Increm Increment

2 Handle

Single line of text
Reserved

1 Font Font index

2 Count Character count

2

2

Height

Width

Font height in logical units
Font height in logical units

2 ESC Escapement in 1/10 degrees

2 X

(counterclockwise)
X-axis alignment

Table 31.39

Structure of a

SYMBOL record

type 2
(cont.)

850 Graphics formats

Bytes Name Remarks

2 Y Y-axis alignment
Space Inter-character spacing

(in logical units)
1 Align Alignment horizontal and vertical

Open or closed parabola
1 Pattern Fill pattern
4 FColor Fill color (RGB)
4 Start Start point (X,Y)
4 Mid Center point (X,Y)
4 End End point (X,Y)

Open or closed path
1 Pattern Fill pattern
4 FColor Fill color (RGB)
n List Symbol list

Open or closed polygon or spline
1 Pattern Fill pattern
4 FColor Fill color (RGB)
2 Handle Reserved

2 nPoints Number of points (unsigned)

Rectangle and ellipse
1 Pattern Fill pattern
4 FColor Fill color

8 Frame Bounding box object
2 Round Radius in logical coordinates for

rounding

Rich Text block

2 hBlock Reserved

2 ESC Escapement 0.1 degree counter
clockwise

2 x x alignment point
2 y y alignment point

1 AFlags Application flags
4 BColor Background color
2 Penw Pen width

1 Style Style line ends
1 Rad Radius line end

4 Rotpt Pivot point for symbol rotation (X,Y)
2 Penh Pen height
2 Pena Pen angle 0.1 degree (counterclockwise)
1 LineSt Line type
8 Border Bounding box (bordered)

Table 31.39

Structure of a

SYMBOL record

type 2
(cont.)

Micrografx formats (PIC, DRW, GRF) 851

The same explanations apply as for version 1.

31.1.28.3 Record structure of version 3

This verion of the SYMBOL record appears in DRW and GRF files.

Bytes Name Remarks

1 Type Object type
1 Flags Line type, fonts and so on
4 Pos Position in logical coordinates (X,Y)
8 Box Bounding box object (X,Y,dX,dY)
2 Angle Rotation in 0.1 degree

(counterclockwise)
2 XScale Additive X-scale

2 YScale Additive Y-scale

4 Color Line, text, border color
2 Handle Reserved

4 Next Reserved (next symbol in list)
4 Prev Reserved (previous symbol in list)

Arc, chord, pie
1 Pattern Fill pattern
4 FColor Fill color

4 Start Start coordinates (X,Y)
4 End End coordinates (X,Y)
8 Frame Bounding box object

Bitmap
2 HBitmap Reserved

4 Rect Clipping region
2 BitPxl Bits per pixel
2 BytesL Bytes per scanline
2 Planes Number of color planes
2 Height Bitmap height in lines
2 Width Bitmap width in pixels

Composed object
6 List Symbol list
1 Flags Reserved

8 Rect Contracted bounding box
4 — Reserved

2 Handle Reserved

Tabic 31.40

Structure of a

SYMBOL record

type 3
(continues
over...)

852 Graphics formats

Bytes Name Remarks

Single line of text
2 Handle Reserved

1 Font Font index

2 Count Character count

2 Height Font height in logical units
2 Width Font width in logical units

2 ESC Escapement in 1/10 degree
(counterclockwise)

2 X X-axis alignment

2 Y Y-axis alignment

2 Space Inter-character spacing

1 Align Alignment (horizontal, vertical)

Line segment

4 End End point line

4 Start Start point line

1 Format Line thickness

2 Increm Increment

Open or closed parabola

1 Pattern Fill pattern

4 FColor Fill color (RGB)

4 Start Start point (X,Y)

4 Hid Center point (X,Y)

4 End End point (X,Y)

Open or closed path

1 Pattern Fill pattern

4 FColor Fill color (RGB)

n List Symbol list

Open or closed polygon or spline

1 Pattern Fill pattern

4 FColor Fill color (RGB)

2 Handle Reserved

2 nPoints Number of points

Rectangle and ellipse

1 Pattern Fill pattern

4 FColor Fill color

8 Frame Bounding box object

2 Round Radius rounding rectangle

1 AFlags Application flags

4 BColor Background color

Table 31.40

Structure of a

SYMBOL record

type 3
(cont.)

Micrografx formats (PIC, DRW, GRF) 853

Bytes

2

1

1

4

Name Remarks

Penw Penwidth

Style Style line ends

Rad Radius rounded lines ends

Rotpt Pivot point for symbol rotation (X,Y)

The same explanations apply as for version 1.

Table 31.40

Structure of a

SYMBOL record

type 3
(cont.)

31.1.28.4 Record structure of version 4

This version of the SYMBOL record appears in DRW and GRF files. The structure is as follows:

Bytes Name Remarks

1 Type Object type
1 Flags Line type, fonts and so on
4 Pos Position in logical coordinates (X,Y)
8 Box Bounding box object (X,Y,dX,dY)
2 Angle Rotation in 0.1 degree

(counterclockwise)
2 XScale Additive X-scale

2 YScale Additive Y-scale

4 Color Line, text, border color
2 Handle Reserved

4 Next Reserved (next symbol in list)
4 Prev Reserved (previous symbol in list)

Arc, chord, pie
1 Pattern Fill pattern
4 FColor Fill color

4 Start Start coordinates (X,Y)
4 End End coordinates (X,Y)
8 Frame Bounding box object

Bitmap
2 HBitmap Reserved

Table 31.41

Structure of a

SYMBOL record

Type 4
(continues
over...)

854 Graphics formats

Bytes Name Remarks

8 Rect Clipping region
2 BitPxl Bits per pixel

2 BytesL Bytes per scanline

2 Planes Number of color planes

2 Height Bitmap height in lines

2 Width Bitmap width in pixel

Composed object

6 List Symbol list

1 Flags Reserved

8 Rect Contracted bounding box

4 — Reserved

2 Handle Reserved

Single line of text

2 Handle Reserved

1 Font Font index

2 Count Character count

2 Height Font height in logical units

2 Width Font width in logical units

2 ESC Escapement in Vm degree
(counterclockwise)

2 X X-axis alignment

2 Y Y-axis alignment

2 Space Inter-character spacing

1 Align Alignment (horizontal, vertical)

Line segment

4 End End point line

4 Start Start point

1 Format Line thickness

2 Increm Increment

Open or closed parabola

1 Pattern Fill pattern

4 FColor Fill color (RGB)

4 Start Start point (X,Y)

4 Hid Center point (X,Y)

4 End End point (X,Y)

Open or closed path

1 Pattern Fill pattern

4 FColor Fill color (RGB)

Table 31.41

Structure of a

SYMBOL record

Type 4
(cont.)

Micrografx formats (PIC, DRW, GRF) 855

Bytes Name Remarks

n List Symbol list

n Fsymb Fill symbol

Open or closed polygon or spline
1 Pattern Fill pattern
4 FColor Fill color (RGB)

2 Handle Reserved

2 nPoints Number of points

Rectangle and ellipse
1 Pattern Fill pattern
4 FColor Fill color

8 Frame Bounding box object
2 Round Radius rounded rectangle

Rich Text block

2 hBlock Reserved

2 ESC Escapement in 0.1 degree
2 X X alignment point
2 y Y alignment point

1 AFlags Application flags
4 BColor Background color
2 Penw Pen width

1 Style Style line ends
1 Rad End radius

4 Rotpt Pivot point for symbol rotation (X,Y)
2 Penh Pen height
2 Pena Pen angle 0.1 degree

(counter clockwise)
1 LineSt Line stvle

8 Border Bounding box (bordered)

The same explanations apply as for version 1.

31.1.28.5 Record structure of version 5

Table 31.41

Structure of a

SYMBOL record

Type 4
(cont.)

This version of the SYMBOL record appears in DRW and GRF files. The structure is as follows:

856 Graphics formats

Bytes Name Remarks

1 Type Object type
1 Flags Line type, fonts and so on
4 Pos Position in logical coordinates (X,Y)
8 Box Bounding box object (X,Y,dX,dY)
2 Angle Rotation in 0.1 degree

(counterclockwise)
2 XScale Additive X-scale

2 YScale Additive Y-scale

4 Color Line, text, border color

2 Handle Reserved

4 Next Reserved (next symbol in list)
4 Prev Reserved (previous symbol in list)

Arc, chord, pie

1 Pattern Fill pattern

4 FColor Fill color

4 Start Start coordinates (X,Y)

4 End End coordinates (X,Y)

8 Frame Bounding box object

Bitmap

2 HBitmap Reserved

8 Rect Clipping region

2 BitPxl Bits per pixel

2 BytesL Bytes per scanline
2 Planes Number of color planes

2 Height Bitmap height in lines

2 Width Bitmap width in pixels

Composed object

6 List Symbol list

1 Flags Reserved

8 Rect Contracted bounding box

4 — Reserved

2 Handle Reserved

Single line of text
2 Handle Reserved

1 Font Font index

2 Count Character count

2 Height Font height in logical units
2 Width Font width in logical units

2 ESC Escapement in 1/10 degree
(counterclockwise)

Table 31.42

Structure of a

SYMBOL record

type 5
(continues
over...)

Micrografx formats (PIC, DRW, GRF) 857

Bytes Name Remarks

2 X X-axis alignment
2 Y Y-axis alignment
2 Space Inter-character spacing

1 Align Alignment (horizontal, vertical)

Line segment

4 End End point line
4 Start Start point

1 Format Line thickness

2 Increm Increment

Open or closed parabola
1 Pattern Fill pattern
4 FColor Fill color (RGB)
4 Start Start point (X,Y)

4 Hid Center point (X,Y)
4 End End point (X,Y)

Open or closed path
1 Pattern Fill pattern
4 FColor Fill color (RGB)
n List Symbol list
n Fsymb Fill symbol

Open or closed polygon or spline
1 Pattern Fill pattern
4 FColor Fill color (RGB)
2 Handle Reserved

2 nPoints Number of points

Rectangle and ellipse
1 Pattern Fill pattern
4 FColor Fill color

8 Frame Bounding box object
2 Round Radius rounded rectangle

Rich Text block

2 hBlock Reserved

2 ESC Escapement in 0.1 degree
2 x x alignment point
2 y y alignment point
2 Flags Reserved

2 Handle Reserved

2 nPoints Reserved

Table 31.42

Structure of a

SYMBOL record

type 5

(cont.)

858 Graphics formats

Bytes Name Remarks

1 AFlags Application flags
4 BColor Background color

2 Penw Pen width

1 Style Style line ends

1 Rad End radius

4 Rotpt Pivot point for symbol rotation (X,Y)
2 Penh Pen height

2 Pena Pen angle 0.1 degree

(counter clockwise)

1 LineSt Line style

8 Border Bounding box (bordered)

Table 31.42

Structure of a

SYMBOL record

type 5
(cont.)

The same explanations apply as for version 1. Handles are used by Graph Plus, and the length
is 2 bytes. Versions 1 to 4 are subsets of version 5. Patterns within an object are displayed
according to the following codes:

Code Pattern

COH Hatch

80H Pattern

40H Solid

OOH Unfilled

The hatching for a pattern is coded as follows:

Code Hatch

OOH Horizontal

01H Vertical

02H Forward diagonal
03H Backward diagonal

04H Vertical-horizontal

05H Diagonal crossed

Table 31.43

Pattern codes

Table 31.44

Hatch codes

Micrografx formats (PIC, DRW, GRF) 859

The form of a line cap is coded as follows:

Code Line cap

0 Rounded

1 Flat

2 Square

The form of line joins is coded as follows:

Code Line join

0 Rounded

1 Beveled

2 Mitre

31.1.29 DRW SYMBOLVERSION (type 33, 21H)

This record type defines the version number used by the symbol definition.

Bytes Remarks

Type 33 (21H)

Version number = 5

Only version number 5 is currently used.

31.1.30 DRWTEXT (type 8, 08H)

This record type defines a text which is linked with the preceding symbol.

Table 31.45

Line cap codes

Table 31.46

Line join codes

Table 31.47

DRW_

SYMBOL

VERSION

record

860 Graphics formats

Bytes Remarks

1

n

Type 8(08H)

String

31.1.31 DRW_TEXTEXTRA (type 36, 24H)

This record type is reserved for Micrografx.

Table 31.48

DRW_TEXT

record

31.1.32 DRW_TEXTHDR (type 31, 1FH)

This record defines a header for an S_TEXT symbol in the preceding DRW_SYMBOL record.

Bytes Remarks

1 Type 31 (1 FH)
1 Version

1 Vertical alignment

2 MemFlags
2 ESCAPE

X DefFont

2 Number of parameters
X Text parameter block

Table 31.49

DRW_TEXTHDR

record

The Version field defines the version of the text. The vertical alignment is defined as follows:

Code Vertical alignment

0

4

8

16

Top align

Middle align

Bottom align

Justify align Table 31.50

Vertical

alignment

Micrografx formats (PIC, DRW, GRF) 861

The MemFlags field relates to the allocation of the text block. The ESCAPE field defines the
escapement, in Vio degree, with which the text is to be displayed. The Def Font field contains a data
structure defining the text fonts required. The structure contains the following entries:

Bytes Remarks

1 Font index

1 Style

2 Font width

2 Font height
Table 31.51

Font description
structure

The width and height of the font is in logical units and are stored as integers. The number of
parameters refers to the number of paragraphs in the following field. The last entry is another data
structure containing the text parameter block. This is structured as shown below:

Bytes Remarks

2 Left margin

2 Right margin

2 Indent

1 Horizontal alignment

2 Extra leading

2 Maximum leading

2 Maximum ascending

2 Maximum height

8 Bounding box paragraph

2 Handle

2 Size (unsigned) nBytes of data record

addressed by handle

2 Space before (short integer)

2 UserData (word)

2 Byte space after (short)

4 Paragraph offset relative to block origin
Table 31.52

Text parameter
block data

structure

The Handle field contains the address in memory at which the data records containing text are
stored. The parameter nBytes indicates the size of this data area in bytes. The following fields

862 Graphics formats

define the formatting of the text. The last entry indicates the offset of the paragraph from the
beginning of the block origin.

31.1.33 DRW_TEXTPARA (type 34, 22H)

This record defines a text parameter block, as described in the previous record (see above).

Bvtes

1

x

Remarks

Type 34 (22H)

Parameter block

31.1.34 DRW VERSION (type 3, 03H)

This record defines various version numbers within the tile.

Bytes Remarks

1

2

1

1

Type 3 (03H)
Revision

Version

Application

Table 31.53

DRWJTEXPARA

record

Table 31.54

DR\V_VERSION

record

The first field Revision requires 2 bytes and contains the revision number of the application
that created this file. The following byte defines the version number of the file, coded as follows:

1 In*a*Vision, Windows Draw, Graph
2 Charisma, Designer

The last byte contains an application-specific code:

0 = In*a*Vision, Windows Draw

1 = Windows Graph, Graph Plus, Charisma
2 = Designer

In the case of files with version number 1, the revision level is always set to 6 and the last byte to 0.

Micrografx formats (PIC, DRW, GRF) 863

31.1.35 DRW_VIEW (type 14, OEH)

This record defines the initialization values for the image origin and dimensions.

Bytes

1

4

4

Remarks

Type 14 (OEH)

WindowOrg

WindowExt Table 31.55

DRWJVIEW

record

The 4-byte field WindowsOrg defines the origin of the visible window (X,Y) in logical
coordinates. The value corresponds to the setting at which the file was created. The X coordinate
is stored in the lower word of the field.

In the following 4-byte field, the dimensions of the X and Y axes in logical coordinates are
stored. The value for the X axis is always in the lower word.

31.1.36 DRW VISIBLE (type 17, 11H)

This record contains a Boolean value indicating whether an overlay is to be visible.

Bytes Remarks

Type 17 (11H)

Visible

One VISIBLE record must be defined for every overlav record.

31.1.37 VERSION REC (type 255, FFH)

This record marks the beginning of a file.

Table 31.56

DRW_VISIBLE

record

864 Graphics formats

Bytes Remark

1

1

Type 255 (FFH)

File version

____-_•_-____,

The file version is coded as follows:

1 In*a*Vision, Windows Draw

2 Charisma, Designer, Windows Graph

Graph Plus, Draw Plus

This record may appear only once in the file.

References

1 Further information can be obtained from the Micrografx Developers Toolkits.

Table 31.57

VERSION_REC

record

TARGA format (TGA)

The TARGA format was developed by
Truevision to enable the storage of True Color
Images. Since the initial development of

TARGA. a number of variants supporting different
modes (monochr-ome, 256 colors, 24 bit, and so on)
have appeared on the market.

All TARGA files contain a header followed by the image data, as shown in Figure 32.1.

HEADER

PALETTE

(optional)

IMAGE DATA

Figure 32.1
Structure of a

TGA file

In the case of color map images (for example, pictures of 256 colors), the header may contain
an optional color map. The pixels for 24-bit images are stored directly in the color required and
the color map is therefore not needed. The header is followed by the area containing the image
data, which may be either uncompressed or compressed using a range of compression processes.

865

866 Graphics formats

32.1 TARGA header

The TARGA header has a fixed structure. It contains all the information necessary for evaluating
an image file (for example, coding, image type, dimensions). However, there is no compulsory
signature in the header of a TARGA file. Figure 32.2 shows a hex dump of part of a TARGAfile.

-I-en|

- (

thin

jolor

- Im

age ID

MapTy

ageTyi
r- Cok

Field

pe

>e(l
r Ma]

-Co

= Col

>Orig
orM

-En

ir Map

in

ip Entr

try Size
- X-C

les

(24 Bi
jordina

- Y-Co

t/Color

te

ordinal

- Widt

)

e

h

p Height

Bits per Pixel

Image
Descriptor
Flag

Color Map
(Palette)

Image data...

0 0 01 01 00 00 00 01 18-00 00 00 00 10 00 04 00

0

I
8 0 0 00 00 00 00 00 80-00 80 00 00 80 80 80 00

00 80 00 80 80 80 00 C0-C0 CO CO DC CO F0 CA A6

00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

1
00 00 00 00 F0 FB FF A4-A0 A0 80 80 80 00 00 FF

00 FF 00 00 FF FF FF 00-00 FF 00 FF FF FF 00 FF

FF FF FF FF FF FF FF FF-FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF-FF FF FF FF FF FF FF FF

FF FF 00 00 FF FF 00 OO-FF FF 00 00 FF FF 00 00

FF FF 00 00 FF FF 00 00-FF FF 00 00 FF FF 00 00

FF FF

Figure 32.2
Hex dump of a
TARGA file

TARGA format allows for various image types and coding variants. The individual fields are
described below.

TARGA format (TGA) 867

32.1.1 Color map images (type 1, 9, 32 and 33)

Color map images are color pictures in which a color index is stored for each individual pixel. The
actual color is stored in a color map table. (This principle is used in other bitmap formats, such as
PCX and TIFF.) The advantage of this form of storage is that the image data is significantly
reduced, since only an index to the color table is required. The type of image is stored at offset 03H
in the header (see Table 32.1) are available. Various depths of color and methods of compression
are available.

32.1.2 RGB images (type 2, 10)

With RGB images, 24 bits per pixel are stored in the file. This allows 8 bits for each color intensity
and up to 16 million colors in the image. The process does not require a color map. Because of the
range of colors available, 24-bit images are also described as true color images.

As well as the TARGA 24 files, there is the TARGA 32 format, in which 32 bits are stored for
each pixel. Only the three lower bytes are used for coding the color. The upper byte contains
attributes and the type of compression (type 2 = uncompressed, type 10 = RLE compression).

32.1.3 Monochrome images (type 3, 11)

Only two colors are required for black and white images, making the color map unnecessary.
Pixels are stored sequentially in the file. Type 3 images are stored uncompressed, while type 11
uses RLE compression.

32.1.4 Structure of the header

Table 32.1 shows the structure of the header for all TARGA files. It should be noted that all data is
stored in Intelformat, that is, the lower value byte is stored at the lower address (low byte first).

Offset Bytes Remarks

OOH 1 Length of image identification

field, 0 to 255 bytes,

0 = no ID field

01H 1 Color map type

0 no color map

1 color map included

Table 32.1

Structure of a

TGA header

(continues
over...)

868 Graphics formats

Offset Bytes Remarks

02H 1 TARGA image type

0: no image data in file

1: color map image, uncompressed

2: RGB image (24 bit), uncompressed

3: Monochrome image, uncompressed

9: Color map image, RLE-encoding

10: RGB image (24 bit), RLE encoding

11: Monochrome image, RLE encoding

32: Color map image with
Huffman, Delta and RLE compression

33: Color map image with Huffman, Delta

and RLE compression (4 Pass Quad

Tree)

03H 2 Color map origin (integer)

05H 2 Color map length (integer)

07H 1 Color map entry size (16, 24, 32)

08H 2 X-coordinate origin

OAH 2 Y-coordinate origin

OCH 2 Image width in pixels

OEH 2 Image height in pixel

10H 1 Bits per pixel (1, 8, 24)

11H 1 Image descriptor byte

12H n Image identification field (optional)

..H n Color map (optional)
Table 32.1

Structure of a

TGA header

(cont.)

At offset 0 there is one byte indicating the length of the Image Identification Field. This field is
optional and contains manufacturer-specific information. It begins at offset 12H. If the first byte is
0, the identification field is omitted and the color map begins at offset 12H.

The second byte indicates whether the file contains a color map. If it is 0, there is no color
map. This normally applies to all RGB files (TARGA 24), but there are some programs that have a
color map with an entry for the border color for RGB images. The entry in this field should be
skipped for RGB images. If the second byte contains 1, there is a color map in the header. This
applies to all color map images.

Since there are various types of TARBA file, the header also contains one byte indicating the type.
This byte is always at offset 02H and is coded as shown in Table 32.1. The format descriptions for file
types 1, 2, 3, 9, 10, and 11 are given below. Documentation on the remaining file types, especially
regarding compression, was not available at the time of writing. At offset 03H, there are 5 bytes con
taining the specificationsof the color map. The map itselffollows the Image Identification Field. The
word at offset 03H defines an index to the first valid entry in the color map. If there is a complete

TARGA format (TGA) 869

color map, the value of the field is set to 0. There is generally a complete color map, in which case,
the value of the field is set to 0. At offset 0511, the length of the color map is stored, in terms of the
number of entries (OOH 01H = 10OH = 256 entries). The byte at offset 07H defines the number of bits
per pixel; 16 bits are defined for TARGA 16 files, 24 for TARGA 24 files and 32 for TARGA 32 files.

The image coordinates and dimensions are defined in a 10-byte field at offset 08H. Two byte
values are interpreted as integer numbers. The X-coordinates for the origin of the image are stored
at offset 08H and the Y-coordinates at offset OAH. The alignment of the image (origin top left or
bottom left) is specified in the flag at offset 11H. The image width in pixels is defined at offset OCH,
and the image height in pixels at offset OEH.

The number of color planes (bits per pixel) is defined in the byte at offset 10H. Possible values

are 1 (monochrome), 8 (256 colors) and 24 (16 million colors). In the case of 24-bit files, the
image is a True Color picture, and the color map is omitted. There are also TARGA images in
which the image data is written using 32 bits. The resolution of each pixel, however, is fixed at 24

bits. The remaining bits are used for attributes (alpha or transparency information).
The Image Descriptor Flag at offset 11H indicates whether attribute bits are used for the image

data. Bits 4 and 5 define the position of the origin (bit 4 left, right, bit 5 top, bottom). Originally bit
4 was marked as reserved, so that the origin was positioned at bottom left or top left via bit 5. Bits
6 and 7 define the interleaving of individual image lines. Figure 32.3 shows the coding of the Image
Descriptor Flag.

Bit 7 6 5 4 3 2 10

UJ UJ

jli ten ui iy in

00: Lower left corner

01: Lower right corner

10: Upper left corner

11: Upper right corner

,

00: No interleave

01: Two-way interleave

10: Four-way interleave

11: Reserved

Figure 32.3
Coding of the
Image Descriptor
Flag

The value for the attribute bits in TARGA 16 files is set to 0 or 1. For TARGA 24 files, these bits
should be set to 0, and for TARGA 32 files, 8 attribute bits are provided per pixel. The Screen
Origin bit must be set to 0 for Truevision images (origin in bottom left corner). For type 1 images,
the whole Image Descriptor Flag should be set to 0.

An Image Identification Field may be stored at offset 12H. This field may contain up to 255
bytes and is used for manufacturer-specific information. The length of the field is indicated in the
byte at offset OOH. If this byte contains the value 0, the Image Identification Field is omitted. If

870 Graphics formats

more than 255 bytes are required for this information, it may be stored after the image data. This
happens, for example, with TARGA images processed using Image Alchemy.

32.1.5 Color map data

The optional table containing color map data may follow the image identification field (or be
stored at offset 12H if this field is omitted). If the color map type (offset 01H) is set to 0, the color
map is not present. If the type is set to 1, the position of the color map can be calculated, as
follows:

Length of image identification field = 12H

The number of entries in the color map table is stored at offset 05H. The word at offset 03H
indicates the color value at which the color map begins. A value of 0 (default) means that the first
entry in the color map is valid. The length of a table entry in bytes is stored at offset 07H and may
be 16, 24 or 32 bits. If an entry contains 32 bits, the first three bytes specify color data in the
sequence blue, green, red. The fourth byte contains an attribute. Three-byte entries contain the
color intensities (blue, green, red) with each color occupying one byte. With 16 bits, the colour
information is coded as follows:

A RRRRR GGGGG BBBBB

The letters represent A = attribute, R = red, G, = green and B = blue. In all color map entries,
surplus bits up to the byte limit are treated as attribute bytes.

32.2 The structure of the image data area

The color map is followed by the image data area. The start of this area can be calculated as
follows:

12H = Length of image identification field + Length of color map

The image area contains the pixel data for an image of width * height. There are various depths
of color (monochrome, 256 colors, 32767 colors, 16 million colors). In addition, image data can be
stored either uncompressed or using various compression processes (see Table 32.1).

32.2.1 Uncompressed monochrome images (type 3)

Some programs permit the storage of uncompressed monochrome images. Figure 32.4 shows a hex
dump of a 16 x 16 pixel monochrome image.

Length Image ID-Field

— No Color Map (Palette)
Image Type (3 = Monochrome uncompressed)

- Color Map (empty)
— X-Coordinate

Y-Coordinate

- Width

TARGA format (TGA) 871

Height

00 00 03 00 00 00 00 00-00 00 00 00 10 00 10 00

01 20 E0 FF FF FF FF FF-FF FF EA FF FF FF FF FF

E0 FF E0 80 80 80 00 C0-C0 CO CO DC CO FO BA A6

EO FF

Bits per Pixel

Image Descriptor
Flag (origin upper
left corner)

Imagege data
Figure 32.4
Hex dump
of a 16x16

monochrome

image
(uncompressed)

An image of 16 x 16 pixels contains 256 pixels. The header indicates that only one bit is used
per pixel. Eight pixels can therefore be stored in one byte, and the data area only requires 32
bytes.

32.2.2 Uncompressed color map images (type 1)

In the case of uncompressed color map images, n bits per pixel are stored. Each entry acts as an
index to the color map, and the graphics card is responsible for the conversion. Figure 32.2 shows
the structure of this kind of image file. The image data is stored as one byte per pixel.

It is interesting to note that although 256 entries are provided for the color map, only the first
16 entries have been given color values. The remaining values are initialized to 0 (black).

32.2.3 Uncompressed RGB images (type 2)

The image data in this case is also stored in a very simple way. The number of bits per pixel (16,
24, 32) is given in the header. With 16 bits per pixel, only 32767 colors can be represented. The
image data is coded as follows:

A RRRRR GGGGG BBBBB

where A= attribute, R = red, G = green, B = blue. This means that 5 bits are available for each color
(32767 colors).

With 24 bits per pixel, there are 8 bits for each color plane in the sequence red, green, blue,
which allows for 16 million different colors (True Color representation). With 32 bits per pixel, the

872 Graphics formats

colors are coded three bytes in the sequence red, green, blue. The fourth byte contains an
attribute (alpha and transparency information).

32.2.4 RLE-compressed color map images (type 9)

In order to save space, the TARGA format recognizes various compression processes. Only the
frequently used RLE process will be described below (File Type 9).

Image data is compressed into records and coded as shown in Figure 32.5:

RLE-Record

1 Count-1 Data

Raw-Data-Rec 0 rd

0 Count-1 Data 1| Data n

82H 02H

Figure 32.5
Record format

for RLE coding

Each record comprises a header byte, followed by one or more data bytes. If the top bit of the
header is set (1), the record is an RLE record in which several identical image data items have
been compressed. The remaining 7 bits of the header byte contain a counter indicating the
number of repetitions - 1. Repetition factors between 1 and 128 are possible using these 7 bits.
The followingbyte contains the bit pattern to be copied. The hexadecimal sequence:

is thus expanded to:

02H 02H 02H

(82H = 3 repetitions). It should be noted that the image data of an expanded RLE record may
extend beyond the current image line into the following line.

If image data bytes cannot be compressed, they should be stored in what is known as RAW
format. In this case, the top bit of the header is set to 0. The remaining 7 bits contain a counter
(n) indicating the number of following pixels - 1. The header is then followed by n + 1 pixels
containing uncompressed data. Since each pixel corresponds to a byte, with 8 bits per pixel, the
number of following pixels is the same as the number of following bytes. This data may also extend
beyond the current image line.

The sequence:

8FH OFH 07H OFH OOH OFH OAH OFH 09H OFH OCH 87H OFH

is expanded as follows:

-16 50F

OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF

X
OF 00 OF OA OF 09 OF OC OF OF OF OF OF OF OF OF

TARGA format (TGA) 873

8. uncompressed
bytes

LH * OF

Figure 32.6
Expanded
image data

The RLE process uses this technique to achieve a reduction in the amount of image data. The
same coding procedure is also used for compressed monochrome images (type 11).

32.2.5 RLE-compressed RGB images (type 10)

The RLE process described above is also used for compressing RGB images. However, the actual
treatment of image data is different in some cases.

A compressed record still begins with a header byte (see Figure 32.5). The top bit is set to 1
and the remaining bits define the repetition counter -1. The header is followed by a color value for
the pixel to be copied. This color value requires not one byte, but several:

♦ With 16 bits per pixel, two bytes with the color coding ARRRRRGGGGGBBBBB (A = attribute, R=
red, G = green, B = blue).

♦ With 24 bits per pixel, three bytes containing the color intensities for red, green and blue.

♦ With 32 bits per pixel, four bytes containing the color intensities for red, green, blue (one byte
each) and an attribute (fourth byte).

The pixel should then be copied n times, where the value of n is the repetition counter + 1.
In the case of an image containing uncompressed data, the top bit in the header byte is set to 0

and the remaining bits define the repetition factor - 1. The header byte is followed by n pixels,
where n is the repetition factor + 1. Each pixel consists of 16, 24 or 32 bits depending on the
coding described above.

| When actually analyzing various TGA files it became apparent that many programs use
y only the lowest four header bits as a counter. This leads to poorer compression, but does
• not adversely affect the reader program.

Dr. Halo format (PIC, CUT, PAL)

Dr. Halo format is used for storing bitmap
graphics. Mouse drivers from Genius are

supplied with a program (Dr. Halo III or Dr.
Genius) which supports images in PIC format.
Various graphic conversion programs can also
produce and convert CUT images.

The PIC file format depends on the hardware used, that is, an image created with EGA cards
cannot be displayed via VGA cards. There are therefore severe restrictions on practical usefulness.
However, this does not apply to the CUT format which stores image excerpts from Dr. Halo
pictures. The colormap data is stored in a third file (PAL). Table 33.1 shows the file extensionsfor
the various options:

Extension

CUT

PIC

PAL

Remarks

Cut of a Dr. Halo image

Dr. Halo Image file
Palette file for CUT and PIC images Table 33.1

File extensions

for Dr. Halo files

33.1 PIC format

A Dr. Flalo image file consists of a header containing the identification marker and a number of
image descriptor fields, followed by the actual image data. The image data is stored in 512-byte
blocks. Table 33.2 shows the structure of the PIC header.

874

Dr. Halo format (PIC, CUT, PAL) 875

Offset Bytes Remarks

OOH 2 Signature 'AH'
02H 2 Version number (integer)

of the Dr. Halo driver library
(almost always code E3H (%))

04H 2 Unused (OOH OOH)
06H 1 Image Flag (2 = Image File)
07H 1 Device Code

08H 2 Unused (OOH OOH)
OAH n Adapter-specific data area

for IBM EGA-Adapter 2 bytes
Driver mode

0: 320 x 200, 4 colors

1:640x200, 2 colors
Table 33.2

Structure of a

PIC header

The third byte in the header normally contains the signature If. At offset 07H, there is a byte
indicating the driver used, coded as shown in Table 33.3:

Code Driver

1BH HALODEBA, AT&T DEB
1CH HALOINDA, AT&T Indigenous
15H HALOIBME,Atronics Mega Graph, IBM EGA

STB EGA Plus

49H HALOHERC, Hercules Mono
01H HALOIBM , IBM CGA
47H HALOIBMV, Sigma VGA
36H HALOIBMP, Sigma VGA
13H HALOIBMP, STB VGA Extra

Table 33.3

Device codes

The driver modes are defined at offset OAH together with the associated resolutions. Table 33.4
shows the values defined for the Dr. Halo drivers.

876 Graphics formats

Driver Number Mode Resolution Colors BIOS Mode

HALOIBM 01H 0 320 x 200 4 04H

1 640 x 200 2 06H

HALOIBME 15H 0 320 x 200 4 04H

1 640 x 200 2 06H

2 320 x 200 16 ODH

3 640 x 200 16 OEH

4 640 x 350 16 10H

5 640 x 800 16 -

A 640 x 350 4 10H

HALOIBMG 1AH 0 320 x 200 4 04H

1 640 x 200 2 06H

HALOIBMP 3CH 0 320 x 200 4 04H

1 640 x 200 2 06H

2 640 x 480 2 11H

3 320 x 200 256 13H

HALOIBMV 47H 4 320 x 200 16 ODH

5 640 x 200 16 06H

6 640 x 350 16 10H

7 640 x 480 16 12H

HALODEBA 1BH 2 640 x 200 8 -

3 640 x 400 8 -

4 640 x 400 16 -

5 640 x 400 16 -

Table 33.3

Resolution

and modes

The header is followed by the area containing the image data. In the case of EGA images, the
image data begins at offset 12 (OCH). The image data area is written and read in blocks of 512
bytes.

The data within each 512-byte block is compressed according to the RLE process and stored in
records within the block. Figure 33.1 shows the individual record structures.

RLE-Record

1 Count-1 Data

RAW-Data-Rec 0 rd

0 Count Data 1 Data n

End-Record

1 000 0000

Figure 33.1
Record format

for RLE encoding
(PIC)

Dr. Halo format (PIC, CUT, PAL) 877

Each record consists of a header byte followed by one or more data bytes. In PIC format,
identical data bytes in an image are stored in an RLE record. In this case the top bit of the header
byte is set (1) and the remaining 7 bits define the number of repetitions. These 7 bits allow
repetition factors between 1 and 127. The following byte contains the bit pattern to be copied. The
hexadecimal sequence:

83H 02H

is expanded to:

02H 02H 02H

(83H = 3 repetitions).

If image data bytes cannot be compressed, they are stored in RAW format. In this case, the top
bit of the header is set to 0 and the remaining 7 bits define the number of following bytes (n). The
header will be followed by n bytes of uncompressed data.

The sequence:

90H OFH 08H OFH OOH OFH OAH OFH 09H OFH OCH 88H OFH

is expanded as follows:

—16xOF 9 uncompressed byte 3

OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF

1 I 8x0 F

08 OF 00 OF 0A OF 09 OF 0C OF OF OF OF OF OF OF

OF
Figure 33.2
Expanded
image data

Image data is always written or read in blocks of 512 bytes. RLE or RAW records must not
extend beyond this 512-byte limit. For this reason, there are generally several unused bytes at the
end of a block. The start of this unused area is marked with an end byte containing the value 80H,
which must not appear elsewhere in RLE or RAWrecords. The next image data block begins in the
following 512-byte block.

Because of its hardware dependence, a graphics file in PIC format cannot readily be transferred
to other computers and can only be processed by the same Dr. Halo driver. This format has only
been included here for the sake of completeness.

878 Graphics formats

33.2 CUT format

In terms of exchanging images in Dr. Halo format, CUT files are of greater interest. These files are
created in Dr. Halo III by cutting and saving an area of an image. The CUT format is hardware
independent and is supported by various graphics programs. Each CUT file contains a 6-byte
header followed by the image data. Table 33.4 specifies the structure of the CUT header.

Offset Bytes Remarks

OOH

02H

04H

2

2

2

Image width in pixels

Image height in pixels

Unused (OOH OOH) Table 33.4

Structure of

a CUT header

The remainder of the file contains the image data divided into records of the following
structure:

Bytes

2

n

Remarks

Length data area in bytes

Data area with n bytes Table 33.5

Structure of

a CUT record

The data area in a CUT record is compressed using the RLE process, that is, the image data is
stored in the same way as in the PIC format.

33.3 PAL format

PIC and CUT files do not contain information on the palette used. Instead, a separate palette file is
used, with the extension PAL, but with the same file name as the CUT or PIC file. A PAL file
consists of a 40-byte header, followed by the palette data, as shown in Table 33.6.

Dr. Halo format (PIC, CUT, PAL) 879

Offset Bytes Remarks

OOH 2 Signature 'AH'

02H 2 Version number (integer) of the

Dr. Halo driver library

Code E3H (If) is common

04H 2 File size -header length

06H 1 Signature for PAL files (OAH)
07H 1 Palette file subtype

0: generic

1: adapter-specific

08H 2 Adapter ID-Number (unused, if Palette
file subtype = generic)

OAH 2 Graphic mode

OCH 2 Palette entries

15 = EGA, 255= VGA

OEH 2 Maximum Red (only for EGA)
3 = 100%, 2 = 66%, 1 = 33%

10H 2 Maximum Green (only for EGA)
3 = 100%, 2 = 66%, 1 = 33%

12H 2 Maximum Blue (only for EGA)

3 = 100%, 2 = 66%, 1 = 33%

14H 19 Palette ID as ASCII text
Table 33.6

Structure of a

PAL header

The first byte of the header is very similar to the CUT structure. Provided the value 0 (generic)
is contained in the byte at offset 07H, device-specific information is not relevant. The palette ID
string (offset 14H) generally contains the signature "Dr. Halo".

The header is followed by the table containing the palette information. The number of entries
in the palette is stored at offset OCH in the header. Each entry consists of three integer values
giving the color intensities in the sequence red, green and blue. It should, however, be pointed out
that only the lower byte is used, that is, the values are between 0 and 255 (0 to 100%). The color
black is defined as OOH OOH, OOH OOH, OOH OOH and white as FFH OOH, FFH OOH, FFH OOH.

SUN Raster format (RAS)

A simple raster format for storing bitmap images
has been defined by SUN. Monochrome and

Lcolor images with 1, 8, 24 and 32 bits per
pixel can be stored using these files. A number of
conversion programs (for example, PaintShop)
support this format and store the image data under
DOS with the extension .RAS.

Figure 34.1 illustrates the structure of a RAS file:

Header

Palette

(optional)

Image Data

Figure 34.1
Structure

of a RAS file

RAS files contain a 32-byte header, followed by a data area. This data area may contain either
image data or optional palette data.

880

SUN Raster format (RAS) 881

34.1 RAS header

The RAS header has a fixed length of 32 bytes, divided into 8 fields of 4 bytes each (DWORD).
The data is stored in Motorola format (for example, OOH OOH OOH 01H = 1). The structure of the
header is shown in Table 34.1:

Offset Bytes Remarks

OOH 4 Signature (59H A6H 6AH 95H)

04H 4 Image width in pixels

08H 4 Image height in pixels
OCH 4 Bits per pixel

10H 4 Bytes in image data area

14H 4 RAW file type

18H 4 Palette flag
0: No color map

1: Color map

2: Raw color map

1CH 4 Length of color map
Table 34.1

Structure of

a RAS header

The first four bytes contain a signature (59H A6H 6AH 95H). This signature is stored as a magic
number, that is, the first word is mirrored in the second word. The image width in pixels is stored
at offset 04H. An entry of OOH OOH OOH 10H indicates an image width of 16 pixels. The image height
in pixels is stored at offset 08H. RAS files can store images of different bit depths, as shown in Table

34.2:

Bit/PLxel Remarks

1 Monochrome

(4) 16 colors

8 256 colors

24 True color

32 True color

Table 34.2

Bits per pixel

The number of bits per pixel is specified at offset OCH. With 32 bits per pixel, three bytes are
used for color representation and one byte for additional information.

The DWORD at offset 10H defines the length of the image data area (without palette) in bytes.
This value should be treated with caution, because in the original SUN format this field was

882 Graphics formats

temporarily used for the type of coding (OOH = no coding). The length of the data area should
therefore be calculated from the image data (width*height*bits per pixel).

SUN has defined a number of different types of raster file. The type is specified at offset 14H in
the header. Table 34.3 lists the known R\S file types:

Code

0

1

2

3

4

5

FFFFH

Type

Old style
Standard style

Byte encoded
RGB format

TIFF format

IFF format

Experimental format
Table 34.3

SUN Raster file

types

File types 0 and 1 define an identical memory format. If the value 2 is entered, the data is
stored in RLE coding. In the case of RGB images, the image data for a pixel is stored as triples or
quadruples (4 bytes) and the palette is generally omitted. If file types 4 (TIFF) or 5 (IFF) appear,
this merely indicates that the raster file was originally converted from these formats. The code
FFFFH is provided for the Experimental file type. This refers to an implementation-specific format.
The following description relates to the standard format (Type 1).

The DWORD at offset 18H defines the type of color palette. This palette may be optionally
stored after the header. If the value of the field is set to 0, the color palette is omitted and the
image data will follow the header. If there is a color palette stored in the RAS file, the field will
contain the value 1 (OOH OOH OOH 01H). In this case the header is followed by the area containing
the palette data. The value 2 (OOH OOH OOH 02H) indicates a manufacturer-coded color palette (raw
palette).

The length of the color palette in bytes is stored at offset 1CH. With 256 colors, the field will
contain the entry OOH OOH 03H OOH, which corresponds to 256 colors of three bytes each.

34.2 Palette data area

If the field at offset 18H contains OOH OOH OOH 01H, the RAS file contains palette data at offset 2OH.
The length of this data area is specified in the header, at offset 1CH. A standard RAS palette
consists of 256 colors, with 3 bytes for each color. However, the palette data for the 256 colors is
stored differently from the normal conventions. At offset 20H, there are 256 data bytes containing
the color intensities for red. At offset 120H, there are another 256 bytes containing the intensities
for green, and at offset 21OH, another 256 bytes containing the blue color intensities. Raster files
with 24 or 32 bits have no palette and the image data in this case follows immediately after the
header.

SUN Raster format (RAS) 883

34.3 RAS data area

The image data area follows the header (unless there is a palette) or the palette. The number of
bits per pixel is stored in the header at offset OCH.

The number of image data bytes in an uncompressed tile can be calculated from the image
dimensions (height * width * bits per pixel).

34.3.1 Monochrome representation (1 bit per pixel)

With monochrome images, there is no palette and the image data is stored in one plane. One byte,
in this context, represents 8 pixels.

34.3.2 Grayscales and color images (8 bits per pixel)

Pictures with 256 colors or grayscales require a palette, which follows the header. For grayscale
images, this palette contains the corresponding definitions. For color images, the individual colors
are described by three bytes (red, green, blue). Each (uncompressed) byte in the image data area
describes one pixel.

34.3.3 True Color images (24/32 bits per pixel)

In these files, the palette is either omitted altogether or is stored as a manufacturer-specific (RAW
Color) palette. With 24 bits per pixel, the image data is stored in 3 bytes per pixel; with 32 bits per
pixel, the first three bytes contain the color information, and the fourth byte can be used for alpha
values.

34.3.4 RLE coding in RAS files

If the header contains data type 2 at offset 14H the image data is in compressed format. The RAS
format uses a simple RLE process for data compression. The image data should be read and
decoded bytewise. If the value of the relevant byte is not equal to 80H or OOH, the image data byte
is uncompressed. With monochrome images or images with 256 colors, the pixels can be displayed
directly. In the case of 24-bit or 32-bit pictures, the value should be stored in an intermediate
buffer until all the bytes for a pixel have been decoded. Only then can the pixel be displayed.

There is, however, the problem that an image data byte may contain the value 80H. In this case,
a modified RLE record with the structure shown in Figure 34.2 will be used for coding.

884 Graphics formats

OOH 80H Figure 34.2
Storing 80H as a
data byte

The first byte contains the value OOH, while the second byte, which is to be interpreted as an
image data byte, is coded 80H.

Conversely, if the value OOH appears as an image data byte, this will be coded as an RLE record
of length 1 (80H 01H OOH).

Compressed image data is stored as a byte stream, and the decoded data may therefore extend

beyond the image line.

Adobe Photoshop format
(PSD)

The Photoshop program from Adobe is
available for both the Macintosh and
Windows. It enables the creation, processing

and storage of bitmap graphics with a maximum
resolution of 30,000 x 30,000 pixels. In the PC
environment, Photoshop images are stored in files
with the extension . P5D.

These image tiles consist of a fixed-length header, a variable-length mode block, a variable-length
image resource block, a reserved block and the actual image data (monochrome or color pictures).

Header Block

Mode Block

Image Resource

Block

Reserved Block

Compression

Flag (Word)

Image Data

The data in the PSD file is stored in Motorola format (big-endian).

Figure 35.1
Structure of a

Photoshop
(PSD) file

885

886 Graphics formats

35.1 Photoshop header

The header of a Photoshop file is of fixed length and contains the fields shown in Table 35.1:

Offset Bytes Remarks

OOH 4 Signature '8BPS'
04H 2 Version number

06H 6 Reserved

OCH 2 Color channels

OEH 4 Y image size in pixels

12H 4 X image size in pixels

16H 2 Bits per channel

18H 2 Color mode
Table 35.1

Structure

of a Photoshop
header

At offset 0, there is a 4 character signature (8BPS). This signature is also used on Macintosh
computers as an identification of the file type. The version number at offset 04H contains the value
1, at present. The following six bytes are reserved and should be set to OOH.

At offset OCH, there is a word containing the number of color channels. In Photoshop 2.5, this
value is between 1 and 16.

The image dimensions are stored in two fields (DWORD) at offset OEH. The number of pixels
permitted is 30,000 x 30,000. The number of bits per color channel is stored at offset 16H. In

Photoshop 2.5, these values are between 1 and 8.
The Mode field contains two bytes and is stored at offset 18H. This defines the color mode of

the file and is coded as shown in Table 35.2:

Mode Remarks

0 Bitmap (monochrome)

1 Grayscale image

2 Color image with palette

3 RGB color image

4 CMYK color image

5 Multi-channel color image

6 Duotone image

7 Lab color image

The meaning of the various mode values is not fully documented.

Table 35.2

Modes in

Photoshop

Adobe Photoshop format (PSD) 887

The header is followed by blocks containing additional information. All the blocks begin with a
4-byte length field, followed by a data area of variable length (see below).

35.2 Mode data block

The header is followed by a block in which data relating to the internal mode settings for
Photoshop is stored. This block is structured as shown in Table 35.3.

Offset Bytes Remarks

OOH

04H

4

n

Block length

Data area

35.3 Resource data block

Table 35.3

Structure of a

mode block in

Photoshop

The first field (DWORD) indicates the length of the Mode block. If the Mode field in the header
(offset 18H) defines a palette color image, the Mode block is 768 bytes long and contains the 256
entries of the color palette. Each entry comprises 3 bytes giving the color intensities for red, green
and blue.

If the Mode field in the header contains the value 6 (duotone image), Photoshop will store the
corresponding specification data in the Mode block. The structure of this data is not currently
available.

If the Mode field in the header defines another image type, the length field of the Mode block
will contain the value 0. In this case, the data area of the Mode block is omitted, and the block is
only 4 bytes long.

The Mode block is followed by a block containing the resource data. This block is structured as
shown in Table 35.4:

Offset Bytes Remarks

OOH

04H

4

n

Block length

Data area

Table 35.4

Structure of a

resource data

block in

Photoshop

The first field (DWORD) indicates the length of the Resource Data block. This is followed by
the data area containing information on the resources required for structuring the image. The

888 Graphics formats

documentation on the coding of this block is not available.
The Resource block is followed by another block which begins with a 4-byte field. The field

defines the length of the data area. The length of the following data area (like that of the other
blocks) is variable. Presumably this block has been provided for future extensions because the
length field in Photoshop 2.5 is set to 0 and the data area is omitted.

35.4 Image Data Area

The reserved block is followed by a word specifying the type of compression.

Code Compression type

0 Uncompressed image data

1 Image data RLE compressed
Table 35.5

Compression
type

This word is followed by the actual image data area. The data is divided into individual planes
and stored.

In the case of uncompressed image data, the data is stored by line. The compression method

used is Mac Packbit. Image data areas are preceded by the lengths of the individual image lines in
bytes. Each length occupies one word and the lengths are followed by the area containing the
packed image data.

35.5 MAC Packbit Coding:

♦ The image data is compressed line-wise, that is, the decompressed data does not extend
beyond an image line.

♦ During decompression one data byte is read at a time.

♦ If the top bit of this data byte is set (1), a packed record is present. The two's complement of
the byte is calculated and this acts as a repetition counter for the following byte, which is
copied n times.

♦ It the top bit contains the value 0, an uncompressed record is present. The value of the byte
should then be increased by 1. This value indicates the number of uncompressed data bytes
that follow.

The above steps should be repeated until all the bytes required for one image line have been
read. These can then be displayed.

PCPAINT/Pictor format (PIC)

The program PCPAINT was developed for
Mouse Systems in 1984. PC PAINT is available
in various versions, the format having

stabilized after version 2.0. The following description
is therefore restricted to the format of PCPAINT 2.0
and Pictor 3.0/3.1.

The image files consist of a header, followed by an image data area for monochrome or color
images (Figure 36.1).

Header Block

Image Data Figure 36.1

Structure of a

PCPAINT/Pictor

(PIC) file

The data within the PIC file is always stored in Intel format. The image is structured from
bottom to top.

36.1 PCPAINT/Pictor header

The PIC header is of variable length and contains the fields shown in Table 36.1.

889

890 Graphics formats

Offset Bytes Remarks

OOH 2 Signature 1234H
02H 2 X image size in pixels

04H 2 Y image size in pixels
06H 2 X-coordinate lower left corner

08H 2 Y-coordinate lower left corner

OAH 1 Image flag
Bit 0-3: bits per pixel and plane
Bit 4-7: bitplanes

OBH 1 Reserved (FFH)
OCH 1 Video mode (0 default)

0: 40 column text

1: 80 column text

2: Text monochrome

3: 43 rows text

A: 320 x 200 x 4 (CGA)
B: 320 x 200 x 16 (Tandy 1000, etc.)
C: 640 x 200 x 2 (CGA)
D: 640 x 200 x 16 (EGA)
E: 640x350x2 (EGA)
F: 640 x 350 x 4 (EGA)
G: 640 x 350 x 16 (EGA)
H: 720 x 348 x 2 (Hercules)
I: 320 x 200 x 16 (Plantronics)
J: 320x200x16 (EGA)
K: 640 x 400 x 2 (AT&T, Toshiba)
L: 320 x 200 x 256 (VGA)
M: 640 x 480 x 16 (EGA+, VGA)
N: 720 x 384 x 16 (Hercules

Incolor)

0: 640 x 480 x 2 (VGA)

ODH 2 Extra info descriptor

0: nothing
1: palette (1 byte),
border (1 byte) (CGA)
2: PCjr or non ECD 16 color
register (0-15), 1 byte each
3: EGA with EDC 16 color

register (0-63), 1 byte each
4: VGA 256 color info

OFH 2 Size of extra info field

17H n Extra info block (optional)

..H 2 Number of packed blocks
Table 36.1

Structure of a

PCPAINT/Pictor

PIC header

PCPaint/Pictor format (PIC) 891

The signature 1234H for a PIC header is at offset 0. The next two bytes define the image width
and image height in pixels. The origin of the image is stored at offset 06H as screen coordinates.
The default setting for this value is 0,0. The image is built up from bottom to top.

The byte at offset OAH is divided into two nibbles. The lower 4 bits define the number of bits per
pixel and image plane. The upper 4 bits define the number of image planes. For CGA with 4 colors,
the byte contains the value 02H; an EGA representation with 15 colors is coded 31H (3 levels, 1 bit
per pixel and plane). The Plantronics 16 color mode is coded 12H.

As a special feature, PIC format stores the screen mode at offset OCH. The word at offset ODH

defines whether a data area with extra information appears in the header. Palette data, for
example, can be stored in this block. If the word is set to OOH, the extra info block is not present.
The length of the extra info block in bytes is stored in the word at offset OFH. If the length is 0, the
block is not present.

The optional extra info block begins at offset 17H and contains palette data, whose structure is
defined in Table 36.1 (offset ODH). For example, with a CGA card, two bytes (palette, border) are
needed. In mode 3, however, there are 64 bytes containing the register values.

The extra info block is followed by a word containing the number of packed image data blocks.
If this number is 0, the file contains unpacked data.

36.2 PIC data area

The header is followed by the PIC data area containing packed or unpacked data. In PCPAINT 2.0,
bitmaps are packed together, enabling the data to be displayed very simply on the PCjr (for
example, 4 bits per pixel, 1 bit per plane). From Pictor 3.0 onwards, the bitplanes are separated
before storage and stored plane-wise. A PIC file can contain image data with 1, 4 and 8 bits per
pixel.

36.2.1 Monochrome Images (1 bit per pixel)

With 1 bit per pixel, data is stored in one plane. Each byte defines 8 pixels.

36.2.2 Color images (4 bits per pixel)

In this case, image data is divided into 4 planes. Each plane contains one bit per pixel, that is, a
data byte describes 8 pixels in one color plane. For EGA and VGA cards, the image information
must be assembled from the four color planes (red, green, blue, intensity).

36.2.3 Color images (8 bits per pixel)

Here, image data is stored either at 8 bits per pixel in one plane or at 1 bit per pixel in 8 planes.
Color information for a pixel must then be assembled according to the coding.

892 Graphics formats

36.2.4 Image data blocks (PIC file)

Image data is stored in individual blocks. The color information can be stored either in individual
planes or collected together. The method of coding the planes is indicated in the header at offset
OAH. Both the number of bits per pixel and plane, and the number of planes are specified.

In the case of a packed PIC file (offset 17H > 0), image data is stored in blocks. When changing
image plane, a new block must be created. The number of packed blocks is indicated in the
header, after the extra info block.

36.2.5 Structure of a data block

Packed data is stored in individual packages (data blocks). These packages consist of a header,
followed by the packed and unpacked image data. The block header is structured as shown in
Table 36.2:

Bytes Field

2

2

1

Blocksize (in bytes)

Unpacked data size (in bytes)

Marker for packed subrecords Table 36.2

Structure of a

block header

The block length and the length of the uncompressed data are stored as words. The block
length includes these two length words.

At offset 05H, a code is defined as a marker byte. Within the block, this code is used to mark

packed subrecords. The value stored in this byte either should not appear or appear only very
seldom in the unpacked data area; otherwise the PIC file will be enlarged (see below).

This header is followed by the unpacked data and/or the subrecords containing the compressed
data. The PIC format uses a very straightforward method of compression:

♦ If a data byte occurs several times consecutively, it is stored in a subrecord as a Run Length.

♦ Data bytes that are not identical are stored uncoded in a block.

The subrecords containing packed data are structured as shown in Table 36.3:

PCPaint/Pictor format (PIC) 893

Bytes Field

1 Marker (to mark a run)

1 Run count

If run count = 0, 16-bit run count

1 Data byte for run

Table 36.3

Structure of a

subrecord

containing
compressed data

The marker byte marks the packed subrecord. The chosen value is stored at offset 05H in the

block header. The following byte contains the repetition counter for the next data byte. If the value
is greater than 0, the data byte must be copied n times (maximum 255). An extended structure

has been defined in order to create larger repetition factors. If the repetition counter = 0, a 16-bit
repetition counter will follow. The last byte in the subrecord will then be repeated n times.

Unpacked data is stored as a simple byte sequence in the block. If a code with the value of the
marker byte appears, this code must be stored in a compressed subrecord with the repetition
counter 1. This explains why it is important for the marker code either not to appear or to appear
only rarely in the image data; otherwise the image data byte will be stored in three bytes which
significantly increases the length.

The data block can be read using the following algorithm:

Get block size

Get original size

Get marker byte

Repeat (for all bytes in block)

Get next byte

IF byte = marker code THEN

/* compressed subrecord

Get run count byte

IF run count = 0 THEN

Get 16-bit run count

ENDIF

Get data byte

Repeat run count

write data byte

END Repeat

ELSE

/* uncompressed data byte

write data byte

ENDIF

END Repeat Figure 36.2
Pseudo-code for

PIC reader

894 Graphics formats

This storage structure is extremely economical if an image contains very little information,
because there will be large areas containing the same image data which can be easily packed. In
the case of images containing patterns, the image data is stored in uncompressed form.

JPEG/JFIF format (JPG)

The JPEG process only describes compression
methods for images. In the JPEG Standard
(ISO DIS 10918-1), Appendix B, the structure

of the associated files is also described. However, this
definition allows a great deal of freedom, which
means that exchanging JPEG images between
different applications and platforms is relatively
problematic.

The JPEG File Interchange Format therefore defines a minimum standard in order to ease the
exchange of images using JPEG compression between various applications and platforms. The
format is compatible with PCs, Macintosh and UNIX computers. For example, Macintosh Resource
Forks are not used, thereby facilitating interchange with other platforms.

The JFIF format is based on the JPEG standard (ISO DIS 10918-1). The following description
refers to version 1.02 of the JFIF specification. Files that correspond to the JPEG standard must be
divided into individual blocks, also known as marker segments. Each marker segment consists of a
marker, followed by optional parameters. If a marker segment requires more than one marker, the
length of the segment is stored in the following field.

The JFIF format uses only a small number of the markers listed in Appendix B of the standard
for the individual segments of the file. Figure 37.1 shows the structure of a JFIF file.

SOI-Segment

APPO-Segment

optional JFIF

extension

APPO-Segments

SOF-Segment

EOI-Segment
Figure 37.1
Structure of a

JFIF file

895

896 Graphics formats

The file always begins with a Start Of Image (SOI) marker segment. This is followed by an
Application (APPO) marker segment, which contains additional information on the image data
stored (for example, version, resolution). A JFIF file can also contain specially reduced images

(thumbnails) to enable previewing. In this case, the first APPO marker segment is followed by
additional, optional extension APPO marker segments. These are followed by the compressed
image data in the Start Of Frame (SOF) marker segments. A JFIF file is always terminated with an
End Of Image (EOI) marker segment.

The individual marker segments begin with a 2-byte marker which identifies the type.
The marker code consists of the value FFxxH, where xx represents a number between COH and

FEH. The marker codes are defined in Appendix B of the JPEG standard. All data in the JFIF file is
stored in Motorola format. The structure of the individual marker segments of a JFIF file is

described below.

fThe JPEG specification provides a series of additional marker segments describing the
compression tables for the interchange format. These are also described below, but should

• not occur in JFIF files because these tiles require Baseline DCT compression.

37.1 Start Of Image (SOI) marker segment

All JFIF files (and any other file conforming to the JPEG standard) must begin with an SOI marker
segment. The structure of the segment is as follows:

Offset Bytes Remarks

OOH 2 SOI signature (FFD8H) Table 37.1

Structure of an

SOI marker

segment

The segment comprises only two bytes containing the signature. The signature is defined in the
JPEG standard.

37.2 End Of Image (EOI) marker segment

All JFIF files (and any other file conforming to the JPEG standard) must be terminated with an
EOI marker segment. The structure of the segment is as follows:

Offset Bytes Remarks

OOH 2 EOI signature (FFD9H)
Table 37.2

Structure of an

EOI marker

segment

JPEG/JFIF format (JPG) 897

This segment also requires only two bytes for the signature.

37.3 Application (APPO) marker segment

The second segment of a JFIF file must be an APPO marker segment. This segment indicates
compatibility with the JFIF specification and is also used to identify the tile.

Offset Bytes Remarks

OOH 2 APPO signature (FFEOH)

02H 2 Segment length

04H 5 ID ='JFIF'

09H 2 Version (0102 H)

OBH 1 Units

OCH 2 X density

OEH 2 Y density

10H 1 X Thumbnail

11H 1 Y Thumbnail

12H 3xn RGB thumbnail values
Table 37.3

Structure the

APPO marker

segment

This marker segment begins with the signature FFEOH. This is followed by a word containing
the length of the block. The length includes all bytes within the block except the first two
signature bytes. A 5-byte identification for the marker segment begins at offset 04H. In the case of
a JFIF file, the signature 4AH 46H 49H 46H OOH must appear at this point. 'JFIF', corresponds to the
ASCII string

The word at offset 09H contains the version number of the JFIF specification. The first byte
contains the main version number. The current specification is version 0102H.

The fields beginning at offset OBH define the resolution of the image. The byte at offset OBH
specifies the units used for the resolution and is coded as shown in Table 37.4:

Code Unit

no units

X,Y are dots per inch

X,Y are dots per centimeter
Table 37.4

Units for

resolution

898 Graphics formats

If the unit code is set to 0, X and Y define the pixel aspect ratio. At offset OCH, there is a word
indicating the horizontal resolution (horizontal pixel density). The vertical resolution (vertical

pixel density) is stored at offset OEH.
The JFIF file may contain a specially reduced image (thumbnail) as an RGB bitmap. The width

of this image in pixels is specified at offset 10H, and its height in pixels at offset 11H. If the file does
not contain thumbnail images, both these fields should be set to 0. These fields are followed at
offset 12H by the actual image data, which is stored as an RGB table with three bytes per entry

(red, green, blue). The number of entries can be calculated from width * height.

I Storing thumbnails in a JFIF APPO marker is now discouraged. It is still supported only for
• backward compatibility.

37.4 Extension APPO (SOI) marker segment

From version 1.02 onwards, the APPO marker segment may optionally be followed by another
extension APPO marker segment. The structure of an extension APPO marker segment is described
in Table 37.5.

Offset Bytes Remarks

OOH 2 APPO signature FFEOH

02H 2 Segment length

04H 5 ID = 'JFXX'

09H 1 Extension code

OAH n Data area Table 37.5

Structure of an

extension APPO

The extension APPO marker segment also begins with the signature FFEOH. This is followed by a
word containing the length of the block. This length includes all the bytes in the block except the
first two signature bytes. A 5-byte identification field for the extension marker segment begins at
offset 04H. In the case of a JFIF file, the signature 4AH 46H 58H 58H OOH, which corresponds to the
ASCII string 'J FXX', must be shown here.

The 1-byte extension code, which specifies the type of the extension APPO marker segment,
follows at offset 09H. So far, the following codes have been defined:

JPEG/jFIF format (JPG) 899

Code Remarks

10H

11H

13H

Thumbnail coded using JPEG

Thumbnail stored using 1 byte/pixel
Thumbnail stored using 3 bytes/pixel

Table 37.6

Coding of an
extension APPO

marker segment

The data area follows at offset OAH. This data area varies according to the extension used.

37.4.1 JFIF extension: Thumbnail coded using JPEG

This extension is used for storing thumbnails compressed using the JPEG process. The value 10H is
stored as the extension code in the marker segment. The extension data field is structured as
follows:

SOI Marker Segment
SOF Marker Segment

EOI Marker Segment

The structure of these segments is described below. In the data area, no marker segments
containing the signatures 'J FIF' or 'J FXX' may appear.

37.4.2 JFIF extension: Thumbnail stored using 1 byte/pixel

With this extension, thumbnails are stored using one byte per pixel. The value 11H is stored as the
extension code in the marker segment. The extension data field is structured as follows:

Bvtes

1

1

768

Remarks

Thumbnail horizontal pixel count (X)
Thumbnail vertical pixel count (Y)
Palette containing 256 x 3 bytes

(red, green, blue)

Data area containing 1 byte/pixel for

the thumbnail image (n :

The data is stored in uncompressed form.

XxY)
Table 37.7

JFIF extension

for Thumbnails

(1 byte/pixel)

900 Graphics formats

37.4.3 JFIF extension: Thumbnail stored using 3 bytes/pixel

With this extension, thumbnails are stored using three bytes per pixel. The value 13H is stored as
the extension code in the marker segment. The extension data field is structured as follows:

Bvtes

1

1

n

Remarks

Thumbnail horizontal pixel count (X)

Thumbnail vertical pixel count (Y)

Data area containing 3 bytes/pixel for

the thumbnail image (n = 3 x X x Y)

The data is stored in uncompressed form.

Table 37.8

JFIF extension

for Thumbnails

(3 bytes/pixel)

37.5 Define Huffman Table (DHT) marker segment

The JPEG specification requires all tables containing definitions, which are needed during
decoding, to be stored prior to their use in the data stream. The JPEG standard describes a series
of marker segments containing tables for coding. The structure of the DHT marker is as follows:

Offset Bytes Remarks

OOH

02H

04H

05H

15H

2

2

1

16

n

DHT Signature (FFC4H)

Segment length

Color component index

Length of Huffman table

Huffman table
Table 37.9

Structure of a

DHT marker

segment

The marker segment contains a two-byte signature, the segment length (excluding signature)
and the index to the relevant color components. The length of the Huffman table is stored at offset
05H. This is followed by the actual table. Huffman tables are defined in the JPEGspecification, but
are not needed in JFIF files.

JPEG/JFIF format (JPG) 901

37.6 Define Arithmetic Coding (DAC) marker segment

This marker segment contains information on the color components specified in the index. The
DAC marker segment is structured as follows:

Offset Bytes Remarks

OOH

02H

04H

05H

2

2

1

1

DAC signature (FFCCH)

Segment length

Color component index

Value
Table 37.10

Structure of a

DAC marker

segment

The marker segment contains a two-byte signature and the segment length (excluding
signature). After the index to the relevant color components, the arithmetic coding is stored as a
byte. This marker segment is not used in JFIF tiles.

37.7 Define Quantization Table (DQT) marker segment

This marker segment defines a quantization table (DQT). The structure of the DQT marker
segment is as follows:

Offset Bytes Remarks

OOH

02H

04H

05H

2

2

1

64

DQT signature (FFDBH)

Segment length

Index

Quantization table
Table 37.11

Structure of a

DQT Marker
Segment

The marker segment begins with a 2-byte signature and the segment length (excluding
signature). The index is coded as follows: bits 0 to 3 define the index to the quantization table, while
bits 4 to 7 indicate the format of the entries. If the format value is 0, the entries are stored as bytes;
value 1 defines entries stored as words. This marker segment should not be used in JFIF files.

902 Graphics formats

37.8 Define Restart Interval (DRI) marker segment

Within the data blocks, it may be necessary to restart coding. The length of the restart interval is
determined using a DRI marker segment.

Offset

OOH

02H

04H

Bytes Remarks

DRI Signature (FFDDH)

Segment length

Restart interval
Table 37.12

Structure of a

DRI marker

segment

This marker segment contains a two-byte signature and the segment length (excluding

signature). The value of the restart interval is stored at offset 04H. After the minimum code units
(MCU) indicated in the interval, the JPEG coding procedure is re-initialized. This marker segment
should not appear in JFIF tiles (version 1.02).

37.9 Start of Frame (SOF) marker segment

SOF marker segments contain information on the image size and the allocation of quantization
tables to the individual color components. There are various SOF marker segments, with

identification codes 0, 1 .. 9, A, B, D, E and F. The JFIF specification provides only Baseline DCT
coding, and the marker segments described above should not appear. Table 37.13 lists the various

SOF marker segments:

Code Marker Segments

Non-differential Huffman coding

0

1

2

3

Baseline DCT

Extended sequential DCT

Progressive DCT
Spatial (sequential) lossless

Differential Huffman coding

5

6

7

Differential sequential DCT
Differential progressive DCT
Differential spatial

Table 37.13

Coding SOF
marker types
(continues
over...)

JPEG/JFIF format (JPG) 903

Code Marker Segments

Non-differential arithmetic coding

8

9

A

B

Reserved

Extended sequential DCT
Progressive DCT

Spatial (sequential) lossless

Differential arithmetic coding

D

E

F

Differential sequential DCT
Differential progressive DCT
Differential spatial

Offset Bytes Remarks

OOH 2 SOFx signature (FFDxH)
02H 2 Segment length
04H 1 Data precision
05H 2 Image height in pixels
07H 2 Image width in pixels
09H 1 Number of components
OAH 1 ID of first component
OBH 1 Sample factor

Bit 0-3: vertical

Bit 4-7: horizontal

OCH 1 Quantization table number
ODH 1 ID of second component
OEH 1 Sample factor

Bit 0-3: vertical

Bit 4-7: horizontal
OFH 1 Quantization table number
10H 1 ID of third component
11H 1 Sample factor

Bit 0-3: vertical

Bit 4-7: horizontal

12H 1 Quantization table number

Table 37.13

Coding SOF
marker types
(cont.)

In the specification, the codes shown in Table 37.13 are referred to as Index SOFx. The code is
also used as the last letter of the signature (for example, FFCAH = progressive DCT). An SOF
marker segment is structured as shown in Table 37.14.

Table 37.14

Structure of a

SOF marker

segment

904 Graphics formats

The marker segment has a 2-byte signature, where X is replaced by a value between 0 and FH
in accordance with Table 37.13. Because of the baseline DCT compression, the signature FFDOH
should appear. The segment length does not include the 2 bytes of the signature. The resolution
value (data precision) is stored at offset 04H. The words at offsets 05H and 07H define the image
dimensions in pixels. The number of color components is stored at offset 09H. For JFIF files, the

values 1 or 3 are permitted.
The actual image data follows at offset OAH (ID, Sample factor, quantization number). The

image data is divided into the number of components (1 or 3) coded according to the YCbCr color
model.

37.10 Color coding

JPEG graphics are stored using the YCbCr color model. This color model enables a reduction of
the information in the color plane (chrominance), while the brightness (luminance) remains
unchanged. The standard YCbCr color space is determined in accordance with CCIR 601, that is,
256 color planes. RGB colors can be derived in a linear progression from the YCbCr color model.
Gamma correction is not possible. If only one component is used, this should be the Y component.

The coding for the YCbCr color system is shown below:

Y = 256 * E'y

Cb = 256 * [E'Cb] + 128

Cr = 256 * [E'Cr] + 128

The values E'y (0 .. 1.0), E'Cb (- 0.5 +0.5) and E'Cr (- 0.5 +0.5) are defined in CCIR 601. The
256 color levels of the YCbCr color system can be calculated directly from the RGB values:

Y = 0.299 R+ 0.578 G +0.114 B

Cb = -0.1687 R-0.3313 G +0.5 B + 128

Cr= 0.5 R - 0.4187 G-0.0813 B+128

The values R, G, B represent the color intensities for red, green and blue. These may be
between 0 and 255. Conversion from YCbCr color space to RGB color plane is carried out via the

following formulae:

R = Y+ 1.402 (Cr- 128)
G = Y - 0.34414 (Cb - 128) - 0.71414 (Cr - 128)

B = Y+1.772 (Cb-128)

The values Y, Cb and Cr may be between 0 and 255. In JFIF files, the image orientation is
always from top to bottom. The image data is written from left to right.

For details of the coding and processing for individual data, reference should be made to the
JPEG specification. The JPEG specification, the definition of data formats and a description of
compression processes can be found in W. Pennebaker and J. Mitchell, JPEG: Still Image Data
Compression Standard, Van Nostrand Reinhold, ISBN 0-442-01272-1.

JPEG/JFIF format (JPG) 905

37.11 Start Of Scan (SOS) marker segment

The SOS block introduces the start of a scan for many types of image. The structure is as follows:

Offset Bytes Remarks

OOH 2 SOS signature (FFDAH)

02H 2 Segment length

04H 1 Number of components
05H 1 ID component

06H 1 Table index

Bit 0-3: AC-table

Bit 4-7: DC-table
Table 37.15

Structure of a

SOS marker

segment

This marker segment contains a 2-byte signature. The segment length does not include the two
signature bytes. The byte containing the ID for the color components used is at offset 05H. The
components are allocated to the tables via the byte at offset 06H. This marker segment should not
appear in JFIF files.

I If unknown marker segments appear in a JFIF file, the JFIF reader can skip these without
• affecting the image decoding.

MAC-Paint format (MAC)

Apple developed MAC-Paint Format for the
Macintosh to enable the storage of

L monochrome images. The images have one bit
per pixel and are stored with fixed dimensions of 576
x 720 pixels. The print resolution is 75 dpi. On
Macintosh computers, MAC-Paint Files have the
ending PNTG.

Since a great many graphics are stored in this format, various conversion programs (for example,
PaintShop) support the MAC-Paint Format when importing graphics to a PC. On a PC running MS-

DOS, MAC-Paint files are given the extension .MAC (or, less often, . PN1).
Because of its Macintosh origins, this format exhibits a number of peculiarities. The first comes

from the structure of the MAC file system, in which files are stored in what are known as forks.
These forks represent data areas in which the operating system stores information. A Macintosh
file always contains two forks. One fork is used for storing data, the second for resources (or

program code). In physical terms, there are two files on the MAC, although the user only sees one.
With MAC-Paint files, the resource fork remains empty. When files are transferred from the

Macintosh to other computers (for example, PCs), both forks are combined into one file. To enable
this file to be read back onto the Macintosh and divided into two forks, an additional 128-byte

header has been introduced. This header contains information for the Macintosh operating
system, enabling it to reproduce the original fork structure. It is placed before the data to be
exported.

If the data is not to be sent back to the Mac, the header can be removed. For this reason, there

are two variants of MAC-Paint files:

♦ One variant has no header and corresponds to the original MAC format.

♦ The PC variant has a 128-byte header containing additional information.

Within the header, there are also two variants, corresponding to the original MacBinary and the
MacBinary II Standard respectively. Both headers are 128 bytes long, but the MacBinary II header
contains additional data.

906

MacPaint format (MAC) 907

Because of these characteristics, a MAC-Paint file on a PC is structured as shown in Figure
38.1:

Header

(optional)

Pattern data

Image data Figure 38.1
Structure of a

MAC file

In the MAC file, the data is always stored in Motorola format. As a result of the peculiarities
described above, a program has to determine whether the MAC file has a header. The following
checks must be carried out:

♦ Check whether the bytes at offset 101 (65H) to 125 (7DH) have the value OOH.

♦ The byte at offset 2 must be in the range 1-63.

♦ The two DWORDS at offsets 83 (53H) and 87 (57H) should have values between 0 and
007FFFFFH.

If the results of all these checks are positive, the MAC file has a 128 byte header. Another
possible check is to determine whether the 4 bytes at offset 41H have the signature 'PNTG'. The
Macintosh operating system uses this signature as the file type.

38.1 MAC header

The MAC header is 128 bytes long and contains the information required to import a file from
other computers back to a Macintosh. The data is stored in Motorola format. Table 38.1 shows the
structure of the header. The fields from offset 65H onwards are defined in the MacBinary II
Standard.

Offset Bytes Remarks

OOH 1 Version (always 0)

01H 1 File name length

02H 63 File name

41H 4 File type

45H 4 File creator

Table 38.2

Structure of

a MAC header

(continues
over...)

908 Graphics formats

Offset Bytes Remarks

49H 1 File attribute flags
4AH 1 Reserved

4BH 2 File vertical

position in window

4DH 2 File horizontal

position in window

4FH 2 Window or folder ID

51H 1 File protection

1 = protected

52H 1 Reserved

53H 4 Data fork size in bytes

57H 4 Resource fork size in bytes

5BH 4 Creation time & date stamp

5FH 4 Modify time & date stamp

63H 2 Getlnfo message length

MacBinary II only

65H 2 Finder Flags

67H 14*1 Reserved

75H 4 Unpacked file length

79H 2 Secondary header length

7BH 1 MacBinary version for upload

7CH 1 MacBinary version for read

7DH 1 CRC sum previous 124 byte

7EH 2 Reserved
Tabic 38.2

Structure of

a MAC header

(cont.)

At offset 0, there is always one byte coded with OOH. In the case of MAC Paint files without a
header, the first byte is also OOH. If a file contains a value other than OOH, the file is not a MAC-
Paint file.

Thisbyte is followed by a second byte at offset 01H containing a length indicator (0-63) for the
following tile names. The file name beginsat offset 02H and relates to the current file. Normally, the
MAC operating system stores file names up to 63 bytes long, according to Macintosh conventions.
When exporting to other platforms, the relevant naming conventions must be observed. In the
case of UNIX, for example, 14 characters are allowed, while DOS accommodates 8 + 3 bytes for the
file name. The file name is stored according to the Pascal convention, that is, the byte at offset 01H
is the length byte for the string. The name is therefore not terminated with a null byte (as would
be normal in C). Only bytes defined in the length indicator may be used as the file name.

The data type of the MAC application is indicated at offset 41H in the header. In the case of
MAC-Paint files, the signature PNTG is used. The following four bytes are used for storing the name
of the program which created the file. With MAC Paint, the string MPNT is used here.

MacPaint format (MAC) 909

The File Attribute flag at offset 49H is coded as shown in Table 38.3:

Bit Remarks

0 Inited

1 Changed

2 Busy

3 Bozo

4 System

5 Bundle

6 Invisible

7 Locked Table 38.3

Coding file
attribute bvte

This coding is specific to the MAC file system. The two words at offset 4BH define the X/Y
position of the file on the (MAC) screen. The fields Folder ID and File Protection are designed
specifically for the MAC file system.

The SizeOfDataFork field at offset 53H contains 4 bytes (DWORD) and indicates the length of
the MAC data area. This is the file length minus the header length. The SizeOfResourceFork field
is always set to 0 for MAC-Paint tiles.

The date and clock time of file creation and of the last modification (modify) are shown in the
fields at offset 5BH. These values (DWORD) are stored as the number of seconds since 2 January'
1904.

In MAC-Paint files, GetlnfoMessageLength is always set to 0. The fields at offset 65H onwards
are used only in the MacBinary II standard. Finder flags refer to the MAC operating system. The
length of the uncompressed image file is stored at offset 75H. SecondHeaderLength is used for
future extensions in which a second header is appended at offset 80H. The Upload and Read
version numbers describe the internal software version of the transfer programs. The CRC sum for
the previous 124 bytes is stored in the byte at offset 7DH. If this field contains the value OOH, the
CRC sum should be ignored. The remaining bytes are used to pad out the header to 128 bytes.

38.2 MAC Data Area

The header is followed by the MAC data area. This always begins with the signature:

OOH OOH OOH 02H

which indicates the start of the data area. At this stage another peculiarity of the MAC-Paint
format becomes evident. When creating a new file, the MAC-Paint program displays 38 pre-defined
bit patterns. These bit patterns can be changed and are saved with the file. After the 4-byte
signature, the MAC-Paint file contains a 304-byte area in which these patterns are defined. This
area is followed by 204 null bytes which are used to fill up the leader.

910 Graphics formats

In a MAC-Paint file containing a header, the image data starts at offset 640 (280H). If the header
is missing, the data starts at offset 512 (200H).

The image data is stored in a fixed raster of 576 x 760 pixels. One bit coded 0 or 1 is provided
for each pixel, that is, one byte represents 8 pixels. An uncompressed file contains 51,840 bytes.
The image data is read by line. Each uncompressed image line consists of 72 bytes. The data area
contains 720 lines.

t
There are indications that the signature OOH OOH OOH 02H in the first four bytes of the data

area represents modified patterns. If the first 512 bytes of the data area are set to OOH,
MAC-Paint generates the 38 patterns with the initialization values.

38.3 MAC Packbit coding

To save space in the memory when storing image data, the data is packed using a simple
compression process known as MAC Packbit compression. A very good rate of compression is
achieved because only monochrome images are involved. The data is decompressed using a very
simple procedure:

♦ Image data is compressed by line. That means decompressed data does not extend beyond the

end of an image line.

♦ During decompression, one data byte is read at a time.

♦ If the top bit of this data byte is set (1), a packed record is present. The two's complement of
the byte is calculated and this acts as a repetition counter for the following byte. The following
byte is then copied n times.

♦ If the top bit contains the value 0, the record is uncompressed. The value of the byte should
then be increased by 1. This value indicates the number of uncompressed data bytes that
follow.

The above steps should be repeated until 72 unpacked bytes have been obtained. These can
then be displayed as an image line. It should be pointed out that on the Macintosh, black
characters are displayed against a white background. This is not always the case with other
systems (for example, DOS).

MAC Picture format (PICT)

The MAC-Picture format (PICT) is a metafile
format for the storing of images on Macintosh
computers. The format was defined by Apple

in order to store graphics using the program
QuickDraw.

There are two versions of the PICT format, which are designed for different versions of QuickDraw.

♦ The original format for QuickDraw 1 supports only monochrome bitmap images with a
maximum size of 32 Kbytes. The image resolution of 72 dpi is based on the MAC screen.

♦ With QuickDraw (color) version 2.0, support was extended to include color images with 8-bit
bitmaps. This format still allows monochrome images to be stored.

On a PC with MS-DOS, MAC-Paint files are given the extension .PCT. The data is stored in
Motorola format (big-endian). Because of its Macintosh origins this format has a number of
peculiarities.

The first comes from the structure of the MAC file system, in which files are stored in forks.
These forks represent data areas in which the operating system stores information. A Macintosh
file always contains two forks. One fork is used for storing data, the second for resources (or
program code). In physical terms, there are two files on the MAC, although the user only sees one.

With MAC-QuickDraw files, the resource fork remains empty. The image data fork consists of a
header and a sequence of metafile operators containing the associated binary data (Figure 39.1).

911

912 Graphics formats

PICT file

Data fork Resource fork

Header empty

picSize

picFrame

opcode

Image data

opcode

Image data

End of PICT Figure 39.1
Structure of a

PICT file

The Macintosh operating system provides a series of library routines for reading and writing
PICT files. There are only small differences between the two versions of the PICT format:

♦ In PICT 1 format, an opcode occupies one byte. PICT 2 format always defines an opcode as a
word (2 bytes). If PICT 1 opcodes are stored in PICT 2 format, they must be extended to 2
bytes.

♦ In version 1, data may begin on a byte boundary. In version 2, data and opcodes must always
be aligned on a word boundary.

Furthermore, all unused opcodes in version 2 have a pre-defined number of data bytes, in order
to ensure future compatibility with subsequent versions.

39.1 PICT header

The PICT header has a fixed length of 512 bytes and contains application-specific data (image
size, scaling, version, and so on). The structure of this header has not been published, and the
header should be skipped when importing data. The following data records contain all the
information required to construct an image.

MAC-Picture format (PICT) 91 3

39.2 PICT data area

The 512-byte header is followed by the data area. This is divided as shown in Figure 39.1 into
another header containing the elements picSize and picFrame, and other data records of varying
length. The header is structured differently in versions 1 and 2.

39.2.1 PicSize record

The PicSize record follows the internal header at offset 200H. This record defines the image
dimensions and is structured as shown in Table 39.1.

Offset Bytes Remarks

OOH

02H

2

8

Picture size in bytes (integer)

Picture frame Table 39.1

Structure of the

PicSize record

The first field is an integer specifying the file size (lower 16 bits) in bytes. The second field
contains the image dimensions (bounding box) as a RECT structure. Four integer values are stored

in the sequence (top, left, bottom, right).

39.2.2 PicFrame record (PICT 1)

The PicFrame record follows at offset 20AH. This record enables the version of the PICT file to be

determined. Because of the altered length of the opcode field, PICT files have a different structure
in versions 1 and 2. The difference is also apparent in the PicFrame record. Table 39.2 defines the
structure of the PicFrame record for PICT version 1:

Bytes Remarks

Version operator (11H)

Picture version (01H)

In PICT 1 format, this record is followed by the image data.

Table 39.2

PicFrame record

in PICT 1

914 Graphics formats

39.2.3 PicFrame record (PICT 2)

The PicFrame record is also defined in PICT version 2. This record has the same fields, but each
field is 2 bytes long (Table 39.3).

Bytes Remarks

Version operator (0011H)

Picture version (02FFH) Table 39.3

PicFrame record

in PICT 2

If the signature 2FFH is recognized, a PICT 2 file is present, and all the following opcodes are
coded as 2 bytes.

39.2.4 Reserved header record (PICT 2)

In PICT 2, the PicFrame record is followed by another header comprising 26 bytes. This record is
already coded as a regular data record (opcode OCOOH). The structure of this header is shown in
Table 39.4.

Bytes

2

24

Remarks

Reserved header opcode (OCOOH)

Reserved data area Table 39.4

Reserved header

in PICT 2

In the MAC documentation, this header is marked as reserved for future versions of the PICT
format. Table 39.5 shows the present coding of the 26 data bytes.

Bytes Remarks

Header Opcode (OCOOH)

Picture size in byte (-1 for version 2)

Original horizontal resolution (pixel/inch)

Original vertical resolution (pixel/inch)

Table 39.5

Contents of the

reserved header

(continues
over...)

MAC-Picture format (PICT) 915

Bytes Remarks

2 Upper left X corner

2 Upper left Y corner

2 Lower right X corner

2 Lower right Y corner

4 Reserved
Table 39.5

Contents of the

reserved header

(cont.)

39.3 Image data records (PICT 1,2)

In both versions of PICT, this preliminary section is followed by the actual image data, which is
stored in records containing an opcode field, followed by the associated binary data.

♦ In PICT 1, each opcode field occupies one byte.

♦ In PICT 2, each opcode field occupies one word (2 bytes).

The end of the image data is indicated by the End of Picture record, which is represented by
one byte (PICT 1) or one word (PICT 2), containing the value FFH or OOFFH respectively. The
structure of the image data can be described as follows:

opcode

data

opcode

data

opcode

data

OOFFH

In PICT 2 format, the opcodes and data must always be aligned on 16 bit boundaries. The
following table shows the opcodes defined in PICT 2:

916 Graphics formats

Opcode Size Remarks

0000H 0 NOP

0001H region Clip area
0002H 8 Background pattern

0003H 2 Text font (word)
0004H 1 Text face (byte)

0005H 2 Text mode (word)

0006H 4 Extra space (fixed point)
0007H 4 Pen size (point)

0008H 2 Pen mode (word)

0009H 8 Pen pattern

000AH 8 Fill pattern

000BH 4 Oval size (point)

000CH 4 Origin (dhorz, dvert)

000DH 2 Text size (word)

OOOEH 4 Foreground color (long)

000FH 4 Background color (long)

001 OH 8 Text ratio

numerator (points)

denominator (points)

0011H 1 Version

0012H n Color background pattern

0013H n Color pen pattern

0014H n Color fill pattern

0015H 2 Fractional pen position

0016H 2 Extra space for each char
0017H/ 0 Reserved opcodes

0019H

001 AH n RGB foreground color

001BH n RGB background color

001 CH 0 Highlight mode flag

001DH n RGB highlight color

001 EH 0 Use default highlight color
001 FH n RGB highlight color

(arithmetic mode)
0020H 8 Line (x,y,xl,yl)

0021 H 4 Line form (point)

0022H 6 Short line (x,y,dx,dy)

0023H 2 Short line from (dx,dy)

(-128..127)

0024H/ len+data Reserved opcodes (len = 2 byte)

0027H

Table 39.6

PICT 2 opcodes
(continues
over...)

MAC-Picture format (PICT) 917

Opcode Size Remarks

0028H 5+n Long text

4 location (x,y)

1 count (0..255)

n text (0..255)

0029H 2+n Draw horizontal text

1 dh (0..255)
1 count (0..255)

n text

002AH 2+n Draw vertical text

1 dv (0..255)

1 count (0..255)
n text

002BH 3+n Draw horizontal, vertical text

1 dh (0..255)

1 dv (0..255)
1 count (0..255)

n text

002 CH/ len+data Reserved opcodes (len = 2 byte)
002FH

0030H 8 Frame rectangle
0031H 8 Paint rectangle

0032H 8 Erase rectangle
0033H 8 Invert rectangle

0034H 8 Fill rectangle
0035H/ 8 Reserved opcodes

0037H

0038H 0 Frame same rectangle

0039H 0 Paint same rectangle

003AH 0 Erase same rectangle
003BH 0 Invert same rectangle

003CH 0 Fill same rectangle
003DH/ 0 Reserved opcode

003 FH

0040H 8 Frame RoundRectangle
0041H 8 Paint RoundRectangle
0042H 8 Erase RoundRectangle
0043H 8 Invert RoundRectangle
0044H 8 Fill RoundRectangle
0045H/ 8 Reserved opcodes

0047H Table 39.6

PICT 2 opcodes
(cont.)

918 Graphics formats

Opcode Size Remarks

0048H 0 Frame same RoundRectangle
0049H 0 Paint same RoundRectangle

004AH 0 Erase same RoundRectangle
004BH 0 Invert same RoundRectangle

004CH 0 Fill same RoundRectangle
004DH/ 0 Reserved opcodes

004FH

0050H 8 Frame oval

0051H 8 Paint oval

0052H 8 Erase oval

0053H 8 Invert oval

0054H 8 Fill oval

005 5 H/ 8 Reserved opcodes

0057H

0058H 0 Frame same oval

0059H 0 Paint same oval

005AH 0 Erase same oval

005BH 0 Invert same oval

005CH 0 Fill same oval

005DH/ 0 Reserved opcodes

005FH

0060H 12 Frame arc

4 Rect

4 Start angle

4 Arc angle

0061H 12 Paint arc

0062H 12 Erase arc

0063H 12 Invert arc

0064H 12 Fill arc

0065H/ 12 Reserved opcodes

0067H

0068H 4 Frame same arc

0069H 4 Paint same arc

006AH 4 Erase same arc

006BH 4 Invert same arc

006CH 4 Fill same arc

006DH/ 4 Reserved opcodes

006 FH

0070 H poly Frame polygon Table 39.6

PICT 2 opcodes
(cont.)

MAC-Picture format (PICT) 919

Opcode Size Remarks

0071H poly Paint polygon

0072 H poly Erase polygon

0073H poly Invert polygon
0074H poly Fill polygon
0075H/ poly Reserved opcodes

0077H

0078H 0 Frame same polygon

0079H 0 Paint same polygon
007AH 0 Erase same polygon
007BH 0 Invert same polygon
007CH 0 Fill same polygon
007DH/ 0 Reserved opcodes
007FH

0080H region Frame region
0081H region Paint region
0082H region Erase region
0083H region Invert region
0084H region Fill region
0085H/ region Reserved opcodes
0087H

0088H 0 Frame same region
0089H 0 Paint same region
008AH 0 Erase same region
008BH 0 Invert same region
008CH 0 Fill same region
008DH/ 0 Reserved opcodes
008FH

0090H n Copy bits, rect clipped
0091H n Copy bit, region clipped
0092H/ len+data Reserved opcodes (len = 2 byte)
0097H

0098H n Packed copy bits, rect clipped
0099H n Packed copy bits, region clipped
009AH/ len+data Reserved opcodes (len = 2 byte)
009FH

00A0H 2 Short comment

00A1H 4+n Long comment

2 kind

2 size

n data Table 39.6

PICT 2 opcodes
(cont.)

920 Graphics formats

Opcode Size Remarks

00A2H/ len+data Reserved opcodes

00AFH

OOBOH/ 0 Reserved opcodes

OOCFH

OODOH/ len+data Reserved opcodes (len = 4 byte)

OOFEH

OOFFH 0 End of picture

01 OOH/ 2 Reserved opcodes

01FFH

0200H/ 4 • Reserved opcodes

OBFFH

OCOOH 24 Header

0C01H/ 4 Reserved opcodes

7EFFH

7F00H/ 254 Reserved opcodes

7FFFH

8000H/ 0 Reserved opcodes

80FFH

81 OOH/ len+data Reserved opcodes (len = 4 Byte)

FFFFH Table 39.6

PICT 2 opcodes
(cont.)

The size column in Table 39.6 indicates the record length, excluding the opcode bytes. The
records are defined as Pascal structures in accordance with Table 39.7:

Bytes Data type

Byte (unsigned)

SByte (signed -128..127)

Integer (signed)

Word (unsigned)

Longlnteger (signed)

DWORD (unsigned)

Points (x,y: integer)

Rect (top, left, bottom, right: integer)

Table 39.7

Data types within
PICT records

(continues
over...)

MAC-Picture format (PICT) 921

Bytes

n

n

4

Data type

Poly (10 bytes + data)

Region (10 bytes + data)
Fixed point

Pattern

Row bytes

Table 39.7

Data types
within PICT

records

(cont.)

The records with opcodes 0040H to 0044H relate to rectangles with rounded corners. The radius
of this rounding is defined via opcode 000BH (oval size).

A color pattern is defined for the records with opcodes 0012H, 0013H and 0014H. The structure
is as follows:

Bytes Field

2 Pattern type 0001H

8 Old pattern data

n Pixel map

n Color table

n Pixel data

2 Pattern type 0002H

8 Old pattern data

n RGB table Table 39.8

Record structure

opcodes
0012H-0014H

The Color table is a data structure which appears only with PICT 2 files. It is structured as follows:

Bytes Field

4 ID-number color table (0)
2 Flags
2 Color table entries -1

(n+l)*8 Color table with 4-word entries:
pixel value, red, green, blue

Table 39.9

Structure of a

color table

922 Graphics formats

However, if the RGBColor structure appears, this contains three integer values with the color
intensities red, green, blue.

The pixMap structure used in the data records is shown in Table 39.10.

Type Field

long (unused)

word RowBytes

rect Bounds(Bounding box)
word Version number (0)
word Packing format (0)
long Packet size (0)

fixed Horizontal resolution (48000H)

fixed Vertical resolution (48000H)
word Pixel type (0)

word Bits per pixel (1,2,4,8)

word Components per pixel (1)
long Offset to next plane (0)

long Color table (0)

long Reserved

Table 39.10

pixMap structure

The image data is stored in the pixMap structure and may be packed or unpacked. The
following rules apply when decoding the data:

♦ If the field RowBytes < 8, the data is unpacked. The data area therefore contains
RowBytes * (Bounds.bottom - Bounds.top) data bytes. The values for Bounds can be found in
the bounding box.

♦ If the field RowBytes >= 8, a packed data area is involved. The individual lines are packed
separately. The number of lines can be calculated as Bounds.bottom - Bounds.top. Each image
line begins with the field ByteCount followed by the data. If RowBytes > 250, then ByteCount
will be defined as a word. Otherwise, ByteCount is defined as a byte. The compressed image
data follows ByteCount. This data is compressed according to the Packbit method (see MAC-
Paint format, Chapter 38).

The data areas for the records 0090H and 0098H are structured as follows:

MAC-Picture format (PICT) 923

Type Field

pixMap Pixel map structure

rect Source rectangle

rect Destination rectangle

word Transfer mode

PixData Data area containing pixels

The data areas for the records 0091H and 0099H are structured as follows:

Type Field

pixMap Pixel map structure

ColorTable Color table structure

rect Source rectangle

rect Destination rectangle

word Transfer mode

region Mask region

PixData Data area containing pixels

Table 39.11

Structure data

area (opcode
0090H. 0098H)

T^ble 39.12

Structure data

area (opcode
0091 H, 0099H)

| Warning: Opcodes 0090H to 0099H have been modified inPICT 2! The first word after the
" opcode is not the BaseAddress field; instead, the data area begins with the RowBytes field.
• If the top bit of RowBytes is set, a color image is present and each pixel will contain

several bits. If the values for RowBytes are below80H, the image is a monochrome image with
one bit per pixel. The records with opcodes 0090H and 0091H contain unpacked bitmap data and
may be used with data series of less than 8 bytes.

Atari NEOchrome format
(NEO)

The NEOchrome format is used for representing
color images on the Atari. The file names have
the extension .NEO. Because of the pecu

liarities of the Atari regarding reduced color
representation, the format is restricted to Atari
computers.

The structure of a NEOchrome tile is shown in Figure 40.1.

Header

Image Data

Figure 40.1
Structure of a

NEOchrome

(NEO) file

Theformat comprises a headerwith a fixed size of140bytes, followed by an image data area of
16,000 bytes. The data is stored in Motorola format (big-endian).

40.1 NEOchrome header

The header of a NEOchrome file is structured in words, as shown in Table 40.1.

924

Atari NEOchrome format (NEO) 925

Offset Bytes Remarks

OOH 2 Flags (0)
02H 2 Image resolution

04H 16*2 Color palette

24H 12 Animation file name

30H 2 Color animation limits

32H 2 Color animation speed and direction
34H 2 Number of steps
36H 2 Image X offset (0)
38H 2 Image Y offset (0)
3AH 2 Image width
3BH 2 Image height
3CH 33*2 Reserved (OOH)

Table 40.1

Structure of

a NEO header

The first word contains a flag which is always set to 0. The second word defines the image
resolution. With NEOchrome files, three resolutions are defined:

——

Code Resolution

OOH

01H

02H

Low resolution (320 x 200, 16 colors)
Medium resolution (640 x 200, 4 colors)

High resolution (640 x 200, 2 colors) Table 40.2

Resolution of

NEOchrome

images

The number of high resolution colors is reduced because of the reduced options for color
representation.

The color palette for the image is stored in the 16 words at offset 06. The color palette has
three bits per color, as shown in Table 40.3.

926 Graphics formats

Bit Color

0-2 Blue

3 —

4-6 Green

7 —

8-10 Red

11-15
Table 40.3

Coding for Atari
palette values

If this type of image is to be transferred to a PC, the color value shown should be multiplied by
32.

The palette is followed by the area containing the name of the file. This entry is generally filled
with the space character ' '.

The word at offset 30H defines the limits (color animation limits) within which the colors of an
image can vary:

Bits

0-3

4-7

15

Remarks

Right/upper color limit

Left/lower color limit

1: animation data valid
Table 40.4

Coding of limit
values

This (color) animation limit is only valid if bit 15 of the word is set to 1. Otherwise the picture
will be displayed with a fixed color combination.

The word at offset 32H defines the output speed for the image (animation speed) and the output
direction. Table 40.5 indicates the coding for the individual bits of this word.

Bits Remarks

0-7

15

Speed
Direction (0 normal, 1 reverse)

Table 40.5

Speed and
direction coding

The playback speed defines the number of blank frames per animation frame. Bit 15 defines the
direction of playback. The number of frames in an animation is stored at offset 34H.

Atari NEOchrome format (NEO) 927

The fields for the offset of the X and Y axes of the image are unused and are set to 0. The image
width is always set to 320 pixels and the image height to 200 pixels. The remaining fields are used
for filling out the header.

40.2 Data area of the NEOchrome file

The data area contains image data in uncoded form as a screen shot. Images are stored with 1, 2 or
4 bits per pixel.

With 1 bit per pixel, the data is in one plane, and one byte describes 8 pixels which must be

played back in the given image raster.

At 2 bits per pixel, 4 colors can be represented, and the data is stored in two planes. The first
byte contains 8 pixels on the first plane and the second byte contains 8 pixels on the second plane.

If the file is to be transferred to a PC, the two bytes must be combined bitwise to form the color
values.

With 4 bits per pixel, 16 colors are displayed. The data is stored in four planes. Each byte
contains 8 pixels on the same plane. After the four bytes have been read, they must be combined
bit by bit to give the color information for a pixel.

en

NEOchrome Animation format
(ANI)

N
EOchrome Animation files have the extension
.ANI and enable image sequences to be played
back.

The ANI files have a 22-byte header followed by one or more frames for the animation.

Header

Image frame 1

Image frame n

The data is stored in Motorola format (big-endian).

928

Figure 41.1
Structure of a

NEOchrome

(ANI) file

NEOchrome animation format (ANI) 929

41.1 NEOchrome ANI header

The header of an ANI file is structured as shown in Table 41.1:

Offset Bytes Remarks

OOH 4 Signature
04H 2 Image width

06H Image height
08H 2 Image size + 10

OAH 2 Image X coordinate - 1
OCH 2 Image Y coordinate - 1
OEH 2 Number of frames

10H 2 Playback speed
12H 4 Reserved (OOH)

Table 41.1

Structure of an

ANI header

The first word contains a signature which is always coded BAH BEH EBH EAH. This is followed by
the image width in bytes, which must be divisible by 8. The image height is stored at offset 06H
and is defined in scan lines. The word at offset 08H defines the image size + 10 in bytes. The image
coordinates, X,Y, are stored at offset OAH. The value for the X coordinate defines the left image
margin (in pixels - 1) and must be divisible by 16. The Y coordinate defines the top edge of the
image in pixels - 1.

The word at OEH defines the number of frames in the ANI file. The following field indicates the
playback speed for the individual frames. This value defines the number of blank frames between
two actual frames.

The last four bytes of the header are reserved and are set to 0.
The header is followed by the data area containing one or more images in the playback

sequence. The method of storage is the same as described for the NEO format (see Chapter 40).

Animatic Film format
(FLM)

he Animatic Film format is used on the Atari
to store image sequences with low resolution
(320 x 200) and 16 colors.T

FLM files contain a 62-byte header, followed by one or more individual frames.

Header

Image frame 1

Image frame n

The data is stored in Motorola (big endian) format.

42.1 Animatic Film header (FLM)

The header of an FLM file is structured as shown in Table 42.1:

930

Figure 42.1
Structure of an

Animatic Film

file (FLM)

Animatic Film format (FLM) 931

Offset Bytes Remarks

OOH 2 Number of frames

02H 16*2 Color palette

22H 2 Film speed

24H 2 Play direction

26H 2 Action after last frame

28H 2 Frame width in pixels

2AH 2 Frame height in pixels
2CH 2 Major version number

2EH 2 Minor version number

30H 4 Signature

32H 3*4 Reserved (OOH)
Table 42.1

Structure of an

FLM header

The first word contains the number of frames in the file. This is followed by a palette
containing 16 entries of two bytes each. The color intensities are stored with 3 bits each (see
NEOchrome NEO format, Chapter 40).

The film speed is indicated at offset 22H. The value is in the range 0-99 and specifies the
number of blank frames between two images.

The value 0 for play direction indicates that the image is to be played back in the sequence
stored. If the value is 1, the images will be played in reverse sequence.

The word at offset 26H defines the action to be carried out after displaying the last image.

Value

OOH

01H

02H

03H

Action

Pause and then repeat from beginning
Immediate repeat from beginning (loop)

Play back in reverse direction
Table 42.2

Action after last

frame

The two words at offsets 28H and 2AH define the dimensions of the frame in pixels.
The following two words contain the version number of the Animatic software used to create

the animation. The signature is stored at offset 30H and consists of four bytes with the values 27H
18H 28H 18H. The last 12 bytes are reserved and are set to OOH.

The header is followed by the data area containing the frames. The area contains a screen shot
for each frame.

ComputerEyes Raw Data format
(CE1,CE2)

Gf omputerEyes Raw Data format is only used
on the Atari for storing graphics. The
extension CE1 indicates images with low

resolution (320 x 200), while CE2 stores images with
medium resolution (640 x 200).

The data is stored in Motorola format (big-endian).

43.1 ComputerEyes Raw Data header (CEx)

The header of a CEx file is structured as shown in Table 43.1.

Offset Bytes Remarks

OOH

04H

06H

4

2

8*2

Signature 'EYES'
Resolution

Reserved
Table 43.1

Structure of a

CEx header

The first four bytes contain the signature 45H 49H 45H 53H which corresponds to the string
'EYES'. This is followed by a word containing the resolution. Thepermitted entriesare as follows:

0: Resolution 320 x 200

1: Resolution 640 x 200

The remaining 8 words of the header are reserved.

932

ComputerEyes raw data format (CE1, CE2) 933

The header is followed by the image data area. With a resolution of 320 x 200 pixels, the data is
stored in three planes:

64,000 bytes red plane, 1 pixel per byte

64,000 bytes green plane, 1 pixel per byte

64,000 bytes blue plane, 1 pixel per byte

If medium resolution is used, the image data area contains 128,000 bytes, arranged as 640 x
200 bytes. Each byte contains the value for one pixel.

Cyber Paint Sequence format
(SEQ)

his format was developed for Atari computers
for the storing of image sequences with 16
colors and a low resolution (320 x 200).T

The data is stored in Motorola format (big-endian).

44.1 Cyber Paint Sequence header (SEQ)

The header of a SEQ.file is structured as shown in Table 44.1:

Offset Bytes Remarks

OOH 2 Signature (FEDBH or FEDCH)

02H 2 Version number

04H 4 Number of frames

08H 2 Display speed

OAH 118 Reserved

..H n*4 Array of frame offsets Table 44.1

Structure of

a SEQ header

The first two bytes contain the signature FEDBH or FEDCH. This is followed by a version number.
The number of frames in the tile is indicated at offset 04H. The following word defines the delay

934

Cyber Paint Sequence format (SEQ) 935

between frames. The 128 bytes at offset OAH are reserved and set to OOH. The header ends with an
array of 4-byteentries, which contains the offsets of the individual images (frames).

44.2 Structure of the frame

Each frame consists of a header followed by the image data. This header is structured as shown in
Table 44.2:

Offset Bytes Remarks

OOH 2 Frame type

02H 2 Frame resolution

04H 16*2 Color palette

24H 12 File name

30H 2 Color animation limits

32H 2 Color animation speed and direction

34H 2 Number of color steps

36H 2 Frame x offset (0)

38H 2 Frame y offset (0)
3AH 2 Frame width

3CH 2 Frame height
3EH 1 Graphics operation

3FH 1 Compression

40H 4 Frame length in byte

44H 60 Reserved (OOH)
Table 44.2

Structure of a

frame header

The header is based closely on the NEOchrome header format. The first word identifies the
type of frame. This is followed by a word containing the resolution code, which is set to OOH (320 x
200 pixels). The palette is stored in 16 words in Atari format (see NEOchrome format, Chapter
40). The file name is usually set to spaces. The coZor animation speed and number of color steps
fields are not used.

The X-offset of the frame may be between 0 and 319 and the Y-offset between 0 and 199. The
image dimensions may be set to 0, because the dimensions of the frame are fixed at 320 x 200
pixels. The Operation field describes how the data for a frame is written to the screen:

0: copy

1: exclusive OR

The Compression byte indicates a compressed data area if it is set to 1 and an uncompressed
data area if it is set to 0.

936 Graphics formats

The length field relates to the data area and is always given in the case of compressed data. The
last 60 bytes in the frame header are reserved. Theyare used to pad out the header to 128bytes.

The data area follows the header and can store the data according to the delta compression
method. In this case, only the differences from the preceding frame are stored.

A rectangle is placed around the image area containing the altered pixels. This rectangle is
stored as a frame. The dimensions and position of the rectangle are indicated in the frame header.

♦ A delta frame of this type can be stored without being compressed. In this case, it is merged
into the image area via the X,Y coordinates, using a simple copy operation.

♦ Alternatively, the image data can be merged into the image area using XOR. The operation field
in the header indicates if this mode is to be used.

♦ With a compressed delta frame, the data must be decoded before being merged into the image
area. A copy or an XOR operation is used, depending on the operation field in the header.

♦ A null frame has a height and width of 0 pixels, that is, the frame is identical to the preceding
frame.

The image data is stored in the data area according to these criteria, thereby ensuring that the
minimum amount of storage space is used.

44.3 Compression process

A simple process is used for compression:

♦ Initially, a word is read. This word then acts as a control element.

♦ If the value of this word is negative (bit 15 = 1), the absolute value (0 .. 32736) defines the
number of following words which are to be read uncompressed from the data area.

♦ With a value greater than 0, the control word acts as a counter (0 .. 32736). The following
word will be copied n times.

The value OOH is theoretically possible, but has no meaning. The unpacked data is in four

separate bitplanes, each of which is arranged vertically. The image data is then inserted into the
image excerpt indicated (using copy or XOR).

Atari DEGAS format
(PI*, PC*)

The Atari DEGAS format is used for
representing animation with color images.
There are several versions of this format,

indicated by the endings .PI1, .PI2, .PI3, .PC1, .PC2
and . PC3. The resolution is defined by the last digit of
the extension (1 low, 2 medium, 3 high). The letter C
in the extension means compressed image data,
while PP:' files are uncompressed.

Each DEGAS tile contains an individual image and consists of a header, followed by the image data
area.

Header

Image Data

Figure 45.1
Structure of a

DEGAS file

The header has a fixed length of 140 bytes and is followed by an image data area containing
32,000 bytes. The data is stored in Motorola format (big-endian).

45.1 DEGAS PI* files

The header of a PI* file is structured as shown in Table 45.1:

937

938 Graphics formats

Offset Bytes Remarks

OOH 2 Resolution

0 low

1 medium

2 high

02H 16*2 Color palette
Table 45.1

Structure of

a DEGAS PI*

header

The first word contains the resolution, in the lowest two bits. The levels of resolution are as
described for the NEOchrome format (see Chapter 40).

Sixteen words containing the color palette for the image are stored at offset 02H, coded on the
basis of three bits per color (see NEOchrome format).

In PI1, PI2 and PI3 files, the header is followed by the data area which contains uncompressed

image data, and has a fixed length of 16,000 words. The data is stored as a screen extract.

45.2 DEGAS Elite PC* files

The DEGAS Elite PCI, PC2 and PC3 files are used for compressed image files. A PC* file is

structured as shown in Table 45.2.

Offset Bytes Remarks

OOH 2 Resolution

8000H low

8001H medium

8002H high

02H 16*2 Color palette

22H n Image data

..H 4*2 Starting color numbers

..H 4*2 Ending color numbers

..H 4*2 Direction

..H 4*2 Animation channel delay
Table 45.2

Structure of

a DEGAS Elite

PC* file

The file consists of a header, followed by the data area. An extension of the header data,
containing information on animation, is located at the end of the file.

Atari DEGAS format (PI*, PC*) 939

The first word contains the resolution, which is coded in the lowest two bits. Bit 15 is set to 1,

to specify that the file is a DEGAS Elite file with compressed data. The levels of resolution are as
described for the NEOchrome format (see Chapter 40).

Sixteen words containing the color palette for the image are stored at offset 02H, coded on the
basis of three bits per color (see NEOchrome format).

In PCI, PC2 and PC3 files, the header is followed by the data area containing the
uncompressed image data. This area contains a screen shot, compressed using the Packbit method.

♦ The data is compressed line by line.

♦ The first image line (0) begins at the top edge of the screen. Subsequent image lines are below

this line.

♦ The data for each scan line is compressed plane by plane. The first scan line contains data for
the lowest plane.

♦ The Packbit process stores the values in records. The first byte (n) acts as a control byte. If the

value is less than 80H, it is followed by n uncompressed data bytes. If the control byte contains
values greater than 80H, the following byte will define the compressed value, which will then be
copied n times. The value n can be calculated from the control byte as follows: n = 100H -
control byte + 1.

In DEGAS Elite images, the image data area is followed by additional information on animation,
which is designed for four channels. The following information therefore relates to these four
channels. Initially, there is a table of 4 words which contains the left color animation limit for
these channels. The next table of 4 words contains the right color animation limit. The third 4-
word table indicates the animation channel direction:

Code

OOH

01H

02H

Direction

Left

Off

Right
Table 45.3

Direction of

animation

The final 4-word field defines the delay times for the channels during animation. This value is
given in Vw of a second and must be subtracted from 128. The color animation is specially designed
for the graphics capabilities of Atari computers.

Atari Tiny format
(TNY, TN*)

Tiny Format was developed to store images on
the Atari. There are several versions,
distinguished from each other by extensions to

theirfile names:

The following extensions are defined to distinguish the versions:

*.TNY any resolution

*.TN1 low resolution

*.TN2 medium resolution

*. TN3 high resolution

Tiny files comprise a header, followed by an image data area. The data is stored in Motorola
format (big-endian). The structure of a Tiny file is shown in Table 46.1.

Offset Bytes Remarks

OOH 1 Resolution

0 low

1 medium

2 high

> 2 rotation information

01H 4 If resolution > 2

940

Table 46.1

Structure of a

Tiny file
(continues
over...)

Atari Tiny format (TNY, TN*) 941

Offset Bytes Remarks

1 byte left/right color limit

1 byte direction/speed

1 word rotation duration

..H 16*2 Color palette

..H 2 Number of control bytes

..H 2 Number of data words

..H n Control bytes

..H m Data area

Table 46.1

Structure of a

Tiny file
(cont.)

The first byte contains the resolution, in the two lowest bits. The levels of resolution are as
described for the NEOchrome format (see Chapter 40).

If the value of this byte is greater than 2, the header contains additional information on color
rotation, which appears immediately after the first byte. The byte at offset 01H defines the color
animation limits. The top 4 bits indicate the left limit (start limit) and the 4 lowest bits the right
limit (end limit). The following byte contains the code for the speed and direction of color
animation. Negative values indicate that the direction is left, while positive values indicate right.
The absolute value gives the animation speed in Vm of a second. The last word defines the duration
of the animation in steps (number of iterations).

The color rotation information (if present) is followed by a 16-word field containing the color
palette, coded as described for the NEOchrome format. The palette is followed by a word
indicating the number of control bytes. These (3 .. 10667) control bytes are located between the
header and the data area and contain information on the decompression of the image data. The
following word indicates the number of data words (1 .. 16000) used for the image data area.

The image data is compressed using Run-Length Encoding (RLE). One peculiarity is that the
control bytes are separated from the compressed data. These control bytes are used for decoding
the compressed image data. The following rules apply to every control byte read:

X < 0 If the value is negative (less than 80H), the absolute value indicates the number of
words to be read from the data area.

x = 0 In this case, the next word in the control data area should be read. This word

contains a repetition counter (128 .. 32767). The next word from the image data
area will be repeated n times.

x = 1 The next word in the control data area should be read. This word contains the

number of words to be read from the image data area (128 .. 32768).

x > 1 The control data byte contains a repetition counter (2 .. 127). The next word from
the image data area should be repeated n times.

942 Graphics formats

The image data decoded in this way does not represent a screen shot; on the contrary, the
screen data is divided into vertical columns. There are four areas for these columns:

1: columns 1, 5, 9 and so on

2: columns 2, 6, 10 and so on

3: columns 3, 7, 11 and so on

4: columns 4, 8, 12 and so on

Each column contains one word from the scan line. A word from the next column is then read.

In this way the image is compressed line by line.

Atari Imagic Film/Picture format
(IC*)

The Imagic Film/Picture format was developed
for storing images on the Atari. There are
several variants which are distinguished by

theirfile name extensions (. IC1, . IC2, . IC3J. The last
digit in the file extension indicates the resolution (1
low. 2 medium, 3 high).

Imagic Film/Picture files consist of a header, followed by an image data area. The data is stored in
Motorola format (big-endian). The header is structured as shown in Table 47.1:

Offset Bytes Remarks

OOH 4 Signature 'IMDC'
02H 2 Resolution

0 low

1 medium

2 high
04H 2* 16 Color palette
24H 2 Date stamp
26H 2 Time stamp
28H 8 File name

30H 2 Length of data area
32H 4 Registration number
34H 8 Reserved

3CH 1 Compression flag
3DH 3 IF compression = 01H

1 compression
1 —

1 escape byte

Table 47.1

Structure of an

Imagic
Film/Picture

header

943

944 Graphics formats

The first four bytes contain a signature which is followed by a word containing the resolution of
the image. The color palette comprises 16 words, coded as described for the NEOchrome format
(see Chapter 40).

The date and time at which the file was created are stored at offset 24H, in GEMDOS format.
The file name is stored at offset 28H. The word at offset 30H defines the length of the data area.

A compression flag is located at offset 3CH. Data is uncompressed if the flag is set to OOH and
compressed if the flag is set to 01H.

At offset 32H, there is a registration number, which is of significance only to the program that

created the file.

If the image data is compressed, there are three bytes at offset 3DH giving further details. If the
first byte is set to FFH, the data is stored in RLE compression format. Any other value indicates
Delta Compression, that is, only the changes to individual frames have been stored.

Data compressed using RLE compression can be decoded using the following algorithm.

Escape byte

Read a byte

IF byte >= 2 THEN

duplicate the next byte n times

ENDIF

IF byte = 1 THEN

o = 0

whi Le n = 1 then

o = 0+1

read byte n

end

k = n

d = next byte

duplicate d (256*o+k) times

ENDIF

Not (Escape byte) Figure 47.1
Decoding
RLE data

Data compressed using the Delta frame process can be decoded using the following algorithm.

Atari Imagic Film/Picture format (IC*) 945

Escape byte

Read a byte

IF byte >= 3 THEN

duplicate the next byte n times

ENDIF

IF byte = 2 THEN

n = next byte

IF n = 0 THEN End of Picture

IF N >= 2 THEN

read n bytes from base picture

ENDIF

IF N = 1 THEN

o = 0

whi le n = 1 then

0 = 0+1

read byte n

end

k = n

d = next byte

duplicate d (256*o+k) times

ENDIF

ENDIF

Not (Escape byte)
Figure 47.2
Decoding Delta
Frame data

With the Delta Frame method, the file name of the base picture is indicated in the header. If
this field is set to OOH, there is no base picture.

The header is structured as follows:

Atari STAD format
(PAC)

The STAD format was developed for storing
individual monochrome pictures with 640 x
400 pixels on the Atari. A PAC file contains a

header and a data area compressed using the RLE
method. The data is stored in Motorola format (big-
endian).

Offset Bytes Remarks

OOH

04H

05H

06H

4

1

1

1

Packing orientation

RLE ID byte for pack-byte

Pack-byte

Special RLE ID byte
Table 48.1

Structure of a

PAC file header

The first four bytes contain a signature indicating the packing direction. 'pM86' indicates that
the data has been packed in columns (vertical); with 'pM85', the algorithm packs the data by line
(horizontal).

The image data is stored after the 7-byte header, using the RLE process. Packed and unpacked
records can therefore alternate. Packed records are introduced by one of the two RLE ID bytes.

The byte at offset 05H in the header indicates the most frequently occurring byte. This byte
does not need to be stored in the packed data area.

The data area can therefore contain three different types of record:

946

Atari STAD format (PAC) 947

♦ The first record type contains two data bytes. The first byte corresponds to the RLE ID byte,
which is stored at offset 04H in the header. The second byte contains a repetition counter,

which defines how many times the pack-byte (stored at offset 05H in the header) is to be
copied.

♦ The second record type comprises three data bytes. The first byte corresponds to the special
RLE ID byte, which is stored in the header at offset 06H. The second byte contains a repetition
counter and the third byte contains the actual image value. This third byte will be repeated

n times.

♦ The third record type consists of a single byte, representing one uncompressed image value.
This type of record occurs whenever the value of the byte read does not correspond to an RLE
ID byte.

Compressed data is decoded either by row or by column and displayed in a 640 x 400 raster.
Each unpacked data byte describes 8 pixels. The direction in which the pixels are to be displayed
(horizontal, vertical) is indicated in the header.

Autodesk Animator format
(FLI)

V' arious formats are used for storing moving
pictures (animation). To a certain extent, the
Autodesk Animator file format (FLI) represents

a standard. In files of this type, image sequences can
only be stored with a resolution of 300 x 200 pixels.
An extended format (FLG) has been developed to
overcome this limitation (see Chapter 50).

An FLI file consists of a 128-byte header, followed by sections containing the individual frames.
Figure 49.1 shows the structure of an FLI file.

948

Header

Frame 1

CHUNK 1

CHUNK 2

Frame 2

CHUNKS

Frame n

CHUNKS Figure 49.1
Structure of

an Animator

(FLI) file

Autodesk Animator format (FLI) 949

Since the image data in an animation is very similar from one frame to the next, Animator
stores only the changes between frames. The complete image need only be stored in the first
frame. This requires different data structures and compression methods for the frames. These data
structures are known as CHUNKs, as in the case of IFF files.

In the first frame, the complete picture (key frame) is stored using RLE compression. The
following frames contain only the differences between images (delta frames). An additional frame
at the end of the file indicates the differences between the first and last frames. All data in an FLI

file is stored in Intel format.

49.1 FLI header

FLI files always begin with a 128-byte header. This header is structured as shown in Table 49.1:

Offset Bytes Remarks

OOH 4 File size in bytes

04H 2 Signature AF11H

06H 2 Number of frames

08H 2 Screen width

OAH 2 Screen height

OCH 2 Bits per pixel

OEH 2 Flags

10H 4 Delay time

14H 2 Reserved (OOH OOH)

16H 102 Fill bytes (OOH)
Table 49.1

Structure of a

FLI header

The first field defines the length of the FLI file. A 2 byte signature containing the values AF11 H
is stored at offset 04H. A different signature must be used if an image file with a resolution of less
than 320 x 200 pixels is defined. This prevents other software from crashing when reading these
files.

The word at offset 06H indicates the number of frames in the FLI file. Image sequences can be
read and displayed on the basis of this value. The maximum number of frames in an FLI file is
4000.

The Screen width and Screen height fields define the resolution of the FLI images. With FLI
files, this is limited to 320 x 200 pixels. However, this restriction does not apply to the FLC files
described in the next chapter.

The number of bits per pixel is stored at offset OCH. FLI files are restricted to a maximum of 8
bits per pixel; that is, images with up to 256 colors can be stored.

The flags at offset OEH are reserved and must be set to the value 0003H. A certain speed must be
observed when playing back the images. The delay time between two frames is indicated in units

950 Graphics formats

of 'A. of a millisecond, in a 32-bit value at offset 10H. The remaining bytes of the header are
reserved and set to OOH.

49.2 FLI frames

FLI files contain the image sequences for the animation in the data area which start at offset 80H.
The individual images are stored in frames, and the number of frames (maximum 4000) is
indicated in the header. Each frame has a 16-byte header, structured as shown in Table 49.2.

Offset Bytes Remarks

OOH 4 Frame size in bytes

04H 2 Signature (F1 FAH)

06H 2 Number of CHUNKs

08H 8 Reserved (0)
Table 49.2

Structure of a

frame header

The first 4 bytes indicate the length of the frame in bytes, including the 16 bytes of the header.
The signature F1 FAH must follow at offset 04H; otherwise there is an error in the FLI file. The word
at offset 06H indicates the number of CHUNKs in this frame.

CHUNKs are data structures containing the individual information for an image (for example,
color palette, pixel data). Each CHUNK has a 6-byte header which contains a 4-byte length field
and one word giving the CHUNK type. This is followed by the data, arranged in a CHUNK-specific
structure. The CHUNK types defined in the FLI format are described below.

49.2.1 COLOR.64 CHUNK (type 11)

This CHUNK stores a compressed color map. The CHUNK always occurs if the color map has
changed from that of the previous image. The CHUNK is structured as follows:

Offset Bytes Remarks

OOH

04H

06H

08H

4

2

2

n

CHUNK size in bytes

CHUNK type (OBH)

Number of packets

Packets containing color map data
Table 49.3

Structure of

a COLOR 64

CHUNK

Autodesk Animator format (FLI) 951

The word at offset 06H defines the number of data packets in the CHUNK. These data packets
contain the compressed color map.

The color map for a VGA card contains 256 entries of 3 bytes each, numbered from 0 to 255.
The COLOR_64 CHUNK defines the entries in the color map which have changed since the
preceding image. The first byte in a packet indicates the number of entries in the color map to be
skipped. The following byte defines the number of entries to be changed. If this byte is set to 0, all
256 entries in the color map must be changed. This byte is followed by the color map data. Three
bytes (red, green, blue) are stored for each color to be changed. In the COLOR_64 CHUNK the
bytes for the color intensities may contain values between 0 and 63, that is, only 64 different
colors can be represented. In the FLC format, a COLOR_256 CHUNK, which can define 256
colors, is used.

49.2.2 DELTA_FLI CHUNK (type 12)

This type of CHUNK contains compressed data (byte oriented delta frame data). The CHUNK
describes the differences from the preceding frame.

Offset Bytes Remarks

OOH 4 CHUNK size in bytes

04H 2 CHUNK type (OCH)

06H 2 Number of equal lines

08H 2 Number of changed lines

OAH n Data for changed lines
Table 49.4

Structure of a

DELTA_FLI

CHUNK

The word at offset 06H defines the number of image lines (with reference to the top edge of the
image) which are the same as those in the previous image. These image lines do not need to be
output.

The following word (offset 08H) contains the number of image lines which are different from
the previous frame. These image lines are displayed from top to bottom.

The data for the changed image lines is stored in compressed form at offset OAH. Each image
line is compressed separately. The image data is compared byte by byte with the previous frame.

♦ The first byte in a compressed line indicates the number of following packets.

♦ If the relevant line of the previous frame has not changed, the value 0 is stored in the first byte.
This is followed by the data for the next line.

The individual packets within each line are structured as follows:

952 Graphics formats

1 byte skip count

1 byte size count
n bytes data

Table 49.5

Structure of;

packet

The first byte (skip count) defines the number of pixels to be skipped in the line. These pixels
have not changed since the previous frame. If there are more than 255 unchanged pixels, two
packets must be used.

The size count, which also indicates whether compression has been used, is stored in the
second byte.

♦ A positive value in the si ze count field acts as a counter. The following n bytes will be read and
displayed as pixels.

♦ If the value in size count is negative (greater than 80H), a compressed record is present. The
following byte defines the value of the pixel which is to be displayed size count * (-1) times.

With this method of compression, only the image data areas that have changed since the
preceding frame are stored. Under unfavourable conditions, it is possible for an FLI_LC CHUNK to
grow to 70 kbytes in length (key frame: 7102 + width*height, delta frame: 802 + width * height).
This may happen, for example, in video sequences, where 'image noise' usually occurs in the
background. This length exceeds the 64-kbyte limit of the FLI definition. In this case, the
Autodesk Animator stores the frame as an FLI_COPY CHUNK.

t
This CHUNK was used by the original Animator. Animator PRO uses the FLC format
which no longer uses this CHUNK. However, this type of CHUNK may occur in an
Animator PRO file if the original animation was produced by Animator.

49.2.3 FLLBLACK CHUNK (type 13)

This CHUNK has a very simple structure. It is used for producing a completely black frame, that is,
all pixels are set to OOH.

Offset Bytes Remarks

OOH

04H

4

2

CHUNK size in bytes

CHUNK type (ODH)
Table 49.6

Structure of an

FLLBLACK

CHUNK

The CHUNK does not have a data area. It is used in the first frame if the user has given the
command NEW in the animator.

Autodesk Animator format (FLI) 953

49.2.4 FLI_BYTE_RUN CHUNK (type 15)

This CHUNK stores the complete image in RLE format. It is similar to the FLI_LC CHUNK, except
that the skip lines are not included; that is, the image description begins at the top line. This
CHUNK is used in the first frame to store the complete image.

Offset Bytes Remarks

OOH

04H

06H

4

2

n

CHUNK size in bytes

CHUNK type (OFH)

Data for changed lines
Table 49.7

Structure of an

FLI_BRUN

CHUNK

The data for the image lines is stored in compressed form at offset 06H. Each image line is
compressed separately and stored in packets. The number of image lines is defined in the header.

♦ The first byte in a compressed line indicates the number of following packets.

♦ If the corresponding line in the previous image has not changed, the value 0 is stored in the
first byte. This is followed by the data for the next line.

The individual packets within each line are structured as follows:

1 byte size count

n bytes data Table 49.8

Structure

of a packet

The first byte defines the size count, which also indicates whether compression has been
used.

♦ A positive value in size count acts as a counter. The following n bytes will be read and
displayed as pixels.

♦ A negative value (greater than 80H) in size count indicates a compressed record. The following
byte defines the value of the pixel. This byte is displayed si ze count * (-1) times.

With this method of compression, all image data areas that have changed since the previous
image are stored. Under unfavourable conditions, it is possible for FLI_BRUN CHUNK to grow to 70
kbytes in length, which exceeds the 64-kbyte limit of the FLI definition. In this case, Autodesk
Animator stores the frame as an FLI COPY CHUNK.

954 Graphics formats

49.2.5 FLI_COPY CHUNK (type 16)

This CHUNK enables an image to be stored in uncompressed form.

Offset Bytes Remarks

OOH

04H

06H

4

2

64000

CHUNK size in bytes

CHUNK type (1 OH)
Data bytes

• V; :

Table 49.9

Structure

of a FLI_COPY
CHUNK

The CHUNK has a data area of 64,000 bytes which contains the image in uncompressed form.
This CHUNK can be used in the first frame to display the image.

49.3 Animator CEL and PIC Format

Animator can store an image frame in a CEL file. The CEL tile has a 32-byte header, which is
followed by a palette (256*3 = 768 bytes) and an uncompressed color image. The file is structured
as follows:

Offset Bytes Remarks

OOH 2 Signature (9119H)

02H 2 Width of eel-image
04H 2 Height of eel-image
06H 2 X upper left corner

08H 2 Y upper left corner

OAH 1 Bits per pixel (8)
OBH 1 Compression (0 = none)

OCH 4 Image size in bytes

10H 16 Reserved (0)

1CH 256*3 Palette (red, green, blue)

31CH n Image data
Table 49.10

Structure

of a CEL file

Animator can also store individual images in PIC files. These use the same format. Image data
is set to width = 320, height = 200. The screen position is set to 0,0.

• There is also a file known as a COL file in which Animator stores a 256*3 byte color palette.
• These bytes may contain values between 0 and 63.

Autodesk 3D Studio format
(FLC)

Animator FLI files are restricted to a resolution
of 320 x 200 pixels. With the 3D and Animator
PRO programs, Autodesk introduced an

extendedformat (FLC).

FLC files consist of a 128-byte header, followed by various sections containing the frames. Figure
50.1 illustrates the structure of an FLC file:

Header

Prefix CHUNK

(optional)

Setting CHUNK

Position CHUNK

Frame 1

CHUNK 1

(Postage stamp)

CHUNK 2

(color data)

CHUNK 3

(image data)

Frame 2

CHUNK 1

(color data)

CHUNK 2

(image data)

Ring Frame

CHUNKS

Figure 50.1
Structure of an FLC file

955

956 Graphics formats

The structure of FLC files closely resembles that of FLI files. The first 16 bytes of the header
are identical except for the signature. Many of the same CHUNKs are also used. However, FLC
extends the image resolution.

Individual images are stored in frames in the FLC file. The first frame contains the palette and
the complete image (RLE compressed). The following frames contain only Delta Frames and
altered palettes if required. Data in FLC files is stored in Intel format.

50.1 FLC header

FLC files always begin with a 128-byte header, whose structure is shown in Table 50.1.

Offset Bytes Remarks

OOH 4 File size in bytes

04H 2 Signature AF12H

06H 2 Number of frames

08H 2 Screen width in pixels

OAH 2 Screen height in pixels

OCH 2 Bits per pixel

OEH 2 Flags

10H 4 Delay time

14H 2 Reserved (OOH OOH)

16H 4 Creation date and time

1AH 4 Serial number creator

1EH 4 Update date and time

22H 4 Update serial number

26H 2 X axis aspect ratio

28H 2 Y axis aspect ratio

2AH 38 Reserved (OOH)

50H 4 Offset of 1st frame

54H 4 Offset of 2nd frame

58H 40 Fill bytes (OOH)
Table 50.1

Structure of

an FLC header

The first field defines the length of the complete FLC file. This is followed at offset 04H by a 2-
byte signature containing the value AF12H.

A word indicating the number of frames in the FLC file follows at offset 06H. This value enables
image sequences to be read and displayed.

The Screen width and Screen height fields define the resolution of the FLC images in pixels.
The restriction to 320 x 200 pixels, found in FLI files, does not apply.

Autodesk 3D Studio format (FLC) 957

The number of bits per pixel is indicated at offset OCH. In FLC files, this value is always set to 8
bits per pixel, that is, images with up to 256 colors can be stored.

The flags at offset OEH are reserved and must be set to 0003H. This is presumably for controlling
the playback procedure. If the value is 1, the animation is terminated after displaying the last
frame. If the value is 2, the animation is repeated.

To play back the animation, a certain delay time must be observed between frames. This delay
time is indicated in milliseconds as a 32-byte value at offset 10H.

The word at offset 14H is reserved. By contrast with FLI files, the fields from offset 16H are used.
The first four bytes contain the MS-DOS date and time at which the tile was created. The next four
bytes are provided for the serial number of Animator PRO. These should be ignored and set to 0.

The 4 bytes at offset 1EH contain the date and time of the last modification. The following 4
bytes are used for the serial number of the program used to make the modifications. The value
should be set to 0.

The two words at offsets 26H and 28H define the pixel aspect ratio of the X and Y axes. The
default setting for this ratio is 1:1. With 320 x 200 images, the ratio should be set to 6:5.

At offsets 50H and 54H, there are 4-byte pointers to the first and second frames of the FLC file.
These enable the optional prefix CHUNK to be skipped. The remaining bytes in the header are
reserved and set to OOH.

50.2 FLC frames

The image sequences for the animation are stored in the data area, which starts at offset 80H. The
individual pictures are stored as frames, and the number of frames is indicated in the header. Each

frame comprises a 16 byte header, coded as shown in Table 50.2:

Offset Bytes Remarks

OOH 4 Frame size in bytes

04H 2 Signature (F1 FAH)

06H 2 Number of CHUNKs

08H 8 Reserved (OOH)
Table 50.2

Structure of a

frame header

The first four bytes indicate the length of the frame in bytes, including the 16 bytes of the
header. The signature F1 FAH must appear at offset 04H. Otherwise, there is an error in the FLC file.
The word at offset 06H indicates the number of CHUNKs in this frame.

CHUNKs are data structures which contain the individual information on an image (for
example, color palette, pixel data). Each CHUNK has a 6-byte header which contains a 4-byte
length field and one word indicating the CHUNK type. This is followed by the data, in a CHUNK-
specific structure. The CHUNK types defined in the FLC structure are described below.

958 Graphics formats

50.2.1 PREFIX CHUNK (type F100H)

In FLC files, the first frame can be preceded by an optional prefix CHUNK. This enables Animator
PRO to store private data. A prefix CHUNK is structured as follows:

Offset Bytes Remarks

OOH

04H

06H

08H

4

2

2

8

CHUNK size in bytes
CHUNK type (F1 OOH)

Number of sub-CHUNKs

Reserved (0) Table 50.3

Structure of a

prefix CHUNK

This prefix CHUNK may be followed by various sub-CHUNKs, whose structure is private. These
CHUNKs should be skipped by external programs.

50.2.2 COLOR_256 CHUNK (type 4)

This CHUNK is used for storing a compressed color map. It occurs whenever the palette (color
map) for the previous frame has changed. The structure of the CHUNK is as follows:

Offset

OOH

04H

06H

08H

Bytes

4

2

2

n

Remarks

CHUNK size in bytes
CHUNK type (04H)

Number of packets

Packets containing color map data
Table 50.4

Structure of

a COLOR_256

CHUNK

The word at offset 06H defines the number of data packets in the CHUNK. These data packets

contain the compressed color map.
The color map for a VGA card contains 256 entries of 3 bytes each, numbered from 0 to 255.

The COLOR_256 CHUNK defines entries in the palette that have changed since the previous
frame. The first byte in a packet indicates the number of entries in the color map to be skipped.
The following byte defines the number of colors to be changed. If this byte is set to 0, all 256 colors
in the color map must be changed. The byte is followed by the actual color map data. Three bytes
(red, green, blue) are stored for each color to be changed. In the COLOR_256 CHUNK the bytes
for these color intensities contain values between 0 and 255, that is, 256 colors can be

represented.

Autodesk 3D Studio format (FLC) 959

50.2.3 DELTA_FLC CHUNK (type 7)

This CHUNK contains compressed data (word oriented frame data). The CHUNK describes the
differences by comparison with the preceding frame.

Offset Bytes Remarks

OOH

04H

06H

08H

4

2

2

2

CHUNK size in bytes

CHUNK type (07H)

Number of lines in CHUNK

Data area
Table 50.5

Structure of

a DELTA.FLC

CHUNK

The word at offset 06H defines the number of image lines in the CHUNK. This is followed by an
image area.

The image data is compressed line by line and stored in packets. Preceding these data packets,
the image line may contain a number of optional words containing various information. Bits 14
and 15 indicate whether a packet value or an item of optional information is involved.

00 If bits 14,15 are set to 0, the word defines the number of packets following for this line.

10 If bit 15 = 1 and bit 14 = 0, the lower byte of the word contains the value for the last pixel
of the line. This is necessary for lines with odd numbers of pixels, because the data is
stored by a word. The following word contains the number of packets for the line.

11 If both bits are set, the word contains a line skip count. This means that n lines should be
skipped without changes. This word may be followed by additional, optional words (skip
count, and so on).

The word containing the number of packets per pixel is followed by the compressed image data
packets. The image lines always relate to the top edge. Before compression, image data is
compared word by word with the preceding frame. The individual packets within a line are
structured as follows:

1 byte skip count

1 byte size count

n bytes data
Table 50.6

Structure of

a packet (FLC)

960 Graphics formats

The first byte (skip count) defines the number of pixels in the line to be skipped. These pixels
have not changed from the previous frame. If there are more than 255 unchanged pixels, two
packets must be used.

The next byte contains the size count, which also indicates whether compression has been

used.

♦ A positive value in size count acts as a counter. The following n bytes will be read and
displayed as pixels.

♦ A negative value (greater than 80H) in size count indicates a compressed record. The following
byte defines the value of the pixel. This byte is displayed size count * (-1) times.

With this method of compression, all image data areas that have changed since the previous

image are stored.

50.2.4 FLC_BLACK CHUNK (type 13)

This CHUNK has a very simple structure. It is used for producing a completely black frame, that is,
all pixels are set to OOH.

Offset Bytes Remarks

OOH

04H

4

2

CHUNK size in bytes

CHUNK type (ODH)
Table 50.7

Structure of

an FLC_BLACK

CHUNK

The CHUNK does not have a data area. It is used in the first frame if the user has given the
command NEW in the animator.

50.2.5 FLC_BYTE_RUN CHUNK (type 15)

This CHUNK stores the complete image in RLE format. It is similar to the FLI_LC CHUNK, except
that the skip lines are not included; that is, the image description begins at the top line. This
CHUNK is used in the first frame to store the complete image.

Offset

OOH

04H

06H

Bytes

4

2

n

Remarks

CHUNK size in bytes
CHUNK type (OFH)
Data for changed lines

Table 50.8

Structure of

an

FLC_BYTE_RUN

CHUNK

Autodesk 3D Studio format (FLC) 961

The data for the image lines is stored in compressed form at offset 06H. Each image line is
compressed separately and stored in packets. The number of image lines is defined in the header.

♦ The first byte in a compressed line indicates the number of following packets. This byte was
adopted from the Animator FLI format for reasons of compatibility. It should be skipped,
because a line can accommodate more than 255 packets. The number of uncompressed bytes
can be determined from the image width.

♦ If the corresponding line in the previous image has not changed, the value 0 is stored in the
first byte. This is followed by the data for the next line.

The individual packets within each line are structured as follows:

1 byte size count

n bytes data Table 50.9

Structure of

a packet

The first byte defines the size count, which also indicates whether compression has been used.

♦ A positive value in size count acts as a counter. The following n bytes will be read and
displayed as pixels.

♦ A negative value (greater than 80H) in si ze count indicates a compressed record. The following
byte defines the value of the pixel. This byte is displayed size count * (-1) times.

With this method of compression, all image data areas that have changed since the previous
image are stored.

50.2.6 LITERAL CHUNK (type 16)

This CHUNK enables an image to be stored in uncompressed form.

Offset Bytes Remarks

OOH

04H

06H

4

2

64000

CHUNK size in bytes

CHUNK Type (1 OH)

Data bytes
Table 50.10

Structure of

a LITERAL

CHUNK

The CHUNK has a data area of width * height bytes which contains the image in uncompressed
form. This CHUNK can be used in the first frame to display the image.

962 Graphics formats

50.2.7 PSTAMP CHUNK (Type 18)

This CHUNK contains an image of reduced size (100 x 63 pixels). It occurs only in the first frame.
The structure of the CHUNK is shown in Table 50.11, but it can be skipped without difficulties.

Offset Bytes Remarks

OOH

04H

06H

08H

OAH

OCH

4

2

2

2

2

n

CHUNK size in bytes
CHUNK type (12H)
Height

Width

Color type

Pixel data

The color type is always 01H, but the coding is currently not available.

Table 50.11

Structure of a

PSTAMP CHUNK

_

Amiga Animation format
(ANI)

On the Amiga, an extended IFF format is used
to represent animations. The file contains a
header and several CHUNKs, as shown in

Figure 51.1:

FORM ANIM

Initial frame

normal type IFF

(optional ANHD
for timing)

Frame 2

Animation header

CHUNK

Delta data mode

Frame 3

FORM ILBM

BMHD

ANHD

CMAP

BODY

FORM ILBM

ANHD

DLTA

FORM ILBM

ANHD

DLTA

Figure 51.1
Structure of an

Amiga (ANI) file

963

964 Graphics formats

The data in ANI files is stored in Motorola format.

The aim of an ANIM file is to present the initial frame as a normal RLE coded IFF picture.

Subsequent frames are described by their differences from a previous frame. The normal playback
mode is to use two screens (A and B). The initial frame is loaded to screen A and B. After this,
screen A is displayed and the first delta frame is used to alter screen B. If screen B is displayed,
screen A will be altered by the next frame. Frame 2 is stored as differences from frame 1. All other

frames are stored as differences from two frames back.

51.1 ANI header

An ANI file contains a header which is structured according to the IFF conventions, as shown in

Table 51.1:

Offset Bytes Remarks

OOH

04H

08H

4

4

4

Signature (46H 4FH 52H 4DH)

File length in bytes

IFF type 'ANIM' Table 51.1

Structure of an

ANI header

The first field contains the signature for IFF files ('FORM'). This is followed at offset 04H by the
file length in bytes. The last four bytes contain the ID for the file type. In ANI files, the signature
is 'ANIM'.

51.2 ANI CHUNKs

The header is followed by the CHUNKs of the ANI file. The initial FORM ILBM can contain all the
normal ILBM GHUNKs. These are valid IFF CHUNKs which have already been described in the
chapter on the IFF format (Chapter 25).

Signature CHUNK type

BMHD Bitmap header

CMAP Color map

BODY BODY data block

CAMG Graphic mode

CRNG Graphic mode Table 51.2

IFF CHUNKs in

an ANI file

Amiga Animation format (ANI) 965

Three new types of CHUNK have been defined in addition to those already described.

51.2.1 CPAN CHUNK

This CHUNK defines the length of an animation sequence. It is structured as follows:

Offset Bytes Remarks

OOH 4 Signature (43H 50H 41H 4EH)

04H 4 Block length in bytes

08H 2 Version number

OAH 2 Number of images
OCH 4 Reserved

Table 51.3

Structure of a

CPAN CHUNK

The first four bytes contain the signature 'CPAN'. This is followed by the block length in bytes.
At offset 08H, there is a word for the processing program to store its version number. This value
should be ignored by external software. The word at offset OAH indicates the number of frames in
the following sequence. The last four bytes are reserved.

51.2.2 ANHD CHUNK

This CHUNK acts as the header of the animation sequence. Its structure is as follows:

Offset Bytes Remarks

OOH 4 Signature (41H 4EH 48H 44H)
04H 4 Block length in bytes
08H 1 Compression method

0: Set directly (ILBM BODY)
1: XOR ILBM mode

2: Long Delta mode
3: Short Delta mode

4: Generalized Short/Long Delta
mode

5: Byte Vertical Delta mode
6: Stereo op 5 (third party)
74: ASCII J (reserved)

Table 51.4

Structure of an

ANHD CHUNK

(continues
ovcj:..)

966 Graphics formats

Offset Bytes Remarks

09H 1 Mask

OAH 2 Width of view area

OCH 2 Height of view area
OEH 2 X-position of view area
10H 2 Y-position of view area
12H 4 Delay time 1
16H 4 Delay time 2
1AH 1 Frame count

1BH 1 Fill byte (0)
1CH 4 Compression flag
20H 16 Reserved (0) Table 51.4

Structure of an

ANHD CHUNK

(cont.)

This CHUNK is used in subsequent FORM ILBMs in place of the 'BMHD' CHUNK. It begins with
the signature 'ANHD', followed by the block length of the CHUNK.

The byte at offset 08H specifies the compression method used.

0: If this value occurs, an ILBM BODY with no compression is used for the initial frame.

1: The XOR mode is only of historical interest. This mode performs a simple bitwise XOR
operation between the new frame and the two frames back.

2: The LongDelta mode stores in the actual new frame only long-words with different image
parts. The long-words are stored together with an offset value in the bitmap. Each plane is
handled separately. No data will be saved, if nothing is changed.

3: The Short Delta mode is identical to the Long Delta mode, except that only short-words

are saved.

4: In the Generalized Delta mode, both the Long Delta mode and the Short Delta mode are

put together.

5: The Byte Vertical Compression mode was defined by Jim Kent.

6: This mode is used by third party.

74: This mode is reserved for Eric Graham's compression technique. Details about this
technique are not known.

The DWORD at offset 1CH presumably contains flags for compression methods 4 and 5. Only
the six low bits are used.

Amiga Animation format (ANI) 967

Bit

0 0: short data is used

1: long data is used

1 0: set data

1: XOR operation

2 0: separate info list for each plane
1: one info list for all planes

3 0: not run length coded

1: run length coded
4 0: horizontal compression

1: vertical compression

5 0: short info offsets

1: long info offsets
Table 51.5

Coding of the
Compression flag

However, the significance of these compression methods is not currently documented. The
byte at offset 09H contains a mask for the bits in image planes containing changes. This mask is
only used for the XOR compression mode. The mask contains bits set to 1, if there is data in the
plane. If the bits are set to 0, there is no data to be modified in the plane.

The two words at offsets OAH and OCH define a frame (width * height). The position of this frame
is defined in the two words at offset OEH and 10H. The fields from offset OAH to 10H are only valid if the
XOR compression is used.

Frames are played back with a certain delay between frames. The DWORD at offset 12H defines
the delay relative to the first frame in units of '/so of a second. The DWORD at offset 16H defines the
delay from the preceding frame. The byte at offset 1AH defines the number of preceding images to
which a change applies. This technique enables the speed of animation to be varied. These fields
are mostly unused and reserved for special applications.

51.2.3 DLTA CHUNK

This CHUNK holds the data of the compressed frames. The format varies from the usual
compression method.

The first image in an animation is generally stored as a bitmap, compressed using the RLE
method. If the first byte is less than 80H, n + 1 following bytes are transferred as uncompressed
image data. In the case of negative values (>80H) the following byte is repeated n + 1 times. No
operation is carried out if the value is 80H.

The DLTA CHUNK copies the Delta Frames of the animation sequence. The structure is as
follows:

968 Graphics formats

Offset Bytes Remarks

OOH

04H

08H

4

4

n

Signature (44H 4CH 54H 41H)

Block length in bytes
Graphic data area

Table 51.6

Structure of a

DLTA CHUNK

The CHUNK is introduced with the signature 'DLTA'. This is followed by a DWORD containing
the block length. The image data is compressed using various compression techniques.

Methods 2 and 3

This is the basic data CHUNK, used to hold the Delta compression data. The CHUNK starts with 8

long-words (32 bytes). The first 8 long-words are byte pointers into the data CHUNK for each
bitplane (up to 8 bitplanes).

If there are modifications in a plane, the pointers for the plane data follow immediately at offset
32 (20H). The data for a given plane consists of groups of data words. In Long Delta mode, short
words are for offsets/numbers and long words for the actual data are used. In Short Delta mode, all
data is stored in short words. Each group consists of a starting word which is interpreted as an offset.

If the offset is positive, the value must be added to the pointer into the bitplane. The following
data word would be placed at this position in the bitplane. Then the next offset would be added to
the pointer and the data word must be placed into the bitplane. If the offset into the bitplane
reaches OFFFFH, the process terminates.

If the offset of the starting word is negative, the absolute value is the offset + 2.
The following short-word counts the number of words that follow. These words must be placed

in contiguous locations in the bitplane. If there are no changed words in a given bitplane, the
pointer in the first 32 bytes of the CHUNKis set to 0.

Method 4

This DLTA CHUNK is modified to have 16 long pointers at the start. The first 8 pointers define the
start of the data for each of the 8 bitplanes. The next 8 pointers are offsets to the start of the
offset/numbers data list. If there is only one data list for all 8 planes, all 8 pointers contain the
same value. The first entry acts as a counter. If the counter is negative, the following data word is
copied multiple times into the destination plane. Detailed information about the compression
scheme is not available.

Method 5

This DLTA CHUNK uses the same 16 pointers as for method 4. The first 8 entries are pointers to
the planes. The next 8 entries are unused. Detailed information about the compression scheme is
not yet available.

Other methods use private compression schemes, which are not documented.

Audio/Video Interleaved format
(AVI)

W" ith Videofor Windows Microsoft introduced
a new format (AVI) for representing images

and sounds. This format is based on the
Microsoft RIFF specification.

52.1 Resource Interchange File Format
(RIFF) specification

The Resource Interchange File Format was defined by Microsoft for Windows multimedia
applications. The RIFF files represent a container in which the formats of other specifications can
be stored, as shown in Table 52.1:

.AVI Video data (Video for Windows)

.WAV Audio wave data (Windows Wave files)

.RDI Bitmap data

.RMI MIDI data

.BND Bundle of other RIFF tiles
Table 52.1

Examples of
RIFF files

A description of the AVI format is given below. The WAV format is dealt with in Chapter 79.
The structure of RIFF tiles is based on the IFF definition. RIFF files are divided into individual

CHUNKs containing the data. A RIFF file begins with a header, structured as shown in Table 52.2:

969

970 Graphics formats

Offset Bytes Remarks

OOH

04H

08H

4

4

4

Signature'RIFF'
File size in bytes

RIFF type
Table 52.2

Structure of

a RIFF header

The first four bytes contain the signature of the RIFF file. If the data has been stored in Intel

format (little-endian), the signature will be 'RIFF'. This is the default setting for RIFF tiles.
However, it is also possible to store data in Motorola format (big-endian). In this case, the first four
bytes will contain the signature 'RIFX'.

At offset 04H, there is a DWORD containing the length of the file. This length does not include
the signature and the length field itself.

The last four bytes contain the signature for the RIFF type. If this string is shorter than 4
characters, the following bytes should be filled with spaces (20H). In the case of AVI files, for
example, the signature stored here is 'AVI'.

52.2 Structure of a RIFF CHUNK

A RIFF CHUNK is structured as shown in Table 52.3:

Offset

OOH

04H

08H

Bytes

4

4

n

Remarks

CHUNK signature

CHUNK size in bytes

CHUNK data
Table 52.3

Structure

of a CHUNK

The first four bytes contain the signature of the CHUNK type. If this string is shorter than 4
characters, the following bytes should be filled with spaces (20H).

The DWORD at offset 04H indicates the number of following data bytes. In RIFF tiles, the
CHUNKs always begin on word boundaries. A fill byte is appended if the length is an odd number,
but the length field does not include this fill byte. The first 8 bytes of the CHUNK are not included
in the length indication either, so that the value defines the actual number of following data bytes.

The area containing the data bytes can be divided into further sub-CHUNKs, which have the
same structure as the CHUNKs and are used for various data.

Audio/Video Interleaved format (AVI) 971

52.3 AVI structure

AVI files are used by Video for Windows to store audio and video data. The AVI file begins with a
RIFF header ('RIFF' xx xx xx xx 'AVI'), followed by several CHUNKs. These CHUNKs are divided
into two LIST CHUNKs, which contain information on data decoding (first LIST CHUNK, 'hdrL')
and the actual data (second LIST CHUNK, 'movi'), as shown in Figure 52.1:

RIFF CAVI '

LIST Chdrl'

)

LIST ('movi'

)

C'idxT <optional AVI index>:

)
Figure 52.1
Structure of an

AVI file

Each LIST CHUNK is followed by further sub-CHUNKs containing the actual data.

RIFF CAVI '

LIST Chdrl'

'avih' <main AVI header>

LIST Ostrl <stream Line>

1strh <stream header>

1strf <stream format>

'strd <stream data>

)

)

LIST Cmovi'

subchun < or

LIST C rec' <data>

subchunk 1

subchunk n

)

)

L"'idx1' <optional AVI index>]

)
Figure 52.2
Sub-CHUNK

structure in

an AVI file

972 Graphics formats

After the first LIST signature, an AVI reader must read the sub-CHUNKs containing the definition
of the data format. As soon as another LIST CHUNK occurs, its type must be checked. It may be
either another list in the header or the video data stream. The start of the video data is marked with

the signature 'movi'. This is followed by the sub-CHUNKs containing the actual video data.
If the signature 'idxl' appears in a CHUNK, it indicates that the video data area is finished.

This may be followed by optional AVI index definitions. The structure of the individual CHUNKs is
described below:

52.3.1 AVI header CHUNK (hdrl)

The first LIST CHUNK contains the main AVI header sub-CHUNK, which has the CHUNK type

'hdrL'.

Offset

OOH

04H

08H

OCH

Bytes

4

4

4

n

Remarks

CHUNK signature ('LIST')

Length of sub-CHUNK

CHUNK type ('hdrL')

Sub-CHUNKs Table 52.4

Structure of the

hdrl CHUNK

The information in the header sub-CHUNK defines the format of the complete AVI CHUNK.

52.3.1.1 avih sub-CHUNK

This sub-CHUNK contains global data for the AVI CHUNK. The data area of the avih sub-CHUNK is
structured as follows:

Offset Bytes Remarks

OOH 4 Signature 'avih'

04H 4 CHUNKlength (38H)

08H 4 Time delay between frames

OCH 4 AVI data rate

10H 4 Reserved

14H 4 Flags

18H 4 Number of frames

Table 52.5

Structure of an

avih sub-CHUNK

(continues
over...)

Audio/Video Interleaved format (AVI) 973

Offset Bytes Remarks

1CH 4 Initial frames

20H 4 Number of data streams

24H 4 Suggested playback buffer size

28H 4 Video frame width (pixel)

2CH 4 Video frame height (pixel)

30H 4 Time scale unit

34H 4 Playback data rate

38H 4 Starting time

3CH 4 AVI data CHUNK size
Table 52.5

Structure of an

avih sub-CHUNK

(cont.)

The first field contains the signature 'avi h'. This is followed at offset 04H by the data area of the
sub-CHUNK, which is divided into 4-byte fields (DWORD). The first field keeps the CHUNK length.
The next field contains the maximum data rate in bytes per second. This value indicates how
many bytes per second the system must read from the AVI file in order to play back the images at
the correct speed. If the system fails to reach this data rate (depending on the image size), the
sequence will be played back with a delay.

The field at offset 10H is reserved and defines the padding granularity. This value is usually set
to 2048.

The flags at offset 14H contain information on the following data. The following flags are
currently defined:

10H AVIF_HASINDEX: The AVI file has an idxl CHUNK.

20H AVIF_MOSTUSEINDEX: Index CHUNK must be used to determine the order of frames.

10OH AVIF_ISINTERLEAVED: Indicates that the AVI-file is interleaved. This is used

to read data from a CD-ROM more efficiently.

10000H AVI F_WASCAPTUREFILE: The AVI file is used for capturing real-time video.

20000H AVIF_COPYRIGHTED: The AVI file contains copyrighted data.

These flag constants are defined in the header files of the AVI library.
The value at offset 18H defines the number of frames in the AVI file. The field containing the

initial frames is used only with interleave images. The value indicates the number of frames
positioned before the initial frame in the AVI tile.

The field at offset 20H defines the number of streams in the AVI file. An AVI file with audio and
video data has two streams.

The field at offset 24H indicates the minimum size of the playback buffer.
At offset 28H, there are two fields indicating the dimensions of the frame for the video

sequence.

974 Graphics formats

The time scale unit is stored at offset 30H. The following field indicates the playback data rate

(frames). The rate in samples per second can be calculated as follows:

Data rate / Time scale

The Start field defines the start of the video and should be set to 0. The last field indicates the

length (playing time) of the AVI file. The units are defined via the preceding fields (time unit and
data rate).

52.3.2 Stream Line header CHUNK (strl)

The AVI header CHUNK is followed by one or more Stream Line header CHUNKs (strL). For every
stream, there is an strl CHUNK. These CHUNKs contain information on the individual streams of
the AVI file. The information in these streams relates to the corresponding data stream in the movi

CHUNK of the same number.

The CHUNK is structured as shown in Table 52.5, but the signature 'strL' is entered as the

CHUNK type.
Each of these strl CHUNKs must contain a stream header (strh) and a stream format (strf)

sub-CHUNK. These may be followed by stream data sub-CHUNKs.

52.3.2.1 strh Sub-CHUNK

This header contains information on the associated stream. It is structured as follows:

Offset Bytes Remarks

OOH 4 Signature ('strh')

04H 4 Length of sub-CHUNK (38H)

08H 4 Type (4 char)

OCH 4 Handler (4 char)

10H 4 Flags

14H 4 Reserved

18H 4 Initial frame

1CH 4 Scale

20H 4 Rate

24H 4 Start

28H 4 Length

2CH 4 Buffer size

30H 4 Quality

34H 4 Sample size Table 52.6

strh sub-CHUNK

in an AVI file

Audio/Video Interleaved format (AVI) 975

The first four bytes contain the signature 'strh', followed by the length (in bytes) for the data
area. The four bytes at offset 08H define the type of stream. The string 'vids' (video stream) or
'auds' (audio stream) is stored here.

This area is followed by the stream header fields. The four bytes at offset OCH define the type of
handler for data compression/decompression. The type is defined with 4 characters (for example,
'msvc'). The DWORD at offset 10H contains flags for the data stream:

AVISF_DISABLED The stream data should be rendered only when explicitly enabled.

AVISF_VIDEO_PALCHANGES Indicates that a palette change is included in the AVI file.

The bits for the individual flags are defined in the header files of the AVI library.
The DWORD at offset 18H defines the number of frames that appear before the initial frame.

This field is used only with Interleaved AVI files.
The remaining fields describe the playback characteristics of the AVI file. The scaLe field

defines the time unit for the playback. The fields scaLe, rate, start, Length and buffer size
have the same meaning as the fields in the hdrL CHUNK.

In the qua Li ty field, there is an integer value between 0 and 10000 which indicates the quality
to be used when encoding the data.

The SampLeSize field indicates the size of an individual frame (sample). If the value is 0, the
frames are not all of the same size and are stored in sub-CIIUNKs. If a non-zero value is stored

here, all entries (samples) are the same size.

Some fields also appear in the Stream Line header. In this case, the data in the Stream Line
header applies to all the data, while the data in the strL structure relates only to the following
stream.

52.3.2.2 stream format CHUNK (strf)

This sub-CHUNK must appear in every Stream header CHUNK after the Stream header (strh)
CHUNK itself. The CHUNK describes the format of the data in the associated stream.

If the stream contains video data, the stream format CHUNK is defined as a BITMAPINFO
header structure.

Offset Bytes Remarks

OOH 4 Header size

04H 4 Image width (in pixels)

08H 4 Image height (in pixels)

OCH 2 Number of planes

OEH 2 Bits per pixel

10H 4 Compression type

14H 4 Image size in bytes

18H 4 X pels per meter

Table 52.7

BITMAPINFO

header structure

(continues
over...)

976 Graphics formats

Offset Bytes Remarks

1CH 4 Y pels per meter

20H 4 Colors used

24H 4 Colors important

28H n*4 RGB quad structure

1 byte blue

1 byte green

1 byte red

1 byte reserved
Table 52.7

BITMAPINFO

header structure

(cont.)

This structure is also used in Windows BMP files. The first DWORD indicates the length of the
header (including the RGB quad records).

The following two fields define the image dimensions. The number of color planes in which the
data is stored is specified at offset OCH. This should be set to 1. The following word defines the

number of bits per pixel.
A flag (DWORD) follows at offset 10H, indicating the compression of the image data.

0: RGB, uncompressed data as a bitmap

1: RLE8, 8 bits are compressed using the RLE process

2: RLE4, 4 bits are compressed using the RLE process

A description of the compression methods can be found in Chapter 60 which describes the

Windows BMP format.

The DWORD at offset 14H indicates the image size in bytes. This is followed by two 4-byte
fields for the horizontal and vertical resolution, which is indicated in Picture Elements (pels) per

meter.

The last two fields are used for the management of color information. The number of colors
used and the number of important colors are defined.

With Audio data the sub-CHUNK contains a PCMWAVEFORMAT or a WAVEFORMATEX

structure. The WAVEFORMATEX structure is an extension of the PCMWAVEFORMAT structure.

Offset Bytes Remarks

OOH 2 Format type

02H 2 Number of channels

04H 4 Sample rate

08H 4 Bytes per seconds

Table 52.8

Structure of a

WAVEFOR

MATEX structure

(continues
over...)

Audio/Video Interleaved format (AVI) 977

Offset Bytes Remarks

OCH

10H

12H

2

2

2

Block size of data

Bits per sample

Byte count extend data

Table 52.8

Structure of a

WAVEFOR

MATEX structure

(cont.)

The first field indicates the format type (WAVE_FORMAT_PCM) or (WAVE_FORMAT_EX). The
number of audio channels is specified at offset 02H (1 = mono, 2 = stereo).

The DWORD at offset 04H indicates the sample rate of the audio channel in samples per
second. The following field contains the average data transfer rate in bytes per second and is used
to determine the size of the buffer.

The block size in which the data is stored is indicated at offset OCH. This is necessary for
Interleaved data (CD-ROM), because 2-Kbyte blocks are formed.

The WAVE_FORMAT_PCM structure is followed by the definition of Bits per sample. The last
field appears only in WAVE_FORMAT_EX structure. It specifies the length of the following extra
information.

52.3.2.3 Stream Data CHUNK (strd)

The stream format CHUNK may be followed by a stream data CHUNK. The format of this CHUNK
is determined by the compression or decompression driver. The data block generally contains
information on the configuration of the driver.

52.3.3 movi CHUNK

A movi CHUNK structure containing the actual data follows the CHUNKs of the first LIST
structure. This data may be contained in one block or in several sub-CHUNKs (rec CHUNKs). The
rec CHUNKs are used with CD-ROM to store interleaved data. In this case the data is stored in 2-

Kbyte blocks, and the driver should read the complete data structure. The movi CHUNK is
structured as follows:

Offset Bytes Remarks

OOH

04H

08H

OCH

4

4

4

n

Signature'LIST'
CHUNK length in bytes
CHUNK type 'movi'
Data area or sub-CHUNKs

Table 52.9

Structure of a

movi CHUNK

The CHUNK begins with a 4-byte LIST signature. This is followed by the length of the following
data area. The last four bytes contain the string 'movi' as the CHUNK type.

978 Graphics formats

52.3.3.1 rec CHUNK

If the data has been structured in rec sub-CHUNKs, the header is followed by the structure shown
below:

Offset Bytes Remarks

OOH 4 Signature 'LIST'

04H 4 Length of data area

08H 4 Sub-CHUNK type 'rec

OCH n Data area Table 52.10

Structure of a rec

CHUNK

The sub-CHUNK is again introduced with the signature LIST. The following length relates to the
data area of the sub-CHUNK. The DWORD at offset 08H defines the CHUNK-type (rec). The data
follows at OCH. If the space required by the data area is not a multiple of 2 Kbytes, it may be
followed by a JUNK CHUNK as a filler (see below).

52.3.3.2 Structure of the data record

If the data in the movi CHUNK is in a block, this area will be structured as follows:

Offset Bytes Remarks

OOH

04H

4

n

Signature

Data area
Table 52.11

Format of the

data area

Since the format information is in the header stream, the data area contains only a 4-byte

signature to identify the data. The coding is as follows:

xxwb Wave data follows.

xxdb DIB bitmap data (uncompressed) follows.

xxdc DIB bitmap data (compressed) follows.

The characters xx are used to identify the stream. A bitmap image is stored uncompressed or
as a compressed DIB structure, that is, the data for a pixel is contained in one byte (with 8 bits per
pixel).

Audio/Video Interleaved format (AVI) 979

52.3.4 AVI PALCHANGE CHUNK

Within an AVI file, the palette (color map) may be changed between frames. This CHUNK is
structured as follows:

Offset Bytes Remarks

OOH 2 Signature 'xxpc'

02H 1 First palette to change

03 H 1 Number of entries

04H 2 Flags

06H n*4 Palette entries

Table 52.12

Format of an

AVI_

PALCHANGE

CHUNK

The CHUNK is introduced by a 2-byte string. The signature pc stands for palette change. The
next byte defines the index to the first changed palette entry (0 to 255). This is followed by a byte
containing the number of palette entries in the CHUNK. The coding for the flags at offset 04H is not
documented. At offset 06H, there are n entries containing the palette data (green, blue, red,
reserved).

I If AVI_PALCHANGE CHUNKs appear in the data stream, the VIDEO_PALCHANGE flag in the
• stream header (Table 52.6) must be set.

52.3.5 idxl CHUNK

An AVI file may contain several optional idx CHUNKs appended to a movi CHUNK. These CHUNKs
contain pointers to the individual data CHUNKs which define the sequence and also enable direct
access to the data without having to analyze the complete AVI tile. The CHUNK is structured as
follows:

Offset Bytes Remarks

OOH 4 Signature ('idxl')

04H 4 Flags

08H 4 CHUNK offset

OCH 4 CHUNK length Table 52.13

Structure of an

idxl CHUNK

980 Graphics formats

The first four bytes contain the signature (idxl). This is followed by a DWORD containing
flags.

AVI I F_KEY FRAME The flag indicates key frames in the video sequence.

AVIIF_N0TIME The CHUNK does not influence the video timing (for example, a palette
change CHUNK).

AVIIF LIST Marks a LIST CHUNK.

The offset (relative to the movi CHUNK) to the relevant CHUNK is indicated at offset 08H,
followed by the length of the CHUNK(not including the 8 byte header).

The above idx CHUNK can be repeated several times. If the movi CHUNK contains data in rec

sub-CHUNKs, an idx CHUNK is defined for every record.

52.4 Other data CHUNKs

The RIFF definition enables the definition of certain other CHUNKs which are registered by
Microsoft and published periodically. The following CHUNK is used as a filler for data areas:

52.4.1 JUNK CHUNK

The purpose of this CHUNK is merely to till up the data structure to the block limit (for example,
with CD-ROM files). The structure is as follows:

Offset

OOH

04H

Bytes

4

n

Remarks

Signature 'JUNK'

Data
Table 52.14

Structure of a

JUNK CHUNK

As an alternative, the signature 'PAD' may also occur. This is also used for filling data areas. The
JUNK CHUNK was registered by IBM, while the PAD CHUNK was proposed by Microsoft.

I More information about the AVI-format is available in the Microsoft Multimedia Developer's

! Kit.

Intel Digital Video format
(DVI)

W' ith the introduction of DVI, Intel created a
hardware solution to the problem of
representing digital videos on the PC.

Software drivers, which can read files in DVIformat,
are supplied with the hardware.

There are several different varieties of DVI files. Images without audio data are stored in tiles with
various extensions:

Extension Remarks

.IMR Red channel video data (8 bit)

.IMG Green channel video data (8 bit)

.1MB Blue channel video data (8 bit)

.IMY Y luminance channel video data (8 bit)

.IMI I color channel video data (8 bit)

.IMS Q color channel video data (8 bit)

.IMA Alpha channel video data (8 bit)

.IMM Monochrome or grayscale video data (8 bit)

.IMC Color map video data (8 bit)

.CMY Compressed Y luminance channel video data (8 bit)

.CMI Compressed I color channel video data (8 bit)

.CMQ Compressed Q color channel video data (8 bit)

.18 Device-dependent data (8 bit)

.116 Device-dependent (16 bit)

.C16 Compressed device-dependent (16 bit)
••:;::::^S!^^»*iK8^*lS«*-:3..~:SY:::-:

Table 53.1

Intel formats for

DVI hardware

981

982 Graphics formats

Uncompressed 8-bit data is stored in individual files according to the color system used in each
case. With the RGB system, the extensions . IMR, . IMG, . 1MB apply respectively to data from each
color channel. The letters R, G, and B stand for red, green and blue and signify the relevant color
channel. The first letter I identifies uncompressed data. The letter C is used for compressed data.

53.1 AVSS format

The AVSS format (referred to below as DVI format) was developed for video sequences with audio
data. This format is based on the AVI structure described in the previous chapter. An AVSS file
consists of a header followed by additional structures as shown in Figure 53.1:

DVI-Header

AVL-Header

Stream Header

Audio Substream Header

Video Substream Header

Frames Figure 53.1
Structure of a

DVI file

The DVI header is followed by an AVL header containing the description of the video and audio
stream. The frames are stored after this header.

53.2 DVI header

A DVI file always begins with a 12-byte header structured as shown below:

Offset Bytes Remarks

OOH 4 File ID 'VDVI'

04H 2 Header size

06H 2 Version

08H 4 Pointer to annotation
Table 53.2

Structure of a

DVI header

The first four bytes contain the signature 'VDVI' for a valid DVI file with audio and video data. If
the audio data is missing, the signature 'VIM' should be entered. This is followed by a word

Intel Digital Video format (DVI) 983

containing the header length in bytes (OCH). In some older versions, this value was set to 1. This
should be ignored.

The version number of the header is currently set to 1. At offset 08H there is a pointer to a data
area containing notes (annotation). The data area is generally appended to the end of the file. The
entry 0 indicates that there are no notes.

53.3 AVL header

The DVI header is followed by the AVL header which is 120 bytes long. This introduces the
structure describing the stream. Its format is shown below:

Offset Bytes Remarks

OOH 4 Header ID 'AVSS'

04H 2 Header size

06H 2 Header version

08H 2 Number of stream groups
OAH 2 Stream group size
OCH 4 1st stream group location
10H 2 Stream group version
12H 2 Stream header size

14H 2 Stream header version

16H 2 Number of stream headers

18H 4 Offset of stream structure array
1CH 4 Header pool offset
20H 4 Number of labels in file

24H 4 Offset of 1st label

28H 2 Label size

2AH 2 Label format (version)
2CH 4 Offset of video sequence header
30H 2 Size of video sequence header
32H 2 Frame header version

34H 4 Number of frame headers

38H 4 Size of frame header + data

3CH 4 Offset of 1st frame

42H 4 Offset of last frame byte +1
46H 2 Size of frame header

48H 2 Size of frame directory
4AH 4 Offset of frame directory
4EH 2 Frame directory version
50H 2 Frames per second
52H 4 Update flag
56H 4 Unused (free block offset)
5AH 32 Fill bytes Table 53.3

Structure of the

AVL header

984 Graphics formats

The first field identities the header as an AVL file.(AVSS). The field at offset 04H defines the
length of the header (120). The version number of the header (offset 06H) defines the structure.
The present structure is identified with the signature 03H.

A DVI file can be divided into several stream groups. The field at offset 08H defines the number
of stream groups. This is followed by the length of each stream group. The next entry defines a
pointer to the first entry in the group. The format of this group is determined by the version
number. If there is no stream group, these fields are set to 0.

At offset 12H, there are four fields containing the description of the stream header. This is an
array stored in the DVI file. The first field defines the size of each stream structure (44 bytes). The
next field specifies a version number for the structure (currently 3). The third entry contains the
number of entries in the array. The last field defines the offset of the first entry in the array.

The entry at offset 1CH points to the first sub-stream header. If the value 0 is shown here, there
are no sub-streams.

If a DVI file contains labels, the fields at offset 20H define the number of labels, the offset to the
first label, the size of a label and the version number of the label structure. A value of OOH in the

field containing the number of labels indicates that no labels appear in the file.
The two fields at offset 2CH indicate the offset and the length of the (optional) video-sequence

header.

The data format of the frame data is defined via the version indicator in the field at offset 32H.

This is followed by fields containing information on the number of frames, the frame length
(including the header) and the offset of the first frame header. The following field defines the size
of all frame headers. The size of the frame directory is 4. The offset defines the position of the
frame directory.

The number of frames per second in the playback is defined in the field at offset 50H (playback
rate). The value OOH at offset 52H indicates an unmodified file. The remaining bytes are used to pad
out the structure to 120 bytes.

53.4 Stream header

DVI files may contain one or more data streams. Each stream is preceded by its own header,
structured as shown below:

Offset Bytes Remarks

OOH

04H

06H

08H

OAH

OCH

4

2

2

2

2

2

Signature 'STRM'
Type
Subtype

Number of sub-stream headers

ID next stream

Group ID current stream

Table 53.4

Structure of a

stream header

(continues
over...)

Intel Digital Video format (DVI) 985

Offset Bytes Remarks

OEH 2 Unused

10H 4 Flags

14H 4 Frame size

18H 4 Offset of 1st sub-stream header

1CH 16 Stream name Table 53.4

Structure of a

stream header

(cont.)

The first field contains the signature 'STRM'. This is followed by two words containing the type
and the sub-type of the stream. The coding for the type is shown below:

Type Remarks

02H

03H

05H

06H

07H

Compressed audio stream

Compressed image stream

Associated per frame data

Uncompressed image stream

Pad stream

The sub-type defines variations within the data.

Table 53.5

Stream types

Subtype Remarks

OOH No subtype for audio data
01H Y-channel data only

OBH U-channel data only

OCH V-channel data only

ODH YVUdata

OEH YUV data

Table 53.6

Stream sub-tvpes

There are no sub-types for audio data, so the value is set to 0. With video data, the sub-type
defines the channel coding.

The word at offset 08H defines the number of sub-streams. The following field is not used and is
set to FFFFH (-1). This is followed by an ID number for the current stream.

986 Graphics formats

When set to the value 04H, the flags at offset 10H indicate that the size of the frames is to be
changed.

The Frame size field (offset 14H) defines the size of a frame in the stream, in bytes. This is
followed by the offset of the first sub-stream header. The stream name is stored as an ASCII string.

53.5 Audio stream header

Each stream header is followed by a sub-stream header. With audio data, the stream header

contains the entry 02H as the type (see above). At the same time, the entry in the sub-type field is
set to OOH. The header contains 168 bytes and is structured as follows:

Offset Bytes Remarks

OOH 4 Signature ('AUDI')

04H 2 Header size

06H 2 Header version

08H 80 Filename

58H 4 ID of original frame

5CH 2 ID of original stream

5EH 2 Unused

60H 4 Frame count

64H 4 Offset of next header

68H 16 Library name

78H 16 Compression algorithm

88H 4 Data rate (bits/sec)

8CH 2 Filter cut off frequency

8EH 2 Unused

90H 2 Volume of left channel

92H 2 Volume of right channel

94H 4 Unused

98H 4 ID of start frame

9CH 4 Flags (mono, stereo)

AOH 2 Playback rate

A2H 2 Unused

A4H 4 Compression facility ID
Table 53.7

Audio stream

header structure

The first four bytes contain the signature 'AUDI', followed by the length of the header (in bytes).
The following word defines the version number (5) for the header structure. This is followed by a
file name of 80 bytes. The name defines the file from which the data stream was taken. The string
should be terminated with a null byte.

Intel Digital Video format (DVI) 987

The next three fields are not used and are set to 0. The Frame count field (offset 60H) defines
the number of audio frames in this stream. The field containing the offset of the next sub-stream is
always set to 0. The same applies to the library names. The name of the compression algorithm is
defined as an ASCII string (for example, 'apdcm4e' or 'pcm8').

The data transfer rate for the audio channel follows at offset 88H, in bits per second. The next
word defines the maximum frequency in the audio channel. Higher frequencies are filtered out
during the recording.

The volume of the audio channel is indicated as a percentage. The start frame is set to 0 and
the flag defines mono (4000H) or stereo (8000H) operation. The remaining bytes are unused, or are
set to OOH or FFH.

53.6 Video stream header

If a stream contains video data, the stream header is followed by a video stream header (136
bytes). This is structured as follows:

Offset Bytes Remarks

OOH 4 Signature ('CMIG')
04H 2 Header size

06H 2 Header version

08H 80 Filename

58H 4 ID of original frame
5CH 2 ID of original stream
5EH 2 Unused

60H 4 Frame count

64H 4 Offset of next substream header

68H 2 X coordinate of top left corner
6AH 2 Y coordinate of top left corner
6CH 2 Image width in pixels
6EH 2 Image height in pixels
70H 2 X cropping coordinate

72H 2 Y cropping coordinate
74H 4 Unused

78H 4 Still period

7CH 2 Buffer minimum

7EH 2 Buffer maximum

80H 2 ID decompression algorithm
82H 2 Unused

84H 4 Compression facility I
Table 53.8

Structure of

a video stream

header

988 Graphics formats

The first four bytes contain the signature 'CMIG', followed by the length of the header (in bytes).
The following word defines the version number (4) of the header structure. This is followed by a
data name consisting of 80 bytes. The name defines the file from which the data stream was taken.
This string should be terminated with a null byte. The next three fields are not used and are set to

0. The Frame count field (offset 60H) defines the number of video frames in this stream. The field
containing the offset of the next sub-stream is always set to 0.

The coordinates for the top left corner of the image, the frame dimensions and possibly
information on the image crop follow in the fields from offset 68H.

The Sti LL Period field defines the interval at which intraframe encoding is carried out. This

field and the remaining field are set to 0 or FFH.

53.7 Frame structure

Each frame in the data area (audio and video) is preceded by its own header.

Offset Bytes Remarks

OOH 4 Sequence number of frame

04H 4 Offset of previous frame

08H 4 Checksum

OCH n*4 Array of all frame sizes
Table 53.9

Structure of a

frame header

The header begins with the sequence number of the frame. This is followed by a pointer to the
preceding frame. For the first frame, this pointer contains the value 0.

The checksum relates to the header. The field at offset OCH contains n 4-byte entries, each
containing the number of bytes of the frames which are stored in this stream.

The position of each frame is stored in a directory. For each frame, a frame-directory structure
is stored in the stream. This contains a 4-byte pointer giving the offset of the frame.

!
More information about the DVI format is available from the Intel DVI Developer's Toolkit.

MPEG Specification

The MPEG specification, created by the Motion
Pixture Expert Group represents a standard
for the transfer of motion pictures. This

standard is described in the (draft) ISO standard CD
11172. No file formats have been defined for MPEG
data, at present.

989

Apple QuickTime format
(QTM)

A format for storing video sequences with audio
data has been defined by Apple. QTM format

L (Quick Time Movie Resource) is used by the
Quick Time product and is available for Macintosh
or Windows.

On the Mac, these files are stored as type 'moov'; for Windows, the extension .QTM is used. The data
is stored in Motorola format (big-endian).

Several tracks of audio and video data can be stored in a QTM file. Apple provides a Movie
Toolbox for processing QTM tiles. In this toolbox, six different compression processes are defined.
However, except for the JPEG process, these are all used exclusively by Apple. Audio data is stored
in AIFF format.

QTM files are divided into separate blocks of information, rather like the CHUNKs in the AVI
and DVI formats. In the Apple context, these blocks are known as atoms. The structure of an atom
is shown below:

Offset Bytes Remarks

OOH 4 Atom size

04H 4 Atom type

08H n Atom structure

..H n Atom data Table 55.1

Structure of a

QTM atom

The field containing the size of the atom includes the header and the type field for the atom.
The type field is a 4-byte string which specifies the type of atom and the format of the data stored.
This is followed by data structures, of which there are two types.

990

Apple QuickTime format (QTM) 991

♦ A container atom can contain other atoms (including other container atoms).

♦ A leaf atom contains only data.

Figure 55.1 shows the structure of a QuickTime file.

Movie Directory

Movie Header Atom

Clipping Atom

Clipping Region Atom

Track Directory

Track Header Atom

Clipping Atom

Clipping Region Atom

Edits Atom

Edits List Atom

Media Directory

Media Header Atom

Media Handler Atom

Media Info Atom

Video Media Info Atom

Sound Media Info Atom

Sound Media Info Header Atom

Handler Atom

Data Reference Atom

Sample Table Atom

User Data Atom

Movies User Data

Atoms can be nested to a depth of 5. Any unknown atoms should be skipped.

Figure 55.1
Structure of a

QuickTime file

992 Graphics formats

55.1 Movie Directory atom

A QTM tile always begins with a Movie Directory Atom, which has the following structure:

Offset Bytes Remarks

OOH 4 Atom size in bytes

04H 4 Atom type 'moov'

08H n Movie header atom

..H n Clipping atom

..H n Track atoms

..H n User data atom
Table 55.2

Structure of a

Movie Directory

atom

The first field defines the length of the atom and is followed by a signature indicating the type
of the file. This is followed by various atom structures. In the Movie Header atom, information on
the video sequence is stored. The Movie Clipping atom contains information on the visibility of the
images. The Track atom contains an array for each track in the sequence. There is one track for
each data stream. Additional information, such as copyright notices, can be stored in the User
Data atom.

55.2 Movie Header atom

The structure of this atom, which contains global information on the QTM file, is shown below.

Offset Bytes Remarks

OOH 4 Atom size

04H 4 Atom type 'mvhd'

08H 4 Version and flags

OCH 4 Creation time

10H 4 Modification time

14H 4 Time scale

18H 4 Duration of movie

1CH 4 Data rate to play

20H 2 Audio data volume

22H 2 Reserved

Table 55.3

Structure of a

Movie Header

atom

(continues
over...)

Apple QuickTime format (QTM) 993

Offset Bytes Remarks

24H 2*4 Reserved

2CH 3*3*4 Transform matrix

60H 4 Preview time

64H 4 Preview duration

68H 4 Poster time

6CH 4 Selection time

70H 4 Selection duration

74H 4 Current time

78H 4 Next value for track ID

Table 55.3

Structure of a

Movie Header

atom

(cont.)

The header begins with a length field and a 4-byte signature. Only the first byte of the flag is
used for the version number. On the Mac, date and time references (creation, modification) relate
to 2 January 1904.

Time scale (offset 14H) defines the units per second. The Duration field indicates the length of
a sequence in Time Scale units.

The data rate represents the number of bytes per second required for correct playback. The
volume of the audio channel is indicated at offset 20H.

The Transform matrix (offset 2CH) is a two dimensional array of integer values. These values
are used to transfer the visual coordinates system. A QTM file may contain a preview. Information
on the preview sequence (time after which the preview begins, duration, and so on) is given in the
fields Preview time and Preview duration. The fieldPoster time (offset 68H) defines the time when
the movie poster appears in the track. The time and duration of the currently selected area in the
sequence are shown in Selection time and Selection duration. QTM files enable the user to
intervene interactively in the process. The field Current time (offset 74H) defines the time when
the current selection appears in the movie. The ID of the next movie track is stored in the last
field of the header.

994 Graphics formats

55.3 Track Directory atom

Each data stream is introduced by a Track Directory atom. These atoms are stored in an array

in the 'moov' atom.

Offset Bytes Remarks

OOH 4 Atom size

04H 4 Atom type 'trak'

08H n Track header atom

..H n Clipping atom

..H n Edits atom

..H n Media atom

..H n User data atom
Table 55.4

Structure of a

Track Directory
atom

The first two words define the length and type ('trak') of the atom. This is followed by other
atoms.

55.4 Track Header atom

This atom contains information on the associated track. It is structured as follows:

Offset Bytes Remarks

OOH 4 Atom size

04H 4 Atom type 'tkhd'

08H 4 Version and flags

OCH 4 Creation time

10H 4 Modification time

14H 4 Track ID number

18H 4 Reserved

1CH 4 Duration

20H 4 Reserved

24H 4 Reserved

28H 2 Layer

2AH 2 Track group ID

Table 55.5

Structure of a

Track Header

atom

(continues
over...)

Apple QuickTime format (QTM) 995

Offset Bytes Remarks

2CH 2 Volume

2EH 2 Reserved

30H 3*3*4 Transform matrix

64H 4 Track width

68H 4 Track height

Table 55.5

Structure of a

Track Header

atom

(cont.)

The first two fields define the length and type of the atom. In the flag, only the first byte is used
for the version number. The date and time of creation and last modification are defined in Mac

format. This is followed by the track ID number.
The Duration field defines the length of the track in time units. In the layer field, the priority of

the track (layer level) for playback is defined. The volume for the playback of audio data is
specified in Volume. The Matrix contains data required for converting the pixels between various
coordinate systems. The last two fields define the track for the sequence.

55.5 Media atom

This atom describes the media used in this track. It is structured as shown below:

Offset Bytes Remarks

OOH 4 Atom size

04H 4 Signature 'nidi a'

08H n Media header atom

..H n Handle atom

..H n Media info atom
Table 55.6

Structure of a

Media atom

The first two fields define the length and type of the atom. This is followed by other atoms.

996 Graphics formats

55.6 Media Header atom

The structure of this atom is shown in Table 55.7 below:

Offset Bytes Remarks

OOH 4 Atom size

04H 4 Signature ('mdhd')

08H 4 Flags and version

OCH 4 Creation time

10H 4 Modification time

14H 4 Time scale

18H 4 Duration

1CH 4 Language

20H 4 Quality
Table 55.7

Media Header

atom structure

The first two fields define the length and type of the atom. Only the first byte of the flag is used
for the version number.

The creation time and modification time are stored in Mac time and date format.

Time scale defines the units in seconds, and the length of the track during playback is
indicated in Duration time. The language field contains a code for the language version used in

this track. The last field contains information on the quality of the information stored.

I Further information on QuickTime format can be obtained from the Reference Manual

• supplied with the QuickTime Developers Kit.

CAS Fax format
(DCX)

The CAS Fax format (DCX format) was defined
for the storage offax documents. The format is
based on PCX and is capable of storing

monochrome images. To achieve this, the PCX
format has been somewhat extended.

The structure of a DCX file is shown in Figure 56.1:

DCX Header

PCX Images

(up to 1024)
Figure 56.1
DCX Fax file

structure

A DCX file contains a header, and up to 1024 frames, which are stored as monochrome images
in PCX format.

997

998 Graphics formats

56.1 DCX header

The structure of the DCX header, which is used for addressing the following images, is very simple.

Offset Bytes Remarks

OOH

04H

4

1024*4

Signature

Image pointer array
Table 56.1

Structure of a

DCX header

The first four bytes contain the signature values 3AH DEH 68H B1H. This is followed by 1024 4-

byte entries containing (offset) pointers to the image frames. The value OOH in an entry indicates
that there are no more images in the file.

The images are stored in PCX format. Each area begins with a header, followed by the data area
(see PCX description in Chapter 22).

• There is another series of fax formats, which stores some of the data in compressed form
• using the CCITT Group 3 compression methods. The data is stored either directly in a file or

appended to a header. The structure of this header varies from manufacturer to manufacturer.
Generally, only 4 bytes are used for the signature.

Adobe Illustrator format
(Al)

Adobe Illustrator is available for Windows and
for Macintosh. The program stores graphics in

L a modified PostScript format. The AI file
consists of a Prolog, followed by the actual script
data.

Figure 57.1 shows the structure of an AI file.

%!PS-Adobe-3.0 EPSF-3.0

< Header comments >

HEndComments

<Procedure settings>

%%EndProLog

Script <Setup>

<0bjects>

<Page trailer>

<Document trailer>

%%E0F
Figure 57.1
Structure of an

Illustrator (AI)
file

The header comments always begin with %% and a keyword. They contain various items of
information on the file.

999

1000 Graphics formats

57.1 AI header comments

The header of an AI file contains EPS commands for the reader. These are formatted as %%

comments.

%!PS-Adobe-3.0 EPSF-3.0

%%BeginProLog

%%Creator: Adobe Illustrator (TM) 3.0.1

%%For: (user) (organization)

%%TitLe: (illustration title)

HCreationDate: (date) (time)

HBoundingBox: llx lly urx ury

nDocumentProcessColors: keyword

%%DocumentFonts: font...

H+font

%%DocumentFiles: filename

%%+filename....

%%DocumentSuppliedResources: proset packarray version

%%+ procset Adobe_cmykcolor version revision

%%EndComments Figure 57.2
Structure of

an AI header

The meaning of these commands is described briefly below. The commands need not appear in
every header. With Windows, certain commands, which are only of significance to the Mac, are
omitted.

%!PS-Adobe-3.0 EPSF-3.0

This string introduces a valid EPS file and therefore also an AI tile.

%%BeginProLog

Introduces the Prolog within the AI file.

Adobe Illustrator format (Al) 1001

%%EndProlog

Ends the Prolog of an AI file and introduces the Script section.

%%EndComments

Signals the end of the comment section in the Prolog.

%%Creator

This command indicates the name and version of the program that created the file.

%%For: (username) (organization)

Defines the user name and organization that created the document. Both parameters must be
defined as valid PostScript strings (see description of PostScript in Chapter 84). Escape characters
(for example, \230) may be used to represent foreign characters.

%%Title: (title)

Defines the title of the illustration. The title must be a valid PostScript string.

%%CreationDate: (date) (time)

This comment indicates the time and date at which the document was created. The parameters
must be valid PostScript strings.

%%BoundingBox: LLx lly urx ury

This command must appear in the AI header. It defines the bounding box of the image in integer
coordinates (I Lx=lower left x, LLy=lower left y, urx = upper right x, ury = upper right y).

%%DocumentProcessColors: keyword

The keyword contains strings giving the names of the colors used (for example, cyan, magenta,
yellow, black). This information is useful for color separation.

%%DocumentCustomColors: (customcoLorname)

This comment gives the name of special color systems (for example, PANTONE 156 CV) which
have been used. The command can specify several colors, in which case the following line contains
the character combination %%+coLor.

1002 Graphics formats

%%CMYKCustomColors: cyan magenta yeLLow black (customcoLorname)

This comment specifies the color as an approximation to the color combination cyan, magenta,
yellow and black. The command may refer to several colors, in which case the following line
contains the character combination H+color.

%%DocumentFonts: font

The font names used in the document are defined here. The fonts must be PostScript fonts, and

the command may contain several font definitions, in which case the following line contains the
character combination %%+iont. This command is omitted if no fonts are used.

%%DocumentFiLes: filename

If files must be imported in order to display a graphic, these should be specified here. The
command may apply to several files, in which case the following line contains the character
combination %%+f i Lename.

%%DocumentSuppliedResources: procset .. version revision

This comment is used only after version 3 of Illustrator. It defines the versions of resources
supplied for Adobejpackedarray, Adobe_cmykcolor, Adobe_cshow, Adobe_customcolor,
Adobejpattern_AI3, Adobe_typography_AI3 and Adobe_IllustratorA_AI3. A line has the format:
HDocumentSuppLiedResources: procset .. version revision, where the version number and
revision number should be inserted in the .. space. The command may apply to several lines, in
which case the following line contains the character combination H+procset...

%%DocumentNeededResources:

This command appears in Adobe Illustrator 3 [AI3] and defines the resources needed in the
document.

%%IncludeResource

This command appears in Adobe Illustrator 3 [AI3] and defines the resources included in the
document.

%%Al3_ColorUsage: keyword

This command defines whether the document is to be displayed in black and white or in color. The
keyword is set to BlackSWhite or Color.

Adobe Illustrator format (AI) 1003

%%AI3_TemplateBox: lly lly urx ury

Defines Bounding box, which includes all the elements in a document template. The coordinates
may be integers or real numbers. An element is taken to be Vn of an inch square. If a document is
defined as a template, the bounding box must be set to 0. In Illustrator 88, in version 4.0 for
Windows and in the Japanese version, the command is referred to as HTemplateBox.

%%AI3_TemplateFiLe: filename

Defines the name of the template file in the format volume: :di rectory id:fi lename.

%%AI3_TileBox: llx lly urx ury

On the Mac, defines a bounding box around the visible image excerpt (tile). In Illustrator 88, in
version 4.0 for Windows and in the Japanese version, the command is referred to as %%Ti leBox.

57.2 Script Setup

The header is followed by a Script Setup area. This consists of a sequence of parameters, followed
by a keyword (in PostScript notation).

<script>::= <setup>

{<objects>]

{<page trailer>>

•C<document trailer>>

%%E0F

<setup> ::= HBeginSetup

•CH Include Font :f ont>

{<proc set init>>

<pattern defs>

%%EndSetup

<page trailer> ::= %%PageTrailer

gsave annotatepage grestore showpage

<document trailer> ::= %%Trailer

{<proc set termination:*} Figure 57.3
Structure of

a Script Setup

1004 Graphics formats

The comment HIncludeFont is used to indicate special fonts used in the document. If the font
is missing, Illustrator will use a substitute font. The script is also used for initializing resources.
The Font Encoding section is structured as follows:

:: :

{re-encoding pairs}

<Te>

{<re-encoding pair>}

<re-encoding> ::= %AI3_Begi nEncoding

newFontName oldFontname

%AI3_EndEncoding

 ::= AdobeType | TrueType
Figure 57.4
Structure of a

Font Encoding
section

57.2.1 TE operator

The TE operator defines the platform for font encoding and is structured as shown below:

[encoding pair TE

57.2.2 TZ operator

The TZ operator creates a new font from an existing font. The encoding pair parameters
represent a list of codes:

[encoding pair... TZ

For a Times-Roman font, th is command might be defi ned as

follows:

HBeginEndcoding: _Times -R Dnian T imes--Roman

[/_Times-Roman/Times -Rom an 0 0 1 TZ

HEndEncoding

Figure 57.5
Font encoding

Adobe Illustrator format (AI) 1005

57.2.3 Pattern definition

Patterns used in the Illustrator should be defined in the Script Setup segment.

57.2.4 E operator

This operator defines a pattern in the following format:

(patternname) lly lly ury ury [<layerlist>]E

The patterns are allocated to different layers. This layerlist contains two definitions:

57.2.4.1 (colordefinition)@

This command defines the Color and Overprinting style. The Overprint style is defined with the 0
and R operators.

57.2.4.2 (tiledefinition)&

This operator defines the tile for the pattern. A pattern definition might be structured as follows:

%%BeginPattern: (sun)

(sun) 100 200 120 300 [

(0 0 0 R 0.03 0.05 0.15 0 (PANTONE 468 CV)

_&

(0 0 0 R 0.03 0.05 0.15 0 (PANTONE 468 CV)

(0 i 0 J 0 j 1 w 4 M :: 0 d

UNote

105 115.3 m

105 120.3 L

s

) 8

] E

%%EndPattern Figure 57.6

Structure of a

pattern definition

The pattern is constructed with m (moveto) and I (lineto) using the paramenters from the
definition. The s stroke command is responsible for the output.

1006 Graphics formats

57.3 Script body

An Illustrator image consists of a sequence of graphic elements. These are referred to as objects
and specified by the following object description:

<object>::={<A>}(object locking)

<path object>|

<path mask>|

<composite object>|

<text object>|

<placed art object>|

<subscriber object>|

<graph object>|

<PostScript document>

<path object>::=<paint style>

<path geometry>

<path render> |

<guide operator>

<path mask>::=<paint style>

<path geometry>

<h> | <H>

<w>

<path render>

<composite object>::=<group object> |

<group with mask> |

<compound path> |

<compound path mask> |

<wraparound group>

<group object> ::=<u>

<object>+<U>

<group with mask> ::=<q>

{<object>}

{<masked object>}

<Q>

<masked object> ::=<mask> | <object>

<mask> ::=<path mask> | <compound path mask>

<compound path> ::=<*u>

<compound path element>+<*U>

<compound path element> ::=

<path object>+<compound group>

<compound group> ::= <u>

<compound path element>+<U>

Figure 57.7
Structure of an

object
description
(continues
over...)

Adobe Illustrator format (AI) 1007

<compound path mask> ::= <*u>

<compound path mask element>+<*U>

<compound path mask element> ::=

<path mask>+<compound mask group>

<compound mask group> ::=

<compound mask bottom group> | <compound

mask non-bottom group>

<compound mask bottom group> ::=

{<A>}

<q>

<path mask>+<Q>

<compound mask non-bottom group>::=

{<A>}

<u>

<compound mask group>+<U>

Figure 57.7
Structure of an

object
description
(cont.)

The individual operators in the Script region are briefly described below. In essence these
operators are abbreviated PostScript commands, which are defined in the header.

57.3.1 Locked Object operator

This group contains only one command.

flag A

The flag accepts values of 0 and 1. Value 0 enables the selection of an object for editing in the
Illustrator. If f lag = 1 the object is locked.

57.3.2 Graphic State operators

These operators describe the graphic state.

[array] phase d

The d operator corresponds to the setdash operator in PostScript, array contains the definition
of the line pattern and phase determines the phase of the pattern at the start of the path.

flatness i

The operator corresponds to the set flat operator in PostScript. Values must be in the range
0-100.

1008 Graphics formats

flag D

The Doperator describes the direction (winding order) of an object when filling an area. If flag = 0
the path will be filled clockwise.

linejoin j

This operator functions like the PostScript linejoin command. 0 = mitered joins,
1 = round joins, 2 = beveled joins. The initialization value is 0.

linecap J

This operator functions like the PostScript linecap command. 0 = butt end caps, 1 = round end
caps, 2 = square end caps. The initialization value is 0.

miterlimit M

This operator functions like the PostScript setmi ter Iimi t operator. The initialization value is 4.

linewidth w

This operator corresponds to the setlinewidth command in PostScript. The initialization sets the
line width to 1.0 (in user space). The value 0 is interpreted as the thinnest possible line.

57.3.3 Color operators

These operators determine the colors or grayscales for the following objects.

gray g

Defines the grayscale (0.0 = black, 1.0 = white) used to fill paths. In PostScript, this function is
fulfilled by the setgraysca le operator.

gray G

The (stroke) operator functions like the gray g command, but it acts on the paths which are
filled with stroke.

cyan magenta yellow black k

This operator (fill) corresponds to the PostScript setcmykcolor command. It defines the colors
for the path to be filled. Each of the operands must lie between 0.0 (minimum) and 1.0
(maximum).

cyan magenta yellow black K

Corresponds to the .. k operator, but is used on paths with stroke (stroke set cmykcolors).

cyan magenta yellow black (name) gray x

Defines a user-specific color (fi 11 custom color) for filling paths.

cyan magenta yellow black (name) gray X
Corresponds to . .X, but is used on stroke paths (stroke custom color).

Adobe Illustrator format (AI) 1009

(patternname) px py sx sy angle rf r k ka Ca b c d tx tyJp

The p operator defines a pattern for fill operations (fill pattern), px and py define the distance
(in points) from the origin of the ruler to the point at which the rectangle containing the pattern
appears, sx and sy define the scaling factor, angle defines the rotational angle (in counter
clockwise direction) in which the pattern appears, rf (reflection flag) defines whether a reflection
is applied to the pattern (0 = true, 1 = false), r defines the angle through which the pattern is
reflected, k specifies the shear angle and ka defines the shear axis. Cabcd tx ty3 defines the
initialization matrix for the transformation of the pattern.

(patternname) px py sx sy angle rf r k ka Ca b c d tx tyJp

Corresponds to .. .p, but acts on a stroke pattern (stroke pattern).

flag 0

Overprint flag (1 =fill overprinting).

flag R

Functions like the 0 operator, but is used on paths via the stroke command (stroke overprinting).

57.3.4 Group operators

These two commands are used for collatinggraphic objects into a singleobject (group).

-u

Marks the beginning of a sequence containing object descriptions for the group.

-U

Marks the end of the sequence containing object descriptions for the group.

57.3.5 Path definition commands

This group contains operators for the construction of paths. When drawing in PostScript, a path is
constructed and then filled with color.

x y m

Corresponds to the PostScript operator moveto and defines the starting point. The commands
must appear before every path description.

x y I

Draws a straight line from the current position to the position indicated as x,y. The new point acts
as a smooth point for a line.

x y L

Functions like x y I, but the new point defines a corner.

1010 Graphics formats

x1 y1 y2 y2 x3 y3 c

Appends a Bezier curve to a path. The end point is indicated with x3,y3 and forms a smooth point.
x1,y1 x2,y2 defines the Bezier coordinates.

x1 y1 d2 y2 x3 y3 C

Functions like ... c, but uses x3,y3 to define a corner.

x2 y2 x3 y3 v

Adds a segment of a Bezier curve to the current path (x0,y0). The new point x3,y3 is used as a
smooth point. x0,y0 and x2,y2 define the Bezier coordinates.

x2 y2 x3 y3 V

Functions like .. .v, but x3,y3 define a corner.

x1 y1 x3 y3 y

Adds a segment of a Bezier curve to the current path. The new point x3,y3 is used as a smooth
point. x1,y1 and x3,y3 define the Bezier coordinates.

x2 y2 x3 y3 Y

Functions like .. .y, but x3,y3 define a corner.

57.3.6 Path painting commands

These operators reset the current path to blank.

-N

This operator leaves the current path open (newpath is used for invisible paths).

-n

Closes the path but otherwise operates like -N.

-F

Fills the area enclosed by the path with the currently set color and the current fill pattern (fill
path). The path remains open.

-f

Functions like -F, but closes the path (fill and close path).

-S

Draws (stroke path) the current path using the current color (stroking color) or pattern. The line
width is set with w, the line shape with j and d.

-S

Functions like -S, but closes the path before carrying out the stroke command (stroke closed
path).

Adobe Illustrator format (AI) 1011

-B

Functions like -F, but fills the path and carries out a stroke command. The path remains open (fill
and stroke path).

-b

Functions like -B, but closes the path at the end of the operation (close, fill and stroke path).

57.3.7 Compound path commands

These commands operate like other PostScript commands in putting together paths (for example,
for letter characters). The structure is defined in Figure 57.6.

-u

Introduces a compound path (group).

-U

Closes the compound path (ungroup).

57.3.8 Clipping operators

These commands mask the visible area. The q operator is used here. The structure of this operator
is defined in Figure 57.6.

-q

Introduces a clipping operator (clipping group) with the description of the mask. The group objects
define a mask (clip path). The mask encloses various objects. When the image is displayed
(rendered), only these objects are visible.

-Q

Marks the end of a sequence with (mask) clipping operators.

-H

Is used for the path when producing a mask (closepath).

-h

Functions like -H, but closes the path.

-W

Interrupts the clip path and sets a new, reduced clip path.

Texts can also be used as masks, in which case the Tr operator should be used.

1012 Graphics formats

57.3.9 Text

The Illustrator can display texts in either revisable or final format. Texts are divided into three
groups: point text, area text and text on path. The syntax of text objects is shown in Figure 57.8.

<text object> ::=

<To>

<text at a point>|

<text area>|

<text along a path>

<T0>

<text at a point>

<Tp>

<TP>+

<text run>

<text area> ::=

<text area element>+

{<overflow text>}

<text area elements

<Tp>

<path object>

<TP>

<text run>+

<text along a path>

<Tp>

<path object>

<TP>

<text run>+

{<overflow text>}

<text run> ::=

{<text style>|

<paint style>|

<text position>|

<Tk>*}

<text body>

<text style> ::=

<Tr>|(render mode)

<Tf>|(fontSsize)

<Ts>|(rise&fall)

<Tz>|(horizontal scaling)

<Tt>|(tracking)

<TA>|(automatic kerning)
Figure 57.8
Text syntax

(continues
over...)

Adobe Illustrator format (AI) 101 3

<TO| (inter-character spacing)

<TW>|(inter-word spacing)

<Ti>|(indents)

<Ta>|(alignment)

<Tq>|(hanging indent)

<Tl>(Leading)

<text position> :: =

<Tc>|(computed inter-character

spacing)

<Tw>|(computed inter-word spacing)

<Tm>|(text matrix)

<Td>|(translate)

<T*>|(translate down)

<TR>|(reset matrix)

<text body> ::=

<Tx>|<Tj>|<T+>|<T->

<overflow text> : : =

{<text style>|

<paint style>|

<TK>}*

<Tx>|<T+>

The following commands are used for the output of texts:

Figure 57.8
Text syntax
(cont.)

Marks a text sequence with word break (wrap around) at the end of a line.

*W

Marks the end of a wrap around sequence. Text objects appear within the sequence.

type To

Begins a text object (begin text object), type defines the type of text (0 point text, 1 area text, 2
path text).

TO

Ends a text object.

a b c d tx ty start Tp

Begins a text path in a text object (begin text path), (abed tx ty) defines the grid, start
indicates the starting point of the text in the grid.

1014 Graphics formats

TP

Ends a text path in a text object (end text path).

Tr

Sets the text output mode (text rendering mode). The following operators apply:

0 Fill text

1 Stroke text

2 Fill and stroke text

3 Invisible text

4 Mask and fill text

5 Mask and stroke text

6 Mask, fill and stroke text

7 Mask only text

8 Filled text followed by type 9

9 Stroked text preceded by type 8
Table 57.1

Text rendering
modes

user tracking Tt

Defines Track kerning (manual kerning).

autokern TA

Activates Automatic kerning. The setting from the header is used here. If autokern = 0, pair
kerning will not be used.

autokern kernvalue Tk

Switches kerning on (pairwise kerning). If autokern = 0, manual kerning is used; autokern = 1
activates automatic kerning.

autokern kernvalue TK

Switches kerning from Overflow text on; otherwise operates like Tk.

min opt max TW

Defines word spacing (minimum, optimum and maximum) as a percentage of the character
width.

wordspace Tw

Defines computed word spacing.

min opt max TC

Defines Character spacing (minimum, optimum, maximum) as a percentage of the character width.

Adobe Illustrator format (AI) 1015

charspace Tc

Defines computed character spacing.

leading paragraphLeading Tl

Defines line and paragraph leading in Viooo square.

rise Ts

Defines subscripting (-xxx Ts) and superscripting (+xxx Ts). Positive and negative parameters
indicate the shift in points.

T+

Defines a hyphen (discretionary hyphen).

T-

Defines a hyphen which is to be printed (printable hyphen).

textstring Tx

Defines non-justified text.

textstring TX

Defines non-justified text, that overflows beyond the visible area.

textstring Tj

Defines justified text.

align Ta

Defines alignment: 0 = left, 1 = centered, 2 = right, 3 = justified (right, left), 4 = justified (including
last line).

para 1st right Ti

Controls the indentation of a paragraph. The parameters define the left indent (para), first-line left
indent (1st) and right indentation (right).

scale% Tz

Condenses or expands the horizontal scaling of a character as a percentage of the font size.

type To

This operator introduces a text, type may be 0 = point text, 1 = area text or 2 = path text.

Ca b c d tx ty] startpt Tp

The operator encloses the text path in brackets.

Ca b c d tx ty] Tm

The operator sets the text matrix for the text.

1016 Graphics formats

tx ty Td

Translates the text matrix to the start of the following line, using tx and ty.

T*

Translates the text matrix to the start of the next line (final form).

Ca b c d tx ty] TR

Resets the pattern matrix (for pattern prototype only).

fontname size Tf

Defines the re-encoded font names and font sizes in points.

T The operands A! # $ define Kanji bitmap strings.

57.3.10 Graph operators

These operators define graphs within the document.

Gs

Introduces a graph.

GS

Ends the definition of a graph.

left top right bottom Gb

Defines the dimensions of a graph (bounds). Axes, labels, and so on are located outside the rectangle.

abcdefghijCk UGy

Defines the structure (style) of the graph.

Represents the type of graph:

5 Grouped column graph
6 Stacked column graph
7 Line graph
8 Pie chart

9 Scatter graph
10 Area graph

Table 57.2

Graph types

Adobe Illustrator format (AI) 101 7

b

Defines hatching (1 = hatching).

C

Defines the data point order; that is, if c = 0, the lower points of a graph cover the points of the top

d

Defines the legend for pie charts:

14 Same as bar/line graphs

15 Legend in wedges

16 No legend Table 57.3

Pie chart legend
type

e = 1

Specifies draw marks, that is, marks are displayed at the points in scattered graphs.

f = 1

Specifies that individual points are to be joined by lines.

g = 1

Enables wider lines (shaped lines) to be drawn between points.

h = 1

Specifies draw legend across the top.

i

Defines the line shape width between 0 and 100.0 (default = 6).

J

Defines which axis is to be used for plotting the data (44 use left axis, 45 use right axis).

k

Specifies that the percentage values in a pie chart are to be displayed in the segments.

I

Defines the number of decimal places for the percentage values. This option is only available for
Windows (Illustrator 4.x).

abcdefghiGd

Defines some of the values in a Graph Style dialog box and is specifically designed for the
Illustrator.

1018 Graphics formats

a b c d x Gj

Occurs only with the Mac and is part of the publish and subscribe facility for System 7 routines.

x z Ga

Introduces a graph-axis specification, x defines the axis (1 bottom axis, 2 left axis, 3 right axis), z
defines a string, which is appended to the label text.

abcdefghGA

Describes the axis.

a = 1

Uses manual values for axis scaling.

b

Defines the type of tick marks. (13 no tick marks, 14 short tick marks, 15 long tick marks).

c

Defines the minimum scale value of the axis.

d

Defines the maximum scale value of the axis.

e

Indicates the difference between two scaling ticks for manual scaling.

f

Defines small ticks per value.

9

Draws marks between the labels.

h

This string is appended to the axis label.

rows columns 1st_row 1st_col Gz

Shows the size of a table containing cells.

x1, x2, .. xn Gc

Reads in cell values.

col width.1. .. num Gw

Overwrites the column width. The first parameter indicates the starting column. The last
parameter defines the number of parameters.

Adobe Illustrator format (AI) 1019

GC

Concludes the definition of a table.

version Gt

Marks the start of a customized graph. Version is set to 2.

target customgraph Gx

Defines a customized graph.

x Gp

Defines a customized graph with Illustrator operators.

flag G+

Resets if flag = 0.

send G1

As with Gp, if send = 0 -> send to back.

a b c d e Gf

Sets the paint style (a = 1 fill graph, b = 1 do stroke, c fill style, d stroke style,
e = 1 object has a fill mask).

col GI

Column index for data points.

row Gr

Index to table row.

axis Gi

Defines which axis is inside the object.

abcdefghijGm

Used for customized graphs that use adaptation matrices.

repeat Ge

Used for customized graphs.

tickvalue Gv

Defines the value of a scaling tick.

Depending on the version of Illustrator, not all of the operators described are necessarily used.
A more detailed description of the individual operands can be found in the AI file format specification.

Initial Graphics Exchange Language
(IGES)

IGES represents a standardized format (NBSIR
88-3813) for the exchange of CAD data. The
following description is based on IGES version

4.0. IGES files may be in ASCII or binary format. The
ASCII format described here is particularly suitable
for exchanging graphics between different platforms.

In the ASCII format, a distinction can be made between compressed format and 80-characters-per-
line format. The structure of IGES files is line-oriented. The illustration below shows a dump from

an 80-character IGES file:

translator comments S0000001

,,1HA,5HA.IGS,... S0000002

- - - •
G0000001

4HINCH,32767,3.2767D1, G0000002

110 111 D0000001

110 2 11 D0000002

110,6.80,5.0... P0000001

110,20.3,4.5,6.3... P0000002

S0000002G0000003D0000026P0000013 T0000001 Figure 58.1
Structure of an

ASGII-IGES file

Starting in column 74, each line contains a continuous sequence number for identification.
These numbers are seven-digit numbers, to which leading zeros or spaces can be added.

Within each line, various rules must be observed:

1020

Initial Graphics Exchange Language (IGES) 1021

♦ A separator must be defined to separate the parameters, (for example, comma). If two
separators follow each other (,,), the relevant parameter is set to 0.

♦ A separator must also be defined for the lines within the parameter section. A semicolon (;) is
generally used for this purpose. If this separator appears in a line before all the parameters
have been read, the missing parameters will be set to 0.

♦ Separators must not appear within a text string.

♦ Numeric values must not extend beyond a line break.

At column 73, there is a letter defining the section of the IGES file. IGES files are divided into
various sections containing different information (parameters, flags, and so on).

ID Section

S Start section

G Global section

D Directory entry section

P Parameter data section

T Terminate section

B Flag section (only binary)

C Flag section (only compressed ASCII) Table 58.1

Section ID for

IGES lines

The sections are described below.

58.1 Start section

The Start section contains comments for the user. An IGES file must contain at least one such

line. The letters used for the comment must belong to the ASCII character set (codes up to 127).

1022 Graphics formats

58.2 Global section

The Global section contains formatting information (for example, definition of parameter
separators). Each definition is effective immediately. The following table shows the entries in the
Global section:

Index Type Remarks

1 String Parameter separator (,)

2 String End of line separator (;)

3 String ID IGES sender

4 String IGES filename

5 String ID IGES writer

6 String Preprocessor version

7 Integer Maximum integer size

8 Integer Maximum exponent size single precision

9 Integer Decimals fraction

Single precision

10 Integer Maximum exponent size double precision

11 Integer Decimals fraction

Double precision

12 String Product ID receiver

13 Real Scale factor (.125)

14 Integer Unit

1 = inch

2 = millimeter

3 = index reference

4 = foot

5 = mile

6 = meter

7 = kilometer

8 = mils (0.001 inch)

9 = micrometer

10 = centimeter

11 = micro inch

15 String Unit name:

2HINor

4HINCH = inch

2HMM = millimeter

2HFt = foot

2HMI = mile

Table 58.2

Entries in a

Global section

(continues
over...)

Index

16

17

18

19

20

21

22

23

24

Initial Graphics Exchange Language (IGES) 1023

Type Remarks

2HM = meter

2HKM = kilometer

2HMIL = mile

2HUM = micron

2HCM = centimeter

3HUIN = micro inch

MIL12

orIEEE260 = index

Integer Maximum steps line width
(see index 12 in directory section)

Real Maximum line width (in units)
(see index 12 in directory section)

String Date and time

(13HYYMMDD.HHNNSS
YY = year

MM = month

DD = day
HH = hour

NN = minutes

SS = seconds)
Real Maximum resolution (in units of index 15
Real Maximum coordinate size

String Author name

String Company name
Integer IGES version number

1 = version 1.0

2 = ANSI Y14.26M-1981

3 = version 2.0

4 = version 3.0

5 = ANSI Y14.26M-1987

6 = version 4.0

Integer Reference to standard

0 = no standard

1 = ISO

2 = AFNOR

3 = ANSI

4 = BSI

5 = CSA

6 = DIN

7 = JIS
Table 58.2

Entries in a

Global section

(cont.)

Texts are always stored in the form nHxxxxx, where n represents the number of following
characters (xxxx).

1024 Graphics formats

58.3 Directory Entry section

The Global section is followed by the Directory Entry section. This contains a directory entry for
every description in the IGES file. Each of these directory entries uses two lines of 80 characters
each, with 10 fields defined in each line. Fields 1 to 9 and 11 to 19 are used for definitions. Fields
10 and 20 (starting from column 73) contain the record numbers (for example, D0000001).

All data (integers or pointers) is displayed right justified and with leading zeros or spaces.
Default values are used for any entries missing from a column.

Some individual fields contain only integer values; other fields contain only pointer constants,
and there are also fields containing both integers and pointers. In this case, the fields must not
have any blank entries (zero entries). Positive values describe an integer value; negative values
describe pointers.

The following table contains an overview of the index record entries in a Directory Entry
section.

Index Remarks

1 Type of entry (100 = arc, 110 = line, and so on)
2 Pointer to 1st data line of this type

3 Structure with negative value, defines
the schema for this type

4 Defines the line style (1 = solid, 2 = dashed
3 = phantom, 4 = centerline, 5 = dotted)

5 Defines the level number for the element

6 Defines the views of a element

7 Defines a transformation matrix

8 Label display, defines the element
descriptions in different views

9 Status flag "aabbccdd"
aa blank status:

00 visible

01 invisible

bb subordinate entity switch

00 independent

01 physical dependent
02 logical dependent
03 both (1 and 2)

cc entity use flag
00 geometry

01 annotation

02 definition

03 other

Table 58.3

Entries in a

Directory Entry

section

(continues
over...)

Initial Graphics Exchange Language (IGES) 1025

'"•'•'.!•• • ••..

Index Remarks

04 logical (position oriented)

05 depends on 2D parameter

dd hierarchy

00 top down

01 stepwise

02 other

10 Line number (starts with D0000001)

11 Type number entry (same as index 1)

12 Line width for view

13 Color

0 colorless

1 black

2 red

3 green

4 blue

5 yellow

6 magenta

7 cyan

8 white

14 Lines in Parameter Data section for element

15 Number of form in Parameter Data section

16 Empty

17 Empty

18 Entity label (up to 8 characterss)
19 Entity number (for label)

20 Line number (same as in 10)

The sequence for the indices in the Directory Entry section is arbitrary.

58.4 Parameter Data section

Table 58.3

Entries in a

Directory Entry
section

(cont.)

The Parameter Data section contains the actual parameters for the IGES entries. This means that
the type of command is shown in the Directory Entry section. The associated commands are
located in the record with the same number in the Parameter Data section. The data is defined in

a free format. The first entry determines the type (for example, 124 = matrix definition). The
individual parameters follow, up to column 63. These parameters are separated by separator

1026 Graphics formats

characters (usually a comma). Column 65 contains a blank, followed by a pointer (columns 66 to
72) to the first line of the associated entry in the Directory Entry section. The character P is
placed in column 73 as a signature for the Parameter Data section. The remaining columns are
assigned the running seven digit number (starting with 1).

The meaning of the individual parameters depends on the element type (see below). The list of
parameters is terminated with a separator (usually a semicolon).

58.5 Termination section

An IGES file must end with a Termination section. This section is reduced to one line containing

six fields. The first four fields contain the number of records per section (Start section, Global
section, Directory Entry section, Parameter Data section). Each field is 8 characters long, and the
first letter indicates the type of the section (S, G, D, P). The fifth field, from columns 33 to 72, is not
used and remains empty. The remaining columns are numbered T0000001.

58.6 Elements of an IGES file

The elements (line, circle, and so on) of an IGES file are defined in the Directory Entry section
and the parameters in the Parameter Data section. All the elements are positioned in a 3D-
coordinate system (model space). An additional coordinate system (definition space) can be
defined for each element. This has no fixed origin. The origin is determined by means of a matrix
and a reference vector in each case. Both coordinate systems are defined in element type 124
(matrix). Angles are defined in a clockwise direction. The geometrical elements are listed in the
table below:

Index Remarks

100 CIRCULAR ARC with:

P1 ZT-reference point

P2 X-value centre

P3 Y-value centre

P4 X coordinate start point arc

P5 Y coordinate start point arc

P6 X coordinate end point arc

P7 Y coordinate end point arc

102 COMPOSITE CURVE with:

P1 number of elements

P2-Pn pointer to directory entry section

containing element description

Table 58.4

Entries for

geometric
elements in

Parameter Data

section

(continues
over...)

Initial Graphics Exchange Language (IGES) 1027

Index Remarks

104 CONIC ARC

P1-P6 coefficient to calculate ellipse
P7 ZT reference point
P8 X coordinate start point
P9 Y coordinate start point
P10 X coordinate end point

P11 Y coordinate end point
P12-Pn Pointer to directory entry section

106 COPIOUS DATA, stores construction points
P1 interpretation flag (1 xy-coordinates,

2 xyz-coordinates, 3 xyz-coordinates
+ 3 definition vectors)

P2 number of copious data
P3 (interpretation flag = 1 -> fixed Z)
P4-Pn data points (abscissa, ordinate, if

interpretation flag = 2)
108 PLANE

P1-P4 transfer coefficients

P5 pointer to directory entry section
P6 XT coordinate symbol point
P7 YT coordinate

P8 ZT coordinate

P9 symbol size
P10-Pn pointer

110 LINE

P1 X coordinate start point
P2 Y coordinate start point
P3 Z coordinate start point
P4 X coordinate end point
P5 Y coordinate end point
P6 Z coordinate end point
P7-Fn pointers

112 SPLINE CURVE

P1 spline type (1 linear, 2 quadratic,
3 cubic, 4 Wilson Fowler,
5 modified Wilson Fowler, 6 B-spline)

P2 continuity

P3 dimensions

P4 number of segments
P5-Pn vertex points (first all x, then all y,

then all z coordinates, then
transformation coefficients and vectors)

Table 58.4

Entries for

geometric

elements in

Parameter Data

section

(cont.)

1028 Graphics formats

Index Remarks

114 SPLINE SURFACE

P1 surface type (see type 112)
P2 type (1 Cartesian, 2 undefined)
P3 number of lines

P4 number of columns

P5-Pn vertex points (first all coordinates
x,y,z for all rows, then for all columns,
then transformation coefficients and

vectors)
116 POINT

P1 X coordinate

P2 Y coordinate

P3 Z coordinate

P4 Pointer

118 RULED SURFACE (arc area)
P1 pointer to 1st curve

P2 pointer to 2nd curve
P3 direction

120 SURFACE OF REVOLUTION

P1 pointer to surface line
P2 pointer to surface vector
P3 start angle
P4 end angle

122 TABULATED CYLINDER

P1 pointer to surface line
P2-P4 coordinates vertex surface vector

124 MATRIX, transformation matrix between model
space and definition space

125 FLASH, localization point for a closed area
P1 X coordinate reference point
P2 Y coordinate reference point
P3 1st size parameter
P4 2nd size parameter
P5 rotation angle
P6 pointer to directory entry section

126 B-SPLINE CURVE

P1,P2 coefficients B-spline curve
P3 proportion 1: 0 non planar, 1 planar
P4 proportion 2: 0 open curve

128 B-SPLINE SURFACE

P1-P4 coefficients

P5-P9 proportion

P10-Pn vertex points, widths, control points,
pointers

Table 58.4

Entries for

geometric
elements in

Parameter Data

section

(cont.)

Initial Graphics Exchange Language (IGES) 1029

Index Remarks

130 OFFSET CURVE

P1 pointer to base curve
P2 distance (1 unique, 2 varying in a linear

function, 3 varying with a definable
function)

P3 pointer to curve (only if P2 = 3)
P4 pointer to coordinate of P3 curve
P5 offset type (1 arc, 2 parameter)

132 CONNECT POINT (simplifies curves)
P1 X coordinate

P2 Y coordinate

P3 Z coordinate

P4-Pn pointer
134 NODE for finite elements

P1 X coordinate

P2 Y coordinate

P3 Z coordinate

P4 pointer to transformation matrix
136 FINITE ELEMENT

P1 type (one of 33)
P2 nodes

P3-Px pointer to nodes
Pn element name

138 NODAL DISPLACEMENT AND ROTATION

data for finite elements

P1 number analyze
P2-Pa pointer to general nodes
Pb number of nodes

Pc number 1st node

Pd pointer to node directory entry
Pe-Pz n*3 entries (x,y,z) translation, then

x,y,z rotation
140 OFFSET SURFACE

P1-P3 x,y,z coordinates (offset)
P4 distance to original surface

projection
P5 pointer to original surface

142 CURVE ON PARAMETER SURFACE

P1 curve to surface projection (0 not
specified, 1 curve to surface, 2 curve
surfaces, 3 isoparametric curve)

P2 pointer to surface
P3 pointer to curve type B entry
P4 pointer to curve type C entry
P5 definition type (0 not defined, 1

surface above curve B, 2 curve type C,
3 all possibilities)

Table 58.4

Entries for

geometric

elements in

Parameter Data

section

(cont.)

1030 Graphics formats

Index Remarks

144 TRIMMED SURFACE simple closed curve in
a Euclidian surface

P1 pointer to surface, which should be
trimmed

P2 0, if curve includes surface 1, if
surface includes curve

P3 number of closed curves

P4 pointer to closed border curve
P5-Pn pointer to other curves

146 NODAL RESULTS relation between node and

physical interpretation (reserved)
148 ELEMENT RESULTS (reserved)
150 BLOCK

P1 length X
P2 length Y
P3 length Z
P4-P6 coordinate corner

P7-P9 vector for local x axis

P10-P12 vector for local z axis

152 RECTANGULAR WEDGE

P1-P3 length x,y,z
P4 distance to local x axis

P5-P7 coordinate point
P8-P10 vector for local x axis

P11-P13 vector for local z axis

154 CIRCULAR CYLINDER

P1 cylinder height
P2 base radius

P3-P5 coordinate base center

P6-P8 unit vector in direction of axis

156 CIRCULAR CONE

P1 height
P2 base radius

P3 top radius
P4-P6 coordinate base center

P7-P9 unit vector in direction of axis

158 SPHERE

P1 radius

P2-P4 coordinate center

160 TORUS

P1 radius torus

(from torus axis to center ring arc)
P2 radius ring arc
P3-P5 coordinate torus center

P6-P8 unit vector in direction of axis

Table 58.4

Entries for

geometric
elements in

Parameter Data

Section

(continues
over...)

Initial Graphics Exchange Language (IGES) 1031

Index Remarks

162 SOLID OF REVOLUTION

P1 pointer to element
P2 rotation angle
P3-P5 coordinate of a point in the rotation

axis

164 SOLID OF LINEAR EXTRUSION

P1 pointer to element
P2 length of projection
P3-P5 vector projection direction

168 ELLIPSOID

P1 length local x axis
P2 length local y axis
P3 length local z axis
P4-P6 coordinates center

P7-P9 vector for local x axis

P10-12 vector for local z axis
180 BOOLEAN TREE

P1 length notation
P2-Pn negative value = pointer to operands

or positive integer value of operation
184 SOLID ASSEMBLY

P1 number of entries

P2-Pa pointers to elements
Pb-Pz pointers to transformation matrices

430 SOLID INSTANCE

P1 index to solid art primitive

Table 58.4

Entries for

geometric

elements in

Parameter Data

section

(cont.)

The index is entered in the Directory Entry section. The associated parameters P1 to Pn are
located in the Parameter Data section in accordance with the above specification.

In addition to the geometrical elements from Table 58.4, the IGES specification provides
annotation elements and structure elements. The annotation elements describe dimensioning,
artificial lines, and so on. If an annotation element refers to a two-dimensional space (not in the
definition space), a connection is set up using element 404. This element contains the two-
dimensional matrix for converting coordinates. The following table lists the annotation elements.

1032 Graphics formats

Index

202

206

208

210

212

214

216

218

220

Remarks

ANGULAR DIMENSION

P1 pointer to text node

P2 pointer to WITNESS LINE 1

P3 pointer to WITNESS LINE 2

P4-P5 coordinate reference point

P6 radius angular line

P7-P8 pointer to arrow definition

DIAMETER DIMENSION

P1-P3 pointer to directory entry section

coordinate arc centerP4-P5

FLAG NOTE

P1-P3

P4

P5-Pn

coordinate lower left corner flag

rotation angle

pointer to reference points

GENERAL LABEL

P1 pointer to GENERAL NOTE

P2 number of reference points

P3-Pn pointer to reference points

GENERAL NOTE

P1 -Pn pointers and definitions
LEADER ARROW

P1 number of segments

P2 height arrow head

P3 width arrow head

P4 length in z direction

P5-P6 coordinate arrow head

P7-Pn coordinate pairs for segments

LINEAR DIMENSION

P1-Pn pointers to text node, 1st arrow,

2nd arrow, two auxiliary lines

ORDINATE DIMENSION

P1 pointer to GENERAL NOTE

P2 pointer to WITNESS LINE

DIRECTORY

POINT DIMENSION

PI pointer to text node

P2 pointer to arrow

P3 pointer to geometric element

Table 58.5

Entries for

annotation

elements in

Parameter Data

section

(continues
over...)

Initial Graphics Exchange Language (IGES) 1033

Index Remarks

222 RADIUS DIMENSION

P1 pointer to text node
P2 pointer to arrow

P3-P4 coordinate arc center

228 GENERAL SYMBOL

P1 pointer to GENERAL NOTE

P2 number of pointers to figures
P3 number of associations

P4-Pn pointer to associations

230 SECTIONED AREA

P1 pointer to area shape
P2 hatch code

P3 x coordinate for pattern
P4 y coordinate for pattern
P5 z-line depth
P6 line distance

P7 pattern direction (in radius)
P8 number of incorporated areas
P9-Pn pointer to area curves

106 SECTION defines a repeat value for a pattern,
defined as COPIOUS DATA entry 31-38

108 WITNESS LINE, defined as COPIOUS
DATAentry 40

Table 58.5

Entries for

annotation

elements in

Parameter Data

section

(cont.)

The IGES definition also permits structure elements. These are listed briefly in the table below:

Index Remarks

302 ASSOCIATIVITY DEFINITION

defines order classes for the IGES file

304 LINE FONT DEFINITION

defines a pattern for lines

306 MACRO DEFINITION

defines a macro

308 SUBFIGURE DEFINITION

defines a reference to a figure

Table 58.6

Entries for

structure

elements in

Parameter Data

section

(continues
over...)

1034 Graphics formats

Index Remarks

310 TEXT FONT DEFINITION

defines a text font (name, size, and so on)
312 TEXT DISPLAY TEMPLATE

defines a template for text

314 COLOR DEFINITION

contains the translate values for RGB

values to CMY or HLS systems

320 NETWORK SUBFIGURE DEFINITION

defines a figure which is used several times
402 ASSOCIATIVITY INSTANCE

defines the relationship of groups
404 DRAWING

collects a series of annotation elements

408 SINGULAR SUBFIGURE INSTANCE

defines a single subfigure

410 VIEW

defines the view to the modes space

coordinate system

416 EXTERNAL REFERENCE

contains pointer to external graphic files
600-699 USER DEFINED MACRO INSTANCE

used to include macros

Table 58.6

Entries for

structure

elements in

Parameter Data

Section

(cont.)

Structure elements can be evaluated by only a very few IGES readers. A detailed description of
the IGES commands containing all the background information is given in the Initial Graphic
Exchange Specification (NBSIR 88-3813).

Windows and OS/2
file formats

File formats discussed in Part 5

Windows 2.0 Paint format (MSP) 1036

Windows 3.x BMP and RLE format 1040

OS/2 Bitmap format (BMP, version 1.2) 1046

OS/2 Bitmap format (BMP, version 2.x) 1049
Windows Icon format (ICO) 1055
Windows Metafile format (WMF) 1057
Windows Write Binary format (WRI) 1085

Windows 3.x Calendar format (CAL) 1097
Windows Cardfile format (CRD) 1101
CUpboard format (CLP) 1103

Windows 3.x Group files (GRP) 1105

W'ith the rapid spread of Windows 3.x, understanding the file
formats of the individual applications programs is becoming an
ever more pressing priority for an increasing number of users.

Windows can exchange data via DDE, OLE and the clipboard, but for
certain applications it is important to be able to access the files of Write,
Cardfile, and so on directly. The same applies to the BMP files of OS/2,
which can be partially read in Windows, but whose structure has so far
remained largely unknown. These various output formats will therefore be
the focus of our attention in this part.

1035

Windows 2.0 Paint
format (MSP)

In Windows up to version 2.x, this format was
used for storing bitmap graphics. With Windows
3.0/3.1, it is no longer used, but can be read with

PaintBrush. I should like to present this format
briefly because it has acquired a certain degree of
importance in the exchange of images.

An MSP file is structured as follows:

♦ Header

♦ Index table

♦ Image data

The relevant structures are presented below.

59.1 The MSP header

The MSP header describes the content of image data. It contains 32 bytes and is structured as
follows:

1036

Windows 2.0 Paint format (MSP) 1037

;;•• S, :

Offset Bytes Remark

00H 2 Signature 1 (6144H or 694CH)
02H 2 Signature 2 (4D6EH or 536EH)
04H 2 Width (bitmap) in pixels (X)
06H 2 Height (bitmap) in pixels (Y)
08H 2 ScreenAspect ratio X-axis

OAH 2 ScreenAspect ratio Y-axis

OCH 2 PrintAspect ratio X-axis

OEH 2 PrintAspect ratio Y-axis
10H 2 Printer resolution x in pixels (dxPrint)
12H 2 Printer resolution y in pixels (dyPrint)
14H 2 Reserved (0)
16H 2 Reserved (0)
18H 2 Checksum field

1AH 2 Reserved (0)

1CH 2 Reserved (0)
1EH 2 Reserved (0)

Table 59.1

MSP header

The first 4 bytes contain the signature for valid MSP files. There appear to have been several
versions here. The Microsoft documentation available to me indicates the signature 44H 61H 6EH
4DH (in hex numbers), but I have also found references to another signature (4CH 69H 53H 6EH).

The two words at offset 04H indicate the dimensions of the bitmap (width * height) in pixels.
The two words at offset 08H define the resolution (X,Y) of the screen in pixels. At offset OCH, there are
another two words, whose meaning is not clear to me. The entries indicate the resolution of the
printer for which the image was produced, in X and Y directions. This presumably relates to print
density (dots per inch). However, it is not clear to me why these values should be stored in an
image file. At offset 10H, the printer resolution is again indicated in pixels for the X and Y axes,
relating to the image to be printed. I interpret these values as the number of points in the relevant
print direction, so that this value depends on the paper format.

At offset 18H, there is a checksum for the file, provided to ensure that the file is a valid MSP file.
However, I do not have any information on the method of calculating the checksum.

59.2 The index table

At offset 20H, there is an index table of n words which contains the length of each image data line.
The data in an MSP file is compressed according to the Run Length method. Each line of the image
is indexed separately, the length of each image line depending on the bitmap. The length of each
compressed line (in bytes) is stored in the corresponding entry in the index table as an unsigned
integer (2 bytes). The number of entries is derived from the number of image lines (dyPri nt, offset
12H). However, the extent to which the printer resolution is used still remains unclear to me.

1038 Windows/OS2 file formats

59.3 The data area

The index table is followed by the data area containing the compressed image data. Its position is
calculated by adding the lengths of the header and the index table:

= 32 Byte (header) + length of an index entry * number of lines (dyPri nt)

= 32 + 2 * dyPrint

Two bytes are required for each index entry and two different processes are used for
compression.

If the first byte = 0, this byte is followed by a counter and a pattern (Figure 59.1).

00 Count Pattern

Count Data Data

Figure 59.1
MSP data record

(type 1)

The counter contains one byte and indicates how often the following byte containing the
pattern is to be repeated. The following entry:

OOH 80H 3FH

indicates that the pattern 3FH is to be repeated 128 times (80H). If the value of the first byte is in
the range 1-255, the first byte contains a counter indicating the number of data bytes following
(Figure 59.2). These data bytes contain an uncompressed bitmap, that is, the bits can be
converted directly into pixels.

Figure 59.2
MSP data record

(type 2)

The sequence:

03H3FH 44H OOH

indicates that the following three bytes (3FH 44H OOH) have been stored directly as a pattern. Data
bytes are read using these rules until an image line has been decoded. The number of bytes to be
read is stored in the associated entry in the index table. As another example, the sequence:

OOH 40H FFH

indicates that 64 bytes with the value FFH are to be output. This will produce a line consisting of
512 white pixels.

However, the value:

01H 01H

as a pattern produces a sequence of 7 black pixels and one white pixel.

Windows 2.0 Paint format (MSP) 1039

The length calculation (bytes per line) for the index table entries is quite simple. If, for
example, a line comprises 520 pixels (512 = 8), a length calculation involving the following values:

00H40HFFH-> 3 data bytes for 512 white pixels

01H 01H -» 2 data bytes for 7 black and 1 white pixel

will produce the result 5 (bytes), which will be stored in the index table. This coding enables each

image line to have a different length. To calculate the position (offset from start of file) of the data
for an image line, the lengths of the index table entries for the preceding image lines must be
summed. Then add the length of the header (32 bytes) and the length of the index table itself. The
result is the position at which the n bytes of the image line required can be read.

Windows 3.x BMP
and RLE format

From Windows 3.0 onwards, the PaintBrush
program is included in the package supplied.
This program enables graphics to be produced

and stored. In addition to importing graphics in MSP
format, PaintBrush also supports the PCX and BMP
formats. The BMPformat is described in this chapter.
The PCXformat is described in Chapter 22.

60.1 Windows 3.x Bitmap format (BMP)

Windows uses the BMP format for storing raster pictures. This format is device-independent and
can store monochrome and color pictures. The PaintBrush program, supplied with Windows, is the
most popular tool to read and write BMP files. A BMP file is composed of several data blocks

(Figure 60.1).

BITMAP File-Header

Bitmap Info

(Bitmap Info-Header)

(RGB-QUAD)

BITMAP-Picture data

1040

Figure 60.1
BMP format

structure

(Windows 3.x)

Windows 3.x BMP and RLE format 1041

The BITMAP FILE header is structured as shown below.

Offset Bytes Name Meaning

OOH 2 bfType File ID ('BM')

02H 4 bfSize File length in byte

06H 2
-

reserved (must be set to 0)

08H 2 -
reserved (must be set to 0)

OAH 4 bfOffs Offset data area
Table 60.1

Structure of a

Windows BMP

header

The first word of the header must contain the signature BM to identify a valid BMP file. This is
followed by a double word containing the file length in bytes. The header is terminated at offset
OAH with a 4-byte pointer specifying the offset from the start of the file to the first data byte of the
picture.

However, the header merely describes the file and does not contain any details of the picture.
For this reason, the file header is followed by the BITMAPJNFO block. This also contains a header
(the BITMAPJNFO header), which describes the picture data. The BITMAPJNFO block is
structured as shown in Table 60.2.

The field biSize (offset OEH) indicates the length of the BITMAPJNFO header in bytes. This
header is followed by a table containing the definitions of the color palette (RGBJ)UAD).

Offset Bytes Name Remark

BITMAPJNFO Header

OEH 4 biSize Length of BITMAPJNFO-
Header in bytes

12H 4 biWidth Width of bitmap in pixels
16H 4 biHeight Height of bitmap in pixels
1AH 2 biPLanes Color planes

(must be set to 1)
1CH 2 biBitCount Bits per pixel

1EH 4 biCompression Compression type

22H 4 biSizelmage Picture size in bytes

26H 4 biXPelsPerMetre Horizontal resolution

2AH 4 biYPelsPerMetre Vertical resolution

2EH 4 biCLrtlsed Number of colors used

Table 60.2

Structure of a

BITMAPJNFO

block

(continues
over...)

1042 Windows/OS2 file formats

Offset Bytes Name Remark

32H 4 biCLrlmportant Number of important

colors

RGBJJUAD
36H n*4 Color definition with:

rgbBLue 1 byte blue intensity
rgbGreen 1 byte green intensity
rgbRed 1 byte red intensity

— •" •••

rgbres 1 byte reserved
Table 60.2

Structure of a

BITMAPJNFO

block (cont.)

The two fields bi Width and bi Height indicate the width and height of the bitmap picture in

pixels. This is significant for re-creating the picture.
The field bi Planes (offset 1AH) defines the number of bit levels (planes) in the output device.

At present, this entry should be set to 1.

The field biBitCount, which defines the number of bits per pixel and also determines the

number of colors in the picture, is of particular importance. The following values are permitted:

1 Defines 1 bit per pixel, which indicates a monochrome picture. If the bit is set, the first
color from the color table will be used. If the bit is unset, the second color from the color

table will be used.

4 Enables a picture containing 16 colors to be built up. The color palette contains 16 entries
of 4 bytes each. Each pixel consists of 4 bits; that is, one byte contains the colors for 2 pixels.
The value 1 FH thus represents the 2nd and 16th colors from the color table.

8 This bitmap can contain up to 256 colors, each pixel being represented by 8 bits. These
values serve as an index to the color table, which contains 256 elements. The value OOH
defines a pixel using the first color in the table.

24 This value defines a picture with 2**24 (16 million) colors, that is, every pixel is represented
by 24 bits. Since the color table in this case would be excessively large, the colors are coded
directly in the picture data area. The 24 bits per pixel represent 3 bytes defining the inten
sity of the colors red, green and blue in the range 0-255. Mixed colors are generated from
these values by the output device. This enables the creation of very authentic color pictures.
The index table containing the color definitions is omitted when this 24-bit presentation is used.

The compression method used for picture data is indicated in the bi Compression field (offset
1EH) as a 4-byte value. The following values are used:

BI_RGB Bitmap data not compressed.
BI_RLE8 A run-length encoding process (RLE) is used for bitmaps with 8 bits per pixel.
BI_RLE4 A run-length encoding process (RLE) is used for bitmaps with 4 bits per pixel.

Windows 3.x BMP and RLE format 1043

These constants are coded in the earlier versions of Windows 3.x as follows:

BI_RGB = 0

BI_RLE8 = 1

BI_RLE4 = 2

This compression process is described below.

' In myexperience, PaintBrush stores picture data in uncompressed form in all modes.
•

The 4-byte biSizelmage field at offset 22H indicates the length of the (compressed) bitmap
data area in bytes. The two following fields biXPelsPerMeter and biYPelsPerMeter define the
resolution of the target unit in pels (pels = picture elements) per meter for the X and Y axes. As a
result, an application may select from a resource the most suitable bitmap for the relevant
device.

The biClrllsed field (offset 2EH) specifies how many colors from the color table the current
picture actually uses. A picture can therefore contain fewer colors than are possible according to
the color table. The most important colors should be stored at the start of the index table. If the
value of the field = 0, all colors will be used. However, this only applies if fewer than 24 bits are

stored for each picture point. If the bi Count field (offset 1CH) is set to 24, biClrUsed indicates
the size of the reference table containing the colors. With 24-bit representation, a color table is
not normally required. However, one may be provided for optimization reasons. If the area
containing the bitmap data follows directly after the BITMAPJNFO header, the field must be set
to 0.

The last field, biClrlmportant (offset 32H), defines the number of colors which are important
for the display. If the value is 0, all colors in the reference table are important.

The table containing color definitions begins at offset 36H. Each color is defined in terms of its
proportion of blue, green and red. This definition contains 4 bytes; the last byte remains empty.
The length of the table is determined by the number of colors (bits per pixel).

60.1.1 The data area

The header data is followed by a data area containing bitmap data. The picture is scanned line by
line and stored. The data may be compressed at this stage (but this does not occur with
PaintBrush). A distinction is made between the compression of pictures with:

4 bits per pixel (RLE4)

8 bits per pixel (RLE8)

A picture line is always stored contiguously. If necessary, missing pixels at the right margin
can be added, up to a limit of 32 bits, and set to 0. The origin of the picture is at the bottom left
corner.

1044 Windows/OS2 file formats

60.1.2 8-bit RLE compression

Provided 8 bits per pixel are used in the bitmap, Windows will use 8-bit RLE coding, in which
picture data is represented as follows.

Identical consecutive bytes are compressed into 2 bytes, as follows:

Count Color

OOH Count Data -• Data

Figure 60.2
RLE coding
(type 1)

The first byte specifies how often the following byte is to be duplicated. This second byte
defines an index into the color table from which the color is reconstructed. The sequence:

03H 44H

thus generates the sequence:

04H 04H 04H

which creates three pixels with color number 5 (counting begins at 0). The counter may
contain values between 1 and 255.

However, if the first byte of a sequence contains OOH, type 2 coding (absolute mode) will be
used. The coding is as follows:

Figure 60.3

RLE coding (type

2)

If the second byte contains a value between 3 and FFH, the record is a data record and the
value indicates the number of data bytes to follow. Each of these bytes contains an index into the
color table, which codes one pixel per byte. The sequence:

OOH 04H 3FH 66H 01 H 07H

defines 4 pixels of different colors. However, if the second byte contains values between 0 and 2,
the record is an ESCAPE record. This record is used to mark the end of a line or a bitmap. The
following coding is used:

Windows 3.x BMP and RLE format 1045

Byte 2 Remark

0 End of a line

1 End of a bitmap

2 Delta record Table 60.4

Coding of
ESCAPE mode

The sequence OOH OOH thus marks the end of a line and the next byte therefore belongs to the
next record. 00 01 marks the end of the bitmap.

A delta record consists of 4 bytes structured as follows:

OOH 02H xxH yyH

The numbers xx and yy define a relative offset in pixels from the current position, at which the
next pixel is to be displayed. Bitmaps containing only a few pixels can thus be stored very
efficiently. The hexadecimal byte sequence:

I I I I I I I I
03H 44H 04H 11H OOH 03H 01H 33H FFH OOH 02H 05H 01H

is converted into the hex values

44H 44H 44H

11H 11 H 11H11H

01H 33H FFH

5 pixels right, 1 pixel up.

60.1.3 4-bit RLE compression

This compression is essentially the same as the 8-bit RLE coding. If the first byte contains a value
between 1 and 255, it is a repetition counter indicating how many pixels are to be constructed
from the following byte. With 4 bits per pixel, the following byte always contains two color indices
(or pixels). The first color value is determined and displayed on the basis of the top 4 bits. The
lower 4 bits are then used to display the next color pixel. The third pixel is constructed from the 4
upper bits. This alternating method is repeated until the number of pixels indicated has been
created.

If the first byte is OOH, the absolute coding (type 2) of 8-bit RLE compression is used, that is,
the second byte must contain a value between 3 and FFH. This is followed by n databytes, each
byte representing two pixels. In absolute mode the sequence of bytes must end at a word
boundary. The same conditions apply to ESCAPE sequences (second byte = 0, 1 or 2 as for 8-bit RLE
compression).

CT\

OS/2 Bitmap format
(BMP, version 1.2)

OS/2 uses a BMP format for storing raster
pictures in the Presentation Manager in

versions 1.1, 1.2 and 2.0. The data is stored
as Device-Independent Bitmaps (DIB). This format
can be read in Windows 3.x (at least up to OS/2,
version 1.2). The internal structure must therefore
rely significantly on the Windows BMP format.

BITMAP File-Header

BITMAP CORE INFO

(Bitmap CORE-Header)

(RGB-TRIPLE)

BITMAP-Picture data

Figure 61.1
Structure of the

BMP format

(OS/2, up to
version 1.2)

Figure 61.1 shows various deviations from this structure. The following description applies to
the bitmap format of OS/2 up to version 1.2. The BITMAPJ^ILE header has the following data
structure:

1046

OS/2 Bitmap format (BMP, version 1.2) 1047

Offset Bytes Name Remarks

OOH

02H

06H

08H

OAH

2

4

2

2

4

bfType

bfSize

bfOffs

File ID ('BM')
File length in bytes

Reserved (must be 0)
Reserved (must be 0)

Offset data area Table 61.1

Structure of an

OS/2 BMP

header (version
1.1/1.2)

The first word of the header must contain the signature BM to identify a valid BMP file. This is
followed by a double word containing the file length in bytes. The header is terminated at offset OAH
with a 4-byte pointer specifying the offset from the start of the file to the first data byte of the picture.

The BITMAP_COREJNFO block follows the file header and contains another header

(BITMAPj:ORE header), which describes the picture data. The second entry (RGBJTRIPLE)
defines the color palette. The BITMAPJ^OREJNFO block is structured as follows (Table 61.2):

Offset Bytes Name Remarks

BITMAPJ^OREJNFO

header

OEH 4 bcSize Length of

BITMAPJ30REJNFO

header in bytes
12H 2 bcWidth Width of bitmap in pixels
14H 2 bcHeight Height of bitmap in pixels
16H 2 bcPlanes Number of color planes

(must be 1)
18H 2 bcBitCnt Bits per pixel

RGBJTRIPLE
1AH n*3 Color definition for n

colors:

rgbBlue 1 byte blue intensity
rgbgreen 1 byte green intensity
rgbRed 1 byte red intensity

Table 61.2

Structure of a

BITMAP_CORE_

INFO block

The structure of this block differs somewhat from the Windows format. In particular, the
header is shorter and a number of fields are reduced to 2-byte values.

1048 Windows/OS2 file formats

The bcSize field (offset OEH) indicates the length of the BITMAPJJOREJNFO header in bytes.
The two fields bi Width and bi Height indicate the width and height of the bitmap picture in pixels.

The bcPlanes field (offset 16H) defines the number of bit levels (planes) in the output device.
At present this value must be set to 1. The number of bits per pixel is indicated in a word at offset
18H. Here, the values 1 (monochrome), 4 (16 colors) and 24 (16 million colors) are allowed.

The table containing the definitions of the color palette follows at offset 1AH. By contrast with
the Windows palette, each entry here contains only 3 bytes, in which the intensity of the primary
colors blue, green and red is stored. One color is defined for each entry. The length of the color
table depends on the number of bits per pixel (offset 18H). The following coding applies:

1 Defines 1 bit per pixel, which indicates a monochrome picture. If the bit is set, the first
color from the color table will be used. If the bit is unset, the second color from the color

table will be used.

4 Enables a picture containing 16 colors to be built up. The color palette contains 16 entries
of 4 bytes each. Each pixel consists of 4 bits; that is, one byte stores the colors for 2 pixels.
The value 1 FH thus represents the 2nd and 16th color from the color table.

8 This bitmap can contain up to 256 colors, each pixel being represented by 8 bits. These
values serve as an index into the color table, which has 256 elements. The value OOH

defines a pixel using the first color from the index table.

24 This value defines a picture with 2**24 (16 million) colors, that is, every pixel is repre
sented by 24 bits. Since the color table in this case would be excessively large, the colors
are coded directly in the picture data area. The 24 bits per pixel represent 3 bytes defining
the intensity of the colors red, green and blue in the range 0-255. Mixed colors are gener
ated from these values by the output device. This enables the creation of very authentic
color pictures. The index table containing the color definitions is omitted when this 24-bit
representation is used.

I Please note that the colors in the table are ordered according to their importance.

61.1 The data area

The header data is followed by the data area containing the bitmap data. The picture is scanned
line by line and stored. The data in a line may need to be padded out to the limitof32 bits using
null bits. The origin of the bitmap is in the bottom left corner. According to the information
available to me so far, the data is uncompressed up to version 1.2 of OS/2.

t
OS/2 version 1.3 uses the same coding as version 1.2. However, icons and other resources
are stored as in version 2.0. Multiple version formats are also allowed (see Version 2.0,
Chapter 62)

OS/2 Bitmap format
(BMP, version 2.x)

OS/2 version 2.x uses a BMP format for storing
raster images. However, by comparison with

earlier versions, this has been somewhat
modified. The bitmap format is used for pictures,
icons and pointers (cursor).

The OS/2 bitmap format is a device-independent format which can store monochrome and color
images. The resolution may be either 1, 4, 8 or 24 bits per pel (pel = picture element = pixel). The
bitmap is stored in such a manner that the output device can process the data. The first pel
appears in the bottom left corner (coordinate origin). The following pixels are displayed line by
line from left to right. The individual lines are drawn from bottom to top. The highestvalue bit in a
data byte indicates the first pel (that is, in monochrome presentation). The data within an output
line is packed in bytes, each line endingat a 32-bit boundary. If necessary, individual pixels at the
right margin of the screen can be filled with null bits. This technique has already been used in
Windows. In version 2.0, an OS/2 BMP file is composedof several data blocks (Figure 62.1).

BITMAP File-Header

BITMAP CORE INFO

(Bitmap CORE-Header)

(RGB-TRIPLE)

BITMAP-Picture data Figure 62.1

BMP structure

OS/2 version 2.0

1049

1050 Windows/OS2 file formats

The BITMAPJ1LE header is structured as follows:

Offset Bytes Name Remark

OOH 2 usType Type of resource file
02H 4 cbSize BITMAPJHLE

Header length in bytes

06H 2 xHotSpot Only for icons and cursors

08H 2 yHotSpot Only for icons and cursors

OAH 4 bfOffs Offset data area
Table 62.1

Structure of an

OS/2 BMP header

The first word of the header must contain the type of the bitmap file as a signature. The
following signatures have been defined:

'BM' Bitmap file with picture

'IC Icon file

'PT' Pointer (Cursor)

'CI' Color icon file

'CP' Color pointer

This is followed by a double word containing the length of the header in bytes. This
information is necessary because, from version OS/2 onwards, the header may occur twice in the
file. This is always the case if an icon or a pointer is stored in the file, which will then contain two
bitmap pictures (XOR-mask and AND-mask. See also Windows Icon format, Chapter 63).

By contrast with the Windows header structure, the words at offsets 06H and 08H (xHotspot,
yHotspot) are defined as coordinates of the 'hot spot' in the case of icons and pointers. With a
bitmap picture, both entries are ignored. The header is terminated at offset OAH with a 4-byte
pointer specifying the offset from the start of the file to the first data byte of the picture. If this is
followed by a second header, it will have the same data structure.

The header is followed by the BITMAPJNF02 block. This also contains a header
(BITMAPJNF02 header) which describes the picture data. The second entry (RGB-TRIPLE2) is
optional and defines the color palette. The BITMAPJNF02 block is structured as shown in Table
62.2:

•• " ' ' —

Offset Bytes Name Remarks

OEH 4 cbFix

BITMAPJNFO header

BITMAPJNF02

header length in bytes

Table 62.2

Structure of a

BITMAPJNF02

block

(continues
over...)

OS/2 Bitmap format (BMP, version 2.x) 1051

Offset Bytes Name Remarks

12H 4 ex Width bitmap in pels
16H 4 cy Height bitmap in pels
1AH 2 cPlanes Number of color planes

(set to 1)
1CH 2 cBitCount Bits per pixel

1EH 4 ulCompression Compression type
22H 4 cblmage Bitmap length in bytes
26H 4 cxResolution Horizontal resolution

2AH 4 cyResolution Vertical resolution

2EH 4 cCtrllsed Colors used

32H 4 cClrlmportant Important colors
36H 2 usUnits Units of measure

38H 2 - Reserved

3AH 2 usRecording Recording algorithm
3CH 2 usRendering Rendering algorithm
3EH 4 cSizel Size value 1

42H 4 cSize2 Size value 2

46H 4 ulClrEncoding Color encoding
4AH 4 ulldentify Reserved for applications

RGBJTRIPLE2

4EH 71*4 Color definition for n

colors:

rgbRed 1 byte red intensity
rgbGreen 1 byte green intensity

rgbBlue 1 byte blue intensity Table 62.2

Structure of a

BITMAPJNF02

block

(cont.)

All the entries in the offset column are based on the assumption that only one copy of the file
header is used. The length of the header, however, is indicated in one field, so that the values in
the offset column can be adjusted if necessary.

The cbFix field (offset OEH) indicates the length of the BITMAPJNF02 header in bytes. This
header is followed by an (optional) table containing the definitions for the color palette
(RGBJTRIPLE2).

The two fields ex and cy indicate the width and the height of the bitmap pictures in pels. This
is important for re-creating the picture.

The cPlanes field (offset 1AH) defines the number of bit levels (planes) in the output device. At
present the entry is set to 1 but it may have different values in future.

The cBitCount field at offset 1CH is of particular importance. Its value defines the number of
bits per pel at the output level and also establishes the number of colors in the picture. The
following values are permitted:

1052 Windows/OS2 file formats

1 Defines 1 bit per pixel, which corresponds to a monochrome picture. If the bit is set to 1,
the first color from the color table will be used. If the bit is 0, the second color from the
color table will be used.

4 Enables a picture containing 16 colors to be built up. The color palette contains 16 entries

of 4 bytes each. Each pixel consists of 4 bits, that is, one byte stores the colors for 2 pixels.
The value 1 FH thus represents the 2nd and 16th color from the color table.

8 This bitmap can contain up to 256 colors, each pixel being represented by 8 bits. These
values serve as an index into the color table, which has 256 elements. The value OOH defines

a pixel using the first color from the index table.

24 This value defines a picture with 2**24 (16 million) colors, that is, every pixel is repre
sented by 24 bits. Since the color table in this case would be excessively large, the colors
are coded directly in the picture data area. The 24 bits per pixel represent 3 bytes defin

ing the intensity of the colors red, green and blue in the range 0-255. Mixed colors are
generated from these vaues by the output device. This enables the creation of very
authentic color pictures. The index table containing the color definitions in the header is
omitted when this 24-bit presentation is used.

The type of compression used for the picture data is indicated in the u I Compress ion field
(offset 1EH) as a 4-byte value. Although I have no documentation on this area, it seems likely that
the compression types for Windows 3.x bitmaps are used, as follows:

0 The bitmap data is in uncompressed form.

1 A run-length encoding process (RLE) is used for bitmaps with 8 bits per pixel.

2 A run-length encoding process (RLE) is used for bitmaps with 4 bits per pixel.

This compression process is described in Chapter 60 on the Windows Bitmap format.

In my experience, the bitmaps have to be stored in uncompressed form at present.

The 4-byte cblmage field at offset 22H indicates the length of the (compressed) bitmap data
area in bytes. The following fields cxResolution and cyResolution define the resolution of the
target unit in pels (pels = picture elements) for the X and Y axes. In this way, an application can
select from a resource the most suitable bitmap for the relevant device.

The cClrllsed field (offset 2EH) specifies how many colors from the color table are used in the
current picture. A picture may contain fewer colors than are possible according to the color table.

The most important colors should therefore be stored at the start of the index table. If the value of
the field = 0, all colors will be used. However, this only applies if fewer than 24 bits per pixel are
stored. If the cBitCount field (offset 1CH) is set to 24, cClrtlsed indicates the size of the reference
table containing the colors. With 24-bit representation, a color table is not normally required.
However, one may be provided for optimization reasons. If the area containing the bitmap data
follows immediately after the BITMAPJNFO header, the field must be set to 0.

OS/2 Bitmap format (BMP, Version 2.x) 1053

The cClrlmportant field (offset 32H) defines the number of colors which are important for the
display. The value 0 indicates that all colors in the reference table are important.

Up to offset 32H, the data structure is the same as that used by Windows 3.x. At offset 36H, the
Windows data structure has been extended. The exact meaning of these values is not known.
According to the information available, OS/2 does not evaluate these fields in version 2.0.

The header may optionally be followed by the table containing the color definitions. Each color is
defined in terms of the proportion of blue, green and red, and requires 3 bytes per color. The length
of the table is determined by the number of colors (bits per pixel). However, the sequence of
individual bytes and the allocation of colors are not clear. While Windows opts for the usual sequence
blue, green, red, the sequence in OS/2 version 2.0 seems to be inverted to red, green, blue.

62.1 The data area

The header data is followed by the data area containing the bitmap data. The picture is scanned
line by line and stored. Data can be compressed if necessary. Each line of the picture is stored
contiguously. If required, missing pixels at the right margin can be filled with null bits up to a limit
of 32 bits. The origin of the picture is at the bottom left corner. Compression is presumably carried
out according to the standard Windows method.

Since version 2.0 of OS/2 uses the same format for bitmap images, icons and pointers, the file
structure has been extended. In the multiple-version format, the first section contains an array of
BITMAP_ARRAY_HEADER structures:

BITMAP_ARRAY_FILE_HEADER

BITMAP_FILE_HEADER

Color Table

BITMAP_ARRAY_FILE_HEADER

BITMAP_FILE_HEADER

Color Table

The structure of the BITMAP ARRAY FILE HEADER is shown below.

Offset Bytes Name Meaning

OOH 2 usType Signature ('BA')

02H 4 cbSize Length of

BITMAPJtflRAYJFILE header

(bytes)

06H 4 offNext Offset of next header

Table 62.3

Structure of a

BITMAP

.ARRAYJILE

header

(continues
over...)

1054 Windows/OS2 file formats

Offset Bytes Name Meaning

OAH 2 cxDisplay Resolution X-axis in pels
OCH 2 cyDisplay Resolution Y-axis in pels

Structure

BITMAPJHLE header

Table 62.3

Structure of a

BITMAP

ARRAY FILE

header

(cont.)

The first word contains the signature 'BA' (BITMAP_ARRAY) to signal an extension to the
header. The 4 bytes at offset 02H define the length of the BITMAP_ARRAYJHLE header in bytes.
Since several bitmaps are generally stored in the structure, a 4-byte pointer to the beginning of the
following BITMAP_ARRAYJILE header is located at offset 06H. The cxDisplay and cyDisplay
fields indicate the resolution provided by the output device (for example, VGA, 640 x 480). This
header is then followed by the BITMAPJ1LE header as already described.

In this case, the cy in BITMAPJNFOJIEADER contains double the value of the picture height.
The reason for this is that two complete bitmaps need to be stored in order to display an icon or a
pointer. The first bitmap defines the XOR-mask which contains the information for inverting a pixel
(0 = do not invert; 1 = invert). The second bitmap contains the AND-mask, which determines
whether a pixel is to be displayed (0 = black/white, 1 = screen/inverse screen). With color images,

one bitmap contains the AND-mask and the XOR-mask and is stored as monochrome. The second

bitmap then stores the color image. In the cy field of the BITMAPJNF02 header, the value for the
color bitmap must correspond to the actual size. However, in the black and white bitmap, the

doubled value must be given. The same applies to the ex field. The definition of the color table is
then followed by the data areas for the different bitmaps. The resolution for icons is defined in the
following stages:

32x32 4 bit/pel (16 colors, VGA)

40x40 4 bit/pel (16 colors, 8514/A, XGA)

32x32 1 bit/pel (monochrome)

20x20 1 bit/pel (monochrome)

16x16 1 bit/pel (monochrome)

Resolutions of 20 x 20 and 16 x 16 are provided for mini-icons.

Further information may be obtained from the IBM PM Programming Reference, Volume Two.

Windows Icon format
(ICO)

W'indows can store icons in EXE and

DLL files or in separate ICO files. This
chapter describes the format of the

Windows 3.x ICO files.

The icons used in Windows are stored as bitmaps of varying resolutions. The files have the .ICO
extension and are stored in the following structure:

Offset Bytes Remarks

Header

OOH 2 Reserved (must be set to 0)

02H 2 Resource type (1 for icons)

04H 2 Number of pictures in file

Resource directory

06H Array with n entries:

1 Icon width in pixels

1 Icon height in pixels

1 Color count

1 Reserved

2 Planes (Windows 3.1)
2 Bits in the icon bitmap (Windows 3.1)

Table 63.1

Structure of a

Windows Icon

file

(continues
over...)

1055

1056 Windows/OS2 file formats

Offset Bytes Remarks

4 Size of pixel array in bytes (icoDIBSize)

4 Picture data offset in bytes

... next entries

'

40 TBitMapInfoHeader

16*4- TRGBQuad-color table

Colors blue, green, red, intensity

512 Byte sequence with color bitmap (XOR)

••
128 Byte sequence with monochrome bitmap (AND)

Table 63.1

Structure of a

Windows Icon file

(cont.)

Windows determines the resolution of an output device and then converts the pixels of the icon

accordingly. The first word in the icon file is reserved and must be set to 0. This is followed by a
word containing the type of the resource. For icons, the value 1 should be stored here. (Cursor
images have the same header but the value 2 is stored as the resource type.) The word at offset
04H indicates the number of pictures in the file. There is usually only one icon stored in an ICO
file.

This header is followed by a field containing n entries which describe the icon. For each
picture, this table contains the dimensions of the icon width x height. The permitted values are

16, 32 and 64 pixels. The ColorCount field contains the number of colors used (2, 8 or 16). The
next 5 bytes are reserved in Windows 3.0. In Windows 3.1, only the first byte is reserved, and the
next two words indicate the number of color levels (planes) and the number of bits in the icon
map. The following 4 bytes indicate the size of the pixel array (in bytes) for the relevant icon. The
double word following this contains the offset from the start of the file to the first image data (DIB).

The structure of the following 40 bytes is unknown. They are followed by the definition table
for the color palette. Four bytes are allocated for the definition of each color. The data area follows
the color table; its start address is defined in the header. Picture data is in uncompressed form, two
bitmaps being stored for each icon. The first bitmap is the XOR-mask containing the color image for
the icon. This bitmap contains 512 bytes. It is followed by the AND-mask containing the
monochrome picture. This picture contains 128 bytes and is used for the transparent section of

the icon.

The cursor format has the same structure. However, the coordinates (x,y) for the relevant
hot-spot are indicated at offset 04H, for every entry in the resource directory. In the icon
format, the number of planes and the number of bitmap bits are shown here.

Windows Metafile format

(WMF)

Bitmap files can only portray point graphics.
Windows enables the storage ofgraphics in the
form of metafiles. A Windows metafile consists

of a series of instructions for the Graphics Device
Interface (GDI). The parameters of the meta-
instructions are determined according to the call-up
conventions of the individual GDI functions. The
meta-instructions may be in memory or in a file. The
following description refers to the file format
(although a similarformat is found in memory).

The metafile consists of a header followed by a data section containing the actual meta-records.

64.1 The Metafile header

The header of a metafile is structured as shown below (Table 64.1):

Offset Bytes Name Remarks

OOH

02H

2

2

mtType

mtHeader

Metafile type
Header length in words

04H 2 mtVersion Windows version

06H 4 mtSize File length in words
OAH 2 mtNoObj Maximum elements

OCH

10H

4

2

mtMaxRec

mtnoPar

Maximum record length
Unused

Table 64.1

Structure of a

WMF header

1057

1058 Windows/OS2 file formats

It should be noted that all lengths in metafiles are indicated in words (2 bytes). The first word
contains the type of the metafile:

0 Metafile is stored in the main memory
1 Metafile is stored in a file

The structure of meta-records is the same for both variants. The following word mtHeaderSize
contains the size of the metafile header in words. At offset 04H, there is a word containing the
Windows version under which the metafile was created. This version is written as a BCD number

(for example, 30H corresponds to version 3.0 and later). At offset 06H, there is a double word
containing the length of the metafile in words. This is followed by the maximum number of objects
that can be contained in the metafile at any one time. This is particularly important for metafiles
that are to be stored in the computer memory. The mtMaxRecord field (offset OCH) defines the
length (in words) of the largest metafile record in the file. The last word in the header is empty.

64.2 Placeable metafiles

In addition to standard metafiles, placeable metafiles (Aldus) have also been defined. These are
standard metafiles which have been prefixed with a 22-byte header. The header contains
additional information on the original size of the metafile and the aspect ratio of the image. The
header is structured as follows:

Offset Bytes Remarks

OOH 4 Binary key for file type
(set to 9AC6CDD7H)

04H 2 Handle (set to 0)

06H 8 Bounding box in units

2-byte left margin
2-byte top margin
2-byte right margin
2-byte bottom margin

OEH 2 Metafile units per inch

10H 4 Reserved (must be 0)

14H 2 Checksum
Table 64.2

Placeable

metafile header

Information on the bounding box around the image is indicated at offset 06H. This is defined as
a rect-structure (4 integer values) and indicates the coordinates of the top left and bottom right
corner of the rectangle. This value must not exceed 32767. The unit of measurement is defined in

Windows Metafile format (WMF) 1059

the word at offset OEH and relates to n units per inch. This value should remain below 1440. The
checksum is formed by XORing the first 10 words in the header. To read this type of metafile, a
Windows application has to remove the 22-byte header and store a standard metafile.

64.3 Metafile records

The header is followed by the area containing the metafile records. These records are structured

as follows:

Bytes

4

2

n*2

Remark

Size of metafile record (in words)
Record type

Array of words containing parameters

The individual metafile record types for Windows 3.x are shown in Table 64.4.

|::>: :':\

Code Record name

001 EH SAVEDC

0035H REALIZEPALETTE

0037H SETPALENTRIES

00F7H CREATEPALETTE

00F8H CREATEBRUSH

0102H SETBKM0DE

0103H SETMAPM0DE

0104H SETR0P2

0105H SETRELABS

0106H SETP0LYFILLM0DE

0107H SETSTRETCHBLTMODE

0108H SETTEXTCHAREXTRA

0127H RESTOREDC

012AH INVERTREGI0N

Table 64.3

Structure of a

metafile record

Table 64.4

WMF record

types (code
order)
(continues
over...)

1060 Windows/OS2 file formats

Code Record name

012BH PAINTREGION

012CH SELECTCLIPREGION

012DH SELECT0BJECT

012EH SETTEXTALIGN

0139H RESIZEPALETTE

0142H DIBCREATEPATTERNBRUSH

01F0H DELETE0BJECT

01F9H CREATEPATTERNBRUSH

0201H SETBKC0L0UR

0209H SETTEXTCOLOUR

020AH SETTEXTJUSTIFICAT10N

020BH SETWINDOWORG

020CH SETWINDOWEXT

020DH SETVIEWPORTORG

020EH SETVIEWPORTEXT

020FH OFFSETWINDOWORG

0211H OFFSETVIEWPORTORG

0213H LINETO

0214H MOVETO

0220H OFFSETCLIPRGN

0228H FILLREGION

0231H SETMAPPERFLAGS

0234H SELECTPALETTE

02FAH CREATEPENINDIRECT

02FBH CREATEFONTINDIRECT

02FCH CREATEBRUSHINDIRECT

02FDH CREATEBITMAPINDIRECT

0324H POLYGON

0325H POLYLINE

0400H SCALEWINDOWEXT

0412H SCALEVIEWPORTEXT

0415H EXCLUDECLIPRECT

0416H INTERSECTCLIPRECT

0418H ELLIPSE

0419H FLOODFILL

041BH RECTANGLE

041 FH SETPIXEL

0429H FRAMEREGION

0436H ANIMATEPALETTE

Table 64.4

WMF record

types (code
order)
(cont.)

Windows Metafile format (WMF) 1061

Code Record name

0521H TEXTOUT

0538H P0LYP0LYG0N

061 CH R0UNDRECT

061 DH PATBLT

0626H ESCAPE

062FH DRAWTEXT

06FEH CREATEBITMAP

06FFH CREATEREGION

0817H ARC

081 AH PIE

0830H CHORD

0922H BITBLT

0940H DIBBITBLT

0A32H EXTTEXTOUT

0B23H STRETCHBLT

0B41H DIBSTRETCHBLT

0D33H SETDIBTODEV

0F43H STRETCHDIB

Table 64.4

WMF record

types

(code order)
(cont.)

The data structures for these metafiles are described in the appropriate Windows manuals (for
example, Windows SDK, Borland Pascal, C++). Extracts containing the structures of the relevant
metafile records are shown below.

64.3.1 ANIMATEPALETTE

This is a function-specific metafile record.

Offset Bytes Remarks

OOH

04H

06H

4

2

2

2

Record size (variable)

Record type (0436H)

Parameters

First entry to be animated

Number of entries (n) to beanimated

Table 64.5

The ANIMATE

PALETTE

record

(continues
over...)

1062 Windows/OS2 file formats

Offset Bytes

n*4

Remarks

Palette entry array with:
1 byte red

1 byte green
1 byte blue
1 byte flag

The record replaces the entries in the logical palette.

64.3.2 ARC

This record defines an arc in a metafile.

Offset Bytes Remarks

OOH 4 Record size (OEH)

04H 2 Record type (0817H)

06H Parameters

2 XI: X-coordinate upper left corner

2 Yl: Y-coordinate upper left corner

2 X2: X-coordinate lower right corner

2 Y2: Y-coordinate lower right corner

2 X3: logical X-coordinate arc
starting point

2 Y3: logical Y-coordinate arc

starting point

2 X4: logical X-coordinate arc

endpoint

2 Y4: logical Y-coordinate arc

endpoint

Table 64.5

The

ANIHATEPALETTE

record

(cont.)

Table 64.6

The ARC record

All parameters are defined as integers and the absolute value of XI
exceed 32,767 units.

X2 and Y2 - Yl may not

Windows Metafile format (WMF) 1063

64.3.3 BITBLT

This record exists in two versions. The record created by Windows versions earlier than 3.0
contains a device-dependent bitmap. After Windows 3.0 the record contains a device-independent
bitmap. The BITBLT record stored by versions earlier than 3.0 contains the following structure:

Offset Bytes Remarks

OOH 4 Record size (variable)

04H 2 Record type (0922H)

06H Parameters

2 High-order word of the raster operation

2 Y-coordinate of source origin

2 X-coordinate of source origin

2 Destination of y-extend

2 Destination of x-extend

2 Y-coordinate of destination origin

2 X-coordinate of destination origin
2 Bitmap width in pixels

2 Bitmap height in pixels

2 Number of bytes per raster line

2 Color planes in the bitmap

2 Number of adjacent color bits

n Device dependent bitmap bits

In Windows 3.0 and higher the record uses the following structure:

Offset

OOH

04H

06H

Bytes Remarks

Record size (variable)

Record type (0940H)
Parameters

High-order word of the raster operation

Table 64.7

The BITBLT

record

(Windows 2.x)

Table 64.8

The BITBLT

record

(Windows 3.x)
(continues
over...)

1064 Windows/OS2 file formats

Offset Bytes Remarks

2 Y-coordinate of source origin
2 X-coordinate of source origin
2 Destination of y-extend
2 Destination of x-extend

2 Y-coordinate of destination origin
2 X-coordinate of destination origin
n BITMAPINFO structure

n Device independent bitmap bits

Table 64.8

The BITBLT

record

(Windows 3.x)
(cont.)

For the BITMAPINFO structure see Chapter 60 on the Windows BMP format (Table 60.2).

64.3.4 CHORD

This function draws a chord. The XI,Yl and X2,Y2 parameters specify the upper left and lower

right corners of a rectangular bounding box for the ellipse.

Offset Bytes Remarks

OOH

04H

06H

4

2

2

Record size (OEH)
Record type (0830H)
Parameters

XI coordinate of upper left corner

2

rectangle
Yl coordinate of upper left corner

2

rectangle
X2 coordinate of lower right corner

2

rectangle
Y2 coordinate of lower right corner

2

rectangle
X3 coordinate of one end of line

2

segment

Y3 coordinate of one end of line

2

segment

X4 coordinate of one end of line

segment

2 Y4 coordinate of one end of line

segment

Table 64.9

The CHORD record

Windows Metafile format (WMF) 1065

The X3,Y3 and X4,Y4 parameters specify the endpoints of a line that intersects the ellipse. The
chord is drawn by using the selected pen and filled by the selected brush.

64.3.5 CREATEBITMAP

This record creates a device-dependent bitmap.

Offset Bytes Remarks

OOH 4 Record size (variable)
04H 2 Record type (06FEH)
06H Parameters

2 Bitmap width in pixels
2 Bitmap height in pixels

1 Color planes

1 Bits per pixel

n*2 Array containing bitmap initialization
string

64.3.6 CREATEBITMAPINDIRECT

This record creates a device-dependent bitmap.

Offset Bytes Remarks

OOH 4 Record size (variable)
04H 2 Record type (02FDH)
06H Parameters

2 Bitmap type (0)
2 Bitmap width in pixels
2 Bitmap height in pixels
2 Bytes per raster line
1 Color planes
1 Bits per pixel
n"2 Array containing bitmap

Table 64.10

The

CREATEBITMAP

record

Table 64.11

The

CREATEBITMAP

INDIRECT record

1066 Windows/OS2 file formats

64.3.7 CREATEBRUSH

The structure of this record (F8H) is unknown.

64.3.8 CREATEBRUSHINDIRECT

This record defines a logical brush which has a style, color and pattern.

Offset Bytes Remarks

OOH 4 Record size (variable)

04H 2 Record type (02FCH)

06H Parameters

2 Style

n Color table

2 Hatch
Table 64.12

The

CREATEBRUSH

INDIRECT record

The brush style is is defined as a DIB bitmap, a hatched brush, a hollow brush, a pattern brush
or a solid brush. The color table consists of an array of 16-bit indices into the current logical
palette or a table containing literal RGB values.

64.3.9 CREATEFONTINDIRECT

This record defines a logical font.

Offset Bytes Remarks

OOH 4 Record size (variable)

04H 2 Record type (02FBH)

06H Parameters for font

2 Height in logical units

2 Width in logical units

2 Escapement (angle 1/io degree

between base line and X-axis)

2 Orientation (value ignored)

Table 64.13

The CREATEFONT

record

(continues
over...)

Windows Metafile format (WMF) 1067

—_____

Offset Bytes Remarks

2 Weight for font
0 do not care

100 thin

200 extra-light
300 light
400 normal

500 medium

600 semi-bold

700 bold

800 extra-bold

900 heavy
1 Italic (if not zero)
1 Underline (if not zero)
1 Strikeout (if not zero)
1 Character set

0 ANSI

1 default

2 symbol
128 SHIFTJIS

255 OEM

1 Output precision
1 Clip precision
1 Quality
1 Pitch and family
n Face name

64.3.10 CREATEPALLETTE

This function creates a logical palette.

:::::::::::::::^::s::;:::;:;::::::. r : .•:;;• :- •• : y* • •;:;,; ^:.:..:: :; :•:. ,

Offset Bytes Remarks

OOH 4 Record size (variable)

04H 2 Record type (0F7H)

06H Parameters

2 Version

2 Entries (n)

4*n Color palette

1 byte for red, green, blue, flags

Table 64.13

The CREATEF0NT

record

(cont.)

Table 64.14

The CREATE-

PALETTE record

1068 Windows/OS2 file formats

64.3.11 CREATEPATTERNBRUSH

In Windows 2.x, this function creates a logical brush which has a pattern defined in a bitmap.

Offset Bytes Remarks

OOH 4 Record size (variable)

04H 2 Record type (01 F9H)

06H Parameters

2 Bitmap width

2 Bitmap height
2 Bytes per raster line

1 Color planes
1 Bits per pixel

4 Pointer to bit values

n Bit pattern

This function uses a modified structure in Windows 3.x.

Offset Bytes Remarks

OOH 4 Record size (variable)

04H 2 Record type (0142H)

06H Parameters

2 Bitmap type

2 Color table type

n BITMAPINFO structure

n Bitmap

Table 64.15

The CREATE

PATTERNBRUSH

record

(Windows 2.x)

Table 64.16

The CREATE

PATTERNBRUSH

record

(Windows 3.x)

For the BITMAPINFO structure see the BMP format description in Chapter 60 (Table 60.2).

Windows Metafile format (WMF) 1069

64.3.12 CREATEPENINDIRECT

This record creates a logical pen which has a style, a width and a color.

Offset Bytes Remarks

OOH

04H

06H

4

2

2

2

2

2

Record size

Record type (02 FAH)
Parameters

Style (solid, dash, dot, and so on)
Pen width (x) in logical units
Not used

Color Table 64.17

The CREATE

PENINDIRECT

record

64.3.13 CREATEREGION

This record specifies a rectangular region.

OOH

04H

06H

4

2

2

2

2

2

Record size

Record type (06FFH)

Parameters

X upper left corner

Y upper left corner
X lower right corner
Y lower right corner

The X - Y value must not exceed 32,767 units.

Table 64.18

The CREATE

REGION record

1070 Windows/OS2 file formats

64.3.14 DELETEOBJECT

This record deletes an object. The record stores a handle as a parameter to the object table.

Offset Bytes Remarks

OOH

04H

06H

4

2

2

Record size

Record type (01 FOH)

Parameters

Handle

64.3.15 DRAWTEXT

This record draws a formatted text in a rectangle.

Offset Bytes Remarks

OOH

04H

06H

4

2

2

2

8

n

Record size

Record type (062FH)

Parameters

Format

String length -1 (ASCIIZ string)
Rectangle coordinates

String

Table 64.19

The

DELETEOBJECT

record

Table 64.20

The DRAWTEXT

record

Windows Metafile format (WMF) 1071

64.3.16 ELLIPSE

This record defines an ellipse.

Offset Bytes Remarks

OOH 4 Record size

04H 2 Record type (0418H)

06H Parameters

2 XI coordinate of upper left corner

2 Yl coordinate of upper left corner

2 X2 coordinate of lower right corner
2 Y2 coordinate of lower right corner

The center of the ellipse is the center of the bounding rectangle.

64.3.17 ESCAPE

Table 64.21

The ELLIPSE

record

This record specifies an escape sequence to access the facilities of a particular device.

Offset Bytes Remarks

OOH 4 Record size

04H 2 Record type (0626H)

06H Parameters

2 Escape number

2 Number of following bytes

n Escape sequence
Table 64.22

The ESCAPE

record

1072 Windows/OS2 file formats

64.3.18 EXCLUDECLIPRECT

This record creates a new clipping region which consists of the existing clipping region minus the
specified rectangle.

Offset Bytes Remarks

OOH 4 Record size

04H 2 Record type (0415 H)
06H Parameters

2 XI coordinate of upper left corner
2 Yl coordinate of upper left corner
2 X2 coordinate of lower right corner
2 Y2 coordinate of lower right corner

64.3.19 EXTTEXTOUT

Table 64.23

The EXCLUDE

CLIPRECT record

This record writes a character string within a rectangular region using the current font.

Offset Bytes Remarks

OOH 4 Record size

04H 2 Record type (0A32H)
06H Parameters

2 Yl coordinate of first char

2 XI coordinate of first char

2 String length

2 Rectangular type
8 Rectangle structure (X1,Y1,X2,Y2)

n String
n Word array containing inter-character

distances
Table 64.24

The EXTTEXTOUT

record

Windows Metafile format (WMF) 1073

64.3.20 LINETO

This record defines a line from the current position to the specified point.

Offset Bytes Remarks

OOH 4 Record size

04H 2 Record type (0213H)

06H Parameters

2 X coordinate of end point

2 Y coordinate of end point Table 64.25

The LINETO

record

The end point is not included in the line.

64.3.21 MOVETO

This record moves the current position to the specified point.

Offset Bytes Remarks

OOH 4 Record size

04H 2 Record type (0214H)

06H Parameters

2 X coordinate of new point

2 Y coordinate of new point
Table 64.26

The MOVETO

record

The end point is not included in the line.

1074 Windows/OS2 file formats

64.3.22 OFFSETCLIPRGN

This record moves the clipping region of the given device by the specified offsets.

Offset Bytes Remarks

OOH 4 Record size

04H 2 Record type (0220H)
06H Parameters

2 Move x units

2 Move y units
Table 64.27

The OFFSET

CLIPRGN record

64.3.23 OFFSETVIEWPORTORC

This record (412H) modifies the viewport origin relative to the current values. The record uses the

same structure as the OFFSETCLIPRGN record.

64.3.24 OFFSETWINDOWORG

This record (40FH) modifies the viewport origin relative to the current values. The record uses the
same structure as the OFFSETCLIPRGN record.

64.3.25 PAINTREGION

This record fills the specified region with the selected brush.

Offset Bytes Remarks

OOH

04H

06H

4

2

n

Record size

Record type (012BH)
Parameters

Region to be filled
Table 64.28

The PAINTREGION

record

Windows Metafile format (WMF) 1075

64.3.26 PATBLT

This record creates a bit pattern on the specified device.

Offset Bytes Remarks

OOH 4 Record size

04H 2 Record type (061DH)
06H Parameters

2 X coordinate of upper left corner

2 Y coordinate of upper left corner
2 Width

2 Height
8 Raster operation code

Table 64.29

The PATBLT

record

The pattern is defined by a rectangle (in logical units) and a raster code. The raster code defines
the function which is applicable to the destination bitmap (all black, all white, invert, copy, OR).

64.3.27 PIE

Defines a pie-shaped wedge by drawing an arc whose center and two end points are joined by lines.
This record uses the same structure as the ellipse record. The opcode is 81 AH.

64.3.28 POLYGON

This record defines a polygon consisting of two or more points (vertices).

Offset Bytes Remarks

OOH

04H

06H

4

2

2

n*4

Record size

Record type (0324H)
Parameters

Number of points n
List of points (X,Y)

Table 64.30

The POLYGON

record

1076 Windows/OS2 file formats

64.3.29 POLYLINE

This record defines a polyline (series ofline segments) and uses the following record structure:

Offset Bytes Remarks

OOH 4 Record size

04H

06H

2 Record type (0325H)
Parameters

2 Number of points n

n*4 List of points (X,Y)

64.3.30 POLYPOLYGON

This record defines several polygons and uses the following structure.

Table 64.31

The POLYLINE

record

Offset Bytes Remarks

OOH

04H

06H

4

2

o
it

n*2

n*4

Record size

Record type (0538H)
Parameters

Number of polygons (n)
Number of points for each polygon
List of points (X,Y)

Table 64.32

The POLYPOLYGON

record

64.3.31 RECTANGLE

This record defines a rectangle.

Offset

OOH

04H

Bytes Remarks

Record size

Record type (041BH)

Table 64.33

The RECTANGLE

record

(continued
over...)

Windows Metafile format (WMF) 1077

Offset Bytes Remarks

06H Parameters

2 XI coordinate of upper left corner

2 Yl coordinate of upper left corner

2 X2 coordinate of lower right corner

2 Y2 coordinate of lower right corner
'""'• ' w*^^"^^^~«

Table 64.33

The RECTANGLE

record

(cont.)

The rectangle is filled with the current brush and drawn with the selected pen.

64.3.32 RESIZEPALETTE

This record resizes the current palette.

Offset

OOH

04H

06H

64.3.33

Bytes

ROUNDRECT

Remarks

Record size

Record type (0139H)

Parameters

New number of palette entries

This record defines a rectangle with rounded corners.

Offset Bytes Remarks

OOH

04H

06H

4

2

Record size

Record type (061CH)

Parameters

Table 64.34

The

RESIZEPALETTE

record

Table 64.35

The ROUNDRECT

record

(continues
over..)

1078 Windows/OS2 file formats

Offset Bytes

2

2

2

2

2

2

Remarks

XI coordinate of upper left corner

Yl coordinate of upper left corner

X2 coordinate of lower right corner
Y2 coordinate of lower right corner

Ellipse width for corners

Ellipse height for corners Table 64.35

The ROUNDRECT

record

(cont.)

The rectangle is filled with the current brush and drawn with the selected pen.

64.3.34 SCALEVIEWPORT

This record defines the viewport scale.

Offset Bytes Remarks

OOH 4 Record size

04H 2 Record type (0412H)
06H Parameters

2 Current x multiplicator
2 Current x divisor

2 Current y multiplicator
2 Current y divisor

The new value is calculated by: new = old * multiplicator / divisor

64.3.35 SCALEWINDOWEXT

Table 64.36

The SCALE

VIEWPORTEXT

record

This record uses the same structure as the SCALEVIEWPORTEXT record and modifies the extension

of the windows. The record type is 400H.

Windows Metafile format (WMF) 1079

64.3.36 SETBKCOLOUR

This record defines a new background color. The opcode 201H is used. The record contains a color
(4 bytes) as a parameter.

64.3.37 SETBKMODE

This record defines a new background mode. The opcode 102H is used. The record contains a word
defining the new mode (opaque or transparent).

64.3.38 SETDIBITSTODEV

This record contains bits from a device-independent bitmap for a device.

Offset Bytes Remarks

OOH 4 Record size

04H 2 Record type (0D33H)
06H Parameters

2 Flag for color palette
2 Number of scan lines of the DIB

2 First scan line in the DIB
2 Y-coordinate of source in DIB

2 X-coordinate of source in DIB

2 Height of rectangle in DIB
2 Width of rectangle in DIB
2 Y-coordinate of origin

destination rectangle in DIB
2 X-coordinate of origin

destination rectangle in DIB
TO BITMAPINFO structure

n Bitmap
Table 64.37

The

SETDIBITSTODEV

record

For the BITMAPINFO see the BMP format description in Chapter 60 (Table 60.2).

1080 Windows/OS2 file formats

64.3.39 SETPALETTEENTRIES

This record sets an RGB color value and flag in a range of entries in a logical palette.

Offset Bytes Remarks

OOH 4 Record size

04H 2 Record type (0037H)

06H Parameters

2 First entry to be set in the palette

2 Number of entries to be set (n)

n*4 1 byte for red, green, blue, flag

64.3.40 SETPIXEL

This record defines a pixel for the X,Y-point in a specified color.

Offset Bytes Remarks

OOH 4 Record size

04H 2 Record type (041 FH)

06H Parameters

4 X,Y position

4 Color for pixel (red, green, blue, flag)

64.3.41 SETPOLYFILLMODE

Table 64.38

The SETPALETTE

ENTRIES record

Table 64.39

The SETPIXEL

record

This record defines the new fill mode for polygons. The record contains one parameter (word)
defining the new fill mode. The record type is 106H.

Windows Metafile format (WMF) 1081

64.3.42 SETROP2

This record defines the new drawing mode. The mode is stored as an integer (word) and the record
type is 104H.

64.3.43 SETSTRETCHBLTMODE

This record sets the stretching mode (black on white, color on color, white on black). The mode is

stored as an integer (word) and the record type is 107H.

64.3.44 SETTEXTALIGN

This record contains a (word) flag which sets the text alignment. The record type is 12EH.

64.3.45 SETTEXTCHAREXTRA

This record sets the amount of extra space (word parameter) in logical units to be added to each
character. The record type is 108H.

64.3.46 SETTEXTCOLOR

This record (type 209H) defines the text color. The color is stored as a 4-byte parameter (red,
green, blue, flag).

64.3.47 SETTEXTJUSTIFICATION

This record contains a parameter to justify a text.

Offset Bytes Remarks

OOH 4 Record size

04H 2 Record type (020AH)
06H Parameters

2

2

Extra space

Number of break characters
Table 64.40

The SETTEXT

JUSTIFICATION

record

1082 Windows/OS2 file formats

64.3.48 SETWINDOWEXT

This record defines the extension of the associated window.

Offset Bytes Remarks

OOH 4 Record size

04H 2 Record type (020CH)
06H Parameters

2

2

X-extension in logical units

Y-extension in logical units
Table 64.41

The

SETWINDOWEXT

record

64.3.49 SETWINDOWSORG

This record defines a new window origin for the associated window.

Offset Bytes Remarks

OOH 4 Record size

04H 2 Record type (020BH)

06H Parameters

2 X-origin in logical units

2 Y-origin in logical units
Table 64.42

The

SETWINDOWSORG

record

Windows Metafile format (WMF) 1083

64.3.50 STRETCHBLT

This record contains a device-independent bitmap. There are two structures, one for early
Windows 2.x versions (code B23H) and one for Windows 3.x versions (code B41 H).

Offset Bytes Remarks

OOH 4 Record size

04H 2 Record type (0B41H)
06H Parameters

2 Low-order word raster operation

2 High-order word raster operation

2 Source of Y-extend

2 Source of X-extend

2 Y-coordinate of source origin
2 X-coordinate of source origin

2 Destination of Y-extend

2 Destination of X-extend

2 Y-coordinate of destination origin
0
_. X-coordinate of destination origin
?i BITMAPINFO structure

n Bitmap
Table 64.43

The STRETCHBLT

record

For the BITMAPINFO structure see the BMP format description in Chapter 60 (Table 60.2). In

Windows 2.0 the BITMAPINFO structure is not applicable. The same structure is used as for the
BITBLT record.

64.3.51 STRETCHDIB

This record contains a device-independent bitmap which is moved to a window.

Offset Bytes Remarks

OOH 4 Record size

04H 2 Record type (0F43H)

06H Parameters

2 Raster operation performed

Table 64.44

The

STRETCHDIBITS

record

(continues
over...)

1084 Windows/OS2 file formats

Offset Bytes Remarks

2 Flag (color)

2 Height source bitmap

c. Width source bitmap
2 Y-coordinate of source origin
2 X-coordinate of source origin
2 Height of destination rectangle
2 Width of destination rectangle
2 Y-coordinate of destination origin

2 X-coordinate of destination origin
n BITMAPINFO structure

n Bitmap

Table 64.44

The

STRETCHDIBITS

record

(cont.)

For the BITMAPINFO structure see the BMP format description Chapter 60 (Table 60.2).

64.3.52 TEXTOUT

This record contains a character string which must be displayed in the current font.

Offset Bytes Remarks

OOH

04H

06H

4

o

2

2

2

2

Record size

Record type (0521H)

Parameters

String length

String

Y-coordinate of start point

X-coordinate of start point
Table 64.45

The TEXTOUT

record

1 A WMF reader or writer should

• records. The data structures are

use the Windows metafile functions to handle the data in the

described in the Windows SDK.

Write binary format (WRI)
Wrindows 3.0/3.1 comes with the word-

processing program Write. Write uses a
binary format to store its data. The format

has much in common with Word, and WRIfiles can
therefore be read by Word, although some of the
format information is not handled correctly.

Figure 65.1 shows an extract from a memory dump of a WRI file.

Header

31 BE 00 00 00 AB 00 00-00 00 00 00 00 00 A2 00

1

00 00 03 00 04 00 04 00-04 00 04 00 04 00 00 00

00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

I — Text area

54 68 65 73 20 69 73 20-20 61 20 20 20 54 65 73

This is a Tes

74 00 0A 52 6F 6D 61 6E-20 38 20 50 75 69 6E 74

t. .Roman 8 Point

0D 0A 00 00 00 00 00 00-00 00 00 00 00 00 00 00

I Format
description

80 00 00 00 93 00 00 00-77 00 A2 00 00 00 73 00

02 00 0E 00 20 55 6E 69-76 65 72 73 20 28 45 31

• - - . U n i v e r s (E 1

29 00 07 00 10 52 6F 6D-61 6E 00 00 00 00 00 00

Figure 65.1

The Windows

Write format

1085

1086 Windows/OS2 file formats

The data is stored in 128-byte blocks. These blocks are divided into three groups:

♦ Header

♦ Text area

♦ Formatting

A brief description of the structure of each of these groups is given below.

65.1 The Write header

The header contains 128 bytes and is based closely on the structure of the MS-Word header. It
contains the signatures for valid WRI files and pointers to the text. Table 65.1 shows the header

structure.

Offset Bytes Name Remarks

OOH 2 wldent Signature

(must be 31H BEH or 32H BEH)

02H 2 dty Signature (must be OOH OOH)

04H 2 wTooL Signature (must be OOH ABH)

06H 8 Reserved

(OOH OOH OOH OOH OOH OOH OOH OOH)

OEH 4 fcMac Pointer to 1st byte after text area

12H 2 pnPara Block number of paragraph formats

14H 2 pnFntb Block number of footnote table

16H 2 pnSep Block number of section formats

18H 2 pnSetb Block number of section table

1AH 2 pnPgtb Block number of page table

1CH 2 pnFfntb Block number of font face-name table

20H 66 Reserved (for Word)

60H 2 pnMac Count of blocks in document

62H 2 Reserved (OOH OOH)

64H 28 Unused (OOH OOH)

Table 65.1

Write header

The first 14 bytes correspond to the Word signature and are always coded with the same values.
If the file is a WRI file, the signature 31H BEH will be stored in the first two bytes. If the signature
32H BEH appears, the WRI file contains additional OLE objects (from Windows 3.1 onwards). The
subsequent entries in the header relate to the text document. In f cMac (offset OEH), there is a 4-

Write binary format (WRI) 1087

byte pointer containing the offset of the character after the last valid character in the text. The
number of text bytes can therefore be calculated as f cMac - 128.

The following entries contain block numbers. The absolute offset in bytes, from the start of the
file to the start of a block, can thus be calculated as:

Block number * 128

For example, with a block number of 10, the text will be located at offset 1280. At offset 12H,

there is a pointer to the block containing the paragraph information. The block containing the
character information is placed after the last text block (see also the description of Word format,

Chapter 16). The block number can be calculated from the text length ((text length + 127)/128).
The word at offset 14H contains a pointer to the block containing the footnote information

(FNTB). If this table is missing, the field will contain the value of pnSep. At offset 16H, there is a
pointer to the block containing the section information (section property, SEP). If the table is
missing, this field points to pnSetb. The entry at offset 18H defines the block number of the section
table, SetB). If the table is missing, a pointer to pnPgtb is stored. Page breaks (page table, PGTB)
are also stored in their own block, and the block number is stored at offset 1AH. If this table is

missing, Write stores a pointer to pnFf ntb in the field. At offset 1CH, Write stores the pointer to the
font face-name table (FFNTB). If this pointer is missing, the entry points to pnMac.

The word at offset 60H is then set to 0 and is used to distinguish between Word and Write files.
If the word at offset 60H = 0 and the word at offset 62H is non-zero, the file is a Word file.
Otherwise, the text is stored in WRI format.

The remaining bytes in the header up to 7FH are unused and set to 0.

65.2 Text and image areas

The text area begins at offset 128 (80H). This area is also divided into 128-byte blocks. The end of
the text (offset from start of file) is indicated by the pointer f cMac. Any unused bytes in the last
block are filled with fill bytes.

It is important that the characters in the text area are ANSI characters and not (by contrast
with Word) ASCII characters. Windows uses the ANSI character set, which largely agrees with the
ASCII character set in the lower 128 characters. The only differences are in the codes above 128,
for example, special characters such as A, O, U and so on.

The following format information in the text also needs to be taken into account:

♦ Paragraphs are terminated with a 'hard' RETURN (code ODH, OAH). This is the sequence created
by pressing the RETURN key.

♦ All explicit page breaks are indicated in the text using the form feed character (code OCH).

♦ Line breaks and word breaks are not stored in the text; they are carried out by Write directly at
the output stage.

♦ Tabulators in the text are indicated by the character 09H.

Information on formatting the text is stored in the file trailer.

1088 Windows/OS2 file formats

65.3 Pictures in the text area

Within the text, Write can store pictures and OLE objects (Windows 3.x) directly. A picture within
the text is stored as a byte sequence, like a paragraph. The information that a picture is involved is
contained in the format instructions. For each picture, a special bit is set in the paragraph
formatting (PAP) (see below). The byte sequence for a picture is structured as follows:

Offset Bytes Remarks

OOH 8 METAFILEPICT structure (hMF field
undef.)

08H 2 Offset of picture left border

(in twips = 'urn inch)

OAH 2 Horizontal size in twips

OCH 2 Vertical size in twips

OEH 2 Number of following bytes (set to 0)
10H 14 Additional information for bitmaps

only

1EH 2 Number of bytes in header

(cbHeaderNumber)

20H 4 Number of following bytes (WMF or

BMP)

24H 2 Scaling factor (X)

26H 2 Scaling factor (Y)

28H X Fill bytes (see cbHeaderNumber)

..H X Picture contents as bitmap or metafile Table 65.2

Structure for

pictures in Write

The picture is stored either as a Windows bitmap (BMP) or a Windows metafile (WMF). The
length of the header is stored in the word at offset 1EH. The header is followed by the picture data.
If the word at offset OOH is set to 99 (decimal), the picture data is in bitmap format. This setting in
METAFILEPICT is only used by Write. If the value is not 99, the data is in metafile format. From
Windows 3.1 onwards, however, the signature E3H is used for BMP data. The coding of these
formats is described in the following sections.

WRITE Binaryformat (WRI) 1089

The word at offset OEH is not used from Windows 3.x onwards. It has been replaced by the
length field at offset 20H. This field defines how many bytes the picture contains. Unless the
picture has already been scaled, the entries at offset 24H and 26H have a scaling of 1000 (decimal)
which corresponds to a 100% scaling.

65.4 OLE objects in the text area

From Windows 3.1 onwards, it is possible to merge OLE objects (pictures, sounds, videos and so
on) into Write files as objects. In this case an OLE header is used instead of a picture header. The
structure of the OLE header is as follows:

Offset Bytes Remarks

OOH 2 OLE signature (0E4H)

02H 4 Unused

06H 2 Object type (1 = static, 2 =

embedded, 3 = link)

08H 2 Offset of picture left margin
(in twips = 1/i44o inch)

OAH 2 Horizontal size in twips

OCH 2 Vertical size in twips

OEH 2 Unused

10H 4 Number of bytes in the object data

that follows the header

14H 4 Unused

18H 4 Hexadecimal number that, when

converted to an 8-digit string,

represents the unique name of the

object
1CH 2 Unused

1EH 2 Number of bytes in this header
20H 4 Unused

24H 2 Scaling factor (X)
26H 2 Scaling factor (Y)
28H X Object contents

Table 65.3

Structure for

OLE objects in
Write

1090 Windows/OS2 file formats

65.5 The format area

The text block is followed by various blocks containing text formatting information. The first
format block always starts at a 128-byte boundary. The blocks containing character and paragraph
information have an identical structure. Each block is stored in the following format:

Offset Bytes Remarks

OOH 4 Byte number (offset) of first character
covered by this page of format
information

04H ?i*4 Array of format descriptors FOD

(rgfod)
..H X Group of format properties FPROPs

(grpfprop)

7FH 1 Number of format descriptors FODs on

this page

Table 65.4

Block structure

for character and

paragraph
formats

The individual blocks begin with a pointer to the first character in the text to which the
formats apply. The pointers always contain the offset from the start of the file. This is followed (at
offset 04H) by a field containing format descriptions. This field contains the following data
structure for each entry:

Offset Bytes Remarks (FOD)

OOH

04H

4

2

Byte number after last character
covered by this FOD

Byte offset from beginning of FOD
array to corresponding format
properties (FPROP)

Table 65.5

Structure of a

format descriptor
entry (FOD) in the
array

An item of format information relates to all characters (from the start pointer) until a new
format definition is found. The start of the new definition is located in the FOD, in the first four
bytes. The following word contains the offset from the start of the field containing the format
descriptors to the format description (format property, FPRO) in the format block. The entry FFFFH
indicates that there is no valid format description. This is a variable area which is built up
dynamically during formatting. The first entry in the area containing the format description begins
at the end of the block (offset 7EH). The last byte in the block (offset 7FH) contains a counter, in

WRITE Binary format (WRI) 1091

which the number of entries in the format-descriptor (FOD) table is stored. If the block is full, a
new block with the above structure will be created. The area containing the format description is
structured as follows:

Offset Bytes Remark (FPROP)

OOH

01H

1

X

Number of bytes in this FPROP
Format description (CHP and PAP)

65.6 Character property (CHP)

Table 65.6

Structure of a

format property
(FROP)

The entries in the format description field relate either to character properties (CHP) or to
paragraph properties (PAP). One entry contains all the format bits required to describe the
relevant format of the character or paragraph. The coding for character and paragraph formats is
shown below.

This block contains the format description for individual characters. It begins at a 128-byte
boundary and is structured as follows:

Offset Bytes Remark

OOH 1 Reserved (ignored by Write)
01H 1 Character format

BitO: bold

1: italic

2..7: font code (low bits
index in FFNTB)

02H 1 Font size in half points (default 24)
03H 1 Bit 0: underlined character

1-5: reserved

6: set for page only
7: reserved

04H 1 Bit 0-2: font code (high bits)
3-7: reserved

05H 1 Character position
0: norma]

1.. 127: superscript
128..255: subscript Table 65.7

Format

description for
characters (CHP)

The standard CHP has byte 0 = 1, byte 2 = 24 and all other bytes
contains a character counter with a value greater than 0.

0. The format area (FPROP)

1092 Windows/OS2 file formats

65.7 Paragraph property (PAP)

The format description for paragraphs is structured as follows:

Offset Bytes Remark

OOH 1 Reserved (must be set to 0)

01H 1 Bit 0-1: Justify
0 = left

1 = centered

2 = right

3 = both

2-7: reserved (must be set to 0)

02H 1 Reserved (must be set to 0)

03H 1 Reserved (must be set to 0)

04H 2 Right indent (V20 point)

06H 2 Left indent (*fco point)
08H 2 First line left indent

(relative to left indent)

OAH 2 Interline spacing (default 240)

OCH 2 Reserved (0)

OEH 2 Reserved (0)

10H 1 Page flag
Bit 0: 0 = header, 1 = footer

1-2: reserved (0 = paragraph,

else header or footer

3: Start of printing
0 = do not print on first page
1 = print on first page

4: Paragraph type

0 = text

1 = picture

5-7: reserved (0)

11H 5 Reserved (must be set to 0)

16H 14*4 Up to 14 tab descriptors (TBD)
Table 65.8

Paragraph format
(PAP)

The description of the tabulator position (tab descriptor) in the paragraph format is structured
as follows:

WRITE Binary format (WRI) 1093

Offset Bytes Remarks (TBD)

OOH

02H

03H

2

1

1

Indent from left margin to tab stop
(in V20 point)
Tab type flag

Bit 0-2: 0 normal tabs, 3 decimal tabs
3-5: reserved

6-7: reserved (must be 0)
Reserved (ignored)

65.8 Section property

The format for a section property (SEP) is shown in the following table:

Offset Bytes Remark

OOH

01H

03H

05H

1

2

2

2

Count of bytes used (excluding
this byte)
Reserved (must be 0)
Page length in V20 point (default is
11x1440 = 15840)
Page width in]/2o point (default is
8.5 x 1440 = 12240)

Table 65.9

Format of tab

positions

The format description for a standard paragraph contains 61 in byte 0, 30 in byte 2 and 240 in

bytes 10 to 11. All other bytes (12-78) are set to 0. Every FPROP must contain a value greater than
0 in the character counter.

One important difference between paragraph format and character format is that there must be
a format description for every paragraph. With character formatting, a long text (including several
paragraphs) may well be stored in the same format. In this case, one format description applies to
all characters. There must be no gaps in the format description; that is, the format description
begins with the first character at offset 128 and ends with the last valid character.

In Write files, all header and footer texts are stored at the beginning of the document. Texts are
defined as paragraphs. If Write is reading files which have been produced by Word, Write can only
recognize header and footer lines at the beginning of the text. If there are subsequent definitions
in the text, these are described as normal text.

Footnotes and sections in Write are not managed via a footnote table. Write only creates one
section per document and all header and footer texts are located at the beginning of the document
before the first paragraph.

Table 65.10

Format of a

section property

(SEP)
(continues
over...)

1094 Windows/OS2 file formats

Offset Bytes Remark

07H 2 Reserved (must be 0)
09H 2 Top margin in V20 point (default is

1440)

OBH 2 Text height in 1'zo point (default is

9x1440 = 12960)
ODH 2 Left margin in V20 point (default is

1.25 x1440 = 1800)

OFH 2 Width of text area in V20 point
(default is 6 x 1440 = 8640)

Table 65.10

Format of a

section property
(SEP)
(cont.)

The lower and right margins can be calculated from the above information. Provided the above
settings are adopted, there is no need for a section table (SETB) or a section property (SEP). If a
section table is used, the first byte of the SEP must be set to a value between 1 and 16. The
associated section table is structured as follows:

Offset Bytes Remark

OOH 2 Number of sections (always 2 in

Write)

02H 2 Undefined

04H Array of section descriptors (SEDs):

4 Offset of 1st character following

section (cp)
2 Undefined

4 Offset of associated section property

(fcSep)
Table 65.11

Structure of a

section table

A Write document has only two section descriptors (SED). The rest of the table is occupied by
fill-bytes up to the limit of 128 bytes. The first SED entry in the variable cp indicates that the SED
will relate to all characters in the document. The f cSep field contains a pointer to the SEP block of
the file. The second SEP entry in the table is a dummy and contains the value FFFFFFFFH in the
f cSep field.

WRITE Binary format (WRI) 1095

As an option, a PGTB section may follow in the block directly after the SEP section. This page

table (PGTB) is structured as follows:

Offset Bytes Remarks

OOH 1 Number of page descriptors PGD
(cpgd) 1 ton

01H 1 Undefined

02H X Array containing PGD:
2 Page number in printed document

(pgn)
4 Offset of first character in printed page

(cpHin)
Table 65.12

Structure of a

page table (PGT)

The field containing the page descriptions has n entries. The remaining area up to the end of
the block is occupied by fill bytes.

65.9 Font table (FFNTB)

The Font Face Name table (FFNTB) can be stored in one block. The structure is as follows:

Offset Bytes Remark

OOH 2 Number of font face names (FFNs)
02H X List of font face names (FFN) with:

2 Number of bytes following in this FFN,
Not including these 2 bytes (cbFf n)

2 ID of font family (f fid)
n Font name as ASCIIZ text (szFf n)

Table 65.13

Structure of a

font table

(FFNTB)

1096 Windows/OS2 file formats

If the value FFFFH is stored in the cbFfn field, the next entry in the table is stored in the
following block. A value of 0 in this field indicates that there are no further entries. Permitted
values for the font ID number are shown below:

F_D0NTCARE

F_R0MAN

F_SWISS

F_M0DERN

F_SCRIPT

F_DEC0RATIVE

Additional ID numbers can be defined in more recent versions of Windows.

Windows 3.x Calendar format
(CAL)

TLhe Windows Calendar program has its own
format for storing data for appointments and
notes. The following description relates to the

version used with Windows 3.x.

66A The header

The header contains a signature indicating a valid calendar file, and information on the number of
entries. Table 66.1 shows the structure of the header:

Offset Bytes Remarks

OOH Signature

(B5H A2H BOH B3H B3H BOH A2H B5H)
08H 2 Count of dates(cDateDescriptors)
OAH 2 Alarm (in minutes)
OCH 2 Sound (Boolean)
OEH Interval between appointments
10H 2 Interval in minutes

12H 2 Time format <>0 = 24-hour

14H 2 Start time

16H 50 Reserved

Table 66.1

The CAL header

1097

1098 Windows/OS2 file formats

The first 8 bytes contain the signature which identifies a valid calendar file. This sequence is
constructed by adding the letter codes for the following character sequence:

' C + ' r' =b5

'A' + 'a' = a2

' L' + 'd' =b0

' E' + " n' = b3

'N' + ' e" = b3

' D' + ' L' = b0

'A' + ' a' = a2

' R' +'c' =b5

The next word contains an integer counter with the number of dates in the file. The following
12 bytes are divided into six fields and contain global entries for the file. The first word defines the
alarm time (early ring) in minutes. This is followed by a logical variable (f Sound) which defines
whether the alarm is to be audible. The word at offset OCH defines the breakdown of the

appointment calendar:

0 = 15 minutes

1 =30 minutes

2 = 60 minutes

The following word indicates the interval between appointments in minutes. When set to true,
the variable (f24HourFormat) indicates that the clock time will be displayed in 24-hour format. If

the value is false (0), a 12-hour display will be used. The last word used defines the earliest time
used in the day display. This time appears in the first display for a day, and is stored as the number
of minutes after midnight. The remaining bytes of the 64-byte header are reserved.

66.2 The data area

The header is followed by the data area containing the appointment entries. This data area
consists of one field, in which each entry refers to one complete day. The number of entries in this
array is described by the cDateDescriptors field in the header. Each element in the array
consists of 12 bytes, with the following meanings:

Windows 3.x Calendar format (CAL) 1099

Offset Bytes Remarks

OOH 2 Date in days since 1.1.1980
02H 2 Date mark

128 : rectangle
256 : parentheses

512: circle

1024 : cross

2048 : underscore

04H 2 Alarms set for the day
06H 2 Offset of 64-byte block containing

information on the day
08H 2 Reserved (FFFFH)

OAH 2 Reserved (FFFFH)
Table 66.2

Structure of the

data area

The first word contains the number of the day as an integer value, indicating the number of
days since 1.1.1980. This is followed by a flag specifying how the date should be displayed. At
offset 04H, the number of entries per day at which an alarm is to be set off is stored. The last word
at offset 06H contains a pointer to a 64-byte block containing information on the day. Only the
lower 15 bits in this word are used. The highest bit is always set to 0. As an example, if the value 6
is stored in the word, the offset to the block containing the daily information is calculated as 6*64
(bytes). The remaining two bytes are reserved and coded FFFFH.

66.3 Day-specific information area

All the information on a given day is stored at 64-byte boundaries after the array containing the
description of the date. The structure of this information is as follows:

Offset Bytes Remarks

OOH

02H

04H

06H

08H

OAH

..H

2

2

2

2

2

X

n*x

Reserved (must be 0)
Days since 1.1.1980
Reserved (must be 1)
Length of note text in bytes
Number of appointments
Text of note

Block of appointments
Table 66.3

Day-specific
information

1100 Windows/OS2 file formats

The word at offset 06H contains the length of the text information, which is followed by a field
containing details of the appointments. The number of appointments is stored at offset 08H. Each
entry in the block (array) of appointments is structured as follows:

Offset Bytes Remarks

OOH 1 Size of the appointment, in entry bytes

01H 1 Flags

Bit 0 = 1 alarm

1=1 special time

02H 2 Time (in minutes from 00:00)
04H X ASCIIZ string associated with the

appointment
Table 66.4

Appointment

block

The first value indicates the number of following bytes. Thus, the position of the following
entry can always be determined. The text field contains the user's description of the appointment.

Windows Cardfile format
(CRD)

The structure of the Windows 3.x Cardfile format is particularly simple. The header comprises 5
bytes, as follows:

Offset

OOH

03H

Bytes Remarks

Signature ('MGC')

Number of entries (cards)

Table 67.1

CRD file header

This header is followed by a text area (index line) containing the header texts (index lines) for
the individual cards. The first entry begins at offset 05H. The following entries are then always 34
bytes from the start of the previous entry. Each entry in the area has the following format:

Offset Bytes Remarks

OOH

06H

OAH

OBH

21H

6

4

1

22

1

Nullbytes (OOH OOH OOH OOH OOH OOH)
Offset of data area for card

Flag byte (OOH)
Card header (index line text)
End byte (OOH)

Table 67.2

Index area

(CRD file)

1101

1102 Windows/OS2 file formats

The pointer indicates the offset from the start of the file to the first byte of the card data area.
This data area is located after the index area containing the header texts for the cards.

The data area for a card can contain text and graphics. The following distinctions are therefore
made:

Text

Text and graphics

Graphics

Blank card

The data structure of the card depends on these distinctions.

Graphics Text Graphic Remarks

and Text

0-1 0-1 # 0-1 Bitmap length

2-3 * 2-3 Graphic width(*)

4-5 * 4-5 Graphic height (*)

6-7 * 6-7 X-coordinate graphic (*)
8-9 * 8-9 Y-coordinate graphic (*)

A-x * A-x Bitmap (*)

x + 1/x + 2 2-3 x + 1/x + 2 Length of text entry (#)

x + 3 - y 4-z * Text(*) Table 67.3

Structure of a

cardfile data area

The bytes marked with the character (#) are OOH unless a graphic or text is present. The value
of x is calculated as the length of the bitmap graphic + 9 bytes. The value for y is calculated as x +
2 + length of the text entry. The bytes marked with the character (*) do not exist unless a text or
bitmap is stored. The value for z is calculated as 3 + length of the text entry.

The address (offset) of the first byte of a card is stored in the corresponding index table entry.
The end of a card is not indicated by null bytes or in any other way.

Texts in the card are stored in ASCII format. An LF character is added to every CR character. In

Windows 3.1, the Cardfile format has been extended somewhat to accommodate OLE information.
However, the format description is not known to me at present.

Clipboard format
(CLP)

The Windows Clipboard stores the contents of
complete screens or of individual windows and
marked areas. The contents of the clipboard

can be pasted into other Windows programs or saved
in a CLP file. Unfortunately, I know of no external
program that can read CLP files directly. The
information given in this chapter describes the
clipboard format, as I understand it so far.

The file begins with a 4-byte header which identifies the file as a clipboard.

Offset Byte Remarks

OOH 2 File ID signature (50H C3H)
02H 2 Format count

04H 2 Format ID

06H 4 Length of data area (Clipboard)
OAH 4 Offset of data block (in bytes)
OEH 79 Format name (private text)

Data structure in offset 04H-0EH

repeated
... Clipboard data areas

Table 68.1

Clipboard format

The first word contains the signature which marks a valid CLP file. This is followed by a word
defining the number of data blocks in the clipboard. Several blocks with different formats can be
stored in one file. The header is followed by n blocks (n = the number in the format count)

1103

1104 Windows/OS2 file formats

containing information on the data areas. The first word of each such block contains a code
describing the format of the data block. So far, the following data formats have been defined:

CF_TEXT 1

CF_BITMAP 2

CF_HETAFILEPICT 3

CF_SYLK 4

CF_DIF 5

CF_TIFF 6

CF_0EMTEXT 7

CF_DIB 8

CF_PALETTE 9

CF_OWNERDISPLAY 80H

CF_DSPTEXT 81H

CF_DSPBITMAP 82H

CF DSPMETAFILEPICT 83H

Some of these formats have been described in the preceding chapters of this book. The next
field contains the length in bytes of the associated data area. This is followed by a field containing
a 4-bit offset from the start of the file to the first byte of the associated data area. The last entry in
the block contains a 79-byte area for the names of private clipboard formats. Figure 68.1 shows an

extract from a CLP file.

50 C3 01 00 02 00 CE 06-02 00 5D 00 00 00 42 69

P 3 . . . B i

74 26 6D 61 70 00 60 03-00 00 BD 00 9D 09 92 11

07 3C 9D 09 00 00 9B 3B-B4 07 9E 09 00 00 05 00

. < ;

00 00 3D 09 3D 09 C7 11-B0 25 35 09 9E 09 05 00

. . = . = % 5

Figure 68.1
Dump of a CLP
file

This illustration contains a bitmap, as can be seen from the entry in the name field. This area is
followed by the data areas for the clipboard. The coding for these areas is unknown to me (except
for those formats already described above).

Windows 3.x group files
(CRP)

The Windows 3.x program manager maintains
information describing which programs belong
to a group in separate files with the extension

. GRP. The structure of a GRP file (as far as I can
determine it) is described below. It should, however,
be pointed out that all this information has been
acquired through reverse engineering, and there may
therefore be inaccuracies.

Table 69.1 defines the structure of a Windows 3.x group file.

Offset Bytes Remarks

OOH 4 File ID signature 'PMCC
04H 2 Checksum

06H 2 Group file size in bytes
08H 2 CmdShow flag
OAH 8 Group window coordinates

12H 4 Lower left corner group window
16H 2 Pointer to group name

18H 0 Horizontal display resolution

1AH 2 Vertical display resolution

1CH 2 Bits per pixel

1EH 2 Planes

20H 2 Number of programs in the group
22H n*2 Array of program entries

Table 69.1

Header of

a GRP file

1105

1106 Windows/OS2 file formats

The header of a group file begins with a 4-byte signature ('PMCC'). This is followed by a 2-byte
checksum. The checksum is derived from the difference of all words (2 bytes) within the file. The
exception here is the word containing the checksum (offset 04H), which is not counted. The last
byte of the GRP file is also ignored if the length is an odd number (because a word cannot be
formed from the last byte by itself). The checksum calculation can be described as follows:

csum = 0

csum = csum - 1st word

csum = csum - 2nd word

; Warning: skip 3rd word

csum = csum -4th word

The size of the group file in bytes is stored at offset 06H. The following word (CmdShow) defines
how the program manager is to display the group:

Value Flag

OOH Hide

01H Show normal

02H Show minimized

03H Show maximized

04H Show no activate

05H Show

06H Minimize

07H Show minimized and no activate

08H Show no activate

09H Restore

Table 69.2

CmdShow values

The coordinates for the group window (RECT-structure: XI, Yl, X2, Y2) are stored at offset
OAH. The following field contains the coordinate point (POINT structure) of the lower left corner of
the group window relative to the parent window.

Offset 16H contains a pointer to the null-terminated string containing the name of the group.
The following two fields define the image resolution to which the group icon has been set. The
number of bits per pixel for the icon bitmap is stored at offset 1CH. This is followed by the number
of color levels in the icon.

A word containing the number of entries in the following data structure is stored at offset 20H.
This data structure begins at offset 22H and contains the entries for the programs of the relevant
group. The following data structure is defined for each entry:

Windows 3.x group files (GRP) 1107

Bytes Remarks

4 Coordinate (X,Y) of lower left corner
of the icon in the group

2 Index value for the icon

2 Count of bvtes in the icon resource

2 AND-mask count (in bytes) for the icon

2 XOR-mask count (in bytes) for the icon
2 Header offset

2 AND-pointer

2 XOR-pointer

2 Offset to program name
2 Offset to the command string

2 Offset to the icon path
Table 69.3

Group file data
structure

The index value defines the icon number in an EXE file. This is followed by the number of
bytes of the icon in the resource file. The fields containing the AND and XOR masks contain the
number of bytes in the relevant masks. The header offset defines the offset from the start of the
group file to the resource header for the icon. This is followed by two words containing pointers to
the AND and XOR masks. The next word defines the offset from the start of the group file to a string
with the item name. The following word contains the offset from the start of the group file to the
string with the executable program name. The last entry specifies an offset from the start of the
group file to a string that specifies the path where the icon file is located. The GRP file has one
such data area for each entry in the program group.

Sound formats

File formats discussed in Part 6

Creative Music Format (CMF) 1110

Soundblaster Instrument format (SBI) 1121

SoundBlaster Instrument Bank format (IBK) 1125
Creative Voice format (VOC) 1126
Adlib Music format (ROL) 1133

Adlib Instrument Bank format (BNK) 1138
AMIGA MOD format 1140

AMIGA IFF format 1145

Audio IFF format (AIFF) 1146
Windows WAV format 1147

Standard MIDI format (SMF) 1150
NeXt/Sun Audio format 1171

A great many formats are available for sound representation. They
include IFF files (Chapter 25), which can also register sounds, and

k manufacturer-specific sound files. MIDI formats defined by the MIDI
Association set the standard in this field. Part 6 describes the most
importantfile formats for the storage of music and sounds.

1109

Creative Music Format
(CMF)

Creative Labs has defined its own format for the
storage of sound data, based on the MIDI
specifications. CMF files contain information

on the instruments used in addition to the actual

musical data.

A CMF file is divided into several blocks as shown in Figure 70.1:

Header Block

Instrument Block

Music Block
Figure 70.1
Structure of a

CMF file

The data can be read sequentially and is stored in Intel format. Sounds are classified according
to pitch and instrument. This differs from the approach used in other formats, which are generally
based on digitized values and feedback systems. Only sounds defined for the instrument can be
represented. However, the advantage is that the amount of data to be stored can be very significantly
reduced.

70.1 CMF header

The header has a fixed structure as shown in Table 70.1:

1110

Creative Music format (CMF) 1111

Offset Bytes Remarks

OOH 4 File ID (43H 54H 4DH 46H)

04H 2 Version

06H 2 Offset of instrument block

08H 2 Offset of music block

OAH 2 Cycles per quarter note

OCH 2 Cycles per second

OEH 2 Offset of music title

10H 2 Offset of composer's name

12H 2 Offset of comment

14H 16 Used channel table

24H 2 Number of instruments

26H 2 Basic speed

28H n Space for title, comments, and so on.
Table 70.1

Structure of a

CMF header

The first four bytes of a CMF file contain the signature 'CTMF'. A BCD-coded version number is
stored at offset 04H (for example, 01 OAH = 1.10).

At offset 06H, there are two (word) offset pointers to the following blocks. The pointer at offset
06H defines the start of the instrument block, relative to the start of the file. The second pointer
indicates the start of the music block.

The number of rhythmic cycles per quarter note is stored at offset OAH. The following word
(offset OCH) defines the number of rhythmic cycles per second. In this context, cycles are not
equivalent to musical beats; this value establishes the speed of the output. In CMF format, the
output is divided into rhythmic cycles. Each cycle represents the smallest unit of time within
which output data can be presented. The cycles per second field contains values between 20 and
150. The cycles per quarter note field at offset OAH defines the duration of each quarter note,
calculated in rhythmic cycles. This word is only significant when calculating the length of a sound
(duration = cycles per quarter note/cycles per second).

At offset OEH, there are three words containing pointers to comment fields. These comment
fields, if present, are stored in the area provided at offset 28H. The first word points to a string
containing the title of the music. Each CMF file can contain one music title, which is stored as an
ASCIIZ string at the specified offset in the header. If the pointer contains the value 0, there is no
music title in the file. The second pointer defines the offset of the ASCIIZ string containing the
name of the composer. Here too, the value 0 indicates that there is no corresponding string. The
field at offset 12H contains a pointer to an optional comment, stored as an ASCIIZ string. If this
pointer contains the value 0, the comment string is not present.

CMF format uses up to 16 channels (regardless of how many channels are on the Soundblaster
card). At offset 14H, the header contains a table of 16 bytes. Each byte is allocated to one of these
(1 to 16) channels. If a byte contains the value 0, the corresponding channel is not used in the
CMF file. The value 1 indicates that the channel is used.

1112 Sound formats

The word at offset 24H indicates how many instruments are used in the CMF file. This data also
determines the size of the instrument block.

The word at offset 26H defines the basic speed of a musical composition. However, this
parameter does not appear to be generally used and is (presumably) defined in the header for
reasons of compatibility.

Space is provided at offset 28H to accommodate various ASCIIZ strings (music title, composer,
comments). If no text is stored, the instrument block will begin here.

70.2 Instrument block

The Instrument block follows immediately after the header. The position of the instrument block
is indicated in the header at offset 06H. All instruments used in the CMF file are defined in this

instrument block. The block contains 16 bytes for each instrument, structured as follows:

Offset Bytes Remarks

OOH 1 Modulator characteristic

01H 1 Carrier characteristic

02H 1 Modulator amplitude

03H 1 Carrier amplitude

04H 1 Modulator attack/decay

05H 1 Carrier attack/decay

06H 1 Modulator sustain/release

07H 1 Carrier sustain/release

08H 1 Modulator wave form

09H 1 Carrier wave form

OAH 1 Feedback/link

OBH 5 Reserved for future use
Table 70.2

Structure of an

instrument entry

The number of instruments and therefore the number of stored 16-byte entries in the

instrument block is at offset 24H in the header of the CMF file. The first byte defines the
characteristic of the modulator and is structured as shown in Table 70.3:

Creative Music format (CMF) 1113

Bits Remarks

0-3

4

5

6

7

Multiplication factor

Envelope shortening

Envelope type

Vibrato effect

Tremolo effect
Table 70.3

Coding of the
modulator

characteristic

The second byte describes the characteristic of the carrier signal, coded in the same way (see
Table 70.3). The byte at offset 02H defines the amplitude of the modulator. This byte contains the
attenuation factor and the parameter for amplitude attenuation:

Bits Remarks

0-5

6-7

Attenuation factor

Amplitude attenuation
Table 70.4

Coding of the
modulator

amplitude

The byte at offset 03H describes the carrier amplitude, coded as shown in Table 70.4. The
modulator attack/decay value is stored at offset 04H:

Bits

0-3

4-7

Remarks

Decay

Attack Table 70.5

Coding of the
attack/decay byte

The same information for the carrier is stored at offset 05H. The byte at offset 06H contains the
modulator sustain/release value. This value describes two values of an ADSR envelope curve:

1114 Sound formats

Bits Remarks

0-3

4-7

Release

Sustain

Bits

0

1-2

4-7

Remarks

Link

Feedback modulator

Reserved (must be set to 0)

The remaining 5 bytes are reserved for future extensions.

70.3 Music block

Table 70.6

Coding of the
sustain/release

byte

The byte at offset 07H contains the sustain/release value for the carrier. The coding shown in
Table 70.6 also applies to this byte. Offsets 08H and 09H contain one byte each indicating the wave
form of the modulator and the carrier. The wave form is only coded in the two lowest bits 0 and 1.
Bits 2 to 7 must be set to 0. Information relating to feedback/link is stored in the byte at offset
OAH, coded as shown in Table 70.7:

Table 70.7

Coding of the
feedback/link

byte

The Music block contains the actual data for the musical composition in the file. The development

team from Creative Labs drew on the MIDI definition and also adopted certain sections of this
structure.

The music block consists of a sequence of commands for the output of sounds and for control
functions. These commands are named, in accordance with the MIDI specifications, as events. One
interesting feature is that only the pitch and the duration are needed to enable an output to be
made. An instrument channel defines whether a listener hears a trumpet, a guitar, and so on.

Each event must be preceded by a pause (rest) command, that is, commands for the output of

sounds, control commands and pauses (rests) are interspersed. If no pause is needed between two
events, the pause time is set to 0.

Creative Music format (CMF) 1115

70.4 Structure of a Pause command

A Pause (rest) command consists of a record of variable length. The bytes in the record are coded
as shown in Figure 70.2.

1 xxxxxx 1 xxxxxx 0 xxxxxx

Figure 70.2
Structure of a Pause command

The individual bytes contain the length of the pause in rhythmic cycles, in bits 0-6. If bit 7 is
set to 1, there is a following byte. In the last byte, bit 7 is set to 0. To determine the value, the
uppermost bit of each byte read must be ignored; that is, the remaining bits of the individual bytes
are closed up.

The value determined in this way indicates the duration of the pause in rhythmic cycles. The
duration of the pause in seconds can then be calculated as follows:

Duration = Length of pause (in rhythmic cycles) / rhythmic cycles per second.

The number of rhythmic cycles per second is stored at offset OCH in the header. The length of a
pause can generally be coded in one byte (0 .. 127). The first pause record occurs at the start of
the music block.

70.5 Commands within the music block

Each Pause (rest) command is followed by an event recorded in the music block. On the basis of

the MIDI specifications, the CMF format recognizes the commands defined in Table 70.8.

Code

9xH

8xH

BxH

CxH

Remark

Sound on

Sound off

Control command

Program command
Table 70.8

CMF music block

commands

For example, commands beginning with a code in the range 90H-9FH switch on a sound. This

sound will continue until switched off again by a command with a code in the range 80H-8FH.
Since there must be a pause between events, this pause generally specifies the length of the sound.

1116 Sound formats

At this stage, the sound has not been allocated to an instrument. This allocation is achieved by
the 4 lowest bits in the command byte indicated in Table 70.8 by the character x The values 0 to
OFH represent the instrument channels 1 to 16, the actual instrument involved being decided in
the instrument block. Code 90H, for example, switches on a sound in instrument channel 1.

70.5.1 The Sound on command

The Sound on command contains three bytes with the following structure:

1 byte event code (9xH)

1 byte note (sound) number (0..127)

1 byte dynamics (0..127)
Table 70.9

Structure of

a Sound on

command

The first byte is used for the event code 9xH and contains the number of the instrument
channel in the lower 4 bits (for example, 90H = instrument channel 1).

The second byte contains the code for the pitch. The range of values is between 0 and 127. The
individual notes (frequencies) are coded in accordance with the MIDI specification (see following
sections). Concert pitch a' , for example, is represented by the value 45H. Each semitone step
upwards or downwards alters this value by 1.

The third byte defines the (attack) dynamics of the instrument and is only relevant to
instruments that support such dynamics. In CMF format, dynamics are represented simply as a
volume value in the range 0 (quiet) to 127 (maximum volume). As soon as the command is
recognized, the sound will be emitted. The sound can only be switched off by a Sound off
command.

70.5.2 The Sound off command

The Sound off command contains 3 bvtes structured as follows:

1 byte event code (8xH)

1 byte note (sound) number (0..127)

1 byte dynamic parameter (0..127)
Table 70.10

Structure of

a Sound off

command

Creative Music format (CMF) 1117

The first byte is used for the event code and contains the number of the instrument channel in
the lower 4 bits. The second byte defines the sound to be switched off. With polyphonic
instruments, individual notes in the synthesizer can be switched off separately. The third
parameter is not interpreted in terms of volume; it indicates the dynamics of the decay of the
sound.

70.5.3 Control commands

In addition to the two events for switching a sound on or off, CMF format also recognizes
additional control instructions. It is possible, for example, to set distortion factors.

A control command is introduced with the code BxH, where x represents the desired channel
number. However, this channel number has no effect on some commands.

The second byte in the control record defines one of the four sub-commands and is followed by
the data bytes. The structure of the record depends on the type of command. The sub-commands
are described below.

70.5.3.1 CMF marker command

Markers are used for highlighting certain points in a CMF file. The command is structured as
follows:

1 byte event code (BxH)

1 byte subcode (66H)

1 byte marker number (0..127)
Table 70.11

Structure of a

marker event

The event code BxH introduces the marker. The channel number has no significance here. In
the second byte, the value 66H appears as a subcode. The third byte defines a marker number
between 0 and 127. A CMF file can therefore contain up to 128 sections. This is useful, for
example, when synchronizing pictures and music.

70.5.3.2 CMF mode command

When playing music, it is possible to switch between melody and rhythm in CMF files. The
relevant record is 3 bytes long and has the following format:

1118 Sound formats

1 byte event code (BxH)
1 byte subcode (67H)

1 byte mode flag (0: melody, 1: rhythm)
Table 70.12

Structure of a

mode event

A mode record is introduced by the event code BxH, where x represents the channel number in
the lower 4 bits. Thus, mode switching relates to a defined instrument channel. In the CMF file,
certain channels are allocated to given rhythmic instruments:

Channel Instrument

12 Bass drum

13 Snare drum

14 Tom-tom

15 Top cymbal

16 High-hat cymbal
Table 70.13

Rhythm
instruments in

CMF channels

The channel number from Table 70.3 is reduced by one and added to the first code byte. For
example, BFH will switch the instrument in channel 16.

The third byte defines the direction of switching; 0 switches the instrument to melody; and 1
activates the rhythm section.

70.5.3.3 CMF Increase frequency event

The sub-command Increase frequency is used to modify the tone color (distortion). The command
has the following format:

1 byte event code (BxH)

1 byte subcode (68H)

1 byte frequency shift (0..127)
Table 70.14

Structure of an

Increase

frequency event

This control record is introduced by the event code BxH, where x represents the channel
number in the lower 4 bits. The value 68H appears as a subcode in the second byte. The third byte
defines the increase in pitch in steps of V128 of a semitone. The pitch then increases by the relevant

Creative Music format (CMF) 1119

frequency. The value entered may be between 0 and 127. A value of 32 will increase the frequency
by 32/i2« = lH semitone.

70.5.3.4 CMF Decrease frequency

To lower the pitch of a sound, a sub-command with the following structure is used:

1 byte event code (BCxH)

1 byte subcode (66H)

1 byte marker number (0..127)
Table 70.15

Structure of a

Decrease

frequency event

This control record is introduced by the event code BxH, where x represents the channel
number in the lower 4 bits. The value 69H appears as a subcode in the second byte. The third byte
defines the decrease in pitch in steps of V128 of a semitone.

70.5.4 CMF Program instrument channel command

The CMF format provides its own command for setting a channel to a specific instrument. This
command is structured as follows:

1 byte event code (CxH)
1 byte instrument (0..15)

Table 70.16

Structure

of a Program
instrument

channel event

This command is introduced by the event code CxH, where x represents the channel number.
The second byte is used for the instrument number. Here again, values between 0 and OFH can be
entered. The driver can then read the instrument definition in the instrument block and allocate

this to the relevant channel. In theory, any number of instruments can be described in a CMF file,
with 16 instruments active at any one time. Changes are initiated by a Program instrument event.

70.5.5 CMF End of track command

The end of the CMF music range is introduced by the End of track command. The record is
structured as follows:

1120 Sound formats

1 byte event code (FFH)

1 byte subcode (2 FH)
1 byte endcode (OOH) Table 70.17

Structure of an

End of track

event

In a CMF file, the End of track record always contains the byte sequence FFH 2FH OOH.

70.6 Data repetition in the music block

In the music block of a CMF file, data is stored in uncompressed form. The length of the file is limited
to 64 Kbytes because the pointers only occupy 16 bits. However, a CMF file can accommodate
larger musical compositions. This is achieved by the way in which sounds are listed (rather than
by means of digitized data, as used in other sound formats). Periods of silence and periods without
sound changes are defined by pause times. No data needs to be stored for these periods, which
keeps the CMF files compact.

It is possible to compress the command code. Whenever two successive events have the same
command code (for example, C9H), the second command code can be omitted. For example, if two
notes with the codes 45H and 30H are to be output on channel 3, this can be achieved with the

Sound on record, which contains 3 bytes.

92H 45H 7FH set tone + volume

OOH pause time 0

92H 30H 50H set new tone + volume

The sequence therefore contains 7 bytes and the opcode for event 92H (set tone) occurs twice.
This sequence can be shortened to:

92H 45H 7FH set tone + volume

OOH pause time 0

30H 50H set new tone + volume

The opcode 92H after the pause time is simply omitted. If the CMF reader finds another byte
with a value less than 80H after a pause command, this indicates new parameters for the last event.
The required bytes should then be read in and executed with the last event code. This compression
works because, in the music block, pause commands must alternate with events, and all event
codes are greater than 80H.

cn

Soundblaster Instrument format
(SBI)

Creative Labs has developed additional file
formats for the storage of musical data, which
extend the CMF format. One problem lies in

the adaptation of the instrument definitions to the
sound card. If CMFfiles are involved, please refer to
the instrument definitions in the Instrument block
(see Chapter 70). These parameters can be varied in
order to optimize the sound quality of an instrument.
However, once you have found the optimum setting
for your requirements, you are faced with a problem.
You have to process every CMF file, changing the
instrument definitions in the header.

Creative Labs defined the Soundblaster Instrument file format (SBI) in order to avoid this
problem. Only the data for one instrument is stored in the file. A program can therefore read in
this data before it reads a CMF file. If the CMF file uses the instrument, the instrument
specifications from the SBI file will be used.

The structure of an SBI file is particularly simple. It contains only the data for one instrument
and is limited to a fixed length of 52 bytes (Table 71.1). The data is stored in Intel format.

Offset

OOH

04H

24H

25H

26H

27H

28H

Bytes

4

30

1

1

1

1

1

Remarks

FileID(53H 42H 49H 1AH)

Instrument name

Modulator characteristic

Carrier characteristic

Modulator amplitude
Carrier amplitude

Modulator attack/decav

Table 71.1

Structure of an

instrument file

(SBI)
(continues
over...)

1121

1122 Sound formats

Offset Bytes Remarks

29H 1 Carrier attack/decay

2AH 1 Modulator sustain/release

2BH 1 Carrier sustain/release

2CH 1 Modulator wave form

2DH 1 Carrier wave form

2EH 1 Feedback/link

2FH 5 Reserved for future use

Table 71.1

Structure of an

instrument file

(SBI)
(cont.)

The first four bytes contain the signature 'SBI', followed by the character 1AH. This prevents
the file from being displayed as a DOS text file. This signature is followed by the name of the
instrument as an ASCIIZ string. Every byte need not be used, but standard names for
identification should be entered.

The following byte contains the characteristic for the modulator. This byte is structured as
shown in Table 71.2:

Bits Remarks

0-3 Multiplication factor

4 Envelope shortening

5 Envelope type

6 Vibrato effect

7 Tremolo effect Table 71.2

Coding of the
modulator

characteristic

The next byte describes the characteristic of the carrier signal, coded as for the modulator (see
Table 71.2).

The byte at offset 26H defines the modulator amplitude. This byte contains the attenuation
factor and the parameter for amplitude attenuation:

Soundblaster Instrument format (SBI) 1123

Bits Remarks

0-5

6-7

Attenuation factor

Amplitude attenuation
Table 71.3

Coding of the
modulator

amplitude

The attenuation factor may contain values between 0 and 63, where 0 represents no
attenuation and 63 represents maximum attenuation with minimum volume.

The byte at offset 27H describes the carrier amplitude, coded as for the modulator amplitude
(Table 71.3). Offset 28H indicates the Modulator attack/decay value, as follows:

Bits

0-3

4-7

Remarks

Decay

Attack
Table 71.4

Coding of the
attack/decay byte

The corresponding information for the carrier is stored at offset 29H. The byte at offset 2AH
contains the Modulator sustain/release value. The byte describes two values of an ADSRenvelope

Bits Remarks

0-3

4-7

Release

Sustain
Table 71.5

Coding of the
sustain/release

bvte

The byte at offset 2BH contains the sustain/release value for the carrier, coded as shown in
Table 71.5.

Offsets 2CH and 2DH contain one byte each defining the wave form of the modulator and the
carrier. The wave form occupies only the lowest two bits 0 and 1. Bits 2 to 7 must be set to 0. Data
on feedback/link is stored in the bvte at offset 2EH, coded as shown in Table 71.6.

1124 Sound formats

Bits

0

1-2

4-7

Remarks

Link

Feedback modulator

Reserved (must be set to 0)
Table 71.6

Coding
feedback/link

byte

The remaining 5 bytes are reserved for future extensions. If changes need to be made to an
instrument, simply correct the relevant SBI file. The disadvantage of this format is that a separate
file has to be loaded for each instrument.

Soundblaster Instrument Bank format
(IBK)

To overcome the disadvantages of the SBI file,
Creative Labs defined the Soundblaster
Instrument Bank (IBK). This represents an

extension to the SBI format and is capable of storing
the data for several instruments.

An IBK file must always be 3204 bytes long and can define up to 128 instruments. The data is
stored in Intel format.

Bytes RemarksOffset

OOH

04H

804H

4

128*16

128*9

File ID (49H 42H 3BH 1AH)

Instrument bank

Instrument name

Table 72.1

Structure of a

soundblaster

instrument bank

(IBK)

The first four bytes contain the signature 'IBK', followed by the character 1AH. This is followed
by an area containing 128 blocks of 16 bytes each. These blocks contain the definitions of the
instruments. The coding is the same as for the CMF Instrument block (see Chapter 70).

At offset 804H, there is an area for indexing the instrument names as ASCIIZ strings. Nine bytes

are provided for each instrument. The names should be terminated with a null byte.

1125

Creative Voice format
(VOC)

As well as the CMF specification, Creative Labs,
the developer of the Soundblaster cards, has
defined other sound formats. One of the most

widely distributed formats is the Creative voice
format (VOC). While CMF files store the data in
unpacked form, sound data can be packed in VOC
format. This is possible because the Soundblaster
cards can directly decode and output packed data.

A VOC file is used with the PC and contains the data in Intel format. The file consists of a header

and a data area. The data area is divided into sub-blocks (CHUNKs) (Figure 73.1).

Header block

Data block

Sub-block 1

Sub-block 2

Sub-block n Figure 73.1
Structure

of a VOC file

The header contains the identification code and the version number. The following data area is
divided into sub-blocks with 9 different sub-types and contains the data in either coded or

uncoded form.

1126

Creative Voice format (VOC) 1127

73.1 VOC header

The header of a VOC file always contains 26 bytes and is structured as shown in Table 73.1:

Offset Bytes Remarks

OOH 20 File ID

14H 2 Offset of sound data

16H 2 VOC version

18H 2 ID code version Table 73.1

Structure of

a VOC header

The first 20 bytes contain a signature. This is the string Creative Voice File to which the

character 1AH is appended. (The character 1AH is used to denote the end of a file in MS-DOS.)

There is a pointer at offset 14H, indicating the beginning of the sound area. The value 1AH is

entered here because so far the header is of fixed size.

The two words at offsets 16H and 18H define the version number of the VOC format. The

version is stored in BCD format at offset 16H. For example, the entry OAH 01H (Intel format)

indicates version 1.10. The word at offset 18H contains the version number again in coded form, as

an identification code. The two's complement of the preceding version number is added to the

value 1233H. In the case of version 01OAH, the ID code is calculated as 1233H - 01 OAH = 1129H. The

original version number can then be derived from: 1233H - 1129H.

73.2 VOC data area

The header is followed by the data area of the VOC file. This data area is divided into various sub-

blocks. There are 9 sub-blocks, each with a different structure. As far as I can determine, the 9th
block has been defined as an extension block for future use.

The first byte of a sub-block contains the block type. With most blocks, this is followed by a 3-
byte field containing the block length. The length of a block can be calculated from the three bytes
as follows:

Len = Bytel + 256*Byte2 + 65536*Byte3

The length of the block therefore relates to the length of the data area, that is, the first four

bytes containing the block code and the block length are not included.

The actual data follows this length field. The VOC file always ends with a terminator block

(type 0). The structure of the individual blocks is described below.

1128 Sound formats

73.2.1 Terminator block (type 0)

This sub-block closes the VOC file. The length of a terminator block is just one byte. The block
type is OOH.

73.2.2 Voice Data block (type 1)

This sub-block contains the sound data in the VOC file. The block is structured as shown in Table

73.2:

Offset Bytes Remarks

OOH 1 Block type (01H)
01H 3 Block length

04H 1 Encoded sample rate

05H 1 Compression flag

06H n Sample data
Table 73.2

Structure of a

Voice Data block

(01H)

The byte containing the block type is followed by three bytes containing the block length. The
sample rate is stored at offset 04H in coded form. This is necessary because only values from 0 to
255 can be represented in one byte. The byte at offset 04H therefore contains a time constant,
which can be calculated from the sample rate as follows:

Time constant = 256 - (1000000/sample rate)

The sample rate can be expressed as:

Sample rate = 1000000/(256 - time constant)

A Voice Data block may contain packed or unpacked sample data. The byte at offset 05H
contains compression information:

Code Remarks

0 Unpacked 8 bits

1 Packed to 4 bits

2 Packed to 2.6 bits

3 Packed to 2 bits Table 73.3

Packing code for
VOC data

Creative Voice format (VOC) 1129

Code 0 indicates that the data is unpacked in 8 bits. Code 1 indicates 8 bits packed into 4 bits
(2:1). With code 2, 8 bits are packed into 2.6 bits (3:1). With code 3, 8 bits are packed into 2 bits
(4:1). The compression algorithm is designed in such a way that it filters out certain bits from the
original sound data, which normally has to be sampled at 8 bits per sample. This results in a
reduction in the number of bits, which leads to a loss in quality, because unpacking does not
produce 8 bits. Unpacking is carried out by the Soundblaster chip. The actual voice data is stored
at offset 06H in the format indicated.

73.2.3 Voice Continuation block (type 2)

Large-scale sound data cannot be stored in a Voice Data block because it is of limited length. For
this reason, the Voice Continuation block was introduced. This block also contains sound data and

is structured as follows:

Offset

OOH

01H

04H

Bytes

1

3

n

Remarks

Block type (02 H)

Block length

Sample data

Table 73.4

Structure of a

Voice

Continuation

block (02H)

The byte containing the block type is followed by three bytes containing the length of the
block. These are followed by the sample data. The coding is based on the preceding Voice Data
block.

73.2.4 Silence block (type 3)

Rests in a piece of music are stored in the VOC file in a Silence block. This block is structured as
shown in Table 73.5:

Offset Bytes Remarks

OOH

01H

04H

06H

1

3

2

2

Block type (03H)

Block length

Silence duration

Sample rate
Table 73.5

Structure of a

Silence block

(03H)

11 30 Sound formats

The byte containing the block type is followed by three bytes containing the length of the
block. These are followed by the value for the silence duration. The sample rate is indicated at
offset 06H and stored in coded form as a time constant, as in the Voice Data block, except that the
value is reduced bv 1.

73.2.5 Marker block (type 4)

This sub-block is used for subdividing VOC files and is structured as follows:

Offset Bytes Remarks

OOH 1 Block type (04H)

01H 3 Block length (02H)

04H 2 Marker number
Table 73.6

Structure of a

Marker block

(04H)

The byte containing the block type is followed by three bytes indicating the length of the block.
In a Marker block, the block length is always set to 02H. The following word contains a number for
the marker in the range between 1 and FFFEH. The values 0 and FFFFH are reserved. Marker blocks

can be used for synchronization in the VOC file.

73.2.6 ASCII Text block (type 5)

This sub-block enables comment to be saved in VOC files as ASCII text. It is structured as shown

below:

Offset Bytes Remarks

OOH

01H

04H

1

3

n

Block type (05H)
Block length

ASCII string
Table 73.7

Structure of an

ASCII Text block

(05H)

The byte containing the block type is followed by three bytes containing the length of the
block. The actual text, which should be terminated with a null byte OOH, is located at offset 04H.

Creative Voice format (VOC) 1131

73.2.7 Repeat Loop block (type 6)

This sub-block enables sequences of repetitions to be stored in the VOC file. A repetition sequence
is introduced by a Repeat Loop block and terminated by an End Repeat Loop block. The blocks
within this loop will then be repeated n + 1 times. The factor n is indicated in the Repeat Loop
block.

Offset

OOH

01H

04H

Bytes

1

3

2

Remarks

Block type (06H)

Block length (02 H)

Repeat value - 1
Table 73.cS

Structure of a

Repeat Loop
block (06H)

The byte containing the block type is followed by three bytes containing the length of the
block. This is fixed at 02H. A word containing the repetition counter, which may be between 0 and
65,535, is located at offset 04H. Before starting a repetition sequence, this value should be
increased by 1.

73.2.8 End Repeat Loop block (type 7)

This sub-block terminates a repetition sequence and is structured as follows:

Offset Bytes Remarks

OOH

01H

1

3

Block type (07H)
Block length (OOH)

Table 73.9

Structure of a

End Repeat Loop
block (07H)

The byte specifying the block type is followed by three bytes containing the length of the block.
This is fixed at OOH.

73.2.9 Extended block (type 8)

This sub-block is not mentioned in most of the available documentation. It represents an
extension of the type 1 sub-block. The purpose of the block is to declare a stereo sample. The

11 32 Sound formats

Extended block is therefore positioned immediately before the Voice Data block and is structured
as follows:

Offset Bytes Remarks

OOH

01H

04H

06H

07H

1

3

2

1

1

Block type (08H)

Block length (04H)

Time constant

Compression code

Mode (0: mono, 1: stereo)
Table 73.10

Structure of an

Extended block

(08H)

The byte specifying the block type is followed by three bytes indicating the length of the block.
This is permanently set at 04H. A word containing the time constant is located at offset 04H. This
constant occupies 2 bytes and in the case of mono-samples is generally derived from the sample

rate on the basis of the following formula:

Mono time constant = 65532 - (256E**6/sample rate)

For stereo samples the frequency is halved:

Stereo time constant = (65532 - (256E**6/sample rate))/2

The sample rate can be calculated from the above data. The byte containing the compression
factor is stored at offset 06H, coded as for sub-block 01H (Voice Data). The last byte in the
extended block defines the mode of the following Voice Data block. The value 0 indicates mono-

data, while stereo data is indicated by 1.
The Voice Data block, which necessarily follows the Extended block, contains the actual data.

Here, the two fields for Sample rate and Compression type are ignored. With stereo data, the first
value in the Voice Data block is used alternately for the left channel, the following value being used
for the right channel.

Adlib Music format
(ROL)

The company Adlib has defined its own format
for storing sounds for Adlib cards. This file
contains a header followed by blocks

containing the descriptions of the music events. The
data is stored in Intel format.

Figure 74.1 shows the structure of a ROL file.

Header

Music Events

(Speed)

(Note)

(Instruments)

(Volume)

(Frequency)
Figure 74.1
Structure of a

ROL file

The header contains the identification code and the version number. The data area which

follows is subdivided into events containing the description of the sound data.

74.1 ROL header

The header of a ROL file always contains C9H bytes and is structured according to Table 74.1.

1133

11 34 Sound formats

Offset Bytes Remarks

OOH 4 Format version

04H 40 Internal use

2CH 2 Timer ticks per J/4 note

2EH 7 Used for visual composer
35H 1 Play mode

0: rhythm, 1: melody
36H 143 Internal use

C5H 4 Speed Table 74.1

Structure of a

ROL header

Most of the bytes of the header are used for internal purposes. The number of timer ticks per
quarter note is defined at offset 2CH. The play mode is indicated at offset 35H. The last value (offset
C5H) indicates the basic speed as a 4-byte floating point number.

74.2 ROL data area

The header is followed by the data area of the ROL file. This data area is divided into various sub-
blocks, which are described below.

74.2.1 Tempo block

The initial block contains the tempo definitions in the data area. This block is of variable length
and is structured as follows:

OOH

02H

04H

Number of tempo events

Length of tempo event

Tempo multiplier

repeat last 2 fields Table 74.2

Structure of the

Tempo area

The first word indicates the number of Tempo events in this area. For each Tempo event, the
area contains two fields containing the length (offset 02H) and the tempo, respectively. The length

Adlib ROL format 1135

of an event is given in timer ticks. The tempo is defined as a 4-byte floating point number. This
value is multiplied by the basic tempo setting to produce the tempo for the associated event.

74.2.2 Note block

The Tempo block is followed by the Note block, which is structured as follows:

Offset Bytes Remarks

OOH 15 Internal use

OFH 2 Length of all notes
11H 2 Note

13H 2 Note length
repeat last 2 fields

Table 74.3

Structure of a

Note area

The first 15 bytes of this block are reserved for internal use. The byte at offset OFH defines the
length of all notes in timer ticks. At offset 11H there is a word containing the value of the note.
Before output to the driver, this value must be reduced by 60. The value 0 represents silence. The
word at offset 13H indicates the length of the note in timer ticks. The two fields for the note and
the length are repeated until the total length for all notes is reached.

74.2.3 Instrument block

The Note area is followed by a block containing the instrument definitions. This block is structured
as shown below:

Offset Bytes Remarks

OOH 15 Internal use

OFH Number of instrument events

11H 2 Length of instrument event
13H 9 Instrument name

1CH 3 Internal use

repeat last 3 fields Table 74.4

Structure of an

Instrument area

1136 Sound formats

The first 15 bytes are reserved for internal purposes. They are followed by a word indicating
the number of following entries (number of instrument events). Three fields are stored for each
instrument event. The first field (word) defines the length of the instrument event in timer ticks.
The following 9 bytes contain the name of the instrument as a string, which should be terminated
with a null byte. The last three bytes are reserved for internal use. This structure is repeated n
times.

74.2.4 Volume block

This block defines the volume. It is structured as follows:

Offset Bytes Remarks

OOH 15 Internal use

OFH 2 Number of volume events

11H 2 Length of volume event
13H 4 Volume shift

repeat last 2 fields Table 74.5

Structure of a

Volume area

The first 15 bytes are reserved. They are followed by a word containing the number of events
entered. Each event comprises 6 bytes. The first byte indicates the length of the volume event in
timer ticks. The following four bytes contain a floating point number indicating the change in
volume. These fields are repeated for every event.

74.2.5 Frequency block

The last block in the ROL file defines the pitch (frequency) and is structured as follows:

Offset Bytes Remarks

OOH 15 Internal use

OFH 2 Number of frequency events

11H 2 Length of frequency event

13H 4 Frequency shift

repeat last 2 fields
Table 74.6

Structure of a

Frequency block

Adlib ROL format 1137

The first 15 bytes are reserved for internal purposes. They are followed by a word containing
the number of frequency events. The individual events each contain 6 bytes: a word indicating the
length of the pitch event in timer ticks and a 4-byte floating point number indicating the change in
frequency (pitch). These two fields are repeated for every event.

Adlib Instrument Bank format
(BNK)

In addition to the ROL format, another format
can be used for storing instrument descriptions.
The BNK files store the instrument descriptions in

a similar manner to Soundblasterfiles.

The format of a BNK file is shown below:

Offset Bytes Remarks

OOH 2 Format version

02H 6 Signature 'ADLIB'

08H 2 Number of instruments used

OAH 2 Number of instruments stored

OCH 4 Start of address instrument names

10H 4 Start of address instrument data

14H 8 Reserved

1AH n" 18 Instrument name list

..H n* 33 Instrument data list
Table 75.1

Structure of a

BNK file

The first word contains the version number followed by the signature 'ADLIB'. The number of
instruments used is given at offset 08H. This is followed by a word indicating the number of
instruments defined. This value is important for calculating the lengths of the instrument tables.
The following two 4-byte fields contain pointers to the start of the instrument name and instrument
data tables.

1138

Adlib Instrument Bank format (BNK) 11 39

75.1 Instrument name list

The list of instrument names contains n entries of 18 bytes each structured as follows:

Bytes

2

1

14+1

Remarks

Instrument index

Instrument data exists

(0 no, 1 yes)

Instrument name
Table 75.2

Entry in
Instrument name

list

The first word contains the index for the instrument. The start of the associated data area in

the data table can be calculated from this:

Offset = Start address + 28 * Index

The following byte indicates whether the data table contains values for the instrument (1 =
yes). The instrument name should be entered as an ASCIIZ string and may occupy up to 14
characters.

75.2 Instrument data list

The list containing instrument data contains n entries of 33 bytes each, structured as follows:

Bytes

1

1

29

1

1

Remarks

Instrument type (0 melody, 1 rhythm)

Instrument number if rhythm

Instrument data

Modulator type sine wave

Carrier type sine wave
Table 75.3

Entry in

Instrument data

list

The first byte contains the instrument type (0 melodic, 1 rhythmic). In the case of rhythmic
instruments, the instrument number is indicated in the next byte. The area containing the
instrument data is 29 bytes long, but its structure is not documented. The last two bytes of an
entry define the type of the modulator and the carrier.

AMIGA MOD format

This format was originally defined by
Commodore for the Amiga computer. It has
subsequently been adopted for other platforms,

including the PC.

The MOD format stores both digital data and notes, and belongs to the group of Soundtracker
formats. The individual notes of an instrument are listed digitally and the musical composition is
described in terms of individual notes and their duration. This enables an extremely good
approximation to the sound of an instrument, but also keeps the files compact. The structure of a
MOD file is divided into three blocks (Figure 76.1):

Header Block

Note Block

Instrument

Block

Figure 76.1
Structure of a MOD file

The header contains general information such as the name of the composition or the name of
the instrument. The header is followed by the notes of the musical composition. The third block
contains the digitized instrument data.

Unfortunately, a number of variants have begun to appear, each exhibiting minor structural
differences. The older versions of MOD operate with up to 15 instruments. In one extended
version, up to 31 instruments can be used.

In MOD format, the data is always stored in Motorola format. Length data in the MOD format is
indicated in words, that is, a length in bytes is always double the value indicated.

1140

Amiga MOD format 1141

76.1 MOD header

The header is structured as shown in Table 76.1:

Offset Bytes Remarks

OOH 20 Sound track name

14H 22 Name of first instrument

2AH 2 Length of first instrument data area
2CH 1 Instrument calibration

2DH 1 Instrument volume

2EH 2 Instrument echo

30H 2 Echo length

..H Next instrument Table 76.1

Structure of a

MOD header

The first 20 bytes of a MOD file contain the name of the musical composition. This name must
be terminated with a null byte.

At offset 14H, the definitions of individual instruments begin. Each definition contains 30 bytes.
The first 22 bytes contain the name of the instrument as an ASCII string. These are followed by a
word which defines the length of the instrument data area. This area contains the digitized
instrument data and is located at the end of the file. The length is indicated in words, that is, the
value should be doubled to derive the length in bytes. In the following byte, only the lower 4 bits
are used. This value is interpreted as a signed number (-8 . . 7) and is used for tuning the
instrument. The next byte defines the volume in the lowest 6 bits. The MOD format can repeat
sections of the digitized format as often as required in order to create effects such as reverberation
and echo. The next word indicates the offset from the beginning of the instrument data at which
the repetition begins. The word following this defines the length of the loop (in words).

This 30-byte area is repeated for every instrument. MOD may define 15 or 31 instruments. The
distinction can only be determined by analyzing the area from byte .470(1 D6H). If there is an
instrument name (ASCIIZ string) here, 31 instruments are present. Otherwise, the note area
begins from this offset.

76.2 Note block

The header is followed by the area containing the notes. In the case of MOD files with 31

instruments, the first byte begins at offset 3B6H. With files containing 15 instruments, the offset is
1 D6H. The structure of the note area is shown in Table 76.2.

1142 Sound formats

Offset Bytes Remarks

OOH

01H

02H

..H

..H

..H

1

1

128

4

1024

Pattern number

(internal use by Amiga)
Pattern area

MOD file ID

Note area

Next pattern area
Table 76.2

Structure of

the Note area

The first byte indicates the number of the pattern used in this musical composition. At offset
02H, there is a 128-byte long area (pattern area) which contains the performance sequence of the
following pattern of notes. Each entry can represent values between 0 and 63. The next four bytes
specify an identification code for the MOD file. This can contain various values (for example,
'M.K.'or'FLT4').

This initial section is followed by several 1024-byte areas containing the actual notes. The
sequence in which these notes are performed is specified in the 128-byte pattern area. The
number of areas is defined in the first byte of the note area.

The individual notes are coded in 4 bytes (32 bits) in a 1024-byte area. This gives 256 notes
per block, which is subdivided into 64 blocks of 4 notes each. Since MOD files recognize four
channels, each block contains the relevant notes for these channels. The first entry relates to
channel 1 and is followed by the notes for channels 2, 3 and 4. The next block then begins with

the note for channel 1.

76.3 Instrument data area

The music area is followed by the area containing digitized instrument data. This section contains

the uncompressed, sequentially listed data for each instrument.
The length of this area may vary from instrument to instrument. The relevant lengths are

indicated in the header of the MOD file.

The notes in the music area have a special coding: originally, only the lowest 4 of the 32 bits
were used for specifying the instrument. However, after the MOD file structure was extended to 31
instruments, these 4 bits were no longer adequate. There are consequently two different structures
for the notes in the two MOD file variants.

Amiga MOD format 1143

Bits Remarks

0-3 Pitch

4-15 —

16-19 Instrument number

20-23 Adjective (effect)
24-31 Parameter for adjective

Table 76.3

Structure of a

note in MOD

files with 15

instruments

A somewhat modified structure is used for coding note values in MOD files with 31 instruments.

Bits Remarks

0-3 Upper half byte instrument number

4-15 Pitch

16-19 Lower half byte instrument number

20-23 Adjective (effect)

24-31 Parameter for adjective

Table 76.4

Structure of a

note in MOD

files with 31

instruments

An adjective for the creation of an effect can be allocated to each note via bits 20-23. Up to 16
different adjectives are possible. Bits 24 to 31 are used for parameters. In the case of adjectives
with two parameters, the lower four bits define the first parameter, and the upper four bits define
the second parameter. With a single parameter, the adjective uses all 8 bits. The structure for
adjectives is as follows:

0 Arpeggio: This adjective creates a three note chord (arpeggio) and has two parameters.
The first parameter (bits 24-27) indicates the leap to the second pitch in semitone steps.
The second parameter defines the leap to the third pitch in semitone steps.

1 Portamento Up: This adjective increases the frequency of a note while it is being played.
The increase is defined by one parameter.

2 Portamento Down: This adjective lowers the frequency of a note while it is being played,
at the speed indicated in the parameter.

3 Portamento to Note: Drags the pitch towards a given note. The parameter indicates the
number of semitone steps to the desired note.

4 Vibrato: This adjective has two parameters which set the speed and strength of the
vibrato effect. The vibrato effect alters the frequency while maintaining a constant

1144 Sound formats

amplitude. The first parameter defines how quickly the pitch is to change (duration of

each vibration). The second parameter defines the variation in pitch (frequency).

10 Tremolo: This adjective also has two parameters which make the note louder or softer.
The amplitude of the note is increased or decreased. If the first parameter is 0, the
amplitude will be decreased (softer) as parameter 2 increases; if the second parameter is

0, the amplitude increases at the rate defined in parameter 1.

11 Jump: Interrupts the current note and branches to another pattern. The target of the

jump is indicated in parameter 1, in the range 0-127.

12 Volume Note: This adjective has one parameter which indicates the volume of the note, in

the range 0-63.

13 Next Pattern: Ends the current note and branches to the next pattern. The parameter

must be set to 0.

15 Speed: This attribute contains one parameter giving the speed of performance, in the
range 0-31.

The MOD files can be processed using the above definitions.

AMIGA IFF format

his format was also defined for the Amiga
Computer; however, its use on other platforms
is rare.T

On such computers, the IFF format is used for the storage of graphics, texts and sound. On the PC,
it is essentially the graphics section which has been adopted.

The IFF format comprises a header, followed by individual CHUNKs describing the data. 8SVX
CHUNKs are used for storing sounds. A description of the IFF format with the relevant CHUNKs
can be found in Chapter 25, Interchange file format.

1145

1146

Audio IFF format
(AIFF)

This is a variant of the IFF format which is
used on Apple computers. The AIFC
specification (also known as AIFF-C) is an

extended variant which is capable of storing
compressed data. A description of AIFF CHUNKs is
given in Chapter 25, Interchangefile format.

Windows WAV format

This format represents one of the realizations of
the Resource Interchange Format (RIFF)
proposed by Microsoft. The RIFF format is a

format container, in which various data such as
graphics, sound, and so on, can be packed. The RIFF
files are divided into CHUNKs as in the IFF format.
These CHUNKs determine the content of the data.

Figure 79.1 shows the structure of a RIFF file:

RIFF Header

Format CHUNK

Data CHUNKs

Figure 79.1
Structure of a

WAV file

Each CHUNK is introduced by a 4-byte identification which is followed by a 4-byte field
containing the length of the CHUNK. This is followed by a variable number of parameters. Since
the RIFF format organizes data by word, a CHUNK containing an odd number of bytes must be
padded with a null byte (pad byte). However, it should be noted that this pad byte is not included

in the length. RIFF files store the data in (little-endian) Intel format.

1147

1148 Sound formats

79.1 WAV header

The header of a WAV file begins with a RIFF CHUNK structured as shown below:

Offset Bytes Remarks

OOH

04H

08H

4

4

4

CHUNK name'RIFF'

CHUNK length

RIFF type 'WAVE'
Table 79.1

Structure of a

WAV header

The first four bytes of the WAV file contain the RIFF signature, which is simply the four letters
'RIFF'. This is followed by a 4-byte field containing the length of the header. The header is
terminated with another 4-byte field, indicating the type of the file. For WAV files, the entry here is
'WAVE', thereby establishing the following CHUNKs as WAV CHUNKs.

79.2 FMT CHUNK

The header is followed by the format CHUNK, which is structured as follows:

Offset Bytes Remarks

OOH 4 CHUNK name 'FMT'

04H 4 CHUNK length (1OH)

08H 2 Format type

0: Mono

1: Stereo

OAH 2 Channel numbers

OCH 4 Sample rate (in Hertz)

10H 4 Bytes per second

14H 2 Bytes per sample

1 = 8 bit mono

2 = 8 bit stereo or 16 bit mono

4 = 16 bit stereo

16H 2 Bits per sample Table 79.2

Structure of an

FMT CHUNK

Windows WAV format 1149

The first 4 bytes of the FMT CHUNK contain the signature 'FMT'. This is followed by a 4-byte
field indicating the length of the CHUNK. The following word defines the sampling format (1 =
mono, 2 = stereo).

The next fields define the number of channels used, the sampling rate in Hertz and the number
of bytes per second required. The number of bytes per sample can vary between 1 (mono) and 4
(16 bit stereo). The last field defines the number of bits per sample (8, 12 or 16).

The following data CHUNK can be read on the basis of this information.

79.3 DATA CHUNK

The actual sound data follows the FMT CHUNK and is stored in a DATA CHUNK which is

structured as follows:

Offset

OOH

04H

08H

Bytes

4

4

n

Remarks

CHUNK name'data'

CHUNK length

Data area
Table 79.3

Structure of a

DATA CHUNK

The first 4 bytes of the DATA CHUNK contain the signature 'data'. This is followed by a 4-byte
field indicating the length of the data area. In RIFF files, the DATA CHUNKs always have the same
structure, that is, the data area always follows the length data. Interpretation of the data is
governed by the preceding FMT CHUNK. With sound files, the data is indexed sequentially. For
each sample, n bits have to be read. With an 8-bit mono sample, the data should be read and
output byte by byte. With stereo samples, the values are stored alternately for the left and right
channels.

t
With WAV files, there is generally only one DATA CHUNK. However, it is possible to
arrange several CHUNKs one after the other, in which case several DATA CHUNKs
may occur.

Standard MIDI format
(SMF)

The development of the MIDI file format is due
to the efforts of the two major keyboard
manufacturers Roland and Sequential Circuit,

who defined a standard for synthesizer interfaces in
1984. This standard is currently in general use for
linking devices and is known as the MIDI interface.
In order to exchange data sampled with these
devices between different systems, a file format was
also defined. The Standard MIDIfile format (SMF) is
now available for various platforms and MIDIfiles
can be exchanged without conversion. Under
Windows, for example, this format is used in MIDI
files.

The format is based to a considerable extent on the MIDI commands for communication with
other devices, and data is stored in the form of events. The structure of MIDI files is based on the
IFF format. A MIDI file consists of several blocks called CHUNKs (Figure 80.1).

Header CHUNK

Track CHUNKs

Figure 80.1
Structure of a MIDI file

These CHUNKs are read and interpreted sequentially. The data in MIDI files is stored in (big-
endian) Motorola format. There are currently only two CHUNKs for MIDI files, a header CHUNK
and the track CHUNK which contains the sound data.

1150

Standard MIDI format (SMF) 1151

80.1 MIDI Header CHUNK

The header CHUNK of a MIDI file has a fixed structure as shown in Table 80.1:

———,

Offset Bytes Remarks

OOH 4 File ID (4DH 54H 68H 64H)

04H 4 CHUNK length

08H 2 SMF type (0,1,2)

OAH 2 Number of tracks

OCH 2 Time format
Table 80.1

Structure of a

MIDI header

CHUNK

The first four bytes of a MIDI file contain the signature 'MThd', a certain indication that a file is
a MIDI file. At offset 04H, there is a four-byte value indicating the length of the header. In MIDI
version 1.0, this length is fixed at OOH OOH OOH 06H, that is, the data area of the header contains 6
bytes.

The next two bytes indicate the type of the MIDI file. In version 1.0, three different MIDI types
are defined.

0 The Type 0 MIDI file contains only the data from one sound track. This MIDI type can be
used if, for example, only one instrument is being sampled.

1 Type 1 is the most commonly used MIDI variant. It enables several independent
tracks to be stored. Different instruments can be sampled in different tracks, which
considerably simplifies follow-up processing. The number of tracks is indicated in the
header.

2 Type 2 is another MIDI variant with several tracks. These tracks, however, do not
represent separate instrument channels. They contain complete sections of a musical
composition. These sections do not necessarily belong to the same piece of music.

The number of tracks (and also the number of data blocks) is stored at offset OAH. With type 0
files, the value is always set to 1. The last word in the header CHUNK defines the time format used
in the track CHUNK. Here, there are two options:

• The output speed can be defined in ticks per quarter note. This measurement is usual with
sequencers that subdivide a quarter note (crotchet) into ticks. The more ticks per quarter note
used, the better the time resolution will be.

• The other alternative is used for dubbing in film and video technology. In this context, the
sounds relate to particular images or sequences. One frame indicates the number of pictures
per second. A subframe defines '/kid frames. An SMPTE time code is used as the time format.

1152 Sound formats

The distinction between the time systems used is made via bit 15 of the last word in the
header. If this bit is set to 1, the MIDI format is based on the SMPTE time code. This format
subdivides time from the start of a picture sequence into:

Hours:minutes:secondsd'rames: subframes

The number of frames (pictures per second) is dependent on the video standard used (24, 25,
30 and 30-drop frames). Drop frames enable synchronization with the US NTSC standard, which
uses exactly 29.97 pictures per second. At the beginning of each minute, the SMPTE system
simply omits two frames, thereby compensating for the extra lines of the US standard.

If bit 15 is set, bits 8 to 14 indicate the frame number of the Time System. The value -29
corresponds to the correction value of 30-drop frames. Bits 0 to 7 define the number of subframes
(^100 pictures per second).

If bit 15 is unset, the tick method will be used. The tempo or the rate of rhythmic cycles is
stored not in the header but in the tracks. If this information is not entered, the default settings

are tempo = 120 and rhythm = 4/4.

80.2 Track CHUNK

The header CHUNK is followed by the track CHUNKs. These exhibit the usual structure for
CHUNKs (Table 80.2).

Offset Bytes Remarks

OOH

04H

08H

4

4

n

CHUNK ID (4DH 54H 72H 6BH)

CHUNK length

Data area Table 80.2

Structure of a

Track CHUNK

The first four bytes of a track CHUNK contain the signature 'MTrk'. This is followed by the
4-byte field indicating the length ofthe parameter area. This area is ofvariable length and contains
the data for one track.

This data consists of a sequence of commands for the output of sounds and for control
purposes. In accordance with MIDI specifications, the commands are called events. In addition to
MIDI events, meta-events may also occur in this area.

Before each event, there must be a Delta time value, defining the time interval until the
execution of the next event. If there is to be no waiting time, Delta time should be set to 0.

Standard MIDI format (SMF) 1153

80.3 Structure of a Delta time command

A Delta time entry consists of a record of variable length, coded as shown in Figure 80.2:

1 xxxxxx 1 xxxxxx 0 xxxxxx
Figure 80.2
Structure of a

Delta time value

The delay time is divided into 7-bit parcels and stored in individual bytes. Since the length

varies with the size of the Delta time value, bit 7 is used as an end marker. In the first bytes, bit 7
is set to 1. Only in the last byte of the value is bit 7 = 0. In this way, the Delta time can be built up

from several bytes and decoded without difficulty. The uppermost bit of the bytes read must be
ignored, that is, the remaining bits of the individual bytes should be closed up.

The value determined in this way indicates the duration of the pause (rest) in the time format.
If the time format used is Ticks per second, the Delta time should be divided by Ticks per quarter.
With the SMPTE time system, the Delta time is related to the Deltaframes of the time code.

80.4 Commands of the Track CHUNK

The data area of the Track CHUNK contains Delta time entries and event records alternately. A
distinction is made here between MIDI events, system-exclusive events and meta-events. The
structure of these event records is described below. The MIDI specification recognizes the MIDI
events defined in Table 80.3:

Code Data bytes

Channel Mode messages

8xH 2

9xH 2

AxH 2

BxH 2

CxH 1

DxH 1

ExH 2

Remarks

Note off

Note on

Aftertouch (polyphonic)
Controller

Program change

Aftertouch (monophonic)
Pitch wheel Table 80.3

MIDI commands

(continues
over...)

1154 Sound formats

Code Data bytes Remarks

System Mode messages

F8H 0 Timer

FAH 0 Start

FBH 0 Songstart continue

FCH 0 Stop

FEH 0 Active sensing
FFH 0 System reset

F2H 2 Song pointer

F3H 1 Song select
F6H 0 Tune

FOH System exclusive
F7H 0 End of exclusive

Table 80.3

MIDI commands

(cont.)

The value x in the command codes represents the channel number. For example, commands

that begin with the codes 90H to 9FH switch on a note. This note will continue until it is switched
off again with codes in the range 80H-8FH. Since there must be a pause between events, this
generally indicates the length of the note. The channel associated with the note is indicated in the
lower four bits of the code. 92H, for instance, switches on the note in channel 3. The values 0 to
OFH represent the instrument channels 1 to 16.

80.5 MIDI events

This group includes the individual MIDI commands for communication between devices. These
commands are stored in the file in a 1:1 relationship with their parameters.

80.5.1 Note on

The Note on command contains 3 bytes with the following structure:

1 byte event code (9xH)

1 byte note number (0..127)

1 byte dynamics (0..127)
Table 80.4

Structure of

a Note on

command

Standard MIDI format (SMF) 1155

The first byte is used for the event code 9xH and contains the number of the MIDI channel in
the lower 4 bits (for example, 90H = MIDI channel 1).

The code for the note (pitch) is indicated in the second byte, where the range of values is
0-127. The individual notes are coded as shown in Table 80.5:

Code Frequency(Hz) Note Octave

15H 27.500 A" Subcontra-octave

16H 29.135 A sharp"
17H 30.868 B"

18H 32.703 C Contra-octave

19H 34.648 C sharp'
1AH 36.708 D'

1BH 38.891 D sharp'

1CH 41.203 E'

1DH 43.654 F'

1EH 46.249 F sharp'
1FH 48.999 G'

20H 51.913 G sharp'
21H 55.000 A

22H 58.270 A sharp'
23H 61.735 B'

24H 65.406 C Great octave

25H 69.296 C sharp

26H 73.416 D

27H 77.782 D sharp

28H 82.407 E

29H 87.307 F

2AH 92.499 F sharp
2BH 97.999 G

2CH 103.826 G sharp

2DH 110.000 A

2EH 116.541 A sharp

2FH 123.471 B

30H 130.813 c Small octave

31H 138.591 c sharp
32H 146.832 d

33H 155.536 d sharp

34H 164.814 e

35H 174.614 f

36H 184.997 f sharp
37H 195.998 g

Table 80.5

MIDI Note codes

(continues
over...)

1156 Sound formats

Code Frequency(Hz) Note Octave

38H 207.652 g sharp
39H 220.000 a

3AH 233.082 a sharp

3BH 246.942 b

3CH 261.626 c' One line octave

3DH 277.183 c sharp'

3EH 293.665 d'

3FH 311.127 d sharp'

40H 329.628 e'

41H 349.228 f

42H 369.994 f sharp'

43H 391.995 g'
44H 415.305 g sharp'

45H 440.000 a'

46H 466.164 a sharp'

47H 493.883 b'

48H 523.251 c" Two line octave

49H 554.365 c sharp"

4AH 587.330 d"

4BH 622.254 d sharp"

4CH 659.255 e"

4DH 698.456 f"

4EH 739.989 f sharp"

4FH 783.991 g"
50H 830.609 g sharp"

51H 880.000 a"

52H 932.328 a sharp"

53H 987.767 b"

54H 1046.502 c3 Three line octave

55H 1108.731 c sharp3

56H 1174.659 d3

57H 1244.508 d sharp3

58H 1318.510 e3

59H 1396.913 f3

5AH 1479.978 f sharp3

5BH 1567.982 g3

5CH 1661.219 g sharp3
5DH 1760.000 a3

5EH 1864.655 a sharp3

5FH 1975.533 b3

Table 80.5

MIDI Note codes

(cont.)

Standard MIDI format (SMF) 1157

Code Frequency(Hz) Note Octave

60H 2093.005 c4 Four line octave

61H 2217.461 c sharp4

62H 2349.318 d4

63H 2489.016 d sharp4

64H 2637.020 e4

65H 2793.826 t'4

66H 2959.955 f sharp4

67H 3135.963 g4

68H 3322.438 g sharp4

69H 3520.000 a4

6AH 3729.310 a sharp4

6BH 3951.066 b4
Table 80.5

MIDI Note codes

(cont.)

The third byte defines the volume (amplitude) and the rise in the envelope curve (velocity or
dynamics) of the note. The way in which this information is used depends on the device. This
value can also be interpreted as the speed of attack of the instrument (for example, the piano).
Synthesizers that do not support this function have the value 64 in this byte. The value 0 indicates
that the note has no dynamics, that is, it is played but cannot be heard. In practical terms, this
corresponds to the following command Note off.

80.5.2 Note off

The Note off command contains 3 bytes with the following structure:

1 byte event code (8xH)

1 byte note number (0..127)
1 byte dynamic parameter (0. 127)

Table 80.6

Structure of

a Note off

command

The first byte is used for the event code, where x represents the number of the MIDI channel in
the lower four bits. The second byte defines the note to be switched off. With polyphonic
instruments, individual notes on the synthesizer can be switched off. The third parameter
indicates the dynamics at the end of the note.

1158 Sound formats

80.5.3 Polyphonic Key Pressure Aftertouch

This command can be used for Master Keyboards and with certain synthesizers that support this
instruction. The command contains 3 bytes and is structured as follows:

1 byte event code (AxH)

1 byte key number (0..127)

1 byte pressure (0..127)

Table 80.7

Structure of a

Polyphoni c

Key Pressure

Aftertouch

command

The first byte is used for the event code, where x represents the number of the MIDI channel in
the lower 4 bits. The second byte defines the key pressed and the third parameter represents the
pressure on the key pressed.

80.5.4 Channel Pressure Aftertouch

This command has the same function as Polyphonic Key Pressure. It is structured as follows.

1 byte event code (DxH)

1 byte pressure (0..127)

Table 80.8

Structure of a

Channel

Pressure

Aftertouch

command

The first byte is used for the event code, where x represents the number of the MIDI channel in
the lower 4 bits. The second byte defines the pressure. Since there is no reference to the keys, this

command applies to all keys pressed.

80.5.5 Control commands

In addition to the events described, the MIDI format also supports control commands, with which,

for example, distortion factors can be set.

80.5.5.1 Pitch Wheel Change

This command alters the control of the pitch wheel. It is structured as follows:

Standard MIDI format (SMF) 1159

1 byte event code (ExH)

1 byte wheel fine pitch (0..127)

1 byte wheel coarse pitch (0..127)

Table 80.9

Structure of a

Pitch Wheel

Change

command

The first byte is used for the event code, where x represents the number of the MIDI channel in
the lower bits. The two bytes containing the parameters each contain 7 bits and are combined to

form a 14-bit value. The first parameter defines the fine setting (wheel fine) the lower part of the
number. The second parameter contains the coarse setting (wheel coarse). The alteration of pitch
relates to the average value, that is, the first parameter is set to 0 and the second parameter to 64.

80.5.5.2 Control Change

This command is used for changing various control functions. It is structured as follows:

1 byte event code (BxH)

1 byte control (0..127)

1 byte value (0..127) Table 80.10

Structure of a

Control Change

command

The first byte is used for the event code, where x represents the number of the MIDI channel in
the lower bits. The next two bytes contain the code for the controller and the setting for this
controller. Table 80.11 shows the definition of these codes:

Coarse-tune Fine-tune Controller

1 33 Modulation wheel

2 34 Breath controller

4 36 Foot pedal controller
5 37 Portamento time

6 38 Data entrv

7 39 Main volume

64 — Hold pedal
65 — Portamento

66 — Sustain pedal
67

— Soft pedal
96 — Data increment

97
— Data decrement Table 80.11

MIDI controller

numbers

1160 Sound formats

The first column (coarse-tune) indicates the usual controller number for coarse-tuning the
controller. The second column contains the controller number for fine tuning. The value for the
setting is given by the second parameter of the command.

The adjustment of pitch was formerly carried out via the codes 0 and 32. This function is now
controlled by the pitch wheel.

The coarse-tuning of the controller is always implemented via codes 0 to 31, and the fine-
tuning via codes 32 to 63. The codes 64 to 93 relate to switches. The codes from 96 to 121 have so
far not been allocated to any device. Codes 122 to 127 contain information on operating modes.

80.5.6 MIDI Operating Mode commands

Codes 122 to 127 enable various modes to be set. The possible commands are summarized below.

80.5.6.1 Local control

This command is used for altering various control functions. Its structure is shown in Table 80.12:

1 byte event code (BxH)

1 byte code (7AH)
1 byte value (0: remote, 127: local) Table 80.12

Local control

command

The device control can be switched to the MIDI interface with the hex code sequence Bx7Azz

(value zz = 0). This setting can be reversed with value zz = 127.

80.5.6.2 All notes off

This command switches off all notes in an active channel.

1 byte event code (BxH)
1 byte code (7BH)

1 byte value (0)

The second data byte must be set to 0.

Table 80.13

All notes off

command

Standard MIDI format (SMF) 1161

80.5.6.3 Omni mode off

This command is used for switching off the Omni mode of a device.

1 byte event code (BxH)

1 byte code (7CH)

1 byte value (0)

80.5.6.4 Omni mode on

This command is used for switching on the Omni mode of a device.

1 byte event code (BxH)

1 byte code (7DH)

1 byte value (0)

Table 80.14

Omni mode off

command

Table 80.15

Omni mode on

command

80.5.6.5 Monomode on, Polymode off

This command is used for switching on the Monomode of a device. The Polymode is automatically
switched off.

1 byte event code (BxH)

1 byte code (7EH)

1 byte value (OyH)
Table 80.16

Honomode on

command

The number of channels used is stored in the lowest four bits (y) of the third byte. The value 0
switches all channels.

1162 Sound formats

80.5.6.6 Monomode off, Polymode on

This command is used for switching off the Monomode of a device. The Polymode is automatically
switched on.

1 byte event code (BxH)

1 byte code (7FH)

1 byte value (OOH)

The third byte is always likely to contain the value OOH.

80.5.7 MIDI Program commands

Table 80.17

Monomode off

command

The MIDI format provides various commands for programming synthesizer channels. This enables
different tone colours to be specified, depending on the allocation of a channel to a given instrument.
The command is structured as follows:

1 byte event code (CxH)
1 byte program (0..127)

Table 80.18

Structure

of a Program
Instrument event

The command is introduced with the event code CxH. The character x represents the channel

number. The second byte is used for the program number. Values between 0 and 7FH can be
entered here.

80.5.8 MIDI Timing commands

These commands are used for the real-time control of MIDI devices. They consist of one byte
containing the command code.

F8H Timi ng Clock: This command may occur directly after another command and is used for
time synchronization of various MIDI devices.

FAH Start: This command is used for returning the Song Position Pointer to the current

sequence.

FCH Stop: The current sequence is interrupted via this command, but the Song Position
Pointer retains its position.

Standard MIDI format (SMF) 1163

FBH Continue: When this command appears, the sequence is continued after the Timing
clock command has been issued.

FEH Active Sensing: This command is used for monitoring the link to the MIDI system.

FFH System Reset: This command resets the instruments to their basic settings.

Codes F9H and FDH are not currently used.

80.5.9 MIDI System Common Commands

This group of commands enables the Song Position Pointer, the selection of songs, and so on, to be
changed. The following commands have been defined.

80.5.9.1 Song Position Pointer

Switches the Song Position Pointer to another device. The record is structured as follows:

1 byte event code (F2H)

1 byte 1st data byte (0..127)

1 byte 2nd data byte (0..127)
Table 80.19

Song Position
Pointer structure

The first data byte contains the lower 7 bits of the pointer; the second data byte contains the
upper 7 bits.

80.5.9.2 Song Select

This command defines the sequences to be played and is structured as shown below:

1 byte event code (F3H)

1 byte data byte (0..127)

The data byte defines one of the 127 available sequences.

Table 80.20

Song Select
structure

1164 Sound formats

80.5.9.3 Tune Request

This command enables the re-calibration of analog synthesizers. It consists of one byte with the
value F6H.

80.5.10 End Of System Exclusive (EOX)

This command also has only one command byte (F7H). The command indicates the end of a
System exclusive sequence.

80.5.11 System Exclusive Commands (SOX)

This command enables new functions which are not covered by the MIDI definition to be
integrated into a device. The sequence is structured as follows:

1 byte event code (FOH)

n byte length

n byte data byte sequence (0..127)

1 byte EOX command Table 80.21

System Exclusive
structure

The sequence begins with the event code FOH. As an extension to the MIDI commands, a length
indication (1 to n bytes) is added. The length coding is carried out in a similar way to the Delta
time procedure, that is, in the first length bytes, bit 7 = 1. The last length byte contains the value 0
in bit 7. Only 7 bits of each length byte are therefore used for the length.

The length is followed by n data bytes, whose meaning is determined by the relevant
manufacturer. The values may be between 0 and 127.

The end of a System Exclusive sequence is defined by the EOX command (see above). The only
exception is when time codes are inserted into the sequence for synchronization. In this case, the
first part of the sequence does not end with the EOX command. Only the last part is terminated
with EOX.

80.5.12 Real Time System Exclusive Command

The command enables the transfer of special formats within the System Exclusive commands. For
example, the information is used for transferring SMPTE time codes. The command has two
possible formats.

Standard MIDI format (SMF) 1165

80.5.12.1 Long Format

This command consists of 7 data bytes and the EOX code (F7H) in the last byte. The coding is as
follows:

lbyte
n byte

lbyte
1 byte
1 byte

1 byte
1 byte

1 byte
1 byte

event code (FOH)

length
status (7FH)
long (02 H)
hours (0..23)

minutes (0.59)

seconds (0..59)

type and frame
EOX code (F7H)

Table 80.22

Long Format
structure

The last data byte contains the frame number in bits 0 to 4. Bits 5 and 6 define the frame type:

Value

80.5.12.2

Frame Type

24 frames/s

25 frames/s

30 frames/s, drop frame

30 frames/s, non-drop frame

Short Format

Table 80.23

Frame type

This command consists of 5 data bytes and the EOX code (F7H) in the last byte. The coding is as
follows:

1 byte event code (FOH)

n byte length
lbyte status (7FH)
lbyte short (01H)
1 byte seconds (0..59)
1 byte type and frame
1 byte EOX code (F7H) Table 80.24

Short Format

structure

1166 Sound formats

The last data byte contains the frame number in bits 0 to 4. Bits 5 and 6 define the frame type
according to Table 80.23.

80.5.13 Universal System Exclusive

This command enables communication between MIDI devices. The command consists of a

variable number of bytes (FO <len> 7E xx xx...), which are terminated with an EOX command
(F7H). The first data byte contains the channel number and the following byte contains the ID
number of the device (01H Dump Header, 02H Data Packet, 03H Dump Request, 7CH Wait, 7DH
Cancel, 7EH NAK, 7FH ACK). However, the transfer of data is device-specific and the structure will
not be presented here.

80.6 Met a events

In addition to the MIDI commands described above, the MIDI format also recognizes a number of
supplementary records. These are known as meta-events. All meta-events begin with the
command code FFH, followed by an event ID code.

1 byte meta event (FFH)

1 byte event ID

n byte length

n byte data
Table 80.25

Meta-event

structure

The length is coded according to the Delta time procedure, that is, the first length bytes
contain bit 7 = 1. The last length byte has bit 7 = 0. The lower 7 bits of the length bytes are
concentrated to give the length. Meta-events are described below.

80.6.1 Sequence number (00)

This event enables Patterns or Tracks to be numbered. The following code sequence applies:

FFH OOH 02H <number>

The number is coded as a word. This event is useful with SMF type 2 in order to bring the
tracks into the correct sequence. The Sequence number must occupy the first position in the
track; the preceding Delta time contains the value OOH.

Standard MIDI format (SMF) 1167

80.6.2 Text (01)

This event is used for storing text. It is formatted as follows:

FFH 01H <len><text>

The text length field 'len' is stored in the time code format. Thus the field may have a variable
length.

80.6.3 Copyright note (02)

This event is used for copyright text, and is structured as shown below:

FFH 02H <Len><text>

The text contains the manufacturer's or composer's copyright notice and the date.

80.6.4 Sequence/Track name (03)

This event enables a name to be allocated to a sequence or track. The following code sequence
applies:

FFH 03H <len> <text>

It should be remembered that many sequencers process only 8-character track names.

80.6.5 Instrument Name (04)

This meta-event is used to specify an instrument name. The following code sequence applies:

FFH 04H <len><text>

The instrument type of the relevant track is defined as a string. The name should be limited to
8 characters.

80.6.6 Lyric (05)

The text of the song can be stored in this meta-event. The code sequence is:

FFH 05H<len><text>

1168 Sound formats

The length is indicated in bytes. Texts are normally allocated to music by syllable.

80.6.7 Marker (06)

This meta-event enables certain places in the MIDI file to be marked. The code sequence is:

FFH 06H <len> <text>

The text can be displayed during the processing of the MIDI file.

80.6.8 Cue point (07)

This meta-event is used in dubbing videos and films. The code sequence is:

FFH 07H <len> <text>

The text can indicate the relationship between important visual action and a given sound.

Using this meta-event it is a simple matter to cue a certain region when dubbing.

80.6.9 Channel prefix (32)

This meta-event establishes the channel to which subsequent meta-events refer. The code
sequence is shown below:

FFH 20H 01H <channel>

The channel number (channel) comprises one byte and its value must be in the range 0-15.
The command is useful in conjunction with meta-events 03 and 04. The channel allocation
remains valid until the next meta-event 32 or until the next MIDI event.

80.6.10 End of track (47)

This event marks the end of a track. The following code sequence applies:

FFH 2FH OOH

This event must occur at the end of every track.

Standard MIDI format (SMF) 1169

80.6.11 Set Tempo (81)

This meta-event indicates a new tempo. The code sequence is:

FFH 51H 03H <tempo>

The tempo field comprises three bytes. The value is interpreted as the duration of a quarter
note in micro-seconds. The sequence:

bpm = (1000/tempo) * 60

enables the value of Beats per minute to be calculated.

80.6.12 SMPTE offset (84)

This meta-event defines an offset for an SMPTE time indication:

FFH54H 05H <hour> <minutes> <seconds> <frames> <subframes>

The event determines the time at which a track is to be played. It must be positioned before
the first MIDI event in the track. The Delta time indication before this event is always set to 0.

80.6.13 Time signature (88)

This event establishes the type of rhythm.

FFH 58H 04H <nominator> <denominator> <clock> <count>

The nominator contains a value relating to the fraction of the number of beats. The denominator
is defined as an exponent on base 2 (for example, 7/3 = 7/8 time). The clock field indicates the
number of clock ticks per quarter note. The beat (for example, metronome) is set according to this
time. The count field indicates how many 1/32 notes are to follow each quarter note. The standard
entry here is 8 (1/4 note).

80.6.14 Key signature (89)

This meta-event indicates the key of the song.

FFH 59H 02H <sign> <key>

If the sign is positive (bit 7 = 0), a sharp key is indicated, while bit 7 = 1 indicates a flat key.
The lower 4 bits in the sign field indicate the number of key signs (0 major, 1 minor). The
sequence FFH 59H 02H F3H OOH therefore specifies a major key with three key signs (flats, in this
case): three flats = E flat major.

1170 Sound formats

80.6.15 Sequencer specific (127)

This meta-event is used for the transfer of system specific information. The code sequence is:

FFH 7FH <len> <events>

The len field is coded according to the time code, that is, the first bytes contain bit 7 = 1 and
the last byte bit 7 = 0. The events are then coded specifically.

The complete specifications of the MIDI format have been published by the MIDI Association
(5316 W 57th Street, Los Angeles, California 90056, USA) in the book MIDIFile Specification.

NeXt/Sun Audio format

he NeXt Audio File Format is used in the UNIX

context. This format begins with a header
which is followed by a Sound structure.T

The header is structured as follows:

Offset Bytes Remarks

OOH 4 Signature '.snd'

04H 4 Data location

08H 4 Data size

OCH 4 Data format

10H 4 Sampling rate

14H 4 Channel count

18H n Char info Table 81.1

NeXt/Sun Audio

File Header

The header consists of 4-byte fields in Motorola format. The first field contains the signature

2EH 73H 6EH 64H, which corresponds to ' .snd' . This is followed by a pointer to the region
containing the audio data. The length of the data area in bytes is defined at offset 08H. The 32-bit
field at offset OCH defines the format in which the audio data is stored. Table 81.2 contains the

format codes for the audio data.

1171

11 72 Sound formats

Format Remarks

1 8 bit mu-law

2 8 bit linear

3 16 bit linear

4 24 bit linear

5 32 bit linear

6 Floating point

7 Double precision

8

9

10

Fragmented sampled data

DSP program

11 8 bit fixed point

12 16 bit fixed point
13 24 bit fixed point

14 32 bit fixed point
15 —

16 Non-audio display data

17 —

18 16 bit linear with emphasis

19 16 bit linear with compression

20 Combine 18 and 19

21 Music kit DSP commands

22
— Table 81.2

Codes for

data format

If code 10 occurs, the data area contains loadable program codes for the Digital Signal
Processor (DSP loadable code).

It is standard for the audio data to be filed as a linear sequence in the data area. When
processing audio data, sections can be removed, that is, the sequence is no longer continuous
(fragmented). This is indicated with format code 8. Fragmented areas are divided into blocks with
their own header (as shown in Table 81.1). The block is terminated with the code OOH.

Page description
languages

File formats discussed in Part 7

Hewlett Packard Graphic Language (HP-GL/2) 1174

Hewlett Packard Printer Communication Language (PCL) 1198

Encapsulated PostScript format (EPS) 1218

In addition to file formats, a number of page description languages have
been developed as "quasi-standard "for output devices (printers
and plotters). The Hewlett Packard Graphic Language (HP-GL) for

plotters had already achieved significant distribution by 1976. Since HP
defined HP-GL/2 as its successor, more and more manufacturers have
come to support this format for exchanging graphic data. Part 7 describes
language definitions for the well-established PostScript, PCL and HP-GL/2
languages .

1173

Hewlett Packard Graphic Language
(HP-GL/2)

The language uses ASCII characters for the
description of character operations. Each
command begins with what is known as a

mnemo-technical character (mnemonic), consisting of
two upper- or lower-case letters, followed by several
parameters. Separators (commas and/or blanks) are
used between these parameters. A separator between
the command and the first parameter is not
absolutely necessary, but can be inserted to improve
readability. A number of parameters are optional,
but if one of the optional parameters is omitted, the
following parameters must also be omitted.

Figure 82.1 shows several valid commands together with their basic structure:

XX<param.>.. .<sep.xparam>;

PDPU10,20 or PD;PU10,20; or PD PU 10 20; Figure 82.1
HP-GL/2

commands

Each instruction is terminated with a semicolon or the next keyword. When using an IIP-IB

interface, LF is also accepted as a terminator. However, for reasons of legibility, it is advisable
always to use the semicolon as a terminator. Optional CR/LF characters inserted for text formatting
are ignored. To keep the length of HP-GL/2 commands to a minimum, all superfluous characters
are removed in the specification. With a few exceptions, a semicolon is no longer necessary as a
terminator and even the separators between mnemonics and the first parameter can be omitted.

Numeric values in the command should be transferred as an ASCII string, and various number
formats for parameters have been defined. Integer values must be in the range -223 till + (223-l).

1174

Hewlett Packard Graphic Language (HP-GL/2) 1175

There is also the clamped integer type, for integers in the range -32,767 to +32,767. In the case of
decimal numbers, the whole number part must be in the integer range, and 5 places are permitted
after the decimal point. The decimal point may be omitted if there are no decimal places in the
number. By contrast, with clamped real format, values must be in the range
-32767.9999 to +32767.9999. If there is no sign before a number, it will be interpreted as positive.
Character strings are also permitted as parameters.

As a result of this notation, HP-GL/2 files can be readily transferred between computers and
stored in files. In the command descriptions below, command parameters enclosed in round
brackets () are optional.

The language comprises various commands divided into groups. The HP-GL/2 kernel, the core
of the language, contains 55 commands, which must be supported by all devices (Table 82.1).
Additional groups of commands (Technical Graphics Extension, Palette Extension, Dual Context
Extension, Digitizing Extension) are device-specific and are not supported by all units.

Configuration and Status Group

Set Default Values

Initialize

Input PI and P2

Input Relative

Input Window

Advance Full Page
Rotate Coordinate System

Replot

Scale

Vector Group

Arc Absolute

Arc Relative

Absolute Arc Tree Point

Circle

Plot Absolute

Pen Down

Polyline Encoded

Plot Relative

Pen Up

Relative Arc Tree Point

Polygon Group

Edge Rectangle Absolute

Edge Rectangle Relative
Edge Wedge

Edge Polygon

Table 82.1

Breakdown of

HP-GL/2

command groups
(continues
over...)

11 76 Page description languages

Fill Polygon
Polygon Mode
Fill Rectangle Absolute

Fill Rectangle Relative
Fill Wedge

Line and Fill Attributes Group

Anchor Corner

Fill Type
Line Attributes

Line Type

Pen Width

Raster Fill

Symbol Mode
Select Pen

User-Defined Line Type
Pen Width Unit Selection

Character Group
Alternate Font Definition

Character Fill Mode

Character Plot

Absolute Direction

Relative Direction

Define Label Terminator

Define Variable Text Path

Extra Space

Label

Label Origin
Select Alternate Font

Standard Font Definition

Absolute Character Size

Character Slant

Relative Character Size

Select Standard Font

Transparent Data

Technical Graphics Group

Begin Plot
Chord Tolerance Mode

Download Character

Enable Cutter

Frame Advance

Table 82.1

Breakdown of

HP-GL/2

command groups
(cont.)

Hewlett Packard graphic language (HP-GL/2) 11 77

Merge Control

Message

Media Type

Not Ready

Output Error

Output Hard-Clip Limits

Output Identification

Output PI and P2

Output Status

Plot Size

Quality Level

Sort

Velocity Select

Palette Extension

Set Color Range for Relative Color Data

Number of Pens

Pen Color Assignment

Screened Vectors

Transparency Mode

Dual Context Extension

Enter PCL Mode

Reset

Primary Font Selection by ID

Secondary Font Selection by ID

Scalable or Bitmap Fonts

Digitizing Extensions

Digitize Clear

Digitize Point

Output Digitized Position and Pen Status

Table 82.1

Breakdown of

HP-GL/2

command groups
(cont.)

As can be seen from Table 82.1, the kernel is divided into groups. These are described below.

1178 Page description languages

82.1 Configuration and Status Group

This group includes allkernel commands for implementing the basic settingof the output device.

82.1.1 Set Default Values

Command Set Default Values

Format DF(;)

Function Resets the values for SC, AD, CF, DI, DT, DV, ES, FT, IW, LA, L01, LT, PA, PM, RF, SC,
SD, SI, SL, SM, SS, TD, UL to the default values. The position of the scaling points P1
and P2, the current pen, plotting size and rotation are not altered. The error status
is also retained. The semicolon as separator in this command can be omitted if it is
followed by another command.

82.1.2 Initialize

Command Initialize

Format IN (n;)

Function Initializes all programmable plot functions to their standard values. The error status

is deleted. The command may optionally have the value 1, which will initialize the
factory-set values. The separator is also optional.

82.1.3 Input PI and P2

Command Input PI and P2

Format IP P1x, P1y (,P2x, P2y;)

Function Enables activation or resetting of the scaling points set. The parameters should be
given as integers. Plotters have two scaling points (P1 bottom left corner, P2 top
right corner). It is standard for these to be predetermined by the hardware. If these
parameters are not entered, the points defined by the hardware will be used. The
points are adapted accordingly in the case of a rotated output. The commands IW,
RO, SC, FT, LT, PW, WU, DR, LB and SR relate to the input points P1 and P2.

82.1.4 Input Relative

Command Input Relative

Format IR P1x, P1y (,P2x, P2y;)

Function Activates new scaling points or the values set. The parameters should be given as
integers and they indicate the position of the points relative to the hard-clip limits
pre-set by the device. The coordinate data for point 2 is optional. The commands
IW, RO, SC, FT, LT, PW, WU, DR, LB and SR relate to the input points P1 and P2.

Hewlett Packard graphic language (HP-GL/2) 11 79

82.1.5 Input Window

Command Input Window

Format IW x1, y1, x2, y2(;)

Function Sets a rectangular window for the output. The pen can then only draw inside the
window (soft clipping). The coordinates for the two diagonally positioned points
should be given as integers. If the parameters are omitted, the hard-clip limits
determined by the hardware will be adopted. If the window is outside the character
area of the device, no output will be made.

82.1.6 Advance Full Page

Command Advance Full Page

Format PG (n);

Function Implements a page-feed. The command must be terminated with a semicolon unless
it is followed by an RP instruction. Optionally, a parameter n can be entered,
specifying the page number after which the command will be carried out. With no
parameter, a page feed will only be activated if the current page has just been drawn
on. This command does not operate on devices with a PCL interface; an FF should
be entered in PCL mode. The command affects the PS, RP and BP instructions.

82.1.7 Rotate Coordinate System

Command Rotate Coordinate System

Format RO (angle;)

Function Causes the coordinate system of the output unit to rotate through 90, 180 or 270
degrees, counterclockwise. The values 0, 90, 180 and 270 are thus permitted for the
angle parameter. If the parameter is omitted, the output device will restore the
angle of rotation to 0 degrees. Several requests using the same angle do not alter the
angle of rotation because the values are not cumulative. The scaling points P1 and
P2 are rotated together with the coordinate system.

82.1.8 Replot

Command Replot

Format RP (n);

Function Enables several copies of a plot to be made. The optional parameter n determines
the number of copies. If this parameter is not entered, only one copy will be produced.
However, the plotting instructions must still be in the buffer. The instruction must
be terminated with a semicolon.

1180 Page description languages

82.1.9

Command

Format

Function

Scale

Scale

SC Xmin, Xmax, Ymin, Ymax (, type, left, bottom;)

Defines a user-specific coordinate system for the graphic output. The scaling is
related to the points P1 and P2. The Xmin, Xmax, Ymin and Ymax parameters should
be transferred as floating point values. They represent the scaling of the X- and Y-
axes. The optional type parameter can be used to determine whether the scaling is
to be carried out isotropically or anisotropically. With anisotropic scaling (type =
0), the X- and Y-axes may have different scales. With isotropic scaling (type = 1),
the X- and Y-axes have the same dimensions. The third setting (type = 2) is used for
transferring the user-specific scaling to the output device. In this case, the Xmax
and Ymax parameters contain the scaling factors for the corresponding axes. The
optional left and bottom parameters indicate the size of the proportion of unused
character area at the left and bottom margin, in the case of isotropic scaling. The
values must be transferred as floating point numbers (0.01...1.00 for 0-100%)

82.2 Vector Group

This group contains the kernel commands for drawing vector graphics.

82.2.1 Arc Absolute

Command Arc Absolute

Format AA x,y,arc(,chord angle;)

Function This command is used for drawing an arc around a given center point x, y. The

radius is calculated from the distance of the current point from the given center.
The arc parameter indicates the angle of the arc. The sign of the parameter
determines the direction in which the arc will be drawn: counterclockwise with

positive values; clockwise with negative values. The optional chord angle
parameter is used to indicate the resolution of the circle (the default is 5 degrees).
This parameter determines how accurately a circle is to be drawn by joining
together short straight-line sections (vectors). All parameters should be transferred
as clamped real values. The coordinates are interpreted in the current scaling.

82.2.2 Arc Relative

Command Arc Relative

Format AR dx,dy,arc(,chord angle;)

Function This command is used for drawing an arc around a center point whose distance
from the current coordinates is given by dx, dy. The radius is calculated from the
distance dx, dy. The arc parameter indicates the angle of the arc. As with the arc

Hewlett Packard graphic language (HP-GL/2) 1181

absolute command, the sign of the parameter determines the direction in which the
arc will be drawn. The optional chord angle parameter is used to indicate the
resolution of the circle. All parameters should be entered as clamped real values.

82.2.3 Absolute Arc Tree Point

Command Absolute Arc Tree Point

Format AT Xint, Yint, Xend, Yend(, chord angle;)

Function Enables the output of a segment of a circle with absolute coordinate data. The arc is
drawn from the current pen position around the intermediate point indicated by
Xint, Yint. The end-point of the arc should be entered in absolute coordinates with
the Xend and Yend parameters. The optional chord angle parameter determines the
resolution of the arc.

82.2.4 Circle

Command Circle

Format CI r (,chord angle;)

Function Draw a circle with radius r around the current point. The optional chord angle

parameter defines the resolution at which the circle will be constructed from
straight vectors. The default setting for this value is 5 degrees. The parameters
should be entered as clamped real values.

82.2.5 Plot Absolute

Command Plot Absolute

Format PA X, Y (,...;)

Function Causes the pen to move to the position indicated. If the X and Y parameters are

missing, the command will relate to the following instructions. It is possible to enter
more than one coordinate point. In this case, all points are approached consecutively,

thereby enabling more complex line drawings to be achieved very simply.

82.2.6 Pen Down

Command Pen Down

Format PD X, Y (,...;)

Function Ensures that the pen begins drawing when operating with the plotter. If XY-
coordinates are entered as parameters, the pen will move to these points. The

command interprets the coordinate data as either absolute or relative, depending on

whether it has been preceded by a PA or a PR command. The default setting
assumes absolute coordinate data.

1182 Page description languages

82.2.7 Polyline Encoded

Command Polyline Encoded

Format PE (flag)(value)/(X,Y)...(flag)(value)/(X,Y);

Function Draws a line in the current mode between the points entered. If no parameters are
entered, the carriage return point is set. The parameter flag contains ASCII
characters and specifies the mode in which the plotter is to interpret the following
values:

Mode Meaning

: Select Pen

< Pen Up
> Fractional Data

= Absolute Data

7 7-Bit Mode

Optional values can be transferred after the flag. Flag = : is followed by the number
of the color pen to be selected. Flag = < lifts the pen and moves it to the next point
indicated. The value flag = > signals that the following parameter indicates the
number of binary places after the decimal point in the coordinates. Flag = =
indicates absolute coordinates. In 7-bit mode, all coordinates are transferred as 7-bit

characters. The coordinates are transferred as binary numbers based on 64 or 32.

82.2.8 Plot Relative

Command Plot Relative

Format PR X, Y(,...;)

Function Moves the pen from the current point to the coordinates. If the parameters are
missing, the coordinate data in the following command is interpreted as relative
values. If X,Y parameters are entered, the pen is moved to these coordinate points.
Several points can be entered in one command.

82.2.9 Pen Up

Command Pen Up

Format PU X,Y(,...;)

Function Lifts the pen and - if coordinates are entered at the same time - moves it to the

points indicated. Several points may be specified. If symbol mode (SM) is set, the
symbol specified will be displayed at each point in the output.

Hewlett Packard graphic language (HP-GL/2) 1183

82.2.10 Relative Arc Tree Point

Command Relative Arc Tree Point

Format RT Xint, Yint, Xinc, Yinc(, chord angle;)

Function Enables the output of a segment of a circle with relative coordinate data. The arc is
drawn from the current pen position around the intermediate point given by Xint
and Yint. The end-point of the arc should be given as relative coordinates using the
Xinc and Yinc parameters. The optional chord angle parameter determines the
resolution of the arc.

82.3 Polygon Croup

These kernel commands affect the polygon buffer of the HP-GL/2 output device which is
responsible for drawing polygons.

82.3.1 Edge Rectangle Absolute

Command Edge Rectangle Absolute

Format EA X, Y(;)

Function Defines a rectangle in terms of two opposite, absolute corner coordinates. One
corner point is at the current coordinates, while the diagonally opposite corner

point is indicated by the A, Y coordinates.

82.3.2 Edge Rectangle Relative

Command Edge Rectangle Relative

Format ER X, Y(;)

Function Defines a rectangle in terms of two opposite, relative corner coordinates. One
corner point is at the current coordinates, while the diagonally opposite corner
point is indicated by the A, Y coordinates, relative to the current point.

82.3.3 Edge Wedge

Command Edge Wedge

Format EW radius, start angle, sweep angle (, chord tol.;)

Function This command is used for the creation of pie-graphs. The parameters, which must

be transferred as decimal numbers, indicate the radius of the circle and the segment
via the two angles.

1184 Page description languages

82.3.4 Edge Polygon

Command Edge Polygon

Format EP(;)

Function This command enables polygons to be drawn; their coordinates will have been
written to the polygon buffer via PM, RA, RR and WG.

82.3.5 Fill Polygon

Command Fill Polygon

Format FP(;)

Function Fills a polygon in the polygon buffer with a pattern or a color.

82.3.6 Polygon Mode

Command Polygon Mode

Format PM poly def(;)

Function Enables the definition of a polygon. If the parameter is not present, the polygon
buffer will be deleted. The values 0, 1 and 2 which determine the following polygon
mode can be used for the poLy def parameter. The value 0 deletes the polygon
buffer and sets polygon mode. The polygon buffer can then be filled using
instructions such as AA, AR, AT, PA, PD, PE, PR, PU or RT. The polygon buffer is closed
using the value 1 and is then ready for output. The value 2 terminates the current
polygon and ends polygon mode.

82.3.7 Fill Rectangle Absolute

Command Fill Rectangle Absolute

Format RA X, Y(;)

Function Defines a filled rectangle with absolute coordinates. One corner is in the current
output position, while the diagonally opposite corner is defined by the coordinates X,
Y. By contrast with the EA instruction, this RA instruction produces a filled
rectangle.

82.3.8 Fill Rectangle Relative

Command Fill Rectangle Relative

Format RR X, Y(;)

Function Defines a filled rectangle with relative coordinates. One corner is at the current
output position; the diagonally opposite corner is defined by the coordinates X,Y.

Hewlett Packard graphic language (HP-GL/2) 1185

82.3.9 Fill Wedge

Command Fill Wedge

Format WG radius, start angle, end angle(,chord angle;)

Function Enables the output of a filled segment of a circle. The radius, start and end angles
should be entered as parameters. The center is at the current output position. The
resolution of the curve can be indicated using the optional chord angle parameter.
This command is used for printing pie-graphs.

82.4 Line and Fill Attributes Group

This group of kernel commands is used to select various types of line attribute and patterns for
filling enclosed shapes.

82.4.1 Anchor Corner

Command Anchor Corner

Format AC X,Y(;)

Function Defines the start point from which a fill attribute begins. If the parameters are not
entered, the start point is set at (0,0).

82.4.2 Fill Type

Hand Fill Type

it FT type (,opt ionl, option2;)

ion Selects the shading pattern used to fill polygons (six variants
type):

are defined for the fill

Variant Fill attribute Option 1 Option 2

1

2

3

4

10

11

Solid bidirectional

Solid unidirectional

Parallel lines (hatched)
Cross-hatching
Shading
User-defined

spacing
spacing
shading level
raster fill index

angle
angle

pen

The optional parameters enable the angle, the spacing for hatching and the degree
of shading to be adjusted. For fill types 3 and 4, option 1 specifies the distance
between the lines in the fill. This distance is measured in the current units

measured along the X-axis (default 1% of the diagonal distance between P1 to P2).

1186 Page description languages

82.4.3 Line Attributes

Command Line Attributes

Format LA kind, value(,kind, value...;)

Function Establishes the appearance of line ends, line joins and miters. The kind parameter
defines the mode to which the following value relates:

kind = 1 line ends

2 line joins

3 miter limit

Value determines the appearance of the line. Further details of relevant forms can
be obtained from the appropriate plotter manuals.

82.4.4 Line Type

Command Line Type

Format LT pattern number (,pattern length, mode;)

Function Defines the appearance of lines in terms of 8 adaptable and 8 fixed line types. If the
(integer) value of pattern number is negative an adaptable line type will be selected.
The optional length should be entered as a floating point number. The mode parameter
enables the user to select whether the line attribute is to be given in absolute terms in

millimeters (mode = 1) or in relative terms as a percentage (mode = 0).

82.4.5 Pen Width

Command Pen Width

Format PW width(, pen;)

Function Establishes the drawing width of the current pen or the pen indicated.

82.4.6 Raster Fill

Command Raster Fill

Format RF indexC,width, height, pen number,...;)

Function Defines a rectangular pattern which can be used when filling enclosed shapes. If the
parameter is not entered, a default fill attribute will be used. Customized patterns
can be defined using this command. The i ndex parameter allocates a number to the

pattern so that only the index is required in future to call up the pattern. The
optional width and height parameters specify the dimensions of the pattern in

Hewlett Packard graphic language (HP-GL/2) 1187

pixels. These values should be entered as multiples of 2 in the range 8-64. The pen
number parameter enables the pattern to be allocated to one or more pens.

82.4.7 Symbol Mode

Command Symbol Mode

Format SM char(;)

Function Displays the given char symbol at every XY-point indicated, if the commands PA,
PD, PE, PR and PU are used next. If the parameter is not entered, the last symbol is

deleted.

82.4.8 Select Pen

Command Select Pen

Format SP pen number(;)

Function Selects the pen according to the number indicated. If no parameter is entered, pen
number 0 will be selected.

82.4.9 User-Defined Line Type

Command User-Defined Line Type

Format UL index(,gap1,...,gapn;)

Function Enables the definition of user-specific line types. The index parameter allocates a
number to each type. The line can be called up at a later stage using this index. The
optional gapx parameters specify the pattern. The even parameters (gap2, gap4, ...)
denote intervals with no line drawn. Up to 20 of these gaps can be defined.

82.4.10 Pen Width Unit Selection

Command Pen Width Unit Selection

Format WU type(;)

Function Specifies how the PW (pen width) parameter is to be interpreted. With type = 0, the
PW parameter is interpreted in millimeters; type = 1 indicates a relative percentage.

82.5 Character Group

This group of kernel commands enables various character sets to be selected, displayed in various
directions, and so on.

1188 Page description languages

82.5.1 Alternate Font Definition

Command Alternate Font Definition

Format AD kind, value...(,kind, value;)

Function Enables the definition of alternative fonts, including font spacing, pitch, height,
stroke weight and typeface. If no parameters are entered, the command will set the
default font. The kind parameter specifies the attributes and should be entered as a
clamped integer (1...7). Depending on the value of kind, the corresponding
attribute is set according to the floating point value parameter. Further details can
be obtained from the documentation for the relevant output device.

82.5.2 Character Fill Mode

Command

Format

Function

Character Fill Mode

CF fill mode(,edge pen;)

Specifics how outline fonts arc to be framed and defines the fill attribute for bitmap
and stick fonts. A request without parameters will set the default font with filled

characters. The fill mode parameter defines the way in which a character is to be
displayed:

Mode Fill Attribute

0 Solid fill with current pen

1 Outline font

2 Use current fill attribute but do not draw outline

3 Use current fill attribute and draw outline

The edge pen parameter specifies the pen number with which the outlines of the

letters are to be drawn. If the integer parameter is missing, the current pen will be
used.

82.5.3 Character Plot

Command Character Plot

Format CP (c, L;)

Function Shifts the pen to the return point, if no parameter is specified. The optional c

parameter enables the pen to be shifted by n characters within the line. The pen is
shifted by n lines with the I parameter.

Hewlett Packard graphic language (HP-GL/2) 1189

82.5.4 Absolute Direction

Command Absolute Direction

Format DI dx,dy(;)

Function Defines the slope at which labels (text) are drawn, starting from the current point in
the direction of the vector given by dx, dy. The default setting for horizontal display
direction is (1,0). Values are indicated as absolute coordinates. The direction must
be defined by a DI command.

82.5.5 Relative Direction

Command Relative Direction

Format DR dx,dy(;)

Function Defines the slope and direction for a label (text) to be displayed, in terms of dx and
dy. The parameters refer to a point relative to the current position. The values dx
and dy are therefore given as a percentage of P2X and P2Y.

82.5.6 Define Label Terminator

Command Define Label Terminator

Format DT label terminator(,mode);

Function Specifies the end marker for texts. All characters are allowed except 0, LF, ESC and
; (the semicolon is needed as a terminator for the command). A request with no
parameters will set ETX as the terminator. The optional mode parameter enables the
user to specify whether the terminator is to be displayed (mode = 0) or suppressed
(mode = 1).

82.5.7 Define Variable Text Path

Command Define Variable Text Path

Format DV path(,line;)

Function Specifies the direction of a text path and the direction in which a CR/LF is to be
implemented. The integer parameter path contains one of the following output
angles, at which the text will be displayed:

Path Angle

0 0 degrees

1 -90 degrees
2 -180 degrees
3 -270 degrees

1190 Page description languages

A CR/LF will then be carried out in the direction indicated. The optional line
parameter specifies the position of a character in terms of the preceding character.
The same values apply as in the case of path.

82.5.8 Extra Space

Command Extra Space

Format ES spacesC,lines;)

Function Adjusts the spacing between characters and lines in the output of text, without
influencing the size of the characters. The spaces parameter determines the
distance between two characters in a line, while the optional lines parameter

defines the space between lines.

82.5.9 Label

Command Label

Format LB string<term>;

Function Displays a text which is terminated with the terminator <term>, defined via DT. The
parameters set for font, size and color are adopted; the text may contain up to 256
characters (including the terminator). The text output begins at the current
position in the output direction set.

82.5.10 Label Origin

Command Label Origin

Format LO position numberC;)

Function Indicates the text position relative to the current position of the pen. Nineteen
positions are defined.

82.5.11 Select Alternate Font

Command Select Alternate Font

Format SA(;)

Function Selects an alternative font defined by the command AD. The default setting is
Roman 8.

82.5.12 Standard Font Definition

Command Standard Font Definition

Format SD kind, value...(,kind, value;)

Function Enables the definition of the standard font, including font spacing, pitch, height,
stroke weight and typeface. If there are no parameters, the command sets the
default font. The kind parameter specifies the attributes and should be entered as a

Hewlett Packard graphic language (HP-GL/2) 1191

clamped integer (1...7). Depending on the value of kind, the corresponding
attribute is set according to the floating point value parameter. Further details can
be obtained from the documentation for the relevant output device.

82.5.13 Absolute Character Size

Command Absolute Character Size

Format SI width, height(;)

Function Specifies the size of a character to be displayed, in centimeters. The parameters
should be entered as integers. If the parameters are missing, the default setting will
be adopted. The width in centimeters is indicated in the width parameter and the
height in centimeters in the height parameter.

82.5.14 Character Slant

Command Character Slant

Format SL tangent of angleC;)

Function Defines the angle (slant) through which a letter is rotated in the output. This

enables italic fonts to be created. A request with no parameters restores the angle to
0. Positive and negative gradients can be indicated as floating point values.

82.5.15 Relative Character Size

Command Relative Character Size

Format SR width, heightC;)

Function Specifies the size of a character to be displayed as a percentage related to the points
P1 and P2. The parameters must be entered as integers. With no specified
parameters, the default setting (0.75%, 1.5%) is adopted. Width defines the
character width, height the character height; each value is specified as a
percentage.

82.5.16 Select Standard Font

Command Select Standard Font

Format SS(;)

Function Exchanges the currently set font for the character set defined as the Standard Font.

82.5.17 Transparent Data

Command Transparent Data

Format TD (mode;)

Function Specifies the treatment of control characters in texts. The optional mode parameter
selects the normal mode (value = 0) in which the control characters will be

1192 Page description languages

interpreted. The value mode = 1 sets the Transparent Mode in which the characters
will be displayed. A request with no parameters will set the normal mode.

82.6 Technical Graphics Extension

In addition to the 55 commands of the HP-GL/2 core, there are machine-specific extensions which
are not always available. One such extension is the Technical Graphics Extension which contains
the following commands:

82.6.1 Begin Plot

Command Begin Plot

Format BP (kind, value,...;)

Function Switches the plotter on, enabling it to begin a new printout. The optional kind
parameter should be an integer in the range 1-4. Further information can be

obtained from the documentation for the relevant device.

82.6.2 Chord Tolerance Mode

Command Chord Tolerance Mode

Format CT mode(;)

Function Selects the chord tolerance for the commands AA, AR, CI, EW and WG. Circles and

curved areas are produced by the output device in the form of short straight
vectors. The chord tolerance determines how many vectors will be used, for
example, to create a circle. The fewer vectors used, the more angular the circle will
appear. The standard setting for chord tolerance mode is 5 degrees. A request with
no parameter will reset this default value of 5 degrees. The mode parameter enables
the user to select whether the values occurring in subsequent commands are to be
interpreted in degrees (mode = 0) or as deviations from circularity (mode = 1).

82.6.3 Download Character

Command Download Character

Format DL n(,count, x, y,...;)

Function Defines a new character for the plotter. The n parameter specifies the ASCII
character with which the new symbol is to be addressed in future. The count
parameter indicates how many XY-parameters are to follow. These describe the new
character in terms of pen movements and pen up/down instructions. Further
information can be obtained from the documentation for the specific output device.

Hewlett Packard graphic language (HP-GL/2) 1193

82.6.4 Enable Cutter

Command Enable Cutter

Format EC (n;)

Function Switches the automatic cutter function of the plotter on or off. A request with no
parameter will switch this function off, while an integer parameter will switch it on.

82.6.5 Frame Advance

Command Frame Advance

Format FR (;)

Function Shifts the output medium in order to align the frame.

82.6.6 Merge Control

Command Merge Control

Format MC mode(;)

Function Controls the production of raster graphics. The parameter mode = 0 switches the
control off; mode = 1 switches it on.

82.6.7 Message

Command Message

Format MG (message;)

Function Enables plotter messages to be displayed on screen. A request with no parameter
will delete the message.

82.6.8 Media Type

Command Media Type

Format MT type(;)

Function Establishes the type of output medium. Type 0 indicates paper; 1 indicates
transparencies. Further information is given in device documentation.

82.6.9 Not Ready

Command Not Ready

Format FNR;

Function Unloads the paper and sets the plotter in wait mode.

1194 Page description languages

82.6.10 Output Error

Command Output Error

Format FOE;

Function Enables error status enquiries to be made. These will be answered with an integer
value in ASCII.

82.6.11

Command

Format

Function

Output Hard-Clip Limits

Output Hard-Clip Limits

OH:

Requests details of the clipping limits as ASCII integer values X1, Y1, X2, Y2. The
coordinates of the top left and bottom right corners are used.

82.6.12 Output Identification

Command Output Identification

Format 01;

Function Requests the plotter identification number.

82.6.13 Output PI and P2

Command Output P1 and P2

Format OP;

Function Requests the coordinates for points P1 and

82.6.14 Output Status

Command Output Status

Format OS;

Function Requests the output status of the output device.

82.6.15 Plot Size

Command Plot Size

Format PS (length, width;)

Function Sets the hard-clip limits to the parameters indicated (length, width).

82.6.16 Quality Level

Command Quality Level

Format QL (Quality;)

Hewlett Packard graphic language (HP-GL/2) 1195

Function Sets the output mode to draft (qua I i ty = 0) or final (quality = 1).

82.6.17 Sort

Command Sort

Format ST (switches;)

Function Specifies the manner in which the plotter sorts vectors before printing

82.6.18 Velocity Select

Command Velocity Select

Format VS (pen velocity, pen;)

Function Specifies the output velocity for a selected pen.

82.7 Palette Extension

This group of extended commands enables the re-definition of the character color produced by
output device.

82.7.1 Set Color Range for Relative Color Data

Command

Format

Function

Set Color Range for Relative Color Data

CR (black-ref red, white-ref red,

black-ref green, white-ref green,

black-ref blue, white-ref blue;)

Sets the red-green-blue range of the color scale. Optional parameters enable
intensity of the primary colors to be adjusted between black and white.

82.7.2 Number of Pens

Command Number of Pens

Format NP n(;)

Function Sets the number of colors for a color palette.

82.7.3 Pen Color Assignment

Command Pen Color Assignment

Format PC (pen, red, green, blue;)

Function Allocates a color to a given pen.

the

the

1196 Page description languages

82.7.4 Screened Vectors

Command Screened Vectors

Format SV screen type(,option1, option2;)

Function Selects the type of fill attribute for screen displays.

82.7.5 Transparency Mode

Command

Format

Function

82.8

Transparency Mode

TR (N);

Determines how white spaces are to printed on the plotter (transparent or opaque).

Dual Context Extension

These commands support mode-switching between HP-GL/2 and PCL. The group comprises the
following commands:

82.8.1 Enter PCL Mode

Command Enter PCL Mode

Format ESC%#A

Function Ends HP-GL/2 mode and returns to PCL mode. The character # is used as a space-
marker for a parameter 0 ... 3, which defines the PCL mode. The character ESC

represents the value 1BH. Further details can be obtained from the documentation
for the particular device.

82.8.2 Reset

Command Reset

Format ESC E

Function Returns the device to the currently set mode (HP-GL/2 or PCL).

82.8.3 Primary Font Selection by ID

Command Primary Font Selection by ID

Format FI fontID

Function Allocates an identification number between 0 and 32767 to a font. These ID

numbers are used in PCL mode.

Hewlett Packard graphic language (HP-GL/2) 1197

82.8.4 Secondary Font Selection by ID

Command Secondary Font Selection by ID

Format N fontID

Function Defines a character set with an identification number as a secondary font.

82.8.5 Scalable or Bitmap Fonts

Command Scalable or Bitmap Fonts

Format SB (n);

Function Specifies the type of a font (scalable or bitmap).

82.9 Digitizing Extensions

This group of commands is supported only by pen plotters that permit image digitization. The
following commands are available:

82.9.1 Digitize Clear

Command Digitize Clear

Format DC;

Function Cancels the digitization mode.

82.9.2 Digitize Point

Command Digitize Point

Format DP;

Function Switches the plotter into digitization mode.

82.9.3 Output Digitized Position and Pen Status

Command Output Digitized Position and Pen Status

Format OD;

Function Enables a request for the current position during digitization. The XY-position and
pen are displayed in the form of an ASCII string.

This brings the description of HP-GL/2 to a close. Further information can be obtained from the
relevant plotter manuals.

Hewlett Packard Printer

Communication Language
(PCL)

With the introduction of LaserJet II, Hewlett
Packard defined a new language for
communication with a new generation of

printers. This Printer Communication Language
(PCL) established itself rapidly and has subsequently
been emulated by many other printers. The
commands of this language - like those of PostScript
- enable the output of graphics and various fonts.
Version PCL 4 was still in use with LaserJet II;

however, the introduction of LaserJet III was
accompanied by version PCL 5. The control
sequences described below relate to this newer
version of the language.

PCL commands are divided into several different groups. Each command begins with an ESC
character (1BH) followed by several parameters. This character will be represented below as Esc.
The numbers enclosed in square brackets LI represent the same sequence in hexadecimal
notation.

83.1 Print Commands

These sequences process the complete printing operation.

83.1.1 Reset Printer

Command Reset Printer

1198

Hewlett Packard printer communication language (PCL) 1199

Format EscE C1B 45]

Function Resets the printer to the standard setting.

83.1.2 Number of copies

Command Number of copies

Format Esc8l#X MB 26 6C it...ft 58]

Function Specifies the number of copies to be printed on one page. The character it is a
placeholder and defines the number of copies.

83.1.3 Landscape positioning of logical page

Command Landscape positioning of logical page

Format Esc8l#U C1B 26 6C it...it 55]

Function Rotates the printed output so that the X-axis is in landscape format. The place
holder it contains the number of points (^720 inch) by which the printed image is to
be shifted.

83.1.4 Portrait positioning of the logical page

Command Portrait positioning of the logical page

Format EscSl#Z C1B 26 6C #...# 5A]

Function Rotates the printed output so that the Y-axis is in portrait format. The placeholder it
contains the number of points (V720 inch) by which the printed image is to be shifted.

83.2 Page Description Commands

This group comprises commands for the definition of the output of a page.

83.2.1 Print (page) format

Command Print (page) format

Format Esc8l#A [1B 26 6C U...U 41]

Function Indicates the page format and paper size. The space-marker # represents the code
for the page format. The correct paper cassette must be used for the codes defined:

Code Page format

1

2

Paper format
Executive (7 V4 x 10 V2 inch)
Letter (8 V2 x 11 inch)

(continues
over...)

1200 Page description languages

Code Page format

Envelope format
3 Legal (8 V2 x 14 inch)
26 DIN A4 (210 x 297 mm)
80 Monarch (3 7/s x 7 ln inch)
81 COM-10 (4 '/s x 9 V2 inch)
90 International DL (110 mm x 220 mm)
91 International C5 (162 mm x 229 mm)

(eo?it.)

83.2.2 Paper source

Command Paper source

Format Esc8l#H C1B 26 6C #...# 481

Function Indicates the source of paper for the paper feed. The # parameter represents the
code for the source. The following codes are defined:

Code Source

0 Print current page

1 Take up paper from multi-purpose cassette
2 Feed paper manually
3 Take up envelope

83.2.3 Page length

Command

Format

Function

Page length

Esc8l#P L1B 26 6C #. .# 501

Indicates the length of a page in lines. The # parameter represents the number of
lines.

83.2.4 Print alignment

Command Print alignment

Format Esc8l#0 C1B 26 6C U...H 4F]

Function Indicates the print alignment via the # parameter. The codes defined are shown in

the following table:

Hewlett Packard printer communication language (PCL) 1201

Code Print direction

0

1

2

3

Portrait

Landscape

Inverted portrait

Inverted landscape

83.2.5 Print direction

Command Print direction

Format Esc8a#P C1B 26 61 #...# 50]

Function Indicates the direction of print relative to the X-axis. The # parameter specifies the
angle in 90-degree steps so that vertical fonts can be printed.

83.2.6 Top margin

Command Top margin

Format Esc8l#Esc C1B 26 6C U...U 45]

Function Establishes the top margin in the # parameter; the parameter defines the number of
lines left blank.

83.2.7 Text length

Command Text length

Format Esc8l#F C1B 26 6C #...# 46]

Function Establishes the length in lines of the text to be printed in the # parameter.

83.2.8 Left margin

Command Left margin

Format Esc8a#L C1B 26 61 U...U 4C]

Function Establishes the left margin in the # parameter; the parameter indicates the number
of columns to be left blank.

83.2.9 Right margin

Command

Format

Function

Right margin

Esc8a#M :1B 26 61 #. .# 4D]

Establishes the right margin in the # parameter; the parameter indicates the column
number at which the text is to stop.

1202 Page description languages

83.2.10 Delete side margins

Command Delete side margins

Format Esc9 [1B 39]

Function Restores the margin setting to the standard values.

83.2.11 Skip perforation

Command Skip perforation

Format Esc8L#L C1B 26 6C #...# 4C]

Function The # parameter establishes whether printing is to be interrupted at the bottom of
the page and continued on the next page. If the # parameter is set to 0, this mode is
active, and printing will be carried out over page boundaries. The value 1 switches
this mode off.

83.2.12 Horizontal column spacing

Command Horizontal column spacing

Format Esc8k#H MB 26 6B U...U 4B]

Function Establishes the horizontal spacing between two columns via the # parameter. The
parameter indicates the spacing in ^120 inch. Four positions are allowed.

83.2.13 Vertical line spacing

Command

Format

Function

Vertical line spacing

Esc8L#C [1B 26 6C #. .# 43]

Establishes the vertical spacing between two columns via the # parameter. The

parameter indicates the spacing in V48 inch. Four positions are allowed.

83.2.14 Lines per inch

Command

Format

Function

833

Lines per inch

Esc8L#D C1B 26 6C U. .# 44]

Establishes the number of lines per inch via the # parameter. The values 1, 2, 3, 4,
6, 8, 12, 16, 24 and 48 are permitted for this parameter.

Cursor Commands

This group contains the commands controlling the position of the output cursor.

Hewlett Packard printer communication language (PCL) 1203

83.3.1 Vertical

Command Vertical

Format Esc8a#R C1B 26 61 M...U 52]

Function Moves the cursor to line #. If movement is to be indicated in points (^300 inch), the
following sequence applies:

Esc*p#Y :1B 2A 70 M...M 59]

Here, the Uparameter indicates the number of points. The sequence:

Esc8a#V C1B 26 61 #...# 56]

indicates the movement in decimal points Q-mn inch).

83.3.2 Horizontal

Command Horizontal

Format Esc8a#C [1B 26 61 #...# 43]

Function Moves the cursor to column #. If the movement is to be indicated in points

(V3ooinch), the following sequence applies:

Esc*p#X C1B 2A 70 #...# 58]

Here, the # parameter indicates the number of points. The sequence:

Esc8a#H C1B 26 61 #...# 48]

indicates the movement in decimal points (1/72o inch).

83.3.3 Half-line feed

Command Half-line feed

Format Esc= [1B 3D]

Function Implements a line feed of one half-line. The control commands CR, LF, Space, Tab,
BS and FF also cause cursor movements bv line or bv column.

83.3.4 Cursor position

Command

Format

Function

Cursor position

Esc8f#S C1B 26 66 # 53]

The # parameter establishes whether the cursor is to be read (# = 1) or saved (# = 0).

1204 Page description languages

83.4 Font Selection

This group enables the selection of individual fonts.

83.4.1 Font style

Command Font style

Format Esc(## [1B 28 #...#]

Function Establishes the font style via the ## parameter which stands for ASCII characters.
The PCL mode currently defines the following font styles:

Code Font style

0D ISO 60: Norway 1
ID ISO 61: Norway 2 (*)
IE ISO 4: Britain

OF ISO 25: France (*)
IF ISO 69: France

0G HP Germany (*)
1G ISO 21: Germany
01 ISO 15:

OK ISO 14: JIS ASCII (*)
2K ISO 57: China (*)
ON EGMA 94: Latin

OS ISO 11: Sweden

IS HP Spain (*)
2S ISO 17: Spain

3S ISO 10: Sweden (*)
4S ISO 16: Portugal (*)
5S ISO 84: Portugal (*)
6S ISO 85: Spain (*)
OU ISO 6: ASCII

2U ISO 2:IRV(*)

8U IIP Roman8

10U PC 8

11U PC 8 (D/N)

12U PC 850

The font styles marked with an asterisk (*) should no longer be used because their
importance is declining.

Hewlett Packard printer communication language (PCL) 1205

83.4.2 Primary spacing

Command Primary spacing

Format Esc(s#P MB 28 73 M..U 50]

Function Establishes the spacing between characters using the # parameter:
ft = 0 fixed

= 1 proportional

83.4.3 Primary character density

Command Primary character density

Format Esc(s#H C1B 28 73 #...# 48]

Function Establishes the number of characters per inch using the Uparameter.

83.4.4 Set character density

Command Set character density

Format Esc8k#S LIB 26 6B #...# 531

Function Sets the character density using the # parameter. The following values are
permitted:

Code Density

0

2

4

10.0

Compressed (16,5)
Elite (12,0)

83.4.5 Primary character size

Command Primary character size

Format Esc(s#V C1B 28 73 #...# 56]

Function Establishes the size of a character in pica points, using the # parameter.

83.4.6 Font orientation

Command Font orientation

Format Esc(s#SC1B 28 73 #...# 53]

Function Establishes the orientation of the font via the # parameter. The following values are
permitted:

= 0 upright

= 1 italic

1206 Page description languages

83.4.7 Primary font line thickness

Command

Format

Function

Primary font line thickness

Esc(s#B C1B 28 73 U...M 42]

The command establishes the line thickness using the # parameter, for which the
codes listed above are defined. The minus sign for thin fonts should be entered as
part of the code.

Code Line thickness

-7 Ultra-fine

-6 Extra-fine

-5 Fine

-4 Extra-thin

-3 Thin

-1 Three-quarter thin

-2 Half-thin

0 Normal

1 Half-bold

2 Three-quarter bold

3 Bold

4 Extra-bold

5 Black

6 Extra-black

7 Ultra-black

83.4.8 Font type

Command Font type

Format Esc(s#T MB 28 73 It...ft 54]

Function Establishes the font type via the # parameter. The following codes are permitted for #:

Code Font type

Line printer

Pica

Elite

Courier

Helvetica
(continues

over...)

Hewlett Packard printer communication language (PCL) 1207

Code Font type

Times Roman

Gothic

Script
Prestige

(cont.)

83.4.9 Standard font

Command Standard font

Format Esc(s#a C1B 28 33 40]

Function The command in this format establishes the primary font; the secondary font is
determined by:

Esc)s#a L1B 29 33 401

83.4.10 Transparent print data

Command Transparent print data

Format Esc8p#X[data] MB 26 70 #...# 58 ...]

Function Establishes the characters to be interpreted by the printer. The # parameter

indicates the number of characters in the [data] field.

83.4.11 Underline on/off

Command Underline on/off

Format EscSdOD [1B 26 64 30 44]

Function The format establishes the underline on mode. The following format is provided for
underline on adapted:

Esc8d3D [1B 26 64 33 44]

In this mode, blank characters are not underlined. The following sequence:

Esc8da C1B 26 64 40]

is used to switch the underline mode off.

83.5 Font Management

This group contains the various commands required for loading and deleting fonts.

1208 Page description languages

83.5.1 Allocate font code

Command Allocate font code

Format Esc*c#D MB 2A 63 #...# 44]

Function The # parameter indicates the code number, which may be between 0 and 32767.
All subsequent font management commands relate to this code number.

83.5.2 Control of font characters

Command Control of font characters

Format Esc*c#F [1B 2A 63 #...# 46]

Function The # parameter stands for one of the codes listed below:

Code Meaning

0 Delete all fonts

1 Delete all temporary fonts

2 Delete the font with the last code allocated

3 Delete last character entered

4 Set temporary font
5 Set permanent font

6 Allocate/copy current font as temporary

83.5.3 Select font

Command Select font

Format Esc(#X [1B 28 #...# 58]

Function This format selects the font with the code number # as the primary font. The
following format is used to set the secondary font:

Esc)#X [1B 29 #...# 58]

83.6 Creating Loadable Fonts

This command group can be used for the creation of customized fonts.

Hewlett Packard printer communication language (PCL) 1209

83.6.1 Font descriptor

Command Font descriptor

Format Esc)s#w:data] C1B 29 73 ft...ft 57 Data]

Function The ft parameter establishes the length of the following font descriptor, n bytes
containing the font description follow this command.

83.6.2 Character code

Command Character code

Format Esc*c#Esc [1B 2A 63 #...# 45]

Function The # parameter establishes the code of the ASCII character which is to be
allocated to the next character.

83.6.3 Load characters

Command Load characters

Format Esc(s#WCdata] [1B 28 73 U...U 57 Data]

Function The # parameter establishes the length of the following character descriptor. This
command is followed by n bytes containing the character descriptor.

83.7 Graphics Commands

This group contains the commands used for the output of graphics in raster and vector format; the
HP-GL/2 character set is supported.

83.7.1 HP-GL/2 Mode

Command HP-GL/2 Mode

Format Esc%0B [1B 25 30 42]

Function Establishes that the last pen position of the HP-GL/2 mode is being used. In the
following format, this command determines that the graphics output is to begin at
the current PCL position:

E%1B [1B 25 31 42]

83.7.2 HP-GL/2 Plot width

Command HP-GL/2 Plot width

Format Esc*c#K C1B 2A 63 #...# 4B]

Function The # parameter sets the width of the line in inches.

1210 Page description languages

83.7.3 HP-GL/2 Plot length

Command HP-GL/2 Plot length

Format Esc*c#L [1B 2A 63 U...U 4C]

Function The Uparameter sets the length of the plot line in inches.

83.7.4 Reference point in graphic area

Command Reference point in graphic area

Format Esc*cOT H1B 2A 63 30 54]

Function Establishes the current position as the reference position.

83.7.5 Width of graphic area

Command Width of graphic area

Format Esc*c#X C1B 2A 63 M...U 58]

Function The # parameter sets the width of the graphic area in decimal points.

83.7.6 Height of graphic area

Command

Format

Function

Height of graphic area

Esc*c#Y [1B 2A 63 #...# 59]

The # parameter sets the height of the graphic area in decimal points.

83.7.7 Resolution of raster graphics

Command

Format

Function

Resolution of raster graphics

Esc*t###R MB 2A 74 ft. .# 52]

Establishes the resolution for raster graphics. The following codes take the place of
the space-markers, depending on the resolution required:

Codes (in hex) Resolution

37 35

31 30 30

31 35 30

33 30 30

75 points per inch
100 points per inch

150 points per inch

300 points per inch

These values are entered in hexadecimal notation and are inserted into the

sequence as appropriate (for example, 75 points per inch = Esc*t75R).

Hewlett Packard printer communication language (PCL) 1211

83.7.8 Orientation of raster graphics

Command Orientation of raster graphics

Format Esc*rOF [1B 2A 72 30 46]

Function In this format, the image is rotated in the display, while the following sequence is
used to print it in landscape format:

Esc*r3F MB 2A 72 30 46]

83.7.9 Start raster graphics

Command Start raster graphics

Format Esc*rOA C1B 2A 72 30 41]

Function In this format, the left margin is established at column 0, while the following
sequence fixes the left margin at the current position:

Esc*r1A MB 2A 72 31 41]

83.7.10 Data compression

Command

Format

Function

Data compression

Esc*b#M H1B 2A 62 U...U 4D]

Compresses the data according to the type of compression indicated by the value of
the # parameter:

Code Compression

0

1

2

3

Uncoded

Run-length coding

TIFF coding

Delta row

83.7.11 Transmission

Command Transmission

Format Esc*b#W[data] HB 2A 62 U...U 57 data]

Function Transmits the data for a raster graphic. The # parameter indicates the number of
data items that follow the command.

83.7.12 End of raster graphic

Command End of raster graphic

1212 Page description languages

Format Esc*rB C1B 2A 72 42]

Function Marks the end of the raster graphic.

83.7.13 Raster height

Command Raster height

Format Esc*r#T :1B 2A 72 #...# 54]

Function The # parameter indicates the number of raster rows.

83.7.14 Raster width

Command Raster width

Format Esc*r#S C1B 2A 72 #...§ 53]

Function The Uparameter indicates the number of raster pixels per row.

83.8 Print Mode

This command group contains instructions for setting the relevant print mode (shading,
transparency).

83.8.1 Select pattern

Command Select pattern

Format Esc*v#T L"1B 2A 76 U...U 54]

Function The # parameter determines the print color as follows:

Code Allocation

0 Full-tone black

1 Full-tone white

2 Gray toning pattern

3 Cross-hatching

Hewlett Packard printer communication language (PCL) 121 3

83.8.2 Select source

Command

Format

Function

Select source

Esc*v#N C1B 2A 76 #...# 4E]

The # parameter determines the mode of shading as follows:

Code Allocation

0 Transparent

1 Opaque

83.8.3

Command

Format

Function

Select pattern

Select pattern

Esc*v#0 MB 2A 76 #...# 4F]

The # parameter determines the mode of shading for the pattern i

Code Allocation

0 Transparent

1 Opaque

83.8.4 Width of rectangular shape

Command Width of rectangular shape

Format Esc*c#A :1B 2A 63 #...# 41]

Function Indicates the width in points of a rectangular shape to be filled. The following
command is used to indicate the width in decimal points:

Esc*c#H MB 2A 63 U...U 48]

1214 Page description languages

83.8.5 Height of rectangular shape

Command

Format

Function

Height of rectangular shape

Esc*c#B C1B 2A 63 #...# 42]

Indicates the height in points of a rectangular shape to be filled. The following
format is used to indicate the height in decimal points:

Esc*c#V L1B 2A 63 U...U 56]

83.8.6 Fill rectangular shape

Command

Format

Function

Fill rectangular shape

Esc*c#P C1B 2A 63 U...U 50]

The ft parameter indicates the fill attribute for the rectangular shape:

Code Fill attribute

0 Full-tone black

1 Full-tone

2 Gray shading

3 Hatching
4 Customized pattern

5 Current pattern

83.8.7 Pattern code number

Command Pattern code number

Format Esc*c#G C1B 2A 63 ft...ft 47]

Function The Uparameter allocates a pattern type to the pattern or indicates the shading as a
percentage. The following coding applies to the level of gray shading:

83.9

Hewlett Packard printer communication language (PCL) 1215

Code Gray shading

2 2%

10 10%

15 15%

30 30%

45 45%

70 70%

90 90%

100 100%

These values should be entered as numbers (for example, 100% = 1B 2A 63 31 30 30

47). The pattern is coded as follows:

Code Pattern

1 Horizontal lines

2 Vertical lines

3 Diagonal lines
4 Grid

5 Diagonal grid

Macros

This group contains the commands required for the definition of macros.

83.9.1 Macro coding

Command Macro coding

Format Esc8f#Y H1B 26 66 #...# 59]

Function Defines a code number for macros. The # parameter is a number between 0 and
32,767.

83.9.2 Macro control

Command Macro control

Format Esc8f#X C1B 26 66 #...# 58]

Function Defines the control of macros. The # parameter indicates one of the following

control modes:

1216 Page description languages

Code Mode

0 Begin macro definition

1 End macro definition

2 Execute macro

3 Call up macro

4 Activate superimpose

5 Deactivate superimpose

6 Delete macro

7 Delete all temporary macros

8 Delete macro with last code allocated

9 Set temporary macro

10 Set permanent macro

The code is entered as a hex value for each digit (for example, code 10 = 31H 30H).

83.10 Programming References

This group contains additional commands for the control of the printer display and line breaks.
The commands can be used for fault finding.

83.10.1 Display function

Command Display function

Format EscY C1B 59]

EscZ [1B 5A]

Function The first command sequence switches off the display; the second switches it on
again.

83.10.2 Automatic line break

Command Automatic line break

Format EscSsOC C1B 26 73 30 43]

Esc8s1C C1B 26 73 31 43]

Hewlett Packard printer communication language (PCL) 1217

Function These two sequences are used for switching the automatic line break function on
and off.

83.11 PCL-Access Expansion

The commands in this group enable PCL commands to be activated in HP-GL/2 mode. These
commands are described in Chapter 82 on HP-GL/2 commands, in Section 82.8 Dual Context
Extension. The HP-GL/2 mode can be activated via the sequence Esc%0B.

Encapsulated PostScript format
(EPS) version 3.0

In defining PostScript, Adobe created a printer-
independent page description language which is
becoming established as the standard. Many

software products therefore import images and text
coded in PostScript. To facilitate exchange between
various systems, Adobe defined Encapsulated
PostScript Format (EPSF). This product includes
PostScript programs which must comply with certain
structural conventions (Document Specific
Conditions (DSC)).

Figure 84.1 shows a file (EPS version 1.2) produced with the Lotus product Freelance.

1218

%!PS-Adobe-2.0 EPSF-1.2

mitLe: born1.EPS

HCreator: FreeLance PLus

nCreationDate: 8/1/1990

HPages: 1
HDocumentFonts: (atend)

%%BoundingBox: 0 0 648 468

%%EndComments

%%BeginProcSet: FreeLance PLus
/FreeLance_PLus dup 100 diet def Load begin
[] {bind} stopped { (patching the bind operator...) = fLush
/*bind /bind Load def /bind i dup xcheck { *bind } if } *bind def }
if pop /bdf {bind def} bind def /Ldf {Load def} bdf

/mt /moveto Ldf /rt /rmoveto Ldf /L2 /Lineto Ldf /c2 /curveto Ldf

/sg /setgray Ldf /gs /gsave Ldf /ef /eofiLL Ldf /rL2 /rLineto Ldf
/st /stroke Ldf /gr /grestore Ldf /np /newpath Ldf
/sv /save Ldf /su /statusdict Ldf /rs /restore Ldf

/sw /setLinewidth Ldf /sd /setdash Ldf /cp /cLosepath Ldf

3.01

/ed

Figure 84.1
EPS file,

produced with
Freelance Plus

(continues
over...)

Encapsulated Postscript format (EPS) 1219

{exch def } bdf /cfnt {findfont exch makefont setfont} bdf

/itr {transform round exch round exch itransform} bdf

/fres 72 0 matrix currentmatrix dtransform

exch dup muL exch dup muL add sqrt def

/res fres def /mem matrix currentmatrix bdf

%%EndProcSet

end

%%EndProLog

%%BeginSetup

FreeLance_PLus begin

save newpath

.1 .1 scaLe

/ecm matrix currentmatrix bdf

/sem {ecm setmatrix} bdf

-720 -720 transLate

0 setLinecap

0 setLinejoin

1.42 setmiterLimitnEndSetup

Figure 84.1a - EPS fiLe, produced with FreeLance PLus

/Ich 256 array def StandardEncoding Ich copy pop /buLLet

/paragraph/section/dieresis/tiLde/ring

/circumfLex/grave/a cute/quotedbL Left/quotesingLe

/eLLipsis/endash/emdash/guiLsingLLeft/guiLsingLright

/quotedbLbase/quotesingLbase/quotedbLright/OE/oe

/Ydieresis/fi/fL/dagger/daggerdbL/CcediLLa/udieresis

/eacute/aci rcumfLex/adieresis/agrave/aring/ccedi LLa

/ecircumfLex/edieresis/egrave/idieresis/ici rcumfLex

/igrave/Adieresis/Aring/Eacute/ae/AE/oci rcumfLex

/odieresis/ograve/uci rcumfLex/ugrave/ydieresis

/Odieresis/Udieresis/osLash/sterLing/OsLash/fLorin

/aacute/iacute/oacute/uacute/nti Lde/Nti Lde/ordfeminine

/ordmascuLine/questiondown/excLamdown/gui LLernetLeft

/guiLLemetright/Aacute/Aci rcumfLex/Agrave/cent/yen

/atiLde/AtiLde/currency/EcircumfLex/Edieresis/Egrave

/dotLessi/Iacute/IcircumfLex/Idieresis/Igrave/Oacute

/germandbLs/Oci rcumfLex/Ograve/otiLde/OtiLde/Uacute

/Uci rcumfLex/Ugrave/macron/cediLLa/periodcentered

Ich 127 97 getintervaL astore pop

/lenc { /ncs Ich def /nfn ed /bfn ed /bfd bfn findfont def

/nf bfd maxLength diet def bfd{exch dup dup /FID ne exch

/Encoding ne and {exch nf 3 1 roLL putHpop pop} ifeLse }

foraLL nf/FontName nfn put nf/Encoding ncs put nfn nf

definefont pop}bdf

Figure 84.1
EPS file,

produced with
Freelance Plus

(cont.)

1220 Page description languages

/IencO { /ncs Ich def /nfn ed /bfn ed /Lnw ed /bfd bfn

findfont def /nf bfd maxLength 4 add diet def bfd{exch

dupdup /FID ne exch /Encoding ne and

{exch nf 3 1 roLL putHpop pop} ifeLse MoraLL

nf/FontName nfn put nf/Encoding ncs put

nf/PaintType 2 put nf/StrokeWidth Lnw put

nfn nf definefont pop}bdf

/IencSO { /nfn ed /bfn ed /Lnw ed /bfd bfn findfont def

/nf bfd maxLength 4 add diet def bfd{exch dup

/FID ne { exch nf 3 1 roLL putHpop pop} ifeLse MoraLL

nf/FontName nfn put nf/PaintType 2 put

nf/Strokewidth Lnw put nfn nf definefont poplbdf

/HeLvetica /FLfonl lenc

[191 0 0.00 191 -18 -142] /FLfonl cfnt

0.000 sg

2737 3026 itr mt

(This is a text)

show

6 sw

sv np [] 0 sd

2764 3749 itr mt

4071 3749 itr L2

st rs

sv np

1352 2572 itr mt

2424 2572 itr L2

2424 3513 itr L2

1352 3513 itr L2

1352 2572 itr L2

cp

Figure 84.1b - EPS fiLe, produced with FreeLance PLus

st rs

sv np

3456 4438 itr mt

currentpoint transLate

np 1.000 1.000 scale

0 0 549 0.000 360.000 arc sem

st rs

sv np

5156 4438 itr mt

5823 4573 itr L2

5823 3984 itr L2

Figure 84.1
EPS file,

produced with
Freelance Plus

(cont.)

4973 3984 itr L2

4973 4354 itr L2

5156 4438 itr L2

gs 0.000 sg

ef gr

cp

st rs

rs end

HTrai Ler

HDocumentFonts: HeLvetica

Encapsulated Postscript format (EPS) 1221

Figure 84.1
EPS file,

produced with
Freelance Plus

(cont.)

The EPS file consists of the actual PostScript instructions and the structural conventions (DCS)
for program control. It is important that the EPS file describes a maximum of one page. Typically,
the content of an EPS file is incorporated into another document as an image. The EPS file may
therefore contain pictures, text and graphs and must correspond to the following structural
conventions.

84.1 EPS structural conventions

The EPS structural conventions provide a prolog and a script for each EPS file. The prolog
contains application-specific definitions, while the script contains the actual PostScript
instructions. These sections are described by various items of structural information which are
introduced as PostScript comments using the 7. character. The PostScript interpreter ignores the
line, while a pre-processor evaluates the information contained in the line. In order to distinguish
structural information from other comment lines, this information begins with the following
characters:

XI

It

followed by any ASCII string required. There must be no spaces between the two percentage
characters and the keyword. If a keyword is terminated with a colon, it will be followed by
additional parameters (for example, 7.7. Bounding Box: xx xx xx xx). Figure 84.2 shows the
structure of an EPS file with prolog and script.

1222 Page description languages

— %!PS-AD0BE

DSC Comments

%/SENDComments

%%BeginProLog
HBeginResource:

%XEndResource

— %%EndProLog

HBeginSetup

HEndSetup

HPage:....

%%BeginPageSetupSCK1PI

%%EndPageSetup

HPageTrai Ler

— %/^TraiLer Figure 84.2
The structure

of an EPS file

Please note that the individual sections may contain both DSC comments and PostScript

instructions. Not all DSC comments need appear (see below).

84.2 Necessary DSC header comments

An EPS file must contain at least two DSC comment lines in the header.

84.2.1 %!PS-Adobe-3.0 EPSF-3.0

An EPS file always begins with the \7.PS line, which marks the file as a PostScript file in
accordance with the Adobe conventions. This line indicates the signature:

!PS-Adobe-

and may also contain the version number (here EPSF-3.0).

Encapsulated Postscript format (EPS) 1223

84.2.2 %%BoundingBox: llx lly urx ury

The second DSC instruction to appear in an EPS file, from EPSF 2.0 onwards, is the definition of
the bounding box. (In earlier versions this instruction could appear anywhere in the header.) The
bounding box defines a rectangle which encloses all the elements of an EPS file. The instruction is
needed by the reader program to determine and possibly also to scale the size of the image. The
instruction contains four integer values as parameters (LLx, LLy, urx, ury) which indicate the
corners of the bounding box according to the initial coordinate system:

HBoundingBox: 0 0 648 468

The arguments (LLx, LLy) describe the lower left corner, while the arguments (urx, ury) define
the upper right corner.

84.3 Optional header comments

The header of the EPS file may contain additional comments giving further information.

84.3.1 %%DocumentFonts: Fontl, Font2 ...

This comment enables names to be given to the fonts used. However, the instruction may be
moved to the end of the file, in which case the following line must appear in the header:

%%DocumentFonts: (atend)

84.3.2 %%Title:, %%Creator:, %%CreationDate:

The following three instructions should, if possible, appear in an EPS file. They establish the
document title and further information:

%%TitLe: title

%/iCreator: text

%%CreationDate: date

The file name is also often stored in the title line. The program or the person responsible for
creating the file should be noted in the following line (Creator) together with the date of creation.
The time can also be included as a string in the date line.

84.3.3 %%Copyright:

With %%Copyright: text, a copyright text can be stored in the EPS file.

1224 Page description languages

84.3.4 %%DocumentData:

The instruction %%DocumentData:Options defines the type of data in the EPS file. The data is
enclosed between %%BeginData: and %%EndData instructions. The following options are available:

CLean7Bit If the page description contains only codes in the range 1BH-7FH and OAH (LF),
ODH (CR), and 09H (TAB). The character combination 0DH,0AH is used at the end of a
line. An EPS line should never contain more than 255 characters.

CLean8Bit Defines codes as for CLean7Bit, but includes the range 80H-FFH.

Bi nary Indicates EPS binary data. Values between 00H and FFH may appear in the data.

Please note that the header must always be coded with Clean7Bit up to the instruction
HEndComments. With CLean7Bit and CLean8Bit EPS files, data outside the defined range is
indicated with ESCAPE codes (for example, 05H = \005).

84.3.5 %%EndComments

This instruction defines the end of the EPS header.

84.3.6 %%For:

This instruction names a recipient of the document:

%%For: text

where the recipient name is indicated as text.

84.3.7 %%LanguageLevel:

This command defines the language level (Level 1 or Level 2) used in the document.

84.3.8 %%Orientation:

This option defines the orientation of the output (portrait or landscape) and can be used for
previewing the document.

84.3.9 %%Pages

The number of (virtual) pages is set with the sequence:

HPages: xx

The value xx should be a non-negative decimal number. This value has nothing to do with the
number of physical pages to be output (in EPS, this is always 1). If the program creates no pages, a
0 should be entered. The option atend is also permitted.

Encapsulated Postscript format (EPS) 1225

84.3.10 %%PageOrder:

This option defines the order of pages to be output (ascending, descending, special).

84.3.11 %%Routing:

This comment line defines the (text) reply address of the document to be output.

84.3.12 %%Version:

This command can be used to indicate a version or revision number in the document.

84.4 Body Comments

These comments are essentially used for marking various subdivisions in the actual program section.
The line length in EPS files should not exceed 255 characters. Continuation lines are therefore

necessary for some instructions. These are introduced as follows:

7.7.+ ...

This section also contains various keywords which always occur in pairs. A summary of possible
comments is shown below.

84.4.1 %%BeginBinary:bytes, %%EndBinary

This sequence defines the beginning and end of an area containing binary data. The number of
data bytes is indicated as a parameter after %%BeginBinary. However, this instruction has only
been retained for compatibility reasons. In future versions, it will be possible to replace this
instruction with the sequence %%BeginData:-%%EndData.

84.4.2 %%BeginData:bytes, %%EndData

This sequence defines the beginning and end of a data area. %%BeginData: is followed by the
length in lines or in bytes, the data type (hex, binary or ASCII) and the orientation of the data
(bytes or lines). The entry:

%%BeginData: 13 Hex Byte

image

4c4f0011...

%EndData

defines an image composed of hexadecimal data. A hexadecimal number always consists of two
bytes (for example, OA).

1226 Page description languages

84.4.3 %%BeginDefaults, %%EndDefaults

This sequence encloses an area in which default instructions appear. The area can appear only in
the header, after %%EndComments and after any review section (HBeginPreview ... %EndPreview)
that may be present. Within the range, the following comments may appear: %%PageBoundi ngBox:,
%%PageCustomCoLors :, %%PageMedi a :, 7.7.Page0r i entat i on : %%PageProcessCo Lors :
%%PageRequi rements:, %%PageResources:.

84.4.4 %%BeginPreview:, %%EndPreview

These two comments describe a preview image.

%%BeginPreview: width height depth Lines

The width parameter indicates the width of the image in the preview. Height defines the
height of the image and depth the number of bits per pixel (1,2,4 or 8). The Lines parameter
indicates how many data lines containing image data the image covers.

The image for the preview is stored as a bitmap in the file. The instruction %%BeginPreview
should be placed after the %%EndComment instruction, but before the line HBeginDef auLts.

84.4.5 %%BeginProlog,%%EndProlog

These two instructions enclose the document prolog. The %%EndProLog instruction is positioned
before the script section of the document.

84.4.6 %%BeginSetup,%%EndSetup

These comment lines enclose an area containing the settings for the output. The instructions
7.7.Begi nPageSetup and HEndPageSetup are also available.

The prolog is terminated with an appropriate comment (EndProLog). The beginning of a page
description can be indicated by the following sequence:

HPage: LabeL ordiaL

The relevant numbers are entered in LabeL and ordiaL. Fonts for individual pages, which can
be evaluated by a read program, can be specified as follows:

%%PageFonts: fontl, font2 ...

Encapsulated Postscript format (EPS) 1227

84.5 Trailer comments

The trailer appears at the end of an EPS file, and is introduced by the comment:

%%Trailer

If the instruction nDocumentFonts: (atend) occurred in the header, the character sets used
in the document can be listed in the trailer as follows:

HDocumentFonts: fontl, font2 ...

An example is shown in Figure 84.1. The EPS file trailer can also contain comment lines giving
resource requirements such as HDocumentNeededResources: or %%DocumentNeededFonts :.

84.5.1 %%EOF

The end of an EPS file is indicated by the instruction %%E0F.

84.6 Platform-specific formats for preview images

The contents of EPS files cannot be processed or displayed while they are being imported. The
only means of displaying them is by printing them out. To simplify the positioning of an EPS file
while it is being imported, the file may contain an additional preview image. On the Macintosh,
these images are generally PICT image data stored under resource number 256 in a resource fork
of the EPS file. On the PC, TIFF images or WMF images are used. In this case the file contains a
binary header.

Offset Bytes Description

00H 4 Signature C5H DOH D3H C6H (byte 0 = C5H)

04H 4 Offset PostScript code range

08H 4 Length of PostScript range
OCH 4 Offset Metafile image

10H 4 Length of metafile range

14H 4 TIFF image offset
18H 4 Length of TIFF range
1CH 2 Header checksum

" • •

Table 84.1

Binary header for
EPS files

The header contains the offset and the length of the image data ranges. One range (metafile or
TIFF) must always be set to 0, because only one image format is stored as a preview. The
checksum is the result of an XOR operation on the first 28 bytes of the header. The checksum

1228 Page description languages

FFFFH should be ignored. The format of the image data is described in Chapter 27 (TIFF) and
Chapter 64 (Metafile).

84.7 Platform-independent formats
for preview images

Alternatively, an EPS file can contain a preview image in a platform-independent format. In this
case the image is stored as a bitmap in ASCII format. The ASCII data is bound into the file in the
following sequence:

%%BeginPreview: Width Height Depth Lines

HEndPreview

The sequence of bytes is the same as for the PostScript image-operator (zero-point at bottom left).
An EPS file containing integrated preview image data used under DOS should have the EPI

extension. However, the section containing the preview data is placed after the header-comment

section but before the document prolog. A bit value of 0 defines a white dot; the value 1 defines a
black image dot. A line containing hexadecimal numbers must never contain more than 255

characters. Any characters that do not correspond to hexadecimal characters in the data range
must be skipped. Every line containing hex-values begins with the 7. character so that the
PostScript interpreter skips them. The data within an image line should always be multiples of 8

bits. If necessary the data line should be padded with 0-bytes.

84.8 PostScript instructions

PostScript instructions describing the output page are stored in an EPS file. All valid PostScript
commands are allowed, with the exception of those listed in Table 84.2.

banddevice

copypage

framedevice

initgraphics

renderbands

setshared

ctear

erasepage

grestoreaLL

initmatrix

setgLobaL

startjob

cLeardictstack

exitserver

initcLip

quit

setpagedevice

1. Adobe Systems Inc.: PostScript Language Tutorial Reference Manual, First Edition

2. Adobe Systems Inc.: PostScript Language Tutorial and Cookbook

3. Adobe Systems Inc.: PostScript Language Program Design

4. Adobe Systems Inc.: PostScript Language Program Design, Second Edition

Table 84.2

Illegal EPS
commands

Encapsulated Postscript format (EPS) 1229

Those intending to use this language are advised to consult the relevant Adobe manuals
The most important PostScript instructions (Levell) are described briefly below.

84.8.1 abs

Command abs

Format num abs

Function Converts num into an absolute number and stores the result on the stack.

84.8.2 add

Command add

Format numl num2 add

Function Adds numl and num2 and stores the result on the stack.

84.8.3 and

Command and

Format booL1 booL2 and

Function ANDs the two logical values booL1 and booL2 and stores the result on the stack.

84.8.4 arc

Command arc

Format x y r angi ang2 arc

Function Draws an arc of radius r at the point x,y. The angi and ang2 parameters indicate
the angle of the arc.

84.8.5 arcn

Command arcn

Format x y r angi ang2 arcn

Function Draws an arc of radius r in clockwise direction at the point x,y. The angi and ang2

parameters indicate the angle of the arc.

84.8.6 arcto

Command arcto

Format x1 y1 x2 y2 arcto

Function Draws a straight line from the current point xO,yO to the point x1,y1 and from there
an arc to the point x2,y2. After execution, there are four parameters on the stack,
indicating the tangent points.

1230 Page description languages

84.8.7 ashow

Command ashow

Format ax ay string ashow

Function Displays a text string. The type widths can be corrected using ax and ay.

84.8.8 atan

Command atan

Format num den atan

Function Calculates the angle in degrees from the parameters num and den, and stores the
result on the stack.

84.8.9 awidthshow

Command awidthshow

Format ex cy char ax ay string awidthshow

Function Displays a text string. The type widths are corrected using ax and ay. In addition,
every char character in the text is corrected using ex and cy.

84.8.10 bind

Command bind

Format proc bind

Function Replaces the operator name for a procedure by its values and stores them on the
stack.

84.8.11 bitshift

Command bitshift

Format inti shift bitshift

Function Shifts the value of i nt1 by shift to the left. If the value of shift is negative, the bits
are shifted to the right. The result is placed on the stack.

84.8.12 ceiling

Command ceiling

Format num cei Ling

Function Returns the least integer value, greater than or equal to num.

Encapsulated Postscript format (EPS) 1231

84.8.13 charpath

Command charpath

Format string boot charpath

Function Obtains a character path outline, that would result if string were shown using the
show command.

84.8.14 clip

Command clip

Format c Li p

Function Clips the interior of a clip path.

84.8.15 clippath

Command clippath

Format cLippath

Function Defines the current clip path.

84.8.16 closepath

Command closepath

Format cLosepath

Function Closes the current sub-path by means of a straight line segment from the current
point to the start point.

84.8.17 copypage

Command copypage

Format copypage

Function Prints the contents of the current page without re-initializing the page, thereby
enabling a sample of part of an image to be printed.

84.8.18 cos

Command cos

Format angle cos

Function Calculates the cosine value of the angle and stores the value on the stack.

1232 Page description languages

84.8.19 currentpoint

Command currentpoint

Format currentpoint

Function Stores the current XY coordinates on the stack.

84.8.20 curveto

Command curveto

Format x1 y1 x2 y2 x3 y3 curveto

Function Draws a Bezier curve using the three points indicated.

84.8.21 cvi

Command cvi

Format num cvi

Function Converts num into an integer value and stores it on the stack.

84.8.22 cvn

Command cvn

Format string cvn

Function Converts a number in the form of a string into an integer value and stores it on the
stack.

84.8.23 cvt

Command cvt

Format string cvt

Function Converts num into a floating point value and stores it on the stack.

84.8.24 cvrs

Command cvrs

Format num string radix cvrs

Function Converts a number num into a string using the base radix and stores the result on
the stack.

84.8.25 cvs

Command

Format

cvs

num string cvs

Encapsulated Postscript format (EPS) 1233

Function Converts the value ofany element in a text and returns a real value on the stack.

84.8.26 div

Command div

Format numl num2 div

Function Divides numl by num2 and stores the result on the stack.

84.8.27 dup

Command dup

Format eLement dup

Function Duplicates the uppermost element on the stack.

84.8.28 eoclip

Command eoclip

Format eocLip

Function Clips the interior of the current clipping path with the interior of the current path.

84.8.29 eofill

Command eofill

Format eofiLL

Function Fills the interior of the current path with the current color.

84.8.30 eq

Command eq

Format eLeml eLem2 eq

Function Compares any two elements with each other and stores the result true orfalse on
the stack.

84.8.31 exch

Command exch

Format eLeml eLem2 exch

Function Exchanges the two uppermost elements on the stack.

84.8.32 exec

Command exec

1234 Page description languages

Format oper exec

Function Places the operand on the stack and executes it directly.

84.8.33 exit

Command exit

Format exit

Function Ends the execution of a loop (for, Loop, repeat, foraLL).

84.8.34 exp

Command exp

Format base exp exp

Function Calculates a floating point value from the base and the exponent (exp).

84.8.35 fill

Command fill

Format f i LL

Function Fills the interior of the current path with the current color.

84.8.36 findfont

Command findfont

Format font findfont

Function Searches for a name described by font in the font dictionary.

84.8.37 for

Command for

Format start step end { proc } for

Function Constructs a loop which begins with the value start. The loop index will be
augmented by the interval step until the final value end is reached. The
instructions enclosed in braces (O) are executed for each iteration of the loop.

84.8.38 ge

Command ge

Format numl num2 ge

Function Carries out a greater than or equal to comparison on numl and num2 and stores the
result as a Boolean value on the stack.

Encapsulated Postscript format (EPS) 1235

84.8.39 grestore

Command grestore

Format grestore

Function Restores the graphic status saved under gsave.

84.8.40 gsave

Command gsave

Format gsave

Function Saves the graphic status.

84.8.41 gt

Command gt

Format numl num2 gt

Function Carries out a greater than comparison on numl and num2 and stores the result as a
Boolean value on the stack.

84.8.42 idiv

Command idiv

Format inti int2 idiv

Function Carries out an integer division ofint1/int2 and stores the result on the stack.

84.8.43 if

Command if

Format booL i proc } if

Function Processes the instructions enclosed in brackets if booL is equal to true.

84.8.44 ifelse

Command ifelse

Format booL { prod } i proc2 } ifeLse

Function Processes the prod instructions if booL = true.

Otherwise the proc2 instructions are implemented.

1236 Page description languages

84.8.45 image

Command

Format

Function

image

width height bits_per_sampLe matrix proc image

Transfers a raster image to the current page. The width and height parameters
specify the dimensions of the image. The image is read in using proc.

84.8.46 imagemask

Command imagemask

Format width height invert matrix proc imagemask

Function Transfers a raster image to the current page. The width and height parameters
specify the dimensions of the image. The image data is read in using proc. The
logical value invert defines whether the bits are drawn directly or inverted (if
inverted = false, 0 bits are drawn).

84.8.47 index

Command

Format

Function

index

a1 a2. .ax n index

Copies the nth stack element to the top of the stack, counting from the uppermost
element (0).

84.8.48 le

Command le

Format numl num2 Le

Function Carries out a less than or equal to comparison on numl and num2 and stores the

result as a Boolean value on the stack.

84.8.49 lineto

Command lineto

Format x y Lineto

Function Appends a straight line segment to the current path from the current position to the
point x,y.

84.8.50 In

Command In

Format numl Ln

Function Stores the floating point value of Ln(num1) on the stack.

Encapsulated Postscript format (EPS) 1237

84.8.51 log

Command log

Format numl Log

Function Stores the floating point value of Log(num1) on the stack.

84.8.52 loop

Command loop

Format •(proc 1 Loop

Function Continues executing the instructions of the Loop { proc 1 until an exit operator is
loaded.

84.8.53 It

Command It

Format numl num2 Lt

Function Carries out a less than comparison on numl and num2 and stores the result as a
Boolean value on the stack.

84.8.54 mod

Command mod

Format inti int2 mod

Function Stores the result of the division i nt1 /i nt2 on the stack (modulus function).

84.8.55 moveto

Command moveto

Format x y moveto

Function Begins a new path and sets the current point to the coordinates indicated with x,y.

84.8.56 mul

Command mul

Format numl num2 muL

Function Multiplies numl by num2 and stores the product on the stack.

1238 Page description languages

84.8.57 neg

Command neg

Format numl neg

Function Inverts the value of numl and stores the result on the stack.

84.8.58 newpath

Command newpath

Format newpath

Function Creates a new path on the current page. The current point is then undefined.

84.8.59 not

Command not

Format booL1 not

Function Inverts the value of the logical variable and stores the result on the stack.

84.8.60 or

Command

Format

Function

or

booL1 booL2 or

ORs the two operators and stores the result on the stack.

84.8.61 pop

Command pop

Format pop

Function Removes the uppermost element from the stack.

84.8.62 quit

Command quit

Format quit

Function Concludes the work of the interpreter.

84.8.63 rand

Command rand

Format rand

Function Stores a random number (integer) on the stack.

Encapsulated Postscript format (EPS) 1239

84.8.64 rcurveto

Command rcurveto

Format dx1, dy1 dx2 dy2 dx3 dy3 rcurveto

Function Draws a Bezier curve from the current path relative to the coordinate entries dx, dy.

84.8.65 repeat

Command repeat

Format count { proc 1 repeat

Function Executes the instructions in proc count-times.

84.8.66 rlinto

Command rlinto

Format dx dy rLineto

Function Creates a new sub-path through a relative shift by the distance dx,dy.

84.8.67 roll

Command roll

Format eLeml...eLemx n j roLL

Function Shifts n elements of the stack by j positions round the circle.

84.8.68 round

Command round

Format numl round

Function Rounds numl to the nearest integer value.

84.8.69 scale

Command scale

Format x y scaLe

Function Alters the scaling of the X and Y axes.

84.8.70 scalefont

Command scalefont

Format font scaLe scaLefont

Function Scales the size of the font before output.

1240 Page description languages

84.8.71 search

Command search

Format string search

Function Searches for string according to the string search and stores the result on the
stack as:

Reststring, search, start section, boot

The uppermost value on the stack indicates whether the string has been
found (booL = true).

84.8.72 setfont

Command setfont

Format font setfont

Function Activates the font indicated as the current font.

84.8.73 setgray

Command setgray

Format num setgray

Function Establishes the shading for drawing operations. The value of num can be between
0 (white) and 1 (black).

84.8.74 setlinewidth

Command setlinewidth

Format num setLinewidth

Function Sets the width of lines to a defined value.

84.8.75 show

Command show

Format (text) show

Function Displays the text from the stack in the current path.

84.8.76 showpage

Command showpage

Format showpage

Function Copies the current page to the output device.

Encapsulated Postscript format (EPS) 1241

84.8.77 sin

Command sin

Format angle sin

Function Calculates the sine of the angle indicated and stores the result on the stack as a
floating point value.

84.8.78 sqrt

Command sqrt

Format num sqrt

Function Calculates the square root of num and stores the result on the su*ck as a floating
point value.

84.8.79 string

Command string

Format int string

Function Creates a string object of length i nt.

84.8.80 stringwidth

Command stringwidth

Format string stringwidth

Function Returns the length of the string indicated.

84.8.81 stroke

Command stroke

Format stroke

Function Draws a line along the current path. Only after this operation will objects be drawn
in the current color.

84.8.82 sub

Command sub

Format numl num2 sub

Function Subtracts numl - num2 and places the result on the stack.

1242 Page description languages

84.8.83 truncate

Command truncate

Format num truncate

Function Removes the part of num after the decimal point and stores the result on the stack.

84.8.84 xor

Command xor

Format booL1 booL2 xor

Function XORs the two values booL1 and booL2 and stores the result on the stack.

This concludes the description of the most important PostScript instructions. Further details
are given in the references in Appendix C. This is particularly relevant in the case of Display
PostScript and PostScript Level 2.

Appendices

Appendix A: Format conversion programs 1244

Summary of file formats 1244
Text formats 1248

Spreadsheet formats 1250

Graphic formats 1250

Vector or metafile formats 1250

Formats conversion using Windows 1253
Appendix B: ISO 646 character set 1254

Appendix C: References 1256

1243

Format conversion programs

A user who works with standard programs is
often faced with the question of how to read

L existing files in external formats into the
target program. In some cases, the program may be
able to implement the required conversion. However,
this approach is not always possible. This appendix
briefly describes some of the products that explicitly
carry out format conversions. The appendix begins
with a summary of the file formats in use.

A.I Summary of file formats

No matter how varied the software on the market may be, the file formats actually in use are
equally if not more numerous. It is often a real problem even to identify the format used from the
file name extension. The following section offers a brief summary, albeit incomplete, of the most
common formats. The order in which the formats are presented is of no significance.

A.1.1 EPS

Encapsulated PostScript, used for describing text and graphics. Now supported by many programs
as an output format; can generally be imported. However, very few programs are actually capable
ofdisplaying EPS images. APostScript device is neededfor this. The files are in text form and can
be inspected with an editor.

A.I.2 DXF (File Extension DXF)

Graphic vector format, used by AutoCAD for exporting data. The format can be imported by a
small number of programs. Files can be inspected and altered using an editor.

A.I.3 DHP (File Extension DHP)

Output format for the drawing program Dr. Halo II. Abinary format, widely distributed in the USA.

1244

Appendix A 1245

A.I.4 CGM (File Extension CGM)

Computer Graphics Metafile format, an internationally standardized format for the output of
graphics. Contains graphic elements in the form of meta-objects (circles, polygons, and so on).
Now supported by many programs as an export/import format. Drivers are available from GSS.

A.I.5 IGES (File Extension IGE)

Graphic vector format, used by CAD programs for data export. The format can be imported by
some programs. Files can be inspected and altered with an editor.

A.I.6 IMG (File Extension IMG)

Pixel graphic format for GEM programs (for example, GEM Paint). Can be imported by various
programs.

A.I.7 GEM (File Extension GEM)

This is the vector format defined by the GEM user interface. It is another metafile format which
describes the objects of the GEM VDI. Certain DTP programs can read GEM files. The GEM
program DRAW creates images in this format.

A.I.8 HPGL

Graphics display format, defined to control the Hewlett Packard plotter. Basically, describes pen
movements (vector operations). Nowpartially replaced by HPGL/2. Most programs can create IIPGL/2
printouts. Many programs can read the data in again, enabling a computer-independent format.

A.I.9 TIFF (Extension TIF)

Tag Image File Format, a manufacturer-independent format defined by Aldus, HP and Microsoft.
Now supported by many manufacturers, especially for scanners. Monochrome or color images can
be stored as bitmaps.

A.1.10 PNTG (Extension MAC)

Also referred to as MAC format. Used on the Macintosh by the program MAC PAINT for storing
graphics.

A.I.11 RIFF

Raster Image File Format, a compressed Macintosh variant of the TIFF format from Letraset. The

Microsoft RIFF format can store multimedia data in various files (AVI, WAV).

1246 Appendices

A.I.12 PPIX (Extension PIX)

The graphics format of PC PaintBrush Plus.

A.1.13 PCX (Extension PCX)

Popular format for storing pixel graphics on the PC. Introduced by ZSOFTwith PaintBrush. Can be
imported by most programs.

A.1.14 WPG (Extension WPG)

Graphics format defined by the WordPerfect Corporation. A hardware-independent format for
graphics.

A.I.15 PIC (Extension PIC)

Output format of LOTUS 1-2-3 for graphics files processed by Printgraph. The extension PIC is
also used by other programs (for example Dr. Halo) for graphics. However, the structure of these
formats is different, often giving cause for confusion.

A.I.16 DCA

This is the document format defined by IBM for the exchange of texts. The format is used on
mainframes and can be read by a number of text programs. The Revisable Text variant (RTF)
contains texts that can still be revised. In the Final Form Text variant (FFT), the texts are ready
for printing.

A.I .17 MSP (Extension MSP)

Graphics format for the storage of monochrome or color bitmap graphics using Windows 2.x. Used
by MS-PAINT Can be read by a number of programs.

A.I.18 GIF (Extension GIF)

CompuServe format for the transfer of monochrome or color images in bitmap format. A
hardware-independent format which can contain several images in each file.

A.I.19 RLE (Extension RLE)

Compressed bitmap files under Windows 3.x which are stored in BMP format. In Windows 3.x, the
format is used for displaying start logos. Supported by programs such as WINGIF, Paintshop and
Dodot.

Appendix A 1247

A.I.20 BMP (Extension BMP)

Windows bitmap format for storing graphics. Used by PaintBrush. Images are stored in a device-
independent form with the aim of ensuring compatibilitybetween variousgraphics adapters.

OS/2 also uses a bitmap format. However, there are slight differences between this and the
Windows BMP format (depending on the version).

A.I.21 WMF (Extension WMF)

Metafile format of Windows 3.x, used for storing graphics.

A.1.22 PCL

Printer description language developed for Hewlett Packard laser printers. Used by some programs
as an import format.

A.I.23 GX2

Format of the program SHOW-Partner. Used for storing image sequences.

A.1.24 CLP (Extension CLP)

Format for the Windows Clipboard. Can contain texts and image data.

A.1.25 CAL (Extension CAL)

Format of the Windows calendar program for storing dates.

A.I.26 WRI (Extension WRI)

Used by the Windows program Write for storing texts. Similar structure to the Word format.

A.I.27 CRD (Extension CRD)

Format used by the Windows Cardfile to store index cards.

A.I .28 TXT (Extension TXT or DOC)

General format for storing texts. Used by many word processing programs. However, internal
formats are different, and compatibility cannot be taken for granted.

A.I.29 IFF (Extension LBM)

Graphics format for the AMIGA. Used by the program Delux Paint on the PC.

1248 Appendices

A.I.30 CUT

Color map file for the program Dr. Halo.

A.I.31 FAX

Format used for FAX data transfer. Anumber ofprivate formats are produced byvarious suppliers.

A.I.32 PIX (Extension PIX or IGF)

Format of the program Hijack. Used for storing internal images.

A.I.33 PCT

The program MAC Pict uses this format for storing graphics. This is the Macintosh metafile format.

A.1.34 TGA (Extension TGA)

Raster format (TARGA) for storing color images.

A.I .35 WKx (Extension WKx)

This extension is used by LOTUS 1-2-3 and SYMPHONY for storing spreadsheets. The letter x
represents the version number.

A.I.36 BIFF (Extension XLS)

This format is used by EXCEL for storing spreadsheets.

A.I.37 DBF (Extension DBF)

Format used by dBASE for storing data banks. DBT (texts), NDX and NTX (index files), FRM and
LBM (report and label files).

A.2 Text Formats

Text formats can be divided into two varieties:

♦ Text formats with ASCII and binary information

♦ Text formats with control commands in plain text

Appendix A 1249

Typical representatives of the firstgroupare the formats ofWord, Write and WordPerfect. If this
sort of file is displayed on screen via type commands, only a series of meaningless characters will
appear. Without knowledge of the format, this kind of file cannot be read by an external program.

Files from the second group are different. Products such as WordStar or TEX create files which
can be read in using a text editor if required. The format commands may be removed manually. As
a result the texts can often be transferred even if automatic conversion is not possible. The

Windows RTF format also belongs to this category.
Most manufacturers supply functions for text conversion in their software packages. Special

programs capable of converting dozens of text formats are also available.

A.2.1 WordExchange

This program is offered by Microsoft for converting to Word. It can convert texts in both directions
and supports a range of formats, including the following:

DEC WPS Plus

Display Writer

Multimate

Samna Word (up to version IV)

Wang PC (up to version 2.6)

WordPerfect

WordStar

Volkswriter 3

ASCII

DCA/RTF

DCA/FFT (only Word to FFT)
Navy DIF

The program runs on IBM PCs or compatibles and needs DOS 2.0 or later. At least 386 Kbytes
of memory must be available.

A.2.2 Convert Perfect

This conversion program is offered by WordPerfect. The program converts 44 different programs to
and from WPF. The format of the source file is automatically recognized. Convert Perfect supports
a number of program formats, including the following:

Ami Pro 1.2 (Windows)

IBM-PC-Text

MS-Word

Multimate

Officewriter

WordStar

Euroscript

1250 Appendices

This program can be purchased directly from the manufacturer. It runs under MS-DOS on IBM
PCs or compatibles.

The selection of these two programs does not represent a judgement of their value. There are
many other programs capable of fulfilling the same functions.

A.3 Spreadsheet formats

In this context, LOTUS 1-2-3 represents a standard, and many programs are capable of importing
this format.

Other formats, such as DIF and SYLK, have become established for exchanging data between
different spreadsheet programs. There are also various less well-known programs for format
conversion.

A.4 Graphics formats

This is, without doubt, the most extensive area. Many applications are involved. Indeed, many
applications programs support a range of formats, and a number of conversion programs are
available.

In terms of processing graphics, there are two distinct approaches.

A.4.1 Bitmap or Raster Image Graphics

Using this approach, the image is broken down dotwise into individual pixels and stored. The
raster of pixels can be processed and compressed relatively simply. This approach is used by
simple drawing programs, for producing screen shots and for scanners. This process is also suitable
for processing photographs.

However, problems are encountered if these raster images need to be stretched or condensed.
Only the pixels can be manipulated, which impairs the quality of the picture. Images can only be
printed on devices that print using dots, so plotters cannot be used. Transfer between different

machines causes various difficulties with resolution. Individual image elements cannot be
processed separately. Typical representatives of this approach are PCX, TIF, IMG, GIF and IFF.

A.4.2 Vector or Metafile formats

These files contain a description of the image in terms of graphic objects (circles, lines, vectors,
and so on). This approach is eminently suitable for representing technical drawings and is often
used by CAD programs. The images can be scaled and manipulated as required.

However, vector-orientated devices (plotters) are required for printing. Alternatively, the image
can be constructed in terms of objects and then converted to a dot pattern, thereby enabling a
printer to be used. Vector graphics are not suitable for reproducing photographs or for scanning

Appendix A 1251

originalgraphics. Typical representatives of this approach are HPGL/2, GEM, WMF, DXF, IGES and
CGM.

Conversion between vector and pixel formats is not generally possible. A number of programs
for creating screen shots and converting formats will be considered in the following sections.

A.4.3 PIZAZZ Plus

This program is supplied by Turbo Power Software and is a powerful tool for producing screen
shots. When the program is loaded in DOS in overlay mode, it occupies around 32 Kbytes of
resident memory. The remaining sections of the program are not loaded until they are activated.
The program stores screen shots in various graphic formats, and the screen shots can
subsequently be processed using the following programs:

Word

WordPerfect

Ventura Publisher

Pagemaker
Publishers PaintBrush

PIZAZZ Plus stores the files either in the formats:

PCX

TIFF

IMG

or in an internal format. As an option, a text screen can also be dumped as an ASCII file. PIZAZZ
Plus contains a set of printer drivers, which means that the screen shots can be printed using

appropriate devices.
The only disadvantage is that PIZAZZ Plus cannot read in or store any graphics files. However,

there is a way of carrying out this conversion, if necessary. In this case, a program for displaying
the source format on screen is needed. PIZAZZ Plus can then be used to produce a screen shot in
the desired output format.

It should also be mentioned that many word processing programs operating under DOS are
supplied with their own screen-shot program. Typical examples are Capture (MS-Word) and Graf

(WordPerfect). These programs are very suitable for simple applications. However, problems arise
if the screen shots have to be converted into different formats, because the output format is
specifically adapted to the relevant word processing program.

A.4.4 Hijack

Another very useful program is Hijack from Inset Systems. This program has an extensive range of
functions. In addition to screen shots, it can also convert various graphics files into different
output formats. The program occupies about 48 Kbytes of resident memory under DOS. In terms
of format conversion, the program supports a range of possibilities:

1252 Appendices

File type Extension Remarks

AMIGA IFF IFF, LBM Source and Destination

ASCII Text TXT Only Source as Text file
AT Group 4 ATT FAX-Format, only Source

AutoCAD DXF Source and Destination

CALS Rast. CAL US-Format (Source and Destination)
CompuServe GIF Source and Destination

Dr.Halo CUT Source and Destination

FAX Type FAX Source and Destination,

Fax-Board

GEM Image IMG Source and Destination

GEM Meta GEM Source and Destination up to GEM/4
HP PCL PCL Source and Destination

HP-GL/2 PGL Source and Destination

Inset PIX PIX Source and Destination (internal)
Inset IGF IGF Source and Destination (internal)

KoFAX Gr.4 KFX Source and Destination

LOTUS PIC PIC Source and Destination

MacPaint MAC Source and Destination

Mac PICT PCT Source and Destination

MathCAD MCS Only Destination

Windows WMF Source and Destination (< 64 Kbyte)

Metafile CGM Source and Destination

MS-PAINT MSP Source and Destination

PC PBrush PCX Source and Destination

PM Bitmap BMP OS/2 only Destination

PostScript EPS Only Destination

TIFF TIF Source and Destination

TARGA TGA Source and Destination

Plot 10 P10 Only Source (Tektronix Format)
WordPerf. WPG Source and Destination

Table A. 1

Hijack format
conversion

functions

There are a number of minor limitations which apply to various formats. The entry Source and
Destination means that the relevant format can be read and written. In the case of graphics files,

raster files cannot be converted into vector formats. However, it is possible to convert a vector file
into a raster format. PCL outputs are interpreted exclusively as Sources and the output file must

be in raster format.

A whole range of different FAX cards can now be supported. Reference should be made to the
operating manuals, because the range of functions is constantly changing.

Appendix A 1253

A.4.5 Graphic Workshop, PaintShop Pro, Image Alchemy

These programs are Shareware products which are registered for a very small sum. The programs
operate under DOS or Windows andsupport a series ofbitmap graphic formats. Graphic Workshop
is also available in a DOS version.

A.5 Format Conversion using Windows

Converting between different formats is considerably simplified when using Windows. Links
between various applications (word processing, spreadsheets, graphics) can be established via DDE
and OLE. The data from each program is then available to the relevant application. The intermediate
store also enables any screen graphics to be stored in BMP format. If a program for displaying the
source file is available, it is possible to copy the screen to the intermediate store. The file can be
saved via PaintBrush as a BMP or PCX file.

ISO 646 Character Set

The following tables show the coding for the 7-bit 646 character set of the International Standards
Organization (ISO) alongside the corresponding hex values (left) and ASCII codes (right). It should
be pointed out that the extended IBM character set (block graphics characters, and so on)
represents a manufacturer-defined supplement to the ISO 646 character set and has not therefore
been included in the table.

Hex ISO ASCII Hex ISO ASCII

00 0/0 NUL 2B 2/11 +

01 0/1 TC1/SOH 2C 2/12
i

02 0/2 TC2/STX 2D 2/13 -

03 0/3 TC4/ETX 2E 2/14

04 0/4 TC4/EOT 2F 2/15 /

05 0/5 TC5/ENQ 30 3/0

06 0/6 TC6/ACK 31 3/1

07 0/7 BEL 32 3/2

08 0/8 FE0/BS 33 3/3

09 0/9 FE1/HT 34 3/4

0A 0/10 FE2/LF 35 3/5

0B 0/11 FE3/VT 36 3/6

OC 0/12 FE4/FF 37 3/7

0D 0/13 FE5/CR 38 3/8

0E 0/14 SO 39 3/9

OF 0/15 SI 3A 3/10

10 1/0 TC7/DLE 3B 3/11 ;

11 1/1 DC1 3C 3/12 <

12 1/2 DC2 3D 3/13 =

13 1/3 DC3 3E 3/14 >

14 1/4 DC4 3F 3/15 9

15 1/5 TC8/NAK 40 4/0 @

16 1/6 TC9/SYN 41 4/1 A

1254

Table B.l

ISO 646

character set

(continues
over...)

Appendix B 1255

Hex ISO ASCII Hex ISO ASCII

17 1/7 TC10/ETB 42 4/2 B

18 1/8 CAN 43 4/3 C

19 1/9 EM 44 4/4 D

1A 1/10 SUB 45 4/5 E

1B 1/11 ESC 46 4/6 F

1C 1/12 DT/FS/IS4 47 4/7 G

1D 1/13 PT/GS/IS3 48 4/8 H

1E 1/14 RS/IS2 49 4/9 I

1F 1/15 US/IS1 4A 4/10 J

20 2/0 SPACE 4B 4/11 K

21 2/1 i 4C 4/12 L

22 2/2
it

4D 4/13 M

23 2/3 # 4E 4/14 N

24 2/4 currency 4F 4/15 0

25 2/5 % 50 5/0 P

26 2/6 & 51 5/1 Q

27 2/7
i

52 5/2 R

28 2/8 (53 5/3 S

29 2/9) 54 5/4 T

2A 2/10 * 55 5/5 U

56 5/6 V 6B 6/12 k

57 5/7 W 6C 6/13 1

58 5/8 X 6D 6/14 m

59 5/9 Y 6E 6/15 n

5A 5/10 Z 6F 7/0 0

5B 5/11 [70 7/0 P

5C 5/12 \ 71 7/1 q

5D 5/13] 72 7/2 r

5E 5/14 A 73 7/3 s

5F 5/15 74 7/4 t

60 6/0
i

75 7/5 u

61 6/1 a 76 7/6 v

62 6/2 b 77 7/7 w

63 6/3 c 78 7/8 X

64 6/4 d 79 7/9 y

65 6/5 e 7A 7/10 7.

66 6/6 f 7B 7/11 {
67 6/7 g 7C 7/12 1

68 6/8 h 7D 7/13 }
69 6/9 i 7E 7/14 -

6A 6/10 j 7F 7/15 DEL

Table B.l

ISO 646

character set

(cont.)

1256 Appendices

References

♦ Association ofAmericanPublishers :Document Type Definitions and Short References (1987).

♦ Adobe Systems, Inc.: PostScript Language Program Design (Addison-Wesley,
Reading/Massachusetts, 1988).

♦ Adobe Systems, Inc.: PostScript Language Reference Manual (Addison-Wesley,
Reading/Massachusetts, 1985).

♦ Adobe Systems, Inc.: PostScript Language Tutorial and Cookbook (Addison-Wesley,
Reading/Massachusetts, 1985).

♦ Born, Gunter: Dateiformate Programmierhandbuch (File Formats Programming Manual)
(Addison-Wesley, Bonn, 1993).

♦ Computer Graphics Metafile for the Storage and Transfer of Picture Description Information
(ISO 8632, Parts 1-4, 1987).

♦ D.B. Arnold, P.R. Bono: CGM and CGI, Metafiles and Interface Standards for Computer
Graphics (Springer Verlag, Berlin/Heidelberg, 1988).

♦ EPSIG, Author's Guide to Electronic Manuscript Preparation and Markup, Association of
American Publishers (Electronic Manuscript Series, 1989).

♦ Digital Research (Hg.): GEM Programmer's Toolkit, Vol. 2 (1986).

♦ Information processing - Text and Office Systems, (Standard Generalized Markup Language
(SGML), ISO 8879, 1986).

♦ Martin Bryan: SGML: An Author's Guide to the Standard Generalized Markup Language
(Addison-Wesley, Wokingham/England, 1988).

♦ T Welch: A Technique for High-Performance Data Compression, IEEE Computer (Volume 17,
Number 6, 1984).

(SMF) format 1150

Control commands 1158

Delta time 1153

header 1115

Meta events 1166

Note off 1157

Note on 1154

Operation Mode 1160

System commands 1163

Timing commands 1162

Track CHUNK 1152

Adlib Instrument Bank format (BNK) 1138

Instrument data list 1139

Instrument name list 1139

Adlib Music format (ROL) 1133

Frequency block 1136

Instrument block 1135

Note block 1135

Tempo block 1134

Volume block 1136

Adobe Illustrator format (AI) 999

AI header comments 1000

Adobe Photoshop format (PSD) 885

AI file format 999

AIFF format 1146

AMI Pro format 566

Document section 567

Embedded graphics 601

Index

Escape records 594

Text areas 592

AMIGA IFF format 1145

AMIGA MOD format 1140

header 1141

Instrument data 1142

Note block 1141

Amiga Animation format (ANI) 963

file format 963

CHUNKS 964

header 964

Animatic Film format (FLM) 930

Animator CEL format 954

Animator PIC format 954

Apple QuickTime format (QTM) 990

Apple QuickTime format 990

Atari DEGAS format (PI*,PC*) 937

Imagic Film/Picture format (IC*) 943

NEOchrome format (NEO) 924

STAD format (PAC) 946

Tiny format (TNY, TN*) 940

Audio IFF format (AIFF) 1146

Audio/Video Interleaved format (AVI) 969

AutoCAD Binary DXF 829

AutoCAD Drawing Exchange Format

(DXF) 796

AutoCAD DXF commands

3DFACE 827

3DLINE 818

ARC 819

ATTRIB 823

Binary DXF 829

1257

1258 Index

AutoCAD DXF commands (continued)

BLOCK section 814

CIRCLE 819

DIMENSION 827

ENTITIES section 816

Group codes 796

header 806

INSERT 823

LINE 817

POINT 818

POLYLINE 825

SEQEND 826

SHAPE 822

SOLID 820

TABLE 807

TEXT 821

TRACE 820

VERTEX 826

Autodesk 3D Studio format (FLC) 955

Autodesk Animator format (FLI) 948

AVI file format 969

AVI_PALCHANGE CHUNK 979

header CHUNK (hdrl) 972

Stream Line header CHUNK (strl) 974

structure 971

avih sub-CHUNK 972

AVL header 983

B

BIFF

1904 (record type 22H) 353

ADDIN (record type 87H) 258

ARRAY (record type 2111) 259

BACKUP (record type 40H) 260

BLANK (record type 201H) 260

BOF (record type 09H) 262

BOOLERR (record type 05H) 263

BOTTOMMARGIN (record type 29H) 264

BUILTINFMTCOUNT

(record type 56H) 264

CALCCOUNT (record type 0CH) 265

CALCMODE (record type 0DH) 265

CODEPAGE (record type 42H) 265

COLINFO (record type 7DH) 266

COLUMNDEFAULT

(record type 20H) 267

COLWIDTH (record type 24H) 267

CONTINUE (record type 3CH) 268

COORDLIST (record type A9H) 268

COUNTRY (record type 8CH) 269

CRN (record type 5AH) 269

DCON (record type 50H) 271

DCONNAME (record type 52H) 272

DCONREF (record type 5111) 272

DEFAULTROWHEIGHT

(record type 25H) 273

DEFCOLWIDTH (record type 55H) 274

DELTA (record type 10H) 274

DIMENSIONS (record type 00H) 275

EDG (record type 88H) 276

EFONT (record type 45H) 276

EOF (record type 0AH) 277

EXTERNCOUNT (record type 16H) 277

EXTERNNAME (record type 23H) 277

EXTERNSHEET (record type 17H) 278

FILEPASS (record type 2FH) 280

FILESHARING (record type 5BH) 280

FNGROUPCOUNT (record type 9CH) 281

FNGROUPNAME (record type 9AH) 281

FNPROTO (record type A2H) 282

FONT (record type 31H) 282

FONT2 (record type 86H) 284

FOOTER (record type 15H) 284

FORMAT (record type 1EH) 284

FORMATCOUNT (record type 1EH) 285

FORMULA (record type 06H) 285

GCW (record type ABH) 297

GRJDSET (record type 82H) 297

GUTS (record type 80H) 298

HCENTER (record type 83H) 298

HEADER (record type 14H) 298

HIDEOBJ (record type SDH) 299

HORIZONTAL PAGE BREAKS

(record type 1BH) 299

IMDATA (record type 7FH) 300

INDEX (record type OBH) 300

INTEGER (record type 02H) 301

INTL (record type 61H) 302

ITERATION (record type 11H) 302

IXFE (record type 44H) 302

LABEL (record type 04H) 303

LEFTMARGIN (record type 26H) 304

LH (record type 8BH) 304

LHNGRAPH (record type 95H) 304

LHRECORD (record type 95H) 305

LPR (record type 98H) 306

NAME (record type 18H) 306

NOTE (record type ICH) 310

NUMBER (record type 03H) 311

OBJ (record type 5DH) 311

OBJPROTECT (record type 63H) 323

PALETTE (record type 92H) 323

PANE (record type 41H) 323

PASSWORD (record type 13H) 324

PLS (record type 4DII) 325

PRECISION (record type 0EH) 326

PRINTGRIDLINES (record type 2BII) 326

PRINTHEADERS (record type 2AH) 327

PROTECT (record type 12H) 327

PUB (record type 8911) 328

record types 252

REFMODE (record type 0FII) 328

RIGHTMARGIN (record type 2711) 329

RK (record type 27EII) 329

ROW (record type 08H) 330

SAVERECALC (record type 5FH) 331

SCL (record type A0H) 332

SELECTION (record type 1DH) 332

SETUP (record type A1H) 333

SOUND (record type 96H) 334

STANDARDWIDTH (record type 99H) 334

STRING (record type 07H) 335

Index 1259

STYLE (record type 293H) 335

SUB (record type 91H) 336

SYNC (record type 97H) 337

TABLE (record type 36H) 338

TABLE2 (record type 37H) 339

TEMPLATE (record type 60H) 340

TOPMARGIN (record type 28H) 340

UNCALCULATED (record type 5EH) 340

VCENTER (record type 84H) 341

VERTICALPAGEBREAKS

(record type 1AH) 341

WINDOW1 (record type 3DH) 341

WINDOW2 (record type 3EH) 342

WINDOWPROTECT (record type

19H) 343

WRITEACCESS (record type 5CH) 344

WRITEPROT (record type 86H) 344

WSBOOL (record type 81H) 344

XCT (record type 5911) 345

XF (record type 43H) 346

BIFF record types 253

Bit String (GEM) 623

Bitmap format (BMP, Windows 3.x) 1040

BMP format 1040, 1046, 1049

BNK format 1138

Calendar format (CAL, Windows 3.x) 1097

CAPTURE File Format (SCR) 615

Cardfile format 1055

CAS Fax format (DCX) 997

CGM file format 755

Alternate Character Set Index 776

Application Data 778

Aspect Source Flags 777

Auxiliary Color 772

Background Color 772

Basis Coding 768

Binary Coding 756

Bitstream format 768

1260 Index

Cell Array 773

Character Coding Announcer 771

Character Expansion Factor 775

Character Height 775

Character Orientation 776

Character Set Index 776

Character Set List 771

Character Spacing 775

Circle 773

Circular ARC 3 Point 773

Circular ARC 3 Point Close 774

Circular ARC Center 774

Circular ARC Center Close 774

Clip Indicator 772

Clip Rectangle 772

Color Index Precision 770

Color Precision 770

Color Selection Mode 771

Color Table 777

Color Value Extent 770

Disjoint Polyline 772

Edge Bundle Index 777

Edge Color 777

Edge type 777

Edge Visibility 777

Edge Width 777

Edge Width Specification Mode 771

Ellipse 774

Elliptical Arc 774

Elliptical Arc Close 774

ESCAPE 778

Fill Bundle Index 776

Fill Color 776

Fill Reference Point 777

Font List 771

Generalized Drawing Primitive 773

Hatch Index 776

Header (extended) 758

Header (short) 758

Index Precision 770

Integer Precision 770

Interior Style 776

Line Bundle Index 774

Line Color 774

Line type 774

Line Width 774

Line Width Specification Mode 771

Marker Bundle Index 775

Marker Color 775

Marker Size 775

Marker Size Specification Mode 771

Marker type 775

Maximum Color Index 770

Message 778

Metafile Defaults Replacement 771

Metafile Description 769

Metafile Element List 770

Metafile Version 769

Pattern Index 776

Pattern Size 777

Pattern Table 777

Polygon 773

Polygon Set 773

Polyline 772

Polymarker 773

Precision Parameter Encoding 772

Real Precision 770

Rectangle 773

Restricted Text 773

Scaling Mode 771

Text 773

Text Alignment 776

Text Bundle Index 775

Text Color 775

Text Font Index 775

Text Path 776

Text Precision 775

Transparency 772

VDC Extent 772

VDC Space/Range 772

VDC type 769

Clipboard format (CLP) 1103

Clipper NTX file 18

CMF format 1110

Compression 1120

Control commands 1117

Data repetition 1120

header 1110

Instrument Block 1112

Marker command 1117

Mode command 1117

Music Block commands 1115

Pause command 1115

Program instrument channel 1119

Sound off 1116

Sound on 1116

Computer Graphic Metafile Format

(CGM) 755

ComputerEyes Raw Data Format

(CE1, CE2) 932

Creative Music format (CMF) 1110

Creative Voice Format (VOC) 1126

CSV format 58

CUT format 878

Cyber Paint Sequence format (SEQ) 934

dBASE II format 2

dBASE III format 10

dBASE IV format 31

dBASE DBT file 24,36

FRM file 25

LBL files 28

MEM file 9,22

NDX file 15

DeLuxe Paint 666

DIF 188

column heading 191

column name 194

column width in bytes 192

COMMENT 191

DATA 190

Index 1261

DISPLAY-UNITS 194

format 188

header 189

LABEL 191

MAJOR-START 192

MINOR-START 193

Numeric Data 195

PERIODICITY 192

SIZE 192

Special Data 195

String Data 196

TABLE 189

TRUELENGTH 193

TUPLES 190

UNITS 193

Value indicator 195

VECTORS 190

DOC Winword format 379

Dr. Halo-Format (PIC, CUT, PAL) 874

DVI file format 981

header 982

stream header 984

DXF file format

see AutoCAD DXF

DXF TABLE section 807

LAYER 808

LTYPE 810

STYLE 811

UCS 812

VIEW 812

VPORT 813

Encapsulated PostScript Format (EPS) 1218

EPS File format 1218

EXCEL Binary Interchange Format

(BIFF) 252

1262 Index

FLC frames 957

FLC header 956

FLI frames 950

FLI header 949

FoxBase+ 38

DBT file 42

FoxPro 1.0 38

FoxPro 2.0 38

FoxPro 2.5 38

FoxPro CDX file 53

FPTfile 43

IDX files 46

memo files 43

GEM Coordinate systems 628

GEM Image format (IMG) 616

GEM Metafile format (GEM) 628

Generalized Drawing Primitives (GEM) 634

Arc GDP 635

Bar GDP 635

Circle GDP 636

Coordinate system 629

Ellipse GDP 637

Elliptical Arc GDP 637

Elliptical Pie GDP 638

Extensions for GEM/3 656

Fill Area 634

Filled Rounded Rectangle GDP 639

Justified Graphics Text GDP 640

Pie GDP 636

Poly Line 632

Poly Marker 633

Rounded Rectangle GDP 639

Set Character Baseline Vector 641

Set Character Height 640, 652

Set Color Mode 641

Set Fill Color Index 648

Set Fill Interior Style 647

Set Fill Parameter Visibility 651

Set Fill Style Index 648

Set Graphic Text Alignment 649

Set Graphic Text Special Effects 651

Set Polyline Color Index 643

Set Polyline End Style 652

Set Polyline Type 641

Set Polyline Width 642

Set Polymarker Color Index 643

Set Polymarker Height 644

Set Polymarker Type 643

Set Text Color Index 646

Set Text Font 645

Set User Defined Fill Pattern 653

Set User Defined Linestyle Pattern 653

Set Writing Mode 649

Text 633

GIF file format 684

Application Extension block 699

Block Terminator 697

Comment Extension block 699

Extension Block 690

Flags 686,687

GIF 89a 697

GIF-Terminator 702

Global Color Map 688

header 685

Image Descriptor Block 689

Local Color Map Block 690

Logical Screen Descriptor Block 686

LZW compression 692, 753

Plain Text Extension block 699

Raster Data block 691

Raster Data Sub-blocks 697

Graphics Interchange Format (GIF) 684

GRP format 1106

H

Hewlett Packard Printer Communication

Language (PCL) 1198

HP-GL/2 commands 1178

Absolute Arc Tree Point 1181

Absolute Character Size 1191

Absolute Direction 1189

Advance Full Page 1179

Alternate Font Definition 1188

Anchor Corner 1185

Arc Absolute 1180

Arc Relative 1180

Begin Plot 1192

Character Fill Mode 1188

Character Group 1187

Character Plot 1188

Character Slant 1191

Chord Tolerance Mode 1192

Circle 1181

Configuration and Status Group 1178

Define Label Terminator 1189

Define Variable Text Path 1189

Digitize Clear 1197

Digitize Point 1197

Digitizing Extensions 1197

Download Character 1192

Dual-Context Extension 1196

Edge Polygon 1184

Edge Rectangle Absolute 1183

Edge Rectangle Relative 1183

Edge Wedge 1183

Enable Cutter 1193

Enter PCL Mode 1196

Extra Space 1190

Fill Polygon 1184

Fill Rectangle Absolute 1184

Fill Rectangle Relative 1184

Fill Type 1185

Fill Wedge 1185

Frame Advance 1193

Index 1263

Initialize 1178

Input P1/P2 1178

Input Relative 1178

Input Window 1178

Label 1190

Label Origin 1190

Line and Fill Attributes Group 1185

Line Attributes 1186

Line Type 1186

Media Type 1193

Merge Control 1193

Message 1193

Not Ready 1193

Number of Pens 1195

Output Digitized Position/Pen Status 1197

Output Error 1194

Output Hard-Clip Limits 1194

Output Identification 1194

Output P1/P2 1194

Output Status 1194

Palette Extension 1195

Pen Color Assignment 1195

Pen Down 1181

Pen Up 1182

Pen Width 1186

Pen Width Unit Selection 1187

Plot Absolute 1181

Plot Relative 1182

Plot Size 1194

Polygon Group 1183

Polygon Mode 1184

Polyline Encoded 1182

Primary Font Selection 1196

Quality Level 1194

Raster Fill 1186

Relative Arc Tree Point 1183

Relative Character Size 1191

Relative Direction 1189

Replot 1179

Reset 1196

Rotate Coordinate System 1179

1264 Index

HP-GL/2 commands (continued)

Scalable/Bitmap Fonts 1197

Scale 1180

Screened Vectors 1196

Secondary Font Selection 1197

Select Alternate Font 1190

Select Pen 1187

Select Standard Font 1191

Set Color Range 1195

Set Default Values 1178

Sort 1195

Standard Font Definition 1190

Symbol Mode 1187

Technical Graphics Extension 1192

Transparency Mode 1196

Transparent Data 1191

User-Defined Line Type 1187

Vector Group 1180

Velocity Select 1195

HP-GL/2 language 1174, 1175, 1176, 1177

0

IBK format 1125

IFF format 1145

IFF Interchange File Format 658

see LBMfile format

8SVX CHUNK 671

ANHD CHUNK 965

CAMG CHUNK 670

CCRT CHUNK 667

Musical Instrument 673

One Shot Sound 673

IMG (GEM Image File Format) 616

Bit String record 623

Image Compression 621

Pattern Run record 624

Solid Run record 622

Vertical Replication Count 624

Index files 6, 15, 18

Initial Graphics Exchange Language
(IGES) 1020

Intel Digital Video format (DVI) 981

J

JFIF format 895

End Of Image (EOI) marker segment 896

Extension APP0 (SOI) marker segment

898

JFIF records 896

Application (APP0) marker segment 897

Define Arithmetic Coding (DAC) marker
segment 901

Define Huffman Table (DHT) marker

segment 900

Define Quantization Table (DQT) marker

segment 901

Define Restart Interval (DRI) marker

segment 902

Start Of Image (SOI) marker segment 896

Start Of Scan (SOS) marker segment 905

Start of Frame (SOF) marker segment

902

JPEG/JFIF format (JPG) 895

LBM file format 658

see IFF Interchangefile format

8SVX Chunk 663

BODY CHUNK 667, 673

CCRT CHUNK (Graphicraft) 667

CHRS CHUNK 678

CLUT CHUNK 670

CPAN CHUNK 965

CRNG CHUNK (DeLuxe Paint) 666

FORM 660

GRAB CHUNK 668

ILBMFORM 664

NAME CHUNK 672

Signature 660

SMUSFORM 675

Voice Header (VHDR) 671

LMBCS characters 108

LOTUS 1-2-3 65, 105, 146

LOTUS 1-2-3 FRM file format 145

LOTUS version codes 107

LOTUS WK1 file format 62

WKS_PASSWORD 99

LOTUS 1-2-3 WK3 format 105

LOTUS WKS file format 62

LZW Encoding 692, 753

M

MAC header 907

MAC Packbit 888, 910

MAC-Paint format (MAC) 906

MAC-Picture format (PICT) 911

Metafile format (WMF) 1057

Micrografix format (PIC, DRW, GRF) 830

MIDI format 1150

header 1151

MOD format 1140

header 1141

MPEG 989

NDC 628

MS-WORD format 356

Block end 366

Blocknumber 356

Character format 364

Character format block 365

Font format 368

Format table entry 367

Footnote block 373

Footnote table 364, 373

Format area 363

Format coding 362

Format table entry 367

Information block 378

Index 1265

Page break block 377

Page break table 377

Paragraph format block 369

Section format block 375

Template 368

Text area 362

header 360

N

NDX (dBASE) 15

NEOchrome-Animation format (ANI) 928

NTX (Clipper) 18

OS/2 Bitmap format (BMP, Version 1.2) 1046

OS/2 Bitmap format (BMP, Version 2.0) 1049

PackBit 888

Paint file format (MSP, Windows 2.0) 1036

PaintBrush PCX format 1040

Pattern Run (GEM) 624

PCL language 1198

PCPAINT/Pictor format (PIC) 889

PCX file format 605

Data 611

header 607

Palette 609

PIC format 146

FILL 148

END OF FILE 148

MOVE 148

DRAW 148

FONT 148

TEXT 149

SIZE 150

COLOR 150

FILLO 150

1266 Index

PIC format 874

PicFrame record (PICT 1) 914

PicFrame record (PICT 2) 913

PicSize record 913

PICT data area 913

PICT header 912

Placeable metafiles 1058

PostScript (EPS) 1218

Postscript instructions 1228

%%AI3_ColorUsage

%%AI3_TemplateBox

%%AI3_TemplateFile

%%AI3_TileBox

%%BeginProlog 1226

%%BoundingBox 1223

%%CMYKCustomColors

%%CreationDate 1223

%%Creator 1223

%%DocumentCustomColors

%%DocumentFiles

%%DocumentFonts 1223

%%DocumentNeededResources 1227

%%DocumentProcessColors

%%DocumentSuppliedResources

%%EndComments 1224

%%EndProlog 1226

%%For 1224

%%Title 1223

abs 1229

add 1229

and 1229

arc 1229

arcn 1229

arcto 1229

ashow 1230

atan 1230

awidthshow 1230

bind 1230

bitshift 1230

ceiling 1230

charpath 1231

clip 1231

clippath 1231

closepath 1231

copypage 1231

cos 1231

currentpoint 1232

curveto 1232

cvi 1232

cvn 1232

cvrs 1232

cvs 1232

cvt 1232

div 1233

dup 1233

eoclip 1233

eofill 1233

eq 1233

exch 1233

exec 1233

exit 1234

exp 1234

fill 1234

findfont 1234

for 1234

ge 1324

grestore 1235

gsave 1235

gt 1235

idiv 1235

if 1235

ifelse 1235

image 1236

imagemask 1236

index 1236

le 1236

lineto 1236

In 1236

log 1237

loop 1237

It 1237

mod 1237

moveto 1237

mul 1237

neg 1328

newpath 1238

not 1238

or 1238

pop 1238

quit 1238

rand 1238

rcurveto 1239

repeat 1239

rlinto 1239

roll 1239

round 1239

scale 1239

scalefont 1239

search 1240

setfont 1240

setgray 1240

setlinewidth 1240

show 1240

showpage 1240

sind 1241

sqrt 1241

string 1241

stringwidth 1241

stroke 1241

sub 1241

truncate 1242

xor 1242

PSD file format 885

QTM file format 990

RAS header 881

RC 628

Index 1267

Resource Interchange File Format

(RIFF) 969

RIFF CHUNK structure 970

RIFF header 970

RLE compression 1044

RLE-Format (RLE, Windows 3.x) 1044

ROL format 1133

header 1133

RTF (Rich Text Format) 507

Bookmark 556

Bullets and Numbering 532

Character formatting properties 543

Control symbols 508

destination control words 510

Document formatting properties 516

Drawing objects control words 554

Headers and footers 529

Miscellaneous control words 548

Object control words 553

Paragraph borders 536

Paragraph formatting 529

Paragraph positioning 539

Paragraph shading 537

picture control words 551

Revision and information group 515

RTF reader 507

Section format block 375

Section formatting 521

special control word 548

Tabs formatting 532

Table definition 541

Template 368

SBI format 1121

SDF (System Data Format) 55

SDI (Super Data Interchange format) 200

SDI

BOT 207

COL-FORMAT 203

1268 Index

SDI (continued)

DATA 204

Data Definition Entry 206

DATA Section 204

Formula Entry 208

GDISP-FORMAT 202

Header 201

Level Display Formatting Entry 208

Numeric Entry 205

Original Specifier 207

Repeat Count Entry 208

ROW-FORMAT 203

TABLE 201

Text ENTRY 205

TUPLES 202

VECTORS 202

SGML file format 557

Stucture of a document 558

SIF (Standard Interface format) 209

(SMF) format see p. 1257

Solid Run (GEM) 622

Soundblaster Instrument Bank format

(IBK) 1125

Soundblaster Instrument format (SBI) 1121

Standard Generalized Markup Language

(SGML) 557

Standard Interface format (SIF) 209

Standard MIDI format (SMF) 1150

SUN Raster format (RAS) 880

SYLK (Symbolic Link format) 211

Boundary Record 216

Cell coordinates 212, 217

Cell Hidden 218

Cell Format 213

Cell Format Record 217

Cell value 217

Comma Format 214

Default Format 214

End of SYLK 227

Expression 218

Expression Matrix 219

Extensions for CHART 230

External Link Record 226

File Substitution 223

Font Format 215

Formula Format 215

Format Record 212

Grid Format 216

Header Format 216

ID-Record 212

Macro 220

Name 220

Name Link 222

Name Record 219

Options Record 221

Picture Record 219

Picture Format 215

Protected 217, 221

Range 220

Row/Col addressing 218

Row/Col formatting 214

Shared Expression 218

Source Range 222

Style Format 216

Table Reference 219

Width Format 215

Windows Record 223

SYLK Extensions for Chart 230

Dependent 235

Display Entry Mode 232

Displayed Time 232

Edited 233

Field Types 231

Format 232

GA-record 240

GC-record 236

GD-record 242

GE-record 238

GF-record 247

Gl-record 246

GL-record 238

GM-record 251

GN-record 250

GP-record 242

GR-record 247

GS-record 236

GT-record 249

GW-record 242

GX-record 245

GY-record 245

GZ-record 251

Highlighted data entry point 231

Included 233

Linked 233

Name 234

Origin 234

Period 234

Scaling 233

Start Value 235

Text Align 231

Time Unit 235

Type 233

Type of DATA 231

Symphony file format 151

AUTO_COMM 184

AUTO_MACRO 185

BLANK 155

BOF 152

CALC_COUNT 167

CALC_MODE 153

CALC_ORDER 154

cell format 156, 171

CELL_POINTER_INDEX 187

COLUMN_WIDTH_l 155

EOF 153

FILL_RANGE 166

FORMULA 160

GRAPH_2 176

GRAPH_NAME 181

HRANGE 166

HIDDENJVECTOR 186

INTEGER 157

LABEL 159

Index 1269

LABEL_FORMAT 167

LOCKED 171

LOCKJPASSWORD 171

NAMED_SHEET 184

NUMBER 158

NUMBER_SCREEN_COLUMNS 183

NUMBER_SCREEN_ROWS 182

PARSE 185

PRINT 174

PRINT_NAME 176

PRINT_RANGE 165

PROTECT 166

QUERY 171

QUERY_NAME 174

RANGE 154

RULER 183

STRING 170

SYMPHONY_SPLIT 182

TABLE 164

WINDOW 168

WKS_PASSWORD 186

ZOOM 182

Tag Image File Format (TIFF) 703

TARGA-Format (TGA) 865

TIFF (Tag Image File Format) 703

Artist tab 731

BitsPerSample 713

CellLength tag 716

CellWidthtag 716

Color Map tag 733

ColorResponseCurve tag 729

ColorResponseUnit tag 729

Compression tag 713

compression 748

DateTime tag 730

DocumentName tag 717

DotRange tag 737

ExtraSamples tag 738

1270 Index

TIFF (continued)

FAX CCITT Group 3 714

FAX CCITT Group 4 714

FAX compression 749

FillOrdertag 717

FreeByteCount tag 725

FreeOffsets tag 725

GrayResponseCurve tag 726

GrayResponseUnit tag 726

Halftone Hints tag 733

header 704

Host Computer tag 731

IFD (Image File Directory) 705

ImageDescriptor tag 718

ImageLength tag 712

ImageWidth tag 712

InkNames tag 735

InkSettag 735

JPEG compression 754

JPEGACTables tag 745

JPEGDCTables tag 745

JPEGInterchange Format tag 742

JPEGInterchange FormatLength tag 743

JPEGLoss Less Predictors tag 743

JPEGPointTransforms tag 744

JPEGProctag 742

JPEGQTables tag 744

JPEGRestartlnterval tag 743

JPEGTables tag 744

LZW compression 753

Make tag 718

MaxSampleValue tag 722

MinSampleValue tag 721

Model tag 719

NewSubfile tag 711

NumberOflnks tag 736

Orientation tag 720

PackBit 748

PageName tag 724

PageNumber tag 728

Photometriclnterpretation tag 714

PlanarConfiguration tag 723

Predictor tag 731

PrimaryChromaticities tag 731

Reference BlackWhite tag 742

ResolutionUnit tag 728

RowsPerStrip tag 721

SamplesFormat tag 738

SamplesPerPixel tag 720

SMaxSampleValue tag 739

SMinSampleValue tag 739

Software tag 730

Strip Offset 714

StripByteCounts tag 721

StripOffset tag 719

Subfile tag 711

T40ptionstag 727

T60ptions tag 727

Tag structure 706

Target Printer tag 737

Thresholding tag 716

TileByteCount tag 735

TileLength tag 734

TileOffsets tag 734

TileWidthtag 734

TransferFunction tag 729

White Point tag 740

XPosition tag 724

XResolution tag 722

YCbCrCoefficient tag 740

YCbCrPositioning tag 741

YCbCrSubSampling tag 740

YPosition tag 724

YResolution tag 722

TIFF format 703

Twips 551

Vertical Replication Count (GEM) 624

Vertical Replication Count-Format 624

VOC format 1126

ASCII Text block (type 5) 1130

Continuation block (type 2) 1129

Data area 1127

End Repeat Loop block (type 7) 1131

Extended block (type 8) 1131

header 1127

Marker block (type 4) 1130

Repeat Loop block (type 6) 1131

Silence block (type 3) 1129

Terminator block (type 0) 1128

Voice continuation block (type 2) 1129

Voice data block (type 1) 1128

w

WAV

DATA CHUNK 1149

FMT CHUNK 1148

format 1147

header 1147

WAV format 1147

Windows 3.x group format (GRP) 1105

Windows Cardfile format

(WINDOWS 3.x) 1101

Windows Icon format (ICO) 1055

Windows Metafile format (WMF) 1057

Windows WAV format 1147

Windows WRITE binary format (WRI) 1085

Winword format 379, 464

WK1 file format 62

BLANK 75

BOF 68

CALC_COUNT 98

CALC_MODE 69

CALC_ORDER 69

cell format byte 72

CELL_PTR_INDEX 104

COLUMN_WIDTH_l 74

COLUMN_WIDTH_2 74

CURSOR_SYNC 70

Index 1271

CURSOR_WINDOW_l_2 99

distribution range 85

EOF 68

FILL_RANGE 84

FOOTER 87

FORMULA 78

GRAPH 89

HEADER 87

HIDDENVECTOR1 100

HIDDEN_VECTOR2 100

H_RANGE 85

INTEGER 75

KEY_RANGE1 85

KEY_RANGE2 86

LABEL 77

LABEL_FORMAT 88

MARGINS 88

MATRIX_RANGES 103

NAME 74

NAMED_GRAPH 94

NUMBER 76

PARSE_RANGES 101

PRINT_RANGE 83

PROTECT 86

QUERY_RANGE 83

REGRESS_RANGES 102

SAVE_RANGE 71

SETUP 87

SORT_RANGE 84

TABLE 82

TITLES 89

UNFORMATTED 99

WINDOW1 71

WINDOW2 74

WINDOW 168

WINDOW_SPLIT 70

WKS_PASSWORD 186

ZOOM 182

WK3 file format 105

BOF record 106

calculation order 110

1272 Index

CALCSET 110

cell format 78

Coding TREAL number

COLUMNWIDTH 114

CPA 143

DATAFILLNUMS record 118

DTLABELCELL record 142

DTLABELMISC record 141

DUPFMT record 130

EOF record 109

ERRCELL record 130

FILESEAL record 117

FORMAT record 128

FORMULACELL record 133

FORMULASTRING record 141

GBLFMT record 129

GRAPHMAIN record 123

GRAPHSTRING record 127

GRAPHWINDOW 142

HIDDENCOLUMN 114

HIDDENSHEET record 144

LABELCELL record 131

LMBCS 108

LPLAUTO record 143

NACELL record 131

NUMBERCELL record 132

PASSWORD record 110

PPJNTMAIN record 119

PRINTSTRING record 122

QUERY record 144

SHEETCELLPTR record 112

SHEETLAYOUT record 113

SMALLNUMCELL record 132

SORTKEYDIR record 117

SYSTEMRANGE record 116

USERRANGE 115

WINDOWSET record 111

XFORMAT 141

ZEROFORCE record 116

WKS/WK1 format 62

WordPerfect format 405

1-byte control codes 413

Advance to page position 437

Attributes on 417, 469

Attributes off 418, 470

Auto reference definition 450

Auto reference tag 451

Begin marked text 446

Begin style ON 461

Beginning of column at EOL 498

Beginning of line function 485

Beginning of row at EOL 500

Block Protect 418

Box group 456

Center, Align, Tab, Left Margin 416, 468

Character baseline 482

Character/space width 437

Color 425, 475

Comment 455

Conditional end of page function 455

Data areas 412

Date function 453

Define columns 428

Define link end 480

Define link start 479

Define marked text 447

Define mathematical columns 427

Define tables 478

Display group 452, 489

Embedded printer command 454

End marked text 447

End note 445

Endnote options 430

End of included sub-document 452

End of indent 419

End of line function 441

End of page function 440, 484

End style 462

Endnotes print here 449

Enhanced merge functions 502

Equation 496

Equation nested 505

Extended character 416

Figure 456, 492

Fixed-length multi-byte control codes

(WP5.1+) 468

Font change 426,474

Font group 425

Font group sub-function 425

Font selection 474

Footer A 444

Footer B 444

Footnote options 429

Footnote/endnote group sub-functions

445, 488

Force odd/even page 437

Form 424,473

Format group sub-functions 440, 484

Function containing fixed text 488

Generate group sub-functions 446, 489

Global ON 463

Graph box information 442, 486

Graph box options 432, 433, 478

Group definition sub-functions 476

header 407, 464

Header A 443

Header B 444

Header/footer group sub-functions

443, 488

Horizontal lines 460, 496

Hyphenation zone 421

Include sub-document 451

Indent 417

Index entry 448

Justification 471

Justification information 488

Kerning 455,491

Leading adjustment 490

Line numbering 436

Marker for repositioning 487

Miscellaneous group 454, 490

Outline ON 490

Index 1273

Overstrike 453

Page number position 423

Page number style insert 489

Paragraph number 453

Paragraph number definition 428, 476

Save page information 450

Set alignment character 434

Set endnote number 435

Set footnote number 435

Set graph box number 439, 482

Set group 481

Set hyphenation zone 421

Set language 439,482

Set left/right margin 420

Set lines per inch 420

Set page number 435, 481

Set page number style 483

Set spacing 420

Set tabs 421,471

Set top/bottom margin 422

Set underline mode 434

Space expansion 438

Start of included sub-document 452

Style group 461, 498

Style OFF 463

Suppress page characteristics 423, 472

Table 460,496

Table end of line codes group 498

Table end of pages codes group 502

Table of authority entry 449

Table Off at EOL 501

Text area 467

Text box 460, 496

Unknown function 506

User defined text box 460, 496

Variable length multi-byte control

codes 419

Variable length multi-byte control

codes (WP 5.0) 470

Vertical line 461, 498

1274 Index

WordStar 381

Alternate font 401

annotation 397

control codes 381, 383

comment 398

endnote sequence 396

footnote sequence 395

font sequence 388

Graphic 401

Index entry 400

notes 395

Page offset 399

Paragraph number 399

Paragraph style 401

Paragraph style library 402

point commands 383

print controls 387

printer control 400

single byte codes 383

Symmetrical Code Sequences 386

Tabs 399

Truncation 402

WordPerfect Graphic format (WPG) 779

WordPerfect Graphic format records

(WPG) 779, 780

WPG records 780

Bitmap 787

Bitmap 2 793

Color Map 789

Curve 792

Ellipse 786

End WPG Data 791

Fill Attributes 781

Graphic Text 788

Graphic Text Attributes 788

Graphics text 2 794

header 779

Line 784

Line Attributes 782

Marker Attributes 783

Output Attributes 792

Polygon 786

Polyline 785

Polymarker 784

PostScript Data 791

records 780

Rectangle 785

Start Chart 794

Start Figure 793

Start WPG Data 790

Start WPG2 795

WRITE binary format (WRI) 1085

ZSoft Paintbrush (PCX) 605

	Front Cover
	Title Page
	Copyright
	Contents
	Part 1: Database file formats
	Part 2: Spreadsheet formats
	Part 3: Word processing formats
	Part 4: Graphic formats
	Part 5: Windows and OS/2 file formats
	Part 6: Sound formats
	part 7: Page description languages
	Appendices

	Preface
	Introduction
	Part 1: Database file formats
	1: File formats in dBASE II
	1.1: dBASE II - Format of DBF files
	1.2: Index file structure in dBASE II
	1.3: MEM file format in dBASE II

	2: File formats in dBASE III
	2.1: DBF file format in dBASE III and dBASE III+
	2.2: Index file structure (NDX) in dBASE III
	2.2.1: Structure of the NDX header
	2.2.2: The structure of index pages

	2.3: Clipper index file format (NTX)
	2.3.1: The structure of the NTX header
	2.3.2: The structure of the index page

	2.4: MEM file format in dBASE III
	2.5: DBT files in dBASE III (Memo files)
	2.6: FRM files in dBASE III
	2.7: LBL files in dBASE III
	2.8: Format of the file DBPRINT.PTB

	3: File formats in dBASE IV
	3.1: DBF file format in dBASE IV
	3.2: DBT file format in dBASE IV

	4: File formats in FoxPro
	4.1: FoxPro format of DBF files
	4.1.1: The DBF header
	4.1.2: Field description
	4.1.3: DBF data records

	4.2: The structure of a FoxBase+ DBT file (memo file)
	4.3: The structure of FoxPro FPT files (object files and memo files)
	4.3.1: The header of an FPT file
	4.3.2: The data area of the FPT file

	4.4: The structure of uncompressed IDX index files
	4.4.1: The header of the IDX file
	4.4.2: The structure of the node records

	4.5: The structure of a compact IDX index file
	4.5.1: The header of a compact IDX file
	4.5.2: The structure of node records

	4.6: The format of multi-index files (CDX)
	4.7: The structure of a FoxPro 1.0 label file (LBX)

	5: Data exchange using the SDF format
	5.1: The DELIMITED option
	5.2: Import/export of external formats
	5.3: The structure of a CSV file

	Part 2: Spreadsheet formats
	6: Lotus 1-2-3 WKS/WK1 file format
	6.1: WKS/WK1 formats in LOTUS 1-2-3 (up to version 2.01)
	6.2: Record types in Lotus 1-2-3 (versions 1.1 to 2.01)
	6.2.1: BOF (Opcode 0000H)
	6.2.2: EOF (Opcode 0001H)
	6.2.3: CALC_MODE (Opcode 0002H)
	6.2.4: CALC_ORDER (Opcode 0003H)
	6.2.5: WINDOW_SPLIT (Opcode 0004H)
	6.2.6: CURSOR_SYNC (Opcode 0005H)
	6.2.7: SAVE_RANGE (Opcode 0006H)
	6.2.8: WINDOW1 (Opcode 0007H)
	6.2.9: COLUMN_WIDTH_1 (Opcode 0008H)
	6.2.10: WINDOW2 (Opcode 0009H)
	6.2.11: COLUMN_WIDTH_2 (Opcode 000AH)
	6.2.12: NAME (Opcode 000BH)
	6.2.13: BLANK (Opcode 000CH)
	6.2.14: INTEGER (Opcode 000DH)
	6.2.15: NUMBER (Opcode 000EH)
	6.2.16: LABEL (Opcode 000FH)
	6.2.17: FORMULA (Opcode 0010H)
	6.2.18: TABLE (Opcode 0018H)
	6.2.19: QUERY_RANGE (Opcode 0019H)
	6.2.20: PRINT_RANGE (Opcode 001AH)
	6.2.21: SORT_RANGE (Opcode 001BH)
	6.2.22: FILL_RANGE (Opcode 001CH)
	6.2.23: KEY_RANGE1 (Opcode 001DH)
	6.2.24: H_RANGE (Opcode 0020H)
	6.2.25: KEY_RANGE2 (Opcode 0023H)
	6.2.26: PROTECT (Opcode 0024H)
	6.2.27: FOOTER (Opcode 0025H)
	6.2.28: HEADER (Opcode 0026H)
	6.2.29: SETUP (Opcode 0027H)
	6.2.30: MARGINS (Opcode 0028H)
	6.2.31: LABEL_FORMAT (Opcode 0029H)
	6.2.32: TITLES (Opcode 002AH)
	6.2.33: GRAPH (Opcode 002DH)
	6.2.34: NAMED_GRAPH (Opcode 002EH)
	6.2.35: CALC_COUNT (Opcode 002FH)
	6.2.36: UNFORMATTED (Opcode 0030H)
	6.2.37: CURSOR_WINDOW_1_2 (Opcode 0031H)
	6.2.38: WKS_PASSWORD (Opcode 004BH)
	6.2.39: HIDDEN_VECTOR (Opcode 0064H)
	6.2.40: HIDDEN_VECTOR2 (Opcode 0065H)
	6.2.41: PARSE_RANGES (Opcode 0066H)
	6.2.42: REGRESS_RANGES (Opcode 0067H)
	6.2.43: MATRIX_RANGES (Opcode 0069H)
	6.2.44: CELL_PTR_INDEX (Opcode 0096H)

	7: Lotus 1-2-3 WK3 record
	7.1: Lotus 1-2-3 WK3 File Format
	7.1.1: BOF (Opcode 0000H)
	7.1.1.1: Multibyte Character Set (LMBBCS)

	7.1.2: EOF (Opcode 0001H)
	7.1.3: PASSWORD (Opcode 0002H)
	7.1.4: CALCSET (Opcode 0003H)
	7.1.5: WINDOWSET (Opcode 0004H)
	7.1.6: SHEETCELLPTR (Opcode 0005H)
	7.1.7: SHEETLAYOUT (Opcode 0006H)
	7.1.8: COLUMNWIDTH (Opcode 0007H)
	7.1.9: HIDDENCOLUMN (Opcode 0008H)
	7.1.10: USERRANGE (Opcode 0009H)
	7.1.11: SYSTEMRANGE (Opcode 000AH)
	7.1.12: ZEROFORCE (Opcode 000BH)
	7.1.13: SORTKEYDIR (Opcode 000CH)
	7.1.14: FILESEAL (Opcode 000DH)
	7.1.15: DATAFILLNUMS (Opcode 000EH)
	7.1.16: PRINTMAIN (Opcode 000FH)
	7.1.17: PRINTSTRING (Opcode 0010H)
	7.1.18: GRAPHMAIN (Opcode 0011H)
	7.1.19: GRAPHSTRING (Opcode 0012H)
	7.1.20: FORMAT (Opcode 0013H)
	7.1.21: GBLFMT (Opcode 0013H)
	7.1.22: DUPFMT (Opcode 0013H)
	7.1.23: ERRCELL (Opcode 0014H)
	7.1.24: NACELL (Opcode 0015H)
	7.1.25: LABELCELL (Opcode 0016H)
	7.1.26: NUMBERCELL (Opcode 0017H)
	7.1.27: SMALLNUMCELL (Opcode 0018H)
	7.1.28: FORMULACELL (Opcode 0019H)
	7.1.29: FORMULASTRING (Opcode 001AH)
	7.1.30: XFORMAT (Opcode 001BH)
	7.1.31: DTALABELMISC (Opcode 001CH)
	7.1.32: DTALABELCELL (Opcode 001DH)
	7.1.33: GRAPHWINDOW (Opcode 001EH)
	7.1.34: CPA (Opcode 001FH)
	7.1.35: LPLAUTO (Opcode 0020H)
	7.1.36: QUERY (Opcode 0021H)
	7.1.37: HIDDENSHEET (Opcode 0022H)

	7.2: Lotus 1-2-3 FRM file format

	8: Lotus 1-2-3 PIC format
	8.1: File header
	8.2: Record descriptions
	8.2.1: FILL (x1,y1)...(xn.yn) (Opcode 30H)
	8.2.2: END OF FILE (Codes 60H to 6FH)
	8.2.3: MOVE (X,Y) (Opcode A0H)
	8.2.4: DRAW (X,Y) (Opcode A2H)
	8.2.5: FONT n (Opcode A7H)
	6.2.6: TEXT xxxx (Opcode A8H)
	8.2.7: SIZE n,m (Opcode ACH)
	8.2.8: COLOR (Opcode BxH)
	8.2.9: FILL0 (x1,y1)..(xn,yn) (Opcode D0H)

	9: Lotus Symphony format
	9.1: Record types in Symphony
	9.1.1: BOF (Opcode 0000H)
	9.1.2: EOF (Opcode 0001H)
	9.1.3: CALC_MODE (Opcode 0002H)
	9.1.4: CALC_ORDER (Opcode 0003H)
	9.1.5: RANGE (Opcode 0006H)
	9.1.6: COLUMN_WIDTH_1 (Opcode 0008H)
	9.1.7: BLANK (Opcode 000CH)
	9.1.8: INTEGER (Opcode 000DH)
	9.1.9: NUMBER (Opcode 000EH)
	9.1.10: LABEL (Opcode 000FH)
	9.1.11: FORMULA (Opcode 0010H)
	9.1.12: TABLE (Opcode 0018H)
	9.1.13: PRINT_RANGE (Opcode 001AH)
	9.1.14: FILL_RANGE (Opcode 001CH)
	9.1.15: HRANGE (Opcode 0020H)
	9.1.16: PROTECT (Opcode 0024H)
	9.1.17: LABEL_FORMAT (Opcode 0029H)
	9.1.18: CALC_COUNT (Opcode 002FH)
	9.1.19: WINDOW (Opcode 0032H)
	9.1.20: STRING (Opcode 0033H)
	9.1.21: LOCK_PASSWORD (Opcode 0037H)
	9.1.22: LOCKED (Opcode 0038H)
	9.1.23: QUERY (Opcode 003CH)
	9.1.24: QUERY_NAME (Opcode 003DH)
	9.1.25: PRINT (Opcode 003EH)
	9.1.26: PRINT_NAME (Opcode 003FH)
	9.1.27: GRAPH_2 (Opcode 0040H)
	9.1.28: GRAPH_NAME (Opcode 0041H)
	9.1.29: ZOOM (Opcode 0042H)
	9.1.30: SYMPHONY_SPLIT (Opcode 0043H)
	9.1.31: NUMBER_SCREEN_ROWS (Opcode 0044H)
	9.1.32: NUMBER_SCREEN_COLUMNS (Opcode 0045H)
	9.1.33: RULER (Opcode 0046H)
	9.1.34: NAMED_SHEET (Opcode 0047H)
	9.1.35: AUTO_COMM (Opcode 0048H)
	9.1.36: AUTO_MACRO (Opcode 0049H)
	9.1.37: PARSE (Opcode 004AH)
	9.1.38: WKS_PASSWORD (Opcode 004BH)
	9.1.39: HIDDEN_VECTOR (Opcode 0064H)
	9.1.40: CELL_POINTER_INDEX (Opcode 0096H)

	10: Data Interchange Format (DIF)
	10.1: The structure of the DIF header
	10.1.1: TABLE
	10.1.2: VECTORS
	10.1.3: TUPLES
	10.1.4: DATA
	10.1.5: LABEL
	10.1.6: COMMENT
	10.1.7: SIZE
	10.1.8: PERIODICITY
	10.1.9: MAJOR-START
	10.1.10: MINOR-START
	10.1.11: TRUE-LENGTH
	10.1.12: UINTS
	10.1.13: DISPLAY_UNITS

	10.2: The DIF data record structure
	10.2.1: Special Data (-1)
	10.2.2: Numeric Data (0)
	10.2.3: String Data (1)

	11: Super Data Interchange format (SDI)
	11.1: The header of an SDI file
	11.1.1: TABLE (mandatory)
	11.1.2: VECTORS (optional)
	11.1.3: TUPLES (optional)
	11.1.4: GDISP-FORMAT (optional)
	11.1.5: COL-FORMAT (optional)
	11.1.6: ROW-FORMAT (optional)
	11.1.7: DATA (mandatory)

	11.2: Data section of an SDI file
	11.2.1: Text Entry (Typ = 1)
	11.2.2: Numeric Entry (Typ = 0)
	11.2.3: Data Definition Entry (Typ = -1)
	11.2.4: Origin Specifier (GOTO) (Typ = -2)
	11.2.5: Level Display Formatting Entry (Typ = -3)
	11.2.6: Formula Entry (Typ = -4)
	11.2.7: Repeat Count Entry (Typ = -5)

	12: Standard Interface format (SIF)
	13: Symbolic Link format (SYLK)
	13.1: Record descriptions
	13.1.1: ID Record (ID)
	13.1.2: Format Record (F)
	13.1.2.1: Cell Coordinates (;Xn;Yn)
	13.1.2.2: Cell Format (;F<c1>#<n>#<c2>)
	13.1.2.3: Row/column formatting (;Rn;Cn)
	13.1.2.4: Default Format (;D<c1>#<n>#<c2>#<c3>)
	13.1.2.5: Comma Format (;K)
	13.1.2.6: Formula Format (;E)
	13.1.2.7: Width Format (;W<c1>#<c2>#<c3>)
	13.1.2.8: Font Format (;N)
	13.1.2.9: Picture Format (;P)
	13.1.2.10: Style Format (;Sx)
	13.1.2.11: Header Format (;H)
	13.1.2.12: Grid Format (;G)

	13.1.3: Boundary Record (B)
	13.1.4: Cell Format Record (C)
	13.1.4.1: Cell Coordinates (;Xn;Yn)
	13.1.4.2: Cell Value (;K)
	13.1.4.3: Protected (;P)
	13.1.4.4: Not Protected (;N)
	13.1.4.5: Expression (;E<expr.>)
	13.1.4.6: Row/column addressing (;Rn;Cn)
	13.1.4.7: Shared Expression-Value (;S)
	13.1.4.8: Shared Expression (;D)
	13.1.4.9: Shared Values (;G)
	13.1.4.10: Cell Hidden (;H)
	13.1.4.11: Expression Matrix (;M)
	13.1.4.12: Table Reference (;T)
	13.1.4.13: Inside a Matrix (;I)

	13.1.5: Picture Record (P)
	13.1.6: Name Record (NN)
	13.1.6.1: Name (;N<Name>
	13.1.6.2: Range (;E<Range>)
	13.1.6.3: Macro (;G)
	13.1.6.4: Ordinary Name (;K)
	13.1.6.5: Usable Function (;F)

	13.1.7: Options Record (O)
	13.1.7.1: Iteration Count (;A)
	13.1.7.2: Completion Test (;C)
	13.1.7.3: Protected (;P)
	13.1.7.4: A1-Mode (;L)
	13.1.7.5: Manual Recalc (;M)
	13.1.7.6: Precision (;R)
	13.1.7.7: Executable Macro (;E)

	13.1.8: Name Link (NE)
	13.1.8.1: Name (;F<Name>)
	13.1.8.2: Source Range (;S)
	13.1.8.3: Range (;E)

	13.1.9: File Substitution (NU)
	13.1.9.1: File Name (;L<Name>)
	13.1.9.2: Substitute Name (;F<Name>)

	13.1.10: Window (W)
	13.1.10.1: Window Number (;N)
	13.1.10.2: Coordinates (;A y x)
	13.1.10.3: Bordered Flag (;B)
	13.1.10.4: Split Window (;ST)
	13.1.10.5: Split window, horizontal (;SH)
	13.1.10.6: Split window, vertical (;SV)
	13.1.10.7: Colors (;C)
	13.1.10.8: MAC R-Type (;R)

	13.1.11: External Link Record (NL)
	13.1.11.1: Destination Index (;C)
	13.1.11.2: Dependent Area Name (;D)
	13.1.11.3: Dependent Area (;E)
	13.1.11.4: Independent Area Name (;I)
	13.1.11.5: Independent Area (;J)
	13.1.11.6: File Name (;F)

	13.1.14: End of SYLK (E)

	14: SYLK format extensions for CHART
	14.1: Pseudo-records
	14.1.1: Field types
	14.1.1.1: Type of Data (;Ttyp)
	14.1.1.2: Text Align (;Atext or ;Btext)
	14.1.1.3: Highlighted data entry point (;Cn)
	14.1.1.4: Displayed Time (;Dn)
	14.1.1.5: Display Entry Mode (;En)
	14.1.1.6: Format (;F)
	14.1.1.7: Scaling (;G or ;H)
	14.1.1.8: Included (;I)
	14.1.1.9: Edited (;J)
	14.1.1.10: Linked (;L)
	14.1.1.11: Type (;M)
	14.1.1.12: Name (;N)
	14.1.1.13: Origin (;O)
	14.1.1.14: Period (;P)
	14.1.1.15: Dependent (;R)
	14.1.1.16: Start Value (;S)
	14.1.1.17: Time Unit (;U)

	14.2: GS record
	14.3: GC record
	14.3.1: GL record
	14.3.2: GE record
	14.3.3: GA record
	14.3.4: GP record
	14.3.5: GD record
	14.3.6: GW record
	14.3.7: GC record
	14.3.8: GY record
	14.3.9: GI record
	14.3.10: GR record
	14.3.11: GF record
	14.3.12: GT record
	14.3.13: GN record
	14.3.14: GM record
	14.3.15: GZ record

	15: Excel binary interchange format (BIFF)
	15.1: The BIFF record structure in versions 2.0-4.0
	15.2: Record types in BIFF2-BIFF4
	15.2.1: ADDIN - Add In Macro (record type 87H, version 3.0-4.0)
	15.2.2: ARRAY - Array-Entered Formula (record type 21H, version 2.0-4.0)
	15.2.3: BACKUP - Save Backup Version (record type 40H, version 2.0-4.0)
	15.2.4: BLANK - Blank Cell (record type 01H, version 2.0-4.0)
	15.2.5: BOF - Beginning of File (record type 09H, version 2.0-4.0)
	15.2.6: BOOLERR - Cell with Err value (record type 05H)
	15.2.7: BOTTOMMARGIN - Bottom Margin Setting (record type 29H, version 2.0-4.0)
	15.2.8: BUILTINFMTCOUNT - Number of Format Records (record type 56H, version 3.0-4.0)
	15.2.9: CALCCOUNT - Iteration Count (record type 0CH, version 2.0-4.0)
	15.2.10: CALCMODE - Calculation Mode (record type 0DH, version 2.0-4.0)
	15.2.11: CODEPAGE - Code Page for File (record type 42H, version 2.0-4.0)
	15.2.12: COLINFO - Column Format (record type 7DH, version 3.0-4.0)
	15.2.13: COLUMNDEFAULT - Standard Cell Attributes (record type 20H, version 2.0)
	15.2.14: COLWIDTH - Column Width (record type 24H, version 2.0)
	15.2.15: CONTINUE - Continue Record (record type 3CH, version 2.0-4.0)
	15.2.16: COORDLIST - Polygon Coordinates (record type A9H, version 4.0)
	15.2.17: COUNTRY - Country Settings (record type 8CH, version 3.0-4.0)
	15.2.18: CRN - Record Count (record type 5AH, version 3.0-4.0)
	15.2.19: DCON - Data Consolidation (record type 50H, version 2.0-4.0)
	15.2.20: DCONNAME - Data Consolidation Named Reference (record type 52H, version 2.0-4.0)
	15.2.21: DCONREF - Data Consolidation Reference (record type 51H, version 2.0-4.0)
	15.2.22: DEFAULTROWHEIGHT - Default Row Height (record type 25H, version 2.0-4.0)
	15.2.23: DEFCOLWIDTH - Default Column Width (record type 55H, version 2.0-4.0)
	15.2.24: DELTA - Iteration Increment (record type 10H, version 2.0-4.0)
	15.2.25: DIMENSIONS - Table Size (record type 00H, version 2.0-4.0)
	15.2.26: EDG - Edition Globals (record type 88H, version 3.0-4.0)
	15.2.27: EFONT - Extended Font (record type 45H, version 2.0)
	15.2.28: EOF - End of File (record type 0AH, version 2.0-4.0)
	15.2.29: EXTERNCOUNT - Number of External References (record type 16H, version 2.0-4.0)
	15.2.30: EXTERNNAME - External Reference Name (record type 23H)
	15.2.31: EXTERNSHEET - External Reference (record type 17H, version 2.0-4.0)
	15.2.32: FILEPASS - Password Protected File (record type 2FH, version 2.0-4.0)
	15.2.33: FILESHARING - File Sharing and Password (record type 5BH, version 3.0-4.0)
	15.2.34: FNGROUPCOUNT - Built-in Function Group (record type 9CH, version 4.0)
	15.2.35: FNGROUPNAME - Function Group Name (record type 9AH, version 4.0)
	15.2.36: FNPROTO - Function Prototype (record type A2H, version 4.0)
	15.2.37: FONT - Font Description (record type 31H, version 2.0-4.0)
	15.2.38: FONT2 - Additional Font Information (record type 32H, version 2.0)
	15.2.39: FOOTER - Print Footer on each Page (record type 15H, version 2.0-4.0)
	15.2.40: FORMAT - Number Format (record type 1EH, version 2.0-4.0)
	15.2.41: FORMATCOUNT - Number of Built-in Format Records (record type 1FH, version 2.0)
	15.2.42: FORMULA - Cell Formula (record type 06H, version 2.0-4.0)
	15.2.42.1: Array constant (record type 20H)
	15.2.42.2: Name-Operand (record type 23H)
	15.2.42.3: Cell Reference (record type 24H)
	15.2.42.4: Area Reference (record type 25H)
	15.2.42.5: Constant Reference Subexpression (record type 26H)
	15.2.42.6: Erroneous Constant Reference Subexpression (record type 27H)
	15.2.42.7: Deleted Cell Reference (record type 2AH)
	15.2.42.8: Deleted Area Reference (record type 2BH)
	15.2.42.9: Cell Reference within a Name (record type 2CH)
	15.2.42.10: Area Reference within a Name (record type 2CH)
	Control Tokens
	15.2.42.11: Array Formula (record type 01H)
	15.2.42.12: Data Table (record type 02H)
	15.2.42.13: Parenthesis (record type 15H)
	15.2.42.14: Special Attributes (record type 19H)
	15.2.42.15: External Reference (record type 1AH)
	15.2.42.16: End External Reference (record type 1BH)
	15.2.42.17: Incomplete Constant Reference Subexpression (record type 28H)
	15.2.42.18: Reference Subexpression
	Function operators
	15.2.42.19: Function Operator (record type 21H)
	15.2.42.20: Variable Argument Function Operator (record type 22H)
	15.2.42.21: Command-Equivalent Function Operator (record type 38H)

	15.2.43: GCW - Global Column Width Flags (record type ABH, version 4.0)
	15.2.44: GRIDSET - State Change of Gridlines Option (record type 82H, version 3.0-4.0)
	15.2.45: GUTS - Size of Row and Column Gutter (record type 80H, version 3.0-4.0)
	15.2.46: HCENTER - Horizontal Center between Margins (record type 83H, version 3.0-4.0)
	15.2.47: HEADER - Print Header (record type 14H, version 2.0-4.0)
	15.2.48: HIDEOBJ - Object Display Options (record type 8DH, version 2.0-4.0)
	15.2.49: HORIZONTAL PAGE BREAKS - Explicit Row Page Breaks (record type 1BH, version 2.0-4.0)
	15.2.50: IMDATA - Image Data (record type 7FH, version 3.0-4.0)
	15.2.51: INDEX - Index (record type 0BH, version 2.0-4.0)
	15.2.52: INTEGER - Cell Value Integer (record type 02H, version 2.0)
	15.2.53: INTL - International Macro Sheet (record type 61H, version 3.0-4.0)
	15.2.54: ITERATION - Iteration Mode (record type 11H, version 2.0-4.0)
	15.2.55: IXFE - Index Extended Format Record (record type 44H, version 2.0)
	15.2.56: LABEL - Cell Value String (record type 04H, version 2.0-4.0)
	15.2.57: LEFTMARGIN - Left Margin Measurement (record type 26H, version 2.0-4.0)
	15.2.58: LH - Alternate Menu Key Flag (record type 8BH, version 3.0-4.0)
	15.2.59: LHNGRAPH - Named Graph Information (record type 95H, version 3.0-4.0)
	15.2.60: LHRECORD - .WKx File Conversion Info (record type 94H, version 3.0-4.0)
	15.2.61: LPR - Sheet Print with LINE.PRINT (record type 98H)
	15.2.62: NAME - Document name (record type 18H, version 2.0-4.0)
	15.2.63: NOTE - Note Associated with a Cell (record type 1CH, version 2.0-4.0)
	15.2.64: NUMBER - Cell Value Float (record type 03H, version 2.0-4.0)
	15.2,65: OBJ - Object Description (record type 5DH, version 3.0-4.0)
	15.2.65.1: Line Object
	15.2.65.2: Rectangle Object
	15.2.65.3: Oval Object
	15.2.65.4: Arc Object
	15.2.65.5: Chart Object
	15.2.65.6: Text Object
	15.2.65.7: Button Object
	15.2.65.8: Picture Object
	15.2.65.9: Group Object
	15.2.65.10: Polygon Object

	15.2.66: OBJPROTECT - Protect Object (record type 63H, version 3.0-4.0)
	15.2.67: PALETTE - Color Palette Definition (record type 92H, version 3.0-4.0)
	15.2.68: PANE - Number of Panes and Position (record type 41H, version 2.0-4.0)
	15.2.69: PASSWORD - Password Protection (record type 13H, version 2.0-4.0)
	15.2.70: PLS - Environment-Specific Print Record (record type 4DH, version ???)
	15.2.71: PRECISION - Precision (record type 0EH, version 2.0-4.0)
	15.2.72: PRINTGRIDLINES - Print Grid Lines (record type 2BH, version 2.0-4.0)
	15.2.73: PRINTHEADERS - Print Row/Column Header (record type 2AH, version 2.0-4.0)
	15.2.74: PROTECT - Cells Protected (record type 12H, version 2.0-4.0)
	15.2.75: PUB - Publisher (record type 89H, version 3.0-4.0)
	15.2.76: REFMODE - Reference Mode (record type 0FH, version 2.0-4.0)
	15.2.77: RIGHTMARGIN - Right Margin Definition (record type 27H, version 2.0-4.0)
	15.2.78: RK - Cell with RK Number (record type 27EH, version 3.0-4.0)
	15.2.79: ROW - Row Description (record type 08H, version 2.0-4.0)
	15.2.80: SAVERECALC - Recalculate before Save (record type 5FH, version 3.0-4.0)
	15.2.81: SCL - Window Zoom Magnification (record type A0H, version 4.0)
	15.2.82: SELECTION - Current Selection (record type 1DH, version 2.0-4.0)
	15.2.83: SETUP - Page Setup (record type A1H, version 4.0)
	15.2.84: SOUND - Sound Note (record type 96H, version 4.0)
	15.2.85: STANDARDWIDTH - Standard Column Width (record type 99H, version 4.0)
	15.2.86: STRING - String Value of a Formula (record type 07H, version 2.0-4.0)
	15.2.87: STYLE - Style Info (record type 293H, version 3.0-4.0)
	15.2.88: SUB - Subscriber (record type 91H, version 3.0-4.0)
	15.2.89: SYNC - Sync Window (record type 97H, version 4.0)
	15.2.90: TABLE - Data Table (record type 36H, version 3.0-4.0)
	15.2.91: TABLE2 - Data Table 2 (record type 37H, version 2.0)
	15.2.92: TEMPLATE - Document is a Template (record type 60H, version 3.0-4.0)
	15.2.93: TOPMARGIN - Top Margin Settings (record type 28H, version 2.0-4.0)
	15.2.94: UNCALCULATED - Recalculation Status (record type 5EH, version 3.0-4.0)
	15.2.95: VCENTER - Center Vertical (record type 84H, version 3.0-4.0)
	15.2.96: VERTICALPAGEBREAKS - Column Page Breaks (record type 1AH, version 2.0-4.0)
	15.2.97: WINDOW1 - Windows Information (record type 3DH, version 2.0-4.0)
	15.2.98: WINDOW2 - Windows Information (record type 3EH, version 2.0-4.0)
	15.2.99: WINDOWPROTECT - Windows are protected (record type 19H, version 2.0-4.0)
	15.2.100: WRITEACCESS - User Name (record type 5CH, version 3.0-4.0)
	15.2.101: WRITEPROT - Document Write-Protected (record type 86H, version 3.0-4.0)
	15.2.102: WSBOOL - Workspace Info (record type 81H, version 3.0-4.0)
	15.2.103: XCT - CRN Record Count (record type 59H, version 3.0-4.0)
	15.2.104: XF - Extended Cell Format (record type 43H, version 2.0-4.0)
	15.2.105: STYLE XXF Record (record type 243H, version 3.0)
	15.2.106: 1904 - 1904 Date Format (record type 22H, version 2.0-4.0)

	Part 3: Word processing formats
	16: MS-Word format
	16.1: Word headers (versions 3.0, 4.0, 5.0)
	16.2: The Word text area
	16.3: Format area in Word
	16.3.1: Character formats
	16.3.2: Paragraph format block
	16.3.3: Format of the footnote block
	16.3.4: Format of the section table block
	16.3.5: Format of the section format block
	16.3.6: Format of a page-break block
	16.3.7: File manager information block

	16.4: Winword file format (1.0 - 6.0)

	17: WordStar format
	17.1: Symmetrical code sequences
	17.1.1: Header
	17.1.1.1: Header Sequence (Type 00H)

	17.1.2: Print Controls
	17.1.2.1: Color Sequence (Type 01H)
	17.1.2.2: Font Sequence (Type 02H)

	17.1.3: Notes
	17.1.3.1: Footnote Sequence (Type 03H)
	17.1.3.2: Endnote Sequence (Type 04H)
	17.1.3.3: Annotation (Type 05H)
	17.1.3.4: Comment (Type 06H)
	17.1.3.5: Tabs (Type 09H)
	17.1.3.6: End of Page (Type 0BH)
	17.1.3.7: Page Offset (Type 0CH)
	17.1.3.8: Paragraph Number (Type 0DH)
	17.1.3.9: Index Entry (Type 0EH)
	17.1.3.10: Printer Control (Type 0FH)
	17.1.3.11: Graphic (Type 10H)
	17.1.3.12: Paragraph Style (Type 11H)
	17.1.3.13: Alternate Font Change (Type 15H)
	17.1.3.14: Truncation (Type 16H)

	17.2: Structure of a paragraph style library

	18: WordPerfect format
	18.1: WordPerfect header (version 5.0)
	18.2: WordPerfect data areas
	18.2.1: 1-byte control codes from 00H to BFH
	18.2.2: Fixed-length multi-byte control codes from C0H to CFH
	18.2.2.1: Extended Character (code C0H)
	18.2.2.2: Center, Align, Tab, Left Margin (code C1H)
	18.2.2.3: Indent (code C2H)
	18.2.2.4: Attributes On (code C3H)
	18.2.2.5: Attributes Off (code C4H)
	18.2.2.6: Block Protect (code C5H)
	18.2.2.7: End of indent (code C6H)
	18.2.2.8: Different display character when hyphenated (code C7H)

	18.2.3: Variable length multi-byte control codes between D0H and FFH)
	18.2.3.1: Set lines per inch (code D0H, subcode 00H)
	18.2.3.2: Set left/right margin (code D0H, subcode 01H)
	18.2.3.3: Set spacing (code D0H, subcode 02H)
	18.2.3.4: Set hyphenation zone (code D0H, subcode 03H)
	18.2.3.5: Set tabs (code D0H, subcode 04H)
	18.2.3.6: Set top/bottom margin (code D0H, subcode 05H)
	18.2.3.7: Suppress page characteristics (code D0H, subcode 07H)
	18.2.3.8: Page number position (code D0H, subcode 08H)
	18.2.3.9: Form (code D0H, subcode 0BH)

	18.2.4: Font group sub-function (code D1H)
	18.2.4.1: Color (code D1H, subcode 00H)
	18.2.4.2: Font change (code D1H, subcode 01H)

	18.2.5: Group definition sub-function (code D2H)
	18.2.5.1: Define mathematical columns (code D2H, subcode 00H)
	18.2.5.2: Define columns (code D2H, subcode 01H)
	18.2.5.3: Paragraph number definition (code D2H, subcode 02H)
	18.2.5.4: Footnote options (code D2H, subcode 03H)
	18.2.5.5: Endnote options (code D2H, subcode 04H)
	18.2.5.6: Graph box options for figures (code D2H, subcode 05H)
	18.2.5.7: Graph box options for tables (code D2H, subcode 06H)
	18.2.5.8: Graph box options for text boxes (code D2H, subcode 07H)
	18.2.5.9: Graph box options for user-defined boxes (code D2H, subcode 08H)

	18.2.6: Set group sub-functions
	18.2.6.1: Set alignment character (code D3H, subcode 00H)
	18.2.6.2: Set underline mode (code D3H, subcode 01H)
	18.2.6.3: Set footnote number (code D3H, subcode 02H)
	18.2.6.4: Set endnote number (code D3H, subcode 03H)
	18.2.6.5: Set page number (code D3H, subcode 04H)
	18.2.6.6: Line numbering (code D3H, subcode 05H)
	18.2.6.7: Advance to page position (code D3H, subcode 06H)
	18.2.6.8: Force odd/even page (code D3H, subcode 07H)
	18.2.6.9: Character/space width (code D3H, subcode 0AH)
	18.2.6.10: Space expansion (code D3H, subcode 0BH)
	18.2.6.11: Set graph box number for figures (code D3H, subcode 0CH)
	18.2.6.12: Set graph box number for tables (code D3H, subcode 0DH)
	18.2.6.13: Set graph box number for text boxes (code D3H, subcode 0EH)
	18.2.6.14: Set graph box number for user-defined boxes (code D3H, subcode 0FH)
	18.2.6.15: Set language (code D3H, subcode 11H)

	18.2.7: Format group sub-functions (code D4H)
	18.2.7.1: End of page function (code D4H, subcode 00H)
	18.2.7.2: End of line function (code D4H, subcode 01H)
	18.2.7.3: Graph box information function (code D4H, subcode 02H)

	18.2.8: Header/footer group sub-functions (code D5H)
	18.2.8.1: Header A (code D5H, subcode 00H)
	18.2.8.2: Header B (code D5H, subcode 01H)
	18.2.8.3: Footer A (code D5H, subcode 02H)
	18.2.8.4: Footer B (code D5H, subcode 03H)

	18.2.9: Footnote/endnote group sub-functions (code D6H)
	18.2.9.1: Footnote (code D6H, subcode 00H)
	18.2.9.2: Endnote (code D6H, subcode 01H)

	18.2.10: Generate group sub-functions (code D7H)
	18.2.10.1: Begin marked text (code D7H, subcode 00H)
	18.2.10.2: End marked text (code D7H, subcode 01H)
	18.2.10.3: Define marked text (code D7H, subcode 02H)
	18.2.10.4: Index entry (code D7H, subcode 03H)
	18.2.10.5: Table of authority entry (code D7H, subcode 04H)
	18.2.10.6: Endnotes print here (code D7H, subcode 05H)
	18.2.10.7: Save page information (code D7H, subcode 06H)
	18.2.10.8: Auto reference definition (code D7H, subcode 07H)
	18.2.10.9: Auto reference tag (code D7H, subcode 08H)
	18.2.10.10: Include sub-document (code D7H, subcode 09H)
	18.2.10.11: Start of included sub-document (code D7H, subcode 0AH)
	18.2.10.12: End of included sub-document (code D7H, subcode 0BH)

	18.2.11: Display group sub-functions (code D8H)
	18.2.11.1: Date function (code D8H, subcode 00H)
	18.2.11.2: Paragraph number (code D8H, subcode 01H)
	18.2.11.3: Overstrike (code D8H, subcode 02H)

	18.2.12: Miscellaneous group (code D9H)
	18.2.12.1: Embedded printer command (code D9H, subcode 00H)
	18.2.12.2: Conditional end of page function (code D9H, subcode 01H)
	18.2.12.3: Comment (code D9H, subcode 02H)
	18.2.12.4: Kerning (code D9H, subcode 03H)

	18.2.13: Box group (code DAH)
	18.2.13.1: Figure (code DAH, subcode 00H)
	18.2.13.2: Table (code DAH, subcode 01H)
	18.2.13.3: Text box (code DAH, subcode 02H)
	18.2.13.4: User defined text box (code DAH, subcode 03H)
	18.2.13.5: Horizontal line (code DAH, subcode 05H)
	18.2.13.6: Vertical line (code DAH, subcode 06H)

	18.2.14: Style group (code D8H)
	18.2.14.1: Begin style ON (code DBH, subcode 00H)
	18.2.14.2: End style ON (code DBH, subcode 01H)
	18.2.14.3: Global ON (code DBH, subcode 02H)
	18.2.14.4: Style OFF (code DBH, subcode 03H)

	18.3: The WordPerfect 5.x/6.x format
	18.4: WordPerfect Header (version 5.1+)
	18.5: Text area in WordPerfect 5.1
	18.5.1: Fixed-length multi-byte control codes (version 5.1+)
	18.5.1.1: Center, Align, Tab, Left Margin (code C1H)
	18.5.1.2: Attribute on (code C3H)
	18.5.1.3: Attribute off (code C4H)

	18.5.2: Variable length multi-byte control codes (version 5.1)
	18.5.2.1: Set tab (code D0H, subcode 04H)
	18.5.2.2: Justification (code D0H, subcode 06H)
	18.5.2.3: Suppress page characteristics (code D0H, subcode 07H)
	18.5.2.4: Form (code D0H, subcode 0BH)

	18.5.3: Font selection sub-function (code D1H version 5.1)
	18.5.3.1: Font change (code D1H, subcode 01H)
	18.5.3.2: Color (DrawPerfect) (code D1H, subcode 02H)

	18.5.4: Group definition sub-functions (code D2H, version 5.1)
	18.5.4.1: Paragraph number definition (code D2H, subcode 01H)
	18.5.4.2: Graph box options for equations (code D2H, subcode 09H)
	18.5.4.3: Define tables (code D2H, subcode 0BH)
	18.5.4.4: Define link start (code D2H, subcode 0DH)
	18.5.4.5: Define link end (code D2H, subcode 0EH)

	18.5.5: Set group sub-functions (code D3H, version 5.1)
	18.5.5.1: Set page number (code D3H, subcode 04H)
	18.5.5.2: Character baseline in fixed line height (code D3H, subcode 08H)
	18.5.5.3: Set graph box number for equations (code D3H, subcode 10H)
	18.5.5.4: Set language (code D3H, subcode 11H)
	18.5.5.5: Set page number style (code D3H, subcode 12H)

	18.5.6: Format group sub-functions (code D4H, version 5.1)
	18.5.6.1: End of page function (code D4H, subcode 00H)
	18.5.6.2: Beginning of line function (code D4H, subcode 01H)
	18.5.6.3: Graph box information function (code D4H, subcode 02H)
	18.5.6.4: Marker for repositioning (code D4H, subcode 03H)
	18.5.6.5: Function containing fixed text (code D4H, subcode 04H)
	18.5.6.6: Justification information (code D4H, subcode 05H)

	18.5.7: Header/footer group sub-functions (code D5H, version 5.1)
	18.5.8: Footnote/endnote group sub-functions (code D6H, version 5.1)
	18.5.9: Generate group sub-functions (code D7H, version 5.1)
	18.5.10: Display group sub-functions (code D8H, version 5.1)
	18.5.10.1: Page number style insert (code D8H, subcode 03H)

	18.5.11: Miscellaneous group (code D9H, version 5.1)
	18.5.11.1: Outline ON (code D9H, subcode 04H)
	18.5.11.2: Leading adjustment (code D9H, subcode 05H)
	18.5.11.3: Kerning (code D9H, subcode 06H)
	18.5.11.4: Kerning (code D9H, subcode 07H)

	18.5.12: Box group (code DAH, version 5.1)
	18.5.12.1: Figure (code DAH, subcode 00H)
	18.5.12.2: Table (code DAH, subcode 01H)
	18.5.12.3: Text box (code DAH, subcode 02H)
	18.5.12.4: User-defined text box (code DAH, subcode 03H)
	18.5.12.5: Equation (code DAH, subcode 04H)
	18.5.12.6: Horizontal line (code DAH, subcode 05H)
	18.5.12.7: Vertical line (code DAH, subcode 06H)

	18.5.13: Style group (code DBH)
	18.5.14: Table end of line codes group (code DCH, version 5.1)
	18.5.14.1: Beginning of column at EOL (code DCH, subcode 00H)
	18.5.14.2: Beginning of row at EOL (code DCH, subcode 01H)
	18.5.14.3: Table Off at EOL (code DCH, subcode 02H)

	18.5.15: Table end of page codes group (code DDH, version 5.1)
	18.5.16: Enhanced merge functions (code DEH, version 5.1)
	18.5.17: Equation nested function group (code DFH, version 5.1)
	18.5.17.1: Equation nested function (code DFH, subcode 00H)

	18.5.18: Unknown function (code FEH, version 5.1)
	18.5.18.1: Unknown function (code FEH, subcode FEH)

	19: Rich Text format (RTF version 1.2)
	19.1: Destination control words
	19.2: Revision and information group
	19.3: Document formatting properties
	19.4: Section formatting
	19.5: Headers and footers
	19.6: Paragraph formatting properties
	19.7: Tabs formatting
	19.8: Bullets and Numbering
	19.9: Paragraph borders
	19.10: Paragraph shading
	19.11: Paragraph positioning
	19.12: Table definitions
	19.13: Character formatting properties
	19.14: Special control words
	19.15: Picture control words
	19.16: Object control words
	19.17: Drawing objects control words
	19.18: Miscellaneous control words
	19.19: Bookmark

	20: Standard Generalized Markup Language (SGML)
	20.1: Structure of an SGML file
	20.2: Structure of a document

	21: AMI Pro version 3.0/4.0 file format
	21.1: The contents of a SAM file
	21.2: Document section
	21.3: Text area
	21.3.1: Escape records

	21.4: Embedded graphics

	Part 4: Graphic formats
	22: ZSOFT Paintbrush format (PCX)
	22.1: Structure of the PCX header
	22.1.1: CGA color palette information
	22.1.2: EGA/VGA 16 color palette
	22.1.3: VGA 256 color palette

	22.2: Coding of PCX data
	22.3: Format of the PC Paintbrush bitmap character
	22.4: CAPTURE File Format (SCR)

	23: GEM Image format (IMG)
	23.1: IMG header
	23.2: Storage of IMG data
	23.3: Image compression in IMG files
	23.3.1: Pixel Coding
	23.3.2: Solid Run format
	23.3.3: Bit String format
	23.3.4: Pattern Run format
	23.3.5: Vertical Replication Count format

	24: GEM Metafile format (GEM)
	24.1: Structure of the GEM Metafile header
	24.2: Format of Metafile objects
	24.2.1: Poly Line (Opcode 06H)
	24.2.2: Poly Marker (Opcode 07H)
	24.2.3: Text (Opcode 08H)
	24.2.4: Fill Area (Opcode 09H)
	24.2.5: Generalized Drawing Primitives (GDP Opcode 0BH)
	24.2.5.1: Bar GDP (Opcode 0BH Subcode 01H)
	24.2.5.2: Arc GDP (Opcode 0BH Subcode 02H)
	24.2.5.3: Pie GDP (Opcode 0BH Subcode 03H)
	24.2.5.4: Circle GDP (Opcode 0BH Subcode 04H)
	24.2.5.5: Ellipse GDP (Opcode 0BH Subcode 05H)
	24.2.5.6: Elliptical Arc GDP (Opcode 0BH Subcode 06H)
	24.2.5.7: Elliptical Pie GDP (Opcode 0BH Subcode 07H)
	24.2.5.8: Rounded Rectangle GDP (Opcode 0BH Subcode 08H)
	24.2.5.9: Filled Rounded Rectangle GDP (Opcode 0BH Subcode 09H)
	24.2.5.10: Justified Graphics Text GDP (Opcode 0BH Subcode 0AH)

	24.2.6: Set Character Height (Opcode 0CH)
	24.2.7: Set Character Baseline Vector (Opcode 0DH)
	24.2.8: Set Color Mode (Opcode 0EH)
	24.2.9: Set Polyline Type (Opcode 0FH)
	24.2.10: Set Polyline Width (Opcode 10H)
	24.2.11: Set Polyline Color Index (Opcode 11H)
	24.2.12: Set Polymarker Type (Opcode 12H)
	24.2.13: Set Polymarker Height (Opcode 13H)
	24.2.14: Set Polymarker Color Index (Opcode 14H)
	24.2.15: Set Text Font (Opcode 15)
	24.2.16: Set Text Color Index (Opcode 16H)
	24.2.17: Set Fill Interior Style (Opcode 17H)
	24.2.18: Set Fill Style Index (Opcode 18H)
	24.2.19: Set Fill Color Index (Opcode 19H)
	24.2.20: Set Writing Mode (Opcode 20H)
	24.2.21: Set Graphic Text Alignment (Opcode 27H)
	24.2.22: Set Fill Parameter Visibility (Opcode 68H)
	24.2.23: Set Graphic Text Special Effects (Opcode 6AH)
	24.2.24: Set Character Height (Opcode 6BH)
	24.2.25: Set Polyline End Style (Opcode 6CH)
	24.2.26: Set User Defined Fill Pattern (Opcode 70H)
	24.2.27: Set User Defined Linestyle Pattern (Opcode 71H)
	24.2.28: Extensions for GEM/3
	24.2.28.1: Output Bezier (Opcode 06H)
	24.2.28.2: Output filled Bezier (Opcode 09H)
	24.2.28.3: Disable/Enable Bezier Capabilities (Opcode 0BH)
	24.2.28.4: Set Bezier Quality (Opcode 05BH)

	25: Interchange File Format (IFF)
	25.1: IFF header
	25.2: IFF Block structure (CHUNK)
	25.3: CHUNKs: ILBM FORM
	25.3.1: Bitmap Header CHUNK (BMHD)
	25.3.2: Color Map CHUNK (CMAP)
	25.3.3: CRNG CHUNK (DeLuxe Paint)
	25.3.4: CCRT CHUNK (Graphicraft)
	25.3.5: BODY CHUNK containing data
	25.3.6: GRAB CHUNK
	25.3.7: DEST CHUNK
	25.3.8: SPRT CHUNK
	25.3.9: CAMG CHUNK
	25.3.10: CLUT CHUNK

	25.4: CHUNKs: 8SVX FORM
	25.4.1: Voice Header CHUNK (VHDR)
	25.4.2: NAME CHUNK (Name)
	25.4.3: BODY CHUNK (Data)
	25.4.3.1: One Shot Sound
	25.4.3.2: Musical Instrument

	25.4.4: ATAK CHUNK
	25.4.5: RLSE CHUNK

	25.5: CHUNKs: AIFF FORM
	25.5.1: COMM CHUNK
	25.5.2: SNDD CHUNK
	25.5.3: INST CHUNK

	25.6: CHUNKs: SMUS FORM
	25.6.1: SHDR CHUNK
	25.6.2: INS1 CHUNK
	25.6.3: TRAK CHUNK

	25.7: CHUNKs: FTXT FORM
	25.7.1: FONS CHUNK
	25.7.2: CHRS CHUNK

	25.8: CHUNKs: WORD FORM
	25.8.1: FONT CHUNK
	25.8.2: COLR CHUNK

	25.9: Other text CHUNKs
	25.9.1: DOC CHUNK
	25.9.2: FOOT/HEAD CHUNK
	25.9.3: PARA CHUNK
	25.9.4: TABS CHUNK
	25.9.5: PAGE CHUNK
	25.9.6: TEXT CHUNK
	25.9.7: FSCC CHUNK
	25.9.8: PCTS CHUNK
	25.9.9: PINF CHUNK

	25.10: Miscellaneous CHUNKs

	26: Graphics Interchange format (GIF)
	26.1: GIF header
	26.2: Logical Screen Descriptor block
	26.3: Global Color Map block
	26.4: Image Descriptor block
	26.5: Local Color Map block
	26.6: Extension block
	26.7: Raster Data block
	26.8: LZW Compression
	26.9: Modified LZW Process for GIF Files
	26.10: Sub-blocks with Raster Data
	26.11: Block Terminator
	26.12: Graphic Control Extension block (GIF89a)
	26.13: Comment Extension block (GIF89a)
	26.14: Plain Text Extension block (GIF89a)
	26.15: Application Extension Block (GIF89a)
	26.16: GIF Terminator

	27: Tag Image File Format (TIFF)
	27.1: TIFF header
	27.2: Structure of the Image File Directory (IFD)
	27.2.1: Structure of a tag
	27.2.2: Description of tag types
	27.2.2.1: NewSubFile tag (FEH)
	27.2.2.2: Subfile tag (FFH)
	27.2.2.3: Image Width tag (100H)
	27.2.2.4: Image Length tag (101H)
	27.2.2.5: BitsPerSample tag (102H)
	27.2.2.6: Compression tag (103H)
	27.2.2.7: PhotometricInterpretation tag (106H)
	27.2.2.8: Thresholding tag (107H)
	27.2.2.9: CellWidth tag (108H)
	27.2.2.10: CellLength tag (109H)
	27.2.2.11: FillOrder tag (10AH)
	27.2.2.12: DocumentName tag (10DH)
	27.2.2.13: ImageDescriptor tag (10EH)
	27.2.2.14: Make tag (10FH)
	27.2.2.15: Model tag (110H)
	27.2.2.16: StripOffset tag (111H)
	27.2.2.17: Orientation tag (112H)
	27.2.2.18: SamplesPerPixel tag (115H)
	27.2.2.19: RowsPerStrip tag (116H)
	27.2.2.20: StripByteCounts tag (117H)
	27.2.2.21: MinSampleValue tag (118H)
	27.2.2.22: MaxSampleValue tag (119H)
	27.2.2.23: XResolution tag (11AH)
	27.2.2.24: YResolution tag (11BH)
	27.2.2.25: PlanarConfiguration tag (11CH)
	27.2.2.26: PageName tag (11DH)
	27.2.2.27: XPosition tag (11EH)
	27.2.2.28: YPosition tag (11FH)
	27.2.2.29: FreeOffsets tag (120H)
	27.2.2.30: FreeByteCount tag (121H)
	27.2.2.31: GrayResponseUnit tag (122H)
	27.2.2.32: GrayResponseCurve tag (123H)
	27.2.2.33: T4Options tag (124H)
	27.2.2.34: T6Options tag (125H)
	27.2.2.35: ResolutionUnit tag (128H)
	27.2.2.36: PageNumber tag (129H)
	27.2.2.37: ColorResponseUnit tag (12CH)
	27.2.2.38: TransferFunction tag (12DH)
	27.2.2.39: Software tag (131H)
	27.2.2.40: DateTime tag (132H)
	27.2.2.41: Artist tag (13BH)
	27.2.2.42: Host Computer tag (13CH)
	27.2.2.43: Predictor tag (13DH)
	27.2.2.44: White Point tag (13EH)
	27.2.2.45: PrimaryChromaticities tag (13FH)
	27.2.2.46: ColorMap tag (140H)
	27.2.2.47: HalftoneHints tag (141H, TIFF 6.0)
	27.2.2.48: TileWidth tag (142H, TIFF 6.0)
	27.2.2.49: TileLength tag (143H, TIFF 6.0)
	27.2.2.50: TileOffset tag (144H, TIFF 6.0)
	27.2.2.51: TileByteCount tag (145H, TIFF 6.0)
	27.2.2.52: InkSet tag (14CH, TIFF 6.0)
	27.2.2.53: InkNames tag (14DH, TIFF 6.0)
	27.2.2.54: NumberOfInks tag (14EH, TIFF 6.0)
	27.2.2.55: DOTRange tag (150H, TIFF 6.0)
	27.2.2.56: TargetPrinter tag (151H, TIFF 6.0)
	27.2.2.57: Extra Samples tag (152H, TIFF 6.0)
	27.2.2.58: SampleFormat tag (153H, TIFF 6.0)
	27.2.2.59: SMinSampleValue tag (154H, TIFF 6.0)
	27.2.2.60: SMaxSampleValue tag (155H, TIFF 6.0)
	27.2.2.61: TransferRange tag (156H, TIFF 6.0)
	27.2.2.62: YCbCrCoefficient tag (211H, TIFF 6.0)
	27.2.2.63: YCbCrSubSampling tag (212H, TIFF 6.0)
	27.2.2.64: YCbCrPositioning tag (213H, TIFF 6.0)
	27.2.2.65: ReferenceBlackWhite tag (214H, TIFF 6.0)
	27.2.2.66: JPEGProc tag (200H, TIFF 6.0)
	27.2.2.67: JPEGInterchangeFormat tag (201H, TIFF 6.0)
	27.2.2.68: JPEGInterchangeFormatLength tag (202H, TIFF 6.0)
	27.2.2.69: JPEGRestartInterval tag (203H, TIFF 6.0)
	27.2.2.70: JPEGLossLessPredictors tag (205H, TIFF 6.0)
	27.2.2.71: JPEGPointTransforms tag (206H, TIFF 6.0)
	27.2.2.72: JPEGQTables tag (207H, TIFF 6.0)
	27.2.2.73: JPEGDCTables tag (208H, TIFF 6.0)
	27.2.2.74: JPEGACTables tag (209H, TIFF 6.0)
	27.2.2.75: Notes

	27.3: TIFF Compression Processes
	27.3.1: Uncompressed
	27.3.2: PackBit Coding
	27.3.3: FAX Compression (Modified Huffman Compression)
	27.3.4: LZW Compression (Code 5)
	27.3.5: JPEG Compression

	28: Computer Graphic Metafile format (CGM)
	28.1: Binary CGM Coding
	28.2: Coding as ASCII text
	28.3: Character coding with ISO characters
	28.4: Metafile Commands

	29: WordPerfect Graphic format (WPG)
	29.1: WPG header
	29.2: WPG records
	29.2.1: Fill Attributes (type 1)
	29.2.2: Line Attributes (type 2)
	29.2.3: Marker Attributes (type 3)
	29.2.4: Polymarker (type 4)
	29.2.5: Line (type 5)
	29.2.6: Polyline (type 6)
	29.2.7: Rectangle (type 7)
	29.2.8: Polygon (type 8)
	29.2.9: Ellipse (type 9)
	29.2.10: Bitmap (type 11)
	29.2.11: Graphic Text (type 12)
	29.2.12: Graphic Text Attributes (type 13)
	29.2.13: Color Map (type 14)
	29.2.14: Start WPG Data (type 15)
	29.2.15: End WPG Data (type 16)
	29.2.16: PostScript Data (type 17)
	29.2.17: Output Attributes (type 18)
	29.2.18: Curve (type 19, WPG version 5.1)
	29.2.19: Bitmap 2 (type 20, WPG version 5.1)
	29.2.20: Start Figure (type 21, WPG version 5.1)
	29.2.21: Start Chart (type 22, WPG version 5.1)
	29.2.22: Graphics text2 (type 24, WPG version 5.1)
	29.2.23: Start WPG2 (type 25, WPG version 5.1)

	30: AutoCAD Drawing Exchange format (DXF)
	30.1: Structure of a DXF file
	30.2: DXF Header
	30.3: DXF TABLE section
	30.3.1: LAYER
	30.3.2: LTYPE
	30.3.3: STYLE
	30.3.4: UCS
	30.3.5: VIEW
	30.3.6: VPORT

	30.4: BLOCK section of a DXF file
	30.5: DXF ENTITIES Section
	30.5.1: LINE
	30.5.2: 3DLINE
	30.5.3: POINT
	30.5.4: CIRCLE
	30.5.5: ARC
	30.5.6: TRACE
	30.5.7: SOLID
	30.5.8: TEXT
	30.5.9: SHAPE
	30.5.10: INSERT
	30.5.11: ATTRIB
	30.5.12: POLYLINE
	30.5.13: VERTIX
	30.5.14: SEQEND
	30.5.15: 3DFACE
	30.5.16: DIMENSION

	30.6: AutoCAD Binary DXF

	31: Micrografx formats (PIC, DRW, GRF)
	31.1: Graphic File Record Types
	31.1.1: CHART_SKIP_SYMBOLS (type 44, 2CH)
	31.1.2: DRW_BACKGROUND (type 1, 01H)
	31.1.3: DRW_BAND (type 32, 20H)
	31.1.4: DRW_BITMAP (type 20, 14H)
	31.1.5: DRW_COLOR (type 9, 09H)
	31.1.6: DRW_COLOR_FLAG (type 10, 0AH)
	31.1.7: DRW_COLOR_TABLE (type 35, 23H)
	31.1.8: DRW_COMMENT (type 18, 12H)
	31.1.9: DRW_CURR_OVERLAY (type 16, 10H)
	31.1.10: DRW_DIMENSIONS (type 24, 18H)
	31.1.11: DRW_EOF (type 254, FEH)
	31.1.12: DRW_FACENAME (type 2, 02H)
	31.1.13: DRW_FONT (type 21, 15H)
	31.1.14: DRW_GRADIENT (type 30, 1EH)
	31.1.15: DRW_GRID (type 22, 16H)
	31.1.16: DRW_ID (type 4, 04H)
	31.1.17: DRW_INFO (type 19, 13H)
	31.1.18: DRW_LOCKED (type 29, 1DH)
	31.1.19: DRW_MAX_LINK_ID (type 37, 25H)
	31.1.20: DRW_OLD_GRID (type 15, 0FH)
	31.1.21: DRW_OVERLAY (type 5, 05H)
	31.1.22: DRW_OVERLAY_NAME (type 23, 17H)
	31.1.23: DRW_PAGE (type 27, 1BH)
	31.1.24: DRW_PATTERN (type 28, 1CH)
	31.1.25: DRW_POLYGON (type 6, 06H)
	31.1.26: DRW_RESOLUTION (type 25, 19H)
	31.1.27: DRW_RULER (type 26, 1AH)
	31.1.28: DRW_SYMBOL (type 7, 07H)
	31.1.28.1: Record structure of version 1
	31.1.28.2: Record Structure of version 2
	31.1.28.3: Record structure of version 3
	31.1.28.4: Record structure of version 4
	31.1.28.5: Record structure of version 5

	31.1.29: DRW_SYMBOLVERSION (type 33, 21H)
	31.1.30: DRW_TEXT (type 8, 08H)
	31.1.31: DRW_TEXTEXTRA (type 36, 24H)
	31.1.32: DRW_TEXTHDR (type 31, 1FH)
	31.1.33: DRW_TEXTPARA (type 34, 22H)
	31.1.34: DRW_VERSION (type 3, 03H)
	31.1.35: DRW_VIEW (type 14H, 0EH)
	31.1.36: DRW_VISIBLE (type 17, 11H)
	31.1.37: VERSION_REC (type 255, FFH)

	32: TARGA format (TGA)
	32.1: TARGA header
	32.1.1: Color map images (type 1, 9, 32 and 33)
	32.1.2: RGB images (type 2, 10)
	32.1.3: Monochrome images (type 3, 11)
	32.1.4: Structure of the header
	32.1.5: Color map data

	32.2: The structure of the image data area
	32.2.1: Uncompressed monochrome images (type 3)
	32.2.2: Uncompressed color map images (type 1)
	32.2.3: Uncompressed RGB images (type 2)
	32.2.4: RLE-compressed color map images (type 9)
	32.2.5: RLE-compressed RGB images (type 10)

	33: Dr. Halo format (PIC, CUT, PAL)
	33.1: PIC format
	33.2: CUT format
	33.3: PAL format

	34: SUN Raster format (RAS)
	34.1: RAS header
	34.2: Palette data area
	34.3: RAS data area
	34.3.1: Monochrome representation (1 bit per pixel)
	34.3.2: Grayscales and color images (8 bits per pixel)
	34.3.3: True Color images (24/32 bits per pixel)
	34.3.4: RLE coding in RAS files

	35: Adobe Photoshop format (PSD)
	35.1: Photoshop header
	35.2: Mode data block
	35.3: Resource data block
	35.4: Image Data Area
	35.5: MAC Packbit Coding

	36: PCPAINT/Pictor format (PIC)
	36.1: PCPAINT/Pictor header
	36.2: PIC data area
	36.2.1: Monochrome Images (1 bit per pixel)
	36.2.2: Color image (4 bits per pixel)
	36.2.3: Color images (8 bits per pixel)
	36.2.4: Image data blocks (PIC file)
	36.2.5: Structure of a data block

	37: JPEG/JFIF format (JPG)
	37.1: Start of Image (SOI) marker segment
	37.2: End of Image (EOI) marker segment
	37.3: Application (APP0) marker segment
	37.4: Extension APP0 (SOI) marker segment
	37.4.1: JFIF extension: Thumbnail coded using JPEG
	37.4.2: JFIF extension: Thumbnail stored using 1 byte/pixel
	37.4.3: JFIF extension: Thumbnail stored using 3 bytes/pixel

	37.5: Define Huffman Table (DHT) marker segment
	37.6: Define Arithmetic Coding (DAC) marker segment
	37.7: Define Quantization Table (DQT) marker segment
	37.8: Define Restart Interval (DRI) marker segment
	37.9: Start of Frame (SOF) marker segment
	37.10: Color coding
	37.11: Start of Scan (SOS) marker segment

	38: MAC-Paint format (MAC)
	38.1: MAC header
	38.2: MAC Data Area
	38.3: MAC Packbit coding

	39: MAC-Picture format (PICT)
	39.1: PICT header
	39.2: PICT data area
	39.2.1: PicSize record
	39.2.2: PicFrame record (PICT 1)
	39.2.3: PicFrame record (PICT 2)
	39.2.4: Reserved header record (PICT 2)

	39.3: Image data records (PICT 1, 2)

	40: Atari NEOchrome format (NEO)
	40.1: NEOchrome header
	40.2: Data area of the NEOchrome file

	41: NEOchrome Animation format (ANI)
	41.1: NEOchrome ANI header

	42: Animatic Film format (FLM)
	42.1: Animatic Film Header

	43: ComputerEyes Raw Data format (CE1, CE2)
	43.1: ComputerEyes Raw Data Header

	44: Cyber Paint Sequence format (SEQ)
	44.1: Cyber Paint Sequence header (SEQ)
	44.2: Structure of the frame
	44.3: Compression process

	45: Atari DEGAS format (PI*, PC*)
	45.1: DEGAS PI* files
	45.2: DEGAS Elite PC* files

	46: Atari Tiny format (TNY, TN*)
	47: Atari Imagic Film/Picture format (IC*)
	48: Atari STAD format (PAC)
	49: Autodesk Animator format (FLI)
	49.1: FLI header
	49.2: FLI frames
	49.2.1: COLOR_64 CHUNK (type 11)
	49.2.2: DELTA_FLI CHUNK (type 12)
	49.2.3: FLI_BLACK CHUNK (type 13)
	49.2.4: FLI_BYTE_RUN CHUNK (type 15)
	49.2.5: FLI_COPY CHUNK (type 16)

	49.3: Animator CEL and PIC Format

	50: Autodesk 3D Studio format (FLC)
	50.1: FLC header
	50.2: FLC frames
	50.2.1: PREFIX CHUNK (type F100H)
	50.2.2: COLOR_256 CHUNK (type 4)
	50.2.3: DELTA_FLC CHUNK (type 7)
	50.2.5: FLC_BLACK CHUNK (type 13)
	50.2.5: FLC_BYTE_RUN CHUNK (type 15)
	50.2.6: LITERAL CHUNK (type 16)
	50.2.7: PSTAMP CHUNK (type 18)

	51: Amiga Animation format (ANI)
	51.1: ANI header
	51.2: ANI CHUNKs
	51.2.1: CPAN CHUNK
	51.2.2: ANHD CHUNK
	51.2.3: DLTA CHUNK

	52: Audio/Video Interleaved format (AVI)
	52.1: Resource Interchange File Format (RIFF) specification
	52.2: Structure of a RIFF CHUNK
	52.3: AVI structure
	52.3.1: AVI header CHUNK (hdrl)
	52.3.1.1: avih sub-CHUNK

	52.3.2: Stream Line header CHUNK (strl)
	52.3.2.1: strh Sub-CHUNK
	52.3.2.2: stream format CHUNK (strf)
	52.3.2.3: Stream Data CHUNK (strd)

	52.3.3: movi CHUNK
	52.3.3.1: rec CHUNK
	52.3.3.2: Structure of the data record

	52.3.4: AVI_PALCHANGE CHUNK
	52.3.5: idx1 CHUNK

	52.4: Other data CHUNKs
	52.4.1: JUNK CHUNK

	53: Intel Digital Video format (DVI)
	53.1: AVSS format
	53.2: DVI header
	53.3: AVL header
	53.4: Stream header
	53.5: Audio stream header
	53.6: Video stream header
	53.7: Frame structure

	54: MPEG Specification
	55: Apple QuickTime format (QTM)
	55.1: Movie Directory atom
	55.2: Movie Header atom
	55.3: Track Directory atom
	55.4: Track Header atom
	55.5: Media atom
	55.6: Media Header atom

	56: CAS Fax format (DCX)
	56.1: DCX header

	57: Adobe Illustrator format (AI)
	57.1: AI header comments
	57.2: Script Setup
	57.2.1: TE operator
	57.2.2: TZ operator
	57.2.3: Pattern definition
	57.2.4: E operator
	57.2.4.1: (colordefinition)@
	57.2.4.2: (tiledefinition)@

	57.3: Script body
	57.3.1: Locked Object operator
	57.3.2: Graphic State operators
	47.3.3: Color operators
	57.3.4: Group operators
	57.3.5: Path definition commands
	57.3.6: Path painting commands
	57.3.7: Compound path commands
	57.3.8: Clipping operators
	57.3.9: Text
	57.3.10: Graph operators

	58: Initial Graphics Exchange Language (IGES)
	58.1: Start section
	58.2: Global section
	58.3: Directory Entry section
	58.4: Parameter Data section
	58.5: Termination section
	58.6: Elements of an IGES file

	Part 5: Windows and OS/2 file formats
	59: Windows 2.0 Paint format (MSP)
	59.1: The MSP header
	59.2: The index table
	59.3: The data area

	60: Windows 3.x BMP and RLE format
	60.1: Windows 3.x Bitmap format (BMP)
	60.1.1: The data area
	60.1.2: 8-bit RLE compression
	60.1.3: 4-bit RLE compression

	61: OS/2 Bitmap format (BMP, version 1.2)
	61.1: The data area

	62: OS/2 Bitmap format (BMP, version 2.x)
	62.1: The data area

	63: Windows Icon format (ICO)
	64: Windows Metafile format (WMF)
	64.1: The Metafile header
	64.2: Placeable metafiles
	64.3: Metafile records
	64.3.1: ANIMATEPALETTE
	64.3.2: ARC
	64.3.3: BITBLT
	64.3.4: CHORD
	64.3.5: CREATEBITMAP
	64.3.6: CREATEBITMAPINDIRECT
	64.3.7: CREATEBRUSH
	64.3.8: CREATEBRUSHINDIRECT
	64.3.9: CREATEFONTINDIRECT
	64.3.10: CREATEPALLETTE
	64.3.11: CREATEPATTERNBRUSH
	64.3.12: CREATEPENINDIRECT
	64.3.13: CREATEREGION
	64.3.14: DELETEOBJECT
	64.3.15: DRAWTEXT
	64.3.16: ELLIPSE
	64.3.17: ESCAPE
	64.3.18: EXCLUDECLIPRECT
	64.3.19: EXTTEXTOUT
	64.3.20: LINETO
	64.3.21: MOVETO
	64.3.22: OFFSETCLIPRGN
	64.3.23: OFFSETVIEWPORTORG
	64.3.24: OFFSETWINDOWORG
	64.3.25: PAINTREGION
	64.3.26: PATBLT
	64.3.27: PIE
	64.3.28: POLYGON
	64.3.29: POLYLINE
	64.3.30: POLYPOLYGON
	64.3.31: RECTANGLE
	64.3.32: RESIZEPALETTE
	64.3.33: ROUNDRECT
	64.3.34: SCALEVIEWPORT
	64.3.35: SCALEWINDOWEXT
	64.3.36: SETBKCOLOUR
	64.3.37: SETBKMODE
	64.3.38: SETDIBITSTODEV
	64.3.39: SETPALETTEENTRIES
	64.3.40: SETPIXEL
	64.3.41: SETPOLYFILLMODE
	64.3.42: SETROP2
	64.3.43: SETSTRETCHBLTMODE
	64.3.44: SETTEXTALIGN
	64.3.45: SETTEXTCHAREXTRA
	64.3.46: SETTEXTCOLOR
	64.3.47: SETTEXTJUSTIFICATION
	64.3.48: SETWINDOWEXT
	64.3.49: SETWINDOWSORG
	64.3.50: STRETCHBLT
	64.3.51: STRETCHDIB
	64.3.52: TEXTOUT

	65: Write binary format (WRI)
	65.1: The Write header
	65.2: Text and image areas
	65.3: Pictures in the text area
	65.4: OLE objects in the text area
	65.5: The format area
	65.6: Character property (CHP)
	65.7: Paragraph property (PAP)
	65.8: Section property
	56.9: Font table (FFNTB)

	66: Windows 3.x Calendar format (CAL)
	66.1: The header
	66.2: The data area
	66.3: Day-specific information area

	67: Windows Cardfile format (CRD)
	68: Clipboard format (CLP)
	69: Windows 3.x group files (GRP)

	Part 6: Sound formats
	70: Creative Music Format (CMF)
	70.1: CMF header
	70.2: Instrument block
	70.3: Music block
	70.4: Structure of a Pause command
	70.5: Commands within the music block
	70.5.1: The Sound on command
	70.5.2: The Sound off command
	70.5.3: Control commands
	70.5.3.1: CMF marker command
	70.5.3.2: CMF mode command
	70.5.3.3: CMF Increase frequency event

	70.5.4: CMF Program instrument channel command
	70.5.5: CMF End of track command

	70.6: Data repetition in the music block

	71: Soundblaster Instrument format (SBI)
	72: Soundblaster Instrument Bank format (IBK)
	73: Creative Voice format (VOC)
	73.1: VOC header
	73.2: VOC data area
	73.2.1: Terminator block (type 0)
	73.2.2: Voice Data block (type 1)
	73.2.3: Voice Continuation block (type 2)
	73.2.4: Silence block (type 3)
	73.2.5: Marker block (type 4)
	73.2.6: ASCII Text block (type 5)
	73.2.7: Repeat Loop block (type 6)
	73.2.8: End Repeat Loop block (type 7)
	73.2.9: Extended block (type 8)

	74: Adlib Music format (ROL)
	74.1: ROL header
	74.2: ROL data area
	74.2.1: Tempo block
	74.2.2: Note block
	74.2.3: Instrument block
	74.2.4: Volume block
	74.2.5: Frequency block

	75: Adlib Instrument Bank format (BNK)
	75.1: Instrument name list
	75.2: Instrument data list

	76: AMIGA MOD format
	76.1: MOD header
	76.2: Note block
	76.3: Instrument data area

	77: AMIGA IFF format
	78: Audio IFF format (AIFF)
	79: Windows WAV format
	79.1: WAV header
	79.2: FMT CHUNK
	79.3: DATA CHUNK

	80: Standard Midi format (SMF)
	80.1: MIDI Header CHUNK
	80.2: Track CHUNK
	80.3: Structure of a Delta time command
	80.4: Commands of the Track CHUNK
	80.5: MIDI events
	80.5.1: Note on
	80.5.2: Note off
	80.5.3: Polyphonic Key Pressure Aftertouch
	80.5.4: Channel Pressure Aftertouch
	80.5.5: Control commands
	80.5.5.1: Pitch Wheel Change
	80.5.5.2: Control Change

	80.5.6: MIDI Operating Mode commands
	80.5.6.1: Local control
	80.5.6.2: All notes off
	80.5.6.3: Omni mode off
	80.5.6.4: Omni mode on
	80.5.6.5: Monomode on, Polymode off
	80.5.6.6: Monomode off, Polymode on

	80.5.7: MIDI Program commands
	80.5.8: MIDI Timing commands
	80.5.9: MIDI System Common Commands
	80.5.9.1: Song Position Pointer
	80.5.9.2: Song Select
	80.5.9.3: Tune Request

	80.5.10: End Of System Exclusive (EOX)
	80.5.11: System Exclusive Commands (SOX)
	80.5.12: Real Time System Exclusive Command
	80.5.12.1: Long Format
	80.5.12.2: Short Format

	80.5.13: Universal System Exclusive

	80.6: Meta events
	80.6.1: Sequence number (00)
	80.6.2: Text (01)
	80.6.3: Copyright note (02)
	80.6.4: Sequence/Track name (03)
	80.6.5: Instrument Name (04)
	80.6.6: Lyric (05)
	80.6.7: Marker (06)
	80.6.8: Cue Point (07)
	80.6.9: Channel prefix (32)
	80.6.10: End of track (47)
	80.6.11: Set Tempo
	80.6.12: SMPTE offset (84)
	80.6.13: Time signature (88)
	80.6.14: Key signature (89)
	80.6.15: Sequencer specific (127)

	81: NeXt/Sun Audio format

	Part 7: Page description languages
	82: Hewlett Packard Graphic Language (HP-GL/2)
	82.1: Configuration and Status Group
	82.1.1: Set Default Values
	82.1.2: Initialize
	82.1.3: Input P1 and P2
	82.1.4: Input Relative
	82.1.5: Input Window
	82.1.6: Advance Full Page
	82.1.7: Rotate Coordinate System
	82.1.8: Replot
	82.1.9: Scale

	82.2: Vector Group
	82.2.1: Arc Absolute
	82.2.2: Arc Relative
	82.2.3: Absolute Arc Tree Point
	82.2.4: Circle
	82.2.5: Plot Absolute
	82.2.6: Pen Down
	82.2.7: Polyline Encoded
	82.2.8: Plot Relative
	82.2.9: Pen Up
	82.2.10: Relative Arc Tree Point

	82.3: Polygon Group
	82.3.1: Edge Rectangle Absolute
	82.3.2: Edge Rectangle Relative
	82.3.3: Edge Wedge
	82.3.4: Edge Polygon
	82.3.5: Fill Polygon
	82.3.6: Polygon Mode
	82.3.7: Fill Rectangle Absolute
	82.3.8: Fill Rectangle Relative
	82.3.9: Fill Wedge

	82.4: Line and Fill Attributes Group
	82.4.1: Anchor Corner
	82.4.2: Fill Type
	82.4.3: Line Attributes
	82.4.4: Line Type
	82.4.5: Pen Width
	82.4.6: Raster Fill
	82.4.7: Symbol Mode
	82.4.8: Select Pen
	82.4.9: User-Defined Line Type
	82.4.10: Pen Width Unit Selection

	82.5: Character Group
	82.5.1: Alternate Font Definition
	82.5.2: Character Fill Mode
	82.5.3: Character Plot
	82.5.4: Absolute Direction
	82.5.5: Relative Direction
	82.5.6: Define Label Terminator
	82.5.7: Define Variable Text Path
	82.5.8: Extra Space
	82.5.9: Label
	82.5.10: Label Origin
	82.5.11: Select Alternative Font
	82.5.12: Standard Font Definition
	82.5.13: Absolute Character Size
	82.5.14: Character Slant
	82.5.15: Relative Character Size
	82.5.16: Select Standard Font
	82.5.17: Transparent Data

	82.6: Technical Graphics Extension
	82.6.1: Begin Plot
	82.6.2: Chord Tolerance Mode
	82.6.3: Download Character
	82.6.4: Enable Cutter
	82.6.5: Frame Advance
	82.6.6: Merge Control
	82.6.7: Message
	82.6.8: Media Type
	82.6.9: Not Ready
	82.6.10: Output Error
	82.6.11: Output Hard-Clip Limits
	82.6.12: Output Identification
	82.6.13: Output P1 and P2
	82.6.14: Output Status
	82.6.15: Plot Size
	82.6.16: Quality Level
	82.6.17: Sort
	82.6.18: Velocity Select

	82.7: Palette Extension
	82.7.1: Set Color Range for Relative Color Data
	82.7.2: Number of Pens
	82.7.3: Pen Color Assignment
	82.7.4: Screened Vectors
	82.7.5: Transparency Mode

	82.8: Dual Context Extension
	82.8.1: Enter PCL Mode
	82.8.2: Reset
	82.8.3: Primary Font Selection by ID
	82.8.4: Secondary Font Selection by ID
	82.8.5: Scalable or Bitmap Fonts

	82.9: Digitizing Extensions
	82.9.1: Digitize Clear
	82.9.2: Digitize Point
	82.9.3: Output Digitized Position and Pen Status

	83: Hewlett Packard Printer Communication Language (PCL)
	83.1: Print Commands
	83.1.1: Reset Printer
	83.1.2: Number of copies
	83.1.3: Landscape positioning of logical page
	83.1.4: Portrait positioning of the logical page

	83.2: Page Description Commands
	83.2.1: Print (page) format
	83.2.2: Paper source
	83.2.3: Page length
	83.2.4: Print alignment
	83.2.5: Print direction
	83.2.6: Top margin
	83.2.7: Text length
	83.2.8: Left margin
	83.2.9: Right margin
	83.2.10: Delete side margins
	83.2.11: Skip perforation
	83.2.12: Horizontal column spacing
	83.2.13: Vertical line spacing
	83.2.14: Lines per inch

	83.3: Cursor Commands
	83.3.1: Vertical
	83.3.2: Horizontal
	83.3.3: Half-line feed
	83.3.4: Cursor position

	83.4: Font Selection
	83.4.1: Font style
	83.4.2: Primary spacing
	83.4.3: Primary character density
	83.4.4: Set character density
	83.4.5: Primary character size
	83.4.6: Font orientation
	83.4.7: Primary font line thickness
	83.4.8: Font type
	83.4.9: Standard font
	83.4.10: Transparent print data
	83.4.11: Underline on/off

	83.5: Font Management
	83.5.1: Allocate font code
	83.5.2: Control of font characters
	83.5.3: Select font

	83.6: Creating Loadable Fonts
	83.6.1: Font descriptor
	83.6.2: Character code
	83.6.3: Load characters

	83.7: Graphics Commands
	83.7.1: HP-GL/2 Mode
	83.7.2: HP-GL/2 Plot width
	83.7.3: HP-GL/2 Plot length
	83.7.4: Reference point in graphic area
	83.7.5: Width of graphic area
	83.7.6: Height of graphic area
	83.7.7: Resolution of raster graphics
	83.7.8: Orientation of raster graphics
	83.7.9: Start raster graphics
	83.7.10: Data compression
	83.7.11: Transmission
	83.7.12: End of raster graphic
	83.7.13: Raster height
	83.7.14: Raster width

	83.8: Print Mode
	83.8.1: Select pattern
	83.8.2: Select source
	83.8.3: Select pattern
	83.8.4: Width of rectangular shape
	83.8.5: Height of rectangular shape
	83.8.6: Fill rectangular shape
	83.8.7: Pattern code number

	83.9: Macros
	83.9.1: Macro coding
	83.9.2: Macro control

	83.10: Programming References
	83.10.1: Display function
	83.10.2: Automatic line break

	83.11: PCL-Access Expansion

	84: Encapsulated PostScript format (EPS) version 3.0
	84.1: EPS structural conventions
	84.2: Necessary DSC header comments
	84.2.1: %!PS-Adobe-3.0 EPSF-3.0
	84.2.2: %%BoundingBox: llx lly urx ury

	84.3: Optional header comments
	84.3.1: %%DocumentFonts: Font1, Font2 ...
	84.3.2: %%Title:, %%Creator:, %%CreationDate:
	84.3.3: %%Copyright:
	84.3.4: %%DocumentData:
	84.3.5: %%EndComments
	84.3.6: %%For:
	84.3.7: %%LanguageLevel:
	84.3.8: %%Orientation:
	84.3.9: %%Pages
	84.3.10: %%PageOrder:
	84.3.11: %%Routing:
	84.3.12: %%Version:

	84.4: Body Comments
	84.4.1: %%BeginBinary:bytes, %%EndBinary
	84.4.2: %%BeginData:bytes, %%EndData
	84.4.3: %%BeginDefaults, %%EndDefaults
	84.4.4: %%BeginPreview, %%EndPreview
	84.4.5: %%BeginProlog, %%EndProlog
	84.4.6: %%BeginSetup, %%EndSetup

	84.5: Trailer comments
	84.5.1: %%EOF

	84.6: Platform-specific formats for preview images
	84.7: Platform-independent formats for preview images
	84.8: PostScript instructions
	84.8.1: abs
	84.8.2: add
	84.8.3: and
	84.8.4: arc
	84.8.5: arcn
	84.8.6: arcto
	84.8.7: ashow
	84.8.8: atan
	84.8.9: awidthshow
	84.8.10: bind
	84.8.11: bitshift
	84.8.12: ceiling
	84.8.13: charpath
	84.8.14: clip
	84.8.15: clippath
	84.8.16: closepath
	84.8.17: copypage
	84.8.18: cos
	84.8.19: currentpoint
	84.8.20: curveto
	84.8.21: cvi
	84.8.22: cvn
	84.8.23: cvt
	84.8.24: cvrs
	84.8.25: cvs
	84.8.26: div
	84.8.27: dup
	84.8.28: eoclip
	84.8.29: eofill
	84.8.30: eq
	84.8.31: exch
	84.8.32: exec
	84.8.33: exit
	84.8.34: exp
	84.8.35: fill
	84.8.36: findfont
	84.8.37: for
	84.8.38: ge
	84.8.39: grestore
	84.8.40: gsave
	84.8.41: gt
	84.8.42: idiv
	84.8.43: if
	84.8.44: ifelse
	84.8.45: image
	84.8.46: imagemask
	84.8.47: index
	84.8.48: le
	84.8.49: lineto
	84.8.50: ln
	84.8.51: log
	84.8.52: loop
	84.8.53: lt
	84.8.54: mod
	84.8.55: moveto
	84.8.56: mul
	84.8.57: neg
	84.8.58: newpath
	84.8.59: not
	84.8.60: or
	84.8.61: pop
	84.8.62: quit
	84.8.63: rand
	84.8.64: rcurveto
	84.8.65: repeat
	84.8.66: rlineto
	84.8.67: roll
	84.8.68: round
	84.8.69: scale
	84.8.70: scalefont
	84.8.71: search
	84.8.72: setfont
	84.8.73: setgray
	84.8.74: setlinewidth
	84.8.75: show
	84.8.76: showpage
	84.8.77: sin
	84.8.78: sqrt
	84.8.79: string
	84.8.80: stringwidth
	84.8.81: stroke
	84.8.82: sub
	84.8.83: truncate
	84.8.84: xor

	Appendices
	A: Format conversion programs
	A.1: Summary of file formats
	A.1.1: EPS
	A.1.2: DXF (File Extension DXF)
	A.1.3: DHP (File Extension DHP)
	A.1.4: CGM (File Extension CGM)
	A.1.5: IGES (File Extension IGE)
	A.1.6: IMG (File Extension IMG)
	A.1.7: GEM (File Extension GEM)
	A.1.8: HPGL
	A.1.9: TIFF (Extension TIF)
	A.1.10: PNTG (Extension MAC)
	A.1.11: RIFF
	A.1.12: PPIX (Extension PIX)
	A.1.13: PCX (Extension PCX)
	A.1.14: WPG (Extension WPG)
	A.1.15: PIC (Extension PIC)
	A.1.16: DCA
	A.1.17: MSP (Extension MSP)
	A.1.18: GIF (Extension GIF)
	A.1.19: RLE (Extension RLE)
	A.1.20: BMP (Extension BMP)
	A.1.21: WMF (Extension WMF)
	A.1.22: PCL
	A.1.23: GX2
	A.1.24: CLP (Extension CLP)
	A.1.25: CAL (Extension CAL)
	A.1.26: WRI (Extension WRI)
	A.1.27: CRD (Extension CRD)
	A.1.28: TXT (Extension TXT or DOC)
	A.1.29: IFF (Extension LBM)
	A.1.30: CUT
	A.1.31: FAX
	A.1.32: PIX (Extension PIX or IGF)
	A.1.33: PCT
	A.1.34: TGA (Extension TGA)
	A.1.35: WKx (Extension WKx)
	A.1.36: BIFF (Extension XLS)
	A.1.37: DBF (Extension DBF)

	A.2: Text Formats
	A.2.1: WordExchange
	A.2.2: Convert Perfect

	A.3: Spreadsheet formats
	A.4: Graphics formats
	A.4.1: Bitmap or Raster Image Graphics
	A.4.2: Vector or Metafile formats
	A.4.3: PIZAZZ Plus
	A.4.4: Hijack
	A.4.5: Graphic Workshop, Paintshop Pro, Image Alchemy

	A.5: Format Conversion using Windows

	B: ISO 646 Character Set
	C: References

	Index
	A
	B
	C
	D, E
	F, G
	H
	I, J, L
	M, N, O, P
	Q, R, S
	T
	V
	W
	Z

	Back Cover
	Spine

