

ENCYCLOPEDIA OF

GRAPHICS
FILE FORMATS

ENCYCLOPEDIA OF

GRAPHICS
FILE FORMATS

SECOND EDITION

James D. Murray and William vanRyper

O'REILLY & AssociATES, INc.
BONN • CAMBRIDGE • PARIS • SEBASTOPOL • TOKYO

Encyclopedia of Graphics Fde Formats, Second Edition
by James D. Murray and William vanRyper

Copyright © 1996, 1994 O'Reilly & Associates, Inc. All rights reserved.
Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 103 Morris Street, Suite A, Sebastop<•l, CA 95472

Editor: Deborah Russell

Production Editor: David Futato

Software Development: Norman Walsh & Ken DeCanio

Printing History:
July 1994:
April1996:

First Edition
Second Edition

Many of the designations used by manufacturers and sellers to distinguish thdr products are
claimed as trademarks. Where those designations appear in this book, and O'Reilly & Associates,
Inc., was aware of a trademark claim, the designations have been printed in c :tps or initial caps.

Specific copyright notices and restrictions for specification documents and pr{lgrams included on
the CD-ROM accompanying this book are included on that CD-ROM.

All of the specification documents and programs described in this book and provided by vendors
for inclusion on the CD-ROM are subject to change without notice by those vc!ndors.

O'Reilly & Associates, Inc., and the authors have used their best efforts in pr•!paring this book,
the CD-ROM accompanying this book, and the'programs and data contained therein. However,
the authors and publisher make no warranties of any kind, expressed or implied, with regard to
the documentation or programs or data contained in this book or the CD-ROM. O'Reilly &
Associates, Inc., and the authors specifically disclaim, without any limitation, any implied
warranties of merchantability and fitness for a particular purpose with respect co the CD-ROM, the
programs therein and/ or techniques described in the book. In no event shal the authors or
publishers be responsible or liable for any loss of profit or any other commercial damages,
including but not limited to special, incidental, consequential or any other damages in connection
with or arising out of furnishing, performance, or use of this book or the pro 5fams or data.

This book is printed on acid-free paper with 85% recycled content, 15% post-consumer waste.
O'Reilly & Associates is committed to using paper with the highest recycled content available
consistent with high quality.

ISBN: 1-56592-161-5 [9/96]

TABLE OF CONTENTS

Preface ... xu

PART ONE

Overview

1. Introduction 3

The Basics .. 4
Graphics Files .. 5
Graphics Data .. 7
Types of Graphics File Formats .. 12
Elements of a Graphics File .. 20
Converting Formats ... 22
Compressing Data ... 22
Format Summary ... 24

2. Computer Graphics Basics 27

Pixels and Coordinates ... 27
Pixel Data and Palettes ... 31
Color .. 45
Overlays and Transparency ... 51
For Further Information ... 52

3. Bitmap Files 55

How Bitmap Files Are Organized .. 55
Header ... 57
Examples of Bitmap Headers ... 62
Bitmap Data ... 65
Footer ... 72

TABLE OF CONTENTS V

Other Bitmap File Data Structures .. 73
Other Bitmap File Features .. 73
Pros and Cons of Bitmap File Formats .. 74

4. Vector Files 75
Vector Versus Bitmap Files ... 75
Wllat Is Vector Data? ... 75
Vector Files and Device Independence ... 7ti
Sources of Vector Format Files ... 77
How Vector Files Are Organized .. 77
Vector File Size Issues ... 82
Scaling Vector Files ... 83
Text in Vector Files .. 83
Pros and Cons of Vector Files ... 84

5. Metafiles 87
Platform Independence? .. 88
How Metafiles Are Organized .. 88
Pros and Cons of Metafiles ... 88

6. Platform Dependencies 91

Byte Order ... 91
File Size and Memory Limitations ... 93
Floating-Point Formats ... 94
Bit Order .. 94
Filenames ... 97
For Further Information ... 99

7. Format Conversion 101

Is It Really Possible? ... 101
Don't Do It IfYou Don't Need to ... 102
... But If You Do .. • .. 102
Other Format Conversion Considerations ... 106

8. Working With Graphics Files 107

Reading Graphics Data .. 107
Writing Graphics Data ... 117
Test Files .. 120
Corruption of Graphics Files ... 121

Vi TABLE OF CONTENTS

Encryption of Graphics Files .. 127
Viruses in Graphics Files ... 137
Designing Your Own Format .. 139
Writing a File Format Specification ... 141
Trademarks, Patents, and Copyrights .. 144

9. Data Compression 153
Data Compression Terminology .. 155
Pixel Packing ... 158
Run-Length Encoding (RLE} ... 160
Lempel-Ziv-Welch (LZW) Compression ... 170
CCIIT (Huffinan) Encoding .. 179
JPEG Compression ... 191
JBIG Compression ... 205
ART Compression .. 210
Fractal Image Compression : .. 212
For Further Information About Data Compression 217

10. Multimedia 219
Beyond Traditional Graphics File Formats .. 219
Multimedia File Formats ... 220
Types of Data ... 221
For Further Information ... 230

PART TWO

Graphics File Formats

Adobe Illustrator ... 235
Adobe Photoshop .. 250
Atari ST Graphics Formats : .. 261
AutoCAD DXF-..... 276
Autodesk 3D Studio .. 282
BDF .. 310
BRI.rCAD ... 315

BUFR ··!······································· 318
CALS Raster ... 321
CGM ... 330
CMU Formats .. 336
DKB .. 342
Dore Raster File Format ... 344

· TABLE OF CONTENTS vii

DPX ... 350
Dr. Halo .. 368
DVM Movie ... 372
Encapsulated PostScript .. 376
FaceSaver .. 386
FAX Formats .. 389
FITS .. 392
FLI .. · 401
GEM Raster .. 417
GEM 'VDI : 42~
GIF ... 429
GRASP .. 451
GRIB .. 457
Harvard Graphics .. 460
Hierarchical Data Format ... 462
IFF .. 465
IGES ... 484
Inset PIX .. 487
Intel DVI .. 497
JPEG File Interchange Format ... 510
Kodak Photo CD ... 516
Kodak YCC ... 520
Lotus DIF ... 522
Lotus PIC ... 529
Lumena Paint .. 532
Macintosh Paint ... 537
Macintosh PICT .. 544
Microsoft Paint .. 549.
Microsoft RIFF ... 554
Microsoft RTF .. 564
Microsoft S'Yl..K .. 569
Microsoft Windows Bitmap ... 572
Microsoft Windows Metafile ... 592
MIFF .. ~ 599
MPEG ... 604
MTV ... 613
NAPLPS ... 617
NFF ... 620
OFF .. 627
OS/2 Bitmap ... 630
P3D : ... 651
PBM, PGM, PNM, and PPM ... 658

Viii TABLE OF CONTENTS

PCX .. 662
PDS ... 678
Pic tor PC Paint .. 683
Pixar RIB .. 695
Plot-10 .. 698
PNG .. 700
POV .. 720
Presentation Manager Metafile .. 725
PRT ... 730
QRT .. 736
QuickTime · ... 74 7
Radiance .. 760
Rayshade .. 764
RIX ... 772
RTrace .. 776
S.AF' ... 786
SenseS NFF .. 796
SGI Image File Format .. 801
SGI lnven tor .. 806
SGI "YA.ODL .. 812
SGO .. 818
SPIFF .. 822
Sun Icon ... 838
Sun Raster .. 841
TDDD ... 846
TGA .. 860
TIFF .. 880
TTDDD .. 909
uRay .. 914
Utah RLE ... 917
VICAR2 .. 921
VIFF .. 925
VIS-5D .. 935
Vivid and Bob .. 943
Wavefront OBJ .. ~ .. 946
Wavefront RIA .. 953
WordPerfect Graphics Metafile .. 964
XBM ... 983
XPM ... 987
XWD ... 992
ZBR .. 998

TABLE OF CONTENTS ix

PART THREE

Appendices

Appendix A: Graphics Files and Resources on the Internet 1005

Encoding of Graphics Files ... 1005
Email .. 1010
USENET News .. 1011
Mailing Lists .. 1017
FTP Archives .. 1018
Archie ... 1019
The World Wide Web (WWW) .. 1020
Internet Graphics Resources .. 1029
For Further Information ... 1039

Appendix B: Graphics Files and Resources on the
Commercial Services 1041

CompuServe .. 1041
America Online ... 1043
Bulletin Board Systems ... 1044

Appendix C: Installation and Setup 1047
Using the CD-ROM .. 1048
Installing GFF .. ~ 1050
Removing GFF ... 1051
Which Browsers Can I Use? .. 1052
Accessing Software on the CD-ROM ... 1053
How Does GFF Work? .. 1053
Customizing GFF ... 1054

Glossary ... 1061
Index ... 1099

X TABLE OF CONTENTS

o LIST OF FIGURES

1-1 The graphics production pipeline ... 6
1-2 Vector data ... 8
1-3 Bitmap data,. ~ 9
1-4 Object data ... 11

2-1 Physical and logical pixels .: ... 28
2-2 Displaying data with few colors on a device with many colors 31
2-3 Displaying data with many colors on a device with few colors .. : 31
2-4 Using a palette to specifY a color .. 33
2-5 Types of palettes ... 40

3-1 Organization of pixel data into scan lines (24-bit image) 68
3-2 Organization of pixel data into color planes ... _. 69
3-3 Examples of bitmap data organization (contiguous scan

lines, strips, and tiles) .. 70

4-1 Gradient fill .. 81

9-1 Pixel packing ... ~······························ 159
9-2 Run-length encoding variants ... 162
9-3 Basic run-length encoding flow .. 165
9-4 Bit-, byte-, and pixel-level RLE schemes .. 167
9-5 RLE scheme with three bytes ... 168
9-6 RLE scheme with 1- and 2-byte vertical replication packets 169
9-7 CCIIT Group 3 encoding .. 183
9-8 CCITT Group 3 encoding (EOL code) .. 184
9-9 CCIIT Group 3 encoding (RTC code) ... 185
9-10 Group 3 CCIIT encoding (TIFF Compression Type 2) 186
9-11]PEG compression and decompression .. 195

DPX-1 DPX format ... 352
DPX-2 Packed bits ... 365

TABLE OF CONTENTS Xi

GIF-1 GIF87a file layout .. 433
GIF-2 Arrangement of interlaced and non-interlaced scan lines 439
GIF-3 Layout of a GIF89a file .. 443

IFF-I A chunk file structure .. 467
IFF-2 FORM ILBM file structure .. 468
IFF-3 FORM SSVX file structure ... 468
IFF-4 CAT ILBM file structure .. 469
IFF-5 CAT JJJJ file structure ... 469
IFF-6 LIST ILBM file structure : ... 470

OS/2 Bitmap-I Monochrome/color data format ... 641
OS/2 Bitmap-2 Multi-image data format ... 643

SPIFF-I Format of a SPIFF dii;ectory entry ... 829

TGA-1 Run-length encoding packet types ... 870
TGA-2 Pixel data formats .. 871

TIFF-I Three possible physical arrangements of data in a TIFF file 884
TIFF-2 Logical organization of a TIFF file .. 885
TIFF-3 Format of an Image File Directory ... 888

xll TABLE OF CONTENTS

LIST OF TABLES

I-I Graphics File Formats Described in This Book ... 24

2-I Equivalent RGB, CMY, and HSVvalues ... 48

Autodesk 3D Studio-I Auto desk 3D Studio Chunks 284

CALS Raster-I Typical CALS Raster Pel Count Values 327

GEM VDI-1 GEM Metafile Items and Commands ... 425

PNG-1 PNG Chunks ... 704

SAF-I Generic SAF Tags ~ ... 787
SAF-2 Additional Tags for SAF Image Data .. 790
SAF-3 Tags for Ordered Pai~ Data .. 792

SPIFF-I Standard SPIFF Directory Entries ~ 830

TGA-I TGA Palette Entry Sizes ··.············· 865

TIFF-I TIFF Tag Types Listed Alphabetically by Name 890
TIFF-2 Minimum Required Tags for Each TIFF Class 894

A-I Netscape MIME Types (for X Windows) .. I026

TABLE OF CONTENTS :xijj

PREFACE

Why did we write this book? The short answer is that graphics file formats are
immortal. Like it or not, data files from the dawn of the computer age are still
with us, and they're going to be around for a long time to come. Even when
the way we think about data itself changes (as it inevitably will), hundreds of
millions of files will still be out there in backup storage. We'll always need a way
t~ read, understand, and display them.

Computer technology evolves rapidly. Hardware, particularly on the desktop,
turns over every year or so. Software can become obsolete overnight with the
release of a new version. The one thing that remains static is data, which for
our purposes means information stored in data files on disk or tape. In this
book we're interested in one specific type of data-that used for the inter
change and reconstruction of graphics images.

Graphics data files are structured according to specific format conventions,
which are (or should be) recorded in format specification documents written
and maintained by the creator of the format. Not all formats are documented,
however, and some documents are so sparse, poorly written, or out of date that
they are essentially useless. Moreover, some format specifications are very diffi
cult to obtain: the creator of the format might have moved; the format might
have been sold to another organization; or the organization that owns the for
mat might not actively support or distribute it. These facts make it difficult for
someone who needs to find out about the specifics of a particular graphics file
format to locate and understand the file format specification. We wrote this
book because we saw a need for a centralized source of information, indepen
dent of the commercial marketplace, where anyone could obtain the
information needed to read graphics files.

PREFACE XV

When we set out to write this book, we asked the obvious questions: How would
we implement an existing format? What resources would we need? Ideally, we
would like to have on hand a good book on the subject, and perhaps some
working code. Barring that, we'd make do with the original format specifica
tion and some advice. Barring that, we'd scrape by with the format specifica
tion alone. This book provides as much of this as possible; the format
specification is here in most cases, as is some code-even some advice, which,
because it's coming from a book, you're free to take or leave as you choose.

To give you some idea about what was on our minds during the planni~g of
this book, we'd like to mention some issues that frequently come up for pro
grammers who need to learn about and implement file formats. In the course
of writing this book, both of us (as consultants and veteran users of networked
news and bulletin board systems) talked with and observed literally hundreds
of other programmers. The following is a sampling of questions frequently
asked on the subject of graphics file formats, and comments on how we have
addressed them in this book:

"How can I get a copy of the written specification for format XYZ?"

Rarely does a day go by without a request for a written format specification
TIFF, GIF, FaceSaver, PNG, QRT, and many, many more. Unfortunately, there is
no single source for even the most. common format speci~cations. A number
of format archives are available ·online, but they contain only what the main
tainer has the time and resources to assemble. Each of the books previously on
the market has offered a limited subset of the specifications out there.

"I'm trying to implement specification XYZ. I'm having trouble with ABC."

Programmers almost always believe that only the specification document is
needed in order to implement a file format. Sadly, if you read a few format
specifications, you'll soon discover that there is no law requiring that docu
mentation be written clearly. Specifications, like all technical documents, are
written by people with varying degrees of literacy, knowledge, and understand
ing of the subject in question. Consequently, they range from clearly written
and very helpful to unorganized and confusing. Some documents, in fact, are
nearly useless. The programmer is eventually forced to become conversant
with the oral tradition. ·

Even if the specification document is well done, written between the lines is a
complex set of assumptions about the data. How complicated can a format be?
Mter hours of fiddling with color triples, index map offsets, page tables, multi
ple header versions, byte-order problems, and just plain bad design, you may

XVi PREFACE

well find yourself begging for help while the clock counting your online dollars
ticks on. Another goal of this book is to provide a second opinion for use by
programmers who find themselves confused by the contents of the documents.

"What does Z mean?"

In this case, Z is basic technical graphics information. Everything a program
mer needs to know to read, write, encode, and decode a format is in the speci
fication document, right? Unfortunately, writers of format specifications often
use vocabulary foreign to most programmers. For instance, the format might
have been created in support of an application that used terminology from the
profession of the target users. The meaning of a term might have changed
since the time that the format was written, years ago. You might also find that
different format specifications have different names for the same thing (e.g.,
color table, color map, color palette, look-up table, color index table, and so
on). In this book, we provide basic guidance whenever possible.

''What is an X.Y f"de?"

If you scan the computer graphics section of any online service, bulletin board
system, or news feed, you will find numerous general questions from users
about graphics files, the pros and cons of each format, and sources of image
files. Surprisingly, there is no single source of information on the origin, use,
and description of most of the graphics file formats available today. Some of
this information, particularly on the more common formats (e.g., TIFF, GIF,
PCX), is scattered through books and magazine articles published over the last
ten years. Other information on the less common formats is available only
from other programmers, or (in some extreme cases) from the inventor of the
format. Another goal of this book is to include historical and contextual infor
mation, including discussions of the strengths and weaknesses of each format.

"Is there a newer version of the XYZ specification than version 1.0?"

Occasionally, this question comes from someone who, specification in hand,
just finished writing a format reader only to have it fail when processing sam
ple files that are known to be good. The hapless programmer no doubt found
a copy of the format specification, but not, of course, the latest revision.
Another of our goals is to provide access to the latest format revisions in this
book and keep this information up to date.

"How can I convert an ABC f"de to an XYZ f"de?"

Programmers and graphic designers alike are often stumped by this question.
They've received a file from a colleague, an author, or a client, and they need
to read it, print it, or incorporate it in a document. They need to convert it to

PREFACE xvii

something their platform, application, or production environment knows how
to deal with. If this is your problem, you'll find this book helpful in a number
of ways. In the first place, it will give you the information you need to identify
what this file is and what its conversion problems are. We'll give you specific
suggestions on how to go about converting the file. Most importantly, on the
CD-ROM that accompanies this book, we've included a number of software
packages that will convert most graphics files from one format to another.
Whether you are operating in an Windows, MS-DOS, OS/2, Macintosh, or UNIX
environment, you should be able to find a helpful tool.

About This Book and the CD-ROM
We'd like to make it easier for you to understand and implement the graphics
file formats mentioned in this book. Where does information on the hundreds
of graphics file formats in use today come from? Basically, from four sources:

• Format specifications. These should be the ultimate references, shouldn't
they? Unfortunately specifications aren't always available (or useful!). Nev
ertheless, they are the starting point for information about file formats.

• Secondary sources (magazine articles, books). These are most useful when
the specification isn't handy and the autho"r can provide some kind of
insight or relevant experience.

• Sample code. This is all we usually want, isn't it? Unfortunately the sample
code may not work right, may be out of date, or may be too platform
specific for your present needs.

• Sample images. Images fully conforming to the format specification might
not seem like a source of information until you actually need something on
which to test your application.

What we've tried to do is to collect these four elements together in one place.
Of course not all were available for every format, and sometimes we weren't
allowed to include the original specification document on the CD-ROM that
accompanies this book. Nevertheless, we've pulled together all the information
available. Taken together, the information provided in this book and in the
materials on the CD-ROM should allow you to understand and implement most
of the formats. In this second edition-more about this later-we also provide
links on the CD-ROM to the O'Reilly GFF Web Center on the World Wide Web,
where we're able to provide up-to-date information and additional resources,
as they become available.

XViii PREFACE

Our primary goal in writing this book is to establish a central repository of
graphics file format specifications. Because the collected specification docu
ments (not to mention the sample images and associated code and software
packages!) total in the hundreds of megabytes, the best way to put them in
your hands is on a CD-ROM. What this means is that the CD-ROM is an integral
part of the book, if only for the fact that all this information could never be
crammed between two covers.

We've written an article describing each graphics file format; this article con
denses and summarizes the information we've been able to collect. In some
cases this information is extensive; in other cases it's not much. This is the
name of the game, unfortunately. When we do have adequate information,
we've concentrated on conveying some understanding of the formats, which in
many cases means going through them in some detail. Remember, though,
that sometimes the specification document does a better job than we could
ever do of explaining the nitty-gritty details of the format.

On the CD-ROM, you '11 find the original format specifications (when available
and when the vendors gave us permission to include them). H we know how to
get the specifications, but couldn't enlist the aid of the vendors, we tell you
where to go to find them yourself. Also on the CD-ROM is sample code that
reads and writes a variety of file formats, and a number of widely-used third
party utilities for file manipulation and conversion. Finally, we've included
sample images for many formats. H you have Internet access, you'll be able to
get updates and new resources at our Web site.

About the Online Product
The first edition of this book was a traditional text book, accompanied by a CD
ROM that contained all of the information mentioned in the preceding sec
tion. In the second edition, we've added to the book and completely retooled
the CD-ROM. Instead of finding a set of resource files there, you'll find a soft
ware product that lets you browse the complete text of the book (using
Enhanced Mosaic, also provided) and all of the specs, images, code examples,
and software packages we've been able to pull together, plus (with an Internet
connection) a link to the GFF Web Center.

GFF Jfeb Center Online

http://www. ora. com/ centers/gff/

PREFACE xix

Follow the installation instructions (see Appendix C) to get the product up
and running. From the Main Menu, you'll have the following choices:

• Formats. Information about all of the formats we describe in Part Two of
this book. From the format pages you'll be able to link to vendor specifica
tion documents describing the format, as well as to appropriate images and
code examples and to software packages that let you view, convert, and oth
erwise manipulate the format. From Formats, you'll also be able to navigate
to an Image Lab offering a number of demos-for example, a color depth
demo that lets you display a particular image at a number of different
depths (from 2 to 8) and compare the results.

•

•

XX

Software. Freeware, shareware, or commercial demo packages for a variety
of platforms (Microsoft Windows, MS-DOS, OS/ 2, the Macintosh, and
UNIX), as well as source code (for such popular packages as pbmplus and
xv, and for libraries ofJPEG, PNG, TIFF, and other format functions).

Internet. We're committed to keeping this product up to date. If you have
an Internet connection, you can link to the GFF Home Page to see what's
new at the GFF Web Center. There you'll find updates to the product (new
file formats, code, and images), additional information about computer
graphics and file formats (e.g., Frequently Asked Questions listings [FAQs],
graphics news) , and links to updated versions of the specs and software
included on our CD-ROM.

PREFACE

• The Book. The complete online text of Parts One and Three of the book,
with cross-references and links that will help you navigate more easily
through the text.

• Index. A complete index to the contents of the product.

We could say a lot more about what's available and how it all works, but the
best way to find out is to jump in and try it for yourself.

Who Is the Book For?
This book is primarily for graphics programmers, but it's also for application
programmers who need to become graphics programmers (if only for a little
while). Although we didn't anticipate, in the first edition, that the book would
be useful to graphics illustrators, we found that it was. In this second edition of
the book and the CD-ROM, we've tried to provide additional resources for this
audience. The book is also for anyone who needs a quick way 'to identify a
graphics file of unknown origin. If you're not a graphics programmer, but want
to get up to speed quickly, you'll find that Part One of the book requires little
prior knowledge of computer graphics. It will help you become familiar with
concepts associated with the storage of graphics data. In fact, a working knowl
edge of a programming language is useful, but not absolutely essential, if
you're only looking for the big picture.

If you just want some background on graphics file formats, you might want to
read Part One and refer, as needed, to the articles in Part Two and the appen
dices in Part Three. If you're in search of implementation guidance, you will
want to refer to the articles and example code. Of course if you're a computer
graphics p~ofessional, you might be interested primarily in the specification
documents and tools on the CD-ROM accompanying this book.

In the unlikely event that you are creating your own new graphics file format,
we fervently hope that this book provides you with some perspective on your
task, if only by exhibiting the decisions-good and bad-that are frozen in the
formats described in these pages.

How to Use the Book
This book is divided into three parts.

Part One, Overoiew, is an introduction to those computer graphics concepts that
are especially helpful when you need to work with graphics file formats.

• Chapter 1, Introdudion, introduces some basic terminology, and gives an
overview of computer graphics data and the different types of graphics file

PREFACE xxi

formats used in computer graphics. This chapter also lists all of the formats
described in this book.

• Chapter 2, Computer Graphics Basics, discusses some concepts from the
broader field of computer graphics that are necessary for an understand
ing of the rest of the book.

• Chapter 3, Bitmap Files, describes the structure and characteristics of
bitmap files.

• Chapter 4, Vector Files, describes the structure and characteristics of vector
files.

• Chapter 5, Metafiles, describes the structure and characteristics of metafiles.

• Chapter 6, Platform Dependencies, describes the few machine and operating
system dependencies you will need to understand.

• Chapter 7, Format Conversion, discusses issues to consider when you are con
verting between the different format types (e.g., bitmap to vector), as well
as between formats within a type (e.g., vector to vector).

• Chapter 8, Working Wtth Graphics Files, describes the issues that come up
when you read, write, and test graphics files. It also covers the corruption
and encryption of graphics files, the potential for virus infection in those
files, and the issues involved in writing your own file formats and file for
mat specifications, including copyright issues.

• Chapter 9, Data Compression, describes data compression, particularly as
compression techniques apply to graphics data and the graphics files
described in this book.

• Chapter 10, Multimedia, surveys multimedia formats and issues.

Part Two, Graphics File Formats, describes the graphics file formats themselves.
There is one article per format or format set,' and articles are arranged alpha
betically. Each article provides basic classification information, an overview,
and details of the format. In many cases we've included short code examples.
We've also indicated whether the specification itself (or an article that
describes the details of the format) is included on the CD-ROM that accompa
nies this book, as well as code examples and images encoded in that format.
Also provided in the articles are references for further information.

Part Three, Appendices, contains the following material:

• Appendix A, Graphics Files and Resources on the Internet, describes how to use
a variety of information services on the Internet (email, USENET, FI'P,
Archie, and the World Wide Web) to obtain, post, and otherwise deal with

Xxii PREFACE

graphics files. It includes a listing of recommended sources of information
about computer graphics and graphics file formats.

• Appendix B, Graphics Files and Resources on the Commercial Services, provides
pointers to information about graphics files and resources on Com
puServe, America Online, and a variety of bulletin board systems (BBSs).

• Appendix C, Installation and Setup, describes how to get the online product
up and running on your system.

We also include a Glossary, which gives definitions for terms in the text.

''For Further Information" sections throughout the book list suggestions for
further reading.

Conventions Used in This Book
We use the following formatting conventions in this book:

• Bold is used for headings in the text.

• Italics are used for emphasis and to signify the first use of a term. Italics are
also used for functions, email addresses, FTP sites, directory and filenames,
and newsgroups.

• All code and header examples are in Constant Width.

• All numbers in file excerpts and examples are in hexadecimal unless other
wise noted.

• All code and header examples use the following portable data types:

BYTE
CHAR
WORD
SHORT
DWORD
LONG
FLOAT
DOUBLE

8-bit unsigned data
8-bit signed data
16-bit unsigned integer
16-bit signed integer
32-bit unsigned integer
32-bit signed integer
32-bit single-precision floating point number
64-bit double-precision floating point number

All source code that we have produced is written in ANSI C. (This is rele
vant only if you are still using one of the older compilers.)

PREFACE XXiii

• All World Wide Web and FfP sites are listed in URL format, as shown
below:

protocol: I /site. name/
protocol:/ /site. name/directory/
protocol:/ /site. name/directory/file. name

Terminology of Computer Graphics
Computer graphics is in flux, and people working in the field are still busy cre
ating vocabulary by minting new words. But they're also mutating the mean
ings of older words-words that once had a clear definition and context.
Computer graphics is also an emerging field, in the sense that it is one fertil
ized by electronics, photography, film, animation, broadcast video, sculpture,
and the traditional graphic arts. Each one of these fields has its own terminol
ogy and conventions, which computer graphics has inherited to some degree.

Complicating matters is that we're now in the era of electronic graphic arts.
Color display adapters and frame buffers, paint and imaging programs, scan
ners, printers, video cameras, and video recorders are all being used in con
junction with the computer for the production of both fine and commercial
art. A glance at any glossy magazine ad should give you some idea about how
pervasive the mixing of digital and traditional media has become, if only
because the overwhelming majority of magazines are now digitally composed.
Indeed, the distinctions between traditional and computer art are becoming
blurred.

Today we can find graphic artists producing work in traditional media, which is
scanned into digital form, altered, re-rendered with a computer, and then dis
tributed as original. While this is not a problem in itself, it nonetheless acceler
ates the injection of traditional terminology into computer graphics,
countering any trend toward standardization. This will inevitably cause contra
dictions. Some are already apparent, in fact, and you'll probably notice them
when we discuss the details of the formats.

There is no single consistent set of terms used across all of computer graphics.
It is customary to cite standard references (like the classic Computer Graphics:
Principles and Practice by James D. Foley, Andries vanDam, et al.) when arguing
about terminology, but this approach is not always appropriate. Our experi
ence is that usage in this field both precedes and succeeds definition. It also
proceeds largely apart from the dictates of academia. To make matters worse,

XXiV PREFACE

the sub-field of graphics file formats is littered with variant jargon and obsolete
usage. Many of the problems programmers have implementing formats can be
traced to terminological misunderstandings.

In light of this, we have chosen to use a self-consistent terminology that is occa
sionally at odds with that of other authors. Sometimes, we have picked a term
because it has come into common use, displacing.an older meaning. An exam
ple of this is bitmap, which is now often used as a synonym for raster, making
obsolete the older distinction between bitmap and pixelmap. Occasionally, we
have been forced to choose from among a number of terms for the same con
cept. Our decision to use the term palette is one example of this.

For some of the same reasons, we use the term graphics, and avoid graphic and
graphicaL We all have to face up to the fact that the field is known as computer
graphics, establishing a persistent awkwardness. We have chosen to use graphics
as a noun as well as an adjective.

We believe that the choices we made represent a simplification of the terminol
ogy, and that this shouldn't be a problem if you're already familiar with alter
nate usage. Should you have any questions in this area, our definitions are
available in the Glossary.

About the File Format Specifications
In preparing this book, we have made a monumental effort to collect, all in
one place, the myriad graphics file format specifications that have until now
been floating on the Internet-hiding in the basements of various organiza
tions, gathering dust on individual application authors' bookshelves and in
their private directories. We've done our best to locate the specifications and
their caretakers (perhaps the original author, and perhaps the vendor that now
maintains or at least owns the specification) and to obtain permission to
include these documents on the CD-ROM that accompanies this book. In most
cases, we have been able to obtain permission, but in some cases we have not.

There were several reasons for our failure to gain permission, some simple and
some more complex. Although neither of us is a lawyer (or a bureaucrat!) or
particularly interested in legal issues, we did encounter some legalities while
gathering these specifications. Given our special perspective on the world of
graphics file formats, we want to share our reactions to these legalities with
you-perhaps in the hope that we'll see fewer problems in the future.

Here are the reasons why we couldn't include certain format specifications on
the CD-ROM; here, we use the word caretaker to indicate either the author or
owner of the specification or the organization that now has responsibility for
its maintenance or distribution.

PREFACE XXV

• We couldn't find the caretaker. We simply couldn't find out who owned
the specification of some of the formats we knew about. This may or may
not have been the vendor's fault, but try as we did, we just couldn't find the
information. Here's where you can help us. If you know of a format that
you yourself find useful, let us know what it is and h·ow you think we might
be able to obtain permission to include it in a future edition of this book . .

• The caretaker couldn't find the specification. Strange, but true. This hap-
pened twice. To be honest, these were both small companies. But still ...

• We couldn't get past caretaker bureaucracy. In some cases, we simply
couldn't get through to the correct person in the organization in many
months of trying. We know it's hard ·to believe. It seems that you could walk
into any installation and in a few minutes figure out who knows what and
where they are. We thought so too before we started this project. In fact,
executive management at several vendors professed a willingness to pro
vide us with information, but simply couldn't figure out how to do so. Here
too, maybe our readers can help ...

• The caretaker wouldn't allow us to include the format. In some cases, we
found this reasonable. One ·obvious case was the BRL-CAD specification,
which is massive and readily available. The U.S. government will send it to
you if you ask for it. Other companies prefer to license the information as
part of a developer's kit. Still others wished to restrict the c~rrency of older
formats, presumably so they wouldn't be bothered by users calling them up
about them. Although we are philosophically in disagreement with ven
dors in this latter group, we are willing to admit that they have a point.
Some companies, however, feel that releasing information on their formats
would somehow give their competitors an advantage or would otherwise be
to their own disadvantage. We hope they'll change their minds when they
see how many .other formats are represented here and how useful this com
pendium is to everyone-programmers and vendors alike. Finally, several
vendors have taken the most extreme position that information on their
formats is proprietary and have used legal means to prevent developers
from working with them. This last case is the most alarming, and we discuss
it further below.

We find it hard to understand why vendors have patented their formats and/ or
used contract law arguments to restrict access to information on their formats.
It seems obvious enough to us-and to others in the industry-that the way to
get people to purchase your products is to make them easy to work with, not
only for users, but for developers, too. Historically, this has been the case.
Vendors who locked up their systems necessarily settled for a smaller share of
the market.

XXVi PREFACE

Although some vendors seem nearly paranoid, we suspect that the majority
that restrict their formats don't have a clear idea what they're selling. This is
particularly true for vendors of large, vertically integrated systems, where the
format plays a small, but key, role in the overall product strategy.

Nevertheless, whether justified in our view or not, the restriction is real and
serves as an alarming and dangerous precedent. As the various parts. of the
computer industry .converge, competition for market share is necessarily
increasing. There is a tendency for entities in the business to grow larger and
more corporate. What one company does, its competitors must do to stay in
the market. At least they consider doing it.

Now, the reality of the situation is that no vendor can restrict information
totally and indefinitely. This is particularly the case with file formats. Vendors
generally seek to protect their formats through a combination of encryption
and legal remedies. However, a person who buys the application which pro
duces the restricted format as output buys a generator of an infinite number of
samples. Because applications are judged, among other things, by the speed
with which they produce output, and because encryption and obfuscation
schemes take time to both implement and use, not much time and effort has
gone into making formats unbeatable. To date, encrypted and obfuscated for
mats have been pretty easy to crack.

An example that comes to mind is Adobe's Type 1 font format encryption. This
was used by Adobe to protect its font outlines, but knowledge of the encryp
tion scheme was fairly widespread in certain commercial circles before Adobe
publicized it. Wh~ther this resulted in commercial losses to Adobe from piracy
of their outlines is hard to say. It certainly generated a good deal of ill will in
the industry and ultimately proved futile.

This being the case, some vendors have taken to the courts to protect their for
mats. We find this behavior futile and ill-conceived. Even if it has a short-term
benefit on revenues, the long-term losses due to a restricted market and devel
oper ill-will seem to outweigh this benefit. In a sense, it is a form of monopolis
tic behavior, or certainly a type of positioning designed to support future
monopolistic behavior.

Now, it's a fact of life that almost every format that has made it to the market
has been reverse-engineered. This has seldom been for profit-more for the
challenge. If you truly have a need to track down the information, it's certain
that it can be found through the Internet, provided the information exists.

PREFACE :xxvii

Is it legal to possess this information? This isn't clear at this time. Certainly it's
illegal if the information was stolen from a vendor prior to publication. We, by
the way, know of no instance where a restricted format has ever been stolen
from a vendor. If you use or publicize information a vendor has tried to restrict
legally, however, you run the risk of becoming involved in the legal affairs of
the vendor, regardless of how that information was obtained. We do wish to
point out that the legal way to influence the behavior of a comme.rcial entity is
in the marketplace.

The best-known vendor in recent years that has tried to restrict developers,
through legal means, from obtaining information on its format is Kodak in the
case of Photo CD, as we describe in the Kodak Photo CD article in Part Two.

In summary, although we could not include information on several of the for
mats we might have wished to, that information is almost surely available some
how for you to study so you'll understand more about format construction.
However, if the format is legally restricted, you probably can't use it in your
application, and there's no use thinking otherwise.

About the Examples
You'll find short code examples associated with some of the articles, but in
most cases the full examples are not included in the file format articles them
selves. We have done this mainly because many of the code examples are quite
long, and we wanted to make it easier to find information in the book. All of
the code is included on the accompanying CD-ROM.

The examples are, in most cases, C functions which parse and read (or write)
format files. The examples are just that-examples-and are meant to give
you a jump-start reading and writing image files. These are generally not stand
alone applications. In_most cases, we wrote this code ourselves during the writ
ing of the book or as part of other projects we've worked on. In some cases,
code was contributed by other programmers or by those who own the file for
mat specifications described in this book. We've also referred you to the source
code for certain software packages on the CD-ROM that handle specific types of
file formats-for example, the libtiff software, which provides extensive code
illustrating the handling of TIFF files. These packages provide more extensive
and useful examples.

Our own examples are usually written in a platform-independent manner.
There is a bias for integer word lengths of 32 bits or less, for the simple reason
that the overwhelming majority of files written to date have been on machines
with a 32-bit or smaller word size. All examples and listings in this book and on
the CD-ROM are written in ANSI C.

XXVUi PREFACE

The code is provided for illustrative purposes only. In some cases, we have
spent considerable time constructing transparent examples, and it's not neces
sarily an easy job. So be forewarned: if you use our code, absolutely no attempt
has been made to optimize it. That's your job[

Can you use our code freely? In most cases, yes. We and O'Reilly & Associates
grant you a royalty-free right to reproduce and distribute any sample code in
the text. and companion disk written by the authors of this book, provided that
you:

• Distribute the sample code only in conjunction with and as a part of your
software product

• Do not use our names or the O'Reilly & Associates name to market your
software product

• Include a copyright notice (both in your documentation and as a part of
the sign-on message for your software product) in the form:

Portions Copyright (C) 1994, 1996 by James D. Murray and
William vanRyper

Please also note the disclaimer statements on the copyright page of this book.

Note as well that it is your responsibility to obtain permission for the use of any
source code included on the CD-ROM that is not written by the authors of this
book.

About the Images
Along with the specification documents and code, we have collected sample
images for many of the graphics file formats. You can use these sample images
to test whether you are successfully reading or converting a particular file for
mat.

As we mentioned in a previous section, the online product also provides an
Image Lab offering graphics demos that will let you view, compare, and com
press images of different types, sizes, and depths.

About the Contributed Software
We are not the first programmers who have discovered how cumbersome and
troublesome graphics file formats can be. We have elected to organize the
chaos by writing a book. Other programmers among us have responded by
writing software that reads, converts, manipulates, or otherwise analyzes

PREFACE XXiX

graphics files. Many of them have kindly agreed to let us include their software
on the CD-ROM that accompanies this book. The packages we have elected to
include provide an excellent sampling of what is available in the world of pub
licly available software. They include software for Windows (3.1, 95, and NT),
MS-DOS, OS/2, the Macintosh, and UNIX. There are also several excellent
packages that is provided as source code. Although this code is most often
compiled for UNIX, it can (with some work) be used on other platforms as
well.

Although many of these packages are readily available on the Internet or via
various PC bulletin board systems, their freeware or shareware nature should
not in any way suggest that they lack value. These are excellent packages, and
we are very grateful that we have been able to include them here. They should
help you considerably in your dealings with graphics files.

Which Platforms?
The online product runs on a variety of platforms-Windows 95, Windows NT,
Windows 3.1, the Macintosh, and UNIX.

Most of the graphics file formats we describe in Part Two of this book origi
nated on a particular platform for use in a particular application-for exam
ple, MacPaint on the Macintosh. Despite their origins, most files can be
converted readily to other platforms and can be used with other applications,
as we describe later in this book. There are a few issues that you need to be
aware of, though, having to do with the platform on which you are working or
the platform on which a particular graphics file was developed. These issues
are summarized in Chapter 6.

Request for Comments
As you might imagine, locating and compiling the information that went into
this book was no easy task, and in some cases our way was blocked, as we've dis
cussed earlier. We're sure that some of the information we searched for is out
there-somewhere!

We'd like to continue improving future editions, and for this we'll need all the
help we can get. In addition to correcting any errors and omissions, we'd par
ticularly like to expand our coverage of some of the more obscure graphics file
formats that we might not know about or were unable to collect in time for
publication. Also, if we were wrong, we want to know about it.

XXX PREFACE

IT you're in a position to help us out, or if you have any comments or sugges
tions on how we can improve things in any way, we'd love to hear from you.
Please write, email, or call:

O'Reilly & Associates, Inc.
103 Morris Street, Suite A
Sebastopol CA 954 72
800-998-9938 (in the U.S. or Canada)
707-829-0515 (international/local)
707-829-0104 (FAX)
Internet: bookquestions@ora. com
UUCP: uunet!ora!bookquestions

Acknowledgments
Writing this book, and collecting the voluminous mater:ial that is included on
the CD-ROM that accompanies it, was a huge effort made possible only by the
extraordinary generosity and common sense of a great many people. When we
set out to collect the vast set of file format specifications in common use today,
we frankly expected to be able to persuade only a small fraction of the specifi
cation owners and vendors that contributing them freely to this effort would be
a good idea for them. We were convinced that it was a good idea, of course, but
given the practicalities of bureaucracy, competition, and the many demands on
people's time, we were not optimistic about conveying that conviction to others
in the graphics community.

It was not an easy effort, and sometimes we nagged,. wheedled, and otherwise
made nuisances of ourselves, but people came through for us in the most
remarkable way. To all those who contributed specifications, images, and their
expertise to this effort, thank you. We hope it pays off by increasing the gen
eral awareness of people in the market and by substantially reducing the num
ber of support calls to those who maintain the file formats. We have tried to list
all those who helped us, but there were so many over such a long period of
time that we are bound to leave a few names off the list. Don't be shy about
reminding. us; we'll include your names next time. To all those listed and
unlisted, please accept our thanks.

First Edition

Individuals who helped us obtain and understand specifications include the
following: Keith Alexander, Chris Allis, Jim Anderson, Tony Apodaca, Jim

PREFACE xxxi

Atkinson, Ron Baalke, David Baggett, Dan Baker, Cindy Batz, Gavin Bell, Steve
Belsky, Celia Booher, Kim Bovic, Neil Bowers, John Bridges, Richard Brown
back, Rikk Carey, Steve Carlsen, Timothy Casey, Wesley Chalfant, Buckley Col
lum, Freda Cooke, Catherine Copetas, Antonio Costa, Stephen Coy, John
Cristy, William Darnall, Ray Davis, Tom Davis, Bob Deen, Michael Dillon, Shan
non Donovan, John Edwards, Jerry Evans, Lee Fisher, Jim Fister, Chad Fogg,
Michael Folk, Roger Fujii, Jean-loup Gailly, Gary Goelhoeft, Bob Gonsales,
Debby Gordon, Hank Gracin, Joy Gregory, Scott Gross, Hadmut, Paul Hae
berli, Eric Haines, Eric Hamilton, Kory Hamzeh, William Hanlon, Fred
Hansen, Paul Harker, Chris Hecker, Bill Hibbard, Michael Hoffman, Steve Hol
lasch, Terry Ilardi, Neale Johnston, Mike .Kaltschnee, Lou Katz, Jim Kent, Pam
Kerwin, Craig Kolb, Steve Koren, Don Lancaster, Tom Lane, Ian Lepore, Greg
Leslie, Glenn Lewis, Paul Mace, Britt Mackenzie, Mike Martin, Pat McGee,
Brian Moran, Mike Muuse, JoAnn Nielson, Gail Ostrow, Joan Patterson, Jeff
Parker, Brian Paul, Brad Pillow, Andrew Plotkin, Jef Poskanzer, John Rasure,
Dave Ratcliffe, Jim Rose, Randi Rost, Carroll Rotkel, Stacie Saccomanno, Jim
Saghir, Barry Schlesinger, Louis Shay, Bill Shotts, Rik Segal, Mark Skiba, Scott
St. Clair, John Stackpole, Marc Stengel, Ann Sydeman, Mark Sylvester, Spencer
Thomas, Mark VandeWettering, Greg Ward, Archie Warnock, David Wecker,
Joel Welling, DrewWells,Jocelyn Willett,James Winget, and Shiming Xu.

Thanks to these organizations that shared their specifications and helped us in
other. ways: 3D /Eye, Adobe Systems, Aldus, Andrew Consortium, Apple Com
puter, Autodesk, Avatar, Carnegie Mellon University, C-Cube Microsystems·,
Commodore Business Machines, CompuServe, Computer Associates, Digital
Equipment Corporation, Digital Research, DISCUS, DuPont, IBM, Inset Sys
tems, Intel Corporation, ISEP /INESC, Jet Propulsion Laboratory, Khoral
Research, Kofax Image Products, Kubota Pacific Computer, Lav.Tence Berkeley
Laboratory, Massachusetts Institute of Technology, Media Cybernetics, Metron
Computerware, Microsoft, National Aeronautics and Space Administration,
National Center for Supercomputer Applications, National Oceanic and Atmo
spheric Administration, Novell, Paul Mace Software, Pittsburgh Supercomput
ing Center, Pixar, Princeton University Department of Computer Science, RIX
SoftWorks, Silicon Graphics, Sun Microsystems, Time Arts, Truevision, Univer
sity of Illinois, University of Utah Department of Computer Science, UniversitY
of Wisconsin at Madison, U.S. Army Ballistic Research Lab, U.S. Army
Research Laboratory, Wavefront Technologies, X Consortium, and ZSoft.

Very special thanks to those who read the manuscript of this book and made
thoughtful and helpful comments on the content and organization: Dr. Peter
Bono, Jim Frost, Tom Gaskins, Lofton Henderson, Dr. Tom Lane, Tim

XXXii PREFACE

O'Reilly, Sam Leffler, Dr. Anne Mumford, and Archie Warnock. Double thanks
to Lofton Henderson, who prepared CGM images for us under a tight dead
line, and to Tom Lane, who reviewed the CD-ROM as well. We could not have
done this without you!

Many thanks to Shari L.S. Worthington, who let us include in this book many
of the Internet resources she compiled for her article, "Imaging on the Inter
net: Scientific/Industrial Resources" in Advanced Imaging, February 1994.

We are very grateful to those who contributed software that will allow you to
convert, view, manipulate, and otherWise make sense of the many file formats
described in this book. We could not include all of these packages on the CD
ROM (for this version, at least), but we appreciate very much your generosity.
Thanks to these individuals: Dan Baker, Robert Becker, Alexey Bobkov, John
Bradley, Mike Castle, john Cristy, Orlando Dare, DJ. Delorie, Guiseppe Desoli,
Chris Drouin, Stefan Eckart, Mark Edmead, Chad Fogg, Oliver Fromme, Mike
Fitzpatrick, Jim Frost, Aaron Giles, Graeme Gill, Maynard Handley, Jib-Shin
Ho, Robert Holland, David Holliday, Allen Kempe, Andrew Key, Michail
Kutzetsov, Tom Lane, Sam Leffler, Thorsten Lemke, Leonardo Loureiro, Eric
Mandel, Michael Mauldin, Frank McKenney, Kevin Mitchell, Bob Montgomery,
David Ottoson, Jef Poskanzer, Igor Plotnikov, Eric Praetzel, Wayne Rasband,
Mohammed Ali Rezaei, Rich Siegel, Davide Rossi, Y Shan, Doug Tody, Robert
Voit, Archie Warnock, Ken Yee, Norman Yee, and Paul Yoshimune. And thanks
to these organizations: Alchemy Mindworks, Bare Bones Software, Carnegie
Mellon University, CenterLine Software, Express Compression Labs, Dare
Ware, Goddard Space Center, Handmade Software, Honeywell Technology
Center, Independent]PEG Group, Labtam Australia Pty Ltd, MTE Industries,
National Institutes of Health, National Optical Astronomy Observatories, Peep
works, PixelVision Software, Phase II Electronics, Stoik Ltd, TBH-SoftWorx,
University of Waterloo. Special thanks to Rich Siegel and Leonard Rosenthal,
who offered the use of their BBEdit and Stuffit products, as well as their knowl
edge of the Macintosh.

Many, many thanks to all the good people at O'Reilly & Associates who made
this book happen: to our editor, Debby Russell, who guided this effort from
beginning to end; to Gigi Estabrook, who tirelessly collected permissions and
documents from the many vendors; to Ellen Siever who as production man
ager got an enormous book out under incredible time pressure; to Nicole Gip
son, Jessica Hekman, Mary Anne Weeks Mayo, Kismet McDonough,
Clairemarie Fisher O'Leai-y, and Stephen Spainhour who worked on the pro
duction team; to Chris Tong, who produced the index; and to Chris Reilley,
who created the figures. Special thanks to Len Muellner and Norm Walsh who
spent many long hours developing tools, filters, and magical potions that
tamed the SGML beast.

PREFACE XXXiii

We are also very grateful to those who produced the CD-ROM that accompanies
this book: to Debby Russell, who headed up the effort; to Terry Allen, who con
verted and otherwise beat the files into submission; to Norm Walsh and Jeff
Robbins, who lent their expertise in PC and Macintosh environments; and to
Dale Dougherty, Lar Kaufman, Linda Mui, Tim O'Reilly, Eric Pearce, and Ron
Petrusha, who all contributed their knowledge of CD-ROM technology, their
experiences with other projects, and their opinions about how we ought to
proceed. Thanks toJeff Moskow and Ready-to-Run Software, who did the final
CD-ROM development for us.

A special thank you to P J. Mead Books & Coffee of Orange, California, where
James D. Murray sought caffeine and solace during the long days and nights of
writing and revising the first edition of this book.

Second Edition

Many people helped us to prepare this second edition of the book. We are
grateful to those who helped us to update information on the file formats
included in the original edition: David Baggett, Greg Broiles, Antonio Costa,
Mike Fitzpatrick, Eric Haines, Lofton Henderson, Dale Holt, Tom Lane, Glenn
Lewis, David Spoelstra, Greg Ward, Joel Welling, and Ann Marie Zanger,

We are also grateful to those who helped us acquire new file format specifica
tions and sample code and images: David Charlap, Jennifer Cohan, Andreas
Dilger, Jon Erikson, Matt Foster, Greg Gilley, Bert Greevenbosch, Eric Hamil
ton, Jaromir Krejci, Tom Lane, Ken Lunde, Jonathan Nimer, Jolyon Ralph,
Glenn Randers-Pehrson, Greg Roelofs, Hal Stem, and Ernie Wright,

Thanks to those who reviewed chapters and sections for us during the prepara
tion of this book: Davi~ Charlap,John Foust, Eric Hamilton, Simson Garfinkel,
Bert Greevenbosch, Tom Lane, Jamomir Krejci, Andreas Dilger, Glenn Ran
ders-Pehrson, Greg Roelofs,Jolyon Ralph, Gene Spafford, and Ernie Wright,

John Foust also helped in the writing of several of the file format articles.

Thanks also to Nathan Cass and Mark Starr ofUnisys who helped us to under
stand the complexities of the Unisys/CompuServe/LZW patent issue; to John
Dockery who did online CompuServe and AOL research for us; and 'to Paula
Ferguson and Andrew Schulman of ORA who advised us about certain formats.

Special thanks to those who reviewed the product and the CD-ROM at various
stages: Lee Estrin, Kerrie Kennedy, and Mike Kaltschnee. And thanks to Ken
DeCanio, who did the Macintosh software development for us.

XXXiV PREFACE

We are grateful to the many software authors who allowed us to include their
packages on the new version of the CD-ROM. Mark Adler, Daniel Baker, Sean
Barger, John Bradley, Ken Carlino, Bill Cotton, John Cristy, Lee Daniel
Crocker, Stefan Eckart, Debbie Eddy, Michael Fitzpatrick, R. Mark Fleming,
Chad Fogg, Martin Fong, Oliver Fromme, Jim Frost, Jean-loup Gailly, Gary
Gehman, Aaron Giles, Graeme Gill, Ed Hamrick, Maynard Handley, Paul Ho,
Gareth Hunt, Peter Lerup, Chris Komnic, Markus Kuhn, Andreas Lampen,
David Lane, Tom Lane, Sam Leffler, Alexander Lehmann, Thorsten Lemke,
Andreas Ley, Leonardo Hadddad Loureiro, Michael Mauldin, Kelly McKier
nan, Douglas Mink, Kevin Mitchell, John Montbriand, Bob Montgomery, Joe
Oliphant, YVes Piguet, Igor Plotnikov, Jef Poskanzer, Wayne Rasband, Steve
Rimmer, Keith Rule, Jonathan Schafer, Guy Eric Schalnat, Paul Schmidt, David
Schooley, Shiva Shenoy, Eric Toonen, Willem AJ. van Schaik, Archibald
Warnock, Kevin Woolley, Ken Yee, and Norman Yee.

And thanks to the organizations that helped us in various ways to acquire or
review specs, supply software, and otherwise move this project along: 3D/Eye,
Adobe, Advance Enterprises, Alchemy Mindworks, Anagrafyxx Software,
Andrew Consortium, Artemis Software, AUI/NRAO, Beyond Midnight Soft
ware, Boxtop Software, Dr. Dobb's Journal, Equilibrium, Group 42, Hamrick
Software, Hyper Act, Inset, i2 Technologies, ISEP /INESC, JASC Inc., Kamyan
Software, Lemke Software, Magic Bullet Communications, Mmedia Research
Corporation, National Institutes of Health, NOAO/IRAF, Photodex, Piclab,
Pittsburgh Supercomputing Center, Quarterdeck, Smithsonian Astrophysical
Observatory, Spyglass, St. Mary's University, Sun Microsystems, Sverdlup Tech
nology, TrueVision, Ulead Systems, Unisys, Woolleysoft, and Zoner.

And, once again, all our thanks to the people at O'Reilly & Associates who
turned into reality the vision of making this book into a true online product:
Linda Walsh, the product manager; Norm Walsh, who built the en
ROM/Internet product; Edie Freedman, who designed the user interface and
the overall look and feel of the product, as well as the book cover; Debby Rus
sell, our editor once again; Gigi Estabrook, who wrote online text and orga
nized the software; Sue Willing, who acquired permissions and did some
writing as well; Sheryl Avruch, the keeper of the schedule and the director of
production; David Futato, the production manager for the book; Nancy Priest,
who designed the interior format; Chris Reilley, who did the figures; and Seth
Maislin, who produced the index.

PREFACE XXXV

Finally,

This book iS dedicated to my son, James Alexander Ozbim Murray, and his mother,
Katherine.

James D. Murray

To all sentient beings working with graphics file formats.
William vanRyper

XXX:Vi PREFACE

PART ONE I

Overview

CHAPTER t I

Introduction

A graphics file fonnat is the fonnat in which graphics data-data describing a
graphics image-is stored in a file. Graphics file formats have come about
from the need to store, organize, and retrieve graphics data in an efficient and
logical way. Sounds like a pretty straightforward task, right? But there's a lot
under the covers, and that's what we're going to talk about.

File formats can be complex. Of course they never seem complex until you're
actually trying to implement one in software. They're also important, in ways
that often aren't obvious. You'll find, for instance, that the way a block of data
is stored is usually the single most important factor governing the speed with
which it can be read, the space it takes up on disk, and the ease with which it
can be accessed by an application. A program simply must save its data in a rea
sonable format. Otherwise, it runs the risk of being considered useless.

Practically every major application creates and stores some form of graphics
data. Even the simplest character-mode text editors allow the creation of files
containing line drawings made from ASCII characters or terminal escape
sequences. Graphical user interface (GUI)-based applications, which have pro
liferated in recent years, now need to support hybrid formats to allow the
incorporation of bitmap data in text documents. Database programs with
image extensions also let you store text and bitmap data together in a single
file. In addition, graphics files are an important transport mechanism that
allows the interchange of visual data between software applications and com
puter systems.

There is currently a great deal of work being done on object-based file systems,
where a "data file" may appear as a cluster of otherwise unrelated elements and
may be just as likely to incorporate graphics data as not. Clearly, traditional

INTRODUCTION 3

data classification schemes are in need of revision. Nevertheless, there will
remain an enormous amount of graphics data accessible only by virtue of our
ability to decode and manipulate the files we find around us today.

The Basics
Before we explore the details of any particular file formats, we first need to
establish some basic background and terminology. Because we're assuming you
have a general working knowledge of computers and know some program
ming, we'll start with some definitions. You'll find that we've simplified and
condensed some of the terminology found in standard computer graphics ref
erences. The changes, however, always reflect modern usage. (You'll find a dis
cussion of our rationale in the Preface.)

In what follows, we will be speaking of the output of a computer graphics pro
cess, or the production of a graphic work by a program. We don't mean to seem
anthropomorphic here. The author of the work is usually human, of course,
but his or her contribution is input from the point of view of this book. We're
mainly concerned about the portion of the output that comes from a program
and winds up in a file. Because the program is the last thing that "touches" the
data before it winds up on disk or tape, we say that a graphic work is produced
by a program, rather than by a human being. (In this case, we are referring to
the form in which the data is stored, and not its meaning or content.)

Graphics and Computer Graphics

Traditionally, graphics refers to the production of a visual representation of a real
or imaginary object created by methods known to graphic artists, such as writ
ing, painting, imprinting, and etching. The final result of the traditional
graphics production process eventually appears on a 2D surface, such as paper
or canvas. Computer graphics, however, has expanded the meaning of graphics to
include any data intended for display on an output device, such as a screen,
printer, plotter, film recorder, or videotape.

Notice what's happened here. Graphics used to refer to the actual output, some
thing you could see. Now it means something only intended for display, or
something meant to be turned into output. This distinction may seem silly to
experienced users, but we've watched artists new to computers struggle with
this. Where is the graphic output from a paint program? Does it appear as you
compose something on the screen? Where is the representation when you
write your work to a file? Does it appear for the first time when another pro
gram displays it on a screen or paper?

4 OVERVIEW

In the practice of computer graphics, creation of a work is often separate from
its representation. One way to put it is that a computer graphics process pro
duces virtual output in memory, or persistent output in a file on permanent
media, such as a disk or tape. In other words, even though a program has writ
ten a file full of something, output doesn't yet exist from a traditional point of
view because nothing has been displayed anywhere. So we say that graphics data
is the virtual output of a program, from which a representation of the work can
be constructed, or can be reconstructed from the persistent graphics data
saved to a file, possibly by the same program.

Rendering and Images

In the interest of clarity, most people make a distinction between creation and
rendering (sometimes also called realization). Traditionally, an image is a visual
representation of a real-world object, captured by an artist through the use of
some sort of mechanical, electronic, or photographic process. In computer
graphics, the meaning of an image has been broadened somewhat to refer to
an object that appears on an output device. Graphics data is rendered when a
program draws an image on an output device.

You will also occasionally hear people speak of the computer graphics produc
tion pipeline. This is the series of steps involved in defining and creating graph
ics data and rendering an image. On one end of the production pipeline is a
human being; on the other end is an image on paper, screen, or another
device. Figure 1-1 illustrates this process.

Graphics Files
For the purposes of this book, graphics files are files that store any type of per
sistent graphics data (as opposed to text, spreadsheet, or numerical data, for
example), and that are intended for eventual rendering and display. The vari
ous ways in which these files are structured are called graphics file formats. We
will examine several categories of graphics file formats later in this chapter.

People sometimes talk of rendering an image to a file, and this is a common
and perfectly valid operation. For our purposes, when an image is rendered to
a file, the contents of that file become persistent graphics data. Why? Simply
because the data in the file now needs to be re-rendered as virtual graphics
data before you can see what it looks like.

Although the image is once again turned into graphics data in the process of
rendering it to the file, it is now once more merely data. In fact, the data can
now be of a different type. This is what happens in file conversion operations,

INTRODUCTION 5

format writer [;:)

Conception Creation Save to File

FIGURE 1-t: The graphics production pipeline

rendering~
application 1.:1

for example. An image stored in a file of format type 1 is rendered (by a con
version program) to a second file of format type 2.

Which Graphics Files Are Included· . ..

Although we've tried in this book to stick to formats that contain graphics data,
we've also tried to make sure that they are used for data interchange between
programs. Now, you'd think that it's always perfectly clear whether a file con
tains graphics data or not. Unfortunately, this isn't always the case. Spreadsheet
formats, for instance, are sometimes used to store graphics data. And what
about data interchange? A format is either used to transfer data from one pro
gram to another or it isn't, right? Again, it's not so simple.

Some formats, such as TIFF, CGM, and GlF, were designed for interprogram
data interchange. But what about other formats, such as PCX, which were
designed in conjunction with a particular program? There is no easy answer,
but these two criteria-graphics data and data interchange-will take you a
long way, and we've tried as much as possible to follow them here.

A complete list of all of the formats described in this book is contained below
. in the section called "Format Summary".

6 OVERVIEW

.•• And Which Are Not

For the purposes of this book, we're excluding three types of files that contain
graphics data but are outside the scope of what we are trying to accomplish
here: output device language files, page description languagefiles,·and FAX files.

Output device language files contain hardware-dependent control.codes that
are designed to be interpreted by an output device and are usually used to pro
duce hardcopy output. We exclude these, because they usually have a short life
time as temporary files and with few exceptions are not archived, or exchanged
with other machines. Another reason is practical: many of the hundreds of
types of printers and plotters built over the years use vendor-specific control
information, which the market has traditionally ignored. By far the most com
mon output device languages in use are Printer Control Language (PCL} and
variants, used to control the Hewlett-Packard Laserjet series of laser printers
and compatibles, and Hewlett-Packard Printer Graphics Language (HPGL),
used to control plotters and other vector devices.

Page description languages (PDLs) are sophisticated systems for describing
graphical output. We exclude page description languages from our discussion,
because the market is dominated by PostScript and because the specification is
voluminous and extremely well-documented in readily available publications.
Vfe do, however, provide an article describing Encapsulated PostScript format;
that article_briefly discusses EPS, EPSF, and EPSI formats.

FAX-format files are usually program-specific, created by an application
designed to support one or more FAX modems. There are many such formats,
and we do not cover them, because they generally are not used for file
exchange. We do, however, include a brief article on FAX formats that discusses
some of the issues you'll face if you use these formats. The main problem
encountered by people working with FAX formats is finding information about
compression algorithms. We've included a chapter covering some of the more
common compression formats you will encounter. ·

Graphics Data
Graphics data is traditionally divided into two classes: vedor and bitmap. As we
explain below, we use the term bitmap to replace the older term raster.

Vector Data

In computer graphics, vector data usually refers to a means of representing
lines, polygons, or curves (or any object that can be easily drawn with lines) by

INTRODUCTION 7

numerically specifying key points. The job of a program rendering this key-point
data is to regenerate the lines by somehow connecting the key points or by
drawing using the key points for guidance. Always associated with vector data is
attribute information (such as color and line thickness information) and a set
of conventions (or rules) allowing a program to draw the desired objects.
These conventions can be either implicit or explicit, and, although designed to
accomplish the same goals, are generally different from program to program.

Figure 1-2 shows several examples of vector data.

line rectangle spline-based object

• keypoint

FIGURE t-2: Vectordata

By the way, you may be familiar with a definition of the word vector which is
quite precise. In the sciences and mathematics, for instance, a vector is a
straight line having both magnitude and direction. In computer graphics, vec
tor is a sort of catch-all term. It can be almost any kind of line or line segment,
and it is usually specified by sets of endpoints, except in the case of curved
lines and more complicated geometric figures, which require other key points
to be fully specified.

Bitmap Data

Bitmap data is formed from a set of numerical values specifying the colors of
individual pixels or picture elements (pels). Pixels are dots of color arr~nged on a
regular grid in a pattern representing the form to be displayed. We commonly
say that a bitmap is an array of pixels, although a bitmap, technically, consists of
an array of numerical values used to set, color, or "tum on'' the corresponding
pixels on an output device when the bitmap is rendered. If there is any ambi
guity in the text, we will make the distinction clear by using the term pixel value
to refer to a numerical value in the bitmap data corresponding to a pixel color
in the image on the display device.

8 OVERVIEW

Figure 1-3 shows an example of bitmap data.

Display device

/ pixel value

Bitmap data in file: /
0, 0, 0, 0, 0, 0, 0, 0, 255, 255, 255, 255, 255, 0, 0, 0, ...

FIGURE 1-3: Bitmap data

In older usage, the term mtmap sometimes referred to an array (or "map") of
single bits, each bit corresponding to a pixel, while the terms pixelmap, graymap,
and pixmap were reserved for arrays of multibit pixels. We always use the term
mtmap to refer to an array of pixels, whatever the type, and specify the mt depth,
or pixel depth, which is the size of the pixels in bits or some other convenient
unit (such as bytes). The bit depth determines the number of colors a pixel
value can represent. A 1-bit pixel can be one of two colors, a 4-bit pixel one of
16 colors, and so on. The most commonly found pixel depths today are 1, 2, 4,
8, 15, 16, 24, and 32 bits. Some of the reasons for this, and other color-related
topics, are discussed in Chapter 2, Computer Graphics Basics.

Sources of Bitmap Data: Raster Devices

Historically, the term raster has been associated with cathode ray tube (CRT)
technology and has referred to the pattern of rows the device makes when dis
playing an image on a picture tube. Raster-format images are therefore a col
lection of pixels organized into a series of rows, which are called scan lines.
Because raster output devices, by far the most popular kind available today, dis
play images as patterns of pixels, pixel values in a bitmap are usually arranged
so as to make them easy to display on certain common raster devices. For these
reasons, bitmap data is often called raster data. We use the term mtmap data in
this book.

INTRODUCTION 9

As mentioned above, bitmap data can be produced when a program renders
graphics data and writes the corresponding output image to a file instead of
displaying it on an output device. This is one of the reasons bitmaps and
bitmap data are often referred to as images, and bitmap data is referred to as
image data. Although there is nothing to see in the traditional sense, an image
can be readily reconstructed from the file and displayed on an output device.
We will occasionally refer to the block of pixel values in a bitmap file as the
image or image portion.

Other sources of bitmap data are raster devices used to work with images in the
traditional sense of the word; raster devices are scanners, video cameras, and
other digitizing devices. For our purposes, we consider a raster device that pro
duces digital data to be just another source of graphics data, and we say that
the graphics data is rendered when the program used to capture the data from
the device writes· it to a file. When speaking of graphics data captured from a
real-world source, such as a scanner, people speak redundantly of a bitmap
image, or an image bitmap.

What About Object Data?

People sometimes speak of a third class: object data. In the past, this referred to
a method of designating complex forms, such as nested polygons, through a
shorthand method of notation, and relying on a program's ability to directly
render these forms with a minimal set of clues. Increasingly, however, the term
is used to refer to data stored along with the program code or algorithmic
information needed to render it. This distinction may become useful in the
future, particularly if languages that support object-oriented programming
(such as Smalltalk and C++) become more popular. However, for now we
choose to ignore this third primitive data type, mainly because at the time of
this writing, there are no standardized object file formats of any apparent com
mercial importance. In any case, the data portions of all objects can be decom
posed into simpler forms composed of elements from one of the two primitive
classes.

Figure 1-4 shows an example of object data.

Other Data

Graphics files may also include data containing structural, color, and other
descriptive information. This information is included primarily as an aid to the
rendering application in reconstructing and displaying an image.

lQ OVERVIEW

•

point line segment

FIGURE 1·4: Object data

From Vector to Bitmap Data ...

triangle tetrahedron
(polyhedron)

Twenty-five years ago, computer graphics was based almost entirely on vector
data. Random-scan vector displays and pen plotters were the only readily
obtainable output devices. The advent of cheap, high-capacity magnetic media,
in the form of tapes and disks, soon allowed the storage of large files, which in
turn created a need for the first standardized graphics file formats.

Today, most graphics storage is· bitmap-based, and displays are raster-based.
This is due in part to the availability of high-speed CPUs, inexpensive memory
and mass storage, and high-resolution input and output hardware. Bitmap
graphics are also driven by the need to manipulate images obtained from
raster digitizing devices. Bitmap graphics are important in applications sup
porting CAD and 3D rendering, business charts, 2D and 3D modeling, com
puter art and animation, graphical user interfaces, video games, electronic
document image processing (EDIP), and image processing and analysis.

It is interesting to note that the increased emphasis on bitmap graphics in our
time corresponds to a shift toward the output end of the graphics production
pipeline. By volume, the greatest amount of data being stored and exchanged
consists of finished images in bitmap format.

The explosive growth of the World Wide Web has fueled this shift. Almost
every Web page has one or more bitmap files associated with it. Bitmap images
have become a part of everyday life for millions of people .

. . . And Back Again

But the trend toward bitmap data may not last. Although there are certain
advantages to storing graphics images as bitmap data (we cover these in the

INTRODUCTION 11

section called "Pros and Cons of Bitmap File Formats" in Chapter 3, Bitmap
Files), bitmap images are usually pretty bulky. There is a definite trend toward
networking in all the computer markets, and big bitmap files and low-cost net
works don't mix. The cost of sending files around on the Internet, for exam
ple, can be measured not only in connect costs, but in lost time and decreased
network performance.

The growth of the World Wide Web has accelerated this trend. The Web is cur
rently built around HTML, a text markup language allowing software run on
the machines of remote users to construct elaborate images of text pages with
only minimal clues. This strategy, one of offloading imaging tasks to the
machines of remote users to conserve network bandwidth, is being pursued by
a number of vendors. This work is typified by the development of Java, Sun
Microsystem 's Internet programming language.

Because graphics files are surely not going to go away, we expect some sort of
vector-based file format to emerge somewhere along the line as an interchange
standard. Unfortunately, none of the present vector formats in common use is
acceptable to a broad range of users (but this may change).

Types of Graphics File Formats
There are a number of different types of graphics file formats. Each type stores
graphics data in a different way. Bitmap, vector, and metafile formats are by far
the most commonly used formats, and we focus on these in this book. How
ever, there are other types of formats as well-scene, animation, multimedia,
hybrid, hypertext, hypermedia, 3D, virtual modeling reality language (VRML),
audio, font, and page description language (PDL). The increasing popularity
of the World Wide Web has made some of these formats more popular, and we
anticipate increased interest in them in the future. Although most of these file
types are outside the scope of this book, we do introduce them in this section.

Bitmap Formats

Bitmap formats are used to store bitmap data. Files of this type are particularly
well-suited for the storage of real-world images such as photographs and video
images. Bitmap files, sometimes called raster files, essentially contain an exact
pixel-by-pixel map of an image. A rendering application can subsequently
reconstruct this image on the display surface of an output device.

Microsoft BMP, PCX, TIFF, and TGA are examples of commonly used bitmap
formats. Chapter 3 describes the construction of bitmap files in some detail.

12 OVERVIEW

Vector Formats

Vector format files are particularly useful for storing line-based elements, such
as lines and polygons, or those that can be decomposed into simple geometric
objects, such as text. Vector files contain mathematical descriptions of image
elements, rather than pixel values. A rendering application uses these mathe
matical descriptions of graphical shapes (e.g., lines, curves, and splines) to
construct a final image.

In general, vector files are structurally simpler than most bitmap files and are
typically organized as data streams.

AutoCAD DXF and Microsoft SYLK are examples of commonly used vector for
mats. Chapter 4, Vector Files, describes the construction of vector files in some
detail.

Metafile Formats

Metafiles can contain both bitmap and vector data in a single file. The simplest
metafiles resemble vector format files; they provide a language or grammar
that may be used to define vector data elements, but they may also store a
bitmap representation of an image. Metafiles are frequently used to transport
bitmap or vector data between hardware platforms, or to move image data
between software platforms.

WPG, Macintosh PICT, and CGM are examples of commonly used metafile for
mats. Chapter 5, Metajiles, describes the construction of metafiles in some
detail.

Scene Formats

Scene format files (sometimes called scene description files) are designed to store
a condensed representation of an image or scene, which is used by a program
to reconstruct the actual image. What's the difference between a vector format
file and a scene format file? Just that vector files contain descriptions of por
tions of the image, and scene files contain instructions that the rendering pro
gram uses to construct the image. In practice it's sometimes hard to decide
whether a. particular format is scene or vector; it's more a matter of degree
than anything absolute.

Animation Formats

Animation formats have been around for some time. The basic idea is that of
the flip-books you played with as a kid; with those books, you rapidly displayed

INTRODUCTION 13

one image superimposed over another to make it appear as if the objects in
the image are moving. Very primitive animation formats store entire images
that are displayed in sequence, usually in a loop. Slightly more advanced for
mats store only a single image but multiple color maps for the image. By load
ing in a new color map, the colors in the image change, and the objects appear
to move. Advanced animation formats store only the differences between two
adjacent images (called frames) and update only the pixels that have actually
changed as each frame is displayed. A display rate of 10-15 frames per second
is typical for cartoon-like animations. Video animations usually require a dis
play rate of 20 frames per second or better to produce a smoother motion.

TDDD and TTDDD are examples of animation formats.

Multimedia Formats

Multimedia formats are relatively new but are becoming more and more
important. They are designed to allow the storage of data of different types in
the same file. Multimedia formats usually allow the inclusion of graphics,
audio, and video information. Microsoft's RIFF, Apple's QuickTime, MPEG, and
Autodesk's FLI are well-known examples, and others are likely to emerge in the
near future. Chapter 10, Multimedia, describes various issues concerning multi
media formats.

Hybrid Formats

Currently, there is a good deal of research being conducted on the integration
of unstructured text and bitmap data ("hybrid text") and the integration of
record-based information and bitmap data ("hybrid database"). As this work
bears fruit, we expect that hybrid formats capable of efficiently storing graphics
data will emerge and will steadily become more important.

Hypertext and Hypermedia Formats

Hypertext is a strategy for allowing nonlinear access to information. In con
trast, most books are linear, having a beginning, an end, and a definite pattern
of progression through the text. Hypertext, however, enables documents to be
constructed with one or more beginnings, with one, none, or multiple ends,
and with many hypertext links that allow users to jump to any available place in
the document they wish to go.

Hypertext languages are not graphics file formats, like the GIF or DXF formats.
Instead, they are programming languages, like PostScript or C. As such, they
are specifically designed for serial data stream transmission. That is, you can

14 OVERVIEW

start decoding a stream of hypertext· information as you receive the data. You
need not wait for the entire hypertext document to be downloaded before
viewing it. ·

The term hyptmiU!dia refers to the marriage of hypertext and multimedia. Mod
ern hypertext languages and network protocols support a wide variety of
media, including text and fonts, still and animated graphics, audio, video, and
3D data. Hypertext allows the creation of a structure that enables multimedia
data to be organized, displayed, and interactively navigated through by a com
puter user.

· Hypertext and hypermedia systems, such as the World Wide Web, contain mil
lions of information resources stored in the form of GIF, JPEG, PostScript,
MPEG, and AVI files. Many other formats are used as well.

3D Formats

Three-dimensional data files store descriptions of the shape and color of 3D
models of imaginary and real-world objects. 3D models are typically con
structed of polygons and smooth surfaces, combined with descriptions of
related elements, such as color, texture, reflections, and so on, that a render
ing application can use to reconstruct the object. Models are placed in scenes
with lights and cameras, so objects in 3D files are often called scene elements.

Rendering applications that can use 3D data are generally modeling and ani
mation programs, such as NewTek's Lightwave and Autodesk's 3D Studio. They
provide the ability to adjust the appearance of the rendered image through
changes and additions to the lighting, textures applied to scene ·elements, and
the relative positions of scene elements. In addition, they allow the user to ani
mate, or assign motions to, scene elements. The application then creates a
series of bitmap files, or frames, that taken in sequence can be assembled into
a movie.

It's important to understand that vector data historically has been 2D in
nature. That is, the creator application with which the data originated made
no attempt to simulate 3D display through the application of perspective.
Examples of vector data include CAD drawings and most clip art designed to be
used in desktop publishing applications. There is a certain amount of confu
sion in the market about what constitutes 3D rendering. This is complicated by
the fact that 3D data is now supported by a number of formats that previously
stored only 2D vector data. An example of this is Autodesk's DXF format. For
mats like DXF are sometimes referred to as extended vector Jonnats.

INTRODUCTION 15

Virtual Reality Modeling Language (JlRML) Fonnats

VRML (pronounced "vermel") may be thought of as a hybrid of 3D graphics
and HTML. VRML vl.O is essentially a subset of the Silicon Graphics Inventor
file format and adds to it support for linking to Uniform Resource Locators
URLs in the World Wide Web.

VRML encodes 3D data in a format suitable for exchange across the. Internet
using the Hypertext Transfer Protocol (HTTP). VRML data received from a
Web server is displayed on a Web browser that supports VRML language inter
pretation. We expect that VRML-based 3D graphics will soon be very common
on the World Wide Web.

This book does not contain an in-depth discussion of VRML for some of the
same reasons that we do not provide detailed descriptions of hypertext, hyper
media, and 3D formats. The VRML specification is a moving target, but you can
keep up with it by looking at the following resources on the Internet:

http:/ /www.oki.com/~l/VRML_FAQhtml
VRMLFAQ

http:/ /www.sdsc.edu/vrml/
VRML information repositories

Audio Fonnats

Audio is typically stored on magnetic tape as analog data. For audio data to be
stored on media such as a CD-ROM or hard disk, it must first be encoded using
a digital sampling process similar to that used to store digital video data. Once
encoded, the audio data can then be written to disk as a raw digital audio data
stream, or, more commonly, stored using an audio file format.

Audio file formats are identical in concept to gr,aphics file formats, except that
the data they store is rendered for your ears and not for your eyes. Most for
mats contain a simple header that describes the audio data they contain. Infor
mation commonly stored in audio file format headers includes samples per
second, number of channels, and number of bits per sample. This information
roughly corresponds to the number of samples per pixel, number of color
planes, and number of bits per sample information commonly found in graph
ics file headers.

Where audio file formats differ greatly is in the methods of data compression
they use. Huffman encoding is commonly used for both 8-bit graphical and
audio data. 16-bit audio data, however, requires algorithms specially adapted to

16 OVERVIEW

the problems of compressing audio data. Such compression schemes include
the CCIIT (International Telegraph and Telephone Consultative Committee)
recommendations G.711 (uLAW), G.721 (ADPCM 32) and G.723 {ADPCM 24),
and the U.S. federal standards FIPs-1016 {CELP) and FIPs-1015 {LPC-10E).

Because audio data is very different from graphics data, this book does not
attempt to cover audio file formats. If you need more information on audio file
formats, we recommend that you check out the following information
resources on the Internet:

http:/ /cuiwww.unige.ch/OSG/AudioFarmats/
Guide to audio file formats

jtp:/ /rtfm. mit.edu/pub/usenet/news. answers/ audio-Jaq/part[1-2]
Audio file formats FAQ

jtp:/ /rtfm. mit.edu/pub/usenet/news. answers/ compressionfaq/part[1-3]
comp. compression FAQ

ftp:/ /rtfm. mit.edu/pub/usenet/news.answers/dsp-faq/part[1-4]
comp.dsp FAQ

jtp:/ /rtfm. mit.edu/pub/usenet/news.answers/mpegfaq/part[1-6]
MPEGFAQ

Flint Formats

Another class of formats not covered in this book are font files. Font files con
tain the descriptions of sets of alphanumeric characters and symbols in a com
pact, easy-to-access format. They are generally designed to facilitate random
access of the data associated with individual characters. In this sense, they are
databases of character or symbol information, and for this reason font files are
sometimes used to store graphics data that is not alphanumeric or symbolic in
nature. Font files may or may not have a global header, and some files support
sub-headers for each character. In any case, it is necessary to know the start of
the a~tual character data, the size of each character's data, and the order in
which the characters are stored in order to retrieve individual characters with
out having to read and analyze the entire file. Character data in the file may be
indexed alphanumerically, by ASCII code, or by some other scheme. Some font
files support arbitrary additions and editing, and thus have an index some
where in the file to help you find the character data.

Some font files support compression, and many support encryption of the
character data. The creation of character sets by hand has always been a

INTRODUCTION 17

difficult and time-consuming process, and typically a font designer spent a year
or more on a single character set. Consequently, companies that market fonts
(called foundries for reasons dating back to the origins of printing using
mechanical type) often seek to protect their investments through legal means
or through encryption. In the United States, for instance, the names of fonts
are considered proprietary, but the outlines described by the character data
are not. It is not uncommon to see pirated data embedded in font files under
names different from the original.

Historically there have been three main types of font files: bitmap, stroke, and
spline-based outlines, described in the following sections.

We choose not to cover font files in this book because font technology is a
world to itself, with different terminology and concerns. Many of the font file
formats are still proprietary and encrypted and, in fact, are not available to the
general public. Although there are a few older spline-based font formats still in
use, font data in the TrueType and Adobe Type 1 formats is readily available on
all the major platforms and is well-documented elsewhere in publications read
ily available to developers. We recommend that you check out the following
resources on the Internet:

ftp:/ /rtfm. mit.edu/pub/usenet/news.answers/fontsfaq/part[1-17]
FontsFAQ

http://www. adobe. com
Fonts information repositories

Bitmap fonts
· Bitmap fonts consist of a series of character images rendered to small rectangu

lar bitmaps and stored sequentially in a single file. The file may or may not
have a header. Most bitmap font files are monochrome, and most store fonts in
uniformly sized rectangles to facilitate speed of access. Characters stored in
bitmap format may be quite elaborate, but the size of the file increases, and,
consequently, speed and ease of use decline with increasingly complex images.

The advantages of bitmap files are speed of access and ease of use-reading
and displaying a character from a bitmap file usually involve little more than
reading the rectangle containing the data into memory and displaying it on
the display surface of the output device. Sometimes, however, the data is ana
lyzed and used as a template for display of the character by the rendering
application. The chief disadvantages of bitmap fonts are that they are not easily
scaled, and that rotated bitmap fonts look good only on screens with square
pixels. ··

18 OVERVIEW

Most character-based systems, such as MS-DOS, character-mode UNIX, and
character terminal-based systems use bitmap fonts stored in ROM or on disk.
However, bitmap fonts are seldom used today when sufficient processing power
is available to enable the use of other types of font data.

Stroke fonts
Stroke fonts are databases of characters stored in vector form. Characters can
consist of single strokes or may be hollow outlines. Stroke character data usu
ally consists of a list of line endpoints meant to be drawn sequentially, reflect
ing the origin of many stroke fonts in applications supporting pen plotters.
Some stroke fonts may be more elaborate, however, and may include instruc
tions for arcs and other curves. Perhaps the best-known and most widely used
stroke fonts were the Hershey character sets, which are still available online.

The advantages of stroke fonts are that they can be scaled and rotated easily,
and that they are composed of primitives, such as lines and arcs, which are
well-supported by most GUI operating environments and rendering applica
tions. The main disadvantage of stroke fonts is that they generally have a
mechanical look at variance with what we've come to expect from reading
high-quality printed text all our lives.

Stroke fonts are seldom used today. Most pen plotters support them, however.
You also may need to know more about them if you have a specialized indus
trial application using a vector display or something similar.

Spline-based outline fonts
Character descriptions in spline-based fonts are composed of control points
allowing the reconstruction of geometric primitives known as splines. There
are a number of types of splines, but they all enable the drawing of the subtle,
eye-pleasing curves we've come to associate with high-quality characters that
make up printed text. The actual outline data is usually accompanied by infor
mation used in the reconstruction of the characters, which can include infor
mation about kerning, and information useful when scaling characters that are
very large or very small ("hints").

The advantages of spline-based fonts are that they can be used to create high
quality character representations, in some cases indistinguishable from text
made with metal type. Most traditional fonts, in fact, have been converted to
spline-based outlines. In addition, characters can be scaled, rotated, and other
wise manipulated in ways only dreamed about even a generation ago.

INTRODUCTION }9

U nfortunatly, the reconstruction of characters from spline outline data is no
trivial task, and the higher quality afforded by spline outlines comes at a price
in rendering time and program development costs.

Page Description Language (PDL) Formats

Page description languages (PDLs) are actual computer languages used for
describing the layout, font information, and graphics of printed and displayed
pages. PDLs are used as the interpreted languages used to communicate infor
mation to printing devices, such as hardcopy printers, or to display devices, ·
such as graphical user interface (GUI) displays. The greatest difference is that
PDL code is very device-dependent. A typical PostScript file contains detailed
information on the output device, font metrics, color palettes, and so on. A
PostScript file containing code for a 4-color, A4-sized document can only be
printed or displayed on a device that can handle these metrics.

Markup languages, on the other hand, contain no information specific to the
output device. Instead, they rely on the fact that the device that is rendering
the markup language code can adapt to the formatting instructions that are
sent to it. The rendering program chooses the fonts, colors, and method of dis
playing the graphical data. The markup language provides only the informa
tion and how it is structured.

Although PDL files can contain graphical information, we do not consider
PDLs to be graphics file formats any more than we would consider a module of
C code that contains an array of graphical information to be a graphics file for
mat. PDLs are complete programming languages, requiring the use of sophisti
cated interpreters to read their data; they are quite different from the much
simpler parsers used to read graphics file formats.

Elements of a Graphics File
As mentioned in the Preface, different file format specifications use different
terminology. In fact, it's possible that not a single term has a common meaning
across all of the file formats mentioned in this book. This is certainly true for
terms referring to the way data is stored in a file- terms such as field, tag, block,
and packet. In fact, a specification will sometimes provide a definition for one
of these terms and then abandon it in favor of a more descriptive one, such as
a chunk, sequence, or record.

For purposes of discussion in this book, we will consider a graphics file to be
composed of a sequence of data and data structures, called file elements or data
elements. These are divided into three categories: fields, tags, and streams.

20 OVERVIEW

Fields

Afield is a data structure that is a fixed size in a graphics file. A fixed field has
not only a fixed size but a fixed position within the file. The location of a field
is communicated by specifying either an absolute offset from a landmark in a
file, such as the file's beginning or end, or a relative offset from some other
data. The size of a field either is stated in the format specification or can be
inferred from other information.

Tags

A tag is a data structure that can vary in both size and position from file to file.
The position of a tag, like that of a field, is specified by either an absolute off
set from a known landmark in the file, or through a relative offset from
another file element. Tags themselves may contain other tags or a collection of
related fields.

Streams

Fields and tags are an aid to random access; they're designed to help a pro
gram quickly access a data item known in advance. Once a position in a file is
known, a program can access the position directly without. having to read inter
vening data. A file that organizes data as a stream, on the other hand, lacks the
structure of one organized into fields and tags and must be read sequentially.
For our purposes, we will consider a stream to be made up of packets, which can
vary in size, are sub-elements of the stream, and are meaningful to the pro
gram reading the file. Although the beginning and end of the stream may be
known and specified, the location of packets other than the first usually is not,
at least prior to the time of reading.

Combinations of Data Elements

You can imagine, then, pure fixed field files, pure tag files, and pure stream
files, made up entirely of data organized into fixed fields, tags, and streams,
respectively. Only rarely, however, does a file contain data elements of a single
type; in most cases it is a combination of two or more. The TIFF and TGA for
mats, for example, use both tags and fixed fields. GIF format files, on the other
hand, use both fixed fields and streams.

Fixed-field data is usually faster and easier to read than tag or stream data. Files
composed primarily of fixed-field data, however, are less flexible in situations
in which data needs to be added to or deleted from an existing file. Formats
containing fixed fields are seldom easily upgraded. Stream data generally

INTRODUCTION 21

requires less memory to read and buffer than field or tag data. Files composed
primarily of stream data, however, cannot be accessed randomly, and thus can
not be used to find or sub-sample data quickly. These considerations are dis
cussed further in Chapters 3, 4, and 5.

Converting Formats
You often need to convert a graphics file from one format to another-for
printing, manipulation by a particular desktop publishing program, or some
other reason. Although conversion to and from certain file formats is straight
forward, conversion of other formats may be quite hair-raising. You will find
conversion particularly problematic if you need to convert between basic for
mat types-for example, bitmap to vector.

Fortunately, some excellent products can handle most of the complexities of
conversion for you. If you are lucky enough to be converting between the for
mats supported by the pbmplus '(Portable Bitmap Utilities) package (a freely
available set of programs developed by Jef Poskanzer that we've included on
the CD-ROM), your job will be an easy one. Rather than converting explicitly
from one graphics file format to another (for example, from PCX to Microsoft
Windows Bitmap [BMP]), pbmplus converts any source format to a common
format and then converts that common format to the desired destination for
mat. pbmplus is most often used in UNIX emvironments, but the source code
has also been compiled for other platforms. We also provide a number of other
freely available conversion programs for Windows, MS-DOS, OS/2, Macintosh,
and UNIX platforms on the CD-ROM.

Try these programs out and see which best suits your formats and applications.
If you have a machine that is running MS-DOS or a variant of Microsoft Win
dows, consider buying Hi]aak, an excellent commercial product developed by
Inset Systems (now Quarterdeck) that converts to and from most of the com
mon file formats. If you have a Macintosh or Power Mac, consider buying
DeBabelizer.

Chapter 7, Format Conversion, contains a discussion of converting between types
of graphics file formats.

Compressing Data
Throughout the articles included in Part Two of this book, you'll see refer
ences to methods of data compression or data encoding. Compression is the pro
cess used to reduce the physical size of a block of information. By compressing

22 OVERVIEW

graphics data, we're able to fit more information in a physical storage space.
Because graphics images usually require a very large amount of storage space,
compression is an important consideration for graphics file formats. Almost
every graphics file format uses some compression method.

There are several ways to look at compression. We can talk about differences
between physical and logical compression, symmetric and asymmetric com
pression, and lossless and lossy compression. These terms are described in
detail in Chapter 9, Data Compression. That chapter also describes the most
common methods of, or algorithms for, compression, which we mention here
briefly:

• Pixel packing-Not a method of data compression per se, but an efficient
way to store data in contiguous bytes of memory. This method is used by
the Macintosh Pier format and other formats that are capable of storing
multiple 1-, 2-, or 4-bit pixels per byte of memory or disk space.

• Run-length encoding (RLE) -A very common compression algorithm used
by such bitmap formats as BMP, TIFF, and PCX to reduce the amount of
redundant graphics data.

• Lempel-Ziv-Welch (LZW)-Used by GIF and TIFF, this algorithm is also a
part of the v.42bis ·modem compression standard and of PostScript Level 2.

• CCITI encoding-A form of data compression used for facsimile transmis
sion and standardized by the CCITI. One particular standard is based on
the ·keyed compression scheme introduced by David Huffman and known
widely as Huffman encoding.

• Joint Photographic Experts Group (JPEG)-A toolkit of compression
methods used particularly for continuous-tone image data and multimedia.
The baseline]PEG implementation uses an encoding scheme based on the
Discrete Cosine Transform (DCT) algorithm.

• Joint Bi-level Image ~perts Group. (JBIG)-A method of compressing hi
level (two-color) image data, which is intended to replace the MR (Modi
fied READ) and MMR (Modified Modified READ) compression algorithms
used by CCITI Group 3 and Group 4.

• ART-A proprietary compression algorithm developed by Johnson-Grace
that can be adapted to support audio, animation, and full-motion video in
the future.

INTRODUCTION 23

• Fractal-A mathematical process used to encode bitmaps containing a
real-world image as a set ·of mathematical data that describes the fractal
(similar, repeating patterns) properties of the image.

Each of the articles in Part Two, Graphics File Formats, lists the compression algo
rithms used for the particular graphics file format described.

Fonnat Summary
Table 1-1 lists each of the graphics file formats that we describe in this book,
along with an indication of what type of format it is (bitmap, vector, metafile,
scene description, animation, multimedia, or other [for "other" formats, refer
to the appropriate article in Part Two]).

In some cases, a format may be known by a number of different names. Please
check the index or look online if your format is not listed below; chances are
good that it is included, but simply under a different name.

Graphics files on most platforms use a fairly consistent file extension conven
tion. Of the three platforms with the largest installed base (MS-DOS, Macin
tosh, and UNIX), all use a similar name. extension filenaming convention. The
other platforms that are popular for computer graphics (Amiga, Atari, and
VMS) use a roughly similar naming convention. VMS, for example, uses the
convention namel.name2:version, where version is an integer indicating the
number of the file revision.

TABLE t-t: Graphics File Formats Described in This Book

Format

Adobe Illustrator
Adobe Photoshop
Atari ST Graphics Formats
AutoCADDXF
Autodesk 3D Studio .
BDF
BRL-CAD
BUFR
CALS Raster
CGM
CMUFonnats
DKB
Dore Raster File Format
DPX

24 OVERVIEW

'I)'pe

Metafile
Bitmap
Bitmap and Animation
Vector
Scene Description
Bitmap
Other
Other
Bitmap
Metafile
Multimedia
Scene Description
Bitmap
Bitmap

Format

Dr. Halo
DVM Movie
Encapsulated PostScript
Face Saver
FAX Formats
FITS
FLI

GEM Raster
GEMVDI

GIF

GRASP

GRIB

Harvard Graphics
Hierarchical Data Format
IFF

IGES

Inset PIX

Intel DVI
JPEG File Interchange Format
Kodak Photo CD
KodakYCC
Lotus DIF
Lotus PIC
Lumena Paint
Macintosh Paint
Macintosh Plc:f
Microsoft Paint
Microsoft RIFF
Microsoft RTF
Microsoft SYLK
Microsoft Windows Bitmap
Microsoft Windows Metafile
MIFF

MPEG
M1V
NAPLPS
NFF
OFF

OS/2 Bitmap
P3D
PBM, PGM, PNM, and PPM

PCX
PDS

Type

Bitmap
Animation
Metafile (page description language)
Bitmap
Bitmap
Other
Animation
Bitmap
Metafile
Bitmap
Animation
Other
Metafile
Metafile
Bitmap
Other
Bitmap
Multimedia
Bitmap
Bitmap
Bitmap
Vector
Vector
Bitmap
Bitmap
Metafile
Bitmap
Multimedia
Metafile
Vector
Bitmap
Metafile
Bitmap
Other
Scene Description
Metafile
Scene Description
Scene Description
Bitmap
Scene Description
Bitmap
Bitmap
Other

INTRODUCTION 25

Format

Pictor PC Paint
Pixar RIB
Plot-10
PNG
POV
Presentation Manager Metafile
PRT
QRT
Quick Time
Radiance
Rayshade
RIX
RTrace
SAF
SenseS NFF
SGI Image File Format
SGI Inventor
SGIYAODL
SGO
SPIFF
Sun Icon
Sun Raster
TDDD
TGA
TIFF
TTDDD
uRay
UtahRLE
VICAR2
VIFF
VI8-5D
Vivid and Bob
Wavefront OBJ
Wavefront RIA
WordPerfect Graphics Metafile
XBM
XPM
XWD
ZBR

26 OVERVIEW

1}'pe

Bitmap
Scene Description
Vector
Bitmap
Vector
Metafile
Scene Description
Scene Description
Other
Scene Description
Scene Description
Bitmap
Scene Description
Bitmap and other
Scene Description
Bitmap
Scene Description
Scene Description
Vector
Bitmap
Bitmap
Bitmap
Vector and Animation
Bitmap
Bitmap
Vector and Animation
Scene Description
Bitmap
Bitmap
Bitmap
Vector
Scene Description
Vector
Bitmap
Metafile
Bitmap
Bitmap
Bitmap
Metafile

CHAPTER 21

Computer Graphics Basics

To understand graphics file formats, you need some background in computer
graphics. Of course, computer graphics is an enormous subject, and we can't
hope to do it justice here. In general, we assume in this book that you are not a
novice in this area. However, for those who do not have an extensive back
ground in computer graphics, this chapter should be helpful in explaining the
terminology you'll need to understand the discussions of the formats found
later in this book.

H you're interested in exploring any of these topics further, far and away the
best overall text is Computer Graphics: Principles and Practice by James D. Foley,
Andries van Dam, S.K Feiner, and J.F. Hughes. This is the second edition of
the book formerly known throughout the industry as "Foley and van Dam."
You'll find additional references in the "For Further Information" section at
the end of this chapter.

Pixels and Coordinates
Locations in computer graphics are stored as mathematical coordinates, but
the display surface· of an output device is an actual physical object. Thus, it's
important to keep in mind the distinction between physical pixels and logical
pixels.

Physical Pixels

Physical pixels are the actual dots displayed on an output device. Each one takes
up a small amount of space on the surface of the device. Physical pixels are
manipulated directly by the display hardware and form the smallest indepen
dently programmable physical elements on the dis!llay surface. That's the

COMPUTER GRAPHICS BASICS 27

ideal, anyway. In practice, however, the display hardware may juxtapose or over
lay several smaller dots to form an individual pixel. This is true in the case of
most analog color CRT devices, which use several differently colored dots to
display what the eye, at a normal viewing distance, perceives as a single, uni
formly colored pixel.

Because physical pixels cover a fixed area on the display surface, there are
practical limits to how close together two adjacent pixels can be. Asking a piece
of display hardware to provide too high a resolution-too many pixels on a
given display surface- will create blurring and other deterioration of image
quality if adjacent pixels overlap or collide.

Logical Pi~ki

In contrast to physical pixels, logical pixels are like mathematical points: they
specify a location, but are assumed to occupy no area. Thus, the mapping
between logical pixel values in the bitmap data and physical pixels on the
screen must take into account the actual size and arrangement of the physical
pixels. A dense and brightly colored bitmap, for example, may lose its vibrancy
when displayed on too large a monitor, because the pixels must be spread out
to cover the surface.

Figure 2-1 illustrates the difference between physical and logical pixels.

white pixel at (1,1)

I finite
extent ; ·

white pixel at (1, 1)

Physical Pixels on Devices Logical Pixels

FIGURE 2-1: Physical and logical pixels

28 OVERVIEW

Pixel Depth and Displays

The number of bits in a value used to represent a pixel governs the number of
colors the pixel can exhibit. The more bits per pixel, the greater the number
of possible colors. More bits per pixel also means that more space is needed to
store the pixel values representing a bitmap covering a given area on the sur
face of a display device. As technology has evolved, display devices handling
more colors have become available at lower cost, which has fueled an increased
demanc;l for storage space.

Most modern output devices can display between two and more than 16 mil
lion colors simultaneously, corresponding to one and 24 bits of storage per
pixel, respectively. Bi-leve~ or 1-bit, displays use one bit of pixel-value informa
tion to represent each pixel, which then can have two color states. The most
common 1-bit displays are monochrome monitors and black-and-white print
ers, of course. Things that reproduce well in black and white-line drawings,
text, and some types of clip art-are usually stored as 1-bit data.

A Little Bit About Truecolor
People sometimes say that the human eye can discriminate between 224

(16,777,216 colors), although many fewer colors can be perceived simul
taneously. Naturally enough there is much disagreement about this fig
ure, and the actual number certainly varies from person to person and
under different conditions of illumination, health, genetics, and atten
tion. In any case, we each can discriminate between a large number of col
ors, certainly more than a few thousand. A device capable of matching or
exceeding the color-resolving power of the human eye under most condi
tions is said to display truecolor. In practice, this means 24 bits per pixel,
but for historical reasons, output devices capable of displaying 215

(32,768) or 216 (65,536) ·colors have also incorrectly been called true
color.

More recently, the term hicolor has come to be used for displays capable of
handling up to 215 or 216 colors. Fullcolor is a term used primarily in mar
keting; its meaning is much less clear. (If you find out what it means,
exactly, please let us know!)

COMPUTER GRAPHICS BASICS 29

Issues When Displaying Colors

It is frequently the case that the number or actual set of colors defined by the
pixel values stored in a file differs from those that can be displayed on the sur
face of an output device. It is then up to the rendering application to translate
between the colors defined in the file and those expected by the output device.
There is generally no problem when the number of colors defined by the pixel
values found in the file (source) is much less than the number that can be dis
played on the output device (destination). The· rendering application in this
case is able to choose among the destination colors to provide a match for
each source color. But a problem occurs when the number of colors defined by
the pixel values exceeds the number that can be displayed on an output
device. Consider the following examples.

In the first case, 4-bit-per-pixel data (corresponding to 16 colors) is being dis
played on a device capable of supporting 24-bit data (corresponding to more
than 16 million colors). The output device is capable of displaying substantially
more colors than are needed to reproduce the image defined in the file. Thus,
colors in the bitmap data will likely be represented by a close match on the
output device, provided that the colors in the source bitmap and on the desti
nation device are evenly distributed among all possible colors. Figure 2-2 illus
trates this case.

This process, called quantization, results in a loss of data. For source images
containing many colors, quantization can cause unacceptable changes in
appearance, which are said to be the result of quantization artifacts. Examples of
common quantization artifacts are banding, Moire patterns, and the introduc
tion of new colors into the destination image that were not present in the
source data. Quantization artifacts have their uses, however; one type of quan
tization process, called convolution, can be used to remove spurious noise from
an image and to actually improve its appearance. On the other hand, it can
also change the color. balance of a destination image from that defined by the
source data.

In the next case, the output device can display fewer colors than are defined by
the source data. A common example is the display of 8-bit-per-pixel data (cor
responding to 256 colors) on a device capable of displaying 4-bit data (corre
sponding to 16 colors). In this case, there may be colors defined in the bitmap
which cannot be represented on the 4-bit display. Thus, the rendering applica
tion must work to match the colors in the source and destination. At some
point in the color conversion process, the number of colors defined in the
source data must be reduced to match the number available on the destination
device. This reduction, or quantization, step is illustrated in Figure 2-3.

3Q OVERVIEW

red
light red

green
light green

blue
light blue

black
white

Data

orange

yellow .
green

blue

violet

black

grey

white
256colors

FIGURE 2-2: Displaying data with Jew colors on a device with many colors

red
light red

green
light green

blue
light blue

black
white

Data

8 colors

Device
red
green
blue

FIGURE 2-3: Displaying data with many colors on a device with few, colors

Pixel Data and Palettes
Obviously, pixel values stored in a file correspond to colors. But how are the
colors actually specified?

COMPUTER GRAPHICS BASICS 31

One-bit pixel data, capable of having the values 0 and 1, can only fully repre
sent images containing two colors. Thus, there are only two ways of matching
up pixel values in the file with colors on a screen. In most situations, you'll find
that a convention already exists that establishes which value corresponds to
which color, although a separate mechanism may be available in the file to
change this. This definition can also be changed on the fly by the rendering
application.

Pixel data consisting of more than one bit per pixel usually represents a set of
index values into a color palette, although in some cases there is a direct numeri
cal representation of the color in a color definition scheme.

specifying Color With Palettes

A palette, which is sometimes referred to as a color map, index map, color table, or
look-up table (LVT), is a I -dimensional array of color values. As the synonym look
up table suggests, it is the cornerstone of the method whereby colors can be
referred to indirectly by specifying their positions in an array. Using this
method, data in a file can be stored as a series of index values, usually small
integer values, which can drastically reduce the size of the pixel data when only
a small number of colors need to be represented. Bitmaps using this method
of color representation are said to use indirect, or pseudo-color storage.

Four-bit pixel data, for instance, can be used to represent images consisting of
16 colors. These 16 colors are usually defined in a palette that is almost always
included somewhere in the file. Each of the pixel values making up the pixel
data is an index into this palette and consists of one of the values 0 to 15. The
job of a rendering application is to read and examine a pixel value from the
file, use it as an index into the palette, and retrieve the value of the color from
the palette, which it then uses to specify a colored pixel on an output device.

Figure 2-4 illustrates how a palette may be used to specify a color.

The palette is an array of colors defined as accurately as possible. In practice,
each palette ·element is usually 24 bits, or three bytes, long, although to accom
modate future expansion and machine dependencies, each element is some
times stored as 32 bits, or four bytes. Curiously, color models, many of which
existed prior to the computer era, are often built around the equal partition of
the possible colors into three variables, thus neatly fitting into three bytes of
data storage. (We include a discussion of color models in the section called
"Color" later in this chapter.)

32 OVERVIEW

Pixel Value in File

1, 2, 8, 44

Program looks in
palette to translate "8".

Palette (LUT)

(255, 0, 10)

(255, 10, 10)

(200, 0, 0)

(200, 10, 0)

(200, 10, 10)
(100, 10, 0)

(50, 50, 50)

(0, 255, 0)

(0, 255, 0) is the set
of numerical values
used by the device to
produce green.

"8" means green to the program

FIGURE 2-4: Using a paktte to specify a color

Output Device

What this means is that palettes are three or four times as large as the maxi
mum number of colors defined. For instance, a 4-bit color palette is:

3 bytes per color * 16 colors = 48 bytes in length

or:

4 bytes per color * 16 col ors = 64 bytes in length

depending on whether three or four bytes are used to store each color defini
tion.

In a similar way, 8-bit pixel data may be used to represent images consisting of
256 colors. Each of the pixel values, in the range 0 to 255, is an index into a
256-color palette. In this case, the palette is:

3 bytes per color * 256 colors = 768 bytes in length

or:

4 bytes per color * 256 colors 1024 bytes in length

Issue~ Jthen Using Palettes

Let's say that the value (255,0,0) represents the color red in the color model
used by our image format. We'll let our example palette define 16 colors,
arranged as an array of 16 elements:

0, 0, 0)
(255,255,255)
(255, 0, 0)
(0, 255, 0)
(0, 0, 255)
(255 , 255, 0)

COMPUTER GRAPHICS BASICS 33

(0,255,255)
(255, 0,255)
(128, 0, 0)
(0,128, 0)
(0, 0,128)
(128, 128, 0)
(0,128,128)
(128, 0,128)
(128,128,128)
(255,128,128)

Because (255,0,0) happens to be the third element in the palette, we can store
the value 2 (if the array is zero-based, as in the C language), with the implied
convention that the values are to be interpreted as index values into the array.
Thus, every time a specification for the color red occurs in the pixel data, we
can store 2 instead, and we can do likewise for other colors found in the
image.

Color information can take up a substantial amount of space. In some cases,
the use of palettes makes color storage more efficient; in other cases, storing
colors directly, rather than through palettes, is more efficient.

In the larger, more complex image formats, indirect storage through the use of
palettes saves space by reducing the amount of data stored in the file. If you
are, for example, using a format that stores three bytes of color information
per pixel (a commonly used method) and can use up to 256 colors, the pixel
values making up the bitmap of a 320x200 pixel image would take up 192,000
(320 * 200 * 3) bytes of storage. If the same image instead used a palette with
256 3-byte elements, each pixel in the bitmap would only need to be one byte
in size, just enough to hold a color map index value in the 0-to-255 range. This
eliminates two of every three bytes in each pixel, reducing the needed storage
to 64,000 (320 * 200 * 1) bytes.

Actually, we have to add in the length of the palette itself, which is 768 (256 *
3) bytes in length, so the relevant data in the file would be 64,768 bytes long,
for a savings of nearly a factor of three over the former storage method. (N_ote,
however, that if the amount of bitmap data in the file is very small, the storage
overhead created by the inclusion of the palette may negate any savings gained
by changing the storage method.)

Indirect color storage through the use of palettes has several advantages
beyond the obvious. First, if you need to know how many actual colors are
stored in an image (i.e., a 25fkolor image does not always contain 256 colors),
it is a simple task to read through the palette and determine how many of its
elements are being used or are duplicates of others. Unused elements in most
formats are usually set to zero.

34 OVERVIEW

Palettes are also handy when you want to change_ the colors in an image. If you
want to change all of the red pixels in the rendered image to green, for
instance, all you need do is change the appropriate value defining the color
red in the palette to the appropriate value for green.

As we've mentioned, the use of palettes is not appropriate in every case. A
palette itself uses a substantial amount of space. For example, a palette defin
ing 32,768 colors would take up a minimum of 98,304 bytes of storage space.
For this reason, images containing more than 256 colors are generally stored

. in litera~ absolute, or truecolor format (rather than in palettes), where each pixel
value corresponds direcdy to a single color.

Palettes were devised to address the problem of the limited number of colors
available on some display devices. However, if an output device does not pro
vide hardware assistance to the application software, use of a palette-based for
mat adds an extra level of complication prior to the appearance of the image
on the display device. If the display device can support truecolor, it may be bet
ter to use a format supporting truecolor, even though the image may have only
a few colors. As a general rule, images containing thousands or millions of col
ors are better stored using a format which supports truecolor, as the number
and size of the elements needed in a palette-based format may cause the size of
the palette needed to approach the size of the bitmapped image data itself.

Before we continue the discussion of how colors are stored in a file, we have to
digress briefly to talk about how colors are defined. Discussion of palettes
resumes in the section below called " ... And Back to Palettes."

A Word About Color spaces

Colors are defined by specifying several, usually three, values. These values
specify the amount of each of a set of fundamental colors, sometimes called
color channels, which are mixed to produce composite colors. A composite color is
then specified as an ordered set of values. If "ordered set of values" rings a bell
for you (in the same way as might "ordered pair"), rest assured that it also did
for the people who create color definitions. A particular color is said to repre
sent a point in a graphic plot of all the possible colors. Because of this, people
sometimes refer to a color as a point in a color space.

RGB is a common color definition. In the RGB color model or system, the col
ors red, green, and blue are considered fundamental and undecomposable. A
color can be specified by providing an RGB triplet in the form (R,G,B). People

COMPUTER GRAPHICS BASICS 35

sometimes think of color triplets in terms of percentages, although percent
ages are not, in fact, used to express actual color definitions. You might charac
terize colors in the RGB color model as follows:

(0%, 0%, 0%)
(100%, 100%, 100%)
(100%, 0%, 0%)
(50%, 50%, 50%)

and so on.

Black
White
Red
Light gray

There are many refinements of this, and you can always find somebody to
argue about what numbers specify which color. This is the basic idea, though.
Each of these RGB triplets is said to define a point in the RGB color space.

When storing color data in a file, it's more practical to specify the value of each
color component, not as a percentage, but as a value in a predefined range. If
the space allotted for each color component is a byte (eight bits), the natural
range is 0 to 255. Because colors are commonly defined using 24 bits, or three
bytes, the natural thing to do is to assign each of the three bytes for use as. the
value of the color component in the color model. In RGB color, for instance,
using three bytes for each color, colors are usually stored as RGB triplets in the
range 0 to 255, with 0 representing zero intensity and 255 representing maxi
mum intensity.

RGB = ([0-255], [0-255], [0-255])

Thus, the pixel values in the previous example would be:

(0,0,0)
(255,255,255)
(255,0,0)
(127,127,127)

Black
White
Red
Light gray

This example assumes, of course, that 0 stands for the least amount, and 255
for the most amount of a particular color component. Occasionally, you will
find that a format creator or application architect has perversely chosen to
invert the "natural" sense of the color definition, and has made RGB (0, 0, 0)
white and RGB (255, 255, 255) black, but, fortunately, this is rare.

The section later in this chapter called "How· Colors are Represented"
describes RGB and other color systems.

36 OVERVIEW

Some More About Tmecolor

The word truecolor comes up in discussions about images that contain a large
number of colors. What do we mean by large in this context? Most people con
sider 200 to 300K to be significantly large. Recall from the discussion above
that a palette containing 256 color definitions uses a maximum of 64 bytes of
storage, and that a palette with 32,768 or more colors uses nearly lOOK, at a
minimum. In light of this, 256 is not a "large" number of colors. Most people
consider 32,768, 65,536, and 16.7 million colors to be "large," however. And
this is only the space a palette takes up; we're not even talking about the image
data!

Instead of including in a file a huge palette in which pixel values are indices
into the palette, pixel values can be treated as literal color values. In practice,
pixel values are composed of three parts, and each part represents a compo
nent color in the color model (e.g., RGB) in use. Pixel values from images con
taining 32,768 or 65,536 colors are typically stored in two successive bytes, or
16 bits, in the file, because almost all machines handle data a minimum of one
byte at a time. A rendering application must read these 16-bit pixel values and
decompose them into 5-bit color component values:

16 bits = 2 bytes = (8 bits, 8 bits) => (1, 5, 5, 5) = (1, R, G, B)

Each 5-bit component can have values in the range of 0 to 32. In the case of
32, 768-color RGB images, only 15 bits are significant, and one bit is wasted or
used for some other purpose. 65,536-color RGB images decompose the.16-bit
pixel value asymmetrically, as shown below, in order to get use out of the extra
bit:

16 bits = 2 bytes = (8 bits, 8 bits) => (6, 5, 5) = (R, G, B)

Actually, a more common subdivision is:

·16 bits = 2 bytes = (8 bits, 8 bits) => (5, 6, 5) = (R, G, B)

Here, the extra bit is given to the green component, because the human eye is
more sensitive to green than it is to red and blue. The color component order
is arbitrary, and the order and interpretation of the color components within a
pixel value varies from format to format. Thus, components of a 16-bit pixel
value may be interpreted as (G,B,R) just as readily as (R,G,B) and (B,R,G).
Specifying RGB colors in the sequence (R,G,B) has some appeal, because the
colors are arranged by electromagnetic frequency, establishing their order in
the physical spectrum.

COMPUTER GRAPHICS BASICS 37

24-bit pixel values are stored in either three bytes:

24 bits = 3 bytes = (8 bits, 8 bits, 8 bits) = (R,G,B)

or four bytes:

24 bits = 4 bytes = (8 bits, 8 bits, 8 bits, 8 bits) = (R,G,B, unused)

Equal division among the color components of the model, one byte to each
component, is the most common scheme, although other divisions are not
unheard of ..

• . . And Back to Palettes

Earlier in this chapter we introduced the use of palettes. Here, we continue
with the discussion of different types of palettes and illustrate with some actual
examples.

'I)pes of palettes
There are several different ways to talk about palettes.

A single-channel palette contains only one color value per element, and this color
value maps directly to a single pixel color. Each element of a single-channel
palette might have the following form, for exc:unple:

(G) = (223)

A multiple-channel palette (or multi-channel palette) contains two or more individ
ual color values per color element. Each element of a 3-channel palette using
red, green, and blue might have the following form, for example:

(R,G,B) = (255,128,78)

Here, R specifies the value of one channel, G specifies the value of the second
channel, and B specifies the value of the third channel. If an image contains
four color components, as with the CMYK color system described later in this
chapter, then a 4-channel color map might be used, and so on.

Pixel-oriented palettes store all of the pixel color data as contiguous bits within
each element of the array. As we noted above, in an RGB palette, each element
in the palette consists of a triplet of values. This corresponds to the way pixel
values are stored in the file, which is usually in RGB or BGR order:

(RGBRGBRGBRGBRGB ...) or (BGRBGRBGRBGRBGR ...)

Thus the palette looks like this:

(RGB) (RGB) (RGB) or (BGR) (BGR) (BGR)

In a plane-oriented palette, pixel color components are segregated; corre
sponding color-channel values are stored together, and the palette looks like it

38 OVERVIEW

is made up of three single-channel palettes, one for each color channel. This
corresponds to the way pixel values are arranged in the file (i.e., as multiple
color planes):

(RRRRR ••• GGGGG ••• BBBBB) or (BBBBB ••• GGGGG ••• RRRRR)

Thus, a small palette might look like this:

(R) (R) (R) (G) (G) (G) (B) (B) (B)

or:

(B) (B) (B) (G) (G) (G) (R) (R) (R)

Although this may look like a single palette containing three color planes, it is
usually best to visualize it as three separate palettes, each containing a single
color plane. This way you will have no trouble calling the first item in each
color plane element zero.

It should be clear from the above discussion that both single- and multi
channel palettes can be pixel- or plane-oriented. For instance:

• A single-channel pixel-oriented palette contains one pixel value per ele
ment.

• A multi-channel pixel-oriented palette also contains one pixel per element,
but each pixel contains two or more color channels of data.

• A single-channel plane-oriented palette contains one pixel per index and
one bit per plane.

• A multi-channel plane-oriented palette contains one color channel value
per element.

Figure 2-5 illustrates these different types of palettes.

As noted above, the number of elements in a palette is usually a power of two
and typically corresponds to the maximum number of colors contained in the
image, which is in turn reflected in the size of the pixel value in the file. For
example, an 8-bit pixel value can represent 256 different colors and is accom
panied by a 256-element palette. If an image has fewer colors than the maxi
mum size of the palette, any unused elements in the palette will ideally be set
to zero. Several formats, most notably CGM and TGA, have the ability to vary
the number of elements in the palette as needed. If a TGA image contains only
57 colors, for instance, it may have only a 57-element palette.

It is also interesting to note that the usable elements in a palette are not always
contiguously arranged, are not always ordered, and do not always start with the
zero index·value filled. A 2-color image with a 256-color palette (yes, it's been
done) may have its colors indexed at locations 0 and 1, 0 and 255, 254 and

COMPUTER GRAPHICS BASICS 39

0 Single-channel, pixel-oriented palette

Plxel2

G Single-channel, plane-oriented palette

Plane 1/'
/

Plane o

FIGURE 2-5: Types of palettes

G Multiple-channel, pixel-oriented palette

Pixel 0 Plxel1 Pixel 2

~l lliTI
G Multiple-channel, plane-oriented palette

Red Plane

255, or even 47 and 156. The locations are determined by the software writing
the image file and therefore ultimately by the programmer who created the
software application. (We choose not to comment further.)

Examples of palettes
Let's look at a few examples of palettes. The simplest IS the 2-color, or
monochrome, pale tte:

/* A BYTE is an 8- b it character */
typedef struct _ MonoPalette
(

BYTE Color [2];
MONO_ PALETTE;

MONO_PALETTE Mono ({OxOO, OxOl} };

40 OVERVIEW

In this example, we see a 2-element array containing the color values OxOO and
Ox01 in elements 0 and 1 respectively. In the file, all pixel values are indices. A
pixel with a value of 0 serves as an index to the color represented by the value
OxOO. Likewise, a pixel with a value of 1 serves as an index to the color repre
sented by the value OxOl. Because this bitmap contains only two colors, and
each pixel color may be represented by a single bit, it may seem easier to store
these values directly in the bitmap as bit values rather than use a palette. It is
easier, of course, but some palette-only formats require that this .type of palette
be present even for monochrome bitmaps.

This is a more practical example, a 16-element palette used to map a gray-scale
palette:

/* A BYTE is an 8-bit character */
typede£ struct _GrayPalette
{

BYTE Color[16];
GRAY_PALETTE;

GRAY_PALETTE Gray =
{

} i

{OxOO,
Ox14,
Ox20,
Ox2c,
Ox38,
Ox45,
OxSl,
Ox61,
Ox71,
Ox82,
Ox92,
Ox92,
Oxa2,
Oxb6,
Oxcb,
Oxe3,
Ox££}

Notice in these two examples that each color element is represented by a sin
gle value, so this is a single-channel palette. We could just as easily use a 3-chan
nel palette, representing each gray color element by its RGB value.

typedef struct _RGB
{

BYTE Red; /* Red channel value */
BYTE Green; I* Green channel value */
BYTE Blue; /* Blue channel value */

RGB;

COMPUTER GRAPHICS BASICS 41

RGB Gray(16] ::::

{

{OxOO, OxOO, OxOO},
{0x14, Ox14, Ox14},
{Ox20, Ox20, Ox20},
{Ox2c, Ox2c, Ox2c},
{Ox38, Ox38, Ox38},
(Ox45, Ox45, Ox45},
(Ox51, Ox51, Ox51},
{Ox61, Ox61, Ox61},
(0x71, Ox71, Ox71},
{Ox82, Ox82, Ox82},
{Ox92, Ox92, Ox92},
{Oxa2, Oxa2, Oxa2},
{Oxb6, Oxb6, Oxb6},
(Oxcb, Oxcb, Oxcb},
(Oxe3, Oxe3, Oxe3},
(Ox££, Oxff, Oxff}

} ;

This last example is an example of a pixel-oriented multi-channel palette. We
can alter it to store the color information in a plane-oriented fashion like this:

TYPEDEF struct _PlanePalette
{

BYTE
BYTE
BYTE

Red(16];
Green(16];
Blue(16];

PLANE_PALETTE;

I* Red plane values *I
I* Green plane values *I
I* Blue plane values *I

PLANE_PALETTE Planes
(

} ;

(OxOO, Ox14, Ox20, Ox2c, Ox38, Ox45, Ox51, Ox61, /* Red plane */
Ox71, Ox82, Ox92, Oxa2, Oxb6, Oxcb, Oxe3, Oxff},
(OxOO, Ox14, Ox20, Ox2c, Ox38, Ox45, Ox51, Ox61, /* Green plane */
Ox71, Ox82, Ox92, Oxa2, Oxb6, Oxcb, Oxe3, Oxff},
{OxOO, Ox14, Ox20, Ox2c, Ox38, Ox45, Ox51, Ox61, I* Blue plane *I
Ox71, Ox82, Ox92, Oxa2, Oxb6, Oxcb, Oxe3, Oxff}

Finally, let's look at a real-world example, the IBM VGA palette in wide use. This
256-color palette contains a 16-color sub-palette (the "EGA palette"), a 16-ele
ment gray-scale palette, and a palette of 24 colors, each with nine different
variations of saturation and intensity. Notice that the last eight elements of the
palette are not used and are thus set to zero:

struct _VgaPalette
(

BYTE Red;
BYTE Green;
BYTE Blue;

VGA_PALETTE;

42 OVERVIEW

VGA_PALETTE VgaColors[256]
{

I* EGA Color Table *I
{OxOOI OxOOI OxOO} 1 {OxOOI Ox001 Oxaa} 1
{OxOOI Oxaal OxOO} I {OxOOI Oxaal Oxaa} 1
{Oxaal Ox001 OxOO} 1 {Oxaal OxOOI Oxaa} 1
{Oxaal OxSS1 OxOO} I {Oxaal Oxaal Oxaa} 1
.{Ox551 Ox551 Ox55}, {Ox551 Ox551 Oxff} 1
{Ox55 1 Oxff, Ox55}, {OxSS, Oxff, Oxff},
{Oxff, OxSS1 Ox55} I {Oxff, .Ox55, Oxff} 1
{Oxffl Oxff1 OxSS}, {Oxff, Oxff, Oxff} 1

I* Gray Scale Table *I
{OxOO, Ox001 OxOO}I {Ox14, Ox141 Oxl4} 1
{Ox20 1 Ox201 Ox20} I {Ox2c 1 Ox2c 1 Ox2c} 1
{Ox38, Ox381 Ox38} 1 {Ox451 Ox451 Ox45},
{0x51, OxSl1 Ox51}, {Ox61 1 Ox61 1 Ox61} 1
{0x711 Ox711 Ox71} 1 {Ox821 Ox821 Ox82},
{Ox921 Ox921 Ox92}, {Oxa21 Oxa21 Oxa2} 1
{Oxb61 Oxb61 Oxb6} I {0xcb1 Oxcb1 Oxcb} 1
{Oxe31 Oxe31 Oxe3}, {Oxff1 Oxff, Oxff},

I* 24-color Table *I
{OxOO, OxOO, Oxff} 1 {Ox41, OxOO, Oxff} 1
{Ox7dl OxOOI Oxff} 1 {Oxbe, OxOO, Oxff}l
{Oxffl OxOO, Oxff} 1 {Oxffl OxOO, Oxbe}l
{Oxff 1 Ox001 Ox7d}, {Oxff, OxOO, Ox41}1
{Oxffl Ox001 Ox00} 1 {Oxffl Ox411 OxOO}~

{Oxffl Ox?d1 OxOO}, {Oxff, Oxbe, OxOO}I
{Oxff, Oxff1 Ox00} 1 {Oxbe, Oxff, OxOO}I
{Ox7d, Oxff1 OxOO}, {Ox41, Oxff, OxOO}~

{OxOOI Oxff1 ·oxOO}, {OxOO, Oxff, Ox41} 1
{OxOO, Oxff1 Ox7d}, {Ox00 1 Oxff, Oxbe} 1
{OxOO, Oxff1 Oxff}, {OxOO, Oxbe, Oxff},
{OxOO, Ox7dl Oxff}, {OxOOI Ox41 1 Oxff},
{Ox7d, Ox7d, Oxff}, {Ox9el Ox7d, Oxff} 1
{Oxbe, Ox7dl Oxff}, {Oxdfl Ox7d, Oxff} 1
{Oxffl Ox7dl Oxff} 1 {Oxffl Ox?d1 Oxdf} 1
{Oxff, Ox7dl Oxbe}, {Oxff1 Ox7d, Ox9e}l
{Oxff, Ox7dl Ox7d} 1 {Oxff1 Ox9e, Ox7d} 1
{Oxffl Oxbel Ox7d}, {Oxff, Oxdf, Ox7d} 1
{Oxff, Oxff1 Ox7d} 1 {Oxdf, Oxff, Ox7d} 1
{Oxbe, Oxff1 Ox7d} 1 {Ox9e, Oxff1 Ox7d} 1
{Ox7dl Oxff, Ox7d}, {0x7d, Oxff, Ox9e}l
{Ox7dl Oxff1 Oxbe} I {Ox7d1 Oxff, Oxdf} 1
{Ox7d, Oxff, Oxff} 1 {Ox7d, Oxdf, Oxff} 1
{Ox?d1 Oxbe1 Oxff}, {Ox7d, Ox9e, Oxff},
{Oxb6, Oxb6 1 Oxff} 1 {Oxc7, Oxb6 1 Oxff}l
{Oxdb, Oxb6 1 Oxff}, {Oxeb, Oxb61 Oxff},
{Oxff, Oxb61 Oxff}, {Oxff, Oxb6, Oxeb},
{Oxffl Oxb61 Oxdb}, {Oxff, Oxb61 Oxc7} 1
{Oxff, Oxb61 Oxb6}, {Oxff, Oxc7, Oxb6} I

{Oxff, Oxdb, Oxb6} 1 {Oxffl Oxeb, Oxb6} I
{Oxffl Oxff1 Oxb6}, {Oxeb, Oxff1 Oxb6} I

COMPUTER GRAPHICS BASICS 43

{Oxdb, Oxff, Oxb6}, {Oxc7, Oxff, Oxb6},
{Oxb6, Oxdf, Oxb6}, {Oxb6, Oxff, Oxc7},
{Oxb6, Oxff, Oxdb}, {Oxb6, Oxff, Oxeb},
{Oxb6, Oxff, Oxff}, {Oxb6, Oxeb, Oxff},
{Oxb6, Oxdb, Oxff}, (Oxb6, Oxc7, Oxff},
(OxOO, Ox001 Ox71}, (Oxlcl Ox001 Ox71} 1
{Ox381 Ox001 Ox71}, (OxSSI Ox001 Ox71} 1
(Ox711 OxOOI Ox71}, (Ox71, Ox001 OxSS} 1
{Ox711 Ox001 Ox38}, (Ox71 1 OxOO, Oxlc} 1
{Ox71 1 OxOO, OxOO}, (Ox711 Oxlcl OxOO},
{Ox711 Ox381 OxOO}, {0x71, OxSS1 OxOO} 1
{Ox711 Ox711 OxOO} 1 {OxSS, Ox711 OxOO} 1
{Ox381 Ox71 1 OxOO} 1 {Oxlcl Ox711 OxOO} 1
{OxOOI Ox711 OxOO}, {OxOO, Ox711 Oxlc} 1
{OxOOI Ox711 Ox38} 1 {OxOO, Ox71 1 OxSS} 1
(OxOO, Ox71, Ox71}, {OxOO, OxSS1 Ox71} 1
{OxOOI Ox381 Ox71}, (OxOOI Oxlc1 Ox71},
(Ox381 Ox381 Ox71} 1 (Ox451 Ox381 Ox71} 1
(OxSS, Ox381 Ox71} 1 {Ox611 Ox381 Ox71},
(Ox71, Ox381 Ox71}, {Ox711 Ox381 Ox61},
{Ox711 Ox381 OxSS} 1 {Ox711 Ox381 Ox45},
{Ox711 Ox381 Ox38} 1 {Ox711 Ox451 Ox38},
{Ox711 OxSS, Ox38}, {Ox711 Ox61, Ox38},
{0x71 1 Ox71 1 Ox38}, {Ox61 1 Ox71 1 Ox38} 1
{OxSS, Ox711 Ox38}, {Ox451 Ox71, Ox38} 1
{Ox381 Ox71 1 Ox38}, {Ox381 Ox71, Ox45} 1
{Ox381 Ox711 OxSS} 1 '{Ox38 1 Ox711 Ox61} 1
{Ox38 1 Ox71 1 Ox71} 1 {Ox381 Ox6l1 Ox71} 1
{Ox381 OxSS1 Ox71}, {0x38 1 Ox451 Ox71} 1
{OxSll OxSl1 Ox71}, {Ox591 OxSl, Ox71},
{Ox61, OxSl1 Ox71}, {Ox69, OxSl, Ox71},
{Ox71, OxSl, Ox71}, {Ox71, OxSl1 Ox69},
{Ox711 OxSl, Ox61} 1 {Ox71, OxSl, Ox59},
(Ox711 OxSl1 Ox51}, {0x711 Ox591 Ox51},
(Ox711 Ox6l1 Ox51}, {Ox711 Ox69, Ox51},
{Ox711 Ox71, Ox51}, {Ox69, Ox71, OxSl},
{Ox611 Ox711 Ox51} 1 {Ox591 Ox71 1 OxSl} I

{Ox51 1 Ox711 Ox51} 1 (OxSll Ox711 Ox59}1
{Ox51 1 Ox711 Ox61} 1 {OxSll Ox711 Ox69},
{Ox51 1 Ox711 Ox71} 1 {Ox51 1 Ox691 Ox71} 1
{OxSll Ox6l1 Ox71} 1 {OxSll Ox591 Ox71} 1
{OxOOI Ox001 Ox41} 1 {OxlOI Ox001 Ox41} 1
{Ox201 Ox001 Ox41} 1 {Ox301 Ox001 Ox41},
{Ox41 1 Ox001 Ox41} 1 {Ox411 Ox001 Ox30} 1
{Ox41 1 OxOOI Ox20} 1 {0x411 Ox001 OxlO},
{Ox411 Ox001 OxOO} 1 {Ox411 Oxl01 OxOO},
{Ox411 Ox201 OxOO}, {Ox411 Ox301 OxOO} 1
{Ox411 Ox411 OxOO} 1 {Ox301 Ox411 OxOO} 1
{0x20, Ox41 1 OxOO} 1 {OxlO, Ox41, OxOO} 1
{OxOOI Ox411 OxOO} 1 {OxOOI Ox411 OxlO} 1
{OxOOI Ox411 Ox20} 1 {OxOO, Ox411 Ox30} 1
{OxOOI Ox411 Ox41} 1 {OxOOI Ox301 Ox41} 1
{OxOOI Ox20 1 Ox41} 1 {OxOOI Oxl01 Ox41},
{Ox201 Ox201 Ox41} 1 {Ox281 Ox20, Ox41} 1

44 OVERVIEW

{0x301 Ox201 Ox41} I {Ox38 1 Ox201 Ox41} 1
{Ox41 1 Ox201 Ox41} 1 {0x411 Ox20 1 Ox38} 1
{Ox411 Ox201 Ox30} 1 {Ox411 Ox201 Ox28},
{Ox411 Ox20 1 Ox20} 1 {Ox411 Ox281 Ox20} I

{Ox411 Ox30 1 Ox20} I {Ox41 1 Ox381 Ox20} I

{Ox411 Ox411 Ox20} 1 {Ox381 Ox411 Ox20} I

{Ox301 Ox411 Ox20} 1 {Ox281 Ox41 1 Ox20} I

{Ox20 1 Ox411 Ox20}, {Ox201 Ox41 1 Ox28} 1
{Ox201 Ox411 Ox30} 1 {Ox20 1 Ox41 1 Ox38} 1
{Ox20 1 Ox411 Ox41} 1 {Ox201 Ox38 1 Ox41} 1
{Ox201 Ox301 Ox41} 1 {Ox20 1 Ox281 Ox41} 1
{Ox2cl Ox2cl Ox41} I {0x301 Ox2cl Ox41} 1
{Ox341 Ox2cl Ox41} 1 {Ox3cl Ox2c 1 Ox41} 1
{Ox411 Ox2cl Ox41} 1 {Ox411 Ox2c 1 Ox3c} 1
{0x41 1 Ox2cl Ox34} 1 {Ox411 Ox2c 1 Ox30},
{Ox411 Ox2c, Ox2c} 1 {Ox411 Ox301 Ox2c} 1
{Ox41, Ox34, Ox2c} 1 {Ox411 Ox3cl Ox2c} 1
{Ox411 Ox41, Ox2c} 1 {Ox3cl Ox4fl Ox2c} 1
{Ox34, Ox411 Ox2c} I {Ox301 Ox411 Ox2c},
{Ox2c, Ox41, Ox2c} 1 {Ox2cl Ox411 Ox30} 1
{Ox2cl Ox411 Ox34} 1 {Ox2cl Ox411 Ox3c} 1
{Ox2c, Ox411 Ox41} 1 {Ox2cl Ox3cl Ox41},
{Ox2cl Ox341 Ox41} 1 {Ox2cl Ox301 Ox41} 1
{OxOOI Ox001 OxOO}, {OxOOI Ox001 OxOO} 1
{Ox00 1 Ox001 OxOO} I {OxOOI Ox001 OxOO} 1
{OxOOI Ox001 OxOO} 1 {OxOOI OxOOI OxOO} 1
{OxOOI OxOOI OxOO}, {OxOOI Ox00 1 OxOO}
} ;

Color
Understanding how colors are defined in graphics data is important to under-
standing graphics file formats. In this section, we touch on some of the many
factors governing how colors are perceived. This is by no means a comprehen-
sive discussion. We just want to make sure that you have an appreciation of
some of the problems that come up when people start to deal with color.

How We See Color

The eye has a finite number of color receptors that, taken together, respond to
the full range of light frequencies (about 380 to 770 nanometers). As a result,
the eye theoretically supports only the perception of about 10,000 different
colors simultaneously (although, as we have mentioned, many more colors
than this can be perceived, though not resolved simultaneously).

The eye is also biased to the kind of light it detects. It's most sensitive to green
light, followed by red, and then blue. It's also the case that the visual percep
tion system can sense contrasts petween adjacent colors more easily than it can

COMPUTER GRAPHICS BASICS 45

sense absolute color differences, particularly if those colors are physically sepa
rated in the object being viewed. In addition, the ability to discern colors varies
from person to person; it's been estimated that one out of every twelve people
has some form of color blindness.

Furthermore, the eye is limited in its ability to resolve the color of tiny objects.
The size of a pixel on a typical CRT display screen, for example, is less than a
third of a millimeter in diameter. When a large number of pixels are packed
together, each one a different color, the eye is unable to resolve where one
pixel ends and the next one begins from a normal viewing distance. The brain,
however, must do something to bridge the gap between two adjacent differ
ently colored pixels and will integrate, average, ignore the blur, or otherwise
adapt to the situation. For these reasons and others, the eye typically perceives
many fewer colors than are physically displayed on the output device.

How a color is created also plays an important role in how it is perceived. Nor
mally, we think of colors as being associated with a single wavelength of light.
We know, however, that two or more colors can be mixed together to produce
a new color. An example of this is mixing green and red light to produce yel
low light, or mixing yellow and blue pigments to produce green pigment. This
mixing of colors can also occur when an object is illuminated by light. The
color of the object will always mix with the color of the light to produce a third
color. A blue object illuminated by white light appears blue, while the same
object illuminated by red light will appear violet in color.

One implication of this is that the same image rendered to two different
devices will look different. Two different color monitors, for example, seldom
produce identically perceived images, even if the monitors are the same make
and model. Another implication is that images rendered to different types of
devices will look different. An example is the difference between an image ren
dered to a monitor and one rendered to a color hardcopy device. Although
there are numerous schemes designed to minimize color-matching problems,
none is wholly satisfactory.

For these and other reasons, the accurate rendition of color is full of difficul
ties, and much work continues to be done. Although a number of mechanical
devices have recently appeared on the market, they are for the most part
designed to work with one type of output device. The ultimate arbiter of color
quality will always be the person who views the image on the output device.

46 OVERVIEW

How Colors Are Represented

Several different mathematical systems exist which are used to describe colors.
This section describes briefly the color systems most commonly used in the
graphics file formats described in this book.

NOTE

Keep in mind that perception of color is affected by physiology,
experience, and viewing conditions. For these reasons, no sys
tem of color representation has yet been defined, or indeed is
likely to be, which is satisfactory under all circumstances.

For purposes of discussion here, colors are always represented by numerical
values. The most appropriate color system to use depends upon the type of
data contained in the file. For example, 1-bit, gray-scale, and color data might
each best be stored using a different color model.

Color systems used in graphics files are typically of the trichromatic colorimetric
variety, otherwise known as primary 3-color systems. With such systems, a color is
defined by specifying an ordered set of three values. Composite colors are cre
ated by mixing varying amounts of three primary colors, which results in the cre
ation of a new color. Primary colors are those which cannot be created by
mixing other colors. The totality of colors that can be created by mixing pri
mary colors make up the color space or color gamut.

Additive and subtractive color systems
Color systems can be separated into two categories: additive color systems and
subtractive color systems. Colors in additive systems are created by adding colors
to black to create new colors. The more color that is added, the more the
resulting color tends towards white. The presence of all the primary colors in
sufficient amounts creates pure white, while the absence of all the primary col
ors creates pure black. Additive color environments are self-luminous. Color
on monitors, for instance, is additive.

Color subtraction works in the opposite way. Conceptually, primary colors are
subtracted from white to create new colors. The more color that is subtracted,
the more the resulting color tends towards black. Thus, the presence of all the
primary colors theoretically creates pure black, while the absence of all pri
mary colors theoretically creates pure white. Another way of looking at this
process is that black is the total absorption of all light by color pigments. Sub
tractive environments are reflective in nature, and color is conveyed to us by
reflecting light from an external source. Any color image reproduced on paper
is an example of the use of a subtractive color system.

COMPUTER GRAPHICS BASICS 47

No color system is perfect .. As an example, in a subtractive color system the
presence of all colors creates black, but in real-life printing the inks are not
perfect. Mixing all ink colors usually produces a muddy brown rather than
black. The blacks we see on paper are only approximations of the mathemati
cal ideal, and likewise for other colors.

The next few sections describe some common color systems. Table 2-1 shows
corresponding values for the primary and achromatic colors using the RGB,
CMY, and HSV color systems.

RGB (Red-Green-Blue)
RGB is perhaps the most widely used color system in image formats today. It is
an additive system in which varying amounts of the colors red, green, and blue
are added to black to produce new colors. Graphics files using the RGB color
system represent each pixel as a color triplet-three numerical values in the
form (R,G,B), each representing the amount of red, green, and blue in the
pixel, respectively. For 24-bit color, the triplet (0,0,0) normally represents
black, and the triplet (255,255,255) represents white. When the three RGB val
ues are set to the same value-for example, (63,63,63) or (127,127,127), or
(191,191,191)-the resulting color is a shade of gray.

TABLE 2-1: EquivalentRGB, CMY, andHSVvalues

RGB CMY HSV

Red 255,0,0 0,255,255 0,240,120

Yellow 255,255,0 0,0,255 40,240,120

Green 0,255,0 255,0,255 80,240,120

Cyan 0,255,255 255,0,0 120,240,120

Blue 0,0,255 255,255,0 160,240,120

Magenta 255,0,255 0,255,0 200,240,120

Black 0,0,0 255,255,255 160,0,0

Shades of Gray 63,63,63 191,191,191 160,0,59
of 127,127,127 127,127,127 160,0,120
Gray 191,191,191 63,63,63 160,0,180

White 255,255,255 0,0,0 160,0,240

48 OVERVIEW

CMY (Cyan-Magenta-Yellow)
CMY is a subtractive color system used by printers and photographers for the
rendering of colors with ink or emulsion, normally on a white surface. It is
used by most hard-copy devices that deposit color pigments on white paper,
such as laser and inkjet printers. When illuminated, each of the three colors
absorbs its complementary light color. Cyan absorbs red; magenta absorbs
green; and yellow absorbs blue. By increasing the amount of yellow ink, for
instance, the amount of blue in the image is decreased.

As in all subtractive systems, we say that in the CMY system colors are subtracted
from white light by pigments to create new colors. The new colors are the
wavelengths of light reflected, rather than absorbed, by the CMY pigments. For
example, when cyan and magenta are absorbed, the resulting color is yellow.
The yellow pigment is said to "subtract" the cyan and magenta components
from the reflected light. When all of the CMY components are subtracted, or
absorbed, the resulting color is black. Almost. Whether it's possible to get a
perfect black is debatable. Certainly, a good black color is not obtainable with
out expensive inks.

In light of this, the CMY system has spawned a practical variant, CMYK, with K
standing for the color black. To compensate for inexpensive and off
specification inks, the color black is tacked onto the color system and treated
something like an independent primary color variable. For this reason, use of
the CMYK. scheme is often called 4-color printing, or process color. In many sys
tems, a dot of composite color is actually a grouping of four dots, each one of
the CMYK. colors. This can be readily seen with a magnifying lens by examining
a color photograph reproduced in a glossy magazine.

CMYK. can be represented as either a color triple, like RGB, or as four values. If
expressed as a color triple, the individual color values are just the opposite of
RGB. For a 24-bit pixel value, for example, the triplet (255,255,255) is black,
and the triplet (0,0,0) is white. In most cases, however, CMYK is expressed as a
series of four values.

In many real-world color composition systems, the four CMYK color compo
nents are specified as percentages in the range ofO to 100.

HSV (Hue, Saturation, and Value)
HSV is one of many color systems that vary the degree of properties of colors to
create new colors, rather than using a mixture of the colors themselves. Hue
specifies "color" in the common use of the term, such as red, orange, blue, and
so on. Saturation (also called chroma) refers to the amount of white in a hue;

COMPUTER GRAPHICS BASICS 49

a fully (100 percent) saturated hue contains no white and appears pure. By
extension, a partly saturated hue appears lighter in color due to the admixture
of white. Red hue with 50 percent saturation appears pink, for instance. Value
(also called brightness) is the degree of self-luminescence of a color-that is,
how much light it emits. A hue with high intensity is very bright, while a hue
with low intensity is dark.

HSV (also called HSB for Hue, Saturation, and Brightness) most closely resem
bles the color system used by painters and other artists, who create colors by
adding white, black, and gray to pure pigments to create tints, shades, and
tones. A tint is a pure, fully saturated color combined with white, and a shade is
a fully saturated color combined with black. A tone is a fully saturated color
with both black and white (gray) added to it. If we relate HSV to this color mix
ing model, saturation is the amount of white, value is the amount of black, and
hue is the color that the black and white are added to.

The HLS (Hue, Lightness, and Saturation) color model is closely related to
HSV and behaves in the same way.

There are several other color systems that are similar to HSV in that they create
color by altering hue with two other values. These include:

• HSI (Hue, Saturation, and Intensity)

• HSL (Hue, Saturation, and Lu~inosity)

• HBL (Hue, Brightness, and Luminosity)

None of these is widely used in graphics files.

YUV (Y-signal, U-signal, and V-signal)
The YUV model is a bit different from the other colorimetric models. It is basi
cally a linear transformation of RGB image data and is most widely used to
encode color for use in television transmission. (Note, however, that this trans
formation is almost always accompanied by a separate quantization operation,
which introduces nonlinearities into the conversion.) Y specifies gray scale or
luminance. The U and V components correspond to the chrominance (color
information). Other color models based on YUV include YCbCr and YPbPr.

Black, White, and Gray
Black, white, and gray are considered neutral (achromatic) colors that have no
hue or saturation. Black and white establish the extremes of the range, with
black having.minimum intensity, gray having intermediate intensity, and white
having maximum intensity. One can say that the gamut of gray is just a specific
slice of a color space, each of whose points contains an equal amount of the
three primary colors, has no saturation, and varies only in inten~ity.

50 OVERVIEW

White, for convenience, is often treated in file format specifications as a pri
mary color. Gray is usually treated the same as other composite colors. An 8-bit
pixel value can represent 256 different composite colors or 256 different
shades of gray. In 24-bit RGB color, (12,12,12), (128,128,128), and
(199,199, 199) are all shades of gray.

Overlays and Transparency
Certain file formats are designed to support the storage of still images cap
tured from video sources. In practice, images of this sort are often overlaid on
live video sources at render time. This is a familiar feature of conventional
broadcast television, where still images are routinely shown next to live readers

· on the evening news.

Normal images are opaque, in the sense that no provision is made to allow the
manipulation and display of multiple overlaid images. To allow image overlay,
some mechanism must exist for the specification of transparency on a per
image, per-strip, per-tile, or per-pixel basis. In practice, transparency is usually
controlled through the addition of information to each element of the pixel
data.

The simplest way to allow image overlay is the addition of an overlay bit to each
pixel value. Setting the overlay bit in an area of an image allows the rendering
application or output device to selectively ignore those pixel values with the bit
set. An example is the 16-bit variant of the TGA format, which supports data in
the format:

(15 bits) = (R,G,B) = (5 bits, 5 bits, 5 bits)

Actually, this 15-bit pixel value is stored in 16 bits; an extra bit is left over which
can be used to support the overlaying of images:

(R,G,B,T) = (16 bits) = (5 bits, 5 bits, 5 bits, 1 bit overlay)

The image creator or rendering application can toggle the overlay bit, which is
interpreted by the display hardware as a command to ignore that particular
pixel. In this way, two images can be overlaid, and the top one adjusted to allow
holes through which portions of the bottom image are visible.

This technique is in widespread, but not obvious, use. A rendering application
can selectively toggle the overlay bit in pixel values of a particular color. More
to the point, the application can tum off the display of any area of an image
that is not a particular color. For example, if a rendering application encoun
ters an image of a person standing in front of a contrasting, uniformly colored

COMPUTER GRAPHICS BASICS 51

and lighted screen, the application can toggle the overlay bits on all the pixel
values that are the color of the screen, leaving an image of the person cut out
from the background. This cut-out image can then be overlaid on any other
image, effectively adding the image of the person to the bottom image.

This assumes, of course, that the color of the screen is different from any col
ors in the person portion of the image. This is often how broadcast television
weather reporters are overlaid on background maps and displays, for instance.
Certain conventions inherited from traditional analog broadcasting technol
ogy are in widespread use in the broadcasting industry, including the use of a
particular blue shade for background screens. When used in this way, the pro
cess is called chromakeying.

A more elaborate mechanism for specifying image overlays allows variations in
transparency between bottom· and overlaid images. Instead of having a single
bit of overlay information, each pixel value has more (usually eight bits). An
example is the 32-bit variant of the TGA format, which also supports data in the
format:

. (24 bits) = (R,G,B) = (8 bits, 8 bits, 8 bits)

Because this 24-bit pixel value is stored in 32 bits, an extra eight bits are left
over to support transparency:

(R,G,B,T) = (8 bits, 8 bits, 8 bits, 8 bits transparency)

The eight transparency bits are sometimes called the alpha channel. Although
there are some complications in the TGA format, an ideal 8-bit alpha channel
can support 256 levels of transparency, from zero (indicating that the pixel is
meant to be completely transparent~ to 255 (indicating that the pixel is meant
to be opaque).

Transparency data is usually stored as part of the pixel data, as in the example
above, but it may also appear as a fourth plane, stored the same way as palette
data in planar format files. It can, however, be stored as a separate block, inde
pendent of other image and palette information, and with the same dimen
sions as the actual image. This allows manipulation of the transparency data
independent of the image pixel data.

ForFurtherhUonnation
In this chapter, we have been able to touch upon only a small part of the sci
ence of computer graphics and imaging. For additional information, see the
references cited below.

52 OVERVIEW

Books About Computer Graphics

The following books are some of the best texts available on the subject of com
puter graphics. Many of them contain detailed chapters on specific application
areas, such as imaging, ray tracing, animation, art, computer-aided design, and
3D modeling.

Artwick, Bruce A., Applied Concepts in Microcomputer Graphics,
Prentice-Hall, Englewood Cliffs, NJ, 1984.

Conrac Corporation, Raster Graphics Handbook, second edition,
Van Nostrand Reinhold Company, New Yor~, NY, 1985.

Foley, James. D., Andries van Dam, S.K Feiner, and]. F. Hughes,
Computer Graphics: Principles and Practice, second edition, Addison
Wesley, Reading, MA, 1990.

Hearn, Donald and M. Pauline Baker, Computer Graphics, Pren
tice-Hall, Englewood Cliffs, NJ, 1986.

Netravali; Arun N. and Barry G. Haskell, Digital Pictures: Represen
tation and Compression, Plenum Press, New York, NY, 1988.

Newman, William N. and Robert F. Sproull, Principles of Interactive
Computer Graphics, second edition, McGraw Hill, New York, NY,
1973.

Rogers, David F. and J. Alan Adams, Mathematical Elements for Com
puter Graphics, second edition, McGraw Hill, New York, NY, 1990.

Rogers, David F., Procedural Elements for Computer Graphics,
McGraw Hill, New York, NY, 1985.

Rosenfeld, Azriel and Avinash C. Kah, Digital Picture Processing,
second edition, Academic Press, San Diego, CA, 1982.

Sharpe, L., "Tiling: Turning Unwieldy Drawings into Neat Little
Packets," Inform, Association for Image and Information Manage
ment, March 1989.

Watt, Alan, Fundamentals of Three-Dimensional Computer Graphics,
Addison-Wesley, Reading, MA, 1989.

Books About Color and Colorimetry

The following books are excellent reference works on color, its measurement,
and its effects on the human psycho-biological system.

COMPUTER GRAPHICS BASICS 53

Benson, K Blair, Television Engineering Handbook, second edition,
McGraw Hill, New York, NY, 1986.

Billmeyer, Fred W. and Max Saltzman, Principles of Color Technol
ogy, second edition,John Wiley & Sons, New York, NY, 1981.

De Gran dis, Luigina, Theory and Use of Color, translated by John
Gilbert, Harry N. Abrams, Inc., New York, NY, 1986.

Foley, James. D., Andries van Dam, S.K Feiner, andJ.F. Hughes,
Computer Graphics: Principles and Practice, second edition, Addison
Wesley, Reading, MA, 1990.

Hunt, R.W.G., Measuring Color, second edition, E. Horwood, New
York, NY, 1991.

Hunt, R. W.G., The Reproduction of Color, third edition, John Wiley
& Sons, New York, NY, 1975.

Hunt, R.W.G., The Reproduction of Color in Photography, Printing and
Television, Fountain Press, Tolworth, England, 1987. ·

Judd, Deane B., Color in Business, Science, and Industry, third edi
tion,John Wiley & Sons, New York, NY, 1975.

Kueppers, Harald, Color; Origin, Systems, Uses, translated by
Bradley, F., Von Nostrand Reinhold Ltd., London, England,
1973.

Optical Society of America, Committee on Colorimetry, The Sci
ence of Color, Washington, DC, 1963.

Wyszecki, Gunter and W.S. Stiles, Color Science: Concepts and Meth
ods, Quantitative Data and Fonnulae , second edition, John Wiley &
.Sons, New York, NY, 1982.

54 OVERVIEW

CHAPTER 31

Bitmap Files

Bitmap files vary greatly in their details, but they all share the same general
structure. This chapter looks at the components of a typical bitmap file. Later
on in this chapter we'll get into explanations of the details, but for now let's
just get a feel for the overall structure. We'll explain as necessary as we go
along.

Bitmap files consist of a header, bitmap data, and other information, which
may include a color palette and other data.

A warning: inexplicably, people continue to design applications which use what
are sometimes called raw formats. Raw format files consist solely of image data
and omit any clues as to their structure. Both the creator of such files and the
rendering applications must somehow know, ahead of time, how the files are
structured. Because you usually can't tell one raw format file from another
(except perhaps, by examining their relative sizes), we'll confine our discus
sion in this chapter to bitmap files, which at least contain headers.

How Bitmap Files Are Organized
The basic components of a simple bitmap file are the following:

Header

Bitmap Data

If ·a file contains no image data, only a header will be present. If additional
information is required that does not fit in the header, a footer will usually be
present as well:

BITMAP FILES 55

Header

Bitmap Data

Footer

An image file may store a palette in the header, but it will more likely appear
immediately after the header:

Header

Palette

Bitmap Data

Footer

A palette can also appear immediately after the image data, like a footer, or be
stored in the footer itself:

Header

Bitmap Data

Palette

Scan-line tables and color correction tables may also appear after the header and
before or after the image data:

Header

Palette

Scan Line Table

Color Correction Table (here)

Bitmap Data

Color Correction Table (or here)

Footer

If an image file format is capable of holding multiple images, then an image file
index may appear after the header, holding the offset values of the starting posi
tions of the images in the file:

56 OVERVIEW

Header

Palette

Bitmap Index.

Bitmap 2 Data

...
Bitmap n Data

Footer

If the format definition allows each image to have its own palette, the palette
will most likely appear before the image data with which it is associated:

Header

Palette

Bitmap Index

Palette 1

Bitmap Data

Palette 2

Bitmap 2 Data

...
Palette n

Bitmap n Data

Footer

We'll now look at the parts of a bitmap file piece by piece.

Header
The header is a section of binary- or ASCI/format data normally found at the
beginning of the file, containing information about the bitmap data found
elsewhere in the file. All bitmap files have some sort of header, although the
format of the header and the information stored in it varies considerably from
format to format. Typically, a bitmap header is composed of fixed fields. None
of these fields is absolutely necessary, nor are they found in all formats, but this

BITMAP FILES 57

list is typical of those formats in widespread use today. The following informa
tion is commonly found in a bitmap header:

Header

Palette

Bitmap Index

Palette I

File Identifier

File Version

Number of Lines per Image

Number of Pixels per Line

Number of Bits per Pixel

Number of Color Planes

Compression Type

X Origin of Image

Y Origin of Image

Text Description

Unused Space

Later in this chapter we will present examples of headers from several actual
formats, containing fields similar to those presented above.

File Identifier

A header usually starts with some sort of unique identification value called a file
identifier, file ID, or ID value. Its purpose is to allow a software application to
determine the format of the particular graphics file being accessed.

ID values are often magic values in the sense that they are assigned arbitrarily by
the creator of the file format. They can be a series of ASCII characters, such as
BM or GIF, or a 2- or 4-byte word value, such as 4242h or 596aa695h, or any
other pattern that made sense to the format creator. The pattern is usually
assumed to be unique, even across platforms, but this is not always the case, as
we describe in the next few paragraphs. Usually, if a value in the right place in
a file matches the expected identification value, the application reading the
file header can assume that the format of the image file is known.

58 OVERVIEW

Three circumstances arise, however, which make this less than a hard and fast
rule. Some formats omit the image file identifier, starting off with data that can
change from file to file. In this case, there is a small probability that the data
will accidentally duplicate one of the magic values of another file format
known to the application. Fortunately, the chance of this occurring is remote.

The second circumstance can come about when a new format is created and
the format creator inadvertently duplicates, in whole or in part, the magic val
ues of another format. In case this seems even more unlikely than accidental
duplication, rest assured that it has already happened several times. Probably
the chief cause is that, historically, programmers have borrowed ideas from
other platforms, secure in the belief that their efforts would be isolated behind
the "Chinese Wall" of binary incompatibility. In the past, confusion of formats
with similar ID fields seldom came about and was often resolved by context
when it did happen. Obviously this naive approach by format creators is no
longer a survival skill. In the future, we can expect more problems of this sort
as users, through local area networking and through advances in regional and
global interconnectivity, gain access to data created on other platforms.

This third circumstance comes about when a vendor-either the format cre
ator or format caretaker or a third party-changes, intentionally or uninten
tionally, the specification of the format, while keeping the ID value specified in
the format documentation. In this case, an application can recognize the for
mat, but be unable to read some or all of the data. If the idea of a vendor creat
ing intentional, undocumented changes seems unlikely, rest assured that this,
too, has already happened many times. Examples are the GIF, TIFF, and TGA
file formats. In the case of the GIF and TGA formats, vendors (not necessarily
the format creators) have extended or altered the formats to include new data
types. In the case of TIFF, vendors have created and promulgated what only
can be described as convenience revisions, apparently designed to accommodate
coding errors or application program quirks.

File Version

Following the identification value in the header is usually a field containing
the file version. Naturally enough, successive versions of bitmap formats may
differ in characteristics such as header size, bitmap data supported, and color
capability. Once having verified the file format through the ID value, an appli
cation will typically examine the version value to determine if it can handle the
image data contained in the file.

BITMAP FILES 59

Image Description Infonnation

Next comes a series of fields that describe the image itself. As we will see,
bitmaps are usually organized, either physically or logically, into lines of pixels.
The field designated number of lines per image, also called the image length, image
height, or number of scan lines, holds a value corresponding to the number of
lines making up the actual bitmap data. The number of pixels per line, also called
the image width or scan-line width, indicates the number of pixels stored in each
line.

,
The number of bits per ·pixel indicates the size of the data needed to describe
each pixel per color plane. This may also be stored as the number of bytes per pixe~
and is more properly called pixel depth. Forgetting the exact interpretation of
this field when coding format reaqers is a common source of error. If the
bitmap data is stored in a series of planes, the number of color planes indicates
the number of planes used. Often the value defaults to one. There is an
increasing tendency to store bitmaps in single-plane format, but multi-plane
formats continue to be used in support of special hardware and alternate color
models.

The number of bits in a line of the image can be calculated by multiplying the
values of number of bits per pixe~ number of pixels per line, and number of color planes
together. We can determine the number.ofbytes per scan line by then dividing
the resulting product by eight. Note that there is nothing requiring numbfff of
bits per pixel to be an integral number of 8-bit bytes.

Compression Type

If the format supports some sort of encoding designed to reduce the size of the
bitmap data, then a compression type field will be found in the header. Some for
mats support multiple compression types, including raw or uncompressed data.
Some format revisions consist mainly of additions or changes to the compres
sion scheme used. Data compression is an active field, and new types of com
pression accommodating advances in technology appear with some regularity.
TIFF is one of the common formats which has exhibited this pattern in the
past.

For more information about compression, see Chapter 9, Data Compression.

x andy Origins

x origin of image and y origin of image specify a coordinate pair that indicates
where the image starts on the output device. The most common origin pair is
0,0, which puts one comer of the image at the origin point of the device.
Changing these values normally causes the image to be displayed at a different
location when it is rendered.

6Q OVERVIEW

Most bitmap formats were designed with certain assumptions about the output
device in mind, and thus can be said to model either an actual or virtual device
having a feature called the drawing surface. The drawing surface has an implied
origin, which defines the starting point of the image, and an implied orienta
tion, which defines the direction in which successive lines are drawn as the out
put image is rendered. Various formats and display devices vary in the
positioning of the origin point and orientation direction. Many place the ori
gin in the upper-left corner of the display surface, although it can also appear
in the center, or in the lower-left corner. Others, although this is far less com
mon, put it in the upper- or lower-right corner.

Orientation models with the origin in the upper-left corner are often said to
have been created in support of hardware, and there may be some historical
and real-world justification for this. People with backgrounds in mathematics
and the natural sciences, however, are used to having the origin in the lower
left corner or in the center of the drawing surface. You might find yourself
guessing at the background of the format creator based on the implied origin
and orientation found in the format. Some formats include provisions for the
specification of the origin and orientation.

An image displayed by an application incorporating an incorrect assumption
about the origin point or orientation may appear upside down or backwards,
or may be shifted horizontally some fraction of the width of the drawing sur
face on the output device.

Sometimes the header will contain a text description field, which is a comment
section consisting of ASCII data describing the name of the image, the name of
the image file, the name of the person who created the image, or the software
application used to create it. This field may contain 7-bit ASCII data, for porta
bility of the header information across platforms.

Unused space

At the end of the header may be an unused field, sometimes referred to as
padding, filler, reserved space, or reserved fields. Reserved fields contain no data, are
undocumented and unstructured and essentially act as placeholders. All we
know about them are their sizes and positions in the header. Thus, if the for
mat is altered at some future date to incorporate new data, the reserved space
can be used to describe the format or location of this data while still maintain
ing backward compatibility with programs supporting older versions of the for
mat. This is a common method used to minimize version problems-creating
an initial version based on a fixed header substantially larger than necessary.
New fields can then be added to reserved areas of the header in subsequent
revisions of the format without altering the size of the header.

BITMAP FILES 61

Often format headers are intentionally padded using this method to 128, 256,
or 512 bytes. This has some implications for performance, particularly on
older systems, and is designed to accommodate common read and write buffer
sizes. Padding may appear after the documented fields at the end of the
header, and this is sometimes an indication that the format creator had perfor
mance and caching issues in mind when the format was created.

I

Reserved fields are sometimes only features left over from early working ver-
sions of the format, unintentionally frozen into place when the format was
released. A vendor will normally change or extend a file format only under
duress, or as a rational response to market pressure typically caused by an
unanticipated advance in technology. In any case, the upgrade is almost always
unplanned. This usually means that a minimal amount of effort goes into shoe
homing new data into old formats. Often the first element sacrificed in the
process is complete backward compatibility with prior format versions.

Examples of Bitmap Headers
To give you some idea about what to expect when looking at bitmap headers,
we'll take a look at three typical ones. We'll start with one of the least complex
(Microsoft Windows Bitmap), and proceed to two that are more complex (Sun
Raster and Kofax raster).

To do this, we'll provide a C data structure, which will provide an idea of the
size and relative position of each field in the headers.

Example 1: Microsoft Windows Bitmap Version l.x Format Header
II
II Header structure for the MS Windows l.x Bitmap Format
II a BYTE is an unsigned char
II a WORD is an unsigned short int (16-bits)
II
typedef struct _WinHeaderlx
{

II
II Type Name Offset Comment
II

WORD Type;
WORD Width;
WORD Height;
WORD Width;
BYTE Planes;
BYTE BitsPixel;

OLDWINHEAD;

62 OVERVIEW

I* OOh
I* 02h
I* 04h
I* 06h
I* 08h
I* 09h

File Type Identifier (always 0) *I
Width of Bitmap in Pixels *I
Height of Bitmap in Scan-lines *I
Width of Bitmap in Bytes *I
Number of Color Planes *I
Number of Bits Per Pixel *I

As you can see from the comments, this particular header contains a file identi
fication value, the width and height of the image, the width of a single line of
the image (in bytes), the number of color planes, and the number of bits per
pixel. This information is close to the bare minimum required to describe a
bitmap image so it can be read and rendered in an arbitrary environment.

Note that the Windows l.x header contains no information about color or
image data compression. A more advanced image format will have provisions
for both color information and at least a simple compression scheme. An
example of a more elaborate header is that found in the Sun Raster image file
format shown in the next example:

Example 2: Sun Raster Format Header
II
II Header structure for the Sun Raster Image File Format
II a WORD here is an unsigned long int (32 bits)
II
typedef struct _SunRasterHead
{

II
II Type Name Offset Comment
II

WORD Magic; I* OOh Magic Number (59a66a95h) *I
WORD Width; I* 04h Width of Image in Pixels *I
WORD Height; I* 08h Height of Image in Pixels *I
WORD Depth; I* OCh Number of Bits Per Pixel *I
WORD Length; I* lOb Length of Image in Bytes *I
WORD Type; I* 14h File Format Encoding Type *I
WORD MapType; I* 18h Type of Color Map */
WORD MapLength; I* lCh Length of Color Map in Bytes *I

SUNRASHEAD;

The Sun Raster header contains information similar to the Windows l.x
bitmap header illustrated above. But note that it also contains fields for the
type of data encoding method and the type and size of the color map or palette
associated ~th the bitmap data.

Neither of the two headers mentioned above contains a text description field.
One such header that does is that associated with the Kofax Image File Format
shown in Example 3.

Example 3: Kofax Raster Format Header
II
II Header structure for the Kofax Raster Image File Format
II a LONG is a signed long int (32 bits)
II a SHORT is a signed short int (16 bits)
II

BITMAP FILES 63

typedef struct _KofaxHeader
{

II
II Type Name Offset Comment
II

LONG Magic; I* OOh Magic Number (68464B2Eh) *I
SHORT HeaderSize; I* 04h Header Size *I
SHORT HeaderVersion; I* 06h Header Version Number *I
LONG Imageid; I* OAh Image Identification Number *I
SHORT Width; I* OCh Image Width in Bytes *I
SHORT Length; I* OEh Image Length in Scan-lines *I
SHORT Format; I* lOh Image Data Code (Encoding) *I
CHAR Bitsex; I* llh Non-zero if Bitsex Reversed *I
CHAR Color; I* 12h Non-zero if Color Inverted *I
SHORT Xres; I* 14h Horizontal Dots Per Inch *I
SHORT Yres; I* 16h Vertical Dots Per Inch *I
CHAR Planes; I* 18h Number of Planes *I
CHAR BitsPerPixel; I* 19h Number of Bits Per Pixel *I
SHORT PaperSize; I* lAh Original Paper Size *I
CHAR Reserved1[20]; I* lCh 20-byte Reserved Field *I
LONG Dcreated; I* 30h Date Created *I
LONG Dmodified; I* 34h Date Modified *I
LONG Daccessed; I* 38h Date Accessed *I
CHAR Reserved2[4]; I* 3Ch 4-Byte Reserved Field *I
LONG !offset; I* 40h Index Text Info Offset *I
LONG I length; I* 44h Index Text Info Length *I
LONG Coffset; I* 48h Comment Text Offset *I
LONG Clength; I* 4Ch Comment Text Length in Bytes *I
LONG Uoffset; I* SOh User Data Offset *I
LONG Ulength; I* 54h User Data Length in Bytes *I
LONG Doffset; I* 58h Image Data Offset *I
LONG Dlength; I* SCh Image Data Length in Bytes *I
CHAR Reserved3[32]; I* 60h 32-byte Reserved Field *I

KFXHEAD;

Note that the Kofax header is considerably larger than either the Windows
bitmap or Sun raster headers. Included are fields which describe the horizon
tal and vertical resolution, paper size of the image subject, offset values of dif
ferent types of data stored in the file, and the time and date that the image was
created, last modified, and accessed.

Also note the appearance of several fields marked reseroed. The Kofax format
header is intentionally padded to 128 bytes to accommodate common read
and write buffer sizes. It uses only 72 bytes of the header in the revision pre
sented here, but is padded to 128 byte~. The Kofax format specification
promises that the first 128 bytes of every Kofax image file will be the header,
regardless of future revisions. Applications are thus free to ignore the reserved
data, and the format is presumably designed to allow this without dire penalty.
See the general discussion of reserved fields in the section called "Unused
Space" earlier in this chapter.

64 OVERVIEW

optimizing Header Reading
Header reading speed can be optimized by looking at the ways in which your
application uses the data, because reading the header data can usually be per
formed in several ways. If only selected values in the header are needed, the
application can calculate the offset of the data from some key landmark such
as the start of the file. The application can then seek directly to the data value
required and read the data value. The offset values appearing in the comments
in the header examples above can be used as offset arguments for the seek
function used.

If most of the data contained in the header is needed by the application, then
it may be more convenient to read the entire header into a buffer or pre
allocated data structure. This can be performed quickly, taking advantage of
any efficiencies provided by an integral-power-of-two block reads, as mentioned
above. All of the header data will be available in memory and can be cached
for use when needed. One problem, however, occurs when the byte order of
the file is different from the native byte order of the system on which the file is
being read. Most block read functions, for example, are not designed to supply
automatic conversion of data. Another problem may arise when data structures
are padded by the compiler or runtime environment for purposes of data
member alignment. These problems and others are discussed in more detail in
Chapter 6, Platform Dependencies.

Bitmap Data
The actual bitmap data usually makes up the bulk of a bitmap format file. In
the following discussion, we'll assume that you've read Chapter 2, Computer
Graphics Basics, and that you understand about pixel data and related topics
like color.

In many bitmap file formats the actual bitmap data is found immediately after
the end of the file header. It may be found elsewhere in the file, however,· to
accommoda~e a palette or other data structure which also may be present. If
this is the case, an offset value will appear in the header or in the documenta
tion indicating where to find the beginning of the image data in the file.

One thing you might notice while looking over the file format specifications
described in Part Two of this book is the relative absence of information
explaining the arrangement of the actual bitmap data in the file. To find out
how the data is arranged, you usually have to figure it out from related infor
mation pertaining to the structure of the file.

BITMAP FILES 65

Fortunately, the structuring of bitmap data within most files is straightforward
and easily deduced. As mentioned above, bitmap data is composed of pixel val
ues. Pixels on an output device are usually drawn in scan lines corresponding
to rows spanning the width of the display surface. This fact is usually reflected
in the arrangement of the data in the file .. This exercise, of deducing the exact
arrangement of data in the file, is sometimes helped by having some idea of
the display devices the .format creator had in mind.

One or more scan lines combined form a 2D grid of pixel data; thus we can
think of each pixel in the bitmap as located at a specific logical coordinate. A
bitmap can also be thought of as a sequence of values that logically maps
bitmap data in a file to an image on the display surface of an output device.
Actual bitmap data is usually the largest single part of any bitmap format file.

How Bitmap Data Is Written to Files

Before an application writes an image to a file, the image data is usually first
assembled in one or more blocks of memory. These blocks can be located in
the computer's main memory space or in part of an auxiliary data collection
device. Exactly how the data is arranged then depends on a number of facto~s,
including the amount of memory installed, the amount available to the appli
cation, and the specifics of the data acquisition or file write operation in use.
When bitmap data is finally written to a file, however, only one of two methods
of organization is normally used: scan-line data or planar data.

Scan-line data
The first, and simplest, method is the organization of pixel values into rows or
scan lines, briefly mentioned above. If we consider every image to be made up
of one or more scan lines, the pixel data in the file describing that image will
be a series of sets of values, each set corresponding to a row of the image. Mul
tiple rows are represented by multiple sets written from start to end in the file.
This is the most common method for storing image data organized into rows.

If we know the size of each pixel in the image, and the number of pixels per
row, we can calculate the offset of the start of each row in the file. For example,
in an 8-bit image every pixel value is one byte long. If the image is 21 pixels
wide, rows in the file are represented by sets of pixel values 21 bytes wide. In
this case, the rows in the file start at offsets of 0, 21, 42, 63, etc. bytes from the
start of the bitmap data.

On some machines and in some formats, however, rows of image data must be
certain even-byte multiples in length. An example is the common rule

66 OVERVIEW

requiring bitmap row data to end on long-word boundaries, where a long word
is four bytes long. In the example mentioned in the preceding paragraph, an
image 21 pixels wide would then be stored in the file as sets of pixel values 24
bytes in length, and the rows would start at file offsets 0, 24, 48, 64. The extra
three bytes per row are padding. In this particular case, three bytes of storage

·in the file are wasted for every row, and in fact, images that are 21 pixels wide
take up the same amount of space as images 24 pixels wide. In practice, this
storage inefficiency is usually (but not always) compensated for by an increase
of speed gained by catering to the peculiarities of the host machine in regard
to its ability to quickly manipulate two or four bytes at a time. The actual width
of the image is always available to the rendering application, usually from
information in the file header.

In a 24-bit image, each image pixel corresponds to a 3-byte long pixel value in
the file. In the example we have been discussing, an image 21 pixels wide
would require a minimum of 21 * 3 = 63 bytes of storage. If the format requires
that the row starts be long-word aligned, 64 bytes would be required to hold
the pixel values for each row. Occasionally, as mentioned above, 24-bit image
data is stored as a series of 4-byte long pixel values, and each image row would
then require 21 * 4 = 84 bytes. Storing 24-bit image data as 4-byte values has
the advantage of always being long-word aligned, and again may make sense on
certain machines. ·

In a 4-bit image, each pixel corresponds to one-half byte, and the data is usu
ally stored two pixels per byte, although storing the data as 1-byte pixel values
would make the data easier to read and, in fact, is not unheard of.

Figure 3-1 illustrates the organization of pixel data into scan lines.

Planar data
The second method of pixel value organization involves the separation of
image data into two or more planes. Files in which the bitmap data is orga
nized in this way are called planar files. We will use the term composite image to
refer to an image with many colors (i.e., hot monochrome, not gray-scale, and
not one single color). Under this definition, most normal colored images that
you are familiar with are composite images.

A composite image, then, can be represented by three blocks of bitmap data,
each block containing just one of the component colors making up the image.
Constructing each block is akin to the photographic process of making a sepa
ration-using filters to break up a color photograph into a set of component
colors, usually three in number. The original photograph can be reconstructed
by combining the three separations. Each block is composed of rows laid end
to end, as in the simpler storage method explained above; in this case, more

BITMAP FILES 67

Image data organized Into:

0 Contiguous scan lines G Strips of scan lines (3 scan lines per strip)

ScanUneO ' Strip 0 {
~

I ScanUne1 ., [I
ScuUae2 ~

Strip 1 {
Sc;adlat3 ~

Strip 2 {

G Tiles of scan lines ~ - ./

' 1
'

~\ --
FIGURE 3-1 : Organization of pixel data into scan lines (24-lnt image)

than one block is now needed to reconstruct the image. The blocks may be
stored consecutively or may be physically separated from one another in the
file.

Planar format data is usually a sign that the format designer had some particu
lar display device in mind, one that constructed composite color pixels from
components routed through hardware designed to handle one color at a time.
For reasons of efficiency, planar format data is usually read one plane at a time
in blocks, although an application may choose to laboriously assemble compos
ite pixels by reading data from the appropriate spot in each plane sequentially.

As an example, a 24-bit image two rows by three columns wide might be repre
sented in RGB format as six RGB pixel values:

(00 , 01 , 02) (03, 04 , 05) (06 , 07, 08)
(09, 10 , 11) (12, 13 , 14) (15, 16, 17)

but be written to the file in planar format as:

(00) (03) (06)
(09) (12) (15)
red plane

68 O VERV I E W

(01) (04) (07)

(10) (13) (16)

green plane
(02) (05) (08)

(11) (14) (17)

blue plane

Notice that the exact same data is being written; it's just arranged differently.
In the first case, an image consisting of six 24-bit pixels is stored as six 3-byte
pixel values arranged in a single plane. In the second, planar, method, the
same image is stored as 18 1-byte pixel values arranged in three planes, each
plane corresponding to red, green, and blue information, respectively. Each
method takes up exactly the same amount of space, 18 bytes, at least in this
example.

It's pretty safe to say that most bitmap files are stored in non-planar format.
Supporting planar hardware, then, usually means disassembling the pixel data
and creating multiple color planes in memory, which are then presented to the
planar rendering subroutine or the planar hardware.

Planar files may need to be assembled in a third buffer or, as mentioned above,
laboriously set (by the routine servicing the output device) one pixel at a time.

Figure 3-2 illustrates the organization of pixel data into color planes.

Red Plane

FIGURE 3 -2: Organization of pixel data into color planes

Different Approaches to Bitrriap Data Organizaticm

Normally, we consider an image to be made up of a number of rows, each row
a certain number of pixels wide. Pixel data representing the image can be
stored in the file in three ways: as contiguous data, as strips or as tiles. Figure 3-3
illustrates these three representations.

BITMAP FILES 69

Image data organized Into:

0 Contiguous scan lines

Scan Line 1

Scan Line 2

Scan Une3

G Tiles of scan lines

~~

)

__.. \'
-

G Strips of scan lines (3 scan lines per strip)

Strip 0 {

Strip 1 {

Strip 2 {

('

'

I

-

L

·-
I
1:"

.T.

•

"'' ~~ .,
~

• lj1\
/

F IGURE 3-3: Examples of bitmap data organization (contiguous scan lines, strips, and tiles)

Contiguous data
The simplest method of row organization is where all of the image data is
stored contiguously in the file, one row following the last. To retrieve the data
you read the rows in file order, which delivers the rows in the order in which
they were written. The data in this organizational scheme is stored in the file
equivalent of a 2D array. You can index into the data in the file knowing the
width of the row in pixels and the storage format and size of the pixel values.
Data stored contiguously in this manner can be read quickly, in large chunks,
and assembled in memory quite easily.

Strips
In the second method of file organization, images are stored in strips, which
also consist of rows stored contiguously. The total image, however, is repre
sented by more than one strip, and the individual strips may be widely sepa
rated in the file . Strips divide the image into a number of segments, which are
always just as wide as the original image.

7Q O VERVIEW

Strips make it easier to manage image data on machines with limited memory.
An image 1024 rows long, for instance, can be stored in the file as eight strips,
each strip containing 128 rows. Arranging a file into strips facilitates buffering.
H this isn't obvious, consider an uncompressed 8-bit image 1024 rows long and
10,000 pixels wide, containing 10 megabytes of pixel data. Even dividing th~
data into eight strips of 128 rows leaves the reading application with the job of
handling 1.25 megabytes of data per strip, a chore even for a machine with a
lot of flat memory and a fast disk. Dividing the data into 313 strips, however,
brings each strip down to a size which can be read and buffered quickly by
machines capable of reading only 32K of data per file read pass.

Strips also come into play when pixel data is stored in a compressed or
encoded format in the file. In this case, an application must first read the com
pressed data into a buffer and · then decompress or decode the data into
another buffer the same size as, or larger than, the first. Arranging the com
pression on a per-strip basis greatly eases the task of the file reader, which need
handle only one strip at a time.

You'll find that strips are often evidence that a file format creator has thought
about the limitations of the possible target platforms being supported and has
wanted to not limit the size of images that can be handled by the format.
Image file formats allowing or demanding that data be stored in strips usually
provide for the storage of .information in the file header such as the number of
strips of data, the size of each strip, and the offset position of each strip within
the file.

Tiles
A third method of bitmap data organization is tiling. Tiles are similar to strips
in that each is a delineation of a rectangular area of an image. However, unlike
strips, which are always the width of the image, tiles can have any width· at all,
from a single pixel to the entire image. Thus, in one sense, a contiguous image
is actually one large tile. In practice, however, tiles are arranged so that the
pixel data corresponding to each is between 4Kb and 64Kb in size and is usu
ally of a height and width divisible by 16. These limits help increase the effi
ciency with which the data can be buffered and decoded.

When an image is tiled, it is generally the case that all the tiles are the same
size, that the entire image is tiled, that the tiles do not overlap, and that the
tiles are all encoded using the same encoding scheme. One exception is the
CALS Raster Type II format, which allows image data to be composed of both
encoded and unencoded image tiles. Tiles are usually left unencoded when
such encoding would cause the tile data to increase in size (negative
compression) or when an unreasonable amount of time would be required to
encode the tile.

BITMAP FILES 71

Dividing an image into tiles also allows different compression schemes to be
applied to different parts of an image to achieve an optimal compression ratio.
For example, one portion of an image (a very busy portion) could be divided
into tiles that are compressed using JPEG, while another portion of the same
image (a portion containing only one or two colors) could be stored as tiles
that are run-length encoded. In this case, the tiles in the image would not all
be the same uniform size; the smallest would be only a few pixels, and the
largest would be hundreds or thousands of pixels on a side.

Tiing sometimes allows faster decoding and decompression of larger images
than would be possible if the pixel data were organized as lines or strips.
Because tiles can be individually encoded, file formats allowing the use of tiles
will contain tile quantity, size, and offset information in the header specifica
tions. Using this information, a reader that needs to display only the bottom
right corner of a very large image would have to read only the tiles for that
area of the image; it would not have to read all of the image data that was
stored before it.

Certain newer tile-oriented compression schemes, such as JPEG, naturally work
better with file formats capable of supporting tiling. A good example of this is
the incorporation of]PEG in later versions of the TIFF file format. For more
information about the use of tiles, see the article on the TIFF ftle format in Part
Two of this book.

Palette
Many bitmap file formats contain a color palette. For a discussion of palettes of
different kinds, see Chapter 2.

Footer
The footer, sometimes called the trailer, is a data structure similar to a header
and is often an addition to the original header, but appended to the end of a
file. A footer is usually added when the file format is upgraded to accommo
date new types of data and it is no longer convenient to add or change infor
mation in the header. It is mainly a result of a desire to maintain backward
compatibility with previous versions of the format. An example of this is the
TGA format, later revisions of which contain a footer that enables applications
to identify the different versions of its format and to access special features
available only in the later version of the format.

Because by definition it appears after the image data, which is usually of vari
able length, a footer is never found at a fixed offset from the beginning of an

72 OVERVIEW

image file unless the image data is always the same size. It is, however, usually
located at a specified offset from the end of an image file. Like headers, foot
ers are usually a fixed size. The offset value of the footer may also be present in
the header information, provided there was reserved space or padding avail
able in the header. Also like a header, a footer may contain an identification
field or magic number which can be used by a rendering application to differ
entiate it froin other data structures in the file.

Other Bitmap File Data Structures
Besides headers, footers, and palettes, bitmap files may contain additional data
structures, which are usually added to aid manipulation of the image data by
the rendering application.

A file format which allows more than one image in the file needs to provide
some method of identifying the start of each image. Thus, an image offset table,
sometimes called an image .file index or page table, may be used to store the offset
values of the start of each image from the beginning of the file.

A scan-line table may be provided for locating the start of each image scan line
in the pixel data. This can be useful if the image data is compressed and pixel
data corresponding to individual scan lines must be accessed randomly; the
pixels in the image data cannot be counted until the image data is decoded.
Scan-line tables contain one entry per image scan line. Variants of this idea
include strip location tables (one entry per group of scan lines) and tile loca
tion tables (one entry for each rectangular subarea of the image).

Other Bitmap File Features
Several formats incorporate unique or unusual data structures in their design.
These are usually to accomplish the specific purpose of the format or to create
as much generality as possible.

A common file format that comes to mind under the heading of "unusual" is
TIFF. TIFF contains a rudimentary header, but stores much of its data in a
series of tags called Image File Directories, which are fixed in neither size nor
position. They are instead like an in-memory list data structure in that they are
linked by a series of file offset values. Data can be found by seeking to the next
offset from the current offset. While this arrangement can lead to confusion
(and indeed TIFF has many times been called a "write-only" format), it allows a
programmer to construct a header-like structure that can contain any informa
tion at all, thus adding to its versatility.

BITMAP FILES 73

Unusual or unique features of other formats include the storing of image data
and palette information in separate files (the Dr. Halo CUT and PAL files, for
example) and the storing of monochrome bitmaps as blocks of ASCII format
1 'sand O's (as in the PBM format), designed perhaps with interplatfonn porta
bility in mind.

Pros and Cons of Bitmap File Formats
Bitmap files are especially suited for the storage of real-world images; complex
images can be rasterized in conJunction with video, scanning, and photo
graphic equipment and stored in a bitmap format.

Advantages of bitmap files include the following:

• Bitmap files may be easily created from existing pixel data stored in an
array in memory.

• Retrieving pixel data stored in a bitmap file may often be accomplished by
using a set of coordinates that allows the data to be conceptualized as a
grid.

• Pixel values may be modified individually or as large groups by altering a
palette if present.

• Bitmap files may translate well to dot-format output devices such as CRTs
and printers.

B~tmap files, however, do have drawbacks:

• They can be very large, particularly if the image contains a large number of
colors. Data compression can shrink the size of pixel data, but the data
must be expanded before it can be used, and this can slow down the read
ing and rendering process considerably. Also, the more complex a bitmap
image (large number of colors and minute detail), the less efficient the
compression process will be.

• They typically do not scale very well. Shrinking an image by decimation
(throwing away pixels) can change the image in an unacceptable manner,
as can expanding the image through pixel replication. Because of this,
bitmap files must usually be printed at the resolution in which they were
originally stored.

74 OVERVIEW

CHAPTER 41

Vector Files

In this chapter we'll be talking about vector files. Because we've already intro
duced bitmap files in Chapter 3, Bitmap Files, we'll be contrasting selected fea
tures of vector files with their bitmap counterparts.

Vector Versus Bitmap Files
A bitmap file in some sense contains an exact pixel-by-pixel mapping of an
image, which can then be reconstructed by a rendering application on the dis
play surface of an output device. Rendering applications seldom have to take
into account any structural elements other than pixels, scan lines, strips, and
tiles-subdivisions of the image which were made without reference to the
content of the image.

Vector files contain, instead, mathematical descriptions of one or more image
elements, which are used by the rendering application to construct a final
image. Vector files are thus said to be made up of descriptions of image ele
ments or objects, rather than pixel values. Although the term object has a mod
ern meaning, you will find vector format specifications adhering to the older
usage.

What Is Vector Data?
Vectors are line segments minimally defined as a starting point, a direction,
and a length. They can, however, be much more complex and can include vari
ous sorts of lines, curves, and splines. Straight and curved lines can be used to
define geometrical shapes, such as circles, rectangles, and polygons, which
then can be used to create more complex shapes, such as spheres, cubes, and
polyhedrons.

VECTOR FILES 75

Vector Files Came First
Vector file formats have been around since computers were first used to
display lines on an output device. CRTs, for example, were first used as
computer-driven output devices in the 1950s. The first CRT displays were
random scan devices similar to oscilloscopes, capable of producing
images of mathematical and geometrical shapes. Vector display devices
provided output sufficient. for the needs of computer users for many years
after their introduction, due to the limited range of tasks computers were
called upon to perform.

At some point the need to store vector data arose, and portable storage
media such as punch cards or paper tape were pressed into use. Prior to
rendering time, an image was logically subdivided into its simplest ele
ments. At rendering time, the image was produced and maintained by
drawing each of its elements repeatedly in a specified order. At storage
time, data was readily exported as a list of drawing operations, and mathe
matical descriptions of the im~ge elements-their size, shape, and posi
tion on the display screen -were written to the storage device in the
order in which they were displayed.

Vector Files and Device Independence
As mentioned above, vector images are collections of device-independent
mathematical descriptions of graphical shapes.

More so than their bitmap counterparts, various vector formats differ primarily
because each was designed for a different purpose. While the conceptual dif
ferences between the designs of formats supporting 1-bit and 24-bit bitmap
data may be small, the differences between vector formats used with CAD appli
cations and those used for general data interchange can be formidable. Thus,
it is difficult to generalize about vector formats in the same way we did when
discussing bitmap formats.

On the other hand, most output devices are point-addressable, providing a
grid of pixels which can be addressed individually, as if the surface of the
device were graph paper made of discrete elements. This means that an appli
cation can always find a way to draw vector-format image elements on the
device.

76 OVERVIEW

Sources of Vector Format Files
The simplest vector formats are those used by spreadsheet applications. These
normally contain numerical data meant to be displayed on a 2D grid on an
output device. Some non-spreadsheet applications use spreadsheet file formats
to store data that can alternately be interpreted as either bitmap or vector data.

Examples of common spreadsheet formats include those associated with the
programs Lotus 1-2-3 (.WKS and .WKI), Excel (J{LS), and Quattro Pro.
Although these originated on In tel-based PCs, the respective vendors now sup
port multiple platforms. Several spreadsheet formats have been developed
explicitly to support portable data interchange between different spreadsheet
applications; as a result, these are now also found on multiple platforms. These
include Lotus DIF (Data Interchange Format) and Microsoft SYLK (SYmbolic
LinK Format).

The majority of vector formats, however, are designed for storing line drawings
created by CAD applications. CAD packages are used to create mechanical,
electrical, and architectural drawings, electronic layouts and schematics, maps
and charts, and artistic drawings. The complexity of information needed to
support the needs of a major CAD application is considerably greater than that
needed to support a spreadsheet and generally requires a more complicated
vector format.

CGM (Computer Graphics Metafile) is an example of a general format
designed with data interchange in mind, a format that is defined in a pub
lished standard. All elements in a CGM-format file are constructed of simple
objects such as lines and polygons, primitives assumed to be available in every
rendering application. Very complex objects are broken down into the sim
plest possible shapes.

Autodesk's AutoCAD DXF (Data eXchange Format) was also designed with vec
tor data interchange in mind but is vendor-controlled and originated as a for
mat supporting. a single application. In addition, DXF was specifically tailored
for CAD information useful in the construction of mechanical, electrical, and
architectural drawings. DXF therefore supports not only common vector ele
ments such as circles and polygons, but also complex objects frequently used
in CAD renderings, such as 3D objects, labels, and hatching.

How Vector Files Are Organized
Although vector files, like bitmap files, vary considerably in design, most con
tain the same basic structure: a header, a data section, and an end-of-file

VECTOR FILES 77

marker. Some structure is needed in the file to contain information global to
the file and to correctly interpret the vector data at· render time. Although
most vector files place this information in a header, some rely solely on a
footer to perform the same task.

Vector files on the whole are structurally simpler than most bitmap files and
tend to be organized as data streams. Most of the information content of the
file is found in the image data.

The basic components of a simple vector file are the following:

Header

Image Data

If a file contains no image data, only a header will be present. If additional
information is required that does not fit in the header, you may find a footer
appended to the file, and a palette may be included as well:

Header

Palette

Image Data

Footer

Header

The header contains information that is global to the vector file and must be
read before the remaining information in the file· can be interpreted. Such
information can include a file format identification number, a version number,
and color information.

Headers may also contain default attributes, which will apply to any vector data
elements in the file lacking their own attributes. While this may afford some
reduction in file size, it does so at the cost of introducing the need to cache the
header information throughout the rendering operation.

Headers and footers found in vector-format files may not necessarily be a fixed
size. For historical reasons mentioned above, it is not uncommon to find vector
formats which use streams of variable-length records to store all data. If this is
the case, then the file must be read sequentially and will normally fail to pro
vide offset information that is necessary to allow the rendering application to
subsample the image.

78 OVERVIEW

The type of information stored in the header is governed by the types of data
stored in the file. Basic header information contains the height and width of
the image, the position of the image on the output device, and possibly the
number of layers in the image. Thus, the size of the header may vary from file
to file within the same format.

Vector Data

The bulk of all but tiny files consists of vector element data that contain infor
mation on the individual objects making up the image. The size of the data
used to represent each object will depend upon the complexity of the object
and how much thought went into reducing the file size when the format was
designed.

Following the header is usually the image data. The data is composed of ele
ments, which are smaller parts that comprise the overall image. Each element
either inherits information or is explicitly associated with default information
that specifies its size, shape, position relative to the overall image, color, and
possibly other attribute information. An example of vector data in ASCII for
mat containing three elements (a circle, a line, and a rectangle), might appear
as:

;CIRCLE,40,100,100,BLUE;LINE,200,50,136,227,BLACK;RECT,80,65,25,78,RED;

Although this example is a simple one, it illustrates the basic problem of deci
phering vector data, which is the existence of multiple levels of complexity.
When deciphering a vector format, you not only must find the data, but you
also must understand the formatting conventions and the definitions of the
individual elements. This is hardly ever the case in bitmap formats; bitmap
pixel data is all pretty much the same.

In this example, elements are separated by semicolons, and each is named, fol
lowed by numerical parameters and color information. Note, however, that
consistency of syntax across image elements is never guaranteed. We could
have just as easily defined the format in such a way as to make blocks of
unnamed numbers signify lines by default:

;CIRCLE,40,100,100,BLUE;200,50,136,227,BLACK;RECT,80,65,25,78,RED;

and the .default color black if unspecified:

;CIRCLE,40,100,100,BLUE;200,50,136,227;RECT,80,65,25,78,RED;

Many formats allow abbreviations:

;C,40,100,100,BL;200,50,136,227;R,80,65,25,78,R;

Notice that the R for RECT and R for RED are distinguished by context. You
will find that many formats have opted to reduce data size at the expense of

VECTOR FILES 79

conceptual simplicity. You are free to consider this as evidence of flawed rea
soning on the part of the format designer. The original reason for choosing
ASCII was for ease of reading and parsing. Unfortunately, using ASCII may
make the data too bulky. Solution: reduce the data size through implied rules
and conventions and allow abbreviation (in the process making the format
unreadable). The format designer would have been better off using a binary
format in the first place.

After the image data is usually an end-of-section or end-of-file marker. This can
be as simple as the string EOF at the end the file. For the same reasons dis
cussed in Chapter 3, Bitmap Files, some vector formats also append a footer to
the file. Information stored in a footer is typically not necessary for the correct
interpretation of the rendering and may be incidental information such as the
time and date the file was created, the name of the application used to create
the file, 3Jld the number of objects contained in the image data.

Palettes and Color Information

Like bitmap files, vector files can contain palettes. (For a full discussion of
· palettes, see the discussion in Chapter 3.) Because the smallest objects defined

in vector format files are the data elements, these are the smallest features for
which color can be specified. Naturally, then, a rendering application must
look up color definitions in the file palette before rendering the image. Our
example above, to be correct, would thus need to include the color definitions,
which take the form of a palette with associated ASCII names:

RED,255,0,0,
BLACK,O,O,O,
BLUE,0,0,255
;C,40,100,100,BL;200,50,136,227;R,80,65,25,78,R;

Some vector files allow the definition of enclosed areas, which are considered
outlines of the actual vector data elements. Outlines may be drawn with varia
tions in thickness or by using what are known as different pen styles, which are
typically combinations of dots and dashes and which may be familiar from
technical and CAD drawings. Non-color items of information necessary for the
reproduction of the image by the rendering application are called element
attributes.

Fills and color attributes
Enclosed elements may be designed to be filled with color by the rendering appli
cation. The filling is usually allowed to be colored independe~ tly from the ele
ment outline. Thus, each element may have two or more colors associated with

80 OVERVIEW

it, one for the element outline and one for the filling. Fill colors may be trans
parent, for instance, and some formats define what are called color attributes. In
addition to being filled with solid colors, enclosed vector elements may contain
hatching or shading, which are in turn called fill attributes. In some cases, fill
and color attributes are lumped together, either conceptually in the format
design, or physically in the file.

Formats that do not support fill patterns must simulate them by drawing parts
of the pattern (lines, circles, dots, etc.) as separate elements. This not only
introduces an uneven quality to the fill, but also dramatically increases the
number of objects in the file and consequently the file size.

Gradient rills
An enclosed vector element may also be filled with more than one color. The
easiest way is with what is called a gradient fil~ which appears as a smooth transi
tion between two colors located in different parts of the element fill area. Gra
dient fills are typically stored as a starting color, an ending color, and the
direction and type of the fiJI. A rendering application is then expected to con
struct the filled object, usually at the highest resolution possible. CGM is an
example of a format that supports horizontal, vertical, and circular gradient
fills. Figure 4-1 illustrates a gradient fill.

gradient

-light blue

FIGURE 4-1: Gradient jill

Footer

A footer may contain information that can be written to the file only after all
the object data is written, such as the number of objects in the image. The
footer in most vector formats, however, is simply used to mark the end of the
object data. '

VECTOR FILES 81

Vector File Size Issues
Not counting palette and attribute information, the size of a vector file is
directly proportional to the number of objects it contains. Contrast this with a
complex bitmap file, which stays the same size no matter how complex the
image described within. The only impact complexity has on bitmap files is on
the degree of compression available to the file creator.

Vector files thus can vary greatly in size. A format can store images efficiently
by using some form of shorthand notation to allow the compact definition of
complex elements. A vector format rich in objects might be able to represent a
single complex element using a Bezier curve, for instance. Another format not
supporting Bezier curves would need to represent the same curve inefficiently,
perhaps using a series of lines. Each line, in this case, would be a separate ele
ment, producing a file much larger than one supporting Bezier curves directly.

A format creator was probably addressing the problem of file size when he or
she decided to support the creation and naming of complex elements. Great
size savings come about when elements are repeated in the image; all that
needs to be stored after the original element definition is a pointer to that def
inition, as well as attribute and position information specific to each individual
repeated element.

Size savings may also come about from the way in which a format stores infor
mation. Different formats may support identical information in widely varying
ways. For example, in the CGM format a hatch pattern is represented as a sin
gle object In the PIC and Autodesk DXF formats, however, each line in the
hatch pattern is stored as a separate element.

Because vector data is stored as numbers, it can be scaled, rotated, and other
wise manipulated easily and quickly, at least compared to bitmap data. Also,
because scaling is so easy, vector files are not subject to image size limitations
in the same way as bitmap files.

Vector formats normally do not support data compression as most bitmap for
mats do. Some formats, however, support an alternate encoding method that
produces smaller data files, but contains the same information. CGM, for
instance, normally stores vector information in a clear-text ASCII format that is
human-readable, as does the example we presented earlier in this chapter. It
also allows the storage of information in a binary format, however, which
results in smaller files at the cost of readability and cross-platform portability.
The DXF format also has a binary analog called DXB (Data eXchange Binary)
which is not only smaller, but faster to load into its parent application
(AutoCAD). It is, however, not portable to other applications.

82 OVERVIEW

Scaling Vector Files
A vector element may be scaled to any size. Precision, overflow, and underflow
problems may occur, however, if vector data is scaled too large or too small,
"large" and "small" being relative to the intrinsic data size of the hardware and
software platform supporting the rendering application. Although these pro~
lems are well known in numerical analysis, they are not generally recognized
by the majority of programmers, and it pays to keep them in mind.

Another common problem occurs when apparently enclosed elements are
enlarged and then rendered. Two lines meant to be joined may have endpoints
slightly misaligned, and this misalignment may show up as a gap when the ele
ment is enlarged or rotated. When a rendering application attempts to display
the element on an output device, fill colors or patterns may inexplicably "leak."
Many applications that allow the creation of vector·files have tools to prevent
this, but they may not be applied automatically before the file is saved.

Text in Vector Files
Vector formats that allow the storage of text strings do so in one of two ways.
The simplest approach is to store the text as a literal ASCII string along with
font, position, color, and attribute information. Although the te.x:t is provided
in a compact form, this scheme requires the rendering application to have a
knowledge of the font to be used, which is always problematic. Because font
names are for the most part vendor-controlled, it is sometimes difficult to even
specify the font to be drawn. The CGM format addresses this problem through
the use of an international registry of font names and associated descriptive
data. Any rendering application supporting CGM must have access to this data,
or it must use the font metric data supplied in the CGM file's header. Text,
however, because it is stored in human-readable format, can be edited.

The second approach, and by far the most flexible, is to store the characters
making up the text string as outlines constructed from a series of primitive vec
tor data elements. Under this scheme each creator application must have
access to font outline data; because it is stored like any other vector data, font
outline data can be scaled at will, rotated, and otherwise manipulated. Until
recently, access to outline data has been a problem, but vendors have realized
the importance of support for outline fonts and are now routinely supplying
this capability at the operating system level.

Because the graphics industry at large and the font industry have grown up in
parallel, and only lately have begun to merge, there are naturally some

VECTOR FILES 83

incompatibilities between data storage models. Most fonts, for instance, are
stored as a series of splines joined end-to-end, and a particular spline type may
not be supported by the file format in use. In this case, the creator application
may choose to convert the splines to arcs or lines and store these instead. This
may or may not have an effect on the appearance of the text.

Creator applications may even incorporate vector or stroke fonts, which are
usually primitive sets of character outlines with an angular or mechanical look,
designed to be drawn with a minimum of fuss. Although many vendors have
chosen to make their own, one widely available source is the Hershey fonts.
Hershey data is available commercially, but is no longer considered adequate
for general use.

The use of vector, stroke, or outline fonts usually increases the size of a file dra
matically, but this may be offset by an increase in visual quality in the case of
spline-based outline fonts. Although there are a number of older font formats
still in use, spline-based outline font data in the TrueType and Adobe Type 1
formats is easily available on all the major platforms. There is seldom any need
to use stroke fonts now. Unfortunately; the reconstruction of characters from
spline outline data is no trivial task, and the higher quality afforded by the
ready availability of True Type and Adobe Type 1 fonts comes at a price in ren
dering time ~d program development costs.

Pros and Cons of Vector Files
Advantages of vector files include the following:

• Vector files are useful for storing images composed of line-based elements
such as lines and polygons, or those that can be decomposed into simple
geometrical objects, such as text. More sophisticated formats can also store
3D objects such as polyhedrons and wire-frame models.

• Vector data can be easily scaled and otherwise manipulated to accommo
date the resolution of a spectrum of output devices.

• Many vector files containing only ASCII-format data can be modified with
simple text editing tools. Individual elements may be added, removed, or

. changed without affecting other objects in the image.

• It is usually easy to render vector data and save it to a bitmap format file, or,
alternately, to convert the data to another vector format, with good results.

Some drawbacks of vector files include the following:

• Vector files cannot easily be used to store extremely complex images, such
as some photographs, where color information is paramount and may vary
on a pixel-by-pixel basis.

84 OVERVIEW

• The appearance of vector images can vary considerably depending upon
the application interpreting the image. Factors include the rendering
application's compatibility with the creator application and the sophistica
tion of its toolkit of geometric primitives and drawing operations.

• Vector data also displays best on vectored output devices such as plotters
and random scan displays. High-resolution raster displays are needed to
display vector graphics as effectively.

• Reconstruction of vector data may take considerably longer than that con
tained in a bitmap file of equivalent complexity, because each image ele
ment must be drawn individually and in sequence.

VECTOR FILES 85

CHAPTER 5 I

Metaftles

Me~les can contain both bitmap and vector data.

When the term metafile first appeared, it was used in discussions of device- and
machine-independent interchange formats. In the mid-1970s, the National
Center for Atmospheric Research (NCAR), along with several other research
institutions, reportedly used a format called metacode, which was device- and
platform-independent to a certain degree. What is known for certain is that in
1979, the SIGGRAPH Graphics Standards and Planning Committee used the
term, referring to a part of their published standards recommendations. These
early attempts at defining device- and platform-independent formats mainly
concerned themselves with vector data. Although work has continued along
this line, we will refer to formats that can accommodate both bitmap and vec
tor data as metafiles, because for all practical purposes the interchange formats
in widespread use in the marketplace handle both types of data.

Although metafile formats may be used to store only bitmap or only vector
information, it is more likely that they will contain both types of data. From a
programmer's point of view, bitmap and vector data are two very different
problems. Because of. this, supporting both bitmap and vector data types adds
to the complexity of a format. Thus, programmers find themselves avoiding
the use of metafile formats unless the added complexity is warranted-either
because they need to support multiple data types or for external reasons.

The simplest metafiles resemble vector format files. Historically, limitations of
vector formats were exceeded when the data that needed to be stored became
complex and diverse. Vector formats were extended conceptually, allowing the
defini~on of vector data elements in terms of a language or grammar, and also
by allowing the storage of bitmap data. In a certain sense, the resulting formats
went beyond the capabilities of both bitmap and vector formats-hence the
term metafile.

METAFILES 87

Platform Independence?
Metafiles are widely used to transport bitmap or vector data between hardware
platforms. The character-oriented nature of ASCII metafiles, in particular, elim
inates problems due to byte ordering. It also eliminates problems encountered
when transferring files across networks where the eighth bit of each byte is
stripped off, which can leave binary files damaged beyond repair. Also, because
a metafile supports both bitmap and vector data, an application designer can
kill two birds with one stone by providing support for one metafile rather than
two separate bitmap and vector formats.

Metafiles are also used to transfer image data between software platforms. A
creator application, for instance, can save an image in both bitmap and vector
form in a metafile. This file may then be read by any bitmap-capable or vector
capable application supporting the particular metafile format. Many desktop
publishing programs, for instance, can manipulate and print vector data, but
are unable to display that same data on the screen. To accommodate this limi
tation, a bitmap representation of the image is often included along with the
vector data in a metafile. The application can read the bitmap representation
of the image from the metafile, which serves as a reduced-quality visual repre
sentation of the image that will eventually appear on the printed page. When
the page is actually printed, however, the vector data from the metafile is used
to produce the image on the printer. Display PostScript files are an example of
this type of arrangement.

How Metafiles Are Organized
Metafiles vary so widely in format that it is pointless to attempt to construct a
hierarchical explanation of their general construction. Most metafiles contain
some sort of header, followed by one or more sections of image data. Some
metafiles contain nothing but bitmap data, and still others contain no data at
all, opting instead for cryptic drawing instructions, or numerical data similar to
that found in vector files.

Pros and Cons of Metaides
Because metafiles are in a sense a combination of bitmap and vector formats,
many of the pros and cons associated with these formats also apply to
metafiles. Your decision to choose one particular metafile format over another
will thus depend on what kind of data (bitmap or vector) makes up the bulk of
the file, and on the strengths and weaknesses of that particular type of data.
With that said, we can safely generalize as follows:

88 OVERVIEW

• Although many metafile formats are binary, some are character-oriented
(ASCII), and these are usually very portable between computer systems.

• Metafiles containing mixtures of vector and bitmap data can in some cases
be smaller than fully-rendered bitmap versions of the same image.

• Because they can contain high-redundancy ASCII-encoded data, metafiles
generally compress well for file transfer.

• Most metafiles are very complex, because they are usually written by one
application for another application. Although their ASCII nature means
that theoretically they may be modified with a text editor, modification of a
metafile by hand generally requires a skilled eye and special knowledge.

METAFILE& 89

CHAPTER 61

Platfonn Dependencies

One of our criteria for choosing the formats discussed in this book was
whether they are used for data exchange (both between applications and
across platforms). This analysis necessarily ruled out formats incorporating
hardware-specific instructions (for example, printer files). Although the for
mats we discuss here do not raise many hardware issues, several machine
dependency issues do come up with some regularity. Two of these issues have
some practical implications beyond being simply sources of annoyance. This
chapter describes those issues. It also touches on differences between file:
names among different platforms. These are significant only because filenames
may offer clues about the origins of files you may receive and need to convert.

Byte Order
We generally think of information in memory or on disk as being organized
into a series of individual bytes of data. The data is read sequentially in the
order in which the bytes are stored. This type of data is called byte-oriented
data and is typically used to store character strings and data created by 8-bit
CPUs.

Few computers look at the universe through an .8-bit window, however. For rea
sons of efficiency, 16-, 32-, and 64-bit CPUs prefer to work with bytes organized
into 16-, 32-, and 64-bit cells, which are called words, doublewords, and quad
words, respectively. The order of the bytes within word-, doubleword-, and
quadword-oriented data is not always the same; it varies depending upon the
CPU that created it. (Note, however, that CPUs do exist in which byte ordering
can be changed.)

PLATFORM DEPENDENCIES 91

Byte-oriented data has no particular order and is therefore read the same on
all systems. Word-oriented data does present a potential problem-probably
the most common portability problem you will encounter when moving files
between platforms. The problem arises when binary data is written to a file on
a machine with one byte order and is then read on a machine assuming a dif
ferent byte order. Obviously, the data will be read incorrectly.

It is the order of the bytes within each word and doubleword of data that deter
mine the "endianness" of the data. The two main categories of byte-ordering
schemes are called big-endian and liUle-endian. * Big-en dian machines store the
most significant byte (MSB) at the lowest address in a word, usually referred to
as byte 0. Big-endian machines include those based on the Motorola
MC68000A series of CPUs (the 68000, 68020, 68030, 68040, and so on), includ
ing the Commodore Amiga, the Apple Macintosh, and some UNIX machines.

Little-en dian machines store the least significant byte (LSB) at the lowest
address in a word. The two-byte word value, 1234h, written to a file in little
endian format, would be read as 3412h on a big-endian system. This occurs
because the big-endian system assumes that the MSB, in this case the value 12h,
is at the lowest address within the byte. The little-endian system, however,
places the MSB at the highest address in the byte. When read, the position of
the byte~ in the word are effectively flipped in the file-reading process by the
big-endian machine. Little-endian machines include those based on the Intel
iAPX86 series ofCPUs (the 8088, 80286, 80386, 80486, and so forth), including
the IBM PC and clones.

A third term, middle-endian, has been coined to refer to· all byte-ordering
schemes that are neither big-endian nor little-endian. Such middle-endian
ordering schemes include the 3-4-1-2, 2-1-4-3, 2-3-0-1, and 1-0-3-2 packed
decimal formats. The Digital Equipment Corporation PDP-11 is an example of
a middle-endian machine. The PDP-11 has a DWORD byte-ordering scheme of
2-3-0-1.

The I/ 0 routines in the C standard library always read word data in the native
byte order of the machine hosting the application. This means that functions
such as .fread() and fwrite() have no knowledge of byte order and cannot pro
vide needed conversions. Most C libraries, however, contain a function named
swab(), which is used to swap the bytes in an array of bytes. While swab() can be
used to convert words of data from one byte order to another, doing so can be

* The terms big-endian and litde-endian were originally found in Jonathan Swift's book, Gul
liver's Travels, as satirical descriptions of politicians who disputed whether eggs should be broken
at their big end or their little end. This term was first applied to computer architecture by Danny
Cohen. (See "For Further Information" below.)

92 OVERVIEW

inefficient, due to the necessity of making multiple calls for words greater than
two bytes in size.

Programmers working with bitmap files need to be concerned about byte
order, because many popular formats such as Macintosh Paint (MacPaint),
Interchange File Format (IFF or AmigaPaint), and SunRaster image files are
always read and written in big-endian byte order. The TIFF file format is
unique, however, in that any TIFF file can be ~itten in either format, and any
TIFF reader must be able to read either byte order correcdy regardless of the
system on which the code is executing.

File Size and Memory Limitations
The second most common problem, after byte-ordering differences, is the han
dling of large files. Some systems have limited memory, as is the case with MS
DOS-based, early Macintosh, and other desktop machines. Two problems can
arise as a consequence of this limitation. The first is that buffer memory avail
able may not be adequate to handle chunks of data deemed reasonable on a
larger machine. Some formats are designed with the limitations of small
machines in mind. A prudent thing to do is to avoid forcing the rendering
application to buffer more than 32K of data at a time.

Many problems come from hardware limitations, or from interactions between
hardware and software. The most notorious example of this is the 64K memory
segmentation (known as "chunking" in some environments) on MS-DOS-based
Intel machines. Other problems come from software or operating system pecu
liarities. An example of this is the early Macintosh. This system ostensibly pre
sented a large, flat address space to the ·programmer. Many programs written
with the early Macintosh in mind, however, only handle memory in 32K
chunks. Although the trend has been in recent years to restrict programs to
32~bit platforms or higher when there is a choice, data files produced on large
machines will continue to be used on smaller machines.

As the speeds of modern machines outstrip some practical limits, such as the
speed of main memory and hard disk speeds, the amount of local CPU cache
memory becomes more important to system performance. Fast cache memory
is relatively expensive compared to main system memory, which tends to
encourage system designers to limit the size of cache memory. Nevertheless,
it's not uncommon to see a megabyte or more of cache memory in some mod
em systems. Files can be optimized to make use of this cache, though it's not
clear at this time how to make this optimization work across hardware plat
forms.

PLATFORM DEPENDENCIES 93

The second problem is absolute file size. As suggested above, an uncompressed
24-bit bitmap file 1024 pixels square will be a minimum of 3,145,728 bytes in
size. While this much memory may be available on a workstation, it may not be
on a smaller machine or on a larger machine in a multitasking situation. In
this case, the rendering application will not be able to assemble the data in
memory. IT any alteration to the image must be done, extraordinary measures
may need to be taken by the application prior to rendering. Thus, it is prudent
to take advantage of the file "chunking" features available in many formats.
Although it may take more programming effort to accommodate smaller
machines, the effort also guarantees portability to future platforms.

Floating-Point Formats
Vector file formats occasionally store key points in floating-point format, and a
number of different floating-point formats are in common use. Most floating
point data, however, is stored in a portable manner. The least common denom
inator approach is to store floating-point numbers as ASCII data, as a series of
point pairs:

1234.56 2345.678 987.65 8765.43

The main problems you will encounter with floating-point data stored in ASCII
format are with formatting conventions-how the numbers are delimited
(comma, whitespace, etc.), and how many digits of precision need to be han
dled by your parsing routines. Library routines are readily available to handle
conversion from ASCII to native binary floating-point formats.

Floating-point numbers stored in binary format present different problems.
There are a number of floating-point binary formats in common use, includ
ing IEEE, Digital Equipment Corporation, and Microsoft Basic. Library rou
tines are available for these conversions, but it may take some searching to find
the correct one for your application. Sometimes, however, the hardest part of
the job is identifying the formats you are trying to convert from and to.

Bit Order
Bit order refers to the direction in which bits are represented in a byte of
memory. Just as words of data may be written with the most significant byte or
the least significant byte first (in the lowest address of the word), so too can
bits within a byte be written with the most significant bit or the least significant
bit first (in the lowest position of the byte).

94 OVERVIEW

The bit order we see most commonly is the one in which the zeroth, or least
significant bit, is the first bit read from the byte. This is referred to as up bit
ordering or normal bit direction. When the seventh, or most significant, bit is
the first one stored in a byte, we call this down bit ordering, or reverse bit direc
tion.

The terms big-endian and little-endian are sometimes erroneously applied to
bit order. These terms were specifically adopted as descriptions of differing
byte orders only and are not used to differentiate bit orders (see the section
called "Byte Order" earlier in this chapter).

Normal bit direction, least significant bit to most significant bit, is often used
in transmitting data between devices, such as FAX machines and printers, and
for storing unencoded bitmapped data. Reverse bit direction, most significant
bit to least significant bit, is used to communicate data to display devices and in
many data compression encoding methods. It is therefore possible for a
bitmap image file to contain data stored in either or both bit directions if both
encoded and unencoded data is stored in the file (as can occur in the TIFF and
CALS Raster image file formats).

Problems that occur in reading or decoding data stored with a bit order that is
the reverse of the expected bit order are called bit sex problems. When the bit
order of a byte must be changed, we commonly refer to this as reversing the bit
sex.

Color sex problems result when the value of the bits in a byte are the inverse. of
what we expect them to be. Inverting a bit (also called flipping or toggling a
bit) is to change a bit to its opposite state. A 1 bit becomes a 0 and a 0 bit
becomes a 1. If you have a black-on-white image and you invert all the bits in
the image data, you will have a white-on-black image. In this regard, inverting
the bits in a byte of image data is normally referred to as inverting the color
sex.

It is important to realize that inverting and reversing the bits in a byte are not
the same operation and rarely produce the same results. Note the different
resulting values when the b~ts in a byte are inverted and reversed:

Original Bit Pattern: 10100001
Inverted Bit Pattern: 01011110

Original Bit Pattern: 10100001
Reversed Bit Pattern: 10000101

PLATFORM DEPENDENCIES 95

There are, however, cases when the inverting or reversing of a bit pattern will
yield the same value:

Original Bit Pattern: 01010101
Inverted Bit Pattern: 10101010

Original Bit Pattern: 01010101
Reversed Bit Pattern: 10101010

Occasionally, it is necessary to reverse the order of bits within a byte of data.
This most often occurs when a particular hardware device, such as a printer,
requires that the bits in a byte be sent in the reverse order in which they are
stored in the computer's memory. Because it is not possible for most comput
ers to direcdy read a byte in a reversed bit order, the byte value must be read
and its bits rewritten to memory in reverse order.

Reversing the order of bits within a byte, or changing the bit sex, may be
accomplished by calculation or by table look-up. A function to reverse the bits
within a byte is shown below:

II
II Reverse the order of bits within a pyte.
II Returns: The reversed byte value.
II
BYTE ReverseBits(BYTE b)
{

BYTE c;
c = ((b >> 1) & OxSS)
c I= < > 2) & Ox33)
c I= < > 4) & OxOf)

return(c);

((b << 1) & Oxaa);
((b << 2) & Oxcc);
((b << 4) & OxfO);

If an application requires more speed in the bit-reversal process, the above
function can be replaced with the REVERSEBITS macro and look-up table
below. Although the macro and look-up table is faster in performing bit rever
sal than the function, the macro lacks the prototype checking that ensures that
every value passed to the function ReuerseBits() is an 8-bit unsigned value. An
INVERTBITS macro is also included for color sex inversion.

#define INVERTBITS(b) (-(b))
#define REVERSEBITS(b) (BitReverseTable[b))

static BYTE BitReverseTable[256) =
{

OxOO, Ox80, Ox40, OxcO, Ox20, Oxao, Ox60, OxeO,
OxlO, Ox90, OxSO, OxdO, Ox30, OxbO, Ox70, OxfO,
Ox08, Ox88, Ox48, Oxc8, Ox28, Oxa8, Ox68, Oxe8,
Ox18, Ox98, Ox58, Oxd8, Ox38, Oxb8, Ox78, Oxf8,
Ox04, Ox84, Ox44, Oxc4, Ox24, Oxa4, Ox64, Oxe4,

96 OVERVIEW

Ox14, Ox94, Ox54, Oxd4, Ox34, Oxb4, Ox74, Ox£4,
OxOc, Ox8c, Ox4c, Oxcc, Ox2c, Oxac, Ox6c, Oxec,
Oxlc, Ox9c, OxSc, Oxdc, Ox3c, Oxbc, Ox7c, Oxfc,
Ox02, Ox82, Ox42, Oxc2, Ox22, Oxa2, Ox62, Oxe2,
Ox12, Ox92, Ox52, Oxd2, Ox32, Oxb2, Ox72, Ox£2,
OxOa, Ox8a, Ox4a, Oxca, Ox2a, Oxaa, Ox6a, Oxea,
Oxla, Ox9a, OxSa, Oxda, Ox3a, Oxba, Ox? a, Oxfa,
Ox06, Ox86, Ox46, Oxc6, Ox26, Oxa6, Ox66, Oxe6,
Ox16, Ox96, Ox56, Oxd6, Ox36, Oxb6, Ox76, Ox£6,
OxOe, Ox8e, Ox4e, Oxce, Ox2e, Oxae, Ox6e, Oxee,
Oxle, Ox9e, OxSe, Oxde, Ox3e, Oxbe, Ox7e, Oxfe,
OxOl, Ox81, Ox41, Oxcl, Ox21, Oxal, Ox61, Oxel,
Oxll, Ox91, OxSl, Oxdl, Ox31, Oxbl, Ox71, Ox£1,
Ox09, Ox89, Ox49, Oxc9, Ox29, Oxa9, Ox69, Oxe9,
Ox19, Ox99, Ox59, Oxd9, Ox39, Oxb9, Ox79, Ox£9,
OxOS, Ox85, Ox45, OxcS, Ox25, OxaS, Ox65, OxeS,
OxlS, Ox95, OxSS, OxdS, Ox35, OxbS, Ox75, Ox£5,
OxOd, Ox8d, Ox4d, Oxcd, Ox2d, Oxad, Ox6d, Oxed,
Oxld, Ox9d, OxSd, Oxdd, Ox3d, Oxbd, Ox7d, Oxfd,
Ox03, Ox83, Ox43, Oxc3, Ox23, Oxa3, Ox63, Oxe3,
Ox13, Ox93, Ox53, Oxd3, Ox33, Oxb3, Ox73, Ox£3,
OxOb, Ox8b, Ox4b, Oxcb, Ox2b, Oxab, Ox6b, Oxeb,
Oxlb, Ox9b, OxSb, Oxdb, Ox3b, Oxbb, Ox7b, Oxfb,
Ox07, Ox87, Ox47, Oxc7, Ox27, Oxa7, Ox67, Oxe7,
Ox17, Ox97, Ox57, Oxd7, Ox37, Oxb7, Ox77, Ox£7,
OxOf, Ox8f, Ox4f, Oxcf, Ox2f, Oxaf, ·ox6f, Oxef,
Oxlf, Ox9f, OxSf, Oxdf, Ox3f, Oxbf, Ox7f, Oxff
} ;

Filenames
Whether you are writing a file or reading one written by another user, you
need to be aware of the differences among filenames on various platforms.

Filename Structure

By number of installed machines, the three most popular platforms at the time
of this writing are MS-DOS, Macintosh, and UNIX, roughly in the ratio of
100:10:5. All three support the name.extension filenaming convention (although
this is mostly true of the MS-DOS and UNIX systems). Applications occasionally
use the extension portion of the filename for file type identification.

Other systems with a large installed user base (such as OS/2, Amiga, Atari, and
VMS} have roughly similar naming conventions. VMS, for instance, uses as a
default the format:

namel. name2;version

where version is an integer denoting the revision number of the file. In any
case, files are likely to come from anywhere, and examination of the extension
portion of a filename, if present, may help you to identify the format.

PLATFORM DEPENDENClES 97

Filename Length

UNIX and Macintosh users are accustomed to long filenames:

ThislsAMacFilename
This is also a Mac Filename
This.ls.A. Unix.Filename

The MS-DOS, Windows NT, and OS/2 FAT filesystems, on the other hand, limit
filenames to the 8.3 format (eight characters per filename, three. per exten
sion):

msdosnam.ext

For interplatform portability, we suggest that you consider using the 8.3 con
v~ntion. Be aware, if you are using MS-DOS, that you may get filename duplica
tion errors when you convert multiple files from other platforms. Depending
on the application doing the filename conversion, the following files from a
typical UNIX installation:

thisis.jile. number. I
thisis.file. number.2

are both converted to the following filename under MS-DOS, and the second
file will overwrite the first:

thisis.jil

Case Sensitivity

Users on Macintosh and UNIX systems are accustomed to the fact that file
names are case-sensitive, and that filenames can contain mixed uppercase and
lowercase. Filenames on MS-DOS systems, however, are case-insensitive, and the
filesystem effectively converts all names to uppercase before manipulating
them. Thus:

AMacFile.Ext
AUnixFile.Ext

become:

AMACFILE.EXT
AUNIXFIL.EXT

under MS-DOS and other similar filesystems.

98 OVERVIEW

Similarly:

Ajile.Ext
AFile.Ext

are both converted to:

AFILE.EXT

ForFwrtherlnfonnation
For an excellent description of the war between the byte orders, see Danny
Cohen's paper, cited below. A good description of the original of the "en dian"
terms may be found in Eric Raymond's monumental work, also cited below.
Both publications are also widely available via the Internet.

Cohen, Danny, "On Holy Wars and a Plea for Peace," IEEE Computer
Magazine, Volume 14, October 1981, pp. 48-54.

Raymond, Eric, The New Hacker's Dictionary, MIT Press, Cambridge, MA,
1991.

PLATFORM DEPENDENCIES 99

CHAPTER 71

Fonnat Conversion

Programmers of all kinds always ask for information on how to convert
between file formats, and graphics programmers are no exception. You must
realize, however, that not every format can be converted to every other format,
and this is doubly so if you wish to preserve image quality.

Is It Really Possible?
The biggest problems occur when you attempt to convert between files of dif
ferent basic format types-bitmap to vector, for instance. Successful conver
sion between basic format types is not always possible due to the great
differences in the ways data is stored. ·

File conversion is a thankless task for any number of reasons. No vendor, for
instance, feels obligated to disclose revisions to proprietary formats, or even to
pub~ish accurate and timely specifications for the ones already in common use.
Many formats also have obscure variants which may be difficult to track down.
At any moment, too, a revision to a major application may appear, containing a
bug which makes it produce incorrect files. These files will ever after need to
be supported. For all these reasons, think long and hard about any decision
you make about whether to include file conversion features in your applica
tion. Remember, too, that a format that is reasonably well designed for a partic
ular intended application cannot necessarily be converted for use with another
application. Interchange between devices and applications is only as good as
the software components (readers and writers) which generate and interpret
the format, whether it is CGM, PostScript, or any other format.

FORMAT CONVERSION 101

Don't Do It If You Don't Need to ...
If you do need to convert image files between formats, consider using one or
more of the software packages written especially for file format conversion.
There are many very good tools for format conversion, which are freely avail
able and distributed in source or binary form. We've included many such pack
ages on the CD-ROM. There are also some very good commercial packages
available. See the section called "Converting Formats" in Chapter 1, Introduc
tion, for some recommendations.

You should consider writing your own conversion program only if you have
very specific conversion needs not satisfied by the many publicly available and
commercial applications-for example, to accommodate a proprietary format.
If you do decide to write your own converter, you will need to know a bit about
what to expect when converting from one format type to another .

. . . But If You Do
In what follows we will call the file to be converted (which already exists in one
format) the original, and the file produced in the second format (after the con
version operation) the converted file. A conversion application acts upon an origi
nal fik to produce a converted fik.

If you remember our terminology, an application renders a graphics file to an
output device or file. By extension, then, we will say that a conversion applica
tion renders an original file to a converted file. We will also use the term transla
tion as a synonym for conversion.

Bitmap to Bitmap

Converting one bitmap format to another normally yields the best results of all
the possible conversions between format types. All bitmap images consist of
pixels, and ultimately all bitmap data is converted one pixel value at a time.
Bitmap headers and the data contained in them can vary considerably, but the
data cop.tained in them can be added or discarded at the discretion of the con
version software to make the best conversion possible.

Usually, some rearrangement of the color data is necessary. This might take the
form of separation of pixel data into color plane data, or the addition or
removal of a palette. It might even entail conversion from one color model to
another.

102 OVERVIEW

Unsuccessful bitmap-to-bitmap conversions occur most often when translating
a file written in a format supporting deep pixel data· to one written in a lesser
color format, for example, one supporting only palette color. This can occur
when you are converting between a format supporting 24-bit data and one sup
porting only 8-bit data. The palette color format may not support the storage
of enough data necessary to produce an accurate rendering qf the image. Usu
ally, some image-processing operations (quantization or dithering, most likely)
are needed to increase the apparent quality of the converted image. Opera
tions of this sort will necessarily make the converted image appear different
from the original, and thus technically the image will not have been preserved
in the conversion process.

The other ~ain problem comes about when the converted image must be
made smaller or larger than the original. If the converted image is smaller
than the original, information in the original image must be thrown away.
Although various image-processing strategies can be used to improve image
quality, some of the information is nonetheless removed when the original file
is shrunk. If the converted image is larger than the original, however, informa
tion must be created to fill in the spaces that appear between formerly adjacent
pixels when the original image is enlarged. There is no completely satisfactory
way to do this, and the processes currently used typically give the enlarged
image a block-pixel look.

An example of a bitmap-to-bitmap conversion that is almost always successful is
PCX to Microsoft Windows B~tmap.

Vector to Vector

Conversion between vector formats-for example, from AutoCAD DXF to
Lotus DIF-is possible and sometimes quite easy. Two serious problems can
occur, though. The first comes about due to differences in the number and
type of objects available in different vector formats. Some formats, for instance,
provide support for only a few simple image elements, such as circles and rect
angles. Richer formats may also provide support for many additional complex
elements, such as pattern fills, drop shadowing, text fonts, b-splines, and Bezier
curves. Attempting to convert a file written in a complex format rich in ele
ments to a simpler format will result in an approximation of the original
image.

The second problem comes from the fact that that each vector format has its
own interpretation of measurements and the appearance of image elements
and primitives. Rarely do two formats agree exactly on the placement and

FORMAT CONVERSION 103

appearance of even simple image elements. Common problems are those
related to line joint styles and end styles, and to centerline and centerpoint
locations. For example, the Macintosh PICT format assumes that lines are
drawn with a pen point that is below and to the right of the specified coordi
nates, while most other formats center their pens directly on the coordinates.
Another example is the GEM VDI format, which assumes that a line should be
drawn so that it extends one-half of the width of the line past the end coordi
nate. Lines in other formats often stop exactly at the end of the coordinate
pixel.

It is quite difficult to generalize further than this. If you write a vector-to-vector
format converter, you must be aware of the peculiarities of each vector format
and the problems of conversion between one specific format and the other.

Metafile to Metafile

Because metafiles can contain both bitmap and vector image data in the same
file, problems inherent in bitmap and vector conversion apply to metafiles as
well. Generally, the bitmap part of the metafile will convert with success, but
the accuracy of the conversion of the vector part will depend on the match to
the format to which you are converting. An example of a metafile-to-metafile
conversion is Microsoft Windows Metafile (WMF) to CGM.

Vector and Metafile to Bitmap

Converting vector and metafile format files to bitmap format files is generally
quite easy. A vector image can be turned into a bitmap simply by dividing it up
into component pixels and then writing those pixels to an array in memory in
the memory equivalent of a contrasting color. The array can then be saved in a
bitmap format file. This process is familiar to users of paint programs, where a
mouse or stylus is used to draw geometrical shapes which appear as series of
lines on the screen. When the data is written out to disk, however, it is stored in
a bitmap file as a series of colored pixels rath~r than as mathematical data
describing the position of the lines making up the image. The ultimate quality
of the resulting bitmap image will depend on the resolu~on of the bitmap
being rendered to and the complexity (color, pixel depth, and image features)
of the original vector image.

The most common problem occurring with this type of conversion is aliasing,
sometimes known as the jaggies. This is where arcs and diagonal lines take on a
staircase appearance, partly due to the relatively low resolution of the output
bitmap compared to that necessary to adequately support rendering of the
output image.

104 OVERVIEW

The conversion of ASCII metafile data to binary bitmap data is usually the most
complicated and time-consuming part of metafile conversion. As mentioned
above in the section discussing the three basic formats, many metafile formats
also contain a bitmap image. If conversion from vector to bitmap data achieves
poor results, then converting the bitmap data to the desired format may not
only result in a better job, but may also be a much quicker process.

A metafile-to-bitmap conversion that is almost always successful is Microsoft
Windows Metafile to Microsoft Windows Bitmap.

Bitmap and Metafile to Vector

Converting bitmap and metafile format files to vector format files is usually the
hardest of all to perform, and rarely does it achieve any kind of usable results.
This is due to the fact that complex image processing algorithms and heuristics.
are necessary to find all the lines and edges in bitmap images. Once. the out
lines are found, they must be recognized and converted to their vector ele
ment equivalents, and each step is prone to error. Simple bitmap images may
be approximated as vector images, usually as black-and-white line drawings, but
more complex photographic-type images are nearly impossible to reproduce
accurately. Nevertheless, commercial applications exist to provide various types
of edge detection and vectorization. Edge detection remains an active area of
research. Two examples available for ~icrosoft Windows are Corel Trace and
Adobe Streamline.

Another problem inherent in the conversion of bitmap format files to vector is
that of color. Although most bitmap files incorporate many colors, vector for
mats seldom provide support for more than a few. The conversion of an origi
nal bitmap file to a vector file can result in a loss of color in the converted
image.

Metafiles also have the same problems associated with the conversion of their
bitmap components, although many metafile formats are capable of handling
the colors found in the original raster image data. Close vector reproductions
of bitmap images are not usually possible unless the bitmap data is very simple.

Bitmap and Vector to Metafile

Converting bitmap format files to metafiles can be quite accurate because most
metafile format files can contain a bitmap image as well. Vector format source
files have a more limited range of metafile target formats to which they can
successfully convert. Problems encountered in this type of conversion are the
same as those occurring in bitmap-to-vector conversions.

FORMAT CONVERSION 105

A common process conversion of this type is the conversion of binary bitmap
or vector image files to an ASCII metafile format such as PostScript. Although
PostScript is covered only briefly in this book, it is widely used for file inter
change, particularly on the Macintosh platform. Such conversions lend porta
bility to image data designed to be moved between machines or which may be
directed to a number of different output devices.

Other Fonnat Conversion Considerations
There are other problems that occur when converting from one file format to
another. One of the most vexing comes up when converting to a destination
format that supports fewer colors than ·are contained in the original image.

Also, the number of colors in an image may not be a problem, but the specific
colors contained in the original image may be. For example, consider the con
version of a 256-color image from one format to another. Both formats support
images with up to 256 different colors in the bitmap; so the number of colors is
not a problem. What is a problem, however, is that the source format chooses
the colors that can go in the palette from a field of 16 million (24-bit palette),
while the target format can store colors only from a range of 65,535 (16-bit
palette). It is quite likely that the source image will contain colors not defined
in the palette of the target image. The application doing the conversion will
have to rely on some color aliasing scheme, which usually fails to provide satis
factory results.

106 OVERY I EW

CHAPTER &I

Working With Graphics Files

This chapter provides a good deal of somewhat loosely connected information
about graphics files, file formats, and file format specifications. We discuss the
issues you'll confront when you attempt to read and write graphics files
(including examples of code you can use in your own programs). We also
describe the use of test files, the corruption and encryption of graphics files,
the potential for virus infection in these files, and the issues involved in devel
oping your own file format and in writing the specification for that format,
including ways of copyrighting and otherwise protecting your files and file for
mats.

Reading Graphics Data
A graphics format file reader is responsible for opening and reading a file,
determining its validity, and interpreting the information contained within it.
A reader may take, as its input, source image data either from a file or from the
data stream of an input device, such as a scanner or frame buffer.

There are two types of reader designs in common use. The first is the filter. A
filter reads a data source one character at a time and collects that data for as
long as it is available from the input device or file. The second type is the scan
ner (also called a parser). Scanners are able to randomly access across the entire
data source. Unlike filters, which cannot back up or skip ahead to read infor
mation, scanners can read and reread data anywhere within the file. The main
difference between filters and scanners is the amount of memory they use.
Although filters are limited in the manner in which they read data, ·they
require only a small amount of memory in which to perform their function.
Scanners, on the other hand, are not limited in how they read data, but as a
tradeoff may require a large amount of memory or disk space in which to store
data.

WORKING WITH GRAPHICS FILES 107

Because most image files are quite large, make sure that your readers are
highly optimized to read file information as quickly as possible. Graphics and
imaging applications are often harshly judged by users based on the amount of
time it takes them to read and display an image file. One curiosity of user inter
face lore states that an application that renders an image on an output device
one scan line at a time will be perceived as slower than an application that
waits to paint the screen until the entire image has been assembled, even
though in reality both applications may take the same amount of time.

Binary Versus ASCH Readers
Binary image readers must read binary data written in 1-, 2-, and 4-byte
word sizes and in one of several different byte-ordering schemes. Bitmap
data should be read in large chunks and buffered in memory for faster
performance, as opposed to reading one pixel or scan line at a time.

ASCII format image readers require highly optimized string reader and
parser functions capable of quickly finding and extracting pertinent infor
mation from a string of characters and converting ASCII strings into
numerical values.

Reading a Graphics File Header

The type of code you use to implement a reader will vary greatly, depending
upon how data is stored in a graphics file. For example, PCX files contain only
little-endian binary data; Encapsulated PostScript files contain both binary and
ASCII data; TIFF files contain binary data that may be stored in either the big
or little-endian byte order; and AutoCAD DXF fiks contain only ASCII data.

Many graphics files that contain only ASCII data may be parsed one character
at a time. Usually, a loop and a series of rather elaborate· nested case state
ments are used to read through the file and identify the various tokens of key
words and values. The design and implementation of such a text parser is not
fraught with too many perils.

Gotcluu

Where you can find some real gotchas is in working with graphics files contain
ing binary data, such as the contents of most bitmap files. A few words of
advice are in order, so that when you begin to write your own graphics file
readers and writers you don't run into too many problems (and inadvertently
damage your fists with your keyboard!).

108 OVERVIEW

When you read most bitmap files, you '11 find that the header is the first chunk
of data stored in the file. Headers store attributes of the graphics data that may
change from file to file, such as the height and width of the image and the
number of colors it contains. If a format always stored images of the same size,
type, and number of colors, a header wouldn't be necessary. The values for
that format would simply be hard-coded into the reader.

As it is, most bitmap file formats have headers, and your reader must know the
internal structure of the header of each format it is to read. A program that
reads a single bitmap format may be able to get away with seeking to a known
offset location and reading only a few fields of data. However, more sophisti
cated formats containing many fields of information require that you read the
entire header.

Using the C language, you might be tempted to read in a header from a file
using the following code: ·

typedef struct _Header
{

DWORD File!d;
BYTE Type;
WORD Height;
WORD Width;
WORD Depth;
CHAR FileName[81]; •
DWORD Flags;
BYTE Filler[32);

HEADER;

HEADER header;
FILE *fp = fopen("MYFORMAT.FORn, •rb");
if (fp)

fread(&header, sizeof(HEADER), 1, fp);

Here we see a typical bitmap file format header defined as a C language struc
ture. The fields of the header contain information on the size, color, type of
image, attribute flags, and name of the image file itself. The fields in the
header range from one to 80 bytes in size, and the entire structure is padded
out to a total length of 128 bytes.

The first potential gotcha may occur everi before you read the file. It lies wait
ing for you in the fapen() function. If you don't indicate that you are opening
the graphics file for reading as a binary file (by specifying the "rb" in the sec
ond argument of the fapen() parameter list), you may find that extra carriage
returns and/ or linefeeds appear in your data in memory that are not in the
graphics file. This is because fapen() opens files in text mode by default.

WORKING WITH GRAPHICS FILES 109

In C++, you need to OR the ios::binary value into the mode argument of the
fstream or ifstream constructor:

£stream *fs =new £stream (•MYFORMAT.FOR•, ios::inlios::binary);

Mter you have opened the graphics file successfully, the next step is to read the
header. The code we choose to read the header in this example is the fread()
function, which is most commonly used for reading chunks of data from a file
stream. Using fread(), you can read the entire header with a single function
call. A good idea, except that in using fread() you are likely to encounter prob
lems. You guessed it, the second gotcha!

A common problem you may encounter when reading data into a structure is
that of the boundary alignment of elements within the structure. On most
machines, it is usually more efficient to align each structure element to begin
on a 2-, 4-, 8-, or 16-byte boundary. Because aligning structure elements is the
job of the compiler, and not the programmer, the effects of such alignment are
not always obvious.

The compiler word-aligns structure elements in the same way. By adding
padding, we increased the length of the header so it ends on a 128-byte bound
ary. Just as we added padding at the end of the header, compilers add invisible
padding to structures to do the following:

• Start the structure on a word boundary (an even memory address).

• Align each element on the desired word or doubleword boundary.

• Ensure that the size of the structure is an even number of bytes in size
(16-bit machines) or is divisible by four (32-bit machines).

The padding takes the form of invisible elements that are inserted between the
visible elements the programmer defines in the structure. Although this invisi
ble padding is not directly accessible, it is as much a part of the structure as any
visible element in the structure. For example, ~ following structure will be
five, six, or eight bytes in size if it is compiled using a 1-, 2-, or 4-byte word
alignment:

typedef struct _test
{

BYTE A;
DWORD B;

TEST;

I* One byte *I
I* Four bytes *I

With 1-byte alignment, there is no padding, and the structure is five bytes in
size, with element B beginning on an odd-byte boundary. With 2-byte align
ment, one byte of padding is inserted between elements A and B to allow

llQ OVERVIEW

element B to begin on the next even-byte boundary. With 4-byte alignment,
three bytes of padding are inserted between A and B, allowing element B to
begin on the next even-word boundary.

Determining the Size of a Structure
At runtime, you can use the sizeof() operator to determine the size of a
structure:

typedef struct _test
{

BYTE A;
DWORD B;

TEST;
printf("TEST is %u bytes in length\n", sizeof(TEST));

Because most ANSI C compilers don't allow the use of sizeoj() as a prepro
cessor statement, you can check the length of the structure at compile
time by using a slightly more clever piece of code:

/*
** Test if the size of TEST is five bytes or not. If not, the array
** SizeTest[] will be declared to have zero elements, and a
** compile-time error will be generated on all ANSI C compilers.
** Note that the use of a typedef causes no memory to be allocated
** if the sizeof() test is true. And please, document all such
** tests in your code so other programmers will know what the heck
** you are attempting to do.
*I
typedef char CHECKSIZEOFTEST[sizeof(TEST) == 5];

The gotcha here is that the fread() function will write data into the padding
when you expected it to be written to an element. If you used fread() to read
five bytes from a file into our 4-byte-aligned TEST structure, you would find
that the first byte ended up correctly in element A, but that bytes 2, 3, and 4
were stored in the padding and not in element B as you had expected. Ele
ment B will instead store only byte 5, and the last three bytes of B will contain
garbage.

There are several steps involved in solving this problem.

First, attempt to design a structure so each field naturally begins on a 2-byte
(for 16-bit machines) or 4-byte (for 32-bit machines) boundary. Now if the
compiler's byte-alignment flag is turned on or off, no changes will occur in the
structure.

WORKING WITH GRAPHICS FILES 111

When defining elements within a structure, you also want to avoid using the
INT data type. An INT is two bytes on some machines and four bytes on others.
If you use INTs, you'll find that the size of a structure will change between 16-
and 32-bit machines even though the compiler is not performing any word
alignment on the structure. Always use SHORT to define a 2-byte integer ele
ment and LONG to specify a four-byte integer element, or use WORD and
DWORD to specify their unsigned equivalents.

When you read an image file header, you typically don't have the luxury of
being the designer of the file's header structure. Your structure must exactly
match the format of the header in the graphics file. H the designer of the
graphics file format didn't think of aligning the fields of the header, then
you're out of luck.

Second, compile the source code module that contains the structure with a
flag indicating that structure elements should not be aligned (/Zp1 for
Microsoft C++ and -a1 for Borland C++). Optionally, you can put the #pragma
directive for this compiler option around the structure; the result is that only
the structure is affected by the alignment restriction and not the rest of the
module.·

This, however, is not a terribly good solution. As we have noted, by aligning all
structure fields on a 1-byte boundary, the CPU will access the structure data in
memory less efficiently. If you are reading and writing the structure only once
or twice, as is the case with many file format readers, you may not care how
quickly the header data is read.

You mul)t also make sure that whenever anybody compiles your source code,
they use the 1-byte structure alignment compiler flag. Depending on which
machine is executing your code, failure to use this flag may cause problems
reading image files. Naming conventions may also differ for #pragma directives
between compiler vendors; on some compilers, the byte-alignment #pragma
directives might not be supported at all.

Finally, we must face the third insidious gotcha-the native byte order of the
CPU. If you attempt to fread() a graphics file header containing data written in
the little-en dian byte order on a big-endian machine (or big-en dian data in a
file on a little-en dian machine), you will get nothing but byte-twiddled
garbage. The fread() function cannot perform the byte-conversion operations
necessary to read the data correctly, because it can only read data using the
native byte order of the CPU.

112 OVERVIEW

At this point, if you are thinking, "But, I'm not going to read in each header
field separately!" you are in for a rather rude change of your implementation
paradigm!

Reading each field of a graphics file header into the elements of a structure,
and performing the necessary byte-order conversions, is how. it's done. If you
are worried about efficiency, just remember that a header is usually read from
a file and into memory only once, and you are typically reading less than 512
bytes of data-in fact, typically much less than that. We doubt if the perfor
mance meter in your source code profiler will show much of a drop.

So, how do we read in the header fields one element at a time? We could go
back to our old friend .fread():

HEADER header;
fread(&header.Fileid, sizeof(header.Fileid), 1, fp);
fread(&header.Height, sizeof(header.Height), 1, fp);
fread(&header.Width, sizeof(header.Width), 1, fp);
fread(&header.Depth, sizeof(header.Depth), 1, fp);
fread(&header.Type, sizeof(header.Type), 1, fp);
fread(&header.FileName, sizeof(header.FileName), 1, fp);
fread(&header.F1ags, sizeof(header.Flags), 1, fp);
fread(&header.Filler, sizeof(header.Filler), 1, fp);

While this code reads in the header data and stores it in the structure correctly
(regardless of any alignment padding), .fread() still reads the data in the native
byte order of the machine on which it is executing. This is fine if you are read
ing big-endian data on a big-endian machine, or little-endian data on a little
endian machine, but not if the byte order of the machine is different from the
byte order of the data being read. It seems that what we need is a filter that can
convert data to a different byte order.

If you have ever written code that diddled the byte order of data, then you
have probably written a set of SwapBytes functions to exchange the position of
bytes with a word of data. Your functions probably looked something like this:

I*
** Swap the bytes within a 16-bit WORD.
*I
WORD SWapTwoBytes(WORD w)
{

register WORD tmp;
tmp = (w & OxOOFF);
tmp = ((w & OxFFOO) >> Ox08) I (tmp << Ox08);
return(tmp);

I*
** Swap the bytes within a 32-bit DWORD.
*I

WORKING WITH GRAPHICS FILES 113

DWORD SwapFourBytes(DWORD w)
{

register DWORD tmp;
tmp = (w & OxOOOOOOFF);
tmp = ((w & OxOOOOFFOO) >> Ox08)
tmp = ((w & OxOOFFOOOO) >> Ox10)
tmp = ((w & OxFFOOOOOO) >> Ox18)
return (tmp);

(tmp << Ox08);
(tmp << Ox08);
(tmp << Ox08);

Because words come in two sizes, you need two functions: SwapTwoBytes() and
SwapFourBytes() -for those of you in the C++ world, you'll just write two over
loaded functions, or a function template, called SwapBytes(). Of course you can
swap signed values just as easily by writing two more functions that substitute
the data types SHORT and LONG for WORD and DWORD.

Using our SwapBytes functions, we can now read in the header as follows:

HEADER header;
fread(&header.Fileid, sizeof(header.Fileid),
header.Fileid = SwapFourBytes(header.Fileid);
fread(&header.Height, sizeof(header.Height),
header.Height = SwapTwoBytes(header.Height);
fread(&header.Width, sizeof(header.Width),
header.Width = SwapTwoBytes(header.Width);
fread(&header.Depth, sizeof(header.Depth),
header.Depth = SwapTwoBytes(header.Depth);
fread(&header.Type, sizeof(header.Type),
fread(&header.FileName, sizeof(header.FileName),
fread(&header.Flags, sizeof(header.Flags),
header.Flags = SwapFourBytes(header.F1ags);
fread(&header.Filler, sizeof(header.Filler),

1, fp) i

1, fp);

1, fp);

1, fp);

1, fp);
1, fp);
1, fp);

1, fp);

We can read in the data using .fread() and can swap the bytes of the WORD and
DWORD-sized fields using our SwapBytes functions. This is great if the byte
order of the data doesn't match the byte order of the CPU, but what if it does?
Do we need two separate header-reading functions, one with the SwapBytes
functions and one without, to ensure that our code will work on most
machines? And, how do we tell at runtime what the byte order of a machine is?
Take a look at this example:

#define LSB_FIRST 0
#define MSB_FIRST 1
/*
** Check the byte-order of the CPU.
*I
int CheckByteOrder(void)
{

SHORT w = OxOOOl;
CHAR *b = (CHAR *) &w;
return(b[O] ? LSB_FIRST MSB_FIRST);

114 OVERVIEW

The function CheckByteOrder() returns the value LSB_FIRST if the machine is
little-endian (the little end comes first) and MSB_FIRST if the machine is big
endian (the big end comes first). This function will work correctly on all big
and little-endian machines. Its return value is undefined for middle-endian
machines (like the PDP-11).

Let's assume that the data format of our graphics file is little-endian. We can
check the byte order of the machine executing our code and can call the
appropriate reader function, as follows:

int byteorder = CheckByteOrder();
if (byteorder == LSB_FIRST)

ReadHeaderAsLittleEndian();
else

ReadHeaderAsBigEndian();

The function ReadHeaderAsLittleEndian() would contain only the fread() func
tions, and ReadHeaderAsBigEndian() would contain the fread() and SwapBytes()
functions.

But this is not very elegant. What we really need is a replacement for both the
fread() and SwapBytes functions that can read WORDs and DWORDs from a
data file, making sure that the returned data is in the byte order we specify.
Consider the following functions:

/*
** Get a 16-bit word in either big- or little-endian byte order.
*I
WORD GetWord(char byteorder, FILE *fp)
{

/*

register WORD w;
if (byteorder == MSB_FIRST)
{

w = (WORD) (fgetc(fp) & OxFF);
w = ((WORD) (fgetc(fp) & OxFF)) I (w << Ox08);

else /* LSB_FIRST */
{

w = (WORD) (fgetc(fp) & OxFF);
w I= ((WORD) (fgetc(fp) & OxFF) << Ox08);

return(w);

** Get a 32-bit word in either big- or little-en~ian byte order.
*I

WORKING WITH GRAPHICS FILES 115

DWORD GetDword(char byteorder, FILE *fp)
{

register DWORD w;

if (byteorder == MSB_FIRST)
{

w = (DWORD) (fgetc(fp) & OxFF);
w = ((DWORD) (fgetc(fp) & OxFF)) (w << Ox08);
w = ((DWORD) (fgetc(fp) & OxFF)) (W << Ox08);
w = ((DWORD) (fgetc(fp) & OxFF)) (W << Ox08);

else /* LSB_FIRST */

w I= (DWORD) (fgetc(fp) & OxFF);
'W I= (((DWORD) (fgetc(fp) & OxFF)) << Ox08);

w I= (((DWORD) (fgetc(fp) & OxFF)) << Ox10);
w I= (((DWORD) (fgetc(fp) & OxFF)) << Ox18);

return(w);

The GetWord() and GetDword() functions will read a word of data from a file
stream in either byte order (specified in their first argument). Valid values are
LSB_FIRST and MSB_FIRST.

Now, let's look at what reading a header is like using the GetWord() and GetD
word() functions. Notice that we now read in the single-byte field Type using
fgetc() and that fread() is still the best way to read in blocks of byte-aligne~ data:

HEADER header;

int byteorder = CheckByteOrder();

header.Fileid = GetDword(byteorder, fp);
header.Height = GetWord(byteorder, fp);
header.Width = GetWord(byteorder, fp);
header.Depth = GetWord(byteorder, fp);
header.Type = fgetc(fp);
fread(&header.FileName, sizeof(header.FileName), 1, fp);
header.Flags = GetDword(byteorder, fp);
fread(&header.Filler, sizeof(header.Filler), 1, fp);

All we need to do now is to pass the byte order of the data being read to the
GetWord() and GetDword() functions. The data is then read correctly from the
file stream regardless of the native byte order of the machine on which the
functions are executing.

The techniques we've explored for reading a graphics file header can also be
used for reading other data structures in a graphics file, such as color maps,
page tables, scan-line tables, tags, footers, and even pixel values themselves.

116 OVERVIEW

Reading Image Data

In most cases, you will not find any surprises when you read image data from a
graphics file. Compressed image data is normally byte-aligned and is simply
read one byte at a time from the file and into memory before it is decom
pressed. Uncompressed image data is often stored only as bytes, even when the
pixels are two, three, or four bytes in size.

You will also usually use fread(), to read a block of compressed data into a
memory buffer that is typically 8K to 32K in size. The compressed data is read
from memory a single byte at a time, is decompressed, and the raw data is writ
ten either to video memory for display, or to a bitmap array for processing and
analysis.

Many bitmap file formats specify that scan lines (or tiles) of 1-bit image data
should be padded out to the next byte boundary. This means that if the width
of an image is not a multiple of eight, then you probably have a few extra
zeroed bits tacked onto the end of each scan line (or the end and/ or bottom
of each tile). For example, a 1-bit image with a width of 28 pixels will contain
28 bits of scan-line data followed by four bits of padding, creating a scan line
32 bits in length. The padding allows the next scan line to begin on a byte
boundary, rather than in the middle of a byte.

You must determine whether the uncompressed image data contains scan-line
padding. The file format specification will tell you if padding exists. Usually,
the padding is loaded into display memory with the image data, but the size of
the display window (the part of display memory actually visible on the screen)
must be adjusted so that the padding data is not displayed.

For Further Irifonnation About Reading Graphics Data

An excellent article concerning the solution to byte-order conversion problems
appeared in the now-extinct magazine, C Gazette. It was written by a fellow
namedjames D. Murray!

Murray, James D., "Which Endian is Up?" C Gazette, Summer,
1990.

Writing Graphics Data
As you might gliess, writing a graphics file is basically the inverse of reading it.
Writers may send data directly to an output device, such as a printer, or they
may create image files and store data in them.

WORKING WITH GRAPHICS FILES 117

Writing a Graphics File Header

When you write a graphics file header, you must be careful to initialize all of
the fields in the header with the correct data. Initialize reserved fields used for
fill and padding with the value OOh, unless the file format specification states
otherwise. You must write the header data to the graphics files using the cor
rect byte order for the file format as well.

Because the GetWord() and GetDword() functions were so handy for correctly
reading a header, their siblings PutWord() and PutDword() must be just as
handy for writing one:

I*
** Put a 16-bit word in either big- or little-endian byte order.
*I
void PutWord(char byteorder, FILE *fp, WORD w)
{

I*

if (byteorder == MSB_FIRST)
{

else
{

fputc((w >> Ox08) & OxFF, fp);
fputc(w & OxFF, fp);

I* LSB_FIRST *I

fputc(w & OxFF, fp);
fputc((w >> Ox08) & OxFF, fp);

** Put a 32-bit word in either big- or little-endian byte order.
*I
void PutDword(char byteorder, FILE *fp, DWORD w)
{

if (byteorder == MSB_FIRST)
{

fputc((w >> Ox18) & OxFF, fp) i

fputc((w >> OxlO) & OxFF, fp) i

fputc((w >> Ox08) & OxFF, fp) i

fputc (w & OxFF, fp) i

else I* LSB_FIRST *I
{

fputc(w & OxFF, fp) i

fputc((w >> Ox08) & OxFF, fp);
fputc((w >> OxlO) & OxFF, fp);
fputc((w >> Ox18) & OxFF, fp);

In the following example, we use fwrite(), PutWord(), and PutDword() to write
out our heade·r structure. Note that the byteorder argument in PutWord() and

118 OVERVIEW

PutDword() indicates the byte order of the file we are writing (in this case, little
endian), and not the byte order of the machine on which the functions are
being executed. Also, we indicate in fopen() that the output file is being
opened for writing in binary mode (wb):

typedef struct _Header
{

DWORD Fileid;
BYTE Type;
WORD Height;
WORD Width;
WORD Depth;
CHAR FileName[81];
DWORD Flags;
BYTE Filler[32];

HEADER;

int WriteHeader()
{

HEADER header;
FILE *fp = fopen(•MYFORMAT.FOR•, •wb•);

if (fp)
{

header.Fileid Ox91827364;
header.Type 3;
header.Depth 8;
header.Height 512;
header.Width 512;
strncpy((char *)header.FileName, •MYFORMAT.FOR•,
sizeof(header.FileName));
header.Flags = Ox04008001;
memset(&header.Filler, 0, sizeof(header.Filler));

PutDword(MSB_FIRST, fp, header.Fileid);
fputc(header.Type, fp);
PutWord(MSB_FIRST, fp, header.Height);
PutWord(MSB_FIRST, fp, header.Width);
PutWord(MSB_FIRST, fp, header.Depth);
fwrite(&header.FileName, sizeof(header.FileName), 1, fp);
PutDword(MSB_FIRST, fp, header.Flags);
fwrite(&header.Filler, sizeof(header.Filler), 1, fp);

fclose(fp);
return(O);

return(!);

WORKING WITH GRAPHICS FILES 119

Writing Image Data

Writing binary data can be a little more complex than just making sure you are
writing data in the correct byte order. Many formats specify that each scan line
is to be padded out to end on a byte or word bound~ if it does not naturally
do so. When the scan-line data is read from the file, this padding (usually a
series of zero bit values) is thrown away, but it must be added again later if the
data is written to a file.

Image data that is written uncompressed to a file may require a conversion
before it is written. If the data is being written directly from video memory, it
may be necessary to convert the orientation of the data from pixels to planes,
or from planes to pixels, before writing the data.

If the data is to be stored in a compressed format, the· quickest approach is to
compress the image data in memory and use funite() to write the image data to
the graphics file. If you don't have a lot of memory to play with, then write out
the compressed image data as it is encoded, usually one scan line at a time.

Test Files
How can you be sure that your application supports a particular file format?
Test, test, test ...

Files adhering to the written format specification, and software applications
that work with them, are called fully conforming, or just conforming. Fully con
forming software should always make the conservative choice if there is any
ambiguity in the format specification. Of course it's not always clear what con
servative means in any specified context, but the point is to not extend the for
mat if given the chance, no matter how tempting the opportunity. In any case,
if you write software to manipulate graphics files, you'll need some fully con
forming files to test the code.

If you happen to be working with TIFF, GIF, or PCX, files in these formats are
often just a phone call away, but beware. Files are not necessarily fully conform
ing, and there is no central registry of conforming files. In some cases, effort
has gone into making sets of canonical test files; for example, some are
included in the TIFF distribution.

The trick is to get a wide spectrum of files from a number of sources and to do
extensive testing on everything you find-every size, resolution, and variant
that can be found. Another strategy is to acquire files created by major applica
tions and test for compatibility. For example, Aldus PageMaker files are often
used to test TIFF manipulation software. Unfortunately, PageMaker has

120 OVERVIEW

historically been the source of undocumented de facto TIFF revisions, and test
ing compatibility with PageMaker-produced TIFF files does not produce wholly
accurate results.

Any number of graphics file conversion programs exist that can do screen cap
tures, convert files, and display graphics and images in many different formats.
Once again, you are at the mercy of the diligence of the application author.

Remember, too, that it's your responsibility to locate the latest format revisions.
We still see new readers, for instance, on all platforms, which fail to support
the latest specification. If you simply cannot locate an example of the format
you need, your last resort will always be the format creator or caretaker. While
this approach is to be used with discretion, and is by no means guaranteed, it
sometimes is your only recourse, particularly if the format is very new.

In any case, don't stop coding and testing simply because one variation of an
image file format can be read and converted successfully by your application.
Test your application using as many variations of the format, and from as many
different sources as possible. Have your application do its best to support the
image format fully.

Corruption of Graphics Files
What is a corrupt graphics file?

Imagine every munged image you've ever seen displayed by a graphical display
program -shifted or broken pictures, large areas of snowy or mosaic patterns,
colors that only seriously appear in Andy Warhol paintings, or simply no image
displayed at all. Why does this happen?

Causes of Corruption

When an image fails to display properly, the cause(s) might be any or all of the
following:

• The display environment (drivers, video memory, display resolution) is not
properly configured or is inadequate.

• The file format is not supported by the display program.

• This variation of the file format is not supported by the display program.

• The display program is incorrectly interpreting the file.

• The file data is bad or corrupt

WORKING WITH GRAPHICS FILES 121

Problems with the display environment
· Most graphical display problems can be corrected by adjusting one or more

aspects of the display environment. For example, if you attempt to display a·
truecolor image using a video graphics card or software driver that does not
support the full bitdepth or resolution of the image, the display program will
either reduce the ~umber of colors in the displayed image, or simply refuse to
display the image at all. In either case, the results will probably not look as you
expected.

Installing the proper software driver for the graphics card, resolution, and
number of colors desired may fix this display problem. Upgrading your display
program to a newer version or using a different program is also an option.
And, of course, who couldn't use a faster graphics card with more memory,
and a larger, higher-resolution display monitor as well?

Sometimes the fault lies with the file reader. A display program should make
every attempt to verify that it understands the format of the data it is reading.
For example, reading a JPEG file as a GIF file may cause a display program to
produce unexpected results.

Many file formats have different internal variations depending upon the revi
sion level of the format and the type of data that the files store. Most formats
(e.g., TIFF and TGA) make it easy to determine the type of data stored in the
file by looking at header information, and others (e.g., PCX) make it somewhat
more difficult. Some formats (e.g., Amiga IFF) use a different file extension for
every type of data that they store, and others (e.g., XBM) store only one type of
data.

You're asking for trouble if you assume from a file's extension that the file ha~
a specific format. More than one file has been given an improper file exten
sion. And if the display program is accepting input directly from a data stream,
there won't be a file extension to read in any case.

With most formats, the file extension doesn't change to reflect the revision
level of the file format, or the type of data stored in the file. This lack of
human-readable recognition has probably hurt the TIFF file format the most. A
TIFF file can store any type of image data ranging from monochrome to true
color, and can compress it using any one of a half-dozen or more methods of
encoding.

Many TIFF viewers support RLE-compressed or uncompressed monochrome
images, but not images compressed using CCITT G3 and G4 encoding. Other
TIFF viewers support gray-scale and palette color images but not truecolor
images. Some viewers support the display of images compressed using the]PEG
or TIFF-LZW algorithms, and (most) others do not.

122 . OVERVIEW

As you can see, many different types of images can be stored in a TIFF file
and all of them will have the ".TIF" extension. It's no wonder that users
become frustrated when some TIFF files display and others don't; after all, in a
directory listing all the files "look" the same. Make sure that not all files look
the same to your file reader.

Problems with the program code
We've discussed the fact that an image might fail to display properly because
the program reading it lacks the features to display the image data. It is also
quite possible that an image may fail to display because of bugs in the display
program's code. Such bugs usually result from the fact that the programmer
misinterprets the file format specification, or that he doesn't fully understand
the programming language that he's using, or that he includes some other
programmer's buggy code in his own code. Testing the display program on~
wide variety of image files will reveal such problems.

Problems with the data
What about the graphics file? Can the file itself be the source of the problem?

"A graphics file is no different from any other type of data file on your system.
Like other files, the data a graphics file contains may be incorrectly con
structed (bad data) or damaged (corrupt data). Bad or corrupt files occur as a
consequence of one or more of the following problems:

• Buggy file writer

• Uncorrected transmission error

• Bad write to ·disk

• Faulty processing

Bad data may result from a poorly designed file format writer. Improperly cal
culating header values (e.g., number of colors, resolution, file size, etc.) or
writing the data in an incorrect byte order will mislead a format reader into
incorrectly interpreting the image file data. Buggy codecs (encoder/decoders)
may produce badly encoded data that may appear to be doing its job but actu
ally violates the compression algorithm. (For example, the TIFF specification
implements the LZW algori.thm in a faulty way.)

Files may become corrupted in a variety of ways. For example:

• Transferring files between computer systems using a serial or network
transmission protocol that doesn't do error detection and correction
invites the possibility of errors due to line noise or lost data.

WORKING WITH GRAPHICS FILES 123

• Copying a file to a damaged filesystem or disk may result in write errors
that destroy part of the file.

• An improperly handled software exception may write data to random parts
of the filesystem, thus corrupting any files touched by the write.

• Sending a binary file through a 7-bit data channel, or a text filter that con
verts carriage returns to linefeeds, guarantees permanent damage to the
file's data.

Detecting File Corruption

File format readers must be able to quickly detect that a file's data is incorrect
or unexpected, or that it in some way violates the specification of the file for
mat or data compression algorithm. Quick detection allows the reader to
respond with an error message to the user, and prevents the untimely crash of
the program by the reading of bad data. An accurate analysis of the problem
by the file reader and a verbose error message displayed to the program user
are also required.

How can you tell whether a file is corrupt? We describe several indicators
below. ·

EOFmarker
The end of file (EOF) file stream marker is a good indicator. Often, graphics
files are truncated through errors in transmission or by a failed write operation
to a disk. In such cases, when the file is read, the EOF will occur much sooner
than a file format reader would have expected, and corruption of the file may
be assumed. Read operations will also fail if there is an actual error in the
filesystem or disk. Always check the return value of your read operations. An
unexpected EOF, or any file stream error, is a sure sign that something is
wrong.

Unexpected characters
Missing or excessive data may cause an improper alignment of the internal
structures of a file format. Data structures in memory often contain invisible 2-
or 4-byte boundary padding between structure elements that may unintention
ally be written to a file. Data written to a file opened in text mode, rather than
in binary mode, may contain embedded carriage return and/or linefeed char
acters and may therefore create bad data.

124 OVERVIEW

Magic value errors
Stream-oriented formats divide stored data into individual sections called seg
ments (blocks, chunks, etc.), each of which begins with a specific identification
or "magic" value followed by the length of the data in the segment. If a format
reader reads in an entire segment and discovers that the next data in the file is
not the expected magic value of the following segment (or the end of data
stream marker), then the reader assumes that the data is bad or corrupt.

Out-of-range offset values
File-oriented formats typically use fixed-size data structures and absolute offset
values to locate data. An offset value that points outside the file space is a sure·
indication that the offset value is wrong, or the file has been truncated.

Hints for Designing File Readers and KTiters

What should a file format reader do in the case of missing or excessive data? It
depends on the file format and the data itself. If the bad information is trivial
(e.g., a text comment or a thumbnail image), the reader may choose to ignore
the bad data and continue reading the file. If the information is critical (e.g.,
the header), the reader should simply give up.

Regardless of the action it takes, a file reader should display a warning, error,
or diagnostic message to indicate that something unexpected has occurred.
Messages such as "Unknown file format", "Unknown compression type",
"Unsupported resolution", or "Corrupt data" will at least give the user a clue as
to what is wrong.

Here are some tips for designing a error-detecting file format reader:

• Always check input operations for file stream read errors and end of file
indications.

• Check header field data against an expected range of value. Don't use data
that seems unreasonable.

• Don't trust the file extension to identify the file format. Identify the file for
mat by the data expected in the header.

• Always calculate and compare checksum and CRC values included in any
image files used to verify the integrity of the data.

• Use a binary editor to damage a number of graphics files and see how your
·reader handles them. Uuencoding a graphics file, adding, deleting, or
changing a few lines, and then uudecoding the file is also an easy way to
corrupt a graphics file. A reader should never crash when reading a bad
file.

WORKING WITH GRAPHICS FILES 125

Here are some tips for designing a file format writer:

• Always check output operations for file stream write errors.

• Store file and data structure sizes in the file header, if supported.

• Use any built-in methods of error detection, such as a CRC value, that the
format may support.

• Use other display programs to check your generated files.

Most file formats do not have built-in mechanisms for error detection. Instead,
we rely on the file reader to recognize bad or corrupt data, based on informa
tion stored in the file, and to react accordingly. Some formats store the size of
the graphics data, or even the length of the entire file, in their headers. Other
formats contain fixed-sized data structures that change only between revisions
of the format. These features are not specifically designed to detect or correct
file or data errors, but they can be used in that way and are better. than noth
ing.

At least one format, PNG, does include an active error-checking mechanism.
PNG is a data stream format that comprises a small signature of byte values fol
lowed by three or more chunks of data. Each of these chunks stores a 4-byte
CRC-32 value calculated from the data in the chunk. A PNG reader can calcu
late the CRC of the data and then compare this value to the one stored in the
chunk. If the values do not match, the reader can assume that the data in that
chunk is corrupt.

The PNG signature is also unique in that it contains several characters used to
detect whether the file was improperly processed by a 7-bit data channel or a
text processing filter. (See the PNG article in Part Two of this book for more
information.)

For formats that don't provide any real error checking, you might consider
storing files using a file archiving program that offers error checking as a fea
ture. Many archivers, such as pkzip and zoo, perform a CRC calculation on each
file that they store. When the file is removed from the archive, the value is
recalculated and compared to the stored value. If they match, then you know
that the file has not been corrupted. Archiving your graphics files is especially
recommended if you are sending them over a data communications network,
such as the Internet.

Another type of external error-detecting mechanism is a digital signature. This
is a method of detecting whether changes have occurred within a block of
information. We discuss digital signatures in the context of graphics file
encryption in the section that follows.

126 OVERVIEW

Encryption of Graphics Files
Cryptography is the technology of keeping information secret. In this context,
we define secret as "being protected from unauthorized access and attack."
Although you may not think of your graphics files or their contents as ever
being under attack, you may want to keep the information contained in these
files froin being copied or viewed by unauthorized people or computers. If
copies of the files are freely available, the only way to keep the files secret is to
encrypt them.

Cryptography may seem to be a black art requiring extremely complex mathe
matics and access to supercomputers. This may be the case for professional
cryptanalysts (codebreakers). But for ordinary people who need to protect
data, cryptography can be a strong, often simple to use, and sometimes freely
available tool.

This section doesn't try to explain cryptography, nor the details of particular
cryptosystems. (Refer to the books in the "For Further Information" section for
basic information in this area.) Instead, we will look at why you, as an author,
archiver, transporter, or user of graphics files, may need to encrypt graphics
files.

First, let's look at the general problem of pro~ecting graphics files.

Protecting Graphics Files

Many businesses and organizations, such as those associated with medical and
document imaging, worry about users (most often programmers) finding ways
to alter the contents of their graphics and image files. Such alterations might
be used to change an X-ray photograph, discover a debit card number, or
forge a handwritten signature on the bitmap of a check. In addition to the
human consequences, such actions may result in lawsuits against the company
whose process or equipment originally created the graphics file-not a pleas
ant prospect for any corporation.

How can you protect against alterations of this kind?

Physical protection
The initial defense against unauthorized alterations is to deny physical access
to your graphics files. How would you do this? When a new image is saved,
store it in a file that is physically and directly inaccessible to the user. When an
image is needed, decrypt (and possibly decompress) it, then display or print it,
but never make the file itself directly accessible.

WORKING WITH GRAPHICS FILES 127

Unfortunately, this approach is not feasible for operations requiring that the
image data be transmitted along unsecured channels, or possibly stored on a
unsecured system. In such cases, we must instead find a way to make the con
tents of our graphics files secure while allowing the files to be stored on any
computer system, even one that is not secure.

Proprietary ide fonnats
Files can be difficult, if not impossible, to read if you do not know the format
in which the file's data is stored. If we use a well-published graphics file format
to store our data, a programmer could trivially write a program that makes
unauthorized use of our data. So, it would seem that creating a proprietary
graphics file format, one whose internals are kept secret, would go a long way
toward protecting our data. The problem with this method is that the skill and
determination of the people who want to view and alter your graphics files may
be much greater than your own.

Even general information can be enough on which to base an attack. For
example, somebody who knows that your file is a bitmap will also know that the
vast majority of bitmap files contain a fixed-size header followed by the image
data. All bitmap headers contain typical information, such as the size of the
bitmap and the number of bits per pixel. Inventing a header from scratch (or
worse, basing your new format on an already well-known format) and following
it with data encoded using a conventional data compression scheme (or worse,
no compression at all) will not slow down a determined file format cracker for
very long. The cracking of Kodak's Photo CD format, for example, came about
through the exploitation of a very few bits of general information.

We can assume that the most useful contents of even an unknown graphics file
header can be deduced. What about the image data itself? Bitmap data is usu
ally stored as pixels that are 1, 8, or 24 bits in size. The pixel values are typically
indexed using a color table, or stored directly using a three-color model, such
as RGB or CMY. Only a few formats store bitmap data otherwise, so discovering
the format of the bitmap may be just as easy as deducing the contents of the
header.

Proprietary compression methods
What about using compression as a means of obscuring data? Certainly a
bitmap can be compressed, and compression does obscure the apparent for
mat of the bitmap. But once the starting byte of the bitmap is identified, it is a
simple matter to try any of a dozen or so common algorithms to decompress
the data. It may even be possible to identify the type of compression method

128 OVERVIEW

used by looking at a hex dump of a section of the bitmap that is a single color.
And, although the scan lines of the bitmap may not be stored in sequential
order (such as in interlaced GIF files), that will not prevent the method of com
pression from being discovered.

One way to get around this is to use a compression method that a file forn1at
cracker won't have in her toolbox. Unfortunately, data compression algorithms
are designed only to make your data physically smaller, and not to secure your
data from prying eyes (or in-circuit emulators). Of course, a few unpublished,
proprietary methods of compression, such as fractal compression, are also con
sidered forms of data encryption because the details are kept secret. These
methods derive their security from their complexity, however, not from the use
of robust algorithms. It's only a matter of time before they are cracked. Also,
note that these are extremely complex encoding algorithms; if you don't know
how to deco~press the data, you certainly can't use it in a practical way.

It is doubtful that the average business-or even the above-average program
mer-has the resources to invent a method of compression that is radically dif
ferent from, yet just as good a~,]PEG, LZW, or CCITT Group 4. You can alter an
existing, published. compression algorithm to ."break" it in an undocumented
way, thereby rendering it undecodable by conventional ineans. However, doing
so risks decreasing the efficiency of the compression method and leaving your
files larger in size, and possibly slower to decompress, than they otherwise
would be. You also risk giving yourself a false sense of security.

In summary, proprietary file formats and bizarre compression methods are not
secure methods of protecting your data. We recommend that you consider
encryption instead.

fflly Encrypt Graphics Files? .

There are a number of possible reasons why you might want to encrypt your
graphics files:

• To hide the contents of the file from unauthorized users. Most people who
are interested in file encryption will answer this way. Suppose that you have
some drawings or images that you want to keep most people from seeing.
Simply hiding the files does not provide enough security for your purposes.
Or, you may want a second line of defense in case somebody does discover
your hidden files. Often, keeping your graphics files inaccessible by locking
them up isn't an option anyway, because the files must be distributed.

WORKING WITH GRAPHICS FILES 129

• To prevent the file from being illegally copied. Encryption schemes can't
actually prevent files from being copied, but they can help ensure that
unauthorized copies of files are useless to the person who copies them.
Files distributed on a CD-ROM are often encrypted; they are useless until a
key is used to decrypt them. The key is usually given to the user when he
registers the product. Encrypted files transmitted via modem are still vul
nerable to wiretapping, but without the key they are useless to the wiretap
per. (Of course, remember that if the key is discovered as well, the files may
be decrypted.) ·

• To disguise the type of file. This case is a bit esoteric, but it's possible that
you may not want others to know what kind of data the file contains.
Obscuring not only the file's data, but also the type of data the file con
tains, adds a small bit of additional difficulty to cracking the file via certain
cryptanalytic attacks.

• To detect whether a file is corrupt. Corruption of encrypted files is easily
detected when the files are decrypted. Any alteration in the encrypted
data, even to the extent of changing only a single byte, causes the decryp
tion process to fail. However, this method can only indicate that the file is
corrupt, but not specifically where in the file the corruption occurred. For
this purpose, digital signatures or simple checksums work better.

Corruption within a file can also be detected when a file is decompressed.
Most graphics files, however, are written in a format that supports only the
compression of bitmap data. Corrupt data in uncompressed parts of the
file, such as the color tables and the header, would go undetected. Many
formats (e.g., BMP) routinely store bitmap data uncompressed; others
(e.g., most vector formats) do not support compression at all.

While you may opt for a simpler method of data error detection in your
graphics files (such as storing your files using an archiving utility that sup
ports error detection, as we discuss earlier in this chapter in the section
called "Corruption of Graphics Files"), you might also find encryption
helpful for this purpose, especially if you are not at liberty to alter the file's
contents.

• To prevent the contents of the file from being altered. Encryption cannot
actually prevent a file from being modified; only the security of a file stor
age system can do that. But, as we've discussed, encrypted files that have
been changed are easily detected. Encrypting your files and publicizing
this fact may also provide a deterrent that keeps unauthorized people from
attempting to modify your graphics files, or even attempting to locate your

130 OVERVIEW

•

hidden files in the first place. Of course, advertising such a fact may pre
sent a clear challenge to certain people. (Mter all, if your program can
decode your data, then such people may have a shot at cracking your
encryption by examining the internals of your software.)

To identify the person or program that created the file. Encryption can also
be used to create a digital signature or "fingerprint" associated with a par
ticular file. A digital signature not only verifies the person or program that
created the file, but can also include a time stamp of when the signature
was created. Most encryption systems allow you to generate a digital signa
ture without actually encrypting the data.

Pros and Cons of Cryptography

Before we look in any more detail at what cryptography is, let's discuss what it
is not.

Misconceptions about cryptography
Cryptography is not a form of data compression. Many cryptographic systems
do use data compression algorithms to compress your data before they encrypt
it. However, this step is often performed not only to reduce the physical size of
the data, but also to remove redundancies in the data that might make the file
easier to crack. This is the reason why many encrypted files are physically
smaller than the original unencrypted files.

Cryptography is not copy protection. Encrypted files may be copied from CD
ROMs, floppies, and hard disks just as easily as any other files can be. Copy pro
tection schemes usually physically alter the media the files are stored on, or for
mat the media in some non-standard way (such as Microsoft's DMF disk
format). And while some copy protection schemes may make use of file
encryption, it is not the encryption itself that prevents the files from being
copied. In this case, encryption can only ensure that if a file is copied, that file
will be unusable.

Benefits of cryptography
What are the benefits of using cryptography?

• Cryptography is specifically designed to allow you to get at your data while
preventing unauthorized people from doing so as well.

• Encryption allows you to work with standard graphics files as your unen
crypted data. This eases the burden on the authorized users of the file. It
also releases you from the foolish and quixotic task of inventing yet
another proprietary file format. Inventing a proprietary format will add
nothing to the security of your encrypted file anyway.

WORKING WITH GRAPHICS FILES 131

• The encrypted files need not be hidden or copy-protected to be secure. H
you choose, the file may be freely available for copying and access.

• Encryption algorithms are much harder to crack than either proprietary
file formats or data compression algorithms. It is also less likely that unau
thorized people will even attempt to obtain your files if they know that they
are encrypted.

• Your files are secure for as long as the encryption algorithm itself remains
unbroken and your decryption keys remain undiscovered.

These are all very good reasons to use cryptographic technology to secure your
data. Are there any reasons not to use encryption? What problems could there
be with encrypting your graphics files? To answer this we have to qriefly look at
two basic systems of cryptography called private key cryptography and public key
cryptography.

Private and public key cryptography
If you have ever used a secret password to log into a computer system or net
work, withdraw money from an automatic teller machine, or gain entrance to a
secret meeting, you have probably used a private key cryptographic system.

Private key systems use a single password or pass phrase to both encrypt and
decrypt a . piece of information. Both the person encrypting the information
and all of the people authorized to decrypt the information must have the key.
If an unauthorized person acquires both the encrypted information and the
key, and if they know the encryption algorithm that is being used, they can eas
ily access the your information.

Public key systems use an algorithm to generate two mathematically related
keys. Data encrypted with one key (the public key) can only be decrypted with
the other key (the secret key) and the secret key's pass phrase .. The data is
secure if no one else has a copy of your secret key and knows your key's pass
phrase (and if you don't leave decrypted copies of your files around).

Public key systems have some tremendous advantages over private key systems.
Suppo~e you transmit some private-key-encrypted files to a friend across the
country. Your friend can't decrypt these files until you also give her the same
password you used to encrypt them. But, how do you securely tell her what the
password is? If the password is intercepted along with your files, your data will
be in unauthorized hands.

If, on the other hand, you use a public key system, you only need your friend's
freely available public key to encrypt the files. Once your friend receives the

132 OVERVIEW

files, she uses her own secret key and her secret key's pass phrase to decrypt
them. No secret pass phrase need be sent with the files. Moreover, your friend's
public key (and indeed your own) need not be hidden. In fact, you want as
many people to have your public key as possible so they will be able to send
encrypted files to you!

Risks of cryptography
Cryptography is not without its risks and problems:

• The more people who know your password, or pass phrase, and have access
to your secret keys, the less secure your data is. This is even more true if
your encrypted data is easily available and the method of encryption is
widely known.

• Even if your keys and pass phrases are secure, your chosen method of
encryption may not be. In theory, for every data encryption algorithm
invented, at least one method of getting around it exists, although it may
take hundreds of computers and many years to fully exploit that method.

• So too, any given implementation of a cryptographic system may not be
ideally secure. Even the most theoretically robust of encryption methods, if
implemented using bad design and with buggy code, can be insecure.

• Encryption always imposes a performance penalty. Public key systems are
especially slow to encrypt and decrypt data. You may decide that your appli
cation can't afford the extra overhead to use a particular method of
encryption.

• Almost all forms of encryption systems are patented. Even those that are
freely availaple still require a license for commercial use.

• Many import and export restrictions also exist that could make it more dif-
ficult to distribute and sell your software.*

Assuming that you can live with these shortcomings of encryption systems (or
perhaps you simply want to play around with some of the technology), how can
you actually encrypt your files? One tool that's easy to get and use is PGP
(Pretty Good Privacy).

*(Simson Garfinkel's PGP: Pretty Good Privacy, referenced in "For Further Information" below,
contains a complete discussion of patent and export issues.)

WORKING WITH GRAPHICS FILES 133

Using PGP to Encrypt Graphics Files

PGP is a robust public key system, invented by Phil Zimmermann, which is used
to securely encrypt and decrypt files. PGP is also a customizable software tool
that is capable of creating and managing public and private keys, creating digi
tal signatures, and being integrated into software programs, such as text and
graphics file editors and email applications. PGP is also freely available for non
commercial use.

How would you use PGP to encrypt a graphics file? This depends upon whether
you wish the resulting encrypted data to be stored as binary or ASCII data.
Using the following command, PGP will store encrypted data to a file as binary
data:

unix% pgp -c private.gif

This command causes PGP to read the file private.gif and to create a new file
called private.pgp. The contents of private.pgp are a spew of binary data that is
an encrypted representation of the data stored in private.gif. If you look at pri
vate.pgp in a text editor, you will see unintelligible binary data.

If you prefer that the encrypted data be stored in ASCII character format, PGP
can produce the encrypted file using ASCII character data:

unix% pgp -ca private.gif

PGP now creates a file called private.asc. This file contains an encrypted version
of private.gifusing only ASCII characters. If you look at private.asc via a text edi
tor, you will see something that looks like this:

-----BEGIN PGP MESSAGE----
Version: 2.6

pgAAAmSmv5vjsqw+3E+nZvfweBVhB+h4xueb3LnyKgyDj~eGzxdvfZcyPQQCXrb9

yegMQoPL9yprzAOcKqOREhlWsEltq02bFZXDTNjEfDZSX/ucTutFS4M6fQJFCl~A

R3RC2HwdWBKUZ8/qRK6sflhisx/HBOuddcjii+Sgj7GFitoXYiu5f/i9wfQ1Xiqy
Z9NLaPmcROjS9p695slnkVVAlZ97Dy8f/gswsrng82cQ2RJ51KzHJaiNWMOVZWHkz
epnn
=jESE
-----END PGP MESSAGE-----

Instead of binary gibberish, you will see your encrypted file encoded as ASCII
data using the radix-64 binary-to-ASCII encoding algorithm. Using this algo
rithm, an encrypted file stored in ASCII format is one-third larger than the
same file encrypted and stored using the binary format. This is because
radix-64 encodes every three binary characters as four ASCII characters. This
result is well-known to anyone who has used the uuencode program native to
UNIX.

134 OVERVIEW

What does this mean to you? You can store your graphics files as binary or
ASCII data. The contents of the files will be hidden. In fact, anyone looking at
the encrypted data won't be able to tell what kind of files they are. If the files
are altered or corrupted in any way, they will not properly decode. And without
the matching secret key and pass phrase, the file's contents cannot be success
fully decrypted.

This way, you can keep people from discovering a file's contents, detect
whether an encrypted file has been changed, and even hide the type of data a
file contains. But how do you use PGP to verify who created the file? PGP does
this by using a digital signature.

A digital signature is a numerical value created using an algorithm known as a
message digest function. This function reads your file data as input and generates
a value that is unique to the data in the file. Changing so much as one bit in
the file will cause the digital signature to be different.

Digital signatures are typically used to authenticate the sender ofan email mes
sage. A unique digital signature is created from the file data, encrypted with
the private key of the sender, and appended to the message. The message
receiver then obtains the public key of the sender, decrypts the digital signa
ture, and calculates the digital signature of the message. If the calculated digi
tal signature matches the signature included in the message, the receiver may
safely assume that the message was sent by the owner of the public key.

You can take any graphics file and sign it using PGP. The signature may be used
to verify the creator (human or computer) of the file, and the file's contents
need not be encrypted. Here's how you would do it using PGP:

unix% pgp -s private.gif

This command signs the file private.gifusing your secret key and pass phrase.
The encrypted signature is appended to the data and stored in the file pri
vate.pgp. The data of the file is not encrypted. If you want the file's data to be
encrypted, use the following command instead:

unix% pgp -se private.gif

This command encrypts the file data, signs the file contents, and also places
the data in the file private.pgp. The signature is a binary value by default. If you
want an ASCII signature, specify:

unix% pgp -sea private.gif

WORKING WITH GRAPHICS FILES 135

This command creates a file called private.asc, which contains the encrypted
data and an appended ASCII signature. If the input file contains text rather
than binary data, you add yet another flag:

unix% pgp -seat private.dxf

NOTE

PGP is a self-contained software program that has been ported
to many different computers and operating systems. PGP is typi
cally used from the command line. A software application using
PGP version 2.x could also use PGP as a separate executable pro
gram. PGP version 3.0 promises an API library of tools that may
be directly linked into software applications.

See the PGP reference in the section below for complete information about
this program and all its options.

For Further Information About Encryption

The Internet abounds with information about data encryption. A Web search
on the keywords "encryption" and "cryptography" will tum up hundreds of
hits.

Two major sources of information and references are the USENET newsgroups
alt.security.pgp and sci. crypt and their associated FAQs.

In addition, see the following references for information about encryption:

Garfinkel, Simson, PGP: Pretty Good Privacy, O'Reilly & Associates,
Sebastopol, CA, 1995.

Schneier, Bruce, Applied Cryptography: Protocols, Algorithms, and
Source Code in C, John Wiley & Sons, N~w York, NY, 1994.

Schneier, Bruce, Practical Cryptography, John Wiley & Sons, New
York, NY, 1994.

Schneier, Bruce, "Untangling Public Key Cryptography," Dr.
Dobb'sjournal, May 1992, pp. 16-28.

Schneier, Bruce, "The IDEA Encryption Algori~m," Dr. Dobb's
Journal, December 1993, pp. 50-56.

Stevens, A., "Hacks, Spooks and Data Encryption," Dr. Dobb's
Journal, September 1990, pp. 127-134, 147-149.

136 OVERVIEW

Viruses in Graphics Files
"Avoid detection and dodge selection."

-'What Charles Darwin might have said if asked about the fundamental
behavior of computer viruses.

Every computer user worries about computer viruses. These often harmful and
sometimes nearly undetectable programs are the subject of much consumer lit
erature and urban folklore.

It is hard to generalize about computer viruses, but they typically are not very
complex. In most cases, a virus is just a program that is written to replicate
itself, avoid detection by both the computer user and the operating environ
ment, and perhaps do a few other things along the way. Some viruses are
meant to cause harm (e.g., destroy files and bring networks to a screeching
halt), of course, but others are only inadvertently harmful due to logic errors
in their own code or because of incompatibilities between the code and the sys
tem on which it is running. Still other viruses are programmed to be merely
annoying; in some cases, they taunt their victim, who realizes to his dismay that
something alien has at least partial control over his computer.

Why do we use the term computer virus? At first, the term may seem to be simply
a play on the well-known phrase software bug. But there's more to it than that.
The operational characteristics of computer viruses bear an amazing similarity
to those of biological viruses. The primary goal of a biological virus is to repro
duce. A virus is only a fragment of RNA or DNA, and therefore does not consti
tute what most people consider to be a living organism. Because it cannot
reproduce on its own, a biological virus must infect a living host in which to
reproduce-a process which may result in the disease or death of the host.

When an infected host program is executed by the operating system, the oper
ating system unknowingly executes the viral code as well. The executed viral
code is designed to seek out other compatible host programs and to attach
copies of itself to them as well. When the code in a virus infects another pro
gram, the virus is said to have reproduced. Most executable programs, such as
.COM and .EXE files on MS-DOS systems, contain machine code and are
directly executed by an operating system. A virus can only infect files that it is
designed to infect.

Some viruses are designed so they can attach themselves to batch files, shell
scripts, the boot sectors on hard and floppy disks, and even spreadsheet and
word processor macros. If it is code that can be executed by a software
program, it is fair game for infection by a virus.

WORKING WITH GRAPHICS FILES 137

What about graphics files? Can they be infected with a virus? Is your computer
system in any danger from infected graphics files?

Graphics files are generally collections of data and as such are not executed by
a computer's operating system. Programs that use graphics files, such as display
and editing programs, simply read the data in a graphics file into memory and
then modify it for rendering to an output device. Graphics files that consist of
data cannot be infected by a virus because the code is not executed. Static
graphics files (i.e., those containing no code) are safe from infection.

Some graphics files, such as those used in multimedia applications, do have the
capability of storing instructions that can be executed by specific software
applications. Such instructions might display text, create sound, pop up
menus, and read data from other files. Object-oriented files containing data
and the code necessary to render the data are also in this category. These types
of files are theoretically susceptible to virus infection. At this point, however,
none to our knowledge have been attacked by viruses. This may change, how
ever, as instruction sequences necessary for the proper rendering of a particu
lar file become more complex. However, none of the file formats in common
use support this level of complexity.

NOTE

What about page description languages (PDLs) such as
PostScript and hypertext languages such as HTML? Such lan
guages are not actually graphics file formats, but are instead col
lections of interpreted statements that may contain or reference
graphics data. Although the graphics data itself is not a target
for a virus, the interpreted language code can be altered, and
known security holes in the programming language can be
exploited.

In summary, graphics files are very unlikely candidates for infection by com
puter viruses. In fact, most virus detection programs will not even bother to
scan graphics files unless told explicitly to do so. Of course, a virus could still
do nasty things to a graphics file, just as it could to any other type of file-for
example, it could copy, move, alter, corrupt, or delete a graphics file, or it
could append data to the file to cause it to grow in size. But a computer virus
cannot use a data-only graphics file-or any data file, for that matter-to
reproduce.

138 OVERVIEW

Designing Your Own Format
We find it hard to imagine why anyone would think that the world needs
another graphics file format. And, in fact, we don't want to give the impression
that we're encouraging such behavior. But given the fact that people can and
will create new formats, we'd like to leave you with some pointers.

Why Even Consider It?

The truth is that this book does not even begin to include all of the hundreds
of more obscure formats, some of which are used only privately and remain
inside company walls. Companies wishing the output of their products to
remain proprietary will always find a way to make it so and thus will continue to
develop new formats.

Designing your own format also will help you avoid trouble should the use of
someone else's format one day be restricted through legal action. The use of
the GIF file format has recently come under licensing restrictions requiring
that a royality fee be paid for software that reads or writes the GIF file format.
Payment of this fee has been actively enforced through the threat of legal
action both by both the owners of the GIF format and the owners of the Lem
pel-Ziv-Welch (LZW) compression algorithm used by GIF. Remember that even
though many formats appear to be freely and publicly available, very few actu
ally are.

Of course there are functional reasons for designing your own format. You may
decide that an appropriate format doesn't yet exist, for instance, and thus feel
compelled to create a new one. Reasoning leading to this decision is always sus
pect, however, and sending yet another format out into the world might even
decrease your market share in this era of increasing interoperability and file
sharing. The unfortunate reality is that file formats are usually created to sup
port applications after the fact. In the modern world, marketing decisions and
speculation about the future evolution of the supporting operating system and
hardware platform play large parts in the development of program specifica
tions from the very start. So we urge you to consider designing your applica
tion around a set of existing formats, or at least a format model.

But If You Must . ..

With that said, consider the following guidelines if you persist in designing
your own:

• Study everybody else's mistakes. No matter what you think, you're not
smart enough to avoid them all, unless you see them first.

WORKING WITH GRAPHICS FILES 139

• Plan for future revisions. Give plenty of room for future expansion of, and
changes to, data. Avoid building limitations into your format that will one
day force you to make kludges to support further revisions.

• Keep it simple. The last thing the world needs is another ''write-only" for
mat. The object is to make it easy to read, not easy to write.

• Document everything! Use consistent terminology that everyone under
stands and will continue to understand until the end of time. Number your
documentation revisions with the format revisions; that way, it will be obvi
ous if you "forget', to document a new feature.

• Write the format before, not after, your application. Build the application
around it. Don't make convenience revisions no matter what the provoca
tion.

• Avoid machine dep~ndencies; at the same time, don't add complications
designed to support portability.

• Find some unambiguous means by which a reading application can identify
the format.

• Write a detailed file format specification and make it available. Do not dis
courage people who are interested in your format by refusing to supply
them with information simply because they are not registered users of your
product. The more widely distributed your information, the greater the
potential acceptance of your format will be.

• If your format is truly superior, market, market, market! Write software
applications that use your format. Formats gain currency almost entirely
through the marketing power of companies and their software. If your for
mat is unique in the way it stores information, and you feel that it fills a
niche that other formats don't, then advertise that fact.

• Explicitly place the format in the public domain. If that is too threatening
in the context of your company model, allow use with attribution. Do not
discourage the spread of your format by including threats about copyright
infringement and proprietary information in the specification. This only
prevents your format from becoming widely accepted, and it alienates pro
grammers who would otherwise be happy to further your company's plan
of world domination for free.

• Develop canonical test files and make them freely available. Mark them as
such in the image, with your company name, the format type, color model,
resolution, and pixel depth at the very least. They will be a good form of
advertising for you and your company and are sure to be widely distributed
with no effort on your part.

140 OVERVIEW

One Last Word

Remember that a lot of code is already out there and plenty of libraries are
available in source form that may be able to supply your needs. Consider this
statement from the FAQ (Frequently Asked Questions list) from the
comp.graphics. mise newsgroup on the Internet:

Format documents for TIFF, IFF, BIFF, NFF, OFF, FITS, etc. You
almost certainly don't need these. Read the section on free
image manipulation software. Get one or more of these packages
and look through them. Chances are excellent that the image
converter you were going to write is already there.

Writing a File Format Specification
If you are going to write a graphics file format specification, the first thing to
do is to make a list of the types of information you are going to store. Then
make a second list, of all the auxiliary data a program will need in order to ren
der the data you wrote down in the first list. Get the picture? In compiling the
second list, you'll almost certainly find that you forgot something in the first
and vice versa.

The next thing to do is to look at all the format specifications like yours and
notice where the writers went astray. Now go back and fix up your list. Now iter
ate. This is an exercise in honesty, intelligence, and diligence. Nobody-and
we mean nobody-has gotten it right yet. Maybe you'll be the first.

Stiggestions for Writing specs

When you read through your pile of format specifications you'll find out that
no two are alike (unless they are written by the government or military-in
that case they are all alike). And you will discover that most are poorly written
and quite complex as well. How can you avoid making the same mistake? Here
are a few suggestions.

• A large spec needs a table of contents, a bibliography, and an index. How
ever, because most specs are usually no more than a dozen pages or so,
most will not need to have this type of organization.

• On the spec's cover sheet, give full information about your company, any
products associated with the format, the format version, date of release,
where the latest copy of the spec may be obtained, and how developers may
get in contact with you to ask questions.

WORKING WITH GRAPHICS FILES 141

•

•

•

•

•

•

142

Detail the full history of the spec, including the differences between the
current version and all previous versions, and not just the dates of its revi
sion. Tell why the format was created. Detail some insights of how it was
designed. Speculate on what features future versions might contain. And
give the names of your developers and other people involved. Show the
human thought that exists behind the cold chunk of data that is your for-
mat. ·

List the features of your format and explain how you intend that it should
be used and not used. Give a rationale for excluding features that people
might find desirable (e.g., supporting multiple images, popular methods of
data compression, and so on). Give the developer reasons why she should
use your format (and why she should not bother with others).

Include both block diagrams and ANSI C code examples of the format's
internal data structures. Illustrate actual examples of ASCII file format data
and hexadecimal dumps of binary format data. Such information helps
programmers quickly and correctly implement code that uses your format.

If your format includes one or more forms of da~ compression, error
checking, encryption, etc., place this information in a separate section, and
give plenty of examples (both written and code) of how these algorithms
work. Include mathematical formulas if you believe that they will make the
concepts clearer. ·

Make the specification available in both hardcopy and electronic form .
The hardcopy version should be formatted as a technical document using a
font that won't degrade badly when the spec is photocopied or faxed. Use a
standard sized page layout so the spec isn't a hassle to fit in an envelope
when mailed. The electronic version should be available as both ASCII text
and PostScript files. Making the spec available in a word processing format
(such as Microsoft Word or FrameMaker) is nice but not absolutely neces
sary.

Consider making a developer's toolkit for your format. A collection of
benchmark graphics files (one of each flavor of your format) and a parser
written in ANSI C that reads and writes your· format will be of tremendous
help to programmers. Such a kit will allow developers to implement your
format quickly in their products and will help minimize the chances of
numerous software packages appearing that create graphics files that don't
meet your spec. Examples of formats with toolkits include TIFF, TGA, WPG,
andPNG.

OVERVIEW

• Submit your specification to every ITP, Gopher, and Web site, and to every
BBS that archives file format specs. Notify the maintainers of related FAQs
(graphics, animation, multimedia, audio, medical, etc.) that your format
exists, and ask for a mention. Send your literature to graphics and imaging
software companies to sell support of your format and/ or software prod
ucts.

Examples of some well-written format specs that we've encountered include
TGA, TIFF, PNG, EPSF, and PostScript.

We've also found that some specs are well-written, but contain so much extra
neous information that they are overly complex and too tedious to read. Most
government and military formats are in this group, as are those created by
committee; examples in this category are CALS, NITF, NAPLPS, IGES, GKS, and
CGM.

And finally, format specs such as PCX, GIF, JFIF, and Sun Raster definitely fall
into the "don't let this happen to you" category.

Suggestions for Good Technical Writing

Here are a few, more general, guidelines on good technical writing:

• Write in a tutorial style with explanations and examples of your topics.
Don't just give a terse, dictionary description of a topic that will leave read
ers confused and in need of more information.

• Write in simple terms. Don't assume that your readers enjoy 70-word sen
tences or that they have advanced degrees in mathematics or computer
graphics.

• Have other people read and attempt to understand your spec. Don't
assume that just because you understand what you've written, every other
reader will as well. You, as the file format specificatioh's author, understand
the format inside and out. Your readers, however, do not. Your job is to
bring them up to speed. Don't be embarrassed if you don't know how to do
this; good technical writing is a highly specialized skill. An explanation that
seems clear to you may be just gibberish to your readers. Get help with
your writing if you need it.

• Write for a world-wide audience of programmers. Omit slang or regional
expressions that a developer living on the other side of the planet might
not understand.

WORKING WITH GRAPHICS FILES 143

• Remember that programs that check spelling and grammar are our
friends. Use them.

Trademarks, Patents, and Copyrights
You probably think of a trademark, whether it's on a Microsoft Windows logo,
a Xerox machine, or a box of Kleenex, as a mark of product identification. You
may think of a patent as an ownership claim on a strange invention or chemi
cal process. And when you think of a copyright, you may visualize a book, a
magazine article, or a piece of music branded with a name and date claiming
ownership of that work.

Where do graphics file formats fit into this scheme? Let's start to answer this
question by examining trademarks, then patents, and finally copyrights.

NOTE

The authors are not attorneys, and this information should not
be construed as legal advice. We advise you to contact an intel
lectual property attorney if you have a need for absolutely accu
rate and up-to-date information.

'ITademarks

Trademarks are words, names, or symbols used to identify a product or a ser
vice. Owning a trademark doesn't mean that you own the actual words associ
ated with the trademark claim (although Eastman Kodak and Xerox
Corporation might disagree). The trademark only bestows ownership of a
word or phrase within a certain context, such as the word windows within the
context of the computer industry.

Trademarks are important in the world of graphics file formats. CompuServe
owns the trademark "GIF"; Adobe (and formerly Aldus) owns the trademark
"TIFF"; and Microsoft owns the trademark "RIFF". You get the idea.

Graphical logos can also be the subject of trademarks. The Apple Computer
and Microsoft Windows logos are registered trademarks belonging to those
corporations. Original artwork used as a trademark can, unlike words, be
owned by the holder of the trademark. An original piece of artwork is consid
ered to be a "work of authorship," while a few words of the English (or other)
language strung together in a clever way is not.

In summary, you can't trademark a graphics file or its format, but you can cer
tainly trademark its name and logo.

144 OVERVIEW

Patents

'What about patents? Can a graphics file format, the contents of such a file, or
the file format itself be patented?

A patent is a claim to the ownership of an invention, process, or design that is
"new, useful, and nonobvious." Inventions that are mechanical, chemical, elec
trical, or electronic in nature are covered by "utility patents." Functional and
artistic designs are covered by "design patents." Which patent would apply to a
file format?

Remember that file and data formats are just specific arrangements of informa
tion present in some type of medium or media. They are not the information
or the media itself.

A utility patent would apply to the invention of storing information on a hard
disk device, or text on the pages of a book, or even the concept of the book
itself. But it would not apply to the format of the information, unless the for
mat were a necessary part of the invention itself.

A file format is more of a functional design, as is the shape of an airplane or a
cathode ray tube, rather than an artistic design, such as the pattern on a piece
of fabric. Does this mean that you can create a new graphics file format and
have its design patented?

To be awarded a patent, inventions and designs must be new, useful, and not
derived from a pre-existing work. Although file formats exist in many different
forms, they all still do the same job: store graphical data in an analog or digital
medium. It is likely that attempting to obtain a design patent for a new file for
mat would be turned down based on the existence of prior art.

Cbpyrigkts

Can a graphics file be copyrighted?

A graphics file itself cannot normally be copyrighted under United States copy
right laws (although the ;rulings of some judges may disagree). The specifica
tion of a format and the "contents" of a graphics file, however, are subject to
copyright. In other words, your secret barbecue sauce, or its recipe, can win a
blue ribbon at the county fair but not the jar you put the sauce in, or the paper
you wrote the recipe on.

For anything to be copyrighted it must be:

• A work of authorship

WORKING WITH GRAPHICS FILES 145

• Fixed in a tangible medium of expression

The description of a graphics format does meet both of these criteria if it is
both fixed in a medium (printed on paper or stored on disk) and a work of
authorship (not copied from a pre-existing work). Any file format specification
that meets these two requirements is protected under the copyright laws.

A graphics file created using a format description, however, meets the second
criteria but not the first. Th~t is, the file itself is not considered to be a work of
authorship. The file itself is considered instead to be an idea or a system and is
therefore not protected by the laws of copyright.

So the description of a file format is copyrightable, but the format as it exists in
its medium is not. What about the graphics data that the file contains?

If the graphics data written to a graphics file also meets the above two criteria,
it is also protected by the copyright laws as intellectual property. You will not
waive your copyright protection by storing any original information using a
graphics file format.

Explicit versus implicit copyrights
How do you copyright the contents of a graphics file or a file format specifica
tion? There are several levels of copyright: formal, explicit, and implicit.

You can formally register the copyright of your work to establish priority as the
creator of the work. This action gives you extra protection if you intend to sell
or otherwise assign your copyright, or if you need to defend yourself in the
event that the ownership of your work is disputed in a court of law. For the
most up-to-date information about copyright registration, consult the U.S.
Copyright Office (or the appropriate office in your own country) or an intel
lectual property attorney.

Most people copyright their work explicitly, but informally, by attaching a copy
right notice to the work. (We'll describe how you do this in the sections that
follow.) However, neither formal registrat~on nor even the attachment of an
explicit copyright notice is needed to establish copyright. Thanks to the Berne
Convention on copyrights, the contents of any graphics files created after
March 1, 1989, are automatically and implicitly copyrighted and protected,
regardless of whether a copyright notice is. actually present in the file. In fact,
even all the posts on USENET and all email sent across the Internet are auto
matically copyrighted by these international laws.

Unfortunately, many people do not realize that even though they don't see an
explicit copyright notice on a file, the information in that file is still subject to

146 OVERVIEW

Work for Hire
In many cases a copyright is not automatically assigned, such as with work
for-hire. If you are paid by someone to create a copyrightable work, the
copyright belongs to your employer and not to you.

protection under the copyright laws. We recommend that you include a visible
copyright notice on your file. Doing so will drive the point home that the con
tents of your graphics files are at least in some ways protected by copyright
laws.

A minimal copyright notice looks like this:

Copyright date(s) by author(s)

This notice visually establishes the fact the contents of your file are copyrighted
on a given year(s) and indicates who holds the copyright. For example:

Copyright 1995-96 by James D. Murray

You might enhance your copyright notices by stating:

Copyright (C) 1995-96 by James D. Murray. All rights reserved.

The (C) is an ASCII attempt to represent the "c in a circle" (©) copyright sym
bol. Note that you must include either the word Copyright or the copyright sym
bol in your statement, It is redundant, but harmless, to include both. Note also
that the (C) character that people put in ASCII files has not yet been accepted
as a valid copyright symbol by any court of law.

The phrase All rights reseroed was a requirement of several countries many years
ago to consider a copyright notice valid. Under current international copyright
laws, this phrase is no longer required, but many people still use it.

Object code copyright
An object code copyright is a human-readable copyright notice that has been
embedded into the object code of a library mode or executable file. This
notice allows anyone who is performing a string search on an object file to see
that the intellectual contents of the file are protected by copyright.

In ANSI C, you could use the following line of code to embed a copyright string
into an object file:

static const char* const Copyright= "Copyright 1996 by James D. Murray";

This code creates a static constant named Copyright that contains your copy
right string. This is also the string that should be displayed to the user with

WORKING WITH GRAPHICS FILES 147

other information about the program.

Public domain
Not everybody feels the need to copyright their work. Some people explicitly
want to share the fruits of their labors. Instead of including a copyright notice
in your file, you may choose to place the contents of your file format into the
public domain. Doing so allows anybody to do anything they wish with your
work. By placing your work in the public domain, you are, in effect, making a
"no strings attached" contribution to the freely accessible knowledge base of
humankind.

You place the contents of your graphics files into the public domain by includ
ing a statement in your work such as:

I yournamehere grant this nameofyourworkhere to the public domain.

This statement is a legal notice that your work may be freely used and dis
tributed by anyone as he or she sees fit.

License notice
What if you don't want to prevent people from using or distributing your
graphics by waving around your copyright, but you don't want to release your
work into the public domain only to have some rogues claim your work as
theirs? For one possible answer, let's look at the copyright notice on the Graph
ics File Formats Frequently Asked Questions (FAQ) listing that circulates on
USENET:

This FAQ is Copyright 1994-96 by James D. Murray. This work may be
reproduced, in whole or in part, using any medium, including, but not
limited to, electronic transmission, CD-ROM, published in print, under the
condition that this copyright notice remains intact.

This copyright notice includes a statement, called a license notice, that
declares how the author intends the information in the listing to be used. And,
as you can read, the author allows anyone to do practically anything he or she
wants with the information in this listing, as long as the a~thor is given proper
credit as the creator and the maintainer of the listing.

What we have here is a copyright notice establishing ownership of a work
which includes a written statement of what the owner of the work considers to
be "fair use" of the copyrighted material. In this case, the author has all but
placed the original information in the Graphics File Formats FAQ into the pub
lic domain; all he asks is that he be recognized for his efforts if the information
contained in the FAQis ever used. What a nice guy!

148 OVERVIEW

Rights of ownership
Note that you must be the owner of the work to explicitly copyright it or place
it into the public domain. Willfully or unknowingly using or distributing a
copyrighted work without permission of the copyright holder, for profit or for
free, is a clear and prosecutable violation under the copyright laws. Your
offense is even worse if your "use" of the material has hurt the commercial
value of the property itself.

The owner of a copyright has several exclusive rights to his c~pyrighted work.
Four of these rights that apply directly to the contents of graphics files include:

• Reproduction rights: the right to copy, transcribe, duplicate, or imitate the
work in a fixed form.

• Modification rights: the right to derive a new work based on the copy
righted work.

• Distribution rights: the right to distribute the work by sale, rental, leasing,
or lending.

• Public display rights: the right to show or transmit the work to the public
by direct or indirect means.

Can you get into trouble distributing graphics files that you do not own? You
bet you can. Violating the exclusive rights of a copyright owner will earn you
the exclusive title of "copyright infringer" by most countries on Earth.

Let's say you come across a nice photograph or piece of artwork in a magazine
or on videotape, and you decide to scan or capture it, save it to disk using a
popular graphics file format, trim some of the image away and maybe add a
border, and upload it to a BBS or post it on USENET or another information
service. By doing so you have infringed upon the copyright holder's reproduc
tion rights (scanning or capturing the work and saving it), modification rights
(altering the work using a graphical editor), and distribution rights (uploading
the file and its reproduced work).

A court of law may award actual and statutory damages· for such infringements,
potentially ranging from tens of thousands to millions of dollars.

To stay out of trouble, you must assume that you do not have permission to
copy, modify, or distribute any graphics files unless you have explicit permis
sion to do so from the owners of the file's contents. Scanning a page from a
magazine and storing the image in a file does not give you ownership of the
image, only ownership of the file. The file's contents still belong to the holder
of the copyright of the text, photograph, or artwork that you scanned.

Remember, the ownership of the graphics file itself is not the issue. You must
always be aware of who owns and has the rights to the graphics file's contents.

WORKING WITH GRAPHICS FILES 149

Copyright notices in graphics ltles
By now you are probably wondering how you can include a copyright notice in
a graphics file. Some file formats have a text field, often in the header, specifi
cally reserved for a copyright notice; for example, TIFF, SPIFF, DPX, and PNG
support such a field. Many formats support the storage of text comments in a
user-defined data field; for example, GIF, IFF, and TGA allow text comments.
Such comments are used to describe anything the file writer wishes, which is
usually the contents of a file, the name of the author, and the copyright notice.

In formats that lack comment or copyright fields (e.g., PCX and BMP), copy
right notices can find their way into areas of the file reserved for future expan
sion of the file format, or they can simply be tacked onto the end of the file
itself. Neither of these methods is recommended, because they will surely
cause some file format readers to report an error-or simply blow up-when
they read such copyright-kludged graphics files.

In you can't use a format that properly supports the storage of a copyright
notice, you should include an external file bearing your copyright notice and
terms of usage and listing the names and descriptions of all of the copyrighted
graphics fil~s that you are distributing. This method has the advantage of mak
ing your copyright notice human-readable, which is helpful because very few
graphics file viewers are able to display text comments embedded within a
graphics file.

Summary

To summarize the facts of trademarks, patents, and copyrights applied to
graphics files, remember that a file format specification, and the contents of a
graphics file, can be protected by a copyright, but the graphics file itself can
not. And, until the federal courts rule otherwise, file formats-or more pre
cisely, their contents-may be subject to copyright but not to trademarks or
patents.

For Further lnfonnation on CQ/Iyrights and Patents

For more information on copyright, please refer to the Copyright FAQs found
on the misc.legal, misc.legal.computing, misc.int-property, and comp.patents news
groups, as well as the FTP sites:

ftp:/ /rtfm. mit.edu/pub/usenet/news.answers/law/Copyright-FAQJ
ftp://rtfm.mit.edu/pub/usenet/news.answers/law/Capyright-FAQjmyths/

Quite a few copyright discussions also occur on the comp.infosystems.www. *
newsgroups.

150 OVERVIEW

For information about the Internet Patent News Service mailing list, send
email to patents@world.std. com.

Information on patents, copyrights, and intellectual property may also be
found at:

http:/ /www.questel. orbit. com/patents/readings. html
Patent, trademark, scientific, chemical, business, and news information

http://www. uspto.gov
U.S. Patent and Trademark Office

http:/ /www.spi.org
Software Patent Institute

ftp:/ /comments.uspto.gov/pub/software_hearings
Transcriptions of hearing on software patents

ftp:/ /marvel.loc.gov /pub/ copyright
Forms and information from the U.S. Copyright Office

http:/ /www.eff.org/pub/CAF /law/ip-primer
Intellectual property law primer for multimedia developers

http:/ /www.eff. org/pub/CAF /law/multimedia-copyright
http:/ /www.eff. org/pub/CAF /law/multimedia-handbook

Copyright information for multimedia developers

WORKING WITH GRAPHICS FILES 151

CHAPTER 91

Data Compression

Compression is the process used to reduce the physical size of a block of infor
mation. In computer graphics, we're interested in reducing the size of a block
of graphics data so we can fit more information in a given physical storage
space. We also might use compression to fit larger images in a block of mem
ory of a given size. You may find when you examine a particular file format
specification that the term data encoding is used to refer to algorithms that per
form compression. Data encoding is actually a broader term than data com
pression. Data compression is a type of data encoding, and one that is used to
reduce the size of data. Other types of. data encoding are involved fn encryp
tion (cryptography) and data transmission (e.g., Morse code).

A compressor, naturally enough, performs compression, and a decompressor
reconstructs the original data. Although this may seem obvious, a decompres
sor can operate only by using knowledge of the compression algorithm used to
convert the original data into its compressed form. What this means in practice
is that there is no way for you to avoid understanding the compression algo
rithms in the market today if you are interested in manipulating data files. At a
minimum, you need general knowledge of the conceptual basis of the algo
rithms.

If you read through a number of specification documents, you'll find that most
formats incorporate some kind of compression method, no matter how rudi
mentary. You'll also find that only a few different compression schemes are in
common use throughout the industry. The most common of these schemes are
variants of the following methods, which we discuss in the sections below.

• Run-length encoding (RLE)

• Lempel-Ziv-Welch (LZW)

DATA COMPRESSION }53

• CCITI (one type of CCITI compression is a variant on Huffman encoding)

• Discrete Cosine Transform (DCT) (used in the JPEG compression we dis-
cuss in this chapter)

• JBIG

• ART

• Fractal

In addition, we discuss pixel packing, which is not a compression method per
se but an efficient way to store data in contiguous bytes of memory.

Data compression works somewhat differently for the three common types of
graphics data: bitmap, vector, and metafile. In bitmap files, only the image data
is usually compressed; the header and any other data (color map, footer, and
so on) are always left uncompressed. This uncompressed data makes up only a
small portion. of a typical bitmap file.

Vector files normally do not incorporate a native form of data compression.
Vector files store a mathematical description of an image rather than the
image data itself. There are reasons why vector files are rarely compressed:

• The expression of the image data is already compact in design, so data
compression would have little effect.

• Vector images are typically fast to read but slow to reconstruct; adding the
. overhead of decompression would make rendering them still slower.

If a vector file is compressed at all, you will usually find the entire file com
pressed, header and all.

In metafiles, data compression schemes often resemble those used to compress
bitmap files, depending upon the type of data the metafiles contain.

Programmers commonly confuse compression algorithms with the files in
which they're used. Many programmers ask vendors or newsgroups for specifi
cations for the CCITI or JPEG file formats. There are no such specifications.
Compression algorithms define only how data is encoded, not how it is stored
on disk. For detailed information on how data is stored on disk, look to an
actual image file format specification, such as BMP or GIF, which will define file
headers, byte order, and other issues not covered by discussions of compres
sion algorithms. More complex formats, such as TIFF, may incorporate several
different compression algorithms.

The following sections introduce the terms used in discussions of data com
pression and each of the main types of data compression algorithms used for
graphics file formats today.

154 OVERVIEW

;Data Compression Terminology
This section describes the terms you'll encounter when you read about data
comp~ession schemes in this chapter and in graphics file format specifications.

The terms unencoded data and raw data describe data before it has been com
pressed, and the terms encoded data and compressed data describe the same infor
mation after it has been compressed.

The term compression ratio is used to refer to the ratio of uncompressed data to
compressed data. Thus, a 10:1 compression ratio is considered five times more
efficient than 2:1. Of course, data compressed using an algorithm yielding 10:1
compression is five times smaller than the same data compressed using an algo
rithm yielding 2:1 compression. In practice, because only image data is nor
mally compressed, analysis of compression ratios provided by various
algorithms must take into account the absolute sizes of the files tested.

Physical and Logical Compression

Compression algorithms are often described as squeezing, squashing, crunch
ing, or imploding data, but these are not very accurate descriptions of what is
actually happening. Although the major use of compression is to make data
use less disk space, compression does not actually physically cram the data into
a smaller size package in any meaningful sense.

Instead, compression algorithms are used to re-encode data into a different,
more compact representation conveying the same information. In other words,
fewer words are used to convey the same meaning, without actually saying the
same thing.

The distinction between physical and logical compression methods is made on the
basis of how the data is compressed or, more precisely, how the data is rear
ranged into a more compact form. Physical compression is performed on data
exclusive of the information it contains; it only translates a series of bits from
one pattern to another, more compact one. While the resulting compressed
data may be related to the original data in a mechanical way, that relationship
will not be obvious to us.

Physical compression methods typically produce strings of gibberish, at least
relative to the information content of the original data. The resulting block of
compressed data is normally smaller than the original because the physical
compression algorithm has removed the redundancy that existed in the data
itself. Most of the compression methods discussed in this chapter are physical
methods.

DATA COMPRESSION 155

Logical compression is accomplished through the process of logical substitu
tion-that is, replacing one alphabetic, numeric, or binary symbol with·
another. Changing "United States of America" to "USA" is a good example of
logical substitution, because "USA" is derived directly from the information
contained in the string "United States of America" and retains some of its
meaning. In a similar fashion "can't" can be logically substituted for "cannot".
Logical compression works only on data at the character level or higher and is
based exclusively on information contained within the data. Logical compres
sion is generally not used in image data compression.

Symmetric and Asymmetric Compression

Compression algorithms can also be divided into two categories: symmetric and
asymmetric. A symmetric compression method uses roughly the same algo
rithms, and performs the same amount of work, for compression as it does for
decompression. For example, a data transmission application where compres
sion and decompression are both being done on the fly will usually require a
symmetric algorithm for the greatest efficiency.

·Asymmetric methods require substantially more work to go in one direction
than they require in the other. Usually, the compression step takes far more
time and system resources than the decompression step. In the real world this
makes sense: For example, if we are making an image database in which an
image will be compressed once for storage, but decompressed many times for
viewing, then we can probably tolerate a much longer time for compression
than for decompression. An asymmetric algorithm that uses much CPU time
for compression, but is quick to decode, would work well in this case.

Algorithms that are asymmetric in the other direction are less common but
have some applications. In making routine backup files, for example, we fully
expect that many of the backup files will never be read. A fast compression
algorithm that is expensive to decompress might be u~eful in this case.

Adaptive, Semi-Adaptive, and Non-Adaptive Encoding

Certain dictionary-based encoders, such as CCIIT compression algorithms (see
the section later in this chapter called "CCIIT (Huffman) Encoding") are
designed to compress only specific types of data. These non-adaptive encoders
contain a static dictionary of predefined substrings that are known to occur
with high frequency in the data to be encoded. A non-adaptive encoder
designed specifically to compress English language text would contain a dictio
nary with predefined substrings such as "and'', "but", "of', and "the", because
these substrings appear very frequently in English text.

156 OVERVIEW

An adaptive encoder, on the other hand, carries no preconceived heuristics
about the data it is to compress. Adaptive compressors, such as LZW, achieve
data independence by building their dictionaries completely from scratch.
They do not have a predefined list of static substrings and instead build
phrases dynamically as they encode.

Adaptive compression is capable of adjusting to any type of data input and of
returning output using the best possible compression ratio. This is in contrast
to non-adaptive compressors, which are capable of efficiently encoding only a
very select type of input data for which they are designed.

A mixture of these two dictionary encoding methods is the semi-adaptive encod
ing method. A semi-adaptive encoder makes an initial pass over the data to build
the dictionary and a second pass to perform the actual encoding. Using this
method, an optimal dictionary is constructed before any encoding is actually
performed.

Lossy and Lossless Compression

The majority of compression schemes we deal With in this chapter are called
lossless. What does this mean? When a chunk of data is compressed and then
decompressed, the original information contained in the data is preserved. No
data has been lost or discarded; the data has not been changed in any way.

Lossy compression methods, however, throw away some of the data in an image
in order to achieve compression ratios better than that of most lossless com
pression methods. Some methods contain elaborate heuristic algorithms that
adjust themselves to give the maximum amount of compression while chang
ing as little of the visible detail of the image as possible. Other less elegant
algorithms might simply discard a least significant portion of each pixel, and,
in terms of image quality, hope for the best.

The terms lossy and lossless are sometimes erroneously used to describe the
quality of a compressed image. Some people assume that if any image data is
lost, this could only degrade the image. The assumption is that we would never
want to lose any data at all. This is certainly true if our data consists of text or
numerical data that is associated with a file, such as a spreadsheet or a chapter
of our great American novel. In graphics applications, however, under certain
circumstances data loss may be acceptable, and even recommended.

In practice, a small change in the value of a pixel may well be invisible, espe
cially in high-resolution images where a single pixel is barely visible anyway.
Images containing 256 or more colors may have selective pixel values changed
with no noticeable effect on the image.

DATA COMPRESSION 157

In black-and-white images, however, there is obviously no such thing as a small
change in a pixel's value: each pixel can only be black or white. Even in black
and-white images, however, if the change simply moves the boundary between
a black and a white region by one pixel, the change may be difficult to see and
therefore acceptable.

As mentioned in Chapter 2, Computer Graphics Basics, the human eye is limited
in the number of colors it can distinguish simultaneously, particularly if those
colors are not immediately adjacent in the image or are. sharply contrasting.
An intelligent compression algorithm can take advantage of these limitations,
analyze an image on this basis, and achieve significant data size reductions
based on the removal of color information not easily noticed by most people.

In case this sounds too much like magic, rest assured that much effort has
gone into the development of so-called lossy compression schemes in recent
years, and many of these algorithms can achieve substantial compression ratios
while retaining good quality images. This is an active field of research, and we
are likely to see further developments as our knowledge of the human visual
system evolves, and as results from the commercial markets regarding accep
tance of lossy images make their way back to academia.

For more information about lossy compression, see the JPEG section later in
this chapter.

Pixel Packing
Pixel packing is not so much a method of data compression as it is an efficient
way to store data in contiguous bytes of memory. Most bitmap formats use
pixel packing to conserve the amount of memory or disk space required to
store a bitmap. If you are working with image data that contains four bits per
pixel, you might find it convenient. to store each pixel in a byte of memory,
because a byte is typically the smallest addressable area of memory on most
computer systems. You would quickly notice, however, that by using this
arrangement, half of each byte is not being used by the pixel data (shown in
Figure 9-1, a). Image data containing 4096 4-bit pixels will require 4096 bytes
of memory for storage, half of which is wasted.

To save memory, you could resort to pixel packing; instead of storing one 4-bit
pixel per byte, you could store two 4-bit pixels per byte (shown in Figure 9-1,
b). The size of memory required to hold the 4-bit, 4096-pixel image drops
from 4096 bytes to 2048 bytes, only half the memory that was required before.

Pixel packing may seem like common sense, but it is not without cost. Memory
based display hardware usually organizes image data as an array of bytes, each
s~oring one pixel or less. If this is the case, it will actually be faster to store only

158 OVERVIEW

0 4-b/1 unpacked pixels

'

I pixel 0 I I pixel1 I I pixel 21

G 4-bit packed pixels

Byte 0 Byte 1 I Byte 2

1 . I
I pixel o I pixe/1 I pixel 2l pixe/3 1 pixel 41 pixel si

FIGURE 9-1: Pixel packing

one 4-bit pixel per byte and read this data directly into memory in the proper
format rather than to store two 4-bit pixels per byte, which requires masking
and shifting each byte of data to extract and write the proper pixel values. The
tradeoff is faster read and write times versus reduced size of the image file .
This is a good example of one of the costs of data compression.

Compression always has a cost. In this case, the cost is in the time it takes to
unpack each byte into two 4-bit pixels. Other factors may come into play when
decompressing image data: buffers need to be allocated and managed; CPU
intensive operations must be executed and serviced; scan-line bookkeeping
must be kept current. If you are writing a file reader, you usually have no
choice; you must support all compression schemes defined in the format speci
fication. If you are writing a file writer, however, you always need to identify the
costs and tradeoff's involved in writing compressed files.

At one time in the history of computing, no decision was necessary; disk space
was scarce and expensive, so image files needed to be compressed. Now, how
ever, things are different. Hard disks are relatively inexpensive, and alternate
distribution and storage media (CD-ROM for instance) are even more so. More
and more applications now write image files uncompressed by default. You
need to carefully examine the target market of your application before decid
ing whether to compress or not.

DATA COMPRESSION 159

Run-Length Encoding (RLE)
Run-length encoding is a data compression algorithm that is supported by
most bitmap file formats, such as TIFF, BMP, and PCX. RLE is suited for com
pressing any type of data regardless of its information content, but the content
of the data will affect the compression ratio achieved by RLE. Although most
RLE algorithms cannot achieve the high compression ratios of the more
advanced compression methods, RLE is both easy to implement and quick to
execute, making it a good alternative to either using a complex compression
algorithm or leaving your image data uncompressed.

RLE works by reducing the physical size of a repeating string of characters.
This repeating string, called a run, is typically encoded into two bytes. The first
byte represents the number of characters in the run and is called the run count.
In practice, an encoded run may contain 1 to 128 or 256 characters; the run
count usually contains as the number of characters minus one (a value in the
range of 0 to 127 or 255). The second byte is the value of the character in the
run, which is in the range of 0 to 255, and is called the run value. ·

Uncompressed, a character run of 15 A characters would normally require 15
bytes to store:

The same string after RLE encoding would require only two bytes:

lSA

The 15A code generated to represent the character string is called an RlE
packet. Here, the first byte, 15, is the run count and contains the number of
repetitions. The second byte, A, is the run value and contains the actual
repeated value in the run.

A new packet is generated each time the run character changes, or each time
the number of characters in the run exceeds the maximum count. Assume that
our 15-character string now contains four different character runs:

AAAAAAbbbXXXXXt

Using run-length encoding this could be compressed into four 2-byte packets:

6A3b5Xlt

Thus, after run-length encoding, the 15-byte string would require only eight
bytes of data to represent the string, as opposed to the original15 bytes. In this
case, run-length encoding yielded a compression ratio of almost 2 to 1.

160 OVERVIEW

Long runs are rare in certain types of data. For example, ASCII plaintext (such
as the text on the pages of this book) seldom contains long runs. In the previ
ous example, the last run (containing the character t) was only a single charac
ter in length; a !-character run is still a run. Both a run count and a run value
must be written for every 2-character run. To encode a run in RLE requires a
minimum of two characters worth of information; therefore, a run of single
characters actually takes more space. For the same reasons, data consisting
entirely of 2-character runs remains the same size after RLE encoding.

In our example, encoding the single character at the end as two bytes did not
noticeably hurt our compression ratio because there were so many long char
acter runs in the rest of the data. But observe how RLE encoding doubles the
size of the following 14-character string:

Xtmprsqzntwlfb

Mter RLE encoding, this string becomes:

lXltlmlplrlslqlzlnltlwlllflb

RLE schemes are simple and fast, but their compression efficiency depends on
the type of image data being encoded. A black-and-white image that is mostly
white, such as the page of a book, will encode very well, due to the large
amount of contiguous data that is all the same color. An image with many col
ors that is very busy in appearance, however, such as a photograph, will not
encode very well. This is because the complexity of the image is expressed as a
large number of different colors. And because of this complexity there will be
relatively few runs of the same color.

Variants on Run-Length Encoding

There are a number of variants of run-length encoding. Image data is normally
run-length encoded in a sequential process that treats the image data as a ID
stream, rather than as a 2D map of data. In sequential processing, a bitmap is
encoded starting at the upper left corner and proceeding from left to right
across each scan line (the X axis) to the bottom right corner of the bitmap
(shown in Figure 9-2, a). But alternative RLE schemes can also be written to
encode data down the length of a bitmap (the Y axis) along the columns
(shown in Figure 9-2, b), to encode a bitmap into 2D tiles (shown in Figure
9-2, c), or even to encode pixels on a diagonal in a zig-zag fashion (shown in
Figure 9-2, d). Odd RLE variants such as this last one might be used in highly
specialized applications but are usually quite rare.

Another seldom-encountered RLE variant is a lossy run-length encoding algo
rithm. RLE algorithms are normally lossless in their operation. However, dis
carding data during the encoding process, usually by zeroing out one or two

DATA COMPRESSION 161

0 Encoding along the X axis O Zig-zag encoding

X axis

G Encoding along the Y axis

Y axis

G Encoding (4x4 pixel) tiles

~ ~ ~

~ ~ ~

~ ... ~

... ~ ~

FIGURE 9-2 : Run-length encodingva·riants ·

least significant bits in each pixel, can increase compression ratios without
adversely affecting the appearance of very complex images. This RLE variant
works well only with real-world images that contain many subtle variations in
pixel values.

Make sure that your RLE encoder always stops at the end of each scan line of
bitmap data that is being encoded. There are several benefits to doing so.
Encoding only a simple scan line at a time means that only a minimal buffer
size is required. Encoding only a simple line at a time also prevents a problem
known as cross-coding.

162 OVERVIEW

Cross-coding is the merging of scan lines that occurs when the encoded pro
cess loses the distinction between the original scan lines. If the data of the
individual scan lines is merged by the RLE algorithm, the point where one scan
line stopped and another began is lost or, at least, is very hard to detect quickly.

Cross-coding is sometimes done, although we advise against it. It may buy a few
extra bytes of data compression, but it complicates the decoding process,
adding time cost. For bitmap file formats, this technique defeats the purpose
of organizing a bitmap image by scan lines in the first place. Although many
file format specifications explicitly state that scan lines should be individually
encoded, many applications encode image data as a continuous stream, ignor
ing scan-line boundaries.

Have you ever encountered an RLE-encoded image file that could be displayed
using one application but not using another? Cross-coding is often ~he the rea
son. To be safe, decoding and display applications must take cross-coding into
account and not assume that an encoded run will always stop at the end of a
scan line.

When an encoder is encoding an image, an end-of-scan-line marker is placed
in the encoded data to inform the decoding software that the end of the scan
line has been reached. This marker is usually a unique packet, explicitly
defined in the RLE specification, which. cannot be confused with any other
data packets. End-of-scan-line markers are usually only one byte in length, so
they don't adversely contribute to the size of the encoded data.

Encoding scan lines individually has advantages when an application needs to
use only part of an image. Let's say that an image contains 512 scan lines, and
we need to display only lines 100 to 110. If we did not know where the scan
lines started and ended in the encoded image data, our application would
have to decode lines 1 through 100 of the image before finding the ten lines it
needed. Of course, if the transitions between scan lines were marked with
some sort of easily recognizable delimiting marker, the application could sim
ply read through the encoded data, counting markers until it came to the lines
it needed. But this approach would be a rather inefficient one.

Another option for locating the starting point of any particular scan line in a
block of encoded data is to construct a scan-line table. A scan-line table usually
contains one element for every scan line in the image, and each element holds
the offset value of its corresponding scan line. To find the first RLE packet of
scan line 10, all a decoder needs to do is seek to the offset position value stored
in the tenth element of the scan-line lookup table. A scan-line table could also
hold the number of bytes used to encode each scan line. Using this method, to

DATA COMPRESSION 163

find the first RLE packet of scan line 10, your decoder would add together the
values of the first nine elements of the scan-line table. The first packet for scan
line 10 would start at this byte offset from the beginning of the RLE-encoded
image data.

Bit-, Byte-, and Pixel-Leoel RLE Schemes

The basic flow of all RLE algorithms is the same, as illustrated in Figure 9-3.

The parts of run-length encoding algorithms that differ are the decisions that
are made based on the type of da.ta being decoded (such as the length of data
runs). RLE schemes used to encode bitmap graphics are usually divided into
classes by the type of atomic (that is, most fundamental) elements that they
encode. The three classes used by most graphics file formats are bit-, byte-, and
pixel-level RLE.

Bit-level RLE schemes encode runs of multiple bits in a scan line and ignore
byte and word boundaries. Only monochrome (black and white), 1-bit images
contain a sufficient number of bit runs to make this class of RLE encoding effi
cient. A typical bit-level RLE scheme encodes runs of one to 128 bits in length
in a single-byte packet. The seven least significant bits contain the run count
minus one, and the most significant bit contains the value of the bit run, either
0 or 1 (shown in Figure 9-4, a). A run longer than 128 pixels is split across sev
eral RLE-encoded packets.

Byte-level RLE schemes encode runs of identical byte values, ignoring individual
bits and word boundaries within a scan line. The most common byte-level RLE
scheme encodes runs of bytes into 2-byte packets. The first byte contains the
run count of 0 to 255, and the second byte contains the value of the byte run.
It is also common to supplement the 2-byte encoding scheme with the ability
to store literal, unencoded runs of bytes within the encoded data stream as
well.

In such a scheme, the seven least significant bits of the first byte hold the run
count minus one, and the most significant bit of the first byte is the indicator
of the type of run that follows the run count byte (shown in Figure 9-4, b). If
the most signifi~ant bit is set to 1, it denotes an encoded run (shown in Figure
9-4, c). Encoded runs are decoded by reading the run value and repeating it
the number of times indicated by the run count. If the most significant bit is
set to 0, a literal run is indicated, meaning that the next run count bytes are
read literally from the encoded image data (shown in Figure 9-4, d). The run
count byte then holds a value in the range of 0 to 127 (the run count minus
one). Byte-level RLE sche~es are good for image data that is stored as one byte
per pixel.

164 OVERVIEW

Increment RunCount

EXIT

FIGURE 9 - 3 : Basic run-length encoding flow

Pixel-level RLE schemes are used when two or more consecutive bytes of image
data are used to store single pixel values. At the pixel level, bits are ignored,
and bytes are counted only to identify each pixel value. Encoded packet sizes

DATA COMPRESSION 165

vary depending upon the size of the pixel values being encoded. The number
of bits or bytes per pixel is stored in the image file header. A run of image data
stored as 3-byte pixel values encodes to a 4-byte packet, with one run-count
byte followed by three run-value bytes (shown in Figure 9-4, e). The encoding
method remains the same as with the byte-oriented RLE.

It is also possible to employ a literal pixel run encoding by using the most sig
nificant bit of the run count as in the byte-level RLE scheme. Remember that
the run count in pixel-level RLE schemes is the number of pixels and not the
number of bytes in the run.

Earlier in this section, we examined a situation where the string "Xtmprsqzn
twlfb" actually doubled in size when compressed using a conventional RLE
method. Each I -character run in the string became two characters in size. How
ca:t:t we avoid this negative compression and still use RLE?

Normally, an RLE method must somehow analyze the uncompressed data
stream to determine whether to use a literal pixel run. A stream of data would
need to contain many 1- and 2-pixel runs to make using a literal run efficient
by encoding all the runs into a single packet. However, there is another
method that allows literal runs of pixels to be added to an encoded data
stream without being encapsulated into packets.

Consider an RLE scheme that uses three bytes, rather than two, to represent a
run (shown in Figure 9-5). The first byte is a flag value indicating that the fol
lowing two bytes are part of an encoded packet. The second byte is the count
value, and the third byte is the run value. When encoding, if a 1-, 2-, or 3-byte
character run is encountered, the character values are written directly to the
compressed data stream. Because no additional characters are written, no over
head is incurred.

When decoding, a character is read; if the character is a flag value, the run·
count and run values are read, expanded, and the resulting run written to the
data stream. If the character read is not a flag value, it is written directly to the
uncompressed data stream.

There are two potential drawbacks to this method:

•

•

166

The minimum useful run-length size is increased from three characters to
four. This could affect compression efficiency with some types of data.

If the unencoded data stream contains a character value equal to the flag
value, it must be compressed into a 3-byte encoded packet as a run length
of one. This prevents erroneous flag values from occurring in the com
pressed data stream. If many of these flag value characters are present,
poor compression will result. The RLE algorithm must therefore use a flag
value that rarely occurs in the uncompressed data stream.

OVERVIEW

0 Bit-level RLE packet

Run Count
Run Value

0·127

I I
7 6 0

G Byte-level RLE packet

Run Count Run Value

0·255
I I I

6 on o
G Byte-level encoded RLE packet

Run Count Run Value

0·127 0·255
I I I I

1 6 on o
(:) Byte-/eve/literal RLE packet

Run Count Run Value 1 Run Value 2 Run Value 3 Run Va/uen I

0·255 0·255 0·255 ' ' 0·255

I I I I I I

7 6 on on on 0 7 0

0 Pixel-level RLE packet

Run Value
Pixel Pixel Pixel

Run Count Channe/1. Channe/2 Channe/3

0·255 0·255 0·255 0·255

FIGURE 9-4: Bit-, 17yte-, and pixel-leuelRLE schemes

DATA COMPRESSION 167

Flag= 255

I Flag

2~~5

Count

27

;~un

Count

Value

~)a

I Flag

255

Rem
~falue

Count

12

FIGURE 9-5: RLE scheme with three bytes

Vertical Replication Packets

Value I

212

Encoded line with the following runs:

28 pixels of value 53 1 pixel of value 12
13 pixels of value 212 1 pixel of value 12
1 pixel of value 37 4 pixels of value 113
1 pixel of value 53

Value I Value I Value I

37 53 12

Value I Flag Count Value I ...
rJ
'·l

12 2fj5 4 113 ·~

Some RLE schemes use other types of encoding packets to increase compres
sion efficiency. One of the most useful of these packets is the repeat scan line
packet, also known as the vertical replication packet. This packet does not store any
real scan-line data; instead, it just indicates a repeat of the previous scan line.
Here's an example of how this works.

Assume that you have an image containing a scan line 640 bytes wide and that
alf'the pixels in the scan line are the same color. It will require I 0 bytes to run
length encode it, assuming that up to 128 bytes can be encoded per packet and
that each packet is two bytes in size. Let's also assume that the first 100 scan
lines of this image are all the same color. At 10 bytes per scan line, that would
produce 1000 bytes of run-length encoded data. If we instead used a vertical
replication packet that was only one byte in size (possibly a run-length packet
with a run count of 0) we would simply run-length encode the first scan line
(10 bytes) and follow it with 99 vertical replication packets (99 bytes). The
resulting run-length encoded data would then only be 109 bytes in size.

If the vertical replication packet contains a count byte of the number of scan
lines to repeat, we would need only one packet with a count value of 99. The

168 OVERY I EW

resulting 10 bytes of scan-line data packets and two bytes of vertical replication
packets would encode the first 100 scan lines of the image, containing 64,000
bytes, as only 12 bytes-a considerable savings.

Figure 9-6 illustrates 1- and 2-byte vertical replication packets.

0 RLE scheme with 1-byte vertical replication packets

I Count I Value I 1 I 2 I 3 I : 98 I 99

.· r12~-r1~2T. ~··1 ~c·l~o-T~' ··r·;·r·~-1
repeat packet values

Q RLE scheme with 2-byte vertical replication packets

I I I Repeat I Repeat I
Count Value Flag Value

·-r~·2~r~;;·r·;· r~~-~

FIGURE 9·6: RLE scheme with 1- and 2-l!yte vertical replication packets

Unfortunately, definitions of vertical replication packets are application depen
dent. At least two common formats, WordPerfect Graphics Metafile (WPG) and
GEM Raster (IMG), employ the use of repeat scan line packets to enhance data
compression performance. WPG uses a simple 2-byte packet scheme, as previ
ously described. If the first byte of an RLE packet is zero, then this is a vertical
replication packet. The next byte that follows indicates the number of times to
repeat the previous scan line.

The GEM Raster format is more complicated. The byte sequence, OOh OOh FFh,
must appear at the beginning of an encoded scan line to indicate a vertical
replication packet. The byte that follows this sequence is the number of times
to repeat the previous scan line minus one.

NOTE

Many of the concepts we have covered in this section are not
limited to RLE. All bitmap compression algorithms need to con
sider the concepts of cross-coding, sequential processing, effi
cient data encoding based on the data being encoded, and ways
to detect and avoid negative compression.

DATA COMPRESSION 169

For Further Information About RLE

Most books on data compression have information on run-length encoding
algorithms. The following references all contain information on RLE:

Held, Gilbert, Data Compression: Techniques and Applications, Hardware
and Software Considerations, second edition, John Wiley & Sons, New
York,~ 1987.

Lynch, Thomas D., Data Compression Techniques and Applications, Life
time Learning Publications, Belmont, CA, 1985.

Nelson, Mark R., The Data Compression Book, M&T Books, Redwood City,
CA, 1991.

Storer, James A., Data Compression: Methods and Theory, Computer Sci
ence Press, Rockville, MD, 1988.

Lempel-Ziv-Welch (LZW) Compression
One of the most common algorithms used in computer graphics is the Lem
pel-Ziv-Welch, or LZW, compression scheme. This lossless method of data com
pression is found in several image file formats, such as GIF and TIFF, and is also
part of the V.42bis modem compression standard and PostScript Level 2.

In 1977, Abraham Lempel and Jakob Ziv created the first of what we now call
the LZ family of substitutional compressors. The LZ77 compression algorithms
are commonly found in text compression and archiving programs, such as com
press, zoo, lha, pkzip, and arj. The LZ78 compression algorithms are more com
monly used to compress binary data, such as bitmaps.

In 1984, while working for U nisys, Terry Welch modified the LZ78 compressor
for implementation in high-performance disk controllers. The result was the
LZW algorithm that is commonly found today.

LZW is a general compression algorithm capable of working on almost any type
of data. It is generally fast in both compressing and decompressing data and
does not require the use of floating-point operations. Also, because LZW writes
compressed data as bytes and not as words, LZW-encoded output can be identi
cal on both big-endian and little-endian systems, although you may still
encounter bit order and fill order problems. (See Chapter 6, Platform Dependen
cies, for a discussion of such systems.)

LZW is referred to as a substitutional or dictionary-based encoding algorithm. The
algorithm builds a data dictionary (also called a translation table or string table) of

170 OVERVIEW

data occurring in an uncompressed data stream. Patterns of data (substrings)
are identified in the data stream and are matched to entries in the dictionary.
If the substring is not present in the dictionary, a code phrase is created based
on the data content of the substring, and it is stored in the dictionary. The
phrase is then written to the compressed output stream.

When a reoccurrence of a substring is identified in the data, the phrase of the
substring already stored in the dictionary is written to the output. Because the
phrase value has a physical size that is smaller than the substring it represents,
data compression is achieved.

Decoding LZW data is the reverse of encoding. The decompressor reads a code
from the encoded data stream and adds the code to the data dictionary if it is
not already there. The code is then translated into the string it represents and
is written to the uncompressed output stream.

LZW goes beyond most dictionary-based compressors in that it is not necessary
to preserve the dictionary to decode the LZW data stream. This can save quite a
bit of space when storing the LZW-encoded data. When compressing text files,
LZW initializes the first 256 entries of the dictionary with the 8-bit ASCII charac
ter set (values OOh through FFh) as phrases. These phrases represent all possi
ble single-byte values that may occur in the data stream, and all substrings are
in tum built from these phrases. Because both LZW encoders and decoders
begin with dictionaries initialized to these values, a decoder need not have the
original dictionary and instead will build a duplicate dictionary as it decodes.

TIFF, among other file formats, applies the same method for graphic files. In
TIFF, the pixel data is packed into bytes before being presented to LZW, so an
LZW source byte might be a pixel value, part of a pixel value, or several pixel
values, depending on the image's bit depth and number of color channels.

GIF requires each LZW input symbol to be a pixel value. Because GIF allows I
to 8-bit deep images, there are between 2 and 256 LZW input symbols in GIF,
and the LZW dictionary is initialized accordingly. It is irrelevant how the pixels
might have been packed into storage originally; LZW will deal with them as a
sequence of symbols.

The TIFF approach does not work very well for odd-size pixels, because pack
ing the pixels into bytes creates byte sequences that do not match the original
pixel sequences, and any patterns in the pixels are obscured. If pixel bound
aries and byte boundaries agree (e.g., two 4-bit pixels per byte, or one 16-bit
pixel every two bytes), then TIFF's method works well.

DATA COMPRESSION 171

The GIF approach works better for odd-size bit depths, but it is difficult to
extend it to more than eight bits per pixel because the LZW dictionary must
become very large to achieve useful compression on large input alphabets.

Noise Removal and Differencing

LZW does a very good job of compressing image data with a wide variety of
pixel depths. 1-, 8-, and 24-bit images all compress at least as well as they do
using RLE encoding schemes. Noisy images, however, can significantly degrade
the compression effectiveness of LZW. Removing noise from an image, usually
by zeroing out one or two of the least significant bit planes of the image, is rec
ommended to increase compression efficiency. In other words, if your data
does not compress well in its present form, transform it to a different form that
does compress well.

One method that is used to make data more "compressible" by reducing the
amount of extraneous information in an image is called differencing. The idea is
that unrelated data may be easily converted by an invertible transform into a
form that can be more efficiently compressed by an encoding algorithm. Dif
ferencing accomplishes this using the fact that adjacent pixels in many contin
uous-tone images vary only slightly in value. If we replace the value of a pixel
with the difference between the pixel and the adjacent pixel, we will reduce
the amount of information stored, without losing any data.

With 1-bit monochrome and 8-bit gray-scale images, the pixel values them
selves are differenced. RGB pixels must have each of their color channels dif
ferenced separately, rather than the absolute value of the RGB pixels'
differences (difference red from red, green from green, and blue from blue).

Differencing is usually applied in a horizontal plane across scan lines. In the
following code example, the algorithm starts at the last pixel on the first scan
line of the bitmap. The difference between the last two pixels in the line is cal
culated, and the last pixel is set to this value. The algorithm then moves to the
next to last pixel and continues up the scan line and down the bitmap until fin
ished, as shown in the following pseudo-code:

I* Horizontally difference a bitmap */
for (Line ; 0; Line < NumberOfLines; Line++)

for (Pixel ; NumberOfPixelsPerLine - 1; Pixel >; 1; Pixel--)
Bitmap[Line] [Pixel] -; Bitmap[Line] [Pixel-1];

Vertical and 2D differencing may also be accomplished in the same way. The
type of differencing used will have varied effectiveness depending upon the
content of the image. And, regardless of the method used, differenced images
compress much more efficiently using LZW.

172 OVERVIEW

Variations on the LZW Algorithm

Several variations of the LZW algorithm increase its efficiency in some applica
tions. One common variation uses index pointers that vary in length, usually
starting at 9 bits and growing upward to 12 or 13 bits. When an index pointer
of a particular length has been used up, another bit is tacked on to increase
precision.

Another popular variation in LZW compressors involves c.onstantly monitoring
the compression process for any drop in efficiency. If a drop is noted, the least
recently used (LRU) phrases in the dictionary are discarded to make room for
new phrases, or the entire dictionary is discarded and rebuilt.

The LZMW variant on the LZW compression method builds phrases by concate
nating two phrases together, rather than by concatenating the current phrase
and the next character of data. This causes a quicker buildup of longer strings
at the cost of a more complex data dictionary.

LZW is a simple algorithm that is difficult to implement efficiently. Deciding
when to discard phrases from the dictionary and even how to search the data
dictionary during encoding (using a hashing or tree-based scheme) is neces
sary to improve efficiency and speed.

Variations on the standard LZW algorithm are more common than a program
mer may realize. For example, the TIFF and GIF formats use the standard fea
tures of the LZW algorithm, such as a Clear code (the indication to discard the
string table), EOF code (end of file), and a 12-bit limit on encoded symbol
width. However, GIF treats each pixel value as a separate input symbol. There
fore, the size of the input alphabet, the starting compressed-symbol width, and
the values of the Clear and EOF codes will vary depending on the pixel depth
of the image being compressed.

GIF also stores compressed codes with the least significant bit first, regardless
of the native bit order of the machine on which the algorithm is implemented.
When two codes appear in the same byte, the first code is in the lower bits.
When a code crosses a byte boundary, its least significant bits appear in the ear
lier bytes.

TIFF's LZW variation always reads 8-bit input symbols from the uncompressed
data regardless of the pixel depth. Each symbol may therefore contain one
pixel, more than one pixel, or only part of a pixel, depending upon the depth
of the pixels in the image. TIFF always stores compressed codes with the most
significant bit first, the opposite of GIF. (Don't confuse the byte-order indicator
in the TIFF header, or the value of the Fill Order tag, with the bit order of the
LZW, compressed data. In a TIFF file, LZW-compressed data is always stored
most significant bit first.)

DATA COMPRESSION 173

TIFF LZW also contains a bit of a kludge. Compressed code widths are required
to be incremented one code sooner than is really necessary. For example, the
compressor changes from 9-bit to 10-bit codes after adding code 511 to its
table rather than waiting until code 512 is added, thus wasting one bit.

We understand that the explanation for this practice is that the LZW imple
mentation supplied by Aldus in Revision 5.0 of the TIFF Developer's Toolkit
contained this bug, although the TIFF 5.0 specification itself specified the LZW
algorithm correctly. By the time the problem was identified (by Sam Leffler,
the head of the TIFF Advisory Committee), too many applications existed that
used the erroneous implementation, and there was no way to identify incor
rectly encoded LZW data. The solution was simply to change the TIFF specifica
tion to require this ''variation" in the TIFF algorithm, rather than to change the
code, break all existing· TIFF LZW applications, and regard all previously cre
ated TIFF 5.0 LZW images as incorrect and useless.

LZW Legal Issues

On December 22, 1994, CompuServe Information Service announced that it
had entered into a license agreement with Unisys Corporation for the use of
the LZW compression/decompression method in CompuServe's GIF file for
mat.

NOTE

This section attempts to provide information that will help you
understand the legalities you may face when using the LZW
com presion/ decompression algorithms. We've used the most
accurate information available to us as we went to press. How
ever, we are not lawyers, nor are we employees of Unisys. There
fore, this text should ·not in any way be considered as a
publication of Unisys Corporation, or as being approved by
Unisys, or in any way obligating Unisys to enter into a license

· agreement based upon the terms; interpretations, and/or
answers to questions provided in this text. Note that Unisys
advises that U nisys licensing policies have been revised to
reflect changes in the use of LZW and the needs of its existing
and future licensees.

CompuServe also announced that all developers creating or modifying hard
ware or software technology that accessed the CompuServe Information Ser
vice and that used GIF should obtain a licensing agreement directly from

174 OVERVIEW

CompuServe and pay a royalty on each copy of their product sold. Com
puServe's agreement covered only the use ofGIF on CompuServe; since Unisys
owned the LZW patent, Unisys claimed that any software that used GIF was sub
ject to licensing.

The graphics and online community reacted with anger and panic. They had
been misled by CompuServe to assume that the GIF file format had been freely
available for unrestricted use since its invention in 1987. By 1994, GIF had risen
to replace PCX as the most used file format for 8-bit color graphics. All graph
ics editing and display packages, including online browsers, supported the GIF
format. And now, it seemed that the GIF format was not in the public domain.
What was going on?

CompuServe explained that they had been approached by Unisys Corporation,
which owned the patent on the LZW compression/ decompression algorithm.
Apparently, CompuSeive had not done its homework when it included the
patented LZW algorithms in the GIF file format. The result was that Com
puServe had to take a license from Unisys for the use of LZW in GIF. Com
puServe decided to extend a licensing requirement to everyone who was
developing any GIF-using products that interfaced to CompuServe's networks.
All money collected by CompuServe would essentially go to pay CompuServe's
own licensing agreement with Unisys. It looked as if CompuServe was asking
GIF software developers to pay for the U nisys license that CompuServe had to
take because of its failure to check out whether GIF was free of patent liability.

Some people were suspicious about the timing of the CompuServe announce
ment. It had been known for many years in the programming community that
GIF used LZW and that LZW was patented by Unisys. Yet CompuServe contin
ued to promote the use of GIF. Unisys claimed that the company had only
recendy discovered that GIF used LZW. It was also a fact that the World Wide
Web industry was exploding and that GIF was an integral interchange medium
for transferring low-resolution graphics across the Internet.

After the smoke cleared, Unisys' LZW patent and licensing agreements held.
fast. Unisys softened the burden on GIF software developers by substantially
reducing the license fees it had charged prior to 1995, thus offering very rea
sonable license fees. In addition, Unisys announced that it would not seek
license fees for inadvertent infringement by GIF software products delivered·
prior to 1995. (However, license fees are required for updates delivered after
1995.)

People realized, upon closer examination, that it is not illegal to own, transmit,
or receive GIF files (provided that no unlicensed compression and/ or

DATA COMPRESSION 175

decompression of the files occurs). It was, in fact, the implementation of the
LZW algorithm that was under licensing restriction. However, because every
GIF file contains LZW-encoded data, this didn't make people feel much better.
Many developers swore off using GIF, while still others started grass-roots pro
jects aimed at developing a file format to one day replace GIF. However, wide
GIF usage remains and is not likely to go away any time soon, if ever.

Some History
To better understand what the Unisys LZW licensing agreement may mean to
you, let's first go back a little further in history.

• In 1977, Abraham Lempel and Jakob Ziv published a paper on a universal
algorithm for data compression. This was called the LZ77 compression
algorithm.

• In 1978, Lempel and Ziv introduced an improved, dictionary-based com
pression scheme called LZ78.

• In 1981, while working for Sperry Corporation, Lempel and Ziv, along with
Cohen and Eastman, filed for a patent claiming the LZ78 compression
algorithm. They were granted the patent (number 4,464,650) in 1984.

• Also in 1984, while working for Sperry Corporation, Terry Welch modified
the LZ78 algorithm to increase efficiency for implementation in high
performance disk controllers. The result was the LZW algorithm, which he
described in an IEEE Computer journal article (see "For Further Information
About LZW") after he left the employment of Sperry.

• In 1985, Sperry Corporation was granted a patent (number 4,558,302) for
the Welch invention and implementation of the LZW data compression
algorithm. Since that time, this LZW patent has been publicly available for
all to see in the U.S. Patent Office and many public libraries, and is avail
able through many online services. In addition, foreign patents with even
broader scope than the U.S. patent are pending or have been granted in
Canada, France, Italy, Germany, the U.K., and japan.

• In 1986, Sperry Corporation and Burroughs merged to form Unisys. At this
time, the ownership of the Sperry patent was transferred to Unisys.

• In 1987, CompuServe created the GIF file format for use in the storage and
online retrieval of bitmapped graphics data. The GIF specification required
the use of the LZW algorithm to compress the data stored in each·GIF file.
It is very possible that CompuServe did not check the patent files to deter
mine whether the GIF format infringed on any patents, which should have

176 OVERVIEW

been done in view of their wide promotion of the GIF format. Such a check
would have found the Welch LZW patent, which was then owned by Unisys.
At that time, Unisys also apparently did not know that LZW was the method
of compression used by the very popular GIF file format.

• In 1988, Aldus Corporation released Revision 5.0 of the TIFF file format.
This revision added· a new feature giving TIFF the ability to store RGB
bitmapped data ·using either a raw format or a compressed format which
used the LZW algorithm. (Although the LZW algorithm used by TIFF is con
sidered to be "broken," it is still covered by the Unisys patent.) Since 1991,
in accordance with Aldus' agreement with Unisys, Aldus has been required
to place a notice regarding the Unisys patent, and its applicability to TIFF,
in Aldus documentation. The 1992 release of Revision 6.0 of the TIFF speci
fication includes this notice of the Unisys patent regarding LZW.

• In 1990, Unisys licensed Adobe for the use of the Unisys LZW patent for
PostScript. ·

• In 1991, Unisys licensed Aldus for the use of the Unisys LZW patent in TIFF.

• In 1993, Unisys became aware that the CompuServe GIF file format uses
the LZW algorithm. Negotiations began with CompuServe to create a
licensing agreement for the utilization of LZW.

• In 1994, Unisys and CompuServe came to an understanding whereby the
use of the LZW algorithm by Compuserve would be licensed for the appli
cation of the GIF file format in software used primarily to access the Com
puServe Information Service.

• In 1995, America Online and Prodigy also entered into license agreements
with U nisys for the utilization of LZW.

Since 1990 hundreds of companies have entered into LZW licensing agree
ments with Unisys.

For Further lnfonnation About LZW

Many books on data compression contain information on the LZ and LZW
compression algorithms. The first reference below is the definitive source for a
very general explanation about the LZW algorithm itself and does not focus
specifically on bitmap image data:

Welch, T. A., "A Technique for High Performance Data Compression,"
IEEE Computer, vol. 17, no. 6,June 1984.

DATA COMPRESSION 177

The TIFF specification (both revisions 5.0 and 6.0) contains an explanation of
the TIFF variation on LZW compression. Refer to the "For Further Informa
tion" section of the TIFF article in Part Two of this book for information and
see the CD-ROM for the specification itself.

The following articles and manuscripts are also specifically related to LZW:

Bell, Timothy C., "Better OPM/L Text Compression,"· IEEE Transadions
on Communications, vol. 34, no. 12, December 1986, 1176-1182.

Bernstein, Daniel]., Y coding, Draft 4b, March 1.9, 1991, manuscript part
of the Yabba Y Coding package.

Blackstock, Steve, LZW and GIF Explained, manuscript in the public
domain, 1987.

Montgomery, Bob, LZW Compression Used to Encode/Decode a GIF File,
manuscript in the public domain, 1988.

Nelson, Mark R., "LZW Data Compression," Dr. Dobbs journal, October
1989' pp. 29-36.

Phillips, Dwayne, "LZW Data Compression," The Computer Applications
journal, Circuit Cellar Ink, vol. 27,June/July 1992, pp. 36-48.

Rodriguez, Karen, "Graphics file format patent Unisys seeks royalties
from GIF developers," Info World, vol. 17,January 9, 1995, p. 3.

Thomborson, Clark, "The V.42bis standard for data-compressing
modems," IEEE Micro, October 1992, pp. 41-53.

Ziv, J., and A. Lempel, "A Universal Algorithm for Sequential Data
Compression," IEEE Transactions on Information Theary, vol. 23, no. 3,
1977, pp. 337-343.

Ziv, J., and A. Lempel, "Compression of Individual Sequences via Vari
able-Rate Coding," IEEE Transadions on Information Theary, vol. 24, no. 5,
September 1978.

You can get additional information about LZW, and find out about licensing of
LZW, by contacting Unisys:

Welch Patent Licensing Department
Unisys Corporation
Mail Stop C1SW19
P.O. Box500
Blue Bell, PA 19424 USA
FAX: 215-986-3090
Email: b.w_injo@unisys.com

178 OVERVIEW

General licensing information may also be obtained from the homepage of the
Unisys Web server:

http://www. unisys. com

In particular, see:

http://www. unisys. com/LeadStory/l:t..wterms.html
http://www. unisys. com/LeadStory/l:t..wfaq. html

The comp.graphics. mise and comp. compression USENET newsgroups contain fre
quent discussions of LZW technical issues and some discussions of the patent
issues. The official newsgroup where much discussion takes place is alt.gif
agreement. You might also find information on the misc.legal.computing, misc.int
property, and comp.patents newsgroups.

Be sure to check out the compression and graphics file formats FAQs as well.
Both contain a substantial amount of information about LZW and the patent
issues.

You can get a copy of the actual LZW patent from the U.S. Patent Office. The
patent is also available at many Internet sites, including:

.ftp: I I cs. columbia. edu/ archives/mirror2/world-info/ obi/USPatents/lzwpatent.gz

.ftp:/ /ftp.std. com/ obi/USPatents/lzwpatent.Z

.ftp:/ /.ftp. uu. net/ doc/literary I obi/USPatents/lzwpatent. Z

.ftp:/ I gatekeeper. dec. com/. 8 /misc/lzw-patent. Z

ccrrr (Huffman) Encoding
Many facsimile and document imaging file formats support a form of lossless
data compression often described as CCITI encoding. The CCITI (Interna
tional Telegraph and Telephone Consultative Committee) is a standards orga
nization that has developed a series of communications protocols for the
facsimile transmission of black-and-white images over telephone lines and data
networks. These protocols are known officially as the CCITT T.4 and T.6 stan
dards but are more commonly referred to as CCIIT Group 3 and Group 4 com
pression, respectively.

Sometimes CCITT encoding is referred to, not entirely accurately, as Huffman
encoding. Huffman encoding is a simple compression algorithm introduced by
David Huffman in 1952. CCITT !-dimensional encoding, described in a subsec
tion below, is a specific type of Huffman encoding. The other types of CCITT
encodings are not, however, implementations of the Huffman scheme.

DATA COMPRESSION 179

Group 3 and Group 4 encodings are compression algorithms that are specifi
cally designed for encoding 1-bit image data. Many document and FAX file for
mats support Group 3 compression, and several, including TIFF, also support
Group 4.

Group 3 encoding was designed specifically for hi-level, black-and-white image
data telecommunications. All modem FAX machines and FAX modems support
Group 3 facsimile transmissions. Group 3 encoding and decoding is fast, main
tains a good compression ratio for a wide variety of document data, and con
tains information that aids a Group 3 decoder in detecting and correcting
errors without special hardware.

Group 4 is a more efficient form of hi-level compression that has almost
entirely replaced the use of Group 3 in many conventional document image
storage systems. (An exception is facsimile document storage systems where
original Group 3 images are required to be stored in an unaltered state.)

Group 4 encoded data is approximately half the size of I -dimensional Group
3--encoded data. Although Group 4 is fairly difficult to implement efficiently, it
encodes at least as fast as Group 3 and in some implementations decodes even
faster. Also, Group 4 was designed for use on data networks, so it does not con
tain the synchronization codes used for error detection that Group 3 does,
making it a poor choice for an image transfer protocol.

Group 4 is sometimes confused with the IBM MMR (Modified Modified READ)
compression method. In fact, Group 4 and MMR are almost exactly the same
algorithm and achieve almost identical compression results. IBM released MMR
in 1979 with the introduction of its Scanmaster product before Group 4 was
standardized. MMR became IBM's own document compression standard and is
still used in many IBM imaging systems today.

Document-imaging systems that store large amounts. of facsimile data have
adopted these CCITI compression schemes to conserve disk space. CCITI
encoded data can be decompressed quickly for printing or viewing (assuming
that enough memory and CPU resources are available). The same data can also
be transmitted using modem or facsimile protocol technology without needing
to be encoded first.

The CCITT algorithms are non-adaptive. That is, they do not adjust the encod
ing algorithm to encode each bitmap with optimal efficiency. They use a fixed
table of code values that w~re selected according to a reference set of docu
ments containing both text and graphics. The reference set of documents were
considered to be representative of documents that would be transmitted by
facsimile.

180 OVERVIEW

Group 3 normally achieves a compression ratio of 5:1 to 8:1 on a standard
200-dpi (204x196 dpi), A4-sized document. Group 4 results are roughly twice
as efficient as Group 3, achieving compression ratios upwards of 15:1 with the
same document. Claims that the CCITT algorithms are capable of far better
compression on standard business documents are exaggerated-largely by
hardware vendors.

Because the CCITI algorithms have been optimized for type and handwritten
documents, it stands to reason that images radically different in composition
will not compress very well. This is all too true. Bi-level bitmaps that contain a
high frequency of short runs, as typically found in digitally halftoned continu
ous-tone images, do not compress as well using the CCITT algorithms. Such
images will usually result in a compression ratio of 3:1 or even lower, and many
will actually compress to a size larger than the original.

The CCITI actually defines three algorithms for the encoding of hi-level image
data:

• Group 3 One-Dimensional (G31D)

• Group 3 Two-Dimensional (G32D)

• Group 4 Two-Dimensional (G42D)

G31D is the simplest of the algorithms and the. easiest to implement. For this
reason, it is discussed in its entirety in the first subsection below. G32D and
G42D are much more complex in their design and operation and are
described only in general terms below.

The Group 3 and Group 4 algorithms are standards and therefore produce the
same compression results for everybody. If you have heard any claims made to
the contrary, it is for one of these reasons:

• N on-CCITI test images are being used as benchmarks.

• Proprietary modifications have been made to the algorithm.

• Pre- or post-processing is being applied to the encoded image data.

• You have been listening to a misinformed salesperson.

Group 3 One-Dimensional (G31D)

Group 3 One-Dimensional encoding (G31D) is a variation of the Huffman
keyed compression scheme. A hi-level image is composed of a series of black
and-white 1-bit pixel runs of various lengths (1 = black and 0 = white). A Group
3 encoder determines the length of a pixel run in a scan line and outputs a

DATA COMPRESSION 181

variable-length binary code word representing the length and color of the run.
Because the code word output is shorter than the input, pixel data compres
sion is achieved.

The run-length code words are taken from a predefined table of values repre
senting runs of black or white pixels. This table is part of the T.4 specification
and is used to encode and decode all Group 3 data.

The size of the code wor,ds were originally determined by the CCIIT, based sta
tistically on the average frequency of black-and-white runs occurring in typical
type and handwritten documents. The documents included line art and were
written in several different languages. Run lengths that occur more frequently
are assigned smaller code words while run lengths that occur less frequently
are assigned larger code words.

In printed and handwritten documents, short runs occur more frequently than
long runs. Two- to 4-pixel black runs are the most frequent in occurrence. The
maximum size of a run length is bounded by the maximum width of a Group 3
scan line.

Run lengths are represented by two types of code words: makeup and tenninat
ing. An encoded pixel run is made up of zero or more makeup code words and
a terminating code word. Terminating code words represent shorter runs, and
makeup codes represent longer runs. There are separate terminating and
makeup code words for both black and white runs.

Pixel runs with a length of 0 to 63 are encoded using a single terminating
code. Runs of 64 to 2623 pixels are encoded by a single makeup code and a
terminating code. Run lengths greater than 2623 pixels are encoded using one
or more makeup codes and a terminating code. The run length is the sum of
the length values represented by each code word.

Here are some examples of several different encoded runs:

• A run of 20 black pixels would be represented by the terminating code for
a black run length of 20. This reduces a 20-bit run to the size of an 11-bit
code word, a compression ratio of nearly 2:1. This is illustrated in Figure
9-7, a.

• A white run of 100 pixels would be encoded using the makeup code for a
white run length of 64 pixels followed by the terminating code for a white
run length of 36 pixels (64 + 36 = 100). This encoding reduces 100 bits to
13 bits, or a compression ratio of over 7:1. This is illustrated in Figure 9-7,
b.

182 OVERVIEW

• A run of 8800 black pixels would be encoded as three makeup codes of
2560 black pixels (7680 pixels), a makeup code of 1088 black pixels, fol
lowed by the terminating code for 32 black pixels (2560 + 2560 + 2560 +
1088 + 32 == 8800). In this case, we will have encoded 8800 run-length bits
into five code words with a total length of 61 bits, for an approximate com
pression ratio of 144:1. This is illustrated in Figure 9-7, c.

0 20-plxel black run

I Terminating I

~-~~~

G 100-plxel white run

I Makeup I Terminating I
.:.c:.-: ~~.-::-·-;:-:---:'.~_7;-,--;~~~:---~- -,-,·:'~.:

11011 0001 010"1 ~

G 8800-plxel black run

I Makeup I Makeup I Makeup I Makeup I Terminating I
-~.~-. ~"""''"""'""~_ ... : ... ··"""'.· ~,,_,~-, ~ :: ·: : :·~- .. -. "~~--;.·_._.·.~.'.!'~:--. --. '"":"'"":-"_,.. • .,.,.~,~ ... _---,-~_.·'i ... ~· •. :·_.:---~ ,.-•. -.,.-.. -,.~''""'_1j:.··

,oooo ~ 1111~~ o~~ ~tnJoOOO:on~:~~1~]~uo ~11 ~~ ~~~ ono 1~~~

FIGURE 9-7: CenT Group 3 encoding

The use of run lengths encoded with multiple makeup codes has become a de
facto extension to Group 3, because such encoders are necessary for images
with higher resolutions. And while most Group 3 decoders do support this
extension, do not expect them to do so in all cases.

Decoding Group 3 data requires methods different from most other compres
sion schemes. Because each code word varies in length, the encoded data
stream must be read one bit at a time until a code word is recognized. This can
be a slow and tedious process at best. To make this job easier, a state table can
be used to process the encoded data one byte at a time. This is the quickest
and most efficient way to implement a CCITT decoder.

All scan lines are encoded to begin with a white run-length code word (most
document image scan lines begin with white run lengths). If an actual scan line
begins with a black run, a zero-length white run-length code word will be
prepended to the scan line.

DATA COMPRESSION 183

A decoder keeps track of the color of the run it is decoding. Comparing the
current bit pattern to values in the opposite color bit table is wasteful. That is,
if a black run is being decoded, there is no reason to check the table for white
run-length codes.

Several special code words are also defined in a Group 3-encoded data stream.
These codes are used to provide synchronization in the event that a phone
transmission experiences a burst of noise. By recognizing this special code, a
CCI1'T decoder may identify transmission errors and attempt to apply a recov
ery algorithm that approximates the lost data.

The EOL code is a 12-bit code word that begins each line in a Group 3 trans
mission. This unique code word is used to detect the start/ end of a scan line
during the image transmission. If a burst of noise temporarily corrupts the sig
nal, a Group 3 decoder throws away the unrecognized data it receives until it
encounteres an EOL code. The decoder would then start receiving the trans
mission as normal again, assuming that the data following the EOL is the
beginning of the next scan line. The decoder might also replace the bad line
with a predefined set of data, such as a white scan line.

A decoder also uses EOL codes for several purposes. It uses them to keep track
of the width of a decoded scan line. (An incorrect scan-line width may be an
error, or it may be an indication to pad with white pixels to the EOL.) In addi
tion, it uses EOL codes to keep track of the number of scan lines in an image,
in order to detect a short image. If it finds one, it pads the remaining length
with scan lines of all white pixels. A Group 3 EOL code is illustrated in Figure
9-8.

EOL code

FIGURE 9-8: CCJTT Group 3 encoding (EOL code)

Most FAX machines transmit data of an "unlimited length," in which case the
decoder cannot detect how long the image is supposed to be. Also, it is faster
not to transmit the all-white space at the end of a page, and many FAX
machines stop when they detect that the rest of a page is all white; they expect
the receiver to do white padding to the end of the negotiated page size.

When Group 3 data is encapsulated in an image file , information regarding
the length and width of the image is typically stored in the image file header
and is read by the decoder prior to decoding.

184 OVERVIEW

Group 3 message transmissions are terminated by a return to control (RTC)
code that is appended to the end of every Group 3 data stream and is used to
indicate the end of the message transmission. An RTC code word is simply six
EOL codes occurring consecutively. The RTC is actually part of the facsimile
protocol and not part of the encoded message data. It is used to signal the
receiver that it should drop the high-speed message carrier and listen on the
low-speed carrier for the post-page command. A Group 3 RTC code is illus
trated in Figure 9-9.

RTC code

0000 0000 00011 0000 0000 00011 0000 0000 00011 0000 0000 00011 0000 0000 00011 0000 0000 0001

FIGURE 9-9: CCITT Group 3 encoding (KTC code)

A fill (FILL) is not actually a code word but a run of one or more zero bits that
occurs between the encoded scan-line data and the EOL code (but never in
the encoded scan line itself). Fill bits are used to pad out the length of an
encoded scan line to increase the transmission time of the line to a required
length. Fill bits may also be used to pad the RTC code word out to end on a
byte boundary.

TIFF Compression Type 2

The TIFF compression Type 2 scheme (in which the compression tag value is
equal to 2) is a variation of CCI1T G31D encoding. The TIFF Type 3 and TIFF
Type 4 compression methods follow exactly the CCITT Group 3 and Group 4
specifications, respectively. Type 2 compression, on the other hand, imple
ments Group 3 encoding but does not use EOL or RTC code words. For this
reason, TIFF Type 2 compression is also called "Group 3, No EOLs." Also, fill
bits are never used except to pad out the last byte in a scan line to the next
byte boundary.

These modifications were incorporated into the TIFF specification because
EOL and RTC codes are not needed to read data stored on tape or disk. A typi
cal letter-size image (1728x2200 pixels) would contain 26,484 bits (3310.5
bytes) of EOL and RTC information. When storing Group 3 data to a file, the
following are not needed:

• The initial12-bit EOL

• The 12 EOL bits per scan line

DATA COMPRESSION 185

• The 72 RTC bits tacked onto the end of each image

Conventional Group 3 decoders cannot handle these modifications and will
either refuse to read the TIFF Type 2-encoded data or will simply return a
stream of decoded garbage. However, many· decoders have been designed to
accept these Group 3 trivial "modifications" and have no problems reading this
type of data. Group 3 encoding is illustrated in Figure 9-10.

Group 3
Transmission

FIGURE 9-1 o: Group 3 ccrrr encoding (TIFF Compression Type 2)

TIFF Class F

RTC

There is nearly one facsimile file format for every brand of computer FAX
hardware and software made. Many compress the facsimile data using RLE
(presumably so it will be quicker to display) or store it in its original Group 3
encoding. Perhaps the most widely used FAX file format is the unofficial TIFF
Class F format. (See the TIFF article in Part Two of this book for more informa
tion about TIFF Class F.)

Even with the latest release of TIFF, revision 6.0, Class F has never been offi
cially included in the standard, despite the wishes of the TIFF Advisory Council.
The reason for this is that Aldus feels that supporting applications that require
facsimile data storage and retrieval is outside of the scope of TIFF. (TIFF was
designed primarily with scanners and desktop publishing in mind.) This is too
bad, considering that one of TIFF's main goals is to aid in promoting image
data interchangeability between hardware platforms and software applications.

Group 3 Two-Dimensiunal (G32D)

Group 3 One-Dimensional (G31D) encoding, which we've discussed above,
encodes each scan line independent of the other scan lines. Only one run

186 OVERVIEW

length at a time is considered during the encoding and decoding process. The
data occurring before and after each run length is not important to the encod
ing step; only the data occurring in the present run is needed.·

With Group 3 Two-Dimensional (G32D) encoding, on the other hand, the way
a scan line is encoded may depend on the immediately preceding scan-line
data. Many images have a high degree of vertical coherence (redundancy). By
describing the differences between two scan lines, rather than describing the
scan line contents, 2D encoding achieves better compression.

The first pixel of each run length is called a changing element. Each changing
element marks a color transition within a scan line (the point where a run of
one color ends and a run of the next color begins).

The position of each changing element in a scan line is described as being a
certain number of pixels from a changing element in the current, coding line
(horizontal coding is performed) or in the preceding, reference line (vertical
coding is performed). The output codes used to describe the actual positional
information are called Relative Element Address Designate (READ} codes.

Shorter code words are used to describe the color transitions that are less than
four pixels away from each other on the code line or the reference line.
Longer code words are used to describe color transitions lying a greater dis
tance from the current changing element.

2D encoding.is more efficient than !-dimensional because the usual data that
is compressed (typed or handwritten doc1:1ments) contains a high amount of
2D coherence.

Because a G32D-encoded scan line is dependent on the correctness of the pre
ceding scan line, an error, such as a burst of line noise, can affect multiple,
2-dimensionally encoded scan lines. If a transmission error corrupts a segment
of encoded scan line data, that line cannot be decoded. But, worse still, all
scan lines occurring after it also decode improperly.

To minimize the damage created by noise, G32D uses a variable called a K fac
tor and 2-dimensionally encodes K-1 lines following a !-dimensionally encoded
line. If corruption of the data transmission occurs, only K-1 scan lines of data
will be lost. The decoder will be able to resync the decoding at_ the next avail
able EOL code.

The typical value for K is 2 or 4. G32D data that is encoded with a K value of 4
appears as a single block of data. Each block contains three lines of 2D scan
line data followed by a scan line of i -dimensionally encoded data.

DATA COMPRESSION 187

The K variable is not normally used i~ decoding the G32D data. Instead, the
EOL code is modified to indicate the algorithm used to encode the line follow
ing it. If a 1 bit is appended to the EOL code, the line following is !-dimension
ally encoded; if a 0 bit is appended, the line following the EOL code is
2-dimensionally encoded. All other transmission code word markers (FILL and
RTC) follow the same rule as in G31D encoding. K is only needed in decoding
if regeneration of the previous !-dimensionally encoded scan line is necessary
for error recovery.

Group 4 Two-Dimensional (G42D)

Group 4 Two-Dimensional (G42D) encoding was developed from the G32D
algorithm as a better 2D compression scheme-so much better, in fact, that
Group 4 has almost completely replaced G32D in commercial use.

Group 4 encoding is identical to G32D encoding except for a few modifica
tions. Group 4 is basically the G32D algorithm with no EOL codes and a K vari
able set to infinity. Group 4 was designed specifically to encode data residing
on disk drives and data networks. The built-in transmission error detec
tion/ correction found in Group 3 is therefore not needed by Group 4 data.

The first reference line in Group 4 encoding is an imaginary scan line contain
ing all white pixels. In G32D encoding, the first reference line is the first scan
line of the image. In Group 4 encoding, the RTC code word is replaced by an
end of facsimile block (EOFB) code, which consists of two consecutive Group
3 EOL code words. Like the Group 3 RTC, the EOFB is also part of the trans
mission protocol and not actually part of the image data. Also, Group
4-encoded image data may be padded out with fill bits after the EOFB to end
on a byte boundary. ·

Group 4 encoding will usually result in an image compressed twice as small as
if it were done with G31D encoding. The main tradeoff is that Group 4 encod
ing is more complex and requires more time to perform. When implemented
in hardware, however, the difference in execution speed between the Group 3
and Group 4 algorithms is not significant, which usually makes Group 4 a bet
ter choice in most imaging system implementations.

Tips for Designing CCIIT Encoders and Decoders

Here are some general guidelines to follow if you are using the CCIIT encod
ing method to encode or decode.

• Ignore bits occurring after the RTC or EOFB markers. These markers indi
cate the end of the image data, and all bits occurring after them can be
considered filler.

188 OVERVIEW

• You must know the number of pixels in a scan line before decoding. Any
row that decodes to fewer or greater pixels than expected is normally con
sidered corrupt, and further decoding of the image block (2D encoding
only) should not be attempted. Some encoding schemes will produce short
scan lines if the line contains all white pixels. The decoder is expected to
realize this and pad out the entire line as a single white run.

• Be aware that decoded scan-line widths will not always be a multiple of
eight, and decoders should not expect byte-boundary padding to always
occur. Robust decoders should be able to read non-byte-aligned data.

• If a decoder encounters an RTC or EOFB marker before the expected
number of scan lines has been decoded, assume that the remaining scan
lines are all white. If the expected number of scan lines has been decoded,
but an RTC or EOFB has not been encountered, stop decoding. A decoder
should then produce a warning that an unusual condition has been
detected.

• Note that a well-designed CCITT decoder should be able to handle the typi
cal color-sex and bit-sex problems associated with 1-bit data, as described
below:

The CCITI defines a pixel value of 0 as white and a pixel value of 1 as
black. Many bitmaps, however, may be stored using the opposite pixel
color values and the decoder would interpret a "negative" of the image in
this case (a color-sex problem). Different machine architectures also store
the bits within a byte in different ways. Some store the most significant bit
first, and some store the least significant bit first. If bitmap data is read in
the opposite format from the one in which it was stored, the image will
appear fragmented and disrupted (a bit-sex problem). To prevent these
problems, always design a CCITT decoder that is capable of reading data
using either of the color-sex and bit-sex schemes to suit the requirements
of the user.

For Further Infonnation About CCITI'

The original specifications for the CCITI Group 3 and Group 4 algorithms are
in CCITI (1985) Volume VII, Fascicle VII.3, Recommendations T.4 and T.6:

"Standardization of Group 3 Facsimile Apparatus for Document Trans
mission," Recommendation T.4, Volume VII, Fascicle VI/.3, Tenninal nquip
ment and Protocols for Telematic Seroices, The International Telegraph and
Telephone Consultative Committee (CCITI), Geneva, Switzerland,
1985, pp. 16-31.

DATA COMPRESSION 189

"Facsimile Coding Schemes and Coding Control Functions for Group 4
Facsimile Apparatus," Recommendation T.6, Volume VII, Fascicle V/1.3, Ter-·
minal Equipment and Protocols for Telematic Services, The International
Telegraph and Telephone Consultative Committee (CCITI), Geneva,
Switzerland, 1985, pp. 40-48.

The latest specification is CCITI (1992) Volume VII, Fascicle VII.3, Recom
mendations T.O through T.63.

Both the CCITI and ANSI documents may be obtained from the following
source:

American National Standards Institute, Inc.
Attn: Sales
1430 Broadway
New York, NY10018 USA
Voice: 212-642-4900

See also the following references. (For information on getting RFCs [Requests
for Comments], send email to rfc-info®isi.edu with a subject line of. "getting
rfcs".and a body of "help: ways _to_get_rfcs".)

Hunter, R. and A.H. Robinson, "International Digital Facsimile Coding
Standards," Proceedings of the IEEE, vol. 68, no. 7,July 1980, pp. 854-867.

RFC 804-CClTT Draft Recommendation T. 4 (Standardization of Group 3
Facsimile Apparatus for Document Transmission).

RFC 1314-AFileFormatfor the Exchange of/mages in the Internet.

FAX: Digital Facsimile Technology & Applications, McConnell, Artech
House, Norwood, MA; second edition, 1992.

Marking, Michael P., "Decoding Group 3 Images," The C Users]ouma~
June 1990, pp. 45-54. ·

Information on MMR encoding may be found in the following references:

"Binary-image-manipulation Algorithms in the Image View Facility,"
IBM]ournal of Research and Development, vol. 31, no. !,January 1987.

Infonnation on Huffman encoding may be found in the following references:

Huffman, David, "A Method for the Construction of Minimum Redun
dancy Codes," Proceedings of the IRE, vol. 40, no. 9, 1952, pp. 1098-1101.

Kruger, Anton, "Huffman Data Compression," C Gazette, vol. 5, no. 4,
1991, pp.71-77.

190 OVERVIEW

JPEG Compression
One of the hottest topics in image compression technology today is JPEG. The
acronym JPEG stands for the Joint Photographic Experts Group, a standards
committee that had its origins within the International Standard Organization
(ISO). In 1982, the ISO formed the Photographic Experts Group (PEG) to
research methods of transmitting video, still images, and text over ISDN (Inte
grated Services Digital Network) lines. PEG's goal was to produce a set of indus
try standards for the transmission of graphics and image data over digital
communications networks.

In 1986, a subgroup of the CCITT began to research methods of compressing
color and gray-scale data for facsimile transmission. The compression methods
needed for color facsimile systems were very similar to those being researched
by PEG. It was therefore agreed that the two groups should combine their
resources and work together toward a single standard.

In 1987, the ISO and CCITT combined their two groups into a joint committee
that would research and produce a single standard of image data compression
for both organizations to use. This new committee was JPEG.

Although the creators of]PEG might have envisioned a multitude of commer
cial applications for]PEG te~hnology, a consumer public made hungry by the
marketing promises of imaging and multimedia technology are benefiting
greatly as well. Most previously developed compression methods do a relatively
poor job of compressing continuous-tone image data; that is, images contain
ing hundreds or thousands of colors taken from real-world subjects. And very
few file formats can support 24-bit raster images.

GIF, for example, can store only images with a maximum pixel depth of eight
bits, for a maximum of 256 colors. And its LZW compression algorithm does
not work very well on typical scanned image data. The low-level noise com
monly found in such data defeats LZW's ability to recognize repeated patterns.

Both TIFF and BMP are capable of storing 24-bit data, but in their pre:JPEG ver
sions are capable of using only encoding schemes (LZW and RLE, respectively)
that do not compress this type of image data very well.

]PEG provides a compression method that is capable of compressing continu
ous-tone image data with a pixel depth of 6 to 24 bits with reasonable speed
and efficiency. And although JPEG itself does not define a standard image file
format, several have been invented or modified to fill the needs of]PEG data
storage.

DATA COMPRESSION 191

]PEG in Perspective

Unlike all of the other compression methods described so far in this chapter,
JPEG is not a single algorithm. Instead, it may be thought of as a toolkit of
image compression methods that may be altered to fit the needs of the user.
JPEG may be adjusted to ·produce very small, compressed images that are of rel
atively poor quality in appearance but still suitable for many applications. Con
versely, JPEG is capable of producing very high-quality compressed images that
are still far smaller than the original uncompressed data.

JPEG is also different in that it is primarily a lossy method of compression. Most
popular image format compression schemes, such as RLE, LZW, or the CCITT
standards, are lossless compression methods. That is, they do not discard any
data during the encoding process. An image compressed using a lossless
method is guaranteed to be identical to the original image when uncom
pressed.

Lossy schemes, on the other hand, throw useless data away during encoding.
This is, in fact, how lossy schemes manage to obtain superior compression
ratios over most lossless schemes. JPEG was designed specifically to discard
information that the human eye cannot easily see. Slight changes in color are
not perceived well by the human eye, while slight changes in intensity (light
and dark) are. Therefore· JPEG's lossy encoding tends to be more frugal with
the gray-scale part of an image and to be more frivolous with the color.

JPEG was designed to compress color or gray-scale continuous-tone images of
real-world subjects: photographs, video stills, or any complex graphics that
resemble natural subjects. Animations, ray tracing, line art, black-and-white
documents, and typical vector graphics don't compress very well under JPEG
and shouldn't be expected to. And, although JPEG is now used to provide
motion video compression, the standard makes no special provision for such
an application.

The fact that JPEG is lossy and works only on a select type of image data might
make you ask, "Why bother to liSe it?" It depends upon your needs. JPEG is an
excellent way to store 24-bit photographic images, such as those used in imag
ing and multimedia applications. JPEG 24-bit (16 million color) images are
superior in appearance to 8-bit (256 color) images on a VGA display and are at
their most spectacular when using 24-bit display hardware (which is now quite
inexpensive) .

The amount of compression achieved depends upon the content of the image
data. A typical photographic-quality image may be compressed from 20:1 to

192 OVERVIEW

25:1without experiencing any noticeable degradation in quality. Higher com
pression ratios will result in image files that differ noticeably from the original
image but still have an overall good image quality. And achieving a 20:1 or bet
ter compression ratio in many cases not only saves disk space, but also reduces
transmission time across data networks and phone lines.

An end user can "tune" the quality of ajPEG encoder using a parameter some
times called a quality setting or a Qfactor. Although different implementations
have varying scales of Q factors, a range of I to I 00 is typical. A factor of 1 pro
duces the smallest, worst quality images; a factor of 100 produces the largest,
best quality images. The optimal Q factor depends on the image content and is
therefore different for every image. The art of JPEG compression is finding the
lowest Q factor that produces an image that is visibly acceptable, and prefer
ably as close to the original as possible.

The JPEG library supplied by the Independent JPEG Group (included on the
CD-ROM that accompanies this book) uses a quality setting scale of 1 to 100. To
find the optimal compression for an image using the]PEG library, follow these
steps:

1. Encode the image using a quality setting of 75 (-Q 75).

2. If you observe unacceptable defects in the image, increase the value, and
re-encode the image.

3. If the image quality is acceptable, decrease the setting until the image qual
ity is barely acceptable. This will be the optimal quality setting for this
image.

4. Repeat this process for every image you have (or just encode them all using
a quality setting of 75).

]PEG isn't always an ideal compression solution. There are several reasons:

• As we have said, JPEG doesn't fit every compression need. Images contain
ing large areas of a single color do not compress very well. In fact, JPEG will
introduce "artifacts" .into such images that are visible against a flat back
ground, making them considerably worse in appearance than if you used a
conventionallossless compression method. Images of a "busier" composi
tion contain even worse artifacts, but they are considerably less noticeable
against the image's more complex background.

• JPEG can be rather slow when it is implemented only in software. If fast
decompression is required, a hardware-based JPEG solution is your best bet,
unless you are willing to wait for a faster software-only solution to come
along or buy a faster computer.

DATA COMPRESSION 193

•]PEG is not trivial to implement. It is not likely you will be able to sit down
and write your own JPEG encoder I decoder in a few evenings. We recom
mend that you obtain a third-party JPEG library, rather than writing your
own.

•]PEG is not supported by very many file formats. The formats that do sup
portJPEG are all fairly new and can be expected to be revised at frequent
intervals.

Baseline]PEG

The JPEG specification defines a minimal subset of the standard called baseline
]PEG, which all]PEG-aware applications are required to support. This baseline
uses an encoding scheme based on the Discrete Cosine Transform (DCT) to
achieve compression. DCT is a generic name for a class of operations identified
and published some years ago. DCf-based algorithms have since made their
way into various compression methods.

DCT-based encoding algorithms are always lossy by nature. DCT algorithms are
capable of achieving a high degree of compression with only ·minimal loss of
data. This scheme is effective only for compressing continuous-tone images in
which the differences between adjacent pixels are usually small. In practice,
]PEG works well only on images with depths of at least four or five bits per color
channel. The baseline standard actually specifies eight bits per input sample.
Data of lesser bit depth can be handled by scaling it up to eight bits per sam
ple, but the results will be bad for low-bit-depth source data, because of the
large jumps between adjacent pixel values. For similar reasons, colormapped
source data does not work very well, especially if the image has been dithered.

The]PEG compression scheme is divided into the following stages:

1. Transform the image into an optimal color space.

2. Downsample chrominance components by averaging groups of pixels
together.

3. Apply a Discrete Cosine Transform (DCT) to blocks of pixels, thus remov
ing redundant image data.

4. Quantize each block of DCT coefficients using weighting functions opti
mized for the human eye.

5. Encode the resulting coefficients (image data) using a Huffman variable
word-length algorithm to remove redundancies in the coefficients.

Figure 9-11 summarizes these steps, and the following subsections look at each
of them in turn. Note thatJPEG decoding performs the reverse of these steps.

194 OVERVIEW

JPEG Compression

FIGURE 9-11:]PEG compression and decompression

Transform the image

JPEG Decompression

The JPEG algorithm is capable of encoding images that use any type of color
space.]PEG itself encodes each component in a color model separately, and it
is completely independent of any color-space model, such as RGB, HSI, or CMY.
The best compression ratios result if a luminance/ chrominance color space,
such as YlJV or YCbCr, is used. {See Chapter 2 for a description of these color.
spaces.)

Most of the visual information to which human eyes are most sensitive is found
in the high-frequency, gray-scale, luminance component (Y) of the YCbCr
color space. The other two chrominance components (Cb and Cr) contain
high-frequency color information to which the human eye is less sensitive.
Most of this information can therefore be discarded.

In comparison, the RGB, HSI, and CMY color models spread their useful visual
image information evenly across each of their three color components, making
the selective discarding of information very difficult. All three color compo
nents would need to be encoded at the highest quality, resulting in a poorer
compression ratio. Gray-scale images do not have a color space as such and
therefore do not require transforming. .

DATA COMPRESSION 195

Downsample chrominance components
The simplest way of exploiting the eye's lesser sensitivity to chrominance infor
mation is simply to use fewer pixels for the chrominance channels. For exam
ple, in an image nominally 1000x1000 pixels, we might use a full 1000x1000
luminance pixels but only 500x500 pixels for each chrominance component.
In this representation, each chrominance pixel covers the same area as a 2x2
block of luminance pixels. We store a total of six pixel values for each 2x2
block (four luminance values, one each for the two chrominance channels),
rather than the twelve values needed if each component is represented at full
resolution. Remarkably, this 50 percent reduction in data volume has almost
no effect on the perceived quality of most images. Equivalent savings are not
possible with conventional color models such as RGB, because in RGB each
color channel carries some luminance information and so any loss of resolu
tion is quite visible.

When the uncompressed data is supplied in a conventional format (equal reso
lution for all channels), a]PEG compressor must reduce the resolution of the
chrominance channels by downsampling, or averaging together groups of pix
els. The]PEG standard allows several different choices for the sampling r~tios,
or relative sizes, of the downsampled channels. The luminance channel is
always left at full resolution (1:1 sampling). Typically both chrominance chan
nels are downsampled 2:1 horizontally and either 1:1 or 2:1 vertically, meaning
that a chrominance pixel covers the same area as either a 2x1 or a 2x2 block of
luminance pixels.]PEG refers to these downsampling processes as 2h1v and
2h2v sampling, respectively.

Another notation commonly used is 4:2:2 sampling for 2h1v and 4:2:0 sam
pling for 2h2v; this notation derives from television customs (color transforma
tion and downsampling have been in use since the beginning of color TV
transmission). 2h1v sampling is fairly common because it corresponds to
National Television Standards Committee (NTSC) standard TV practice, but it
offers less compression than 2h2v sampling, with hardly any gain in perceived
quality.

Apply a Discrete Cosine Transform
The image data is divided up into 8x8 blocks of pixels. (From this point on,
each color component is processed independently, so a "pixel" means a single
value, even in a color image.) A DCT is applied to each 8x8 block. DCT con
verts the spatial image representation into a frequency map: the low-order or
"DC" term represents the average value in the block, while successive higher
order ("AC") terms represent the strength of more and more rapid changes

196 OVERVIEW

across the width or height of the block. The highest AC term represents the
strength of a cosine wave alternating from maximum to minimum at adjacent
pixels.

The DCT calculation is fairly complex; in fact, this is the most costly step in
JPEG compression. The point of doing it is that we h~ve now separated out the
high- and low-frequency information present in ·the image. We can discard
high-frequency data easily without losing low-frequency information. The DCT
step itself is lossless except for roundoff errors.

Quantize each block
To discard an appropriate amount of information, the compressor divides each
DCT output value by a "quantization coefficient" and rounds the result to an
integer. The larger the quantization coefficient, the more data is lost, because
the actual DCT value is represented less and less accurately. Each of the 64
positions of the ncr output block has its own quantization coefficient, with the
higher-order terms being quantized more heavily than the low-order terms
(that is, the higher-order tenps have larger quantization coefficients). Further
more, separate quantization tables are employed for luminance and chromi
nance data, with the chrominance data being quantized more heavily than the·
luminance data. This allows JPEG to exploit further the eye's differing sensitiv
ity to luminance and chrominance.

It is this step that is controlled by the "quality" setting of most JPEG compres
sors. The compressor starts from a built-in table that is appropriate for a
medium-quality setting and increases or decreases the value of each table entry
in inverse proportion to the requested quality. The complete quantization
tables actually used are recorded in the compressed file so that the decompres
sor will know how to (approximately) reconstruct the DCT coefficients.

Selection of an appropriate quantization table is something of a black art. Most
existing compressors start from a sample table developed by the ISO]PEG com
mittee. It is likely that future research will yield better tables that provide more
compression for the same perceived image quality. Implementation of
improved tables should not cause any compatibility problems, because decem
pressors merely read the tables from the compressed file; they don't care how
the table was picked.

Encode the resulting coefficients
The resulting coefficients contain a significant amount of redundant data.
Huffman compression will losslessly remove the redundancies, resulting in
smaller JPEG data. An optional extension to the JPEG specification allows

DATA COMPRESSION 197

arithmetic encoding to be used instead of Huffman for an even greater com
pression ratio. (See the section called "]PEG Extensions (Part 1)" below.) At
this point, thejPEG data stream is ready to be transmitted across a communica
tions channel or encapsulated inside an image file format.

]PEG Extensions (Part 1)

What we have examined thus far is only the baseline specification for]PEG. A
number of extensions have been defined in Part 1 of the]PEG specification
that provide progressive image buildup, improved compression ratios using
arithmetic encoding, and a lossless compression scheme. These features are
beyond the needs of most]PEG implementations and have therefore been
defined as "not required to be supported" extensions to the JPEG standard.

Progressive image buildup
Progressive image buildup is an extension for use in applications that need to
receive]PEG data streams and display them on the fly. A baseline]PEG image
can be displayed only after all of the image data has been received and
decoded. But some applications require that the image be displayed after only
some of the data is received. Using a conventional compression method, this
means displaying the first few scan lines of the image as it is decoded. In this
case, even if the scan lines were interlaced, you would need at least.50 percent
of the image data to get a good clue as to the content of the image. The pro
gressive buildup extension of]PEG offers a better solution.

Progressive buildup allows an image to be sent in layers rather than scan lines.
But instead of transmitting each bitplane or color channel in sequence (which
wouldn't be very useful), a succession of images built up from approximations
of the original image are sent. The first scan provides a low-accuracy represen
tation of the entire image-in effect, a very low-quality JPEG compressed
image. Subsequent scans gradually refine the image by increasing the effective
quality factor. If the data is displayed on the fly, you would first see a crude, but
recognizable, rendering of the whole image. This would appear very quickly
because only a small amount of data would need to be transmitted to produce
it. Each subsequent scan would improve the displayed image's quality one
block at a time.

A limitation of progressive JPEG is that each scan takes essentially a full JPEG
decompression cycle to display. Therefore, with typical data transmission rates,
a very fast JPEG decoder (probably specialized hardware) would be needed to
make effective use of progressive transmission.

198 OVERVIEW

A related JPEG extension provides for hierarchical storage of the same image at
multiple resolutions. For example, an image might be stored at 250x250,
500x500, lOOOxlOOO, and 2000x2000 pixels, so that the same image file could
support display on low-resolution screens, medium-resolution laser printers,
and high-resolution imagesetters. The higher-resolution images are stored as
differences from the lower-resolution ones, so they need less space than they
would need if they were stored independently. This is not the same as a pro
gressive series, because each image is available in its own right at the full
desired quality.

Arithmetic encoding .
The baseline JPEG standard defines Huffman compression as the final step in
the encoding process. A]PEG extension replaces the Huffman engine with a
binary arithmetic entropy encoder. The use of an arithmetic coder reduces the
resulting size of the JPEG data by a further 10 percent to 15 percent over the
results that would be achieved by the Huffman coder. With no change in
resulting image quality, this gain could be of importance in implementations
where enormous quantities ofjPEG images are archived.

Arithmetic encoding has several drawbacks:

• Not all JPEG decoders support arithmetic decoding. Baseline JPEG
decoders are required to support only the Huffman algorithm.

• The arithmetic algorithm is slower in both encoding and decoding than
Huffman.

• The arithmetic coder used by]PEG (called a Q;coder) is owned by IBM and
AT&T. (Mitsubishi also holds patents on arithmetic coding.) You must
obtain a license from the appropriate vendors if their Q-coders are to be
used as the back end of your JPEG implementation.

Lossless JPEG compression
A question that commonly arises is "At what Q factor does JPEG become loss
less?" The answer is "never." Baseline JPEG is a lossy method of compression
regardless of adjustments you may make in the parameters. In fact, OCT-based
encoders are always lossy, because roundoff errors are inevitable in the color
conversion and DCT steps. You can suppress deliberate information loss in the
downsampling and quantization steps, but you still won't get an exact recre
ation of the original bits. Further, this minimum-loss setting is a very inefficient
way to use lossy JPEG.

DATA COMPRESSION 199

The]PEG standard does offer a separate lossless mode. This mode has nothing
in common with the regular OCT-based algorithms, and it is currently imple
mented only in a few commercial applications. JPEG lossless is a form of Predic
tive Lossless Coding using a 20 Differential Pulse Code Modulation (OPCM}
scheme. The basic premise is that the value of a pixel is combined with the val
ues of up to three neighboring pixels to form a predictor value. The predictor ·
value is then subtracted from the original pixel value. When the entire bitmap
has been processed, the resulting predictors are compressed using either the
Huffman or the binary arithmetic entropy encoding methods described in the
JPEG standard.

Lossless]PEG works on images with 2 to 16 bits per pixel, but performs best on
images with 6 or more bits per pixel. For such images, the typical compression
ratio achieved is 2:1. For image data with fewer bits per pixels, other compres
sion schemes do perform better.

]PEG Extensions (Part 3)

The following JPEG extensions are described in Part 3 of the]PEG specifica
tion.

Variable quantization
Variable quantization is an enhancement available to the quantization proce
dure of OCT-based processes. This enhancement may be used with any of the
OCf -based processes defined by]PEG with the exception of the baseline pro
cess.

The process of quantization used in JPEG quantizes each of the 64 DCT coeffi
cients using a corresponding value from a quantization table. Quantization val
ues may be redefined prior to the start of a scan but must not be changed once
they are within a scan of the compressed data stream.

Variable quantization allows the scaling of quantization values within the com
pressed data stream. At the start of each 8x8 block is a quantizer scale factor
used to scale the quantization table values within an image component and to
match these values with the AC coefficients stored in the compressed data.
Quantization values may then be located and changed as needed.

Variable quantization allows the characteristics of an image to be changed to
control the quality of the output based on a given model. The variable quan
tizer can constantly adjust during decoding to provide optimal output.

The amount of output data can also be decreased or increased by raising or
lowering the quantizer scale factor. The maximum size of the resulting JPEG
file or data stream may be imposed by constant adaptive adjustments made by
the variable quantizer.

200 OVERVIEW

The variable quantization extension also allows JPEG to store image data origi
nally encoded using a variable quantization scheme, such as MPEG. For MPEG
data to be accurately transcoded into another format, the other format must
support variable quantization to maintain a high compression ratio. This
extension allows]PEG to support a data stream originally derived from a vari
ably quantized source, such as an MPEG 1-frame.

Selective reimement
Selective refmement is used to select a region of an image for further enhance
ment. This enhancement improves the resolution and detail of a region of an
image. JPEG supports three types of selective refinement: hierarchical, progres
sive, and component. Each of these refinement processes differs in its applica
tion, effectiveness, complexity, and amount of memory required.

• Hierarchical selective refinement is used only in the hierarchical mode of
operation. It allows for a region of a frame to be refined by the next differ
ential frame of a hierarchical sequence.

• Progressive selective refinement is used only in the progressive mode and
adds refinement. It allows a greater bit resolution of zero and non-zero
DCT coefficients in a coded region .of a frame.

• Component selective refinement may be used in any mode of operation. It
allows a region of a frame to contain fewer colors than are defined in the
frame header.

Image tiling
Tiling is used to divide a single image into two or more smaller subimages.
Tiling allows easier buffering of the image data in memory, quicker random
access of the image data on disk, and the storage of images larger than
64Kx64K samples in size.]PEG supports three types of tiling: simple, pyramidal,
aQd composite.

• Simple tiling divides an image into two or more ftxed-size tiles. All simple
tiles are coded from left to right and from top to bottom and are contigu
ous and non-overlapping. All tiles must have the same number of samples
and component identifiers and must be encoded using the same processes.
Tiles on the bottom and right of the image may be smaller than the desig
nated size of the image dimensions and will therefore riot be a multiple of
the tile size.

• Pyramidal tiling also divides the image into tiles, but each tile is also tiled
using several different levels of resolution. The model of this process is the
]PEG Tiled Image Pyramid (JTIP), which is a model of how to create a
multi-resolution pyramidal JPEG image.

DATA COMPRESSION 201

A]TIP image stores successive layers of the same image at different resolu
tions. Th_e first image stored at the top of the pyramid is one-sixteenth of
the defined screen size and is called a vignette. This image is used for quick
displays of image contents, especially for file browsers. The next image
occupies one-fourth of the screen and is called an imagette. This image is
typically used when two or more images must be displayed at the same time
on the screen. The next is a low-resolution, full-screen image, followed by
successively higher-resolution images and ending with the original image.

Pyramidal tiling typically uses the process of "internal tiling," where each
tile is encoded as part of the same JPEG data stream. Tiles may optionally
use the process of "external tiling," where each tile is a separately encoded
]PEG data stream. External tiling may allow quicker access of image data,
easier application of image encryption, and enhanced compatibility with
certain JPEG decoders.

• Composite tiling allows multiple-resoluti-on versions of images to be stored
and displayed as a mosaic. Composite tiling allows overlapping tiles that may
be different sizes and have different scaling factors and compression
parameters. Each tile is encoded separately and may be combined with
other tiles without resampling.

SPIFF (Still Picture Interchange File Format)
SPIFF is an officially sanctionedJPEG file format that is intended to replace the
defacto JFIF (JPEG File Interchange Format) format in use today. SPIFF
includes all of the features of]FIF and adds quite a bit more functionality. SPIFF
is designed so that properly written JFIF readers will read SPIFF:JPEG files as
well.

For more information, see the article about SPIFF in Part Two of this book.

Other extensions
Other]PEG extensions include the addition of a version marker segment that
stores the minimum level of functionality required to dec;:ode the JPEG data
stream. Multiple version markers may be included to mark areas of the data
stream that have differing minimum functionality requirements. The version
marker also contains information indicating the processes and extension used
to encode the JPEG data stream.

For Further ltiformation About]PEG

The JPEG standard is available in English, French, or Spanish, and as a paper
copy or a PostScript or Word for Windows document from the International

202 OVERVIEW

Standards Organization (ISO) or International Telecommun'ication Union
(ITU). Copies of the standard may be ordered from:

American National Standards Institute, Inc.
Attention: Customer Service
11 West 42nd St.
New York, NY10036 USA
Voice: 212-642-4900

The standard is published as both an ITU Recommendation and as an ISO /IEC
International Standard, and is divided into three parts: Part 1 is the actual
specification, Part 2 covers compliance-testing methods, and Part 3 ·covers
extensions to the JPEG specification. Parts 1 and 2 are at International Stan
dard status. See these documents:

"Digital Compression and Coding of Continuous-Tone Still Images,
Requirements and Guidelines," Document number ITU-T T.81 or
ISO/IEC 10918-1.

"Digital Compression and Coding of Continuous-Tone Still Images,
Compliance testing," Document number ITU-T T.83 or ISO/IEC
10918-2.

Part 3 is still at Committee Draft status. See this document:

"Digital Compression and Coding of Continuous-Tone Still Images,
Extensions," Document number ITU-T T.84 or ISO/IEC 10918-3.

New information on]PEG and related algorithms is constantly appearing. The
majority of the commercial work for JPEG is being carried out at these compa
nies:

Eastman Kodak Corporation
232 State Street
Rochester, NY 14650
Voice: 800-242-2424
WWW: http:/ /www.kodak. com

C-Cube Microsystems
1778 McCarthy Boulevard
Milpitas, CA 95035
Voice: 408-944-6300

See the article about the JFIF file format supported by C-Cube in Part Two of
this book and the SPIFF file format defined by Part 3 of the JPEG specification.

DATA COMPRESSION 203

The]PEG FAQ (Frequently Asked Questions) is a useful source of general infor
mation about]PEG. This FAQ is included on the CD-ROM that accompanies
this book; however, because the FAQ is updated frequently, the CD-ROM ver
sion should be; used only for general information. The FAQ is posted every two
weeks to USENET newsgroups comp.graphics.misc, news.answers, and co.mp.answers.
You can get the latest version of this FAQ from the news. answers archive at:

ftp:/ /rtfm. mit.edu/pub/usenet/news. answers/jpegfaq.

You can also get this FAQ by sending email to:

mail-server@rtfm. mit.edu

with the message "send usenet/news.answers/jpeg-faq" in the body.

A consortium of programmers, the Independent JPEG Group (I] G), has pro
duced a public domain version of a]PEG encoder and decoder in C source
code form. We have included this code on the CD-ROM that accompanies this
book. You can obtain the IJG library from various FTP sites, information ser
vices, and computer bulletin boards.

The best short technical introduction to the]PEG compression algorithm is:

Wallace, Gregory K, "The]PEG Still Picture Compression Standard,"
Communications of the ACM, vol. 34, no. 4, April1991, pp. 30--44.

A more complete explanation of]PEG can be found in the following texts:

Pennebaker, William B. and joan L. Mitchell,]PEG: Still Image Data Com
pression Standard, Van Nostrand Reinhold, New York, 1993.

This book contains the complete text of the ISO]PEG standards (DIS
10918-1 and 10918-2). This is by far the most complete exposition of
]PEG in existence and is highly recommended.

Nelson, Mark, The Data Compression Book, M&T Books, Redwood City,
CA. 1991.

This book provides good explanations and example C code for a multi
tude of compression methods, including]PEG. It is an excellent source
if you are comfortable reading C code but don't know much about data
compression in general. The book's]PEG sample code is incomplete
and not very robust, but the book is a good tutorial.

Here is a short bibliography of additional]PEG reading:

Barda, J.F., "Codage et Compression des Grandes Images,'' Proceedings of
AFNOR Multimedia and Standardization Conference, vol. 1, March 1993, pp~
300-315.

204 OVERVIEW

Hudson, G., H. Yasuda, and I. Sebestyen, 'The International Standard
ization of Still Picture Compression Technique," Proceedings of the IEEE
Global Telecommunications Conference, November 1988, pp. 1016-1021.

Leger, A.,J. Mitchell, andY Yamazaki, "Still Picture Compression Algo
rithms Evaluated for International Standardization," Proceedings of the
IEEE Global Telecommunications Conference, November 1988, pp.
1028-1032.

Leger, A., T. Omachi, and T.K Wallace, "JPEG Still Picture Compression
Algorithm," DpticalEngineering, vol. 30, no. 7,July 1991, pp. 947-954.

Mitchell, J.L., and W.B. Pennebaker, "Evolving JPEG Color Data Com
pression Standard," in Standards for Electronic Imaging Systems, Neir, M.
and M.E. Courtot, eds., vol. CR37, SPIE Press, 1991, pp. 68-97.

Netravali, A.N ., and B. G. Haskell, Digital Pictures: Representation and Com
pression, Plenum Press, New York, 1988.

Rabbani, M., and Jones, P., Digital Image Compression Techniques, Tutorial
Texts in optical Engineering, vol. TT7, SPIE Press, 1991.

JBIG Compression
JBIG is a method for compressing hi-level (two-color) image data. The acronym
JBIG stands for Joint Bi-level Image Experts Group, a standards committee that
had its origins within the International Standards Organization (ISO). The
compression standard they developed bears the name of this committee.

In 1988, the ISO and CCI'IT formed JBIG by joining the ISO /IEC
]TC1/SC29/WG9 group and the CCITI SGVIII subgroup for the joint purpose
of developing a standard, lossless method of compressing hi-level data. In 1993,
the standard defining the JBIG method of hi-level data encoding was finalized
and released.

The main features of JBIG are:

• Lossless compression of one-bit-per-pixel image data

• Ability to encode individual bitplanes of multiple-bit pixels

• Progressive or sequential encoding of image data

JBIG is intended to completely replace the less efficient MR (Modified READ)
and MMR (Modified Modified READ) compression algorithms used by the
CCITI Group 3 (G3) and Group 4 (G4) data transmission protocols,

DATA COMPRESSION 205

respectively. In 1995, the International Telecommunication Union (ITU) pro
posed an extension of the G3 and G4 standards to allow the use of]BIG
compressed image data in conjunction with these protocols. (Refer to the sec
tion on CCITI compression for more details about the G3 and G4 protocols.)

On scanned images of line art and printed text, JBIG achieves compression
ratios 10 percent to 50 percent greater than that of G4, and up to 500 percent
greater on computer-generated images of printed text. Bi-level images pro
cessed with half-toning or dithering are compressed 2 to 30 times smaller than
when compressed with G4.

JBIG achieves these impressive compression ratios by adapting to the informa
tion content of the image data being encoded. An adaptive arithmetic coder is
used to predict and code future data symbols based on the characteristics of
the data currently being encoded. G3 and G4 however, are non-adaptive and
use the same fixed patterns and algorithms to encode all image data regardless
of the content.

JBIG also supports both sequential and progressive encoding methods. Sequen
tial encoding reads data from the top to bottom and from left to right of an
image and encodes it as a single image~ Progressive encoding allows a series of
multiple-resolution versions of the same image data to be stored within a single
JBIG data stream. In contrast, G3 and G4 only support sequential coding at a
fixed resolution.

JBIG is platform-independent and implements easily over a wide variety of dis
tributed environments. It achieves excellent compression ratios on hi-level
images, and it is capable of efficiently encoding some types of color and gray
scale images as well.]BIG's progressive encoding capabilities appear to make it
the obvious choice for transmitting and storing hi-level information on net
worked environments, such as the World Wide Web. So why isn't JBIG more
popular and widespread?

It is questionable how much success JBIG will have in replacing either G3 or
G4. G3 and MR are the most widely used protocol and compression method,
respectively, for facsimile transmission, and they are already supported by most
telecommunications equipment that use hi-level image data. And G4, while
typically requiring too great a bandwidth for conventional facsimile purposes,
is a primary method of data compression in most document imaging systems.
G4 achieves effective compression ratios of up to 20-to-1 on both scanned and
computer-generated hi-level document image data.

206 OVERVIEW

Perhaps the greatest advantage the CCI11 protocols offer over JBIG is that they
are free and unencumbered by patents and legal disputes. Anyone may freely
implement and distribute G3 and G4 codecs without the need of licensing
agreements or royalty payments. JBIG, on the other hand, contains many
patented processes (24 are listed in the]BIG Recommendation); the most
prominent is the IBM arithmetic Q-coder, which is an option in]PEG, but is
mandatory in JBIG.

]BIG Basics

Bi-level images contain only two colors and are stored using a single bit per
pixel. Black-and-white images, such as the pages of a book, are the most com
mon type of hi-level images. However, any two colors may be represented by
the 1 (foreground color) or 0 (backgro\lnd color) state of a single bit.

Typical hi-level compression algorithms encode only a single scan line at a time
using a run-length encoding technique. Such algorithms are referred to as ID
encoding methods. 2D encoding methods encode runs of pixels by describing
the differences between the pixel values in the current and the previous scan
lines.

JBIG encodes redundant image data by comparing a pixel in a scan line with a
set of pixels already scanned by the encoder. These additional pixels are called
a template, and they form a simple map of the pattern of pixels that surround
the pixel that is being encoded. The values of these pixels are used to identify
redundant patterns in the image data. These patterns are then compressed
using an adaptive arithmetic compression coder.

The adaptive nature of templates allows the color of the pixel values being
encoded to be predicted with a high degree of success. For gray-scale images
with halftoning, compression ratios are increased by as much as 80 percent
over non-adaptive methods.

Although designed primarily as a method for compressing hi-level image data,
]BIG is capable of compressing color or gray-scale images with a depth of up to
255 bits per pixel. Such multi-bit pixel images are compressed by bitplane
rather than by pixel. For example, an 8-bitimage compressed usingjBIG would
be encoded into eight separate bitplanes.

This type of encoding may be used as an alternative to lossless JPEG. JBIG has
been found to produce better compression results than lossless JPEG (using
the Q-coder) on images with two to five bits per pixel and to produce identical
results on image data with pixels six to eight bits. in depth.

DATA COMPRESSION 207

It is recommended that each bitplane be preprocessed with a· gray-coding algo
rithm to normalize the changes ·between adjacent byte values_ in the image
data. This process increases the efficiency of the JBIG encoder.

JBIG images may be encoded sequentially or progressively. Sequentially
encoded images are stored in a single layer at full resolution and without other
lower resolution images being stored in the same data stream. This sequential
JBIG image is equivalent in function and application to a G4 image. Such an
image is decoded in a single pass and has at least as good a compression ratio
asG4.

Progressively encoded images start with the highest resolution image and end
with the lowest. The high-resolution image is stored in a separate layer and is
then used to produce a lower resolution image, also stored in its own layer.
Each layer after the first layer is called a resolution doubling. An image with three
layers is said to have two doublings.

There is no imposed limit to the number of doublings that may be encoded.
For example, a 1200-dpi image may be encoded as one layer (1200 dpi), three
layers (1200, 600, and 300 dpi), or five layers (1200, 600, 300, 150, and 75 dpi).
The lowest resolution is determined by whatever is considered useful. Even a
10-dpi image, though not legible, is still useful as an icon.

Progressive decoding is the opposite process, with the lowest resolution image
being decoded first, followed by increased resolutions of the image until the
full resolution is achieved. This technique has the advantage of allowing data
to appear immediately on the output device. Only data up to the appropriate
resolution of tht: output device need be decoded and sent.

Both- sequential and progressive JBIG encoding are completely compatible.
Images compressed using sequential encoding are readable by progressive]BIG
decoders. Sequential JBIG decoders are only capable of reading the first, low
est-resolution layer within a progressively-encoded JBIG image.

Many applications that utilize JBIG may only have use for sequential encoding
and decoding, especially those used for facsimile transmission. It is therefore
possible to implement a simplified JBIG algorithm that encodes only the first
layer in a JBIG data stream. Such encoders produce a valid]BIG-encoded data
stream that is readable by all JBIG decoders.

Progressive encoding does not add much more data to aJBIG data stream than
does sequential encoding, but it does have greater memory requirements.
Because a lower resolution image is encoded from data of the next higher res
olution image (and vice versa when decoding), a frame buffer must be used to
store image data that is being used as a reference.

208 OVERVIEW

For Further Infonnation About]BIG

JBIG is published both as an ITU Recommendation and as an ISO /IEC Stan
dard:

ITU-T Recommendation T.821ISO/IEC 11544:1993, Coded representa
tion of Picture and Audio Information-Progressive Bi-Level Image
Compression.

This document is available, at cost, from the ITU, ISO, and many document ser
vices. For more information on the ITU and ISO, please visit their Web sites:

http:/ /www.itu.ch
http://www. iso. ch

The November 1988 issue of the IBM journal of Research and Development con
tains a set of five articles describing the IBM Q-coder and a basic, hi-level image
encoder that implements the Q-coder. See:

Pennebaker, W.B., J.L. Mitchell, G.G. Langdon, and R.B. Arps, "An
Overview of the Basic Principles of the Q-coder Adaptive Binary Arith
metic Coder," IBM Journal of Research and Development, vol. 32, no. 6,
November 1988, pp. 717-726.

The Q-coder is also described as an extension in Part 1 of the JPEG ITU-T Rec
ommendation T.81 and ISO/IEC Standard 10918-1.

The following paper covers T.4, T.6,]BIG, and other facsimile communications
protocols:

Urban, Stephen]., "Review of Standards for Electronic Imaging for Fac
simile Systems," journal of Electronic Imaging, vol. 1, no. I, January 1992,
pp. 5-21.

JBIG-KIT, a]BIG hi-level image compression toolkit, is provided on the CD-ROM
and also available via anonymous FfP from either of the following:

ftp:/ /ftp. informatik. uni-erlangen. de/pub/doc/ISO/JBIG/jbigkit-0. 8. tar.gz
ftp://nic.funet.fi/pub/graphics/misc/test-images/jbig.tar.gz

]BIG-KIT is an ANSI C implementation of the]BIG encoding standard in the
form of a portable library used for encoding and decoding JBIG data streams.
This library is specifically designed for 32-bit (and greater) .machine architec
tures, although 16-bit systems are also supported.

]BIG-KIT is free software under the GNU General Public License and provides
complete code and documentation. A 1992 draft copy of the CCITT T.82 Rec
ommendation for]BIG is also currently included in this distribution.

DATA COMPRESSION 209

NOTE

Due to patent restrictions, do not assume that it is legal to use
the code in]BIG-KIT, or any other JBIG implementation, unless
the proper licensing agreements have been obtained.

The author ofJBIG-KIT, Markus Kuhn, may be contacted at:

mskuhn®cip. injormatik. uni-erlangen.de
http: I /wurwcip. injormatik. uni-erlangen. de/user /mskuhn

Information and discussions on JBIG may also be found on USENET in the
comp.compression.research newsgroup and in the Frequently Asked Questions
(FAQ) listing for comp.compression, found in the news.answers, comp.answers, and
comp.compression newsgroups and on the CD-ROM that accompanies this book.

ART Compression
ART is a proprietary compression scheme designed and promoted by Johnson
Grace, a software development firm founded in 1992 by Steve Johnson and
Chris Grace. Johnson-Grace develops software tools such as Web browsers for
online services and end users.

ART Basics

As with JPEG, the degree of compression in ART is adjustable, and higher com
pression ratios are lossy. There is also a lossless mode. Johnson-Grace is market
ing ART as a multi-purpose compressor to the online market and expects to
adapt it to support audio, animation, and full-motion video in the future. As
such, it will compete directly with codecs such as Intel's lndeo and the
encoder/decoder packages from Cinepak and Microsoft. Johnson-Grace also
plans to support the interleaving of text, graphics, audio, and video in the
future.

Johnson-Grace claims that ART provides compression ratios that are typically
three times smaller than either JPEG or GIF. This would, of course, be a boon
to the online community if decompression were comparable to that of GIF, for
example. Documentation from Johnson-Grace suggests that America Online's
Turbo Web browser supports ART-compressed images.

Although the details of the algorithm are kept secret, Johnson-Grace has
released some descriptive information. The algorithm seeks to analyze an
image and identify a number of key features, such as color, noise, edges, and·
repetitive features, which are then prioritized by the relative contribution of

210 OVERVIEW

each feature to the quality of the image. The prioritizing engine uses what
Johnson-Grace calls fuzzy logic to classify and prioritize features of the image
that is being compressed. Repetitive features are identified and linked in the
image using a proprietary method. Image components are quantized, and low
priority features are ignored. As with JPEG, the degree of information loss
increases with the degree of compression and is offset by the degree of redun
dancy for a particular compression ratio.

ART apparently uses a variety of known compression methods, including
wavelet compression, to optimize compression of data. Presumably, the com
pression algorithm used is matched to the pixel depth of the image being com
pressed, because Johnson-Grace claims to compete with both GIF (256-color)
andjPEG (24-bit color).Johnson-Grace states that ART-compressed images are
typically less than 1 OK in size, which enhances what they call "speed-to-screen."

ART -compressed images may be layered, which means that they can be trans
mitted in stages over low-bandwidth modem lines, and can provide nearly
immediate, though low-quality, display on the client's display device. The dis
play quality then improves as the rest of the information is received and is pro
gressively rendered.

Images are compressed with an ART toolkit called ART Press (MAC ART Tools
on the Macintosh). Johnson-Grace was distributing the ART toolkit free of
charge until the end of 1995. Pricing had not been set as of the time of this
writing.

Technologically, the ART· compression scheme represents a step forward in
intelligence and bodes well for the future of compression. Superior results are
obtained by matching the appropriate compression technology to the image
being compressed. It remains to be seen whether Johnson-Grace will be able to
popularize their system in their targeted online community.

For Further Information About ART

For more information, contact:

Johnson-Grace
2 Corporate Plaza
Newport Beach CA 92660-7929
Voice: 714-759-0700 x245
FAX: 714-729-4643

DATA COMPRESSION 211

Johnson-Grace also has a Web site, and you can find more information at:

http:/ /www.jgc.com/cpi/art/
http:/ /www.jgc. com/ cpi/ art/ artcomp. html
http:/ /www.jgc. com/freedemo/

Fractal Image Compression
Fractal encoding is a mathematical process used t«;> encode bitmaps containing
a real-world image as a set of mathematical data that describes the fractal prop
erties of the image. Fractal encoding relies on the fact that all natural, and
most artificial, objects contain redundant information in the form of similar,
repeating patterns called fractals.

Fractal Basics

A fractal is a structure that is made up of similar forms and patterns that occur
in many different sizes. The term fractal was first used by Benoit Mandelbrot to
describe repeating patterns that he observed occurring in many different struc
tures. These patterns appeared nearly identical in form at any size and
occurred naturally in all things. Mandelbrot also discovered that these fractals
could be described in mathematical terms and could be created using very
small and finite algorithms and data.

Let's look at a real-world example. If you look at the surface of an object such
as the floor currently beneath your feet, you will notice that there are many
repeating patterns in its texture. The floor's surface may be wood, concrete,
tile, carpet, or even dirt, but it still contains repeating patterns ranging in size
from very small to very large.

If we make a copy of a small part of the floor's surface and compare it to every
other part of the floor, we would find several areas that are nearly identical in
appearance to our copy. If we change the copy slightly by scaling, rotating, or
mirroring it, we can make it match even more parts of the floor. Once a match
is found, we can then create a mathematical description of our copy, including
any alterations we have made, and can store it, and the location of all of the
parts of the floor it matches, as data.

If we repeat this process for the entire floor, we will end up with a set of mathe
matical equations called fractal codes that describe the entire surface of the
floor in terms of its fractal properties. These mathematical equations can then
be used to recreate an image of the entire floor.

212 OVERVIEW

The process illustrated in this example is very similar in concept to vector (2D)
and 3D graphics, where mathematical descriptions of objects, rather than
actual pictures of the objects themselves, are stored. The important difference
between vector and fractal graphics is that fractal descriptions are derived from
actual ecofactual patterns found in real-world objects, while vector and 3D
objects are purely artificially generated structures that do not naturally contain
fractal patterns.

Fractal encoding is largely used to convert bitmap images to fractal codes. Frac
tal decoding is just the reverse, in which a set of fractal codes are converted to
a bitmap.

The encodipg process is extremely computationally intensive. Millions or bil
lions of iterations are required to find the fractal patterns in an image.
Depending upon the resolution and contents of the input bitmap data, and
output quality, compression time, and file size parameters selected, compress
ing a single image could take anywhere from a few seconds to a few hours (or
more) on even a very fast computer.

Decoding a fractal image is a much simpler process. The hard work was per
formed finding all the fractals during the encoding process. All the decoding
process needs to do is to interpret the fractal codes and translate them into a
bitmap image.

Currently, the most popular method of fractal encoding is a process called the
Fractal Transform created in 1988 by Michael F. Barnsley of Iterated Systems.
Barnsley's transform was the first practical algorithm used to mathematically
describe a real-world bitmap image in terms of its fractal properties.

Two tremendous benefits are immediately realized by converting conventional
bitmap images to fractal data. The first is the ability to scale any fractal image
up or down in size without the introduction of image artifacts or a loss in detail
that occurs in bitmap images. This process of "fractal zooming" is independent
of the resolution of the original bitmap image, and the zooming is limited only
by the amount of available memory in the computer. ·

The second benefit is the fact that the size of the physical data used to store
fractal codes is much smaller than the size of the original bitmap data. If fact, it
is not uncommon for fractal images to be more than 100 times smaller than
their bitmap sources. It is this aspect of fractal technology, called fractal compres
sion, that has promoted the greatest interest within the computer imaging
industry.

DATA COMPRESSION 213

Fractal compression is lossy. The process of matching fractals does not involve
looking for exact matches, but instead looking for "best fit" matches based on
the compression parameters (encoding time, image quality, and size of out
put). But the encoding process can be controlled to the point where the image
is "visually lossless." That is, you shouldn't be able to notice where the data was
lost.

Fractal compression differs from other lossy compression methods, such as
]PEG, in a number of ways. JPEG achieves compression by discarding image
data that is not required for the human eye to perceive the image. The result
ing data is then further compressed using a lossless method of compression. To
achieve greater compression ratios, more image data must be discarded, result
ing in a poorer quality image with a pixelized (blocky) appearance.

Fractal images are not based on a map of pixels, nor is the encoding weighted
to the visual characteristics of the human eye. Instead, bitmap data is discarded
when it is required to create a best-fit fractal pattern. Greater compression
ratios are achieved using greater computationally intensive transforms that
may degrade the image, but the distortion appears much more natural due to
the fractal components.

Most other lossy methods are also symmetrical in nature. That is, a particular
sequence of steps is used to compress an image, and the reverse of those steps
is used to decompress it. Compression and decompression will take about the
same amount of time as well. Fractal compression is an asymmetrical process,
taking much longer to compress an image than to decompress it. This charac
teristic limits the usefulness of fractally compressed data to applications where
image data is constantly decompressed but never recompressed. Fractal com
pression is therefore highly suited for use in image databases and CD-ROM
applications.

The content and resolution of the source bitmap can greatly affect fractal com
pression. Images with a high fractal content (e.g., faces, landscapes, and intri
cate textures) result in much higher compression ratios than images with a low
fractal content (e.g., charts, diagrams, text, and flat textures). High-resolution
images may be compressed to achieve higher compression ratios and will still
retain a high image quality. To retain a high quality for lower resolution
images, the resulting compression ratio will be much lower. Images with a
greater bit depth (such as 24-bit truecolor images) will also compress more effi
ciently than images with fewer bits per pixel (such as 8-bit gray-scale images).

The process of fractal compression is by no means in the public domain. There
are many patents claiming a method of image data compression based on
fractal transforms. Also, the exact process used by some fractal packages
including Barnsley's Fractal Transform-is considered proprietary.

214 OVERVIEW

For Further Information About Fractal Compression

A wealth of information on fractal compression is available both on the World
Wide Web and in your local technical bookstore. On the Web the following
sites will provide you with quite a bit of reading material and with links to other
sites containing fractal information:

http:/ /links. waterloo. ca/
Waterloo fractal compression page

http:/ /inls. ucsd. edu/y /Fractals/
\Uval Fisher's fractal image compression page

http:/ /www-rocq. inria.fr /fractales/
Groupe Fractales

http:/ /spank)'· triumf. cal
The Spanky Fractal Database

ftp:/ /ftp. informatik. uni-freiburg.de/documents/papers/fractal/
Dietmar Supe's FTP site for fractal papers

Fractal software packages on the Internet include:

http://www. iyu.fi/R.uru/fractalCompression/
RGB fractal compression tools

http: I /nic.Junet.fi/pub I graphics/packages/fractal/fractal-2. 0. tar
\Uval Fisher's fractal decompression code

Information on fractal encoding can also be found on the USENET newsgroups
sci.fractals, comp. compression and sci. math.

Yuval Fisher's paper "Fractal Image Compression," SIGGRAPH '92 Course
Notes, is a very good introduction to fractal compression and is available as a
PostScript document at:

ftp:/ /nic.funet.fi/pub/graphics/packages/fractal-image-compression/

There are many books on fractals and fractal compression. Probably the best
for getting a programmer up to speed with fractal technology is:

\Uval Fisher, ed., Fractal Image Compression: Theory and Application to Digi
tal Images, Springer Verlag, New York, 1995.

This book is a collection of article about fractal encoding that includes a non
mathematical introduction to fractal compression, description of modems for
the encoding and decoding process, and C source code for a fractal encoder
and decoder.

DATA COMPRESSION 215

The following books also contain very good overviews of fractal technology:

Barnsley, Michael F., Fractals Everywhere, second edition, Academic
Press, San Diego, 1993. ·

Barnsley, Michael F., The Desktop Fractal Design System Versions 1 and 2,
second edition, Academic Press, San Diego, 1992.

Barnsley, Michael F., and Lyman P. Hurd, Fractal Image Compression, AK
Peters Limited, 1993.

You might also want to look at the original Mandelbrot text:

Mandelbrot, Benoit B., The Fractal Geometry of Nature, WH Freeman &
Co., New York, 1983.

The following journal articles are also recommended:

Anson, L.A., "Fractal Image Compression," Byte Magazine, October
1993.

Sloane, M.F and A.D., "A Better Way to Compress Images," Byte Maga
zine,]anuary 1988.

McGregor, D.R., RJ. Fryer, P. Cockshott, and P. Murray, "Fast Fractal
Compression," Dr. Dobb's]ourna~ vol. 21, no. 243,January 1996.

Iterated Systems produces the Images Incorporated fractal imaging applica
tion. This application supports the encoding and decoding of fractal image
from over 20 different bitmap file formats. Iterated also sells a library of fractal
routines you can incorporate directly into your own programs. You can contact
Iterated Systems at:

Iterated Systems, Inc.
3525 Piedmont Road
Seven Piedmont Center, Suite 600
Atlanta GA 30305-1530
Voice: 800-437-2285
Fax: 404-264-8300 (sales)
Email: support ®iterated. com (technical support)
WWW: http://www. iterated. com/

Two documents to read are the Iterated System's Fractal FAQ at:

http://www. iterated. com/nfaq. htm

and the Welcome to Fractals and Imaging document at:

http://www. iterated. com/nwelbook.htm

216 OVERVIEW

The Iterated Systems' Web site also provides much useful information, includ
ing Iterated's patent claims on fractal technology and its Fractal Image File
(FIF) format. ·

For Further Inforination About Data Compression
On USENET the comp.compression newsgroup FAQ article provides a useful
source of information about a variety of different compression methods. Also
included is information on many archiving programs (pkzip, lzh, zoo, etc.) and
patents pertaining to. compression algorithms. This FAQ is included on the CD
ROM that accompanies this book; however, because the FAQ is updated fre
quendy, the CD-ROM version should be used only for general information. You
can get the latest version of this FAQ from the news. answers newsgroup at:

ftp:/ /rtfm. mit.edu/pub/usenet/ comp. compression/ c.ompression{aq

where it is kept in three parts: partl, part2, and part]. This FAQ may also be
obtained by sending email to:

mail-seroer@rtjm. mit.edu

with the message

send usenet/comp.compression/compression-faq/partl
send usenet/comp.compression/compression-faq/part2
send usenet/comp.compression/compression-faq/part3

in the body.

There are many books on data encoding and compression. Most older books
contain only mathematical descriptions of encoding algorithms. Some newer
books, however, have picked up the highly desirable trend of including work
ing (we hope) C code examples in their text and even making the code exam ...
pies available online or on disk.

The following references contain good general discussions of many of the
compression algorithms discussed in this chapter:

Bell, T.C, I.H. Witten, and J.G. Cleary, "Modeling for Text Compres
sion," ACM Computing Surveys, vol. 21, no. 4, December 1989, p. 557.

Bell, T.C, I.H. Witten, and J.G. Cleary, Text Compression, Prentice-Hall,
Englewood Cliffs, NJ, 1990.

Huffman, D.A., "A Method for the Construction of Minimum
Redundancy Codes," Communications of the ACM, vol. 40, no. 9, Septem
ber 1952, pp. 1098--1101.

DATA COMPRESSION 217

Jain, Anil K., Paul M. Farrelle, and V. Ralph Angazi, Image Data Compres
sion: Digital Image Processing Techniques, Academic Press, San Diego, CA,
1984, pp. 171-226.

Lelewer, D.A, and D.S. Hirschberg, "Data Compression," ACM Comput
ing Surveys, vol. 19, no. 3, September 1987, p. 261.

Storer, James A., Data Compression: Methods and Theory, Computer Sci
ence Press, Rockville, MD, 1988.

Storer, James A., ed., Image and Text Compression, Kluwer Books, Boston,
MA, 1992.

Williams, R., Adaptive Data Compression, Kluwer Books, Boston, MA,
1990, pp. 30-44.

218 OVERVIEW

CHAPTER 10 I

Multimedia

Most of this book describes image file formats and the types of data compres
sion they employ. However, still images are not the only type of data that can
be stored in a file. This chapter describes the other types of graphics data that
are becoming popular.

Beyond Traditional Graphics File Formats
A hot topic in the world of personal computers today is multimedia. Multime
dia applications combine text, graphics, audio, and video in much the same
way a motion picture film combines sound and motion photography. But,
unlike motion pictures, multimedia can be interactive through the use of a
keyboard, mouse, joystick, or other input device to control the behavior of the
multimedia presentation. The output from a multimedia application can be
through conventional speakers or a stereo system, a music or voice synthesizer,
or other types of output devices.

A conventional stereo system or television and video tape recorder (VCR) are
passive information devices. You can raise and lower the volume of a stereo,
change the color of a television picture, or fast-forward a VCR, but this type of
control is very limited in capability and is used only intermittently. When you
use a passive information device, you normally just sit and watch the picture
and listen to the sound.

Anyone who has played a computer or video arcade game has experienced an
active information device. The games at your local video arcade, or hooked up to
your living room television (and therefore permanently attached to your eight
year-old's hands), require constant input in order to function properly. And,
although the sights and sounds of such a game might be staggering, the
control and utility a user gains from an active information device is only
slightly more than is gained using a passive one.

MULTIMEDIA 219

Personal computers are not only active information devices, but also interac
tive devices. A computer itself does very little unless a user interacts with it.
Computers are, as you would expect, excellent platforms for interactive multi
media applications.

Jnteractive multimedia provides more than just the stimulus-response reaction
of a video game. It also allows a collection of complex data to be manipulated
with a much finer control than is possible using non-interactive devices. Sam
ple multimedia applications in existence today include:

• Online, multimedia dictionaries and encyclopedias containing text,
sounds, and images. These allow the instant lookup of word definitions
and provide video playback, in addition to pictures.

• Games that respond to hand movements and that talk back to the user

Computerized multimedia is still in its infancy. It is currently a tool used for
educational and entertainment purposes and is expanding out into the com
mercial world. There probably isn't a complex computerized control system
that wouldn't be easier to learn or to use if it had a standardized, multimedia
front end. And one day you might even see multimedia applications with
heuristic algorithms that will allow your computer to learn as much from you
as you will from your computer.

Multimedia File Formats
Multimedia data and information must b~ stored in a disk file using formats
similar to image file formats. Multimedia formats, however, are much more
complex than most other file formats because of the wide variety of data they
must store. Such data includes text, image data, audio and video data, com
puter animations, and other forms of binary data, such as Musical Instrument
Digital Interface (MIDI), control information, and graphical fonts. (See the
"MIDI Standard" section later in' this chapter.) Typical multimedia formats do
not define new methods for storing these types of data. Instead, they offer the
ability to store data in one or more existing data formats that are already in
general use.

For example, a multimedia format may allow text to be stored as PostScript or
Rich Text Format (RTF} data rather than in conventional ASCII plain-text for
mat. Still-image bitmap data may be stored as BMP or TIFF files rather than as
raw bitmaps. Similarly, audio, video, and animation data can be stored using
industry-recognized formats specified as being supported by that multimedia
file format.

220 OVERVIEW

Multimedia formats are also optimized for the types of data they store and the
format of the medium on which they are stored. Multimedia information is
commonly stored on CD-ROM. Unlike conventional disk files, CD-R OMs are lim
ited in the amount of information they can store. A multimedia format must
therefore make the best use of available data storage techniques to efficiently
store data on the CD-ROM medium.

There are many types of CD-ROM devices and standards that may be used by
multimedia applications. If you are interested in multimedia, you should
become familiar with them.

The original Compact Disc first introduced in early 1980s was used f<;>r storing
only audio information using the CD-DA (Compact Disc-Digital Audio) stan
dard produced by Phillips and Sony. CD-DA (also called the Red Book) is an
optical data storage format that allows the storage of up to 7 4 minutes of audio
(764 megabytes of data) on a conventional CD-ROM.

The CD-DA standard evolved into the CD-XA (Compact Disc-Extended Archi
tecture) standard, or what we call the CD-ROM (Compact Disc-Read Only
Memory). CD-XA (also called the Yellow Book) allows the storage of both digi
tal audio and data on a CD-ROM. Audio may be combined with data, such as
text, graphics, and video, so that it may all be read at the same time. An ISO
9660 file system may also be encoded on a CD-ROM, allowing its files to be read
by a wide variety of different computer system platforms. ·

The CD-I (Compact Disc-Interactive) standard defines the storage of interactive
multimedia data. CD-I (also called the Green Book) describes a computer sys
tem with audio and video playback capabilities designed specifically for the
consumer market. CD-I units allow the integration of fully interactive multime
dia applications into home computer systems.

A still-evolving standard is CD-R (Compact Disc-Recordable or Compact Disc
Write Once), which specifies a CD-ROM that may be written to by a personal
desktop computer and read by any CD-ROM player.

For more specific information on multimedia, refer to the articles on the RIFF,
DVI, QuickTime, and MPEG multimedia formats in Part Two of this book.

Types of Data
The following sections describe various types of data that you might find, in
addition to static graphics data, in multimedia files.

MULTIMEDIA 221

Animation

Somewhere between the motionless world of still images and the real-time
world of video images lies the flip-book world of computer animation. All of
the animated sequences seen in educational programs, motion CAD render
ings, and computer games are computer-animated (and in many cases, com
puter-generated) animation sequences.

Traditional cartoon animation is little more than a series of artwork cells, each
containing a slight positional variation of the animated subjects. When a large
number of these cells is displayed in sequence and at a fast rate, the animated
figures appear to the human eye to move.

A computer-animated sequence works in exactly the same manner. A series of
images is created of a subject; each image contains a slightly different perspec
tive on the animated subject. When these images are displayed (played back)
in . the proper sequence and at the proper speed (frame rate), the subject
appears to move.

Computerized animation is actually a combination of both still and motion
imaging. Each frame, or cell, of an animation is a still image that requires com
pression and storage. An animation file, however, must store the data for hun
dreds or thousands of animation frames and must also provide the information
necessary to play back the frames using the proper display mode and frame
rate.

Animation file formats are only capable of storing still images and not actual
video information. It is possible, however, for most multimedia formats to con
tain animation information, because animation is actually a much easier type
of data than video to store.

The image-compression schemes used in animation files are also usually much
simpler than most of those used in video compression. Most animation files
use a delta compression scheme, which is a form of Run-Length Encoding that
stores and compresses only the information that is different between two
images (rather than compressing each image frame entirely). RLE is relatively
easy to decompress on the fly. ·(see Chapter 9, Data Compression, for a descrip
tion of RLE compression.)

Storing animations using a multimedia format also produces the benefit of
adding sound to the animation (what's a cartoon without sound?). Most ani
mation formats cannot store sound directly in their files and must rely on stor
ing the sound in a separate disk file which is read by the application that is
playing back the animation.

222 OVERVIEW

Animations are not only for entertaining kids and adults. Animated sequences
are used by CAD programmers to rotate 3D objects so they can be observed
from different perspectives; mathematical data collected by an aircraft or satel
lite may be rendered into an animated fly-by sequence. Movie special effects
benefit greatly by computer animation.

For more specific information on animation, refer to the articles on the FLI
and GRASP animation formats in Part Two of this book.

Digital Vuleo

One step beyond animation is broadcast video. Your television and video tape
recorder are a lot more complex than an 8mm home movie projector and your
kitchen wall. There are many complex signals and complicated standards that
are involved in transmitting those late-night reruns across the airwaves and
cable. Only in the last few years has a personal computer been able to work
with video data at all.

Video data normally occurs as continuous, analog signals. In order for a com
puter to process this video data, we must convert the analog signals to a non
continuous, digital format. In a digital format, the video data can be stored as a
series of bits on a hard disk or in computer memory.

The process of converting a video signal to a digital bitstream is called analog
to-digital conversion (AID conversion), or digitizing. A/D conversion occurs
in two steps:

1. Sampling captures data from the video stream.

2. Quantizing converts each captured sample into a digital format.

Each sample captured from the video stream is typically stored as a 16-bit inte
ger. The rate at which samples are collected is called the sampling rate. The
sampling rate is measured in the number of samples captured per second
(samples/ secon~). For digital video, it is necessary to capture millions of sam
ples per second.

Quantizing converts the level of a video signal sample into a discrete, binary
value. This value approximates the level of the original video signal sample.
The value is selected by comparing the video sample to a series of predefined
threshold values. The value of the threshold closest to the amplitude of the
sampled signal is used as the digital value.

A video signal contains several different components which are mixed together
in the· same signal. This type of signal is called a composite video signal and is

MULTIMEDIA 223

not really useful in high-quality computer video. Therefore, a standard com
posite video signal is usually separated into its basic components before it is
digitized.

The composite video signal format defined by the NTSC (National Television
Standards Committee) color television system is used in the United States. The
PAL (Phase Alternation Line) and SECAM (Sequential Coleur Avec Memoire)
color television systems are used in Europe and are not compatible with NTSC.
Most computer video equipment supports one or more of these system stan
dards.

The components of a composite video signal are normally decoded into three
separate signals representing the three channels of a color space model, such
as RGB, YUV, or YIQ. Although the RGB model is quite commonly used in still
imaging, the YlN, YIQ, or YCbCr models are more often used in motion-video
imaging. TV practice uses YUV or similar _color models because the U and V
channels can be downsampled to reduce data volume without materially
degrading image quality.

The three composite channels mentioned here are the same channels used in
the downsampling stage of JPEG compression; for more information, see the
section called "JPEG Compression" of Chapter 9.

Once the video signal is converted to a digital format, the resulting values can
be represented on a display device as pixels. Each pixel is a spot of color on the
video display, and the pixels are arranged in rows and columns just as in a
bitmap. Unlike a static bitmap, however, the pixels in a video image are con
stantly being updated for changes in intensity and color. This updating is
called scanning, and it occurs 60 times per second in NTSC video signals (50
times per second for PAL and SECAM).

A video sequence is displayed as a series of frames. Each frame is a snapshot of
a moment in time of the motion-video data, and is very similar to a still image.
When the frames are played back in sequence on a display device, a rendering
of the original video data is created. In real-time video the playback rate is 30
frames per second. This is the minimum rate necessary for the human eye to
successfully blend each video frame together into a continuous, smoothly mov
ing image.

A single frame of video data can be quite large in size. A video frame with a res
olution of 512 x 482 will contain 246,784 pixels. If each pixel contains 24 bits
of color information, the frame will require 740,352 bytes of memory or disk
space to store. Assuming there are 30 frames per second for real-time video, a

224 OVERVIEW

10-second video sequence would be more than 222 megabytes in size! It is clear
there can be no computer video without at least one efficient method of video
data compression.

There are many encoding methods available that will compress video data. The
majority of these methods involve the use of a transform coding scheme, usu
ally employing a Fourier or Discrete Cosine Transform {DCT). These trans
forms physically reduce the size of the video data by selectively throwing away
unneeded parts of the digitized information. Transform compression schemes
usually discard 10 percent to 25 percent or more of the original video data,
depending largely on the content of the video data and upon what image qual
ity is considered acceptable.

Usually a transform is performed on an individual video frame. The transform
itself does not produce compressed data. It discards only data not used by the
human eye. The transformed data, called coefficients, must have compression
applied to reduce the size of the data even further. Each frame of data may be
compressed using a Huffman or arithmetic encoding algorithm, or even a
more complex compression scheme such as JPEG. (See Chapter 9 for a discus
sion of these compression methods.) This type of intraframe encoding usually
results in compression ratios between 20:1 to 40:1 depending on the data in
the frame. However, even higher compression ratios may result if, rather than
looking at single frames as if they were still images, we look at multiple frames
as temporal images.

In a typical video sequence, very little data changes from frame to frame. If we
encode only the pixels that change between frames, the amount of data
required to store a single video frame drops significantly. This type of compres
sion is known as interframe delta compression, or in the case of video, motion
compensation. Typical motion compensation schemes that encode only frame
deltas (data that has changed between frames) can, depending on the data,
achieve compression ratios upwards of 200:1.

This is only one possible type of video compression method. There are many
other types of video compression schemes, some of which are similar and some
of which are different. For more information on compression methods, refer
to Chapter 9 and to the articles in Part Two that describe multimedia file for
mats.

Digital Audio

All multimedia file formats are capable, by definition, of storing sound infor
mation. Sound data, like graphics and video data, has its own special

MULTIMEDIA 225

requirements when it is being read, written, interpreted, and compressed.
Before looking at how sound is stored in a multimedia format we must look at
how sound itself is stored as digital data.

All of the sounds that we hear occur in the form of analog signals. An analog
audio recording system, such as a conventional tape recorder, captures the
entire sound wave form and stores it in analog format on a medium such as
magnetic tape.

Because computers are now digital devices it is necessary to store sound infor
mation in a digitized format that computers can readily use. A digital audio
recording system does not record the entire wave form as analog systems do
(the exception being Digital Audio Tape [DAT] systems). Instead, a digital
recorder captures a wave form at specific intervals, called the sampling rate.
Each captured wave-form snapshot is converted to a binary integer value and is
then stored on magnetic tape or disk.

Storing audio as digi~ samples is known as Pulse Code Modulation (PCM).
PCM is a simple quantizing or digitizing (audio to digital conversion) algo
rithm, which linearly converts all analog signals to digital samples. This process
is commonly use~ on all audio CD-ROMs.

Differential Pulse Code Modulation {DPCM) is an audio encoding scheme that
quantizes the difference between samples rather than the samples themselves.
Because the differences are easily represented by values smaller than those of
the samples themselves, fewer bits may be used to encode the same sound (for
example, the difference between two 16-bit samples may only be four bits in
size). For this reason, DPCM is also considered an audio compression scheme.

One other audio compression scheme, which uses difference quantization, is
Adaptive Differential Pulse Code Modulation (ADPCM). DPCM is a non
adaptive algorithm. That is, it does not change the way it encodes data based
on the content of the data. DPCM uses the sample number of bits to represent
every signal level. ADPCM, however, is an adaptive algorithm and changes its
encoding scheme based on the data it is encoding. ADPCM specifically adapts
by using fewer bits to represent lower-level signals than it does to represent
higher-level signals. Many of the most commonly used audio compression
schemes are based on ADPCM.

Digital audio data is simply a binary representation of a sound. This data can
be written to a binary file using an audio file format for permanent storage
much in the same way bitmap data is preserved in an image file format. The
data can be read by a software application, can be sent as data to a hardware
device, and can even be stored as a CD-ROM.

226 OVERVIEW

The quality of an audio sample is determined by comparing it to the original
sound from which it was sampled. The more identical the sample is to the orig
inal sound, the higher the quality of the sample. This is similar to comparing
an image to the original document or photograph from which it was scanned.

The quality of audio data is determined by three parameters:

• Sample resolution

• Sampling rate

• Number of audio channels sampled

The sample resolution is determined by the number of bits per sample. The
larger the sampling size, the higher the quality of the sample. Just as the appar
ent quality (resolution) of an image is reduced by storing fewer bits of data per
pixel, so is the quality of a digital audio recording reduced by storing fewer bits
per sample. Typical sampling sizes are eight bits and 16 bits.

The sampling rate is the number of times per second the analog wave form was
read to collect data. The higher the sampling rate, the greater the quality of
the audio. A high sampling rate collects more data per second than a lower
sampling rate, therefore requiring more memory and disk space to store. Com
mon sampling rates are 44.100 kHz (higher quality), 22.254 kHz (medium
quality), and 11.025 kHz (lower quality). Sampling rates are usually measured
in the signal processing terms hertz (Hz) or kilohertz (kHz), but the term sam
ples per second (samples/second) is more appropriate for this type of mea
surement.

A sound source may be sampled using one channel (monaural sampling) or
two channels (stereo sampling). Two-channel sampling provides greater qual
ity than mono sampling and, as you might have guessed, produces twice as
much data by doubling the number of samples captured. Sampling one chan
nel for one second at 11,000 samples/second produces 11,000 samples. Sam
pling two channels at the same rate, however, produces 22,000
samples/ second.

The amount of binary data produced by sampling even a few seconds of audio
is quite large. Ten seconds of data sampled at low quality (one channel, 8-bit
sample resolution, 11.025 samples/ second sampling rate) produces about
108K of data (88.2 Kbits/second). Adding a second channel doubles the
amount of data to produce nearly a 215K file (176 Kbits/second). If we
increase the sample resolution to 16 bits, the size of the data doubles again to
430K (352 Kbits/ second). If we now increase the sampling rate to 22.05 Ksam
ples/second, the amount of data produced doubles again to 860K (705.6

MULTIMEDIA 227

Kbits/second). At the highest quality generally used (two channels, 16-bit sam
ple resolution, 44.1 Ksamples/ second sampling rate), our 10 seconds of audio
now requires 1.72 megabytes (1411.2 Kbits/second) of disk space to store.

Consider how little information can really be stored in 10 seconds of sound.
The typical musical song is at least three minutes in length. Music videos are
from five to 15 minutes in length. A typical television program is 30 to 60 min
utes in length. Movie videos can be three hours or more in length. We're talk
ing a lot of disk space here.

One solution to the massive storage requirements of high-quality audio data is
data compression. For example, the CD-DA (Compact Disc-Digital Audio) stan
dard performs mono or stereo sampling using a sample resolution of 16 bits
and a sampling rate of 44.1 samples/ second, making it a very high-quality for
mat for both music and language applications. Storing five minutes of CD-DA
information requires approximately 25 megabytes of disk space-only half the
amount of space that would be required if the audio data were uncompressed.

Audio data, in common with most binary data, contains a fair amount of
redundancy that can be removed with data compression. Conventional com
pression methods used in many archiving programs (zoo and pkzip, for exam
ple) and image file formats don't do a very good job of compressing audio data
(typically 10 percent to 20 percent). This is because audio data is organized
very differently from either the ASCII or binary data normally handled by these
types of algo.rithms.

Audio compression algorithms, like image compression algorithms, can be cat
egorized as lossy and lossless. Lossless compression methods do not discard any
data. The decompression step produces exactly the same data as was read by
the compression step. A simple form of lossless audio compression is to Huff
man-encode the differences between ~ach successive 8-bit sample. Huffman
encoding is a lossless compression algorithm and, therefore the audio data is
preserved in its entirety.

Lossy compression schemes discard data based on the perceptions of the psy
choacoustic system of the human brain. Parts of sounds that the ear cannot
hear, or the brain does not care about, can be discarded as useless data.

An algorithm must be careful when discarding audio data. The ear is very sen
sitive to changes in sound. The eye is very forgiving about dropping a video
frame here or reducing the number of colors there. The ear, however, notices
even slight changes in sounds, especially when specifically trained to recognize
audial infidelities and discrepancies. However, the higher the quality of an

228 OVERVIEW

audio sample, the more data will be required to store it. As with lossy image
compression schemes, at times you '11 need to make a subjective decision
between quality and data size.

Audio

There is currently no "audio file interchange format" that is widely used in the
computer-audio industry. Such a format would allow a wide variety of audio
data to be easily written, read, and transported between different hardware
platforms and operating systems.

Most existing audio file formats, however, are very machine-specific and do not
lend themselves to interchange very well. Several multimedia formats are capa
ble of encapsulating a wide variety of audio formats, but do not describe any
new audio data format in themselves.

Many audio file formats have headers just as image files do. Their header infor
mation includes parameters particular to audio data, including sample rate,
number of channels, sample resolution, type of compression, and so on. An
identification field ("magic" number) is also included in several audio file for
mat headers.

Several formats contain only raw audio data and no file header. Any parame
ters these formats use are fixed in value and therefore would be redundant to
store in a file header. Stream-oriented formats contain .packets (chunks) of
information embedded at strategic points within the raw audio data itself. Such
formats are very platform-dependent and would require an audio file format
reader or converter to have prior knowledge bf just what these parameter val
ues are.

Most audio file formats may be identified by their file types or extensions.
Some common sound file formats are:

.AU

.SND
HCOM
.voc
.WAV
AIFF
8SVX

Sun Microsystems
NeXT
Apple Macintosh
SoundBlaster
Microsoft Waveform
Apple/SCI
Apple/SCI

A multimedia format may choose to either define its own internal audio data
format or simply encapsulate an existing audio file format. Microsoft

MULTIMEDIA 229

Waveform files are RIFF files with a single Waveform audio file component,
while Apple Quick Time files contain their own audio data structures unique to
QuickTime files. For further information about audio, see the section called
"Audio Formats" in Chapter 1, Introduction.

MIDI Standard

Musical Instrument Digital Interface (MIDI) is an industry standard for repre
senting sound in a binary format. MIDI is not an audio format, however. It does
not store actual digitally sampl~d sounds. Instead, MIDI stores a description of
sounds, in much the same way that a vector image format stores a description
of an image and not image data itself.

Sound in MIDI data is stored as a series of control messages. Each message
describes a sound event using terms such as pitch, duration, and volume.
When these control messages are sent to a MIDI-compatible device (the MIDI
standard also defines the interconnecting hardware used by MIDI devices and
the communications protocol used to interchange the control information)
the information in the message is interpreted and reproduced by the device.

MIDI data may be compressed, just like any other binary data, and does not
require special compression algorithms in the way that audio data does.

For Further Information
Information about multimedia products from Microsoft may be obtained from
the following address:

Microsoft Corporation
Multimedia Systems Group
Product Marketing
One Microsoft Way
Redmond, WA 98052-6399

The following documents, many of which are included in the Microsoft Multi
media Development Kit (MDK), contain information on multimedia applica
tions and file formats:

Microsoft Windows Multimedia Develapment Kit (MDK) 1. 0 Programmers Ref
erence

Microsoft Windows 3.1 Software Develapment Kit (SDK) Multimedia Program
mer's Reference

Microsoft Windows Multimedia Programmer's Guide

Microsoft Windows Multimedia Programmer's Reference

230 OVERVIEW

Multimedia Developer Registration Kit (MDRK)

Multimedia Programming Interface and Data Specification 1. 0, August 1991

Microsoft Multimedia Standards Update March 13, 1993, 2.0.0

A great deal of useful information about multimedia files and applications may
be found at the following FTP site:

ftp:/ /ftp.microsoft.com/developer/drg/Multimedia/

See these Web pages for multimedia information:

http://www. microsoft. com
Microsoft homepage

http:/ I ac. dal. ca/-dong/ contents. html
Multimedia file formats on the Internet

http: I /vizwiz.gmd.de/Multimedialnfo/
Index to multimedia information resources

http:/ /www.yahoo. com/Computers_and_Intemet/Multimedia
Yahoo multimedia resources

The specification for MIDI may be obtained from:

International MIDI Association (IMA)
5316 West 57th Street
Los Angles, CA 90056
213-649-6434

Refer to the articles on Microsoft RIFF, Intel DVI, MPEG, and QuickTime in
Part Two of this book for specific information on multimedia file formats.

MULTIMEDIA 231

PART Two 1

Graphics File Fonnats

NAME:

ALSO KNOWN As:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

Adobe Illustrator

AI, Adobe AI

Metafile

Unlimited

None

NA

Yes

ASCII

Adobe

Adobe IDustrator I

Macintosh, MS Windows, NeXT

Adobe Illustrator, most desktop publishing pack
ages, most drawing packages, Adobe Streamline

Yes

No

No

CGM

usAGE: Storage and interchange of line-based artwork.

coMMENTs: A widely used format for the exchange of 20 objects. Basic files are simple
to write. Unfortunately, files created by applications implementing the full
AI specification can be large and complex and may be slow to render.

Overview
Originally written for the Macintosh platform, Adobe Illustrator is a well
known and widely used drawing application. There are currently Macintosh,
Microsoft Windows, and NeXT versions. Much of the power of Adobe Illustra
tor comes from its implementation of Bezier splines as drawing objects, and
the fact that it presents a simple user interface for precise positioning of spline
based drawing objects. Bezier splines have some advantages for the modeling
of natural (and some human-made) objects. AI files are also used to distribute
clip art.

The AI format encapsulates and formalizes a subset of the PostScript page
description language (PDL) in a structured file. Such files are meant to be

ADOBEILLUSTRATOR 235

Adobe Rlustrator (cont'd)

imaged on a PostScript printer, but may include a bitmap version of the image
to facilitate screen preview. PostScript is a powerful and complex language in
its full implementation, and this complexity is partly due to its ability to specify
almost anything that can appear on a 2D output device. AI, however, is tailored
to the storage of graphics data in the conventional sense: drawings, artwork,
and lettering used for ornamental and display purposes. Note that AI files can
still be quite complex. PostScript derives much of its power from the ability to
define sequences of operations and to later concatenate them using a simple
syntax. This hidden complexity is sometimes, but not always, minimized in AI
files.

Simple AI files are quite easy to construct, and an application can create files
that can be read by any AI reader or can be printed on any PostScript printer.
Reading AI files is another matter entirely. Certain operations may be difficult
for a rendering application to implement or simulate. In light of this, develop
ers often choose not to render the image from the PostScript-subset line data
in the file. Note, however, that almost all of the image can usually be recon
structed using simple operations. If you wish to develop an AI reader, it can be
done, and you can get hints by examining the source code of the GNU
GhostScript system, which provides a nearly full implementation of the
PostScript language.

PostScript, and consequently the AI subset, has its own language and conven
tions. We suggest that you read the PostScript documents prior to working with
AI files or perusing the specification document included on the CD-ROM that
comes with this book. These are referenced at the end of this article.

File Organization
AI files consist of a series of ASCII lines, which may be comments, data, com
mands, or combinations of commands and data. Commands in AI files are
operators, which may or may not be followed by data. Data is pushed and
popped off a stack, and operators use data on the stack in LIFO order.
PostScript is sometimes thought of as a stream-oriented PDL. Lines, however,
must be parsed first as full lines and then tokenized. Operator lines usually
have the following form:

arg-list operator

Key concepts are path, stroke, fill, and the graphics state. A path is traveled by
a graphics cursor. Stroking results in a path or portion of a path eventually
being displayed on the rendering surface. Fills operate on closed paths. The

236 GRAPHICS FILE FORMATS

Adobe Rlustrator (cont'd)

results of stroking and what actually happens during a fill operation (among
other things) are determined by the graphics state.

Comments are any line where the first non-whitespace character is %. Special
lines, known as structuring comments, are designated by the double-comment%%.
A + immediately after a structuring comment designator indicates that the data
on the line is associated with the previous structuring comment.

In the discussion that follows, llx, lly, urx, and ury refer to lower-left x, lower
lefty, upper-right x, and upper-right y, respectively. These are used to denote
bounding box rectangles and are similar to how rectangles were specified in
the original Macintosh development environment. This can cause problems in
other systems because many objects are oriented relative to their bounding
boxes. Developers in other environments should consider themselves fore
warned.

AI files are organized as follows: a file ID line, followed by a header, followed
by the rest of the file in which the graphics objects are defined. In Adobe ter
minology, the header consists of structuring and other comments known as the
Prolog. Following the header is a Script Setup section, which consists of the
drawing commands defining the objects in the image, a section called the Page
Trailer, and a section called the Document Trailer. Files are terminated with
the structuring comment %%EOF, signaling to the rendering application or
device that the data associated with the image to be rendered is complete.

ID line

Pro log

Comments

Script Setup

Objects

Page Trailer

Document Trailer

ADOBE ILLUSTRATOR 237

Adobe Rlustrator (cont'd)

File Details
All AI files start with a comment line in the following format:

%!PS-Adobe-X.X EPSF-Y.Y

where XX and Y. Yare the AI and EPSF (format or the encapsulated bitmap),
respectively. Remember that your reader must examine and tokenize the first
line, whether or not it is a comment, in order to identify the file.

This is followed by a series of structuring and other Adobe-defined comments
and a host of procedure sets that make up the header.

%File ID line
%%BeginProlog

%%EndConunents

%%EndProlog

A typical header appears as follows:

%%BeginProlog
%%Creator: Adobe Illustrator 4.0
%%For: John Doe Xylane University
%%Title: Figure 1.1
%%CreationDate: 12-13-95 03:43:15
%%BoundingBox: 0 0 512 512
%%EndComments

list of header comments

list of procedure set definitions

%%DocumentSuppliedResources: procset AdobeCUstomColor Red123 3 0
%%EndProlog

Note that Adobe Illustrator can save files locally in a "no-header" version, in
which case much of this information -except for the file ID line and the
BoundingBox comment-will be absent. Files saved by Adobe Illustrator for
export will generally contain more extensive header information. Adobe
advises that a document in the following format is the mimimum acceptable
for reading by Adobe Illustrator:

%1PS-Adobe-3.0
%%BoundingBox llx lly urx ury
%%EndComments
%%EndProlog
%%BeginSetup

238 GRAPHICS FILE FORMATS

font encoding

%%EndSetup

%%Trailer
%%EOF

Structuring Comments

Adobe Rlustrator (cont'd)

pattern definitions

ol!ject definition

Some structuring comments are used only in the header. Others appear later
in the file.

The Microsoft Windows version of Adobe Illustrator (v4.0) uses the following
structuring comments:

%%Creator: Adobe Illustrator(TM) version
%%For: user, organization
%%Title: title
%%CreationDate: date, time
%%DocumentProcSets: Adobe_Illustrator_version level revision
%%DocumentSuppliedProcsets: Adobe_Illustrator_version level revision
%%DocurnentFonts: fonts
%%BoundingBox: llx lly urx u~
%%TemplateBox: llx lly urx u~
%%Template: filename
%%Page0rigin: x y
%%PrinterName: printer
%%PrinterRect: llx lly urx u~

·These last four comments are normally stored in the resource fork in the Mac
intosh environment.

The following are comments used in the header. Most are optional, and some
are Macintosh-specific and are ignored on other platforms.

%%BeginProlog
%%BoundingBox: llx lly urx u~
%%CMYKCustomColors: custom-color-name
%%CreationDate: date time
%%Creator: name version
%%DocumentCUstomColors: custom-color
%%DocurnentFiles: file-to-import
%%DocumentFonts: font-name
%%DocumentNeededResources: other-resources
%%DocumentProcessColors: colors
%%EndComments
%%EndProlog

Integers

Valid PostScript strings
Program used to create file
Color defined in file

Font used in image
Needed to reconstruct image
Colors in color model definition

ADOBE ILLUSTRATOR 239

Adobe Rlustrator (cont'd)

%%EOF
%%For: name
%%IncludeResource: name
%%Title: name

Procedure Sets

optional info
Mise necessary to reconstruct image
Name of image

Procedure set definitions start with the DocumentSuppliedResources keyword,
and are followed by the keyword procset and a list of arguments consisting of
one or more of the following:

Adobe_cmykcolor
Adobe_cshow
Adobe_customcolor
Adobe_Illustrator_AI3
Adobe_packedarray
Adobe_pattern_A13
Adobe_typography _AI3

These are followed by the version and revision numbers, as shown in the fol
lowing example:

DocumentSuppliedResources: procset Adobe_cshow 3 4

This is the case for all but Adobe_customcolor, which adds the color name and
has the following syntax:

DocumentSuppliedResources: procset Adobe_customcolor Redl23 3 4

Note that among the structuring comments, only BoundingBox must be
included in every AI file and helps denote the size and scale of the image.

Header Comments

The following header comments may be optionally included between the
BeginProlog and EndProlog statements in the header, at the end of the rest of
the header comments.

%AI3_Colorusage: Black&w.bite or Color
%AI3_TemplateBox: llx lly urx u~
%AI3_TemplateFile: vol::dir id:name
%AI3_TileBox: llx lly urx u~

240 GRAPHICS FILE FORMATS

Mac-specific

Adobe Rlustrator (cont'd)

Script Setup Section

The Script Setup section of the file consists of setup information, a list of
object definitions, and the page and document trailers.

The setup portion of this section has the following format:

%%BeginSetup
%%IncludeFont: font

%%EndSetup

procedure set initialization

font encoding

pattern definitions

The font specified on the IncludeFont line is one used in the document and
should be substituted for if the correct font is unavailable to the rendering
application. Procedure sets defined in the prolog often need to be initialized
and are deinitialized (or terminated) later in the file. Font encoding is the pro
cess of mapping ASCII codes to glyphs found in the font file. We won't attempt
to explain font encoding here, and instead we refer you to the PostScript refer
ences at the end ef this article. Note, however, that the TE and TZ operators
are used to specify font encoding in this section of the file.

Patterns are also defined in this section and are meant to be used one or more
times in the file. Pattern definitions have the following syntax:

%%BeginPattern:
pattern-name llx lly urx ury layer-list E
%%EndPattern

Patterns are actually miniature drawings and can have the full complexity of
full-sized, multi-layered images. For this reason we refer you to the format spec
ification for further information.

Following the setup portion of the Script Setup section is the script body, con
sisting of object definitions. These generally form the bulk of the file and can
often be parsed and rendered to give a good approximation of the image, par
ticularly in files produced by applications other than Adobe Illustrator.

ADOBEILLUSTRATOR 241

Adobe Rlustrator (cont'd)

Preceding each object is a flag, denoted by flag A. If A is set, then the object is
considered locked (non-editable) in Adobe Illustrator. Objects may be one of
the following:

path
path mask
composite
text

placed art
subscriber
graph
PostScript document

In the discussion below, we only describe path objects, placed art objects, sub
scriber objects, and graph objects in detail. Please consult the AI format docu
ment and PostScript specification for further information on composite and
text objects. Note that the graph terminology in particular only makes sense
with a copy of the Adobe Illustrator application documentation in hand.

Path objects are defined by specifying paint style, path geometry, and path ren
der.

Path paint style is specified by setting the current graphics state. Note that the
graphics state can be saved temporarily and restored. The most important of
the state arguments are the following:

Argument Operator Meaning

array phase d Sets dash pattern using array
flatness Bezier path flattening (0-100)

flag D Winding order (O=clockwise)
linecap J O=butted, l=round, 2=square

linejoin j O=mitered, l=round, 2=beveled
linewidth w Width of line (minimum 0)
miterlimit M Adjusts mitering (>1)

Path geometry is specified using the following syntax:

Argument

xy
xy
xy

Operator Meaning

m moveto
1 lineto
L lineto corner

242 GRAPHICS FILE FORMATS

Argument

xl yl x2 y2 x3 y3
xl yl x2 y2 x3 y3
x2 y2 x3y3
x2 y2 x3y3
xl yl x3 y3
xl yl x3 y3

Adobe Rlustrator (cont'd)

Operator Meaning

c curveto-append Bezier to path
C curveto corner
v Insert Bezier starting with current point
V Insert Bezier to corner
y Append Bezier to current and finish with x3,y3
Y Append Bezier to current to corner

Paths can be rendered using the following operators:

Argument Operator

NA N
NA n
NA F
NA f
NA S
NA s
NA B
NA b

Meaning

Leaves unclosed, unfilled, unstroked path
Leaves closed, unfilled, unstroked path
Fills path, leaving it unclosed
Fills path, closing it
Strokes path with current default values
Closes path and strokes with current defaults
Leaves unclosed, but fills and strokes path
Leaves closed, filled, stroked path

Placed art objects are EPS files included in an AI file. They can be included
either by reference (to an external file) or inline. Both types of included files
begin with the single-quote (') operator and end with a tilde (....) operator.
Between these is the %%IncludeFile: comment for externally referenced files,
or a %%BeginDocument and %%EndDocument pair for inline files. The

a b c d tx ty llx lly urx u~ filename '

Arguments a, b, c, d, tx, and ty are optional and specify the transformation
matrix for the file to be included. Arguments llx, lly, urx, and ury specify the
bounding box of the included file. Argument filename is the full pathname of
the included file.

Externally referenced files:

a b c d tx ty llx lly urx u~ filename '
%%IncludeFile: filename

ADOBE ILLUSTRATOR 243

Adobe Rlustrator (cont'd)

. Inline files:

a b c d tx ty llx lly urx ury filename '
%%BeginDocument: filename

• included file contents

%%EndDocument

Macintosh systems may include references to subscriber objects, associated
with the the publish and subscribe feature available in System 7. These are
indicated by the %%subscribercomment:

%AI3_Subscriber: res-number
placed art object

where res-number is the resource number of the SECT resource in the file, and
the placed art object is as described above.

Graph objects are used to specify graphs for business, technical, and scientific
purposes. A number of commands allow full control over labeled illustrations,
including the placement and appearance of the following (Adobe-defined)
parts. Many details of these commands make sense only in the Adobe Illustra
tor environment:

axes
label group
axis tick
category axis group
edge

Argument

NA
NA
It r b
(see spec)
(see spec)
axis string
(see spec)
r c fr fc

cv1, cv2 ... cvx

legend group
data column
series 0
series 1

Operator

Gs
GS
Gb
Gy
Gd
Ga
GA
Gz

Gc

244 GRAPHICS FILE FORMATS

Meaning

Start of graph object
End of graph object
Graph bound (left,top,right,bottom)
Values in Graph Style dialog box
Values in Graph Style dialog box
Axis: 1=bottom, 2=left, 3=right
Axis specs
Cell table: rows, columns, first row, first
column
Reads cell values 1-x into table

Adobe mustrator (cont'd)

Argument Operator Meaning

cwl, cw2 ... cwx num Gw Column widths 1-x, num=number of
columns

NA GC Cell table is complete
NA Gt Start graph customizations
NA GT End graph customizations
target cust Gx Target, customization (see below)
cust Gp General Illustrator customization (see

below)
method G+ Change method: O=reset to new, l=add

new to previous
direction Gl O=send to back, l=send to front
df ds fcs scs m Gf doFill, doStroke, fillStyle, strokeStyle,

isAMask (see below)
column Gl Column index for table
row Gr Row index for table
axis Gi Which axis object is inside: !=bottom,

2=left, 4=right, 8=top
(see below) Gm Matrix customizations
(see below) GD Bar design customizations
repeat Ge Repeat bar design
tickvalue Gv Numeric value corresponding to cus-

tomized tick mark
NA GX End of customization
target col row axis Go Type of graph object just read in (see

below)

Gx graph customizations hold information about current defaults. The target
parameter is one of the following:

0 Entire graph
1 All series and legend marks
2 One series and legend marks
3 One series but no legend
4 · One data bar, line, or wedge
5 All data marks
6 One series and legend marks
7 One series but no legend marks

ADOBEILLUSTRATOR 245

Adobe Rlustrator (cont'd)

8 One data line segment's marks
9 One axis, complete
10 Category axis main line
11 One axis major tick mark
12 One axis single major tick mark
13 One axis set of tick labels
14 One axis single tick label
15 All legend text
16 One legend text
17 One numerical axis main line
18 One legend's box or line but no mark
19 One legend's mark
20 All labels along one category axis
21 One label of category axis
22 Entire shadow event
23 Every tick of one axis
24 All minor ticks one axis
25 One minor tick one axis

The customization argument is one of the following:

0 Illustrator Customization
1 Set Series Graph Style
2 Set Column (Bar) Design
3 Set Mark Design

Gp customizations may be one of the following:

0 Move/Shear /Rotate/Scale
1 Set Paint Style
9 Send to Front/Back
11 Set Layout Style

The Gf operator allows the setting of Set Paint Style customization. The doFill,
doStroke, and isAMask operators are flags. Operators fillStyle and strokeStyle
maybe:

246 GRAPHICS FILE FORMATS

0 Black (or white)
1 Process
2 Pattern
3 Custom color
4 Blend (AI for Windows v4.0)

Adobe Rlustrator (cont'd)

TJ.le Gm operator specifies matrix customizations. Arguments are in the form:

a b c d h v generalGraph~e reservedl reserved2

where a, b, c, d, h, and v are matrix values. Argument generalGraphType specifies
the type of graph to apply the customization to:

1 Grouped-column and stacked-column
2 Scatter and line graphs
3 Pie charts
4 Area graphs
5 All graphs

Arguments reservedl and reserved2 are set to 0.

The GD operator has the following form:

designName design~e repeatPartial~e rotateLegend GO

where designName is a name (string), and design Type can be:

6 Vertically scaled design
7 Uniformly scaled design
8 Repeating design
9 Sliding design

Argument rotateLegend is a flag that when set indicates the legend in the design
box is rotated. Argument repeatPartialType can be:

16 Chop partial values
17 Scale partial values

ADOBEILLUSTRATOR 247

Adobe Rlustrator (cont'd)

The target argument that is associated with operator Go can have the following
values:

1 All series with legends
2 One series, including legends
4 One data bar, line, or wedge
5 All data marks
6 One series and its legend marks
8 One data line segment's marks
9 One axis, including text, ticks, line
10 Category axis main line ·
15 All legend text
20 All labels along category axis
22 Entire shadow object

Script 7Tailer

The Script Trailer has the following syntax:

%%Trailer

procedure set tennination

The procedure set terminations section consists of an explicit list of procedure
set termination commands, in the reverse order from those specified in the
script setup section. An example of a procedure set termination is as follows:

Adobe_customcolor /terminate get exec

ForFurtherhrronnation
Much of the information for this article came from the following document:

Adobe Illustrator File Format Specification, Adobe Developer Support
Version 3.0 (Draft}, 28 October 1992.

The specification is included on the CD-ROM. This is described as a draft, even
though it has been relatively stable since 1989.

248 GRAPHICS FILE FORMATS

You may also contact Adobe at the following address:

Adobe Systems
Developer Support
1585 Charleston Rd.
P.O. Box 7900
Mountain View CA 94039-7900
Voice: 415-961-4400
Voice: 800-344-8335
FAX: 415-961-3769

Adobe Rlustrator (cont'd)

Adobe also provides a great deal of information online, and is to be congratu
lated for their willingness to aid developers:

http:/ /www.adobe. com/
ftp:/ /ftp.adobe. com/

Adobe's PostScript documentation is widely available, and is required reading
for anyone working with AI files, and is a model of coherence and lucidity; it
was published in a set of books in conjunction with Addison-Wesley. Among
the books are a tutorial on PostScript programming and the Type 1 font speci
fication. They are available at most computer bookstores. The most important
document for understanding the AI format is:

PostScript Language Reference Manua~ second edition, Addison-Wesley,
Reading, MA. (ISBN 0-201-18127-4)

ADOBEILLUSTRATOR 249

I Adobe Photoshop
NAME:

ALSO KNOWN As:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

Adobe Photoshop 3.0

PSD, Adobe PSD, Photoshop 3.0

Bitmap

Unlimited

Uncompressed, RLE

30,000x30,000

No

Big-endian

Adobe

Microsoft Windows, Apple Macintosh

Adobe Photoshop, Adobe Premiere, desktop pub
lishing programs

Yes

No

No

MacPaint, TIFF

USAGE: Storage of images altered or manipulated in the Adobe Photoshop envi
ronment.

coMMENTs: A flexible format that is easily read and written but lacks a superior com
pression scheme. It provides specially good support for different color
storage schemes.

Overview
Adobe's Photoshop is probably the fullest featured and most highly respected
commercial image-processing bitmap manipulation program in the PC and
Macintosh worlds. Its wide distribution has meant that image data is often left
in PSD format files and may persist in this form after the original image data is
long gone.

Photoshop users are often professionals working with images in truecolor.
Images can be very large, and Photoshop users are expected to have adequate
memory to load and manipulate large files. Adobe has chosen to optimize the
speed of reading and writing in the Photoshop system, and this is reflected in
the RLE compression incorporated in the PSD format. Files, therefore, are not

250 GRAPHICS FILE FORMATS

Adobe Photosh&jl (cont'd)

as small as they might be using another compression method. Although this
makes sense in the context of a Photoshop-equipped workstation, the lack of a
superior compression scheme has probably prevented PSD from becoming
more popular as a general-purpose interchange format. Because PSD is an
application-specific format, expect it to change in the future.

Under Microsoft Windows, Photoshop files are stored with the PSD suffix and
can be identified by looking for the file ID value SBPS. On the Macintosh, Pho
toshop files are resource-fork only, and data is recognized by the file ID value
SBPS.

Earlier versions of the format had no compression and were tied to the Macin
tosh platform.

File Organization
PSD files consist of a header and three informational sections, called the Mode
Block, Image Resources Block, and Layer and Mask Information Block, respec
tively. These are followed by the actual image data. The header is a series of
fixed fields, and the other blocks are variable-length.

Header

Color Mode Data Block

Image.Resources Block

Layer and Mask Information Block

Image Data

File Details
· This section describes the details of the various sections of a PSD file.

Header

The header is 26 bytes in length and is structured as follows:

typedef struct _PSD_HEADER
{

BYTE Signature[4]; /*File ID "8BPSn */
WORD Version; /* Version number, always 1 */
BYTE Reserved[6]; /*Reserved, must be zeroed*/

ADOBE PHOTOSHOP 251

Adobe Photoshop (cont'd)

WORD Channels;

LONG Rows;
LONG Columns;
WORD Depth;
WORD Mode;

PSD_HEADER;

I* Number of color channels (1-24) including alpha
channels *I

I* Height of image in pixels (1-30000) *I
I* Width of image in pixels (1-30000) *I
I* Number of bits per channel (1, 8, and 16) *I
I* Color mode *I

Only Channels values of 1-16 are supported in v2.5 files. Also i~ v2.5, only
Depth values of 1 and 8 bits per channel are supported.

Data in the mode field specifies how the image is to be interpreted.

Mode Description

0 Bitmap (monochrome)
1 Gray-scale
2 Indexed color (palette color)
3 RGB color
4 CMYKcolor
7 Multichannel color
8 Duo tone (halftone)
9 Lab color

Color Mode Data Block

Following the header is the Color Mode Data block. At the start of this0block is
a LONG number, in big-endian format, specifying the length of the block in
bytes. The nature of the following data is related to the value of the mode field
of the header. If the mode field value is anything other than 2 or 6, the length
of the block will be zero, and no data will follow the 4-byte length field. If the
mode field value is 2, however, signifying indexed color, the following 768 bytes
will contain a 256-color palette. If the mode field value is 6, signifying duotone
data, the data following presumably consists of screen parameters and other
related information. Unfortunately, it is intentionally not documented by
Adobe, and non-Photoshop readers are advised to treat duotone images as
gray-scale images.

Image Resources Block

Following the Color Mode Data block is the Image Resources block. Like the
Color Mode Data block, the first four bytes are a LONG number in big-endian
format specifying the length of the block. The following data consists of non
pixel data associated with an image. Information in the Image Resources block

252 GRAPHICS FILE FORMATS

Adobe Photoshop (cont'd)

was stored in the resource fork in early Photoshop versions running on the
~acintoshplatforna.

struct _ColorModeDataBlock
{

BYTE Type[4]; /*Always "8BIM" */
WORD ID; /* (See table below) */
BYTE ~ame[]; /*Even-length Pascal-format string, 2 bytes or longer*/
LONG Size; /* Length of resource data following, in bytes */
BYTE Data[]; /*Resource data, padded to even length*/

} i

The fornaat of the data is determined by the value in the ID field, which can
have the following values:

ID

03e8
03e9

03eb
03ed
03ee
03ef
03f0
03fl

03£2
03f3
03f4
03£5
03f6
03£7
03f8
03£9
03fa
03fb
03fc
03fd
03fe

03ff

Data Format

WORD[5]

(See below)
BYTE[]
(See below)
BYTE[]
LONG, WORD

BYTE[8]

BYTE[2]

WORD, BYTE

Description

Channels, rows, columns, depth, and mode
Optional Macintosh print manager infornaa
tion
Indexed color table
Resolution infornaation
Alpha channel names (Pascal-fornaat strings)
Display infornaation for each channel
Optional Pascal-fornaat caption string
Fixed-point border width, border units (see
below)
Background color
Print flags (see below)
Gray-scale and halftoning infornaation
Color .halftoning information
Duotone halftoning information
Gray-scale and multichannel transfer function
Color transfer functions
Duotone transfer functions
Duotone image infornaation
Effective black and white value for dot range

EPS options
Quick ~ask channel ID, flag for mask initially
empty

ADOBE PHOTOSHOP 253

Adobe Photoshop (cont'd)

ID Data Format

0400 WORD
0401
0402 WORD[]

0403
0404
0405
0406
07dO-Obb6
Obb7
2710 (See below)

Description

Index o£target layer (O=bottom)
Working path
Layers group info, group ID for dragging
groups

IPTG-NAA record
Image mode for raw-format files
JPEG quality (Adobe internal)
Saved path information
Clipping pathname
Print flags information

ID values 03e8, 03eb, 03£!, and 0403 are considered obsolete. Values 03e8 and
03eb are associated with Photoshop v2.0. The data format for values 03f2,
03f4--03fa, 03fc, 03fd, 0405--0bb7 is intentionally not documented by Adobe, or
the data is missing. Please refer to the Adobe Photoshop SDK for information
on obtaining the IPTG-NAA record 2 structure definition.

ID value 03ed indicates that the data is in the form of a Resolutioninfo struc
ture:

typedef struct _Resolutioninfo
{

LONG hRes;
WORD hResUni t;
WORD WidthUni t;
LONG vRes;
WORD vResUnit;
WORD HeightUnit;

RESOLUTIONINFO;

I* Fixed-point number: pixels per inch *I
I* l=pixels per inch, 2=pixels per centimeter *I
I* l=in, 2=cm, 3=pt, 4=picas, S=columns *I
I* Fixed-point number: pixels per inch *I
I* l=pixels per inch, 2=pixels per centimeter *I
I* l=in, 2=cm, 3=pt, 4=picas, S=columns *I

ID value 03ef indicates that the data is stored as a Displayinfo structure, which
contains display information associated with each channel:

typedef _Displayinfo
{

WORD ColorSpace;
WORD Color[4];
WORD Opacity;
BYTE Kind;
BYTE Padding;

DISPLAYINFO;

254 GRAPHICS FILE FORMATS

I* 0-100 *I
I* O=selected, l=protected */
/* Always zero *I

Adobe Photoshop (cont'd)

ID value 03£3 indicates that the data is a series of eight flags, indicating the
enabled state of labels, crop marks, color bars, registration marks, negative,
flip, interpolate, and caption items in the Photoshop Page Setup dialog box.

ID value 2710 signals that the Data section contains a WORD-length version
number (should be 1), a BITE-length flag indicating crop marks, a BITE
length field (should be 0), a LONG-length bleed width value, and a WORD
indicating the bleed width scale.

wyer and Mask Information Block

Following the Image Resources block is the Layer and Mask Information block,
structured like the Color Mode Data and Image Resources blocks. In PSD files
produced by Photoshop v2.5 the 4-byte Layer and Mask Information block
length field contains a LONG number set to zero, as will vers3.0 files contain
ing no layer or mask information. PSD file writers are advised that this is an
area likely to be altered or expanded in future versions of the PSD format.
Layer information in this bock is stored first, followed by mask information.

Layer Information
The Layer section of the Layer and Mask Information block starts with a
LONG value specifying the length of the Layer Info section. This is followed by
a WORD value count of the number of Layer Records to follow. Layer Records
follow in sequence; a description of their organization is found below. Note
that Layer Records vary in size from file to file depending on the number of
channels in the image. There is one Layer Record for each layer in the image.

Data Structure

LONG
LONG
LONG
LONG
WORD

Field Name

Top
Left
Bottom
Right
Channels

Description

Rectangle bounding the layer

Number of channels in the layer

The next area following contains a series of Channel Length Info records,
defined as follows:

typedef struct _CLI
{

WORD ChanneliD; /* Channel Length Info field one */

LONG LengthOfChannelData; /* Channel Length Info field two */
} CLI;

ADOBE PHOTOSHOP 255

Adobe Photoshop (cont'd)

Data Structure Field Name Description

CLI
CLI

CLI
BITE[4]
BYTE[4]
BITE
BITE
BITE

BITE
LONG

Channel Length Info # 1
Channel Length Info #2

Channel Length Info #n
Blend Mode Signature
Blend Mode Key
Opacity
Clipping
Flags

Padding
ExtraDataSize;

Always "SBIM"
(See table below)
0-255 (transparent to·opaque)
O=base, 1=non-base
Bit 0 = transparency protected,
bit 1 = visible
Set to zero

The following area is the Layer Mask data section. If there is no Layer Mask,
Size (the first LONG value) is set to zero, and the Layer Mask data section is
four bytes long. If the value is non-zero, the Layer Mask data section is 24 bytes
in length.

Data Structure

LONG
LONG
LONG
LONG
LONG
BITE
BITE

WORD

Field Name

Size
Top
Left
Bottom
Right
DefaultColor
Flags

padding

Description

Rectangle bounding layer mask

0 or 255
Bit O=position, bit 1=layer mask disabled, bit
2=invert layer mask
Set to zero

The following area contains information defining the Layer Blending Ranges.
This is followed by a series of records defining the source and destination
ranges for each color chan~el. Each source and destination field consists of
two black values (0-255) followed by two white values (0-255). Each channel
source and destination range record has the following format:

256 GRAPHICS FILE FORMATS

typedef struct _CSDR
{

Adobe Photosh&p (cont'd)

BYTE Source[4];
BYTE Dest[4];

/* First Channel Source Range */
/* First Channel Destination Range */

} CSDR;

Data Structure Field Name

LONG Size

BYTE[4]
BYTE[4]
CSDR
CSDR

CSDR
BYTE[]

Gray Blend Source
Gray Blend Destination
Channel Source Range #1
Channel Source Range #2

Channel Source Range #n
Layer Name

Description

Total length of layer blending
data

Pascal string, padded to multi
ple of 4 bytes

The Blend Mode Key field can contain the following ASCII keys:

Key Meaning

norm Normal
dark Darken
lite Lighten
hue Hue
sat Saturation
colr Color
lum Luminosity
mul Multiply
scm Screen
diss Dissolve
over Overlay
hLit Hard light
sLit Soft light
diff Difference

Following the list of Layer Records is the channel image data. Channel image
data is stored in the form of 8-bit bitmaps. The first WORD value contains .
information about compression: 0 indicates that the data is uncompressed, and
1 indicates that the data is RLE compressed. Following this WORD is the actual

ADOBE PHOTOSHOP 257

Adobe PhotoshDjJ (cont'd)

channel image data. The length of the data is equal to the number of pixels in
the image, which can be calculated from the bounding box. The data may be
RLE compressed, however, using the PackBits algorithm described below. If the
length of the channel image is odd, a pad byte is inserted to make the end of
the image land on a WORD boundary.

Mask Information
Mask information consists of one or more mask info structures having the fol
lowing format:

Data Structure

WORD
BYfE[8]
WORD
BYfE

BYfE

Image Data

Field Name

Overlay Color Space
Color Components
Opacity
Kind

padding

Description

(Not documented)
4x2 byte color components
O=transparen t, 1 =opaque
O=inverted, l=protected, 128=use
stored value
set to zero

Mter the Layer and Mask Information block is a WORD containing a value act
ing as a compression flag. If the flag is set (to 1), the image data is RLE com
pressed.

The image data is stored as indicated in the header and the compression value
preceding it. If the data is compressed, each line is preceded by a WORD con
taining a value indicating the length, in bytes, of the data associated with that
line. Lines are stored in scan-line order with no padding. Multiplanar data,
which may or may not be compressed, is stored as a series of planes in
sequence. That is, red data is stored first, followed by green data and then blue
data. If the data is multiplanar, the WORD at the start of each line is the size, in
bytes, of the total data associated with each scan-line (rows-in-line times
number-of-channels).

Data is compressed using the Macintosh ROM PackBit encoding scheme, which
is also part of the TIFF standard. The first byte of scan-line data read is a run
count. If the MSB is set, the byte is converted to its two's complement value,
and the next byte read is repeated that number of times. If the MSB is zero,
one is added to the count, and the next RunCount bytes are read. In pseudo
code, this is:

258 GRAPHICS FILE FORMATS

Zero BytesRead and Count
Read WORD LengthOfLineinBytes

Read a byte of data
Increment BytesRead

If high bit is one
Count is two's complement of byte
Read next byte
Write this value Count times

If high bit is zero
Count is byte value plus one
Read next byte and write value Count times

Increment BytesRead

Adobe Photosh&jl (cont'd)

IfBytesRead equals LengthOfLine the scan-line is done

Remember that LengthOfLineinBytes refers to all of the data associated with
the current scan-line. If the image data is multi planar, then BytesRead will have
to be adjusted accordingly.

Adobe Photosh&jl Raw File Fonnat

The Photoshop Raw file format is used to import data into Photoshop from
applications that cannot write file formats that are recognized by Photoshop.
The Raw format is also used to export data from Photoshop that can be read
by such applications.

The Raw format file is an uncompressed, binary file that contains only image
data and no header or color palette information. The header data must be
entered into Photoshop when the file is imported.

The Raw file data is nothing more than a series of pixel values starting from
the upper-left pixel in the image and continuing downward. Each value is
stored as a BYTE with a value in the range 0 (black, or least intense) to 255
(white, or most intense). RGB pixels are always stored in red-green-blue order,
and CMYK pixels are always stored in cyan-magenta-yellow-key order.

To import a raw file, choose the Open item from the File menu, and click
Show All Files. Choose Raw from the File pop-up menu, and click Open to dis
play the Raw dialog box. Enter the width and height of the image in pixels (1
to 30,000), number of color channels (1 for gray-scale and palette color, 3 for
RGB, 4 for CMYK, and so on), and the header size (the default is 0). Click OK

ADOBE PHOTOSHOP 259

Adobe Photoshop (cont'd)

When you export a raw file, only the image data is saved to the file, and all of
the associated header and color palette data is lost. This data must be re
entered when importing the raw file. To export a raw file, choose Save As from
the File menu and Raw from the Save As pop-up menu to display the Raw dia
log box. Enter the File Type and File Creator values used to identify the Raw
file, the header value (the default is 0), and the Interleaved Order (interleaved
is the default). Click OK.

For Further Information
The primary source of information on Photoshop is the following document,
which Adobe has graciously allowed us to include on the CD-ROM that accom
panies this book.

Adobe Photoshop 3.0.4 Software Development Kit, Copyright
1991-1995, Adobe Systems

Some of the information for this article came from the following document,
which is also included on the CD-ROM:

Adobe Photoshop 2.5 Format, Copyright 1992 and 1993, by Thomas
Knoll and Adobe Systems, Inc.

For additional information, contact:

Adobe Systems
Developer Support
1585 Charleston Rd.
P.O. Box 7900
Mountain View CA 94039-7900
Voice: 415-961-4400
Voice: 800-344-8335
FAX: 415-961-3769
WWW: http:/ /www.adobe.com/
FTP: ftp:/ /ftp.adobe.com/

260 GRAPHICS FILE FORMATS

Atari ST Graphics Fonnats I
NAME: Atari ST graphics file formats

ALso KNOWN As: .ANI, .ANM, .CEI, .CE2, .CE3, .FLM, .UCI, .UC2,
.UC3., NEO, .PAC, .PCI, .PC2, .PC3, PC3, .Pil, .PI2,
.PI3, .RGB, .SEQ, .TNY, .TNI, .TN2, .TN3

TYPE: Bitmap and animation

COLORS: Typically 16

coMPREssioN: None and RLE

MAXIMUM IMAGE s1zE: Typically 320x200 pixels

MuLTIPLE IMAGEs PER FILE: Yes (animation forrilats only)

NuMERicAL FoRMAT: Big-endian

ORIGINAToR: Various Atari ST software developers

PLATFORM: Atari ST

suPPORTING APPLICATioNs: Many

SPECIFicATioN oN cD: Yes (third-party description)

CODE ON CD: N 0

IMAGEs oN cD: No

SEE ALSO: IFF

usAGE: All of these formats are used by paint and animation packages found on
the Atari ST.

coMMENTs: The Atari ST, with its superior graphics capabilities, was a natural platform
for development of multimedia, so much of the multimedia developments
of today are based on these formats.

Overview
The Atari ST computer is the home of many sparsely documented image file
formats. Many of these formats are used specifically for storing animation
images and dumps of images displayed on the screen. Although the Electronic
Arts IFF format is used by most Atari ST paint and animation programs, many
software developers have devised their own special-purpose formats to fill their
needs.

ATARI ST GRAPHICS FORMATS 261

Atari ST Graphics Formats·(cont'd)

File Organization and Details
This section contains a brief description of each of the Atari ST file formats;
each format has its own file extension.

Animatic Film Format (.FLM)

The Anima tic Film file format (file extension .FLM) stores a sequence of low
resolution 16-color images, which are displayed as an animation. Files in the
.FLM format are stored as a header followed by one or more frames of image
data. The header is 26 bytes in length and has the following format:

typedef struct _AnimaticFilmHeader
{

WORD NumberOfFrames;
WORD Palette[16];
WORD FilmSpeed;
WORD PlayDirection;
WORD EndAction;
WORD FrameWidth;
WORD FrameHeight;
WORD MajorVersionNumber;
WORD MinorVersionNumber;
LONG MagicNumber;
LONG Reserved[3];

ANIMATICFILMHEADER;

I* Number of frames in the animation */
I* Color palette *I
I* Speed of playback */
I* Direction of play ~/
I* Action to take after last frame */
I* Width of frame in pixels *I
I* Height of frame in pixels *I
/* Animatic major version number */
I* Animatic minor version number *I
I* ID number (always 27182818h) *I
I* Unused (all zeros) *I

NumberOfFrames specifies the total number of frames in the animation.

Palette is the color palette for the animation, stored as an array of 16 WORD
values.

FilmSpeed is the number of delay (vblank) frames to display between each ani
mation frame. The value of this field may be in the range 0 to 99.

PlayDirection is the direction the animation is played. Values for this field are
OOh for forwards and Olh for backwards.

EndAction specifies the action to take when the last frame of the animation is
reached during playback. A value of OOh indicates that the player should pause
and then repeat the animation from the beginning. A value of Olh indicates
that the animation should immediately repeat from the beginning (loop). A
value of 03h indicates that playback should repeat in the reverse direction.

Frame Width and FrameHeight are the size of the animation fram~s in pixels.

MajorVersionNumber and MinorVersionNumber contain the version number
of the Animatic software that created the animation. ·

262 GRAPHICS FILE FORMATS

Atari ST Graphics Formats (cont'd)

MagicNumber contains an identification value for Animatic Film files. This
value is always 27182818h.

Reserved is 12 bytes of space reserved for future header fields. All bytes in this
field have the value OOh.

ComputerEyes Raw Data Format (.CEl and .CE2)

The ComputerEyes Raw Data Format is found in a low-resolution (file exten
sion .CE1) and a medium-resolution (file extension .CE2) format. The header
is 10 bytes in length and has the following format:

typedef struct _ComputerEyesHeader
{

LONG Id; /* Identification value (always 45594553h) */
WORD Resolution; /* Image data resolution */
BYTE Reserved[8]; /*Miscellaneous data*/

} COMPUTEREYESHEAD;

Id is a value used to identify a file as containing ComputerEyes-format data.
The value of this field is always 45594553h or "EYES" as an ASCII string.

Resolution is the resolution of the image data stored in the file. This value is
OOh for low-resolution data and 01h for high-resolution data.

Reserved is eight bytes of additional information, which is not needed for
decoding the image data.

If the Resolution field value is OOh (low resolution), then the image data will
be divided into three 320x220 RGB planes. Each plane is 64,000 bytes in size
and is stored in red, green, blue order. The image data stores one pixel per
byte, and only the lower six bits of each byte are used. Low-resolution image
data is stored vertically, so rows of data are read along the ¥axis and not along
the X-axis as in most other formats.

H the Resolution field value is Olh (high resolution), then the image data is
stored in a single 640x480 plane, which is always 256,000 bytes in size. The
image data stores one pixel per WORD, with the red value stored in bits 0
through 4, green in bits 5 through 9, and blue in bits 10 through 14. Bit 15 is
not used. High-resolution image data is also stored along the vertical, rather
than the horizontal, axis of the bitmap.

ATARI ST GRAPHICS FORMATS 263

Atari ST Graphics Formats (cont'd)

Cyber Paint Sequence Format (.SEQ)

The Cyber Paint Sequence file format (file extension .SEQ) is used for storing
sequences of 1 fH:olor low-resolution images used in animations. Cyber Paint
also supports an efficient form of delta-encoded data compression.

typedef struct _CyberPaintHeader
{

WORD Magic~umber;
WORD VersionNumber;
LONG NumberOfFrames;
WORD DisplayRate;
BYTE Reserved[118];

I* Identification number *I
I* Version number *I
I* Total number of frames *I
I* Display speed *I
I* Unused *I

LONG FrameOffsets[NumberOfFrames];
CUVERPAINTHEAD;

I* Array of frame offsets *I

MagicNumber is an identification number used to indicate that the file con
tains Cyber Paint Sequence data. This value is typically FEDBh or FEDCh.

VersionNumber is the version number of the format.

NumberOfFrames specifies the number of data frames stored.

DisplayRate is the number of delay (vblank) frames to display between each
animation frame.

Reserved is a 118-byte field reserved for future header fields. This field is set to
a value of OOh.

FrameOffsets is an array of LONG offset values with a number of elements
equal to the value stored in the NumberOfFrames field. Each offset value indi
cates the starting position of each frame, calculated from the beginning of the
file.

Each frame contains a header of descriptive information in the following for
mat:

typedef struct _CyberPaintFrame
{

WORD Type;
WORD Resolution;
WORD Palette[16];
BYTE FileName[12];
WORD Limits;
WORD Speed;
WORD NumberOfSteps;
WORD XOffset;
WORD YOffset;
WORD FrameWidth;
WORD FrameHeight;

/* Frame type *I
I* Frame Resolution */
I* Color palette *I
I* Name of frame data file */

I* Color animation limits *I
I* Color animation speed and direction *I
I* Number of color steps *I
I* Left position of frame on display *I
/* Top position of frame on display *I
I* Width of the frame in pixels */

I* Height of the frame in pixels *I

264 GRAPHICS FILE FORMATS

BYTE Operation;
BYTE Compression;
LONG DataSize;
BYTE Reserved[GO];

CYBERPAINTFRAME;

Atari ST Graphics Formats (cont'd)

/* Graphics operation */
/* Data storage method */
/* Length of the frame data in bytes */
/* Unused */

Type is an identification value identifying the header as belonging to a frame.

Resolution is the resolution of the frame data and is usually OOh.

Palette is an array of values for the 16-color palette for this frame.

FileN arne stores the name of the disk file in which the frame data is stored.
The default string stored in this field is" . ",which indicates no filename.

Limits is the color animation limits of the frame.

Speed specifies the speed and direction of the playback.

NumberOfSteps is the number of color steps in the image data.

XOffset is the left position of the frame on the display. This value may be in
the range of 0 to 319.

YOffset is the top position of the frame on the display. This value may be in the
range ofO to 199.

FrameWidth and FrameHeight are the size of the frame in pixels.

Operation is the graphics operation to perfonn on the frame data. A value of
OOh indicates copy, and a value of 01h indicates an exclusive OR.

Compression indicates whether the frame data is compressed (a value of 01h)
or uncompressed (a value ofOOh).

DataSize is the actual size of the data (compressed or uncompressed) stored in
the frame.

Reserved is a 60-byte field reserved for future header fields. All bytes in this
field have the value OOh.

Frame data stored in a Sequence file is always 320x200 pixels. The frame data
is stored as four bitplanes, with one pixel stored per WORD. Pixels are always
stored along the vertical (Y) axis of the bitmap. Therefore, the first 200 bytes
of frame data are the first pixels of the .first bitplane of the frame, and so on.

Frame data may be compressed using a delta-encoding algorithm. Using this
technique, only the changes between frames are actually encoded. Interframe
data that does not change is not saved.

ATARI ST GRAPHICS FORMATS 265

Atari ST Graphics Formats (cont'd)

The first frame in a sequence is always stored in its entirety. You have to start
someplace. Each frame thereafter is compared to the previous frame, and only
the X and Y coordinates of rectangular regions of pixel values (called change
boxes) that have changed are saved. Only one change box is stored per frame.

Each change box may be stored in one of five different variation·s, always using
the variation that yields the best compression for a particular change box.
These variations are:

• Uncompressed Copy, where the frame data is uncompressed and is simply
copied onto the screen at coordinates specified in the XOffset and YOffset
header fields.

• Uncompressed EOR, where the frame data is exclusive ORed with the data
already at XO:ffset,YOffset.

• The frame data is compressed and must be uncompressed before copying
to the screen.

• Compressed EOR, where the frame data must be uncompressed before it is
exclusive ORed with the screen data.

• Null Frame, which contains no data (height and width are OOh) and is
treated as the previous frame.

Compressed data contains a sequence of control WORDs (16-bit signed
WORDs) and data. A control WORD with a value between 1 and 32,767 indi
cates that the next WORD is to be repeated a number of times equal to the
control WORD value. A control WORD with a negative value indicates that a
run of bytes equal to the absolute value of the control WORD value is to be
read from the compressed data.

DEGAS Format (.Pll, .PI2, .PI3, .PCl, .PC2, .PCJ)

The DEGAS animation file format actually occurs in three different variations.
The DEGAS and DEGAS Elite formats support low, medium, and high
resolution graphics data (files have the extension .Pil, .PI2, and .PI3 respec
tively). The DEGAS Elite Compressed format supports low, medium, and high
resolution graphics data (files have the extension .PCl, .PC2, and .PC3 respec
tively), and it also supports data compression.

The DEGAS format stores only a single image of the display. The header is 34
bytes long and is followed by 32,000 bytes of image data:

266 GRAPHICS FILE FORMATS

Atari ST Graphics Formats (cont'd)

typedef struct _DegasHeader
{ .

WORD Resolution;
WORD Palette[16];

DEGASHEAD;

I* Image resolution *I
I* Color palette *I

Resolution is the resolution of the image data stored as a bit-field. Valid values
are:

OOh Left
Olh Off
02h Right

Palette is an array of 16 WORD values that holds the color palette for the
image.

The DEGAS Elite format contains the same header and image data structure as
the DEGAS format. It differs form the DEGAS format in that it has a 32-byte
footer containing additional information:

typedef struct _DegasEliteFooter
{

WORD LeftColor[4];
WORD RightColor[4];
WORD Direction[4];
WORD Delay[4];

DEGASELITEFOOT;

I* Left color animation limit table *I
I* Right color animation limit table *I
I* Animation channel direction flag *I
I* Animation channel delay *I

LeftColor stores the left color animation limit table containing the starting
color numbers for the animation.

RightColor stores the right color animation limit table containing the ending
color numbers for the animation.

Direction contains the animation channel direction bit-field flag. Valid values
are:

OOh Left
Olh Off
02h Right

Delay is the animation channel delay rate between frames. This value is mea
sured in l/60 of a second and is subtracted from the constant 128 to calculate
this value.

The DEGAS Elite Compressed format contains the same header and footer as
the DEGAS Elite format, with one variation in the header data.

ATARI ST GRAPHICS FORMATS 267

Atari ST Graphics Fonnats (cont'd)

The Resolution field uses the following bit values to in.dicate the resolution of
the image data:

8000h
800lh
8002h

Low resolution
Medium resolution
High resolution

The compression algorithm used is identical to RLE scheme found in the Inter
change file format (IFF); see the article on the Interchange format for details.

RGB Intennediate Fonnat (.RGB)

The RGB Intermediate Format (file extension .RGB) is actually three low
resolution DEGAS .PII files concatenated into a single file. The pixel data in
each plane contains an actual red, green, or blue color-channel value rather
than an index into the 16-color palette. On the Atari ST, there are only three
bits per color channel. The Atari ST with the extended color palette uses four
bits per color channel.

The structure of an entire RGB file is shown here:

struct _RgbFile
{

WORD RedResolution;
WORD RedPalette[16];
WORD RedPlane[16000];

/* Red plane resolution (ignored) *I
I* Red plane palette (ignored) */
I* Red plane data */

WORD GreenResolution /* Green plane resolution (ignored) *I
WORD GreenPalette I* Green plane palette (ignored) */
WORD GreenPlane[16000]; /*Green plane data*/
WORD BlueResolution; I* Blue plane resolution (ignored) */
WORD BluePalette; /* Blue plane palette (ignored) *I
WORD BluePlane[16000]; I* Blue plane data *I

lmagic Film/Picture Fonnat (.ICl, .IC2, .IC3)

The !magic Format stores low-, medium-, and high-resolution image data using
the file extensions .ICI, .IC2, and .IC3 respectively. The header is 49 bytes long
and is formatted as follows:

typedef struct _ImagicHeader
{

BYTE Id[4];
WORD Resolution;
WORD Palette[16];
WORD Date;
WORD Time;

268 GRAPHICS FILE FORMATS

/* File identification value */
/* Image resolution */
I* Color palette */
I* Date stamp *I
I* Time stamp */

BYTE Name[8];
WORD Length;
LONG Registration;
BYTE Reserved(8];
BYTE Compression;

IMAGICHEAD;

Atari ST Graphics Formats (cont'd)

I* Base file name *I
I* Length of data *I
I* Registration number *I
I* Unused *I
I* Data compression flag *I

Id is the identification value for this format and contains the characters IMDC.

Resolution specifies the resolution of the image data. Values are:

OOh Low resolution
Olh Medium resolution
02h High resolution

Palette is an array of 16 elements storing the color palette for this image.

Date and Time contain a date and time stamp indicating when the file was cre
ated. These stamps are in GEMDOS (Atari native operating system) format.

Name is the base filename of the image file.

Length is the length of the image data stored in the file.

Registration is the registration number of the Imagic application program
which created the image file.

Reserved is an 8-byte field which is unused and set to a value ofOOh.

Compression indicates whether_ the image data is compressed. A value of OOh
indicates no compression, while a value of Olh indicates that the image data is
compressed.

Image data may be run-length encoded (RLE) or delta compressed. Delta com
pression results in smaller animation files than RLE, although on complex
images RLE works better.

NEOchrome Format (.NED)

NEOchrome image files have the file extension .NEO and contain a 79-byte
header followed by 16,000 bytes of image data. The format of the header is as
follows:

typedef struct _NeochromeHeader
{

WORD Flag;
WORD Resolution;
WORD Palette[16];
CHAR FileName [12] ;

I* Flag byte (always OOh) *I
I* Image resolution *I
I* Color palette *I
I* Name of image file *I

ATARI ST GRAPHICS FORMATS 269

Atari ST Graphics Fonnats (cont'd)

WORD Limits;
WORD Speed;
WORD NumberOfSteps;
WORD XOffset;
WORD YOffset;
WORD Width;
WORD Height;
WORD Reserved[33];

NEOCHROMEHEAD;

I* Color animation limits *I
I* Color animation speed and direction *I
I* Number of color steps *I
I* Image X offset (always OOh) *I
I* Image Y offset (always OOh) *I
I* Image width (always 320) *I
I* Image height (always 200) *I
I* Reserved (always OOh) *I

Flag is a collection of flag bits and is always set to a value of OOh.

Resolution specifies the resolution of the image data. Values are:

OOh Low resolution
01h Medium resolution
02h High resolution

Palette is the color palette for this image stored as an array of 16 WORD values.

FileName is the name of the image file. The default string for this field is " . ,, .

Limits specifies the color animation limits of the image. Bits 0 through 3 spec
ify the value of the upper-right limit, and bits 4 through 7 specify the value of
the lower-left limit. Bit 15 is set to 1 if the animation data is valid.

Speed specifies the color animation speed and direction. Bits 0 through 7 spec
ify the speed of the playback in number of blank frames displayed per anima
tion frame. Bit 15 indicates the direction of playback. A value of 0 indicates
normal and a value of 1 indicates reversed.

NumberOfSteps is the number of frames in the animation.

XOffset and YOffset are the starting coordinates of the image on the display.
These values are always OOh.

Width is the width of the image in pixels. This value is always 320.

Height is the height of the image in pixels. This value is always 200.

Reserved is a field of 33 bytes reserved for future header fields. All bytes in this
field are set to OOh.

NEOchrome Animation Fonnat (.ANI)

NEOchrome Animation files have the file extension .ANI and contain a header
followed by a sequence of one or more frames of animation data stored in
their playback order. The header is 22 bytes and is formatted as follows:

270 GRAPHICS FILE FORMATS

Atari ST Graphics Fonnats (cont'd)

typedef struct ~ewchromeAniHeader
{

LONG MagicNumber;
WORD Width;
WORD Height;
WORD Size;
WORD XCoord;
WORD YCoord;
WORD NumberOfFrames;
WORD Speed;
LONG Reserved;

NEWCHROMEANIHEAD;

I* ID value (always BABEEBEAh) *I
I* Width of image in bytes *I
I* Height of image in scan lines *I
I* Size of image in bytes + 10 *I
I* X coordinate of image *I
I* Y coordinate of image - 1 *I
I* Total number of frames *I
I* Animation playback speed *I
I* Reserved (always OOh) *I

MagicNumber is the identification value for Neochrome animation files. This
value is always BABEEBEAh.

Width is the width of the animation in pixels. This value must always be divisi
ble by 8.

Height is the height of the animation frames in pixels (scan lines).

Size is the total size of a frame in bytes, plus 10.

XCoord specifies the left position of the image in pixels, minus one. This value
must be divisible by 16.

YCoord specifies the top position of the image in pixels, minus one.

NumberOfFrames specifies the number of image frames in the animation.

Speed specifies the playback speed of the animation in number of blank
frames displayed per image frames.

Reserved is an unused field, which is set to OOh.

SI'AD Fonnat (.PAC)

The STAD image file format has the file extension .PAC. It contains a header
followed by a single block of RLE-compressed image data. The header is seven
bytes in size and contains only information necessary to decompress the image
data. The format of the header is as follows:

typedef struct _StadHeader
{

CHAR Packed[4];
BYTE IdByte;
BYTE PackByte;
BYTE SpecialByte;

STADHEADER;

I* Packing orientation of image data *I
I* RLE ID value of a 'PackByte' run */
I* The value of a 'PackByte' run *I
I* RLE ID value of a non-·' PackByte' run *I

ATARI ST GRAPHICS FORMATS 271

Atari ST Graphics Formats (cont'd)

Packed contains the characters pM86 if the image data in the file is vertically
packed, or pM85 if it is horizontally packed.

IdByte is a value used to indicate an RLE byte run that uses the PackByte value.

PackByte is the most frequently occurring byte value in the image data.

SpecialByte is a value used to indicate an RLE byte run using a value stored in
the image data.

The image data in a STAD file is always compressed using a simple RLE algo
rithm. STAD is a bit unique in that it allows the option of packing image data
either horizontally along the bitmap (with the scan lines), or vertically down
the bitmap (across the scan lines). The direction of the encoding is specified
in the Packed field in the header.

The most frequently occurring byte value in the image data is stored in the
PackByte field of the header. This reduces the size of the compressed data by
not requiring this value to be redundantly stored in the compressed image
data itself.

The STAD RLE algorithm uses three types of packets:

• The first type of packet is two bytes in length and contains an Id value and
a run-count value. If the ID matches the value stored in the ldByte field of
the header, then the value in the PackByte header field is repeated "run
count + 1" times. This packet is used only to encode byte runs of the value
stored in the PackByte header field.

• The second type of packet is three bytes in length and is used to store a run
of a value other than that in the PackByte field. The first byte is an ID
matching the SpecialByte field in the header. The second byte is the value
of the run, and the third byte is the number of bytes in the run.

• The third type of packet is a single literal byte. If an ID byte is read, and it
does not match either the IdByte or SpecialByte value, then this byte is sim
ply written literally to the output.

Following is a simple, pseudo-code description of the RLE decoding process:

Read a byte
If the byte is the IdByte value

Read a byte (the RunCount)
Repeat the PackByte value Run Count+ 1 times else

272 GRAPHICS FILE FORMATS

Atari ST Graphics Fcmnats (cont'd)

If the byte is the SpecialByte value
Read a byte (the Run Value)
Read a byte (the RunCount)
Repeat the Run Value RunCount times

else
Use the byte value literally.

Tiny Fonnat (.TNY, .TNl, .TN2, .TN3)

The Tiny format (. TNY) is similar to the NEOchrome forlnats. Tiny files may
contain low (.TN1), medium (.TN2), or high (.TN3) resolution image data.

Tiny files may have one of two different header formats. The most common is
37 bytes in length and is formatted as follows:

typedef struct _TinyHeader
{

BYTE Resolution;·
WORD Palette[16];
WORD ControlBytes;
WORD DataWords;

TINYHEAD;

I* Resolution of the image data *I
I* Color palette *I
I* Number of control bytes *I
I* Number of data words *I

Resolution specifies the resolution of the image data. Values are:

OOh Low resolution
01h Medium resolution
02h High resolution

Palette is the 16-color palette of the image data.

ControlBytes is the number of control bytes found in the image data. This
value is in the range of 3 to 10,667.

DataWords is the number of WORDs of image data stored in the file. This
value is in the range of 1 to 16,000.

If the value of the Resolution field is 03h or greater, the Tiny header has the
following format:

typedef struct _TinyHeader
{

BYTE Resolution;
BYTE Limits;
BYTE Speed;
WORD Duration;
WORD Palette[16];

I* Resolution of the image data *I
I* Color animation limits */
I* Speed and direction of playback *I
I* Color rotation duration *I
I* Color palette */

ATARI ST GRAPHICS FORMATS 273

Atari ST Graphics Fonnats (cont'd)

WORD ControlBytes;
WORD DataWords;

} TINYHEAD;

/* Number of control bytes */
/* Number of data words */

Limits specifies the left and right color animation limits. Bits 0 through 3 store
the right (end) limit value, and bits 4 through 7 store the left (start} limit
value.

Speed specifies the speed and direction of the animation playback. A negative
value indicates left playback, and a positive value indicates right playback. The
absolute value is the speed (delay between frames) in increments of 1/60 of a
second.

Duration specifies the color rotation duration (number of iterations).

ControlBytes specifies the size of a BYfE array that follows the header. This
array contains control values used to specify how the Tiny image data is to be
uncompressed.

Data Words specifies the number of data words in the image data. The run
length encoded image data follows the control-value array. Tiny image data is
uncompressed by reading a control value and then, based on the control value,
performing an action on the encoded data.

If a control value is negative, then the absolute value of the control value indi
cates the number of WORDs to read literally from the compressed data. H a
control value is equal to zero, another control value is read, and its value (128
to 32767) is used to specify the number of times to repeat the next data
WORD. If a control value is equal to one, another control value is read and its
value (128 to 32767) is used to specify the number of literal WORDs to read
from the data section. And a control value greater than one specifies the num
ber of times to repeat the next WORD read from the data section (two to 127).

The uncompressed image data is stored along its ¥axis in a fashion identical to
many other Atari image file formats.

ForFurtherhrronnation
Although we have not been able to obtain an official specification document
from Atari, the article included on the CD-ROM that accompanies this book
contains detailed information about the Atari ST graphics file formats. See the
following:

Baggett, David M., Atari ST Picture Formats.

274 GRAPHICS FILE FORMATS

Atari ST Graphics Formats (cont'd)

The author has also kindly agreed to be a resource for information about the
Atari ST format files. Contact:

David M. Baggett
Email: dmb@ai. mit.edu

You may also find Atari information at:

comp. sys. atari. st
USENET newsgroup

http:/ /newton.ex.ac. uk/general/ug/jones/
Dan'sAtari STweb pages

http:/ /www.smartpages. com/faqs/ csasfaq/top. html
AtariSTFAQ

ATARI ST GRAPHICS FORMATS 275

I AutoCAD DXF
NAME:

ALSO KNOWN AS:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CoDE ON CD:

IMAGES ON CD:

SEE ALSO:

AutoCAD DXF*

AutoCAD Drawing Interchange Format, DXF, .DXB,
.SLD, .ADI

Vector

256

None

NA

No

Multiple

Autodesk

M5-DOS

AutoCAD, many CAD programs, CorelDrawi, others

Yes

No

No

None

UsAGE: Storage and exchange of CAD and vector information.

coMMENTs: A difficult format, mainly because it can contain so many different types of
data. The format is controlled and defined by Autodesk for use in its CAD
program AutoCAD. The most common form of DXF is 7-bit text, but there
are also two related binary formats, one that also uses the DXF extension
and another that uses the DXB extension.

Overview
The AutoCAD DXF (Drawing Interchange Format) and the AutoCAD DXB
(Drawing Interchange Binary) formats are associated with the CAD application
AutoCAD, created and maintained by Autodesk. DXB is a simplified binary ver
sion of a DXF file. Other file formats associated with AutoCAD are the slide
(.SLD) and plot (.ADI) formats.

* Our thanks to John Foust for his contributions to this article.

276 GRAPHICS FILE FORMATS

AutoCAD DXF (cont'd)

Although DXF was developed to represent the data used in a CAD program, it
is used by many programs as a "least common denominator" format for the
exchange of many different types of data, most commonly vector-oriented
information but also text and 3D polygons. As a CAD format, it can also express
common drafting concepts such as associative dimensions.

Almost any type of data can be represented somehow in DXF. For example, a
drawing program like CorelDraw! exports the outlines of the drawing with the
AutoCAD POLYLINE entity, while a 3D program might only export 3DFACE
entities representing three- and four-sided polygons .. DXF also allows a perplex
ing number of ways of doing nearly the same thing, such as describing objects
as separate editable groups. One program might place the objects on different
layers of the drawing, while another might use different pen colors, while a
third might use named "blocks" to group the data.

Although DXF is widely used for the exchange of simple line data, an applica
tion designer wishing to support DXF must consider that AutoCAD can store
these many types of data in different ways.

Sometimes the correct interpretation of a DXF file can be very difficult. The
intended appearance of lines and regions can be dependent on many seem
ingly obscure settings in the header of the DXF file. Because DXF files are so
difficult to faithfully interpret, many application designers decide to only
export DXF.

Even among programs that claim to import DXF, you may find they only sup
port a subset of everything that is possible in DXF. If you hope to create your
own DXF files in order to transfer data into a program that claims to import
DXF, be sure you know which representations it understands.

With each new version of AutoCAD, DXF changes. AutoCAD Release 13
expanded the DXF format in many ways in order to represent the specialized
data of a new geometry engine. These additions store the complex surface and
solid information for Spatial Technology's ACIS geometry engine, now a part of
AutoCAD. Not all of this information has been documented and must be
skipped by any DXF reader. With Release 13, AutoCAD's own tolerance for min
imal DXF files changed, too, as it expanded an auditing step that checks the
validity of the DXF files it imports.

Obviously, the DXF file format is quite complex and subtle. Because it would
take more than 50 pages to fully document every possible part of this format,
we will simply outline the basic structure of any DXF file. For full details, refer
to Autodesk's specification document on the CD-ROM included with this book.

AUTOCAD DXF 277

AutoCAD DXF (cont'd)

File Organization ·
A DXF file consists of up to seven sections: a header, tables, blocks, classes,
objects, entities, and an end-of-file marker.

• The HEADER section contains variables that represent the state of Auto
CAD's internal settings. For example, the AutoCAD version variable
"$ACADVER" is set to "AC1012" in a DXF file saved by AutoCAD Release 13.
Other variables set the units used to measure angles, defaults for chamfer
ing, offsets, and seatings, etc.

• The TABLES section contains several lists of information used in the rest of
the drawing, such as the list of line types, layer names, fonts, and preset
views of the drawing.

• The BLOCKS section contains predefined drawing elements that might be
present in the drawing. For example, a block could define a standard door
knob that is placed on every door in a drawing. Block definitions are refer
enced in the ENTITIES section with the INSERT command.

• The CLASSES and OBJECTS sections were introduced with AutoCAD
Release 13. The CLASSES section holds the description of any application
defined classes of objects that may be instantiated in the BLOCKS or ENTI
TIES sections.

• The OBJECT section contains non-graphical parts of the drawing. All enti
ties that are not part of the entities or symbol tables are "objects." For
example, AutoCAD dictionaries are stored here.

• The ENTITIES section contains the actual object data of the drawing. This
can include raw data such as LINE and ARC entities as well as INSERT
commands that place a predefined block definition at a certain position in
the drawing.

• The end of the DXF data is marked with an EOF directive on the last line of
the file.

File Details
A ·DXF file is composed of pairs of group codes and associated values. Each
occurs on its own line in the text file. The integer group code indicates the
type of the value to follow. Group codes occur in ranges. For example, group
codes 0 to 9 are followed by strings, and each different group code is used in
certain situations. Group code 0 indicates the start of an entity, table or end-of
file indicator. Code 1 indicates the primary text value for an entity. Group code

278 GRAPHICS FILE FORMATS

AutoCAD DXF (cont'd)

2 is used for names, such as names of sections, blocks, table names, etc. Code 9
introduces the name of a header section variable. For example, at the start of
every DXF file, group code 0 precedes the SECTION command, followed by
group code 2 with a string indicating the type of section, such as HEADER:

0
SECTION

2
HEADER

9
$ACADVER

1
AC1012

Ranges of group codes indicate the type of data to follow. Group codes 10 to
59 are used for floating-point values, such as point coordinates. Codes 60 to 79
store integer values. For example, to store a 2D point location, first group code
10 is used for the X value, then code 20 is used for the Yvalue. If the entity has
a secondary coordinate value, it would also use group codes 11 and 21. Here is
a minimal yet complete DXF file that describes a line from location (1,2) to
(3,4):

0

SECTION
2

ENTITIES
999
This is just a line.

0
LINE

8
0

10
1.0
20
2.0
11
3.0
21
4.0

0
END SEC

0
EOF

Group code 999 precedes a comment. This line will be placed on layer 0, as
indicated by group code 8. This minimal file is an example of an "entities only"
file that will be accepted by almost any program that claims to import DXF.

AUTOCAD DXF 279

AutoCAD DXF (cont'd)

As AutoCAD is expanded with each new version, new group codes are added. If
you are writing a program that reads DXF files, you can ensure future compati
bility by ignoring undefined group code and value pairs.

One curious aspect of DXF is that it does not contain a color palette, yet most
objects in a DXF file can be assigned a distinct color value with group code 62.
Each drawing entity can be assigned a number from 1 to 255 known as an
AutoCAD Color Index, or ACI, also described in earlier documentation as a
"pen number." This reflects AutoCAD's origins as a CAD package where draw
ings were typically printed by a pen plotter that had several ink pens but with
no standard correspondence to actual RGB values, or even to the colors of the
lines on the screen. AutoCAD now sets a default RGB color for each ACI when it
appears onscreen, but these are not stored in the DXF file.

BinaryDXF

The most commonly used form of DXF is stored in 7-bit ASCII characters, but a
binary format also uses the extension DXF. AutoCAD Release 10 was the first to
support binary DXF. Binary DXF files are usually 20 to 30 percent smaller than
the ASCII version, and they load more quickly into AutoCAD.

Binary DXF files always begin with a specific 22-byte identification string:

AutoCAD Binary DXF<ODh><OAh><lAh><OOh>

Binary DXF uses group-value pairs, too. Group codes are usually one byte, fol
lowed by either a two-byte little-endian integer, an eight-byte IEEE floating
point double value, or a zero-terminated string, depending on the type of
value associated with the group code's range. To represent group codes greater
than 254, the value 255 precedes a two-byte integer group code.

A third form of DXF known as DXB is an even simpler binary format. DXB files
are even smaller than the binary DXF format. DXB files are limited to a small
set of entities such as line, point, circle, arc, trace, solid, polyline, and 3D face.
Entities are indicated by their own byte code and are immediately followed by
the necessary data for that entity, in an appropriate integer or floating-point
format.

A DXB file can be distinguished from a binary DXF file by the file extension
.DXB and by the fact that it always begins with a 19-byte identification string:

AutoCAD DXB 1.0<0Dh><0Ah><1Ah><00h>

280 GRAPHICS FILE FORMATS

AutoCAD DXF (cont'd)

ForFurtherlnfonnation
For further information about the AutoCAD DXF format, see the DXF specifica
tion included on the CD-ROM that accompanies this book.

The AutoCAD Manual Release 12 also contains complete information on the
DXF format; see:

AutoCAD Customization Manua~ Release 12, Autodesk Inc., 1992, pp.
241-281.

AutoCAD Developer's Guide, Release 13, Autodesk Inc., 1995, pp. 505-556.

Autodesk has also released an electronic document describing the DXF format,
which may be found on many online services and BBSs.

Many books on AutoCAD have been published, and several include in-depth
information on the DXF format, including the following:

Jones, Frederick H. and Lloyd Martin, The.AutoCAD Database Book, Ven
tana Press, Chapel Hill, NC, 1989.

Johnson, N., AutoCAD, The Complete Reference, second edition, McGraw
Hill, New York, m:: 1991.

For additional information about this format, you may also contact:·

Autodesk, Inc.
Attn: Neele Johnston
Autodesk Developer Marketing
2320 Marinship Way
Sausalito, CA 94965
Voice: 415-491-8719
Email: neele@autodesk. com
WWW: http://www. autodesk. com/

AUTOCAD DXF 281

I Autodesk 3D Studio
NAME: Autodesk 3D Studio

ALso KNOWN As: 3DS, ASC

TYPE: Scene

COLORS: Unlimited

coMPREssioN: None

MAxiMuM IMAGE s1zE: None

MULTIPLE IMAGES PER FILE: NA

NuMERicAL FoRMAT: Multiple

ORIGINAToR: Autodesk

PLATFORM: M8-DOS

suPPoRTING APPLICATioNs: 3D Studio, Caligari trueSpace, other 3D programs

SPECIFICATION oN co: No

cooE oN co: No

IMAGEs oN co: No

SEE ALso: None

usAGE: . Storage of 3D scene information for use by rendering applications.

coMMENTs: Autodesk 3D Studio has come to be used as an interchange format. Many
3D modeling and rendering applications read and write 3DS, as well as
their own formats. Why this is so is not clear but may be due to Autodesk
3D Studio's longevity and visibility in the market. The program imple
ments a large number of functions, however, and this is reflected in the
file.

Overview
Autodesk 3D Studio (3DS) is a relatively high-end program used for the model
ing and rendering of 3D scenes. It runs under M8-DOS and uses a third-party
memory manager to make optimum use of the resources available on the PC
platform. Output compares favorably to many higher end platforms. It has
thus become one of the platforms of choice for people doing detailed con
struction of 3D scenes.

Unfortunately, Autodesk has chosen to make information about this format
available only through purchase of their developer's kit. Information for this
article was accordingly obtained from public sources and is necessarily

282 GRAPHICS FILE FORMATS

Autodesk 3D Studio (cont'd)

incomplete. We would appreciate any further information available on this for
mat.

There are two formats used by 3D Studio:

• A binary one designated by the suffix 3DS

• An ASCII format using the suffix ASC

Both are used as interchange formats. This article concentrates on the binary
version of the file, because the ASCII version is usually used for the storage of
object definitions and closely follows the tags defined in the binary version. At
the end of this article, we provide an example of a simple ASC file.

File Organization
3DS files consist of tags, called chunks by Autodesk. Each chunk consists of an
ID value and an offset to the start of the next chunk. Data associated with each
chunk follows the ID and offset information.

typedef struct _CHUNK
{

WORD Chunk_ID; /* Tag type */
DWORD Chunk_length; /* Relative offset in bytes to next chunk */

} CHUNK;

Chunks are classified as either Primary, Main, or Subordinate and are arranged
in a hierarchy as follows:

Primary Chunk
Main Chunk #1

Subordinate Chunk # 1
Subordinate Chunk #2

Main Chunk#2
Subordinate Chunk # 1
Subordinate Chunk #2

Main Chunk #3

The Main chunks are said to be "owned" by the Primary chunk, and the Subor
dinate chunks associated with the Main chunks are owned by the Main chunk.
Note that many of the chunks defined below are associated with the behavior

AUTODESK 3D STUDIO 283

Autodesk 3D Studio (cont'd)

of 3D Studio at run-time. They are listed here because your rendering applica
tion or file conversion program may be able to make use of them as clues to
the appearance and behavior of the objects found in the file.

There is only one Primary chunk per file, located at the start of the file. Follow
ing the Primary chunk tag is the first Main tag. The chunk_length field of
Iylain chunk tags is generally an offset to the next Main chunk.

Following each Main chunk tag is data associated with the Main chunk and/or
Subordinate chunk tags. Thus, the reader/parser must understand the format
and length of the data associated with each Main chunk in order to extract
information contained in Subordinate chunks owned by the Main chunk.

File Details
The first tag of the file, the Primary chunk, has an ID of 4D4Dh. Beneath the
Primary chunk in the tag hierarchy are Main chunks.

Chunks

Table Autodesk 3D Studio-I lists the possible chunks known at this time:

TABLE AUTODESK 3D STUDIO•t: Autodesk 3D Studio Chunks

ID Name Data 'JYpe

0000 NULL_ CHUNK NA
0001 unknown (possibly

FLOAT)
0002 M3D_VERSION SHORT
0005 M3D_KFVERSION NA
0010 COLOR_F FLOAT

R,G,B
0011 COLOR_24 BYfER,G,B

0012 LIN_COLOR_24 BYfER,G,B

0013 LIN_COLOR_F FLOAT
R,G,B

0030 INT _PERCENTAGE SHORT
0031 FLOAT_PERCENTAGE FLOAT
0100 MASTER_SCALE FLOAT

284 GRAPHICS FILE FORMATS

Description

Version

Floating-point color
description
24-bit color
description
24-bit color
description
Floating-point color
description
Percentage value
Percentage value
Scale factor

Autodesk JD Studio (cont'd)

ID Name Data "IYPe Description

0995 Chunk Type NA
0996 Chunk Unique NA
0997 NotChunk NA
0998 Container NA
0999 IsChunk NA
Oc3c C_SXP _SELFI_MASKDATA NA
1100 BIT_MAP CHAR[] 0-terminated ASCII

string
1101 USE_BIT_MAP NA
1200 SOUD_BGND FLOAT

R,G,B
1201 USE_SOLID_BGND NA
1300 V_GRADIENT FLOAT Midpoint of

gradient
1301 USE_ V _GRADIENT NA
1400 LO _SHADOW _BIAS FLOAT Bias
1410 HI_SHADOW _BIAS NA
1420 SHADOW_MAP_SIZE SHORT Size
1430 SHADOW _SAMPLES NA
1430 SHADOW_RANGE NA
1430 SHADOW _FILTER FLOAT Filter
1460 RAY_BIAS FLOAT Bias
1500 O_CONSTS FLOATx,y,z Plane values
2100 AMBIENT_LIGHT NA
2200 FOG FLOAT[4] near_plane,

near _density,
far_plane,
far _density

2201 USE_FOG NA
2210 FOG_BGND NA
2300 DISTANCE_ CUE FLOAT[4] near_plane,

near_density,
far_plane,
far_density

2301 USE_DISTANCE_CUE NA
2302 LAYER_FOG FLOAT[3], fog_z_from,

fog_z_to,
fog_ density

SHORT fog_ type
2303 USE_IAYER_FOG NA

AUTODESK 3D STUDIO 285

Autodesk 3D Studio (cont'd)

ID Name Data 'I}'pe Description

2310 DCUE_BGND NA
2d2d SMAGIC NA
2d3d LMAGIC NA
3000 DEFAULT_ VIEW NA
3010 VIEW_TOP FLOAT[4] target_x, target_y,

target_z, view_ width
3020 VIEW_BOTTOM FLOAT[4] target_x, target_y,

target_z, view_width
3030 VIEW_LEFT FLOAT[4] target_x, target_y,

target_z, view_width
3040 VIEW_RIGHT FLOAT[4] target_x, target_y,

target_z, view_width
3050 VIEW_FRONT FLOAT[4] target_x, target_y,

target_z, view_width
3060 VIEW_BACK FLOAT[4] target_x, target_y,

target_z, view_width
3070 VIEW_USER FLOAT[4] target_x, target_y,

target_z, view_width
3080 VIEW_CAMERA CHAR[] 0-terminated ASCll

string
3090 VIEW_WINDOW NA
3d 3d MDATA WORD Mesh data magic

number4d4d
3d3e MESH_ VERSION NA
3daa MLIBMAGIC WORD Material library

magic number
3dc2 PRJMAGIC WORD Project number

magic number
3dff MATMAGIC WORD Material file magic

number
4000 NAMED_OBJECT CHAR[] 0-terminated ASCII

string
4010 OBJ_HIDDEN NA
4011 OBJ_ VIS_LOFTER NA
4012 OBJ_DOESNT_CAST NA
4013 OBJ_MATTE NA
4014 OBJ_FAST NA
4015 OBJ_PROCEDURAL NA
4016 OBJ_FROZEN NA
4017 OBJ_DONT_RCVSHADOW NA

286 GRAPHICS FILE FORMATS

Autodesk 3D Studio (cont'd)

ID Name Data 1}'pe Description

4100 N_TRI_OBJECT NA Named triangle
object

4110 POINT_ARRAY SHORT, Number of points
POINT[] Array of POINT

structs
4111 POINT_FLAG_ARRAY SHORT, Number of flags

SHORT[] Array of SHORT
flags

4120 FACE_ARRAY SHORT, Number of faces
FACE[] Array of FACE

structs
4130 MSH_MAT_GROUP CHAR[], Material name

SHORT, Number of faces
SHORT[] Face numbers

4140 TEX_VERTS SHORT, Number of vertices
VERTEX[] Array of VERTEX

structs
4150 SMOOTH_ GROUP SHORT[] Groups = faces x 4
4160 MESH_MATRIX FLOAT[4] [3] 4x3 FLOAT matrix
4170 MESH_TEXTURE_INFO SHORT, map_type

FLOAT[2], x_tiling, y _tiling
FLOAT[3], icon_x, icon_y,

icon_z
FLOAT[4] [3], 4x3 FLOAT matrix
FLOAT[4] scaling,

plan_icon_w,
plan_icon_h,
cyl_icon_h

4181 PROC_NAME NA
4182 PROC_DATA NA
4190 MSH_BOXMAP NA
4400 N_D_L_OLD NA
4500 N_CAM_OLD NA
4600 N_DIRECT_UGHT FLOAT[3] x,y,z of light
4610 DL_SPOTLIGHT FLOAT[5] target_x, target_y,

target_z,
hotspot_ang,
falloff_ang

4620 DL_OFF NA
4625 DL_ATTENUATE NA

AUTODESK 3D STUDIO 287

Autodesk 3D Studio (cont'd)

ID Name Data 1}rpe Description

4627 DL_RAYSHAD NA
4630 DL_SHADOWED NA
4640 DL_LOCAL_SHADOW NA
4641 · DL_LOCAL_SHADOW2 NA
4650 DL_SEE_CONE NA
4651 DL_SPOT_RECTANGULAR NA
4652 DL_SPOT_OVERSHOOT NA
4653 DL_SPOT_PROJECTOR NA
4654 DL_EXCLUDE NA
4655 DL_RANGE NA
4656 DL_SPOT_ROLL FLOAT Roll angle
4657 DL_SPOT _ASPECT NA
4658 DL_RAY_BIAS FLOAT Bias
4659 DL_INNER_RANGE FLOAT Range
465a DL_OUTER_RANGE FLOAT Range
465b DL_MULTIPUER FLOAT Multiplier value
4680 N_AMBIENT_UGHT NA
4700 N_CAMERA FLOAT[3], carnera_x,carnera_~

camera_z
FLOAT[3], target_x, target_y,

target_z
FLOAT(2] bank_angle, focus

4710 CAM_ SEE_ CONE NA
4720 CAM_RANGES FLOAT[2] near_range,

far_range
4d4d M3DMAGIC NA 3DS file magic

number
4£00 HIERARCHY NA
4fl0 PARENT_OBJECT NA
4f20 PIVOT_ OBJECT NA
4f30 PIVOT_LIMITS NA
4f40 PIVOT_ORDER NA
4£50 XLATE_RANGE NA
5000 POLY_2D NA
5010 SHAPE_ OK NA
5011 SHAPE_NOT_OK NA
5020 SHAPE_HOOK NA
6000 PATH_ 3D NA
6005 PATH_MATRIX NA
6010 SHAPE_2D NA

288 GRAPHICS FILE FORMATS

Autodesk JD Studio (cont'd)

ID Name Data 'I}pe Description

6020 M_SCALE NA
6030 M_TWIST NA
6040 M_TEETER NA
6050 M_FIT NA
6060 M_BEVEL NA
6070 XZ_CURVE NA
6080 Yl_CURVE NA
6090 INTERPCf NA
60a0 DEFORM_UMIT NA
6100 USE_ CONTOUR NA
6110 USE_ TWEEN NA
6120 USE_SCALE NA
6130 USE_TWIST NA
6140 USE_ TEETER NA
6150 USE_FIT NA
6160 USE_BEVEL NA
7000 VIEWPORT_LAYOUT_OLD NA
7001 VIEWPORT_LAYOUT SHORT[7] form, top, ready,

wstate, swapws,
swapport, swapcur

7010 VIEWPORT_DATA_OLD NA
7011 VIEWPORT_DATA SHORT[7], flags, axis_lockout,

win_x,win_~win_w,

win_h, win_ view
FLOAT[6], zoom,

worldcenter_x,
worldcenter_y,
worldcenter _z,
horiz_and, vert_ang

CHAR[] 0-terminated ASCII
string-camera
name

7011 VIEWPORT_DATA_3 SHORT[7], flags, axis_lockout,
win_x, win_y, win_w,
win_h, win_ view

FLOAT[6], zoom,
worldcenter_x,
worldcenter_y,
worldcen ter _z,
horiz_and, vert_ang

AUTODESK 3D STUDIO 289

Autodesk 3D Studio (cont'd)

ID Name Data 'I)pe Description

CHAR[] 0-terminated ASCII

string-camera
name

7020 VIEWPORT_SIZE SHORT[4] x,y,width,height
7030 NETWORK_ VIEW NA
8000 XDATA_SECTION NA
8001 XDATA_ENTRY NA
8002 XDATA_APPNAME NA
8003 XDATA_STRING NA
8004 XDATA_FLOAT NA
8005 XDATA_DOUBLE NA
8006 XDATA_SHORT NA
8007 XDATA_LONG NA
8008 XDATA_VOID NA
8009 XDATA_GROUP NA
800a XDATA_RFU6 NA
BOOb XDATA_RFU5 NA
800c XDATA_RFU4 NA
800d XDATA_RFU3 NA
800e XDATA_RFU2 NA
800f XDATA_RFUl NA
80f0 PARENT_NAME NA
aOOO "MAT_NAME CHAR[] 0-terminated ASCII

string-material
name

aOlO MAT_AMBIENT NA
a020 MAT_DIFFUSE NA
a030 MAT_SPECULAR NA
a040 MAT_SHININESS NA
a041 MAT_SHIN2PCT NA
a042 MAT_SHIN3PCT NA
a050 MAT_TRANSPARENCY NA
a052 MAT_XPFALL NA
a053 MAT_REFBLUR NA
a080 MAT_SELF _ILLUM NA
a081 MAT_TWO_SIDE NA
a082 MAT_DECAL NA
a083 MAT_ADDITIVE NA
a084 MAT_SELF _ILPCT NA
a085 MAT_ WIRE NA

290 GRAPHICS FILE FORMATS

Autodesk 3D Studio (cont'd)

ID Name Data 'I}pe Description

a086 MAT_SUPERSMP NA
a087 MAT_ WIRESIZE FLOAT Wire size
a088 MAT_FACEMAP NA
a08a MAT_XPFALUN NA
a08c MAT_PHONGSOFT NA
a08e MAT_WIREABS NA
alOO MAT_SHADING SHORT Shading value
a200 MAT_TEXMAP NA
a204 MAT_SPECMAP NA
a210 MAT_OPACMAP NA
a220 MAT_REFLMAP NA
a230 MAT_BUMPMAP NA
a240 MAT_USE_XPFALL NA
a250 MAT_ USE_REFBLUR NA
a252 MAT_BUMP _PERCENT NA
a300 MAT_MAPNAME CHAR[] 0-terminated ASCII

filename
a310 MAT_ACUBIC NA
a320 MAT_SXP_TEXT_DATA NA
a321 MAT_SXP _TEXT2_DATA NA
a322 MAT_SXP_OPAC_DATA NA
a324 MAT~SXP _BUMP _DATA NA
a325 MAT_SXP _SPEC_DATA NA
a326 MAT_SXP _SHIN_DATA NA
a328 MAT_SXP _SELFI_DATA NA
a32a MAT_SXP_TEXT_DATA NA
a32c MAT_SXP _TEXT2_MASKDATA NA
a32e MAT_SXP _OPAC_MASKDATA NA
a330 MAT_SXP _BUMP _MASKDATA NA
a332 MAT_SXP _SPEC_MASKDATA NA
a334 MAT_SXP _SHIN_MASKDATA NA
a336 MAT_SXP _SELFI_MASKDATA NA
a338 MAT_SXP _REFL_MASKDATA NA
a33a MAT_TEX2MAP NA
a33c MAT_SHINMAP NA
a33d MAT_SELFIMAP NA
a33e MAT_TEXMASK NA
a340 MAT_TEX2MASK NA
a342 MAT_OPACMASK NA
a344 MAT_BUMPMASK NA

AUTODESK 3D STUDIO 29}

Autodesk 3D Studio (cont'd)

ID Name Data 'IYPe Description

a346 MAT_SHINMASK NA
a348 MAT_SPECMASK NA
a34a MAT_SELFIMASK NA
a34c MAT_REFLMASK NA
a350 MAT_MAP _TILINGOLD NA
a351 MAT_MAP_TILING SHORT Flags
a352 MAT_MAP_TEXBLUR_OLD NA
a353 MAT_MAP_TEXBLUR FLOAT Blurring value
a354 MAT_MAP_USCALE NA
a356 MAT_MAP_VSCALE NA
a358 MAT_MAP_UOFFSET NA
a35a MAT_MAP _ VOFFSET NA
a35c MAT_MAP_ANG NA
a360 MAT_MAP _COLI NA
a362 MAT_MAP_COL2 NA
a364 MAT_MAP_RCOL NA
a366 MAT_MAP_GCOL NA
a368 MAT_MAP_BCOL NA
aflf MAP_ENTRY NA
bOOO KFDATA NA
bOO! AMBIENT_NODE_TAG NA
b002 OBJECT_NODE_TAG NA
b003 CAMERA_NODE_TAG NA
b004 TARGET_NODE_TAG NA
b005 UGHT_NODE_TAG NA
b006 L_TARGET_NODE_TAG NA
b007 SPOTLIGHT_NODE_TAG NA
bOOS KFSEG SHORT[2] start, end
b009 KFCURTIME SHORT cur frame
bOO a KFHDR SHORT, Revision number

CHAR[], 0-tenninated ASCII
filename

SHORT Animation length
bOlO NODE_HDR CHAR[], 0-terminated ASCII

object name
SHORT[3] flagsl, flags2,

hierarchy
bOll INSTANCE_NAME NA
b012 PRE SCALE NA

292 GRAPHICS FILE FORMATS

Autodesk 3D Studio (cont'd)

m Name Data 'JYpe Description

b013 PIVOT FLOAT[3] pivot_x, pivot_y,
pivot_z

b014 BOUND BOX NA
b015 MORPH_SMOOTH FLOAT Smoothing angle

(radians)
b020 POS_TRACK_TAG SHORT, Flags

SHORT[4], Unknown
SHORT, Keys
SHORT Unknown
POSITION [keys] Array of POSITION

structs
b021 ROT_TRACK_TAG SHORT, Flags

SHORT[4], Unknown
SHORT, Keys
SHORT, Unknown
ROTATION [keys] Array of ROTATION

structs
b022 SCL_TRACK_TAG SHORT, Flags

SHORT[4], Unknown
SHORT, Keys
SHORT, Unknown
SCALE [keys] Array of SCALE

structs
b023 FOV_TRACK_TAG SHORT, Flags

SHORT[4], Unknown
SHORT, Keys
SHORT, Unknown
FOV[keys] Array of FOV structs

b024 ROLL_ TRACK_ TAG SHORT, Flags
SHORT[4], Unknown
SHORT, Keys
SHORT, Unknown
ROLL[keys] Array of ROLL

structs
b025 COL_ TRACK_ TAG SHORT, Flags

SHORT[4], Unknown
SHORT, Keys
SHORT, Unknown
COLOR[keys] Array of COLOR

structs

AUTODESK 3D STUDIO 293

Autodesk 3D Studio (cont'd)

ID Name Data 1YPe Description

b026 MORPH_TRACK_TAG SHORT, Flags
SHORT[4], Unknown
SHORT, Keys
SHORT, Unknown
MORPH[keys] Array of MORPH

structs
b027 HOT_TRACK_TAG SHORT, Flags

SHORT[4], Unknown
SHORT, Keys
SHORT, Unknown
HOTSPOT[keys] Array of HOTSPOT

structs
b02S FALL_ TRACK_ TAG SHORT, Flags

SHORT[4], Unknown
SHORT, Keys
SHORT, Unknown
FALLOFF[keys] Array of FALLOFF

structs
b029 HIDE_ TRACK_ TAG NA
b030 NODE_ID SHORT ID value
cOlO C_MDRAWER NA
c020 C_TDRAWER NA
c030 C_SHPDRAWER NA
c040 C_MODDRAWER NA
c0 50 C_RIPDRAWER NA
c060 C_TXDDRAWER NA
c062 C_PDRAWER NA
c064 C_MTLDRAWER NA
c066 C_FLIDRAWER NA
c067 C_CUBDRAWER NA
c070 C_MFILE NA
cOSO C_SHPFILE NA
c090 C_MODFILE NA
cOaO C_RIPFILE NA
cOhO C_TXFILE NA
c0b2 C_PFILE NA
c0b4 C_MTLFILE NA
c0b6 C_FLIFILE NA
cObS C_PALFILE NA
cOcO C_TX_STRING NA

294 GRAPHICS FILE FORMATS

Autodesk 3D Studio (cont'd)

ID Name Data'!YPe Description

cOdO C_CONSTS NA
cO eO C_SNAPS NA
c0£0 C_GRIDS NA
clOO C_ASNAPS NA
c.llO C_GRID_RANGE NA
cl20 C_RENDTYPE NA
cl30 C_PROGMODE NA
cl40 C_PREVMODE NA
cl50 C_MODWMODE NA
cl60 C_MODMODEL NA
cl70 C_ALL_UNES NA
cl80 C_BACK_TYPE NA
cl90 C_MD_CS NA
ciaO C_MD_CE NA
clbO C_MD_SML NA
cleO C_MD_SMW NA
clc3 C_LOFT_~TH_TEXTURE NA
clc4 C_LOFT_L_REPEAT NA
clc5 C_LOFf_W_REPEAT NA
clc6 C_LOFT_UV_NORN.UUJZE NA
clc7 C_WELD_LOFT NA
cldO C_MD_PDET NA
cleO C_MD_SDET NA
cl£0 C_RGB_MODE NA
c200 C_RGB_HIDE NA
c202 C_RGB_MAPSW NA
c204 C_RGB_TWOSIDE NA
c208 C_RGB_SHADOW NA
c210 C_RGB_AA NA
c220 C_RGB_OVW NA
c230 C_RGB_OVH NA
c23d CMAGIC NA
c240 C_RGB_PICTYPE NA
c250 C_RGB_OUTPUT NA
c253 C_RGB_TODISK NA
c254 C_RGB_COMPRESS NA
c255 CJPEG_COMPRESSION NA
c256 C_RGB_DISPDEV NA
c259 C_RGB_HARDDEV NA
c25a C_RGB_PATH NA

AUTODESK 3D STUDIO 295

Autodesk 3D Studio (cont'd)

ID Name Data Type Description

c25b C_BITMAP _DRAWER NA
c260 C_RGB_FILE NA
c270 C_RGB_OVASPECT NA
c271 C_RGB_ANIMTYPE NA
c272 C_RENDER_ALL NA
c273 C_REND_FROM NA
c274 C_REND_TO NA
c275 C_REND_NTH NA
c276 C_PAL_TYPE NA
c277 C_RND_TURBO NA
c278 C_RND_MIP NA
c279 C_BGND_METHOD NA
c27a C_AUTO _REFLECT NA
c27b C_VP_FROM NA
c27c C_VP_TO NA
c27d C_VP_NTH NA
c27e C_REND_TSTEP NA
c27f C_VP_TSTEP NA
c280 C_SRDIAM NA
c290 C_SRDEG NA
c2a0 C_SRSEG NA
c2b0 C_SRDIR NA
c2c0 C_HETOP NA
c2d0 C_HEBOT NA
c2e0 C_HEHT NA
c2f0 C_HETURNS NA
c300 C_HEDEG NA
c310 C_HESEG NA
c320 C_HEDIR NA
c330 C_QUIKSTUFF NA
c340 C_SEE_UGHTS NA
c350 C_SEE_CAMERAS NA
c360 C_SEE_3D NA
c370 C_MESHSEL NA
c380 C_MESHUNSEL NA
c390 C_POLYSEL NA
c3a0 C_POLYUNSEL NA
c3a2 C_SHPLOCAL NA
c3a4 C_MSHLOCAL NA
c3b0 C_NUM_FORMAT NA

296 GRAPHICS FILE FORMATS

Autodesk JD Studio (cont'd)

ID Name Data Type Description

c3c0 C_ARCH_DENOM NA
c3d0 C_IN_DEVICE NA
c3e0 C_MSCALE NA
c3£0 C_COMM_PORT NA
c400 C_TAB_BASES NA
c410 C_TAB_DIVS NA
c420 C_MASTER_SCALES NA
c430 C_SHOW _ISTVERT NA
c440 C_SHAPER_OK NA
c450 C_LOFTER_OK NA
c460 C_EDITOR_OK NA
c470 C_KEYFRAMER_OK NA
c480 C_PICKSIZE NA
c490 C_MAPTYPE NA
c4a0 C_MAP _DISPLAY NA
c4b0 C_TILE_XY NA
c4c0 C_MAP_xYz NA
c4d0 C_MAP_SCALE NA
c4e0 C_MAP _MATRIX_ OLD NA
c4el C_MAP _MATRIX NA
c4ID C_MAP_WID_HT NA
c500 C_OBNAME NA
c510 C_CAMNAME NA
c520 C_LTNAME NA
c525 C_CUR_MNAME NA
c526 C_CURMTL_FROM_MESH NA
c527 C_GET_SHAPE_MAKE_FACES NA
c530 C_DETAIL NA
c540 C_VERTMARK NA
c550 C_MSHAX NA
c560 C_MSHCP NA
c570 C_USERAX NA
c580 C_SHOOK NA
c590 C_RAX NA
c5a0 C_STAPE NA
c5b0 C_LTAPE NA
c5c0 C_ETAPE NA
c5c8 C_KTAPE NA
c5c0 C_ETAPE NA
c5d0 C_SPHSEGS NA

AUTODESK 3D STUDIO 297

Autodesk 3D Studio (cont'd)

ID Name Data Type Description

c5e0 C_GEOSMOOTH NA
c5f0 C_HEMISEGS NA
c600 C_PRISMSEGS NA
c610 C_PRISMSIDES NA
c620 C_TUBESEGS NA
c630 C_TUBESIDES NA
c640 C_TORSEGS NA
c650 C_TORSIDES NA
c660 C_CONESIDES NA
c66l C_CONESEGS NA
c670 C_NGPARMS NA
c680 C_PTHLEVEL NA
·c690 C_MSCSYM NA
c6a0 C_MFTSYM NA
c6b0 C_MTISYM NA
c6c0 C_SMOOTHING NA
c6d0 C_MODICOUNT NA
cfieO C_FONTSEL NA
c6f0 C_TESS_TYPE NA
c6fl C_TESS_TENSION NA
c700 C_SEG_START NA
c705 C_SEG_END NA
c710 C_CURTIME NA
c715 C_ANIMLENGTH NA
c720 C_PV_FROM NA
c725 C_PV_TO NA
c730 C_PV _DOFNUM NA
c735 C_PV_RNG NA
c740 C_PV_NTH NA
c745 C_PV_TYPE NA
c750 C_PV_METHOD NA
c755 C_PV_FPS NA
c765 C_ VTR_FRAMES NA
c770 C_VTR_HDTL NA
c771 C_VTR_HD NA
c772 C_VTR_TL NA
c775 C_VTR_IN NA
c780 C_VTR_PK NA
c785 C_VTR_SH NA
c790 C_WORK_MTLS NA

298 GRAPHICS FILE FORMATS

Autodesk .3D Studio (cont'd)

ID Name Data Type Description

c792 C_ WORK_MTLS_2 NA
c793 C_ WORK_MTLS_3 NA
c794 C_ WORK_MTLS_4 NA
c7al C_BGTYPE NA
c7b0 C_MEDTILE NA
c7d0 C_LO_CONTRAST NA
c7dl C_HI_CONTRAST NA
c7e0 C_FROZ_DISPIAY NA
c7f0 C_BOOLWELD NA
c7fl C_BOOLTYPE NA
c900 C_AND_THRESH NA
c901 C_SS_THRESH NA
c903 C_TEXTURE_BLUR_DEFAULT NA
caOO C_MAPDRAWER NA
caOI C_MAPDRAWERI NA
ca02 C_MAPDRAWER2 NA
ca03 C_MAPDRAWER3 NA
ca04 C_MAPDRAWER4 NA
ca05 C_MAPDRAWER5 NA
ca06 C_MAPDRAWER6 NA
ca07 C_MAPDRAWER7 NA
ca08 C_MAPDRAWER8 NA
ca09 C_MAPDRAWER9 NA
calO C_MAPDRAWER_ENTRY NA
ca20 C_BACKUP _FILE NA
ca21 C_DITHER_256 NA
ca22 C_SAVE_LAST NA
ca23 C_USE_ALPHA NA
ca24 C_TGA_DEPTH NA
ca25 C_REND_FIELDS NA
ca26 C_REFLIP NA
ca27 C_SEL_ITEMTOG NA
ca28 C_SEL_RESET NA
ca29 C_STICKY_KEYINF NA
ca2a C_WELD_THRESHOLD NA
ca2b C_ZCLIP _POINT NA
ca2c C_ALPHA_SPUT NA
ca30 C_KF _SHOW _BACKFACE NA
ca40 C_OPTIMIZE_LOFT NA
ca42 C_TENS_DEFAULT NA

AUTODESK 3D STUDIO 299

Autodesk 3D Studio (cont'd)

ID Name Data 'I)'pe Description
ca44 C_CONT_DEFAULT NA
ca46 C_BIAS_DEFAULT NA
ca50 C_DXFNAME_SRC NA
ca60 C_AUTO_WELD NA
ca70 C_AUTO_UNIFY NA
ca80 C_AUTO_SMOOTH NA
ca90 C_DXF_SMOOTH_ANG NA
caaO C_SMOOTH_ANG NA
cbOO C_ WORK_MTLS_5 NA
cbOl C_WORK_MTLS_6 NA
cb02 C_WORK_MTLS_7 NA
cb03 C_ WORK_MTLS_8 NA
cb04 C_WORKMTL NA
cblO C_SXP _TEXT_DATA NA
cbll C_SXP _ OPAC_DATA NA
cbl2 C_SXP _BUMP _DATA NA
cbl3 C_SXP _SHIN_DATA NA
cb20 C_SXP _TEXT2_DATA NA
cb24 C_SXP _SPEC_DATA NA
cb28 C_SXP _SELFI_DATA NA
cb30 C_SXP _TEXT_MASKDATA NA
cb32 C_SXP _TEXT2_MASKDATA NA
cb34 C_SXP _ OPAC_MASKDATA NA
cb36 C_SXP _BUMP _MASKDATA NA
cb38 C_SXP _SPEC_MASKDATA NA
cb3a C_SXP_SHIN_MASKDATA NA
cb3e C_SXP _REFL_MASKDATA NA
ccOO C_NET_USE_VPOST NA
cclO C_NET_USE_GAMMA NA
cc20 C_NET_FIELD_ORDER NA
cdOO C_BLUR_FRAMES NA
cdlO C_BLUR_SAMPLES NA
cd20 C_BLUR_DUR NA
cd30 C_HOT_METHOD NA
cd40 C_HOT_CHECK NA
cd50 C_PIXEL_SIZE NA
cd60 C_DISP_GAMMA NA
cd70 C_FBUF_GAMMA NA
cd80 C_FILE_OUT_GAMMA NA
cd82 C_FILE_IN_ GAMMA NA

300 GRAPHICS FILE FORMATS

Autodesk JD Studio (cont'd)

ID Name Data'IYPe Description

cd84 C_GAMMA_CORRECT NA
cd90 C_APPLY_DISP_GAMMA NA
cdaO C_APPLY_FBUF_GAMMA NA
cdbO C_APPLY_FILE_GAMMA NA
cdcO C_FORCE_ WIRE NA
cddO C_RAY_SHADOWS NA
cdeO C_MASTER_AMBIENT NA
cdfU C_SUPER_SAMPLE NA
ceOO C_OBJECT_MBUR NA
celO C_MBLUR_DITHER NA
ce20 C_DITHER_24 NA
ce30 C_SUPER_BLACK NA
ce40 C_SAFE_FRAME NA
ce50 C_ VIEW _PRES_RATIO NA
ce60 C_BGND_PRES_RATIO NA
ce70 C_NTH_SERIAL_NUM NA
dOOO VPDATA NA
dlOO P _QUEUE_ENTRY NA
dllO P _QUEUE_IMAGE NA
dll4 P _QUEUE_USEIGAMMA NA
dl20 P_QUEUE_PROC NA
dl30 P _QUEUE_ SOLID NA
dl40 P _QUEUE_ GRADIENT NA
dl50 P_QUEUE_KF NA
dl52 P_QUEUE_MOTBLUR NA
dl53 P _QUEUE_MB_REPEAT NA
dl60 P_QUEUE_NONE NA
dl80 P _QUEUE_RESIZE NA
dl85 P_QUEUE_OFFSET NA
d190 P _QUEUE_ALIGN NA
dlaO P _CUSTOM_SIZE NA
d210 P _ALPH_NONE NA
d220 P _ALPH_PSEUDO NA
d221 P _ALPH_ OP _PSEUDO NA
d222 P _ALPH_BLUR NA
d225 P _ALPH_PCOL NA
d230 P_ALPH_CO NA
d231 P _ALPH_ OP _KEY NA
d235 P _ALPH_KCOL NA
d238 P _ALPH_OP _NOCONV NA

AUTODESK 3D STUDIO 301

Autodesk 3D Studio (cont'd)

m
d240
d250
d260
d265
d270
d280
d300
d310
d312
d320
d330
d340
d400
d500
£020
£021
£022
£023
£024
£025
£026
£027
£028
fllO
fl20
fl30
fl40
fl50
fHf

Name

P _ALPH_IMAGE
P _ALPH_ALPHA
P_ALPH_QUES
P _ALPH_QUEIMG
P _ALPH_CUTOFF
P_ALPHANEG
P_TRAN_NONE
P _TRAN_IMAGE
P_TRAN_FRAMES
P _TRAN_FADEIN
P _TRAN_FADEOUT
P_TRANNEG
P_RANGES
P _PROC_DATA
POS_TRACK_TAG_KEY
ROT_TRACK_TAG_KEY
SCL_TRACK_TAG_KEY
FOV _TRACK_TAG_KEY
ROLL_TRACK_TAG_KEY
COL_TRACK_TAG_KEY
MORPH_TRACK_TAG_KEY
HOT_TRACK_TAG_KEY
FALL_TRACK_TAG_KEY
POINT_ARRAY_ENTRY
POINT _FLAG_ARRAY_ENTRY
FACE_ARRAY_ENTRY
TEX_ VERTS_ENTRY
SMOOTH_ GROUP _ENTRY
DUMMY

Chunk Order

Data 'J)pe

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

Description

Below is a list of data chunks, and beneath each one a list of chunks or subordi
nate chunks which usually follow them.

2200 (FOG)
COLOR_F fog_bgnd

2300 (DISTANCE_CUE)
dcue_bgnd (data type unknown)

302 GRAPHICS FILE FORMATS

Autodesk 3D Studio (cont'd)

1200 (SOUD_BGND)
COLOR_F

1300 (V_GRADIENT)
COLOR_F (start of color gradient)

COLOR_F (middle)

COLOR_F (end of gradient)

4600 (N_DIRECT_LIGHT)
COLOR_F

7001 (VIEWPORT_LAYOUT)
VIEWPORT_SIZE

VIEWPORT_DATA

a010 (MAT_AMBIENT)
COLOR_F orCOLOR_24

a040 (MAT _SHININESS)
percentage chunk 0030 or0031

a200 (MAT_TEXMAP)
percentage chunk

MAT_MAPNAME

MAT_MAP _TILING

MAT_MAP _TEXBLUR

possibly other material modifier chunks

a204 (MAT_SPECMAP)
percentage chunk

MAT _MAPNAME

bOOO (KFDATA)
KFHDR

b002 (OBJECT_NODE_TAG)
NODE_HDR

PIVOT

POS_TRACK_TAG

ROT_TRACK_TAG

AUTODESK 3D STUDIO 303

Autodesk JD Studio (cont'd)

SCL_TRACK_TAG

possibly others

b003 (CAMERA_NODE_TAG)
NODE_HDR

POS_TRACK_TAG

FOV _TRACK_ TAG

ROLL_ TRACK_ TAG

possibly others

b004 (TARGET_NODE_TAG)
NODE_HDR

POS_TRACK_TAG

possibly others

b005 (LIGHT_NODE_TAG)
NODE_HDR

POS_TRACK_TAG

COL_ TRACK_ TAG

possibly others

b006 (L_TARGET_NODE_TAG)
NODE_ID

NODE_HDR

POS_TRACK_TAG

b007 (SPOTLIGHT_NODE_TAG)
NODE_ID

NODE_HDR

POS_TRACK_TAG

HOT_TRACK_TAG

FALL_ TRACK_ TAG

ROLL_ TRACK_ TAG

COL_ TRACK_ TAG

possibly others

304 GRAPHICS FILE FORMATS

bOOa (KFHDR)
VIEWPORT_IAYOUT

KFSEG

KFCURTIME

OBJECT_NODE_TAG

LIGHT_NODE_TAG

TARGET_NODE_TAG

CAMERA_NODE_TAG

L_TARGET_NODE_TAG

SPOTLIGHT_NODE_TAG

AMBIENT_NODE_TAG

possibly others

Chunk Dependencies

Autodesk 3D Studio (cont'd)

Chunk 4110 (POINT_ARRAY) relies on the following POINT definition:

typedef struct _POINT
{

FLOAT x, y, z;
} POINT;

Chunk 4120 (FACE_ARRAY) relies on the following FACE definition:

typedef struct _FACE
{

SHORT vertexl, vertex2, vertex3, flags;
} FACE;

Chunk 4140 (TEX_ VERTS) relies on the following VERTEX definition:

typedef struct _VERTEX
{

FLOAT x,y;
} VERTEX;

Chunk b020 (POS_TRACK_TAG) relies on the following POSITION defini
tion:

typedef struct _POSITION
{

SHORT frame_number;
DWORD unknown;
FLOAT position_x, position_y, position_z;

POSITION;

AUTODESK 3D STUDIO 305

Autodesk JD Studio (cont'd)

Chunk b021 (ROT_TRACK_TAG) relies on the following ROTATION defini
tion:

typedef struct _ROTATION
{

SHORT frame_number;
DWORD unknown;
FLOAT rotation; /* in radians */
FLOAT axis_x, axis_y, axis_z;

ROTATION;

Chunk b022 (SCL_ TRACK_ TAG) relies on the following definition of SCALE:

typedef _SCALE
{

SHORT frame_number;
DWORD unknown;
FLOAT scale_x, scale_y, scale_z;

SCALE;

Chunk b023 (FOV_TRACK_TAG) relies on the following definition ofFOV:

typedef _FOV
{

SHORT frame_number;
DWORD unknown;
FLOAT field_of_view;

FOV

Chunk b024 (ROLL_ TRACK_ TAG) relies on the following ROLL definition:

typedef _ROLL
{

SHORT frame_number;
DWORD unknown;
FLOAT camera_roll;

ROLL;

Chunk b025 (COL_TRACK_TAG) relies on the following definition of
COLOR:

typedef _COLOR
{

SHORT frame_number;
DWORD unknown;
FLOAT r,g,b;

COLOR;

306 GRAPHICS FILE FORMATS

Autodesk JD Studio (cont'd)

Chunk b026 (MORPH_TRACK_TAG) relies on the following definition of
MORPH:

typedef _MORPH
{

SHORT frame_number;
DWORD unknown;
CHAR object_name[]; /* 0-te~inated ASCII string*/

MORPH;

Chunk b027 (HOT_TRACK_TAG) relies on the following definition of
HOTSPOT:

typedef _HOTSPOT
{

SHORT frame_number;
DWORD unknown;
FLOAT falloff_angle;

HOTSPOT;

ASC File Example

This is a definition of a cube, centered at the origin, and saved in 3D Studio
ASC format:

Ambient light color: Red=0.3 Green=0.3 Blue=0.3

Named object: "Cube"
Tri-mesh, Vertices: 8 Faces: 12
Vertex list:
Vertex 0: X: -1.000000 Y:-1.000000
Vertex 1: X: -1.000000 Y: -1.000000
Vertex 2: X:l.OOOOOO Y:-1.000000
Vertex 3: X:1.000000 Y:-1.000000
Vertex 4: X: -1.000000 Y:l.OOOOOO
Vertex 5: X:l. 000000 Y:l.OOOOOO
Vertex 6: X:l.OOOOOO Y:1.000000
Vertex 7: X:-1.000000 Y:1.000000
Face list:
Face 0 : A: 2 B: 3 C: 1 AB: 1 BC: 1 CA: 1
Material:"r210g210b210ao•
Smoothing: 1
Face 1: A:2 B:1 C:O AB:1 BC:1 CA:1
Material:•r210g210b210a0"
Smoothing: 1
Face 2: A:4 B:S C:2 AB:1 BC:l CA:1
Material:•r210g210b210ao•
Smoothing: 1
Face 3: A:4 B:2 C:O AB:l BC:l CA:l
Material:"r210g210b210a0"

Z:O.OOOOOO
Z:2.000000

Z:O.OOOOOO
Z:2.000000
Z:O.OOOOOO

Z:O.OOOOOO
Z:2.000000

Z:2.000000

AUTODESK 3D STUDIO 307

Autodesk 3D Studio (cont'd)

Smoothing: 1
Face 4 : A: 6 B: 3 C: 2 AB: 1 BC: 1 CA: 1
Material:•r210g210b210ao•
Smoothing: 1
Face 5: A:6 B:2 C:S AB:1 BC:1 CA:1
Material:•r210g210b210ao•
Smoothing: 1
Face 6: A:6 B:7 C:1 AB:1 BC:1 CA:1
Material:nr210g210b210aO•
Smoothing: 1
Face 7: A:6 B:1 C:3 AB:1 BC:1 CA:1
Material:•r210g210b210ao•
Smoothing: 1
Face 8: A:6 B:S C:4 AB:1 BC:1 CA:1
Material:"r210g210b210ao•
Smoothing: 1
Face 9: A:6 B:4 C:7 AB:1 BC:1 CA:1
Material:•r210g210b210aon
Smoothing: 1
Face 10: A:1 B:7 C:4 AB:1 BC:1 CA:1
Material:•r210g210b210ao•
Smoothing: 1
Face 11: A:1 B:4 C:O AB:1 BC:1 CA:1
Material:•r210g210b210ao•
Smoothing: 1

For Further Information
Autodesk sells a package that includes documentation on the 3DS file format.
Please contact them for further details.

Autodesk Developer Marketing
2320 Marinship Way
Sausalito, CA 94965
Voice: 415-491-8719
WWW: http:/ /www.autodesk.com

Information in this article was obtained from the following two documents:

Lewis, Jeff, The Unofficial 3D Studio 3DS File Format, v1.0, 1 December
1995.

Pitts, Jim, 3D Studio File Format (3dS), Document Revision 0.8, 18 Decem
ber 1994.

308 GRAPHICS FILE FORMATS

These can be found at:

http://www.europa.com/-keithr/

Autodesk 3D Studio (cont'd)

AUTODESK 3D STUDIO 309

IBDF
NAME:

ALSO KNOWN AS:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

I MAGES ON CD:

SEE ALSO:

BDF

Bitmap Distribution Format

Bitmap

Mono

None

Unlimited

Yes

ASCII

X Consortium

Any supporting X Window System

Many X applications

Yes

No

Yes

None

usAGE: Used to store and exchange font information.

coMMENTs: Can be used to store arrays of ornamental glyph and other bitmap data.

Overview
BDF (Bitmap Distribution Format) is used by the X Window System as a
method of storing and exchanging font data with other systems. The current
version ofBDF is 2.1; it is part of XII Release 6. BDF is similar in concept to the
PostScript Page Description Language. Both formats store data as printable
ASCII characters, using lines of ASCII text that vary in length. Each line is termi
nated by an end-of-line character that may be a carriage return (ASCII ODh), a
linefeed (ASCII OAh), or both.

Each BDF file stores information for exactly one typeface at one size and orien
tation (in other words, a font). A typeface is the name of the type style, such as
Goudy, Courier, or Helvetica. A font is a variation in size, style, or orientation
of a typeface, such as Goudy 10 Point, Courier Italic, or Helvetica Reversed. A
glyph is a single character of a font, such as the letter 'Y'· A BDF file therefore
contains the data for one or more glyphs of a single font and typeface.

310 GRAPHICS FILE FORMATS

BDF (cont'd)

File Organization
A BDF file begins with information pertaining to the typeface as a whole, fol
lowed by the information on the font, and finally by the bitmapped glyph
information itself. The information in a BDF file is stored in a series of records.
Each record begins with an uppercase keyword, followed by one or more fields
called tokens:

KEYWORD <token> <token> ...

All records, keywords, and information fields contain only ASCII characters
and are separated by spaces. Lines are terminated by a <CR>, <LF>, or
<CR/LF> pair. More than one record ~ay appear on a physical line.

File Details
Following are some of the more common records found in BDF files:

START~ONT <version>
END FONT

All BDF files begin with the STARTFONT record. This record contains a single
information field indicating the version of the BDF format used in the file. The
STARTFONT record contains all of the information within the BDF file and is
terminated by the ENDFONT keyword as the last record in the file.

COMMENT <text>

COMMENT records may be found anywhere between the STARTFONT and
ENDFONT records. They usually contain human-readable text that is ignored
by font-reader applications.

FONT <fontname>

The FONT record specifies the name of the font contained within the BDF file.
The name is specified using either the XFD font name or a private font name.
The name may contain spaces, and the line containing the FONT record must
be terminated by an end-of-line character.

SIZE <pointsize> <x resolution> <y resolution>

SIZE specifies the size of the font in points and the resolution of the output
device that is to support the font.

FONTBOUNDINGBOX <width> <height> <X offset> <y offset>

BDF 311

BDF (cont'd)

The FONTBOUNDINGBOX record stores the size and the position of the
font's bounding box as an offset from the origin (the lower-left corner of the
bitmap).

STARTPROPERTIES <number of properties>
ENDPROPERTIES

The STARTPROPERTIES record contains subrecords that define the charac
teristics of the font. The STARTPROPERTIES keyword is followed by the num
ber of properties defined within this record. The subrecords specify
information such as the name of the font's creator, the typeface of the font,
kerning and other rendering information, and copyright notices. The END
PROPERTIES record always terminates the STARTPROPERTIES record. Fol
lowing the END PROPERTIES record is the actual font data.

Following are descriptions of some common record keywords that may be used
to describe the font data:

CHARS <number of segments>

The CHARS record indicates the number of font character (glyph) segments
stored in the file.

STARTCHAR <glypbname>
ENDCHAR

The STARTCHAR record contains subrecords that store each glyph's informa
tion and data. The STARTCHAR keyword is followed by the name of the glyph.
This name can be up to 14 characters in length and may not contain any
spaces. The subrecords specify the index number of the glyph, the scalable
width, and the position of the character.

The BITl\1A.P record contains the actual glyph data encoded as 4-digit hex
adecimal values. All bitmapped lines are padded on the right with zeros out to
the nearest byte boundary. All of the glyph information is contained between
the STARTCHAR record and the terminating ENDCHAR record. There is one
STARTCHAR/ENDCHAR section per glyph stored in the BDF file.

Refer to the BDF documentation included with the XllR6 distribution for
more information about the BDF information records.

Following is an example of a BDF file containing the characters j and quo
teright (\&').Note that more than one record appears per physical line:

STARTFONT 2.1 COMMENT This is a sample font in 2.1 format.
FONT -Adobe-Helvetica-Bold-R-Nor.mal--24-240-75-75-
P-65-IS08859-1 SIZE 24 75 75 FONTBOUNDINGBOX 9 24 -2 -6

312 GRAPHICS FILE FORMATS

STARTPROPERTIES 19 FOUNDRY •Adobe" FAMILY "Helvetica•
WEIGHT_NAME "Bold" SLANT "R" SETWIDTH_NAME "Normal"
ADD_STYLE_NAME "• PIXEL_SIZE 24 POINT_SIZE 240 RESOLUTION...){
75 RESOLUTION_Y 75 SPACING •p• AVERAGE_WIDTH 65
CHARSET_REGISTRY "IS08859• CHARSET_ENCODING "1- MIN_SPACE 4
FONT~SCENT 21 FONT_DESCENT 7 COPYRIGHT "Copyright (c) 1987
Adobe Systems, Inc.• NOTICE •Helvetica is a registered
trademark of Linotype Inc.• ENDPROPERTIES CHARS 2 STARTCHAR
j ENCODING 106 SWIDTH 355 0 DWIDTH 8 0 BBX 9 22 -2 -6 BITMAP
0380 0380 0380 0380 0000 0700 0700 0700 0700 OEOO OEOO OEOO
OEOO OEOO 1COO 1COO 1COO !COO 3COO 7800 FOOO EOOO ENDCHAR
STARTCHAR quoteright ENCODING 39 SWIDTH 223 0 DWIDTH 5 0 BBX
4 6 2 12 ATTRIBUTES O!CO BITMAP 70 70 70 60 EO CO ENDCHAR
END FONT

BDF (cont'd)

The following is the same BDF file with each of the records stored on separate
lines and indented to illustrate the layering ofBDF records and subrecords:

STARTFONT 2 • 1
COMMENT This is a sample font in 2.1 format.
FONT -Adobe-Helvetica-Bold-R-Normal--24-240-75-75-P-65-IS08859-1
SIZE 24 75 75
FONTBOUNDINGBOX 9 24 -2 -6
STARTPROPERTIES 19

FOUNDRY "Adobe"
FAMILY "Helvetica"
WEIGHT_NAME "Bold"
SLANT "R•
SETWIDTH_NAME "Normal•
ADD_STYLE_NAME
PIXEL_SIZE 24
POINT_SIZE 240
RESOLUTION_X 7 5
RESOLUTION_Y 75
SPACING •p•
AVERAGE_WIDTH 65
CHARSET_REGISTRY "IS08859"
CHARSET_ENCODING •1•
MIN_SPACE 4
FONT_ASCENT 21
FONT_DESCENT 7
COPYRIGHT "Copyright (c) 1987 Adobe Systems, Inc.•
NOTICE •Helvetica is a registered trademark of Linotype Inc.•

ENDPROPERTIES
CHARS 2
STARTCHAR j

ENCODING 106
SWIDTH 355 0
DWIDTH 8 0
BBX 9 22 -2 -6
BITMAP 0380 0380 0380 0380 0000 0700 0700 0700 0700 OEOO OEOO

BDF 313

BDF (ccmt'd)

OEOO OEOO OEOO lCOO lCOO lCOO lCOO 3COO 7800 FOOO EOOO
ENDCHAR
STARTCHAR quoteright

ENCODING 39
SWIDTH 223 0
DWIDTH 5 0
BBX 4 6 2 12
ATTRIBUTES OlCO
BITMAP 70 70 70 60 EO CO

ENDCHAR
END FONT

ForFurtherhttonnation
For further information, see the BDF specification on the CD-ROM that accom
panies this book. You may also find information about the BDF format in the
X11R5 distribution of the X Window System, available via FfP from:

jtp:/ /jtp.x.org.

314 GRAPHICS FILE FORMATS

NAME:

ALSO KNOWN AS:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

BRLCADI
BRL-CAD

Ballistic Research Laboratory CAD Package

See article

NA

NA

NA

NA

See article

U.S. Army Advanced Communication Systems

UNIX

BRL-CAD

Yes (summary only; specification is too lengthy)

No

No

None

usAGE: Solid modeling, network-distributed image processing.

coMMENTs: A massive, polymorphic system consisting of several standards.

Overview
BRL-CAD (Ballistic Research Laboratory CAD) is a solid-modeling system that
originated at the Advanced Computing Systems Group of the U.S. Army Ballis
tic Research Laboratory. It was originally designed to provide an interactive
editor for use in conjunction with a vehicle-description database. In the U.S.
Army, ''vehicle" often means "tank," and the documention contains many inter
esting and high-quality renderings of tank-like objects.

BRL-CAD is massive, consisting of more than 100 programs, and includes about
280,000 lines of C source code. It is extraordinarily well-documented and has
been distributed to at least 800 sites worldwide.

BRL•CAD 315

BRL-CAD (cont'd)

Conceptually, BRL-CAD implements several subsystems:

• Solid geometry editor

• Ray tracer and ray tracing library

• Image-processing utilities

• General utilities

Data in the current release of BRL-CAD can be in several forms:

• BRL-specific CSG (Constructive Solid Geometry) database

• Uniform B-Spline and NURB surfaces

• Faceted data

• NMG (n-manifold geometry)

For Further Information
The BRL-CAD documentation is extensive and well-written, and we found it a
pleasure to work with. Unfortunately, it is too extensive to be included on the
CD, so we have elected to include only a summary description there. The full
documentation is readily available in The Ballistic &search Laboratory CAD Pack
age, Release 4.0, December 1991, albeit in paper form. Our copy came in a box
weighing about ten pounds! It consists of five volumes:

Volume I The BRL-CAD Philosophy
Volume II The BRL-CAD User's Manual
Volume III The BRL-CAD Applications Manual
Volume IV The MGED User's Manual
Volume V The BRL-CAD Analyst's Manual

This is an extraordinary document set, and not only in contrast to the rest of
the documention we've run across in the research for this book. It's just a great
job. If the application is one-tenth as well-crafted as the documentation, it must
be a marvel.

For general information about BRL-CAD, contact:

Attn: Mike Muuss
BRL-CAD Architect·
U.S. Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5068
mike@brl. mil

316 GRAPHICS FILE FORMATS

BRL-CAD (cont'd)

BRL-CAD is distributed in two forms:

1. Free distribution with no ongoing support. You must complete and return
an agreement form; in return, you will be given instructions on how to
obtain and decrypt the files via FfP. Files are archived at a number of sites
worldwide. One copy of the printed documentation will be sent at no cost.

For further information about this distribution, contact:

BRL-CAD Distribution
Attn: SCLBR-LV-V
Aberdeen Proving Ground, MD 21005-5066
FAX: 410-278-5058
Email: keith@!Jrl. mil

2. Full-sen1ce distribution with support. Items provided are similar to those
mentioned in the free distribution described above, except that it costs
U.S. $500 and may include the software on magnetic tape.

For further information about this distribution, contact:

BRL-CAD Distribution
Attn: Mrs. Carla Moyer
SURVIAC Aberdeen Satellite Office
1003 Old Philadelphia Road, Suite 103
Aberdeen, MD 21001
Voice: 410-273-7794
FAX: 410-272-6763
Emial: cad_dist@!Jrl. mil

For more information on BRL-CAD, see the following:

http:/ /web.arl. mil/sojtware/llrlcad/index. html
BRL-CAD homepage

http:/ /web. arl. mil/reports/
BRL-CAD technical reports

BRL-CAD 317

IBUFR
NAME:

ALSO KNOWN As:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

. SEE ALSO:

BUFR

Binary Universal Form for the Representation of
Meteorological Data

Various

NA

Uncompressed

NA

NA

Binary bit-oriented

World Meteorological Organization

All

Unknown

Yes (summary description)

No

No

GRIB

usAGE: Designed to convey meteorological data, it can be used for any other kind
of data.

coMMENTs: The BUFR format is outside the scope of this book, but we include a brief
description because it is likely to be more useful in the future as interest
in geographical information systems increases.

Overview
BUFR (Binary Universal Form for the Representation of Meteorological Data)
was created by the World Meteorological Organization (WMO). Technically it is
known as WMO Code Form FM 94-IX Ext. BUFR. It is the result of a committee,
which produced the first BUFR documents in 1988. The current revision of the
format, Version 2, dates from 1991. Work on the format is ongoing. It is a code
in the sense that it defines a protocol for the transmission of quantitative data,
one of a number of codes created by the WMO.

BUFR was designed to convey generalized meteorological data, but due to its
flexibility it can be used for almost anything. BUFR files, in fact, were designed

318 GRAPHICS FILE FORMATS

BUFR (cont'd)

to be infinitely extensible, and to this end are written in a unique data descrip
tion language.

We've included BUFR in this book because it can and has been used for trans
mission and exchange of graphics data, although that is not its primary pur
pose. It also is associated with observational data obtained from weather
satellites.

BUFR data streams and files adhere to the specification called WMO Standard
Formats for ~ather Data Exchange Among Automated ~ather Information Systems.

File Organization
BUFR files are stream-based and consist of a number of consecutive records.
The format documentation describes BUFR records as self-descriptive. Records,
or messages, make up the BUFR data stream, and each always contains a table
consisting of a complete description of the data contained in the record,
including data type identification, units, scaling, compression, and bits per
data item.

File Details
Detailing the data definition language implemented in BUFR is beyond the
scope of this article. It is extremely complex and is, at this point, used in a nar
row area of technology.

For Further Information
For detailed information about BUFR, see the summary description included
on the CD that accompanies this book:

Thorpe, W., "Guide to the WMO Code Form FM 94-IX EXT. BUFR,"
Fleet Numerical Oceanography Center, Monterey, California.

Although there are a number of documents on BUFR available from meteoro
logical sources, this article is the most useful that we have found. Additional
information about WMO data specifications can be found in the following offi
cial specification:

Standard Formats for ~ather Data Exchange Among Automated Weather Infor
mation Systems, Document Number FCM-82-1990.

BUFR 319

BUFR (cont'd)

This document is available from:

U.S. Department of Commerce/National Oceanic and Atmospheric
Administration (NOAA}
Attn: Ms. Lena Loman
Office of the Federal Coordinator for Meteorological Services
and Supporting Research (OFCM}
6010 Executive Blvd, Suite 900
Rockville, MD 20852
Voice: 301-443-8704

For further information about the BUFR format, contact:

U.S. Department of Commerce/National Oceanic and Atmospheric
Administration (NOAA}
Attn: Dr. john D. Stackpole
Chief, Production Management Branch, Automation Division
National Meteorological Center
WINMC42, Room 307, WWB
5200 Auth Road
Camp Springs, MD 20746
Voice: 301-763-8115
FAX: 301-763-8381
Email: jstack@sunl. wwb. noaa.gov

You can get online information about BUFR at:

http:/ /dao.gsfc. nasa.gov/data_stuff/formatPages/BUFR.html

320 GRAPHICS FILE FORMATS

NAME:

ALSO KNOWN As:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

CALS Raster

CALS, CAL, RAS

Bitmap

Mono

CCIIT Group 4, uncompressed

Unlimited

Yes (Type II only)

NA

U.S. Department of Defense

All

Too numerous to list

No

No

Yes

None

CALS Raster I

usAGE: Compound document exchange, DTP, CAD/CAM, image processing.

coMMENTs: A well-documented, though cumbersome, format that attempts to do
many things. If you are unfamiliar with U.S. government specification doc
uments, you will probably find working with this format a complicated and
challenging task. CALS raster is mandatory for use in most U.S. govern
ment document-handling applications. Because all data is byte-oriented,
big-endian versus little-endian problems never arise.

Overview
The CALS raster format is a standard developed by the Computer Aided Acqui
sition and Logistics Support (CALS) office of the United States Department of
Defense to standardize graphics data interchange for electronic publishing,
especially in the areas of technical graphics, CAD I CAM, and image processing
applications.

CALS is also an Office Document Interchange Format (ODIF) used in the
Office Document Architecture (ODA) system for the exchange of compound
document data between multiple machine platforms and software applications.
CALS is an attempt to integrate text, graphics, and image data into a standard

CALS RASTER 321

CALS RDster (cont'd)

document architecture. Its ultimate goal is to improve and integrate the logis
tics functions of the military and its contractors.

All technical publications for the federal government must conform to the
CALS standard. Many other government organizations are also quickly adopt
ing CALS. Commercial businesses, such as the medical, telecommunications,
airline, and book publishing industries have also standardized on CALS.

CALS has also come into wide use in the commercial computer industry, such
as in CAD I CAM applications, and in the aerospace industry, which owes a large
part of its business to government and military contracts. GALS-compliant tech
nical illustration systems also use the PostScript Page Description Language
and Encapsulated PostScript files to exchange data between themselves and
commercial systems.

File Organization
There are two types of CALS raster formats as defined by MIL-STD-28002A.
They are specified as the Type I and Type II raster formats. Type I raster data
files contain a single, monochrome image compressed using the CCITT Group
4 (T.6) encoding algorithm and appended to a CALS raster header record data
block.

Type II image files contain one or more monochrome images that are also
stored using the CCITT Group 4 encoding algorithm. In addition, the Type II
format supports the encoding of image data as a collection of pel tiles. Each
tile of image data is either separately encoded using CCITT Group 4 or is
stored in its raw, unencoded format. The location of each tile within the image
is stored in a tile offset index, for convenient retrieval of individual tiles. For
further detail on the CALS Type II raster graphics format, refer to Mllr
R-28002A.

The structures of the two CALS variants, Type I and Type II, are shown below.

The Type I file format consists of the following:

Header
Image Data

The Type II file format looks like this:

Header
Document Profile
Presentation Styles
Document Layout

322 GRAPHICS FILE FORMATS

Root Layout
Layout Object Page 1

Tile Index
Image Data

Layout Object Page 2
Tile Index
Image Data

Layout Object Page N
Tile Index
Image Data

CALS Raster (cont'd)

As you can see, the Type II format is considerably more complex than the Type
I. Each Type II file may contain one or more pages of image data. There is also
a considerable amount of page and document formatting data present in a
Type II file. But by far the most common use of the Type II format is simply to
store a collection of Type I CALS raster images in the same physical file. In such
an arrangement, all the image pages are untiled, CCITI Group 4 encoded, and
the profile, style, and layout information are omitted.

The raster data in a Type I file is always encoded using the CCIIT Group 4
encoding method. CCITT Group 3 encoded and unencoded data is not sup
ported. Type II files may contain tiles that are either CCIIT Group 4 encoded
or raw, unencoded data. Both raw and encoded tiles may occur in the same
Type II CALS file and are always 512 pels in size. If the end of the image is
reached before a tile is completely encoded, then this partial tile is completed
by adding padding.

Two other types of tiles found in Type II images are null foreground and null
background tiles. Null tiles are entirely white or entirely black, depending
upon the designated background and foreground colors. They are actually
pseudo-tiles that are not present in the image data and have no tile offset
value.

Tile data is stored in the image data along the pel path (rows) and down the
line progression (columns). Storage of randomly distributed tiles is possible,
but discouraged. Tiles are normally encoded, unless the image data is so com
plex that the time required to encode the image is too great or unless very lit
tle reduction in the size of the data would result if the tile were encoded. The
inclusion of unencoded data in a T.6-encoded data stream is not supported by
the CALS raster format.

CALS RASTER 323

CALS Raster (cont'd)

File Details
This section contains detailed information about the components of a CALS
raster file.

Header Record Data Block

The CALS raster header is different from most other graphics file format head
ers in that it is composed entirely of 7-bit ASCII characters in a human-readable
format. When most graphics image files are displayed as a text file, seemingly
random garbage is displayed on the screen. Listing a CALS raster file, however,
will reveal ASCII information which is quite understandable to a human reader.
The unintelligible garbage following the header is the compressed image data.

The ·CALs raster data file header is 1408 bytes and is divided into eleven
128-byte records. Each record begins with a predefined 7-bit ASCII record iden
tifier that is followed by a colon. The remaining part of the 128-byte record is
the record information. If a record contains no information, the character
string NONE is found in the record. The remainder of the bytes in each
record contain space characters (ASCII 3 2) as filler. All data in the header
block is byte-oriented, so no adjustments need to be made for byte order.

Following the last record in the header is 640 bytes of padding that rounds the
header out to a full 2048 bytes in length. In fact, the raster image data always
begins at offset 2048. Although this padding is not actually defined as part of
the header, additional records added to future versions of the CALS header
would be placed in this area. The byte value used for the padding is usually a
space character (ASCII 2 Oh), but any ASCII character can be used.

The structure for the CALS raster header block is shown below.

typedef struct _CalsHeader
{

CHAR SourceDocid[128];
CHAR DestDocid[128];
CHAR TextFileid[l28];
CHAR Figureid[128];
CHAR SourceGraph[128];
CHAR DocClass[128];
CHAR RasterType[128];
CHAR Orientation[128];
CHAR Pe1Count[128];
CHAR Density[128];
CHAR Notes[128];
CHAR Padding[640];
} CALSHEAD;

324 GRAPHICS FILE FORMATS

I* Source Document Identifier *I
I* Destination Document ID *I
I* Text File Identifier *I
I* Table Identifier *I
I* Source System Filename *I
I* Data File Security Label *I
I* Raster Data Type *I
I* Raster Image Orientation *I
I* Raster Image Pel Count *I
I* Raster Image Density *I
I* Notes *I
I* Pad header out to 2048-bytes *I

CALS Roster (cont'd)

Image record identifiers
Each record in a CALS raster file starts with a record identifier, which is a string
of ASCII characters followed by a colon and a single space. Record data imme
diately follows the record identifier. If the record does ·not contain ariy relevant
data, then the ASCII string NONE is written after the identifier.

SourceDocld:
SourceDocld starts with the source system document identifier (srcdocid).
This record is used by the source system (the system on which the document
was created) to identify the document to which the image is attached. This
identifier can be a document title, publication number, or other similar infor
mation.

DestDocld:
DestDocld starts with the destination system document identifier (dstdocid).
This record contains information used by the destination organization to iden
tify the document to which the image is attached. This record may contain the
document name, number or title, the drawing number, or other similar infor
mation.

TextFileld:
TextFileld starts with the text file identifier (txtfilid). This record contains a
string indicating the document page that this image page contains. A code is
usually found in this record that identifies the section of the document to
which the image page belongs. Such codes may include:

cov
LEP
WRN
PRM
CHR
FOR
TOC
LOI
SUM
PTn
CHn
SEn
APP-n

Cover or title page
List of effective pages
Warning pages
Promulgation pages
Change record
Forword or preface
Table of contents
Lists of illustrations and tables
Safety Summary
Part number n
Chapter number n
Section number n
Appendix n

CALS RASTER 325

CALS Raster (cont'd)

GLS Glossary
INX Index
FOV Fol~out section

Figureld:
Figureid starts with the figure or table identifier (figid). This is the number by
which the image page figure is referenced. A sheet number is preceded by the
ASCII string -S and followed by the drawing number. A foldout figure is pre
ceded by the ASCII string -F and followed by the number of pages in the fold
out.

SourceGraph:
SourceGraph starts with the source system graphics filename (srcgph). This
record contains the name of the image file.

DocClass:
DocClass starts with the data file security label (doccls). This record identifies
the security level and restrictions that apply to this image page and/ or associ
ated document.

Raster Type:
RasterType starts with the raster data type (rtype). This is the format of raster
image data that follows the header record data block in this file. This record
contains the character 1 for Type I raster data and 2 for Type II raster data.

Orientation:
Orientation starts with the raster image orientation identifier (rorient). This
record indicates the the proper visual orientation of the displayed image. This
data is represented by two strings of three numeric characters separated by a
comma. The first three characters are the direction of the pel path of the
image page. Legal values are 0, 90, 180, and 270 representing the number of
degrees the image was rotated clockwise from the origin when scanned. A page
scanned normally has a pel path of 0 degrees, while an image scanned in
upside-down h~ a pel path of 180 degrees.

The second three characters represent the direction of line progression of the
document. Allowed values are 90 and 270 representing the number of degrees
clockwise of the line progression from the pel path direction. A normal image
has a line progression of 270, while a mirrored image has a line progression of
90.

326 GRAPHICS FILE FORMATS

CALS Raster (cont'd)

Pel Count:
PelCount starts with the raster image pel count identifier (rpelcnt). This
record indicates the width of the image in pels and the length of the image in
scan lines. This data is represented by two strings of six numeric characters sep
arated by a comma. Typical values for this record are shown in Table CALS
Raster-1.

TABLE CALS RASTER-1: JYpical CALS Raster Pel Count Values

Drawing Size

A
B
c
D
E
F

Density:

Pels Per Line, Number of Lines

001728,002200
002240,003400
003456,004400
004416,006800
006848,008800
005632,008000

Density starts with the raster image density identifier (rdensity). This density is
a single four-character numeric string representing the numerical density value
of the image. This record may contain the values 200, 240, 300, 400, 600, or
1200 pels per inch, with 300 pels per inch being the default.

Notes:
Notes starts with the notes identifier (notes). This is a record used to contain
miscellaneous information that is not applicable to any of the other records in
the CALS raster file header.

Example

This section contains an example of a CALS raster file header data block cre
ated by a facsimile (FAX} software application. This image file contains a single
page of a facsimile document received via a computer facsimile card and
stored to disk as a CALS raster image file.

The source of the document is identified as FAX machine number one. The
destination is an identification number used to index the image in a database.
The ID number is constructed from the date the FAX was received, the order
in which it was received (e.g., it was the third FAX received that day), and the

CALS RASTER 327

CALS Rnster (cont'd)

total number of pages. The text file identifier indicates that this file is page
three of a seven-page facsimile document, for example.

The figure record is not needed, so the ASCII string NONE appears in this
field. The source graphics filename contains the MS-DOS filename of the CALS
raster file in which the page is stored. The remaining records indicate that the
FAX document is unclassified, contains Type I CALS raster image data, has a
normal orientation, and that the size and density of the image correspond to
that of a standard facsimile page. The Notes field contains a time stamp show
ing when the FAX was actually received.

Please note that this is only one possible way that data may appear in a CALS
header block. Most government and military software applications create CALS
header blocks that are far more cryptic and confusing than this example. On
the other hand, several CAD packages create simpler CALS headers.

Following is an example of a CALS header record data block:

srcdocid: Fax machine #1
dstdocid: 910814-003.007
txtfilid: 003,007
figid: NONE
srcgph: F0814003.007 ·~
doccls: Unclass
rtype: 1
rorient: 000,270
rpelcnt: 001728,002200
rdensity: 0200
notes: Fri Aug 14 12:21:43 1991 PDT

ForFurtherhUonnation
Information about the CALS raster format is found primarily in the following
military standards documents:

Automated Interchange of Technical Information, MIL-STD-1840A. This doc
ument contains a description of the header (called a header record
data block) in the CALS format.

Requirements for Raster Graphics Representation in Binary Format, MIL
R-28002A. This document contains a description of the image data in
the CALS format.

328 GRAPHICS FILE FORMATS

Also, see the CALS homepage at:

http:/ /www.acq.osd. mil/cals/

CALS Rnster (cont'd)

The CALS raster file format is supported through the following office of the
Department of Defense:

CALS Management Support Office (DCLSO)
Office of the Assistant Director for Telecommunications
and Information Systems
Headquarters Defense Logistics Agency
Cameron Station
Alexandria, VA 22314

The documents MIL-STD-1840 and MIL-R-28002A may be obtained from agen
cies that distribute military specifications standards, including the following:

Standardization Documents Ordering Desk
Building 4D
700 Robbins Avenue
Philadelphia, PA 19111-5094

Global Engineering Documents
2805 McGaw Avenue
Irvine, CA 92714

Voice: 800-854-7179
Voice: 714-261-1455

Useful and readily available periodical articles on CALS and ODA include the
following:

Dawson, F., and F. Nielsen, "ODA and Document Interchange," UNIX
Review, vol. 8, no. 3, 1990, p. 50.

Hobgood, A., "CALS Implementation__;Still a Few Questions," Advanced
Imaging, April 1990, pp. 24--25.

CALS RASTER 329

ICGM
NAME:

ALSO KNOWN As:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON. CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

CGM

Computer Graphics Metafile

Metafile

Unlimited

RLE, CCITI Group3 and Group4

Unlimited

Yes

NA

ANSI, ISO

All

Too many to list

No

No

Yes

None

usAGE: Standardized platform-independent format used for the interchange of
bitmap and vector data.

coMMENTs: CGM is a very feature-rich format which attempts to support the graphic
needs of many general fields (graphic arts, technical illustration, cartogra
phy, visualization, electronic publishing, and so on). While the CGM for
mat is rich in features (many graphical primitives and attributes), it is less
complex than PostScript, produces much smaller (more compact) files,
and allows the interchange of very sophisticated and artistic images. In
fact, so many features are available to the software developer that a full
implementation of CGM is considered by some to be quite difficult. Never
theless, CGM use is spreading quickly.

Overview
CGM (Computer Graphics Metafile) was developed by experts working on
committees under the auspices of the International Standards Organization
(ISO) and the American Standards National Institute (ANSI). It was specifically
designed as a common format for the platform-independent interchange of
bitmap and vector data, and for use in conjunction with a variety of input and

330 GRAPHICS FILE FORMATS

CGM (cont'd)

output devices. Although CGM incorporates extensions designed to support
bitmap (called raster in the CGM specification) data storage, files in CGM for
mat are used primarily to store vector information. CGM files typically contain
either bitmap or vector data, but rarely both.

The newest revision of CGM is the CGM: 1992 standard, which defines three
upwardly compatible levels of increasing capability and functionality. Version 1
is the original CGM: 1987 standard, a collection of simple metafile primitives.
Version 2 metafiles may contain Closed Figures (a filled primitive comprised of
other primitives). Version 3 is for advanced applications, and its metafiles may
contain Beziers, NURBS, parabolic and hyperbolic arcs, and the Tile Array
compressed tiled raster primitive.

CGM uses three types of syntactical encoding formats. All CGM files contain
data encoded using one of these three methods:

• Character-based, used to produce the smallest possible file size for ease of
storage and speed of data transmission

• Binary encoded, which facilitates exchange and quick access by software
applications

• Clear-text encoded, designed for human readability and ease of modifica-
tion using an ASCII text editor

CGM is intended for the storage of graphics data only. It is sometimes (erro
neously) thought to be a data transfer standard for CAD/CAM data, like IGES,
or a 3D graphic object model data storage standard. However, CGM is quite
suited for the interchange of renderings from CAD I CAM systems, but not for
the storage of the engineering model data itself.

CGM supports and is used by the Graphical Kernel System (GKS) standard, but
is something completely different. GKS, which is in fact an API graphics library
specification, is often mistaken for a graphics file format. CGM has found a role
on most platforms as a method for the transfer of graphics data between appli
cations. Programs that support CGM include most business graphics and visual
ization packages and many word processing and CAD applications.

Vector primitives supported by Version 1 CGM metafiles include lines, poly-·
lines, arcs, circles, rectangles, ellipses, polygons, and text. Each primitive may
have one or more attributes, including fill style (hatch pattern), line or edge
color, size, type, and orientation. CGM supports bitmaps in the form of ceU
arrays and tile arrays. The logical raster primitives of CGM are device
independent.

CGM 331

CGM (coot'd)

A minor point, but one worth noting, is that the three flavors of encoding sup
ported by CGM may not all be readable by all software applications· that import
CGM files. Despite the existence of a solid body of rules and encoding schemes,
CGM files are not universally interchangeable.

Many CGM file-writing applications support different subsets of standard fea
tures, often leaving some features out that may be required by other CGM read
ers. Also, because CGM allows vendor-specific extensions, many (such as
custom fills) have been added, making full CGM support by an application dif
ficult.

The CGM: 1987 standard included a "Minimum Recommended Capabilities"
list to aid developers in implementing a CGM application capable of reading
and writing CGM metafiles correctly. Unfortunately, some of the big manufac
turers chose to ignore even these modest requirements. Therefore, because it
is impossible to police everyone who implements CGM in an application, many
incompatibilities do exist.

In an effort to improve compatibility, the CGM: 1992 standard removed the
"Minimum Recommended Capabilities" list in anticipation of the publication
of the CGM Amendment 1, which defines more stringent conformance
requirements and a "Model Profile," which could be considered a minimal use
ful implementation level. Amendment 1 is entitled '.'Conformance, Rules for
Profiles, and the Model Profille." Amendment 2, "Application Structuring," in
the publication process as we go to press, provides the ability to "tag," refer
ence, and index collections of elements with application significance. Modeled
after SGML, the new features provide a way to "object structure" a metafile. (A
3D metafile project is also underway.)

File Organization and Details
All CGM files start with the same identifier, the BEGIN METAFILE statement,
but its actual appearance in the file depends on how the file is encoded. In
clear-text encoding, the element is simply the ASCII string BEGMF. If the file is
binary encoded, you must read in the first two bytes as a word; the most signifi
cant byte {MSB) is followed in the file by the least significant byte {LSB). Bits in
this word provide the following information:

15-12:
11-05:
04-00:

332

Element class
ElementiD
Parameter list length

GRAPHICS FILE FORMATS

CGM (cont'd)

BEGIN METAFILE is a "Delimiter Element," making it class 0. The element ID
within that class is 1. The parameter list length is variable, so it must be ANDed
out when comparing. The bit pattern is then:

0 0 0 0 0 0 0 0 0 0 1 X X X X X

To check it, simply AND the word with OXFFEO and compare it with OX0020.
In reading the standard, we get the impression that it is actually legal to add
padding characters (nulls) to the beginning of the file. We rather doubt that
anyone would actually do this, but it may be appropriate to read in words until
a non-zero word is read and compare this word. You can read in full words
because all elements are constrained to start on a word boundary.

For Further Information
CGM is both an ANSI and an ISO standard and has been adopted by many
countries, such as Australia, France, Germany, Japan, Korea, and the United
Kingdom. The full ANSI designation of the current version of CGM is:

Information Processing Systems-Computer Graphics Metafile for the Storage
and Transfer of Picture Description Information, ANSI/ISO 8632-1992 (com
monly called CGM: 1992).

Note that CGM:1992 is the current standard. Be careful not to obtain the ear
lier ANSI X3.122-1986 if you need the latest standard. This earlier document,
CGM:1986, defining the Version 1 metafile, was superseded by ISO /IEC
8632:1992. ANSI adopted CGM:1992 without modification and replaced ANSI
X3.122-1986 with it. The CGM standard is contained in four ISO standards doc
uments:

ISO 8632-1 Part 1: Functional Specification
ISO 8632-2 Part 2: Character Encoding
ISO 8632-3 Part 3: Binary Encoding
ISO 8632-4 Part 4: Clear Text Encoding

These may be purchased from any of the following organizations:

International Standards Organization (ISO)
1 rue de Varembe
Case Postal 56
CH-1211 Geneva 20 Switzerland
Voice: +41 22 749 01 11
FAX: +41 22 733 34 30

CGM 333

CGM (cont'd)

American National Standards Institute (ANSI)
Sales Department
1430 Broadway
New York, NY, 10018
Voice: 212-642-4900

Canadian Standards Association (CSA)
Sales Group
178 Rexdale Blvd.
Rexdale, Ontario, M9W IR3
Voice: 416-747-4044

Other countries also make the CGM specification available through their stan
dards organizations; these include DIN (Germany), BSI (United Kingdom),
AFNOR (France), andJIS Uapan).

The National Institute of Standards and Technology (NIST) has set up a Web
page for CGM at:

http:/ /speckle. ncsl.nist.gov/7_sr/cgm_std.htm

NIST has also set up a CGM Testing Service for testing CGM metafi.les, genera
tors, and interpreters. The Testing Service examines binary-encoded CGM files
for conformance to Version I CGM, as defined in the application profiles of
FIPS 128-1 and the DoD CALS CGM AP military specification MII.rD-28003A.
You can purchase the testing tool used by NIST so you can do internal testing
on various PC and UNIX systems.

For more information about the CGM Testing Service, contact:

National Institute of Standards and Technology (NIST)
Computer Systems Laboratory
Information Systems Engineering Division
Gaithersburg, MD 20899
Voice: 301-975-3265

You can also obtain information about CGM from the following references:

Arnold, D.B. and P.R. Bono, CGM and CGI: Metafile and Interface Stan
dards for Computer Graphics, Springer-Verlag, New York, NY, 1988.

Arnold, D.B. and P.R. Bono, CGM et CGI: norlnes de metafichier et
d'interfaces pour l'infographie, French translation and updating of the
above reference, Masson, 1992.

334 GRAPHICS FILE FORMATS

CGM (cont'd)

Henderson, L.R., and Gebhardt, "CGM: SGML for Graphics," The
Gilbane Report, Fall 1994.

Henderson, L.R., and A.M. Mumford, The CGM Handbook, Academic
Press, San Diego, CA, 1993.

Bono, P.R. , J.L. Encarnacao, L.M. Encarnacao, and W.R. Herzner, PC

Graphics With GKS, Prentice-Hall, Englewood Cliffs, NJ, 1990.

There are also two amendments to theis specification:

• Amendment 1. Conformance, Rules for Profiles, and Model Profile.

• Amendment 2. Application Structuring.

For additional information online, see:

http://www. agocg.ac. uk:BO/ agocg/ cg;m.html

CGM 335

I CMU Formats
NAME: CMU Formats

ALso KNowN As: Andrew Formats, CMU Bitmap

TYPE: Multimedia

COLORS: NA

coMPREssioN: Uncompressed

MAXIMUM IMAGE SIZE: NA

MULTIPLE IMAGES PER FILE: NA

NUMERICAL FORMAT: NA

ORIGINAToR: Carnegie Mellon University

PLATFORM: All

suPPoRTING APPLicATioNs: Andrew Toolkit

SPEciFicATioN oN cD: Yes

CODE ON CD: NO

IMAGEs oN cD: Yes

SEE ALso: None

usAGE: Used primarily at Carnegie Mellon University in conjunction with the
Andrew Toolkit.

coMMENTs: Included mainly for its architectural uniqueness.

Overview
The Andrew Consortium at Carnegie Mellon University is the source of the
Andrew Toolkit, which is associated with the Andrew User Interface System.
The Toolkit API is the basis for applications in the Andrew User Interface Sys
tem. Data objects manipulated by the Andrew Toolkit must adhere to conven
tions crystallized in the Andrew Data Stream specification, a draft of which is
included on the CD accompanying this book. The system was designed to sup
port multimedia data from a variety of programs and platforms.

We understand that there is a bitmap format which originated at Carnegie Mel
lon University, but were unable to locate information prior to publication. The
PBM utilities may include some support for converting and manipulating a
CMU Bitmap, however.

336 GRAPHICS FILE FORMATS

CMU Ftmnats (cont'd)

File Organization
In the CMU formats, data is organized into streams and is written in 7-bit ASCII
text. This is an interesting idea-nearly unique in the graphics file format
world-which appears designed to enhance the portability of the format, at
some cost in file size. Text may include tabs and newline characters and is lim
ited to 80 characters of data per line.

Note that Andrew Toolkit files assume access by the user to the Andrew
Toolkit. In the words of the documentation authors:

As usual in ATK, the appropriate way to read or write the data stream is
to call upon the corresponding Read or Write method from the AUIS
distribution. Only in this way is your code likely to continue to work in
the face of changes to the data stream definition. Moreover, there are a
number of special features-mostly outdated data streams-that are
implemented in the code, but not described here.

File Details
Data files used by the Andrew Toolkit consist of data objects, which are marked
in the file by a begin/ end marker pair. The initial marker associated with each
data object must include information denoting the object type, as well as a
unique identifier, which may be used as a reference ID by other objects.

The following is an example from the documentation:

\begindata{text,l}
<text data>
\begindata{picture,2}
<picture data>
\enddata{picture,2}
\view {pictureview,2}
<more text data>
\enddata{text,l}

Text Data Streams

Text data streams are similar to other data streams. Their structure is as fol
lows:

\begindata line
\textdsversion line
\template line
definitions of additional styles
the text body itself

CMU FORMATS 337

CMU Formats (cont'd)

styled text
embedded objects in text body
\enddata line

Each of these elements is described below.

\begindata
This line has the form:

\begindata{text,99999}

where 99999 is a uni.que identifier.

\textdsversion
This line has the form:

\textdsversion{12}

There are apparently files written with data stream versions other than 12.

\template
A file may use a style template, in which case there will be a line of the form:

\template{default}

where default is the name of the template used and is the prefix of a filename.
The system appends a suffix . tpl and looks for the template along file paths
defined in the Andrew Toolkit installation. Please see the specification for fur
ther information.

Def"mitions of additional styles
Additional styles may be defined and used on the fly; each style consists of two
or more lines:

\define{internalstylename
menuname
attribute

attribute}

internalstylename is always written in lowercase and may not contain spaces.
The menuname line is optional. If it is missing, there must be an empty line in
its place. If present, it has the form:

menu:[Menu card name,Style name]

338 GRAPHICS FILE FORMATS

CMU Formats (cont'd)

Attributes are also optional; if they are missing, the closing } appears at the end
of the menuname line. Attribute lines are of the form:

attr: [attributename basis units value]

where value is a signed integer.

Text body
Text consists of any number of consecutive lines, each terminated by a newline
character.

Styled text
Text in the body may be displayed in a style, in which case it is preceded by a
previously defined name:

\internalstylename{

and is followed by the corresponding closing brace.

Embedded objects
Objects may be embedded in the text body. The documentation for the CMU
formats describes the use of embedded objects as follows:

When an object is embedded in a text body, two items appear: the data
stream for the object and a \view line. The \begindata for the object is
always at the beginning of a line. (The previous line is terminated with
a backslash if there is to be no space before the object.) The \enddata
line for the object always ends with a newline (which is not treated as a
space).

The \view line has the form:

\view{rasterview,8888,777,0,0}

\enddata
The \enddata line has the form:

\enddata{text,99999}

Bitmap Images

A bitmap image is a standard data stream beginning with a \begindata line and
ending with a \enddata line. These generally surround a header and an image
bo~y.

CMU FORMATS 339

CMU Formats (cont'd)

The first line of the header consists of the following:

2 0 65536 65536 0 0 484 603

The following describes the numbers in this header:

Raster
version
Options

xScale,
yScale:

x, y, width,
height:

2

0

Denotes the second version of this
encoding
This field may specify changes to the
image before displaying it:

raster_INVERT(l>>O) /* exch black & white */
raster_FLIP(l>>l) /* exch top & bottom */
raster_FLOP(1>>2) /* exch left & right */
raster_ROTATE(1>>3) /* rotate 90 clockwise */

65536 65536 Affects the size at which the image is printed.
The val~e raster_UNITSCALE (136535) prints
the image at approximately the size on the
screen. The default scale of 65,536 is approxi
mately half the screen size.

0 0 484 603 It is possible for a raster object to display a por
tion of an image. These fields select this portion
by specifying the index of the upper-left pixel
and the width and height of the image in pixels.
In all instances so far, x and y are both zero, and
the width and height specify the entire image.

The second header line has three possible variations. Currently, only the first is
used.

Variation 1: bits 10156544 484 603
RasterType:
Rasterld:
Width, Height:

bits
10156544
484 603

Width and Height describe the width of each row and the number of rows.

Variation 2: refer 10135624
RasterType: refer
Rasterld: 10135624

340 GRAPHICS FILE FORMATS

CMU Formau (cont'd)

The current data object refers to the bits stored in another data object that
appears earlier in the same data stream.

Variation 3: f'de 10235498 filename path
RasterType: file
Rasterld: 10235498

The bit data is found in the file filename.

Please check the specification document on the CD-ROM for subtleties and fur
ther details of the format.

ForFurtherhdonnation
For further information about the CMU formats and the Andrew Toolkit, as
well as the full Andrew source and binary code, other contributed software,
and documentation, see the following Andrew Consortium online sites:

http://www.cs.cmu.edu/afs/cs.cmu.ediproject/atk-ftp/web/andrew-home.html
ftp:/ /ftp.andrew. cmu.edu/pub/ AUIS/

You can also contact:

Andrew Consortium
Attn: Ann Marie Zanger, Assistant Director
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213-3890
Voice: 412-268-6710
Email: info-andrew+@andrew. cmu.edu

CMU FORMATS 341

NAME:

ALSO KNOWN As:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

. PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

DKB

None

Scene format

NA

Uncompressed

NA

NA

NA

DavidK Buck

All

DKB Ray Trace application

No

No

No

POV

usAGE: Designed to support the widely-distributed, but now obsolete, DKB ray
trace application.

coMMENTs: The DKB ray tracer preceded, and has influenced, the development of the
POV ray tracer.

Overview
The DKB ray trace application was created by David K. Buck, for whom it is
named. DKB has enjoyed wide distribution, particularly in the PC/MS-DOS BBS
world.

Mr. Buck declined our request for information on the format and permission
to reprint the relevant documentation. He feels that there is no interest in the
program, and that it has been superseded by the POV ray tracer, which is based
in part on DKB. We think otherwise, of course. Once a format is out there
especially if it is distributed as freeware or shareware-it is out the~e, and
there is no practical way to stop people from using it. Our survey of some of
the large BBSs in the U.S. showed that DKB, along with other, older ray trace
programs, is being downloaded with some regularity, despite the availability of

342 GRAPHICS FILE FORMATS

DKB (cont'd)

POV. Unfortunately, we are not able to describe the DKB format in any detail
here.

ForFurtherhdonnatlon
The DKB ray trace package is available for download from Internet archive sites
and BBS systems running on a number of platforms.

DKB 343

I Dore·Raster File Fonnat
NAME: Dore Raster File Format

ALso KNowN As: Dore, RFF

TYPE: Bitmap

COLORS: Unlimited

coMPREssioN: None

MAXIMUM IMAGE s1zE: Unlimited

MuLTIPLE IMAGEs PER FILE: No

NUMERICAL FORMAT: Any

ORIGINAToR: Kubota Pacific Computers

PLATFORM: UNIX

suPPoRTING APPLICATioNs:" AVS visualization package, many others

SPECIFICATioN oN cD: Yes

cooE oN cD: No

IMAGEs oN cD: No

SEE ALso: None

usAGE: Storage and interchange of 2D and 3D image data.

coMMENTs: The Dore Raster File Format is one of the rare formats that combines
both ASCII and binary information within the same image file. Dore lacks
a native method of data compression, but does support the storage of
voxel data.

Overview
The Dore Raster File Format (Dore RFF) is used by the Dore graphics library
for storing 2D and 3D image data. Once stored, the data may be retrieved or
the RFF files may be used to interchange the image information with other
software packages.

Dore itself is an object-oriented 3D graphics library used for rendering 2D and
3D near-photographic quality images and scenes. Dore supports features such
as texture and environment mapping, 2D and 3D filtering, and storage of 3D
raster data.

Most raster (bitmap) file formats are only capable of storing 2D pixels (picture
elements). Dore RFF is capable of storing 3D pixels called voxels (volume

344 GRAPHICS FILE FORMATS

Dore Raster File Format (cont'd)

elements). A voxel contains standard pixel information, such as color and
alpha channel values, plus Z-depth information, which describes the relative
distance of the voxel from a point of reference. The Dore RFF format defines
Z-depth data as a 32-bit integer value in the range of OOh to FFFFFFFFh (232-
1). A value ofOOh places a voxel at the farthest possible point from the point of
reference, and a value of FFFFFFFFh places a voxel at the closest possible
point.

The Dore Raster File Format is the underlying API for the AVS visualization
package.

File Organization
Dore RFF is a rather simple, straightforward format that contains primarily
byte-oriented data. All Dore RFF files contain an ASCII header, followed by
binary image data.

Following is an example of a Dore RFF file. The position of the binary image
data is indicated by the label in brackets. The <FF> symbols are formfeed
{ASCII OCh) characters:

Dore Raster File Example
i

rastertype = image
width = 1280
height = 1024
depth = 2
pixel = r8g8b8a8z32
wordbyteorder = big-endian

<FF><FF>
[Binary Image Data)
<EOF>

The header may contain up to six fields. Each field has the format keyword =

value and is composed entirely of ASCII characters. There is typically one field
per line, although multiple fields may appear on a single line if they are sepa
rated by one or more white-space characters. Comments begin with the # char
acter and continue to the end of the line.

DORE RASTER FILE FORMAT 345

Dore Raster File Format (cont'd)

The header fields are summarized below:

rastertype Type of raster image contained in the file. The only supported
value for this keyword is image. This field must appear first in all
RFF headers and has no default value.

width

height

depth

pixel

2-byte WORD value that indicates the width of the image in pixels
or voxels. The width field must appear in all RFF headers and has
no default value.

2-byte WORD value that indicates the height of the image in pixels
or voxels. The height field must appear in all RFF headers and has
no default value.

2-byte WORD value that indicates the depth of the raster. 2D raster
images always contain pixels, and therefore the depth value is 1. 3D
raster images always contain voxels, and therefore the depth value

· is always greater than 1. The depth field is optional and has a
default value of 1.

String indicating the data format of each pixel or voxel. The pixel
field has no default value and must appear in all RFF headers. The
possible values for this field are as follows:

r8g8b8 Pixels are three bytes in size and stored as three sepa
rate 8-bit RGB values.

r8g8b8a8 Pixels are four bytes in size and stored as three separate
8-bit RGB values and a single 8-bit alpha channel value
in RGBA order.

a8b8g8r8 Pixels are four bytes in size and stored as three separate
8-bit RGB values and a single 8-bit alpha channel value
in ABGR order.

a8g8b8a8z32
Voxels are eight bytes in size and stored as three sepa
rate 8-bit RGB values, a· single 8-bit alpha channel value,
and a single 32-bit DWORD containing the Z-depth
value in RGBAZ order.

346 GRAPHICS FILE FORMATS

Dore Raster File Format (cont'd)

aS Pixels or voxels are a single byte in size and only con
tain a single 8-bit alpha channel value.

z32 Voxels are a single byte in size and only contain a single
32-bit Z-depth value.

wordbyteorder
· Indicates the byte-order of the Z-depth values in the binary image

data. The value of this field may be either the string big-endian or
little-endian. The appearance of the wordbyteorder field in the
header is optional, and the value defaults to big-endian.

The order of the fields within the header is not significant, except for the
rastertype field. rastertype must always appear in every RFF header and must
always be the first field. The width, height, and pixel fields must appear in
every header as well. All other fields are optional; if not present, their default
values are assumed.

The End Of Header marker is two formfeed characters. If it is necessary to pad
out the header to end on a particular byte boundary, you can place any num
ber of ASCII characters, except formfeeds, between these two formfeed charac
ters. See the example below:

Example of using the End Of Header marker to pad out the header
to a byte boundary

rastertype = image
width = 64
height = 64
depth = 1
pixel = r8g8b8
wordbyteorder = little-endian

<FF>
ASCII data used w extend the length of the header
<FF>
Binary Image Data
<EOF>

File Details
The image data immediately follows the End OF Header maker and is always
stored in an uncompressed binary form. The format of the image data
depends upon the format of the pixel (or voxel) data indicated by the value of
the pixel field in the header.

DORE RASTER FILE FORMAT 347

D(We Rnster File Format (cont'd)

The image data is always stored as contiguous pixels or voxels organized within
scan lines. All RGB and alpha channel values are stored as bytes. Z-depth values
are stored as 32-bit DWORDs, with the byte-order of the Z-depth values being
indicated by the value of the wordbyteorder field in the header. Any pixel con
taining a Z-depth value is regarded as a voxel.

The format of each possible type of pixel or voxel is illus~ted using C lan
guage structures as follows:

I* Pixel - Simple RGB triple *I
typedef struct _rSgSbS
{

BYTE red;
BYTE green;
BYTE blue;
RSGSBS;

I* Pixel - RGB triple with alpha channel value *I
typedef struct _rSgSbSaS
{

BYTE red;
BYTE green;
BYTE blue;
BYTE alpha;
RSGSBSAS;

I* Pixel - RGB triple with alpha in reverse order *I
typedef struct _aSbSgSrS
{

BYTE alpha;
BYTE blue;
BYTE green;
BYTE red;
ASBSGSRS;

I* Voxel - RGB triple, alpha, and Z-depth *I
typedef struct _aSgSbSaSz32
{

BYTE red;
BYTE green;
BYTE blue;
BYTE alpha
DWORD zdepth;
R8GSB8ASZ32;

I* Pixel or voxel mask - Only an alpha channel value *I
typedef struct _as {

BYTE alpha;
} AS;
/* Voxel mask - Only a Z-depth value *I
typedef struct _z32
{

DWORD zdepth;
Z32;

348 GRAPHICS FILE FORMATS

Dore RLuter File Fonnat (cont'd)

ForFurtherhdonnation
For further information about the Dore Raster File Format, see the specifica
tion included on the CD-ROM that accompanies this book. You can also con
tact:

Kubota Pacific Computer, Inc.
Attn: Steve Hollasch
2630 Walsh Avenue
Santa Clara, CA 95051
Voice: 408-727-8100
Email: hollasch@kpc. com

You can also contact:

Lori Whippier
Email: loriw@kpc. com

DORE RASTER FILE FORMAT 349

IDPX
NAME:

ALSO KNOWN As:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

DPX

SMPTE Digital Picture Exchange Format, SMPTE
DPX, Kodak Cineon

Bitmap

1-, 8-, 10-, 12-, 16-, 32-, and 64-bit

RLE, uncompressed

4Gx4G

No

Big-endian or litde-endian

Kodak

Any

Kodak imaging applications

No

No

No

None

UsAGE: Storage of digital motion picture data in a bitmap file format.

coMMENTs: DPX is a modification of the Kodak Cineon format. The Society of Motion
Picture and Television Engineers (SMPTE) added header information to
DPX not present in the original Kodak Cineon format.

Overview
DPX is a bitmap file format used to store a single frame of a motion picture or
video data stream. Multiple DPX files are used to store and exchange digital
moving picture sequences between a wide variety of electronic and computer
systems.

The DPX format is an ANSI and SMPTE standard based on the Kodak Cineon
file format. These two formats are nearly identical, except for several extra
header fields defined in the DPX format. For this reason, we recommend that
you support the DPX format even if you are just interested in parsing Cineon
image files.

350 GRAPHICS FILE FORMATS

DPX (cont'd)

DPX has several features designed to support device and resolution indepen
dence. For example, DPX files, like TIFF files, may be written using either the
big- or little-endian byte-ordering schemes. Image data is stored as a series of
up to eight elements using one of the many color component formats sup
ported by the DPX standard. Pixel data itself may be stored a depth of 1, 8, 10,
12, 16, 32, or 64 bits. Padding of scan lines and image data, and the packing of
pixel data, is also supported.

File Organization
DPX files are organized as a series of headers followed by an optional block of
user-defined data and finally by the image data itself. The DPX standard
defines two headers:

• The generic header containing information on the DPX file, the image
data, and the image orientation

• The industry-specific header, containing information used by the film and
television industries

For clarity, this article will regard these sections as five separate headers.

Following these headers is an optional area containing user-defined data. This
area may contain any type of information the DPX file writer needs to store this
data and may be up to one megabyte in size.

Last in the file is the image data itself, stored as an array of pixel component
values. Figure DPX-1 illustrates the internal arrangement of a DPX file.

File Details
The five DPX headers are all fixed in size and contain fields ranging in length
from one to several hundred bytes. Fields of the SINGLE (16-bit) and DOU
BLE (32-bit) floating-point data types are also common.

Any integer or real header fields that contain undefined data are to be initial
ized to their "all ones" value. I~ C, this is most easily accomplished by assigning
the one's-complement ofO to an undefined field, as follows:

WORD val = -o; I* Set val to OxFFFF */

Undefined ASCII fields are initialized to all NULL (ASCII OOh) characters.

DPX 351

DPX (cont'd)

File Header

Image Header

Orientation Header

~ Generic Header

Film Info Header r-- Industry-specific Header
Television Info Header

User-defined Data

Image Data

FIGURE DPX-1: DPXfonnat

File Header

The file header contains information on the DPX file and all of its parts,
including the name, size, and date stamp of the file, and the internal location
of the image data. The DPX file header is 768 bytes in length and has the fol
lowing format:

typedef struct _GenericFileHeader
{

DWORD Magic;
DWORD ImageOffset;
char Version[B];
DWORD FileSize;
DWORD DittoKey;
DWORD GenericSize;
DWORD IndustrySize;
DWORD UserSize;
char FileName[lOO];
char TimeDate[24];
char Creator[lOO];
char Project[200];
char Copyright[200];
DWORD EncryptKey;
char Reserved[104);

GENERICFILEHEADER;

I* Magic number *I
I* Offset to start· of image data in bytes *I
I* Version stamp of header format *I
I* Total DPX file size in bytes *I
I* Image content specifier *I
I* Generic section header length in bytes *I
I* Industry-specific header length in bytes *I
I* User-defined data length in bytes *I
I* Name of DPX file *I
I* Time and date of file creation *I
I* Name of file creator *I
I* Name of project *I
I* File contents copyright information *I
I* Encryption key *I
I* Reserved field used for padding *I

Magic is the DPX file identification value. It is also the indicator of the byte
order of the DPX file data. If this value is 53445058h ("SDPX"), the file data is
written in big-en dian order. If this value is 58504453h ("XPDS"), the file data is
written in little-endian order.

352 GRAPHICS FILE FORMATS

DPX (cont'd)

ImageOffset is the offset of the start of the image data from the beginning of
the file in bytes.

Version is an 8-byte ASCII field containing a string of the version of the DPX
standard to which the file conforms. For vl.O files, this field contains the ASCII
string "Vl.O".

File Size is the total size of the DPX file in bytes.

DittoKey indicates whether the image in the DPX file is the same as in the pre
vious frame (a value ofO), or is a new frame (a value of 1).

GenericSize is the total size of the generic header section in bytes.

IndustrySize is the total size of the industry-specific header section in bytes.

U serSize is the total size of the user-defined data area in bytes. If no user
defined area is present, its value will be 0.

FileName is a 100-byte ASCII field containing free-form text information identi
fying the name and path of the DPX file.

TimeDate is a 24-byte field containing a time and date stamp of when the DPX
file was created. This stamp is a string in the form
YYYY:MM:DD:HH:MM:SS:LTZ

Creator is a 100-byte ASCII field containing free-form text information identify
ing the creator of the DPX file and/ or the image it contains.

Project is a 200-byte ASCII string containing free-form text information identi
fying the project with which the DPX file and/ or image is associated.

Copyright is a 200-byte ASCII string containing free-form text information iden
tifying the copyright of the image data stored within the DPX file.

EncryptKey contains a 4-byte value used a8 a key to process the file using a user
specified decryption algorithm. EncryptKey has a value of FFFFFF'FFh if the
image data is not encrypted. The DPX header data is never encrypted.

Reserved is a 1 04-byte field used to pad the header out to 768 bytes in length.
Future versions of the DPX format may support additional fields in this area.

Image Header

Immediately following the file header is the image header. This header stores
information specific to the image data of the frame stored in the DPX file.

DPX 353

DPX (cont'd)

Note that this header contains a sequence of eight identical subheaders. Each
subheader stores information on each of the eight possible elements that make
up the image data.

T~e image header is 640 bytes in size and has the following format:

typedef struct _GenericimageHeader
{

WORD Orientation;
WORD NumberElements;
DWORD PixelsPerLine;
DWORD LinesPerElement;
struct _ImageElement
{

DWORD DataSign;
DWORD LowData;
SINGLE LowQuantity;
DWORD HighData;
SINGLE HighQuantity;
BYTE Descriptor;
BYTE Transfer;
BYTE Colorimetric;
BYTE BitSize;
WORD Packing;
WORD Encoding;
DWORD DataOffset;
DWORD EndOfLinePadding;
DWORD EndOfimagePadding;
char Description[32];

ImageElement[8];
BYTE Reserved[52];

GENERICIMAGEHEADER;

I* Image orientation *I
I* Number of image elements *I
I* Pixels per line *I
I* Lines per image element *I

I* Data sign extension *I
I* Reference low data code value *I
I* Reference low quantity represented *I
I* Reference high data code value *I
I* Reference high quantity represented *I
I* Descriptor for image element *I
I* Transfer characteristics for element *I
I* Colormetric specification for element *I
I* Bit size for element *I
I* Packing for element *I
I* Encoding for element *I
I* Offset to data of element *I
I* End of line padding used in element *I
I* End of image padding used in element *I
I* Description of element *I

I* Reserved field used for padding *I

Orientation specifies the proper direction of the image on the display. Line
direction and frame direction are specified, respectively, by the values:

0 Left to right, top to bottom
1 Right to left, top to bottom
2 Left to right, bottom to top
3 Right to left, bottom to top
4 Top to bottom, left to right
5 Top to bottom, right to left
6 Bottom to top, left to right
7 Bottom to top, right to left

0 is the only value supported for the core set file format.

354 GRAPHICS FILE FORMATS

DPX (cont'd)

NumberElements indicates the number of elements in the image data. This
value also indicates the number of elements in the ImageElement[] array that
contain valid data.

PixelsPerLine specifies the number of pixels in a scan line. There is an equal
number of pixels in each line per element.

LinesPerElement specifies the number of lines in the element. There is an
equal number of lines in each element.

The following 15 fields are repeated eight times in the generic image header.
Each of these 72-byte subheaders contain information on a single element of
the image data. The fields of all eight subheaders will always be present in each
DPX file, even if there is only one element of image data.

DataSign is 0 if the image data is unsigned and 1 if the data is signed. Image
data is normally stored using unsigned values.

LowData defines the minimum expected color value.

LowQuantity defines the reference for the low quantity value specified in the
LowData field. This reference value should be considered the lowest possible
value and is typically 0.

HighData defines the maximum expected color value.

High Quantity defines the reference for the high-quantity value specified in the
HighData field. This reference value should be considered the highest possible
value, and is typically the largest value that can be stored in a component of
the specified size (for example, 256 for 8-bit components).

Descriptor specifies the type of component stored by the element and its pixel
packing order. There are 256 possible values to this field; the following are
defined:

0 User-defined
1 Red
2 Green
3 Blue
4 Alpha
6 Luminance
7 Chrominance
8 Depth
9 Composite video

DPX 355

DPX (cont'd)

50 RGB
51 RGBA
52 ABGR
100 CbYCrY
101 CbYaCrYa
102 CbYCr
103 CbYCra
150 User-defined 2-component element
151 User-defined 3-component element
152 User-defined 4-component element
153 User-defined 5-component element
154 User-defined 6-component element
155 User-defined 7-component element
156 User-defined 8-component element

All values not defined are reserved for use in future versions of DPX.

Transfer describes the transfer characteristics used to transform the data from
a linear original. The possible values of this field are:

0 User-defined
1 Printing density
2 Linear
3 Logarithmic
4 Unspecified video
5 SMPTE240M
6 ·cciR 709-1
7 CCIR 601-2 system B or G
8 CCIR 601-2 system M
9 NTSC composite video
10 PAL composite video
11 Z linear
12 Z homogeneous

Colorimetric defines the color reference primaries for color additive systems,
or color responses for color subtractive systems. The possible values of this
field are: ·

356 GRAPHICS FILE FORMATS

DPX (cont'd)

0 User-defined
1 Printing density
4 Unspecified video
5 SMPTE240M
6 CCIR 709-1
7 CCIR 601-2 system BorG
8 CCIR 601-2 system M
9 NTSC composite video
10 PAL composite video

BitSize specifies the number of bits in each component of the image element.
Valid values are 1, 8, 10, 12, 16, 32, and 64.

Packing defines the method used to pack component data in each line of the
image element data. Possible values are 0 (packed 32-bit words) and 1 (filled
32-bit words).

Encoding indicates whether the image element data is run-length encoded or
not. Values are 0 (not encoded) and 1 (run-length encoded).

DataOffset indicates the offset to the start of the image element data in bytes
from the beginning of the file.

EndOfLinePadding specifies the number of bytes added as padding to the end
of each scan line. It is common to pad each line out to the nearest 32-bit
boundary. The default value is 0, indicating that no end-of-line padding is pre
sent.

EndOflmagePadding specifies the number of bytes added as padding to the
end of the image data. It is common to pad the element data out to an even 8K
block boundary. The default value is 0, indicating that no end-of-image
padding is present.

Description is a 32-byte field storing an ASCII string containing free-form text
information describing the contents of the element.

Reserved is a 52-byte field used to pad the header out to 640 bytes in length.
Future versions of the DPX format may support additional fields in this area.

Orientation Header

The last of the generic headers is the orientation header. Information in this
header describes the position of the image on the display and also contains
some additional information on the source of the image data.

DPX 357

DPX (cont'd)

This header is 256 bytes in length and has the following format:

typedef struct _GenericOrientationHeader
{

DWORD XOffset;
DWORD YOffset;
SINGLE XCenter;
SINGLE YCenter;
DWORD XOriginalSize;
DWORD YOriginalSize;
char FileName[lOO];
char TimeDate[24];
char InputName[32];
char InputSN[32];
WORD Border[4];
DWORD AspectRatio[2];
BYTE Reserved[28];

GENERICORIENTATIONHEADER;

I* X offset *I
I* Y offset *I
I* X center */
I* Y center *I
I* X original size *I
I* Y original size *I
I* Source image file name *I
I* Source image date and time *I
I* Input device name *I
I* Input device serial number *I
I* Border validity (XL, XR, YT, YB) *I
I* Pixel aspect ratio (H:V). *I
I* Reserved field used for padding *I

XOffset and YOffset indicate the offset of the first pixel in the stored image
from.the first pixel in the original image. If the two images are not offset, then
the values of these fields will be 0.

XCenter and YCenter are floating-point values indicating the X andY coordi
nates of the center of the image.

XOriginalSize and YOriginalSize indicate the width and height, respectively, of
the original image, in pixels per line and lines per image.

FileName is the name of the source image from which the image was pro
cessed or extracted.

TimeDate is a 24-byte field containing a time and date stamp of when the
source image was created. This stamp is a string in the form
YYYY:MM:DD:HH:MM:SS:LTZ

InputName is a 32-byte ASCII string declaring the name of the input device.

InputSN is a 32-byte ASCII string declaring the serial number of the input
device.

Border is a set of four values that describe the region of the image eroded due
to edge-sensitive filter processing. These values are, in order: X left, X right, Y
top, and Y bottom. Values of 0, 0, 0, 0 indicate no border and therefore no ero
sion.

AspectRatio is the pixel aspect ratio described as a horizontal value (Aspect
Ratio[O]) divided by a vertical value (AspectRatio[l]).

358 GRAPHICS FILE FORMATS

DPX (cont'd)

Reserved is a 28-byte field used to pad the header out to 256 bytes in length.
Future versions of the DPX format may support additional fields in this area.

Industry-Specific Headers

Following the generic headers are two headers that contain industry-specific
information. Both of these headers are always present in every DPX file and are
initialized with undefined field values when not used. These headers do not
contain any information required by the DPX standard and their use is
optional.

Film Information Header
The first industry header contains information used by the motion picture film
industry. The information in this header describes the film and camera source
from which the image frame data was derived. This header is 256 bytes in siz~
and has the following format:

typedef struct _IndustryFilminfoHeader
{

char FilmMfgid[2];
char FilmType[2];
char Offset[2];
char Prefix[6];
char Count[4];
char Format[32];
DWORD FramePosition;
DWORD SequenceLen;
DWORD HeldCount;

· SINGLE FrameRate;
SINGLE ShutterAngle;
char Frameid[32];
char Slateinfo[lOO];
BYTE Reserved[56];

) INDUSTRYFILMINFOHEADER;

I* Film manufacturer ID code */
I* File type */
I* Offset in perfs *I
/* Prefix */
/* Count */
/* Format */
/* Frame position in sequence */
/* Sequence length in frames */
/* Held count */
I* Frame rate of original in frames/sec */
/* Shutter angle of camera in degrees */
I* Frame identification */
/* Slate information */
I* Reserved field used for padding */

FilmMfgld stores the film manufacturer's ID code represented by the same two
digits from the film edge code.

Film Type stores the film type code represented by the same two digits from the
film edge code.

Offset stores the offset in perfs represented by the same two digits from the
film edge code.

Prefix stores the prefiX code represented by the same six digits from the film
edge code.

DPX 359

DPX (cont'd)

Count stores the count code represented by the same four digits from the film
edge code.

Format is a 32-byte ASCII string specifying the film format.

FramePosition specifies the frame number in the image sequence.

SequenceLen specifies the total number of frame~ in the image sequence.

HeldCount specifies the number of sequential frames to hold the current
frame. This value is used to inject a run of identical frames into a motion pic
ture sequence.

FrameRate stores the frame rate of the original film source in frames per sec
ond.

ShutterAngle specifies the shutter (temporal sampling aperture) angle of the
motion picture camera in degrees.

Frameld is a 32-byte string identifying the type of frame (key frame, wedge
frame, and so on). The format of the data in this field is defined by the creator
of the DPX file.

Slatelnfo is a 1 00-byte ASCII string that is used to store production information
found on the camera slate.

Reserved is a 56-byte field used to pad the header out to 256 bytes in length.
Future versions of the DPX format may support additional fields in this area.

Television Information Header
The second industry header contains information used by the television broad
cast industry. The information in this header describes the video signal and
television broadcast source from which the image data was derived. This
header is 128 bytes in size and has the following format:

typedef struct _IndustryTelevisioninfoHeader
{

DWORD TimeCode;
DWORD UserBits;
BYTE Interlace;
BYTE FieldNumber;
BYTE VideoSignal;
BYTE Padding;
SINGLE HorzSampleRate;
SINGLE VertSampleRate;
SINGLE FrameRate;

SINGLE TimeOffset;

360 GRAPHICS FILE FORMATS

/* SMPTE time code */
/* SMPTE user bits */
/* Interlace */
/* Field number */
/* Video signal standard */
/* Structure alignment padding */
/* Horizontal sampling rate in Hz */
/* Vertical sampling rate in Hz */
/* Temporal sampling rate or frame rate

in Hz */
/* Time offset from sync to first pixel */

SINGLE Gamma;
SINGLE BlackLevel;
SINGLE BlackGain;

/* Gamma value */
/* Black level code value */
/* Black gain */
/* Breakpoint */

DPX (cont'd)

SINGLE Breakpoint;
SINGLE WhiteLevel;
SINGLE IntegrationTimes;
BYTE Reserved[76];

/* Reference white level code value */
/* Integration time(s) */
/* Reserved field used for padding */

INDUSTRYTELEVISIONINFOHEADER;

TimeCode stores the SMPTE time code value for the image data.

UserBits stores the SMPTE user bits value for the image data.

Interlace is 0 if the image data is not interlaced and 1 if the data is stored using
a 2:1 interlace.

FieldNumber indicates the field number to which the image data corresponds,
if appropriate. Values are typically 1 or 2 for composite video, 1 to 4 for NTSC,
or 1 to 12 for PAL. This value is 0 if the image data is not associated with a par
ticular field.

VideoSignal specifies the video signal standard of the video source. There are
256 possible values to this field; the following are defined:

0 Undefined
1 NTSC
2 PAL
3 PAL-M
4 SECAM
50 YCBCR CCIR 601-2 525-line, 2:1 interlace, 4:3 aspect ratio
51 YCBCR CCIR 601-2 625-line, 2:1 interlace, 4:3 aspect ratio
100 YCBCR CCIR 601-2 525-line, 2:1 interlace, 16:9 aspect ratio
101 YCBCR CCIR 601-2 625-line, 2:1 interlace, 16:9 aspect ratio
150 YCBCR 1050-line, 2:1 interlace, 16:9 aspect ratio
151 YCBCR 1125-line, 2:1 interlace, 16:9 aspect ratio
152 YCBCR 1250-line, 2:1 interlace, 16:9 aspect ratio
200 YCBCR 525-line, 1:1 progressive, 16:9 aspect ratio
201 YCBCR 625-line, 1:1 progressive, 16:9 aspect ratio
202 YCBCR 787.5-line, 1:1 progressive, 16:9 aspect ratio

All values not defined are reserved for use in future versions of DPX.

Padding is a one-byte field used only to maintain the alignment of the struc
ture elements on a 4-byte boundary.

DPX 361

DPX (cont'd)

HorzSampleRate and VertSampleRate specify the horizontal and vertical sam
pling rate of the video data in samples per second.

FrameRate specifies the temporal sampling rate, or the frame rate, in samples
per second.

TimeOffset stores the time offset from sync (the reference edge of the horizon
tal sync) to the first pixel in microseconds.

Gamma is the gamma correction exponent value for the image. The default
gamma value is 2.2 for an NTSC image.

Black.Level specifies the digital value representing reference black. The default
value for this field differs depending upon the video signal standard of the
image data source.

BlackGain defines the linear gain applied to signals below the breakpoint
threshold value.

Breakpoint defines the signal level threshold above which the gamma law is
applied.

WhiteLevel specifies the digital value representing reference white. The
default value for this field differs depending upon the video signal standard of
the image data source.

IntegrationTimes indicates the temporal sampling aperture of the television
camera.

Reserved is a 76-byte field used to pad the header out to 128 bytes in length.
Future versions of the DPX format may support additional fields in this area.

Note that if the value of the VideoSignal field is 0 (undefined}, the Gamma,
Black.Level, BlackGain, Breakpoint, and WhiteLevel values cannot be assumed;
therefore, these fields must be initialized to their correct values.

User-difined Data

The user-defined data following the industry headers is optional and is not
present in a DPX file if the value of the UserSize field in the generic file header
is FFFFFFFFh. Otherwise, the value of UserSize indicates the total size of the
user-defined data in bytes.

User-defined data may include any information for which the DPX format does
not provide storage. Such information includes thumbnail images, additional
textual documentation, processing logs, verification signature, color maps, and
soon.

362 GRAPHICS FILE FORMATS

DPX (cont'd)

User-defined data may be from 32 to 1,048,608 bytes in length and has the fol
lowing format:

typedef struct _UserDefinedData
{

char userid[32);
BYTE *Data;

/* User-defined identification string */
I* User-defined data */

} USERDEFINEDDATA;

Userld is a string used to identify the data found in the Data field. This field is
·used by a DPX file reader to verify that it understands the format of the Data
field.

Data is the actual user-defined data. The format of the field is not defined by
the DPX standard and the data in this field may be up to one megabyte
(1,048,576 bytes) in length.

Image Data

The image data follows the headers and any user-defined data. It is recom
mended that the image data begin on an SK block boundary, so there will be
padding between the last header, or user-d.efined data, and the start of the
image data. The ImageOffset value in the file header is used to locate the start
of the image data.

The image data is stored as an array of 32-bit elements made up of four signed
or unsigned character values. Because unsigned values are the default for DPX
image data, we will represent the image data array here using the following
type definitions:

typedef unsigned char BYTE4 [4);
typedef struct _ImageDataElement
{

BYTE4 *Data;
} IMAGEDATAELEMENT;

The DPX format stores image data by pixels, separating each pixel into its com
ponent values (also called samples in other formats) and storing each value in a
separate element (also called a color plane). Image data components may be
stored in up to eight elements total.

For example, an 8-bit gray-scale pixel contains only one component and is
therefore stored as one component value only in one element. A 32-bit RGBA
pixel contains four components that may be stored across four elements as
four 8-bit component values or may be stored in a single element as one 32-bit
component value.

DPX 363

DPX (cont'd)

As you can see, the DPX format is quite flexible in allowing you to store your
image data in any way that makes reading and writing the data the most effi
cient for your computer hardware.

All components must be the same size across all elements. Valid component
sizes are 1-, 8-, 10-, 12-, and 16-bit integers and 32- and 64-bit reals (IEEE float
ing-point). All components must be stored as words using 32-bit boundaries.

One-bit data is stored in a single element with the first (leftmost) pixel in the
least significant bit in the byte and stored as 32-bit data. Eight-bit data is stored·
four components to a word, 16-bit as two components, 32-bit as one compo
nent, and 64-bit components require two 32-bit. words to store. All of these
component sizes fit evenly within 32-bit word boundaries.

Ten- and 12-bit data, however, does not fit evenly within 32-bit boundaries. In
these cases, 10- and 12-bit components are either "filled" into the 32-bit words,
leaving unused bits in each word, or "packed" into 32-bit words, leaving no
unused bits but causing components to be split across the 32-bit word bound
aries.

Filling is accomplished by storing as many components as will fit within a 32-bit
word and regarding the remaining bits as padding. For example, three 10-bit
components will fit in a 32-bit word using bits 0:9, 10:19, and 20:29. The two
remaining bits, 30:31, are not used and are set to zero. Two 12-bit components
may be stored in a 32-bit word, but each component is stored starting on a
16-word boundary using bits 0:11 and 16:27. Bits 12:15 and 28:31 are not used
for data and only provide alignment padding. One-, 8-, 16-, 32-, and 64-bit data
fits evenly within 32-bit boundaries and is therefore never filled.

Packing is used to avoid wasted bits by disregarding all byte and word bound
aries. In the previous example, we noted that three 10-bit components use the
first 30 bits of a word and waste the last two bits. The fourth 1 O-bit component
then begins on the boundary for the next 32-bit word. If these components
were packed, the fourth component would begin on bit 30 of the first word,
and would cross over the 32-bit boundary to occupy the first eight bits of the
second word.

In the packed format, bits are always stored from the least significant to the
most significant bits in a byte. When a component wraps around to the next
32-bit word, its remaining bits are placed in the least significant bit of that
word. Packing always stops at the end of a scan line, and any remaining bits are
set to zero. (See Figure DPX-2.)

364 GRAPHICS FILE FORMATS

•

DPX (cont'd)

. Word 2 Word 1
i3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1

7 6 54 3 2 1 Oil 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 54 3 2 1 0 9 8 7 6 54 3 2 1 0

c t4 m c t3 c 2 c omponen omponen omponent omponent 1

i 1 O-bit Components Filled 11

I Component~ I Component3 I Component 2 I Component 1 1~
11 O-bit Components Packed :

Component 3 -1 Component 2 ~ Component 1 •
! 12-bit Components Filled .. 1

I I c.omponenl 3 I Component 2 I Component 1 i

l l 12-bit Components Packed i

- • -- - -n

~ Unused Bit

FIGURE DPX- 2 : Packed bits

Lines are typically padded with zero bits to end on 4-byte boundaries, although
this is not a requirement of the DPX standard. Image data is also typically
padded with zero bits to end on an 8K block boundary.

Data Compression

Components may be stored in an image element using a compressed or
uncompressed format. Uncompressed component values are stored directly as
raw data without any form of encoding. Optionally, components may be com
pressed using a simple run-length encoding scheme.

Runs of component values are encoded as a single flag value followed by one
or more component values. The least significant bit of the flag value is one if
the run of components values are identical, and zero if the run of component
values are different. The remaining bits in the flag value specify the number of
components in the run. T he flag value is always the same size as the compo
nent values.

Runs of identical component values are encoded as a flag value followed by a
single component value that specifies the value of the run. Runs of different
component values are encoded as a flag value followed by a number of
components equal to the component count stored in the flag value. A chromi
nance (CbCr) value is a single component stored as two values.

DPX 365

0

DPX (cont'd)

Component run encoding always stops at the end of scan lines. And encoded
data is also packed or filled into 32-bit word boundaries, as indicated by the
Packing field in the generic image header.

DPX Core Requirements

The DPX standard provides for a minimally defined version of the DPX format
that allows quick implementation of DPX file readers and writers, and defines a
minimal set of core header fields that must be read and properly initialized to
interpret the data stored in a DPX file.

The core header fields of a DPX file are the Magic, lmageOffset, Version, and
FileSize fields of the generic file header, and the Orientation, NumberEle
ments, PixelsPerLine, LinesPerElement, DataSign, Descriptor, Transfer, Colori
metric, BitSize, Packing, Encoding, and DataO:ffset fields of the generic image
header.

Minimal DPX file readers must read these fields and may ignore all others.
Minimal DPX file writers must initialize these core fields with valid values and
may initialize all other header fields with undefined values.

Once all headers, optional user-defined data area, and image data have been
defined, the following structure may be used to store the contents of a single
DPX file:

typedef struct _DpxFileFormat
{

GENERICFILEHEADER FileHeader;
.GENERICIMAGEHEADER ImageHeader;
GENERICORIENTATIONHEADER OrientHeader;
INDUSTRYFILMINFOHEADER FilmHeader;
INDUSTRYTELEVISIONINFOHEADER TvHeader;
USERDEFINEDDATA *UserData; /* NULL if data not present */
IMAGEDATAELEMENT *ImageData; l* Array of 1 to 8

IMAGEDATAELEMENT structures */
DPXFILEFORMAT;

ForFurtherhrronnation
The DPX file format specification is available in the following document:

ANSI/SMPTE 268M-1994, SMPTE Standard for File Format for Digital Mov
ing-Picture Exchange (DPX), vl.O, 18 February 1994, 14 pages.

366 GRAPHICS FILE FORMATS

This document is available directly from SMPTE:

The Society of Motion Picture and Television Engineers
595 W. Hartsdale Avenue
White Plains, NY 10607-1824
Voice: 914-761-1100
FAX: 914-761-3115
Email: smpte@smpte. org
WWW: hup://www.smpte.org

DPX (ccmt'd)

SMPTE is a professional.society for motion picture and television engineers
that is devoted to advancing the theory and application of motion-imaging
technology, including film, video, television, computer imaging, and telecom
munications.

The following paper is also a helpful source of information about the DPX for
mat:

Snider, David, Glenn Kennel, Ken Curry, and Michael McCracken,
"Digital Moving-Picture Exchange: File Format and Calibration," SMPTE
journa~ August 1993, pp. 712-714. ·

The authors are all from the Eastman Kodak Co. in Rochester, New York. Some
of them also served on the committee that prepared the SMPTE 268M stan
dard.

DPX 367

I Dr. Halo
NAME:

ALSO KNOWN As:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

Dr. Halo

CUT, PAL

Bitmap

8-bit maximum

RLE, uncompressed

64Kx64K pixels

No

Little-en dian

Media Cybernetics

MS-DOS

Dr. Halo

Yes

No

Yes

None

UsAGE: Used in device independent file interchange

coMMENTs: A well-defined, well-documented format in wide use, which is quick and
easy to read and decompress. It lacks, however, a superior compression
scheme, making it unsuited for the storage of deep-pixel images.

Overview
The Dr. Halo file format is a device-independent interchange format used for
transporting image data from one hardware environment or operating system
to another. This format is associated with the HALO Image File Format Library,
the Dr. Halo III paint program, and other software applications written and
marketed by Media Cybernetics.

Dr. Halo images may contain up to 256 colors, selectable from an 8-bit palette.
Only one image may be stored per file. The Dr. Halo format is unusual in that
it is divided into two separate files. The first file has the extension .CUT and
contains the image data; the second has the extension .PAL and contains the
color palette information for the image.

368 GRAPHICS FILE FORMATS

File Organization
The Dr. Halo header is shown below:

typedef struct _HaloHeader
{

Dr. Halo (cont'd)

WORD Width;
WORD Height;
WORD Reserved;

/* OOh
/* 02h
/* 04h

Image Width in Pixels */
Image Height in Scan Lines */
Reserved Field (set to 0) */

} HALOHEAD;

Width and Height represent the size of the image data.

Reserved is set to zero to allow for possible future expansion of the header.

Following the header is the image data. Each scan line is always encoded using
a simple byte-wise run length encoding (RLE) scheme.

File Details
The .CUT file contains image data in the form of a series of scan lines. The
first two bytes of each encoded scan line form a Run Count value, indicating
the number of bytes in the encoded line. Each encoded run begins with a one
byte Run Count value. The number of pixels in the run is the seven least signif
icant bits of the Run Count byte and ranges in value from 1 to 127. If the most
significant bit of the Run Count is 1, then the next byte is the Run Value and
should be repeated Run Count times. If the most significant bit is zero, then
the next Run Count bytes are read as a literal run. The end of every scan line is
marked by a Run Count byte, which may be OOh or SOh.

The following pseudocode illustrates the decoding process:

ReadScanLine:
Read a WORD value of the number of encoded bytes in this scan line

ReadRunCount:
Read a BYfE value as the Run Count

If the value of the seven Least Significant Bits (LSB)
If the Most Significant Bit (MSB)

Read the next byte as the Run Value and repeat it Run
Count times

else
If the MSB of the Run Count is 0
Read the next Run Count bytes

Goto ReadRunCount:
else

DR. HALO 369

Dr. Halo (cont'd)

If the value of the seven LSB of the Run Count is 0
The end of the scan line has been reached
Goto ReadScanLine:

The second Dr. Halo image file usually has the extension .PAL and contains
the color palette information for the image. Having a separate color palette
file offers the advantage of being able to change the stored colors of an image
without re-encoding the image data. The PAL file header is 40 bytes in length
and has the following format:

typedef struct _HaloPalette
{

BYTE Fileid[2]; I*
WORD Version; I*

OOh File Identifier - always •AJi• *I
02h File Version *I

WORD Size; I* 04h File Size in Bytes minus header *I
CHAR FileType; I* 06h Palette File Identifier *I
CHAR SubType; I* 07h Palette File Subtype *I
WORD Boardid; I* 08h . Board ID Code *I
WORD GraphicsMode; I* OAh Graphics Mode of Stored Image *I
WORD Maxindex; I* OCh Maximum Color Palette Index *I
WORD MaxRed; I* OEh Maximum Red Palette Value *I
WORD MaxGreen; I* 10h Maximum Green Palette Value *I
WORD MaxBlue; I* 12h Maximum Blue Color Value *I
CHAR Paletteid[20]; I* 14h Identifier String "Dr. Halo" *I

} HALOPAL;

There are actually two types of .PAL files: generic and video hardware-specific.
The header shown above is for the generic type. A hardware-specific palette
file may contain additional information in the header.

Fileld always contains the byte values 4lh and 48h.

Version indicates the version of the HALO format to which the palette file con
forms.

Size is the total size of the file minus the header. This gives the total size of the
palette data in bytes.

FileType, the palette file identifier, is always set to OAh.

Subtype, the palette file subtype, is set to OOh for a generic palette file and to
Olh for hardware-specific.

Boardld and GraphicsMode indicate the type of hardware and the mode that
created and displayed the palette data.

Maxlndex, MaxRed, MaxGreen, and MaxBlue de~cribe the palette data.

370 GRAPHICS FILE FORMATS

Dr. Halo (cont'd)

Paletteld contains up to a 20-byte string with an ASCII identifier. Unused string
elements are set to OOh.

Palette data is written as a sequence of three-byte triplets of red, green, and
blue values in 512-byte blocks. If a triplet does not fit at the end of a block, the
block is padded and the triplet used to start the next block. All RGB values are
in the range of 0 to 255.

ForFurtherhdonnatlon
For further information about the Dr. Halo format, see the specification
included on the CD-ROM that accompanies this book. For additional informa
tion, contact:

Media Cybernetics
Attn: Bill Shotts
Technical Support Manager
8484 Georgia Avenue
Silver Spring MD 20910
Voice: 301-495-3305, extension 235
FAX: 301-495-5964
WWW: http://www. mediacy. com/

DR. HALO 371

I DVM Movie
NAME:

ALSO KNOWN As:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

DVM Movie

Magic Software DVM

Animation

16 or 256

Pixel packing

NA

Yes

Little-en dian

Magic Software

MS.. DOS

Magic Software

Yes

Yes

Yes

FLI

UsAGE: Storage of small animations and movies.

coMMENTs: A minimal animation format that is of interest mainly because of its sim
plicity.

Overview
DVM is an animation format created in support of Magic Software. There are
several revisions of the format: 1.0, 2.0, 3.0, and 3.1. Appended to the docu
mentation on which this article was based was the following curious statement:

The DVM format was created by Magic Software and may only be modi
fied by members of Magic Software.

We wish Magic Software well in the enforcement of this policy.

File Organization
DVM files are binary and consist of a header followed by a palette (in vl.O and
higher) and bitmap data organized into a series of frames.

372 GRAPHICS FILE FORMATS

File Details
The v1.0 file header consists of the following:

typedef struct _DVM_HEADER
{

I* File ID •DVM• */
/* Q, F, or V */
/* Flags */

DVM Movie (cont'd)

char ID[3];
char Size;
char Info;
WORD Wait; /* Time (ms) to wait between frames */
WORD Char_count;
char[];

} DVM_HEADER;

/* Number of characters in text, if present */
/* Text string, if present */

For v2.0 and higher, the following header is used:

typedef struct _DVM_HEADER
{

/* File ID "DVM" */
/* Q, F, or V */

char ID[3];
char Size;
char Version;
char Info;
WORD Wait;

/* High nibble is major version, low nibble is minor */
/* Flags */
/* Time (ms) to wait between frames */

WORD Char_count; /* Number of characters in text, if present */
char[Char_count]; /*Text string, if present*/

DVM_HEADER;

The Size field may contain either the characters Q, F, or V, representing Quar
ter screen, Full screen, and higher Versions, respectively.

The Info field consists of the following flags:

BitO NA
Bit 1 NA
Bit2 NA
Bit 3 Set if text exists
Bit 4 Set for 256 color (otherwise 16 color)
Bit 5 Set for enhanced palette (otherwise standard palette)
Bit 6 Set for compressed frames
Bit 7 Set for full screen (320x200), otherwise quarter screen

(160x100)

Versions 2.0 and higher add support for both 320x200 and 160x100 images.
Versions 3.0 and higher add support for both 16- and 256-color images, and
versions 3.1 and higher support text. Versions 1.0 or higher should use an
enhanced palette.

DVM MOVIE 373

DVM Movie (cont'd)

The enhanced palette may contain either 16 or 256 colors. The lfrcolor
palette is organized as 48 consecutive bytes of RGB data. Only the bottom six
bits of each byte are significant. The 25frcolor palette is 768 bytes long and
consists of 256 RGB colors. Colors run from 0 to Oxff.

The standard palette is not contained in the file but must be constructed algo
rithmically by the rendering application. In C pseudocode, this is:

typedef struct _RGB { BYTE r,g,b; } RGB;

RGB palette[256];
SHORT i,r,g,b;

for(i = O;i <= 15;i++)
{

palette[i].r =
palette[i].g =

palette[i] .b = (BYTE) (ROUND((DOUBLE)i * 4.2));

for(r = O;r <= S;r++)
{

for(g = O;g <= S;g++)
{

for(b = O;b <= S;b++)
{

palette[r*36+g+b+16].r = (BYTE) (ROUND((DOUBLE)r * 12.6));
palette[r*36+g+b+16].g = (BYTE) (ROUND((DOUBLE)g * 12.6));
palette[r*36+g+b+16].b = (BYTE) (ROUND((DOUBLE)b * 12.6));
}

for(i O;i <= 7;i++)
{

palette[232 + i].r = (BYTE) (i * 9);
palette[232 + i].g = (BYTE)O;
palette[232 + i] .b = (BYTE)O;

palette[240 + i] .r = (BYTE)O;
palette[240 + i] .g = (BYTE) (i * 9);
palette[240 + i] .b = (BYTE)O;

palette[248 + i].r = (BYTE)O;
palette[248 + i] .g = (BYTE)O;
palette[248 + i] .b = (BYTE) (i * 9);

Following the palette is the frame data. The frame origin is in the upper left of
the image, and lines are stored in order.

374 GRAPHICS FILE FORMATS

DVM Movie (cont'd)

Frames may be compressed in a simple version of pixel packing, where bytes of
the source data are stored in nibbles of the bytes written to the file. The high
order nibble of the data in the file is extracted first and represents the current
byte in the data stream. The low-order nibble of the data byte in the file repre
sents the next byte in the data stream.

For Further Information
For additional information about the DVM movie format, contact:

Bert Greevenbosch
Magic Software Rotterdam
Rotterdam, The Netherlands
Voice: +31-10-4215920
Email: bert@caiw. nl

DVM MOYIE 375

I Encapsulated PostScript
NAME:

AL.SO KNOWN As:

TYPE:

COL.ORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPL-E IMAGES PER FILE:

NUMERICAL. FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPL-ICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE AL.SO:

Encapsulated PostScript

EPS, EPSF, EPSI

Page Description Language (PDL); used as metafile
(see article)

Mono

See article

NA

No

NA

Adobe

Macintosh, MS-DOS, MS Windows, UNIX, others

Too numerous to list

Yes

No

Yes

None

usAGE: Illustration and DTP applications, bitmap and vector data interchange.

coMMENTs: A file format with wide support associated with the PostScript PDL.
Although complex, internal language features are well-documented in
Adobe's excellent PostScript publications and elsewhere. Many applica
tions, however, write but do not read EPSF-format files, preferring to avoid
supporting PostScript rendering to the screen.

Overview
Data in an Encapsulated PostScript (EPSF) file is encoded in a subset of the
PostScript Page Description Language (PDL) and then "encapsulated" in the
EPS standard format for portable interchange between applications and plat
forms. An EPSF file is also a special PostScript file that may be included in a
larger PostScript language document.

EPSF files are commonly used to contain the graphics and image portions of a
document. The main body of the document is defined in one or more
PostScript files, but each piece of line art or photographic illustration embed
ded in the document is stored in a separate EPSF file. This scheme offers

376 GRAPHICS FILE FORMATS

Encapsulated PostScript (cont'd)

several advantages, including the ability to alter illustrations in a document
without having to edit the document file itself.

EPSF also provides the ability to store image data in a 7-bit ASCII form, which is
occasionally more convenient than the 8-bit binary format used by most
bitmap formats.

Although we choose not to discuss PostScript itself in detail, because it is
described so extensively elsewhere, we must look briefly at it in order to under
stand EPSF, which implements a subset of the language.

PostScript was created in 1985 by Adobe Systems and is most often described as
a PDL. It is used mainly as a way to describe the layout of text, vector graphics,
and bitmap images on a printed or displayed page. Text, color, black-and-white
graphics, or photographic-quality images obtained from scanners or video
sources can all be described using PostScript. PostScript, however, is a versatile
general-purpose computer language, similar in some respects to Forth.

Partly because it is a language, PostScript is device-independent and provides
portability and consistent rendering of images across a wide range of plat
forms. It also implements a de facto industry-standard imaging model for com
municating graphics information between applications and hardware devices,
such as between word processors and printers. In addition to general-purpose
language features, however, PostScript includes commands used for drawing.

A PostScript output device typically contains an interpreter designed to exe
cute PostScript programs. An application sends a stream of PostScript com
mands (or copies a file to) the device, which then renders the image by
interpreting the commands. In the case of printers, typesetters, imagesetters,
and film recorders, their main function is to interpret a stream of PostScript
language code and render the encoded graphical data onto a permanent
medium, such as paper or photographic film. PostScript is capable of handling
monochrome, gray-scale, or color images at resolutions ranging from 75 to
over 3000 DPI.

PostScript files are written in 7-bit ASCII and can be created using a conven
tional text editor. Although PostScript can be written by hand, the bulk of the
PostScript code produced today comes from applications, which include illus
tration packages, word processors, and desktop publishing programs. Files pro
duced in this manner are often quite large; it is not unusual to see files in the
range of several megabytes.

The PostScript specification is constantly evolving, and two fairly recent devel
opments include Display PostScript and PostScript Level 2. Display PostScript

ENCAPSULATED POSTSCRIPT 377

Encapsulated PostScript (cont'd)

is used for on-screen imaging and is binary-encoded. It is used to drive window
oriented PostScript interpreters for the display of text, graphics, and images.
PostScript Level 2 adds additional features to the PostScript Level I language,
including data compression (including JPEG), device-independent color,
improved halftoning and color separation, facsimile compatibility, forms and
patterns caching, improved printer support, automatic stroke adjustment, step
and repeat capability, and higher operational speeds. PostScript Level 2 code is
completely compatible with PostScript Level 1 devices.

File Organization
As we mentioned at the beginning of this section, the EPS format is designed to
encapsulate PostScript language code in a portable manner. To accomplish
this, an EPS file normally contains nothing but 7-bit ASCII characters, except
for the Display EPS format discussed later. An example of a small EPS file is
shown in the section called "EPS Files."

File Details
This section contains information about, and examples of, EPS, EPSI, and EPSF
files.

EPSFiles

An EPS file contains a ·PostScript header, which is a series of program com
ments, and may appear as:

%!PS-Adobe-3.0 EPSF-3.0
%%Title: Figure 1-1, Page 34
%%Creator: The Image Encapsulator
%%CreationDate: 12/03/91 13:48:04
%%BoundingBox:126 259 486 534
%%EndComments

Any line beginning with a percent sign (%) in a PostScript file is a comment.
Normally, comments are ignored by PostScript interpreters, but comments in
the header have special meanings. Encapsulated PostScript files contain two
comments that identify the EPS format. The EPS identification comment
appears as the first line of the file:

%1PS-Adobe-3.0 EPSF-3.0

The version number following the "PS-Adobe-" string indicates the level of con
formance to the PostScript Document Structuring Conventions. This number

378 GRAPHICS FILE FORMATS

Encapsulated PostScript (cont'd)

will typically be either 2.0 or 3.0. The version number following the "EPSF-"
indicates the level of conformance to the Encapsulated PostScript Files Specifi
cation and is typically 1.2, 2.0, or 3.0.

The next EPS-specific comment line is:

%%BoundingBox:

followed by four numeric values, which describe the size and the position of
the image on the printed page. The origin point is at the lower-left corner of
the page, so a 640x480 image starting at coordinates 0,0 would contain the fol
lowing comment:

%%BoundingBox: 0 0 640 480

Both the % %PS-Adobe- and the % %BoundingBox: lines must appear in every
EPS file. Ordinary PostScript files may formally be changed into EPS files by
adding these two lines to the PostScript header. This, however, is a kludge and
does not always work, especially if certain operators are present in the
PostScript code (such as initgraphics, initmat:riX, initclip, setpageparams,
framedevice, copypage, erasepage, and so forth) which are not part of the EPSF
subset.

The other comment lines in the header, %%Title:, %%Creator:, and %%Cre
ationDate: are used to identify the name, creator, and creation date of the EPS
file. The header is always terminated by the %%EndComments com~ent.
Other comments may also appear in the header, such as %%IncludeFile,
%%IncludeFont, and %%Page.

Encapsulated PostScript (EPS) Example
The following shows an example of an EPS file:

%!PS-Adobe-2.0 EPSF-1.2
%%Creator: O'Reilly 2.1
%%CreationDate: 12/12/91 14:12:40
%%~oundingBox:l26 142 486 651
%%EndComments
/ld {load def} bind def
Is /stroke ld /f /fill ld /m /moveto ld /1 /lineto ld /c /curveto ld /rgb
{255 div 3 1 roll 255 div 3 1 roll 255 div 3 1 roll setrgbcolor} def
126 142 translate
360.0000 508.8000 scale
/picstr 19 string def
152 212 1[152 0 0 -212 0 212]{currentfile picstr readhexstring pop}image
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

ENCAPSULATED POSTSCRIPT 379

Encapsulated PostScript (cont'd)

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFFF8000EE614FFFFFFFFFFFFFFFFFFFFFFFFF
FFFFOOOOOOOOOOOOOOOOOOOOOOOOOOFFFFFFFF
FFFFOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOFFFF
FFFFOOOOOOOOOOOOOOOOOOOOOOOOOOOSOOFFFF
FFFF80000000435C7FFFFFFF600001FFFFFFFF
FFFFOOOOOOOOOOOOOFFFFFFF700047FFFFFFFF
FFFFOOOOOOOOOOOOOOOOOOOOOOOOOOOOOlFFFF

Thousands of lines deleted to save space in this book.

FFFFOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOFFFF
FFFF80000000001DF7E61000000001FFFFFFFF
FFFF00000000391FFFFFFFFFE70003FFFFFFFF
FFFFOOOOOOOOOOOOOOOOOOOOOOOOOlFFFFFFFF
FFFFOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOFFFF
FFFF80000000000000000000000000837DFFFF
FFFF8000000067DFFCF0000000001FFFFFFFFF
FFFFOOOOOOOOOOOOOOOOOOOOOOOOOFFFFFFFFF
FFFFOOOOOOOOOOOOOOOOOOOOOOOOOOOOOlFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
showpage
AD

Looking at the EPS example, we can see the comments header at the start of
the file. Following the header there is a short block of PostScript code, which
does the actual drawing, scaling, cropping, rotating, and so on of the image.
This block is sometimes all that needs to be changed in order to alter the
appearance of the image.

Following the PostScript code block is bitmap data, which in an EPS file is
called a graphics screen representation. This consists of hexadecimal digits.
Each byte of image data contains eight pixels of information and is repre
sented by two bytes of hexadecimal data in the bitmap. Image line widths are
always a multiple of eight bits and are padded when necessary. Only black-and
white, 1-bit per pixel images are currently supported by EPS.

At the end of the EPS file is the showpage operator, which normally indicates a
PostScript output device on which to print or display the completed image or
page. In EPS files embedded in other documents, however, showpage is not
really needed. Sometimes an EPS file fails to display or import properly
because the PostScript interpreter reading the file does not expect to

380 GRAPHICS FILE FORMATS

Encapsulated PostScript (cont'd)

encounter a showpage and becomes confused. You can solve the problem
either by disabling the showpage operator in the interpreter or by removing
the showpage operator from the EPS files.

If you look at a PostScript file in a editor, you may find that the very last charac
ter in the file is a CTRL-D (ASCII 04h) character. This control code has a spe
cial meaning to a PostScript device; it is an End-Of:Job marker and signals that
the PostScript code stream has ended. When a PostScript device reads this
character, it may perform an end-of-file terminate-and-reset operation in
preparation for the next PostScript data stream. The presence of this character
can sometimes be a source of problems to applications that are not expecting
or equipped to handle a non-printable ASCII character in the data stream. On
the other hand, problems can occur in PostScript output devices if a file does
not have this character at the end of the code stream. And if spurious CTRL-D
characters appear in the data stream, not much will come out of your printer
at all.

EPS files (as opposed to normal PostScript) are generally created exclusively by
code generators and not by hand. Each line is a maximum of 255 characters
wide and is terminated with a carriage return (ASCII ODh) on the Macintosh, a
linefeed (ASCII OAh) under UNIX, and a newline (ASCII ODh/OAh) under MS
DOS. A PostScript interpreter should be able to recognize files using any of
these line-termination conventions.

EPS files may also be in preview format. In this format, an actual image file is
appended to the end of the file. This provides a quick method of viewing the
image contents of the EPS file without having to actually translate the
PostScript code. This is hanc;ly for applications that cannot handle PostScript
interpretation, but which can display bitmap graphics and wish to import EPS
files. Previews are typically scaled down (but not cropped), lower-resolution
versions of the image. EPS previews are similar to postage stamp images found
in the Truevision TGA and Lumena bitmap formats.

Four file formats may be used as EPS preview images: TIFF, Microsoft Windows
Metafile (WMF), Macintosh PICT, and EPSI (Encapsulated PostScript Inter
change format). In the Macintosh environment, an EPS file is stored only in
the file data fork. A PICT preview is stored in the resource fork of the EPS file
and will have a resource number of 256. PostScript Level 2 supports]PEG
compressed images as well. TIFF and WMF files are appended to EPS files in
their entirety. Because MS-DOS files do not have a resource fork or similar
mechanism, a binary header must be prepended to the EPS file containing
information about the appended image file.

ENCAPSULATED POSTSCRIPT 38}

Encapsulated PostScript (cont'd)

EPS Preview Header
The EPS preview header is 32 bytes in length and has the following format:

typedef struct EPSHeader
{

BYTE Id[4];
DWORD PostScriptOffset;
DWORD PostScriptLength;
DWORD WMFOffset;
DWORD WMFSize;
DWORD TIFOffset;
DWORD TIFSize;
DWORD CheckSum;
EPSHEADER;

I* Magic Number (always CSDOD3C6h) *I
I* Offset of PostScript code *I
I* Size of PostScrip code *I
I* Offset of Windows Metafile */
I* Size of Windows Metafile *I
I* Offset of TIFF file *I
I* Size of TIFF file *I
I* Checksum of previous header fields *I

ld, in the first four bytes of the header, contains an identification value. To
detect whether an MS-DOS EPS file has a preview section, read the first four
bytes of the file. If they are the values C5h DOh D3h C6h, the EPS file has a pre
view section. Otherwise, the first two bytes of an EPS file will always be 25h 2lh
(%!).

PostScriptOffset and PostScriptLength point to the start of the PostScript lan
guage section of the EPS file. The PostScript code begins immediately after the
header, so its offset is always 32.

WMFOffset and ~Size point to the location of the WMF data if a WMF file is
appended for preview; otherwise, these fields are zero.

The same is true for TIFOffset and TIFSize. Because either a TIFF or a WMF
file (but not both) can be appended, at least one, and possibly both, sets of the
fields will always be zero. If the checksum field is set to zero, ignore it. Offsets
are always measured from the beginning of the file.

The three preview formats detailed are only somewhat portable and are fairly
device dependent; not all environments can make use of the TIFF and WMF
image file formats and fewer still of PIC!'. For one thing, the addition of 8-bit
binary data to the EPS file prevents the file from being transmitted via a 7-bit
data path without special encoding. The EPSI format, described in the next sec
tion, however, is designed as a completely device-independent method of
image data interchange.

382 GRAPHICS FILE FORMATS

Encapsulated PostScript (cont'd)

EPSI Files

EPSI bitmap data is the same for all systems. Its device independence makes its
use desirable in certain situations where it is inconvenient to store preview data
in 8-bit TIFF, WMF, or PICT format. EPSI image data is encoded entirely in
printable 7-bit ASCII characters and requires no uncompression or decoding.

EPSI is similar to EPS bitmap data except that each line of the image begins
with a comment % token. In fact, nearly every line in the EPSI preview is a
comment; this is to keep a PostScript interpreter from reading the EPSI data as
if it were part of the EPS data stored in the file.

Typically, an application will support one or more of the device-dependent pre
view formats. An application should also support the EPSI format for the
export of EPS data to environments that cannot use one of the other preview
formats.

The following shows an example of an EPSI file:

%%Title: EPSI Sample Image
%%Creator: James D. Murray
%%CreationDate: 12/03/91 13:56:24
%%Pages: 0
%%BoundingBox: 0 0 80 24
%%EndComments
%%BeginPreview: SO 24 1 24
% COFFFFFFFFFFFFFFFFFF
% 0007F1E18F80FFFFFFFF
% 0007F1C000000001FFFF
% 001FFFE78C01FFFFFFFF
% E7FFFFFFFFFFFFFFFFFF
% OOOFFFFF81FFFFFFFFFF
% 0007F38000000001FFFF
% 000FFFCE00000001FFFF
% E1FFFFFFFFC7FFFFFFFF
% OOFFFFFFFFEFFFFFFFFF
% 0003FFCF038008EFFFFF
% 0003FFCFOOOOOOOOFFFF
% 007FFFFFFFCFFFFFFFFF
% 40FFFFFFFFFFFFFFFFFF
% 0003FFFFFFFBFFFFFFFF
% 00003FFFFFE00001FFFF
% 0001FFFFFFF00031FFFF
% OOFFFFFFFFFFFFFFFFFF
% 0003FFFFFFFFFFFFFFFF
% OOOOOEOOOFF80073FFFF
% OOOOOE000FF80001FFFF
% 0003FFCFFFFFFFFFFFFF
% 0007FFFFFFFFFFFFFFFF

ENCAPSULATED POSTSCRIPT 383

Encapsulated PostScript (cont'd)

% 000003800071FFFFFFFF
%%EndPreview
%%EndPro1og
%%Page: "one: 1
4 4 moveto 72 0 r1ineto 0 16 rlineto -72 0 rlineto closepath
8 setlinewidth stroke
%%Trailer

EPSFFiles

A question that is frequently asked is "What is the difference between an EPS
file and an EPSF file?" The answer is that there is no difference; they are the
same format. The actual designation, EPSF, is often shortened to EPS, which is
also the file extension used for EPSF files on operating systems such as MS-DOS
and UNIX.

EPSF files come in two flavors. The first is a plain EPSF file that contains only
PostScript code. The second is a Display or Preview EPSF file that has a TIFF,
WMF, PICf, or EPSI image file appended to it. Under MS-DOS, Encapsulated
PostScript files have the extension .EPS, and Encapsulated PostScript Inter
change files have the extension .EPI. On the Macintosh, all PostScript files
have the file type EPSF. Also on the Macintosh, a file type of TEXT is allowed
for PostScript files created in an editor. Such files should have the extension
.EPSF or .EPSI. All other systems should use the filename extensions .EPSF and
.EPSI. .

ForFurtherhrronnation
PostScript was created and is maintained by Adobe Systems Inc. For specific
information about PostScript, contact:

Adobe Systems Inc.
Attn: Adobe Systems Developer Support
1585 Charleston Rd.
P.O. Box 7900
Mountain View, CA 94039-7900
Voice: 415-961-4400
Voice: 800-344-8335
FAX: 415-961-3769
WWW: http:/ /www.adobe.com/
FTP: jtp:/ /ftp.adobe. com/

Adobe Systems distributes and supports a PostScript Language Software Devel
opment Kit to help software developers create applications that use PostScript.

384 GRAPHICS FILE FORMATS

Encapsulated PostScript (cont'd)

The kit includes technical information on PostScript Level 1 and Level 2 com
patibility, optimal use of output devices, font software, and file format specifica
tions. Also included are sample fonts, source code, and many PostScript
utilities.

There are also numerous books written on PostScript. The fundamental refer
ence set consists of the blue, green, and red books available in bookstores or
directly from Adobe Systems or Addison-Wesley:

Adobe Systems, PostScript Language Tutorial and Cookbook, Addison
Wesley, Reading, MA, 1985.

Adobe Systems, PostScript Language Program Design, Addison-Wesley,
Reading, MA, 1988.

Adobe Systems, PostScript Language Reference Manua~ Second Edition,
Addison-Wesley, Reading, MA, 1990.

Other excellent and readily available books about PostScript include:

Braswell, Frank Merritt, Inside PostScript, Peachpit Press, Atlanta, GA,
1989.

Glover, Gary, Running PostScript from MS-DOS, Wincrest Books, 1989.
Reid, Glenn C., Thinking in PostScript. Addison-Wesley, Reading, MA,
1990.

Roth, Stephen F., Real World PostScript, Addison-Wesley, Reading, MA,
1988.

Smith, Ross, Learning PostScript, A Visual Approach, Peach pit Press, 1990.

A very helpful PostScript resource also exists in the form of a gentleman
named Don Lancaster. Mr. Lancaster is the author of more than two dozen
books on PostScript, laser printers, and desktop publishing. His articles can be
read regularly in Computer Shopper magazine. His company, Synergetics, offers
many PostScript products and information as well as a free technical support
hotline for PostScript users. Contact:

Synergetics
Attn: Don Lancaster
Box 809-PCT
Thatcher, AZ 85552
Voice: 602-428-4073

ENCAPSULATED POSTSCRIPT 385

I FaceSaver
NAME:

ALSO KNOWN AS:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CO:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

Face Saver

None

Bitmap

8-bit

Uncompressed

NA

No

NA

Metron Computerware, Ltd.

UNIX

FaceSaver

Yes

No

No

None

. UsAGE: A litde-used format, but extremely simple and well-known, in part due to
the fact that there is support for this format in the PBM utilities.

coMMENTs: This is an interesting format to examine if you are implementing an ID
card system or a similar type of system that deals with the storage of small
images (e.g., people's faces).

Overview
The FaceSaver format was created by Lou Katz, and FaceSaver is a registered
trademark of Metron Computerware, Ltd. It was created to hold video facial
portrait information in a compact, portable, and easy to use form. It is
intended to be printed on a PostScript printer. Outside the UNIX graphics
world, it is known chiefly because it is supported by the widely used PBM utili
ties included on the CD-ROM that comes with this book.

The original FaceSaver images were digitized using a Truevision TGA MS video
board.

386 GRAPHICS FILE FORMATS

FaceSaver (cont'd)

File Organization
Each FaceSaver file consists of several lines of personal information in ASCII
format, followed by bitmap data. There must be at least two lines of personal
information, and they must include at least the PicData and Image fields.

File Details
The personal information in a FaceSaver file can consist of the following fields:

FirstName:
LastName:
E-mail:
Telephone:
Company:
Address!:
Address2:
CityStateZip:
Date:
PicData:
Image:

width - height - image bits/pixel
width - height - bits/pixel

Following these fields is a blank line, which is required, and which separates
the personal information from the bitmap data that follows it.

The bitmap data consists of ASCII-encoded hexadecimal information, suitable
for printing on a PostScript printer. The data is stored in scan-line order, start
ing from the bottom and continuing to the top of the image, and from left to
right. The image data comes originally from a video camera, and is first rotated
90 degrees before being written to a file.

Each pixel is transformed before it's written to the file by multiplying its value
by the factor:

256 I (max - min)

where max and min are the maximum and minimum pixel values found in the
image, respectively.

The Image field in the personal information above is used to correct for non
square pixels. The author writes:

In most cases, there are 108 (non-square) pixels across in the data, but
they would have been 96 pixels across if they were square. Therefore,
linage says 96; PicData says 108.

FACESAVER 387

FaceSaver (ccmt'd)

ForFurtherhUonnation
For further information about FaceSaver, see the file format specification
included on the CD-ROM that accompanies this book. You may also contact the
author directly for additional information.

Lou Katz
Email: lou@orange. metron. com

388 GRAPHICS FILE FORMATS

NAME:

ALSO KNOWN AS:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

FAX Formats

FAX, Facsimile File Formats

Bitmap

Mono

FAX Formats I

RLE, CCITT Group 3, CCIIT Group 4

1728x2200 pixels (typical)

No

NA

Many

All

Too numerous to list

No

No

No

TIFF, PCX, Chapter 9, Data Compression

UsAGE: Storage of FAX images received through computer-based FAX and FAX
modem boards.

coMMENTs: There is no one single FAX format. The closest to standard are the formats
based on a proprietary specification, such as PCX or TIFF. Consider your
self blessed if the format you need to support is one of these.

Overview
There are many facsimile {FAX) file formats, almost as many as there are FAX
add-in boards. The PC-based Hijaak Graphics File Conversion Utility (by Inset
Systems), as of version 2.1, supports no fewer than 22 different FAX file for
mats. Each format, however, is basically the same, and consists of a binary
header, followed by one or more sections of compressed image data. The data
encoding is usually a variant of RLE, CCITT Group 3 or CCIIT Group 4. Several
FAX formats, in fact, are proprietary variants of better-known formats, such as
TIFF and PCX.

Even though all of these FAX file formats were created to store the same kind
of image data obtained from the same type of hardware device (i.e., FAX
cards), each one is slightly different from all the others. This is problematic.

FAX FORMATS 389

FAX Formats (cont'd)

The evolution of the FAX card industry in some ways recapitulates the early
evolution of the computer industry as a whole. Each company perhaps imag
ined it was working alone, or, if not, would quickly come to dominate the mar
ket. As the presence of competition became clear, a mad scramble to ship
products ensued, and corners were cut. Because companies making FAX cards
are by definition hardware-oriented, you can guess where the corners were cut:
software.

As the industry started to mature, companies realized that competition was a
fact of life, and tried to differentiate their products. One way to do so was
through the promulgation of proprietary "standards," designed to keep the
originator company one jump ahead of any competition unlucky enough not
to be able to push their own specification. Add an unhealthy glop of NIH ("not
invented here") spread liberally over the entire FAX board industry, and you
have the present situation.

Recently, there have been signs of true maturity in the FAX card industry, with
the emergence of the realization that all companies benefit by standardization,
and an effort in this direction has been underway for some time. An extension
of the TIFF file format, called TIFF Class F, would add the necessary tag exten
sions to allow easier storage and manipulation of FAX images stored in TIFF
format files. (For further information, see the article on TIFF.) At the time of
this writing, only one company, Everex, has adopted the unofficial TIFF Class F
as its FAX file format standard (perhaps because a now-dead subsidiary of
Everex, Cygnet Technologies, pioneered TIFF Class F).

If you need to need to convert FAX file formats, you will need a very versatile
conversion utility, such as Hijaak. If you need to write code for an application
that reads and writes one or more FAX file formats, you will ordinarily need to
contact the manufacturer of the FAX card and obtain any information they are
willing to release. If your FAX format is a common one and worth supporting,
you should find that you are able to obtain the specifications you need from
the manufacturer.

· For Further Information
As mentioned above, the best source of information on FAX file formats is
from the manufacturer of the FAX card you wish to support. Some FAX card
companies publish developers' toolkits for designing software to work with
their FAX cards. Unless a company considers its format proprietary, it will have
some sort of specification available for their FAX file format.

390 GRAPHICS FILE FORMATS

FAX Formats (cont'd)

For more information about TIFF Class F, see the TIFF article. You may also be
able to obtain the following document:

Campbell, Joe. The spirit of TIFF Class F, Cygnet Technologies, Berkeley,
CA, April 1990.

Cygnet is no longer in business, and Aldus took over support of the TIFF Class
F specification. Aldus has recently merged with Adobe Systems, which now
holds the copyright to the TIFF specification and administers and maintains
the TIFF format.

All information on the TIFF format may now be obtained through the Adobe
Developer Support group. However, this group supplies only general TIFF
information and does not provide any TIFF tutoring, sample TIFF source code,
or sample TIFF files. Contact the Adobe Developer Support group, at devsup
person@adobe. com

Questions about the the Adobe Developer's Association should be directed to:

Adobe Developer's Association
1585 Charleston Road
P.O. Box 7900
Mountain View CA 94039-7900
Voice: 415-961-4111
FAX: 415-967-9231
FTP: ftp:/ /ftp.adobe.com/
WWW: http:/ /www.adobe.com/Support/ ADA.html
BBS: 206-623-6984

FAX FORMATS 391

I FITS
NAME:

ALSO KNOWN As:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

FITS

Flexible Image Transport System, FTI

General data format

Unlimited gray scale

Uncompressed

NA

Yes

Two's complement/big-endian

NOST

All

FITSview, IMDISP, xv, pbmplus, SAOimage

Yes

Yes (in FITSview)

Yes

VICAR2, PDS

usAGE: FITS is a general-purpose data storage format used primarily for the inter
change of data between hardware platforms and software applications.

coMMENTs: FITS is the standard image data storage format for many astronomical
organizations, including the astrophysics branch of NASA.

Overview
The FITS image file format is used primarily as a method of exchanging bitmap
data between different hardware platforms and software applications that do
not support a common image file format. FITS is used mostly by scientific orga
nizations and government agencies that require the storage of astronomical
image data (e.g., image data returned by orbital satellites, manned spacecraft,
and planetary probes) and ground-based image data (e.g., data obtained from
CCD imagery, radio astronomy, and digitized photographic plates).

Although the I in FITS stands for Image, FITS is actually a general-purpose data
interchange format. In fact, there is nothing in the FITS specification that lim
its its use to bitmapped image data.

392 GRAPHICS FILE FORMATS

FITS (cont'd)

FITS was originally designed explicitly to facilitate the interchange of data
between different hardware platforms, rather than between software applica
tions. Much of the FITS data in existence today is (and traditionally, always has
been) ground-based and most, if not all, of the agencies and organizations
requiring the use of FITS are astronomical in nature.

FITS was originally created by Eric Greisen, Don Wells, Ron Harten, and P.
Grosbol and described in a series of papers published in the journal Astronomy
& Astrophysics Supplement. The NASA/ OSSA Office of Standards and Technology
(NOST) codified FITS by consolidating these papers into a draft standard of a
format for the interchange of astronomical data between scientific organiza
tions. Many such organizations use proprietary imaging software and image file
formats not supported by other organizations. FITS, along with VICAR2 and
PDS, became a standard interchange format that allows the successful
exchange of image data.

FITS is supported by all astronomical image processing facilities and astro
physics data archives. Much of the solar, lunar, and planetary data that is
retrieved by the Astrophysics branch of the National Aeronautics and Space
Administration (NASA) is distributed using the FITS file format. FITS is cur
rently maintained by a Working Group of the International Astronomical
Union (IAU).

Image data normally is converted to FITS not to be stored, but to be imported
into another image processing system. Astronomical image data is generally
stored in another format, such as the VICAR2 (Video Image Communication
and Retrieval) format used by the Multi-Mission Image Processing Laboratory
(MIPL).

FITS itself is a very general format capable of storing many types of data,
including bitmaps, ASCII text, multidimensional matrices, and binary tables.
The simplest FITS file contains a header and a single data stream, called a mul
tidimensional binary array. This is the type of FITS image file we will be exam
ining in this article.

File Organization
In FITS terminology, a basic FITS file contains a primary header and single pri
mary data array. This data structure is known collectively as a Header and Data
Unit (HDU). An HDU may contain a header followed by data records, or may
contain only a header. All data in a FITS file is organized into logical records
2880 bytes in length.

FITS 393

FITS (cont'd)

Basically, a FITS file is a header, normally followed by a data stream. Every FITS
file begins with an ASCII header which contains one or more logical records.
Each logical record is 2880 bytes in size. The last logical record in the header
must be padded to 2880 bytes with spaces (ASCII 32).

Each logical record contains 36 records, called card images. A card image is a
logical field similar to a data field in a binary image file header. Each card
image contains 80 bytes of ASCII data, which describes some aspect of the orga
nization of the FITS image file data. Card images are padded with spaces when
necessary to fill out the 80 bytes and do not have delimiters. Card images that
are not needed for the storage of a particular set of data contain only spaces.

Most card images may appear in any order within the header, with a few excep
tions. The SIMPLE card image must always be first, followed by BITPIX sec
ond, NAXIS third, and END last.

Every card image has the following syntax:

keyword = value /comment

keyword is a 1- to 8-character, leftjustified ASCII string that specifies the format
and use of the data stored in the card image. If a keyword contains fewer than
eight characters, it is padded with spaces. A keyword always occupies columns
one through eight in a card image. Only uppercase alphanumerics, hyphens
(-), and underscores (_) may be used as characters in a keyword. No lower
case characters, other punctuation, or control codes may be used. If a card
image does not have a keyword (the keyword is all spaces), then the card
image is treated as a comment..

If the keyword has an associated value, it is then followed by a two-character
value indicator (=). This indicator always occupies columns nine and ten in
the card image, and if it is present, a value follows the keyword. If the keyword
does not have an associated value, then any other ASCII characters may appear
in place of the value indicator. ·

value is an ASCII representation of the numerical or string data associated with
the keyword. The value is an ASCII representation of boolean, string, integer,
or real (floating-point) data.

comment is an optional field which may follow any value within a card image. A
comment is separated from the value by a slash (/) or a space and a slash (/);
the latter is recommended. A comment may contain any ASCII characters.

The data in a card image is stored in specific columns. For example, the key
word identifier always occupies columns one through seven in a card image.

394 GRAPHICS FILE FORMATS

FITS (cont'd)

The keyword value indicator, if present, always occupies columns eight and
nine. A boolean value always occupies column 30. And a complex-integer value
always occupies columns 31 through 50. Columns that do not contain data are
filled with spaces.

Character strings are contained within single quotes. If a string contains a sin
gle quote, then it is represented by two consecutive single quotes ('O'Reilly'
becomes 'O"Reilly'). All strings contain only 7-bit ASCII values and must be at
least eight characters in length, padded with spaces, if necessary. Strings may
contain a maximum of 68 characters. Strings may begin with leading spaces,
but trailing spaces are considered padding.

All boolean, integer, and floating-point values are represented by their ASCII
string equivalents. Boolean variables are represented by the value Tor F and
are always found in column 30 of the card image. Integer and floating-point
values are located in columns 11 through 30 and are right-justified with spaces,
if necessary. Complex integers and complex floating-point values are located in
columns 31 through 50 and are also right-justified when necessary. All letters
used in exponential forms are uppercase.

Examples of valid values are shown below.

Name Size in Bits Example

ASCII character 8 'Saturn'
Integer

Unsigned, one byte 8 127
Unsigned, two bytes 16 32767
Unsigned, four bytes 32 1451342181

Single-precision real
Fixed-point notation 32 3.14159
Exponential notation 32 0.314159E+Ol

Double-precision real
Exponential notation 64 0.31415926535250+01

FITS 395

FITS (cont'd)

File Details
This section describes FITS headers and image data.

Keywords

There are many keywords that may be included in FITS headers, and it is
unlikely that any FITS reader will understand them all (unrecognized keywords
are treated as comments by FITS readers). There are five keywords that are
required in every FITS file: SIMPLE, BITPIX, NAXIS, NAXISn, and END.
(EXTEND is also a required keyword if extensions are present in the file.)
These mandatory keywords are described below:

SIMPLE
The SIMPLE keyword always appears first in any FITS header. The value of this
keyword is a boolean value indicating the conformance level of the file to the
FITS specification. If the file conforms to the FITS standard, this value is T. If
the value is F, then the file differs in some way from the requirements specified
in the FITS standard.

BITPIX
The BITPIX card image contains an integer value which specifies the number
of bits used to represent each data value. For image data, this is the number of
bits per pixel.

BITPIX Value Data

8 Character or unsigned binary integer
16 16-bit two's complement binary integer
32 32-bit two's complement binary integer

-32 32-bit floating point, single precision
-64 64-bit floating point, double precision

NAXIS
The NAXIS card image contains an integer value in the range ofO to 999, indi
cating the number of axes in the data array. Conventional bitmaps have an
NAXIS value of 2. A value of.O signifies that no data follows the header,
although an extension may be present.

396 GRAPHICS FILE FORMATS

FITS (cont'd)

NAXISn
The NAXISn card image indicates the length of each axis in BITPIX units. No
NAXISn card images are present if the NAXIS value is 0. The value field of this
indexed keyword contains a non-negative integer, representing the number of
positions along axis n of an ordinary dat4 array. The NAXISn card image must
be present for all values n = 1, ... , NAXIS. A value of 0 for any of the NAXISn
card images signifies that no data follows the header in the HDU. If NAXIS is
equal to 0, there should not be any NAXISn keywords.

EXTEND
The EXTEND card image may be included if there are extensions in the FITS
file. If there are no extensions, there are no EXTEND card images.

END
The END keyword indicates the end of the header and is always the last card
image in a header. END has no value. The card image contains spaces in
columns 9 though 80 and is padded out with spaces so that the length of the
header is a multiple of 2880 bytes.

Sample Header

The header of a basic FITS image file might appear as follows (the first two
lines are for positional information only and are not included in the FITS file):

1 2 3 4 5 6 7
1234567890123456789012345678901234567890123456789012345678901234567890123456
SIMPLE
BITPIX
NAXIS
NAXIS1
NAXIS2
DATE
ORIGIN

'09/17/93'

T
8/ 8 bits per pixel
2/ Table is a 2D matrix

168/ Width of table row in bytes
51 Number of rows in table

'O''Reilly & Associates'/ Publisher
AUTHOR 'James D. Murray' I Creator
REFERENC= 'Graphics File Formats'/ Where referenced
COMMENT = 'Sample FITS header'
END

For a description of all other valid FITS header keywords, refer to the FITS
specification.

FITS 397

FITS (cont'd)

FITS Image Data

Immediately following the header is the binary image data. This data is stored
in 8-bit bytes and is currently never compressed. At the time of this writing, an
extension to the FITS standard has been proposed to the FITS community, so
future revisions to the FITS standard may incorporate data compression.

The presence or absence of a primary data array is indicated by the values of
either the NAXIS or the NAXISn keyword in the primary header.

Data in a FITS file may be stored as bytes, 16- or 32-bit words, and 32- or 64-bit
floating-point values that conform to the ANSI/IEEE-754 standard. Fill (ASCII
OOh) is added to the data to pad the data out to end on a 2880-byte boundary.

The number of bits of image data, not including the padding added to the end
of the image data, may be calculated from the BITPIX, NAXIS, and NAXISn
card image values:

NumberOfBits = BITBIX * (NAXISl * NAXIS2 * ... * NAXIS[NAXIS])

ForFurtherhrronnation
The specification for FITS is contained in the NOST document included on the
CD-ROM that accompanies this book:

Implementation of the Flexible Image Transport System (FITS), Draft Imple
mentation Standard NOST 100-0.3b., December 1991.

A tutorial and historical guide to FITS is included in the following document,
also on the CD-ROM:

A User's Guide for FITS, January 1993.

Both of these documents are also available from the NASA/OSSA Office of
Standards and Technology (NOST) FITS Support Office:

NASA/ OSSA Office of Standards and Technology
Code 633.2
Goddard Space Flight Center
Greenbelt, MD 20771
Voice: 301-441-4189
Voice: 301-513-1634
Email: nost@nssdca.gsfc. nasa.gov
Email: jits@nssdca.gsfc. nasa.gov
WWW: http:/ /www.gsfc. nasa.gov/astro/fits/fits_home.html

398 GRAPHICS FILE FORMATS

FITS (cont'd)

The FITS standard is also described in the following references, known collec
tively as the "Four FITS Papers:"

Wells, D.C.,· E.W. Greisen, and R.H. Harten, "FITS: a flexible image
transport system," Astronomy and Astrophysics Supplement Series, vol. 44,
1981, pp. 363-370.

Greisen, E.W. and R.H. Harten, "An extension of FITS for small arrays
of data," Astronomy and Astrophysics Supplement Series, vol. 44, 1981, pp.
371-374.

Grosbol, P., R.H. Harten, E.W. Greisen, and D.C. Wells, "Generalized
extensions and blocking factors for FITS," Astronomy and Astrophysics
Supplement Series, vol. 73, 1988, pp. 359-364.

Harten, R.H., P. Grosbol, E.W. Greisen, and D.C. Wells, ''The FITS
tables extension," Astronomy and Astrophysics Supplement Series, vol. 73,
1988, pp. 365-372.

Updated information on FITS, including new software applications, frequently
appears on the USENET newsgroups sci.astro.fits and sci.data.Jormats. Additional
software and information on FIT~ may also be obtained from the following FTP
sites:

ftp:/ /fits.cu. nrao.edu/FITS/
ftp:/ /ames. arc. nasa.gov/pub/SPACE/SOFIWARE/
ftp:/ /hypatia.gsfc. nasa.gov /pub/software/

You will find the sci. data FAQ at:

http://fits.cu.nrao.edu/traffic/scidataformats/faq.html#fits

You can find FITS images at:

http:/ I astrosun. tn. comell.edu/FITS. html

FITS is also one of the primary responsibilities of the Working Group on Astro
nomical Software (WGAS) of the American Astronomical Society. The North
American FITS Committee (Dr. Robert J. Hanisch at Space Telescope Science
Institute is the chairman) is appointed under the auspices of the WGAS. The
WGAS also has a list server, which may be reached by sending a mail message to
the following for information on the WGAS mail exploder:

listsero@hypatia.gsfc. nasa.gov

FITS 399

FITS (cont'd)

Several programs on the CD-ROM display FITS images.

The NSSDC Coordinated Request and Support Office (CRUSO) will provide
IMDISP on floppy for a nominal fee. Contact them at:

Voice: 301-286-6695
Email: request@nssdc.gsjc. nasa.gov

The FITSIO package contains a collection of subroutines for reading and writ
ing data in the FITS format. This library supports most machines, including
Sun, VAX/VMS, Amiga, and the IBM PC and mainframes. It is available via FTP
from: ·

ftp:/ /tetra.gsjc. nasa.gov/pub/fitsio/

400 GRAPHICS FILE FORMATS

NAME:

ALSO KNOWN As:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

FLI

FLI Animation, Flic, FLC, FII

Animation

64,256

Raw, RLE, and delta

320x200, 64Kx64K

Yes

Little-en dian

Autodesk

Intel

Autodesk Animator and Animator Pro

Yes (summary description by its author)

No

Yes

GRASP

FLII

usAGE: Used to store animation sequences found in graphics applications, CAD
systems, and computer games.

coMMENTs: Currently occupies a market niche being colonized by video.

Overview
The FLI file format (sometimes called Flic) is one of the most popular anima
tion formats found in the MS-DOS and Windows environments today. FLI is
used widely in animation programs, computer games, and CAD applications
requiring 3D manipulation of vector drawings. Flic, in common with most ani
mation formats, does not support either audio or video data, but instead stores
only sequences of still image data.

FU is popular because of its simple design. It easy to implement FU readers
and writers in software-only applications. FLI also enables quick animation
playback and does not require special hardware to encode or decode its data.

FLI is best suited for computer-generated or hand-drawn animation sequences,
such as those created using animation and CAD programs. These images
achieve the best compression ratios when stored using the FLI format.

FLI 401

FU (cont'd)

Natural, real-world images may also be animated by FLI, but such images usu
ally contain a fair amount of noise that will degrade the ability of the FU
encoding algorithms to compress the data and will therefore possibly affect the
speed of the animation playback. Also, the fewer the colors in the animation,
the better the compression ratio will typically be.

There are two types of FLI animation files. The original FLI format has an
extension of .FLI, has a maximum display resolution of 320x200 pixels, and is
only capable of supporting 64 colors. This format was created for use by the
Autodesk Animator application.

The new FLI format has the extension .FLC, has a maximum display resolution
of 64Kx64K pixels, and supports up to 256 colors. The data compression
scheme used by .FLC files is also more efficient than the scheme used by .FLI
files. Applications such as the IBM Multimedia Tool Series, Microsoft Video for
Windows, and Autodesk Animator Pro all support .FLC files.

Any application capable of reading the newer .FLC files should be able to read
and play back the older .FLI files as well. However, most newer FLI file writers
may only have the capability of creating .FLC files. There is really no reason to
create .FLI files, unless the animations you are producing must run under soft
ware that reads only the .FLI format.

File Organization
FLI animations are sequences of still images called frames. Each frame contains
a slice of the animation data. The speed of the animation playback is con
trolled by specifying the amount of delay that is to occur between each frame.

The data in each frame is always color mapped. Each pixel in a frame contains
an index value into a color map defined for that frame. The colors in the map
may change from frame to frame as required. And, although the FLI file is lim
ited to displaying a maximum of 256 colors per frame, each pixel is 24 bfts in
depth, resulting in a palette. of more than 16 million colors from which to
choose.

The FLI format also supports several types of data compression. Each frame of
a FLI animation is .typically compressed using an interframe delta encoding
scheme. This scheme encodes only the differences between adjacent image
frames and not the frames themselves. This strategy results in significantly
smaller files than if each frame were independently encoded (intraframe
encoding). Interframe encoded data is also very fast to uncompress and dis
play.

402 GRAPHICS FILE FORMATS

FU (cont'd)

The first frame of every FLI animation is compressed in its entirety, using a sim
ple run-length encoding algorithm. Because only the differences between each
successive frame are encoded, you have to start somewhere. If a frame is delta
encoded and the resulting compressed data is larger than the original uncom
pressed data (quite possible with noisy, natural images), then the frame may be
stored uncompressed.

File Details
The header of a FLI file is 128 bytes in length. The first nine fields (22 bytes)
are the same for both .FLI and .FLC files. The last ten fields (106 bytes) con
tain valid data only in .FLC files and are set to OOh in .FLI files.

The FLI file header has the following format:

typedef struct _FlicHeader
{

DWORD FileSize; /* Total size of file */
WORD Fileid; /* File format indicator */
WORD NumberOfFrames; /* Total number of frames */
WORD Width;
WORD Height;
WORD PixelDepth;
WORD Flags;
DWORD FrameDelay;
WORD Reservedl;

/* Screen width in pixels */
/* Screen height in pixels */
/* Number of bits per pixel */
/* Set to 03h */
/* Time delay between frames */
/* Not used (Set to OOh) */

II The following fields are set to OOh in a .FLI file

DWORD DateCreated;
DWORD CreatorSN;
DWORD LastUpdated;
DWORD UpdaterSN;
WORD XAspect;
WORD YAspect;
BYTE Reserved2[38];
DWORD FramelOffset;
DWORD Frame20ffset;
BYTE Reserved3[40];

FLICHEADER;

/* Time/Date the file was created */
/* Serial number of creator program */

/* Time/Date the file last changed */
/* Serial number of updater program */
/* X-axis of display aspect ratio */
/* Y-axis of display aspect ratio */
/* Not used (Set to OOh) */
/* Offset of first frame */
/* Offset of second frame */
/* Not used (Set to OOh) */

FileSize contains the total size of the FLI file in bytes.

Fileld contains a value identifYing the type of Flic file. A value of AF11h indi
cates an .FLI file, and a value of AF12h indicates an .FLC file.

FLI 403

FU (cont'd)

NumberOfFrames contains the total number of frames of animation data. A
.FLC file may contain a maximum of 4000 frames; this does not include the
ring frame.

Width and Height specify the size of the animation in pixels.

PixelDepth indicates the number of bits per pixel; the value of this field is
always 08h.

Flags is always set to 03h, as an indication that the file was properly updated.

FrameDelay indicates the amount of time delay between frames and is used to
control the speed of playback. For .FU files, this value is interpreted in units of
l/70 of a second. For .FLC files, this value is in units of 1/1000 of a second.

Reserved! is not used and is set to OOh.

DateCreated is an MS-DOS date stamp (the number of seconds occurring since
midnight,January 1, 1970) of the date the FLI file was created.

CreatorSN contains the serial number of the Animator Pro application pro
gram that created the FU file. If the file was created by an application using
the FlicLib development library, the value of this field will be 46h 4Ch 49h 42h
("FUB").

LastUpdated is an MS-DOS date stamp indicating the last time the FU file was
modified (also in number of seconds since midnightjanuary 1, 1970).

UpdaterSN contains the serial number of the program that last modified the
Flic file.

XAspect and YAspect contain the aspect ratio of the display used to create the
animation. For a display with a resolution of 320x200, the aspect ratio is 6:5,
and these fields contain the values 6 and 5 respectively. For all other resolu
tions, the aspect ratio is typically 1:1.

Reserved2 is not used and is set to OOh.

FramelOffset and Frame20ffset contain the offset of the first and second
frames, respectively, of the animation from the beginning of the file. The first
frame offset is used to identify the beginning of the animation. The second off
set is used as the starting point when the animation loops back to the begin
ning of the animation from the ring frame.

Reserved3 is not used and is set to OOh.

404 GRAPHICS FILE FORMATS

FU (cont'd)

Chunks

All of the data in a FLI file is encapsulated into chunks. Each chunk is a collec
tion of data beginning with a header and followed by the data for that chunk.
Chunks may also contains subchunks of data with the same basic format. If a
Flic reader encounters a chunk it does not recognize, it should simply skip
over it.

Each chunk in a FU file begins with a 16-byte header that contains the follow
ing format:

format:
typedef struct _ChunkHeader
{

DWORD ChunkSize; /* Total size of chunk *I
WORD ChunkType; I* Chunk identifier *I
WORD NumberOfChunks; I* Number of subchunks in this chunk *I
BYTE Reserved[8]; /*Not used (Set to OOh) */

} CHUNKHEADER;

ChunkSize is the size of the chunk in bytes. This value includes the size of the
header itself and any subchunks contained within the chunk.

ChunkType is an identification value indicating the format of the chunk and
the type of data it contains.

NumberOfChunks specifies the number of subchunks contained within this
chunk.

Reserved is not used and is set to OOh.

As we have said, a chunk may contain subchunks. In fact, the entire FLI file
itself is a single chunk that begins with the FLICHEADER structure. In .FLC
files, an optional CHUNKHEADER structure may follow the FLICHEADER
structure. This secondary header is called a prefix header. If present, this header
contains information specific to the Animator Pro application that is not used
during the playback of the animation. Other applications can safely skip over
the prefix header and ignore the information it contains. Applications other
than Animator Pro should never include a prefix header in any .FLC files they
create.

For the prefix header, ChunkSize is the size of the entire FLI file minus the 128
bytes of the FLICHEADER. ChunkType is F100h. NumberOfChunks contains
the total number of subchunks in the file.

FLI 405

FU (cont'd)

Following the prefix header is a series of frame chunks. Each frame chunk con
tains a single frame of data from the animation. For the frame chunk, Chunk
Size is the total number of bytes in the frame, including the header and all
subchunks. ChunkType is always FlFAh. NumberOfChunks contains the total
number of subchunks in the frame. If the NumberOfChunks value is 0, then
this frame is identical to the previous frame, so no color map or frame data is
stored, and the previous frame is repeated with the delay specified in the
header.

The following lists all the subchunks that may be found in a frame chunk.

ChunkType Value Chunk Name Chunk Data Description
04h COLOR_256 256-level color palette

(.FLC files only)
07h DELTA_FLC Delta-compressed frame data

(.FLC files only)
OBh COLOR_64 64-level color palette

(.FU files only)
OCh DELTA_FLI Delta-compressed frame data

(.FLI files only)
ODh BLACK Black frame data
OFh BYTE_RUN RLE-compressed frame data
lOh FLI_COPY Uncompressed frame data
12h PST AMP Postage stamp image

(.FLC files only)

The following lists the general internal arrangement of a FLI file:

FLI header
Prefix header (optional)
Frame 1 (RLE compressed)

PST AMP subchunk (optional)
COLOR_256 subchunk (256 colors)
BYTE_RUN subchunk
COLOR_256 subchunk (256 colors)
BYTE_RUN subchunk

Frame 2 (Delta compressed)
COLOR_256 subchunk (colors different from previous map
DELTA_FLCsubchunk

406 GRAPHICS FILE FORMATS

Frame 3 (Uncompressed)
COLOR_256 subchunk (colors different from previous map)
FU_COPY subchunk

Frame 4 (Black)
BlACK subchunk

Frame n (Delta compressed)
COLOR_256 subchunk (colors different from previous map)
DELTA_FLCsubchunk

FU (cont'd)

Each frame chunk contains at least two subchunks: a color map and the data
for the frame. The frame data may be stored in one of several different com
pressed or uncompressed formats. The first frame of a Flic animation may also
contain an additional postage stamp subchunk. Following is an explanation of
each subchunk:

DELTA_FU chunk
The DELTA_FU chunk contains a single frame of data, which is compressed
using delta encoding. The data in this chunk contains the pixel value differ
ences between the current frame and the previous frame. Each scan line of the
frame which contains pixel changes is encoded into packets, and only the val
ues of the pixels in the line that have changed are stored.

The DELTA_FU encoding scheme is an older scheme found mostly in .FLI
files, although .FLC files may also contain DELTA_FU chunks.

The format of a DELTA_FU chunk is as follows:

typedef struct _DeltaFliChunk
{

CHUNKHEADER Header; /* Header for this chunk */
WORD LinesToSkip; /* Number of initial lines to skip */
WORD NumberOfLines; /* Number of encoded lines */

/* Encoded line (one per 'NumberOfLines') */
struct _Line
{

BYTE NumberOfPackets; /* Number of packets in this line */
BYTE LineSkipCount; /* Number of lines to skip */
struct _Packet /* Encoded packet (one/NumberOfPackets) */

{

BYTE SkipCount; /* Number of pixels to skip */
BYTE PacketType; /* Type of encoding used on this packet */
BYTE PixelData[]; /*Pixel data for this packet*/

} Packet[NumberOfPackets];

FLI 407

FU (cont'd)

} Lines[NumberOfLines);

DELTAFLICHUNK;

LinesToSkip contains the number of lines down from the top of the image that
are unchanged from the prior frame. This value is used to find the first scan
line which contains deltas.

NumberOfLines indicates the number of encoded scan lines in this chunk.

NumberOfPackets indicates the number of packets used to encode this scan
line. Each encoded scan line begins with this value.

LineSkipCount is the number of lines to skip to locate the next encoded line.

Each packet in every encoded line contains two values. SkipCount indicates
the location of the pixel deltas in this line that are encoded in this packet.
PacketType specifies the type of encoding used in this packet. A positive value
indicates that the next "PacketType" pixels should be literally read from the
chunk and written to the display. A negative value indicates that the absolute
value of "PacketType" pixels are to be read literally from the encoded data.

For example, suppose that we have a frame with three encoded scan lines. The
first is line number 25, which contains deltas at pixels 4, 22, 23, 24, and 202.
The second is line number 97, which contains deltas at pixels 20 and 54
through 67. The third is line number 199, in which all 320 pixels of the line
have changed to the same color. The sequence of line and packet field values is
shown below:

LinesToSkip
NumberOfLines
Line

NumberOfPackets
LineSkipCount

Packet
SkipCount
Packet Type
PixelData

Packet
SkipCount
Packet Type
PixelData

Packet

24 Skip 24 lines to first encoded line
3 Three encoded lines in this frame

Line 1
3 Three encoded packets in this line

71 Skip 71 lines to the next encoded line
Packet 1

4 Skip 4 pixels
1 Read one pixel literally

23 New value of pixel 4 is 23
Packet 2

17 Skip 17 pixels
-3 Read one pixel and repeat 3 times
65 New value of pixels 22, 23, and 24 is 65

Packet 3

408 GRAPHICS FILE FORMATS

FU (cont'd)

SkipCount 176 Skip 176 pixels
Packet Type 1 Read one pixel literally
PixelData 17 New value of pixel 202 is 17

Line Line 2
NumberOfPackets 2 Two encoded packets in this line
LineSkipCount 102 Skip 102 lines to the next encoded line

Packet Packet 1
SkipCount 20 Skip 20 pixels
Packet Type 1 Read one pixel literally
PixelData 121 New value ofpixel20 is 121

Packet Packet 2
SkipCount 32 Skip 32 pixels
Packet Type 13 Read next 13 pixels literally
PixelData 255 New value of pixels 54 through 67 is 255

Line Line 3
NumberOfPackets 2 Two encoded packets in this line
LineSkipCount 0 Last encoded line in frame

Packet Packet 1
SkipCount 0 Start at first pixel in line
PacketType -256 Read one pixel and repeat 256 times
PixelData 0 New value of pixels 0 though 255 is 0

Packet Packet 2
SkipCount 256 Skip 256 pixels
Packet Type -64 Read one pixel and repeat 64 times
PixelData 0 New value of pixels 256 though 319 is 0

DELTA_FLC chunk
The DELTA_FLC chunk is a newer version of the DELTA_FLI chunk and is
found in all .FLC files. This chunk is essentially the same as the DELTA_FU
chunk with a few field modifications. The PixelData values stored in a
DELTA_FLC chunk are 16 bits in size rather than the 8-bit pixel size found in
the DELTA_FLI chunk.

The structure of a DELTA_FLC chunk is as follows:

typedef struct _DeltaFlcChunk
{

CHUNKHEADER Header;
WORD NumberOfLines;

struct _Line

/* Header for this chunk */
/* Number of encoded lines in chunk */

/*Encoded line (one/'NurnberOfLines') */

FLI 409

FU (cont'd)

WORD PacketCount; /* Packet count, skip count, or last byte value */
I*
** Additional WORDs of data may appear in this location
*I
struct _Packet

{

/* Encoded packet (one per 'Count') */

BYTE SkipCount; /* Number of pixels to skip */
BYTE PacketType; /* Type of encoding used on this packet */
WORD PixelData[]; /*Pixel data for this packet*/
} Packet[NumberOfPackets];

Lines[NumberOfLines];

DELTAFLCCHUNK;

The number of fields occurring between the PacketCount and the first packet
will vary depending upon the value stored in PacketCount. The two most sig
nificant bits in PacketCount determine the interpretation of the value stored
in this field. If these two bits are 0, then the value is the number of packets
occurring in this line. Packet data immediately follows this field and there are
no additional WORD values following.

A value of 0 in th-is field indicates that only the last pixel on the line has
changed.

If the most significant bit (bit 15) is 1 and the next bit (bit 14) is 0, the low byte
in this WORD is to be stored in the last byte of the current line. A WORD field
containing the number of packets in this line follows this value.

If both bits 14 and 15 are set to 1, PacketCount contains a skip count to the
next encoded line. PacketCount may then be followed by additional WORD
values containing a packet count, skip counts, or last byte values.

BYrE_RUN chunk
When a frame is run-length encoded, the data is stored in a BYTE_RUN
chunk. Normally, only the data in the first frame of an animation is encoded
using this scheme.

The structure of a BYTE_RUN chunk is as follows:

typedef struct _ByteRunChunk
{

CHUNKHEADER Header; /* Header for this chunk */
BYTE PixelData[]; /* RLE pixel data*/

BYTERUNCHUNK;

410 GRAPHICS FILE FORMATS

FU (cont'd)

Each line in the frame is individually encoded into a series of one or more RLE
packets. In the original .FLI format, the first byte of each encoded line was the
count of the number of packets used to encode that line, with a packet maxi
mum of 255. The .FLC format, however, allows much longer lines to be used in
an animation, and more than 255 packets may be used to encode a line. There
fore, in both .FLC and .FLI files, this initial count byte is read and ignored.
Instead, a FLI reader should keep track of the number of pixels decoded to
determine when the end of a scan line has been reached.

The RLE scheme used in the BYTE_RUN packet is fairly simple. The first byte
in each packet is a type byte that indicates how the packet data is to be inter
preted. If the value of this byte is a positive number then the next byte is to be
read and repeated "type" times. If the value is negative then it is converted to
its absolute value and the next "type" pixels are read literally from the encoded
data.

FLI_COPY chunk
This chunk contains a single, uncompressed frame of data. When a frame is
stored uncompressed, the FLI_COPY chunk is used. Data is only stored
uncompressed when delta or RLE encoding would result in negative compres
sion.

The structure of a FLI_COPY chunk is as follows:

typedef struct _CopyChunk
{

CHUNKHEADER Header;
BYTE PixelData[];

COPYCHUNK;

/* Header for this chunk */
/* Raw pixel data */

The number of pixels in this chunk is equal to the product of the Width and
Height fields (Width*Height) in the FLI file header. FLI_COPY chunks usually
result when very complex or noisy images cause the compressed frames to be
larger than the uncompressed originals.

PSTAMPchunk
The PSTAMP is a postage stamp of a FLI animation found in the first frame
chunk only in .FLC files. This stamp may be a reduced-sized copy of a frame
from the animation, possibly from the title screen, that is used as an icon. The
size of the stamp is usually 1 00x63 pixels, but will vary to match the aspect ratio
of the frame. This chunk is skipped by FU readers that do not support the use
of PST AMP chunks.

FLI 411

FU (cont'd)

The PSTAMP chunk contains a CHUNKHEADER and two subchunks:

typedef struct _PstampChunk
{

DWORD ChunkSize;
WORD ChunkType;
WORD Height;
WORD Width;
WORD ColorType;
BYTERUNCHUNK PixelData;

} PSTAMPCHUNK;

/* Total size of chunk *I
I* Chunk identifier *I
I* Height of stamp in pixels *I
/* Width of stamp in pixels *I
/* Color translation type *I
/* Postage stamp data */

ChunkSize is the total size of the PST AMP chunk.

Chunk Type value is Ofh, 1 Oh, or 12h.

Height and Width are the height and width of the stamp in pixels.

ColorType indicates the type of color space used by the postage stamp image.
This value is always Olh, indicating a six-cube colorspace (see the FLI file for
mat specification for more information on six-cube color space).

Following this header is the postage stamp data chunk.

ChunkType of this header indicates the format of the pixel data. Values are:

OFh Indicates run-length encoding (a BYTE_RUN chunk)
IOh Indicates uncompressed data (a FU_COPY chunk)
12h Indicates a six-cube color translation table

BLACK chunk
The BLACK chunk represents a single frame of data in which all pixels are set
to the color index 0 (normally black) in the color map for this frame. This
chunk itself contains no data and has a ChunkType of ODh.

The BLACK chunk contains only a CHUNKHEADER:

typedef struct _BlackChunk
{

CHUNKHEADER Header; I* Header for this chunk */
} BLACKCHUNK;

412 GRAPHICS FILE FORMATS

FU (cont'd)

COLOR_64 and COLOR_256 chunks
The FU file format uses a color map to define the colors in an animation. The
older .FLl format may have a maximum of 64 colors and stores its color map in
a COLOR_64 chunk. A .FLC file may have up to 256 colors and stores its color
map in a COLOR_256 chunk. Both of these chunks have the same ~ormat:

typedef struct _ColormapChunk
{

CHUNKHEADER Header;
WORD NumberOfElements;
struct _ColorElement

BYTE SkipCount;
BYTE ColorCount;
struct _ColorComponent
{

BYTE Red;

I* Header for this chunk *I
I* Number of color elements in map *I
I* Color element (one per NumberOfElements) *I

I* Color index skip count *I
I* Number of colors in this element *I
I* Color component (one I'ColorCount') *I

I* Red component color *I
BYTE Green; I* Green component color *I
BYTE Blue; I* Blue component color *I

} ColorComponents[ColorCount];

} ColorElements[NumberOfElements];

COLORMAPCHUNK;

The value of ChunkSize in the Header varies depending upon the number of
elements in this color map. A chunk containing a color map with 256 elements
is 788 bytes in size and therefore ChunkSize contains the value 788.

ChunkType contains a value of04h for a COLOR_256 chunk or a value ofOBh
for a COLOR_64 chunk.

NumberOfChunks always contains a value of OOh, indicating that this chunk
contains no subchunks.

NumberOfElements indicates the number of ColorElement structures in the
COLORMAPCHUNK structure. Following this value are the actual ColorEle
ment structures themselves. Each structure contains two fields and one or
more ColorComponent structures.

SkipCount indicates the number of color elements to skip when locating the
next color map element.

ColorCount indicates the number of ColorComponents structures contained .
within this ColorElement structure. Following the ColorCount field are the
actual ColorCompoiients structures. Each structure is three bytes in size and
contains three fields.

FLI 413

FU (cont'd)

The Red, Green, and Blue fields of each ColorComponents structure contain
the component values for this color. The range of these field values is 0 to 63
for a COLOR_64 chunk and 0 to 255 for a COLOR_256 chunk.

Normally, an image file contains only one color map. A FU file, however, allows
a color map to be defined for each frame in the animation. Storing a complete
color map for each frame would normally require quite a bit of data (768 bytes
per frame). FU files, however, have the capability of storing color maps that
contain only the colors that change from frame to frame.

Storing only the deltas in a color map requires that not only the color values
be stored, but also their locations in the map. This is accomplished by using a
color index value and a skip count. Before a color map value is written, the
skip count of the packet is added to the current color index. This sum is the
location of the next color map value to write. The number of entries in the
packet are written across the same number of entries in the color map. The
color index for each color map always starts with the value 0.

For example, the first frame of a .FLC animation always contains a full, 256-ele
ment color map. This map is represented by a NumberOfElements value of 1
followed by a single ColorElements structure. This structure will contain a
SkipCount value of 0, a ColorCount value of 256, and 256 ColorComponents
structures defining the colors in the map. This chunk is 788 bytes in size.

Now, let's say that in the next frame the colors 2, 15, 16, 17, and 197 in the
color map are different from those in the first frame. Rather than storing
another 788-byte color map chunk, with 251 elements identical to the color
map in the previous chunk, we will store only the values and positions of the
five color components that changed in the color map.

The color map chunk for the second frame will then contain a NumberOfEle
ments value of 3, followed by three ColorElements structures:

• The first structure will have a SkipCount value or' 2, a ColorCount value of
1, and one ColorComponents structure defining the new color values of
element 2.

• The second structure will have a SkipCount value of 14, a ColorCount
value of 3, and three ColorComponents structures defining the new color
values of elements 15, 16, and 17.

• The third structure will have a SkipCount value of 180, a ColorCount value
of 1, and one ColorComponents structure defining t,p.e new color value of
element 197. This chunk will be only 39 bytes in size.

414 GRAPHICS FILE FORMATS

FU (cont'd)

The sequence of fields and values for this map is the following:

NumberOfElements 3
Color Element
SkipCount 2
ColorCount 1
ColorComponent R,G,B

Color Element
SkipCount 14
ColorCount 3
ColorComponent R,G,B
ColorComponent R,G,B
ColorComponent R,G,B

Color Element
SkipCount 180
ColorCount 1

ColorComponent R,G,B

& you can see, the location of changed color elements is determined by their
relative position from the previous changed elements and from their absolute
position in the color map. The SkipCount value of the first element is always
calculated from the Oth index position. To change the value of element 2, we
skip two places, from element 0 to element 2, and change· a single component
value. To change the values of elements 17, 18, and 19, we make 14 skips from
element 2 to element 17 and change the next three component values. We
then make 180 skips to element 197 and change the final component value.

Note that if the color map for the current frame is identical to the color map
of the previous frame, the color map subchunk need not appear in the current
frame chunk.

ForFurtherhrronnation
Autodesk no longer maintains the FLI format and does not formally distribute
information about it. However, you may possibly be able to get some informa
tion from their homepage:

http:/ /www.autodesk.com

FLI 415

FU (cont'd)

For further information about FLI, see the articles by Jim Kent and John
Bridges (the author of the format) that are included on the CD-ROM that
accompanies this book. In addition, see the following article for information
on FLI:

Kent, jim. "The Flic File Format," Dr. Dobbs]ouma~ March 1993.

416 GRAPHICS FILE FORMATS

NAME:

ALSO KNOWN As:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

GEM Raster

IMG

·Bitmap

16,384

RLE, uncompressed

64Kx64K

No

Big-en dian

GEM Raster I

· Digital Research, now part of Novell

GEM, MS-DOS, Atari ST

DR Paint, DR Doodle, Publishers Paintbrush, and
GEM-based applications. Versions of the MS-DOS
based Ventura Publisher were distributed bound to
GEM that served mainly to provide GUI services to
the application. Many programs on the Atari ST.

Yes (for Atari)

No

Yes

None

usAGE: Primarily useful in GEM-based application environments.

coMMENTs: A poorly documented format (in the sense that documentation is hard to
come by) in wide use only on the Atari ST platform. It lacks a ·superior
compression scheme and support for included color information. There
are at least two versions in existence.

Overview
GEM Raster (also known as IMG) is the native image storage format for the
Graphical EnVironment Manager (GEM), developed and marketed by Digital
Research. GEM made its way into the market through OEM bundling deals, spe
cial run-time versions bound to products, and as the native operating environ
ment of at least one system, the Atari ST. GEM image files have been important
in the PC desktop publishing community due to the bundling. deal between

GEM RASTER 417

GEM Raster (cant' d)

Digital Research and the creators of Ventura Publisher, a widely used desktop
publishing application.

Although GEM was a contender in the GUI w~s some years back, Digital
Research's fortunes in this arena declined, and the company was eventually
purchased by Novell. Prior to this, however, GEM was distributed by a number
of PC hardware manufacturers along with their systems and thus enjoyed a cer
tain currency. GEM raster images may be color, gray scale, or black and white
and are always read and written in the big-endian format. Note that several dif
ferent file formats use the file extension .IMG, a fact that causes confusion in
some applications designed to read only GEM raster (IMG) files.

File Organization
Like many other simple bitmap formats, GEM raster files start with a fixed
length header, followed by bitmap data.

File Details
GEM raster files use a 16- or 18-byte header in the following format:

typedef struct _GemRaster
{

WORD Version;
WORD HeaderLength;
WORD NumberOfPlanes;
WORD PatternLength;
WORD Pixel Width;
WORD PixelHeight;
WORD ScanLineWidth;
WORD NumberOfLines
WORD BitimageFlag;

} GEMHEAD;

/* Image File Version (Always lh) *I
I* Size of Header in WORDs */
I* Number of Planes *I
I* Pattern Definition Length */
I* Pixel Width in Micros *I
I* Pixel Height in Micros *I
I* Image Width in Pixels */
/* Image Height in Scan Lines */
/* Multi-plane GrayColor Flag */

Version always has a value of one.

HeaderLength is either 8 or 9; if the value is 8, there is no BitlmageFlag field
in the header.

NumberOfPlanes contains the number of bits per pixel of the image source
device (a scanner, for instance). This value is typically 1.

PatternLength contains.a run-count value, which is usually 1. Any pattern code
found in the encoded image data is repeated this number of times.

418 GRAPHICS FILE FORMATS

GEM Raster (cont'd)

PixelHeight and PixelWidth are the pixel size in microns and are often 85
(55h), corresponding to 1/300 inch, or 300 dpi. The scale of the image may
also be determined by using these pixel size values.

ScanLineWidth and NumberOfLines describe the size of the image in lines
and pixels.

BitlmageFlag indicates whether a multiplane image is color or gray scale. If the
BitlmageFlag field is present in the header (indicated by a value of 9 in the
HeaderLength field) and the image data contains multiple planes (indicated
by a value of 2 or greater in the NumberOfPlanes field), a value of 0 indicates
color image data and a value of 1 indicates gray-scale image data. If a multi
plane image has an 8-field header, then the image is displayed in gray-scale
from a fixed, 16-color palette by default. If the image has a 9-field header and
only a single plane, the value in the BitlmageFlag field is ignored. Bitlmag~
Flags was used by GEM-based versions of Ventura Publisher.

The GEM 16-color palette contains the following RGB values:

3f, 3f, 3f
3f, 00, 00
00, 3f, 00
3f, 3f, 00
00, 00, 3f
3f, 00, 3f
00, 3f, 3f
2b, 2b, 2b
15, 15, 15
2b, 00, 00
00, 2b, 00
2b, 2b, 00
00, 00, 2b
2b, 00, 2b
00, 2b, 2b
00, 00, 00

The GEM 8-bit gray-scale standard palette consists of the following values:

ff 7f bf 3f df Sf 9f lf ef 6f af 2f cf 4f Sf Of
f7 77 b7 37 d7 57 97 17 e7 67 a7 27 c7 47 87 07
fb 7b bb 3b db Sb 9b 1b eb 6b ab 2b cb 4b Bb Ob
£3 73 b3 33 d3 53 93 13 e3 63 a3 23 c3 43 83 03
fd 7d bd 3d dd Sd 9d ld ed 6d ad 2d cd 4d 8d Od
fS 75 bS 35 dS 55 95 15 eS 65 aS 25 cS 45 85 OS
f9 79 b9 39 d9 59 99 19 e9 69 a9 29 c9 49 89 09
f1 71 bl 31 dl 51 91 11 e1 61 a1 21 cl 41 81 01
fe 7e be 3e de Se 9e le ee 6e ae 2e ce 4e Be Oe
f6 76 b6 36 d6 56 96 16 e6 66 a6 26 c6 46 86 06
fa 7a ba 3a da Sa 9a la ea 6a aa 2a ca 4a Sa Oa

GEM RASTER 419

GEM Roster (cont'd)

£2 72 b2 32 d2 52 92 12 e2 62 a2 22 c2 42 82 02
fc 7c be 3c de 5c 9c 1c ec 6c ac 2c cc 4c Sc Oc
£4 74 b4 34 d4 54 94 14 e4 64 a4 24 c4 44 84 04
£8 78 b8 38 d8 58 98 18 e8 68 aS 28 c8 48 88 08
fO 70 bO 30 dO 50 90 10 eO 60 aO 20 cO 40 80 00

Image data in GEM raster files is always encoded using a simple run-length
encoding {RLE) scheme. Data is always encoded and decoded one byte at a
time, and there are always eight bits of image data per pixel. For this reason,
scan lines are always a multiple of eight pixels ~n width and are padded when
necessary. If the image data contains two or more bits per pixel, then the
image will have multiple bit planes.

There are four types of codes in the GEM raster RLE format: vertical replication
codes, literal run codes, pattern codes, and encoded run codes. Complicating
this RLE scheme is the fact that each of these four codes is a different size, as
shown below.

Vertical Replication Code
Literal Run Code

Pattern Code
Black Run Code
White Run Code

00 00 FF <Run Count>
80 <Run Count 1 to 7F>

<'Run Count' Bytes>
00 <Pattern Length>
<MSB = 1> <7 LSB = RunCount>
<MSB = 0> <7 LSB = RunCount>

A vertical replication code contains the values OOh OOh FFh, followed by a one
byte count. The count is the number of times to repeat the line that is about to
be decoded. A count of one indicates two identical, consecutive lines. A verti
cal replication code may only appear at the beginning of a scan line. H a repli
cation code is not present at the beginning of a scan line, the line is not
repeated.

Literal runs are contiguous lines of pixels that are not encoded. They are writ
ten to the encoded data stream as they appear in the bitmap. Literal runs usu
ally appear in encoded image data because data compression had little effect
on the pixel data, and it was not efficient to encode the pixels as a run. A lit
eral run code begins with the byte value SOh and is followed by a byte that
holds the count value. Following the count are a number of bytes equal to the
count value that should be copied literally from the encoded data to the
decoded data.

A pattern code begins with the byte OOh and is followed by a byte containing
the pattern length. That length is followed by the pattern itself, replicated the
number of times specified by the Pattern Length field in the header. Pattern

420 GRAPHICS FILE FORMATS

GEM Raster (cont'd)

codes are similar to literal run codes, in that the data they contain is not actu
ally compressed in the encoded image data.

Encoded run codes contain only runs of either black or white pixels and are by
far the most numerous of all the codes in IMG RLE image data. Black-and-white
runs are encoded as a 1-byte packets. Encoded run packets are never OOh or
SOh in value. These values are reserved to mark the start of vertical replication
codes, pattern codes, and literal run codes. If a byte is read and is not equal to
OOh or SOh, the most significant bit indicates the color of the run. If the most
significant bit is 1, all the pixels in the run are set to 1 (black). If the most sig
nificant bit is 0, the pixels in the run are set to 0 (white). The seven least signif
icant bits in the encoded run are the number of bits in the run. The run may
contain 1 to 127 bits.

If an image contains multiple planes, each plane is encoded as the next con
secutive scan line of data. One scan line of a four-plane image is encoded as
four scan lines of data. The order of the planes is red, green, blue, and inten
sity value.

The following segment of an encoded scan line:

00 00 FF OS 07 SA 02 80 04 2A 14 27 C9 00 03 AB CD EF

represents a vertical replication code of five scan lines, a run of seven white
bytes (56 pixels), a run of 10 black bytes, (80 pixels), a run of two white bytes
(16 pixels), a literal run of four bytes, and pattern code three bytes in length.

ForFurtherhUonnation
The GEM raster format originated at Digital Research, which is now owned by
Novell and is currently being supported by DISCUS Distribution Services, a ser
vice organization. Note that DISCUS will provide support only if you have first
purchased the GEM Programmers's Toolkit from Digital Research. Contact DIS
CUS at:

DISCUS Distribution Services, Inc.
S020 San Miguel Canyon Road
Salinas, CA 93907-1208
Voice: 408-663-6966

GEM RASTER 421

GEM Raster (cont'd)

You may be able to get some information from Novell/Digital Research at:

Novell/Digital Research, Inc.
P.O. BoxDRI
Monterey, CA 93942
Voice: 408-649-3896
Voice: 800-848-1498
BBS: 408-649-3896

We have also been able to include information on Atari support of the GEM
raster format on the CD-ROM that accompanies this book.

422 GRAPHICS FILE FORMATS

NAME:

ALSO KNOWN AS:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

GEMVDI

GEM Vector, VDI, .GDI

Metafile

256

U ncompressed

32Kx32K

No

Big-en dian

Digital Research

GEMVDII

GEM GUI running under MS-DOS, some Ataris

GEM Ardine, GEM Draw Plus, GEM Scan, others

Yes (for Atari)

No

No

GEM Raster

usAGE: Illustration, drawing, and desktop publishing applications, and some data
interchange.

coMMENTs: A vector format with good support at one time, associated with the GEM
GUI from Digital Research. If you are thinking of supporting this format,
be prepared to draw Bezier curves. It also has support for embedded
bitmaps.

Overview
Although often called the GEM Vector format, GEM VDI is actually a metafile
format and is closely associated with the functioning of the GEM user interface.
The GEM system provides a metafile driver that is accessed from within the
GEM programming system through a documented API. Display requests to the
driver result in items being written to a metafile buffer in GEM's standard
metafile format. Metafile elements thus consist of calls to the GEM display sys
tem.

Supporting GEM VDI is similar to supporting many other metafile formats. Be
prepared to duplicate the functionality of the host system, in this case GEM, or
at least a reasonable subset of it, before you're through.

GEM VDI 423

GEM VDI (cont'd)

File Organization
We would like to have more information on this format. Information provided
by DISCUS (see "For Further Information" below) indicates that the file con
sists of a header followed by a stream of standard-format metafile items.

File Details
The structure for the GEM VDI header is shown below.

typedef struct _GemVdiHeader
{

WORD Identifier;
WORD LengthOfHeader
WORD Version;
WORD Transform;
WORD Coords(4];
WORD PageSize[2];
WORD Bounds[4];
WORD Flags;

GEMVDIHEADER;

I* Magic number. Always FFFFh *I
I* Length of the header in 16-bit WORD *I
I* Format version number *I
I* Image origin *I
I* Size and position of image *I
I* Physical page size *I
/* Limits of coordinate system */
I* Bit image opcode flag *I

Identifier is the magic number of GEM VDI image files. This value is always
FFFFh.

LengthOfHeader is the size of the header described as the number of 16-bit
WORDs it contains. This value is typically OFh.

Version is the version number of the file format. This value is calculated using
the formula: 100 * major version number + minor version number.

Transform is the NDC/RC transformation mode flag. This value is OOh if the
origin of the image is in the lower-left corner of the display ("Normalized
Device Coordinates") and 02h if the origin is in the upper-left corner ("Raster
Coordinates").

Coords are four WORDs indicating the minimum and maximum coordinate
values of data in the file. These values indicate the size of the image and its
position on the display and are stored as: minimum X, minimum Y; maximum
X, maximum Y

PageSize is the size of the physical printed page the image will cover in l/10 of
millimeters. This value is OOh if the page size is undefined by the application
creating the image.

Bounds are four WORDs that describe the maximum extent of the coordinate
system used by the image and defined by the application. These values are

424 GRAPHICS FILE FORMATS

GEM VDI (oont'd)

stored as: lower-left X, lower-left~ upper-right X, upper-right Y

Flags contains the bit image opcode flag. The values for this field are OOh if no
bit image is included in the file and Olh if a bit image is included. Bits 2
through 15 in Flags should always be set to 0.

Standard format metafile items consist of control, integer, and vertex parame
ters. This structure is described below.

Word Value Description

0 control[O] Opcode
1 control[!] Vertex count
2 control[3] Integer parameter count
3 control[5] Sub-opcode or zero
4 ptsin[O-n] Input vertex list (if provided)

n+4 intin[O-m] Input integer (if provided)

Table GEM VDI-1 shows the correspondence of standard metafile items and
their opcodes to the display commands accepted by the GEM display subsys
tem. Arguments appear to be documented only in the GEM Programmer's
Toolkit, but you might be able to recover them through diligent application of
trial and error.

TABLE GEM VDI·t: GEM Metafile Items and Commands

Routine Code Subcode Metafile Object

v_alpha_text 05 19 Output Printer Alpha Text
v_alpha_text Ob 19 Output Printer Alpha Text
v_arc Ob 02 Arc
v_bar Ob 01 Bar
v_bit_image 05 17 Output Bit Image File
v_bit_image Ob 17 Output Bit Image File
v_circle Ob 04 Circle
v _clear _disp_list 05 16 Clear Display List
v_clrwk 03 NA Clear Workstation
v_ellarc Ob 06 Elliptical Arc
v_ellipse Ob 05 Ellipse
v_ellpie Ob 07 Elliptical Pie Slice

GEM VDI 425

GEM JlDI (cont'd)

Routine Code Subcode Metafile Object

v_entercur 05 03 Enter Alpha Mode
v_entercur Ob 13 Enter Alpha Mode
v_exitcur 05 02 Exit Alpha Mode
v_fillarea 09 NA Fill Area
v_form_adv 05 14 Form Advance
v_form_adv Ob 14 Form Advance
vjustified Ob Oa Justified Graphics Text
v_line 06 NA Polyline
v_output_window 05 15 Output Window
v_pieslice Ob 03 Pie
v_pieslice Ob 08 Rounded Rectangle
v_pmarker 07 NA Polymarker
v_qtext 08 NA Text
v_rfbox Ob 09 Filled Rounded Rectangle
v_updwk 04 NA Update Workstation
vr_recfl 73 NA Fill Rectangle
vs_color Oe NA Set Color Representation
vsf_clip 81 NA Set Clipping Rectangle
vsf_color 19 NA Set Fill Color Index
vsf_interior 17 NA Set Fill Interior Style
vsf_perimeter 68 NA Set Fill Perimeter Visibility
vsf_style 18 NA Set Fill Style Index
vsf_updat 70 NA Set User Fill
vsl_color 11 NA Set Polyline Color Index
vsl_ends 6c NA Set Polyline End Styles
vsl_type Of NA Set Polyline Type
vsl_udsty 71 NA Set User Line Style
vsl_width 10 NA · Set Polyline Width
vsm_color 14 NA Set Polymarker Color Index
vsm_height 13 NA Set Polymarker Height
vsm_type 12 NA Set Polymarker Type
vst_alignment 27 NA Set Graphic Text Alignment
vst_color 16 NA Set Text Color Index
vst_effects 6a NA Set Graphics Text Effects
vst_font 15 NA Set Text Font
vst_height Oc NA Set Character Height
vst_point 6b NA Set Character Height (points)
vst_rotation Od NA Set Character Baseline Vector
vswr_mode 20 NA Set Writing Mode

426 GRAPHICS FILE FORMATS

There are also two non-standard metafile items:

v_opnwk
v_clswk

Open Workstation
Close Workstation

There are three metafile escape functions:

v_meta_extents
v_write_meta
vm_filename

Update Metafile Extents
Write Metafile Item
Change GEM VDI Filename

There are several inquire functions:

vq_chcells
vq_color
vq_attributes
vq_extnd

Inquire Addressable Character Cells
Inquire Color Representation
Inquire Current Polyline Attributes
Extended Inquire

GEM VDI (cont'd)

Several metafile sub-opcodes are reserved for the Digital Research GEM Out
put application:

Physical Page Size
Coordinate Window

Several metafile sub-opcodes are also reserved for the Digital Research GEM
Draw Plus application:

Group
Set No Line Style
Set Attribute Shadow On
Set Attribute Shadow Off
Start Draw Area Type Primitive
End Draw Area Type Primitive

Also associated with the GEM VDI format is a standard keyboard mapping.

ForFurtherhllonnation
The GEM VDI format originated at Digital Research, which is now owned by
Novell, and GEM VDI is currently being supported by DISCUS Distribution Ser
vices, a service organization. Note that DISCUS will provide support only if you

GEM VDI 427

GEM VDI (cont'd)

have first purchased the GEM Programmer's Toolkit from Digital Research. You
can contact DISCUS at:

DISCUS Distribution Services, Inc.
8020 San Miguel Canyon Road
Salinas, CA 93907-1208
Voice: 408-663-6966

You may still be able to get some information from Novell/Digital Research at:

Novell/Digital Research, Inc.
P.O. BoxDRI
Monterey, CA 93942
Voice: 408-649-3896
Voice: 800-848-1498
BBS: 408-649-3896

We have also been able to include information on Atari support of GEM VDI on
the CD-ROM that accompanies this book.

428 GRAPHICS FILE FORMATS

NAME:

ALSO KNOWN AS:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

GIF

Graphics Interchange Format

Bitmap

1 to 8 bit

LZW

64Kx64K pixels

Yes

Li ttle-endian

CompuServe, Inc.

MS-DOS, Macintosh, UNIX, Amiga, others

Too numerous to list

Yes

Yes

Yes

Chapter 9, Data Compression

. I

usAGE: Originally designed to facilitate image transfer and online storage for use
by CompuServe and its customers, GIF is primarily an exchange and stor
age format, although it is based on, and is supported by, many applica
tions.

coMMENTs: A well-defined, well-documented format in wide use, which is quick, easy
to read, and reasonably easy to uncompress. It lacks, however, support for
the storage of deep-pixel images.

Overview
GIF (Graphics Interchange Format) is a creation of CompuServe and is used to
store multiple bitmap images in a single file for exchange between platforms
and systems. In terms of number of files in existence, GIF is perhaps the most
widely used format for storing multibit graphics and image data. Even a quick
peek into the graphics file section of most BBSs and file archives seems to
prove this true. Many of these are high-quality images of people, landscapes,
cars, astrophotographs, and anthropometric gynoidal data (you guess what
that is). Shareware libraries and BBSs are filled with megabytes ofGIF images.

GIF 429

GIF (ccmt'd)

The vast majority of GIF files contain 16-color or 256-color near-photographic
quality images. Gray-scale images, such as those produced by scanners, are also
commonly stored using GIF, although monochrome graphics, such as clip art
and document images, rarely are.

Although the ·bulk of GIF files are found in the Intel-based MS-DOS environ
ment, GIF is not associated with any particular software application. GIF also
was not created for any particular software application need, although most
software applications that read and write graphical image data, such as paint
programs, scanner and video software, and most image file display and conver
sion programs, usually support GIF. GIF was instead intended to allow the easy
interchange and viewing of image data stored on local or remote computer sys
tems.

File Organization
GIF is different from many other common bitmap formats in the sense that it is
stream-based. It consists of a series of data packets, called blocks, along with
additional protocol information. Because of this arrangement, GIF files must
be read as if they are a continuous stream of data. The various blocks and sub
blocks of data defined by GIF may be found almost anywhere within the file.
This uncertainty makes it difficult to encapsulate every possible arrangement
of GIF data in the form of C structures.

There are a number of different data block categories, and each of the various
defined blocks falls into one of these categories. In GIF terminology, a Graph
ics Control Extension block is a type of Graphics Control block, for instance.
In like manner, Plain Text Extension blocks and the Local Image Descriptor
are types of Graphic Rendering blocks. The bitmap data is an Image Data
block. Comment Extension and Application Extension blocks are types of Spe
cial Purpose blocks.

Blocks, in addition to storing fields of information, can also contain sub-blocks.
Each data sub-block begins with a single count byte, which can be in the range
of 1 to 255 and indicates the number of data bytes that follow the count byte.
Multiple sub-blocks may occur in a contiguous grouping (count byte, data
bytes, count byte, data bytes, and so on). A sequence of one or more data sub
blocks is terminated by a count byte with a value of zero.

The GIF format is capable of storing bitmap data with pixel depths of 1 to 8
bits. Images are always stored using the RGB color model and palette data. GIF
is also capable of storing multiple images per file, but this capability is rarely

430 GRAPHICS FILE FORMATS

GIF (cont'd)

utilized, and the vast majority of GIF files contain only a single image. Most GIF
file viewers do not, in fact, support the display of multiple image GIF files or
may display only the first image stored in the file. For these reasons, we recom
mend not creating applications that rely on multiple images per file, even
though the specification allows this.

The image data stored in a GIF file is always LZW compressed. See Chapter 9
for a discussion of LZW and other compression methods (and also see the side
bar below). This algorithm reduces strings of identical byte values into a single
code word and is capable of reducing the size of typical 8-bit pixel data by 40
percent or more. The ability to store uncompressed data, or data encoded
using a different compression algorithm, is not supported in the current ver
sion of the GIF format.

LZW Is Not Free

If you are creating or modifying software that implements the LZW algo
rithm, be aware that under certain circumstances, you will need to pay a
licensing fee for the use of LZW.

Unisys Corporation owns the patent for the LZW codec (encod
ing/ decoding algorithm) and requires that a licensing fee be paid for
each software program that implements the LZW algorithm.

Many people have concluded that the U nisys licensing claim applies only
to LZW encoders (software ·that creates LZW data) and not to LZW
decoders (software that only reads LZW data). However, Unisys believes
that its patent covers the full LZW codec and requires a licensing fee even
for software that reads, but does not write, LZW data.

For more information about the entire issue of LZW licensing, refer to the
section called "LZW Legal Issues" in Chapter .9. For a popular alternative
to graphics file formats that use LZW, consider using the Portable Net
work Graphics (PNG) file format, described in Part Two of this book.

There are two revisions of the GIF specification, both of which have been
widely distributed. The original revision was GIF87a, and many images were
created in this format. The current revision, GIF89a, adds several capabilities,
including the ability to store text and graphics data in the same file. If you are

GIF 431

GIF (cont'd)

supporting GIF, you should include support for both the 87a and 89a revisions.
It is a mistake to support only the 89a version, because many applications con
tinue to produce only 87a version files for backward compatibility.

File Details
The "GIF87a" section here discusses features common to both versions; the
"GIF89a" section describes only the features added in GIF89a.

GIF87a

Version 87a is the original GIF format introduced in May 1987 and is read by
all major software applications supporting the GIF format.

Figure GIF-1 illustrates the basic layout of a GIF87a file. Each file always begins
with a Header and a Logical Screen Descriptor. A Global Color Table may
optionally appear after the Logical Screen Descriptor. Each of these three sec
tions is always found at the same offset from the start of the file. Each image
stored in the file contains a Local Image Descriptor, an optional Local Color
Table, and a block of image data. The last field in every GIF file is a Terminator
character, which indicates the end of the GIF data stream.

Header
The Header is six bytes in size and is used only to identify the file as type GIF.
The Logical Screen Descriptor, which may be separate from the actual file
header, may be thought of as a second header. We may therefore store the Log
ical Screen Descriptor information in the same structure as the Header:

typedef struct _GifHeader
{

II Header
BYTE Signature[3]; I* Header Signature (always "GIF") *I
BYTE Version[3]; /* GIF format version("87a• or "89a•) */
II Logical Screen Descriptor
WORD ScreenWidth; I* Width of Display Screen in Pixels */
WORD ScreenHeight; /* Height of Display Screen in Pixels *I
BYTE Packed; I* Screen and Color Map Information *I
BYTE BackgroundColor; I* Background Color Index *I
BYTE AspectRatio; I* Pixel Aspect Ratio *I

GIFHEAD;

432 GRAPHICS FILE FORMATS

Header and {
Color Table
Information

Image 1 i
~~~21 

Image" i 
I 

I 
I 

FIGURE GIF-1: GIF87afile layout 

GIF (cont'd) 

Header 

Logical Screen Descrlptar 

&lollal Color Table 

Lacall-ae Descriptor 

Lacal Color Table 

Image Data 

Local Image Descriptor 

Lacal Color Table 

1118gB Data 

... 
Lacallmage Descriptor 

Lacal Color Table 

I~Ug~Data I 

Trailer 

Signature is three bytes in length and contains the characters GIF as an identi
fier. All GIF files start with these three bytes, and any file that does not should 
not be read by an application as a GIF image file. 

Version is also three bytes in length and contains the version of the GIF file. 
There are currently only two versions of GIF: 87a (the original GIF format) and 
89a (the new GIF format). Some GIF87a file viewers may be able to read 
GIF89a files, although the stored image data may not display correctly. 

Logical Screen Descriptor 
The Logical Screen Descriptor contains information describing the screen and 
color information used to create and display the GIF file image. 

The ScreenHeight and ScreenWidth fields contain the minimum screen reso
lution required to display the image data. If the display devi~e is not capable of 
supporting the specified resolution, some sort of scaling will be necessary to 
properly display the image. 

GIF 433 



GIF ( cont'd) 

Packed contains the following four subfields of data (bit 0 is the least signifi
cant bit, or LSB): 

Bits 0-2 Size of the Global Color Table 
Bit 3 Color Table Sort Flag 
Bits 4-6 Color Resolution 
Bit 7 Global Color Table Flag 

The Size of the Global Color Table subfield contains the number of bits in 
each Global Color Table entry minus one. For example, if an image contains 8 
bits per pixel, the value of this field is 7. The total number of elements in the 
Global Color Table is calculated by shifting the value one to the left by the 
value in this field: 

NumberOfGlobalColorTableEntries = 
(lL << (SizeOfTheGlobalColorTable + 1)); 

The Size of the Global Color Table subfield is always set to the proper size even 
if there is no Global Color Table (i.e., the Global Color Table Flag subfield is 
set to 0). If the Color Table Sort Flag subfield is 1, then the Global Color Table 
entries are sorted from the most important (most frequently occurring color in 
the image) to the least important. Sorting the colors in the color table aids an 
application in choosing the colors to use with display hardware that has fewer 
available colors than the image data. The Sort flag is only valid under version 
89a of GIF. Under version 87a, this field is reserved and is always set to 0. 

The Color Resolution subfield is set to the number of bits in an entry of the 
original color palette minus one. This value equates to the maximum size of 
the original color palette. For example, if an image originally contained eight 
bits per primary color, the value of this field would be 7. The Global Color 
Table Flag subfield is set to 1 if a Global Color Table is present in the GIF file, 
and 0 if one is not. Global Color Table data, if present, always follows the Logi
cal Screen Descriptor header in the GIF file. 

BackgroundColor in the Logical Screen Descriptor contains an index value 
into the Global Color Table of the color to use for the border and background 
of the image. The background is considered to b~ the area of the screen not 
covered by the GIF image. If there is no Global Color Table (i.e., the Global 

· Color Table Flag subfield is set to 0), this field is unused and should be 
ignored. 

434 GRAPHICS FILE FORMATS 



GIF (cont'd) 

AspectRatio contains the aspect ratio value of the pixels in the image. The 
aspect ratio is the width of the pixel divided by the height of the pixel. This 
value is in the range of 1 to 255 and is used in the following calculation: 

PixelAspectRatio = (AspectRatio + 15) I 64; . 

H this field is 0, then no aspect ratio is specified. 

Global Color Table 
The Logical Screen Descriptor may be followed by an optional Global Color 
Table. This color table, .if present, is the color map used to index the pixel 
color data contained within the image data. If a Global Color Table is not pres
ent, each image stored in the GIF file contains a Local Color Table that it uses 
in ·place of a Global Color Table. If every image in the GIF file uses its_ own 
Local Color Table, then a Global Color Table may not be present in the GIF 
file. If neither a Global nor a Local Color Table is present, make sure your 
application supplies a default color table to use. It is suggested that the first 
entry of a default color table be the color black and the second entry be the 
color white. 

Global Color Table data always follows the Logical Screen Descriptor informa
tion and varies in size depending upon the number of entries in the table. The 
Global Color Table is a series of three-byte triples making up the elements of 
the color table. Each triple contains the red, green, and blue primary color val
ues of each color table element: 

typedef struct _GifColorTable 
{ 

BYTE Red; 
BYTE Green; 
BYTE Blue; 

GIFCOLORTABLE; 

I* Red Color Element 
I* Green Color Element 
I* Blue Color Element 

*I 
*I 
*I 

The number of entries in the Global Color Table is always a power of two (2, 4, 
8, 16, and so on), up to a maximum of 256 entries. The size of the Global 
Color Table in bytes is calculated by using bits 0, 1, and 2 in the Packed field of 
the Logical Image Descriptor in the following way: 

ColorTableSize = 3L * (lL << (SizeOfGlobalColorTable + 1)); 

The Header, Logical Screen Descriptor, and Global Color Map data are fol
lowed by one or more sections of image data. Each image in a GIF file is stored 

GIF 435 



GIF (cont'd) 

separately, with an Image Descriptor and possibly a Local Color Table. The 
Image Descriptor is similar to a header and contains information only about 
the image data that immediately follows it. The Local Color Table contains 
color information specific only to that image data and may or may not be pres
ent. 

Local Image Descriptor 
The Local Image Descriptor appears before each section of image data and has 
the following structure: 

typedef struct _GifimageDescriptor 
{ 

BYTE Separator; 
WORD Left; 
WORD Top; 
WORD Width; 
WORD Height; 
BYTE Packed; 

} GIFIMGDESC; 

I* Image Descriptor identifier *I 
I* X position of image on the display *I 
I* Y position of image on the display *I 
/* Width of the image in pixels */ 
/* Height of the image in pixels */ 
I* Image and Color Table Data Information */ 

Separator contains the value 2Ch and denotes the beginning of the Image 
Descriptor data block. 

Left and Top are the coordinates in pixels of the upper-left comer of the 
image on the logical screen. The upper-left comer of the screen is considered 
to be coordinates 0,0. 

Width and Height are the size of the image in pixels. 

Packed contains the following five subfields of data (bit 0 is the LSB): 

Bit 0 Local Color Table Flag 
Bit 1 Interlace Flag 
Bit 2 Sort Flag 
Bits 3-4 Reserved 
Bits 5-7 Size of Local Color Table Entry 

The Local Color Table Flag subfield is 1 if a Local Color Table is associated 
with this image. If the value of this subfield is 0, then there is no Local Color 
Table present, and the Global Color Table data should be used instead. 

The Interlace Flag subfield is 1 if the image is interlaced and 0 if it is non
interlaced. (See the description of Image Data for an explanation of interlaced 
image data.) 

436 GRAPHICS FILE FORMATS 



GIF ( cont'd) 

The Sort Flag subfield indicates whether the entries in the color table have 
been sorted by their order of importance. Importance is usually decided by the 
frequency of occurrence of the color in the image data. A value of 1 indicates a 
sorted color table, while a value of 0 indicates a table with unsorted color val
ues. The Sort Flag subfield value is valid only under version 89a of GIF. Under 
version 87a, this field is reserved and is always set to 0. 

The Size of Local Color Table Entry subfield is the number of bits per entry in 
the Local Color Table. If the Local Color Table Flag subfield is set to 0, then 
this subfield is also set to 0. 

Local Color Table 
If a Local Color Table is present, it immediately follows the Local Image 
Descriptor and precedes the image data with which it is associated. The format 
of all Local Color Tables is identical to that of the Global Color Table. Each 
element is a series of 3-byte triples containing the red, green, and blue primary 
color values of each element in the Local Color Table: 

typedef struct _GifColorTable 
{ 

BYTE Red; 
BYTE Green; 
BYTE Blue; 

} GIFCOLORTABLE; 

/* Red Color Element */ 
/* Green Color Element */ 
/* Blue Color Element */ 

The number of entries and the size in bytes of the Local Color Table is calcu
lated in the same way as the Global Color Table: 

ColorTableSize = 3L * (1L << (SizeOfLocalColorTable + 1)); 
ColorTableNumberOfEntries = 1L << (SizeOfLocalColorTable 

+ 1); 

A Local Color Table only affects the image it is associated with and, if it is pres
ent, its data supersedes that of the Global Color Table. Each image may have 
no more than one Local Color Table. 

Image data 
GIF files do not compress well when stored using file archivers such as pkzip 
and zoo. This is because the image data found in every GIF file is always com
pressed using the LZW (Lempel-Ziv-Welch) encoding scheme, the same com
pression algorithm used by most file archivers. (See the sidebar about LZW at 
the beginning of this article.) Compressing a GIF file is therefore a redundant 
operation, which rarely results in smaller files and is usually not worth the time 
and effort involved in the attempt. 

GIF 437 



GIF (cont'd) 

Normally when LZW-encoded image data is stored in a graphics file format, it is 
arranged as a continuous stream of data that is read from beginning to end. 
The GIF format, however, stores encoded image data as a series of data sub
blocks. 

Each data sub-block begins with a count byte. The value of the count byte may 
range from 1 to 255 and indicates the number of data bytes in the sub-block. 
The data blocks immediately follow the count byte. A contiguous group of data 
blocks is terminated by a byte with a zero value. This may be viewed as either a 
terminator value or as a sub-block with a count byte value of zero; in either 
case, it indicates that no data bytes follow. 

Because GIF files do not contain a contiguous stream of LZW-encoded data, 
each sub-block must be read and the data sent to an LZW decoder. Most sub
blocks storing image data will be 255 bytes in length, so this is an excellent 
maximum size to use for the buffer that will hold the encoded image data. 
Also, the . LZW encoding process does not keep track of where each scan line 
begins and ends. It is therefore likely that one scan line will end and another 
begin in the middle of a sub-block of image data. 

The format of the decoded GIF image data is fairly straightforward. Each pixel 
in a decoded' scan line is always one byte in size and contains an index value 
into either a Global or Local Color Table. Although the structure of the GIF 
format is quite capable of storing color information directly in the image data 
(thus bypassing the need for a color table), the GIF specification does not spec
ify this as a possible option. Therefore, even 1-bit image data must use 8-bit 
index values and a 2-entry color table. 

GIF image data is always stored by scan line and by pixel. GIF does not have the 
capability to store image data as planes, so when GIF files are displayed using 
plane-oriented display adapters, quite a bit of buffering, shifting, and masking 
of image data must first occur before the GIF image can be displayed. 

The scan lines making up the GIF bitmap image data are normally stored in 
consecutive order, starting with the first row and ending with the last. The GIF 
format also supports an alternate way to store rows of bitmap data in an inter
laced order. Interlaced images are stored as alternating rows of bitmap data. If 
you have ever viewed a GIF file that appeared on the screen as a series of four 
''wipes" that jumped across the screen as the image was displayed, you were 
viewing an interlaced GIF file. 

438 GRAPHICS FILE FORMATS 



• 

GIF ( coot'd) 

Figure GIF-2 compares the order of rows stored in an interlaced and non
interlaced format. In the non-interlaced format, the rows of bitmap data are 
stored starting with the first row and continuing sequentially to the last row. 
This is the typical storage format for most bitmap file formats. The interlaced 
format, however, stores the rows out of the normal sequence. All the even rows 
are stored first and all the odd rows are stored last. We can also see that each 
successive pass usually encodes more rows than the previous pass. 

GIF uses a four-pass interlacing scheme. The first pass starts on row 0 and reads 
every eighth row of bitmap data. The second pass starts on the fourth row and 
reads every eighth row of data. The third pass starts on the second row and 
reads every fourth row. The final pass begins on the first row and reads every 
second row. Using this scheme, all of the rows of bitmap data are read and 
stored. 

~ 0 
t 1 

I. 0 
i 8 

2 l I 4 
r 3 i I 12 
~ 4 1 I 2 

• 5 J I 6 ! 

£ 6 l 
j 7 I 10 

14 I 

8 I 1 • 9 I 3 I 

10 I 5 
11 I 7 
12 I 9 
13 i 
14 l I 11 

13 
~ 

15 -::......., I 15 J 
Non-Interlaced Interlaced 

FIGURE GIF-2: Arrangement of interlaced and non-interlaced scan lines 

} Pass 1 

} Pass2 

} Pass3 

Pass4 

Why interlace a GIF image? Interlacing might seem to make the reading, writ
ing, and displaying of the image data more difficult, and of course it does. 
Does this arrangement somehow make the image easier to display on inter
laced monitors? The answer lies in one of the original purposes of GIF. 

GIF 439 



0 

GIF ( cont'd) 

GIF was designed as an image communications protocol used for the interac
tive viewing of online images. A user connected to an information service via a 
modem could not only download a GIF image, but could also see it appear on 
his or her display screen as it was being downloaded. If a GIF image were 
stored in a non-interlaced format, the GIF image would display in a progressive 
fashion stfrting at the top of the screen and ending at the bottom. After 50 
percent of the download was completed, only the top half of the GIF image 
would be visible. An interlaced image, however, would display starting with 
every eighth row, then every fourth row, then every second row, and so on. 
When the download of an interlaced GIF image was only 50 percent complete, 
the entire contents of the image could be discerned even though only half the 
image had been displayed. The viewer's eye and brain would simply fill in the 
missing half. 

Interlacing presents a problem when converting a GIF image from one format 
to another. A scan-line table must be created to write out the scan lines in their 
proper, non-interlaced order. The following sample code is used to produce a 
scan-line table of an interlaced image: 

WORD i, j; 
WORD RowTable1[16]; 
WORD RowTable2[16]; 
WORD ImageHeight = 16; /* 16 lines in the GIF image */ 

for (i = 0; i < ImageHeight; i++) /* Initialize source array*/ 
RowTablel[i] = i; 

j = 0; 
for (i = 0; i < ImageHeight; i += 8, j++) /* Interlace Pass 1 */ 

RowTable2[i] = RowTable1[j]; 

for (i = 4; i < ImageHeight; i += 8, j++) /* Interlace Pass 2 */ 
RowTable2[i] = RowTable1[j]; 

for (i = 2; i < ImageHeight; i += 4, j++) /* Interlace Pass 3 */ 
RowTable2[i] = RowTablel[j]; 

for (i = 1; i < ImageHeight; i += 2, j++) /* Interlace Pass 4 */ 
RowTable2[i] = RowTablel[j); 

The array RowTable 1 [] contains the mapping of the scan lines in a non
interlaced image, which in this example are the values 0 to 15 in consecutive 
order. The array RowTable2[] is then initialized by the interlacing code to con
tain the mapping of the scan lines of the interlaced image: 

440 GRAPHICS FILE FORMATS 



GIF ( cont'd) 

RowTable1 [] RowTable2 [] 
0 0 
1 8 
2 4 
3 9 
4 2 
5 10 
6 5 
7 11 
8 1 
9 12 
10 6 
11 13 
12 3 
13 14 
14 7 
15 15 

We can restore the non-interlaced image by stepping through the values stored 
in RowTable2 []. The Oth row of the non-interlaced image is the Oth row of the 
interlaced image. The first row of the non-interlaced image is the eighth row of 
the interlaced image. The second row of the non-interlaced image is the 
fourth row of the interlaced image, and so on. 

Trailer 
The Trailer is a single byte of data that occurs as the last character in the file. 
This byte value is always 3Bh and indicates the end of the GIF data stream. A 
trailer must appear in every GIF file. 

GIF89a 

Version 89a is the most recent revision of the GIF image file format and was 
introduced in July of 1989. Although the GIF89a format is very similar to GIF 
87a, it contains several additional blocks of information not defined in the 87a 
specification. For this reason GIF89a image files may not be read and displayed 
properly by applications that read only GIF87a image files. Many of these pro
grams do not not attempt to display an 89a image file, because the version 
number "89a" will not be recognized. Although changing the version number 
from "89a" to "87a" will solve this problem, the GIF image data may still not dis
play properly, for reasons we shall soon see. 

Figure GIF-3 illustrates the basic layout of a GIF89a image file. Just as with ver
sion 87a, the 89a version also begins with a Header, a Logical Screen 

GIF 441 



GIF ( cont'd) 

Descriptor, and an optional Global Color Table. Each image also contains a 
Local Image Desc::riptor, an optional Local Color Table, and a block of image 
data. The trailer in every GIF89a file contains the same values found in 87a 
files. 

Version 89a added a new feature to the GIF format called Control Extensions. 
These extensions to the GIF87a format are specialized blocks of information 
used to control the rendering of the graphical data stored within a GIF image 
file. The design of GIF87a only allowed the display of images one at a time in a 
"slide show" fashion. Through the interpretation and use of Control Extension 
data, GIF89a allows both textual and bitmap-based graphical data to be dis
played, overlaid, and deleted as in an animated multimedia presentation. 

The four Control Extensions introduced by GIF89a are the Graphics Control 
Extension, the Plain Text Extension, the Comment Extension, and the Appli
cation Extension, summarized here and described in greater detail in the sec
tions below. 

Graphics Control Extension blocks control how the bitmap or plain-text data 
found in a Graphics Rendering block is displayed. Such control information 
includes whether the graphic is to be overlaid in a transparent or opaque fash
ion over another graphic, whether the graphic is to be restored or deleted, and 
whether user input is expected before continuing with the display of the GIF 
file data. 

Plain Text Extension blocks allow the mixing of plain-text ASCII graphics with 
bitmapped image data. Many GIF images contain human-readable text that is 
actually part of the bitmap data itself. Using the Plain Text Extension, captions 
that are not actually part of the bitmapped image may be overlaid onto the 
image. This can be invaluable when it is necessary to display textual data over 
an image, but it is inconvenient to alter the bitmap to include this information. 
It is even possible to construct an 89a file that contains only plain-text data and 
no bitmap image data at all. 

Comment Extension blocks contain human-readable ASCII text embedded in 
the GIF data stream that is used in a manner similar to program comments in 
C language code. 

Application Extension blocks allow the storage of data that is understood only 
by the software application reading the GIF file. This data could be additional 
information used to help display the image data or to coordinate the way the 
image data is displayed with other GIF image files. 

442 GRAPHICS FILE FORMATS 



GIF ( cont'd) 

With only a few restrictions, any number of Control Extension blocks may 
appear almost anywhere in a GIF data stream following the Global Color Table. 
All Extension blocks begin with the Extension Introducer value 2lh, which 
identifies the block of data as an Extension block. This value is followed by a 
Block Label, which identifies the type of extension information contained 
within the block. Block Label identification values range from OOh to FFh. The 
Plain Text, Application, and Comment Extension blocks may also contain one 
or more sub-blocks of data. 

Interestingly enough , all of the Control Extension features added by 89a are 
optional and are not required to appear in a GIF data stream. The only other 
difference between 87a and 89a is that at least one of the Image Descriptor 
and Logical Screen Descriptor fields, which are reserved under 87a, is used 
under 89a. In fact, any GIF files that are written under version 89a, but do not 
use any of the 89a features, should use the version number GIF87a. 

Header and { 
Color Table 
Information 

Extension { 
Information 

/~g•l { 

Extension { 
Information 

I 

I 
I 

FIGURE GIF-3: Layout of a GJF89ajile 

Graphics Control Extension block 

Header J 
Logical Screen Descriptor _I 

Global Calor Table 1 

Comment Extension l 
Appllcatloa Extension I 

Graphic Control Extension _I 
Local Image Descriptor _l 

Local Color Table _l 

Image Data I 
Comment Eltensloa I 
Plain Text Extension ·j 

Trailer J 

The information found in a Graphics Control block is used to modify the data 
in the Graphical Rendering block that immediately follows it. A Graphics Con
trol block may modify either bitmap or plain-text data. It must also occur in 
the GIF stream before the data it modifies, and only one Graphics Control 
block may appear per Graphics Rendering block. 

GIF 443 



GIF (cont'd) 

The Graphics Control Extension block is eight bytes in length and has the fol
lowing structure: 

typedef struct _GifGraphicsControlExtension 
{ 

BYTE Introducer; /* Extension Introducer (always 2lh) */ 
BYTE Label; /* Graphic Control Label (always F9h) */ 
BYTE BlockSize; /* Size of remaining fields (always 04h) */ 
BYTE Packed; /* Method of graphics disposal to use */ 
WORD DelayTime; /* Hundredths of seconds to wait */ 
BYTE Colorindex; /* Transparent Color Index */ 
BYTE Terminator; /* Block Terminator (always 0) */ 

GIFGRAPHICCONTROL; 

Introducer contains the value 21h and is used to identify the start of a Exten
sion data block. 

Label contains the value F9h and is used to identify this block of data as a 
Graphics Control Extension. 

BlockSize contains the value 04h, which is the number of bytes in the Packed, 
DelayTime, and Colorlndex fields. 

Packed contains the following four subfields of information (bit 0 is the LSB): 

BitO 
Bit 1 
Bits 2-4 
Bits 5-7 

Transparent Color Flag 
User Input Flag 
Disposal Method 
Reserved 

If the Transparent Color Flag subfield is set to 1, the Colorlndex field of this 
extension contains a color transparency index. If no index is present, this bit is 
set to 0. 

The User Input Flag subfield is set to 1 if user input (key press, mouse click, 
and so forth) is expected before continuing to the next graphic sequence; oth
erwise, this bit is set to zero. 

The Disposal Method subfield contains a value indicating how the graphic is to 
be disposed of once it has been displayed. The currently defined values for this 
field are OOh (disposal method not specified), 01h (do not dispose of graphic), 
02h (overwrite graphic with background color), and 04h (overwrite graphic 
with previous graphic). 

444 GRAPHICS FILE FORMATS 



GIF (cont'd) 

The Reserved subfield is not used in GIF89a and is always set to 0. 

DelayTime in the Graphics Control Extension block contains a value equal to 
the number of hundredths of a second that must elapse before the graphics 
presentation continues. If this field is 0, then no delay is used. If both this delay 
and the user input bit is set, the graphic continues when either the delay 
expires or user input is received. 

Colorlndex is the color transparency index. This field contains a value only if 
the Transparent Color Flag subfield in the Packed field is set to 1. 

Terminator contains the value 0 and marks the end of the Graphics Control 
Extension block. 

Plain Text Extension block 
GIF87a files may contain bitmapped data only in the form of a Graphical Ren
dering block. GIF89a adds the ability to store textual information that may be 
rendered as a graphical image. 

Any number of Plain Text Extension blocks may appear in a GIF file. To display 
plain-text data, a grid is described that contains the data. The height, width, 
and position of the grid on the display screen are specified. The size of each 
cell in the grid is also described, and one character is displayed per cell. The 
foreground and background color of the text are taken from the Global Color 
Table and are also described in the Plain Text Extension block. The actual 
Plain Text data is a simple string of ASCII characters. 

The Plain Text Extension block is 15 bytes in length and has the following 
structure: 

typedef struct _GifPlainTextExtension 
{ 

BYTE Introducer; 
BYTE Label; 
BYTE BlockSize; 
WORD TextGridLeft; 
WORD TextGridTop; 
WORD TextGridWidth; 
WORD TextGridHeight; 
BYTE CellWidth; 
BYTE CellHeight; 
BYTE TextFgColorindex; 
BYTE TextBgColorindex; 
BYTE *PlainTextData; 
BYTE Terminator; 

GIFPLAINTEXT; 

I* Extension Introducer (always 21h) *I 
I* Extension Label (always Olh) *I 
I* Size of Extension Block (always OCh) *I 
I* X position of text grid in pixels *I 
I* Y position of text grid in pixels *I 
I* Width of the text grid in pixels *I 
I* Height of the text grid in pixels *I 
I* Width of a grid cell in pixels *I 
I* Height of a grid cell in pixels *I 
I* Text foreground color index value *I 
I* Text background color index value *I 
I* The Plain Text data *I 
I* Block Terminator (always 0) *I 

GIF 445 



GIF (cont'd) 

Introducer contains the value 2lh and is used to identify the start of a Exten
sion data block. 

Label contains the value Olh and is used to identify this block of data as a Plain 
Text Extension. 

BlockSize contains the value OCh, which is the number of bytes contained in 
the fields following the BlockSize field. 

TextGridLeft and TextGridTop contain the X andY coordinates (position) of 
the text grid with respect to the upper-left corner of the display screen ( coordi
nate 0,0}. 

TextGridWidth and TextGridHeight contain the size of the text grid in pixels. 

CellWidth and CellHeight contain the size in pixels of each character cell in 
the grid. 

TextFgColorlndex contains an index into the Global Color Table to retrieve 
the color of the text. 

TextBgColorlndex contains a Global Color Table index value to be used as the 
color for the background of the text. 

PlainTextData contains the actual textual information that is to be rendered as 
a graphic. This field contains one or more sub-blocks of data. Each sub-block 
begins with a byte that indicates the number of data bytes that follow. From 1 
to 255 data bytes may follow this byte. There may be any number of sub-blocks 
in this field. 

Terminator contains the value zero and marks the end of the Plain Text Exten
sion block. 

Application Extension block 
Application Extension blocks contain application-specific information in a way 
similar to the way tags are used in the TIFF and TGA image file formats. Infor
mation not normally found in a GIF-format file may be stored in an Applica
tion Extension block and then read by any application that understands how to 
interpret the data. Any number of Application Extensio.rt blocks may appear in 
a GIF file. 

Application Extension data is application-readable only. All data stored in this 
extension is designed to be acted upon by the software application that is read
ing and processing the GIF data stream. To store human-readable data the 
Comment Extension block is used instead (see the "Comment Extension 
block" section). 

446 GRAPHICS FILE FORMATS 



GIF (cont'd) 

Examples of data stored in an Application Extension block include instruc
tions on changing video modes, applying special processing to displayed image 
data, and storing additional color tables. Information used to control the com
puter platform executing the application can also be stored. This can include 
information on how to manipulate files, how to access peripheral devices such 
as modems and printers, and how to send audible signals to the ~udio speaker. 

The Application Extension block is 14 bytes in length and has the following 
structure: 

typedef struct _GifApplicationExtension 
{ 

BYTE Introducer; 
BYTE Label; 
BYTE BlockSize; 
CHAR Identifier[B]; 
BYTE AuthentCode[3]; 
BYTE *ApplicationData; 
BYTE Terminator; 

GIFAPPLICATION; 

I* Extension Introducer (always 21h) *I 
I* Extension Label (always FFh) *I 
I* Size of Extension Block (always OBh) *I 
I* Application Identifier *I 
I* Application Authentication Code *I 
I* Point to Application Data sub-blocks *I 
I* Block Terminator (always 0) *I 

Introducer contains the value 2lh and is used to identify the start of a Exten
sion data block. 

Label contains the value FFh and is used to identify this block of data as an 
Application Extension. 

BlockSize contains the value OBh, which is the number of bytes in the Identi
fier and AuthentCode fields. 

Identifier may contain up to eight printable 7-bit ASCII characters. These char
acters are used to identify the application that wrote the Application Extension 
block. If this identifier value is recognized, the remaining portion of the block 
is read and its data acted upon. If the identifier value is not recognized, the 
remaining portion of the block is read and its data is discarded. 

AuthentCode contains a value that is used to uniquely identify a software appli
cation that created the Application Extension block. This field may contain a 
serial number, a version number, or a unique binary or ASCII code used to 
identify an individual software application or computer platform. This field 
may be used to allow only specific copies or revisions of a particular software 
application to access the data in certain Application Extension blocks. 

GIF 447 



GIF ( cont'd) 

ApplicationData contains the information that is used by the software applica
tion. This field is structured in a series of sub-blocks identical to the data found 
in a Plain Text Extension block. 

Terminator contains the value zero and marks the end of the Application 
Extension block. 

To understand how a GIF reader could interpret Application Extension block 
information, consider the following example. 

An application reading a GIF file comes across an Application Extension. The 
Identifier field contains the characters "CHKDATE". This identifier is recog
nized by the application reading the GIF file. The AuthentCode field contains 
the value "UNX", which is an indication that only versions of this software 
application running under the UNIX operating system should use the data in 
this block. All versions of the program not running under UNIX should ignore 
this block. 

The application reading this GIF file knows that a CHKDATE block holds a 
2-byte date stamp in the ApplicationCode field. If the current system date is 
not the same as this date stamp value, the next Graphics Rendering block 
should not be displayed. The count byte is read from the data sub-block and 
then the two-byte stamp value. The Terminator field value follows this stamp 
value. 

A second Application Extension is read containing the identifier "CLRSCRN". 
The application recognizes this identifier and knows that it is an instruction for 
the display screen to be cleared immediately. The AuthentCode field is not 
used in this block and its value is read and ignored. This block also does not 
contain any data sub-blocks, and therefore the block terminator value occurs 
immediately. 

A third Application Extension is read containing the identifier "SOUNDBYT". 
This identifier informs the application that this block contains audio data that 
should be sent to the sound card driver installed in the system. The Authent
Code field contains the code "CDI", which indicates the format of the audio 
data stored in this block. If the. AuthentCode field is recognized, then the data 
sub-blocks are read, and the data is sent to the computer platform's audio sys
tem until a zero count byte is read. 

Finally, a fourth Application Extension is read containing the identifier "SPE
CIAL". This particular identifier is not recognized by the application reading 
the GIF file, so the AuthentCode field and the ApplicationData field are read 
and ignored. 

448 GRAPHICS FILE FORMATS 



GIF (cont'd) 

The above examples are only a few of the hundreds of ways Application Exten
sion blocks may be used to provide control over a computer system and the 
way GIF images are displayed. The GIF89a specification does not list any spe
cific examples of the use of Application Extension blocks, nor does it include a 
standard list of identifiers; presumably, this is left up to the ingenuity of the 
developer. 

Comment Extension block 
The Comment Extension block is used to insert a human-readable string of 
text into a GIF file or data stream. Each ~omment may contain up to 255 7-bit 
ASCII characters, including all the ASCII control codes. Any number of Com
ment Extension blocks may occur in a GIF file, and they may appear anywhere 
after the Global Color Table. It is suggested, however, that comments should 
appear before or after all image data in the GIF file. 

All data stored in the Comment Extension is designed to be read only by the 
human user examining a GIF file or data stream. All comment data should be 
ignored by the application reading the GIF data stream. To store computer
readable data and instructions, use the Application Extension block. (See the 
section called "Application Extension block" earlier in this article.) 

Comments are typically used to identify the source of the GIF image, its author, 
the creating software, the creation time and date, the copyright notice for the 
image data, and so on. Several image display programs that accommodate ver
sion 89a images also have the capability of displaying comment data stored 
within the GIF files. 

Comment Extension blocks must always remain independent of all other data 
in a GIF file. Comment Extension data is not modified by the information in 
any other Extension blocks, and comments should not contain data that is 
intended to be read and interpreted as instructions by software applications. 

The Comment Extension block may vary from 5 to 259 bytes in length and has 
the following structure: 

typedef struct _GifCommentExtension 
{ 

BYTE Introducer; /* Extension Introducer (always 21h) */ 
BYTE Label; /* Comment Label (always FEh) */ 
BYTE *CommentData; /* Pointer to Comment Data sub-blocks */ 
BYTE Terminator; /* Block Terminator (always 0) */ 

GIFCOMMENT; 

GIF 449 



GIF ( ccmt'd) 

Introducer contains the value 21h and is used to identify the start of a Exten
sion data block. 

Label contains the value FEh and is used to identify this block of data as a 
Comment Extension. 

CommentData contains one or more sub-blocks ofASCII string data. The char
acter strings stored in the CommentData field sub-blocks are not required to 
be NULL-terminated. 

Terminator contains the value 0 and marks the end of the Comment Extension 
block. The value of the Terminator field may be used as a NULL-terminator if 
"size + 1 ,, bytes of comment data is read from the block. 

For Further Information 
For further information about GIF, see the specifications included on the CD
ROM that accompanies this book: 

CompuServe Incorporated, GIF Graphics Interchange Format: A 
standard defining a mechanism for the storage and transmission of 
bitmap-based graphics information. Columbus, OH, 1987. 

CompuServe Incorporated, Graphics Interchange Format: Version 
89a. Columbus, OH, 1990. 

You can also obtain a copy of the GIF89a specification from many BBSs and 
online services, or directly from CompuServe at: 

CompuServe Incorporated 
Attn: Graphics Technology Department 
5000 Arlington Center Boulevard 
Columbus, OH 43220 
Voice: 614-457-8600 
Voice: 800-848-8199 
WWW: http:/ /www.compuserve.com/ 

Several packages included on the CD-ROM display and convert GIF images. 

450 GRAPHICS FILE FORMATS 



NAME: 

ALSO KNOWN As: 

TYPE: 

COLORS: 

COMPRESSION: 

MAXIMUM IMAGE SIZE: 

MULTIPLE IMAGES PER FILE: 

NUMERICAL FORMAT: 

ORIGINATOR: 

PLATFORM: 

SUPPORTING APPLICATIONS: 

SPECIFICATION ON CD: 

CODE ON CD: 

IMAGES ON CD: 

SEE ALSO: 

GRASP I 
GRASP 

Graphical System for Presentation, .GL, .CLP, .FNT, 
.PIC, .SET, TXT 

Animation 

256 

RLE 

Variable 

Yes 

Little-en dian 

Microtex Industries 

MS-DOS 

GRASP 

Yes (summary description) 

No 

No 

Microsoft RIFF, FU 

usAGE: GRASP is a simple animation format capable of displaying low- and 
medium-resolution images, text, and simple sounds. 

coMMENTs: At one time the most widely used animation format around, GRASP's for
tunes have been declining, perhaps because of increased interest in digital 
video formats such as AVI and QuickTime. 

Overview 
GRASP (GRAphical System for Presentation) is an MS-DOS application used to 
create and play back simple animated sequences. Such animations are incorpo
rated into other applications, such as graphical presentations, educational 
tutorials, and games. 

GRASP is a simple toolkit of utilities used to create and play back animations. 
The basic tool found in GRASP is the editor ( GRASP.EXE under MS-DOS). The 
editor program organizes graphics and command information together into a 
GRASP animation. An animation may contain both text and images, which can 
be presented in a variety of ways. Simple sounds may be generated from the 

GRASP 451 



GRASP (cont'd) 

PC's speaker, and the animation may be controlled via user input. GRASP sup
ports all standard EGA and VGA display modes. 

Most GRASP animations that you will encounter are stored in a GRASP library 
file (with a .GL extension). A .GL file is actually a library of separate files that 
contain information required to display a GRASP animation. These files are 
normally stored as separate disk files when used by GRASP. But when an anima
tion must be transported to another environment or incorporated into 
another application, the GRASP Library Manager (CUB. COM under MS-DOS) 
combines all the necessary files into a single .GL library file. 

A GRASP library may contain four different types of information files; the for
mats of these files are discussed later in this article. When these files are stored 
separately on disk, their types can be identified by their file extensions: 

.TXT Command file 

.PIC Picture file 

.CLP Clip file (picture file without a color map) 

.FNT Font character information (also *.SET) 

.SET Font character information 

A GRASP animation is played back using the GRASP run-time display program 
( GRASPRI.EXE under MS-DOS). All applications playing back .GL animation 
files will call this program to display the animation. The GRASPRT program is 
capable of reading the animation from a single .GL file or from each informa
tion file stored separately on disk. 

A .GL file is created as follows: 

1. Using a paint or imaging program, create or capture the individual frames 
you want animated. The images must be saved to disk using the 
PCPAINT /Pic tor file format. 

2. Use the GRASP editor program to create a sequence of commands that will 
be used to display the animation. 

3. Combine all the resulting data files into a single .GL file using the GRASP 
Library Manager. The resulting .GL file may be played back using the 
GRASP run-time display engine. 

452 GRAPHICS FILE FORMATS 



GRASP ( cont'd) 

File Organization 
All GRASP library files begin with a header. The header is a directory of the 
separate files stored in the .GL file. The header varies in size depending on the 
number of files stored. The format of the header is shown below: 

typedef struct _GLHeader 
{ 

WORD DirectorySize; 
struct _FileEntry 
{ 

/* Size of header in bytes */ 

DWORD FileOffset; 
CHAR FileName [13] ; 

/* Offset of file in the .GL file */ 
/* Name of the file */ 

} FileDirectory[DirectorySize]; 

GLHEADER; 

DirectorySize is the size of the .GL header in bytes. 

The FileDirectory contains one FileEntry structure for each file stored in the 
.GL. 

FileOffset contains the offset location of the file within the .GL file. If a FileOff
set value is OOh, then the end of the file directory has been reached. 

FileName contains the original disk filename of the file. Each file in a .GL 
library file is stored as a 4-byte value indicating the size of the file, followed by 
the file data itself. A structure representing this arrangement appears as fol
lows: 

typedef struct _FileData 
{ 

DWORD FileLength; /* Size of the file data in bytes */ 
BYTE FileData[FileLength]; /*File data*/ 

FILEDATA; 

File Details 
This section describes the types of files contained in a GRASP library. 

Command File 

A command (.TXT) file is simply a script of GRASP commands read by the .GL 
playback program and used to display the animation. A command file is an 
ordinary ASCII text file and usually begins with a few comment lines identifying 
the name of the file and author, title of the animation, date of creation, and so 
on. There is one command file per .GL file. 

GRASP 453 



GRASP (cont'd) 

A number of commands allow GRASP animations to have many special opera
tions and effects. Some of the commands are: 

• Load image files and fonts 

• Execute MS-DOS programs 

• Receive input from the user 

• Draw geometric shapes 

• Change video modes 

• Change color maps 

• Create sound 

• Display text 

• Perform fades 

Each command is a keyword followed by zero or more arguments delimited by 
commas. All commands are case-insensitive except for literal strings which 
must appear in double quotes. All comments begin with a semicolon and are 
ignored during playback. 

Consider the following example. A .GL file which contains a simple, five-frame 
animation that displays in an infinite loop might contain the following com
mand file: 

video L 
pload PALETTE,! 
palette 1 
pfree 1 
cload CLPO,l 
cload CLP1,2 
cload CLP2,3 
cload CLP3,4 
cload CLP4,5 
forever: 
putup 80,50,1,10 
put up 80,50,2,10 
put up 80,50,3,10 
put up 80,50,4,10 
put up 80,50,5,10 
put up 80,50,5,10 
put up 80,50,4,10 
put up 80,50,3,10 
put up 80,50,2,10 
goto forever 

Set video mode to 320x200x256 VGA 
Load palette.pic into picture buffer 1 
Set the palette 
Free picture buffer 1 
Load clpO.pic into buffer 1 
Load clpl.pic into buffer 2 
Load clp2.pic into buffer 3 
Load clp3.pic into buffer 4 
Load clp4.pic into buffer 5 

; Label 
Display buffer 1 
Display buffer 2 
Display buffer 3 
Display buffer 4 
Display buffer 5 
Display buffer 5 
Display buffer 4 
Display buffer 3 
Display buffer 2 
GOTO 'forever' label (and repeat 
display of buffers) 

454 GRAPHICS FILE FORMATS 



GRASP (cont'd) 

Image Files 

Each frame in a GRASP animation is stored using the Pictor PC Paint file for
mat. Files with the .PIC extension contain a color map, whereas files with the 
.CLP extension do not. It is common for a GRASP animation to include a single 
.PIC file that contains only a color map and to store all of its animation frames 
as mapless .CLP files. 

For more information about the Pictor PC Paint file format, refer to the article 
about it later in this book. 

Foot File 

Text is displayed in a GRASP animation by first loading a font and then display
ing it using the text command. Fonts are stored with the extension .FNT or 
.SET. A font file may contain data for up to 256 font characters. The header for 
the font file is shown below: 

typedef struct _FontHeader 
{ 

WORD FileLength; 
BYTE NumberOfCharacters; 
BYTE FirstCharacterValue; 
BYTE CharacterWidth; 
BYTE CharacterHeight; 
BYTE CharacterSize; 

FONTHEADER; 

I* Size of font file in bytes *I 
I* Number of characters in file *I 
I* ASCII value of first character *I 
I* Width of character in pixels *I 
I* Height of character in pixels *I 
I* Size of character in bytes *I 

FileLength is the size of the font file in bytes, including header. 

NumberOfCharacters is the number of font character defined in this file. This 
number may be 0 through 255, with 0 representing 256 characters stored. 

FirstCharacterValue is the ASCII value of the first font character appearing in 
the data (font characters are arranged in ASCII value order). Most fonts start 
with the space character (ASCII value 20h). 

CharacterWidth and CharacterHeight represent the size of the font in pixels. 

CharacterSize is the number of bytes required to store each font character. 
This value is usually calculated from the pixel size of the font (Character
WidthxCharacterHeight I 8). 

The font data immediately follows the header. Each character is stored by row, 
and each row is padded out to the nearest byte boundary. An 8x16 font 
contains sixteen rows by eight columns of 1-bit pixels. A 0 bit indicates black 
and a 1 bit indicates color. 

GRASP 455 



GRASP ( cont'd) 

An 8x16 font requires 16 bytes of data per character to store. A full256-charac
ter font is then 4096 bytes in size. The maximum size of a font file is 64K. 

ForFurtherhiTonnation 
For further information about GRASP, see the article included on the CD-ROM 

that accompanies this book. 

GRASP was originally created by Microtext Incorporated of Irvine, CA. It was 
bought in 1988 by Paul Mace software, where it is maintained today. Informa
tion on GRASP and GRASP Multimedia may be obtained direcdy from Paul 
Mace Software: 

Paul Mace Software, Inc. 
Attn: Steven Belsky 
400 Williamson Way 
Ashland, Oregon 97520 
Voice: 503-488-2322 
FAX: 503-488-1549 
BBS: 503-482-7 435 
WWW: http:/ /www.pmace.com/pms.htm 

456 GRAPHICS FILE FORMATS 



NAME: 

ALSO KNOWN As: 

TYPE: 

COLORS: 

COMPRESSION: 

MAXIMUM IMAGE SIZE: 

MULTIPLE IMAGES PER FILE: 

NUMERICAL FORMAT: 

ORIGINATOR: 

PLATFORM: 

SUPPORTING APPLICATIONS: 

SPECIFICATION ON CD: 

CODE ON CD: 

IMAGES ON CD: 

SEE ALSO: 

GRIB 

Gridded Binary 

Various 

NA 

Uncompressed 

NA 

NA 

Binary bit-oriented 

World Meteorological Organization 

All 

Unknown 

Yes (summary description) 

No 

No 

BUFR 

UsAGE: Transfer and transmission of weather and other data. 

coMMENTs: The GRIB format is outside the scope of this book, but we include a brief 
description because it is likely to be more useful in the future as interest 
in geographical information systems increases. 

Overview 
GRIB was created by the World Meteorological Organization (WMO) and is offi
cially designated as FM 92-VIII Ext. GRIB (GRidded Binary). It is designed to 
support fast computer-to-computer transmission of large volumes of data. 
Speed and efficiency are the key words here. 

The format documentation is subtitled: ''The WMO Format for the Storage of 
Weather Product Information and the Exchange of Weather Product Messages 
in Gridded Binary Form." Data in GRIB files, as the name suggests, is expected 
to be in gridded form, that is, arrayed in a rectilinear fashion. That this sug
gests our idea of a bitmap is no coincidence, although the WMO and its affili
ates normally use the format for the transmission of observational data such as 
air pressure and temperature. 

GRIB 457 



GRIB (cont'd) 

GRIB data streams and files adhere to the specification called "WMO Standard 
Formats for Weather Data Exchange Among Automated Weather Information 
Systems." 

File Organization 
GRIB files consist of a number of records, each of which may contain the fol
lowing information: 

• Indicator section 

• Product definition section (PDS) 

• Optional grid description section ( GDS) 

• Otional bitmap section (BMS) 

• Binary data section (BDS) 

• ASCII characters 7777 

File Details 
Detailing the internals of GRIB is beyond the scope of this article. GRIB is 
extremely complex and is, at this point, used in a narrow area of technology. 
This, coupled with the fact that the document is written in a dialect of govern
ment-ese, makes it tough sledding even for initiates. Nevertheless, if you need 
to understand the GRIB format, the document included on the CD-ROM 
should get you started. Good luck. Please note that the people who are respon
sible the GRIB documentation were as nice as could be. 

ForFurtherhdonnation 
For detailed information about GRIB, see the paper included on the CD-ROM 
that accompanies this book: 

Stackpole, John D., ''The WMO Format For the Storage of Weather 
Product Information and the Exchange of Messages in Gridded Binary 
Form." 

You can also get information from the University of Wisconsin NMS homepage: 

http:/ /java. meteor. wise. edu/ 

458 GRAPHICS FILE FORMATS 



GRIB (cont'd) 

Additional information on WMO data specifications can also be found in the 
following document: 

Standard Formats for 'Weather Data Exchange Among Automated Weather Infor
mation Systems, Document Number FCM-52-1990. 

This document is available from: 

U.S. Department of Commerce/National Oceanic and Atmospheric 
Administration (NOAA) 
Attn: Ms. Lena Loman 
Office of the Federal Coordinator for Meteorological 
Services and Supporting Research ( OFCM) 
6010 Executive Blvd, Suite 900 
Rockville, MD 20852 
Voice: 301-443-8704 

For more information about the GRIB format, contact: 

U.S. Department of Commerce/National Oceanic and Atmospheric 
Administration {NOAA) 
National Meteorological Center 
Attn: Dr. John D. Stackpole 
Chief, Production Management Branch, Automation Division 
WINMC42, Room 307, WWB 
5200 Auth Road 
Camp Springs, MD 20746 
Voice: 301-763-8115 
FAX: 301-763-8381 
Email: jstack@sunl. wwb. noaa.gov 

GRIB 459 



I Harvard Graphics 
NAME: 

ALSO KNOWN As: 

TYPE: 

COLORS: 

COMPRESSION: 

MAXIMUM IMAGE SIZE: 

MULTIPLE IMAGES PER FILE: 

NUMERICAL FORMAT: 

ORIGINATOR: 

PLATFORM: 

SUPPORTING APPLICATIONS: 

SPECIFICATION ON CD: 

CODE ON CD: 

IMAGES ON CD: 

SEE ALSO: 

Harvard Graphics 

None 

Metafile 

NA 

None 

NA 

No 

Li ttle-endian 

Software Publishing 

MS-DOS 

Harvard Graphics, other presentation graphics 

No 

No 

No 

None 

usAGE: Proprietary to Software Publishing; used by Harvard Graphics business 
graphics application. 

coMMENTs: Software Publishing considers the format proprietary, but will consider a 
license arrangement. 

Overview 
Software Publishing, the originator of the Harvard Graphics format, considers 
this format to be proprietary. Although we wish this were not the case, we can 
hardly use our standard argument-that documenting and publicizing file for
mats make sales by seeding the aftermarket. Harvard Graphics has been the 
top, or one of the top, sellers in the crowded and cutthroat MS-DOS business 
graphics market, and has remained so despite the lack of cooperation of Soft
ware Publishing with external developers. 

While we would be happy to provide information about the format if it were 
available, we have failed to find any during our research for this book, so it 
appears that Software Publishing has so far been successful in their efforts to 
restrict information flow from their organization. 

460 GRAPHICS FILE FORMATS 



Haroard Graphics ( cont'd) 

To ~e fair, Software Publishing appeared to consider our request to include the 
Harvard Graphics format in this book. Although the organization wishes to 
continue to exert some measure of control over information about the format, 
they are willing to enter into license arrangements with third-party developers 
that include nondisclosure agreements. We got the impression that reasonable 
requests would not be refused. 

ForFurtherhiTonnation 
To obtain further information about obtaining the Harvard Graphics file for
mat under distribution license, contact Software Publishing at: 

Software Publishing Inc. 
P.O. Box 54983 
3165 Kifer Road· 
Santa Clara, CA 95056-0983 
Voice: 408-986-9800 

HARVARD GRAPHICS 46} 



I Hierarchical Data Format 
NAME: 

ALSO KNOWN AS: 

TYPE: 

COLORS: 

COMPRESSION: 

MAXIMUM IMAGE SIZE: 

MULTIPLE IMAGES PER FILE: 

NUMERICAL FORMAT: 

ORIGINATOR: 

PLATFORM: 

SUPPORTING APPLICATIONS: 

SPECIFICATION ON CD: 

CODE ON CD: 

IMAGES ON CD: 

SEE ALSO: 

Hierarchical Data Format 

HDF 

Metafile 

NA 

NA 

NA 

Yes 

NA 

National Center for Supercomputer Applications 
(NCSA) 

All 

Various 

Yes 

No 

No 

FITS 

usAGE: Transport and exchange of scientific data, including images, between dif
ferent applications and platforms. 

coMMENTs: A tremendously versatile format that supports the inclusion ofvarious 
types of "metadata" while continuing to provide support for more mun
dane data objects, such as images. Used by applications associated with sci
entific visualization, and well-supported by a portable library of functions 
from the NCSA Software Tools Group. 

Overview 
The Hierarchical Data Format (HDF) was created by a group at the National 
Center for Supercomputer Applications (NCSA) to support the needs of the 
scientific community with respect to scientific data management. The format 
was designed to provide support for the following: 

462 GRAPHICS FILE FORMATS 



Hierarchical Data Format (cont'd) 

• Scientific data and metadata 

• Multiple diverse platforms 

• Support for a range of software tools 

• Rapid and efficient data transfer 

• Extensibility 

The format is, in the words of Mike Folk at NCSA, a "self-describing extensible 
file format based on the use of tagged objects that have standard meanings." 
The specification is extremely complete and is included on the CD, so we will 
confine ourselves to some introductory remarks. We include the format in this 
book because we feel that data visualization will be increasingly important in 
the future. · 

HDF supports lower-level data types such as multidimensional gridded data, 2D 
and 3D bitmap images, polygonal mesh data, multivariate datasets, sparse 
matrices, finite element (FE) data, spreadsheets, splines, non-Cartesian coordi
nate data, and text. 

The file structure is entirely tag-based and is founded on the assumption that 
the needs of scientists are unknowable in advance. While this might result in 
anarchy in another situation, manipulation of data associated with public tags 
is supported by a portable, publicly available library maintained by NCSA. Note 
that the HDF Project at NCSA is closely associated with the NCSA Software Tools 
group, which works to support the scientific community, especially in the area 
of scientific visualization. 

Tags are grouped under the unifying concept of a Vset, which is a hierarchical 
grouping structure flexible enough to support multiple views, useful for data 
analysis and retrieval. 

ForFurtherhrronnation 
For further information about the HDF format, see the specification included 
on the CD-ROM that accompanies this book. You can also contact NCSA, the 
organization responsible for maintaining the spec, at: 

National Center for Supercomputer Applications 
Attn: Michael Folk 
University of Illinois 
605 East Springfield Avenue 

HIERARCHICAL DATA FORMAT 463 



Hierarchical Data Fonnat ( cont'd) 

Champaign, IL 61820 
Voice: 217-244-0072 
FAX: 217-244-1987 
Email: mfolk@ncsa. uiuc. edu 

The latest HDF specification is also available via FTP. You must sign a license 
and then download from 

ftp:/ /ftp. ncsa. uiuc. edu/Documentation/HDF /HDF3. 2/ 
ftp:/ /ftp. ncsa. uiuc.edu/Documentation/HDF /HDF. Vset2.1 I 

Other online information resources include: 

http:/ /hdf.ncsa. uiuc.edu:8001/ 
http: I /www. ncsa. uiuc. edu/SDG/Software/HDF /HDFintro. html 

464 GRAPHICS FILE FORMATS 



NAME: 

ALSO KNOWN As: 

TYPE: 

COLORS: 

COMPRESSION: 

MAXIMUM IMAGE SIZE: 

MULTIPLE IMAGES PER FILE: 

NUMERICAL FORMAT: 

ORIGINATOR: 

PLATFORM: 

SUPPORTING APPLICATIONS: 

SPECIFICATION ON CD: 

CODE ON CD: 

IMAGES ON CD: 

SEE ALSO: 

IFF I 
IFF* 

Interchange File Format, ILM, ILBM, LBM, Amiga 
Paint 

Bitmap 

1- to 24-bit 

RLE, uncompressed 

64Kx64K pixels 

Yes 

Big-en dian 

Electronic Arts, Inc., Commodore-Amiga, Inc. 

Amiga, MS-DOS, others 

Too numerous to list 

Yes 

No 

Yes 

Microsoft RIFF, GIF, PNG 

UsAGE: On platforms other than the Amiga, IFF is used mostly for storing image 
and sound data. On the Amiga almost any type of data may be found in an 
IFF file. The file extension usually indicates the type of data stored in an 
IFF file. 

CoMMENT: IFF is an older data file format found on most every system. Its versatility 
has not been greatly utilized outside of the Amiga platform. 

Overview 
·IFF (Interchange File Format) is a general purpose data storage format that 
can associate and store multiple types of data. IFF is portable and has many 
well-defined extensions that support still-picture, sound, music, video, and tex
tual data. Because of this extensibility, IFF has fathered a family of special pur
pose file formats all based on IFF's simple data structure. 

* Our thanks to Jolyon Ralph and Ernie Wright for their contributions to this article. 

IFF 465 



IFF ( cont'd) 

IFF is most often associated with the Commodore-Amiga computer and origi
nated on that system. IFF is fully supported by the Amiga operating system and 
is used for storing virtually every type of data found in the Amiga's filesystem. 
Initialization files, documents, temporary data, and data exported from the 
clipboard may all be stored using the IFF format. 

The most common IFF family member is ILBM, or InterLeaved BitMap. ILBM 
files are the standard image file format for the Commodore-Amiga computer 
and are the type of IFF files with which most graphics people are familiar. 

IFF files are common in the MS-DOS and UNIX environment as well and usually 
have the file extension .IFF or .LBM. Electronic Arts' DeluxePaint program is 
generally credited with making IFF known to the MS-DOS community. For a 
time IFF was a widely accepted 24-bit format under MS-DOS, but it was eventu
ally replaced first by TIFF and TGA, and then by JFIF. 

IFF faces compatibility problems when the occasional program fails to write IFF 
file data using the big-endian byte order. This prevents most programs from 
reading these IFF files. Other problems created by bad IFF file writers include 
writing planar image data improperly and failing to use only linefeeds to termi
nate lines of text. Unfortuantely, some people (those who are all too willing to 
sho-ot the messenger), have blamed IFF, rather than bad software, for these 
problems. 

Today IFF is a widely used format that is supported by most graphics programs 
found on MS-DOS, MS Windows, Macintosh, UNIX, and Amiga systems. The 
format basically remained unchanged since its specification was released in 
1985, but many extensions to the format have been created and documented 
by a great many software developers, making IFF one of the most utilized data 
file formats of today. . 

File Organization 
IFF files are constructed entirely of chunks. A chunk is a data structure contain
ing a 4-byte ID, a 4-byte size value, and possibly a block of data. Each chunk is 
the same, simple structure and differs only in the data it contains. You can 
think of a chunk as an envelope or wrapper that identifies a collection of data. 

The data stored in a chunk can be anything: graphics, sound, animations, text 
from a word processor, or a collection of 3D objects. Any kind of data can be 
stored in a chunk, including a chunk itself. 

466 GRAPHICS FILE FORMATS 



IFF (cont'd) 

Nesting one or more chunks within a chunk is common in IFF files. In fact, an 
IFF file is conceptually nothing more than a single chunk containing one or 
more other chunks as data. There is also no specified limit as to the number of 
nesting levels within a chunk. 

IFF nesting is a powerful organizing principle. It offers the same sort of organi
zational advantages that nested directories and subdirectories do for filesys
tems. The down side of nesting is that it introduces a certain amount of 
complexity that can make IFF appear difficult to interpret. 

Figure IFF-I illustrates the "chunks within a chunk" concept. 

l,~;;tm:l 
Chunk 3 r~• 

U ... i-~~~-~~~:--.l·:21J ;·! : 
~~~~-'.I 

-I ~!!:~~~:;;:J~_ !
~~:~!'-~~~~~~~~:;;1

FIGURE IFF-1: A chunk file structure

Most IFF files contain a single chunk called a FORM chunk. This chunk stores
the formatting and identification information for all chunks and data in the
IFF file. All other chunks in the file are stored within the FORM chunk. The
basic structure of the FORM chunk is illustrated in Figure IFF-2.

In this example, the FORM chunk is of type ILBM (InterLeaved BitMap) and
contains three chunks, each of which contain data blocks that together define
an image. The FORM ILBM is the most common file type for storing still
picture graphical data in an IFF file. "ILBM" is the type identifier for the
FORM. It tells readers what kind of FORM chunk this is and what chunks
might be expected within it. The three chunks in this example are the BMHD
(BitMap HeaDer), CMAP (Color MAP), and BODY (the actual pixels).

Another common FORM type is 8SVX (8-bit Sampled VoX, or Voice), a format
for digitized sound samples. A simple FORM 8SVX is shown in Figure IFF-3.

IFF 467

IFF (cont'd)

FORMILBM

I BMHD I
I CMAP I
I BODY •

¥L

FIGURE IFF-2: FORMILBMfilestructure

FORMBSVX

I VHDR I
I NAME I
laoov l

FIGURE IFF-3: FORM 8SVXfilestructure

As you can see, Figures IFF-2 and IFF-3 aren't very different. The high-level
structure of all IFF files is similar because it is created from the same simple
chunking rules, regardless of what kind of data is stored in the files.

IFF files that contain a single FORM chunk are by far the most common. In
fact, if you confine yourself to the most widely used FORM types such as ILBM,
you may never encounter any other IFF structure. But group structures do exist
that allow IFF writers to collect multiple FORMs into a single file.

A cAT chunk is used to append or "concatenate" two or more FORM chunks
together in a single IFF file. Figure IFF-4 shows a CAT ILBM file that contains
two FORM ILBM chunks. .

In this figure, the CAT chunk contains a single ILBM chunk that contains an
ILBM type ID that identifies the type of data stored in each FORM chunk.
These two FORM chunks have the same format they would have if they were
stored in separate IFF files.

468 GRAPHICS FILE FORMATS

IFF (cont'd)

CATILBM

I FORM ILBM ~

I FORM ILBM I

FIGURE I FF-4: CAT ILBM file structure

All of the FORM chunks in a CAT chunk need not store the same type of data.
Figure IFF-5 illustrates a CAT chunk that stores a FORM ILBM chunk and a
FORM 8SVX chunk. .

CAT JJJJ

I FORM ILBM I
I FORM BSVX I

FIGURE I FF-5: CAT jjjj file structure

When the FORM chunks in a CAT chunk do not all store the same type of
data, a contents type identifier of 'jJJJ" is used to indicate that the CAT con
tains FORMs of more than one type, or that the IFF writer did not care what
type(s) of FORM might be in the fi le. CAT type IDs are often referred to as
"hints," because each FORM unambiguously identifies what it contains.

UST chunks also allow the storage of multiple data objects within a single IFF
file but add the ability to group data objects together and have them share
common data by the use of the PROP (property) chunk. Figure IFF-6 illustrates
a UST ILBM file that contains two images that share a common bitmap header
and color map by using a PROP chunk.

File Details
This section describes the details of IFF chunks.

IFF 469

IFF (cont'd)

iiiY-lllBM . I
PROP ILBM ____ - : r

···• L;_·"J .f
; FORM ILBM

r _;, '~~~-' ''[r :
-'•"!'-'"" ./. --~" ·c'. ,. ... ;

:: FORM ILBM j'- '

' '.-~~!)¥ . ' :r ;: t~
-- ----""":;.."7"_:;.__:.J

FIGURE IFF-6: UST JLBM.file structure

Chunks

All IFF files are composed of very simple data structures called chunks. A chunk
may be anywhere from four to eight gigabytes in size and is represented by the
following data structure:

typedef struct _Chunk
{

char Chunkid[4];
DWORD Size;
BYTE Data[];

} CHUNK;

Chunk.Id is the ASCII identifier of the chunk. Identifiers are always alphanu
meric characters, and they are right-padded with spaces if they contain fewer
than four characters. FORM Type IDs may only use uppercase characters, and
Chunk IDs may be mixed case.

Size is the number of data bytes stored in the Data field. This value does not
include the presence of a padding byte that may follow the data. If the chunk
contains no data, then this value is 0.

Data is the actual chunk data. The number of bytes of data stored in this field
is indicated by the value in the Size field.

470 GRAPHICS FILE FORMATS

IFF (cont'd)

We can use the _Chunk structure to show the nested chunks within a FORM
ILBM file:

typedef struct _chunkFORM_ILBM
{

char Chunkid[4];
DWORD Size;

I* •FORM" *I
I* FORM size (size of file minus 8) */

I* Start of FORM chunk's data */

char TypeiD[4];

struct _ChunkBMHD
{

char Chunkid[4];
DWORD Size;
BMHD Data;

struct _ChunkCMAP
{

char Chunkid[4];
DWORD Size;
CMAP Data;

struct _ChunkBODY
{

char Chunkid[4];
DWORD Size;
BODY Data[];

I* "ILBM" *I

I* "BMHD" */
/* Size of Data *I
I* Bitmap header data */

I* •CMAP• *I
I* Size of Data *I
I* Color map data *I

I* 11 BODY" *I
/* Size of Data *I
I* Image data */

This is the C code version of Figure IFF-2. The file contains a single FORM
chunk, which like all chunks begins with a 4-character chunk ID and a 4-byte
size. The data for the FORM chunk begins with a 4-character "FORM Type
Identifier," or type ID, that identifies the kind of object stored in the FORM.
For ILBMs the type ID is just "ILBM". The type ID is followed by a collection of
chunks that describe the ILBM, including the bitmap header, color map, and
pixel bits.

(Note that we're illustrating the structure of a FORM ILBM using C code here,
but you shouldn't actually use a structure like this in your IFF code. The con
tents of a FORM chunk vary too much to be captured by a single C structure.
Nor should you assume that these are the only chunks in a FORM ILBM, or
that they will occur in this particular order.)

Chunks must always begin on an even byte boundary. If a chunk contains an
odd number of data bytes, then the chunk that follows would improperly begin

IFF 471

IFF (cont'd)

on a odd-byte boundary. To preserve alignment, a padding byte will be added
between the odd-length data field of a chunk and the Chunk ID of the next
chunk. This padding byte always has a value of zero and is not considered to be
part of the chunk data. If the Size field of a chunk contains an odd value, then
you should assume that a padding byte is present.

Parsing an IFF file is a process of reading chunk identifiers, using the data in
known chunks and skipping over unknown chunks. The chunk identifiers are
therefore crucial in determining whether the IFF file reader recognizes the for
mat of the data stored in a chunk.

Chunk Content Identifiers

The first four bytes of every chunk identifies the format of the chunk's data.
These bytes are called the Chunk Content Identifier, or Chunk ID for short.
Chunk IDs are made of ASCII characters in the range Ox20 to Ox7E (""to"-").
The restriction to uppercase and no punctuation applies only to FORM type
IDs. Spaces are used only to pad out IDs that are fewer than four printable
characters in length.

Each ID represents a specific format of data. If an IFF reader does not recog
nize the ID of a chunk, then the reader cannot know the format of the chunk's
data, and therefore should skip over the chunk.

Five primary chunk IDs are reserved by the IFF specification. They are
"FORM", "LIST", "PROP", "CAT ", and " ". Note that the CAT chunk con
tains a single padding space, and the ID of the Filler Chunk is all spaces.

Chunk IDs can also be used to indicate the revision level of a chunk. For exam
ple, the revision IDs for the FORM chunk are "FORI", FOR2", "FOR3", and so
on. For the CAT chunk, the revisions are "CATI", "CAT2", "CAT3", and so on.
The FORM, LIST, and CAT chunks each have nine revisions reserved by the
IFF-85 specification, bringing the total number of reserved chunk IDs to 32.

If an IFF reader does not recognize the FORM Type ID of a FORM, CAT or
UST chunk, it may continue reading to find any nested FORM chunks in the
file that it does recognize. If the first chunk in the file does not have a Group
Type ID of FORM, CAT, or UST, then the reader should assume that it is not
an IFF-format file.

The number and kind of data chunks that appear in a FORM, and the order in
which they appear, is determined by the FORM type ID. Some data chunks

472 GRAPHICS FILE FORMATS

IFF (cont'd)

must always be present, such as those required of a BMHD chunk in a FORM
ILBM. Some chunks must appear in a specific order; for example, a CMAP
chunk must always appear before its corresponding BODY chunk. But most
data chunks have no restriction on the order in which they occur, or even the
number of times that they may occur, in the IFF file.

The Filler Chunk (Chunk ID " ") is a special-purpose data chunk that is
used only to provide alignment between chunks in a file. The data stored in a
Filler Chunk is meaningless and is never used. For example, a file reader may
be designed to read IK blocks of data from a file stream. In this case, you
might require that each chunk in an IFF file be aligned on the closest
1 024-byte boundary. Filler chunks would be inserted between all other chunks
to provide boundary alignment padding as needed.

To give you an idea of all of the possible data chunks that might be found in a
single FORM Chunk, here is a list of a few chunk IDs that are associated with
storing textual data:

(C)
ANNO
AUTH
DOC
FOOT
HEAD
PAGE
PARA
PDEF
TABS
TEXT
VERS

Copyright notice and license
Annotation or comment
Author name
Document formatting information
Footer information of a document
Header information of a document
Page break indicator
Paragraph formatting information
Deluxe Print page definition
Tab positions
Text for a paragraph
File version

Here is a listing of some FORM types to give you an idea of what kind of data is
stored usjng the IFF format:

Graphical
ACBM
DEEP
DR2D
FNTR

Amiga Contiguous Bitmap (Microsoft Basic for the Amiga)
IFF Deep (24-bit color image)
2D object standard format (vector data)
Raster font

IFF. 473

IFF (cont'd)

FNTV
ILBM
PICS
RGBS
RGBN
TDDD
YUVN

Animation
ANBM
ANIM
SSA

Video
VDEO

Sound
ssvx
AIFF
SAMP
uvox

Music
GSCR
SMUS
TRAK
USCR

Text
FfXT
WORD

Vector font
InterLeaved Bitmap (interleaved planar bitmap data)
Macintosh picture
24-bit color image (Impulse)
12-bit color image (Impulse)
Turbo 3d rendering data (3D objects)
YUV image data (V-Lab)

Animated bitmap
Cel animations
Super smooth animation (ProD AD)

Deluxe Video Construction Set video

8-bit sampled voice
Audio interchange file format
Sampled sound
Uhuru Sound Software Macintosh voice

General use musical score
Simple musical score
MIDI music data
Uhuru Sound Software musical score

Formatted text
Pro-write word processing

Probably several hundred FORM types and chunk IDs have been created and
(we hope) documented by software developers over the past ten years. Most
Amiga software archives contain the specifications for many of these chunks.
In the section below, we look at the most common IFF data type for storing
graphics data, ILBM.

ILBMChunk

The ILBM format is the most commonly used chunk format for storing graph
ics data in an IFF file. The only data chunk required to appear in an ILBM is a
Bitmap Header chunk (BMHD). It may seem strange not to require the

474 GRAPHICS FILE FORMATS

IFF (cont'd)

presence of a BODY chunk to store the image data, but an IFF colormap file is
a FORM ILBM that contains only a BMHD and colormap (CMAP) chunk but
no image data.

ILBMs may optionally contain a colormap (CMAP chunk), hot spot informa
tion (GRAB chunk), destination merge data (DEST chunk), or sprite informa
tion (SPRT chunk). They may specify a Commodore-Amiga viewport mode
(CAMG chunk) or image data (BODY chunk). All of these chunks must
appear after the BMHD chunk and before the BODY chunk. BODY must
always appear last.

Bitmap Header (BMHD) chunk
The BMHD chunk contains information defining the metrics of the image
data. This chunk is always 36 bytes in length and has the following format:

typedef struct _BitMapHeaDer
{

char Chunkid[4]; /* Chunk Identifier •BMHD• *I
DWORD Size; /* Size of chunk data in bytes */
/* Chunk data starts here */
WORD Width; /* Width of ·image in pixels */
WORD Height; /* Height of image in pixels */
WORD Left; /* X coordinate of image */
WORD Top; /* Y coordinate of image */
BYTE Bitplanes; /* Number of bitplanes */
BYTE Masking; /* Type of masking used */
BYTE Compress; /* Compression method use on image data */
BYTE Padding; /* Alignment padding (always 0) */
WORD Transparency; /* Transparent background color */
BYTE XAspectRatio; /* Horizontal pixel size */
BYTE YAspectRatio; /* Vertical pixel size */
WORD PageWidth; /* Horizontal resolution of display device */
WORD PageHeight; /* Vertical resolution of display device */

BITMAPHEADERCHUNK;

Chunkld contains the chunk content identifier "BMHD".

Size is the number of bytes following the Size field and is always 28.

Width and Height are the width and height, respectively, of the image data in
pixels.

Left and Top are the X and Y coordinates position of the upper-left corner of
the image. The default values for these fields are 0 and 0.

Bitplanes is the number of bits per pixel used to store the image data.

IFF 475

IFF (cont'd)

Masking indicates the type of masking used to display the image. Valid values
for this field are 0 (standard opaque rectangular image), 1 (mask data is inter
leaved with image data as an extra bitplane), 2 (pixels that match the value in
the Transparency field are transparent), and 3 (image may be lassoed, as in
MacPaint).

Compress indicates whether the image data in the BODY chunk is compressed.
A value of 0 indicates no compression, and a value of 1 indicates that the data
is compressed using the Packer algorithm defined by the IFF-86 ILBM specifi
cation.

Padding is used to maintain alignment padding within the BMHD structure
and always contains the value zero.

Transparency is a value used with Masking to determine which pixels (if any)
in an image are transparent.

XAspectRatio and YAspectRatio define the pixel aspect ratio of the image data.
The aspect ratio is calculated by dividing XAspectRatio by YAspectRatio.

PageWidth and PageHeight describe the required resolution to display the
image. If the image data were to be displayed at a resolution of 320x200, the
values of these fields would be 320 and 200, respectively.

Color Map (CMAP) chunk
The optional CMAP chunk stores color information for the image data. CMAP
data is actually an array of the following data type:

typedef struct _ColorMapEntry
(

BYTE Red;
BYTE Green;
BYTE Blue;

COLORMAPENTRY;

I* Red color component (0-255) *I
I* Green color component (0-255) *I
I* Blue color component (0-255) *I

Red, Green, and Blue store color component intensity values in the range· 0 to
255 for a single color. A value of 255,255,255 is white, and 0,0,0 is black.

The CMAP chunk contains an array of COLORMAPENTRYs as data. The num
ber of elements in this array will vary depending upon the number of colors in
the image data. The CMAP chunk structure follows:

typedef struct _ColorMapChunk
(

char Chunkid[4];
DWORD Size;
I* Chunk data starts here *I

476 GRAPHICS FILE FORMATS

I* Chunk Identifier "CMAP• *I
I* Size of chunk data in bytes *I

COLORMAPENTRY Map[Size/3]; /*Color map data*/
COLORMAPCHUNK;

Chunkld contains the chunk content identifier "CMAP".

Size is the number of bytes in the Map field.

IFF (cont'd)

Map is the actual color nia~ data. It is an array of COLORMAPENTRY values.
There are typically 2BMHD.J3itPlanes entries in this array.

Body (BODY) chunk
The BODY chunk stores the actual image data as a BYI'E array. The structure
of the BODY chunk follows:

typedef struct _BodyChunk
{

char Chunkid[4]; /*Chunk Identifier •Bony• */
DWORD Size; /* Size of chunk data in bytes */
/* Chunk data starts here */
BYTE ImageData[]; /*Image data*/

BODYCHUNK;

Chunkld contains the chunk content identifier "BODY'.

Size is the number of bytes in the Ix:nageData field.

ImageData is the actual image data. Image data is an array of byte values and
may be stored uncompressed, or compressed (using the IFF Packer encoding
algorithm).

Pixel data, compressed or not, is always stored in separate bitplanes. Each scan
line is made up of BMHD.BitPlanes rows of bytes. Each bitplane row encodes
one bit from the pixel value. The pixel data appears as follows:

BODY
scan-line 0

bitplane 0
byte 0
byte 1

byte RowBytes - 1
bitplane 1

bitplane BMHD.BitPlanes - 1
scan-line 1

pixel value's least significant bit
bits for the leftmost eight pixels

see RowBytes note below

IFF 477

IFF (cont'd)

scan-line BMHD.Height - 1

RowBytes is the smallest even integer greater than BMHD.Width I 8, which
can be found using:

RowBytes = ((BMHD.Width + 15) >> 4) << 1;

This is equivalent to saying that each bitplane row must contain an even num
ber of bytes. Each bitplane row (scan line) is therefore word-aligned with
padding before compression, if necessary.

IfBMHD.Masking is 1, there will be an extra bitplane row in each scan line. In
other words, each scan line will contain (BMHD.BitPlanes + 1) bitplane rows.
This extra bitplane forms a 1-bit mask that is to be applied to the image when
it is displayed. Depending on your intentions, you'll often discard the mask
plane while decoding the BODY, but you have to remember to read the mask
plane if it is there, because it's not included in BMHD.BitPlanes.
BMHD.Masking:::: 1 is becoming less common, particularly on plat:(orms other
than the Amiga.

The pixel values in a BODY can be indexes into. the palette contained in a
CMAP chunk, or they can be literal RGB values. If there is no CMAP and if
BMHD.BitPlanes is 24, the ILBM contains a 24-bit image, and the BODY
encodes pixels as literal RGB values. The bitplanes for each scan line appear in
the BODY in the following order:

scan-line 0
red bit 0
red bit 1

red bit 7
green bit 0

green bit 7
blue bit 0

blue bit 7
scan-line 1

red bit 0

478 GRAPHICS FILE FORMATS

red least significant bit

green least significant bit

blue least significant bit

IFF (cont'd)

H the ILBM has no CMAP and if BMHD.BitPlanes is 8 (or occasionally, less
than 8), the file contains a gray-scale image. Bitplanes are stored in the same
least-to-most order of significance, and the full black-to-white range is assumed
to be 0 to (2BMHD.BitPlanes)- 1, and is usually 255. Note that if you're thinking
about implementing an ILBM writer, you should include a CMAP with your
gray-scale images, because most non-Amiga IFF readers will refuse to load an
ILBM without a CMAP unless it is a 24-bit image.

ILBMs created for use on an Amiga may also contain pixel data in their BODY
chunks that reflects display capabilities peculiar to the Amiga. Such Amiga
specific ILBMs must contain a CAMG (Commdore-AMiGa) chunk that identi
fies the Amiga display mode. CAMG data consists of a single DWORD which
contains the viewmode value. The Amiga has built-in support for interpreting
this value, but programs running on other platforms· can safely test certain bits
to identify Amiga-specific pixel data.

Hold-And-Modify {HAM) display mode
HAM (Hold-And-Modify) is a display mode that allows the Amiga to display
12-bit and 18-bit images using only 6 or 8 bits per pixel. HAM images can be
identified by bit 11 's being set to 1 in the CAMG chunk (CAMG mode &
Ox0800 I=~).

The 8-bit HAMS mode was introduced with the Amiga 4000 and Amiga 1200
models and pr9vides a very good near-photographic-quality image display with
only eight bitplanes of image data.

The color of any pixel in a HAM image may be any color from a standard
16-color palette, or the same as the color of the pixel to the immediate left with
the top four bits of either the red, green, or blue components changed. On
the left edge of the screen, the border color is used, which is color index zero
from the 16-color palette.

HAM images store pixel values in the BODY chunk as codes that are divided
into a mode in the high two bits and data in the remaining bits. Possible mode
values are:

IFF 479

IFF (cont'd)

Mode
00
01
10
11

Meaning
Data bits are an index into the CMAP palette
Data bits are blue level
Data bits are red level
Data bits are green level

Unless a pixel is colormapped (mode 00), only one of its three RGB levels is
given in its code. The other two are assumed to be the same as those for the
pixel to its left. If the pixel is the first one in a scan line, the pixel to its left is
assumed to be RGB{O, 0, 0).

The format of the mode and data bits in a pixel in HAM mode is:

5 4 3 2 1 0

0 0 w X y z = Use colormap value wxyz

0 1 w X y z = Keep color from previous pixel, but change
blue upper 4 bits to wxyz

1 0 w X y z = Keep color from previous pixel, but change
red upper 4 bits to wxyz

1 1 w X y z = Keep color from previous pixel, but change
green upper 4 bits to wxyz

A HAM image cannot be directly decoded into a standard 8-bit or lower palette
based image without further color reduction. For full quality, it must be con
verted to at least a 12-bit color image.

The number of data bits is 4 for standard HAM and 6 for HAMS, and the corre
sponding BMHD.BitPlanes value will normally be 6 or 8. The data bits should
be precision-extended when the levels are decoded to 24-bits, and regardless of
the number of data bits, the maximum level should translate to 255 at 8 bits
per RGB channel.

The format of the mode and data bits in a pixel in HAMS mode is:

7 6 5 4 3 2 1 0

0 0 n m w X y z = Use color palette value nmwxyz

0 1 n m w X y z = Keep color from previous pixel, but
change blue upper 6 bits to nmwxyz

480 GRAPHICS FILE FORMATS

IFF (cont'd)

7 6 5 4 3 2 1 0

1 0 n m w X y z = Keep color from previous pixel, but
change red upper 6 bits to nmwxyz

1 1 n m w X y z = Keep color from previous pixel, but
change green upper 6 bits to nmwxyz

HAMS images need to be direcdy converted to a 24-bit image in order to retain
the full image quality on non-Amiga systems.

It is possible for the mode to be a single bit; BMHD.BitPlanes will then be
either 5 or 7. The single bit is the low bit, while the high bit is assumed to be 0,
implying that only the blue level can be modified. For obvious reasons, single
mode bit images are rarely encountered.

Extra-Halfbrite (EHB) display mode
Extra-Halfbrite is another Amiga variant, now quite rare. The original Amiga
models had a color palette of 32 colors (from a range of 4096) and could sup
port up to 6 bitplanes. When 6 bitplanes were selected, one of two modes
could be chosen to utilize the extra bit of data.

EHBs are 64-color (6 bitplane) images with 32-color palette entries. They can
be identified by bit 7's being set to 1 in the CAMG (CAMG mode & Ox0080 !=
0). Colors 32 to 63 are "half-bright" versions of colors 0 to 31.

To decode an EHB image, extend the color palette to 64 colors, and create col
ors 32 to 63 by copying and bit-shifting each palette color (0 to 31) right by
one. The image is then decoded as it normally would be.

Image data compression
FORM ILBM files may contain image data compressed using a simple, run
length encoding algorithm called Packer. This algorithm is identical to the
Macintosh PackBits algorithm and is also the algorithm used by the TIFF file
format.

Packer encodes runs of identical byte values within a scan line. Encoding
always stops at the end of every scan line. All byte runs are encoded as two-byte
codes. The first byte is a code byte which indicates the type of compressed run
and the number of pixels in the run. H the value of the code is 0 to 127
(signed bit off), the run is a literal run of pixels, and the next (code+ 1) bytes
are copied literally from the compressed data.

IFF 481

IFF (cont'd)

If the value of the code is -1 to -127 (signed bit on), the next byte following
the code byte is read and its value is repeated (-code+ 1) times. A code value of
-128 is a no-op and is always ignored.

When compression is indicated, all of the image data stored in a BODY chunk
is.compressed, including any masking data interleaved with the image data.

ForFurtherhllonnation
For further informati~n about the IFF format, see the following specifications
on the CD-ROM that accompanies this book:

Morrison, Jerry, EA IFF 85 Standard for Interchange Format Files, Electronic
Arts, 14January 1985.

Morrison, Jerry, ILBM IFF Interleaved Bitmap, Electronic Arts, 17 January
1986.

These documents are also available from many online services and BBSs. You
may also obtain them directly from the creator of IFF, Electronic Arts, at:

Electronic Arts
1820 Gateway Drive
San Mateo, CA 94404
Voice: 415-571-7171
Voice: 415-572-2787
WWW: http://www.ea.com/

The following documents from Electronic Arts are also widely available
online:

FTXT: IFF Formatted Text, Electronic Arts. IFF supplement document
for a text format.

ILBM: IFF Interleaved Bitmap, Electronic Arts. IFF supplement docu
ment for a raster image format.

Commodore-Amiga previously supported the IFF format, but the company was
purchased by ESCOM, a German PC manufacturer.

The following Commodore-Amiga document is widely available online:

Scheppner, Carolyn, Introduction to Amiga IFF ILBM Files and Amiga View
modes, Commodore Amiga Technical Support.

482 GRAPHICS FILE FORMATS

IFF (cont'd)

The following books also discuss the IFF file format:

Commodore Amiga, Inc., Amiga ROM KERNEL Reference Manual: Includes
and Autodocs, Addison-Wesley, Reading, MA, 1989.

Commodore Amiga·, Inc., Amiga ROM KERNEL Reference Manual: Devices,
Third Edition, Addison-Wesley, 1991.

The RKM: Devices manual contains more than 200 pages devoted to IFF and
includes the complete text of every official Jerry Morrison specification and a
generous amount of source code, including an implementation of Packer.

The Aminet archives are the best source of IFF information and display pro
grams for the Amiga. Aminet mirrors include:

ftp: I /nic.funet.ji/pub/ amiga/ graphics/ applications/ convert
ftp://wuarchive.wustl.edu/pub/aminet/gfx/conv
http: I /wuarchive. wustl. edu/-aminet/ dirs/ gfx_ conf. html

Inquiries about the Aminet archives may be emailed to ami net. ami net. org.

IFF 483

'I IGES
NAME:

ALSO KNOWN As:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

IGES*

Initial Graphics Exchange Specification

Vector and 3D

NA

Uncompressed

NA

NA

NA

IGES/PDE.s Organization

All

Many high-end CAD packages

No

No

No

None

usAGE: Neutral file format for CAD-related data.

coMMENTs: IGES is used to share high-quality CAD data. It is not a proprietary format
controlled by a private company. However, due to its complexity and diffi
culty, it is not commonly used by low-end CAD packages. Instead, it is most
popular among expensive high-end CAD packages, such as those ~ed in
the automotive and aerospace industries.

Overview
IGES, the Initial Graphics Exchange Specification, is designed to exchange
information between CAD systems and other vector-oriented applications. The
standard is developed and maintained by the ANSI-accredited IGES/PDES
Organization. The first version of IGES was adopted as American National
Standard ANS Yl4.26M-1981. Versions 3, 4 and the most recent version 5.2
were approved by ANSI as well.

* Our thanks to John Foust for his contributions to.this article.

484 GRAPHICS FILE FORMATS

IGES (cont'd)

Like other CAD formats, such as AutoCAD DXF, an IGES file can represent
many different types of data, ranging from lines and arcs to the complex geo
metric solids, such as cylinders and cones known as "constructive solid geome
try." IGES is much more complicated than DXF, though-perhaps four times as
complex, judging by the sheer number of different geometrical entities. The
IGES v4 specification encompasses more than 500 pages.

Because of the format's complexity, it is difficult to implement every possible
operation and entity. Most IGES translators or IGE8-importing programs
describe exactly which IGES entities they support and which they ignore.

IGES has both an ASCII and a binary format.. The ASCII format is line-oriented,
because of its early origins on punched card systems. There is also a com
pressed ASCII format that eliminates some of the punch-card anachronisms.
The binary format is much more compact than the ASCII version.

IGES is associated with NCGA (National Computer Graphics Association) as
part of the U.S. Product Data Association {USPRO) and the IGES/PDES Organi
zation {IGO). NCGA administers the National IGES User Group {NIUG), which
provides access to information and is a place to exchange information on IGES.

For Further Information
For more information about NIUG and obtaining the IGES file format specifi
cation from NIUG, contact:

National Computer Graphics Association
2722 Merrilee Drive
Suite 3200
Fairfax, VA 22031
Voice: 703-698-9600

NCGA can also give you information about the National Institute for Standards
and Technology {NIST) testing for IGES.

On the. World Wide Web, see the NIST's pages at:

http:/ /www.eeel. nist.gov/iges/

Most serious CAD packages provide tools for working with IGES data. For exam
ple, see the pages at:

IGES 485

_IGES (cont'd)

· http://www. intcrgraph. com
http:/ /www.autodesk. com

and search their indexes for "IGES."

486 GRAPHICS FILE FORI't1ATS

NAME:

ALSO KNOWN As:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

Inset PIX

PIX

Bitmap

Up to 16

Proprietary, documented

64Kx64K pixels

No

Little-en dian

Inset Systems

MS-DOS

Inset PIX I

InSet Versions 1 and 2, HiJaak, WordStar, Multimate

Yes

No

Yes

None

UsAGE: Neutral common format for Inset Systems' products. Also used for graph
ics storage by the WordStar and Multimate word processors.

coMMENTs: A great little format marred by lack of support for more than 16 colors. It
would be a good model for a deep-pixel format, however.

Overview
Inset PIX is an intermediate graphic format created by Inset Systems (now part
of Quarterdeck), which sells the InSet and HiJaak. applications for use on In tel
based PCs. HiJ aak is a widely used and highly regarded screen-capture and
graphics file conversion utility. Version 2 of the package supports the graphics,
printer, and FAX formats listed below:

ASCII
AT&TGroup4
AutoCADDXF
CALS raster
CGM

Inset IGF
Kofax Group 4
Lotus Picture
Macintosh Paint
Macintosh PICT

INSET PIX 487 .

Inset PIX (cont'd)

GIF
DataBeam DBX
Dr. Halo
Encapsulated PostScript
FAX formats (various)
GEM raster
GEMVDI
HPPCL
HPGL
ILBM
Inset PIX

Math CAD
Microsoft Paint
Microsoft Windows Bitmap
Microsoft Windows Metafile
PCX
Presentation Manager Metafile ·
Tektronix PlO
TGA
TIFF
WordPerfect Graphics Metafile

As you might imagine, Inset has a great deal of experience with graphics file
formats. The design of PIX reflects this experience, and is a well thought-out
and flexible format. If you need to convert a file from an odd format to one on
the above list, you might consider converting to PIX as an intermediate step
and then using the application to do the rest. (And, no, we don't have any
financial or personal interest in Inset Systems or Quarterdeck!)

PIX was designed as an extensible, device-independent format which would
allow random access of portions of a compressed image. Although nominally a
bitmap format, the file structure supports the future addition of other data
types.

File Organization
Inset documentation describes a PIX file as, "an indexed database of data
items." A table of the size and location of data items is included in the begin
ning of each file. Data items can include information on the following:

• Image attributes, including dimensions, type, origin, and colors

• Information relevant at print time, such as clipping, size, and rotation

• Palette information

• Compressed sections of bitmap data ("image tiles")

• Bitmap tile-sectioning information

488 GRAPHICS FILE FORMATS

Inset PIX (cont'd)

File Details
This section describes the header, index table, and different types of image
data in a PIX file.

Header

PIX files always have a short header:

typedef struct _PIX_HEADER
{

WORD RevisionLevel; /* CUrrently 3 */
WORD DataitemsinTable; /* Numbe~ of data items in the index table */

} Pix_HEADER;

RevisionLevel is the version number for the format; this level is currently 3.

DataltemslnTable is the number of items in the PIX file's index table,
described in the next section.

Index Table

Following the header is an index table containing an array of data item infor
mation structures of the following form:

typedef struct DATA_ITEM_INFO
{

WORD DataiD; /* Data item ID */
WORD DataLength; /* Length of data item *I
LONG DataLocation; /* Location of data item in file */

DATA_ITEM_INFO;

DataiD values may be any of the following:

00 Image information
11 Printing options
01 Palette
02 Tile information

Empty data items have DataiD values of -1.

DataLength is the length of this item in the index table.

DataLocation is the location of the item in the file.

INSET PIX 489

Inset PIX (cont'd)

Image Information

The following information is extracted from the specification document sup
plied by Inset Systems:

The application ID for the image structure is 0. This data item contains infor
mation on the overall image size, type, and origin of the image. The structure
(in C) of this data item is:

struct mode_data
{

BYTE hmode;
BYTE htype;
BYTE cfore;
BYTE cback;
BYTE tattr;
BYTE tcpr;
BYTE trows;
BYTE thfnts;
BYTE tlfnts;
BYTE tcpf;
BYTE tfsize[4];
WORD gcols;
WORD grows;
BYTE gfore;
BYTE prepal;
BYTE lodpal;
BYTE lintens;
BYTE Ired;
BYTE !green;
BYTE lblue;
BYTE · pages;
BYTE haspect;
BYTE vaspect;

Following is a description of each member of this structure:

hmode Hardware-specific mode. 0 if not specifically related to a particular
hardware mode of a board.

htype Hardware type. Bit 0 is zero if alphanumeric and 1 if bitmap graph
ics. Board types are ORed into this byte. Board types include:

8=CGA
16 = Hercules

24=EGA

490 GRAPHICS FILE FORMATS

cfore

tattr

tcpr

trows

thfnts

tlfnts

tcpf

tfsize

gcols

grows

gfore

pre pal

lodpal

lin tens

Ired

lgreen

lblue

pages

haspect

Inset PIX (cont'd)

Text foreground color bits (ignore if graphics) 4 for CGA

Text background color bits (ignore if graphics) 3 for CGA

Text characters per row (ignore if graphics)

Text rows (ignore if graphics)

Text hardware fonts (not used)

Text loadable fonts (not used)

Text characters per font (not used)

Font size (not used)

Graphics columns

Graphics rows

Graphics foreground color bits

Number of preset palettes (default to 0)

Number of loadable palettes

Number of palette bits for intensity

Number of palette bits for red

Number of palette bits for green

Number of palette bits for blue

Number of possible pages (not used)

Horizontal component of aspect ratio (number of horizontal pixels
to fit in a square)

vaspect Vertical component of aspect ratio (number of vertical pixels to fit
in a square)

A sample image structure for a 600-row-by-800-column single-bit plane image
might be ~nitialized as follows:

struct mode_data
{

BYTE hmode; I* 0 *I
BYTE htype; I* l *I
BYTE cfore; I* 0 *I
BYTE cback; I* 0 *I
BYTE tattr; I* 0 *I
BYTE tcpr; I* 80 *I
BYTE trows; I* 25 *I

INSET PIX 491

Inset PIX (cont'd)

BYTE thfnts; I* 0 *I
BYTE tlfnts; I* 0 *I
BYTE tcpf; I* 0 *I
WORD tfsize[4]; I* 0,0,0,0 *I
WORD gcols; I* 800 *I
WORD grows; I* 500 *I
BYTE gfore; I* 1 *I
BYTE prepal; I* 0 *I
BYTE 1odpal; I* 0 *I
BYTE lintens; I* 1 *I
BYTE lred; I* 0 *I
BYTE lgreen; I* 0 *I
BYTE lblue; I* 0 *I
BYTE pages; I* 0 *I
BYTE haspect; I* 1 *I
BYTE vaspect; I* 1 *I

Printing options
The application ID for Inset Printing options is 11h. The C structure contain
ing these items follows:

struct prt_options
{

SHORT pitch;
SHORT scol;
SHORT ecol;
SHORT srow;
SHORTerow;
SHORT p_wid;
SHORT siz;
SHORT rotat;
SHORT do_sw;
SHORT res_1;
SHORT res_2 ;
SHORT pcolor;
SHORT row_dp;
SHORT col_dp;
SHORT flags;
CHAR ink_ tab [16] ;

Following is a description of each member of this structure:

pitch Printer Pitch divided by 10 (e.g., 100 = 10 pitch); not required, set
to 100

492 GRAPHICS FILE FORMATS

scol

ecol

srow

erow

p_wid

size

rotat

do_sw

res_1

res_2

pcolor

row_dp

col_dp

flags

Start column clip boundary

End column clip boundary

Start row clip boundary

End row clip boundary

Printer width (not required, set to 0)

Size (not used, set to 0)

Rotation (0 =horizontal, -1 =left, 1=right)

Option bits ORed. Applicable bits to set include:

Double Pass I = 2
Letter Quality I= 4
Border On I = 10 (hex)

Internal use (don't use, set to 0)

Inset PIX (cont'd)

Low-order byte indicates whether the image settings are intended
for color printer (true= 1, false= 0)

High-order byte indicates which dither pattern type to use (0 =old,
1 =gray, 2 =contrast).

Height of image in decipoints (1/720 inches)

Width of image in decipoints (1/720 inches)

Modify flags

Size option bits:

#define INDATA_USE_:COL Oxl
#define INDATA_USE_INCH Ox2
#define INDATA_USE_DP Ox3

Modify ink selection:

#define INDATA_INK_INV Ox8
#define INDATA_INK_BW Ox10
#define INDATA_INK_TAB Ox18

INSET PIX 493

Inset PIX (ccmt'd)

#define INDATA_ VDISK Ox20
#define INDATA_ VSIZE Ox40
#define INDATA_DYNAMIC Ox80

ink_tab Sixteen-byte table mapping screen colors to printer colors/gray
patterns (see the MODIFY/INKS section of the Inset manual for
more information on ink tables). If you want to select your own Ink
table mapping, the flags variable must have a Oxl8 OR'ed in. Preset
Inset Ink tables are set as follows:

Palette Data

Color Number

Standard
Invert
B&W

0 1 2 3 4 5 6 7 8 9 A B C D E F

F 1 2 3 4 5 6 7 8 9 A B C D E 0
0 1 2 3 4 5 6 7 8 9 A B C D E F

F 0 0 0 0 0 0 0 F 0 0 0 0 0 0 0

Application ID = 1 contains display palette information. Palette information is
stored in an array of palette structures of the following form:

struct pallette
{

CHAR intens, red, green, blue;

The number of significant palette items in the array is determined by the num
ber of available colors (the "gfore" member in the image data structure) in the
image. The significant bits are determined by the lintens Ired, lgreen, and
lblue items in the mode_ data structure.

Tile Infonnaticm

Application ID = 2 contains information as to how the image is broken down
into tiles. The Tile_Data structure follows:

struct Tile_Data
(

WORD page_rows;
WORD page_cols;
WORD stp_rows;
WORD stp_cols;

494 GRAPHICS FILE FORMATS

Inset PIX (cont'd)

Following is a description of each member of this structure:

page_rows
page_cols
stp_rows
stp_cols

Number of rows within each tile
Number of columns in each tile (must be divisible by 8)
Number of horizontal tile strips within the image
Number of vertical tile strips

Each tile is limited to a maximum of 4096 bytes of uncompressed data. The
. actual tiles are numbered starting with the upper left row as tile 0 and incre
mented from left to right as illustrated below.

0 1 2 3

4 5 6 7

8 9 A B

The ID of a tile is the tile number ORed with a 8000h. For example, the lower
right tile can be found by finding the record with ID=800Bh.

Images may be broken down into checkerboard sections or horizontal strips.
However, if an image is broken into horizontal strips for processing, the image
as rotated by Inset will be slowed.

Pixel Tiles

Each individual pixel tile ID is determined by ORing in 8000h with the tile
number, as described in the preceding section on tile information.

The image is organized into bit planes with eight pixels per byte; the most sig
nificant bit contains the leftmost pixel. For multiple-bit plane images, all scan
lines for a plane are written out before the scan lines in the next plane.

If the actual column boundary of the tile exceeds the column boundary of the
image, the image is padded with blank bytes to fill out the tile. If the actual row
boundary of the tile exceeds that of the image, the extra rows are not present.

When the tile is stored on disk, it is in a vertically compressed format. The first
scan line of each tile is written out with no modification. Then, before the fol
lowing scan lines, there are compression bytes that indicate which bytes in the
scan line are different from the preceding line. Each bit in the compression
byte indicates whether a particular byte in that scan has changed (1 if changed,
0 if not). Then, following the compression bytes, only the modified scan bytes
are written to the file.

INSET PIX 495

Inset PIX (cont'd)

For example, suppose we have a tile that is eight columns wide, the first scan
line is all blank, and there is a dot at the beginning and end of the second scan
line. This tile would be written to disk as follows:

00 00 00 00 00 00 00 00 +- First scan line
81 80 01 +- changed bytes
t
Compression Byte

In multiple-bit plane images, the first scan is uncompressed, and the following
lines are compressed in the same manner as described above.

Character Tiles

Alphanumeric images can be generally described as two-plane images with the
first plane containing the alphanumeric character data and the second con
taining the attribute information. Alphanumeric characters are presumed to
correspond to the IBM extended ASCII character set, with attribute informa
tion corresponding to the IBM CGA standard.

The character and text planes are compressed in the same manner as image
bit planes with one caveat. The text scan-line length is twice what it should be
(i.e., 160 bytes go out uncompressed for an SO-column screen).

ForFurtherhdonnation
For further information about Inset PIX, see the specification included on the
CD-ROM that accompanies this book. You can also contact:

Inset Systems
Developer Relations
71 Commerce Drive
Brookfield, CT 06804
Voice: 203-740-2400

Also see the Quarterdeck homepage:

http://www. insetusa. com/

496 GRAPHICS FILE FORMATS

IntelDVI I
NAME: Intel DVI

ALso KNowN As: DVI, Digital Video Interface, Intel Real-Time Video

TYPE: Multimedia

COLORS: 16 million

COMPRESSION: jPEG, proprietary

MAXIMUM IMAGE SIZE: 256X240

MuLTIPLE IMAGEs PER FILE: Yes

NUMERICAL FORMAT: NA

ORIGINAToR: Intel Corporation

PLATFoRM: lntel-b3:5ed PCs

suPPORTING APPLICATioNs: MS-DOS and Microsoft Windows Multimedia

SPEciFicATioN oN co: Yes

cooE oN cD: No

IMAGEs oN cD: No

SEE ALso: Microsoft RIFF, QuickTime

usAGE: A format designed to support Intel's bid to establish a hardware standard
in the Intel-based PC marketplace.

coMMENTs: At the time of this writing, it's too early to decide whether this format will
ever see the light of day in a commercial product. If it ever does, you'll
find the specification on the CD-ROM useful.

Overview
Intel is the current owner of DVI, which was one of the first systems that pro
vided practical full-motion video incorporating real-time decompression tech
nology. DVI originated in 1984 at the David Sarnoff Research Center in
Princeton, New Jersey, which was the central research facility for RCA Corpora
tion. Ownership of DVI changed in 1986 when RCA was acquired by GE. The
official unveiling of GE DVI occurred in March 1987 at the Second Microsoft
CD-ROM Conference in Seattle, Washington. GE later sold DVI technology to
Intel Corporation in October 1988.

DVI is actually both the name of the Digital Video Interactive hardware system
sold by Intel and the file format associated with that system. DVI technology is
essentially a PC-based interactive audio/video system used for multimedia

INTEL DVI 497

Intel DVI (cont'd)

applications. The DVI system consists of a board for use in an Intel-based PC,
drivers, and associated software. The four components of DVI technology are:

• DVI hardware chipset

• Run-time software interface

• Data compression and decompression schemes

• Data file formats

The heart of the DVI system is the hardware architecture based on the video
display processor (VDP) chipset. DVI technology was originally designed for
implementation on the IBM PC AT platform. A collection of three 16-bit, ISA
bus DVI interface boards (audio, video, and CD-ROM) were plugged into the
AT, and all of the hardware capabilities were accessed through the run-time
software interface. The functions in the interface were called by writing a soft
ware program using a programming language such as assembly or C.

Today, Intel distributes licenses to third-party developers who want to incorpo
rate DVI technology into their platforms and multimedia products. All of IBM's
multimedia hardware platforms (such as the ActionMedia II boards) and soft
ware applications are based upon DVI technology.

DVI is a major competitor of QuickTime, AVI, and MPEG for market share in
digital audio/video applications.

DVI allows the storage and playback of audio and video information. All DVI
images have a 5:4 pixel aspect ratio and are 256x240 pixels in size. DVI is also
capable of storing still images and supports both a lossy and a lossless native
compression method for such images. DVI works across M5-DOS, Microsoft
Windows, and OS/2 platforms and supports the capability of using its own pro
prietary compression scheme, or using user-definable algorithms, such as JPEG,
as well. Audio compression is achieved using either the ADPCM or PCM8 algo
rithms.

File Organization
The DVI file format is extremely flexible in its design and is used to store a
wide variety of data. This format is capable of storing both still-image and
motion-video/audio data. The type of data a DVI file contains is described by
its file extension. The common extensions for DVI files containing still-image
data are the following:

498 GRAPHICS FILE FORMATS

Uncompressed, 8-bit data

.IMR Red channel

.IMG Green channel

.1MB Blue channel

.IMY Y luminance channel

.IMI I color channel

.IMQ Q color channel

.IMM Monochrome or gray scale

.IMA Alpha channel

.IMC Color map

.18 Device-dependent data

Uncompressed, 16-bit data

.116 Device-dependent data

Compressed, 8-bit data

.CMY

.CMI

.CMQ

Yluminance channel
I color channel
Q color channel

Compressed, 16-bit data

.C16 Device-dependent data

Intel DJll (cont'd)

As you can see, a common practice of DVI is to store each color plane of an
image in a separate disk file. This allows the easy reading and writing of bitmap
information, without the need to buffer data to read or write a single file.

A still image is saved using three color-channel files and possibly a colormap
and alpha-channel file as well. Motion-video/audio data is stored using the
Audio/Video Support System (AVSS) file format. AVSS (pronounced "avis")
allows audio and video data to b'e stored in the same file and played back in a
synchronized manner. All AVSS files have the extension .AVS or the file type
AVSS.

File Details
The data in AVSS files is primarily stream-based, and there is at least one data
stream per AVSS file. Each file contains a standard header, an AVL file header,

INTEL DVI 499

Intel DVI (cont'd)

one stream header per data stream, one substream header per substream,
frame data, and a frame directory.

DVI File Header

The standard header of a DVI file is 12 bytes long and has the following struc
ture:

typedef _DviStandardHeader
{

DWORD Fileid;
SHORT HeaderSize;

I* Magic number (56445649h) of DVI file *I
I* Size of this header structure *I

SHORT Headerversion; I* Version of this header structure *I
DWORD AnnotationOffset; I* Location of annotation data *I

DVISTANDARDHEADER;

Fileld contains the characters VDVI and identifies the file as containing DVI
information. If the file contains still-image information, this field contains the
characters VIM.

HeaderSize contains the number of bytes found in the header, which is cur
rently 12. Older versions of the DVI format may contain a value of 1 in this
field. In this case, this value should be ignored and treated as if it were 12.

HeaderVersion indicates the format of the header and is currently 1.

AnnotationOffset is used to point at additional, unstructured data, such as a
title or copyright notice, which is normally placed at the end of the file. If no
annotation exists, then this field is set to 0.

AVL File Header

The AVL file header immediately follows the standard header and is a directory
of all the other data structures within the DVI file. This header is 120 bytes in
length and has the following format:

typedef struct _AvlHeader
{

DWORD Headerid;
SHORT HeaderSize;
SHORT HeaderVersion;
SHORT StreamGroupCount;
SHORT StreamGroupSize;
DWORD StreamGroupOffset;
SHORT StreamGroupVersion;
SHORT Streamsize;
SHORT StreamVersion;

500 GRAPHICS FILE FORMATS

I* Header ID value (41565353h) *I
I* Size of this header structure *I
I* Format of this header structure *I
I* Number of stream groups in the file *I
I* Size of each stream group *I
I* Location of the first stream group *I
I* Format of each stream group *I
I* Size of the stream header *I
I* Format of the stream header *I

Intel DVI (cont'd)

SHORT StreamCount; /* Number of stream headers in the file */
DWORD StreamOffset; /* Location of stream structures array */
DWORD HeaderPoolOffset; /* Location of substream headers */
LONG LabelCount; /* Number of labels in the file */
DWORD LabelOffset; /* Location of the first label */

SHORT LabelSize; /* Size of each label */

SHORT LabelVersion; /* Format of each label */
DWORD VideoSeqHeaderOffset; /* Location of video sequence header */
WORD VideoSeqHeaderSize; /* Size of video sequence header */
SHORT FrameVersion; /* Version of frame headers in file */
LONG FrameCount; /* Number of frame headers in file */

LONG FrameSize; /* Size of frame header and data */
DWORD FirstFrameOffset; /* Location of the first frame */
DWORD EndOfFrameOffset; /* Location of last frame byte + 1 */
SHORT FrameHeaderSize; /* Size of frame header */
SHORT FrameDirectorySize; /* Size of the frame directory */
DWORD FrameDirectoryOffset; /* Location of the frame directory */
SHORT FrameDirectoryVersion; /* Format of the frame directory */
SHORT FramesPerSecond; /* Frame rate of the data */
DWORD UpdateFlag; /* Data is updating or complete */
DWORD FreeBlockOffset; /* Not used */
BYTE Patch[32]; /*Not used*/

AVLHEADER;

Headerld contains the characters AVSS and identifies the header as containing
AVL file information.

HeaderSize contains the number of bytes found in the header. This value is
currently 120.

HeaderVersion contains a value that specifies the format of the header based
on a version control rating. Each modification to the header structure incre
ments the header version. The current HeaderVersion value for the AVlr
HEADER structure is 3.

If the streams within a DVI file are organized as groups, then the Stream Group
Count value indicates the number of groups; the StreamGroupSize value speci
fies the size of each group; the StreamGroupOffset value points to the location
of the first group; and the StreamGroupVersion specifies the format of the
group. If no stream groups are present in the file, then the value of these fields
will be OOh.

The next four fields contain information on the array of STREAMHEADER
structures stored in the DVI file. StreamSize indicates the size of each structure,
which is currently 44. Stream Version specifies the format of each structure,

INTEL DVI 501

Intel DVI (cont'd)

which is currently a value of 3. StreamCount is the number of streams in the
file and structures in the array. StreamOffset contains the offset value to the
beginning of the array.

HeaderPoolOffset points to the first substream header. This value is OOh if
there are no substreams present in the file ..

If the DVI file contains labels, then Label Count indicates the number of labels;
Label Offset points to the location of the first label; LabelSize specifies the size
of each label; and LabelVersion specifies the format of the label. If no labels
are present in the file, then the values of these fields are all OOh.

VideoSeqHeaderOffset and VideoSeqHeaderSize describe the location and
size of the video sequence header, if one is present in the file.

FrameVersion indicates the format of the data frames and is currently 3.
FrameCount is the number of frames in the file, and FrameSize is the size of a
frame, including its header. FirstFrameOffset is the location of the first frame
header.

EndOfFrameOffset points to the location of the first byte after the frame data.

FrameHeaderSize value is the size of the frame header.

The FrameDirectorySize specifies the size of the frame directory and is cur
rently 4.

FrameDirectoryOffset points to the location of the frame directory.

FrameDirectoryVersion specifies the format of the frame directory.

FramesPerSecond contains the frame rate of the data for playback, rounded to
the nearest integer.

U pdateFlag is a non-zero value if the file is in the process of being updated. A
value of OOh indicates that the file is not currently being modified.

FreeBlockOffset and Patch[32] are set to OOh.

Stream Header

· Each DVI file contains one or more data streams. Each stream is identifie.d by
an associated STREAMHEADER structure, which contains detailed informa
tion about the stream data. This header is four bytes in length and has the fol
lowing format:

502 GRAPHICS FILE FORMATS

Intel DVI (cont'd)

typedef struct _StreamHeader
{

DWORD Headerid;
SHORT HeaderSize;
WORD Type;
WORD SubType;
SHORT HeaderCount;
SHORT NextStreamNumber;
SHORT StreamGroupNumber;
SHORT Pad;
DWORD Flag;
LONG FrameSize;
DWORD FirstHeaderOffset;
BYTE StreamName[16];

} STREAMHEADER;

I* Header ID value (5354524Dh) *I
I* Size of this header structure *I
I* The type of data stream *I
I* The subtype of data stream *I
I* Number of substream headers *I
I* ID of the next stream */
I* The group ID for this stream */
/* Pad value */
/* Variable frame size flag */
/* Maximum amount of data per frame */
/* Location of first substream header */
/* Name of the stream */

Headerld contains the characters STRM and identifies the header as contain
ing AVL file information.

HeaderSize contains the number of bytes found in the header. This value is
currently 120.

Type and SubType indicate the type of data that is stored in this stream. Valid
Type values are:

02h Compressed audio stream
03h Compressed image stream
05h Associated per-frame data
06h Uncompressed image stream
07h Pad stream

SubType indicates a variation of each of these stream types and is described for
different types of streams (e.g., video) in the following sections.

HeaderCount indicates the number of substreams associated with this stream.

NextStreamNumber is not used and is set to -1.

StreamGroupNumber indicates the ID of the group this stream is associated
with.

Pad is not used and is set to OOh.

Flag is 04h if the stream contains frames that vary in size; otherwise, the value
will be OOh.

FrameSize field specifies the maximum number of bytes per frame in the
stream.

INTEL DVI 503

Intel DVI (cont'd)

FirstHeaderOffset points to the location of the first substream header.

StreamName is the name of the stream in the form of a NULL-terminated
ASCII string.

Audio subs1ream header
Each type of data stream has a substream header. The audio substream header
describes the attributes of an audio stream. The type of audio stream is indi
cated by the SubType field in the STREAMHEADER structure. For audio
streams, this value is always 0. The AUDIOSUBSTREAMHEADER header is
168 bytes in length and is formatted as follows:

typedef struct _AudioSubStreamHeader
{

DWORD Headerid;
SHORT HeaderSize;
SHORT HeaderVersion;
BYTE Origina1File[80];
LONG OriginalFrame;
SHORT OriginalStream;
SHORT Pad;

/* Header ID value (41554449h) */
/* Size of this header structure */
/* Format of this header structure */
/* Name of file stream is derived from */
/* Original frame ID */
/* Original stream ID */
/* Pad value */

LONG FrameCount; I* The number of frames *I
DWORD NextHeaderOffset; /* Location of next substream header */
BYTE LibraryName[16); /*Name of library stream if from*/
BYTE AlgorithmName[16]; /*Audio compression algorithm used*/
LONG DataRate; /*Audio data rate in bits/sec */
SHORT CutoffFrequency; /* Filter cutoff frequency */
SHORT Parameter3; /* Not used */
SHORT LeftVolum rate; /* Loudness of left audio channel */
SHORT RightVolume; /* Loudness of right audio channel */
LONG LoopOffset; /* Not u~ed */
LONG StartingFrame; /* ID of the first frame in the stream */
DWORD Flag; /* Mono/Stereo flag */
SHORT FrameRate; /* The playback rate for this stream */
SHORT Pad2 /* Pad value.*/
LONG DCFid; /* Digital Compression Facility ID */

AUDIOSUBSTREAMHEADER;

Headerld contains the characters AUDI and identifies the header as contain
ing audio stream information.

HeaderSize contains the number of bytes found in this header. This value is
currently 168.

HeaderVersion indicates the version number of the header. The current
HeaderVersion field value is 5.

504 GRAPHICS FILE FORMATS

Intel D VI (coot'd)

OriginalFile contains a NULL-terminated ASCII string identifying the name
and path of the file, from which the audio information is derived.

OriginalFrame, OriginalStream, and Pad are not used and are set to 0.

FrameCount indicates the number of frames in the audio stream.

NextHeaderOffset specifies the location of the next audio substream header.
This value is always OOh.

Library Name is not used and should be set to all NULL values.

AlgorithmName contains a NULL-terminated ASCII string that identifies the
name of the compression method used on the audio data stream. This string is
apdcm4e or pcm8 for the ADPCM and PCM8 algorithms, respectively. .

DataRate is the data rate of the audio stream in bits per second.

CutoffFrequency indicates the maximum filter cutoff frequency for the sample.

Parameter3 is not used and is set to 0.

LeftVolume and RightVolume specify the volume level of the left and right
audio channels, ~espectively. These numbers are a percentage of the total vol
ume; the default value is 100.

LoopOffset has a default value of -1.

StartingFrame normally has a value of 0.

Flag has a value of 4000h, indicating that the audio stream is stereophonic, or
8000h, indicating that it is monophonic.

Frame Rate is the data rate of the audio stream.

Pad2 is not used and is set to 0.

DCFid contains a value indicating the software service that compressed the
data. The value of this field is -1 if the ID of the service is not known or is
unimportant.

Video substream. header
The video substream header describes the attributes of a video or compressed
image stream. The type of video stream is indicated by the SubType field in the
STREAMHEADER structure, which may have the following values for a video
stream:

INTEL DVI 505

Intel DVI (cont'd)

1 Y-channel data only
11 U-channel data only
12 V-channel data only
13 WU data
14 YUV data

All images· are stored in WU format, except for]PEG-compressed images,
which are stored using YUV.

The VIDEOSUBSTREAMHEADER header is 136 bytes in length and is format
ted as follows:

typedef struct _VideoSubStreamHeader
{

DWORD Headerid;
SHORT HeaderSize;
SHORT Headerversion;
BYTE Origina1File[80);
LONG OriginalFrame;
SHORT OriginalStream;
SHORT Pad;
LONG FrameCount;

I* Header ID value (h) *I
I* Size of this header structure *I
I* Format of this header structure *I
I* Name of file stream is derived from *I
I* Original frame ID *I
I* Original stream ID *I
I* Pad value *I
I* Number of frames until next header */

DWORD NextHeaderOffset; I* Location of next substream header *I
SHORT XPosition;
SHORT YPosition;
SHORT XLength;
SHORT YLength;
SHORT XCrop;
SHORT YCrop;
SHORT DropFrame;
SHORT DropPhrase;
LONG StillPeriod;
SHORT BufferMinimum;
SHORT BufferMaximum;
SHORT DecodeAlgorithm;
SHORT Pad2;
LONG DCFid;

VIDEOSTREAMHEADER;

I* X coordinate top-left corner of image *I
I* Y coordinate top-left corner of image *I
I* Width of image *I
I* Height of image *I
I* X cropping coordinate *I
I* Y cropping coordinate *I
I* Not used *I
I* Not used *I
I* Frequency of intraframe images *I
I* Minimum buffer size required *I
I* Maximum buffer size required *I
I* ID of the decompression algorithm *I
I* Pad value *I
I* Digital Compression Facility ID *I

Headerld contains the characters CMIG and identifies the header as contain
ing audio stream information.

HeaderSize contains the number of bytes found in this header. This value is
·currently 136.

HeaderVersion currently has a value of 4.

506 GRAPHICS FILE FORMATS

Intel DVI (cont'd)

OriginalFile contains a NULlrterminated ASCII string identifying the name
and path of the file from which the video or image information is derived.

OriginalFrame, OriginalStream, and Pad are not used and are set to 0.

FrameCount indicates the number of frames in the current substream.

NextHeaderOffset specifies the location of the next video substream header.
This field value is always OOh.

XPosition and YPosition indicate the position of the top-left comer of the
image. These fields are normally 0.

XLength and YLength specify the maximum width and height of the images
stored in this stream.

XCrop and YCrop specify alternate length values used to crop the image.
These values are 0 by default.

DropFrame and DropPhrase are not used and are set to 0.

StillPeriod indicates the interval at which intraframe encoding occurs. For
example, a value of 12 in this field indicates that every 12th frame in this video
stream is intraframe encoded. A value of 1 indicates that every frame is
intraframe encoded. The default value of -1 indicates that the . intraframe
interval is unknown.

Buffer Minimum and BufferMaximum indicate the extremes of the buffer sizes
required for decompressing the image. These fields are normally set to OOh.

DecodeAlgorithm contains a value identifying the algorithm, needed to
decompress the stream. Pad2 is not used and is set to 0.

DCFid contains a value indicating the software service that compressed the
data. The value of this field is -1 if the ID of the service is unknown or not
important.

For information on other substream header formats, refer to the DVI specifica
tions on the CD-ROM.

Frames
Each section of frame data in a DVI file is preceded by a header describing the
data in the frame. The structure of this header is shown below.

typedef struct _FrameHeader
{

LONG FrameNumber;
LONG PreviousOffset;

/* Sequence number of this frame */
/* Location of previous frame */

INTEL DVI 507

Intel DVI (cont'd)

LONG Checksum; /* Checksum value for this frame */
LONG StreamFrameSize[]; /*Array of all frame sizes*/

FRAMEHEADER;

FrameNumber stores the sequence number of the frame. PreviousOffset points
to the location of the previous frame. This value is OOh if it is the first frame.

Checksum contains a checksum value. of the frame header.

StreamFrameSize is an array of byte count values, one for each frame stored in
the stream.

The location of each frame is stored in a directory of offset values. There will
be one FRAMEDIRECTORY structure per frame stored in the stream. The for
mat of this structure is shown below.

typedef struct _FrameDirectory
{

DWORD FrameOffset;
} FRAMEDIRECTORY;

/* Location of the frame for this directory */

FrameOffset points to the location of its associated frame. If the most signifi
cant bit of this value is set to 1, this offset may be used for access to the frame
data of every stream in the file. Typically, only audio streams are suitable for
random access.

ForFurtherhttonnation
For further information about the Intel DVI format, see the specification
included on the CD-ROM that accompanies this book. The specifications for
DVI and the AVSS file format may also be found in the reference material from
the DVI Developer's Kit available from Intel:

Intel Corporation
Attn: Intel Action Media Support
6505 West Chandler Blvd
Chandler, AZ 85226
Voice: 602-554-4231
WWW: http:/ /www.intel.com/contents.html

· See the following books and articles for additional information about Intel
DVI:

Dixon, D.F., SJ. Golkin, and I.H. Hashfield, "DVI Video Graphics,"
Computer Graphics World,]uly 1987.

508 GRAPHICS FILE FORMATS

IntelDYI (cont'd)

Hurst, R.N., and A.C. Luther, "DVI: Digital Video from a CD-ROM,"
Information Display, April 1988.

Luther, Arch C. Digital Video in the PC Environment: Featuring DVI Technol
ogy, McGraw-Hill, New York, ~ 1989

INTEL DVI 509

I JPEG File Interchange Format
NAME: JPEG File Interchange Format

ALso KNOWN As: JFIF,JFI,JPG,JPEG

TYPE: Bitmap

coLoRs: Up to 24-bit

COMPRESSION: . jPEG

MAXIMUM IMAGE SIZE: 641\x64K pixels

NuMERICAL FoRMAT: Big-endian

MuLTIPLE IMAGEs PER FILE: No

ORIGINAToR: CCube Microsystems

PLATFORM: All

suPPoRTING APPLicATioNs: Too numerous to list

SPEciFICATioN oN cD: Yes

cooE oN cD: Yes (in]PEG package)

IMAGEs oN cD: Yes

SEE ALso: Chapter 9, Data Compression (JPEG section)

usAGE: Used primarily in graphics and image manipulation programs

coMMENTs: One of the few formats incorporating JPEG compression and as such
offers superior compression for deep-pixel images.

·Overview
]PEG Qoint Photographic Experts Group) refers to~ standards organization, a
method of file compression, and sometimes a file format. In fact, the]PEG
specification itself, which we describe in terms of compression in Chapter 9,
does not itself define a common file interchange format to store and transport
JPEG data between computer platforms and operating systems. The]PEG File
Interchange Format (JFIF) is a development of CCube Microsystems for the
purpose of storing]PEG-encoded data. JFIF is designed to allow files containing
]PEG-encoded data streams to be exchanged between otherwise incompatible
systems and applications.

A]FIF file is basically ajPEG data stream with a few restrictions and an identfy
ing marker. In order to understand the JFIF format, you'll need to understand

510 GRAPHICS FILE FORMATS

]PEG File Interchange Format (cont'd)

]PEG; in addition to Chapter 9, see thejPEG FAQ (Frequently Asked Questions)
document included on the CD-ROM and available on the Internet.

File Organization
Both]PEG and JFIF data are byte streams, always storing 16-bit word values in
big-endian format. JPEG data in general is stored as a stream of blocks, and
each block is identified by a marker value.

The first two bytes of every JPEG stream are the Start Of Image (SOl) marker
values FFh D8h. In a jFIF-compliant file there is a JFIF APPO (Application)
marker, immediately following the SOl, which consists of the marker code val
ues FFh EOh and the characters JFIF in the marker data, as described in the
next section. In addition to the JFIF marker segment, there may be one or
more optional JFIF extension marker segments, followed by the actual image
data.

File Details
Although JFIF files do not possess a formally-defined header, the SOl and jFIF
APPO markers taken together act as a header in the following marker segment
structure:

typedef struct _JFIFHeader
{

BYTE SOI [2) ; I*
BYTE APP0[2]; I*
BYTE Length(2]; I*
BYTE Identifier[S]; I*
BYTE Version[2]; I*
BYTE Units; I*
BYTE Xdensity[2); I*
BYTE Ydensity[2); I*
BYTE XThumbnai 1; I*
BYTE YThumbnail; I*

JFIFHEAD;

OOh
02h
04h
06h
07h
09h
OAh
OCh
OEh
OFh

Start of Image Marker *I
Application Use Marker *I
Length of APPO Field *I
"JFIF• (zero terminated) Id String *I
JFIF Format Revision *I
Units used fo~ Resolution *I
Horizontal Resolution *I
Vertical Resolution *I
Horizontal Pixel Count *I
Vertical Pixel Count *I

SOl ·is the start of image marker and always contains the marker code values
FFhDSh.

APPO is the Application marker and always contains the marker code values
FFh EOh.

Length is the size of the JFIF (APPO) marker segment, including the size of the
Length field itself and any thumbnail data contained in the APPO segment.

.JPEG FILE INTERCHANGE FORMAT 511

]PEG File Interchange Format (cont'd)

Because of this, the value of Length equals 16 + 3 * XThumbnail * YThumb
naiL

Identifier contains the values 4Ah 46h 49h 46h OOh (JFIF) and is used to iden
tify the code stream as conforming to the JFIF specification.

Version identifies the version of the JFIF specification, with the first byte con
taining the major revision number and the second byte containing the minor
revision number. For version 1.02,. the values of the Version field are 01h 02h;
older files contain 01h OOh or Olh 01h.

Units, Xdensity, and Ydensity identify the unit of measurement used to
describe the image resolution. Units may be 01h for dots per inch, 02h for dots
per centimeter, or OOh for none (use measurement as pixel aspect ratio).
Xdensity and Ydensity are the horizontal and vertical resolution of the image
data, respectively. If the Units field value is OOh, the Xdensity and Ydensity
fields will contain the pixel aspect ratio (Xdensity : Ydensity) rather than the
image resolution. Because non-square pixels are discouraged for portability
reasons, the Xdensity and Ydensity values normally equal 1 when the Units
value is 0.

XThumbnail and Yfhumbnail give the dimensions of the thumbnail image
included in the JFIF APPO marker. If no thumbnail image is included in the
marker, then these fields contain 0. A thumbnail image is a smaller representa
tion of the image stored in the main]PEG data stream (some people call it an
icon or preview image). The thumbnail data itself consists of an array of
XThumbnail * YThumbnail pixel values, where each pixel value occupies three
bytes and contains a 24-bit RGB value (stored in the order R,G,B). No compreg.;.
sion is performed on the thumbnail image.

Storing a thumbnail image in the JFIF APPO marker is now discouraged,
though it is still supported for backward compatibility. Version 1.02 of JFIF
defines extension markers that allow thumbnail images to be stored separately
from the identification marker. This method is more flexible, because multiple .
thumbnail formats are permitted and because multiple thumbnail images of
different sizes could be included in a file. Version 1.02 allows color-mapped
thumbnails (one byte per pixel plus a 256-entry colormap) and]PEG
compressed thumbnails, in addition to the 24-bit RGB thumbnail format. In
any case, a thumbnail image is limited to less than 64K bytes because it must fit
in an APPO marker.

Following the JFIF marker segment, there may be one or more optional JFIF
extension marker segments. Extension segments are used to store additional

512 GRAPHICS FILE FORMATS

]PEG File Interchange Fonnat (cont'd)

information and are found only in JFIF version 1.02 and later. The structure of
these extension segments is shown below:

typedef struct _JFIFExtension
{

BYTE APP0[2];
BYTE Length[2];
BYTE Identifier[S];
BYTE ExtensionCode;

} JFIFEXTENSION;

I* OOh Application Use Marker *I
I* 02h Length of APPO Field *I
I* 04h "JFXX" (zero terminated) Id String *I
I* 09h Extension ID Code *I

APPO contains the values FFh EOh.

Length stores the length in bytes of the extension segment.

Identifier contains the values 4Ah 46h 58h 58h OOh (JFXX).

Extension Code indicates the type of information this extension marker stores.
For version 1.02, the only extension codes defined are 10h (thumbnail
encoded usingjPEG), 11h (thumbnail stored using 1-byte pixels and a palette)
and 13h (thumbnail stored using 3-byte RGB pixels).

The extension data follows the extension segment information and varies in
size and content depending upon the ExtensionCode value. (Refer to the cur
rent JFIF specification for the· possible formats of the extension marker seg
ment.)

JFIF decoders must be prepared to ignore unrecognized extension markers
and APPn segments. Application-specific APPn markers not recognized by a
JPEG decoder can be simply skipped over by using the data length field of the
marker.

The JFIF marker is essentially a guarantee that the file conforms to the JFIF
conventions. Most JFIF decoders therefore regard the JFIF marker segment as
optional, and are quite capable of reading a raw JPEG data stream that com
plies with the JFIF conventions regarding color space and sample alignment.
{There are many such files out there, because JFIF merely formalized common
practice in these areas.) A robust decoder will treat a JFIF file as a stream of
blocks, with no assumptions about block order beyond those mandated by the
JPEG standard. This makes it possible to read many non-standard and incorrect
JFIF file variations, such as a COM marker inserted between the SOl and JFIF
APPO markers (there are a fair number of these in existence too). We also rec
ommend that a decoder should accept any JFIF file with a known major version
number, even if the minor version number is newer than those known to the
decoder.

JPEG FILE INTERCHANGE FORMAT 513

]PEG File Interchange Fonnat (cont'd)

The actual JPEG data in a JFIF file follows all APPO markers and adheres to the
format defined in the JPEG documentation. The baseline]PEG process is the
recommended type of image data encoding to be used in JFIF files. This is to
ensure maximum compatibility of]FIF files for data interchange.

To identify a JFIF file or data stream, scan for the values FFh D8h FFh. This will
identify the SOl marker, followed by another marker. In a proper JFIF file, the
next byte will be EOh, indicating a JFIF APPO marker segment. However, it is
possible that one or more other marker segments may be erroneously written
between the SOl and JFIF APPO markers (a violation of the JFIF specification).
As previously mentioned, a decoder should still attempt to read the file.

The next two bytes (the APPO segment length) vary in value, but are typically
OOh 1 Oh, and these are followed by the five byte values 4Ah 46h 49h 46h OOh
(JFIF). If these values are found, the SOl marker (FFh D8h) marks the begin
ning of a JFIF data stream. If only the FFh D8h FFh values are found, but not
the remaining data, then a "raw"]PEG data stream has been found. All JFIF and
]PEG data streams end with the End Of Image (EOI) marker values FFh D9h.

There are many proprietary image file formats which contain JPEG data. Many
simply encapsulate a]PEG or JFIF data stream within their own file format
wrapper. Scanning for the]PEG SOl marker and reading until the EOI marker
is encountered will usually allow you to extract the JPEG/JFIF data stream. At
least one proprietary image file format, the .HSI format by Handmade Soft
ware, contains JPEG data, but cannot be successfully read or. uncompressed
without using special software, due to proprietary modifications of the]PEG
encoding process. (All .HSI files begin with the values 68h 73h 69h 31 h and
should not be considered normal]PEG files.)

Only two non-proprietary formats, other than JFIF, currently support]PEG
encoded data. The latest version of the Macintosh PICT format prepends a
PICT header to a JFIF file stream. Strip off the PICT header (everything before
the SOl marker) and any trailing data (everything after the EOI marker) and
you have the equivalent of a JFIF file. The other format, TIFF 6.0, also supports
]PEG and is discussed in depth in the article on TIFF.

ForFurtherhiTonnation
For further information about the JFIF file format, see the specification
included on the CD-ROM that accompanies this book. You may also contact C
Cube Microsystems at:

514 GRAPHICS FILE FORMATS

CCube Microsystems
Attn: Scott St. Clair
Corporate Communications
1778 McCarthy Blvd.
Milpitas, CA 95035
Voice: 408-944-6300
FAX: 408-944-6314

]PEG File Interchange Format (ccmt'd)

See also Chapter 9 for information about JPEG compression. The JPEG FAQ
and the compression FAQ, also included on the CD-ROM, contain background
information aboutjPEG.

The JPEG standard itself is not available electronically; you must order a paper
copy through ISO. In the United States, copies of the standard may be ordered
from:

American National Standards Institute, Inc.
Attn: Sales
1430 Broadway
New York, NY10018
Voice: 212-642-4900

The standard is divided into two parts; Part 1 is the actual specification, and
Part 2 covers compliance-testing methods. Part 1 of the draft has now reached
International Standard status. See this document:

Digital Compression and Coding of Continuous-tone Still Images, Part 1:
Requirements and Guidelines. Document number ISO/IEC IS 10918-1.

Part 2 is still at Committee Draft status. See this document:

Digital Compression and Coding of Continuous-tone Still Images, Part 2: Com
pliance Testing. Document number ISO/IEC CD 10918-2.

See the discussion of JPEG in Chapter 9 for a list of additional references,
including commercially available books that contain the JPEG specification and
the JPEG FAQ (Frequently Asked Questions). The CD-ROM contains several
JPEG programs and libraries.

JPEG FILE INTERCHANGE FORMAT 515

I Kodak Photo CD
NAME: Kodak Photo CD

ALso KNowN As: Photo CD

TvPE: Bitmap

COLORS: 24-bit

coMPREssioN: Proprietary

MAXIMUM IMAGE SIZE: 2048X3072

MuLTIPLE IMAGEs PER FILE: No

NUMERICAL FORMAT: NA

ORIGINAToR: Eastman Kodak

PLATFORM: All

suPPoRTING APPLicATioNs: Photo CD Access, Shoebox, Photoshop, others

SPEciFICATioN oN cD: No

cooE oN cD: No

IMAGEs oN cD: Yes

SEE ALso: None

usAGE: Static data storage of multi-resolution deep-pixel images.

coMMENTs: Kodak will not divulge information on the format that would enable devel
opers to directly access the image data.

Overview
Photo CD is actually the name of a CD-ROM-based storage and retrieval system
from Eastman Kodak. Most people in the development community use the
name Photo CD to refer to the files associated with the system, however, and
we will conform to this usage.

A Photo CD CD-ROM is intended for the storage of conventional film-based
photographic images which have been converted to digital form, using a slide
or flatbed scanner, for instance. This is apparently part of Kodak's strategy for
the product: to serve as an adjunct to their conventional film business. There
are no technical restrictions on the source of the data, however.

Unfortunately, we cannot describe the Kodak Photo CD format in any detail
because Kodak will not divulge the details of the format, and, in fact, has
threatened legal action to those who would seek to reverse-engineer the

516 GRAPHICS FILE FORMATS

Kodak Photo CD (cont'd)

product. This decision on the part of Kodak has enraged members of the
development community who have an interest in the future of imaging tech
nology. Cooler heads see Photo CD as a transitional technology. Our own opin
ion is that a large company with a sufficient presence in the market and a long
term view could have used a system like Photo CD as a way of capturing a
major share of the disc-based multimedia market. However, Kodak seems to
have taken the more conservative course of protecting their traditional film
based business.

Kodak does, however, sell a shrink-wrapped Photo CD development kit for a
reasonable fee, which provides an API of sufficient richness for almost any
developer need. At the time of this writing, there are Microsoft Windows, Mac
intosh, and UNIX versions of the toolkit available. Obviously, developers on
other platforms are out of luck, unless Kodak sees fit to accommodate their
needs. Toolkits are closely coupled to the platform supported.

As a result of the situation we have described, we are obviously able in this arti
cle to provide only information about the Photo CD system and format that is
publicly available from Kodak. .

File Organization
In the Kodak Photo CD environment, groups of images and associated infor
mation written at one time is called a session. The original Photo CD specifica
tion called for hardware that supported a single session per disc. Later versions
of the Photo CD system allow multiple sessions per disc, which requires special
hardware, firmware revisions, or a combination of both to read. As a conse
quence of this, many older CD-ROM drives will not read multi-session Photo
CD discs, so you might make sure that yours does before you get involved with
the Photo CD system.

Taking advantage of the storage capacity. of CO-ROMs (more than 600
megabytes), images are stored on disc at multiple resolutions, in an arrange
ment called pyramid encoding. This accomplishes the same thing as the com
mon strategy of storing a "postage stamp," or reduced version of the main
image in the same file, albeit carried to a logical extreme. At the time of this
writing, six resolutions are normally stored for each image:

KODAK PHOTO CD 517

Kodak Photo CD (cont'd)

Base Over 64
Base Over 16
Base Over 4
Base
Base Times 4
Base Times 16

64x96
128x192
256x384.
512x768
1024x1536
2048x3072

Another version of the Photo CD product, called Photo CD Pro, may contain
higher resolutions, including:

Base Times 16 2048x3072

Multiple versions of the image are grouped into a file that Kodak calls an
Image Pac. A copy of at least one of the two lowest-resolution versions of the
image in the Image Pac in the current sessions is stored in another file called
the Overview Pac. These are used for the display of postage stamp images,
which might be used by an application for quick display of the images in the
Image Pac, for selection purposes, perhaps.

File Details
In the Kodak Photo CD format, Image data is compressed using a proprietary
algorithm. Data is stored in what Kodak calls Photo YCC format. The developer
toolkit delivers color in several formats, depending on the platform. These
include 256-level gray-scale and various palette-based formats, in addition to
24-bit YCC and RGB.

In the 24-bit YCC format, 24 bits of data per pixel are distributed among three
color components, called Y (luminance information), C1, and C2 (two chromi
nance channels). Each channel occupies eight bits of data. Although the YCC
format has some advantages, most developers choose RGB as the preferred
model in which they want the toolkit to deliver the image data.

ForFurtherhrronnation
More details about the Photo CD format are available in descriptive documen
tation from Kodak marketing sources and in the Kodak Photo CD Access
Developer Toolkit for your platform, which contains the following:

518 GRAPHICS FILE FORMATS

Kodak Photo CD (cont'd)

•· A disc full of sample images

• The Access Developer Toolkit Programmer's Guide

• A disk containing the library and associated files needed to compile your
application, hicluding a sample application with source code included

For information about obtaining these, contact:

Eastman Kodak Corporation
343 State Street
Rochester, NY 14650
Voice: 800-242-2424
WWW: http:/ /www.kodak.com/

As mentioned above, Kodak has threatened legal action against developers
who have tried to make details of the Photo CD format public, although the
organization has not been completely successful in suppressing information.
Source code has been posted to the Internet that will convert Photo CD files to
PBM format (used by the pbmplus utilities described in Appendix C, Installa
tion and Setup) and presumably remains available at many sites. As a conse
quence of this posting of information and source code, you may run across an
application which reads and manipulates Photo CD format files, but which may
not be properly licensed from Kodak. Always check to see if the application
vendor is properly licensed.

KODAK PHOTO CD 519

IKodakYCC
NAME:

ALSO KNOWN As:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

UsAGE: Unknown

Kodak YCC

YCC, ICC

Bitmap

8-bit, 24-bit

Uncompressed

NA

No

Big-endian

Eastman Kodak

All

Unknown

Yes (summary description by third party)

Yes

No

Kodak Photo CD

coMMENTs: Included because YCC files had some currency in high-end graphics and
because of its relevance to the Photo CD format.

Overview
We have been unable to find information on the origin of what has come to be
called the Kodak YCC format. Obviously, it originated at Eastman Kodak, in
one of the company's graphics-related divisions, but whether it is a "real" for
mat or just a printer dump format, we are unable to tell. We have included it
because we have been able to obtain some information on the format and
because it may be of interest to people involved with Photo CD or 24-bit color
applications in general.

The Kodak YCC format provides data in a format compatible with Kodak's
XL7700 printer, which produces truecolor and gray-scale output.

520 GRAPHICS FILE FORMATS

Kodak YCC (cont'd)

File Organization
A Kodak YCC file consists of a header followed by bitmap data. The bitmap
data is organized into three planes in the order red, green, and blue.

File Details
The Kodak YCC has the following structure:

/* Magic number.= 5965600 */
/* Header Size, in bytes */

LONG Magic;
LONG HSize;
CHAR Un01 [n] ;
LONG HSize;
LONG FSize;
CHAR FName [16]
LONG FType;
CHAR.Un02[8];
LONG XSize;
LONG YSize;
CHAR Un03[12];
LONG Planes;
CHAR Un04[8];

/* Unused (n = Header Size - 4 bytes) */
/* File header length */
/* File size */
/* Filename */
/* File Type (= 7) */
/* Unused */
/* Image X size */
/* Image Y size */

· /* Unused */
/* Number of image planes (usually 1 or 3) */
/* Unused */

Following the header is the image data. If the image is composed of gray-scale
data, one plane of 8-bit gray-scale data is present. If the image is truecolor,
then there are three planes in the sequence red, green, blue. Each plane COQ

sists of 8-bit data. If the data is to be interpreted otherwise, for example, as
Y,C,C (luminance followed by two chrominance channels), each channel is
eight bits in length, but the rendering application must interpret the data
according to the appropriate color model.

ForFurtherhdonnation
For further information about the Kodak YCC format, see the summary
description (a newsgroup posting) included on the CD-ROM that accompanies
this book. We have tried unsuccessfully to obtain information from Kodak
about this format, so we don't believe you will be able to get any help from
them. If you wish to try yourself, contact Kodak at:

Eastman Kodak Corporation
343 State Street
Rochester, NY 14650
Voice: 800-242-2424
WWW: http:/ /www.kodak.com/

KODAK Vee 521

I LotusDIF
NAME:

ALSO KNOWN AS:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CO:

CODE ON CO:

IMAGES ON CO:

SEE ALSO:

Lotus DIF

DIF, Data Interchange Format

Vector

NA

None

Unknown

No

NA

Software Arts

MS-DOS

Spreadsheets, others

No

No

No

Microsoft SYLK.

usAGE: Exchange of numerical data often associated with spreadsheets.

coMMENTs: Not usually considered a graphics format but often a carrier of graphics
data. Big- and little-en dian issues are moot because data is stored as 7-bit
ASCII.

Overview
The Lotus DIF (Data Interchange Format) is used for the storage and
exchange of numeric data between applications such as spreadsheets.
Although DIF is not usually considered a graphics file format, it is vector-based
and often carries information used to generate both bitmap and vector images.
It is of interest because the data is always stored in ASCII format.

DIF was developed by Software Arts and originally appeared along with the Visi
Calc spreadsheet program, which was first released in 1979. Because most
spreadsheet applications have their own native file format for storing informa
tion, it is usually not possible for a single application to support every other for
mat. DIF has become one of the commonly used interchange formats, perhaps
because it has been around so long.

522 GRAPHICS FILE FORMATS

Lotus DIF (amt'd)

A spreadsheet is a 2D matrix of storage cells, each of which contains numeric
data, text data, and formulas. Stored along with the data item in each cell is a
unique identifier, usually the coordinates associated with the cell itself. Spread
sheet files also may contain information relevant only to the originating appli
cation, which is normally ignored by an application seeking to extract the data
for other uses.

Popular software applications that support DIF include Lotus 1-2-3 and Bor
land's Quattro Pro. Since DIF files contain only 7-bit ASCII characters, they can
be edited using a simple text editor. DIF is also independent of any hardware
issues.

File Organization
A DIF file consists of a header followed by a block of data. The header starts
with the ASCII text:

TABLE
0,1
"string"

where string is any ASCII string, often the name of the file or other identifying
information. The header ends with the following:

DATA
0,0

Following this is the actual spreadsheet cell data and records containing infor
mation to' be used in modifying this data.

File Details
This section describes the format of the DIF header and the different types of
records.

Header

The header consists of a number of entries, each consisting of a record type
keyword, a numeric value, and an optional text string. These are arranged as
follows:

Record ~e
Vector, value
"string"

LOTUS DIF 523

Lotus DIF (cont'd)

The Record Type field identifies the data _following the field to the rendering or
manipulating application. The Vedor value affects the interpretation of the
value data and indicates the spreadsheet column to which the value data is to
apply. A value of zero means that the data applies to the entire spreadsheet.
The value field must be zero if data in the ~ctor field is nonzero. The string
field is contained in double quotes, with empty double quotes (" ") indicating
an empty string.

Record Types
Possible record types are as follows:

TABLE
VECTORS
TUPLES
DATA
COMMENT
LABEL
UNITS
TRUELENGTH
MINORSTART
MAJORSTART
PERIODICITY
SIZE
DISPLAYUNITS

Only the first four record types must appear in every header: TABLE, VEC
TORS, TUPLES, and DATA.

Data following TABLE entries has the following format:

0,1
"string"

where string is any ASCII string.

Data following VECTORS entries has the following format:

O,columns

where columns is the number of columns in the spreadsheet.

524 GRAPHICS FILE FORMATS

Data following TUPLES en tries has the following format:

O,rows

where rows is the number of rows in the spreadsheet.

Data following DATA entries has the following format:

0,0

and marks the end of the header.

Data following COMMENT entries has the following format:

colwnn,lines
"string"

which is similar to the definition of LABEL.

Data following LABEL entries has the following format:

colwnn,lines
"string"

Lotus DIF (cont'd)

where column is the starting column of the lABEL stored as string, and lines is
the number of columns spanned by LABEL, usually one.

Data following UNITS entries has the following format:

colwnns,O
"string"

where string denotes the units of measurement associated with the values in the
columns of the spreadsheet.

Data following TRUELENGTH entries has the following format:

column-number, rows

where rows is the number of rows containing actual data.

Data following MINORSTART entries has the following format:

colwnn-number,time-value

where time-value is the month, day, hour, or second relevant to the start of the
data in the column referred to.

LOTUS DIF 525

Lotus DIF (cant'd)

Data following MAJORSTART entries has the following format:

column-number, first-year

where first-year denotes the year data in the column referred to.

Data following PERIODICITY entries has the following format:

columns,period

where period is the time duration of time-oriented data.

Data following SIZE entries has the following format:

column-number, bytes

where bytes is the width of columns in bytes.

Data following DISPLAYUNITS entries has the following format:

columns,O
•string•

where string denotes information associated with display devices.

Data
Data record structures have the following format:

data-type, data
"string"

data-type can be SPECIAL, NUMERIC, and STRING, denoted by -1, 0, and 1,
respectively.

SPECIAL data appears as follows:

-1,0
BOT

-1,0
EOD

where BOT and EOD are strings (without quotes) denoting beg?.nning-of-table
and end-of-data, respectively.

· 526 GRAPHICS FILE FORMATS

NUMERIC data appears as follows:

0, data
value-indicator

Lotus DIF (cont'd)

where value-indicator indicates the type of data stored in data:

TRUE 1
FALSE 0
V any numeric value
NA notknown
ERROR 0

String data appears as follows:

1,0
•string"

where string is any text string.

ForFurtherhdonnation
For further information about the Lotus DIF file format, you might try contact
ing Lotus at:

Lotus Development Corporation
55 Cambridge Parkway
Cambridge, MA 02142
Voice: 617-577-8500
Voice: 800-831-9679
FAX: 617-225-1197

Information for this article came from the DIF Technical Specification pub
lishe<i by:

DIF Clearinghouse
P.O. Box 638
Newton Lower Falls, MA 02162

The Clearinghouse apparently no longer exists, but you may be able to find
this document in archives and libraries under their authorship. It is our under
standing that responsibility for DIF maintenance has devolved to Lotus, though
it is not clear whether Lotus owns or has access to the original DIF Clearing
house documents. Lotus, of course, is now owned by IBM.

LOTUS DIF 527

Lotus DIF (cont'd)

An interesting account of the DIF format, by Candace Kalish and Malinda
Mayer, was published in the November 1981 issue of byte magazine.

The following publications also contain information about DIF:

Beil, Donald H., The DIF File, Reston Publishing Co., Reston, VA, 1983.

Walden, Jeffrey B., File Formats for Popular PC Software, John Wiley &
Sons, New York, NY, 1986.

528 GRAPHICS FILE FORMATS

Lotus PIC I
NAME: Lotus PIC

ALso KNowN As: Lotus Picture, PIC

TYPE: Vector

COLORS: 6

COMPRESSION: NA

MAXIMUM IMAGE s1zE: . Apparendy 64Kx64K

MuLTIPLE IMAGEs PER FILE: No

NUMERICAL FORMAT: NA

ORIGINAToR: Lotus Development

PLATFORM: MS-DOS

suPPoRTING APPLICATioNs: Lotus 1-2-3 and competing programs, word
processing and desktop-publishing applications, oth
ers

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

No

No

No

Microsoft SYLK

usAGE: Used by the graphing program associated with Lotus 1-2-3

coMMENTs: A widely used format for interchange of data, primarily business graphics.
Somewhat dated. Big-endian in format, although originating under MS
DOS on Intel-based machines.

Overview
Lotus PIC appeared in support of early versions of Lotus 1-2-3; files in PIC for
mat were generated by the main application for use by an auxiliary program
called Lotus Print Graph. Although recent versions of the application still sup
port PIC, they have started using the Computer Graphics Metafile (CGM} as
well, and we can safely assume that the days of PIC are numbered. Neverthe
less, a great deal of data still exists in PIC format.

LOTUS PIC 529

Lotus PIC (cont'd)

File Organization and Details
The file is very simple and consists of a header, vector data, and an end-of-file
indicator. The header appears to be arbitrary and contains the following hex
string:

01 00 00 00 01 00 08 00 44 00 00 00 OC 7F 09 06

Following the header is a list of encoded drawi.ng commands, stored either as
byte pairs or as 16-bit values. Either form may be followed by arguments. Com
mands are recognized by reading data either one byte at a time, assembling 16
bits of data in memory, or reading data 16 bits at a time and examining the
first byte of each item. Coordinate values are always stored as 16-bit signed inte
gers. Although positional data can theoretically be .in the range -32,767 to
32,767, Lotus Print Graph always scales data to fit into the rectangle 0, 0, 3200,
2311.

Drawing commands supported by PIC are listed below:

BN
AOXXYY
A2XXYY
30 N-1 X1 Y1 ... XN YN
DO N-1 X1 Y1 ... XN YN
ACXXYY
A7N
ABNSTRING

color
move
draw
fill
fill outlined
text size
font
text

530 GRAPHICS FILE FORMATS

N is an 8-bit color value
Move drawing cursor to XX,W
Draw to XX,YY, update cursor
Filled polygon of N vertices
Filled polygon with outline
XX and Ware char cell size
Set font: type 0 or 1 only
Draw NULL-terminated text
string STRING, N contains
direction and alignment infor
mation:
00 horizontal
10 vertical up
20 upside down
30 vertical down
00 center aligned
01 left center aligned
02 top center aligned
03 right center aligned
04 bottom center aligned
05 top left aligned

60-6F end

Lotus PIC (cont'd)

06 top right aligned
07 bottom left aligned
08 bottom right aligned
End of image

The following example draws a line from 0,0 to 100,100 and draws the string
"text" with characters fitting into an 8 by 10 cell:

AO 00 00 00 00 A2 00 64 00 64 AC 00 08 00 OA AS 00 74 65 78 74 60

ForFurtherhllonnation
Lotus no longer supports PIC, so it is difficult to get information about it. You
might try contacting Lotus at:

Lotus Development Corporation
55 Cambridge Parkway
Cambridge, MA 02142
Voice: 617-577-8500
Voice: 800-831-9679
FAX: 617-225-1197

The following book, available in bookstores or from Lotus, provides additional
information about Lotus PIC:

Lotus Development Corporation, Lotus File Formats for 1-2-3, Symphony,
& jazz, Lotus Books, Cambridge, MA, 1986.

LOTUS PIC 531

ILumenaP~t
NAME:

ALSO KNOWN As:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MAXIMUM IMAGE SIZE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

Lumena Paint

.PIX, .BPX

Bitmap

24-bit maximum

RLE, uncompressed

Unlimited

Unlimited

Little-en dian

Time Arts Inc.

MS-DOS

Lumena, others

Yes

No

No

TGA

usAGE: Used mainly in conjunction with Time Arts programs, particularly
Ltimena Paint.

coMMENTs: This format is used frequently by production houses for data interchange.

Overview
Lumena Paint is a 24-bit paint program for the PC that uses the TGA, TIFF, and
EPS file formats to import and export images. Lumena also uses its own native
bitmap formats, which often have the extension .PIX (Time Arts Picture For
mat) and .BPX (Time Arts Big Picture Format), and which are also referred to
as the Lumena 16 and Lumena 32 formats, respectively.

Lumena sold into what was known as the Targa market, centered around com
patibility with truecolor display adapters for the PC sold by Truevision and its
competitors. This was a small niche market in the PC world, and at its peak
consisted of about 50,000 sites. Increased interest in truecolor on PCs led Her
cules to introduce a relatively inexpensive display adapter (Hercules Graphics·
Station) supporting 24-bit color, and as part of its marketing effort, enter into
an OEM arrangement with Time Arts to bundle Lumena with the boards.

532 GRAPHICS FILE FORMATS

Lumena Paint (cont'd)

File Organization
Besides the depth of the pixel data, the main difference between the Lumena
16 and the Lumena 32 formats is in the header. Both formats have the same
file header. In the Lumena 16 format, four of the header fields associated with
pixel values are two bytes in size, while the same fields are four bytes in size for
the Lumena 32 format. Lumena 16 files may also contain a postage stamp
image, while Lumena 32 files may not.

Following the common file header may be a descriptor header; this header is
different for the two formats. Lumena 16 files have a PIX header, whereas
Lumena 32 files have a BPX header.

File Details
Each pixel value in the Lumena 16 image is two bytes in size (five bits each of
red, green, and blue, and one overlay bit), and each pixel value in a Lumena
32 file is 32 bits (eight bits each of red, green, blue, and alpha channel). Both
the alpha channel and the overlay bits occupy the most significant bits of each
pixel val~e. Image data always follows the postage stamp data, or a feature
called the descriptor header, if no postage stamp image is present in the file.

The largest size of a typical Lumena 16 image is 512x482 pixels. Larger images
are stored using the Lumena 32 format and at a size that is an exact multiple of
the display resolution (for example 1024x768x32 bits).

Both Lumena file types start with the same file header:

typedef struct _LumenaHeader
{

BYTE DescriptorSize;
B~E IsimageStamp;
BYTE FileType;
WORD StampWidth;
WORD StampHeight;
BYTE StampBPP;
WORD XOrigin;
WORD YOrigin;
WORD ImageWidth;
WORD ImageHeight;
BYTE BitsPerPixel;
BYTE AlphaMaskBPP;

LUMENAHEAD;

/* Size of Image Descriptor */
/* Image Stamp Present */
/* File Encoding Type */
/* Stamp Width in Pixels */
/* Stamp Length in Pixels */
/* Bits per Pixel in Stamp */
/* X Origin of Image */
/* Y Origin of Image */
/* Image Width in Pixels */
/* Image Height in Pixels */
/* Number of Bits Per Pixel */
/* Alpha Bits Per Pixel */

LUMENA PAINT 533

Lumena Paint (cont'd)

DescriptorSize is the size of the descriptor header in bytes. The descriptor
header is a second header that may follow the file header and that differs in
size between the two Lumena formats.

IslmageStamp field is set to 1h if there is a postage-stamp image included in
the file, otherwise it is set to Oh. The postage-stamp image always follows the
descriptor header.

A postage-stamp image is a smaller version of the primary image stored in the
Lumena file. Postage stamps are used to preview the contents of an image file
without taking the time to display the original image. Postage-stamp images
may be very quickly displayed because of their small siz~. Typically, postage
stamps are one-eight the height and width of the original image, with 64x64
pixels being a typical maximum size. A typical 512x482-pixel Lumena image
would then contain a 64x60-pixel postage-stamp image. Although postage
stamps are useful, not every Lumena image file will contain one. (See the arti
cle on the TGA format for information on ways to create postage-stamp
images.)

FileType indicates the type of data compression algorithm used on the image
data. A value of 02h indicates a standard file with uncompressed image data;
the image data is arranged just as it is in the TGA Type 2 data format. A value of
OAh indicates run-length encoded image data the same as found in TGA Type
10 image data. A value of 8Eh indicates an older style of data compression that
is no longer used by applications supporting the Lumena image file formats.

StampWidth, StampHeight, and StampBPP all store information about the
postage stamp image. Only Lumena 16 image files may contain postage-stamp
images; Lumena 32 image files never contain these images. The Stamp Width
and StampHeight are in pixels, and the StampBPP field contains the number
of bits per pixel in the postage-stamp data, including alpha channel bits, if any.

XOrigin and YOrigin are the starting coordinates of the image on the display
with 0,0 being the lower-left corner of the screen.

ImageHeight and ImageWidth represent the size of the image in pixels.

BitsPerPixel contains the number of bits in each pixel of image data. This
value is 16 for Lumena 16 images and 32 for Lumena 32 images and includes
any alpha bits present in the pixel data.

AlphaMaskBPP contains the number of bits in each pixel used for alpha chan
nel data. This value is 0 for Lumena 16 images and 8 for Lumena 32 images.

534 GRAPHICS FILE FORMATS

Lumena Paint (cont'd)

Lumena 16 files also have a PIX descriptor header in the following format:

typedef struct _Lumena16Descriptor
{

WORD Identifier; I* Descriptor Identifier *I
WORD RedMask; I* Mask for Red Bits *I
WORD GreenMask; I* Mask for Green Bits *I
WORD BlueMask; I* Mask for Blue Bits *I
WORD XAspectRatio; I* X Axis Image Aspect Ratio
WORD YAspectRatio; I* Y Axis Image Aspect Ratio
WORD Background; I* Background Color (Black =
BYTE Comment [40]; I* Text Comment *I

} LUM16DESCRP;

*I
*I

0) *I

Lumena 32 files have a BPX descriptor header instead of a PIX header. The
BPX descriptor header is identical to the PIX descriptor header except for four
fields that are four bytes in size rather than two:

typedef struct _Lumena32Descriptor
{

WORD Identifier; I* Descriptor Identifier *I
DWORD RedMask; I* Mask for Red Bits *I
DWORD GreenMask; I* Mask for Green Bits *I
DWORD BlueMask; I* Mask for Blue Bits *I
WORD XAspectRatio; I* X Axis Image Aspect Ratio
WORD YAspectRatio; I* Y Axis Image Aspect Ratio
DWORD Background; I* Background Color (Black =
BYTE Comment [40]; I* Text Comment *I

} LUM32DESCRP;

*I
*I

0) *I

Identifier always contains the value SEh and is used to identify the start of the
descriptor header.

RedMask, GreenMask, and BlueMask contain the values used to mask and shift
out the separate red, green, and blue values from the pixel data. The code to
do so is shown below:

RedValue (PixelValue & RedMaskValue) >> (BitsPerPixel * 2);
GreenValue = (PixelValue & GreenMaskValue) >> (BitsPerPixel * 1);
BlueValue = (PixelValue & BlueMaskValue) >> (BitsPerPixel * 0);

XAspectRatio and YAspectRatio contain the horizontal and vertical aspect
ratios of the image.

Background indicates the background color of the display not covered by the
image. The default is 0 for black, and this value may be any valid screen color
value.

LUMENA PAINT 535

LumeTUl Paint (cont'd)

Comment is a NULL-terminated string of ASCII characters. Images created
using the Lumena Paint program typically contain the comment ''Time Arts
Lumena file."

For Further Information
For further information about the Lumena Paint format and application, see
the specification included on the CD-ROM that accompanies this book. You
may also contact:

Time Arts Inc.
Attn: Scott Gross
Vice-President, Engineering
1425 Corporate Center Parkway
Santa Rosa, CA 95407
Voice: 800-959-0509
FAX: 707-576-7731
BBS: 707-576-7352

You might also be able to obtain information about Lumena from Hercules
Computer, which bundles Lumena Paint with its PCs and graphics boards. Con
tact:

Hercules Computer Inc.
Attn: Lumena/Hercules Art Department
921 Parker Street
Berkeley, CA 94710
Voice: 510-540-6000
Voice: 800-532-0600
FAX: 510-540-6621
BBS: 510-540-0621

536 GRAPHICS FILE FORMATS

NAME:

ALSO KNOWN AS:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

Macintosh Paint

PNTG, MAC, MacPaint

Bitmap

Mono

RLE, uncompressed

576x720 pixels

No

Big-en dian

Apple Computer Inc.

Macintosh

Too numerous to list

Yes (for Atari)

No

Yes

MacintoshPICT

UsAGE: Clip art, screen dumps, monochrome artwork

Macintosh Paint I

coMMENTs: A well-defined, well-documented format in use on the Macintosh plat
form. MacPaint is quick and easy to read and decompress, but it lacks sup
port for more than monochrome images. Numbers in the file are stored
in big-endian format.

Overview
Macintosh Paint (MacPaint) is the origin~! and most common graphics file for
mat used on the Apple Macintosh. Most Macintosh applications that use graph
ics 'are able to read and write the MacPaint format. MacPaint files on the
Macintosh have the file type PNTG, while on the PC they usually have the
extension .MAC. The first real image files widely available to PC users were
MacPaint files. PC users usually obtained them from BBSs or 'shareware disks,
and a number of programs exist that allow MacPaint files to be displayed and
printed using a PC under MS-DOS. Today, extensive black-and-white clip art and
graphics are available in the MacPaint format. MacPaint files are also used to
store line drawings, text, and scanned images.

MACINTOSH PAINT 537

Macintosh Paint (cont'd)

MacPaint images are always black and white and are a fixed size (576 pixels
wide by 720 scan lines high) and fixed resolution (75 dpi). Uncompressed, the
image data is always 51,840 bytes in size. Because the Apple Macintosh is based
on the Motorola 68000 series of CPU s, most files are stored in big-en dian for
mat, and MacPaint files are no exception. They are always read and written in
big-endian format, no matter what the host platform. The ENDIANIO library
can be used to read and write MacPaint files on non-big-endian systems.

Files are stored differently on the Macintosh than they are on most other sys
tems in common use. Every Macintosh file consists of two parts, called forks.
Although a user sees only a single file, data is actually stored as two physical
files on disk. The first file is called the data fork, which stores program infor
mation. The second file is called the resource fork, and it stores program code.
Data associated with a MacPaint file occupies only the data fork of the file pair;
its companion resource fork is always empty.

Outside the Macintosh environment a MacPaint file is stored as a singl~ file,
with the two forks combined into one file, allowing it to reside on foreign file
systems not adhering to the Macintosh conventions. A MacBinary header is
prepended to the file. The MacBinary header is a structure which allows a Mac
intosh file to be copied or otherwise transported between a Macintosh and
another system, and which contains the information required to reconstruct
the two forks when the file is returned to the Macintosh environment. It is nec
essary to preserve the MacBinary header only if the file will one day be
returned to a Macintosh environment; otherwise, it can be stripped from the
file.

There are actually two MacBinary standards, the original MacBinary and
MacBinary II. Both standards have a header that is 128 bytes in length. The
MacBinary II header contains additional information not found in the original
MacBinary header.

File Organization
The structure of a MacBinary II header is shown below:

typedef struct _MacBinaryiiHeader
{

BYTE Version;
BYTE FileNameLength;
BYTE FileName[63];
DWORD FileType;
DWORD FileCreator;
BYTE FileFlags;

538 GRAPHICS FILE FORMATS

/* Always set to 0 */
/* Size of file name (0 to 31) */
/* File name */
/* Type of Macintosh file */
/* ID of program that created file */
/* File attribute flags */

BYTE Reserved!;
WORD FileVertPos;
WORD FileHorzPos;
WORD Windowid;
BYTE Protected;
BYTE Reserved2;
DWORD SizeOfDataFork;
DWORD SizeOfResourceFork;
DWORD CreationStamp;
DWORD ModificationStamp;
WORD GetinfoLength;

Macintosh Paint (cont'd)

I* Reserved field *I
I* File vertical position in window *I
I* File horizontal position in window *I
I* Window or folder ID *I
I* File protection (1 = protected) *I
I* Reserved field *I
I* Size of file data fork in bytes *I
I* Size of file resource fork in bytes *I
I* Time and date file created *I
I* Time and date file last modified *I
I* Getinfo message length *I

I* The following fields were added for MacBinary II *I

WORD FinderFlags;
BYTE Reserved3(14];
DWORD UnpackedLength;
WORD SecondHeadLength;
BYTE UploadVersion;
BYTE ReadVersion;
WORD CrcValue;
BYTE Reserved4(2];

} MACBIN2HEAD;

I* Finder flags *I
I* Reserved field *I
I* Total unpacked file length */
I* Length of secondary header *I
I* MacBinary version used with uploader *I
I* MacBinary version needed to read *I
I* CRC value of previous 124 bytes *I
I* Reserved field *I

Before extracting the image data from a MacPaint file in a non-Macintosh envi
ronment, you must determine if a MacBinary header is prepended. This is best
done by reading the bytes at offsets 101 through 125 and checking to see if
they are all zero. The byte at offset 2 should be in the range of 1 to 63, and the
DWORDs at offsets 83 and 87 should be in the range of 0 to 007FFF'FFh. If all
of these checks are true, then a MacBinary header is present.

It is not necessary for a non-Macintosh application to modify the MacBinary
header unless the image data is changed or the MacPaint file has been created
outside of the Macintosh environment with the intent of one day being
returned to the Mac. However, it is good general practice to assume that your
image file will one day return to the originator platform. Because any applica
tion reading a MacPaint file must be prepared to decode the MacBinary
header anyway, there is no good reason for omitting it or for failing to update
its fields when the file is changed.

File Details
Version, the first byte of a MacBinary header, is always zero; MacPaint files with
or without a MacBinary header, always start with a zero byte. In fact, if the first
byte is not zero, do not treat the file as a MacPaint file.

MACINTOSH PAINT 539

Macintosh Paint (cont'd)

FileNameLength stores the length of the Macintosh-format filename, which
can be from 1 to 63.

FileName stores the actual filename, and only the first "FileNameLength" char
acters are significant. Note that the filename is not NULL-terminated. Because
the Macintosh can accommodate longer filenames than are found on some sys
tems, a certain amount of intelligence is needed when you copy MacPaint files
to filesystems that cannot accommodate the full filename. UNIX and Macin
tosh programmers, in particular, should be wary of copying files to MS-DOS sys
tems and are advised to keep the filenames limited to eight characters or less.
Files destined only for UNIX systems should limit names to 14 or fewer charac
ters.

FileType contains up to four ASCII characters indicating the type of file that is
attached to the header. A MacPaint file has a type of PNTG; a PICf file
(another Macintosh file type) has type PICT; a TIFF file has type TIFF; and so
on.

FileCreator also contains a 4-character ASCII identifier that identifies the cre
ator application. The creator identifier is MPNT for MacPaint files created by
the MacPaint paint program, for instance.

FileFlags contains file attributes specific to the Macintosh environment; these
are represented by the following bits in the field:

Bit 0 lnited
Bit 1 Changed
Bit 2 Busy
Bit 3 Bozo
Bit 4 System
Bit5 Bundle
Bit 6 Invisible
Bit 7 Locked

FileVertPos and FileHorzPos contain the position of the file on the display
screen.

The WindowiD and Protected bit flags are specific to the Macintosh environ
ment.

SizeOfDataFork is the size of the MacPaint file minus the size of the MacBinary
header.

540 GRAPHICS FILE FORMATS

Macintosh Paint (ctmt'd)

SizeOfResourceFork is always zero for MacPaint files.

CreationStamp and ModificationStamp contain the time and date the Mac
Paint file was first created and last modified, respectively. The stamp values are
stored as the number of seconds since January 1, 1904.

GetlnfoLength contains the length of the Get Info comment and is set to zero
in MacPain t files.

The following fields were added by the MacBinary II standard:

FinderFlags contains the first eight bit flags of the Finder. Finder bit flags 8
through 15 are stored in the FileFlags field.

UnpackedLength is the uncompressed size of the file.

SecondHeadLength holds the length of any additional header following the
MacBinary header; this value is for future expansion of the MacBinary header
and is currently set to zero.

UploadVersion and ReadVersion contain version numbers of the programs
required to transmit and read the MacBinary II header.

CrcValue contains a value that may be used to check the validity of the first 124
bytes of the header and needs to be recalculated if the header is changed. If
this field is set to zero, ignore it.

There are four fields in the MacBinary II header marked as reserved. They are
used for padding and as space for additional fields in future revisions of the
MacBinary header. They should be set to zero, as should all unused fields in
the header.

The MacBinary header is followed by four bytes of data (OOh, OOh, OOh, 02h)
signaling the start of the actual MacPaint file. Following these four bytes are
304 bytes of pattern data. This data is used and modified by paint programs
such as MacPaint as pattern palette data and is not used for the reconstruction
or display of MacPaint images themselves. There is always data for 38 patterns,
and each pattern is eight bytes in length.

Following the pattern data are 204 bytes of zero-byte data used for padding.
The MacPaint image data follows this padding and always starts at file offset
640 when a MacBinary header is present. Image data in a MacPaint file is
always compressed using a simple byte-wise run-length encoding (RLE)
scheme. Each scan line is always 72 ·bytes in length and there are always 720
scan lines per MacPaint image.

MACINTOSH PAINT 541

Macintosh Paint (cont'd)

A byte is read and used as the run count. If the most significant bit is set to 1,
the byte is converted to its two's-complement value, and the next byte is
repeated Run Count times. If the most significant bit is zero, then one is added
to the count and. the next RunCount bytes are read. We can use the steps
shown in the following pseudocode to ~ecode a scan line:

Read a byte value
If high bit is one

Count is two's complement of byte (count= -byte value)
Read a byte
Write this byte 'count' times

If high bit is zero
Count is byte value plus one (count= byte value+ 1)
Read and copy the next 'count' bytes

If 72 bytes have been written, the scan line is done

Note that the Macintosh displays black characters on a white background, as
opposed to the PC and other systems, which display white characters on a black
background; for this reason, it may be necessary to flip the bit values of the
image data to obtain the proper color orientation.

ForFurtherhdonnation
For further information about the Macintosh Paint format, see the code exam
ples included on the CD-ROM that accompanies this book. You can also con
tact:

Apple Computer Inc.
20525 Mariani Avenue
Cupertino, CA 95104
Voice: 408-996-1010
Voice: 800-538-9696
FAX: 408-974-1725
WWW: http://www.apple.com/

Additional information on this format can be found in:

Apple Computer, Inside MaCintosh: Imaging, Volumes I and V, Addison
Wesley, Reading, MA, 1985.

These volumes are also available on the Apple Developer CDs.

542 GRAPHICS FILE FORMATS

Macintosh Paint (cont'd)

Additional references include:

"MacPaint Documents Format," Macintosh Technical Note #86, Apple
Computer Developer Technical Support.

Birse, Cameron, Guillermo Ortiz, and jon Zap. "Things You Wanted to
Know About PackBits," Macintosh Technical Note #71, Apple Computer
Developer Technical Support.

MACINTOSH PAINT 543

I Macintosh PICT
NAME:

ALSO KNOWN As:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

Macintosh PICT

PICT, Macintosh Picture, .PCT, QuickDraw Picture
Format

Metafile

Up to 24-bit

PackBits, JPEG

NA

No

Big-endian

Apple Computer, Inc.

Apple Macintosh

Most Macintosh programs

Yes

Yes

Yes

Macintosh Paint

UsAGE: Desktop publishing, paint, and imaging applications using QuickDraw
calls.

coMMENTs: A versatile format in wide use on the Macintosh by applications having
anything to do with graphics. Because of its complexity, however, it is sel
dom supported on other platforms.

Overview
The Macintosh PICT (Macintosh Picture) format is associated with applications
on the Macintosh and is one of the best supported formats on that platform.
PICT files are meant to encapsulate the functionality of QuickDraw, the native
graphics drawing protocol on the Macintosh, and consist mainly of QuickDraw
calls arranged in no particular order. There have been two major releases of
QuickDraw, vl.O and v2.0 (Color QuickDraw). There have also been numerous
minor QuickDraw revisions, each associated with a corresponding Macintosh
PICT version.

QuickDraw vl.O supports monochrome bitmaps up to 32K in size. Image reso
lution is fixed at the original Macintosh display resolution, or 72 dpi.

544 GRAPHICS FILE FORMATS

Macintosh PICI' (cont'd)

QuickDraw v2.0, sometimes known as Color QuickDraw, supports 8-bit bitmaps
as well as monochrome. There is no compression available for 8-bit Version 2.0
PICT files.

All information in Macintosh PICT files is stored in the data fork of the Macin
tosh file pair. Although the resource fork may be present, it is left empty.
Image data is stored in binary format and consists of a series of operators and
associated data.

High-level routines in the Macintosh ToolKit are available to read and write
PICT files and are often used when writing applications that translate PICT files
to other image file formats.

File Organization
All Macintosh PICT files start with a 512-byte header, which contains informa
tion that the Macintosh uses to keep track of the file. This is followed by three
fields describing the image size (picSize), the image frame (picFrame), and a
version number. In v2.0 files, another header follows. In both versions, the pre
ceding information is followed by the image data. In all versions, the end of
the file is signalled by an end-of-file operator.

File Details
QuickDraw, and consequently the Macintosh PICT format, is far too complex
for us to do justice to it here, so we will merely note some details about the
start of the file. A good deal of information and codes are included on the CD
ROM. Note that most secondary references only give examples of bitmap
encoding and ignore the vector nature of the format.

The information following the platform-specific 512-byte header is in the fol
lowing format: ·

SHORT File size in bytes
SHORT Frame y-value of top left of image (at 72 dpi)
SHORT Frame x-value of top left of image (at 72 dpi)
SHORT Frame y-value of lower right of image (at 72 dpi)
SHORT Frame x-value of lower right of image (at 72 dpi)

in v 1.0 files, this is followed by:

BYTE Version operator(Oxll)
BYTE Version number(OxOl)

MACINTOSH PICT 545

Macintosh PIC/' (coot'd)

or, in v2.0 files, by:

SHORT
SHORT

Version operator (OxOOll)
Version number (Ox02ff)

Version 2.0 files also have a 26-byte header following the version information:

SHORT
SHORT
SHORT
LONG
LONG
SHORT
SHORT
SHORT
SHORT
LONG

Header opcode for Version 2 (OCOO)
FFEF or FFEE
Reserved (0000)
Original horizontal resolution in pixels/inch
Original vertical resolution in pixels/inch
Frame upper left y original resolution
Frame upper left x at original resolution
Frame lower right y at original resolution
Frame lower right x at original resolution
Reserved

picSize and picFrame records follow the header.

pic Size

WORD Picture size in bytes
WORD Image top
WORD Image left
WORD Image bottom
WORD Image right

picFrame (PICT v 1.0)

BYTE Version (llh)
BYTE Picture version (Olh)

This is followed by the image data. Each record in a PICT version 1 file consists
of a one-byte opcode followed by the actual data.

picFrame (PICT v2.0)

WORD
WORD
WORD
WORD
DWORD
DWORD
DWORD
WORD
WORD
WORD
WORD
DWORD

Version (OOllh)
Picture version (02ffh)
Reserved header opcode (OcOOh)
Header opcode (OcOOh)
Picture size (bytes)
Original horizontal resolution (pixels/inch)
Original vertical resolution (pixels/inch)
y value of top left of image
x value of top left of image
y value of lower right of image
x value of lower right of image
Reserved

This is followed by the image data. Each record of a PICT v2.0 file consists of a
two-byte opcode followed by the actual data. Note that opcodes and data must

546 GRAPHICS FILE FORMATS

Macintosh PICI' (ctmt'd)

be aligned on 16-byte boundaries, and that certain opcodes in PICT vl.O and
v2.0 files are interpreted differently.

ForFurtherlnfonnatlon
For further information about the Macintosh PICT format, see the documenta
tion and sample code included on the CD-ROM that accompanies this book.

Additional information on the Macintosh PICT format may be obtained from
Claris Corporation, a software spinoff from Apple, in the form of an update to
Apple Technical Note #27. Apple Technical Notes may be obtained from Apple
Computer and from many online information services. Contact:

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95104
Voice: 408-996-1010
Voice: 800-538-9696
FAX: 408-97 4-1725
WWW: http:/ /www.apple. com/

Claris Corporation
5201 Patrick Henry Drive
P.O. Box 58168
Santa Clara, CA 95052-8168
Technical Support: 408-727-9054
Customer Relations: 408-727-8227
WWW: http:/ /www.claris.com/

Other Apple Technical Notes related to Macintosh PICT and other Apple for
mats include:

TN #021 QuickDraw Picture Definitions

TN #041 Offscreen Bitmaps

TN #091 optimizing of the LaserWriter-Picture Comments ·

TN # 119 Color Q}tickDraw

TN #120 OJ!screen PixMap

TN #171 Things You Wanted to Know About PackBits

TN #181 Every Picture (Comment) Tells Its Story, Don~ It?

MACINTOSH PICT 547

Macintosh PICI' (cont'd)

TN #154 Displaying Large PICT Files

TN #275 32-Bit Qp,ickDraw Version 1.2Features

Additional information on the PICT format can be found in:

Apple Computer, Inside Macintosh, vols. I, V, and VI, Addison-Wesley,
Reading, MA, 1985.

These volumes are also available on the Apple Developer CDs.

548 GRAPHICS FILE FORMATS

NAME:

ALSO KNOWN As:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

Microsoft Paint

MSP

Bitmap

Mono

RLE, uncompressed

64Kx64K pixels

No

Little-en dian

Microsoft Corporation

Microsoft Windows, MS-DOS

Microsoft Paint, others

No

No

Yes

Microsoft Windows Bitmap

usAGE: Black-and-white drawings, clip art

Microsoft Paint I

coMMENTs: A format that was in wider use in the early days of Microsoft Windows. It is
a simple format that is not currently suitable for deep pixel or truecolor
images.

Overview
The Microsoft Paint (MSP) image file format is used exclusively for storing
black-and-white images. The vast majority of MSP files contain line drawings
and clip art. MSP is used most often by Microsoft Windows applications, but
may be used by MS-DOs-based programs as well. The Microsoft Paint format is
apparently being replaced by the more versatile Microsoft Windows BMP for
mat; it contains information specifically for use in the Microsoft Windows oper
ating environment. For information on the Windows-specific use of the header
information, refer to the Microsoft Paint format specification available from
Microsoft.

MICROSOFT PAINT 549

Microsoft Paint (cont'd)

File Organization
The Microsoft Paint header is 32 bytes in length and has the following struc
ture. In the discussion that follows, a WORD is a 16-bit unsigned value.

typedef struct _MicrosoftPaint
{

WORD Keyl;
WORD Key2;
WORD Width;
WORD Height;
WORD XARBitmap;
WORD YARBitmap;
WORD XARPrinter;
WORD YARPrinter;
WORD PrinterWidth;
WORD PrinterHeight;
WORD XAspectCorr;
WORD YAspectCorr;
WORD Checksum;
WORD Padding[3];

}MSPHEAD;

File Details

/* Magic number */
/* Magic number *I
/* Width of the bitmap in pixels */
/* Height of the bitmap in pixels *I
/* X Aspect ratio of the bitmap */
/* Y Aspect ratio of the bitmap *I
/* X Aspect ratio of the printer *I
I* Y Aspect ratio of the printer *I
/* Width of the printer in pixels */
/* Height of the printer in pixels */
/* X aspect correction (unused) */
I* Y aspect correction (unused) *I
I* Checksum of previous 24 bytes *I
/* Unused padding *I

In the Microsoft Paint header, Key1 and Key2 contain identification values
used to determine the version of the file format. For version l.x of the
Microsoft Paint format, the values of the Key1 and.Key2 fields are 6144h and
4D6Eh respectively. ~or version 2.0, the Key 1 and Key2 field values are 694Ch
and 536Eh respectively.

Width and Height are the size of the bitmap in pixels. The size of the bitmap
in bytes is calculated by dividing Width by 8 and multiplying it by Height.

XARBitmap and YARBitmap contain the aspect ratio in pixels of the screen
used to create the bitmapped image.

XARPrinter and YARPrinter contain the aspect ratio in pixels of the output
device used to render the bitmapped image. When an MSP file is created by a
non-Windows application, these four fields typically contains the same values as
the Width and Height fields.

PrinterWidth and PrinterHeight contain the size in pixels of the output device
for which the image is specifically formatted. Typical values for these fields are
the same values as those stored in Width and Height.

550 GRAPHICS FILE FORMATS

Microsoft Paint (cont'd)

XAspectCorr and YAspectCorr are used to store aspect ratio correction infor
mation, but are not used in version 2.0 or earlier versions of the Microsoft
Paint format and should be set to 0.

Checksum contains the XORed values of the first 12 WORDs of the header.
When an MSP file is read, the first 13 WORDs, including the Checksum field,
are XORed together, and if the resulting value is 0, the header information is
considered valid.

Padding extends the header out to a full 32 bytes in length and is reserved for
future use.

The image data directly follows the header. The format of this image data
depends upon the version of the Microsoft Paint file. For image files prior to
version 2.0, the image data immediately follows the header. There are eight
pixels stored per byte, and the data is not encoded.

Each scan line in a version 2.0 or later Microsoft Paint bitmap is always RLE
encoded to reduce the size of the data. Each encoded scan line varies in size
depending upon the bit patterns it contains. To aid in the decoding process, a
scan-line map immediately follows the header. The scan-line map is used to
seek to a specific scan line in the encoded image data without needing to
decode all image data prior to it. There is one element in the map per scan
line in the image. Each element in the scan-line map is 16 bits in size and con
tains the number of bytes used to encode the scan line it represents. The scan
line map starts at offset 32 in the MSP file and is sizeof(WORD).

Consider the following example. If an application needs to seek directly to the
start of scan-line 20, it adds together the first 20 values in the scan-line map.
This sum is the offset from the beginning of the image data of the 20th
encoded scan line. The scan-line map values can also be used to double-check
that the decoding process read the proper number of bytes for each scan line.

Following the scan-line map is the run-length encoded monochrome
bitmapped data. A byte-wise run-length encoding scheme is used to compress
the monochrome bitmapped data contained in an MSP-format image file. Each
scan line is encoded as a series of packets containing runs of identical byte val
ues. If there are very few runs of identical byte values, or if all the runs are very
small, then a way to encode a literal run of different byte values may be used.

MICROSOFT PAINT 55}

Microsoft Paint (cont'd)

The following pseudocode illustrates the decoding process:

Read a BYTE value as the RunType
If the Run Type value is zero

Read next byte as the RunCount
Read the next byte as the Run Value
Write the Run Value byte RunCount times

If the Run Type value is non-zero
Use this value as the Run Count
Read and write the next RunCount bytes literally

As you can see, this is yet another variation of a simple run-length encoding
scheme. A byte is read, and if it contains a value of 0, then the following byte is
the RunCount (the number of bytes in the run). The byte following the Run
Count is the Run Value (the value of the bytes in the run). If the byte read is
non-zero, then the byte value is used as the RunCount and the next RunCount
bytes are read literally from the encoded data stream.

ForFurtherlnfonnation
For further information about Microsoft Paint, contact:

Microsoft Corporation
One Microsoft Way
Redmond, WA 98052-6399
Voice: 206-882-8080
FAX: 206-936-7329
BBS: 206-637-9009
WWW: http://www. microsoft. com/

The Microsoft Windows Programmer's Reference Library is the master refer
ence for programmers working with all aspects of Microsoft Windows. The
books in this library are supplied with the Microsoft Windows Software Devel
opment Kit (SDK). The manuals supplied with the Microsoft C 7.0 Professional
Development Systems are also very helpful. You can get information about
obtaining these products from:

Microsoft Information Center
Voice: 800-426-9400

552 GRAPHICS FILE FORMATS

Microsoft Paint (cont'd)

You may also be able to get information via ITP through the Developer Rela
tions Group at:

ftp:/ /ftp. microsoft. com/deueloper/drg/

MICROSOFT PAINT 553

I Microsoft RIFF
NAME:

ALSO KNOWN As:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

Microsoft RIFF

RIFF, Resource Interchange File Format, RIFX,
.WAV, .AVI, .BND, .RMI, .RDI

Multimedia

24-bit

RLE, uncompressed, audio, video

Varies

No

Little- and big-endian

Microsoft Corporation

Microsoft Windows 3.x, Windows NT

Microsoft Windows and OS/2 multimedia applica
tions

Yes

No

No

IFF, Chapter 10, Multimedia

usAGE: RIFF is a device control interface and common file format native to the
Microsoft Windows system. It is used to store audio, video, and graphics
information used in multimedia applications.

coMMENTs: A complex format designed to accommodate various types of data for
multimedia applications. Because it is quite new and vendor-controlled,
the specification is likely to change in the future.

Overview
Microsoft RIFF (Resource Interchange File Format) is a multimedia file format
created by Microsoft for use with the Windows GUI. RIFF itself does not define
any new methods of storing data, as many of the bitmap formats described in
this book do. Instead, RIFF defines a structured framework, which may contain
existing data formats. Using this concept, you can create new, composite for
mats consisting of two or more existing file formats.

Multimedia applications require the storage and management of a wide variety
of data, including bitmaps, audio data, video data, and pe-ripheral device

554 GRAPHICS FILE FORMATS

Microsoft RIFF (cunt'd)

control information. RIFF provides an excellent way to store all these varied
types of data. The type of data a RIFF file contains is indicated by the file exten
sion. Examples of data that may be stored in RIFF files are:

• Audio/visual interleaved data (.AVI)

• Waveform data (.WAV)

• Bitmapped data (.RDI)

• MIDI information (.RMI)

• A bundle of other RIFF files (.BND)

NOTE

At this point, AVI files are the only type of RIFF files that have
been fully implemented using the current RIFF specification.
Although WAV files have been implemented, these files are very
simple, and their developers typically use an older specification
in constructing them.

Because RIFF is an umbrella name for a variety of multimedia files, RIFF files
are referred to by the type of data they contain, rather than by the actual for
mat name of RIFF. For this reason, you may find RIFF files rather confusing
when you start to use them. For example, a RIFF file containing Audio/Visual
Interleaved data is normally referred to simply as an "AVI file" and not as a
"RIFF Audio/Visual Interleaved Format File." Only a programmer might ever
realize that all of these different files are the same format, or even care.

There is another area of potential confusion. Some people think that RIFF files
are somehow similar in design to TIFF (Tag Image File Format) files. While it is
true that both formats contain data structures that may be added or deleted to
a file ("tags" in TIFF and "chunks" in RIFF), the internal concept and design of
these structures within RIFF and TIFF differ greatly. Unlike TIFF, the RIFF file
format is based on the Electronic Arts Interchange File Format {IFF) structure
(see the article describing this format). And, although both formats use the
same concept of data storage, they are not compatible in their design.

File Organization
RIFF is a binary file format containing multiple nested data structures. Each
data structure within a RIFF file is called a chunk. Chunks do not have fixed
positions within a RIFF file, and therefore standard offset values cannot be used
to locate their fields. A chunk contains data such as a data structure, a data

MICROSOFT RIFF 555

Microsoft RIFF (cont'd)

stream, or another chunk called a subchunk. Every RIFF chunk has the follow
ing basic structure:

typedef struct _Chunk
{

DWORD Chunkid; /* Chunk ID marker *I
DWORD ChunkSize; /* Size of the chunk data in bytes */
BYTE ChunkData[ChunkSize]; /*The chunk data*/

CHUNK;

Chunkld contains four ASCII characters that identify the data the chunk con
tains. For example, the characters RIFF are used to identify chunks containing
RIFF data. If an ID is smaller than four characters, it is padded on the right
using spaces (ASCII 32). Note that RIFF files are written in little-endian byte
order. Files written using the big-endian byte ordering scheme have the identi
fier RIFX.

ChunkSize is the length of the data stored in the ChunkData field, not includ
ing any padding added to the data. The size of the Chunkld and ChunkSize
fields are not themselves included in this value.

ChunkData contains data that is WORD-aligned within the RIFF file. If the data
is an odd length in size, an extra byte of NULL padding is added to the end of
the data. The ChunkSize value does not include the length of the padding.

Subchunks also have the same structure as chunks. A subchunk is simply any
chunk that is contained within another chunk. The only chunks that may con
tain subchunks are the RIFF file .chunk RIFF and the list chunk, UST
(explained in the next section). All other chunks may contain only data.

A RIFF file itself is one entire RIFF chunk. All other chunks and subchunks in
the file are contained within this chunk. If you are decoding, your RIFF reader
should ignore any chunks that the reader does not recognize or it cannot use.
If you are encoding, your RIFF writer will write out all unknown and unused
chunks that were read. Do not discard them.

File Details
RIFF files that are used to store audio and video information are called AVI
files. The RIFF AVI file format normally contains only a single AVI chunk; how
ever, other types of chunks may also appear. An AVI reader should ignore all
chunks it does not need or recognize that are stored within a RIFF AVI file.

556 GRAPHICS FILE FORMATS

Microsoft RIFF (ctmt'd)

Although Microsoft uses a standard notation to describe the internal arrange
ment of data structures within RIFF files, we believe it is clearer to use our own
C-like syntax to illustrate the placement of chunks and subchunks within a RIFF
AVI file. The Chunkld for each chunk is listed in the comments:

struct _RIFF I* "RIFF" *I
{

struct ~VICHUNK I* "AVI • */
{

struct _LISTHEADERCHUNK I* "hdrl" *I
{

AVIHEADER AviHeader; I* •avih" *I
struct _LISTHEADERCHUNK I* •strl" *I
{

AVIS~ER StreamHeader; I* •strh" */
AVISTREAMFORMAT StreamFormat; I* •strf• *I
AVISTREAMDATA StreamData; I* •strd" */

struct _LISTMOVIECHUNK I* •movi• *I
{

struct _LISTRECORDCHUNK I* •rec • */
{

I* Subchunk 1 */
I* Subchunk 2 */
/* Subchunk N *I

struct _AVIINDEXCHUNK I* "idxP *I
{

/* Index data *I

The above structure represents the internal data layout of a RIFF file contain
ing only one AVI chunk. This chunk follows the format of the chunk data struc
~re previously described. The AVI chunk is identified by the 4-character chunk
identifier "AVI " (note the final blank character). The AVI chunk contains two
mandatory UST subchunks, which indicate the format of the data stream(s)
stored in the file.

AJ'l Header Subchunk

The first mandatory UST chunk contains the main AVI header subchunk and
has the identifier hdrl. The information in the header subchunk defines the
format of the entire AVI chunk. The hdrl chunk must appear as the first chunk
within the AVI chunk. The format of the header subchunk is the following:

MICROSOFT RIFF 557

Microsoft RIFF (cont'd)

typedef struct ~VIHeader
{

DWORD TimeBetweenFrames;
DWORD MaximumDataRate;
DWORD PaddingGranularity;
DWORD Flags;
DWORD TotalNumberOfFrames;
DWORD NumberOfinitialFrames;
DWORD NumberOfStreams;
DWORD SuggestedBufferSize;
DWORD Width;
DWORD Height;
DWORD TimeScale;
DWORD DataRate;
DWORD StartTime;
DWORD DataLength;

AVIHEADER;

/* Time delay between frames */
/* Data rate of AVI data */
/* Size of single unit of padding */
I* Data parameters */
/* Number of video frame stored */
/* Number of preview frames */
/* Number of data streams in chunk*/
/* Minimum playback buffer size */
/* Width of video frame in pixels */
/* Height of video frame in pixels*/
/* Unit used to measure time */
/* Data rate of playback */
/* Starting time of AVI data */
/* Size of AVI data chunk */

TimeBetweenFrames contains a value indicating the amount of delay between
frames in microseconds.

MaximumDataRate value indicates the data rate of the AVI data in bytes per
second.

PaddingGranularity specifies the multiple size of padding used in the data in
bytes. When used, the value of this field is typically 2048.

Flags contains parameter settings specific to the AVI file and its data. The
parameters correspond to the bit values of the Flags field as follows:

Bit 4 AVI chunk contains an index subchunk (idx1).

Bit 5 Use the index data to determine how to read the AVI data, rather than
the physical order of the chunks with the RIFF file.

Bit 8 AVI file is interleaved.

Bit 16 AVI file is optimized for live video capture.

Bit 17 AVI file contains copyrighted data.

TotalNumberOfFrames indicates the total number of frames of video data
stored in the movi subchunk.

NumberOflnitialFrames specifies the number of frames in the file before the
actual AVI data. For non-interleaved data this value is 0.

558 GRAPHICS FILE FORMATS

Microsoft RIFF (cont'd)

NumberOfStreams holds the number of data streams in the chunk. A file with
an audio and video stream contains a value of 2 in this field, while an AVI file
containing only video data has 1. In the current version of the RIFF format,
one audio and one video stream are allowed.

SuggestedBufferSize is the minimum size of the buffer to allocate for playback
of the AVI data. For non-interleaved AVI data, this value is at least the size of
the largest chunk in the file. For interleaved AVI files, this value should be the
size of an entire AVI record.

Width and Height values indicate the size of the video image in pixels.

TimeScale is the unit used to measure time in this chunk. It is used with
DataRate to specify the time scale that the stream will use. For video streams,
this value should be the frame rate and typically has a value of 30. For audio
streams, this value is typically the audio sample rate.

DataRate is divided by the TimeScale value to calculate the number of samples
per second.

StartTime is the starting time of the AVI data and is usually 0.

DataLength is the size of the AVI chunk in the units specified by the TimeScale
value.

The hdrl subchunk also contains one or more UST chunks with the identifier
strl. There will be one of these UST chunks per data stream stored in the AVI
chunk.

Three subchunks are stored within the strl LIST chunk. The first is the Stream
Header subchunk, which has the identifier strh. This header contains informa
tion specific to the data stream stored in the strl LIST chunk. A stream header
is required and has the following format:

typedef struct _StreamHeader
{

char DataType[4];
char DataHandler[4];
DWORD Flags;
DWORD Priority;
DWORD InitialFrames;
DWORD TimeScale;
DWORD DataRate;
DWORD StartTime;
DWORD Da taLength;
DWORD SuggestedBufferSize;

I* Chunk identifier ("strl•) *I
I* Device handler identifier *I
I* Data parameters *I
I* Set to 0 *I
I* Number of initial audio frames *I
I* Unit used to measure time *I
I* Data rate of playback *I
I* Starting time of AVI data */
I* Size of AVI data chunk *I
I* Minimum playback buffer size *I

MICROSOFT RIFF 559

Microsoft RIFF (cont'd)

DWORD Quality;
DWORD SampleSize;

STREAMHEADER;

I* Sample quailty factor *I
I* Size of the sample in bytes *I

DataType contains a 4-character identifier indicating the type of data the
stream header refers to. Identifiers supported by the current version of the·
RIFF format are: vids for video data and auds for audio data.

DataHandler may contain a 4-character identifier specifying the preferred type
of device to handle the data stream.

Flags contains a set of bit flags use to indicate parameter settings related to the
data.

Priority is set to 0.

InitialFrames indicates in seconds how far the audio is placed ahead of the
video in interleaved data.

TimeScale, DataRate, StartTime, DataLength, and SuggestedBufferSize all
have the same function as the fields of the same names in the hdr 1 chunk.

Quality is an integer in the range of 0 to 10,000, indicating the quality factor
used to encode the sample.

SampleSize is the size of a single sample of data. If this value is 0, the sample
varies in size and each sample is stored in a separate subchunk. If this value is
non-zero, then all the samples are the same size and are stored in a single sub
chunk.

Immediately following the stream header is a stream format subchunk with the
identifier strf. This header describes the format of the stream data. Its format
varies depending on the type of data that is stored (audio or video). This sub
chunk is also required.

Another stream data subchunk with the identifier strd can optionally follow
the stream format subchunk. The data in this chunk is used to configure the
drivers required to interpret the data. The format of this chunk also varies
depending upon the type of compression used on the stream data.

AJll Data Subchunk

The second mandatory LIST chunk contains the actual AVI data, has the identi
fier movi, and must appear as the second chunk within the AVI chunk.

560 GRAPHICS FILE FORMATS

Microsoft RIFF (cont'd)

The data in the movi chunk may be grouped in the form of LIST records (a
UST chunk containing one or more subchunks each with the identifier "rec ").
Only data that is interleaved to be read from a CD-ROM is stored as a series of
UST records (data is read more efficiently from a CD-ROM when it is inter
leaved). If the data is not interleaved, it is stored as a single block of data
within the movi chunk itself.

Index Chunk

The AVI chunk may also contain a third chunk, called an index chunk. An
index chunk has th~ identifier idxl and must appear after the hdrl and movi
chunks. This chunk contains a list of all chunks within the AVI chunk, along
with their locations, and is used for random access of audio· and video data.
The index chunk has the following format:

typedef struct _Aviindex
{

DWORD Identifier;
DWORD Flags;
DWORD Offset;
DWORD Length;

A VI INDEX;

/* Chunk identifier reference */
/* Type of chunk referenced */
/* Position of chunk in file */
/* Length of chunk in bytes */

Identifier contains the 4-byte identifier of the chunk it references (strh, strf,
strd, and so on).

Flags bits are used to indicate the type of frame the chunk contains or to iden
tify the index structure as pointing to a LIST chunk.

Offset indicates the start of the chunk in bytes relative to the movi list chunk.

Length is the size of the chunk in bytes.

The idxl chunk contains one of these structures for every chunk and sub
chunk in the AVI chunk. The structures need not index each chunk in the
order in which they occur within the AVI chunk. The order of the index struc
tures in the idxl may also be used to control the presentation order of the data
stored in the AVI chunk. If an index is included in an AVI chunk, the appropri
ate indication bit must be set in the Flags field of the AVI header chunk. If an
application reading a RIFF file decides to use the information in the index
chunk, it must first find the hdrl chunk and determine if an index chunk exists
by examining the Flags field value in the AVI header. If it does exist, the reader
will skip past all the chunks in the AVI chunk until it encounters the idxl
chunk.

MICROSOFT RIFF 561

Microsoft RIFF (cont'd)

JUNK Chunk

One other type of chunk that is commonly encountered in an AVI chunk is the
padding or JUNK chunk (so named because its chunk identifier is JUNK). This
chunk is used to pad data out to specific boundaries (for example, CO-ROMs
use 2048-byte boundaries). The size of the chunk is the number of bytes of
padding it contains. If you are reading AVI data, do not use use the data in the
JUNK chunk. Skip it when reading and preserve it when writing. The JUNK
chunk uses the standard chunk structure:

typedef struct _JunkChunk
{

DWORD Chunkid; /* Chunk ID marker (JUNK)* I
DWORD PaggingSize; /* Size of the padding in b¥tes */
BYTE Padding[ChunkSize]; /*Padding*/

} JUNKCHUNK;

ForFurtherhllonnation
For further information about the Microsoft RIFF format, see the specification
included on the CD-ROM that accompanies this book.

If you write an application that recognizes the RIFF file format, you will need to
get a copy of the Microsoft Multimedia Development Kit (MDK). The MDK
contains all the tools and documentation necessary to work with RIFF files, as
well as with the other details of Microsoft Windows multimedia.

For information about Microsoft multimedia products, including the MDK,
contact Microsoft:

Microsoft Corporation
Attn: Multimedia Systems Group
Product Marketing
One Microsoft Way
Redmond, WA 98052-6399
WWW: http://www. microsoft. com/

For specific information about Microsoft AVI and the RIFF file formats, see the
following Microsoft documents:

Microsoft Corporation. Microsoft Windows Multimedia Programmer's Guide,
Microsoft Press, Redmond, WA.

Microsoft Corporation. Microsoft Windows Multimedia Programmer's Refer
ence, Microsoft Press, Redmond, WA.

562 GRAPHICS FILE FORMATS

Microsoft RIFF (cont'd)

See also the discussion and additional references in Chapter 10, in this book.

You may also be able to get information via FTP through the Developer Rela
tions Group at:

ftp:/ /ftp. microsoft. com/developer/drg/

MICROSOFT RIFF 563

I Microsoft RTF
NAME:

ALSO KNOWN As:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

Microsoft RTF

Rich Text Format

Metafile

256

None

NA

No

Little-en dian

Microsoft Corporation

MS-DOS

Most word processing, some spreadsheet

Yes

No

No

None

usAGE: Used for document data interchange.

coMMENTs: A least-common-denominator format used mainly in word-processor docu
ments.

Overview
Microsoft RTF (Rich Text Format) is · a metafile standard developed by
Microsoft Corporation to encode formatted text and graphics for interchange
between applications. Normally, exporting a formatted file from one word pro
cessor to another requires that the file be converted from its original format to
the format supported by the target application. This conversion almost never
produces a target document that is an exact functional duplicate of the origi
nal. This is due both to the different features present in the word processor
formats, and to limitations of the format converters. If a document is stored as
an RTF file, however, and the reading application can also handle RTF files, no
intermediate conversion is necessary and therefore no data is misinterpreted
or lost.

564 GRAPHICS FILE FORMATS

Microsoft RTF (cont'd)

RTF has excellent font-handling capabilities and bitmap storage features. RTF
files contain only 7-bit ASCII characters, so the format can support documents
formatted using the ANSI, MS-DOS, and Macintosh character sets. These fea
tures and others make the RTF format a good choice for use as a· multi
platform interchange format.

File Organization
The encoded data in RTF files is arranged more like a stream than a fixed data
structure, so there is no definite information header that is the same in all RTF
files. Instead, an RTF code stream consists of variable-sized fields called control
words, control symbols, and groups. Each of these three types of fields begins with
a backslash character (\), followed by one or more ASCII characters. A control
word is an RTF code that contains special formatting and printing instructions.

File Details
Looking at the 22 lines of RTF code included in this section, we see the follow
ing control codes at the beginning of the file:

\rt£1\ansi

These control codes indicate that this data stream is an RTF document, that
the code conforms to version 1 of the RTF specification, and that the docu
ment uses the ANSI (\ansi) rather than the PC (\pc), PS/2 (\pea), or Macintosh
(\mac) character sets.

Control symbols are special escape character sequences consisting of a back
slash that is followed by a single, nonalphabetic character. RTF control symbols
include:

\- Nonbreaking space
_ Nonbreaking hyphen
\ : Index subentry
\' Hexadecimal value xx

A group is a collection of text, control words, and control symbols, enclosed in
a set of braces ({}). In fact, the entire RTF code stream is considered a group
and is always enclosed in braces. The first control word in the group identifies
the group type. Both the backslash (\) and the brace characters ({}) have spe
cial meanings in RTF and should be preceded by a backslash if they are to be
interpreted as text.

MICROSOFT RTF 565

Microsoft RTF (ccmt'd)

{\rtfl\ansi \deff0\deflang1024
{\fonttbl{\fO\froman Tms Rmn;}{\fl\froman Symbol;}{\f2\fswiss Helv;}}
{\colortbl;\red0\green0\blue0;\red0\green0\blue255;\red0\green255\blue255;
\red0\green255\blue0;\red255\green0\blue255;\red255\green0\blue0;
\red255\green255\blue0;\red255\green255\blue255;\red0\green0\blue127;
\red0\green127\blue127;\red0\green127\blue0;\red127\green0\blue127;
\red127\green0\blue0;\red127\green127\blue0;\red127\green127\blue127;
\redl92\green192\blue192;}
{\stylesheet{\fs20\lang1033 \snextO Normal;}}
{\info{\author \'00\'00\'00\'00\'00\'00\'00\'00\'00\'00\'00\'00\'00\'00\'00}
{\operator \'00\'00\'00\'00\'00\'00\'00\'00\'00\'00\'00\'00\'00\'00\'00}
{\creatim\yr1992\mol\dy9\hr12\min53}
{\revtim\yr1992\mol\dy9\hr12\min53}{\versionl}{\edmins3}{\nofpages0}
{\nofwords0}{\nofchars0}{\vern16504}}
\paperw12240\paperh15840\margl1800\margr1800\margt1440\margb1440\gutter0
\widowctrl\ftnbj \sectd \linexO\endnhere \pard\plain \fs20\lang1033
Four Basic Principles to Unify Mind and Body.
\par \tab 1. Keep one point.
\par \tab 2. Relax completely.
\par \tab 3. Keep weight underside.
\par \tab 4. Extend Ki.
\par }

Looking again at the RTF code in the figure, we can see a number of groups.
The first group is obviously the \rtf group, which contains the code for the
entire file.

The \fonttbl group contains the descriptions of the fonts used within the docu
ment. This document defines Times Roman, Symbol, and Helvetica font sets.

The next group, \colortbl, is a color table used to control screen and printer
colors. This file defines a basic palette of 16 colors, with each color channel
containing an 8-bit index value in the range ofO to 255.

The \stylesheet group contains descriptions and definitions of the various styles
and formats used in the document. In this example, we can see that Normal is
the only style defined in this document.

The \info group contains one or more pieces of information about the docu
ments, such as title, subject, author, version, keywords, and comments. In this
example, the author and operator (the person who made the last change to
the document) are blank. The remaining fields identify the creation time and
last revision time of the document and its application version number.

After the groups, we see a series of control words that define the document,
section, and paragraph formats, including the width, height, and margins. Fol
lowing these control words is the actual text, which is one line of text followed
by four lines of tab-indented text.

566 GRAPHICS FILE FORMATS

Microsoft RTF (cont'd)

RTF can also handle bitmap images encoded in either a hexadecimal or binary
format. The control word \pict always begins a group containing bitmapped
data. A \pict group might appear in an RTF code stream as follows:

{\pict\wmetafile8\picw23918\pich14552\picwgoal13562\pichgoal8251
\picscalex63\piccaley63

The control words are the following:

• Source file type

• Image width and height

• Picture width and height

• Horizontal scaling value

• Vertical scaling value

If the image source is a bitmap (\wbitmap), then the following additional con
trol words may appear:

• Bits per pixel

• Number of pixel planes

• Picture width in bytes

Source images may also be Macintosh PICT files.

Following the \pict group is the actual bitmap data, which is hexadecimal in
format by default (as shown in the example below). If the data is in binary for
mat, it is preceded by the \bin control word, followed by the number of bytes of
binary data that follow.

{\rtfl\ansi \deff0\deflangl024
{\fonttbl{\fO\froman CG Times (WN);}{\fl\fdecor Symbol;}{\f2\fswiss Univers (WN);}}
{\colortbl;\red0\green0\blue0;\red0\green0\blue255;\red0\green255\blue255;
\red0\green255\blue0;\red255\green0\blue255;\red255\green0\blue0;
\red255\green255\blue0;\red255\green255\blue255;\red0\green0\blue127;
\red0\greenl27\bluel27;\red0\green127\blue0;\redl27\green0\bluel27;
\redl27\green0\blue0;\redl27\green127\blue0;\red127\green127\blue127;
\red192\green192\blue192;}
{\stylesheet{\fs20\lang1033 snextO Normal;}}
{\info{\author James D. Murray}
{\creatim\yr1992\mol\dy9\hr15\min31}{\printim\yrl992\mol\dy9\hr15\min32}
{\versionl}{\edmins2}{\nofpagesl}{\nofwords0}{\nofchars2}{\vern16504}}
\paperw12240\paperhl5840\margll800\margrl800\margtl440\margbl440\gutter0
\widowctrl\ftnbj \sectd \linexO\endnhere \pard\plain \fs20\lang1033
{\pict\wmetafile8\picw23918\pich14552\picwgoall3562\pichgoal8251
\picscalex63\picscaley63
01000900000328ea01000000fee901000000050000000b0200000000050000000c024c0410070500

MICROSOFT RTF 567

Microsoft RTF (cont'd)

00000b0200000000050000000c024c04100705000000090200000000050000000102ffffff00fee9
0100430f2000cc0000004c041007000000004c0410070000000028000000100700004c0400000100
OlOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOQOOOOOOOOOOOOOOOOOOffffffOOffffffffffff
ff
ff
fffffffffffffffffffffffffff£00000300
0000}\par}

ForFurtherhdonnation
For further information, see the specification included on the CD-ROM that
accompanies this book. You may be able to get additional information by con
tacting Microsoft:

Microsoft Corporation
Attn: Department RTF
16011 N.E. 36th Way
Box97017
Redmond, WA 98073-9717
WWW: http://www. microsoft. com/

The RTF file format is also documented in the following reference:

Microsoft Corporation. Microsoft Word Technical Reference Manual,
Microsoft Press, Redmond, WA.

This book is available in bookstores or from:

Microsoft Press
Voice: 800-677-7377

You may also be able to get information via FTP through the Developer Rela
tions Group at:

ftp://ftp.microsoft.com/developcr/drg/

568 GRAPHICS FILE FORMATS

NAME:

ALSO KNOWN As:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

Microsoft SYLK

Symbolic Link Format, SLK

Vector

NA

NA

NA

No

NA

Microsoft Corporation

MS-DOS, others

Microsoft SYLK I

Spreadsheets, business graphics applications

No

No

No

Lotus DIF

usAGE: Interchange of spreadsheet information.

coMMENTs: Yet another format used to sh~e spreadsheet information with business
graphics applications.

Overview
The Microsoft SYLK (Symbolic Link) format is used mainly for the interchange
of spreadsheet data between applications such as Microsoft Multiplan and
Excel. Files in this format might also be imported directly by business graphics
applications. SYLK files are written entirely in ASCII and, like Lotus DIF and
SDI, are application-independent. SYLK, however, incorporates several features
not found in other spreadsheet data interchange formats.

File Organization
Records in a SYLK file contain three fields: a Record Type Descriptor (RTD), a

MICROSOFT SYLK 569

Microsoft SYLK (cont'd)

Field Type Descriptor (FTD), and a variable amount of data. A SYLK record has
the following format:

<RTD>;<FTD>;<data>

File Details
The following Record Type Descriptors (RTDs) are currently defined by SYLK:

R11> Description
B Cell boundary
C Adatacell
E End of file
F Cell formatting parameter
ID SYLK file identification record
NE Link to an inactive spreadsheet file
NN Name given to a rectangluar area of cells
NU Substitute filename
P Time and date stamp formats

Each Record Type Decriptor may be followed by a single Field Type Descriptor
(FTD) if needed. Most field type descriptors have meanings unique to each
record, but a few, listed below, have meanings global to all record types:

FrD Description
W Column width
X Horizontal cell coordinate
Y Vertical cell coordinate

The SYLK file format does not contain a header and resembles a data stream in
its design. Except for the ID record, which must be the first record in every
SYLK file, RIDs may appear anywhere in the file with the following exceptions:

• The first record must be an ID record (the RTD is ID)

• All P records follow the ID record.

• All B records follow the P records.

570 GRAPHICS FILE FORMATS

Microsoft SYLK (cont'd)

• A ;D or ;G ITD must appear in a C record prior to a reference to that ITD
by another record.

• NE records always follow NU records.

• The final record must be an E record.

ForFurtherhUonnation
SYLK was created and is maintained by Microsoft Corporation. You may be able
to get information by contacting:

Microsoft Corporation
One Microsoft Way
Redmond, WA 98052-6399
Voice: 206-882-8080
Voice: 800-426-9400
FAX: 206-883-8101
WWW: http://www. microsoft. com/

The following reference also contains information about the SYLK format:

Walden, jeffrey B. File Formats for Popular PC Software,John Wiley & Sons,
New York, NY, 1986.

You may also be able to get information via ITP through the Developer Rela
tions Group at:

ftp:/ lftp. microsoft. com/ developer I drg/

MICROSOFT SYLK 571

I Microsoft Windows Bitmap
NAME: Microsoft Windows Bitmap*

ALso KNowN As: BMP, DIB, Windows BMP, Windows DIB, Compatible
Bitmap

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

0RI!31NATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

Bitmap

1-, 4-, 8-, 16-, 24-, and 32-bits

RLE, uncompressed

32Kx32K and 2Gx2G pixels

No

Little-en dian

Microsoft Corporation

Intel machines running Microsoft Windows, Win
dows NT, Windows 95, OS/2, and MS-DOS

Too numerous to list

Yes

Yes

Yes

OS/2 Bitmap

usAGE: Used as the standard bitmap storage format in the Microsoft Windows
environment. Although it is based on Windows internal bitmap data struc
tures, it is supported by many non-Windows and non-PC applications.

coMMENTs: A well-defined format for programmers having access to the Microsoft
Developer's Network Knowledge Base and Software Development Kits.
(SDKs). Its simple RLE compression scheme is rather inefficient for com
plex images. Its many variations and differences from the OS/2 BMP for
mat can be confusing.

Overview
The Microsoft Windows Bitmap (BMP) file format is one of several graphics file
formats supported by the Microsoft Windows operating environment. BMP is
the native bitmap format of Windows and is used to store virtually any type of
bitmap data. Most graphics and imaging applications running under Microsoft

* Our thanks to David Charlap for his contributions to this article.

572 GRAPHICS FILE FORMATS

Microsoft Windows Bitmap (cont'd)

Windows support the creation and display of BMP format files. BMP is also very
popular in the MS-DOS operating system. It is also the native bitmap file format
ofOS/2.

The original bitmap format created for Windows 1.0 was very simple. It had a
fixed color palette, did not support bitmap data compression, and was
designed to support the most popular IBM PC graphics cards in use· at the time
(CGA, EGA, Hercules, and others). This defunct format is now often referred
to as the original Windows device-dependent bitmap (DDB).

As Windows 2.0 was being developed, support for a programmable color
palette was added to both Windows and BMP, allowing user-definable color
data to be stored along with the bitmap data that used it. When stored in mem
ory, this collection of information is known as a Microsoft Device Independent
Bitmap, or DIB. When this information is written out to a file, it is known as the
Microsoft Bitmap Format, or BMP. When you hear references to the DIB file
format, it is BMP that is actually being referred to.

During the development of BMP, Microsoft shared responsibility with IBM for
the development of early versions of IBM's OS/2 operating system. When Pre
sentation Manager, the OS/2 graphical user interface, required a bitmap for
mat, the Windows BMP format was used. Thus, the Windows 2.x and OS/2 l.x
BMP formats are identical.

The BMP format modified for Windows 3.0 differs only slightly from the OS/2
Presentation Manager bitmap format that preceded it. Note .that later revisions
designed to support IBM OS/2 Presentation Manager 2.x have resulted in fur
ther divergence between the Microsoft Windows and IBM OS/2 BMP file for
mats. The current version of BMP for Windows 4.0 (Windows 95) contains all
of the features and history of the Windows 2.x, 3.x, and Windows NT BMP for
mats.

The structure of BMP format files is closely tied to the API of both Windows
and OS/2. In this regard, BMP was never meant to be a portable format or used
for bitmap data interchange between different operating systems. As each of
these operating system APis has changed, the BMP format has changed along
with it.

There are currently three versions of BMP under Windows (2.x, 3.x, and 4.x
[Windows 95]), two versions under OS/2 (l.x and 2.x, with six possible varia
tions), and a single version for Windows NT. This article details the three ver
sions used under Microsoft Windows, as well as the Windows NT version. The
original Microsoft device-dependent bitmap format is also discussed. For a

MICROSOFT WINDOWS BITMAP 573

Microsoft Windows Bitmap (cont'd)

discussion of the OS/2 BMP format versions and variants, see the article about
the OS/2 BMP format.

All of the BMP versions originated on Intel-based machines and thus share a
common little-endian heritage. The current BMP format is otherwise hardware
independent and can accommodate images with up to 32-bit color. Its basic
design makes it a good general purpose format that can be used for color or
black-and-white image storage if file size is not a factor. Its main virtues are its
simplicity and widespread support in the PC marketplace.

The compression method used is a type of run-length encoding (RLE},
although :most BMP files to date have been stored uncompressed. A notable
exception is the Microsoft Windows 3.1 sign-on screen shipped with all copies
of the product. Although the BMP RLE scheme is lossless and easily and quickly
decompressed, it is not considered a superior compression method.

Although the BMP format is well-defined, there is no actual format specifica
tion document published by Microsoft. Information about structure and data
encoding methods is contained in a number of programmer's references, man
uals, online help facilities, and include files associated with the Microsoft Win
dows Software Development Kits (SDKs} and Microsoft Developers Network
Knowledge Base.

File Organization
Windows I.x DDB files contain two sections: a file header and the bitmap data.
There is no provision for a color palette or any other features that would make
this format device-independent. Support for compression of the bitmap data is
also lacking.

File Header

Bitmap Data

Windows 2.x, 3.x, and 4.x BMP files contain four sections: a file header, a
bitmap information header, a color palette, and the bitmap data. Of these four
sections, only the palette information may be optional, depending on the bit
depth of the bitmap data. The BMP file header is 14 bytes in length and is
nearly identical to the l.x DDB header. The file header is followed by a second

574 GRAPHICS•FILE FORMATS

Microsoft Windows Bitmap (cont'd)

header (called the bitmap header), a variable-sized palette, and the bitmap
data.

File Header

Bitmap Header

Color Palette

Bitmap Data

File Details
This section describes the original Windows DDB format and BMP format ver
sions 2x, 3x, and 4x in greater detail.

Version 1 Device-Dependent Bitmap (Microsoft Windows l.x)

DDB files contain only a file header followed by uncompressed bitmap data.
The following shows the structure of the 10-byte DDB file header:

typedef struct _WinlxHeader
{

WORD Type;
WORD Width;
WORD Height;
WORD ByteWidth;
BYTE Planes;
BYTE BitsPerPixel;

} WINlXHEADER;

/* File type identifier (always 0) */
/* Width of the bitmap in pixels */
/* Height of the bitmap in scan lines */
/* Width of bitmap in bytes */
/* Number of color planes */
/* Number of bits per pixel */

Type indicates the file type; for vl.x headers, it is always 0.

Width and Height represent the size of the bitmap in pixels and in scan lines,
respectively.

Byte Width shows the width of the bitmap in bytes. It is assumed that this value
will include the size of any scan line padding that is present.

Planes is the number of color planes used to store the bitmap. This value is
always 1. ·

BitsPerPixel is the size of each pixei in bits. This value is typically 1, 4, or 8.

The image data immediately follows the header and is stored in an uncom
pressed format. Each pixel stores an index value into the fixed system col
ormap used by Windows 1.0. The presence of scan line padding may be

MICROSOFT WINDOWS BITMAP 575

Microsoft Windows Bitmap (cont'd)

determined by comparing the calculated width of a line in bytes with the actual
width of the line in bytes stored as the value of the Byte Width field.

BMP Version 2 (Microsoft Windows 2.x)

All versions of BMP format files begin with the following 14-byte header:

typedef struct _WinBMPFileHeader
{

WORD FileType;
DWORD FileSize;
WORD Reserved!;
WORD Reserved2;
DWORD BitmapOffset;

} WINBMPFILEHEADER;

I* File type, always 4D42h (uBMn) *I
I* Size of the file in bytes *I
I* Always 0 *I
I* Always 0 *I
I* Starting position of image data in b¥tes *I

FileType holds a 2-byte magic value used to identify the file type; it is always
4D42h or "BM" in ASCII. If your application reads Windows bitmap files, make
sure to always check this field before attempting to use any of the data read
from the file.

FileSize is the total size of the BMP file in bytes and should agree with the file
size reported by the filesystem. This field only stores a useful value when the
bitmap data is compressed, and this value is usually zero in uncompressed BMP
files.

Reserved! and Reserved2 do not contain useful data and are usually set to zero
in a BMP header written to disk. These fields are instead used by an application
when the header is read into memory.

BitmapOffset is the starting offset of the bitmap data from the beginning of
the file in bytes.

Following the file header in v2.x BMP files is a second header called the bitmap
header. This header contains information specific to the bitmap data. This
header is 12 bytes in length and has the following format:

typedef struct _Win2xBitmapHeader
{

DWORD Size;
SHORT Width;
SHORT Height;
WORD Planes;
WORD BitsPerPixel;

} WIN2XBITMAPHEADER;

I* Size of this header in bytes *I
I* Image width in pixels *I
I* Image height in pixels *I
I* Number of color planes *I
I* Number of bits per pixel *I

Size is the size of the header in bytes. For Windows 2.x BMP files, this value is
always 12.

576 GRAPHICS FILE FORMATS

Microsoft Windows Bitmap (cont'd)

Width and Height are the width and height of the image in pixels, respectively.
If Height is a positive number, then the image is a "bottom-up" bitmap with the
origin in the lower-left corner. If Height is a negative number, then the image
is a "top-down" bitmap with the origin in the upper-left corner. Width does not
include any scan-line boundary padding.

Planes is the number of color planes used to represent the bitmap data. BMP
files contain only one color plane, so this value is always 1.

BitsPerPixel is the number of bits per pixel in each plane. This value will be in
the range 1 to 24; the values 1, 4, 8, and 24 are the only values considered legal
by the Windows 2.x API.

The Windows 2.x bitmap header is identical to the OS/ 2 1.x bitmap header
except that the Width and Height fields are signed values in Windows BMP
files.

Following the header is the color palette data. A color palette is always present
in a BMP file if the bitmap data contains 1-, 4-, or 8-bit data. Twenty-four-bit
bitmap data never uses a color palette (nor does it ever need to). Each element
of the palette is three bytes in length and has the following structure:

typedef struct _Win2xPaletteElement
{

BYTE Blue; I* Blue component *I
BYTE Green; I* Green component *I
BYTE Red; I* Red component *I

WIN2XPALETTEELEMENT;

Blue, Green, and Red hold the color component values for a pixel; each is in
the range 0 to 255.

The size of the color palette is calculated from the BitsPerPixel value. The
color palette has 2, 16, 256, or 0 entries for a BitsPerPixel of 1, 4, 8, and 24,
respectively. The number of color palette entries is calculated as follows:

NumberOfEntries = 1 << BitsPerPixel;

To detect the presence of a color palette in a BMP file (rather than just assum
ing that a color palette does exist), you can calculate the number of bytes
between the bitmap header and the bitmap data and divide this number by the
size of a single palette element. Assuming that your code is compiled using
1-byte structure element alignment, the calculation is:

NumberOfEntries = (BitmapOffset - sizeof(WINBMPFILEHEADER) -
sizeof(WIN2XBITMAPHEADER)) I sizeof(WIN2XPALETTEELEMENT); •

MICROSOFT WINDOWS BITMAP 577

Microsoft Windows Bitmap (cont'd)

If NumberOfEntries is zero, there is no palette data; o therwise, you have the
number of elements in the color palette.

BMP Version 3 (Microsoft Windows 3.x)

Version 3.x BMP files begin with the same 14-byte header as v2 .x BMP files. The
file header is also followed by a bitmap header, which is an expanded version
of the v2.x bitmap header. It is 40 bytes in size and con tains six additional
fields:

t ypedef struct _Win3xBitmapHeader
{

DWORD Size; I* Size of this header in bytes
LONG Width; I* Image width i n pixels *I
LONG Height; I* Image height i n pixels *I
WORD Planes; I* Number of color planes *I
WORD BitsPerPixel ; !* Number of bi t s per pixel *I

I* Fields added for Windows 3 .x fol low this line*/

DWORD Compression;
DWORD SizeOfBitmap;

I* Compression methods used *I
I* Size of b i tmap in bytes *I

*I

LONG HorzResolution; I* Horizontal r e solution in pixels per meter *I
LONG VertResolution; I* Vertical resolution in pixels per meter *I
DWORD ColorsUsed; I* Number of color s in the image *I
DWORD Col orsimportant; I* Minimum number of important colors *I

WINJXBITMAPHEADER;

Size is the size of the header in bytes. For Windows 3.x BMP files, this value is
always 40.

Width and Height are the width and height of the image in pixels, respectively.
If H eight is a positive number, then the image is a "bottom-up" bitmap with the
origin in the lower-left corner. If Height is a negative number, then the image
is a "top-down" bitmap with the origin in the upper-left corner. Width does not
include any scan-line boundary padding.

Planes is the number of color plan es used to represent the bi tmap data. BMP
files contain only one color plane, so this value is always 1.

BitsPerPixel is the number of bits in each pixel. T his value is in the range 1 to
24; the values 1, 4, 8, and 24 are the only values considered legal by the Win
dows 3.x API.

Compression indicates the type of encoding method used to com press the
bitmap data. 0 indicates that the data is uncompressed ; 1 indicates that the
8-bit RLE algorithm was used; 2 indicates that the 4-bit RLE algorithm was used.

578 GRAPH ICS FILE FORMATS

Microsoft Windows Bitmap (cont'd)

(See the section called "Image Data and Compression" below for more infor
mation on BMP RLE encoding.)

SizeOfBitmap is the size of the stored bitmap in bytes. This value is typically
zero when the bitmap data is uncompressed; in this case, the decoder com
putes the size from the image dimensions.

HorzResolution and VertResolution are the horizontal and vertical resolutions
of the bitmap in pixels per meter. These values are used to help a BMP reader
choose a proper resolution when printing or displaying a BMP file.

Colors Used is the number of colors present in the palette. If this value is zero,
and the value of BitsPerPixel is less than 16, then the number of entries is
equal to the maximum size possible for the colormap. BMP files with a BitsPer
Pixel value of 16 or greater will not have a color palette. This value is calcu
lated by using the value of the BitsPerPixel field:

ColorsUsed ~ 1 << BitsPerPixel;

Colorsimportant is the number of significant colors in the palette, determined
by their frequency of appearance in the bitmap data; the more frequent the
occurrence of a color, the more important it is. This field is used to provide as
accurate a display as possible when using graphics hardware supporting fewer
colors than are defined in the image. For example, an 8-bit image with 142 col
ors might only have a dozen or so colors making up the bulk of the image. If
these colors could be identified, a display adapter with only 16-color capability
would be able to display the image more accurately using the 16 most fre
quently occurring colors in the image. The most important colors are always
stored first in the palette; Colorslmportant is 0 if all of the colors in the palette
are to be considered important.

The color palette that may follow the bitmap header is basically the same as
the v2.x palette but adds an extra byte of padding to increase its size to four
bytes. This allows palette entries to be read as 4-byte values, making these val
ues more efficient to read in memory and easier to see in a hex dump or
debugger.

typedef struct _win3xPaletteElement
{

BYTE Blue; /* Blue component */
BYTE Green; /* Green component */
BYTE Red; /* Red component */
BYTE Reserved; (* Padding (always 0) */

WIN3XPALETTEELEMENT;

MICROSOFT WINDOWS BITMAP 579

Microsoft Windows Bitmap (cont'd)

Blue, Green, and Red hold the color component values for a pixel; each is in
the range 0 to 255.

Reserved pads the structure to end on an even-byte boundary and is always
zero.

BMP Version 3 (Microsoft Windows NT)

Windows NT uses a variation of the Wmdows 3.x BMP format to store 16- and
32-bit data in a BMP file. This variation adds three additional fields that follow
the bitmap header in place of a color palette. The bitmap header is 40 bytes in
length and has the following format:

typedef struct _WinNtBitmapHeader
{

DWORD Size;
LONG Width;
LONG Height;
WORD Planes;
WORD BitsPerPixel;
DWORD Compression;
DWORD SizeOfBitmap;
LONG HorzResolution;
LONG VertResolution;
DWORD ColorsUsed;
DWORD Colorsimportant;

WINNTBITMAPHEADER;

I* Size of this header in bytes *I
I* Image width in pixels *I
I* Image height in pixels *I
I* Number of color planes *I
I* Number of bits per pixel *I
I* Compression methods used *I
I* Size of bitmap in bytes *I
I* Horizontal resolution in pixels per meter *I
I* Vertical resolution in pixels per meter *I
I* Number of colors in the image *I
I* Minimum number of important colors *I

All fields are the same as in the v3.x BMP format, except for the Compression
field.

Compression indicates the type of encoding method used to compress the
bitmap data. 0 indicates that the data is uncompressed; 1 indicates that the
8-bit RLE algorithm was used; 2 indicates that the 4-bit RLE algorithm was used;
and 3 indicates that bitfields encoding was used. If the bitmap contains 16 or
32 bits per pixel, then only a Compression value of 3 is supported and the Red
Mask, GreenMask, and BlueMask fields will be present following the header in
place of a color palette. If Compression is a value other than 3, then the file is
identical to a Windows 3.x BMP file.

typedef _WinNtBitfieldsMasks
{

DWORD RedMask;
DWORD GreenMask;
DWORD BlueMask;

WINNTBITFIELDSMASKS;

580 GRAPHICS FILE FORMATS

I* Mask identifying bits of red component *I
I* Mask identifying bits of green component *I
I* Mask identifying bits of blue component *I

Microsoft Windows Bitmap (ccmt'd)

RedMask, GreenMask, and BlueMask specify which bits in a pixel value corre
spond to a specific color in 16- and 32-bit bitmaps. The bits in these mask val
ues must be contiguous and must not contain overlapping fields. The bits in
the pixel are ordered from most significant to least significant bits. For 16-bit
bitmaps, the RGB565 format is often used to specify five bits each of red and
blue values, and six bits of green:

RedMask OxFBOOOOOO;
GreenMask = Ox07EOOOOO;
BlueMask = OxOOlFOOOO;

I* 1111 1000 0000 0000 0000 0000 0000 0000 *I
I* 0000 0111 1110 0000 0000 0000 0000 0000 *I
I* 0000 0000 0001 1111 0000 0000 0000 0000 *I

For 32-bit bitmaps, the RGB101010 format can be used to specify 10 bits each
of red, green, and blue:

RedMask OxFFCOOOOO;
GreenMask = Ox003FFOOO;
BlueMask = OxOOOOOFFC;

I* 1111 1111 1100 0000 0000 0000 0000 0000 *I
I* 0000 0000 0011 1111 1111 0000 0000 0000 *I
I* 0000 0000 0000 0000 0000 1111 1111 1100 *I

BMP Version 4 (Microsoft Windows 95)

Version 4.x BMP files begin with the same 14-byte header as v2.x and v3.x BMP
files. The file header is also followed by a bitmap header, which is an expanded
version of the v3.x bitmap header, incorporating the mask fields of the NT BMP
format. This v4.x bitmap header is 108-bytes in size and contains 17 additional
fields: ·

typedef struct _win4xBitmapHeader
{

DWORD Size; I* Siz~ of this header in bytes *I
LONG Width; I* Image width in pixels *I
LONG Height; I* Image height in pixels *I
WORD Planes; I* Number of color planes *I
WORD BitsPerPixel; I* Number of bits per pixel *I
DWORD Compression; I* Compression methods used *I
DWORD SizeOfBitmap; I* Size of bitmap in bytes *I
LONG HorzResolution; I* Horizontal resolution in pixels per meter *I
LONG VertResolution; I* Vertical resolution in pixels per meter *I
DWORD ColorsUsed; I* Number of colors in the image *I
DWORD Colorsimportant; I* Minimum number of important colors *I

I* Fields added for Windows 4.x follow this line *I

DWORD RedMask;
DWORD GreenMask;
DWORD BlueMask;
DWORD AlphaMask;
DWORD CSType;
LONG RedX;

I* Mask identifying bits of red component *I
I* Mask identifying bits of green component *I
I* Mask identifying bits of blue component *I
I* Mask identifying bits of alpha component *I
I* Color space type *I
I* X coordinate of red endpoint *I

MICROSOFT WINDOWS BITMAP 581

Microsoft Windows Bitmap (cont'd)

LONG RedY;
LONG RedZ;
LONG Greenx;
LONG GreenY;
LONG GreenZ;
LONG BlueX;
LONG BlueY;
LONG BlueZ;
DWORD GanunaRed;
DWORD GammaGreen;
DWORD GammaBlue;

WIN4XBITMAPHEADER;

I* Y coordinate of red endpoint *I
/* z coordinate of red endpoint *I
I* X coordinate of green endpoint */
I* Y coordinate of green endpoint *I
I* z coordinate of green endpoint *I
I* X coordinate of blue endpoint *I
I* Y coordinate of blue endpoint *I
I* z coordinate of blue endpoint *I
I* Gamma red coordinate scale value *I
I* Gamma green coordinate scale value *I
I* Gamma blue coordinate scale value *I

Size is the size of the header in bytes. For Windows 4.x BMP files, this value is
always 108.

Width and Height are the width and height of the image in pixels, respectively.
If Height is a positive number, then the image is a "bottom-up" bitmap with the
origin in the lower-left corner. If Height is a negative number, then the image
is a "top-down" bitmap with the origin in the upper-left corner. Width does not
include any scan-line boundary padding.

Planes is the number of color planes used to represent the bitmap data. BMP
files contain only one color plane, so this value is always 1.

BitsPerPixel is the number of bits in each pixel. This value is in. the range 1 to
24; the values 1, 4, 8, 16, 24, and 32 are the only values considered legal by the
Windows 4.x API.

Compression indicates the type of encoding method used to compress the
bitmap data. 0 indicates that the data is uncompressed; 1 indicates that the
8-bit RLE algorithm was used; 2 indicates that the 4-bit RLE algorithm was used;
and 3 indicates that bitfields encoding was used. If the bitmap contains a 16- or
32-bit bitmap, then only a compression value of 3 is supported.

SizeOffiitmap is the size of the stored bitmap in bytes. This value is typically
zero when the bitmap data is uncompressed (including bitfields-encoded
bitmaps); in this case, the decoder computes the size from the image dimen
sions.

HorzResolution and VertResolution are the horizontal and vertical resolutions
of the bitmap in pixels per meter. These values are used to help a BMP reader
choose a proper resolution when printing or displaying a BMP file.

Colors Used is the number of colors present in the palette. If this value ·is zero
and the BMP file contains a color palette, then the number of entries is equal
to the maximum size possible for the color palette. If the bitmap has a pixel

582 GRAPHICS FILE FORMATS

Microsoft Windows Bitmap (cont'd)

depth of 16 or greater, there is never a color palette, and this value will be
zero.

Colorslmportant is the number of significant colors in the palette, determined
by their frequency of appearance in the bitmap data; the more frequent the
occurrence of a color, the more important it is. See the explanation of this
field for the Windows 3.x bitmap header for more information.

RedMask, GreenMask, BlueMask, and AlphaMask specify which bits in a pixel
value correspond to a specific color or alpha channel in 16- and 32-bit bitmaps.
The bits in these mask values must be contiguous and must not contain over
lapping fields. The bits in the pixel are ordered from most significant to least
significant bits. For example, a 16-bit bitmap using the RGB555 format would
specify five bits each of red, green, blue, and alpha as follows:

AlphaMask = OxF8000000;
RedMask = Ox07COOOOO;
GreenMask = Ox003EOOOO;
BlueMask = Ox0001FOOO;

/* 1111 1000 0000 0000 0000 0000 0000 0000 */
/* 0000 0111 1100 0000 0000 0000 0000 0000 */
/* 0000 0000 0011 1110 0000 0000 0000 0000 */
/* 0000 0000 0000 0001 1111 0000 0000 0000 */

A 32-oit bitmap using the RGB888 format would specify eight bits each of red,
green, and blue using the mask values as follows:

AlphaMask = OxFFOOOOOO;
RedMask = OxOOFFOOOO;
GreenMask = OxOOOOFFOO;
BlueMask = OxOOOOOOFF;

/* 1111 1111 0000 0000 0000 0000 0000 0000 */
/* 0000 0000 1111 1111 0000 0000 0000 0000 */
/* 0000 0000 0000 0000 1111 1111 0000 0000 */
/* 0000 0000 oooo oooo oooo 0000 1111 1111 */

Note that Windows 95 only supports the RGB555 and RGB565 masks for 16-bit
BMP bitmaps and RGB888 for 32-bit BMP bitmaps.

CSType is the color space type used by the bitmap data. Values for this field
include OOh (calibrated RGB), 01 h (device-dependent RGB), and 02h (device
dependent CMYK). Device-dependent RGB is the default color space. Cali-
brated RGB is defined by the 1931 CIE XYl standard. ·

RedX, Red'Y, and RedZ specify the CIE X, Y, and Z coordinates, respectively, for
the endpoint of the red component of a specified logical color space. These
fields are used only when CSType is OOh (calibrated RGB).

Green X, Green Y, and GreenZ specify the CIE X, Y, and Z coordinates, respec
tively, for the endpoint of the green component of a specified logical color
space. These fields are used only when CSType is OOh (calibrated RGB).

Blue X, Blue Y, and BlueZ specify the CIE X, Y, and Z coordinates, respectively,
for the endpoint of the blue component of a specified logical color space.
These fields are used only when CSType is OOh (calibrated RGB).

MICROSOFT WINDOWS BITMAP 583

Microsoft Windows Bitmap (cont'd)

GammaRed, GammaGreen, and GammaBlue are the red, green, and blue
gamma coordinate scale values, respectively, for this bitmap.

All of the additional fields added to the Windows 4.x bitmap header are used
to support 16- and 32-bit bitmaps and color matching and color characteriza
tion of the bitmap data. Color processing may be performed on an image and
the ICM (Image Color Matching) information stored in the BMP file. This data
is used to provide color matching processing when the bitmap is printed or dis
played.

Color Palette

As we have seen, a BMP color palette is an array of structures that specify the
red, green, and blue intensity values of each color in a display device's color
palette. Each pixel in the bitmap data stores a single value used as an index
into the color palette. The color information stored in the element at that
index specifies the color of that pixel.

One-, 4-, and 8-bit BMP files are expected to always contain a color palette. Six
teen-, 24-, and 32-bit BMP files never contain color palettes. Sixteen- and 32-bit
BMP files contain bitfields mask values in place of the color palette.

You must be sure to check the Size field of the bitmap header to know if you
are reading 3-byte or 4-byte color palette elements. A Size value of 12 indicates
a Windows 2.x (or possibly an OS/2 l.x) BMP file with 3-byte elements. Larger
numbers (such as 40 and 108) indicate later versions of BMP, which all use
4-byte color palette elements.

Windows BMP File TYPes
Each new version of BMP has added new information to the bitmap header. In
some cases, the newer versions have changed the size of the color palette and
added features to the format itself. Unfortunately, a field wasn't included in
the header to easily indicate the version of the file's format or the type of oper
ating system that created the BMP file. If we add Windows' four versions of BMP
to OS/2's two versions-each with four possible variations-we find that as
many as twelve different related file formats all have the file extension ".BMP".

It is clear that you cannot know the internal format of a BMP file based on the
file extension alone. But, fortunately, you can use a short algorithm to deter
mine the internal format of BMP files.

The FileType field of the file header is where we start. If these two byte values
are 424Dh ("BM"), then you have a single-image BMP file that may have been

584 GRAPHICS FILE FORMATS

Microsoft Windows Bitmap (cont'd)

created under Windows or OS/2. If FileType is the value 4142h ("BA"), then
you have an OS/2 bitmap array file. Other OS/2 BMP variations have the file
extensions .ICO and .PTR.

If your file type is "BM", then you must now read the Size field of the bitmap
header to determine the version of the file. Size will be 12 for Windows 2.x
BMP and OS/2 l.x BMP, 40 for Windows 3.x and Windows NT BMP, 12 to 64 for
OS/2 2.x BMP, and 108 for Windows 4.x BMP. A Windows NT BMP file will
always have a Compression value of 3; otherwise, it is read as a Windows 3.x
BMP file.

Note that the only difference between Windows 2.x BMP and OS/2 1.x BMP is
the data type of the Width and Height fields. For Windows 2.x, they are signed
shorts and fot OS/2 l.x, they are unsigned shorts. Windows 3.x, Windows NT,
and OS/2 2.x BMP files only vary in the number of fields in the bitmap header
and in the interpretation of the Compression field.

Image Data and Compression

Uncompressed data is a series of values representing either color palette
indices or actual RGB color values. Pixels are packed into bytes and arranged as
scan lines. Each scan line must end on a 4-byte boundary, so one, two, or three
bytes of padding may follow each scan line.

Scan lines are stored from the bottom up if the value of the Height field in the
bitmap header is a positive value; they are stored from the top down if the
Height field value is negative. The bottom-up configuration is the most com
mon, because scan lines stored from the top down cannot be compressed.

Monochrome bitmaps contain one bit per pixel, eight pixels per byte (with the
most significant bit being the leftmost pixel), and have a 2-element color
palette. If a BMP reader chooses to ignore the color palette, all "one" bits are
set to the display's foreground color and all "zero" bits are set to the back
ground color.

Four-bit pixels are packed two per byte with the most significant nibble being
the leftmost pixel. Eight-bit pixels are stored one per byte. Both 4- and 8-bit
pixel values are indices into color palettes 16 and 256 elements in size respec
tively.

Sixteen-bit pixels in the Windows NT format are two bytes in size and are
stored in big-endian order. In other words, on little-endian machines these
bytes must be read and flipped into little-endian order before they are used.
The organization of the bit fields in the 16-bit pixels is defined by the values of

MICROSOFT WINDOWS BITMAP 585

Microsoft Windows Bitmap (cont'd)

the RedMask, GreenMask, and BlueMask fields in the header. The most com
mon masks are RGB555 and RGB565. The Compression field must always be a
value of 3 (bitfields encoding) when a file stores 16-bit data.

In the v4.x BMP format, 16- and 32-bit pixels are stored as litde-endian 4-byte
RGB values. Common masks for 32-bit data include RGB888 and RGB101010.
These bit depths also require bitfields encoding and the mask fields in the
bitmap header to define their pixel format. 24-bit bitmap data is always stored
as 3-byte RGB values.

The Windows BMP format supports a simple run-length encoded (RLE) com
pression scheme for compressing 4-bit and 8-bit bitmap data. Since this is a
byte-wise RLE scheme, 1-, 16-, 24-, and 32-bit bitmaps cannot be compresse~
using it, due to the typical lack of long runs of bytes with identical values in
these types of data.

BMP uses a two-value RLE scheme. The first value contains a count of the num
ber of pixels in the run, and the second value contains the value of the pixel.
Runs of up to 255 identical pixel values may be encoded as only two bytes of
data. Actually, it's a bit more complex than this. In addition to encoded runs,
there are unencoded runs, delta markers, end-of-scan-line markers, and an
end-of-RLE-data marker.

The 8-bit RLE algorithm (RLES) stores repeating pixel values as encoded runs.
The first byte of an encoded run will be in the range of 1 to 255. The second
byte is the valu~ of the 8-bit pixels in the run. For example, an encoded run of
05 18 would decode into five pixels each with the value 18, or 18 18 18 18 18.

When a scan line does not contain enough pixel runs to achieve a significant
amount of compression, contiguous pixel values may be stored as literal or
unencoded runs. An unencoded run may contain from 3 to 255 pixel values.
The first byte of an unencoded run is always zero. This makes it possible to tell
the difference between the start of an encoded and the start of an unencoded
run. The second byte value is the number of unencoded pixel values that fol
low. If the number of pixels is odd, then a 00 padding value also follows. This
padding value is not part of the original pixel data and should not be written
to the decoded data stream. Here are some examples of encoded and unen
coded data streams:

586 GRAPHICS FILE FORMATS

Encoded Bytes
0510
00 05 23 65 34 56 45 00
OAOA
00 04 46 57 68 79

Decoded Bytes
10 10 10 10 10
23 65 34 56 45

Microsoft Windows Bitmap (ccmt'd)

OA OA OA OA OA OA OA OA OA OA
46 57 68 79

Three marker values may also be found in the RLE data. Each of these markers
also begins with a zero-byte value. The second byte value indicates the type of
marker. These markers specify positional information relating to the decoded
bitmap data and do not generate any data themselves.

The first marker is the end-of-scan-line marker and is identified by two byte val
ues 00 and 00. This marker is an indication that the end of data for the current
scan line has been reached. Encoded data occurring after this marker is
decoded starting at the beginning of the next scan line. If an end-of-scan-line
marker is not present in the encoded data, then the pixels will automatically
wrap from the end of one scan line to the start of the next.

This marker is only used when you want to force the decoding of a scan line to
end at a particular place. If the end-of-scan-line marker occurs in the middle of
a scan line, all remaining pixels in the decoded bitmap for the line are
ignored. This "short scan line" technique is used to omit unneeded portions of
scan lines. Most often, it is found in icon and pointer BMP files.

The next marker is the end of RLE data marker. It is identified by the two byte
values 00 and 01. This marker occurs only as the last two bytes of the RLE data.
This marker is an indication that the reader should stop decoding data.

The last marker is the run offset marker, also called a delta or vector code. This
marker is four bytes in size, with the first two bytes being the values 00 and 02,
and the last two values specifying a pixel address using unsigned X and Y values
as an offset from the current bitmap cursor position. The X value is the num
ber of pixels across the scan line, and the Y value is the number of rows for
ward in the bitmap.

This run offset marker indicates the location in the bitmap where the next
decoded run of pixels should be written. For example, a run offset marker
value of 00 02 05 03 would indicate that the offset of the bitmap cursor should
move five pixels down the scan line, three rows forward, and write out the next
run. The cursor then continues writing decoded data from its new position
moving forward.

MICROSOFT WINDOWS BITMAP 587

Microsoft Windows Bitmap (coot'd)

Run offset markers are used when a bitmap may contain a large amount of
"don't care" pixels. For example, if the BMP file holds a bitmap used as a mask
(such as those used with icons and pointers), many of the pixels in the rectan
gular bitmap may not be used. Rather than store these unused pixels in the
BMP file, only the significant pixels are stored, and the delta markers are used
as '~umps" to skip over the parts of the bitmap not actually used in the mask.

The following are the BMP RLE markers:

00 00
00 01
00 02 XX YY

End of scan line
End of bitmap data
Run offset marker

Here is an example of decoding an 8-bit data stream. Each of the values is an
8-bit index value into the color palette and not an actual color value.

Encoded Bytes
0416
0845
00 00
00 02 04 02

03E4
00 03 12 A4 46 00
00 00
00 01

Decoding Description
Four bytes of value 16
Eight bytes of value 45
End of scan line
Move to offset four pixels for
ward and two rows up
Three bytes of value E4
Three bytes of unencoded data
End of scan line
End of RLE data

Decoded Bytes
1616 1616
45 45 45 45 45 45 45 45
None
None

E4E4 E4
12 A4 46
None
None

The 4-bit RLE algorithm (RLE4) stores repeating pixel values in a very similar
manner to RLE8. All of the markers are the same. The only real difference is
that two pixel values are packed per byte, and these pixel values alternate when
decoded. For example, an RLE4-encoded data stream of 07 48 would decode to
seven pixels, alternating in value as 04 08 04 08 04 08 04.

If this looks bizarre, it's because you rarely see alternating runs of pixel values
in bitmaps eight bits or greater in depth. Four-bit (16-color) bitmaps, however,
usually contains a lot of dithering. Most dithering algorithms will yield rela
tively large runs of alternating pixels. Runs of repeating sequences of three
and four pixels are also fairly common output from many dithering algo
rithms. But the ability to efficiently encode these types of pixel runs is not cur
rently supported in the BMP RLE scheme.

In case you are thinking that runs of identical pixel values cannot be encoded
by RLE4, you are incorrect. For example, a run of twelve pixels all of the value

588 GRAPHICS FILE FORMATS

Microsoft Windows Bitmap (cont'd)

9 would be RLE4-encoded as OC 99 and would decode to the run 09 09 09 09
09 09 09 09 09 09 09 09.

Padding is added to unencoded pixel runs that are an odd number of bytes,
rather than pixels, in length. And an unused final nibble in odd-length runs is
set to zero. For example, the six pixel values 1 3 57 9 0 would be stored as the
unencoded run 00 06 13 57 90 00, while the five pixel values 1 3 57 9 would be
stored as the unencoded run 00 05 13 57 90 00.

Following is an example of decoding a 4-bit data stream. ~ach of the values is a
4-bit index value into the color palette and not an actual color value.

Encoded Bytes Decoding Description Decoded Bytes
0416 Four values alternating 1 and 6 1616
0844 Eight values alternating 4 and 4 44444444
00 00 End of scan line None
00 02 04 02 Move to offset four pixels forward and None

two rows up
03E4 Three values alternating E and 4 E4E
00 06 12 A4 46 00 Six values of unencoded data 12A446
00 00 End of scan line None
00 01 End of RLE data None

Here is a summary of Windows BMP data characteristics:

Pixel Depth Pixel Size Compression Color Palette Color Masks
1 bit 1 bit 0 Yes No
4 bits 4 bits 0,2 Yes No
8 bits 1 byte 0,1 Yes No
16 bits 4 bytes 3 No Yes
24 bits 3 bytes 0 No No
32 bits 4 bytes 3 No Yes

ForFurtherhUonnation
For further information about the Microsoft Windows Bitmap format, see the
documentation included on the CD-ROM that accompanies this book.
Although you probably will not be able to get any information directly from
them, here is Microsoft's address:

MICROSOFT WINDOWS BITMAP 589

Microsoft Windows Bitmap (cont'd)

Microsoft Corporation
One Microsoft Way
Redmond, WA 98052-6399
Voice: 206-882-8080
FAX: 206-936-7329
BBS: 206-637-9009
FfP: ftp:/ /ftp. microsoft. com
WWW: http://www.microsoft.com

The closest thing there is to an archive of Microsoft file format specifications is
the Microsoft Developers Network Knowledge Base available on the MSDN CD
ROM and at Microsoft's Web site. The Win16 and Win32 Software Develop
ment Kits (SDKs) also have information on BMP.

Information about the Windows BMP format can also be found in the follo:wing
references:

Charlap, David, "The BMP File Format: Part I," Dr. Dobb's Jouma~ vol.
20, no. 228, March 1995.

Charlap, David, "The BMP File Format: Part II," Dr. Dobb's jouma~ vol.
20, no. 229, April1995.

Luse, Marv, "The BMP File Format," Dr. Dobb's Jouma~ vol. 9, no. 219,
September 1994, pp. 18-22.

Microsoft Corporation, Microsoft Win32 Programmer's Reference, vol. 5,
Microsoft Press, Redmond, WA, 1993.

Microsoft Corporation, Microsoft Windows Programmer's Reference, vol. 2,
v3, Microsoft Press, Redmond, WA, 1990.

Petzold, Charles, "Preserving a Device-Independent Bitmap: The
Packed-DIB Format," PC Magazine, july 1991, pp. 433-439.

Petzold, Charles, "What's New in Bitmap Formats: A Look at Windows
and OS/2," PC Magazine, 11 September 1990, pp. 403-410.

Swan, Tom, Inside Windows File Formats, Sams Publishing, 1993~

The code for the above issues of Dr. Dobb's journal are available at:

ftp:/ /ftp. mv.com/pub/ddj/1994/1194. 09/bmp.zip
ftp:/!ftp.mv.com/pub/ddj/1995/1195.03/bmp.zip

590 GRAPHICS FILE FORMATS

Microsoft Windows Bitmap (cont'd)

The two Dr. Dobb's]ournal articles by David Charlap contain a complete collec
tion of source code for working with Windows 2.x, 3.x, NT, and OS/2 BMP file.
formats. It is available at the above ITP site and on this book's CD-ROM.

MICROSOFT WINDOWS BITMAP 591

I Microsoft Windows Metafile
NAME: Microsoft Windows Metafile

ALso KNowN As:· Windows Metafile; WMF

TYPE: Metafile

COLORS: 2~bitnn~nGUnn

COMPRESSION: NA

MAXIMUM IMAGE SIZE: NA

MuLTIPLE IMAGEs PER FILE: No

NuMERICAL FoRMAT: Little-endian

ORIGINAToR: Microsoft Corporation

PLATFoRM: Microsoft Windows

suPPoRTING APPLicATioNs: Nunnerous Microsoft Windows-based graphics appli
cations

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

Yes

No

No

Encapsulated PostScript, Microsoft Windows Bitmap

UsAGE: Used for file interchange, device support.

coMMENTs: A widely used format associated with Microsoft Windows, although appli
cations on other platforms may provide support.

Overview
Microsoft Windows Metafile (WMF) files are used to store vector and bitmap
format image data in memory or in disk files for later playback to an output
device. Although Windows Metafile is specific to Microsoft Windows, many
non-Windows-based applications support this format as a method for inter
changing data with Windows applications. Because of the widespread popular
ity of the Microsoft Windows GUl, the Windows Metafile format has become a
staple format for graphical applications and is supported on all platforms.
Encapsulated PostScript (EPSF) supports the use of an included Windows
Metafile when required to store vector-based data. The logical unit of measure
ment used in Windows Metafiles is the twip. A twip (meaning "twentieth of a
point") is equal to 1/1440 of an inch. Thus 720 twips equal 1/2 inch, while
32,768 twips is 22.75 inches.

592 GRAPHICS FILE FORMATS

Microsoft Windows Metafile (cont'd)

File Organization
Windows Metafile format files contain a header, followed by one or more
records of data. The header contains a description of the record data stored in
the metafile. Each r~cord is a binary-encoded Microsoft Windows Graphics
Device Interface (GDI) function call. The GDI is used by Windows to perform
all output to a screen window or other output device. When the metafile data
is rendered (or played back, in Microsoft terminology), the data from each
record is used to perform the appropriate function call to render each object
in the image. The last record in the file contains information indicating that
the end of the record data has been reached.

File Details
The header is 18 bytes in length and is structured as follows:

typedef struct _WindowsMetaHeader
{

WORD FileType;
WORD HeaderSize;
WORD Version;
DWORD FileSize;
WORD NumOfObjects;
DWORD MaxRecordSize;
WORD NoParameters;

} WMFHEAD;

I* Type of metafile (l=memory, 2=disk) *I
I* Size of header in WORDS (always 9). *I
I* Version of Microsoft Windows used *I
I* Total size of the metafi+le in WORDs *I
/* Number of objects in the file *I
I* The size of largest record in WORDs */
I* Not Used (always 0) *I

FileType contains a value which indicates the location of the metafile data. A
value of 1 indicates that the metafile is stored in memory, while a 2 indicates
that it is stored on disk.

HeaderSize contains the size of the metafile header in WORDs.

Version stores the version number of Microsoft Windows that created the
metafile. This value is always read in hexadecimal format. For example, in a
metafile created by Windows 3.0, this item would have the value 300h.

FileSize specifies the total size of the metafile in 16-bit WORDs.

NumOfObjects specifies the number of objects that are in the metafile.

MaxRecordSize specifies the size of the largest record in the metafile in
WORDs.

NumOfParams is not used and is set to a value of 0.

MICROSOFT WINDOWS METAFILE 593

Microsoft Windows Metafile (cont'd)

Following the header is a series of data records. The basic format of each
record is shown below:

typedef struct _WindowsMetaRecord
{

DWORD Size; /* Total size of the record in WORDs */
WORD Function; /* Function number {defined in WINDOWS.H) */
WORD Parmeters[]; /*Parameter values passed to function*/

} WMFRECORD;

Size is the total size of the records in WORDs, including the Size field itself.
The minimum possible size for a record is 3.

Function is the GDI number of the function.

Parameters is an array of the parameters used by the function. The parameters
are stored in the reverse order in which they are passed to the function.

When a Windows Metafile format file is played back, each record is read and
the function call it contains is executed in the sequence in which it is read.
The last record in every metafile always has a function number of zero and is
used to indicate the end of the record data.

There are several important considerations that must be observed when read
ing WMF record data.

First, not all of the records in a Windows Metafile have the above format,
although most do. The GDI function calls that do follow the basic record for
mat are the following:

Arc
Chord
Ellipse
ExcludeClipRect
FloodFill
In tersectClipRect
Line To
Move To
OffsetClipRgn
OffsetViewportOrg
OffsetWindowOrg
PatBlt
Pie

RealizePalette
Rectangle
Resize Palette
Restore DC
RoundRect
Save DC
ScaleViewportExt
Scale Window Ext
SetBkColor
SetBkMode
SetMapMode
SetMapperFlags
SetPixel

594 GRAPHICS FILE FORMATS

SetPolyFillMode
SetROP2
SetStretchBltMode
SetTextAlign
SetTextCharExtra
SetTextColor
SetTex1Justification
SetViewportExt
SetViewportOrg
Set Window Ext
SetWindowOrg

Microsoft Windows Metafile (cont'd)

Second, several record formats deviate from this basic record format by con
taining a data structure, rather than a data array, in the Parameters field. These
are:

AnimatePalette
BitBit
CreateBrushlndirect
CreateFontlndirect
Create Palette

CreatePatternBrush
CreatePenlndirect
CreateRegion
DeleteObject
DrawText

Escape
ExtTextOut
Polygon
PolyPolygon
Polyline

Consult the Microsoft Windows Programmer's Reference Library for the inter
nal structure of each of these special records.

Third, several GDI function calls were added or had their parameters changed
with the release of Microsoft Windows 3.0. GDI function calls in this category
include:

Animate Palette
BitBlt
Create Palette

Record DeleteObject
CreatePatternBrush RealizePalette
Record ResizePalette

Note that not all GDI function calls can appear in a metafile. The only calls
that are valid are those that take a handle to a device context as their first
parameter. A complete list of all of the GDI function calls is documented in
Microsoft Windows Programmer's Reference. They are also found in the WIN
DOWS.H header file. These GDI function calls are the directives that begin with
the characters META. There are more than 70 different GDI function calls
defined for Windows 3.0.

Porting WMF Files Between Applications

Most Microsoft Windows applications that create metafiles prepend a 22-byte
header to the file. This header contains information not found in the metafile
header, but which is needed to move the metafile information between appli
cations. The structure of this header is as follows:

typedef struct _WmfSpecialHeader
{

DWORD Key;
WORD Handle;
SHORT Left;
SHORT Top;
SHORT Right;
SHORT Bottom;

I* Magic number (always 9AC6CDD7h) *I
I* Metafile HANDLE number (always 0) */
I* Left coordinate in metafile units *I
I* Top coordinate in metafile units *I
I* Right coordinate in metafile units *I
I* Bottom coordinate in metafile units *I

MICROSOFT WINDOWS METAFILE 595

Microsoft Windows Metafile (cont'd)

WORD Inch;
DWORD Reserved;
WORD Checksum;

WMFSPECIAL;

/* Number of metafile units per inch */
/* Reserved (always 0) */
/* Checksum value for previous 10 WORDs */

Key contains a special identification value that indicates the presence of a spe
cial header and is always 9AC6CDD7h.

Handle is not used and always contains the value 0.

Left, Top, Right, and Bottom contain the coordinates of the upper-left and
lower-right comers of the image on the output device. These are measured in
twips. These four fields also correspond to the RECT structure used in
Microsoft Windows and found in the file WINDOWS.H.

Inch contains the number of twips per inch used to represent the image. Nor
mally, there are 1440 twips per inch; however, this number may be changed to
scale the image. A value of 720 indicates that the image is double its normal
size, or scaled to a factor of 2:1. A value of 360 indicates a scale of 4:1, while a
value of 2880 indicates that the image is scaled down in size by a factor of two.
A value of 1440 indicates a 1:1 scale ratio.

Reserved is not used and is always set to 0.

Checksum contains a checksum value for the previous 10 WORDs in the
header, calculated by XORing each WORD value to 0:

WMFSPECIAL wmfspecial; wmfspecial.
Checksum = 0;

w.mfspecial.Checksum ~= (wmfspecial.Key & OxOOOOFFFFL);
w.mfspecial.Checksum ~= ((w.mfspecial.Key & OxFFFFOOOOL) >> 16);
w.mfspecial.Checksum ~= wmfspecial.Handle; wmfspecial.Checksum ~=
wmfspecial.Left;
wmfspecial..Checksum ~= wmfspecial.Top; wmfspecial.Checksum "'=
wmfspecial.Right;
wmfspecial.Checksum "'= wmfspecial.Bottom; wmfspecial.Checksum "'=
wmfspecial.Inch;
wmfspecial.Checksum ~= (wmfspecial.Reserved & OxOOOOFFFFL);
wmfspecial.Checksum ~= ((wmfspecial.Reserved & OxFFFFOOOOL) >> 16);

An alternative way to step through the header structure one WORD at a time is
to use a pointer as shown below:

WMFSPECIAL *wmfspecial;
WORD *ptr;
wmfspecial->Checksum = 0;
for(ptr = (WORD *) wmfspecial;

ptr < (WORD *)w.mfspecial->Checksum;

596 GRAPHICS FILE FORMATS

Microsoft ffindows Metafile (cont'd)

ptr++)
wmfspecial->Checksum A= *ptr;

Storing Bitmaps in a WMF File ·

The BitBlt function (GDI function number 940h) is used to store device
independent bitmaps in a Windows Metafile. This record was modified for
Windows 3.0, so metafiles created under earlier versions of Windows may not
be suitable for playback on all graphics output devices.

For Further Information
For further information about the Microsoft \\?.ndows Metafile format, see the
specification included on the CD-ROM that accompanies this book. You may
also obtain information by contacting Microsoft at:

Microsoft Corporation
One Microsoft Way
Redmond, WA 98052-6399
Voice: 206-882-8080
FAX: 206-936-7329
BBS: 206-637-9009
WWW: http://www. microsoft. com/

Additional information about the Windows Metafile Format and the Microsoft
Windows Graphics Device Interface can also be found in the following refer
ences:

Petzold, Charles, Programming Windows: The Microsoft Guide to Writing
Applications for Windows 3, Second Edition, Microsoft Press, Redmond,
WA, 1990.

Microsoft Corporation, Microsoft Windows: A Guide to Programming,
Microsoft Windows Programmer's Reference Library, Microsoft Press,
Redmond, WA, 1990.

Microsoft Corporation, Microsoft Windows: Programmer's Reference,
Microsoft Windows Programmer's Reference Library, Microsoft Press,
Redmond, WA, 1990.

Microsoft Corporation, Microsoft Windows: Programming Tools, Microsoft
Windows Programmer.'s Reference Library, Microsoft Press, Redmond,
WA, 1990.

MICROSOFT WINDOWS METAFILE 597

Microsoft Windows Metafile (cont'd)

The Microsoft Windows Programmer's Reference Library is the master refer
ence for programmers working with all aspects of Microsoft Windows. The
books in this library are supplied with the Microsoft Windows Software Devel
opment Kit (SDK). The manuals supplied with the Microsoft C 7.0 Professional
Development Systems are also very helpful. You can get information about
obtaining these products from:

Microsoft Information Center
Voice: 800-426-9400

You may also be able to get information via FTP through the Developer Rela
tions Group at:

ftp:/ /ftp. microsoft.com/developer/drg/

598 GRAPHICS FILE FORMATS

NAME:

ALSO KNOWN As:

TYPE:

COLORS:

MIFF

Machine Independent File Format

Bitmap

16 million

MIFF I

COMPRESSION: RLE, Q-coder, JPEG predictive arithmetic compres
sion

MAxiMuM IMAGE s1zE: Unlimited

MuLTIPLE IMAGEs PER FILE: No

NUMERICAL FORMAT: NA

ORIGINAToR: John Cristy

PLATFoRM: X Window System

suPPoRTING APPLICATioNs: ImageMagick

SPEciFicATioN oN cD: Yes

cooE oN cD: Yes (in ImageMagick package)

IMAGEs oN CD: Yes

SEE ALSO: jFIF

usAGE: Bitmap still image and animation storage format.

coMMENTs: MIFF is the native image file format for the X Window System-based
ImageMagick utilities.

Overview
MIFF (Machine Independent File Format) is a platform-independent format
for storing bitmap images. MIFF is part of the ImageMagick toolkit of image
manipulation utilities for the X Window System. ImageMagick is capable of
converting many different image file formats to and from MIFF, in addition to
creating and displaying animated bitmap image presentations.

File Organization
The MIFF header is composed entirely of ASCII characters. The fields in the
header are keyword and value combinations in the keyword=value format, with
each keyword and value separated by an equal sign (=).

MIFF 599

MIFF (cont'd)

Each keywordr=value combination is delimited by at least one control or white
space character. Comments may appear in the header section and are always
delimited by braces. The MIFF header always ends with a colon (:) character,
followed by a newline character. It is also common for a formfeed and a new
line character to appear before the colon.

The following is a list of keywortb=value combinations that may be found in a
MIFF file:

class=DirectClass or class=PseudoClass
class indicates the type of binary image data stored in the MIFF file.
If this keyword is not present, DirectClass image data is assumed.

colors=value
colors specifies the number of colors in a DirectClass image. For a
PseudoColor image this keyword specifies the size of the colormap.
If this keyword is not present in the header, and the image is Pseu
doColor, then a linear colormap is used with the image data.

colutnns=value
columns indicates the width of the image in pixels. This is a
required keyword and has no default.

compression=QEncoded or compression=RunlengthEncoded
compression indicates the type of algorithm used to compress the
image data. If this keyword is not present, the image data is
assumed to be uncompressed.

id=ImageMagick
The id keyword identifies the file as a MIFF-format image file. This
keyword is required and has no default.

packets= value

rows= value

packets specifies the number of compressed color packets in the
image data section. This keyword is optional for RunlengthEn
coded images, mandatory for QEncoded images, and not used for
uncompressed images.

rows indicates the height of the image in pixels. This is a required
keyword and has no default.

6QQ GRAPHICS FILE FORMATS

MIFF (cont'd)

scene= value
scene indicates the sequence number for this MIFF image file. This
optional keyword is used when a MIFF image file is one in a
sequence of files used in an animation.

signature= value
The optional keyword signature contains a string that uniquely
identifies the image colormap. Unique colormap identifiers are
normally used when animating a sequence of PseudoClass images.

The following is a sample MIFF· header. In this example, <FF> is a formfeed
character:

A sample MIFF header

id=ImageMagick
class=PseudoClass colors=256
compression=RunlengthEncoded packets=10672
columns=800 rows=600 {size of the image}
scene=l signature=d79elc308aa5bbcdeea8ed63df412da9
<FF>

Note that keyword=value combinations may be separated by newlines or spaces
and may occur in any order within the header. Comments (within braces) may
appear anywhere before the colon.

Following the header is the binary image data itself. How the image data is for
matted depends upon the class of the image as specified (or not specified) by
the value of the class keyword in the header.

File Details
DirectClass images (class=DirectClass) are continuous tone, RGB images stored
as intensity values in red-green-blue order. Each color value is one byte in size
and there are three bytes per pixel. The total number of pixels in a DirectClass
image is calculated by multiplying the rows value by the columns value in the
header.

PseudoClass images (class=PseudoClass) are colormapped RGB images. The
colormap is stored as a series of red-green-blue pixel values, each value being a
byte in size. The number of map entries is indicated by the colors keyword in
the header, with a maximum of 65,535 total entries allowed. The colormap
data occurs immediately following the header.

MIFF 601

MIFF (cont'd)

PseudoClass image data is an array of index values into the color map. If there
are 256 or fewer colors in the image, each byte of image data contains an index
value. If the image contains more than 256 colors, then the index value is
stored in two contiguous bytes with the most significant byte being first. The
total number of pixels in a PseudoClass image is calculated by multiplying the
rows value by the columns value in the header.

MIFF is capable of storing a digital signature for colormapped images. This sig
nature was developed for use when animating a sequence of images on a col
ormapped X server. All of the signatures in a sequence of MIFF files are
checked, and if they all match, you do not need to compute a global colormap.

The default colormap identifier is a digital signature computed using the RSA
Data Security MD4 Digest Algorithm. (See a description of this algorithm in
RFC 1186, October 1990.) The colormap signature is computed if the MIFF file
is part of a scene (i.e., the scene value does not equal 0).

The image data in a MIFF file may be uncompressed or may be compressed
using one of two algorithms. The predictive arithmetic compression algorithm
found in the]PEG compression scheme (Chapter 9, Data Compression) may be
used to encode either DirectColor or PseudoColor image data into packets of
compressed data. Older MIFF files will use the IBM Q-coder algorithm to QEn
code image data. The number of Q-encoded packets stored in the file is speci
fied by the packets keyword in the header.

A less cosdy alternative to the Q-coder algorithms is a simple, run-length
encoding (RLE) algorithm. For DirectColor images, runs of identical pixel val
ues (not BYTE values) are encoded into a series of four-byte packets. The first
three bytes of the packet contain the red, green, and blue values of the pixel in
the run. The fqurth byte contains the number of pixels in the run. This value
may be in the range of 0 to 255 and is one less than the actual number of pix
els in the run. For example, a value of 147 indicates that there. are 1~8 pixels in
the run. · ·

For PseudoColor images, the same RLE algorithm is used. Runs of identical
index values are encoded into packets. Each packet contains the colormap
index value followed by the number of index values in the run. The number of
bytes in a PseudoColor RLE packet will be either two or three, depending upon
the size of the index values. The number of RLE packets stored in the file is
specified by the packets keyword in the header, but is not required.

602 GRAPHICS FILE FORMATS

MIFF (cont'd)

ForFurtherhttonnation
For further information about MIFF, see the specification included on the CD
ROM that accompanies this book.

ImageMagick was created by John Cristy, of E.I. duPont de Nemours & Com
pany, and is copyright by duPont. The software is included on the CD-ROM that
accompanies this book. See the following sites for ImageMagick:

http://www. wizards. dupont. com/ cristy/ImageMagick. html
ImageMagick homepage

http:/ /web. cnam.fr/lmages/Usenet/docs/imagemagick.html
What is ImageMagick?

ftp:/ /ftp. wizards. dupont. com/pub/lmageMagick/
ImageMagick FfP site

For more information about MIFF, you can contact:

duPont de Nemour & Company
Attn:John Cristy
Central Research and Development
Experimental Station
P.O. Box 80328
Room 162-A
Wilmington, DE 19880-0328
Voice: 302-695-1159
Email: cristy@dupont. com

For information about the JPEG predictive arithmetic compression algorithm,
see the section called ''JPEG Compression" in Chapter 9.

For information about the IBM-patented Q-coder compression algorithm, see
the following reference:

Mitchell,]. L. and W.B. Pennebaker, "Software Implementations of the
Q-Coder," IBM journal of Research Development, vol. 32, no. 6, November
1988, pp. 753-74.

MIFF 603

IMPEG
NAME:

ALSO KNOWN AS:

TYPE:

COLORS:

COMPRESSION:

MPEG

MPG, MPEG-1, MPEG-2

Audio/video data storage

Up to 24-bits (4:2:0 YCbCr color space)

DCT and block-based scheme with motion compen
sation

MAXIMUM IMAGE SIZE: 4095X4095X30 frames/ SeCOnd

MuLTIPLE IMAGEs PER FILE: Yes (multiple program multiplexing)

NUMERICAL FORMAT: NA

ORIGINAToR: Motion Picture Experts Group (MPEG) of the Inter
national Standards Organization (ISO)

PLATFORM: All

suPPORTING APPLICATioNs: Xing Technologies MPEG player, others

SPECIFicATioN oN cD: Yes (FAQ)

cooE oN cD: Yes (in ISO MPEG-2 Codec package)

IMAGEs oN cD: Yes

SEE ALso: JPEG File Interchange Format, Intel DVI

usAGE: Stores an MPEG-encoded data stream on a digital storage medium. MPEG
is used to encode audio, video, text, and graphical data within a single,
synchronized data stream.

coMMENTs: MPEG-1 is a finalized standard in wide use. MPEG-2 is still in the develop
ment phase and continues to be revised for a wider base of applications.
Currently, there are few stable products available for making practical use
of the MPEG standard, but this is changing.

Overview
MPEG (pronounced "em-peg") is an acronym for the Motion Picture Experts
Group, a working group of the International Standards Organization (ISO)
that is responsible for creating standards for digital video and audio compres
sion.

604 GRAPHICS FILE FORMATS

MPEG (cont'd)

The MPEG specification is a specification for an encoded data stream which
contains compressed audio and video information. MPEG was designed specifi
cally to store sound and motion-video data on standard audio Compact Discs
(CD) and Digital Audio Tapes (DAT).

The main application for MPEG is the storage of audio and video data on CO
ROMs for use in multimedia systems, such as those found on the Apple Macin
tosh platform and in the Microsoft Windows environment. Such systems
require the ability to store and play back high-quality audio and vide_o material
for commercial, educational, ·and recreational applications. The new MPEG-2
standard allows the transmission of MPEG data across television and cable net
work systems.

On most systems, you use special hardw~re to capture MPEG data from a live
video source at a real-time sampling rate of 30 frames per second. Each frame
of captured video data is then compressed and stored as an MPEG data stream.
If an audio source is also being sampled, it too is encoded and multiplexed in
with the video stream, with some extra information to synchronize the two
streams together for playback.

To play back MPEG data, you use either a hardware/ software or software-only
player. The player reads in the MPEG data stream, decompresses the informa
tion, and sends it to the display and audio systems of the computer. Speed of
the playback depends upon how quickly the resources of the computer allow
the MPEG data to be read, decompressed, and played. Available memory, CPU
speed, and disk 1/0 throughput are all contributing factors. The quality of the
MPEG stream is determined during encoding, and there are typically no adjust
ments available to allow an application to "tweak" the apparent quality of the
MPEG output produced during playback.

MPEG is based on digital television standards (specified in CCIR-601) used in
the United States. In its ini~al form, MPEG is not actually capable of storing
CCIR-601 images. The typical resolution of 720x576 requires more bandwidth
than the maximum MPEG data rate of 1.86Mbits/ second allows. Standard tele
vision images must therefore be decimated by 2:1 into lower resolution SIF for
mat data (352x240) to be stored.

European (PAL and SECAM) and Japanese standards are different in many
respects, including the display rate (30 frames/second U.S., 25 frames/second
European) and the number of lines per field (240 U.S., 288 European). There
fore, an MPEG player must be able to recognize a wide variety ofvariations pos
sible in the encoded video signal itself.

MPEG 605

MPEG (cont'd)

Constrained Parameters Bitstreams (CPB) are a complex aspect of MPEG. CPBs
are those bitstreams that are limited in terms of picture size, frame rate, and
coded bit-rate parameters. These limitations normalize the computation com
plexity required of both hardware and software, thus guaranteeing a reason
able, nominal subset of MPEG that can be decoded by the widest possible range
of applications while still remaining cost-effective. MPEG bitstreams for video
are limited to 1.86 Mbits/ second if they meet constrained parameters. If it
were not for the constrained parameters, the MPEG syntax could specify a data
rate of more than 100 Mbits/ second.

File Organization
No actual structured MPEG file form~t has been defined. Everything required
to play back MPEG data is encoded directly in the data stream. Therefore, no
header or other type of wrapper is necessary. It is likely that when needed, a
multimedia standards committee-perhaps MHEG or the DSM (Digital Storage
Medium) MPEG subgroup-will one day define an MPEG file format.

File Details
This section describes the relationship between MPEG, JPEG, and MJPEG, the
type of compression used for MPEG files, and the MPEG-2 standard.

Relationship Between MPEG,JPEG, and MJPEG

Some people are confused about the relationship between MPEG and]PEG.
The MPEG and JPEG (Joint Photographic Experts Group) committees of the
ISO originally started as the same group, but with two different purposes. JPEG
focused exclusively on still-image compression, while MPEG focused on the
encoding/ synchronization of audio and video signals within a single data
stream. Although MPEG employs a method of spatial data compression similar
to that used for]PEG, they are not the same standard nor were they designed
for the same purpose.

Another acronym you may hear is MJPEG (Motion]PEG). Several companies
have come out with an alternative to MPEG-a simpler solution (but not yet a
standard) for how to store· motion video. This solution, called Motion]PEG,
simply uses a digital video capture device to sample a video signal, to capture
frames, and to compress each frame in its entirety using the]PEG compression
method. A Motion JPEG data stream is then played back by decompressing and

606 GRAPHICS FILE FORMATS

MPEG (ccmt'd)

displaying each individual frame. A standard audio compression method is
usually included in the Motion JPEG data stream.

There are several advantages to using MotionjPEG:

• Fast, real-time compression rate

• No frame-to-frame interpolation (motion compensation) of data is
required

But there are also disadvantages:

• Motion]PEG files are considerably larger than MPEG files

• They are somewhat slower to play back (more information per frame than
MPEG)

• They exhibit poor video quality if a higher JPEG compression ratio (quality
factor) is used

On average, the temporal compression method used by MPEG provides a com
pression ratio three times that of]PEG for the same perceived picture quality.

MPEG Compression

MPEG uses an asymmetric compression method. Compression under MPEG is
far more complicated than decompression, making MPEG a good choice for
applications that need to write data only once, but need to read it many times.
An example of such an application is an archiving system. Systems that require
audio and video data to be written many times, such as an editing system, are
not good choices for MPEG; they will run more slowly when using the MPEG
compression scheme.

MPEG uses two types of compression methods to encode video data: interframe
and intraframe encoding. Interframe encoding is based upon both predictive
coding and interpolative coding techniques, as described below.

When capturing frames at a rapid rate (typically 30 frames/ second for real
time video) there will be a lot of identical data contained in any two or more
adjacent frames. If a motion compression method is aware of this "temporal
redundancy," as many audio and video compression methods are, then it need
not eQcode the entire frame of data, as is done via intraframe encoding. Instead,
only the differences (deltas) in information between the frames is encoded.
This results in greater compression ratios, with far less data needing to be
encoded. This type of interframe encoding is called predictive encoding.

MPEG 607

MPEG (cont'd)

A further reduction in data size may be achieved by the use of bi-directional
prediction. Differential predictive encoding encodes only the differences
between the current frame and the previous frame. Bi-directional prediction
encodes the current frame based on the differences between the current, pre
vious, and next frame of the video data. This type of interframe encoding is
called motion-compensated interpolative encoding.

To support both interframe and intraframe encoding, an MPEG data stream
contains three types of coded frames:

• 1-frames (intraframe encoded)

• P-frames (predictive encoded)

• B-frames (bi-directional encoded)

An !-frame contains a single frame of video data that does not rely on the infor
mation in any other frame to be encoded or decoded. Each MPEG da~ stream
starts with an 1-frame.

A P-frame is constructed by predicting the difference between the current
frame and closest preceding 1- or P-frame. A B-frame is constructed from the
two closest 1- or P-frames. The B-frame must be positioned between these 1- or
P-frames.

A typical sequence of frames in an MPEG stream might look like this:

IBBPBBPBBPBBIBBPBBPBBPBBI

In theory, the number of B-frames that may occur between any two 1- and P
frames is unlimited. In practice, however, there are typically twelve P- and B
frames occurring between each 1-frame. One 1-frame will occur approximately
every 0.4 seconds of video runtime.

Remember that the MPEG data is not decoded and displayed in the order that
the frames appear within the stream. Because B-frames rely on two reference
frames for prediction, both reference frames need to be decoded first from the
bitstream, even though the display order may have a B-frame in between the
two. reference frames.

In the previous example, the 1-frame is decoded first. But, before the two B
frames can be decoded, the P-frame must be decoded, and stored in memory
with the 1-frame. Only then may the two B-frames be decoded from the infor
mation found in the decoded 1- and P-frames. Assume, in this example, that

608 GRAPHICS FILE FORMATS

MPEG (cont'd)

you are at the start of the MPEG data stream. The first ten frames are stored in
the sequence IBBPBBPBBP (0123456789), but are decoded in the sequence:

IPBBPBBPBB (0312645978)

and finally are displayed in the sequence:

IBBPBBPBBP (0123456789)

Once an 1-, P-, or B-frame is constructed, it is compressed using a DCT com
pression method similar to]PEG. Where interframe encoding reduces tempo
ral redundancy (data identical over time), the OCT-encoding reduces spatial
redundancy (data correlated within a given space). Both the temporal and the
spatial encoding information are stored within the MPEG data stream.

By combining spatial and temporal subsampling, the overall bandwidth reduc
tion achieved by MPEG can be considered to be upwards of 200:1. However,
with respect to the final input source format, the useful compression ratio
tends to be between 16:1 and 40:1. The ratio depends upon what the encoding
application deems as "acceptable" image quality (higher quality video results in
poorer compression ratios). Beyond these figures, the MPEG method becomes
inappropriate for an application.

In practice, the sizes of the frames tend to be 150 Kbits for 1-frames, around 50
Kbits for P-frames, and 20 Kbits for B-frames. The video data rate is typically
constrained to 1.15 Mbits/second, the standard for OATs and CD-ROMs.

The MPEG standard does not mandate the use of P- and B-frames. Many MPEG
encoders avoid the extra overhead of B- and P-frames by encoding 1-frames.
Each video frame is captured, compressed, and stored in its entirety, in a simi
lar way to Motion JPEG. I-frames are very similar to JPEG-encoded frames. In
fact, the JPEG Committee has plans to add MPEG I-frame methods to an
enhanced version of]PEG, possibly to be known as JPEG-II.

With no delta comparisons to be made, encoding may be performed quickly;
with a little hardware assistance, encoding can occur in real time (30
frames/second). Also, random access of the encoded data stream is very fast
because 1-frames are not as complex and time-consuming to decode as P- and
B-frames. Any reference frame needs to be decoded before it can be used as a
reference by another frame.

There are also some disadvantages to this scheme. The compression ratio ofan
I-frame-only MPEG file will be lower than the same MPEG file using motion

MPEG 609

MPEG (cont'd)

compensation. A one-minute file consisting of 1800 frames would be approxi
mately 2.5Mb in size. The same file encoded using B- and P-frames would be
considerably smaller, depending upon the content of the video data. Also, this
scheme of MPEG encoding might decompress more slowly on applications that
allocate an insufficient amount of buffer space to handle a constant stream of
I-frame data.

MPEG-2

The original MPEG standard is now referred to as MPEG-1. The MPEG-1 Video
Standard is aimed at small-scale systems using CD-ROM storage and small, lower
resolution displays. Its 1.5-Megabit/second data rate, however, limits MPEG-1
from many high-power applications. The next phase in MPEG technology
development is MPEG-2. ·

The new MPEG-2 standard is a form of digital audio and video designed for the
television industry. It will be used primarily as a way to consolidate and unify
the needs of cable, satellite, and television broadcasts, as well as computing,
optical storage, Ethernet, VCR, CD-I, HDTV, and blue-laser CD-ROM systems.

MPEG-2 is an extension of the MPEG-1 specification and therefore shares many
of the same design features. The baseline part of MPEG-2 is called the Video
Main Profile and provides a minimum definition of data quality. This defini
tion fills the needs of high-quality television program distribution over a wide
variety of data networks. Video Main Profile service over cable and satellite sys
tems could possibly start in 1994. Consumers who need such features as inter
active television and vision phones will benefit greatly from this service.

Features added by MPEG-2 include:

• Interlaced video formats

• Multiple picture aspect ratios (such as 4:3 and 16:9, as required by HDTV)

• Conservation of memory usage (by lowering the picture quality below the
Video Main Profile definition)

• Increased video quality over MPEG-1 (when coding for the same target arbi-
trates)

• Ability to decode MPEG-1 data streams.

MPEG-2 £an also multiplex audio, video, and other information into a single
data stream and provides 2- to 15-Mbits/second data rates while maintaining
full CCIR-601 image quality. MPEG-2 achieves this by the use of two types of
data streams: the Program stream and the Transport stream.

610 GRAPHICS FILE FORMATS

MPEG (cont'd)

The Program stream is similar to the MPEG-1 System stream, with extensions
for encoding program~specific information, such as multiple language audio
channels. The Transport stream was newly added to MPEG-2 and is used in
broadcasting by multiplexing multiple programs comprised of audio, video,
and private data, such as combining standard-definition 1V and HD1V signals
on the same channel. MPEG-2 supports multi-program broadcasts, storage of
programs on VCRs, error detection and correction, and synchronization of
data streams over complex networks.

Just as MPEG-1 encoding and decoding hardware has appeared, so will the
same hardware for MPEG-2. With its broad range of applications and its toolkit
approach, MPEG-2 encoding and decoding is very difficult to implement fully
in a single chip. A "do everything" MPEG-2 chipset is not only difficult to
design, but also expensive to sell. It is more likely that MPEG-2 hardware
designed for specific applications will appear in the near future, with much
more extensible chipsets to come in the more distant future.

The compression used on the MPEG audio stream data is based on the Euro
pean MUSICAM standard, with additional pieces taken from other algorithms.
It is similar in conception to the method used to compress MPEG video data. It
is a lossy compression scheme, which throws away (or at least assigns fewer bits
of resolution to) audio data that humans cannot hear. It is also a temporal
based compression method, compressing the differences between audio sam
ples rather than the samples themselves. At this writing, a publicly available ver
sion of the audio code was due to be released by the MPEG audio group.

The typical bandwidth of a CD audio stream is 1.5 Mbits/second. MPEG audio
compression can reduce this data down to approximately 256 Kbits/second for
a 6:1 compression ratio with no discernible loss in quality (lower reductions
are also possible). The remaining 1.25 Mbits/ second of the bandwidth contain
the MPEG-1 video and system streams. And using basically the same MPEG-1
audio algorithm, MPEG-2 audio will add discrete surround sound channels.

ForFurtherhrronnation
For further information about MPEG, see the MPEG Frequently Asked Ques
tions (FAQ) document included on the CD-ROM that accompanies this book.
Note, howev~r, that this FAQ is included for background only; because it is con
stantly updated, you should obtain a more recent version. The MPEG FAQ on
USENET is posted monthly to the newsgroups comp.graphics, comp.compression,

MPEG 611

MPEG (ccmt'd)

and comp. multimedia. The FAQ is available by using FfP from rtfm. mit.edu and is
located in the directories that are called /pub/usenet/comp.graphics and
/pub/usenet/ comp. compression.

To obtain the full MPEG draft standard, you will have to purchase it from ANSI.
The MPEG draft ISO standard is ISO CD 11172. This draft contains four parts:

11172.1
11172.2
11172.3
11172.4

Synchronization and multiplexing of audio-visual information
Video compression
Audio compression
Conformance testing

Contact ANSI at:

American National Standards Institute
Sales Department
1430 Broadway
New York, NY, 10018
Voice: 212-642-4900

Drafts of the MPEG-2 standard are expected to be available soon. For more
information about MPEG, see the following article:

Le Gall, Didier, "MPEG: A Video Compression Standard for Multimedia
Applications," Communications of the ACM, vol. 3, no. 4, April 1991, pp.
46-58.

On the CD-ROM you will find several pieces of MPEG software. The ISO MPEG-2
Codec software, which converts uncompressed video frames into MPEG-1 and
MPEG-2 video-coded bi~tream sequences, and vice versa, is included in source
code form and as a precompiled MS-DOS binary. The Sparkle MPEG player is
also included for Macintosh platforms.

612 GRAPHICS FILE FORMATS

NAME:

ALSO KNOWN As:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

M1V

None

Scene description

NA

Uncompressed

NA

Yes

ASCII

Mark VandeWettering

All

M'IV, various conversion utilities

Yes

No

No

NFF,PBM

~I

UsAGE: Used by the MTV ray tracer, although numerous conversion utilities, usu
ally associated with other ray tracers, exist.

coMMENTs: One of the early ray tracers, still in use because of its easy availability, wide
di~tribution,. and simplicity.

Overview
The M1V formats were created to support Mark VandeWettering's M1V ray
tracer and are named for the author. The M1V application has been ported to
many platforms and has enjoyed wide distribution, through the comp.graphics
newsgroup on the Internet and through the network of private (primarily PC
based) BBSs. Although the author considers both the program and the format
to be dead, the format still enjoys a certain degree of currency, mainly due to
its understandable design and simplicity. M1V is still being downloaded with
some regularity from a number of bulletin boards and information services.

MTV . 613

MTV (cont'd)

File Organization and Details
Both the M1V input format and the output format are based on other formats
that are described in this book. The following sections provide summary infor
mation only.

Input Format

The M1V input format is identical to the Neutral File Format (NFF) developed
by Eric Haines and described in detail in the NFF article.

NFF files consist of lines of ASCII text. Each line describes an object called an
entity. The first field of each line describes the entity's type, and subsequent
fields on the same line, and possibly subsequent lines, contain further informa
tion about the entity. The following entities are currently supported:

• Simple perspective frustum

• Background color description

• Positional (versus directional) light-source description

• Surface-properties description

• Polygon, polygonal patch, cylinder I cone, and sphere descriptions

Entities are coded as follows:

''v" Viewpoint location (viewing vectors and angles)
"b '' Background color
"1" Positional light location
"f' Object material properties
"c" Cone or cylinder primitive
"s" Sphere primitive
"p" Polygon primitive
"pp" Polygonal patch primitiv~

See the NFF article for a discussion of each entity.

Output Format

The MTV output format is based on the PPM format, a part of the pbmplus
package of utilities developed by Jef Poskanzer. PPM is described in the PBM
article in this book, ~nd the utilities are included on the CD-ROM that

6}4 GRAPHICS FILE FORMATS

MTV (cmtt'd)

accompanies this book. The MTV output format differs only trivially from the
PPM format. The author of the MTV format describes the output format as fol
lows:

An MTV format image consists of an ASCII header followed directly by
the image data bytes. The ASCII header is merely a string containing
the width and height followed by a newline character. The following C
statement will print out the ASCII header:

fprintf(fp, "%d %d\n", width, height) ;

This is followed directly by the image data, which is written out as three
unsigned bytes per pixel, originating at the upper left of the image.
This is identical to how the bytes are written out in the PPM image for
mat.

If you desire to write PPM format files, you merely need to change the
line which outputs the ASCII header to the following:

fprintf(fp, "P6\n%d %d\n255\n", width, height)

Here is an example of a small pixmap in this format:

P3
feep.ppm
4 4
15

0 0 0 0 0 0 0 0 0 15 0 15
0 0 0 0 15 7 0 0 0 0 0 0
0 0 0 0 0 0 0 15 7 0 0 0

15 0 15 0 0 0 0 0 0 0 0 0

Programs that read this format should be as lenient as possible, accept
ing anything that looks remotely like a pixmap.

The PBM article provides additional information about the PPM output format.

ForFurtherhUonnation
For further information about the MTV format, see the specification included
on the CD-ROM that accompanies this book, as well as the specifications for
NFFand PBM.

MTV 615

MTV (cont'd)

The MTV ray tracer is no longer being maintained by Mr. VandeWettering, who
considers it dead. However, ample documentation is provided with the format
package, should the need ever arise. You may also be able to get additional
information from:

Mark VandeWettering
Pixar
1001 West Cutting
Richmond, CA 94804
Voice: 510-236-4000
FAX: 510-236-0388
Email: markv®pixar. com

You can also contact:

Tony Apodaca
Email: aaa®pixar. com

616 GRAPHICS FILE FORMATS

NAME:

ALSO KNOWN As:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

NAPLPS I
NAPLPS

North American Presentation Layer Protocol Syntax

Graphics Protocol/Metafile

NA

None

NA

Yes

ASCII

ISO/ ANSI/ CSA

All

Videotex services, Prodigy

Yes (summary description by third party)

No

Yes

None

usAGE: Transfer of graphics information to devices such as modems and termi
nals.

coMMENTs: Although not strictly a file format, NAPLPS is likely to become the basis of
one, because it is in wide use in a rapidly growing segment of the com
puter communications industry.

Overview
NAPLPS (North American Presentation Layer Protocol Syntax) was designed as
an information transfer protocol rather than as a file format. However, because
NAPLPS data is occasionally written to disk and saved in file form, it is only a
matter of time before an actual format stabilizes. For this reason, we are includ
ing summary information about NAPLPS in this book.

NAPLPS is used by a number of Videotex services, is supported by special
NAPLPS terminals, and is used by Prodigy, a well-known commercial online ser
vice. NAPLPS was designed to extend ASCII to provide efficient transmission of
text and picture information. It was specifically designed to provide usable
information transfer rates even at 2400 baud. Data is sent as a stream of 7-bit or

NAPLPS 617

NAPLPS (cont'd)

8-bit ASCII characters to provide maximum compatibility with all ASCII-based
operating platforms, network hardware, and network software.

NAPLPS defines line, box, circle, arc, polyline, polygon, spline, bitmaps, and
fonts, both in palette and 24-bit color. The coordinate model is right-handed
Cartesian, meaning that X andY coordinates increase toward the upper-right
of the screen. ·

A NAPLPS code sequence begins with the characters ESC 25 41 and ends with
the sequence ESC 25 40. NAPLPS code sequences are designed with an eye
toward avoiding standard terminal escape sequences such as those provided by
VT100 and ANSI. NAPLPS files are basically segments of the NAPLPS data
stream redirected to a file. Properly formatted, NAPLPS data files are not
unlike uuencoded binary files. Proponents of NAPLPS claim great efficiencies
from the encoding scheme. Much of the burden for image reconstruction falls
on the rendering application, so a combination of low-bandwidth transmission
channels and high-performance workstations would work well with NAPLPS.
Unfortunately, the trend in recent years has been for data to be sent in bitmap
format across channels of increasing bandwidth, so it's not clear what the
future of NAPLPS will be.

A number of terminal programs currently support NAPLPS on both the PC and
the Macintosh platforms.

ForFurtherhdonnation
For further information about NAPLPS, see the excellent article by Michael
Dillon included on the CD-ROM that accompanies this book. This article pro
vides an overview and some detailed information about NAPLPS. You can also
contact Mr. Dillon at:

Michael Dillon
CompuServe: 71532,137
Internet: mpdillon@halcyon. com

Also check out the TurBoard NAPLPS BBS homepage at:

http://www. mindspring. com/-crhoads/shawn/turboard/

NAPLPS is formally defined in standards documents available for purchase
from the International Standards Organization (ISO), the American National
Standards Institute (ANSI), and the Canadian Standards Association (CSA).

618 GRAPHICS FILE FORMATS

NAPLPS (cont'd)

Note that information contained in the CSA supplement (see below) is not
included in the ANSI version of the document.

International Standards Organization (ISO)
1 rue de Varembe
Case Postal 56
CH-1211 Geneva 20 Switzerland
Voice: +41 22 749 01 11
FAX: +41 22 733 34 30

Ask ISO for the NAPLPS specification.

American National Standards Institute (ANSI)
Attn: Sales Department
1430 Broadway
New York NY 10018
Voice: 212-642-4900

Ask ANSI for document number X3.11 0-1983.

Canadian Standards Association (CSA)
Attn: Sales Group
178 Rexdale Blvd.
Rexdale, Ontario M9W 1R3
Voice: 416-747-4044

Ask CSA for document number T500-1983 and supplement number 1-1991.

Further information about the NAPLPS format can be found in the February,
March, April, and May 1983 issues of Byte magazine.

NAPLPS 619

INFF
NAME:

ALSO KNOWN As:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

NFF

Haines NFF, Neutral File Format

Scene description

NA

Uncompressed

NA

NA

NA

Eric Haines

All

Standard Procedural Database {SPD), M1V, others

Yes

No

No

MTV, Pixar RIB, POV, PRT, QRT, Radiance, Rayshade,
RTrace

UsAGE: Modeling of rendering algorithms, ray-trace applications.

coMMENTs: A simple scene description language incorporating most of the basics,
which would be informative for anyone thinking about designing yet
another ray-trace scene-description format.

Overview
NFF (Neutral File Format) is the creation of Eric Haines. Mr. Haines, the pub
lisher of Ray Tracing News, has been active in the high-end graphics community
for a number of years, He is well-known through these efforts, particularly on
the Internet. As a consequence of Mr. Haines' visibility, although NFF was origi
nally designed to test rendering algorithms, the format has played a role in the
evolution of other, more sophisticated, scene description languages and for
mats.

Eric Haines describes NFF as follows:

The NFF (Neutral File Format) is designed as a minimal scene descrip
tion language. The language was designed in order to test various

620 GRAPHICS FILE FORMATS

NFF (cont'd)

rendering algorithms and efficiency schemes. It is meant to describe
the geometry and basic surface characteristics of objects, the placement
of lights, and the viewing frustum for the eye. Some additional informa
tion is provided for aesthetic reasons (such as the color of the objects,
which is not strictly necessary for testing the efficiency of rendering
algorithms).

Note that NFF has minimal support for lighting and shading.

File Organization
NFF files consist of lines of ASCII text. Each line describes an object called an
entity. The first field of each line describes the entity's type, and subsequent
fields on the same line, and possibly subsequent lines, contain further informa
tion on the entity.

File Details
The information in this section is extracted from the NFF documentation
kindly provided by Eric Haines.

By providing a minimal interface, NFF is meant to act as a simple format to
allow the programmer to quickly write filters to move from NFF to the local file
format. Presently, the following entities are supported:

• Simple perspective frustum

• Background color description

• Positional (versus directional) light-source description

• Surface-properties description

• Polygon, polygonal patch, cylinder I cone, and sphere descriptions

Entities are coded as follows:

''v" Viewpoint location (viewing vectors and angles)
"b" Background color
"1" Positional light location
"f' Object material properties
"c" Cone or cylinder primitive
"s" Sphere primitive
"p" Polygon primitive
"pp" Polygonal patch primitive

NFF 621

NFF (cont'd)

These are explained in the following sections.

Viewpoint Location

The viewpoint location entity is coded as follows:

"v"
"from> Fx Fy Fz
"at" AxAyAz
"up"Ux UyUz
"angle" angle
"hither" hither
"resolution" xres yres

Format:

v
from ig ig ig
at ig ig ig
up ig ig ig
angle ig
hither ig
resolution %d %d

Parameters
from Eye location in XYZ

at Position to be at the center of the image, in XYZ world coordinates
(a.k.a. "lookat")

up Vector defining which direction is up, as an XYl vector

angle In degrees, defined as the angle from the center of top pixel row to
bottom pixel row and left column to right column

hither· Distance of the hither plane (if any) .from the eye. Mostly needed
for hidden surface algorithms.

resolution In pixels, in x and in y

Note that no assumptions are made about normalizing the data (e.g., the from
at distance does not have to ~e 1). Also, vectors are not required to be perpen
dicular to each other.

622 GRAPHICS FILE FORMATS

For all databases, some viewing parameters are always the same:

yon is "at infmity. ''
aspect ratio is 1.0.

NFF (cont'd)

A view entity must be defined before any objects are defined. (This require
ment is so that NFF files can be displayed on-the-fly by hidden-surface
machines.)

Background Color

A color is simply RGB, with values between 0 and 1:

"b"RGB

Format:

b %g %g %g

If no background color is set, assume that RGB = [0,0,0].

Positional Light Location

A light is defined by XYl position:

"I" X Y Z [R G B]

Format:

1 %g %g %g [%g %g %g)

All light entities must be defined before any objects are defined. (This require
mentis so that NFF files can be used by hidden surface machines). Lights have
a non-zero intensity of no particular value, if not specified (i.e., the program
can determine a useful intensity as desired); the red/ green/blue color of the
light can optionally be specified.

Object Material Pr&jlerties (Fill Color and Shading Parameters)

Object material properties (fill color and shading parameters) are coded as fol
lows:

"f' red green blue Kd Ks Shine T index_of_refraction

Format:

f %g %g %g %g %g %g %g %g

RGB is in terms ofO.O to 1.0.

NFF 623

NFF (cont'd)

Parameters
Kd Diffuse component
Ks Specular
Shine Phong cosine power for highlights
T Transmittance (fraction of co.otribution of the transmitting ray).

Usually, 0 <= Kd <= 1 and 0 <= Ks <= 1, though it is not required that Kd + Ks =
1. Note that transmitting objects (T > 0) are considered to have two sides for
algorithms that need these (normally, objects have one side).

The fill color is used to color the objects following it until a new color is
assigned.

Objects (Cone or Cylinder Primitive)

All objects are considered one-sided, unless the second side is needed for
transmittance calculations (e.g., you cannot throw out the second intersection
of a transparent sphere in ray tracing).

A cylinder is defined as having a radius and an axis defined by two points,
which also define the top and bottom edge of the cylinder.

A cone is defined in similar fashion; the difference is that the apex and base
radii are different. The apex radius is defined as being smaller than the base
radius. Note that the surface exists without endcaps. The cone or cylinder
description is shown below:

"c"
base.x base.y ~ase.z base_radius
apex.x apex.y apex.z apex_radius

\
Format:

c
%g %g %g %g
%g %g %g %g

A negative value for both radii means that only the inside of the object is visi
ble (objects are normally considered one-sided, with the outside visible). Note
that the base and apex cannot be coincident for a cylinder or cone. Making
them coincident could be used to define endcaps, but none of the SPD scenes
currently make use of this definition.

624 GRAPHICS FILE FORMATS

NFF (cont'd)

sphere

A sphere is defined by a radius and center position, as shown below:

"s" center.x center.y center.z radius

Format:

s %g %g %g %g

If the radius is negative, then only the sphere's inside is visible (objects are nor
mally considered one-sided, with the outside visible). Currently none of the
SPD scenes makes use of negative radii.

Polygon

A polygon is defined by a set of vertices. With these databases, a polygon is
defined to have all points coplanar. A polygon has only one side; the order of
the vertices is counterclockwise as you face the polygon (right-handed coordi
nate system). The first two edges must form a non-zero convex angle, so that
the normal and side visibility can be determined by using just the first three.
vertices.

A polygon is defined as shown below:

"p" total_ vertices
vertl.x vertl.y vertl.z
[etc. for total_ vertices vertices]

Format:

p id
f %g %g %g 1 +- for total_vertices vertices

Polygonal Patch

A patch is defined by a set of vertices and their normals. With these databases,
a patch is defined to have all points coplanar. A patch has only one side, with ·
the order of the vertices being counterclockwise as you face the patch (right
handed coordinate system). The first two edges must form a non-zero convex
angle, so that the normal and side visibility can be determined.

A polygonal patch is defined as shown below:

"pp" total_vertices
vertl.x vertl.yvertl.z norml.x norml.y norml.z
[etc. for total_ vertices vertices]

NFF 625

NFF (cont'd)

Format:

pp id
[ig ig ig ig ig ig 1 ~ for total_vertices vertices

Comment

A comment is defined as shown below:

''#" [string]

Format:

[string 1

As soon as a # character is detected, the rest of the li:Qe is considered a com
ment.

ForFurtherhdonnation
For further information about the NFF format, see the specification included
on the CD-ROM that accompanies this book. You can also contact the NFF
author:

Eric Haines
3D/EYE Inc.
1050 Craft Road
Ithaca, NY 14850
Email: erich@eye. com

NFF is also used in conjunction with the Standard Procedural Database (SPD)
software, a package designed to create a variety of databases for testing render
ing schemes. For more information about SPD, see the following paper:

"A Proposal for Standard Graphics Environments,'' IEEE Computer
Graphics and Applications, vol. 7, no. 11, November 1987, pp. 3-5.

SPD is available by anonymous FTP from:

ftp: I /wuarchive. wustl. edu/ graphics/ graphics/ objects/
Jtp:/ /princeton.edu/pub/Graphics/

Images of the databases are available from (among other places):

ftp:/ /ftp.eye. com/pub/graphics/SPD I
ftp:/ /gondwana.ecr.mu.oz.au/pub/images/haines/

626 GRAPHICS FILE FORMATS

NAME:

ALSO KNOWN As:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

OFF

Object File Format

Scene description

NA

Uncompressed

NA

NA
NA
Randi Rost

UNIX

dxmodel, others

Yes

Yes

No

OFF I

MTV, Pixar RIB, POV, PRT, QRT, Radiance, RTrace

usAGE: Description of 3D scenes for later rendering.

coMMENTs: The OFF format is designed to support ea8y and flexible description of 3D
objects for later manipulation and rendering.

Overview
OFF (Object File Format) was developed in 1986 at Digital Equipment Corpo
ration's Workstations Systems Engineering by Randi Rost and was subsequently
made available for public distribution. OFF is partly derived from an object file
format used at Ohio State University. OFF was designed from the start to sup
port data interchange and archiving; in this case, the interchange and archiv
ing of 3D objects. Although this plan originally bore fruit inside Digital, OFF
has seen use in the 3D modeling community, partly because of its wide avail
ability on the Internet.

The OFF author thought carefully about how to establish libraries of lal;>ori
ously-produced 3D objects so that the labor that went into construction of the
objects could be amortized through reuse. OFF files consist of lines of ASCII

OFF 627

OFF (cont'd)

text describing objects, implementing part of the author's goal of making OFF
independent of language, device, and operating system.

The format is well described in the original specification documents included
on the CD-ROM, and only a summary of that format is included here.

File Organization and Details
An OFF file consists of a number of ASCII lines. The following are usually
found at the beginning of these lines:

Name Short descriptive name of object defined in the file

Description
Fuller description of the object defined in the file

Author Actual author or company owner

Copyright Distribution information

Type Object type; currently, only polygons are supported

Following this information is a series of lines, each defining an object attribute.
Each attribute consists of:

Property name
Uniquely describes the property; currently, conventions exist for
geometry, polygon colors, vertex colors, back faces, vertex order,
diffusion coefficients, specular coefficients, and specular power

Property types
One of the following: default, generic, indexed, or indexed_poly

Data format
String of characters indicating the order and type of the data to fol
low

Filename or data
The file indicated here may contain more elaborate data than
might be appropriate in this file.

Associated with the original OFF system are an include file, objects.h, and a
library file, off.a (on UNIX systems). Together, these implement a subroutine
library for reading and writing OFF files. You can adapt these for operating sys
tems other than UNIX.

628 GRAPHICS FILE FORMATS

OFF (ront'd)

ForFurtherlnfonnarion
For further information about the OFF format, see the specification included
on the CD-ROM that accompanies this book.

Rost, Randi, OFF-A 3D Object File Format, 6 November 1986, updated
12 October 1989.

You can also obtain the OFF archive (containing the distribution format, tools,
and objects) via FTP from:

ftp:/ /gatekeeper. dec. com/pub/DEC/

The OFF author, Randi Rost, is not currently supporting OFF or enhancing its
tools (nor is Digital Equipment, where Mr. Rost developed OFF}. The archive
can be used freely, but comes with no express or implied warranties. You must
adhere to the usage guidelines outlined in the copyright sections of the indi
vidual files.

For further information, contact:

Randi Rost
Kubota Pacific Computer, Inc.
2630 Walsh Avenue
Santa Clara, CA 95051
Email: rost®kpc. com

OFF 629

I OS/2 Bitmap
NAME:

ALSO KNOWN AS:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES 'PER FILE:

NUMERICAL FORMAT:

·ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

OS/2 Bitmap*

BMP, Presentation Manager Bitmap, PM Bitmap, PM
BMP, PMDIB

Bitmap

Mono, 4-bit, 8-bit, 24-bit

RLE, Huffman ID, uncompressed

64Kx64K and 4Gx4G pixels

Yes

Little-en dian

Microsoft Corporation, IBM

Intel machines running OS/2, Microsoft Windows,
Windows NT, Windows 95, and MS-DOS

Too numerous to list

Yes (part of the Presentation Manager Metafile spec
ification)

Yes

Yes

Microsoft Windows Bitmap

UsAGE: Used as the standard bitmap, pointer, and icon storage format in the IBM
OS/2 Presentation Manager environment.

coMMENTs: A well-defined format for programmers having access to the IBM Devel
oper's Toolkit for OS/2 Warp and Presentation Manager Software Devel
opment Kit. Its simple RLE compression scheme is rather inefficient for
complex, deep-pixel images. Its many variations and differences from the
Windows BMP format can be confusing. It is also less widely used than the
Windows BMP file format.

*Our thanks to David Charlap for his contributions to this article.

630 GRAPHICS FILE FORMATS

OS/2 Bitmap (cont'd)

Overview
The IBM OS/2 Bitmap (BMP) file format is one of several graphics file formats
supported by the OS/2 operating system. BMP is the native bitmap format of
OS/2 and is used to store several types of bitmap data, including icons and
pointers. Most graphics and imaging applications operating under OS/2 sup
port the creation and display of BMP format files. BMP is also found in MS-DOS
and Microsoft Windows and originated in that environment.

BMP was originally developed for the Microsoft Windows environment.
Microsoft shared responsibility with IBM for the development of early versions
of IBM's OS/2 operating system. When Presentation Manager, the OS/2 Graph
ical User Interface, required a bitmap format, the Windows BMP format was
used. Thus, the Windows 2.x and OS/2 l.x BMP formats are identical.

The structure of BMP format files is closely tied to the API of both OS/2 and
Windows. In this regard, BMP was never meant to be a portable format, or used
for bitmap data interchange between different operating systems. As each of
these operating system APis has changed, the BMP format has changed along
with them.

OS/2 BMP files are much less common than Windows BMP files. This is mostly
due to the wider distribution and acceptance of the Microsoft Windows envi
ronment over the IBM OS/2 operating system, as well as to the greater number
of graphics-using Windows applications.

Because OS/2 BMP files are encountered less frequently, many graphics file dis
play programs do not support the reading, writing, and displaying of OS/2 BMP
files but do support Microsoft BMP. However, because both of these formats
use the same file extension, a non-OS/2-aware file reader will not be able to

· discern whether it is reading a Windows or an OS/2 BMP file. Reading an OS/2
BMP file as if it were a Windows BMP file will produce unpredictable results
from the software application.

There are currently two versions of BMP under OS/2 (l.x and 2.x) and six vari
ations; two with the file extension .ICO, two with .PTR, and two using .BMP.
This article describes the two versions and their variations used under IBM
OS/2. For a discussion of the Microsoft Windows BMP format versions, see the
article about the Microsoft Bitmap format.

All of the BMP versions originated on Intel-based machines and thus share a
common little-endian heritage. The current BMP format is otherwise hardware
independent and can accommodate images with up to 24-bit color. Its basic

OS/2 BITMAP 631

OS/2 Bitmap (cont'd)

design makes it a good general purpose format that can be used for color or
black-and-white image storage if file size is not a factor. Its main virtues are its
simplicity and widespread support in the PC marketplace.

The compression method used is a type of run-length encoding (RLE),
although most BMP files to date have been stored uncompressed. Although the
BMP RLE scheme is lossless and quickly decompressed, it is not considered a
superior compression method.

The OS/2 BMP format is documented in the appendix of the OS/2 Presenta
tion Manager Programmer's Reference manual and in the online Presentation
Manager reference from the OS/2 Warp v3 toolkit.

'

File Organization
OS/2 BMP files occur in two major revisions (vl.x and v2.x) and in six different
variants: Bitmap, Bitmap Array, Icon, Color Icon, Pointer, and Color Pointer.
The typical BMP file contains four sections of data: the file header, the bitmap
header, the color palette, and the bitmap data.

File Header

Bitmap Header

Color Palette

Bitmap Data

As previously mentioned, OS/2 l.x BMP files are identical to Microsoft Win
dows 2.x BMP files. This fact reflects the common ancestry of the OS/2 operat
ing system and the Microsoft Windows operating environment.

rhe major difference between vl.x and v2.x files is the size of the bitmap
header. This header is 14 bytes in length in vl.x BMP files and is 64 bytes in
length in v2.x files.

File Details
All OS/2 BMP files begin with a file header 14 bytes in length with the following
format:

typedef struct _Os2BmpFileHeader
{

WORD FileType; /* File type identifier */

632 GRAPHICS FILE FORMATS

DWORD FileSize;
WORD XHotSpot;
WORD YHotSpot;
DWORD BitmapOffset;

OS2BMPFILEHEADER;

OS/2 Bitmap (cont'd)

I* Size of the file in bytes *I
I* X coordinate of hotspot *I
I* Y coordinate of hotspot *I
I* Starting position of image data in bytes *I

FileType holds a 2-byte magic value used to identify the file type. This value is
4D42h (or "BM" in ASCII) for a single bitmap, 4142h ("BA") for a bitmap array,
4349h ("IC") for an icon, 4943h ("CI") for a color icon, 5450h ("PT") for a
pointer, and 5043h ("CP") for a color pointer. If your application only uses
"BM" type BMP files, make sure to always check this field before attempting to
use any of the data read from the file.

Size is the combined size of the file header plus the bitmap header in bytes.
This value is typically zero in many BMP files.

XHotSpot and YHotSpot store the coordinates of the central point of the
hotspot on the bitmap for icons and pointers. These coordinates are relative to
the lower-left corner of the bitmap. If there is no hotspot, then these values will
be zero. These values are not used in bitmap and bitmap array BMP files.

BitmapOffset is the offset, in bytes, from the beginning of the file to the pixel
data that corresponds to this header.

BMP Version l.x (IBM OS/2l.x)

Following the file header in v 1.x BMP files is a second header called the bitmap
header. This header contains information specific to the bitmap data. This
header is 12 bytes in length and has the following format:

typedef struct _Os21xBitmapHeader
{

DWORD Size;
WORD Width;
WORD Height;
WORD NumPlanes;
WORD BitsPerPixel;

OS21XBITMAPHEADER;

I* Size of this header in bytes *I
I* Image width in pixels *I
I* Image height in pixels *I
I* Number of color planes *I
I* Number of bits per pixel *I

Size is the size. of the header in bytes. For OS/2 1.x BMP files, this value is always
12.

Width and Height are the width and height of the image in pi?Cels, respectively.
Width does not include ~y scan-line boundary padding.

OS/2 BITMAP 633

OS/2 Bitmap (cunt'd)

NumPlanes is the number of color planes used to represent the bitmap data.
OS/2 BMP files contain only one color plane, so this value is always 1. The
apparent size of a plane in bits is calculated by:

Width * Height * BitsPerPixel

The actual size of a plane includes scan-line padding.

BitsPerPixel is the number of bits per pixel in each plane .. This value is in the
range 1 to 24; the values 1, 4, 8, and 24 are the only values considered legal by
the OS/2 1.xAPI.

Following the header is the color palette data. A color palette is always present
in a BMP file if the bitmap data contains 1-, 4-, or 8-bit data. Twenty-four-bit
bitmap data never uses a color palette (nor does it ever need to). Each element
of the palette is three bytes in length and has the following structure:

typedef struct _Os21xPaletteElement
{

BYTE Blue; /* Blue component */
BYTE Green; /* Green component */
BYTE Red; /* Red component */

OS21XPALETTEELEMENT;

Blue, Green, and Red hold the color component values for a pixel, each in the
range 0 to 255.

The size of the color palette is calculated from the BitsPerPixel value. The
color palette has 2, 16, 256, or 0 entries for a BitsPerPixel of 1, 4, 8, and 24,
respectively. The number of color palette entries is calculated as follows:

NumberOfEntries = 1 << BitsPerPixel;

To detect the presence of a color palette in a BMP file (rather than just assum
ing that a color palette does exist), you can calculate the number of bytes
between the bitmap header and the bitmap data and divide this number by the
size of a single palette element. Assuming that your code is compiled using
1-byte structure element alignment, the calculation would be:

NumberOfEntries = (BitmapOffset - sizeof(OS2BMPFILEHEADER) -
sizeof(OS21XBITMAPHEADER)) I sizeof(OS21XPALETTEELEMENT);'

If NumberOfEntries is zero, then there is no palette data, otherwise you have
the number of elements in the color palette.

634 GRAPHICS FILE FORMATS

OS/2 Bitmap (cont'd)

BMP Version 2.x (IBM OS/2 2.x)

Version 2.x BMP files begin with the same 14-byte header as vl.x BMP files. The
file header is also followed by a bitmap header, which is an expanded version
of the vl.x bitmap header. It is typically 64 bytes in size and contains up to 14
additional fields:

typedef struct _Os22xBitmapHeader
{

DWORD Size; /* Size of this structure in bytes *I
DWORD Width; /* Bitmap width in pixels *I
DWORD Height; /* Bitmap height in pixel */
WORD NumPlanes; /* Number of bit planes (color depth)
WORD BitsPerPixel; /* Number of bits per pixel per plane

/* Fields added for OS/2 2.x follow this line */

DWORD Compression; /* Bitmap compression scheme */
DWORD ImageDataSize; /* Size of bitmap data in bytes */
DWORD XResolution; /* X resolution of display device */
DWORD YResolution; /* Y resolution of display device */

*I
*I

DWORD ColorsUsed; I* Number of color table indices used */
DWORD Colorsimportant; /* Number of important color indices */
WORD Units; /* Type of units used to measure resolution */
WORD Reserved; I* Pad structure to 4-byte boundary *I
WORD Recording; /* Recording algorithm */
WORD Rendering; /* Halftoning algorithm used */
DWORD Sizel; /* Reserved for halftoning algorithm use *I
DWORD Size2; I* Reserved for halftoning algorithm use *I
DWORD ColorEncoding; I* Color model used in bitmap *I
DWORD Identifier; I* Reserved for application use */

OS22XBITMAPHEADER;

Size is the size of the header in bytes. This header can vary in size, so the
reader must be careful only to read the number of bytes indicated by this
value. Fields not included in the Size value are not stored in the BMP file, and
their values are assumed to be zero. For example, if Size is 16, then only the
first five fields (16 bytes) of the header are present. The color palette will
begin starting on the 17th byte. If Size is 40, then only the first eleven fields are
present. If this value is 64, then the entire header is present in the file. A value
larger than 64 indicates a later version of the OS/2 BMP format.

Width and Height are the width and height of the image in pixels, respectively.
Width does not include any scan-line boundary padding.

OS/2 BITMAP 635

OS/2 ~itmap (cont'd)

NumPlanes is the number of color planes used to represent the bitmap data.
OS/2 BMP files contain only one color plane, so this value is always 1. The
apparent size of a plane in bits is calculated by:

Width * Height * BitsPerPixel

The actual size of a plane includes scan-line padding.

BitsPerPixel is the number of bits per pixel in each plane. This value is in the
range 1 to 24; the values 1, 4, 8, and 24 are the only values considered legal by
the OS/2 2.x API.

Compression indicates the type of encoding method used to compress the
bitmap data. 0 indicates that the data is uncompressed; 1 indicates that the
8-bit RLE algorithm was used; 2 indicates that the 4-bit RLE algorithm was used;
3 indicates that the Huffman 1D algorithm was used; and 4 indicates that the
24-bit RLE algorithm was used. (See the section called "Image Data and Com
pression" below for more information on BMP RLE encoding.)

ImageDataSize is the length of the pixel data in bytes, as stored in the file. This
value may be zero for uncompressed bitmaps, in which case the bitmap size is
calculated from:

Width * Height * BitsPerPixel

This value may never be zero for uncompressed bitmaps.

XResolution and YResolution are the horizontal and vertical resolutions of the
bitmap. These values are used to help a BMP reader choose a proper resolution
when printing or displaying a BMP file. The units used for the values in these
fields are defined in the Units field.

ColorsUsed is the number of colors present in the palette. If this value is zero
and the value of BitsPerPixel is less than 16, then the number of entries is
equal to the maximum size possible for the color map. {BMP files with a
BitsPerPixel value of 16 or greater will not have a color palette.) This value is
calculated by using the value of the BitsPerPixel field:

ColorsUsed = 1 << BitsPerPixel;

Colorslmportant is the number of significant colors in the palette, determined
by their frequency of appearance in the bitmap data; the more frequent the
occurrence of a color, the more important it is. This field is used to provide as
accurate a display as possible when using graphics hardware that supports
fewer colors than defined in the image. For example, an 8-bit image with 142
colors might only have a dozen or so colors making up the bulk of the image.

636 GRAPHICS FILE FORMATS

OS/2 Bitmap (cont'd)

If these colors could be identified, a display adapter with only 16-color capabil
ity would be able to display the image more accurately using the 16 most fre
quently occurring colors in the image. The most important colors are always
stored first in the palette; Colorslmportant is 0 if all of the colors in the palette
are to be considered important.

Units indicates the type of units used to interpret the values of the XResolution
and YResolutiop. fields. The only valid value is 0, indicating pixels per meter.

Reserved is unused and is always set to a value of zero.

Recording specifies how the bitmap scan lines are stored. The only valid value
for this field is 0, indicating that the bitmap is stored from left to right and
from the bottom up, with the origin being in the lower-left corner of the dis
play.

Rendering specifies the halftoning algorithm used on the bitmap data. A value
of 0 indicates that no halftoning algorithm was used; 1 indicates error diffusion
halftoning; 2 indicates Processing Algorithm for Noncoded Document Acquisi
tion (PANDA); and 3 indicates super-circle halftoning.

Sizel and Size2 are reserved fields used only by the halftoning algorithm. If
error diffusion halftoning is used, Size1 is the error damping as a percentage
in the range 0 through 100. A value of 100 percent indicates no damping, and
a value of 0 percent indicates that any errors are not diffused. Size2 is not used
by error diffusion halftoning. If PANDA or super-circle halftoning is specified,
Size 1 is the X dimension and Size2 is the Y dimension of the pattern used in
pixels.

ColorEncoding specifies the color model used to describe the bitmap data.
The only valid value is 0, indicating the RGB encoding scheme.

Identifier is a field reserved for application use and may contain an applica
tion-specific value.

The color palette that may follow the bitmap header is basically the same as
the vl.x palette, but adds an extra byte of padding to increase its size to four
bytes. This allows palette entries to be read as 4-byte values, making these val
ues more efficient to read in memory and easier to see in a hex dump or
debugger.

typedef struct _os22xPaletteElement
{

BYTE Blue;
BYTE Green;

I* Blue component */
I* Green component *I

OS/2 BITMAP 637

OS/2 Bitmap (cont'd)

BYTE Red; /* Red component */
BYTE Reserved; /* Padding (always 0) */

} OS22XPALETTEELEMENT;

Blue, Green, and Red hold the color component values for a pixel, each in the
range 0 to 255.

Reserved pads the structure to end on an even-byte boundary and is always
zero.

When identifying BMP files you must make sure that the first two bytes of the
file are 4Dh 42h and only read the number of bytes from the bitmap header as
indicated by the Size field. This value will be 12 for OS/2 1.x BMP files and less
than or equal to 64 for OS/2 2. x BMP files. The file header is identical for both
versions; the only difference in the bitmap header is that the Width and
Height fields are WORDs in vl.xfiles and DWORDs in v2.xfiles.

Color Palette

As we have seen, a BMP color palette is an array of structures that specify the
red, green, and blue intensity values of each color in a display device's color
palette. Each pixel in the bitmap data stores a single value used as an index
into the color palette. The color information stored in the element at that
index specifies the color of that pixel.

One-, 4-, and 8-bit BMP files are expected to always contain a color palette.
Twenty-four-bit BMP files never contain color palettes.

You must be sure to check the Size field of the bitmap header to know if you
are reading 3-byte or 4-byte color palette elements. A Size value of 12 indicates
an OS/2 l.x (or possibly a Windows 2.x) BMP file with 3-byte elements. Larger
numbers, such as 64, indicate later versions of BMP, which all use 4-byte color
palette elements.

OS/2 BMP File 'Fypes

Each new version of BMP has added new information to the bitmap header. In
some cases, the newer versions have changed the size of the color palette and
added features to the format itself. Unfortunately, a field wasn't included in
the hea~er to easily indicate the version of the file's format or the type of oper
ating system that created the BMP file. If we add Windows' four versions of BMP
to OS/2's two versions-each with four possible variations-we find that as
many as twelve different related file formats all have the file extension ".BMP".

638 GRAPHICS FILE FORMATS

OS/2 Bitmap (cont'd)

It is clear that you cannot know the internal format of a BMP file based on the
file extension alone. But fortunately, you can use a short algorithm to deter
mine the internal format of BMP files.

The File Type field of the file header is where we start. .If these two byte values
are 424Dh ("BM"), then you have a single-image BMP file that may have been
created under Windows or OS/2. If File Type is the value 4142h ("BA"), 4349h
("IC"), 4943h ("CI"), 5450h ("PT"), or 5043h ("CP"), you have an OS/2 varia
tion of the BMP format, the internals of which we discuss below.

If your file type is "BM", then you must now read the Size field of the bitmap
header to determine the version of the file. Size is 12 for Windows 2.x BMP and
OS/2 I.x BMP, 40 for Windows 3.x and Windows NT BMP, 12 to 64 for OS/2 2.x
BMP, and 108 for Windows 4.x BMP. A Windows NT BMP file will always have a
Compression value of 3; otherwise, it is read as a Windows 3.x BMP file.

Note that the only difference between Windows 2.x BMP and OS/2 l.x BMP is
the data type of the Width and Height fields. For Windows 2.x they are signed
shorts and for OS/2 I.x they are unsigned shorts. Windows 3.x, Windows NT,
and OS/2 2.x BMP files only vary in the number of fields in the bitmap header
and in the interpretation of the Compression field.

In addition to standard bitmaps, an OS/2 file supports the storage of icon,
color icon, pointer (also called a cursor), color pointer, and bitmap array data.
As we have noted, each of these BMP file types have a different image File Type
value as follows:

Bitmap Array 4142h 'BA'
Bitmap 4D42h 'BM'
Color Icon 4943h 'CI'
Color Pointer 5043h 'CP'
Icon 4349h 'IC'
Pointer 5450h 'PT'

The icon, pointer, color icon, and color pointer BMP files have the same file
and bitmap headers as bitmap BMP files, but differ in how the headers and
bitmap data are arranged.

Icon and pointer BMP files store only 1-bit monochrome data and do not use
color palette data, although a color palette may be present in the file. The
bitmap data is normally uncompressed and stores two bitmap masks used to
display the icon or pointer image.

OS/2 BITMAP 639

OS/2 Bitmap (cont'd)

The top half of the bitmap is the AND mask and the bottom half is the XOR
mask (remember that the bitmap is stored from the bottom-up). The icon or
pointer is displayed by first ANDing the top half of the bitmap with the pixels
on the display and then XORing the bottom half of the bitmap with the same
pixels. The four possible values produced from this masking will result in the
background, foreground, transparent, and inverse values defined for the
monochrome display.

Also note that because the two masks each occupy one-half of the total size of
the bitmap, the icon or pointer displayed will be one-half the height specified
in the Height field of the file header.

Display AND OR Resulting
Pixel Mask Bit Mask Bit Value

X 0 0 0 (background)
X 0 1 1 (foreground)
X 1 0 X (transparent)
X 1 1 -x (inverse)

Color icon and color pointer BMP files are basically the same as icon and
pointer files but have an additional color bitmap added. The headers and
color table for the monochrome bitmap are immediately followed by the head
ers and color palette for the color bitmap. The monochrome bitmap data and
color bitmap data then follow, as shown in Figure OS/2 Bitmap-I.

Also note that this is the most common arrangement of these sections. The
bitmap data can actually appear in any order as long the BitmapOffset field in
the file headers point to the proper bitmap data. And the FileType field in
other OS2BMPFILEHEADER sections will have the same value (either 'CI' or
'CP'). The NumPlanes and BitsPerPixel fields of the OS22XBITMAPHEADER
header will indicate which is the monochrome and the color bitmap. For com
patibility with existing software, the monochrome image data should always be
written to the BMP file first.

Color icons and color pointers are displayed using the same process as their
monochrome counterparts, with the color pixel values used to set the color of
the icon or pointer pixels on the display.

Color icon and color pointers are typically based on the v2.x OS/2 BMP format,
as the OS/2 32-bit icon editor only generates these file types, even when
monochrome images are stored in them.

640 GRAPHICS FILE FORMATS

OS2BMPFILEHEADER

OS22XBITMAPHEADER

Color Palette

OS2BMPFILEHEADER

OS22XBITMAPHEADER

Color Palette

Bitmap Data

Bitmap Data

OS/2 Bitmap (cont'd)

~ Monochrome bitmap headers

~ Color bitmap headers

- Monochrome Image Data

- Color Image Data

FIGURE OS/2 BITMAP•1: Monochrome/color data format

Display AND OR Color Resulting
Pixel Mask Bit Mask Bit Pixel Value

X 0 0 c c (color)
X 0 1 c c (color)
X 1 0 c X (transparent)
X 1 1 c -x (inverse)

The bitmap array flavor of BMP allows the storage of one or more bitmaps
within a single BMP file. Bitmap array files are typically used to hold multiple
resolution bitmaps of the same image. This BMP variation is similar in concept
and use to the Multiple Resolution Bitmap (.MRB) files found in the Microsoft
Windows environment.

When multiple images are stored in a single OS/2 BMP file, it is assumed that
each image has different me tries (dimensions, color depth, resolution) and
that all the images are different renderings of the same object.

Bitmap array files start with a series of headers and color palettes. There is one
set of headers for each bitmap stored in the file. The first header is a variation
of the BMP file header, called a bitmap array header. This header is 14 bytes in
size and has the following format:

OS/2 BITMAP 641

OS/2 Bitmap (cont'd)

typedef struct _Os2BmpArrayHeader
{

WORD Type; /*Header type, always 4142h <n.BAn) */
DWORD Size; /* Size of this header */
DWORD OffsetToNext; /* Offset to next OS2BMPARRAYFILEHEADER */
WORD ScreenWidth; /* Width of the image display in pixels */
WORD ScreenHeight; /* Height of the image display in pixels */

} OS2BMPARRAYHEADER;

Type holds the 2-byte value 4142h, or 'BA' in ASCII. This value identifies the
start of all bitmap array headers. File readers should not attempt to read 'BA'
files as if they are single-bitmap ('BM') BMP files.

Size is the size of this bitmap array header and the headers that follow it. This
value really has no practical use and is often set to zero. It is included in this
header mainly for compatibility with other BMP headers starting with both
Type and Size fields.

OffsetToNext contains the byte offset of the next OS2BMPARRA¥
FILEHEADER structure in the file. This offset is calculated from the starting
byte of the file. A value of zero indicates that this header is for the last image in
the array list.

Screen Width and ScreenHeight indicate the resolution of the image in pixels.
These values are used in conjunction with the Width, Height, NumPlanes, and
BitsPerPixel values of the bitmap header to determine which bitmap in the file
to display.

The headers that follow the bitmap array file header and the color palette data
are the same used by the standard OS/2 BMP file format. Each image stored in
the array bitmap file will have a complete set of these headers, as shown in Fig
ure OS/2 Bitmap-2, and be linked together by the OffsetToNext value in the
bitmap array header.

A display program should look through the list of OS2BMPARRAYHEADER
structures in a bitmap array file and choose the image that most closely fits the
resolution and metrics of the display device. If a proper image is not available,
the first image in the list is displayed by default. Device-independent images
should therefore always be placed first in any bitmap array list. The value of
the Size field of the bitmap header will indicate if this is an OS/2 I.x or 2.x
bitmap array file.

OS/2 attempts to find an exact match of the requested size (image dimen
sions). For icons and pointers, if a bitmap of the requested size cannot be

642 GRAPHICS FILE FORMATS

OS/2 Bitmap (cont'd)

OS2BMPARRAYHEADER

OS2BMPFILEHEADER
1--- First/mage

OS22XBITMAPHEADER

Color Palette

OS2BMPARRA YHEADER

OS2BMPFILEHEADER
1--- Second Image

OS22X:SITMAPHEADER

Color Palette

Bitmap Data - First Image Data

Bitmap Data - Second Image Data

FIGURE OS/2 BITMAP-2: Multi-image data format

found, a device-independent icon or pointer bitmap is used. If the requested
size cannot be found for standard bitmaps, a bitmap whose display size
matches the output device's size is used, and a device-independent bitmap is
used if neither is available.

If multiple bitmaps match the requested size (or if there are multiple matches
for the screen size or if there are multiple device-independent images, etc.),
then the image whose color depth most closely matches the output device's
color depth is used.

The icon/pointer size that is requested depends on the display driver. The fol
lowing versions are most commonly used:

40x40 4bpp 16 color
32x32 4bpp 16 color
32x32 1bpp monochrome
20x20 1bpp monochrome
16x16 1bpp monochrome

The size 40x40 is used for 8514/ a, XGA, and other displays with a resolution of
1 024x768 or higher.

OS/2 BITMAP 643

OS/2 Bitmap (cont'd)

The size 32x32 is used for VGA, EGA, and most other devices of resolution less
than 1024x768.

The sizes 20x20 and 16x16 are half-size variants of the 40x40 and 32x32
images. They are intended for small-icon views and use in window title bars.

If you ever encounter a user with a CGA (640x200) display, the icon size is
32x161bpp (monochrome).

Image Data and Compression

Uncompressed data is a series of values representing either color palette
indices or actual RGB color values. Pixels are packed into bytes and arranged as
scan lines. Each scan line must end on a 4-byte boundary, so one, two, or three
bytes of padding may follow each scan line. Scan lines are always stored from
the bottom up in OS/2 BMP files with the origin in the lower-left comer of the
display.

Monochrome bitmaps contain one bit per pixel, eight pixels per byte (with the
most significant bit being the leftmost pixel), and have a 2-element color
palette. If a BMP reader chooses to ignore the color palette, all "one" bits are
set to the display's foreground color and all "zero" bits are set to the back
ground color.

Four-bit pixels are packed t:Wo per byte with the most significant nibble being
the leftmost pixel. Eight-bit pixels are stored one per byte. Both 4- and 8-bit
pixel values are indices into color palettes 16 and 256 elements in size respec
tively.

The OS/2 BMP format supports a simple run-length encoded (RLE) compres
sion scheme for compressing 4-, 8-, and 24-bit bitmap data. One-bit
monochrome data may be compressed using the Huffman ID algorithm com
mon to facsimile transmission applications. (For a discussion of the Huffman
ID algorithm, see Chapter 9, Data Compression.)

BMP uses a two-value RLE scheme. The first value contains a count of the num
ber of pixels in the run, and the second value contains the value of the pixel.
Runs of up to 255 identical pixel values may be encoded as only two bytes of
data. Actually, it's a bit more complex than this. In addition to encoded runs,
there are unencoded runs, delta markers, end-of-scan-line markers, and an
end-of-RLE data marker.

644 GRAPHICS FILE FORMATS

OS/2 Bitmap (cont'd)

The 8-bit RLE algorithm (RLES) stores repeating pixel values as encoded runs.
The first byte of an encoded run will be in the range of 1 to 255. The second
byte is the value of the 8-bit pixels in the run. For example, an encoded run of
05 18 would decode into five pixels, each with the value 18, or 18 18 18 18 18.

When a scan line does not contain enough pixel runs to achieve a significant
amount of compression, contiguous pixel values may be stored as literal or
unencoded runs. An unencoded run may contain from 3 to 255 pixel values.
The first byte of an unencoded run is always zero. This makes it possible to tell
the difference between the start of an encoded and the start of an unencoded
run. The second byte value is the number of unencoded pixel values that fol
low. If the number of pixels is odd, then a 00 padding value also follows. This
padding value is not part of the original pixel data and should not be written
to the decoded data stream. Here are some examples of encoded and unen
coded data streams:

Encoded Bytes

0510
00 05 23 65 34 56 45 00
OAOA .
00 04 46 57 68 79

Decoded Bytes

10 10 10 10 10
23 65 34 56 45
OA OA OA OA OA OA OA OA OA OA
46 57 68 79

Three marker values may also be found in the RLE data. Each of these markers
also begins with a zero-byte value. The second byte value indicates the type of
marker. These markers specify positional information relating to the decoded
bitmap data and do not generate any data themselves.

The first marker is the end-of-scan-line marker and is identified by two byte val
ues 00 and 00. This marker is an indication that the end of data for the current
scan line has been reached. Encoded data occurring after this marker is
decoded starting at the beginning of the next scan line. If an end-of-scan-line
marker is not present in the encoded data, then the pixels will automatically
wrap from the end of one scan line to the start of the next.

This marker is only used when you want to force the decoding of a scan line to
end at a particular place. If the end-of-line marker occurs in the middle of a
scan line, all remaining pixels in the decoded bitmap for the line are ignored.
This "short scan line" technique is used to omit unneeded portions of scan
lines. Most often, it is found in icon and pointer BMP files.

OS/2 BITMAP 645

OS/2 Bitmap (cont'd)

The next marker is the end of RLE data marker. It is identified by the two byte
values 00 and 01. This marker occurs only as the last two bytes of the RLE data.
This marker is an indication that the reader should stop decoding data.

The last marker is the run offset marker, also called a delta or vector code. This
marker is four bytes in size, with the first two bytes being the values 00 and 02,
and the last two values specifying a pixel address using unsigned X and Yvalues
as an offset from the current bitmap cursor position. The X value is the num
ber of pixels across the scan line, and the Y value is the number of rows for
ward in the bitmap.

This run offset marker indicates the location in the bitmap where the next
decoded run of pixels should be written. For example, a run offset marker
value of 00 02 05 03 would indicate that the offset of the bitmap cursor should
move five pixels down the scan line, three rows forward, and write out the next
run. The cursor then continues writing decoded data from its new position
moving forwards.

Run offset markers are used when a bitmap may contain a large amount of
"don't care" pixels. For example, if the BMP file holds a bitmap used as a mask
(such as used with icons and pointers), many of the pixels in the rectangular
bitmap may not be used. Rather than store these unused pixels in the BMP file,
only the significant pixels are stored, and the delta markers are used as
'~umps" to skip over the parts of the bitmap not actually used in the mask.

Here is another example. In color icon and color pointer BMP files, it is unnec
essary to store color values for pixels whose AND mask value is 1, since the
screen color will be determined by the XOR mask for those pixels and not by
the color value. In this case, delta markers and end-of-scan-line markers would
be used to skip over and ignore pixels not used in the image and therefore not
stored in the bitmap.

The following are the BMP RLE markers:

00 00
00 01
0002 XXYY

End of scan line
End of bitmap data
Run offset marker

Here is an example of decoding an 8-bit data stream. Each of the values is an
8-bit index value into the color palette, not an actual color value.

646 GRAPHICS FILE FORMATS

Encoded Bytes

0416
0845
00 00
0002 0402

03E4
00 03 12 A4 46 00
0000
0001

Decoding Description

Four bytes of value 16
Eight bytes of value 45
End of scan line
Move to offset four pixels for
ward and two rows up
Three bytes of value E4
Three bytes of unencoded data
End of scan line
End of RLE data

OS/2 Bitmap (cont'd)

Decoded Bytes

1616 16 16
45 45 45 45 45 45 45 45
None
None

E4E4E4
12 A4 46
None
None

The 4-bit RLE algorithm (RLE4) stores repeating pixel values in a very similar
manner to RLE8. All of the markers are the same. The only real difference is
that two pixel values are packed per byte, and these pixel values alternate when
decoded. For example, an RLE4-encoded data stream of 07 48 would decode to
seven pixels, alternating in value as 04 08 04 08 04 08 04.

If this looks bizarre, it's because you rarely see alternating runs of pixel values
in bitmaps eight bits or greater in depth. Four-bit (16-color) bitmaps, however,
usually contain a lot of dithering. Most dithering algorithms will yield relatively
large runs of alternating pixels. Runs of repeating sequences of three and four
pixels are also fairly common output from many dithering algorithms. But the
ability for efficiently encoding these types of pixel runs is not currently sup
ported in the BMP RLE scheme.

Runs of identical pixel values may be encoded by RLE4 as well. For example, a
run of twelve pixels, all of the value 9, would be RLE4-encoded as OC 99 and
would decode to the run 09 09 09 ·o9 09 09 09 09 09 09 09 09.

Padding is added to unencoded pixel runs that are an odd number of bytes,
rather than pixels, in length. And an unused final nibble in odd-length runs is
set to zero. For example, the six pixel values 1 3 5 7 9 0 would be stored as the
unencoded run 00 0613 57 90 00, while the five pixel values 1 3 57 9 would be
stored as the unencoded run 00 0513 57 90 00.

Following is an example of decoding a 4-bit data stream. Each of the values is a
4-bit index value into the color palette, not an actual color value.

OS/2 BITMAP 647

OS/2 Bitmap (cont'd)

Encoded Bytes

0416
0844
0000
00 02 04 02

03E4
00 06 12 A4 46 00
00 00
00 01

Decoding Description

Four values alternating 1 and 6
Eight values alternating 4 and 4
End of scan line
Move to offset four pixels forward and
two rows up
Three values alternating E and 4
Six values of unencoded data
End of scan line
End of RLE data

Decoded Bytes

1 6 1 6
44444444
None
None

E4E
12A446
None
None

And, as you probably guessed, the 24-bit RLE algorithm (RLE24) encodes pixel
values using nearly the same algorithm as RLE4 and RLE8. The only difference
is that run values encoded are three bytes in size (one byte per RGB color com
ponent), rather than four or eight bits in size.

Here is an example of decoding a 24-bit data stream. Each of the values is an
actual color value found in the bitmap data. Run length values must be a multi
ple of three, and odd-length encoded runs are padded with a final zero byte,
which is not part of the decoded data.

Encoded Bytes

0416D46F

02 00 00 00

00 00
00 02 09 oc

03E4E4E4

00 01 12 A4 46 00

0000
00 01

Decoding Description

Four pixels of value
16, D4, 6F
Two pixels of value
0,0,0
End of scan line
Move to offset nine
pixels forward and
twelve rows up
Three pixels of value
E4,E4,E4
One pixel of unen
coded data
End of scan line
End of RLE data

648 GRAPHICS FILE FORMATS

Decoded Bytes

16 D4 6F 16 D4 6F 16 D4 6F
16 D4 6F
00 00 00 00 00 00

None
None

E4 E4 E4 E4 E4 E4 E4 E4 E4

12 A4 46

None
None

OS/2 Bitmap (cont'd)

Here is a summary of OS/2 BMP data characteristics:

Pixel Depth Pixel Size Compression Color Palette

1 bit 1 bit 0,3 Yes
4 bits 4 bits 0,2 Yes
8 bits 1 byte 0,1 Yes
24 bits 3 bytes 0,4 No

ForFurtherhUonnation
The OS/2 BMP file format is maintained by IBM. Version l.x of the OS/2 BMP
format is documented in the Presentation Manager Software Development Kit
(SDK). Later versions of OS/2· BMP are found in the IBM Developer's Toolkit
for OS/2 Warp, version 3:

OS/2 V3 Technical Library: Presentation Manager Programming Reference
(IBM part number G25H-7105).

and in the online Presentation Manager reference.

For further information, contact:

IBM Corporation
Attn: Independent Vendor League
Mail Stop 147
150 Kettletown Road
Southbury CT 06488
Voice: 203-266-2000
WWW: http:/ /www.ibm.com/

IBM documentation can be ordered from:

USA: 1-800-426-7282
Canada; 1-800-465-1234
Hours: Sam to Spm EST, Monday through Friday

Information about the OS/2 BMP format can also be found in the following ref
erences:

Charlap, David, 'The BMP File Format:· Part I," Dr. Dobb's Journal, vol.
20, no. 228, March 1995.

Charlap, David, 'The BMP File Format: Part II," Dr. Dobb's Journal, vol.
20, no. 229, April1995.

OS/2 BITMAP 649

OS/2 Bitmap (cont'd)

IBM Corporation, OS/2 2. 0 Programmer's Toolkit: Presentation Manager Ref
erence (online manual).

Luse, Marv, ''The BMP File Format," Dr. Dobb's Journal, vol. 9, no. 219,
September 1994, pp. 18-22.

Petzold, Charles, "Preserving a Device-Independent Bitmap: The
Packed-DIB Format," PC Magazine, july 1991, pp. 433-439.

Petzold, Charles, ''What's New in Bitmap Formats: A Look at Windows
and OS/2," PC Magazine, 11 September 1990, pp. 403-410.

The code for the above issues of Dr. Dobb 's Journal are available at:

Jtp://ftp.mv.com/pub/ddj/1994/1194.09/bmp.zip
ftp:/ /ftp. mv. com/pub/ddj/ 1995/1195.03 /bmp.zip

The two Dr. Dobb's Journal articles by David Charlap contain a complete collec
tion of source code for working with Windows 2.x, 3.x, NT, and OS/2 BMP file
formats. It is available at the above FTP site and on this book's CD-ROM.

You might also be able to find some helpful information at the OS/2 shareware
BBS:

Voice: 703-385-0201
BBS: 703-385-4325
WWW: http:/ /www.os2bbs.com/
Telnet: bbs.os2bbs. com

Or at {BM's OS/2 homepage:

WWW: http:/ /www.austin.ibm.com/pspinfo/os2.html

Also, look at these other online resources:

http: I I axion.physics. ubc. ca/ os2/ os2. html
OS/2 Resource listing

Jtp:/ /ftp-os2.cdrom.com/
OS/2 Archive at Walnut Creek CD-ROM

650 GRAPHICS FILE FORMATS

NAME:

ALSO KNOWN As:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CO:

CODE ON CO:

IMAGES ON CO:

SEE ALSO:

P3D I
P3D

Pittsburgh Supercomputer Center 3D Metafile

3D scene description

NA

Uncompressed

NA

NA

NA

Carnegie Mellon University

All

P3D

Yes

No

No

None

usAGE: Description and storage of 3D objects.

coMMENTs: A powerful format that implements its own language and provides sup
port for a number of common and useful renderers.

Overview
P3D is a system that originated at Carnegie Mellon University's Pittsburgh
Supercomputing Center, which retains the copyright for the system. The P3D
format used by the P3D system was intended for the storage of 3D models and
was designed to be portable, flexible, compact, and extensible. The authors
wished to create a format that would be compatible with applications, render
ers in particular, on a number of platforms.

The P3D format implements a sophisticated description language, which con
sists of a set of extensions to Common Lisp. Perhaps to avoid implementation
dependencies, only a suJ?set of Common Lisp, called Alisp, is used. While this
can be a boon to developers who already know a Lisp dialect, it provides a bar
rier to entry to those who don't. As a consequence, the P3D format has not

P3D 651

P3D (cont'd)

been used much outside academic circles, which is a shame, because it is other
wise a powerful model and a well-thought-out specification.

File Organization
A P3D file consists of a number of ASCII lines that are usually Common Lisp
statements. Extensions to the language are mainly in an idiosyncratic terminol
ogy that is unfortunately at odds with most of the rest of the computer graphics
world.

File Details
A P3D file stores a model, which is a set of objects; these may be geometrical
structures or things more like architectural primitives, such as directed acyclic
graphs. P3D normally supports the specification of spheres, cylinders, tori,
polygons, polylines, polymarkers, lists of triangles, meshes, spline surfaces, font
objects, and lighting objects. Various attributes may be associated with objects.

There are also procedural features designed to trigger actions in the applica
tion processing a P3D file. An example is the snap function, which can be used
to trigger rendering.

A P3D file contains descriptions of one or more graphical objects, called gobs
in the documentation. These may be primitive objects, like spheres or triangle
lists, or they may consist of numbers of primitive objects. A gob is generally a
directed acyclic graph, the nodes of which may be other gobs.

The P3D documentation describes gobs as follows:

Gobs are defined either by invoking a function which returns a primi
tive gob, or by listing the "children" and possibly the attributes the new
gob is to have. A gob can be saved either by binding it to a name. (for
example, via a Lisp setq function) or by including it directly into the list
of children of another gob. Color, material type, a~d backface cullabil
ity are examples of attributes that might be associated with a gob.

There is intrinsic support in P3D for mathematical entities such as vectors,
points, and lines, which may be manipulated in an arbitrary fashion. After the
initial definition, a gob may be referenced repeatedly. Each reference instance
may be associated with attributes and transformations independent of the
those inherent in the original definition. It is the programmer's responsibility
to make sure that no gob is its own descendant.

652 GRAPHICS FILE FORMATS

P3D (cont'd)

Co()rdinate System

The P3D system assumes a right-hand coordinate system. Coordinate transfor
·mations are effected by manipulation with 4x4 matrices as follows:

Rotation:

[R11 R12 R13 0]
[R21 R22 R23 0]
[R31 R32 R33 0]
[0 0 0 1]

Translation:

[1 0 0 Tx]
[0 1
[0 0
[0 0

Scale:

[Sx 0
[0 Sy
[0 0
[0 0

0 Ty]

1 Tz]
0 1

0 0]
0 0]

Sz 0]
0 1]

]

Points are defined in the following manner:

(defstruct point
(x 0.0). ;x coordinate
(y 0.0) ;y coordinate
(z 0.0)) ;z coordinate

They can also be made with the function make-point, which takes three float
ing-point arguments (x,y,z) that default to zero.

(setq origin (make-point))

is the definition of the standard symbol "origin."

Vectors are defined as follows:

(defstruct vector
(x 0.0) ;x coordinate
(y 0.0) ;y coordinate
(z 0.0)) ;z coordinate

P3D 653

PJD (cont'd)

Vectors can also be created through the function make-vector. Thus:

(setq x-vec (make-vector :x 1.0 :y 0.0 :z 0.0))

is the definition of the standard symbol "x-vec."

The structure holding a color is as follows:

(defstruct color
(r 0.8) ;red intensity
(g 0.8) ;green intensity
(b 0.8) ;blue intensity
(a 1. 0)) ; opacity

The color "red," for instance, can be made as follows:

(setq red (make-color :r 1.0 :g 0.0 :b 0.0))

A vertex may be formed in a similar manner:

(defstruct vertex
(x 0.0) ;x coordinate
(y 0.0) ;y coordinate
(z 0.0) ;z coordinate
(clr nil) ;local color
(normal nil)) ;local surface normal

For example:

(setq red-origin (make-vertex :clr red))

creates vertex "red-origin."

Structured Fields

This discussion of structured fields in a P3D file is extracted from the P3D doc
umentation.

The structure used to hold a material (a set of properties used with attributes
like color to determine the appearance of an object) is represented as a struc
ture with at least the following fields:

Field 1)pe Meaning
:ka float Ambient light weighting factor
:kd float Diffuse light weighting factor
:ks float Specular light weighting factor
:exp float Specular exponent
:reflect float Reflection coefficient

654 GRAPHICS FILE FORMATS

PJD (cont'd)

Field Type
:refract float
:energy color

Meaning
Index of refraction
Energy density (for radiosity)

Other structure fields may exist, but they are maintained by P3D and should
not be modified by the programmer. A material should always be created with
the "clef-material" function:

def-material :ka ka-value :kd kd-value :ks ks-value
:exp exp-value :reflect reflect-value
:refract refract-value :energy energy-color

Parameters are listed below:

:ka ka-value
:kd kd-value
:ks ks-value
:exp exp-value
:reflect reflect-value
:refract refract-value
:energy energy-color

optional
optional
optional
optional
optional
optional
optional

Ambient light weighting factor
Diffuse light weighting factor
Specular light weighting factor
Specular exponent
Reflection coefficient
Index of refraction
Energy density for radiosity

This function returns material with the given characteristics.

All of the keyword-field pairs are optional. Fields that are not specified are
assigned specific default values; see the specification for the "default-material"
predefined symbol at the end of this document for the default values of each
field.

Cameras

Cameras are defined as follows:

(defstruct camera
(lookfrom origin)
(lookat origin)
(up y-vec)
(fovea 56.0)
(hither -0.01)
(yon -100.0)
(background black))

;eye point
;point to look at
;view's 'up' direction
;view included angle
;hither clipping distance
;yon clipping distance
;background color

P3D 655

PJD (cont'd)

Gob Structures

A gob is represented as a structure with at least the following options:

'I)pe Meaning Option
:attr
:transform
:children

assoc-list
transformation
list

Attribute-value pairs for this gob
Coordinate transformation
List of gobs to be children

Other structure slots may exist, but they are maintained by P3D and should not
be modified by the programmer. All of the fields default to nil.

A gob should always be created with "def-gob," or with one of the geometrical
primitive generators (see below). If "def-gob" is used, the definition should
include a ":children" option or the gob will have no descendants in the DAG
and thus be useless.

def-gob :attr attrlist
:transform transformation
:children childlist)

Parameters are the following:

:children childlist
:transform transformation

:attr attrlist

required
optional

optional

List of children of this gob
Coordinate transformation for this
gob
Association list of attribute and value
pairs for this gob

This function returns a gob with the given children, coordinate transforma
tion, and attributes.

ForFwrtherlnfonnation
For further information about the P3D format, see the P3D specification on
the CD-ROM that accompanies this book. For up-to-date P3D documentation,
see:

http:/ /pscinfo.psc.edu/general/software/packages/p3d/p3d. html
http:/ /pscinfo.psc. edu/ general/software/ categories/ graphics. html

656 GRAPHICS FILE FORMATS

You can obtain P3D generators and translators via FTP from:

Jtp:/ /ftp.psc.edu/pub/p3d/

You can also contact:

Joel Welling
Pittsburgh Supercomputer Center
4400 Fifth Avenue
Pittsburgh, PA 15213
Email: welling@psc. edu

P3D (cont'd)

P3D 657

I PBM, PGM, PNM, and PPM
NAME: PBM, PGM, PNM, PPM

ALso KNowN As: Portable Bitmap Utilities, pbmplus

TYPE: Bitmap

coLoRs: Up to 24-bit

coMPREssioN: None

MAXIMUM IMAGE SIZE: NA

MULTIPLE IMAGES PER FILE: NA

NUMERICAL FORMAT: NA

ORIGINAToR: Jef Poskanzer

PLATFoRM: UNIX, In tel-based PCs

SUPPORTING APPLICATIONS: pbmplUS, OtherS

SPEciFicATioN oN cD: Yes (man pages)

cooE oN cD: Yes (in pbmplus package)

IMAGEs oN cD: No

SEE ALso: Most of the formats in this book

usAGE: File format conversion through an intermediary least-common
denominator format.

coMMENTs: PBM, PGM, PNM, and PPM are intermediate formats used in the conver
sion of many little known formats via pbmplus, the Portable Bitmap Utili
ties. These formats are mainly available under UNIX and on lntel-based
PCs.

Overview
The Portable Bitmap Utilities (PBM) is a collection of programs organized,
maintained, and primarily written by Jef Poskanzer. Although owned and copy
righted by Mr. Poskanzer, they are freely available in both source and exe
cutable form on the Internet and on many BBS systems. The "bitmap" in PBM
is used in the older sense to refer to monochrome images. There are actually
three other sets of programs encompassed by the PBM utilities. These are the
Portable Greymap Utilities (PGM), the Portable Pixmap Utilities (PPM), and
the Portable Anymap Utilities (PNM). PBM programs manipulate monochrome
bitmaps, and PGM and PPM programs manipulate gray-scale bitmaps and color
bitmaps, respectively. PNM programs operate on all of the bitmaps produced

658 GRAPHICS FILE FORMATS

PBM, PGM, PNM, and PPM (cont'd)

by the other programs. There is no file format associated with PNM itself. Most
people call the overall set of programs PBM and the newer version pbmplus,
however, and we'll follow this convention.

Associated with pbmplus are three least-common-denominator intermediate
formats. When converting a graphics file from one format to another, we speak
of the source file (in the current format) and the destination file (in the desired
new format). pbmplus works by taking a source file and converting it into one

· of the intermediate formats. That intermediate format file is then converted
into the destination format.

To see how this works, here are the steps necessary to convert a Microsoft Win
dows Bitmap (BMP) format file named testfile.bmp to a GIF format file. These
are 256-color files, so we use the PPM utilities bmptoppm and ppmtogif.

bmptoppm testfile. bmp This produces testfile.ppm
ppmtogif testfile.ppm This produces testfile.gif

The latest version of pbmplus is available on the CD-ROM that accompanies this
book.

File Organization
The PBM, PGM, and PPM formats are each designed to be as simple as possible.
Each starts out with a header, and the bitmap data follows immediately after.
The header is always written in ASCII, and data items are separated by white
space (blanks, tabs, carriage returns, or linefeeds). The data portion of each
file type can be written in either ASCII or binary form.

File Details
There are two versions of each of the the PBM, PGM, and PPM headers.
Although all the headers are in ASCII format, one is used for the ASCII version
of the format, and the other is used for the binary version.

PBMHeader

A PBM header consists of the following entries, each separated by white space:

Magic Value Literally PI for ASCII version, P4 for binary
ImageWidth Width of image in pixels (ASCII decimal value)
ImageHeight Height of image in pixels (ASCII decimal value)

PBM,PGM,PNM,ANDPPM 659

PBM, PGM, PNM, and PPM (cont'd)

PGMHeader

A PGM header consists of the following entries, each separated by white space:

Magic Value Literally P2 for ASCII version, P5 for binary
ImageWidth Width of image in pixels (ASCII decimal value)
ImageHeight Height of image in pixels (ASCII decimal value)
MaxGrey Maximum gray value (ASCII decimal value)

PPM Header

A PPM header consists of the following entries, each separated by white space:

Magic Value Literally P3 for ASCII version, P6 for binary
ImageWidth Width of image in pixels (ASCII decimal value)
ImageHeight Height of image in pixels (ASCII decimal value)
MaxGrey Maximum color value (ASCII decimal value)

Image Data

After the header is a series of lines describing widthxheight pixels. For PPM,
each pixel contains three ASCII decimal values between 0 and the specified
maximum value, starting at the top-left corner of the pixmap, proceeding in
no~al English reading order. The three values for each pixel represent red,
green, and blue, respectively; a value of 0 means that color is turned off, and
the maximum value means that color is "maxxed out."

For PBM and PGM, there is only one ASCII decimal value per pixel. For PBM,
the maximum value is implicitly 1.

Here is an example of a small pixmap in this format:

P3
feep.ppm
4 4
15

0 0 0 0 0 0 0 0 0 15 0 15
·o 0 0 0 15 7 0 0 0 0 0 0
0 0 0 0 0 0 0 15 7 0 0 0

15 0 15 0 0 0 0 0 0 0 0 0

You can include comments in the PBM file. Characters from a# character to
the next end-of-line are ignored. There is a suggested maximum of 70 charac
ters per line, but this is not an actual restriction.

660 GRAPHICS FILE FORMATS

PBM, PGM, PNM, and PPM (cont'd)

Mr. Poskanzer cautions that programs that read this format should be as
lenient as possible, accepting anything that looks remotely like a pixmap.

RAWBITS Variant

There is also a variant on the format, available by setting the RAWBITS option
at compile time. This variant differs from the traditional format in the follow
ing ways:

•· The "magic numbers" are as follows:

Fonnat
PBM
PGM
PPM

Nonnal
PI
P2
P3

RAWBITS Variant
P4
P5
P6

• The pixel values are stored as plain bytes, instead of ASCII decimal:

PBM RAWBITS is eight pixels per byte
PGM RAWBITS is one pixel per byte
PPM RAWBITS is three bytes per pixel

• White space is not allowed in the pixel area, and only a single character of
white space (typically a newline) is allowed after the MaxGreyvalue.

• The files are smaller and many times faster to read and write.

• Bit order within the byte is most significant bit (MSB) first.

Note that this raw format can only be used for maximum values less than or
equal to 255. If you use the PPM library and try to write a file with a larger max
imum value, it automatically uses the slower, but more general, plain format.

ForFurtherhiTonnation
For further information about the PBM, PGM, PNM, and PPM utilities, see the
documentation on the CD-ROM that accompanies this book. See also the code
and documentation for the pbmplus utilities, also included on the CD-ROM.

For more information about PBM, PGM, PNM, and PPM, you can contact:

Jef Poskanzer
Email: jej@well. sf. ca. us

PBM, PGM, PNM, AND PPM 661

NAME:

ALSO KNOWN As:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES. ON CD:

SEE ALSO:

PCX

PC Paintbrush File Format, DCX, PCC

Bitmap

Mono, 4-bit, 8-bit, 24-bit

RLE, uncompressed

64Kx64K pixels

No

Little-en dian

ZSoft, Microsoft

MS-DOS, Windows, UNIX, others

Too numerous to list

Yes

Yes

Yes

FAX formats

usAGE: PCX is used in Microsoft Windows and Windows-based products but has
found wide acceptance mainly in the MS-DOS world. It is mainly an
exchange and storage format.

coMMENTs: A partially documented format in wide use, which is quick and easy to
read and decompress. It lacks, however, a superior compression scheme,
making it unsuitable for the storage of deep-pixel images.

Overview
PCX is one of the most widely used storage formats. It originated with ZSoft's
MS-DOS-based PC Paintbrush, and because of this, PCX is sometimes referred
to as the PC Paintbrush format. ZSoft entered into an OEM arrangement with
Microsoft, which allowed Microsoft to bundle PC Paintbrush with various prod
ucts, including a version called Microsoft Paintbrush for Windows; this product
was distributed with every copy of Microsoft Windows sold. This distribution
established the importance of PCX, not only on In tel-based MS-DOS platforms,
but industry-wide.

662 GRAPHICS FILE FORMATS

PCX (cont'd)

PCX has been used by manufacturers of computer-based FAX boards and also
as a general format for the storage of clip art targeted at the desktop publish
ing aftermarket.

The original PCX format (starting with v2.5 of PC Paintbrush) stored graphics
and images with no more than 16 colors, due to the limitations of Enhanced
Graphics Adapter (EGA) display technology produced by IBM. When ffiM
introduced the Virtual Graphics Array (VGA) display adapter, the PCX format
was revised to store graphics and images with up to 256 colors.

The latest revision of the PCX format now includes the ability to store 24-bit
color images. This allows the PCX format to be used for the storage of images
created by the most advanced graphics, imaging, and video technology avail
able today.

PCX is hardware-dependent in the sense that it was originally designed to
accommodate a specific type of display hardware. Data may be stored either
plane- or pixel-oriented, to accommodate the hardware design of the plane
oriented IBM EGA or the pixel-oriented IBM VGA display adapters.

Image data is encoded using an RLE variant, which is simple and somewhat
quick in its operation, if not terribly efficient in actually reducing the size of
the data. As with other RLE schemes, how much the PCX compression scheme
reduces the size of a given image is difficult to say, because the reduction factor
is dependent largely upon the content of the image (how "busy" the image is)
and how many colors are actually used. Generally, an image incorporating 16
or fewer colors will be reduced by 40 to 70 percent from the original data,
whereas a 64- to 256-color image from a scanner or video source may be
reduced by only 10 to 30 percent. It is possible for an image to be so complex
that the PCX compression scheme actually causes the data to increase in size
after compression. (For further discussion of these and other topics, please see
Chapter 9, Data Compression.)

File Organization
PCX files are organized in to three major sections: the header, the image data,
and the color palette. The color palette normally contains entries for 256 col
ors and is associated with the VGA display adapter. This VGA color palette is
only found in later versions of the PCX image file format.

PCX 663

PCX (ccmt'd)

File Details
This section describes the major sections of PCX files and methods of reading,
compressing, encoding, and decoding these files.

Header

The first 128 bytes of every PCX file is the header, which has the following for
mat:

typedef struct _PcxHeader
{

BYTE Identifier;
BYTE Version;
BYTE Encoding;
BYTE BitsPerPixel;
WORD XStart;
WORD YStart;
WORD XEnd;
WORD YEnd;
WORD HorzRes;
WORD Vert~es;

BYTE Palette[48];
BYTE Reservedl;
BYTE NumBitPlanes;
WORD BytesPerLine;
WORD PaletteType;
WORD HorzScreenSize;
WORD VertScreenSize;
BYTE Reserved2 [54];
PCXHEAD;

I* PCX Id Number (Always OxOA) *I
I* Version Number *I
I* Encoding Fo~at *I
I* Bits per Pixel *I
I* Left of image *I
I* Top of Image *I
I* Right of Image
I* Bottom of image *I
I* Horizontal Resolution *I
I* vertical Resolution *I
I* 16-Color EGA Palette *I
I* Reserved (Always 0) *I
I* Number of Bit Planes */
I* Bytes per Scan-line *I
I* Palette Type *I
I* Horizontal Screen Size *I
I* Vertical Screen Size *I
I* Reserved (Always 0) *I

Identifier is an identification value defined by the PCX specification as always
being 1 Oh. This value has no real meaning other than to indicate that the file
is a ZSoft PCX file. PCX readers should always check that this byte contains the
proper value, even though the file may have the extension PCX. However, it is

· possible that a non-PCX format file might also begin with the value 10h, so the
remainder of the header information should be read, and the information
fields be checked for the proper values before trying to decode any image data
in the file. In other words, don'tjustjump to byte offset 128 and start decoding
what you think is encoded image data.

Version contains the version of Paintbrush that created the PCX file. ZSoft has
released updated revisions of the PCX format to keep up with the increasing
functionality of its PC Paintbrush program and the burgeoning display adapter
technology available for the PC. Each PCX file version has separate require
ments for handling and displaying its image. Prior to v2.5 of PC Paintbrush, the

664 GRAPHICS FILE FORMATS

PCX (cont'd)

PCX image file format was considered proprietary information by ZSoft Corpo
ration.

Possible values for Version are shown as follows:

Value PC Paintbrush Version and Description

0 Version 2.5 with fixed EGA palette information
2 Version 2.8 with modifiable EGA palette information
3 Version 2.8 without palette information
4 PC Paintbrush for Windows ·
5 Version 3.0 of PC Paintbrush, PC Paintbrush Plus,

PC Paintbrush Plus for Windows, Publisher's Paint-
brush, and all 24-bit image files

9

Encoding indicates the type of encoding used on the image data. The only
encoding algorithm currently supported by the PCX specification is a simple
byte-wise run-length encoding (RLE) scheme indicated by a value of 1 in this
byte. It would seem to follow that if a PCX file held unencoded image data this
value would be 0. PCX files, however, always contain encoded image data, and
currently the only valid value for the encoding field is 1.

BitsPerPixel is the number of bits per pixel per plane in the image data. The
possible values are 1, 2, 4, and 8 for 2-, 4-, 16-, and 256-color im;:tges. 'The pla
nar data in a scan line is often padded with extra data to align the scan line on
an even byte boundary to prevent aliasing (the '~aggies"). PCX paint and con
version programs use this value to find where in a scan line pixel data stops
and extra padding begins.

XStart, YStart, XEnd, and YEnd store the size of the image in pixels. These
four values are the rectangular dimensions of the visible part of the PCX image
(sometimes called the picture dimension window) and its position relative to the
physical display screen. Using these dimensions, the largest PCX image that
can be stored is 65,535x65,535 pixels in size. The dimensions are the location
of the upper-left and lower-right comers of the PCX image on the display
screen. The upper-left comer of the screen is considered to be at location 0,0,
and any PCX image with an XStart and YStart of 0 will start displaying at this
location. If the XStart and YStart are values greater than zero, then a display
program should start displaying the PCX image starting at those pixel coordi
nates. However, this is a feature rarely supported by PCX display programs.

PCX 665

PCX (cont'd)

Any PCX image may contain extra bytes of padding at the end of each scan line
or extra scan lines added to the bottom of the image. To prevent this extra
data from becoming visible, only the image data within the picture dimension
window coordinates is displayed.

HorzRes and VertRes are the horizontal and vertical size of the stored image in
pixels per line or dots per inch {DPI). Scanned images have the DPI value of

. the device that created them. Typical DPI values for a scanned image may be
lOOxlOO DPI or 300x300 DPI. An image produced by a FAX card can have a res
olution of 1 00x200 DPI or 200x200 DPI. Images created by paint or screen
dump programs will have pixel resolution values that reflect the resolution of
the display mode under which they were created~ For example, a typical VGA
paint program saves images: with a horizontal resolution of 320 pixels and a
vertical resolution of 200 pixels. However, these values are not used when
decoding image data.

Palette is a 48-byte array of 8-bit values that make up a 1 frcolor EGA color
palette. The earliest version of PC Paintbrush was not able to use a modifiable
EGA palette and, therefore, used only the standard palette of the EGA. Subse
quent versions have allowed the use of a modifiable palette enabling a PCX
image file writer to choose which 16 (or fewer) of the 64 colors available to the
EGA to use.

Reserved! is not currendy used and should have a value of OOh. Older versions
of PCX used this field for file identification or to hold the mode value of the
display screen on which the PCX image was created. Several paint and graphics
display programs will, in fact, claim that a PCX file is invalid if this field is not
set to OOh.

NumBitPlanes is the number of color planes that contains the image data. The
number of planes is usually 1, 3, or 4 and is used in conjunction with the
BitsPerPixel value to determine the proper video mode in which to display the
image. PCX video display modes are shown as follows:

Bits per Pixel Maximum
Color Planes per Plane Number of Colors Video Mode

1 1 2 Monochrome
1 2 4 CGA
3 1 8 EGA
4 1 16 EGAandVGA

666 GRAPHICS FILE FORMATS

Color Planes

1
3

Bits per Pixel
per Plane

8
8

Maximum
Number of Colors

256
16,777,216

PCX (amt'd)

Video Mode

Extended VGA
Extended VGA and XGA

NumBitPlanes is also used to determine the maximum number of colors a PCX
image may have. The number of bits per pixel per plane is multiplied by the
number of color planes and shifted to the left by one:

MaxNumberOfColors = (lL << (BitsPerPixel * NumBitPlanes));

BytesPerLine is a 16-bit value indicating the size in bytes of a color plane in an
unencoded scan line. This value may be multiplied by the NumBitPlanes value
to find the total length of an unencoded scan line in bytes:

ScanLineLength = (BytesPerLine * NumBitPlanes);

PaletteType contains an indicator of information held in the color palette. A
value of 1 indicates color or monochrome information, while a 2 indicates
gray-scale information. This value is actually an indicator of whether the image
should be displayed in color or gray-scale. (Only VGA is capable of displaying
true gray-scale images.) PC Paintbrush and most other programs that use PCX
files ignore this value.

HorzScreenSize and VertScreenSize were added to the PCX format starting
with PC Paintbrush 4.0 and 4.0 Plus. These horizontal and vertical screen-size
values represent the resolution of the screen on which the image was created.
This allows graphics display programs to adjust their video mode to allow for
proper display of the PCX image. Because these fields were added after the
release of PC Paintbrush 3.0, there is no way to know if these fields contain
valid information or are part of the Reserved2 field. Therefore, always check
these values to be sure they are reasonable before you use them.

Reserved2 _is the last field in the header and is a run of bytes with the value
OOh. This filler field is used to pad the header out to a full 128 bytes and to
save room for additional fields that might be added to the header in future
revisions of the PCX format. The size of this field will be either 54 or 58 bytes,
depending on whether or not the header contains the HorizScreenSize and
VertScreenSize fields.

PCX 667

PCX (ccmt'd)

Palette

The color palette information within a PCX file varies depending upon the ver
sion of the PCX file.

16-color EGA palette
The first version of the PCX format did not support a modifiable color palette,
so the values of the standard EGA color palette were always used. Later versions
of PC Paintbrush could work with or without a modifiable palette, so two more
versions of the PCX format appeared, one with palette information (modifiable
palette) and one without palette information (standard EGA palette). ·

The EGA palette is a 48-byte array of 16 RGB triples. Each color triple contains
a red, green, and blue value, each with a range of 0 to 255. The palette will
contain entries for 2, 4, 8, or 16 color triples with any remaining entries being
set to OOh. No interpretation is necessary for display adapters using this format
of color values. The EGA, however, has only four possible values for· each RGB
color (0 through 3), so each RGB value is shifted to the right by six to obtain
the proper value. To extract the proper values to load into the EGA palette reg
isters, the following code is used:

EgaColorORed ~ EgaPalette[O] >> 6;
EgaColorOGreen ~ EgaPalette[l] >> 6;
EgaColorOBlue ~ EgaPalette[2] >> 6;
EgaColorlRed = EgaPalette[3] >> 6;
EgaColorlGreen = EgaPalette[4] >> 6;
EgaColorlBlue = EgaPalette[S] >> 6;

4-color CGA palette
The EGA color palette is also used for displaying CGA images. Two- or four
color images may be displayed on the CGA using one of eight possible color
palettes, each consisting of three foreground colors and one background
color.

The most significant four bits of the first byte of the EGA color palette contains
the background color and is in the range of 0 to 15.

The most significant three bits of the fourth byte of the color palette contains
the foreground color. The three bits of the foreground color correspond to
the Color Burst Enable, Palette, and Intensity settings of the CGA, as shown
below.

668 GRAPHICS FILE FORMATS

PCX (cont'd)

Color Burst Enable
(Bit 7)

0 (color)
1 (monochrome)

Palette
(Bit 6)

0 (yellow)
1 (white)

Intensity
(Bit 5)

· 0 (normal)
1 (bright)

Code used to extract the CGA color-level data from the EGA color palette is
shown below:

/* Get the CGA background color */
CgaBackgroundColor = EgaPalette[O) >> 4; /* 0 to 15 */

/* Get the CGA foreground palette */
CgaColorBurstEnable = (EgaPalette[3] & Ox80) >> 7; /* 0 or 1 */
CgaPaletteValue (~gaPalett·e[3] & Ox40) >> 6; /* 0 or 1 */
CgaintensityValue = (EgaPalette[3] & Ox20) >> 5; /* 0 or 1 */

256-color VGA palette
When PCX was conceived, the EGA was the premium display adapter available
from IBM for the PC. The EGA could display only 16 colors from a palette of
64, so PCX was originally designed with a color palette large enough to hold
only 16 colors.

The 16-color EGA technology of 1984, howev~r, gave way to the 256-color VGA
technology of 1987. PCX now fell short ofVGA standard images that could con
tain up to 256 colors from a palette of 262,144, and a new color palette needed
to be added to the PCX file format for VGA images. Because there was not
enough room in the header for it, the designers of the PCX format appended
it to the end of the PCX file itself.

This unconventional, if not inconvenient, location for the VGA palette presents
a problem; because the size of the image data varies, the location of the VGA
palette is different for every file. The position of the palette must be deter
mined by its offset from the end of the file rather than from the beginning.

To see if a VGA palette is attached to a file, seek backwards 769 bytes from the
end of the file. If the byte at this location is set to value OCh, then the 768 bytes
following this value constitute a VGA color palette. The PCX specification states
that if the version number in the header (byte 1) is 5 (v3.0), then there might
be a VGA color palette attached.

Normally, a PCX file must have a VGA color palette attached only if there are
more than 16 colors in the image; otherwise the EGA palette can be used. How
ever, many graphics programs create v3.0 PCX image files without a VGA color
palette, while other programs always attach a VGA color palette, even . for

PCX 669

PCX (cont'd)

2-color images. To confuse things even more, 24-bit PCX images are always
marked as v3.0, yet never have an attached color palette.

A v3.0 PCX image might not have a color palette; the value 768 bytes from the
end of the file might be OCh by coincidence. In this rare case, a PCX reader
would interpret the last 768 bytes of the encoded image data as a VGA palette,
so a truly bizarre displayed image would result. One solution to this problem
would be to first read all the image data and note whether the file pointer
stopped 769 bytes from the end of the file. If so, then a VGA color palette is
present. Another method would be to check the three bytes following the OCh
value. This is the first color of the color palette and is normally black, so the
three bytes following the suspect VGA palette indicator value should all be
zero.

When a VGA palette is present in the file, its information is always used to dis
play the image data, rather than using any information that may be present in
the EGA color palette. If the colors in an image do not display correctly, it may
be necessary to disable the color palette so the display hardware may use its
native color palette. Disabling the color palette is accomplished by changing
the version number in the header (byte 1) from 5 to 3. The display software
should recognize that this version of the format has no color palette and,
therefore, should use its own default palette.

The VGA palette itself is an array of 768 bytes (256x3) containing the red,
green, and blue values for each of the 256 possible colors in a VGA PCX image.
Color values are organized into triples, as in the EGA palette. Bytes 0, 1, and 2
are the red, green, and blue values for the color 0; bytes 3, 4, and 5 are the red,
green, and blues values for color 1; and so on. Each RGB value is in the range
ofO to 255.

In fact, the VGA palette is simply a much longer version of the EGA palette.
VGA display devices, however, require that palette color values be in the range
of 0 to 63, so all RGB values should be divided by four (shifted to the right
twice). VGA images may have 2-, 4-, 8-, 16-, 32-, 64-, ·128-, or 256-color entries in
the palette.

Reading the PCX Header

The PCX specification does not specifically state that the PCX image file format
must use the least significant byte-ordering scheme used on Intel 80x86 pro
cessors, but we may safely assume that this is so because the PCX format was
developed for use on Intel-based machines. If code that reads PCX-format files

670 GRAPHICS FILE FORMATS

PCX (cont'd)

will only be executed on Intel machines, it is possible, although not portable,
to use the fread() function to read the header on a little-en dian machine:

PCXHEADER pcx;
if(fread(&pcx, sizeof(char), sizeof{PCXHEADER), fp) !=

sizeof{PCXHEADER))
fputs (•Error reading PCX header. ", stderr) ;

Compressing PCX Data

The data-encoding algorithm used in PCX files is a simple 1-byte/2-byte run
length encoding scheme. While this type of encoding is not the most effective
in terms of reducing data size, it is very quick in its operation and quite easy to
implement.

An image normally contains many series of pixel runs, that is, two or more con
tiguous pixels of the same value. Using the run-length data compression
scheme, a run of pixels several bytes in length may be converted to a run code
only two bytes in length.

The encoded data is read one byte at a time. If the two most significant bits
(MSB) of the first byte read are set to 1, then this byte is the first byte of a
2-byte run code. The first byte in a 2-byte run code always contains the run
count in its lower six bits, which is the length of the pixel run. Therefore, a
pixel run may be I to 63 pixels in length.

Using the two most significant bits to ipdicate a 2-byte code rather than just
·one, MSB is a holdover from the early CGA days of Paintbrush. Use of only one
MSB resulted in poor compression for CGA data, so two were used instead.

The second byte of a 2-byte run code is the value of the pixel run itself. This
value may be in the range 0 to 255 and is written to the output a number of
times equal to the run count.

If a run-count byte is read and the two MSBs are both 0, then this byte is a run
value byte, and the run count is considered to be 1. This 1-byte run code is
used to prevent a 1-pixel run from encoding into a 2-byte run code.

The PCX RLE encoding scheme is not perfect, however. A 1-byte run code can
contain a run value only in the range 0 to 63. If the pixel run value is in the
range 64 to 255, a 2-byte run code must be used instead. If an image contains
many single pixel runs of color values greater than 63, an increase of image
data size can occur after PCX encoding. Such an increase in data size typically
occurs only in very noisy or grainy images.

PCX 671

PCX (cont'd)

Decoding a PCX Fonnat File

To decode a file in PCX format, you must read the header of the file and calcu
late the following data:

• Width of image in pixels

• Length of image in scan lines

• Number of bytes needed to hold a decoded scan line

• Number of padding bytes at the end of each scan line

Calculate the image width and height from the image dimension values as fol
lows:

ImageWidth = XEnd - XStart + 1; /* Width of image in pixels */
ImageHeight = YEnd - YStart + 1; /* Length of image in scan lines */

Calculating the number of bytes required to hold a decoded scan line is neces
sary if the decoded image data is to be stored in a buffer. It is also necessary to
determine if the image data has been encoded across scan lines. The number
of color planes multiplied by the number of bytes per line per plane yields this
value:

ScanLineLength = NumBitPlanes * BytesPerLine;

The length of padding at the end of a scan line may be determined by calculat
ing the number of pixels in an unencoded scan line and comparing this value
with the pixel width of the displayed image:

LinePaddingSize = ((BytesPerLine * NumBitPlanes) *
(8 I BitsPerPixel)) - ((XEnd- XStart) + 1);

The decoding steps are the following:

1. Read a byte.

2. If the two MSBs are set to 1, then mask off the run count.

3. Read next byte.

4. Write the byte a number of times equal to the run count.

5. Else, if the two MSBs are set to 0, then mask off the run value.

6. Write the byte once.

7. Repeat steps 1 through 6 until the buffer is full.

672 GRAPHICS FILE FORMATS

PCX (cont'd)

The code used to decode a scan line of information is as shown as follows:

I*
** Decode a PCX scan line.
**
** In this example the size of Buffer[] and the value of BufferSize
** is equal to the scan line length. Data is read from the F~LE
**stream fpin and written to Buffer[].
*I
do
{

byte= GetByte(fpin);
if ((byte & OxCO) == OxCO)

runcount = byte & Dx3F;
runvalue = GetByte(fpin);
}

else
{

runcount = 1;
runvalue = byte;
}

I* Write the pixel run to the buffer */

I* Get next byte *I
I* 2-byte code *I

I* Get run count *I
I* Get pixel value *I

I* 1-byte code *I

I* Run count is one *I
I* Pixel value *I

for (total += runcount; I* Update total *I
runcount && index < BufferSize;

runcount--, index++)
Buffer[index] = runvalue;
} while (index< BufferSize);

I* Don't read past buffer *I
I* Update counters *I
I* Assign value to buffer */.
I* Read to end of buffer *I

The PCX specification states that a decoding break should occur at the end of
each scan line. This means that when a run of data is being encoded, and the
end of the scan line is reached, the run should stop and not continue across to
the next scan line, if it is possible to stop it.

Decoding can be complicated by PCX files that have been encoded ignoring
this rule. Encoding across scan lines gains a few extra bytes of compression, but
the process of decoding a single scan line is made much more difficult.

Encoding PCX Image Data

The scheme for encoding a scan line is fairly straightforward with only a few
exceptions. Raw data is read one byte at a time. The only information needed
is the number of bytes in a scan line. The following is the procedure for encod
ing image data using the PCX compression algorithm:

PCX 673

PCX (cont'd)

1. Read a byte of pixel data, and store the value.

2. Set counter to 1.

3. Read the next byte, and check if it is the same as the stored value.

4. If it is the same, increment the counter.

5. Hit is not the same and the count is greater than one, or the count is 63, or
if the end of the scan line has been reached, then mask on the two MSBs,
and output the count value.

6. Output the data value.

7. Repeat steps 1 though 6 until all scan lines have been read.

PCX Image Data Format

Once a scan line has been decoded, the format of the data it contains depends
upon the BitsPerPixel and the NumBitPlanes values found in the header.
Knowing the data format of a scan line is necessary so you can parse the pixel
data from a scan line for display of the image or conversion of the image file
from one format to another. All scan lines in a PCX file always have the same
format.

Scan-line pixel data is stored in one of two ways-either pixel-oriented or
plane-oriented. Pixel-oriented data is stored with all the pixel data (either real
data or indexes into a color palette) in a contiguous line. Plane-oriented data
unrolls the pixel data into its red, green, and blue components and groups
them by color across the scan line.

Single-plane data is stored pixel by pixel in one long plane that runs the length
of the scan line. The data in the scan line is not the actual image data itself but
is instead a series of index values into either the EGA or VGA color palettes.
The exception for single-plane data is the 1-bit monochrome image, where
each bit in a scan line maps directly as a pixel value.

How much of the scan-line data a single pixel occupies is determined from the
BitsPerPixel value. For example, with one bit per pixel, every byte of scan-line
data contains eight pixel values. With eight bits per pixel, every byte of scan
line data contains one pixel value. Monochrome, CGA, and 256-color VGA
images usually contain only a· single plane per scan line.

Scan lines with three planes are uncommon, but they do exist. 24-bit PCX
images are stored using three bytes per pixel spread over three planes. The

674 GRAPHICS FILE FORMATS

PCX (cont'd)

24-bit data values are the actual color values for the image, and no color
palette is used. Paintbrush for Windows 2.0 uses a 3-plane/1-bit data format to
store 8-color images, where each pixel value is an index into the EGA color
palette.

Images with four planes are usually 16-color EGA images. In addition to the
red, green, and blue planes, there is a fourth intensity color plane that is spe
cific to the EGA display card. Scan-line data in 4-plane images contains index
values into the EGA palette.

Related File Formats

Several other formats· are direct spinoffs of the PCX file format. And in most
cases they are just specialized versions of PCX.

PCC image f'tle format
Earlier versions of PC Paintbrush had the capability of clipping and copying an
area of a PCX image and saving it to a file using the Copy To . . . command.
The resulting file was saved as a PCX format file with the extension .PCC, possi
bly to indicate that the image the file contained was· a portion of another
image. The current version of PC Paintbrush does not use the .PCC extension
and uses the .PCX extension instead.

DCX image f'de format
The PCX file format is capable of storing only a single image per file. Applica
tions that require two or more PCX image files to be identified as belonging to
the same group often use a naming convention that will identify a collection of
PCX files as being related to one another.

One such application is FAX software, where each facsimile page is stored as an
individual image in a separate file. PCX became a popular format for PC-based
FAX softWare, because facsimile pages saved in this format could be viewed
using many popular paint and image display programs that supported PCX.
However, storing each FAX page as a separate file can become quite cumber
some and also confusing, if each image has a cryptic filename.

In an effort to store PCX files in a manner more appropriate to facsimile appli
cations, the DCX file format was created. The DCX format stores up to 1023
PCX images within a single DCX file. Each image in the DCX file is a complete
PCX image file, including header and palette information. In applications,
DCX files may contain all of the pages of a facsimile transmission, a series of

PCX 675

PCX (cont'd)

. images of the same subject, or all of the illustrations within a document. The
DCX header follows:

typedef struct _DcxHeader
{

DWORD Id;
DWORD PageTable[1024];

} DCXHEAD;

I* DCX Id number */
I* Image offsets */

Id is a 4-byte word used to identify the file. The value of this word is
3ADE68B1h (987,654,321 decimal).

Page Table is a table of 1024 4-byte word values. The values in this table are the
offsets of each PCX image contained within the DCX file. The offset of each
PCX image is measured from·the beginning of the file (byte 0). The last entry
of the page list is the terminator value and is always set to zero.

Typically, a DCX file contains an entire 4096-byte page list (1023 4-byte offset
values followed by a 4-byte terminator value), even if most of the values in the
list are zero. Some DCX file writers may try to save space by writing only the val
ues of the offsets, followed by a 0 terminating word, but not the remaining part
of the list. It is, therefore, important never to expect the page list to be a full
4096 bytes in length. DCX file readers should always read one value at a time
and stop when a word value of zero is read. If the first offset value in the page
list is 1004h (4100 decimal), then an entire 4096-byte page list is contained
within the DCX file.

The DCX format is quite convenient and very easy to use; however, this format
suffers from one major drawback. When a series of PCX files is concatenated
into a DCX file, all the information within the PCX files is preserved, but the
actual names of the PCX files are lost. No provision in the DCX format (or in
the PCX format for that matter) exists for storing the MS-DOS filename of the
PCX image files. Therefore, if the original PCX filenames are important to your
application, you will have to devise some sort of name list that is maintained
outside of the DCX file. Future revisions of the DCX format might correct this
oversight (perhaps by appending a name list onto the end of the DCX file
itself).

For Further Information
For further information about the PCX format, see the format specification
included on the CD-ROM that accompanies this book.

676 GRAPHICS FILE FORMATS

PCX (cont'd)

The PCX format was created and is maintained by ZSoft Corporation. For addi
tional information, contact ZSoft at:

ZSoft Corporation
Attn: Shannon Donovan
450 Franklin Road, Suite 100
Marietta, GA 30067
Voice: 770-428-0008
FAX: 770-427-1150
BBS: 770-427-1045
CompuServe: 76702,1207

ZSoft publishes the following technical reference manual describing the PCX
format:

ZSoft Corporation, Technical &ference Manua~ Revision 5, Marietta, GA,
1990. .

PCX is a very popular format that has been described in many books and maga
zine articles. The following manual and magazine articles also document the
format and use of PCX files:

Ashdown, Ian, "PCX Graphics," C Users jouma~ vol. 9, no. 8, August
1991, pp. 89-96.

Azer, S., ''Working with PCX Files," Microcornucopia, no. 42, July-August
1988,p.42. .

Luze, Marv, "Printing PCX Files," C Gazette, vol. 5, no. 2, Winter
1990-91, pp. 11-22.

Quirk, K., ''Translating PCX Files," Dr. Dobb's]ouma~ vol. 14, no. 8,
August1989,pp.30-36, 105-108.

PCX 677

IPDS
NAME:

ALSO KNOWN As:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CO:

CODE ON CO:

IMAGES ON CO:

SEE ALSO:

PDS

Planetary Data System Format

General data format

Unlimited

None

Unlimited

Yes

NA

NASA

All

Many

No (specification is too lengthy)

No

Yes

FITS, VICAR2

UsAGE: PDS is used by NASA and other institutions to store planetary data.

coMMENTs: PDS is an ODL-based format similar in form and use to FITS and VICAR2.

Overview
The PDS (Planetary Data System) file format is a standard format devised by
the Planetary branch of the National, Aeronautics and Space Administration
(NASA) for storing solar, lunar, and planetary data collected on Earth and by
interplanetary spacecraft.

PDS is actually a set of rules for the construction of labels to describe the struc
ture of a variety of data files, including images. The basis for the labels is an
Object Description Language (ODL), which describes each separate compo
nent of the data file as a distinct object. These labels have been designated for
use by NASA's Planetary Data System.

A PDS image file could conceivably contain a number of different elem~nts.
The label might be a part of the data file, or it might be in a separate file. Each
image row could have some leading and trailing information. There could be
color palette or image histogram data before or after the image. There could

678 GRAPHICS FILE FORMATS

PDS (cont'd)

even be multiple images in a single file. All of these possibilities can be han
dled with the PDS syntax.

This syntax has been used on the CD-ROMs of spacecraft data distributed by
the PDS, such as the 12-disk ''Voyagers To The Planets" set. A number of soft
ware packages also support PDS labels.

File Organization
A PDS data file consists of a header (called the label) and a set of data objects.
The label and data objects may reside in the same file or in separate files.

A PDS label is usually a collection of ASCII text records. The label records can
be fixed length or variable length, although fixed length is more portable.
Records are usually delimited by a carriage return and a linefeed character to
ensure readability on the widest possible variety of computers.

The label uses ODL to give information about the data objects. The ODL object
description has the general form:

OBJECT = obj ect_name Information about the object
END_OBJECT

Statements within an object description all have the form:

name = value

where name is a keyword, the name of a particular attribute associated with the
object, and value is the value of the attribute. The attribute name can be up to
32 characters in length. The first character must be alphabetic, but the remain
ing characters can be alphabetic, numeric or the underscore character. The
attribute values can be numeric (integer, real, or real with units), literal or enu
merated values, strings, times, or object names. The values can also be
arranged into arrays.

Direct access to data objects is possible by utilizing pointers to the objects in
the label. A pointer is expressed with the notation:

Aobject_name = location

The location may be numeric, in which case it represents a starting record num
ber for the object, or it may be a string giving the name of an external file.

PDS 679

PDS (cont'd)

The first record of a PDS label may be a Standard Format Data Unit (SFDU) ID
in the format:

nnnnnnnnnnnnnnn = SFDU_LABEL

The ID is assigned by a central control authority (Consultative Committee for
Space Data Systems), but it can be safely skipped by application software. Each
PDS label must end with a statement of the form:

END

Comments may be embedded in the label, and a comment begins with the pair
of characters/* (slash asterisk). The comment ends either at the end of the
line or with the pair of characters* I (asterisk slash).

The PDS ODL is an evolving syntax, although downward compatibility is main
tained. A number of new enhancements are supported under the second ver
sion of the syntax standard.

File Details
Here is a sample PDS version 1 label. The label is treated as a single ·byte stream
of203 bytes. Notice the (now obsolete) pointer syntax.

FILE_TYPE = IMAGE
HEADER_RECORDS = 1
HEAD~RECORD_BYTES = 203
IMAGE_LrNES = 512
LINE_SAMPLES = 512
SAMPLE_BITS
IMAGE_POINTER
END

8
= OLD IMAGE. IMG

Here is sample PDS version 2label. The image data starts at the tenth record in
the file (that is, byte 2550).

NJPL1IOOPDS100055825 = SFDU_LABEL
RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES ::: 255
FILE_RECORDS = 223 /* 210 image records + 13 label */
LABEL_RECORDS = 13
/* This is a pointer to the file record where the image starts */
"IMAGE = 10
OBJECT ::: IMAGE

LINES = 210
LINE_SAMPLES = 255
SAMPLE_BITS = 8

END_OBJECT
END

680 GRAPHICS FILE FORMATS

PDS (cont'd)

Here is another sample PDS version 2 label for an image with a detached label
file:

CCSD3ZF0000100000001NJPL3IFOPDS200000001 = SFDU_LABEL
I* File Format and Length *I
RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 1024
FILE_RECORDS = 512
I* Record Pointers to Major Objects *I
~IMAGE = 'SAMPLE.IMG'
I* Descriptions of Objects in File *I
OBJECT = IMAGE

LINES = 512
LINE_SAMPLES = 512
SAMPLE_BITS = 16

END_OBJECT = IMAGE
END

For Further Information
Because the PDS specifications are so lengthy, and because they are freely avail
able, we have decided not to include them on the CD-ROM that accompanies
this book. For additional inform~tion about PDS, contact the JPL customer sup
port facility:

. National Aeronautics and Space Administration (NASA)
Planetary Branch
Jet Propulsion Laboratory
Mail Stop 525-3610
4800 Oak Grove Drive
Pasadena, CA 91109
Voice: 818-354-7587
Email: PDS_ Dperator@jplpds.jpl. nasa.gov
WWW: http:/ /stardust.jpl. nasa.gov/pds_home.html

There is a set of several documents on PDS labels available from this facility:

Jet Propulsion Laboratory, Standards for the Preparation and Interchange of
Data Sets, JPL Document D-4683, NASA, Pasadena, CA, 1988.

Jet Propulsion Laboratory, Data Preparation Workbook, JPL Document
·D-7669, NASA, Pasadena, CA, 1990.

Jet Propulsion Laboratory, Planetary Data System Standards Reference, JPL
Document D-4683, NASA, Pasadena, CA, 1990.

PDS 681

.PDS (cont'd)

··Jet Propulsion Laboratory, Specification for the Object Description Language,
NASA, Pasadena, CA, 1990 .

. 682 GRAPHICS FILE FORMATS

NAME:

ALSO KNOWN As:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

usAGE: Paint programs.

Pictor PC Paint

PC Paint, PIC, .PIC, .CLP

Bitmap

24-bit maximum

RLE, uncompressed

64Kx64K pixels

No

Little-en dian

Paul Mace Inc.

MS-DOS

Too numerous to list

Yes

No

No

PCX

Pictor PC Paint I

coMMENTs: A device-specific format designed for PC (MS-DOS) hardware.

Overview
The Pictor PC Paint format is device-dependent and is specifically designed
around the needs of the IBM family of display adapters (CGA, EGA, VGA, and so
on). Because of this, the PIC format resembles PCX, another popular paint file
format designed specifically for IBM hardware. This format uses the .PIC exten
sion.

File Organization
The header structure for the Pictor PC Paint format is 17 bytes long and con
sists of the following fields:

typedef struct _PicHeader
{

WORD Id;
WORD Width;

I* Magic number (always 1234h) */
/* Width of image in pixels */

PICTOR PC PAINT 683

Pictor PC Paint (cont'd)

WORD, Height;
WORD XOffset;
WORD YOffset;
BYTE Planeinfo;
BYTE PaletteFlag;
BYTE VideoMode;
WORD PaletteType;
WORD PaletteSize;

} PICHEAD;

File Details

/* Height of image in pixels */
/* X of lower left corner of image */
/* Y of lower left corner of image */
/* BPP and number color planes */
/* Color palette/video flag */
/* Video mode of image */

• /* Type of color palette *I
/* Size of color palette */

Id is an identification value. This value is always 1234h.

Width and Height contain the size of the image in pixels.

XOffset and YOffset indicate the position of the image on the display screen.
The default values of 0 and 0 indicate that the image starts at the origin point
in the lower-left comer of the screen.

Planeinfo contains two values. Bits 0 through 3 contain the number of bits per
pixel per plane in the image. Bits 4 through 7 contain the number of addi
tional color planes; there is always a minimum of one color plane. This value is
0 for one color plane, 2 for three color planes, and so on. These values may be
used to determine the type of display hardware for which the image data is for
matted. A value of 02h in this field indicates CGA data; a value of 3lh indicates
EGA data; and a value of 08h indicates VGA data.

The original version of the PC Paint format did not include any information on
video modes or color palettes. Version 2.0 of the format adds the ability to
store this additional information and increases the size of the header.

PaletteFiag contains the value FFh if the version of the PC Paint file is 2.0 or
greater. In this case, data is present for the remaining three fields of the
header. If the Marker field value is not FFh, then image data immediately fol
lows the header.

VideoMode contains a single ASCII alphanumeric character indicating the
screen mode used to create the image. This is useful only for setting the scre~n
mode before displaying the image. The following mode values are used:

684 GRAPHICS FILE FORMATS

Pictor PC Paint (cont'd)

0 40 column text F EGA 640x350x4
1 80 column text G EGA 640x350xl6
2 Monochrome text H EGA 720x348x2 (Hercules)
3 EGA 43-line text I EGA 320x200x16 (Plantronics)
4 VGA 50-line text J EGA 320x200x16
A CGA 320x200x4 K EGA 640x400x2 (AT&T or Toshiba 3100)
B EGA 320x200x16 L VGA 320x200x256
c CGA 640x200x2 M VGA 640x480x16
D EGA 640x200xl6 N EGA 720x348xl6 (Hercules InColor)
E EGA 640x350x2 0 VGA 640x480x2

Palette Type indicates the type of color palette that is found after the header. A
value of 0 indicates that no color palette is present (i.e., the image does not use
a color palette, typical of monochrome image data). A value of 1 indicates a
CGA color palette and border color. A value of 2 indicates a PC Jr. or non-ECD
1fkolor palette. A value of 3 indicates an EGA palette. A value of 4 indicates a
VGA palette.

The CGA palette data is a single byte in size and the border data is also one
byte in size. (See the PCX article for information on interpr~ting CGA palette
data.) PC Jr. palette data, which may also be a generic 1fkolor palette, is stored
as a 16-byte palette, one color value per byte. The VGA palette is stored as 256
3-byte triples, the same as in the PCX format.

PaletteSize stores the number of bytes of palette data that follow the header.
For a CGA palette, this value is 2. For the PC Jr. and EGA palettes, this value is
16. For a VGA palette, this value is 768.

Image Data Encoding

The image data in a Pictor Paint image file may be stored in a compressed RLE
format. Following the color palette data (if present) is a 16-bit data word that
indicates how many run-length encoded blocks of data follow. If the image
data in the Pictor file is not compressed, this value is 0.

Raw Pictor images never contain any color palette information, although the
color palette information fields may be present in the header. The image data
begins immediately after the header and is displayed starting at the bottom-left
comer of the display screen. The image data always is stored by scan line and
in consecutive color planes.

The RLE scheme used in the PC Paint format encodes runs of identical pixel
values into blocks (also called packets). The number of data blocks in an
image file is indicated by the 16-bit value found after the color palette informa
tion.

PICTOR PC PAINT 685

Pictor PC Paint (cont'd)

Each run-length encoded block begins with a 5-byte header. This header,
which contains the information necessary to decode the image data stored in
its data block, has the following format:

typedef struct _PicBlockHead
{

WORD BlockSize;
WORD RunLength;
BYTE RunMarker;

} PICBLKHEAD;

/* Size of encoded block including header */
/* Size of decoded pixel data */
/* Start-of-run indicator */

BlockSize is the size of the entire block of encoded image data including the
block header. This value is useful for reading the entire data block into mem
ory before decoding it.

RunLength contains the total number of pixels encoded in this block.

RunMarker contains a unique character marker that identifies the start of an
encoded run in this block. Data blocks may contain multiple runs of pixels,
and this marker delineates the start of each encoded run in the block.

Each encoded data block may contain one or more runs of pixel data. The
runs may be eight bits in length (1 to 255 pixels), or 16 bits in length (1 to
65,535 pixels). For buffering reasons, a run typically does not exceed 8192 pix
els (or bytes) in length. It is also possible to store a literal run of pixels in a
data block that is not encoded at all.

The first five bytes of an encoded data block make up the block header. Follow
ing the header is normally a RunMarker character designating the start of an
encoded run. The byte following a RunMarker is the RunLength. This is an
8-bit value that stores the length of the pixel run. If this value is not zero, then
the ~yte that follows it, the Run Value, is the actual pixel value that is to be
repeated RunLength times:

WORD BlockSize Size of encoded block including header
WORD RunLength Size of decoded pixel data
BYTE RunMarker Start-of-run indicator
BYTE RunMarker Start-of-run indicator
BYTE RunLength Length of the pixel run (8-bit run length)
BYTE RunValue The value of the pixel run

If the RunLength value is 0 then a 16-bit word value, the RunCount, follows
the RunLength field. The byte following the RunCount is the actual pixel run
that is to be repeated Run Count times:

686 GRAPHICS FILE FORMATS

WORD BlockSize
WORD RunLerigth
BYTE RunMarker
BYTE RunMarker
BYTE RunLength
WORD RunCount
BYTE RunValue

Pictor PC Paint (cont'd)

Size of encoded block including header
Size of decoded pixel data
Start-of-run indicator
Start-of-run indicator
Length of the pixel run (8-bit run length)
Length of the pixel run (16-bit run length)
The value of the pixel run

If the RunMarker is missing from a data block, the byte read is assumed to be a
literal pixel value and is written directly to the output:

WORD BlockSize
WORD RunLength
BYTE RunMarker

Size of encoded block including header
Size of decoded pixel data
Start-of-run indicator

BYTE PixelValue No RunMarker, literal pixel value

The RunMarker character is an arbitrary value chosen to delineate the start of
each encoded run in a data block. The RunMarker value should not be the
same as any Run Value or PixelValue in the data block. Each data block uses a
RunMarker value appropriate to the data in the data block. The following
example is of a data block that uses a RunMarker value that is the same as a
pixel RunLength value. This arrangement could confuse a Pictor RLE decoder:

WORD BlockSize
.WORD RunLength

BYTE RunMarker

Size of encoded block including header
Size of decoded pixel data
Start-of-run indicator

BYTE RunMarker Start-of-run indicator
BYTE RunLength Length of the pixel run (8-bit run length)
BYTE RunValue The value of the pixel run

Because there is no "end of data block" marker, a PC Paint decoder must keep
track of the number of pixels decoded in each data block, and must compare
this value to the value of the RunLength field of the block header. When these
values are equal, the block is finished and the next block, if any, should be
read.

The decoded format of the image data varies depending upon the type of
graphics display adapter that was used to create the image. Monochrome
images are stored eight pixels per byte. EGA images are stored two pixels per
byte in four planes of 4-bit index values each, in a BGRI order. VGA image daci.
is stored one pixel per byte, each byte being an index value into the color
palette. When there is more than one color plane, the image data is stored by
plane first, then by pixel (plane 0, plane 1, plane 2, and so on).

The following pseudocode details the decoding process of the Pictor RLE
image data:

PICTOR PC PAINT 687

Pictor PC Paint (cont'd)

StartOIData.Block:
Read BlockSize value from data block header
Read RunLength value from data block header
Read RunMarker value from data block header

StartOfRun:
If the next byte is a RunMarker

If the byte following the RunMarker is not 0
Read the next byte as the RunLength
Read the next byte as the Run Value
Write the Run Value 'RunLength' times.

else
If the byte following the Run Marker is 0

Read the next word as the Run Count
Read the next byte as the Run Value
Write the Run Value 'Run Count' times.

else
If the byte following the header is not a RunMarker

Write the byte as a literal PixelValue
If the number of pixels written so far equals the RunLength

Goto StartOfDataBlock:
else
If the number of pixels written so far does not equal the RunLength

Goto StartOfRun: -

Below are several examples of Pictor PC Paint run-length encoded data blocks.
These examples show how one or more different types of runs may be encoded
in the same data block.

The followiiig encoded data block is 10 bytes in size and contains a single run
800 pixels in length. The start-of-run indicator is the value FFh. The Run
Length field is 0, so the Run Count field contains the number of pixels in the
run. The Run Value is the actual pixel value in the run.

WORD- BlockSize Size of encoded block including header
WORD RunLength Size of decoded pixel data (800)
BYTE RunMarker Start-of-run indicator
BYTE RunMarker Start-of-run indicator (run 1)
BYTE RunLength Length of the literal run
WORD RunCount Length of the encoded run
BYTE Run Value The value of the pixel run

The following encoded data block is 13 bytes in size and contains two runs. A
total of 8256 pixels are encoded in this data block and the RunMarker is the

688 GRAPHICS FILE FORMATS

Pictor PC Paint (cont'd)

value SOh. This first run is 64 pixels in length and has a value of 7. The second
run is 8192 pixels in length and has a value of 1.

WORD BlockSize Size of data block including header
WORD RunLength Size of decoded pixel data (64 + 8192)
BYTE RunMarker Start-of-run indicator
BYTE RunMarker Start-of-run indicator (Run 1)
BYTE RunLength Length of the pixel run
BYTE RunValue Value of the pixel run
BYTE RunMarker Start-of-run indicator {Run 2)
BYTE RunLength Value is 0, get 16-bit RunCount
WORD RunCount Length of the pixel run
BYTE RunValue Value of the pixel run

The following encoded data block is 1039 bytes in size and contains two
encoded runs and a literal run. The RunMarker in this block is the value OOh.
The value FFh cannot be used because the block contains a run with this value.
The first run is 1024 pixels in length, and each pixel has the value 01h. Follow
ing this run are three literal pixel values that are considered the second run in
the block (literal pixel runs are not prefaced with a RunMarker). The third
run contains 12 pixels each of the value FFh.

WORD BlockSize Size of data block including header
WORD RunLength Size of decoded pixel data (1024+1+1+1+12)
BYTE RunMarker Start-of-run indicator
BYTE RunMarker Start-of-run indicator {Run 1)
BYTE RunLength Value is 0, get 16-bit RunCount
WORD RunCount Length of the pixel run
BYTE Run Value Value of the pixel run
BYTE Pixel Value No RunMarker, literal pixel value {Run 2)
BYTE Pixel Value No RunMarker, literal pixel value
BYTE Pixel Value No RunMarker, literal pixel value
BYTE RunMarker Start-of-run indicator {Run 3)
BYTE RunLength Length of the pixel run
BYTE Run Value Value of the pixel run

HiColor format
Four changes were made to Pictor PC Paint to support hicolor (65.536K col
ors) and truecolor (16,777,216 colors) video modes, and to correct past prob
lems in compressing text-mode images.

First, the two 4-bit fields for the number of bit planes and number of bits per
pixel (Planelnfo) were combined into one field to support pixel depths
greater than eight bits. The newly supported modes, and their hex values, are:

01
02
04

1 bit plane
1 bit plane
1 bit plane

1 bit per pixel 2 colors
2 bits per pixel 4 colors
4 bits per pixel 16 colors

PICTOR PC PAINT 689

Pictor PC Paint (cont'd)

11 2 bit planes 1 bit per pixel 4 colors
31 4 bit planes 1 bit per pixel 16 colors
08 1 bit plane 8 bits per pixel 256 colors
10 1 bit plane 16 bits per pixel 32,768 and 65,536 colors
18 1 bit plane 24 bits per pixel 16,777,216 colors
28 3 bit planes 8 bits per pixel 16,777,216 colors

Second, all text-mode images are now stored at 16 bits per pixel instead of
eight bits per pixel, as in the past.

Third, the video mode may now be specified using two letters. The mark field,
which always contained the value OxFF in the past, is now the second l~tter.
Valid values for the mark field are currently the ASCII characters 1, 2, and 3.

The hicolor extensions expanded the list of video modes supported by the
.PIC format:

0 10 40x25 color text
1 10 80x25 color text
2 10 80x25 B&W text
3 10 EGA 80x43, VGA 80x50 color text
4 10 VESA 80x60 color text
5 10 VESA 132x25 color text
6 10 VESA 132x43 color text
7 10 VESA 132x50 color text
8 10 VESA 132x60 color text
A 02 CGA 4 color
B 04 PCjr/Tandy 16 color
C 01 CGA 640x200 2 color
D 31 EGA 640x200 16 color
E 01 EGA 640x350 2 color
F 11 EGA 640x350 4 color
G 31 EGA 640x350 16 color
H 01 Hercules 720x348 2 color
I 31 VGA 640x350 16 color
J 31 EGA 320x200 16 color
K 01 AT&T/Toshiba 640x400 2 color
L 08 VGA/MCGA 320x200 256 color
M 31 VGA 640x480 16 color
N 31 Hercules InColor 720x348 16 color
0 01 VGA/MCGA 640x480 2 color
P 01 EGA/VGA 800x600 2 color
Q 31 EGA/VGA 800x600 16 color
R 08 S-VGA 640x400 256 color
S 08 S-VGA 640x480 256 color
T 08 S-VGA 800x600 256 color
U 01 S-VGA 1024x768 2 color
V 31 S-VGA 1024x768 16 color
W 08 VGA 360x480 256 color
X 08 S-VGA 1024x768 256 color
Y 31 S-VGA 1280x1024 16 color

690 GRAPHICS FILE FORMATS

Pictor PC Paint (cont'd)

z 08 S-VGA 1280x1024 256 color
L1 10 S-VGA 320x200 hicolor 15
s1 10 S-VGA 640x480 hicolor 15
t1 10 S-VGA 800x600 hicolor 15
x1 10 S-VGA 1024x768 hico1or 15
z1 10 S-VGA 1280x1024 hicolor 15
12 10 S-VGA 320x200 hicolor 16
s2 10 S-VGA 640x480 hicolor 16
t2 10 S-VGA 800x600 hicolor 16
x2 10 S-VGA 1024x768 hicolor 16
z2 10 S-VGA 1280x1024 hicolor 16
13 18 S-VGA 320x200 hicolor 24
S3 18 S-VGA 640x480 hicolor 24
T3 18 S-VGA 800x600 hicolor 24
X3 18 S-VGA 1024x768 hicolor 24
Z3 18 S-VGA 1280x1024 hicolor 24

The last change modified the compression algorithm to include 16- and 24-bit
images. Each packed bloc~ has a similar format to the original byte-packed
blocks of the previous compression method.

The first two bytes are 16-bit lengths of packed data, including the 4-byte
header. The second two bytes are 16-bit lengths of unpacked data. What fol
lows is a signed, 16-bit integer which, if negative, is a repeat count followed by
a 16-bit repeat value (or 24-bit repeat value in 24-bit images). If the signed
16-bit integer is positive, then it is a run count of the number of 16-bit values
(or 24-bit values) that follow. This repeats until the end of the packed block is
reached.

BSAVE format
Pictor PC Paint 1.0 was developed for Mouse Systems in 1984 and supported
only the BSAVE unpacked screen file format and stored only images using the
4-color CGA mode. PC Paint 1.5 supported a modified BSAVE format that
allowed images larger thari the screen to be stored and supported a rudimen
tary form of image compression. This revision 1.5 format was very short-lived,
and very few image files of this format exist.

The header for the BSAVE format is as follows:

typedef .struct _BsaveHeader
{

BYTE Marker;
WORD ScreenSegment;
WORD ScreenOffset;
WORD DataSize;

BSAVEHEAD;

/* Marker value for packed data */
/* PC screen memory segment */
/* PC screen memory offset */
/* Size of screen data */

PICTOR PC PAINT 691

Pictor PC Paint (cont'd)

Marker is the byte value used to mark the start of an packed data run. This
value is typically FDh or FEh if the image data is packed.

ScreenSegment is the segment address of the CGA video memory on the PC
creating the BSAVE file. This value is typically B800h.

Screen Offset is the offset address of the CGA video memory on the PC creating
the BSAVE file. This value is typically OOh.

DataSize is the size of the screen image data stored in the file. This value is
16,384 for 4-color images, 32,768 for 16-color images, and OOh if the image
data is packed. If DataSize is not OOh, then the image data immediately follows
the header and is written literally to the PC's video memory. If the value is OOh,
then two additional fields appear in the header:

WORD SizeOfData; /* Total size of unpacked data in bytes */
WORD NumberOfBlocks;. I* Number of packed blocks*/

SizeOIData is the total size of unpacked image data in bytes.

NumberOffilocks is the number of packed data blocks stored in the file.

Following these fields is the image data in packed format.

At offset 8000 in each BSAVE file is the string "PCPAINT 1.0" or "PC Paint
V1.5" indicating the format of the file. This ID string is followed by a byte indi
cating the current palette number and a second byte current border color
number. ·

Clipping format
Early versions of Pictor PC Paint supported an image file format used to store
image sections "clipped" from larger images. This clipping format uses the file
extension .CLP and may store data in either a packed or unpacked form.

The header of the Pictor PC Paint clipping format is 11 or 13 bytes in length,
depending upon how the image data is stored. The following 11 bytes appear
in the header of every .CLP file:

typedef struct _ClpHeader
{

WORD NumberOfBytes;
WORD XSize;
WORD YSize;
WORD XOffset;
WORD YOffset;
BYTE BitsPerPixel;

} CLPHEAD;

692 GRAPHICS FILE FORMATS

I* Size of the file, including header *I
I* Width of image in pixels */
I* Length of image in pixels */
/* Left offset of image on display *I
/* Top offset of image on display */
I* Pixel depth */

Pictor PC Paint (cont'd)

NumberOffiytes is the total number of bytes in the clipped image.

XSize and YSize specify the size of the image in pixels.

X Offset and YOffset specify the location of the image on the display.

BitsPerPixel is the size of each pixel in bits. If this value is FFh, then the
clipped image data is stored packed; otherwise, it is stored unpacked. If the
BitsPerPixel value is not FFh, then the uncompressed image data follows the
11-byte header. If the BitsPerPixel value is FFh, then two additional fields
appear in the header:

BYTE RealBits;
BYTE Marker;

I* Number of bits per pixel *I
I* Marker byte value for packed data *I

RealBits contains the number of bits per pixel (the value stored in BitsPerPixel
if the data were not packed).

Marker is the value used to mark the beginning of a packed run.

The packed data then follows these fields. Packed data is stored as three bytes:
the marker value, the run count, and the run value. A run value is repeated
run count times. If a byte is read, and it does not contain the expected marker
value, then the byte is written literally to the output.

Overlay format
Pictor PC Paint supports an image file format used to store collections of other
images (usually .PIC and .CLP) in a single file. This Overlay format uses the
file extension .OVR. It is also possible for .OVR files to contain other types of
data besides image data. This is accomplished by appending a dummy 11-byte
.PIC header to the data to fool PC Paint.

The header of an .OVR file is a list of each image file stored in the Overlay file.
There is one entry in this list for each file stored in the .OVR file, plus an addi
tional NULL en try to mark the end of the list. The format of this array is as fol
lows:

typedef struct _PictureName
{

WORD SizeOfList;
struct ~ameList
{

I* Size of the name list in bytes *I
I* List of files in .OVR file *I

LONG FileOffset; I* Location of image in the .OVR file *I
CHAR Name[12]; I* Name of image file*/

}. NameList[SizeOfList I sizeof(NameList)];

PICTURENAME[]:

PICTOR PC PAINT 693

Pictor PC Paint (cont'd)

SizeOfList is the total size of the name list in bytes, including the NULL entry
at the end of the list.

NameList is an array of structures. There is one element per file stored, pl.us an
additional NULL entry to mark the end of the list.

FileOffset is the location of this entry's file in the .OVR file. This offset is mea
sured from the beginning of the .OVR file, and this value is OOh for the NULL
list entry.

Name is the original filename of the file. This field is NULL padded for names
shorter than 12 bytes and contains all NULLs for the NULL listen try.

The actual images stored in the .OVR file follows the NULL list entry.

As an example, let's say we have two files called IMAGE.PIC (2048 bytes in size)
and IMAGEI.CLP (384 bytes in size) stored in an .OVR file. The internal for
mat of the .OVR file would be as follows:

Field Name
SizeOfList
FileOffset
Name
FileOffset

Value
48
50
"IMAGE.PIC\0\0\0"
2097

Name "IMAGE.CLP\0\0\0"
FileOffset 0
Name "\0\0\0\0\0\0\0\0\0\0\0\0"
[Image data for IMAGE.PIC starting at offset 50
[Image data for IMAGE.CLP starting at offset 2097

For Further Information
For further information about the Pictor PC Paint format, see the specification
included on the CD-ROM that accompanies this book.

The Pictor PC Paint image file format is ~upported by Paul Mace Software.

Paul Mace Software
Attn: Steven Belsky
400 Williamson Way
Ashland, OR 97520
Voice: 503-488-0224
FAX: 503-488-1549
BBS: 503-482-7 435
WWW: http:/ /www.pmace. com/

694 GRAPHICS FILE FORMATS

NAME:

ALSO KNOWN As:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

Pixar RIB

RenderMan Interface Bytestream, RIB

Scene description

Up to 24-bit

NA

NA

NA

NA

Pixar

All

PixarRIB I

RenderMan, modeling applications, others

Yes (summary description)

No

No

DKB, MTV, POV, QRT

usAGE: Storage of image scene descriptions for Pixar's RenderMan product.

coMMENTs: Although RIB is proprietary, RenderMan is a capable product available on
a number of platforms, so an energetic aftermarket has developed.
Enough applications besides RenderMan now read and write RIB files,
which has pushed the format into prominence as a de facto standard for
high-end rendering.

Overview
Pixar RIB files implement the RenderMan Interface Bytestream (RIB) Protocol,
which was developed at Pixar to provide a "standard interface between photo
realistic modeling and rendering programs." Because in practice RIB files are
supported by other applications mainly to provide output readable by Pixar's
RenderMan application, this description would be considered disingenuous,
were it not for the fact that RenderMan is so highly regarded.

RenderMan is available on a number of platforms and has a certain currency
among sophisticated computer graphics artists and animators. As an applica
tion, it provides photorealistic rendering capability, through calls to a compre
hensive library of functions. Thus the files resemble scripts, or a series of

PIXAR RIB 695

Pixar RIB (cont'd)

function calls in a programming language. Each statement implements what
Pixar calls a rendering primitive. A list of rendering primitives establishes a
description of how a picture is to appear, without specifying how the rendering
application should construct it.

File Organization
RIB files are written one byte at a time, and thus Pixar has avoided potential
portability problems caused by byte sex differences. The RIB protocol imple
ments a command language, and the data contained in the files can be either
7-bit ASCII or in a compressed binary form. The RIB protocol thus defines an
abstract rendering model. In this sense, a RIB file takes the place of a render
ing application (usually RenderMan). The user later applies a rendering appli
cation to the RIB file to produce an actual image. RIB files are streams of free
form data compatible with the abstract RIB rendering application.

Keeping this in mind, then, RiB files maintain a graphics state, which contains
the information necessary to render a graphics primitive, such as color and the
various coordinate mapping transformations. In some other rendering applica
tions, "graphics state" refers to the set of attributes associated with any objects
being rendered, but Pixar extends the terminology slightly.

RIB defines a number of 2D and 3D·geometric primitives, some of them quite
sophisticated.

File Details
The RIB rendering application is assumed to be an interpreter scanning a
bytestream. To support this model, RIB files are contructed from a sequence of
tokens. Tokens are delimited by a set of special characters (", #, [, and]) , and
the data stream may contain white space, defined as in the C language. Com
ments are strings preceded by a#.

Both signed real numbers and integers are supported, as are strings, and both
also follow conventions similar to their counterparts in the C language.

Names, arrays, and parameter lists round out the data types defined in the
specification. Names are usually text strings (or their binary counterparts) asso
ciated with RenderMan Interface requests, otherwise known as RenderMan
commands. Alongside arrays and parameter lists, they allow the full specifica
tion of function calls to the rendering application.

696 GRAPHICS FILE FORMATS

A section of a RIB file might appear as follows:

Projection "perspective" "fov• [30.0]
Translate 0 1 0
Rotate 90 0 1 0
WorldBegin
Surface "wood" "roughness" [.3] "Kd" 1
Color [.2 .3 .9]
Polygon •p• [010 011 001 000]
WorldEnd

Pixar RIB (cont'd)

This is not an excerpt from a file, only an example of the kind of commands to
be found in one.

ForFurtherhUonnation
For further information about the Pixar RIB format, see the article on the CD
ROM that accompanies this book; this article was prepared by Pixar specifically
for this book. For additional information, contact:

Pixar
Attn: Ray Davis
1001 West Cutting
Richmond, CA 94804
Voice: 510-236-4000
FAX: 510-236-0388
Email: rdavis®pixar. com
WWW: http:/ /www.pixar.com/

See the following site for information on RenderMan:

http:/ /pete. cs. caltech.edu/RMR/index. html

. See these references for additional information about Pixar RIB:

Pixar, The RenderMan Interface Bytestream Protocol File Format, Pixar, June
1990.

Pixar, The RenderMan Interface, Version 3.1, Pixar, September 1989.

Upstill, Steve, The RenderMan Companion: A Programmer's Guide to Realis
tic Computer Graphics, Addison-Wesley, Reading, MA, 1989.

The latter two documents are needed for a full understanding of the RIB for
mat. The binary version of RIB is discussed in the following:

Pixar, The RenderMan Interface, Version 3.1, Appendix C, Pixar.

PIXAR RIB 697

I Plot-10
NAME:

ALSO KNOWN As:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

Plot-10

Tek Plot-10

Vector

NA

Uncompressed

NA

No

NA

Tektronix

All

NA

No

Yes (one variant in pbmplus package)

No

None

UsAGE: Tektronix terminal control, occasionally written to files instead of to the
terminal.

coMMENTs: If you need this information, you really need it badly, and good luck.
Plot-10 files are basically dumps of terminal commands, written on-the-fly
to a file.

Overview
Plot-10 is associated with a series of graphics terminals manufactured by Tek
tronix, which were widely used for a certain period of time, primarily at scien
tific and laboratory sites, before cheap, high-resolution raster display terminals
became widely available in the 1980s. Tektronix no longer supports these ter
minals except under contract. Many owners of Tektronix terminals, however,
saw fit through the years to code applications that saved Tektronix terminal
commands in local files. A typical application might acquire data from an
experiment, for instance, and provide a real-time display of it on a Tektronix
terminal. If this data was interesting in any way, it was saved. Unfortunately,
because Tektronix provided no guidelines for this, the application developer
was forced to make up his or her own format on the spot.

698 GRAPHICS FILE FORMATS

Plot-10 (cont'd)

The result of this situation is that there are a lot of "Plot-10" formats in exis
tence. Because most scientific programming has been in Fortran, you might
consider that any data you find, on an old tape, for example, may be organized
in accordance with the Fortran formatting conventions.

Tektronix technical support has access to the documents describing several ter
minal communication protocols from that era. These include IDL, STI, and
TCS. Unfortunately, they appear to be in offsite backup storage, and we were
unable to obtain them from Tektronix, because the company wanted to charge
a hefty fee even to look for them. We hope that these documents might be
made available to us in a future edition of this book.

ForFurtherbUonnation
For further information about Plot-10, you might try contacting:

Tektronix
Attn: Technical Support
26600 Southwest Parkway
Wilsonville, OR 97070-1000
Voice: 503-685-2418
WWW: http://www.tek.com/

Ask for information that will allow you to decode Plot-1 0 terminal dump files.
Mentioning the IDL, STI, and TCS documentation may be helpful. Be sure to
ask if there is a fee.

The pbmplus utilities included on the CD-ROM include an application to con
vert one of the Plot-1 0 versions.

PLOT-10 699

IPNG
NAME: PNG

ALso KNowN As: Portable Network Graphic Format

TYPE: Bitmap

COLORS: 1-bit tO 48-bit

coMPREssioN: LZ77 variant

MAXIMUM IMAGE SIZE: 2GX2G pixels

MuLTIPLE IMAGEs PER FILE: No

NuMERicAL FoRMAT: Big-endian

ORIGINAToR: Thomas Boutell, Tom Lane, and many others

PLATFORM: ' Puay

suPPoRTING APPLICATioNs: Many shareware and commercial packages

SPECIFICATioN oN cD: Yes

cooE oN cD: Yes (in various packages)

IMAGEs oN co: Yes

SEE ALSO: GIF .

UsAGE: PNG is capable of losslessly storing hi-level to 48-bit truecolor image data.
It is designed specifically for network image data transmission and stor
age.

coMMENTs: PNG is a well-designed and well-developed file format that is intended to
replace CompuServe's GIF file format.

Overview
PNG (pronounced "ping") is a bitmap file format used to transmit and store
bitmapped images. PNG supports the capability of storing up to 16 bits (gray
scale) or 48 bits (truecolor) per pixel, and up to 16 bits of alpha data. It han
dles the progressive display of image data and the storage of gamma, trans
parency and textual information, and it uses an efficient and lossless form of
data compression.

PNG is a very new format created with the intention of offering the graphics
and imaging communities an alternative to CompuServe's Graphics Inter
change Format (GIF) and the legalities associated with the "pay-to-implement"
aspects of that format. (See the section called "LZW Legal Issues" in Chapter 9,

700 GRAPHICS FILE FORMATS

PNG (cont'd)

Data Compression.) The unofficial recursive derivation of the name . "PNG" is
"PNG's Not GIF."

PNG was designed with the goals that it be a simple format, one that is easy to
implement and completely portable, and one that meets or exceeds all of the
functional capabilities of the GIF format. It is also necessary that PNG be freely
available and unencumbered by licensing fees and patent disputes.

PNG and GIF89a share the following features:

• Format organized as a data stream

• Lossless image data compression

• Storage of index-mapped images containing up to 256 colors

• Progressive display of interlaced image data

• Transparent key color supported

• Ability to store public and private user-defined data

• Independent from hardware and operating system

The following GIF features have been improved upon in PNG:

• Legally unencumbered method of data compression

• Faster progressive display interlacing scheme

• Greater extensibility for storing user-defined data

The following PNG features are not found in GIF:

• Storage of truecolor images of up to 48 bits per pixel

• Storage of gray-scale images of up to 16 bits per pixel

• Full alpha channel

• Gamma indicator

• CRC method of data stream corruption detection

• Standard toolkit for implementing PNG readers and writers

• Standard set of benchmark images for testing PNG readers

The following GIF features are not found in PNG vl.O:

• Capability of storing multiple images

• Support of storage of animation sequences

PNG 701

PNG (cont'd)

• Payment of a licensing fee required to sell software that reads or writes the
GIF file format

Unlike most file formats, which are created by one or two programmers with
out much thought for the future expansion of the format, PNG was authored
by a committee of interested implementors and GIF detractors (revision 1.0 of
the PNG specification lists 23 authors) headed by Thomas Boutell.

PNG also holds the distinction of being one of the better designed file formats,
allowing additional features to be added to the format without compromising
existing functionality, and without forcing modifications to existing PNG-using
software.

We are happy to report that the PNG specification is one of the most complete,
well-thought-out, and well-written file format specifications yet examined by
the authors of this book.

File Organization
A PNG format file (or data stream) consists of an 8-byte identification signature
followed by three or more chunks of data. A chunk is an independent block of
data conforming to a specifically defined structure. Chunks carry their own
identification as to their internal format and are read sequentially from the
beginning to the end of the file or data stream.

Several other file formats also use the concept of blocks or chunks of data.
Most notably among these formats are GIF, IFF, and RIFF. Data in these formats
is read serially from the beginning to the end of the file. This design makes it
unnecessary to seek to different parts of the file using offset values; it also
makes these types of formats ideal for use with networking and data transmis
sion protocols. While each of these formats is usually thought of as a file for
mat, it is more accurate to think of them as a data stream that is captured and
stored to a file.

PNG defiJ?.es four standard chunks, called critical chunks, that must be sup
ported by every PNG file reader and writer. These chunks are the following:

The header chunk (IHDR)
The header chunk contains basic information about the image data
and must appear as the first chunk, and there must only be one
header chunk in a PNG data stream.

702 GRAPHICS FILE FORMATS

PNG (cont'd)

The palette chunk (PLTE)
The palette chunk stores the colormap data associated with the
image data. This chunk is present only if the image data uses a
color palette and must appear before the image data chunk.

The image data chunk (IDAT)
The image data chunk stores the actual image data., and multiple
image data chunks may occur in a data stream and must be stored
in contiguous order.

The image trailer chunk (lEND)
The image trailer chunk must be the final chunk and marks the
end of the PNG file or data stream.

Of these chunks, IHDR, IDAT, and lEND must appear in every PNG data
stream.

Consider the following two basic types of PNG files, one with a color palette
and one without:

Signature

IHDRChunk

IDATChunk

lEND Chunk

Signature

IHDRChunk

PLTEChunk

IDATChunk

lEND Chunk

As you can see, the only difference in these two basic PNG formats is the pres
ence of the palette chunk.

Optional chunks, called ancillary chunks, may be ignored by PNG file readers
and need not be written by PNG file writers. However, failing to support ancil
lary chunks may leave a PNG reader unable to properly render many PNG

PNG 703

PNG (cont'd)

images. The images may appear too dark or too light, or the images may dis
play in some other way not intended by the image's creator. It is therefore rec
ommended that PNG-using software support the interpretation of most
standard ancillary chunks (in particular, the Image Gamma chunk).

Together, the critical and ancillary chunks defined in the PNG specification
proper are termed standard chunks. The people who maintain the PNG specifi- ·
cation are also keeping a list of additional chunks, termed special-purpose public
chunks. These chunks are expected to be less widely implemented than the
standard chunks but may be of use for some applications. The list of special
purpose public chunks is expected to be extended from time to time. Applica
tions may also define private chunks for their own purposes, if they wish to store
data that need not be interpreted by other applications.

Here is a summary of all of the standard and special-purpose chunks defined
by revision 1.0 of the PNG specification and associated documentation. The
chunks in this list are arranged by the relative order (but not the only order)
that they could appear in a PNG data stream.

TABLE PNG-1 : PNG Chunks

Chunk'I)pe Multiple Optional Position

IHDR No No First chunk
cHRM No Yes Before PLTE and IDAT
gAMA No Yes BeforePLTEandiDAT
sBIT No Yes Before PLTE and IDAT
PLTE No Yes Before IDAT
bKGD No Yes After PLTE and before IDAT
hiST No Yes After PLTE and before IDAT
tRNS No Yes After PLTE and before IDAT
oFFs No Yes Before IDAT
pHYs No Yes BeforeiDAT
sCAL No Yes Before IDAT
IDAT Yes No Contiguous with other IDATs
tiME No Yes Any
tEXt Yes Yes Any
zTXt Yes Yes Any
fRAc Yes Yes Any
giFg Yes Yes Any
giFt Yes Yes Any
giFx Yes Yes Any

704 GRAPHICS FILE FORMATS

PNG (cont'd)

Chunk 'J)pe Multiple Optional Position

lEND No No Last chunk

File Details
The PNG signature is eight bytes in length and contains information used to
identify a file or data stream as conforming to the PNG specification.

typedef struct _PngSignature
{

BYTE Signature[8]; /*Identifier (always 89504E470DOA1A0Ah) */
} PNGSIGNATURE;

Signature is eight bytes in length and contains the values 89h 50h 4Eh 47h
ODh OAh lAh OAh ('\211PNG\r\n\032\n"). This seemingly random sequence of
values has quite a few practical uses. The first byte value, 89h, is an 8-bit value
used to identify the file as containing binary data. If the 8th bit were stripped
from the file (courtesy of a 7-bit data channel), this value would then be
changed to 09h and would provide an indication of how the file became cor
rupt.

The bytes that follow do the following:

• Allow the data stream to be visually identified ("PNG")

• Provide detection of a file transfer that alters the newline sequences ('\r\n"
would become '\r", '\n" or '\n\r")

• Stops the listing of the PNG data stream on the MS-DOS operating system
(Control-Z ['\032"])

• Detects file transfer CR/LF translation problems (the final newline)

Following the signature are three or more PNG data chunks. All PNG chunks
have the same basic format and may contain a variable length payload of data.

typedef struct _PngChunk
{

DWORD DataLength;
DWORD Type;
BYTE Data[];
DWORD Crc;

PNGCHUNK;

/* Size of Data field in bytes */
/* Code identifying the type of chunk */
/* The actual data stored by the chunk */
/* CRC-32 value of the Type and Data fields */

DataLength is the number of bytes stored in the Data field. This value may be
in the range 0 to (231)-1.

PNG 705

PNG (cont'd)

Type is a 4-byte. code identifying the type of data stored in the chunk. Each
byte of this field may contain an uppercase or lowercase ASCII letter value
(A-Z, a-z). For example, the chunk type IHDR would be identified by the
value 69484452h in the Type field. PNG readers should treat Type codes as
32-bit literal values and not character strings. The fact that type codes are read
able ASCII is primarily a convenience to humans.

Data is the actual data stored in the chunk. This field may be zero-length if a
chunk has no associated data.

Crc is the CRC-32 value calculated for the Type and Data fields. This value is
used to determine whether the data in the chunk has been corrupted. PNG
uses the CRC algorithm defined by ISO 3309 and ITU-T V.42.

Chunks range in size from 12 bytes (no data) ·to ((231)-1)+12 bytes. Chunks
are always aligned on byte boundaries and therefore never require any align
ment padding.

Critical Chunks

This section describes the standard chunks that must be supported by every
PNG file reader and writer.

Header chunk
The header chunk contains information on the image data stored in the PNG
file. This chunk must be the first chunk in a PNG data stream and immediately
follows the PNG signature. The header chunk data area is 13 bytes in length
and has the following format:

typedef struct _IHDRChunk
{

DWORD Width;
DWORD Height i.
BYTE BitDepth;
BYTE ColorType;
BYTE Compression;
BYTE Filter;
BYTE Interlace;

IHDRCHUNK;

I* Width of image in pixels */
I* Height of image in pixels */
I* Bits per pixel or per sample */
I* Color interpretation indicator */
I* Compression type indicator *I
I* ·Filter type indicator */

/* Type of interlacing scheme used *I

Width and Height are the width and height of the bitmap in pixels. These
fields must each contain a value in the range 1 to (231)-1.

706 GRAPHICS FILE FORMATS

PNG (cont'd)

BitDepth is the number of bits per pixel for indexed color images, and the
number of bits per sample for gray-scale and truecolor images. Indexed color
images may have a BitDepth value of 1, 2, 4, or 8. Gray-scale images may have
BitDepth values of 1, 2, 4, 8, and 16. Only BitDepth values of 8 and 16 are sup
ported for truecolor, truecolor with alpha data, and gray-scale with alpha data
images.

ColorType indicates how the image data is to be interpreted. Valid values are 0
(gray-scale), 2 (truecolor), 3 (indexed color), 4 (gray-scale with alpha data),
and 6 (truecolor with alpha data).

Compression indicates the type of compression used on the image data. Cur
rently, the only valid value is 0, indicating that the Deflate compression
method is used. Other compression methods may be defined in future exten
sions of PNG.

Filter specifies the type of filtering performed on the image data before com
pression. Currently, the only valid value is 0, indicating the adaptive filtering
methods described in the PNG specification. Other filtering methods may be
defined in future extensions of PNG. The filter value does not indicate whether
the image data has been filtered; only the filter type byte at the start of each
scan line can indicate that image data was filtered. Note that it is not a require
ment that image data must be filtered before it is compressed.

Interlace indicates the interlacing algorithm used to store the image data-or
more precisely, the transmission order of the pixel data. The values defined for
this field are 0 (no interlaci11:g) and 1 (Adam7 interlacing).

Palette chunk
The palette (PLTE) chunk is always found in PNG data streams that contain
indexed-color image data; this is indicated when the Color field of the header
chunk contains a value of 3. Truecolor PNG data streams (Color values 2 and
6) may also contain a palette chunk that non-truecolor display programs may
use as a palette to quantize the image data. There will never be more than one
palette chunk per PNG data stream.

The palette chunk may be from 3 to 768 bytes in length and has the following
format:

typedef struct _PLTEChunkEntry
{

BYTE Red;
BYTE Green;
BYTE Blue;

/* Red component (0 = black, 255 = maximum) */
/* Green component (0 = black, 255 = maximum) */
/* Blue component (0 = black, 255 = maximum) */

PNG 707

PNG (cont'd)

} PLTECHUNKENTRY;

PLTECHUNKENTRY PLTEChunk[];

PLTEChunk is an array containing 1 to 256 PLTECHUNKENTRY elements.
Each PLTECHUNKENTRY contains three fields, Red, Green, and Blue, which
store the red, green, and blue color values for that palette entry respectively.

Image Data chunk
The Image Data (IDAT) chunk stores the actual image data. The image data is
always compressed, as required by the PNG specification. The image data may
be stored in multiple contiguous IDAT chunks to make it easier for a PNG
writer to buffer the compressed image data. There are no boundaries in the
compressed data stream, so IDAT chunks may range in size from 0 to (231)-1
bytes in length.

Image Trailer chunk
The final chunk in a PNG data stream is the Image Trailer (lEND) chunk. This
chunk does not contain any associated data.

Ancillary Chunks

PNG v1.0 defines 10 ancillary chunks that may appear in a PNG data stream.
Several of these chunks provide support for storing information that may be
required for proper interpretation of the image data (such as the Image
Gamma chunk). A brief description of the format of the Data field of each of
these chunks is given below. Refer to the PNG specification on the CD-ROM for
more detailed information on these chunks.

Background Color chunk
The Background Color chunk specifies the background color of the image.
Note, however, that PNG readers may disregard this chunk and use any back
ground color value they choose.

The data format of the background color chunk varies depending upon the
format of the image data, as indicated by the ColorType field in the IHDR
chunk. For an indexed-color image (ColorType value 3), the data is a single
byte containing the index of the palette color to use as the background:

typedef struct _bKGDChunkEntry
{

BYTE Index; /* Index of background color in palette */
} BKGDCHUNKENTRY;

708 GRAPHICS FILE FORMATS

PNG (cont'd)

For gray-scale data, with or without alpha channel data (ColorType values 0
and 4), this chunk stores a 2-byte value specifying the gray level to be used as
the background value:

typedef struct _bKGDChunkEntry
{

WORD Value;
BKGDCHUNKENTRY;

I* Background level value *I

For truecolor images, with or without alpha channel data (ColorType values 2
and 6), the background chunk stores three 2-byte values specifying the RGB
color used for the background:

typedef struct _bKGDChunkEntry
(

WORD Red; I* Red background sample value *I
WORD Green; I* Green background sample value *I
WORD Blue; I* Blue background sample value *I

BKGDCHUNKENTRY;

Primary Chromaticities and White Point chunk
The Primary Chromaticities and White Point chunk stores information on RGB
values based on the 1931 CIE XYZ colorspace. Only the x and y chromaticities
are specified, and they are represented by values multiplied by 100,000.

typedef struct _cHRMChunkEntry
{

DWORD WhitePointX;
DWORD WhitePointY;
DWORD RedX;
DWORD RedY;
DWORD GreenX;
DWORD GreenY;
DWORD BlueX;
DWORD BlueY;

CHRMCHUNKENTRY;

Image Gamma chunk

I* White Point x value *I
I* White Point y value *I
I* Red x value *I
I* Red y value *I
I* Green x value *I
I* Green y value */
I* Blue x value *I
/* Blue y value *I

The Image Gamma chunk stores the original gamma value of the image with
respect to the original scene. The stored value is the gamma multiplied by
100,000. Note that it is "strongly" recommended by the PNG authors that
decoders implement the gamma chunk.

typedef struct _gAMAChunkEntry
(

DWORD Gamma;
GAMACHUNKENTRY;

I* Gamma value *I

PNG 709

PNG (cont'd)

Image Histogram chunk
The Image Histogram chunk stores data on the approximate usage frequency
of each color in a palette. This chunk contains an array of 2-byte elements, one
element per entry in the color palette.

typedef struct _hiSTChunkEntry
{

WORD Histogram[];
HISTCHUNKENTRY;

I* Histogram data *I

Physical Pixel Dimension chunk
The Physical Pixel Dimension chunk specifies the intended resolution for dis
play of the image.

typedef struct _pHYsChunkEntry
{

DWORD PixelsPerUnitX;
DWORD PixelsPerUnitY;
BYTE UnitSpecifier;

PHYSCHUNKENTRY;

I* Pixels per unit, X axis *I
/* Pixels per unit, Y axis *I
I* 0 = unknown, 1 = meter */

Significant Bits chunk
The Significant Bits chunk indicates the bit depth of the original image data. If
a PNG writer needs to store image data of an unsupported bit depth, the data
must be padded to the next greater supported bit depth to be stored. For
example, to store RGB data with a resolution of five bits per sample (RGB555)
using PNG, the image data would first need to be scaled up to an 8-bit sample
depth (RGB888). The Significant Bits chunk would then store the bit depths of
the original image data components.

There are four possible formats of the data in this chunk; the one used
depends upon the format of the image data (as indicated by the ColorType
field in the IHDR chunk):

I* Gray-scale (ColorType 0) image data *I
typedef struct _sBITChunkEntry
{

BYTE GrayscaleBits;
SBITCHUNKENTRY;

I* Gray-scale (ColorType 0) significant bits *I

I* Truecolor or indexed-color (ColorType 2 or 3) image data *I
typedef struct _sBITChunkEntry
{

BYTE RedBi ts;
BYTE GreenBi ts;
BYTE BlueBits;

SBITCHUNKENTRY;

I* Red significant bits *I
I* Green significant bits *I
I* Blue significant bits *I

710 GRAPHICS FILE FORMATS

I* Gray-scale with alpha channel (ColorType 4) image data *I
typedef struct _sBITChunkEntry
{

BYTE GrayscaleBits; I* Gray-scale significant bits *I
BYTE AlphaBits; I* Alpha channel significant bits *I

SBITCHUNKENTRY;

I* Truecolor with alpha channel (ColorType 6) image data *I
typedef struct _sBITChunkEntry
{

BYTE Red.Bits;
BYTE GreenBits;
BYTE BlueBits;
BYTE AlphaBits;

SBITCHUNKENTRY;

Textual Data chunk

I* Red significant bits *I
I* Green significant bits *I
I* Blue significant bits *I
I* Alpha channel significant bits */

PNG (coot' d)

The Textual Data chunk is typically used to store human-readable information,
such as the name of the author of the image and the copyright notice, within a
PNG file. The data of this chunk has the following structure:

typedef struct _tEXtChunkEntry
{

char Keyword[];
BYTE NullSeparator;
char Text[];

TEXTCHUNKENTRY;

I* Type of information stored in Text *I
I* NULL character used a delimiter *I
I* Textual data *I

Keyword is a field of character data with a length of 1 to 79 bytes. This field
may contain any printable Latin-I character except NULL. Spaces are also
allowed.

NullSeparator is a single byte initialized to 0. This field acts as a delimiter to
separate the Keyword and Text fields.

Text is a field of character data that is the actual textual data stored in the
chunk. The length of this field is determined from the value of the Data
Length field in the chunk header.

The value of Keyword indicates intellectual content information associated
with the textual data stored in the Text field. The following keywords are
defined by PNG v 1.0:

Title
Author

PNG 711

PNG (cont'd)

Description
Copyright
Creation Time
Software
Disclaimer
Warning
Source
Comment

Additional keywords can be defined though public registration or can be
invented by individual applications.

Image Last-Modification Time chunk
The Image Last-Modification Time chunk stores the time the image was last
modified (rather than the time the image was first created). The format of this
chunk's data is as follows:

typedef struct tiMEChunkEntry
{

WORD Year; /* Year value (such as 1996) */
BYTE Month; /* Month value (1-12) */
BYTE Day; /* Day value (1-31) */
BYTE Hour; /* Hour value (0-23) */
BYTE Minute; /* Minute value (0-59) */
BYTE Second; /* Second value (0-60) */

} TIMECHUNKENTRY;

Transparency chunk
The Transparency chunk stores a transparency value (key color) for a PNG
image that does not contain associated alpha-channel data. Truecolor and
gray-scale pixel values that match the transparency color are to be considered
transparent (alpha value ofO), and all other pixels are regarded as opaque.

Indexed color images store an array of alpha values, up to one per element in
the palette. These transparency values are treated as full alpha values. Any
palette entries that do not have a corresponding transparency value are consid
ered to have a default value of255 (fully opaque).

There are three possible formats of the data in this chunk, depending on the
format of the image data, as indicated by the ColorType field in the IHDR
chunk:

712 GRAPHICS FILE FORMATS

/* Gray-scale (ColorType 0) image data */
typedef struct _tRNSChunkEntry
{

WORD TransparencyValue;
TRNSCHUNKENTRY;

/* Transparent color *I

/* Truecolor (ColorType 2) image data */
typedef struct _tRNSChunkEntry
(

PNG (cont'd)

WORD RedTransValue;
WORD GreenTransValue;
WORD BlueTransValue;

/* Red sample of transparent color */
I* Green sample of transparent color */
I* Blue sample of transparent color *I

TRNSCHUNKENTRY;

I* Indexed-color (ColorType 3) image data */
typedef struct _tRNSChunkEntry
{

BYTE TransparencyValues[]; /*Transparent colors*/
TRNSCHUNKENTRY;

Compressed Textual Data chunk
The Compressed Textual Data chunk is used to store a large block of textual
data in a compressed format. This chunk has the same format as the Textual
Data chunk, but the Text field contains data compressed using the Deflate
compression method used by PNG for compressing image data.

Image Data

PNG image data is laid out as a bitmap with scan lines running from left to
right and from top to bottom. Pixels are always packed into scan lines and do
not use any filler bits to maintain byte boundary alignment between pixels. Pix
els less than eight bits in size are packed into bytes with the leftmost pixel occu
pying the most significant bits of the byte.

Scan lines always begin on byte boundaries and must always be padded to end
on a byte boundary if necessary. Scan lines are also prepended with an extra
"filter type" byte used during image compression and decompression. This
extra byte indicates the type of filtering algorithm used to process the scan
line. This byte is always present, even if filtering is not used, and it is not con
sidered to be part of the actual image data.

Image data up to eight bits in depth may have its values mapped to a color
palette or may be stored direcdy in the bitmap data as gray-scale values. True
color pixels are always stored as three separate color samples, one each for red,
green, and blue. A fourth sample for alpha-channel data may also be included
with each truecolor pixel.

PNG 713

PNG (cont'd)

Gray-scale and indexed color bitmaps contain one sample per pixel and are
referred to as single-sample pixels. Every sample in an image is always the same
size. This size is called bit depth and is the number of bits in the sample. A sin
gle component may range from 1 to 16 bits in depth. For indexed color data
the bit depth indicates the maximum number of colors in the palette. PNG
does not specifically define, nor preclude, the use ofbi-level bitmaps.

Multi-sample pixels contain two or more samples per pixel. Samples in multi
sample pixels may either be 8 or 16 bits in depth, and all of the samples in a
pixel must be the same size. Multi-sample pixels may range from 16 to 64 bits
in depth.

For example, a typical gray-scale pixel contains a single 8-bit sample. A typical
24-bit RGB pixel contains three 8-bit samples, while a not-so-typical 64-bit RGBA
pixel would contain four, 16-bit samples. Note that both single and multi
sample pixels that have samples of bit depths other than 8 or 16 are required
to use a sample of the next greater size. For example, to store a 10-bit compo
nent, you would use a 16-bit sample. The unused bits in the sample are filled
either by setting to zero (not recommended for bit depths less than 8
bits/ sample, but for higher bit depths, zero-fill can significantly increase com
pression) or by linearly scaling the sample up to fill the range of possible val
ues (recommended). The PNG authors recommend a quick method of scaling
up by replication of the leftmost.significant bits of the sample.

Alpha Channel
Gray-scale and truecolor images ranging from 8 to 16 bits in depth may also
contain unassociated alpha-channel data called an alpha mask. If alpha mask
data is used, each truecolor or gray-scale pixel will hav~ an additional sample
that stores the alpha-channel value for that pixel. Indexed color images may
store alpha-channel data using the Transparency chunk.

An alpha value indicates the transparency level of that pixel. The minimum
value of the bit depth (always 0) indicates complete transparency, and the max
imum value for the bit depth indicates full opacity. If no alpha mask is stored,
the pixel is assumed to be fully opaque.

Interlacing
PNG image data is typically stored as a series of scan lines starting with the first
line at the top of the image and progressing sequentially to the last line at the

714 GRAPHICS FILE FORMATS

PNG (cont'd)

bottom of the image. PNG image data may also be stored in a specific interlace
pattern to allow a progressive display of the image data from a low resolution
to a full resolution display.

Progressive display is most useful when receiving a PNG file over a slow trans
mission link (like the one that connects your Web browser to the Internet).
The gradual "fade in" effect typically allows a user to discern the content of the
image before it has displayed in its entirety. This feature is very useful if the
image is a menu on a Web page or a picture that you don't wish to waste the
time downloading.

It is also a requirement that all PNG readers be able to interpret interlaced
image data, although PNG viewers need not support the ability to perform a
progressive display.

A typical interlace scheme, such as that used by GIF, simply rearranges the
order in which the scan lines are stored. For example, rather than storing lines
sequentially as 0, 1, 2, 3, 4, 5, 6, ... , an interlace scheme might store scan lines as
0, 8, 4, 9, 2, 10, 5, ... in the file. GIF uses this type of interlacing scheme and
stores (or transmits) image data in four passes of 1/8, 1/8, 1/4, and 1/2.

PNG takes a somewhat different approach by interlacing images using a 7-pass
scheme known as Adam7, after its inventor Adam M. Costello. Adam7 uses the
first six passes to build up all even-numbered scan lines (0, 2, 4, 6, ...) and the
final (seventh) pass to fill in the remaining odd-numbered scan lines (1, 3, 5,
7 ...) in the image.

Rather than containing the pixels for entire scan lines, the initial six passes
contain specific pixels of only every other scan line. The first two passes each
contain 1/64th of the pixels in the image. The third pass contains 1/32nd, the
fourth pass 1/16th, the fifth pass 1/8th, the sixth pass 1/4th, and the seventh
(final) pass 1/2 of the image data.

The image itself is built up on the display, first as 8x8 squares, then 4x8 rectan
gles, then 4x4 squares, then 2x4 rectangles, then 2x2 squares, and then 1x2
rectangles. The final pass fills in the pixels of the odd-numbered scan lines.

Adam7 interlacing allows the progressive buildup of pixels to appear much
more quickly on the display than it would if entire scan lines were displayed.
The pixels in the image are also displayed in a more dispersed pattern, allow
ing the human eye to discern the typical interlaced PNG image after only 20 to
30 percent of the image data has been received, compared with the 50 percent
or more needed from the GIF interlacing scheme.

PNG 715

PNG (cont'd)

Note, however, that PNG's interlacing method does trade off a bit of size for
speed. The GIF interlacing scheme simply rearranges the storage order of scan
lines, and does not have much impact on the storage space per scan line. In
the PNG scheme, each pass except the last carries non-adjacent pixels; for
example, pass 1 contains every 8th pixel from every 8th line.

On the average, there is less correlation between such pixels than there is
between adjacent pixels. This means that compression is less effective on the
interlaced data than it is on sequentially presented data, so the resulting file is
bigger. Typically, an interlaced file will be up to 10 percent larger than an
equivalent non-interlaced file. For most applications where interlacing is use
ful, this price is well worth paying in exchange for faster buildup of a useful
image.

Adam7 interlacing is performed using the filter pattern below. Uncompressed
PNG image data is interlaced by first reproducing this 8x8 map over the entire
bitmap. The image data is then scanned seven times, and the pixel values indi
cated by the map are read to determine what pixel values are stored or trans
mitted during each pass.

1 6 4 6 2 6 4 6

7 7 7 7 7 7 7 7

5 6 5 6 5 6 5 6

7 7 7 7 7 7 7 7

3 6 4 6 3 6 4 6

7 7 7 7 7 7 7 7

5 I 6 5 6 5 6 5 6

7 7 7 7 7 7 7 7

Data compression
PNG image data is always stored in a compressed format. Image data is com
pressed using a prediction of pixel values with differences compressed by a
variation of the Deflate compression method. Deflate was created by Phil Katz
and is used in the pkzip file archiving utility. This lossless compression method
is fast, well-documented, and freely available, and it is supported by a large
number of operating platforms.

716 GRAPHICS FILE FORMATS

PNG (cont'd)

Deflate is a variation of the LZ77 compression algorithm originally patented
(4,464,650) by Lempel, Ziv, Cohen, and Eastman in 1981. Deflate uses a vari
ably sized sliding window and sorted hash tables to identify data patterns and
compresses them using Huffman encoding. PNG uses a variation of Deflate
that does not use sorted hash tables, and is therefore not subject to any patent
claims or licensing agreements.

Image data may be optionally filtered before it is compressed. Filtering nor
malizes the byte values in a scan line, allowing the Deflate compression algo
rithm to be more effective and producing smaller compressed data.

All filtering algorithms are applied to the bytes in a scan line rather than to the
pixels. Any alpha channel data present in the scan-line data is also filtered.
And because a single filtering algorithm may not be effective when applied to
an entire image, each scan line is filtered separately, and any or no filter may
be applied to any line.

Several types of predictive filters are defined for use on PNG image data. Filter
ing is applied to the data before it is compressed, and the reverse of the filter is
applied after the image data is decompressed, restoring the data to its original
values. All of the PNG filters are therefore completely reversible and lossless.

The Sub filter stores the difference between a byte value of the current pixel
and the value of the same byte in the previous pixel (the predictor). This
method allows the same samples across multi-sample pixels to always be differ
enced. This is the same predictor algo~thm used by the TIFF image file format.

The Up filter stores the difference between the byte in the current pixel and
the related byte in the same pixel of the previous scan line. The Average filter
stores the differences between the current pixel from the average of the pixels
just above and to the left.

The Paeth filter uses a linear function to compute a value. The closest match
ing left, up, or upper left byte value is used as the predictor.

ForFurtherlnfonnation
The complete PNG specification, special-purpose public chunks documenta
tion, PNG implementation toolkit, and sample PNG images are available on the
CD-ROM.

PNG 717

PNG (cont'd)

The current PNG specification can be found at the following Web page:

http: I I sunsite. unc. edu/boutell/png. html

and the following FTP sites:

ftp:/ /swrinde. nde.swri.edu/pub/png/documents/
ftp:/ /ftp. uu. net:/graphics/png/documents/

Your best Web source for PNG information and resources resides on Greg
Roelofs' PNG group's homepage:

http:/ /quest.jpl. nasa.gov/PNG/

Questions about PNG may be asked on the comp.graphics. mise newsgroup, or via
email to:

png-injo@uunet. uu. net

or directed to the principal author of the PNG specification:

Thomas Boutell
Email: boutell@boutell. com

PNG developers may join the PNG mailing list. Send email to png
injo@uunet. uu. net.

Other PNG mailing lists include:

png-list@dworkin.wustl.edu General PNG discussion
png-announce@dworkin.wustl.edu Announcements related to PNG
png-implement@dworkin. wustl.edu Implementation discussion

These lists contain a general discussion of PNG, announcements related to
PNG, and discussions regarding PNG implementation. To find out more about
the mailing list server, send email to majordomo@dworkin. wustl.edu with the word
"help" (and nothing else) in the message body.

The official PNG FTP archive is:

ftp:/ /ftp. uu. net/graphics/png/

A reference implementation in portable C of a PNG reader and writer is avail
able at:

ftp:/ /ftp. uu. net/graphics/png/src/

718 GRAPHICS FILE FORMATS

PNG (cont'd)

Test PNG images for your benchmarking pleasure are available from:

ftp:/ /ftp. uu. net/graphics/png/images/

PNG materials, including a mirror of everything in Jtp:/ /ftp. uu. net/graphics/png/
can also be found at:

ftp:/ /swrinde. nde.swri.edu/pub/png/

All programs on this site are in beta test and should be used carefully. In the
case of questionable implementation, the specification is to be considered cor
rect and the code in error.

Group 42 is the author of the UBPNG support library for developers using the
PNG file format. Their Web page contains a developer's section that includes
the UBPNG library, PNG format specification, Compression Library, and Image
Test Suite. A freeware version of this library is currently available. Group 42
may be reached at:

Group 42, Inc.
Voice: 800-520-0042
Voice: 513-831-3400
Email: injo@group4 2. com
WWW: http:/ /www.group42.com/

A good overview of PNG can be found in:

Crocker, Lee Daniel, "PNG: The Portable Network Graphic Format," Dr.
Dobb'sjournal, vol. 20, no. 232,July 1995, pp. 36-44.

The code for the above article is available at:

jtp:/ lftp. mv. com/pub/ ddj/ 1995 I 1195.07 /ptot.zip

A rather CompuServe-biased official press release is at:

http://www. compuseroe. com/new/news_rel/png2.html

PNG 719

IPOV
NAME:

ALSO KNOWN As:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

POV

POV-Ray, Persistence of Vision

Vector

Unlimited

None

Unlimited

Yes

ASCII

POV-Team

MS-DOS, Macintosh, Amiga, UNIX

POV-Ray

Yes

No

No

TGA, GIF

usAGE: POV is a scene-description language used to mathematically represent
image data that is rendered by the POV-Ray ray tracing engine.

coMMENTs: One of the few formats described in this book that is created entirely by
the human hand.

Overview
The POV (Persistence of Vision) format is used to store the scene description
language used by the POV-Ray (Persistence of Vision Raytracer) software pack
age. This format is very similar to other vector-based animation and ray tracing
formats.

POV-Ray is capable of creating photorealistic, 3D images using a graphical ren
dering technique called ray tracing. Simple shapes, textures, lights, and prop
erties are available to render images. POV-Ray also supports many advanced ray
tracing features, such as Bezier patches, blobs, height-fields, and bump and
material mapping.

Images are created by a POV-Ray user writing mathematical code in an editor
and rendering the image using the ray-tracing engine. POV-Ray then writes out

720 GRAPHICS FILE FORMATS

POV (cont'd)

the rendered image to a file using either the TGA (24-bit) or GIF (8-bit) raster
file formats.

Because the process of creating a POV-Ray image is similar to the way in which
a programmer writes and compiles code (rather than the way in which an artist
uses a paint program), POV scene-description files are more akin to source
code files than to typical graphics format files.

The information stored in a POV language file is a set of descriptions of the
scenes in the rendered image. The POV scene description language may there
fore be thought of as a PostScript-like page description language for ray-traced
images.

File Organization
POV scene files contain three types of elements: camera, object, and light
source. A camera is the angle of the view into the image. Different perspectives
of the scene may be rendered by changing the angle of the camera view and
the position of the camera within the image. An object is a visible shape that can
be seen in the rendering. A light source is an invisible object that illuminates the
visible objects in the scene. Each scene may have multiple objects and lights,
but only one camera.

Let's look at a minimal POV scene file and examine the elements:

II
II The canonical red ball on a green floor
II
camera

object

object

object

location <0 1 -2>
look_at <0 1 2>

sphere (<0 1 2> 1
texture { color red 1 phong 1

plane { <0 1 0> 0 }
texture { color green 1 } ·

light_source { <3 3 -3> color red 1 green 1 blue 1 }

In this example we see a camera and three objects: a sphere, a plane, and a
light source. The camera object contains two statements. The first, location,
indicates the position of the camera within the rendering. It is followed by a

POV 721

POV (cont'd)

parameter list containing the values of the X, Y, and Z coordinat~s of the physi
cal camera location with respect to the origin point at location 0 0 0. In the
example, the values 0, 1,-2 indicate that the camera is centered horizontally (X
= 0), one unit up (Y = 1), and two units back (Z = -2) from the origin.

The second statement, look_at, specifies the direction the camera is pointing
and the point of its focus. These points are also described using 3-dimensional
coordinate values. In the example, the values 0, 1, 2 indicate that the camera is
looking foiWard (X = 0), one unit up (Y = 1), and focused at a point two units
in front of it (Z = 2).

The first object in the scene is the sphere. Being a visible object, this object
contains a shape description and a material description. The shape description
is a sphere statement, indicating the position of the sphere in the scene and the
size of the radius. In the example, the sphere is located at the coordinates 0, 1,
2 and has a radius of 1 unit. The material description is a texture statement
specifying that the sphere is red in color and has a phong highlighting inten
sity value of 1.

The next object is the plane. The plane statement defines a plane with its sur
face normal along theY axis and offset 0 units from the Y axis. The texture state
ment indicates that the plane is green in color.

The last object is the light source object. The parameters of the light_source
statement indicate the position of the (omnidirectional) light source and its
color (white).

As you can see, objects and cameras are written using code similar to that used
in many computer languages. Each statement begins with a keyword and is fol
lowed by a function body with zero or more values or statements enclosed in
braces. For example:

sphere { <0 1 0> -4 }
box { <-2 -4 -3.5> <2.5 5.0 2.5> }
color_map { [0.0 0.2 color red 11 [0.2 0.4 color red .5] }
camera { location <0,0,0> look_at <0 1 2> }

In this example, the sphere object has a body containing two values, a vector
coordinate parameter list and a floating-point value. The body of the box
object contains two parameter lists. The color map body contains a two
element array. The camera object contains two statements, each statement in
tum containing a parameter list.

There are many objects supported by the POV scene-description language and
they are fully detailed in the POV documentation.

722 GRAPHICS FILE FORMATS

POV (cont'd)

File Details
POV files are normal ASCII text and do not contain a header or any binary
information. Text information in a POV file is case-sensitive. Lowercase words
are reserved language keywords. Uppercase words are used for naming data
constructs. A single character in double quotes is a literal character.

Comments in POV files use with the Standard C comment tokens /* *I or the
C++ comment token I I. The Standard C tokens may be nested. Data m:ay be
inserted into a POV file using the #include declaration, as follows:

#include afilename.inc.n

POV include files normally have the extension ".inc" and contain information
that is shared between multiple POV renderings.

One nice feature of POV is the ability to pre-define a set of data that is used
repeatedly, similar to the type definition (typedej) feature found in the C lan
guage.

Predefinition is accomplished using the #declare keyword. In this example, we
declare·a texture with color parameters values for white:

texture { color red 1 green 1 blue 1 }

We can predefine the color white for visual clarity in meaning and for later
reuse in the file:

#declare WHITE = color red 1 green 1 blue 1
texture { color WHITE }

ForFurtherhdonnation
For further information about the POV format, see the specification included
on the CD-ROM that accompanies this book. Information about the POV-Ray
description language can be found in the POV-Ray package itself. Versions of
POV-Ray for MS-DOS, UNIX, Apple Macintosh, Commodore Amiga, and other
computers are available from CompuServe, America Online, the Internet, and
manyBBSs.

See these POV-Ray sites:

ftp:/ I alfred. ccs. carleton. cal
http:/ /www.povray.org/
jtp:/ /ftp.povray.org/

POV 723

POV (cont'd)

The Waite Group has published an excellent book on ray tracing on the PC
using POV-Ray. This book comes with the POV-Ray tracing software for the PC
with many scenes and objects and also contains a nice introduction to the art
and concepts of ray tracing. See the following:

Wells, Drew and Young, Chris, Ray Tracing Creations: Generate 3D PhottrRealistic
Images on the PC, Waite Group Press, Corte Madera, CA. 1993.

If you have questions about POV-Ray, you can contact:

Chris Young
POV-Ray Team Coordinator
Email: 76702.1655@compuserve.com

724 GRAPHICS FILE FORMATS

NAME:

ALSO KNOWN As:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

Presentation Manager Metafile I
Presentation Manager Metafile

MET

Metafile

Unlimited

RLE

NA

Yes

Little-en dian

Microsoft Corp., ffiM

OS/2

Various under OS/2 Presentation Manager

Yes

No

No

Microsoft Wmdows Metafile, OS/2 Bitmap

UsAGE: Storage and transport of graphics information associated with the OS/2
Presentation Manager GUI. Seldom found ouside the OS/2 environment.

coMMENTs: A complex format mainly consisting of aliased calls to Presentation Man
ager supporting libraries. Difficult to support outside of that environment.

Overview
Presentation Manager Metafile (MET) files are used to store vector- and
bitmap-format image data in memory or in disk files, for later playback to an
output device. Although the Presentation Manager Metafile format is specific
to IBM's Presentation Manager for OS/2, many third-party applications support
this format as a method for interchanging data between applications under
OS/2. Because of the confusion in the market engendered by the IBM
Microsoft split, and the subsequent increase in the installed base of Microsoft
Windows, Presentation Manager Metafile has found little support in the larger
market, even though the OS/2 installed base is substantial.

PRESENTATION MANAGER METAFILE 725

Presentation Manager Metafile (cont'd)

File Organization
Presentation Manager Metafiles consist of a sequence of what IBM calls struc
tured fields, which are followed by the actual data. Structured fields and the
associated data are organized into one or more functional components, which
are large blocks of data-documents, for instance, or complex graphics
objects. These functional components are delimited by "begin-component"
and "end-component" structured fields.

File Details
Structured fields start with the following header:

typedef struct _MetHeader
{

CHAR Length[2];
CHAR ID[3];
BYTE Flags;
CHAR SegSeqNum[3];

} MetHeader;

Length is the length of the field, in bytes.

ID is a field identifier.

Flags contains Boolean information related to the disposition of the field by
the rendering application. Currently this is always 0.

SegSeqNum contains what IBM calls a segment sequence number. Again, this is
currently always 0.

Following the header structure, which is common to all structured fields, is
information that IBM calls positional information. This information extends
the header; its exact nature depends on the actual structured field. Following
these positional fields are what IBM calls triplets, which consist of a short
header of the following form:

typedef struct _Triplet
{

BYTE Length;
BYTE ID;

} Triplet;

Length is the length in bytes of the triplet header and the following data.

726 GRAPHICS FILE FORMATS

Presentation Manager Metafile (cont'd)

ID contains a value identifying the triplet.

Following this header is the actual data associated with the triplet. The bulk of
the data found in the metafile is located here.

Structured fields defined in the documentation are listed below.

Field Name Field ID Parameters
Begin Document D3A8A8 10 bytes
Begin Resource Group D3A8C6 08 bytes
Begin Color Attribute D3A877 08 bytes
Color Attribute Table D3B077 03 bytes
End Color Attribute Table D3A977 08 bytes
Begin Image Object D3A8FB 08 bytes
Begin Resource Group D3A8C6 08 bytes
End Resource Group D3A9C6 08 bytes
Begin Object Environment Group D3A8C7 08 bytes
Map Color Attribute Table D3AB77 02 bytes
Image Data Descriptor D3A6FB 09 bytes
Image Picture Data D3EEFB (varies)
End Image Object D3A9FB 08 bytes
Begin Graphics Object D3A8BB 08 bytes
Map Coded Font D3AB8A 02 bytes
Map Data Resource D3ABC3 02 bytes
End Object Environment Group D3A9C7 08 bytes
End Graphics Object D3A9BB 08 bytes
End Resource Group D3A9C6 08 bytes
End Document D3A9A8 08 bytes

Perhaps the most common structured field is the Graphics Data
Descriptor, which contains the actual graphics data:

Graphics Data Descriptor D3A6BB

'Iiiplets
3
0
0
(varies)
0
0
0
0
0
2
0
(varies)
0
0
3
2
0
0
0
0

Parameter information associated with the Graphics Data Descriptor provides
an elaborate description of the following data, which takes the place of what
might be encoded in another format as a long, complex header. Its length
varies, but it may be several hundred bytes long. Please see the specification
included on the CD-ROM for details and further information. (Note that the
document appears to contain an incomplete list of the structured fields likely
to be found in a Presentation Manager Metafile.)

PRESENTATION MANAGER METAFILE 727

Presentation Manager Meta,jile (cont'd)

ForFurtherhUonnation
For further information about the Presentation Manager Metafile format, see
the specification included on the CD-ROM that accompanies this book.

Presentation Manager Metafile is also documented in the following
IBM publication:

IBM Corporation, OS/2 2. 0 Technical Lillrary Presentation Manager Pr~
gramming Reference Volume III, Part Number 1 OG62 7.

Relevant information is contained in Appendixes D, G, and F of the IBM publi
cation. This document is available for purchase through your local IBM dealer
or salesperson.

Support responsibility for OS/2 is now solely in the hands of IBM. For informa
tion, contact:

IBM Corporation
Attn: Independent Vendor League
150 Kettletown Road
Southbury, CT 06488
Voice: 203-266-2000
WWW: http:/ /www.ibm.com/

OS/2 and the Presentation Manager Metafile format originated at Microsoft,
and some documentation is still available there. You may be able to get some
information by contacting:

Microsoft Corporation
One Microsoft Way
Redmond, WA 98052-6399
Voice: 206-882-8080
Voice: 800-426-9400
FAX: 206-883-8101
WWW: http:/ /www.microsoft.com/

Also see the following resources:

http:/ /axion.physics. ubc.ca/os2/os2.html
OS/2 Resource listing

ftp:/ /ftp-os2. cdrom. com/
OS/2 Archive at Walnut Creek CD-ROM

728 GRAPHICS FILE FORMATS

Presentation Manager Metafile (cont'd)

You might also be able to find some helpful information at the OS/2 shareware
BBS:

Voice: 703-385-0201
BBS: 703-385-4325
WWW: http:/ /www.os2bbs. com/
Telnet: bbs.os2bbs.com

PRESENTATION MANAGER METAFILE 729

IPRT
NAME:

ALSO KNOWN AS:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLIC~TIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

PRT

Parallel Ray Trace

Scene description

NA

Uncompressed

NA

NA

NA

KoryHamzeh

All

PRT ray trace application, others

Yes

No

No

NFF, POV, QRT, Radiance

usAGE: Description of 3D scenes for ray-tracing or other rendering applications.

coMMENTs: A simple ray tracing format, notable because it is one of the few formats
designed to support parallel processing.

Overview
PRT (Parallel Ray Trace) is the format associated with the PRT ray-tracing appli
cation created by Kory Hamzeh. It is apparently based loosely on Eric Haines'
Neutral File Format (NFF). Its main distinguishing characteristic is that the
PRT application was designed to support parallel rendering, that is, rendering
by a number of machines at once, over a network.

File Organization
Other than the fact that PRT files consist of a number of ASCII lines, there is lit
tle mandatory structure. Lines consist of keywords and parameters.

730 GRAPHICS FILE FORMATS

The following keywords may be found in a PRT file:

from
at
up
angle
resolution
light
background
surface
cone
sphere
hsphere
polygon
ring
quadric
instance
end_instance
instance_ of

Each file must start with the following:

from ig ig ig
at tg ig ig
up ig ig ig
angle ig
resolution id id

The parameters are listed below:

from
at
up

Eye location in xyz world coordinates
Center of the image, in XYZ world coordinates
Vector indicating which direction is up
Angle of image in degrees

PKI' (cont'd)

angle
resolution Resolution in pixels in both the x andy directions

File Details
The following information is extracted from the documentation supplied by
Kory Hamzeh, the creator of PRT, and explains the keywords listed above:

PRT 731

PRT (cont'd)

Light Sources

A light source is defined as follows:

lightXYZ

Format:

light ig ig ig

This keyword defines the position of the light sources. All light sources must be
defined before any objects are defined.

Background Color

A background color is defined as follows:

background R G By

Format:

background ig ig ig y

The background color is in RGB. The last field is used for color cueing (not yet
implemented) and must always be 'y'.

Surface Properties

A surface property is defined as follows:

surface Rr Rg Rb Ks Fr Fg Fb T Ar Ag Ab Dr Dg Db Sr Sg Sb P lor

Format:

surface ig ig ig ig ig %g ig ig ig ig ig %g %g %g ig ig ig ig %g

Parameters are:

Rr Rg Rb The reflective color triplet. This value should always be 1 1 1
(unless you want this surface to reflect a different percentage per
color component).

Ks The specular component. This value is the percentage of light that
is reflected from this object. A value of 0 means no reflection, and
a value of 1 means a perfect reflector (mirror).

Fr Fg Fb The refractive color triplet. This value should always be 1 1 1
(unless you want this surface to refract a different percentage per
color component).

732 GRAPHICS FILE FORMATS

Pia' (cont'd)

T Transparency value. The amount of light that can go through this
object; a value of 0 means a totally opaque object. A value of 1
means a totally transparent object.

Ar Ag Ab The ambient color for this object; this means the color of an object
if it were fully shadowed. All objects are assigned this color before
any shading algorithm is started.

Dr Dg Db The diffuse color component

Sr Sg Sb This value is the color of the specular highlights. Usually, it should
be 11 1.

P The Phong cosine power for highlights. The higher the number
(for example 100), the smaller the highlight.

lor Index of refraction

Cylinder or Cone

A cylinder or cone is defined as follows:

cone
base.x base.y base.z base_radius
apex.x apex.y apex.z apex_radius

Format:

cone
tg tg tg tg
tg tg tg tg

sphere

A sphere is defined as follows:

sphere center.x center.y center.z radius

Format:

sphere tg tg tg tg

Hollow sphere

A hollow sphere is defined as follows:

sphere center.x center.y center.z radius thickness

PRT 733

PKI' (cont'd)

Format:

sphere ig ig ig ig ig

Polygon

A polygon is defined as follows:

polygon total_ vertices
vertl.x vertl.y vertl.z
[etc. for total_ vertices vertices]

A polygon is defined by a set of vertices. With these databases, a polygon is
defined to have all points coplanar. A polygon has only one side, with the
order of the vertices being counterclockwise as you face the polygon (right
handed coordinate system). The first two edges must form a non-zero convex
angle, so that the normal and side visibility can be determined.

Format:

polygon id
[ig ig ig J +- for total_vertices vertices

Ring

A ring is defined as follows:

ring center.x center.y center.z pl.x pl.y pl.z p2.x p2.y p2.z or ir

A ring is a flat coplanar round-shaped object. For a ring object, you must spec
ify the following: center, two points on the surface of the ring, the inner radius,
and the outer radius. If the inner radius is non-zero, then the ring has a hole
in the middle with the given radius.

Format:

ring ig ig ig ig ig ig ig ig %g ig ig

Qpadmtic

A quadratic is defined as follows:

quadric center.x center.y center.Z
min.x min.y min.z max.x max.y max.z
abc de
fg h ij

734 GRAPHICS FILE FORMATS

PRT (cunt'd)

You can ray trace any quadratic object by specifying the center, minimum, max
imum, and coefficients. This is a very powerful object type. It can do ellipsoids,
hyperbolas, and any other quadratic surface.

In the model shown above, the fields "a" through 'T' are the coefficients.

Format:

quadric ig ig ig
ig ig ig ig ig ig
ig ig ig ig ig
ig ig ig ig ig

Object Instances

You may define a group of objects (and surface properties) to an instance and
assign a name to that instance. When the instance is used, all the objects in
that instance are placed relative to the given origin. Note that instances by
themselves do not create any objects; the objects are created when the instance
is referenced. Instances cannot be nested.

An instance is defined as follows:

instance nameofthisinstance
[objects and surface properties J

end_instance

where nameofthisinstance is a user-assigned name such as, for example,
tile_pattern.

An instance is referenced as follows:

instance_of nameofinstance loc.x loc.y loc.z

where nameojinstance is the name assigned to a previously defined object
instance, and loc.x, loc.y, loc.z represent the location of this object group.

For Further Information
For further information about the PRT format, see the specification included
on the CD-ROM that accompanies this book. You can also contact:

Kory Hamzeh I Avatar
6217 Melba Avenue
Woodland Hills, CA 91367
Email: kory@avatar.com

PRT 735

IQRT
NAME:

ALSO KNOWN AS:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

QRT

Quick Ray Trace

Scene description

NA

U ncompressed

NA

NA

NA

Steve Koren

All

QRT ray-tracing application, others

Yes

Yes

No

NFF, POV, PRT, Radiance

usAGE: Description of 3D scenes for ray tracing or .other rendering applications.

coMMENTs: A solid scene description format similar to other ray-tracing formats
described in this book. It is not used much today.

Overview
QRT (Quick Ray Trace) is associated with the QRT ray-tracing application cre
ated by Steve Koren. As such, it implements the QRT scene-description lan
guage. Each QRT file consists of a number of ASCII lines, which define objects
in the QRT system, and operations which can be performed by QRT.

File Organization
QRT files consist of a number of ASCII lines consisting of keywords. Like most
ray-trace formats, it was designed to be human-readable and to be composed
and altered with standard text-editing tools. Keywords may appear in any order
in the file. Parameters associated with each keyword may appear in any order,
provided that there is no ambiguity.

736 GRAPHICS FILE FORMATS

QRT (cont'd)

Elements in the file may be floating-point vectors, color value triples, integers,
floating-point numbers, and text strings.

QRT is a prototype of many current scene-format and 3D files. Please consult
the documentation on the CD-ROM for more information about usage conven
tions.

File Details
The following is a list of QRT keywords. Each keyword may be followed by one
or more parameters, and may or may not be required. Following the list of key
words is an explanation of the parameters.

SKY
QUADRATIC
GROUND
PATTERN
FOC_LENGTH
RECTANGLE
LAST_SCAN
CIRCLE

SKY

FILE_NAME
POLYGON
OBSERVER
BEGIN_BBOX
FIRST_SCAN
END_BBOX
LAMP
BEGIN_INST~CES

Type: optional

Parameters: zenith = (r, g, b)
horiz = (r, g, b)
dither= x

SPHERE
END_INSTANCES
PARALLELOGRAM
INSTANCE_ OF
TRIANGLE
DEFAULT
RING

Example: SKY (hori z = (0, 0, . 5) , zenith = (. 5, 0, 0) ,
dither = 3)

QUADRATIC
Type:

Parameters:

optional

loc = (x,y,z) (required)
a = floating-point (required)
b =floating-point (required)
c =floating-point (required)
d =floating-point (required)
xmax = floating-point (required)
xmin =floating-point (required)

QRT 737

QRT (cont'd)

PATIERN

Example:

Notes:

ymax = floating-point (required)
ymin =floating-point (required)
zmax =floating-point (required)
zmin =floating-point (required)
name = string
pattern = string
remove = string
amb = (r,g,b)
diff = (r,g,b)
trans = (r,g,b)
density= (r,g,b)
mirror = (r,g,b)
fuzz = integer
index = positive float
dither = integer
sreflect = positive float
reflect = positive float

QUADRATIC (1oc = (10 110 110)1 a= 11 b = 01 c = 1 1
d = 100))

Synonyms for loc are location, pos, and position.
parameters a, b, c, and d are coefficients in a
quadratic equation defining a surface. See the doc
umentation on the CD-ROM for more information.

Type: optional

Parameters: name= string (required)
x_size =positive float (required)
y_size =positive float (required)
CIRCLE= circle_def
RECTANGLE = rect_def
POLYGON= poly_def

Example: PATTERN (x_size = 12 I y_size = 12 I name = TEST)

Notes: CIRCLE, RECTANGLE, and POLYGON definitions
are the same as with normal keyword syntax.

738 GRAPHICS FILE FORMATS

QKI (cont'd)

FOC_LENGTH
Type: optional

Parameters: focal_length (integer)

Example: Foc_LENGTH = Go

RECTANGLE

LAST_SCAN

CIRCLE

Type: optional

Parameters: start_x =positive float (required)
start_y =positive float (required)
end_x =positive float (required)
end_y =positive float (required)
amb = (r,g,b)
diff = (r,g,b)
trans = (r,g,b)
density= (r,g,b)
mirror= (r,g,b)
fuzz = integer
index= positive float
dither = integer
sreflect =positive float
reflect= positive float

Example: RECTANGLE (start_x = 10 I start_y = 12 1 end_x = 15 1

end_y = 15)

Notes: RECTANGLE is used within a pattern definition
only.

Type: optional

Parameters: eliminated in QRT v 1.5 and greater

Example: NA

Notes: Replaced by use of X_RES and V _RES.

Type: optional

Parameters: radius = positive float
amb = (r,g,b)

QRT 739

QRT (cont'd)

FILE_NAME

POLYGON

Example:

Notes:

diff = (r,g,b)
trans= (r,g,b)
density= (r,g,b)
mirror= (r,g,b)
fuzz = integer
index= positive float
dither= integer
sreflect =positive float
reflect= positive float

CIRCLE (radius = 5)

CIRCLE is used within a pattern definition only.

Type: required

Parameters: file_name (ASCII)

Example: FILE~ = IMAGE.RAW

Type: optional

Parameters: point!= (x,y) (required)
amb = (r,g,b)
diff = (r,g,b)
trans = (r,g,b)
density= (r,g,b)
mirror= (r,g,b)
fuzz = integer
index= positive float
dither = integer
sreflect = positive float
reflect= positive float

Example: POLYGON (point = (o I o) I point = (8 I o) I

point= (018)1 point= (010))

Notes: POLYGON is used within a pattern definition only.
There must be at least four point parameters speci
fied in ~e parameter list, with the first and last
points being the same.

740 GRAPHICS FILE FORMATS

OBSERVER
Type: required

Parameters: loc = (x,y,z) (required)
lookat = (x,y,z) (required)
up= (x,y,z)

QKI' (cont'd)

Example: OBSERVER (loc = (0,0,0), lookat = (90, O, 0))

Notes: Observer cannot look up, lookat must be different
from loc, and up must be nonzero. Synonyms for
loc are pos, location, and position.

BEGIN_BBOX
Type: optional

FIRST_SCAN

END_BBOX

Parameters: name = string

Example: name = TEST_BOX
BEGIN_BBOX

SPHERE sphere definition here
TRIANGLE triangle definition here

END_BBOX

Notes: BEGIN_BBOX and END_BBOX always are used
togeth~r to define a block.

Type: optional

Parameters: eliminated in QRT v 1.5 and greater

Example: NA

Notes: Replaced by use of X_RES and V _RES.

Type: optional

Parameters: name= TEST_BOX

Example: See BEGIN_BBOX

Notes: END_BBOX is always paired with BEGIN_BBOX.

QRT 741

QRT (cont'd)

LAMP
Type: optional

Parameters: loc = (x,y,z) (required)

Example:

dist =positive float (required)
amb = (r,g,b)
radius = positive float

LAMP (loc = (10,20,30), dist = 123.5))

BEGIN_INSTANCES

SPHERE

Type: optional

Parameters: NA

Example:

Notes:

BEGIN_INSTANCES
NAME = object_1
BEGIN_BBOX

list or primdtives here
END_BBOX

NAME = object_2
BEGIN_BBOX

list or primitives here
END_BBOX

END_INSTANCES

Always paired with END_INSTANCES to define a
block.

Type: optional

Parameters: loc = (x,y,z) (required)
radius= x (floating-point) (required)
name = string
pattern = string
remove = string
amb = (r,g,b)
diff = (r,g,b)
trans= (r,g,b)
density= (r,g,b)
mirror= (r,g,b)
fuzz = a (integer)

742 GRAPHICS FILE FORMATS

Example:

END_INSTANCES

index= p (floating-point)
dither= a (integer)
sreflect = p (floating-point)
reflect= p (floating-point)

QRT (cont'd)

SPHERE (loc = (10,10,10), radius= 8.8,
diff=(l.O, .1, .1))

Type: optional

Parameters: NA

Example:

Notes:

PARALLELOGRAM
Type:

Parameters:

Example:

Notes:

See BEGIN_INSTANCES

Always paired with a BEGIN_INSTANCES state
ment to define a block.

optional

loc = (x,y,z) (required)
v 1 = (x,y,z) (required)
v2 = (x,y,z) (required)
name = string
pattern = string
remove = string
amb = (r,g,b)
diff = (r,g,b)
trans= (r,g,b)
density = (r,g,b)
mirror= (r,g,b)
fuzz = integer
index= floating-point
dither = integer
sreflect =floating-point
reflect = floating-point

PARALLELOGRAM (loc = (10,10,10), vl = (10,0,0),
v2 = (0,0,20))

Synonyms for loc are pos, location, and position.
For vl and v2 you can substitute vectl and vect2,
respectively.

QRT 743

QRT (cont'd)

INSTANCE_ OF
Type: optional

TRIANGLE·

Parameters: name= string (required)
loc = (x,y,z) (required)
scale = (x,y,z)

Example:

Notes:

INSTANCE_OF (name= object_1, loc = (10, 10, 20),
scale= .5, .4, .3))

See BEGIN_INSTANCES and END_INSTANCES
keywords.

Type: optional

Parameters: loc = (x,y,z) (required)
vl = {x,y,z) (required)
v2 = (x,y,z) (required)
name = string

Example:

Notes:

pattern = string
remove = string
amb = (r,g,b)
diff = (r,g,b)
trans = {r,g,b)
density = {r,g,b)
mirror= (r,g,b)
fuzz = integer
index = floating-point
dither= integer
sreflect = floating-point
reflect = floating-point

TRIANGLE (loc = (40,20,30), v1 = (8,4,2),
v2 = (0,0,10))

Synonyms for loc are pos, location, and position.
For vl and v2 you can substitute vectl and vect2,
respectively.

744 GRAPHICS FILE FORMATS

DEFAULT

RING

Type: optional

Parameters: no _shadow
threshold = positive float
x_res =positive float
y_res =positive float
aspect= positive float
amb = (r,g,b)
diff = (r,g,b)
trans= (r,g,b)
density= (r,g,b)
mirror= (r,g,b)
fuzz = integer
index = floating-point
dither = integer
sreflect =floating-point
reflect = floating-point

QRT (cont'd)

Example: DEFAULT (no_shadow, diff = (1, 0, l), aspect = .8)

Type: optional

Parameters: loc = {x,y,z) (required)
vl = (x,y,z) (required)
v2 = (x,y,z) (required)
rad_l = floating-point (required)
rad_2 =floating-point (required)
name = string
pattern = string
remove = string
amb = (r,g,b)
diff = (r,g,b)
trans= (r,g,b)
density = {r,g,b)
mirror = (r,g,b)
fuzz = integer
index= floating-point

QRT 745

QKI' (cont'd)

Example:

Notes:

dither = integer
sreflect = floating-point
reflect= floating-point

RING (loc = (10,10,10), v1 = (8,5,0), v2 = (0,0,10),
rad_1 = 10, rad_2 = 20)

Synonyms for loc are pos, location, and position.
For vl and v2 you can substitute vectl and vect2,
respectively. Note that rad_2 must be greater than
rad_l, and both must be greater than zero.

ForFurtherhdonnarion
Although the author, Steve Koren, says that QRT is obsolete and has been for
some time, we find that the QRT distribution is still widely available via FfP
from various sites. It is also downloaded with some regularity from the major
PC BBSs.

For further information about the QRT file format, see the QRT specification
included on the CD-ROM that accompanies this book, and the QKI' Language
Reference found in the QRT distribution. You can also contact:

Steve Koren
Email: koren®hpfcogv.fc. hp. com

746 GRAPHICS FILE FORMATS

QuickTime I
NAME: QuickTime

ALso KNowN As: QTM, QuickTime Movie Resource Format

TvPE: Audio/video data storage

coLoRs: Up to 24 bits

coMPREssioN: RLE,]PEG, others

MAXIMUM IMAGE SIZE: 64Kx64K pixelS

MuLTIPLE IMAGEs PER FILE: Yes

NUMERICAL FORMAT: Little-endian

ORIGINAToR: Apple Computer

PLATFoRM: Apple Macintosh, Microsoft Wmdows

suPPoRTING APPLicATioNs: QuickTime, QuickTime for Wmdows, others

SPECIFICATioN oN cD: Yes

cooE oN cD: No

IMAGEs oN cD: No

SEE ALSO: JPEG, MPEG, RIFF

usAGE: Storage and interchange of time-based information under the Macintosh
and Microsoft Windows environments.

coMMENTs: Currently the most widely used audio-video format, although it competes
with Microsoft's RIFF I AVI on Intel machines under Microsoft Wmdows.

Overview
QuickTime (sometimes called QTM) is the native method of storing audio and
motion video information on the Apple Macintosh platform. It is used to
record and play back multimedia information and store the data on magnetic
or optical media. In this sense, it is similar to multimedia data formats. Quick
Time, however, is not only a data-storage format. It is also a collection of tools
(the Movie Toolbox) that allows QuickTime movies to be modified (edit, cut,
copy, paste, and so on), just as a word processor is capable of modifying an
ordinary text file.

A QuickTime movie may be stored as a disk file or may be encoded on a DAT
or a CD-ROM. Playback of audio and video data is quick, and the audio and
video output at least matches the quality of a VCR-taped program.

QUICKTIME 747

Q!.t,ickTime (cont'd)

The QuickTime format allows the storage of multiple tracks of audio and video
data. Multiple audio tracks may be used to store the narration for a movie in
several different languages. Multiple video tracks may be used to change the
video output based on the user responses to an interactive multimedia applica
tion. QuickTime movies may also contain a preview, which is a five-second
sequence of audio and video data from the movie, and a poster, which is a sin
gle frame displayed from the movie data. Both previews and posters are used to
quickly identify a movie and its contents.

QuickTime movies are normally structured for the Macintosh environment.
However, it is possible to store QuickTime movies in an interchange format,
which allows time-based information· to be exchanged between the Macintosh
and other platforms. This ability allows many multimedia applications that run
under non-Macintosh environments, such as Microsoft Windows, the capability
of recording and playing back QuickTime movies.

The Movie Toolbox defines six different compression methods that may be
used in a QuickTime movie. All of the compression methods used, except for
JPEG Qoint Photographic Experts Group, described in Chapter 9, Data Com
pression), are proprietary to Apple Computer and are mentioned only briefly
below.

• The Photo Compressor uses the JPEG compression method to compress
single-frame images. Continuous-tone images with a pixel depth of eight to
24 bits compressed are the optimal source images for the photo compres
sor.

• The Video Compressor is a lossy, motion-video compression method, which
uses both spatial and temporal compression techniques and has a very fast
decompression time. The video compressor is for use with 24-bit, continu
ous-tone video images.

• The Compact Video Compressor is a lossy, motion-video compression
method which is for use with 16- and 24-bit continuous-tone video images.
The Compact Video Compressor offers higher image quality, greater com
pression ratios, and a faster playback speed than is possible when using the
Video Compressor, but it requires much more time to perform the initial
compression of the video information.

748 GRAPHICS FILE FORMATS

QpickTime (cont'd)

• The Animation Compressor uses a motion-video compression method to
compress computer-generated and animation sequences. This compressor
uses a run-length algorithm which operates on images of any pixel depth
and may be selected to perform lossy or lossless compression. The lossy
option offers greater data compression ratios at the expense of image qual
ity. This compressor produces high compression ratios at the expense of a
slower decompression speed.

• The Graphics Compressor employs a compression algorithm that is used to
encode 8-bit still images and image sequences. This compressor produces
lower- compression ratios, but is able to decompress the image data very
quickly. This method is used to encode sequences that will be stored on
slower devices, such as CO-ROMs.

• The Raw Compressor is simply a conversion program that increases (pads)
or reduces (decimates) the number of hits in a pixel. A 32-bit image is
reduced to a 24-bit image by stripping off the alpha channel bits. A 16-bit
image is decimated to an 8-bit image by throwing away the eight least sig
nificant bits of each pixel. A 4-bit image is padded out to an 8-bit image by
adding four bits to each pixel. The Raw Compressor is used most for pre
processing image data to an appropriate pixel depth before it is encoded
by another compressor.

Audio data in QuickTime movie files is digitally encoded into 8-bit samples. A
sample is an amplitude value represented by the signed integer range of -128
to 127, with 0 representing silence (two's-complement sound encoding), or an
unsigned integer range of 0 to 255, with 128 representing silence (offset-binary
sound encoding). Samples stored using the Audio Interchange File Format
(AIFF) use the two's-complement encoding method, while samples stored
directly in a movie's sound media resource are offset-binary encoded.

The following sections describe only the basic format of the QuickTime movie
file. For a complete explanation of the QuickTime file architecture, refer to
the Inside Macintosh series, specifically the sections which describe QuickTime
and the Movie Toolbox, or the QuickTime Developer Kit reference manuals
and CD-ROM.

File Organization
A QuickTime movie is called a movie resource. In the Macintosh environment
it is not necessary to know the internal arrangement of a movie resource. All of
the functions available in the Movie Toolbox handle the reading, writing, and

QUICKTIME 749

QpickTime (cont'd)

interpretation of the movie data for the programmer. In non-Macintosh envi
ronments that do not have an emulation of the Macintosh Movie Toolbox,
functions must be written to read the movie resources directory, and the inter
nal arrangement of the resources must therefore be known. This is necessary
so non-Macintosh platforms may create and play back QuickTime movies.

In the Macintosh environment, QuickTime movies are normally stored in both
the resource fork and the data fork of a file. The resource fork contains infor
mation about the QuickTime movie data. The data fork contains either the
actual movie data or a reference to where the data is located.

A second type of QuickTime movie file, called the single-fork movie file, stores
all of the movie data in the data fork, and the resource fork is left empty. This
interchange format is used when the movie file will be transported to a non
Macintosh system. When most Macintosh files are moved to a non-Macintosh
system, such as M8-DOS or UNIX, the useful information is mostly found in the
data fork, and the resource fork information is discarded. When non
Macintosh files are transported to the Macintosh, a resource fork is either cre
ated for the file or the resource fork is simply left empty.

In the Macintosh environment movie files have the file type 'moov'. In non
Macintosh environments, movie files usually have the extension .QTM.

File Details
The basic data structure in a move file is called an atom. Each atom is a specific
collection of data similar to a "chunk" found in the IFF and Microsoft RIFF file
formats. The basic format of the atom is shown here:

typedef struct _Atom
{

DWORD Size;
DWORD Type;
ATOM Atom;
DATA Data;

} ATOM;

I* Size of the atom in bytes */
I* Atom type identifier */
I* One or more atom structures */
I* One or more pieces of data contained with

this atom *l

Size indicates the size of the at0m in bytes, including the Size and Type fields.

Type specifies the type and format of data that is stored in the atom.

Atom identifiers are always 4-character ASCll values.

750 GRAPHICS FILE ,FORMATS

QpickTime (cont'd)

An atom is the actual movie structure. Two varieties of atoms are defined for
use in QuickTime movies: the container atom and the leaf atom. Container
atoms may contain other atoms, including other container atoms. A leaf atom
contains only data and no other atoms.

Two atom types are found in every data fork of a movie file. The first is the
movie data atom which has the type identifier mdat. This atom contains the
actual movie data. The second is the movie resource atom, which has the type
identifier moov. This atom always follows the movie data atom and contains the
description of the movie file. Other atoms may follow the movie resource
atom, but only the mdat and moov atoms are required to occur in every movie
file.

The movie resource atom is actually a directory of all of the information found
in the movie and is the closest thing to a header that you will find in a Quick
Time movie file. The resource atom contains the following:

• Movie header atom (mvhd)

• Clipping atom (clip)

• One or more track atoms (trak)

• User-defined data (udta)

The clipping and track atoms can, in tum, contain a number of different types
of atoms.

Each data stream in a movie file is stored in a track atom. There is one track
atom per data stream stored in the movie file. A movie which contains a single
audio and video data stream therefore contains two track atoms. Each track
atom contains a track header and a media atom, which describes the actual
stream data.

Using a C syntax-like notation, you can see the nested structure of atoms within
a QuickTime movie file:

struct -"ovieDirectory
{

struct -"ovieHeaderAtom;
struct _ClippingAtom
{

struct _ClippingRegionAtom;

struct _TrackDirectory
{

struct _TrackHeaderAtom;
struct _ClippingAtom

QUICKTIME 751

Q}lickTime (cont'd)

struct _ClippingRegionAtom;

struct _EditsAtom
{

struct _EditListAtom;

struct ~ediaDirectory
{

struct ~ediaHeaderAtom;
struct ~ediaHandlerAtom;
struct ~ediainfoAtom;
(

struct _VideoMediainfoAtom
(

}

struct _SoundMediainfoAtom
(

struct _SoundMediainfoHeaderAtom
(

struct _SoundMediainfoHeaderAtom;
}

struct _HandlerAtom;
struct _DataReferenceAtom;
struct _SampleTableAtom;

struct _UserDataAtom;

struct _UserDataAtom
{

struct _MoviesUserData
{

}

This schematic of a Quick Time movie file shows the atoms nested down only to
five levels. There are several more levels and dozens of additional atoms not
shown here. In this article, we discuss only the main atom types-the movie,
track, and media atoms and their respective header atoms. For information on
all other atoms, see the references listed in the section called "Movie Resource
Atom."

As stated, the movie resource atom is really a directory containing all the infor
mation about the movie except for the movie data itself. The movie resource
atom has the following structure:

752 GRAPHICS FILE FORMATS

QpickTime (cont'd)

typedef struct _MovieDirectory
{

LONG AtomSize; I* Size~of this atom in bytes */
LONG AtomType; I* Type of atom ('moov') */
MOVIEHEADERATOM MovieHeader; /* Movie header atom for this atom */
CLIPPINGATOM MovieClip; /* Clipping atom for this atom */
TRACKDIRECTORY Track[]; /*One or more track atoms*/
USERDATAATOM UserData; /* User Definable Extensions */

MOVIEDIRECTORY;

AtomSize is the size in bytes of the atom.

AtomType is the type of atom.

MovieHeader is an atom containing global information about the MovieDirec
tory atom, the data it contains, and how the data is to be played back.

Movie Clip is an atom containing data pertaining to the visual appearance of
the movie.

Track is an atom containing an array for each track contained in the movie.
There is one track per data stream found in the movie file.

UserData is an atom containing information such as the movie's date of cre
ation, the copyright notice, and the names of the movie's director, producer,
writers, and so on.

MovieHeader Atom

The structure of the MovieHeader atom is the following:

typedef struct _MovieHeaderAtom
{

LONG AtomSize;
LONG AtomType;
LONG Flags;
LONG CreationTime;
LONG LastModifyTime;
LONG TimeScale;
LONG Duration;
DWORD DataRate;
SHORT Volume;
SHORT Reserved!;
LONG Reserved2;
LONG Reserved3;
DWORD Matrix[3] [3];

PreviewTime;

I* Size of this atom in bytes */
I* Type of atom ('mvhd') */
I* Atom version and flags */
/* Time/date atom was created */
I* Time/date atom was last modified */
I* Time scale used for this movie */
I* Duration of this movie */
I* Rate at which to play this movie */
I* Movie loudness */
I* Not used */
I* Not used */
/* Not used */

LONG
LONG
LONG
LONG

I* Transform matrix used by this movie */
I* Time in track the preview begins */

Duration of the movie preview */ PreviewDuration; I*
PosterTime;
SelectionTime;

/* Time in track the poster begins */
I* Time in track the current selection begins */

QUICKTIME 753

QpickTime (cont'd)

LONG SelectionDuration; /* Duration of the current selection */
LONG CurrentTime; /* Movie time the current selection begins */
LONG NextTrackiD; /* Next value to use for an track ID */

} MOVIEHEADERATOM;

AtomSize is the size of the atom in bytes.

AtomType is the type of atom.

The first byte of the Flags field indicates the version number of the movie
header atom. The remaining three bytes of the Flags field are not used and are
reserved for future use.

CreationTime holds the time and date stamp when the header atom was cre
ated. LastModifyTime indicates the time and date this atom was last modified.
On the Macintosh, these fields are a number representing the number of sec
onds that have occurred since midnight January 1, 1904 and the actual
time/ date represented by these fields.

TimeScale contains the number of units per second in the time coordinate sys
tem used by this movie. A TimeScale value of 100 indicates that a single unit of
time is 1/lOOth of a second in length.

Duration is the length of the movie in TimeScale units.

DataRate is the rate of data throughput necessary to properly play back the
movie.

Volume indicates the volume level at which to play the movie.

Reserved!, Reserved2, and Reserved3 are not used and are set to 0.

Matrix is a 2D array of integers used to transform one visual coordinate system
to another.

PreviewTime indicates where in the track the movie preview begins.

Preview Duration indicates the length of the preview.

PosterTime indicates where the movie poster occurs in the track.

Selection Time and SelectionDuration indicate the location and length of the
currently selected segment of the movie.

CurrentTime indicates the time at which the current selection appears within
the movie.

NextTrackiD is the track ID of the next occurring track in the movie.

754 GRAPHICS FILE FORMATS

QpickTime (ccmt'd)

TrackDirectory Atom

Each type of data stream in the movie file is represented by a TrackDirectory
atom. These 'trak' atoms are stored as an array in the moov atom and have the
following structure:

typedef struct _TrackDirectory
{

LONG AtomSize; I* Size of this atom in bytes */
LONG
TRACKHEADERATOM
CLIPPINGATOM
EDIT SA TOM
MEDIADIRECTORY
USERDATAATOM

TRACKDIRECTORY;

AtomType;
TrackHeader;
TrackClip;
Edits;
Media;
UserData;

I*
/*
/*'
I*
/*
I*

Type of atom ('trak') *I
Standard track information */
Clipping atom for this track*/
Edit atom for this track*/
Media atom for this track */
Additional data about this track*/

AtomSize is the size of the atom in bytes.

Atom Type is the type of atom.

TrackHeader contains information specific to this track atom only.

TrackClip is an atom containing data which specifies the spatial clipping
region for the track.

Edits is an atom specifing how to map the media data stored in the track.

Media is an atom containing information describing the actual media data rep
resented by this track.

UserData contains user-definable extension data.

Tracklleader Atom

The structure of the TrackHeader atom is the following:

struct _TrackHeaderAtom
{

LONG AtomSize;
LONG AtomType;
LONG Flags;
LONG CreationTime;
LONG LastModifyTime;
LONG TrackiD;
LONG Reservedl;
LONG Duration;
LONG Reserved2;
LONG Reserved3;
SHORT Layer;

/* Size of this atom in bytes */
/*Type of atom ('tkhd') */
/* Atom version and flags */
/* Time/date atom was created */
/* Time/date atom was last modified */
/* Track ID number */
/* Not used */
/* Length of track */
I* Not used */
/* Not used */
/* Priority for this track in movie */

QUICKTIME 755

QpickTime (cont'd)

SHORT AlternateGroup; /* Track group ID value */
SHORT Volume; /* Loudness of the track */
SHORT Reserved4; /* Not used */
DWORD Matrix[3] [3]; /*Transform matrix used by this track*/
LONG TrackWidth; /* Track width */
LONG TrackHeight; /* Track height */

TRACKHEADERATOM;

AtomSize is the size of the atom in bytes.

AtomType is the type of atom.

The first byte of the Flags field indicates the version number of the track
header atom. The remaining three bytes of the Flags field are not used and are
reserved for future use.

Creation Time and LastModifyTime fields indicate when this atom was first cre
ated and last modified respectively.

TrackiD contains a unique value used to identify the track within the movie.

Reserved I is not used and is set to 0.

Duration indicates the playing time of the track data.

Reserved2 and Reserved3 are not used and are set to 0.

Layer contains the layer level of this track.

AlternateGroup is an identification value associating this track with a specific
group of data found within the movie.

Volume is the loudness setting for the track media.

Reserved4 is not used and is set to 0.

Matrix is an array containing a set of data that defines how to map points from
one coordinate space into a different coordinate space.

TrackWidth and TrackHeight are the width and height of the rectangle that
encloses a visual media track.

Media Atom

The description of the actual media data for this track is contained within the
Media atom (mdia). A media atom can contain other atoms, such as a media
header (mdhd), a handler reference (hdlr), media information (minf), and
user-defined data (udta). Only the media header atom is required.

756 GRAPHICS FILE FORMATS

QpickTime (cont'd)

The media atom has the following structure:

typedef struct _MediaDirectoryAtom
{

LONG AtomSize;
LONG AtomType;

I* Size of this atom in bytes *I
I* Type of atom ('mdia') *I

MEDIAHEADERATOM MediaHeader; I* Media attributes *I
HANDLERATOM MediaHandler; I* Media handler atom *I
MEDIAINFO Mediainfo; I* Media information atom */

MEDIADIRECTORYATOM;

AtomSize is the size of the atom in bytes.

AtomType is the type of atom.

MediaHeader is an atom specifying the attributes of the media data stream
contained within this media atom.

MediaHandler is an atom specifying the type of software service (media han
dler) that is to interpret the media data.

Mediainfo is an atom that stores information that the media handler uses to
interpret the actual media data. The format of this atom varies depending
upon the type of media stored.

Media Header Atom

The structure of the MediaHeader atom is as follows:

struct _MediaHeaderAtom
{

LONG AtomSize;
LONG AtomType;
LONG Flags;
LONG CreationTime;
LONG LastModifyTime;
LONG TimeScale;
LONG Duration;
SHORT Language;
SHORT Quality;

MEDIAHEADERATOM;

/* Size of this atom in bytes */
/* Type of atom ('mdhd')
/* Atom version and flags */
/* Time/date atom was created */
/* Time/date atom was last modified */
/* Time scale used for this media *I
/* Length of this media *I
/* Language code for this media */
I* Quali~y rating for this media */

AtomSize is the size of the atom in bytes.

AtomType is the type of atom.

QUICKTIME 757

QpickTime (cont'd)

The first byte of the Flags field indicates the version number of the media
header atom. The remaining three bytes of the Flags field are not used and are
reserved for future use.

CreationTime and LastModifyTime indicate when this atom was first created
and last modified respectively.

TimeScale and Duration specify the type of time scale used and the duration of
the media stream in TimeScale units.

Language indicates the language code of this atom.

Quality holds a quantitative value indicating the relative quality of the data
stored in the media atom.

For Further Information
For further information about QuickTime, see the documentation included on
the CD-ROM that accompanies this book.

The developer guide and kit for QuickTime are available from Apple. Informa
tion on Apple Computer programming products, development tools, and tech
nical references also may be obtained directly from:

Apple Computer, Inc.
Attn:APDA
20525 Mariani Avenue
Mail Stop 33-G
Cupertino, CA 95014-6299
Voice: 800-282-2732 (United States)
Voice: 800-637-0029 (Canada)
Voice: 800-562-3910 (all other countries)
FAX: 408-562-3971
WWW: http:/ /www.quicktime.apple. com/

Information about Apple developer support programs may be obtained from:

Apple Computer, Inc.
Attn: Macintosh Developer Technical Support
20525 Mariani Avenue
Mail Stop 75-3T
Cupertino, CA 95014-6299
Voice: 408-974-4897

758 GRAPHICS FILE FORMATS

QpickTime (cont'd)

Information about QuickTime can also be found in the following:

Apple Computer, Inside Macintosh, Imaging and QuickTime volumes,
Addison-Wesley, Reading, MA.

QUIC:KTJME 759

I Radiance
NAME:

ALSO KNOWN As:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

Radiance

None

Scene description

NA

Uncompressed

NA

NA

NA

Greg Ward

All

Radiance, others

Yes

Yes

No

DKB, NFF, POV, PRT, QRT, Rayshade, RTrace

USAGE: 3D scene description for use by ray-tracing applications and other render
ers.

coMMENTs: A well-documented, well-thought-out format.

Overview
Radiance is a rendering application created by Greg Ward. It implements some
of the techniques later lumped under the term radiosity. It is well-regarded and
has been widely distributed through the Internet graphics community,
although perhaps not as widely distributed as some of the other ray-tracing
applications. Radiance and the accompanying documentation have attracted a
good deal of interest of late due to increased interest in ray-tracing, radiosity
methods, and photorealistic rendering in general.

There are actually two formats associated with the Radiance application: the
input (or scene description) format and the output format. The input format
is well-documented, carefully conceived, flexible, and extensive. The output is
a simple bitmap format.

760 GRAPHICS FILE FORMATS

Radiance (cont'd)

File Organization
The input format consists of a series of ASCII lines implementing the scene
description language used by the Radiance application. The output format
consists of an ASCII information header terminated by an empty line and fol
lowed by the bitmap data.

File Details
The input file consists of a list of surfaces and materials. Surface types include
spheres, polygons, cones, and cylinders. Materials can be plastic, metal, glass,
and others. Light sources known to the system are distant disks as well as local
spheres, disks, and polygons.

This section is adapted from the Radiance documentation.

A scene description file represents a 3D physical environment in Cartesian
(rectilinear) world coordinates. It is stored as ASCII text, with the following
basic format:

comment
modifier PM identifier n Sl S2 S3 ... Sn
0
m Rl R2 R3 ... Rm

modifier (alias identifier reference)
! command

A comment line begins with a pound sign(#).

The scene description primitives all have the same general format and can be
either surfaces or modifiers. Here are some definitions:

• A primitive has a modifier, a type, and an identifier.

• A modifier is either the identifier of a previously defined primitive or
"void" (no modifier).

• An identifier can be any string (i.e., a sequence of non-blank characters).

The arguments associated with a primitive can be strings or real numbers. The
first integer following the identifier is the number of string arguments, and it is
followed by the arguments themselves (separated by white space). The next
integer is the number of integer arguments, followed by the integer arguments
themselves. (There are currently no primitives that use them, however.) The
next integer is the real argument count and is followed by the real arguments.

RADIANCE 761

Radiance (cont'd)

An alias gets its type and arguments from a previously defined primitive. This is
useful when the same material is used with a different modifier or as a conve
nient naming mechanism. Surfaces cannot be aliased.

A line beginning with an exclamation point(!) is interpreted as a command. It
is executed by the shell, and its output is read as -input to the program. The
command must not try to read from its standard input, or confusion will result.
A command may be continued over multiple lines using a backslash (\) to
escape the newline.

Blank space is generally ignored, except as a separator. The exception is the
newline character after a command or a comment.

Commands, comments, and primitives may appear in any combination, as long
as they are not intermingled.

The following example defines a sphere by specifying its center and radius:

mod sphere id
0
0
4 xcent ycent zcent radius

For other examples, see the CD-ROM that accompanies this book.

ForFurtherhdonnarion
For further information about the Radiance format, particularly the Radiance
parameters and their primitives, see the Radiance specification and other doc
uments included on the CD-ROM that accompanies this book. On the CD-ROM
you will also find source code for reading and writing Radiance format files.
You can also contact the author:

Lawrence Berkeley Laboratory
Attn: Gregory J. Ward
Lighting Systems Research Group
Energy & Environment Division
University of California
Building 90-3111
1 Cyclotron Road
Berkeley, CA 94 720
Voice: 510-486-4 75 7
FAJ<:510-486-4089
Email: G]Ward@lbl.gov

762 GRAPHICS FILE FORMATS

Radiance (cont'd)

The source code for the Radiance application is maintained at:

ftp:/ /hobbes.lbl.gov I
At that site there are several directories containing files associated with the
application:

ftp:/ /hobbes.lbl.gov/pub/models/
ftp:/ /hobbes.lbl.gov /pub/ objects/
ftp:/ /hobbes.lbl.gov/pub/pics/

Information is also available via the World Wide Web at:

http:/ /radsite.lbl.gov/radiance/HOME.html

RADIANCE 763

I Rayshade
NAME:

ALSO KNOWN AS:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

Rayshade

None

Scene description

NA

Uncompressed

NA

NA

NA

Craig Kolb

All

Rayshade, others

Yes

No

No

DKB, MTV, NFF, POV, PRT, QRT

usAGE: Description of scenes meant to be rendered by programs such as
Rayshade.

coMMENTs: A well-constructed format that has influenced writers of more recent ray
tracing programs.

Overview
Rayshade is a ray-tracing application created by Craig Kolb. It is well-respected
and has been widely distributed, particularly on the Intemet and throughout
the PC MS-DOS world, but it has largely been superseded by more recent ray
tracing programs.

The format implements a scene description language, which could be (and has
been) used as a model for later rendering applications. It would be a good
model to study if you are in the process of writing yet another ray-tracing or 3D
scene-rendering application.

764 GRAPHICS FILE FORMATS

Rayshade (cont'd)

File Organization
Like many ray-tracing formats, Rayshade files consist of a series of ASCII lines
that implement a proprietary command language, this one associated with the
Rayshade application.

File Details
The following summary information about the Rayshade format is extracted
from the Rayshade 4.0 QJJ,ick Reference document by Craig Kolb, which is
included on the CD-ROM that accompanies this book.

Reals and integers may be written in exponential notation, with or without a
decimal point. Reals are truncated to integers when need be.

Numbers may also be written as expressions surrounded by a matched pair of
parentheses. Sub-expressions may be parenthesized to control the order of
evaluation.

Variables may be defined and used in parenthesized expressions.

Predefined variables include the following:

time (current time)
frame (current frame number, 0- frames -1)
pi
dtor (pi/180)
rotd (180/pi)

Available operators include th~ following:

+ (addition)
- (subtraction and negation)
* (multiplication)
I (division)
% (remainder)
" (exponentiation)

Functions include the following:

sin
cos
tan

as in
a cos

RAYSHADE 765

&tyshade (cont'd)

a tan

sqrt
hypot

Strings are written as non-quoted strings that may include uppercase and low
ercase letters, non-leading digits, and the following special characters:

I (slash)
- (dash)

(underscore)
. (period)

The following command-line options are supported. These override options
are set in the input file:

-A frame First frame to render
-a Toggle alpha channel
-C cutoff Adaptive tree cutoff
-c Continued rendering
-D depth Maximum ray tree depth
-E eye_sep Eye separation
-e Exponential RLE output
-F freq Report frequency
-f Flip triangle normals
-G gamma Gamma exponent
-g Use Gaussian filter
-h Help
-j Toggle jittered sampling
-1 Render left eye view
-m Produce sample map
-N frames Total frames to render
-n No shadows
-0 outfile Output filename
-o Toggle opaque shadows
-P cpp-args Arguments for cpp
-p Preview-quality
-q Run quietly
-R xres yres Resolution
-r Right eye view
-S samples Use Samples"2 samples
-s Toggle shadow caching

766 GRAPHICS FILE FORMATS

Rayshade (cont'd)

-Trgb Contrast threshold
Toggle use of cpp
Verbose file output
Verbose output
Render subwindow
Crop window

-u
-Vfilename
-v
-Wlx hx lyhy
-X 1 r b t

Here are the author's specifications for the construction of the input file:

File: /*Input file consists of ... */
<Item> [<Item> ...]

Item:
<Viewing>
<Light>
<Atmosphere>
<RenderOption>
<Objitem>
<Definition>

Objitem: /* Items used in object definition blocks */
<SurfDef>
<ApplySurf>
<Instance>
<ObjDef>

Viewing:
eyep Xpos Ypos Zpos
lookp Xpos Ypos Zpos
up Xup Yup Zup

I* Eye position (0 -10 0) *I
I* Look position (0 0 0) *I
I* nup" vector (0 0 1) *I

fov Hfov [Vfov]
aperture Width
focaldist Distance
shutter Speed
framelength Length
screen Xsize Ysize

I* Field of view in degrees (horiontal;45) */
I* Aperture width (0) *I
I* Focal distance <leyep- lookpl) */
I* Shutter speed (0 --> no blur) *I
I* Length of a single frame (1) *I
I* Screen size *I

window xmin Xmax Ymin Ymax
crop left right bot top
eyesep Separation

/* Window (0 xsize-1 0 ysize-1). *I
/* Crop window (0 1 0 1) *I
I* Eye separation (0) *I

SurfDef: I* Give a name to a set of surface attributes *I
surface Name <SurfSpec> [<SurfSpec> ...]

Surface: /* Surface specification */
<SurfSpec> /* Use gven attributes *I
surfname [<SurfSpec> ...]

/* Use named surface wl optional mods */
cursurf [<SurfSpec> ...]

/* Use cur. surface w/mods - see ApplySurf */

RA YSHADE 767

Rayshade (cont'd)

SurfSpec: I* Surface attribute specification *I
ambient R G B
diffuse R G B
specular R G B
specpow Exponent
body R G B
extinct Coef
transp Ktr
reflect Kr
index N

I*
I*
I*
I*
I*
I*
I*
I*
I*

Ambient contribution *I
Diffuse color *I
Specular color *I
Phong exponent *I
Body color *I
Extinction coefficient
Transparency *I
Reflectivity *I
Index of refraction *I

*I

translu Ktl R G B Stpow I* Translucency, transmit diffuse,
no shadow I* No shadows cast on this surface

Effect: I* Atmospheric Effects *I
mist R G B Rtrans Gtrans Btrans Zero Scale
fog R G B Rtrans Gtrans Btrans

Atmosphere: I* Global atmosphere *I
atmosphere [Index] <Effect> [<Effect> ...]

I* Global index, effects *I

ApplySurf:
applysurf <Surface>

I* Apply surf to all following objs wlo surface *I

Instance: I* Instance of an object *I
<Object> [<Transforms>] [<Textures>]

Object:
Primitive
Aggregate

ObjDef:

I* Primitive object *I
I* Named aggregate *I

I* Define a named object *I
name Objname <Instance>

Primitive:
plane
disc
sphere
triangle

/* Primitive object */
[<Surface>] Xpos Ypos Zpos xnorm Ynorm Znorm
[<Surface>] Radius Xpos Ypos Zpos xnorm Ynorm Znorm
[<Surface>] Radius Xpos Ypos Zpos
[<Surface>] Xvl Yvl Zvl

Xv2 Yv2 Zv2 Xv3 Yv3 Zv3
/* flat-shaded triangle */

triangle [<Surface>] Xvl Yvl Zvl xnl Ynl Znl
Xv2 Yv2 Zv2 xn2 Yn2 Zn2
Xv3 Yv3 Zv3 xn3 Yn3 Zn3

/* Phong-shaded triangle */
polygon [<Surface>] Xvl Yvl Zvl

Xv2 Yv2 Zv2 Xv3 Yv3 Zv3 [Xv3 Yv4 Zv4 ...]
box [<Surface>] Xlow Ylow Zlow

Xhi Yhi Zhi

spec
*I

cylinder [<Surface>] Radius Xbase Ybase Zbase Xapex Yapex Zapex

768 GRAPHICS FILE FORMATS

exp *I

cone
Zap ex

torus
Znorm

blob

Rnyshade (cont'd)

[<Surface>] Rbase Xbase Ybase Zbase Rapex Xapex Yapex

[<Surface>) Rswept Rtube Xpos Ypos Zpos Xnorm Ynor.m

[<Surface>) Thresh Stren Rad Xpos Ypos Zpos
[Stren Rad X Y Z ...]

heightfield [<Surface>] Filename

Aggregate:
Grid
List
Csg

Grid:
grid X Y Z <Objitem> [<Objitem> ...) end

List:
list <Objitem> [<Objitem> ...] end

Csg:
union <Object> <Object> [<Object> •..] end
intersect <Object> <Object> [<Object> ...] end
difference <Object> <Object> [<Object> ...] end
/* CSG only works properly when applied to closed objects, e.g.:
* sphere, box, torus, blob, closed Aggregate, other Csg object
*I

Transforms:
translate
scale
rotate
transform

Textures:
texture

Texture:
checker
blotch
bump
marbl
fbm
fbmbUll'll?
wood
gloss
cloud
sky

I* Transformations */
Xtrans Ytrans Ztrans
xscale Yscale Zscale
xaxis Yaxis Zaxis Degrees

A B c
D E F
G H I

[Xt Yt Zt]

<TextType> [Transforms] [<Texture>
[Transforms) ...]·

<Surface>
Scale <Surface>
Bumpscale
[Colormapname]
Offset Scale H Lambda Octaves Thresh [Colormapname]
'Offset Scale H Lambda Octaves

Glossiness
Scale H Lambda Octaves Cthresh Lthresh Transcale
Scale H Lambda Octaves Cthresh Lthresh

RAYSHADE 769

Rayshade (cont'd)

stripe
windy
image

<Surface> Width Bumpscale [<Mapping>]
Scale Wscale Cscale Bscale Octaves Tscale Hscale Offset
Imagefile [<ImageTextOption>
[<ImageTextOption> ...]]

ImageTextOption:
component <SufComp>
range Lo Hi
smooth
text surf
tile
<Mapping>

SurfComp:
ambience
diffuse
reflect
transp
specular
specpow

Mapping:
map uv

<Surface>
uv

map cylindrical
map planar

[Xorigin Yorigin Zorigin Xup Yup Zup Xu Yu Zu]
[Xorigin Yorigin Zorigin Xv Yv Zv Xu Yu Zu]
[Xorigin Yorigin Zorigin Xup Yup Zup Xu Yu Zu] map spherical

Light:
light R G B <LightType> [noshadow]
light Intensity <LightType> [noshadow]

LightType:
ambient
point
directional
extended
spot
area

RenderOption:

Xpos Ypos Zpos
Xdir Ydir Zdir
Radius Xpos Ypos Zpos
Xpos Ypos Zpos Xat Yat zat Coef Thetain Thetaout
Xorigin Yorigin Zorigin Xu Yu zu
Usamples Xv Yv Zv Vsamples

samples Nsamp [jitter I nojitter]
I* Use NsampA2 pixel samples (3A2 jittered) */
background R G B /* Background color (0 0 0) */

outfile Filename /* Output file name (written to stdout) */
frames Nframes /* Number of frames to render (1) */
starttime Time /* Time corresponding to start of frame 0 */
contrast R G B /* Maximum contrast w/o supersampling */
maxdepth Depth /* Maximum ray tree depth (5) */
cutoff Factor /* inium spawned ray contribution (.001) */

770 GRAPHICS FILE FORMATS

Rayshade (cont'd)

report [verbose] [quiet] [Freq] [Statfile]
/* Reporting mode (false false 10 stderr) */

shadowtransp /* Toggle object opacity affects shadows */

Definition: /* Variable definition */
define Name Expr /* Assign value for Name */

ForFurtherhttonnation
For further information about the Rayshade format, see the Rayshade 4.0 Quick
Reference, included on the CD-ROM that accompanies this book.

You can also contact the author:

Stanford University
Attn: Craig Kolb
372 Gates Building
Department of Computer Science
Stanford, CA 94305-4070
Email: cek@graphics.stanford.edu

The Rayshade application package is available from various archive sites on the
Internet and from many PC MS-DOS BBSs. For further information, contact the
author at the above address.

The author also maintains the following Rayshade sites:

ftp:/ /graphics.stanford.edu/pub/rayshade/
http:/ /www-graphics.stanford.edu/-cek/rayshade/rayshade. html

RA YSHADE 771

I~
NAME:

ALSO KNOWN As:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

RIX

R1X Image File, ColoRIX VGA Paint

Bitmap

Up to 32 bits per pixel

Undocumented

64Kx64K

No

Little-en dian

RIX SoftWorks

MS-DOS

ColoRIX VGA Paint

Yes

No

No

None

usAGE: Storage of bitmap files with few colors under MS-DOS.

coMMENTs: RIX's programs have been bundled with several video cards for the PC
running MS-DOS.

Overview
In most respects, the RIX format appears to be a nice format to support. U nfor
tunately, although the rest of the format, which we have included on the CD
ROM that accompanies this book, is reasonably well-documented, the compres
sion algorithm used in the files is not. RIX SoftWorks says that the algorithm is
not published because it is "extremely complicated." The ColoRIX VGA Paint
document goes on to explain that:

Although some compression schemes are more efficient for some pic
tures, the RIX compression scheme performs extremely well with a
broad range of picture types.

Expert opinion is mixed between skepticism and outright dismissal, so it is a
shame that there is no way to verify this claim. Certainly, an advance in com
pression technology would bring RIX more than a modest portion of riches

772 GRAPHICS FILE FORMATS

RIX. (cont'd)

and fame. In any case, until RIX decides to publish its full format specification,
you'lljust have to wing it with the information provided here.

File Organization
The RIX format is a simple bitmap format, consisting of a fixed header, a
palette, and bitmap data.

File Details
The RIX header is structured as follows:

typedef struct _Rrx_HEAD
{

CHAR ID[3];
WORD Width;
WORD Height;
CHAR PaletteType;
CHAR StorageType;

} RIX_HEAD;

I* Three-character ID field, •Rrxa *I
I* Image width in pixels *I
I* Image height in lines *I
I* Palette type code *I
I* Format of bitmap data *I

Width and Height represent the size of the image.

Palette Type identifies the type of display device and can have any of the values
listed below. These are calculated using a scheme discussed in the specification
document.

Value
CB
AB
AF
E7
9F
10
18
20

'JYpe of Display Device
EGA
Extended EGA
VGA
Targa 16
IBMPGA
Targa 16
Targa24
Targa 32

Storage Type can have any of the values listed below. ~efer to the specification
document for a discussion of the scheme used to calculate these values.

RIX 773

RlX (cont'd)

Value
80

Type of Data
Compressed
Extension block
Encrypted

40
20
00
01
02
03

Linear, one byte per pixel
Planar (0213), similar to EGA
Planar (0123), similar to EGA
Text

If the storage type value indicates an extension block value, it is followed by a
byte containing an extension format value. Some typical format extension
types are illustrated below.

Value
00

"IYPe of Extension
ASCII text

01
02
03
04

Original image origin
Original image screen resolution
Encryptor's ID
Bitmap palette in use; length is either 2 or 32 bytes

After the extension format value is a byte containing the total number of bytes
in the extension block. The actual extension block data follows immediately
afterward.

RIX suggests that developers with special extension needs request an extension
storage type value less than 128.

Following the header is a palette, which is either 48 or 768 bytes long. Palette
entries are stored as RGB triples, one for each color. Following the palette is
the image data. If the image data is not encrypted or compressed, the data for
mat can be deduced from the storage type value.

ForFurtherhrronnation
For further information about the RIX format, see the specification included
on the CD-ROM that accompanies this book: You can contact:

RIX SoftWorks, Inc.
Attn: Richard Brownback
18023 Sky Park Circle, SuiteJ
Irvine, CA 92714
Voice: 714-4 76-8266

774 GRAPHICS FILE FORMATS

RIX (cont'd)

You can also contact:

Paul Harker
Voice: 714-4 76-8486

The RIX file format is also documented in the ColoRIX. VGA Paint manual, avail
able by purchasing a copy of the program from RIX Soft Works.

RIX 775

I RTrace
NAME:

ALSO KNOWN As:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

RTrace

SFF, SCN

Scene description

NA

U~compressed
NA

NA

NA

Antonio Costa

All

RTrace

Yes

No

No

DKB, NFF, POV, PRT, QRT, Rayshade

usAGE: 3D scene description used for ray-trace and other rendering applications.

coMMENTs: RTrace is a simple but well-designed format that could find general use for
describing 3D scen~s.

Overview
The RTrace format (called SFF by its author) was created by Antonio Costa and
is associated with his ray-trace application, RTrace. Work on both the applica
tion and the format date from 1988. The format itself was designed to support
the description of 3D scenes. Although it was originally intended for ray-trace
applications, it could just as well be used for other renderers. RTrace would be
a good format to study if you are in the process of writing yet another ray trace
or rendering application.

In his program documentation, Antonio Costa mentions, as a motivation for
producing a new format, limits embodied in Eric Haines' NFF format.

776 GRAPHICS FILE FORMATS

R:Irace (cont'd)

File Organization
Like many ray trace formats, RTrace implements the scene description lan
guage in its own application. The RTrace format consists of a series of ASCII
text lines and is designed to be human-readable and easily edited.

File Details
The following information is based on Antonio Costa's documentation, The SFF
Ray-Tracing Format, Version 8.

An RTrace {SFF) file is divided into five sections (sometimes six, for compatibil
ity reasons). In each, there are definitions, which may be of several types:

• Viewing

• Ambient/Background

• Lights

• Surfaces

• Objects, Textures, and Transformations

Viewing Section

The Viewing section is the first to appear. It has five lines consisting of:

Comments
Eye point
Look point
Up vector
Horizontal and vertical view angles

Each of these items must be on a separate line. Comments can follow up to the
end of the line.

Example:

viewr
8 0 0 - Eye <EOL>
0 0 0 - Look <EOL>
0 1 0 - Up <EOL>
20 20 - View angles (horizontal and vertical) <EOL>

RTRACE 777

RTrace (cont'd)

Ambient and Background Section

The Ambient and Background section follows the Viewing section. It contains
three lines:

• Comments

• Background color

• Ambient color

Both background color and ambient color are defined in RGB format.

After each item there may be comments up to the end of the line.

Example:

colors<EOL>
0.1 0.5 0.7 -Sky blue(red=O.l green=O.S blue=0.7) <EOL>
0.2 0.2 0.2 - Dark gray(red=0.2 green=0.2 blue=0.2) <EOL>

Lights Section

The Lights section contains a series of lines:

• Comments

• One line for each light definition

• Emptyline

There are three types of light definitions:

Point light
To define a point light, specify the point code (1), a position, and
RGB brightness.

Direction light
To define a direction light, specify the directional code (2), a posi
tion, RGB brightness, direction, angle, and attenuation factor. This
kind of light radiates from a point in the specified direction inside
the solid angle, and the transition may be sharp (factor -= 1) or
soft (factor >> 1). A truly directional light may be simulated by
positioning it far away from the objects and defining its brightness
to be negative. Normally, illumination decreases with distance; to
make illumination distance-independent, make at least one compo
nent of the brightness negative (at least one component).

778 GRAPHICS FILE FORMATS

R'Frace (cont'd)

Extended light

Example:

To define an extended light, specify the extended code (3}, a posi
tion, RGB brightness, radius and samples. This kind of light is simu
lated by a sphere of specified radius, which is sampled to calculate
the actual illumination (a low value for frequency of samples pro
duces undesirable effects).

lights<EOL>
1 4 5 1 0.9 0.9 0.9 - White point light <EOL>
2 0 10 0 0 0 1 0 -1 0 15 5 - Blue spot light <EOL>
3 8 1 -3 0 1 0 0.3 8 - Green extended light <EOL>
1 1000 1000 1000 -1 -~ -1 - Directional light <EOL>
<EOL>

Surfaces Sectioo

The Surfaces section defines all of the surfaces. It consists of a series of lines:

• Comments

• One line for each surface definition

• Emptyline

There are two types of surface definitions:

Code 1 definition.
A code 1 surface definition defines a surface by body RGB color,
diffuse RGB factor, specular RGB factor, specular exponent factor,
metalness factor, and transmission RGB factor. The RGB's colors
and factors must be in the [0,1] range. The diffuse RGB factor
defines the quantity of light coming from all directions. The specu
lar RGB factor defines the quantity of light coming from the ideal
reflection direction. The exponent factor controls the shininess of
the surface (the surface is very shiny with a factor bigger than 1 0; if
the factor is near zero, the surface appears dull). The metalness
factor makes the reflected light appear white if it is small (as in
plastic) or metallic if it is near 1. The transmission RGB factor
defines the transparency. The sum of diffuse, specular, and trans
parency RGB factors should be equal or approximately 1.

RTRACE 779

KJrace (cont'd)

Code 2 definition.
A code 2 surface definition has a body RGB color, a smoothness
RGB factor, a metalness RGB factor, and a transmission RGB factor.
This method is an alternative for defining surfaces, but it is more
intuitive. The smoothness RGB factor controls the shininess of the
surface.

Example:

surfaces<EOL>
1 1 0 0 1 1
1 0 1 0 0.5
1 0 0 1 0.7
1 1 1 1 0.1
2 1 1 0 0 0

1 0 0 0
0.5 0.5
0.8 0.9
0.1 0.1
0 0 0 0

0 0 0 0 0 - Matte <EOL>
0.5 0.5 0.5 10 0.5 0 0 0 <EOL>
0.3 0.2 0.1 100 1 0 0 0 - Metallic <EOL>
0.1 0.1 0.1 200 0.8 0.8 0.8 0.8 <EOL>

0 0 0 - Matte <EOL>
2 1 0 1 1 1 1 1 1 1 0 0 0 - Mirror <EOL>
<EOL>

Objects, Textures, and Transfonnations Section ,

The Objects, Textures, and Transformations section defines the 3D objects,
and, opti_onally, the textures and transformations. It consists of a series of lines,
plus one line for each object definition.

All objects are defined by a code, a surface index (which specifies one of the
previously defined surfaces, starting in 1), a refraction index, and then the
data itself.

Example 1:

The object with code 1 is a sphere and has a center point and radius.

1 3 1.0 4 3 2 0.5 - Sphere centered at (4,3,2) radius=0.5 <EOL>

*

Example 2:

The object with code 2 is a parallelipiped aligned with the XYZ axis. It requires
a center point and three dimensions, for the X, Y, and Z directions.

2 2 1.0 1 0 0 10 1 3 - Box at (1,0,0) with sizes (+-10,+-1,+-3) <EOL>

Example 3:

The object with code 3 is a bicubic patch or a group of bicubic patches. It is
followed by a translation vector, three scale factors for X, Y, and Z, and a file-

780 GRAPHICS FILE FORMATS

RTrace (cont'd)

name or-. If there is a filename, then the patch's geometry is read from that
file; otherwise, it is read from the following lines in the SFF file, ending with an
empty line:

3 1 1.0 0 0 0 1 1 1 example.pat - Read from file example.pat <EOL>
3 2 1.0 0 0 0 2 1 1 - Read from the next lines <EOL>

A bicubic patch is defined by 12 points.

1 2 4 5 6 7 9 10 11 12 14 15 - Patch 1<EOL>
2 3 5 6 7 8 10 11 12 13 15 16 - Patch 2<EOL>
<EOL>
0 -0.5 -1 - Vertex 1 <EOL>
0 0 -2 - Vertex 2 <EOL>
0 -0.5 -3 <EOL>
1 0 0 <EOL>
1 0 -1 <EOL>
1 0.5 -2 <EOL>
1 0 -3 <EOL>
1 0 -4 <EOL>
2 0 0 <EOL>
2 0 -1 <EOL>
2 0.5 -2 <EOL>
2 0 -3 <EOL>
2 0 -4 <EOL>
0 -0.25 -1 <EOL>
0 0 -2 <EOL>
0 0 -3 <EOL>
<EOL>

Example 4:

The code 4 object is a cone or cylinder. It has an apex center point and radius,
followed by a base center point and radius. The apex radius must be less than
(in the case of a cone) or equal to (for a cylinder) the base radius. The
cone/cylinder are opened objects (i.e., they do not have any circular surfaces
in the apex or base).

4 1 1.0 0 1 0 0 0 0 0 1 - Cone <EOL>
4 1 1.0 0 1 0 1 0 0 0 1 - Cylinder <EOL>

Example 5:

The code 5 object is a polygon or a group of polygons, similar to patches. It is
followed by a translation vector, three scale factors for X, Y, and Z, and by a file
name or -. If there is a filename, then the polygon's geometry is read from

RTRACE 781

RTrace (cont'd)

that file;. otherwise, it is read from the following lines in the RTrace file, ending
with an empty line.

5 1 1.0 0 0 0 1 1 1 example.pol - Read from file example.pol <EOL>
5 2 1.0 0 0 0 1 1 1 - Read from the next lines <EOL>

A polygon is defined by its vertices in counterclockwise order. A file with poly
gons is composed of two parts. In the first part are the number of polygons and
the polygon's definitions, using indices into the vertex list. In the second part
(after an empty line) is the vertex list, which is terminated by another empty
line.

5 1 2 3 4 5 - polygon 1 <EOL>
3 1 6 2 - polygon 2 <EOL>
<EOL>
0 0 -2 - vertex 1 <EOL>
1 0 0 - vertex 2 <EOL>
2 0 -1 - vertex 3 <EOL>
2 0 -3 - vertex 4 <EOL>
1 0 -4 - vertex 5 <EOL>
0.5 2 -1 - vertex 6 <EOL>
<EOL>

Example 6:

The code 6 object is a triangle or a group of triangles, similar to a polygon but
also specifying each vertex nonnal vector. (These triangles are also I_mown as
Phong triangles.) It is followed by a translation vector, three scale factors for X,
Y, and Z, and a filename or-. If there is a filename, then the triangle's geome
try is read from that file; otherwise, it is read from the following lines in the
RTrace file, ending with an empty line.

6 1 1.0 0 0 0 1 1 1 example.tri - Read from file example.tri <EOL>
6 2 1.0 0 0 0 1 1 1 - Read from the next lines <EOL>

A triangle is defined by its vertices (data and nonnal) in counterclockwise
order. A file with triangles is composed of the triangle's definitions: first data
and nonnal vertices, followed by the second data and nonnal vertices, and
finally the third data and nonnal vertices. It is terminated by another empty
line.

0 0 0 0 1 0 1 0 0 0 1 0 1 0 -1 0 1 0 - T!iangle 1 <EOL>
0 0 0 1 1 0 0 1 0 1 0 0 0 1 -1 1 0 1 - Triangle 2 <EOL>

Example 7:

The code 7 object is an extruded primitive derived from closed segments com
posed of lines and splines. This object is very well-suited to trace high-quality

782 GRAPHICS FILE FORMATS

R.Trace (cont'd)

text, although it may be used for many other purposes. It is followed by a file
name or-. If there is a filename, then the character's geometry is read from
that file; otherwise, it is read from the following lines in the RTrace file, ending
with an empty line.

spacing 0.1<EOL>
orientation 0 0 -1 0 1 0 1 0 0 <EOL>
encoding
font
scale

ascii.ppe <EOL>
roman.ppf <EOL>
0.4 0.4 0.2 <EOL>

at
font
scale

1 1 2 •RTrace /copyright/ Ant6nio Costa 1993•<EOL>
times.ppf <EOL>
0.5 0.6 0.3 <EOL>

at 0 3 0 •Etc• <EOL>

The spacing keyword defines the separation between characters. Most of the
supplied fonts have their characters enclosed in a one-unit square.

The orientation keyword defines how the text appears in the 3D space; the first
vector defines the text direction, the second the up direction, and the third
the extrusion direction. As these are independent, it is possible to slant the·
text or create more complex effects.

The encoding keyword specifies a file that contains translations from character
names to character codes, which are used to access the character data.

The font keyword specifies a file that contains the character's data (number of
closed segments-lines and splines-and other data for each character).

The scale keyword defines the scaling for the characters, using the directions
specified by the orientation keyword.

The at keyword specifies the starting baseline position and which characters to
trace. With the supplied font files, it is possible to use PostScript names for the
characters in almost all languages; in this case, the character name must be
enclosed in I I.
The next codes are not used to define primitive objects, but rather to associate,
transform, or texture objects. The code 64 defines a texture to be applied to an
object, usually the previous one. It is followed by a type, an object ID, a trans
formation matrix, and local data. The supported types are:

RTRACE 783

KITace (cont'd)

Type Name Parameters
0 Null
1 Checker surface
2 Blotch scale surface [file (colormap)]
3 Bump scale
4 Marble [file (colormap)]
5 FBM offset scale omega lambda threshold octaves
6 FBMBump offset scale lambda octaves
7 Wood color(red) color(green) color(blue)
8 Round scale
9 Bozo turbulence [file (colormap)]
10 Ripples frequency phase scale
11 Waves frequency phase scale
12 Spotted [file(colormap)]
13 Dents scale
14 Agate [file (colormap)]
15 Wrinkles scale
16 Granite [file (colormap)]
17 Gradient turbulence direction(x) direction(y) direction(z)

[file (colormap)]
18 Image map turbulence mode axis(horizontal) axis(vertical)

file (image)
19 Gloss scale
20 Bump 3D scale size

ForFwrtherlnfonnation
For further information about the RTrace format, see the specifications
included on the CD-ROM that accompanies this book.

The RTrace application is available for downloading at many Internet archive
sites and on PC/MS-DOS BBSs. For further information, contact:

ISEP/INESC
Attn: Antonio Costa
Computer Graphics & CAD Group
Largo Mompilher 22
4000 Porto
Portugal
Email: acosta ®porto. inesc.pt

784 · GRAPHICS FILE FORMATS

Kirace (cont'd)

You can obtain the latest RTrace codes, scenes, images, and documents from
the following Web site:

http:/ /diana.inesc.pt/acc.html

or FTP site:

ftp:/ /asterix. inesc.pt/pub/KI'race/

You can get the SCN specifications in PostScript at:

ftp:/ /asterix.inesc.pt/pub/Rtrace/docs/

or in HTML at:

http://www. cica. indiana.edu/graphics/object_specs/scn/SCN.Jormat.html

RTrace images are available at the following:

. ftp:/ I asterix. inesc.pt/pub/Rtrace/images/
ftp://asterix.inesc.pt/pub/Rtrace/images-med/
ftp://asterix.inesc.pt/pub/Rtrace/images-mol/
ftp:/ /asterix. inesc.pt/pub/Rtrace/images-3D I

A Macintosh version (MacRTrace 1.8.4.2) developed by Greg Ferrar (jer
rar@uxa.cso.uiuc.edu) is available at:

ftp:/ /asterix.inesc.pt/pub/Rtrace/macintosh/

Also see ~e ray-tracing homepage at:

http:/ I arachnid. cs. cj.ac. uk/Ray. Tracing/

RTRACE 785

NAME:

ALSO KNOWN As:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

SAF

Standard Archive Format, AMSC Archive Format,
POD

Bitmap and other (see text)

unlimited

GZIP (see article)

Unlimited

No

Any

Advanced Missile Signature Center

All

Unknown

Yes

No

No

None

usAGE: Archival storage of multiple data types in one standard format.

coMMENTs: A flexible format designed for the storage of bitmap and other types of
data.

Overview
The Advanced Missile Signature Center {AMSC) has created a file format
known as the Standard Archive Format (SAF) designed for flexible and extensi
ble use in data archiving. The data may be in ASCII or one of a number of
binary formats. The file header is ASCII, however, and can be browsed visually
to quickly determine content. As an example of file format technology, it incor
porates some unique and interesting features, perhaps reflecting its recent vin
tage and the experience of its creators.

A file suffix of ,.SAF usually indicates that the file contains image data. The
.POD suffix is usually reserved for files containing POD (Parameter Oriented

786 GRAPHICS FILE FORMATS

SAF (cont'd)

Data) information. This article discusses the forms of the file that are appropri
ate for storing image data. Please refer to the document on the CD-ROM for
the complete specification and further information.

File Organization
The file consists of an ASCII header followed by binary or ASCII data.

File Details
This section describes the details of the SAF file header, tags, and image data.

Header

The header, always at the start of the file, begins with the ASCII string
"HdSize", followed by the length of the header in bytes. HdSize functions as a
designated magic number intended to enhance automated file type recogni
tion. HdSize may be followed by the string "auto", in which case the header
must be terminated by the string "data".

The rest of the header consists of a list of tags, or .field identifiers, followed by
data fields. The number of tags is not fixed, and tags can be in any order. Tags
in SAF files are simply names in ASCII text followed by a space and are case
insensitive. Only tags necessary to interpret or render the data are included,
which keeps down fixed file overhead. This technique-using variable num
bers of tags in the header-was apparently designed to enhance automated
file handling and data extraction while maintaining maximum flexibility. The
header supports editing revisions after initial file creation and can be extended
at will.

The specification allows both standard tags and user-defined tags. Standard
tags are 6 characters or less, and user-defined tags may be up to 29 characters
in length. ASCII lines may be terminated by either linefeed or carriage
return/linefeed pairs.

Tags

The following tables, adapted from the SAF specification included on the CD
ROM that accompanies this book, list standard tags in SAF files.

SAF 787

SAF (cont'd)

TABLE SAF•1: Generic SAF Tags

Tag Description Data'I)pe

HdSize Header Size (in bytes, or it may be AUTO) Integer
AqMode Acquisition Mode Text
As pAng Aspect Angle (degrees) Float
BgFile Background File Text
BgType Background Type Text
BgValu Background Value (Average or Fixed) Float
BPFile Bad Pixel File Text
BytOrd Byte Order Text
CaFile Calibration File Text
ChTemp High Temp of Cal Source (degrees C) Float
Class Classification Text
CIDay Collection IRIG Day Integer
CIHour Collection IRIG Hour Integer
CIMin Collection IRIG Minute Integer
CISec Collection IRIG Seconds Float
ClTemp Low Temp of Cal Source (degrees C) Float
COMENT Comment Line (Repeated as Required) Text
CSFile Calibration Source File Text
Data End of header
DaType Data Type Text
DaUnit Data Units Text
DDOff Data Distribution Office Text
DiaFOV Circular FOV (degrees) Float
DiS tat Distribution Statement Text
ElAng Elevation Angle (deg) Float
EURAW Processed Level of the Data EU /RAW /Flat-fielded (FF) Text
ExpiD AMSC Experiment ID# Text
Filter Filter Name Text
Filtno Filter Number Integer
FOVAxl Chamber Test FOV Axial Location (meters) Float
FOVRdl Chamber Test FOV Radial Location (meters) Float
HdVers Header Version (= 2.0) Text
HorFOV Horizontal FOV (degrees) Float
IHFOV Instantaneous Horizontal FOV (microradians) Float
I time Integration Time (seconds) Float
IVFOV Instantaneous Vertical FOV (microradians) Float
LinLog Linear/Log Indicator (UN/LOG/ ASG) Text
LODAng Observer Line-of-Sight Angle with respect to True Float

North (CW is+)

788 GRAPHICS FILE FORMATS

SAF (ccmt'd)

Tag Description Data 'JYpe

LogASl Log Amp Slope Float
LogOff Log Offset Float
Mach Mach Number Float
Mdate Mission Date (MM/DD/YY) Text
MeasUn Measurement Uncertainty-Nominal (%) Float
Miss Mission Text
NCoads Number of Coads Integer
NEQ Noise Equivalent Quantity Float
NodeNo Node Number Text
No teO I Numbered Notes, valid from NoteOl through Note99 Text
OffCor Offset Correction Float
PPCNam Platform AMSC Component Name Text
RDFile Raw Data File Text
RolAng Roll Angle (degrees) Float
SBPLo System Bandpass, Lower Wavelength (microns) Float
SBPUp System Bandpass, Upper Wavelength (microns) Float
SclFac Calibration or Scale Factor Float
SDLevl SDIO Data Level Text
SecCol Number of Seconds Collected Integer
SLFile Spectral Lamp File Text
SltRng Slant Range (meters) Float
SnsAlt Sensor Altitude (meters) Float
SPCNam Sensor AMSC Component Name Text
Stage Launch Vehicle Stage Number Float
StdUnt Standard Data Units Index Integer
SUncLo Independent Parameter Uncertainty Lower Limit Float
SUncUp Independent Parameter Uncertainty Upper Limit Float
TALO TALO (seconds) Float
TAOA Target Angle of Attack (degrees) Float
Target Target Name Text
TestNo Test Number Text
TPCNam Target PC Component Name Text
TPFact Transmission Path Factor Float
TrgAlt Target Altitude (meters) Float
TrgHdg Target Heading with respect to True North (CW is+) Float
TrgTyp Target Type (Liquid/Solid) Text
TrgVel Target Velocity (meters/second) Float
TrlNum Trial Number Text
TZDay T-Zero Day Integer
TZHour T-Zero Hour Integer

SAF 789

SAF (cont'd)

Tag

TZMin
TZSec
USRCON
VrtFOV
Warn01
XUncUn
YUncLo
YUncLo
YUncUn

Description

T-Zero Minute
T-Zero Seconds
User-Specified Parameters Header Filename
Vertical FOV (degrees)
Warning to the user, valid from 01 thru 99
Independent Parameter Uncertainty Units
Dependent Parameter Uncertainty Lower Limit
Dependent Parameter Uncertainty Upper Limit
Dependent Parameter Uncertainty Units

TABLE SAF-2: Additional Tags for SAF Image Data

Tag Description

ACFile Area Correction Factor File
ADJFAC Non-Linear Adjustment Factor
ApSize Aperture Size
BGBLLX Lower Left X for Background Box
BGBLLY Lower LeftY for Background Box
BGBLRX Lower Right X for Background Box
BGBLRY Lower Right Y for Background Box
BGBULX Upper Left X for Background Box
BGBULY Upper LeftY for Background Box
BGBURX Upper Right X for Background Box
BGBURY Upper Right Yfor Background Box
Bnd01 Boundary Point for PAV files, valid from 01 thru 99
Bxllnt Box 1 Integral Value
Bx1LLX Box 1 Lower Left X
Bx1LLY Box 1 Lower LeftY
BxlLRX Box 1 Lower Right X
BxlLRY Box 1 Lower Right Y
Bx1ULX Box 1 Upper Left X
BxlULY Box 1 Upper LeftY
Bx1URX Box 1 Upper Right X
Bx1URY Box 1 Upper Right Y
Bx2Int Box 2 Integral Value
Bx2LLY Box 2 Lower Left X
Bx2LLY Box 2 Lower LeftY
Bx2LRX Box 2 Lower Right X
Bx2ULX Box 2 Upper Left X

790 GRAPHICS FILE FORMATS

Data 'JYpe

Integer
Float
Text
Float
Text
Float
Float
Float
Float

Data'JYpe

Text
Float
Float
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Float
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Float
Integer
Integer
Integer
Integer

Tag
Bx2ULY
Bx2URX
Bx2URY
CentMX
CentMY
CGain
Colr1
Colr2
Colr3
Colr4
Colr5
Colr6
Colr7
Colr8
Colr9
Colr10
Colr11
Colr12
Colr13
Colr14
Colrl5
Colr16
ComPrs
DGF1d
DiType
DPtNum
DSGain
DSOff
F1dFrm
F1orFr
FRate
FrstCI
EMFile
IDFile
ImDisp
ImQual
ImSig
ImSize
Intrlc
NClrs

Description

Box 2 Upper LeftY
Box 2 Upper Right X
Box 2 Upper Right Y
Center Cursor X Position
Center Cursor YPosition
Camera Gain
Color 1 Value
Color 2 Value
Color 3 Value
Color 4 Value
Color 5 Value
Color 6 Value
Color 7 Value
Color 8 Value
Color 9 Value
Color 10 Value
Color 11 Value
Color 12 Value
Color 13 Value
Color 14 Value
Color 15 Value
Color 16 Value
Compression Type
Digitizer Gamma setting (non-linear adj.)
Digitizer Type
Data Point Number
Digitizer System Gain
Digitizer System Offset
Fields per Frame
Field or Frame Data in this File
Frame Rate (frames/second)
First Color
Emissivity File
Image Display Control File
Pre-digitized Image Display Format
Image Quality
Pre-digitized Image Signal Type
Image Size (in bytes after any compression)
Frame Data Are Interlaced in the File
Number of Colors Used

SAF (cont'd)

Data Type
Integer
Integer
Integer
Integer
Integer
F1oat
Text
Text
Text
Text
Text
Text
Text
Text
Text
Text
Text
Text
Text
Text
Text
Text
Text
F1oat
Text
Integer
F1oat
F1oat
Integer
Text
F1oat
Integer
Text
Text
Text
Text
Text
Integer
Text
Integer

SAF 791

SAF (cont'd)

Tag Description Data Type

PLeftX Profile Left X Integer
PLeftY Profile Left Y Integer
PRghtX Profile Right X Integer
PRghtY Profile Right Y Integer
ProCX Profile Cursor X Integer
ProCY Profile Cursor Y Integer
SpecFn Special Function to Apply to the Image Text
SRFile Slant Range Correction Factor File Text
VrtAtt Vertical Attitude (degrees) Float
XMag X Compress or Enlarge Factor Float
XPixls Digitized Data Image Width (pixels) Integer
XPxWid X (horizontal) Pixel Width (meters) Float
YMag Y Compress or Enlarge Factor Float
YMax Maximum y value Float
YMin Minimum y value Float
YPixls Digitized Data Image Height (pixels) Integer
YPxWid Y (vertical) Pixel Width (meters) Float

TABLE SAF-3: Tags for Ordered Pair Data

Tag Description Data Type

CalcOl Calculated Parameter, valid from 01 thru 99 Text
FreRsp System Electrical Frequency Response (Hz) Float
Keywrd XYFile Keyword Text
NParam Number of Parameters in File Integer
NumDPs Number of Data Points in File Integer
PcSize Parameter Classification Size (bytes) Integer
PltSub XYPlot Subtitle Text
PltTtl XY Plot Title Text
PnSize Parameter Name Size (bytes) Integer
PodOrd Data Ordering in POD Files Text
PuSize Parameter Units Size (bytes) Integer
SampRa Sample Rate (Hz) Float
XCFile X-Axis Calibration File Text
XDaUnt X-Axis Data Units Text
XFName X-Axis Filename (a 1-parameter POD file) Text
XParam X-Axis Parameter name Text
XScFac X-Axis Scale Factor (applied to XFName values) Float
XYFNum XYFile Number Integer

792 GRAPHICS FILE FORMATS

SAF (coot'd)

Tag

XYFrst
XYLast
YParam

Description

XYFirst Value
XY Last Value
¥Axis Parameter name

Data 'I}'pe

Float
Float
Text

The following are the possible data types that can be stored in the DaType tag:

ASCII ASCII strings
Int8 1-byte integer (0-255 unsigned)
Intl6 2-byte integer
Int32 4-byte integer
Int64 8-byte integer
Flt32 Single-precision floating-point
Flt64 Double-precision floating-point
RGB24 24-bit color image (3 bytes per pixel, RGB)

K.eyWrd tags can contain the following values:

Data "IYPe Tag Value

Image IMG 2D array of values (the default tag
value)

CMAP 2D array of colormap indices
PAV Position and value triplets

Parameter Oriented Data POD Multiple dependent parameters with the
same independent parameter

xy pairs XYPT (x,y) pairs, y vs. points
XYFN (x,y) pairs, y vs. file number
XYTM (x,y) pairs, vs. time
XYDI (x,y) pairs, y vs. distance (in meters)

y values only YPT y vs. points
YFN y vs. file number
YTM y vs. time
YDI yvs. distance (in meters)
YWL y vs. wavelength
YWN y vs. wavenumber

SAF 793

SAF (cont'd)

Image Files

Files containing image data contain the tag KeyWrd, which is followed by one
of the three types: IMG, CMAP, and PAV:

• If the type is IMG, the data consists of intensity values.

• If the type is CMAP, the data consists of a colormap and indexes into the
colormap.

• If the type is PAV (Position and Value), the data consists of ordered triplets
in the form (x,y,value).

In IMG files, the header is followed by the image data, XPixls columns by
Ypixls rows, and stored in row major order (row one, followed by row two, fol
lowed by row three, etc.). The file may contain more than one field; in this
case, the image is assumed to be interlaced. A footer may be present following
the image data and may contain information about background information
(to be subtracted from the image during rendering or analysis) in the form of
an array of single-precision floating-point numbers. Units are specified by val
ues for StdUnt or DaUnit tags.

Following the header in CMAP files is a 768-byte palette, consisting of 256 RGB
values. This is following by the image data stored as palette indices indexed
from the beginning of the palette.

PAV files contain data in the form of ordered triplets, consisting of an ordered
pair denoting position and another value related to amplitude. This is
designed to enable a rendering application to generate a rectangular array of a
size denoted by the values in the XPixls and YPixls tags. Origin is in the upper
left corner of the image.

XY data f'lles
Ordered pair data consists of a list of data pairs in (x y) format. The second
element of the pair is separated from the first by one or more spaces. Parame
ter names are stored in tags XParam and YParam, and units for x andy ele
ments of the pair are stored in XDaUnt and DaUnit, respectively.

Data in (x y) format can also be stored as a list of singlet y data, with x values
calculated from data stored in tags XYFIRST, XYLAST, and NumDPs.

Other types of files supported directly with predefined tags are Active Source
Files and Parameter Oriented Data {POD) files. Please cqnsult the
documentation on the CD-ROM for more information on these types of data.

794 GRAPHICS FIL.E FORMATS

SAF (cont'd)

CMAP f'de example
The following fragment should give you some idea of what a SAF file looks like.
This is a uncompressed CMAP (palette) bitmap image file six pixels wide by six
pixels high. The DaType of IntS denotes byte size data. Note that at the time of
this writing SAF supports only GZIP compression of image data (or none).

HdSize Auto
Class Unclassified
DaType Int8
Keywrd CMAP
XPixls 6
YPixls 6
ComPrs NONE
Data
ff ff ff ab Of Od ... [rest of 768-byte palette data] ... OO 00 00
00 00 01 fe Od Oc
bb 02 04 OS 09 27
cc Od Oa 23 21 22
41 de d2 c3 b9 02
aa ab ad Oa 09 32
cd 44 01 09 03 09

For More Information
Information about the SAF format was kindly provided by Dave Holt, and you
can reach him at:

Dale Holt
Sverdrup Technology
Arnold AFB, TN 37355
Email: holt@hap.amold. af. mil

Consult the specification document on the SAF format included on the CD
ROM that accompanies this book.

SAF 795

I SenseS NFF
NAME:

ALSO KNOWN As:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

SenseS NFF

WorkdToolkit Neutral File Format

Scene description

16M

None

Unlimited

No

ASCII, big-endian

SenseS

All

SenseS applications, conversion programs

No

No

No

Discussion of VRML files in Chapter 1

USAGE: Used to describe scenes in SenseS virtual reality hardware/software sys
tems.

coMMENTs: An early attempt at describing 3D scenes for virtual world construction. It
is unfortunate that SenseS has chosen to name their format NFF, given the
prior existence and wide distribution of Eric Haines' NFF format in the 3D
community.

Overview
SenseS is a manufacturer of hardware/software systems that are designed to
allow users to experience immersion in a 3D multisensual virtual world. The
file format stores the scene description information associated with the visual
component of this system.

There are two versions of the format, one in ASCII and one in binary. The
binary version follows the conventions of the ASCII version with the exception
that only 24-bit color is supported. Unfortunately, information on the binary
codes associated with the ASCII tokens was not available at the time of this writ
ing. Version 2.1 of the ASCII version is described here.

796 GRAPHICS FILE FORMATS

Sense8 NFF (cont'd)

In the ASCII version, lines may be terminated with either linefeed or line
feed/ carriage return pairs. Excess white space between tokens in the file is
ignored. Comments start with "/ /" and are treated like comments in
C++ -that is, characters to the right of the comment token are ignored, and a
comment is terminated by a linefeed or by a linefeed/carriage return pair.

File Organization
NFF files have a short header followed by one or more object descriptions.
ASCII files are terminated according to operating system conventions on the
host platform. A reader I parser applica~on is expected to check whether
objects are complete prior to rendering.

header
object #1
object #2

object #n

File Details
The header consists of the file ID "nff', followed by the version number and
two optional lines defining the viewpoint. The syntax is illustrated in the fol
lowing example:

nff
version 2.10
viewpos 0.000 0.000 0.000
viewdir 1.000 1.000 1.000

Following the header is a list of objects. Objects in NFF files are sets of poly
gons, and each polygon is defined by a list of vertices. An object definition
starts out with a name, followed by the number of vertices, and a list of the
actual vertices. Vertices are the x, y, and z coordinates of a point expressed as
ASCII real numbers, separated by one or more white spaces. Following the ver
tex information is a list of polygons constructed from the vertex information.

Vertices are indexed according to the order in which they are defined in the
file; the first vertex is number 0.

Object Name
number of vertices
vertex #0
vertex #1

vertex #n

SENSES NFF 797

SenseS NFF (cont'd)

polygon #1
polygon #2

polygon #m

Vertex information lines may contain an optional normal definition, a color
definition, and texture-mapped information. The normal definition is a vector
similar in form to the actual vertex specification. Color definitions are
expressed as hexadecimal numbers between 000000 and fffHI in the form
Oxrrggbb. The presence of texture-mapped information is signified by the
token "uv" and is followed by a pair of map coordinates expressed as real num
bers. A fully specified vertex line has the following form:

x y z norm nx ny nz Oxrrggbb uv U V

The following is an example of a vertex at 0,0,0 with normal 0,0,1, colored red,
and with u and v values of .5:

0.000 0.000 0.000 norm 0.000 0.000 1.000 Oxf£0000 uv 0.5 0.5

In many 3D programs, objects can be either colored or texture-mapped but
not both. Color information can be useful, however, when a texture is not
available to the rendering application or when texture-mapping is turned off
for performance reasons. Colors and uv information (related to texture
mapping) may be included on the same vertex definition line, but the color
information will be ignored if a texture file is present and textures are being
applied to the object.

Polygon definitions start with an integer indicating the number of vertices
making up the polygon. Following that is a list of vertex indices. Mter the ver
tex indices is a polygon color, specified in a manner similar to vertex colors.
These are normally 24-bit colors. They can, however, be stored in Oxrgb form
as 12-bit colors.

Following the color definition is an optional token "both", indicating that both
sides of the polygon are visible. If the both token is not present, only the front
of the polygon is visible. Polygon orientation is conveyed by noting the order
in which the vertices are defined. Vertices are arranged in counter-clockwise
order from the point of view of an observer facing the front of a polygon.

Optional texture names and attributes may be specified on the polygon defini
tion line. Texture information tokens are constructed by concatenating texture
attribute strings and the texture filename. The following texture attributes are
recognized:

798 GRAPHICS FILE FORMATS

v "vanilla" texture (no shading)
s shaded
t transparent
u shaded and transparent ·

SenseS NFF (cont'd)

Thus, a token signifying a shaded texture created from bitmap texture file grass
would have the form _s_grass. Transparency works on black pixels in the
texture bitmap. All black pixels are treated as transparent if transparency is
turned on.

Textures applied to polygons may also be modified through the use of the
tokens rot (rotate), scale, trans (translate), and mirror. Tokens rot, scale, and
trans are followed by real numbers. Rot is expressed in radians, mirror is a tog
gle, and all are values in u-v texture coordinate space. Texture modifications
are applied in the following order: mirror, rot, scale, and trans.

Polygons may be labeled with a token of the form "id=n", where n is a unique
polygon number. A "portal name" may also be assigned to a polygon. This
assignment is meant to allow the loading of an extension to the virtual world
being rendered when the polygon, acting as a "portal," is crossed (presumably
by the traveling point of view in an interactive situation).

The complete polygon syntax has the following form:

v1 v2 . .. vn Oxrrggbb both _t_name rot 0. 000 scale 0. 000 trans 0. 000
mirror id=m -nextworld

An example of this would be a six-sided polygon, with shaded grass texture
mapped to the front, with the texture rotated, scaled, and translated. An id
value of 2 has been assigned to it, and portal "nextworld" is to be loaded when
the polygon is traversed by the point of view or camera during an interactive
rendering session. Note that the red value is ignored due to the presence of a
texture specification.

5 0 1 2 3 4 OxffOOOO _s_grass rot 1.0 scale 0.5 trans 1.0
1.0 id=2 -nextworld

Note that vertex color specifications may override polygon color specifications,
so for full compatibility with SenseS products, you must examine color defini
tions for each polygon and compare them with those in the vertex definitions.
If the vertex definitions are all one color, this color is assigned to the polygon,
and the color information associated with the polygon is ignored.

In the same way, vertex texture values may override polygon texture designa
tors if the vertex values making up the polygon all include u-v values.

SENSES NFF 799

Sense8 NFF (cont'd)

The following is an example of a WfK ASCII NFF file.

nff
version 2.1
viewpos 0.0 0.0 0.0
viewdir 0.0 0.0 1.0
FirstObject
8
3.0 3.0 -3.0
3.0 -3.0 -3.0
-3.0 -3.0 -3.0
-3.0 3.0 -3.0
3.0 3.0 3.0
3.0 -3.0 3.0
-3.0 -3.0 3.0
-3.0 3.0 3.0
6
4 0 1 2 3 Oxf£0000
4 7 6 5 4 Ox00££00
4 0 4 5 1 OxOOOOff

II optional viewpoint ...
II ... and viewing direction
II object name
II total vertices
II vertex list

II total polygons.
II red
I I green
I I blue

4 1 5 6 2 Oxfff£00 _s_grass II shaded texture •grass•
4 2 6 7
4 3 7 4

3
0

Oxffffff
OxOOOOOO

_t_sky rot 1.0 II transparent, rotated texture •sky•
_v_world -nextworld

II vanilla texture "world", and
II polygon is a "portal" to nextworld

ForFurtherlnfonnarion
For additional information about the SenseS NFF file format, contact:

SenseS Corporation
100 Shoreline Highway
Suite 282
Mill Valley, CA 94941
Voice: 415-331-6318
WWW: http:/ /www.sense8. com/

You might also want to take a look at the SIG-WfK ITP site, an archive of
related 3D objects and image textures, as well as user-contributed software:

ftp:/ /artemis.arc. nasa.gov/Jtp/sig. wtk

800 GRAPHICS FILE FORMATS

NAME:

ALSO KNOWN As:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

SGI Image File Format I
SGI Image File Format

SGI, RLE, Haeberli

Bitmap

16 million

RLE

64Kx64K pixels

No

Big-endian

Silicon Graphics

UNIX

SGI graphics software

Yes

No

Yes

None

UsAGE: The SGI image file format is a generic bitmap format used for storing
black-and-white, gray-scale, and color images.

coMMENTs: SGI is one of the few formats to make use of a scan-line offset table to indi
cate the beginning of each scan line within compressed image data. SGI
files may also contain only color maps or alpha channel data, and they
may have a very large number of bit planes.

Overview
The SGI image file format is actually part of the SGI image library found on all
Silicon Graphics machines. SGI image files may store black-and-white (.BW
extension), color RGB (.RGB extension), or color RGB with alpha channel data
(.RGBA extension) images. SGI image files may also have the generic extension
.SGI as well.

The SGI image file format was developed by Paul Haeberli at Silicon Graphics.

SGI IMAGE FILE FORMAT 801

SGI Image File Format (cont'd)

File Organization
The SGI image file format header is 512 bytes in size and has the following
structure:

typedef struct _SGIHeader
{

SHORT Magic;
CHAR Storage;
CHAR Bpc;
WORD Dimension;
WORD XSize;
WORD YSize;
WORD ZSize;
LONG PixMin;
LONG PixMax;
CHAR Dwnmy1[4);
CHAR ImageName[80];
LONG ColorMap;
CHAR Dummy2[404];

} SGIHEAD;

I* Identification number (474) *I
I* Compression flag *I
I* Bytes per pixel *I
I* Number of image dimensions *I
I* Width of image in pixels *I
I* Height of image in pixels *I
/* Number of bit planes *I
I* Smallest pixel value *I
I* Largest pixel value *I
I* Not used *I
I* Name of image *I
I* Fonmat of pixel data */
I* Not used *I

Magic is the SGI file identification value; it is always decimal474.

Storage indicates whether the image data is compressed using an RLE algo
rithm (value of Olh) or is stored uncompressed (value of OOh).

Bpc is the number of bytes per pixel. This value may be Olh or 02h; most SGI
images have a value ofOlh, or one byte per pixel.

Dimension indicates how the image data is stored. A value of Olh indicates that
a single-channel image is stored as one long scan line. A value of 02h indicates
a single-channel bitmap whose dimensions are indicated by the XSize and
YSize header field values. A value of 03h indicates a multi-channel bitmap with
the number of channels shown by the value of the ZSize header field.

XSize and YSize are the width and height of a bitmap image in pixels.

ZSize is the number of channels in a bitmap image. Black-and-white images
typically have a ZSize of Olh, RGB images a ZSize of 03h. RGB images with an
alpha channel have a ZSize of 04h.

PixMin specifies the minimum pixel value in the image. This value is typically
OOh.

Pix.Max specifies the maximum pixel value in the image. This value is typically
FFh.

802 GRAPHICS FILE FORMATS

SGI Image File Format (cont'd)

Dummy 1 is a 4-~yte NULL character field that is not used.

ImageN arne is an SO-byte character field used to store the name of the image.
The name string may be up to 79 characters in length and must be terminated
with a NULL.

ColorMap specifies how the pixel values are to be regarded. Values are shown
below:

OOh Normal pixel values. Black-and-white images have one channel,
color images have three channels, and color images with an alpha
value have four channels.

Olh Dithered image with only one channel of data. Each dithered pixel
value is one byte in size, with the red channel value stored in bits 0,
1, and 2; the green value in bits 3, 4, and 5; and the blue value in
bits 6 and 7.

02h Single-channel image. The image contains pixels that are index val
ues into a color map stored in another SGI file.

03h Stored image data is a color map to be used for other images and
should not be displayed.

SGI files with ColorMap values of01h and 02h are considered obsolete.

Dummy2 is a 404-byte NULL character field used to pad the header out to an
even 512 bytes in size.

In SGI files containing uncompressed image data, the image data appears
immediately after the header. In SGI files with compressed image data, a scan
line offset table follows the header, and the compressed image data follows the
table.

File Details
The majority of SGI files store single-channel, 8-bits-per-pixel, black-and-white
images. Such images typically have a Bpc of 01h, a Dimension of Olh, and a
ColorMap of Olh. Color RGB images typically have a Bpc of 01h, a Dimension
of 02h (or 03h if an alpha channel is present), a ZSize of 03h (or 04h if an
alpha channel is present), and a ColorMap of01h.

The origin (0,0) for all SGI images is the lower-left comer of the display with
the first scan line starting at the bottom of the image.

SGI IMAGE FILE FORMAT 803

SGI Image File Fonnat (cont'd)

SGI files are found in two basic flavors: run-length encoded and verbatim
(uncompressed). Verbatim image data is written out by plane as scan lines. For
example, a 3-channel image has all of the data for its first plane written first,
followed by the data for the second plane, and finally by the data for the third.
If Bpc is set to 01h, then each scan line contains an XSize number of BYTEs; if
Bpc is set to 02h, then each scan line contains an XSize number of SHORTs.

In RLE image data, a scan-line offset table is used to keep track of the offset
where each scan line begins within the compressed image data. The offset
table appears immediately after the header and before the compressed image
data. The table contains one entry per scan line, determined by multiplying
the YSi.ze and ZSize values together. Each entry is a LONG (4-byte) value.

The offset table is actually two tables written consecutively to the SGI file. The
first table contains the starting offset values of each scan line; each offset is cal
culated from the beginning of the file. If the image data is stored as two or
more bit planes (ZSize > 1), then all of the offset values for the first plane are
stored first, followed by all of the offsets for the second plane, and so on. The
second table stores the compressed length of each encoded scan line in BYTEs.
And, once again, if the data is stored in more than one bit plane, the offset val
ues are stored by plane.

Note that the scan-line table cannot be ignored during the reading of com
pressed data, even if you are decoding the image completely from beginning
to end. Ther~ are several reasons for this:

1. The SGI specification diCtates that scan lines need not be stored in consec
utive order; only planes are required to be stored consecutively. It is there
fore possible that a scan line might be stored in an interleaved fashion (0,
4, 8, 12, ... rather than 0, 1, 2, 3, ...) .

2. Multiple entries in the scan-line table might point to the same scan line. An
image with many identical scan lines (containing all white pixels, for exam
ple) might encode only one such scan line and have all identical entries in
the offset table pointing to the same line. It is also possible that a gray scale
image stored as three planes (RGB) would have each plane pointing
towards the same scan line.

The RLE algorithm used to compress the SGI image data varies in format
depending upon the value of the Bpc field in the header. If the Bpc is 01h, this
indicates one byte per pixel. A simple 2-byte RLE encoding scheme is used, in

804 GRAPHICS FILE FORMATS

SGIImage File Fonnat (cont'd)

which the lowest seven bits of the first byte is the run count. The high bit in
this byte is the run-count flag. If this bit is set to 0, then the next byte (the run
value) is repeated a number of times equal to the run count. If the run count
flag is 1, then the run count indicates the number of BYrEs to copy literally
from the input stream to the output stream.

If the Bpc value is 02h, then each pixel is stored in a 2-byte SHORT value. The
RLE algorithm is basically the same, with each RLE packet being three BYrEs
long, rather than two. Bits 0 through 6 of the low byte are the run count, and
bit 7 is the run-count flag. The run value is the SHORT value following the
run-count byte. If bit 7 is set to 0, this indicates a repeat run count of SHORT
pixel values. If bit 7 is set to 1, this indicates a literal run count of SHORT pixel
values. Using either pixel size, each decompressed scan line should be XSize
pixels in length.

ForFurtherhdonnatlon
For further information about the SGI image format, see the specification
included on the CD-ROM that accompanies this book. Information on all Sili
con Graphics file formats may be obtained directly from SGI:

Silicon Graphics Inc.
Attn: Visual Magic Marketing
2011 North Shoreline Blvd.
Mountain View, CA 94039-7311
Voice: 800-800-4SGI
ITP: ftp:/ /sg;i. com/
WWW: http://www.sg;i.com/

If you are using a Silicon Graphics workstation, you may refer to the documen
tation on the -limage library by using the man command man 4 rgb.

SGI IMAGE FILE FORMAT 805

I SGI Inventor
NAME: SGI Inventor

ALso KNowN As: IRIS, 3D Interchange File Format

TYPE: 3D scene description

coLoRs:· Unlimited

coMPREssioN: Uncompressed

MAxiMuM IMAGE s1zE: Unlimited

MuLTIPLE IMAGEs PER FILE: Yes

NUMERICAL FORMAT: NA

ORIGINAToR: Silicon Graphics

PLATFORM: UNIX

suPPoRTING APPLICATioNs: Many

SPECIFICATioN oN cD: Yes

cooE oN cD: Yes

IMAGEs oN cD: No

SEE ALSO: SGO

UsAGE: Known primarily through SGI's IRIS Inventor system.

coMMENTs: SGI Inventor was designed for the exchange of 3D modeling information
between software applications.

Overview
The SGI Inventor file format was first released in july 1992 by Silicon Graphics,
and was specifically designed for the exchange of 3D modeling information
between software applications. It has been used by CAD, chemistry, financial
data, scientific visualization, art history, earth sciences, creative, presentation,
architecture, animation, and other applications.

The SGI Inventor file format was created as part of the IRIS Inventor 3D
Toolkit. The toolkit is an object-oriented 3D class library for the C and C++ lan
guages that enables programmers to write interactive 3D graphics programs.
IRIS Inventor,s file format is used by a large assortment of 3D applications,
such as SGI's Showcase, SGI's Explorer Scientific Visualization System, Indus
trial Light and Magic's animation system, SDRC, Parametric Technology, and
many more.

806 GRAPHICS FILE FORMATS

SGI Inventor (cont'd)

The toolkit is based on an object-oriented database (OODB) to represent a 3D
hierarchical scene. The scene database contains many types of objects, such as
groups, transformations, labels, materials, drawing styles, cameras, lights, J8
different geometry types, and so on. And because SGI Inventor is object
oriented, the file format can be extended to support custom objects. The SGI
Inventor file format therefore is an ASCII version of a scene database.

File Organization
The SGI Inventor file format may write either binary or ASCII data, depending
on how the file is to be used. The data in both file types are machine
independent. The internal format of the Inventor binary format is proprietary
and cannot be discussed in depth in this article.

SGI Inventor ASCII files contain only 7-bit, ASCII information and are parsed
just as any other text file would be when read. Each line of information in an
Inventor ASCII file is terminated by a linefeed (ASCII OAh) character. Lines
beginning with the # are comments and are generally ignored.

Inventor ASCII files contain the following header signature:

#Inventor Vl.O ascii

while Inventor binary files contain the following header signature:

#Inventor Vl.O binary

Although these signatures may vary in design in future versions of the Inventor
file formats, they will never be longer than 80 characters and will always begin
with the # comment character.

File Details
Following the header signature is a series of data nodes that contain the actual
rendering information. All information in an Inventor file is conceptualized as
objects called nodes. Nodes may contain other nodes (called child nodes) and
may also be grouped into collections of nodes called graphs. The syntax for a
node is as shown below:

nodename {
fieldnamel valuel value2
fieldname2 valuel value2 value3
fieldname3
fieldnameN value

SGI INVENTOR 807

SGI Inventor (cont'd)

A node contains a node name followed by a series of data field names and data
field values. The fields may appear in any order within a node and are not writ
ten out if their values are the default values for the field. The fields of a node
are always enclosed in braces.

Nodes may also contain other nodes called child nodes:

nodename {
fieldnamel value
fieldname2 value
fieldnameN value
childnodel {

fieldnamel value
fieldname2 value
fieldnameN value

childnode2 {
fieldnamel value
fieldname2 value
fieldnameN value

The values in each field are defined for each node. A field may contain one or
more values. Each value is separated by a white space character. A field con
taining multiple groups of values surrounds the entire grouping with brackets,
and commas separate each group; for example:

nodename {
fieldnamel valuel value2 value3
fieldname2 [valuela valuelb valuelc, value2a value2b value2c]

The format used to write field values depends upon their data type, as shown
below:

100
100.0
l.Oe2
"name"
mnemonic

Integers
Floating-point
Floating-point
Strings
Enumerations and bit fields
Ignore this field

808 GRAPHICS FILE FORMATS

SGI Inventor (cont'd)

A field name which contains a tilde ("")for a value is ignored by the SGI Inven
tor file reader. The following is a fragment of an SGI Inventor ASCII file:

Separator {
Normal {

vector 0 1 0

Material {
ambientColor
diffuseColor
specularColor
emissiveColor
shininess
transparency

Coordinate3
point [0.0

1.0
1.0
2.0
2.0
2.0
3.0

0.2 0.2 0.2 -
0.720949 0.714641
0.2 0.2 0.2 -
0 0 0 -
0 -
0 -

0.0 0.0, # 0
0.0 0.0, # 1
1.0 0.0, # 2
o.o 0.0, # 3
1.0 0.0, # 4
1.0 0.0, # 5
0.0 0.0, # 6

IndexedTriangleMesh {

0.492981

coordindex [0, 1, 2, 3, 4, 5, -1 1

Each node stored in an Inventor file represents a 3D shape, property, or group
ing. All SGI Inventor nodes are divided into five classes:

• Shape

• Property

• Group

• Light

• Camera

Shapes include geometric objects. Properties are the qualitative aspects of the
objects. Group indicates the type of organization applied to one or more
nodes. Light and Camera information affect the appearance of the rendered
image.

SGI INVENTOR 809

SGI Inventor (cont'd)

The following list contains the Inventor nodes grouped by class:

Shape:

Cone
Cube
Cylinder
Face Set
IndexedFaceSet
IndexedLineSet

Property:

BaseColor
Complexity
Coordinate3
Coordinate4.
DrawStyle
Environment
Font
Info
Label
LightModel
LinearProfile
Material
MaterialBinding

Group:

Array
CustomNode
File
Group

Light:

IndexedNurbsCurve
IndexedNurbsSurface
IndexedTriangleMesh
Line Set
NurbsCurve
NurbsSurface

Matrix Transform
Normal
NormalBinding
NurbsProfile
PackedColor
PickStyle
ProfileCoordinate2
ProfileCoordinate3
ResetTransform
Rotation
RotationXYZ
Scale
ShapeHints

PointSet
QuadMesh
Sphere
Text2
Text3
TriangleStripSet

Texture2
Texture2Transform
TextureCoordinate2
TextureCoordinateBinding
TextureCoordinateCube
TextureCoordinateCylinder
TextureCoordinateEnvironment
TextureCoordinateFunction
Texture(::oordinatePlane
TextureCoordinateSphere
Transform
Translation
Units

LayerGroup
MultipleCopy
PathSwitch
Selection

Separator
Switch

DirectionalLight PointLight SpotLight

Camera:

OrthographicCamera PerspectiveCamera

810 GRAPHICS FILE FORMATS

'
SGIInventor (cont'd)

ForFurtherhllonnation
For further information about the SGI Inventor format, see the following docu
ments included on the CD-ROM that accompanies this book.

Silicon Graphics, Inc., How to Write an IRIS Inventor File Translator,
Release 1.0.

Silicon Graphics, Inc., How to ~te an open Inventor File Translator,
Release 2.0.

Silicon Graphics, Inc., IRIS Inventor Nodes QJ.tick Reference Guide, Release
1.0.

Silicon Graphics, Inc., IRIS Inventor Nodes QJ.tick Reference Guide, Release
2.0.

Information on the SGI Inventor file format may also be found in the following
document, available directly from Silicon Graphics:

SCI Inventor Programming Guide, Volume L· Using the Toolkit.

The following book contains a chapter describing the SGI Inventor file format
for Release 2.0:

Wernecke, Josie, The Inventor Mentor, Addision-Wesley, Reading, MA,
1994.

For additional information, contact:

Silicon Graphics Inc
Attn: Visual Magic Marketing
2011 North Shoreline Blvd.
Mountain View, CA 94039-7311
Voice: 800-800-4SGI
FTP: ftp:/ /sgi. com/sgi/inventor/
WWW: http:/ /www.sgi. com/Technology/Inventor/index.html

You can also contact:

Gavin Bell
Silicon Graphics Inc.
FAX: 415-390-6056
Email: gavin@sgi. com

SGI INVENTOR 811

ISGIYAODL
NAME:

ALSO KNOWN As:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

SGIYAODL

Yet Another Object Description Language, Power
Flip Format

3D scene description

Millions

Uncompressed

Unlimited

Yes

ASCII, big-endian

Silicon Graphics

SGI

Powerflip

No

No

Yes

SGI Inventor

usAGE: A simple format used for storing 3D vector data.

coMMENTs: YAODL is not widely used at Silicon Graphics and is constandy in danger
of being rendered obsolete by more robust 3D imaging formats, such as
SGI Inventor.

Overview
YAODL (Yet Another Object Description Language) is a description language
used for storing 3D object data to disk files. YAODL is a rather obscure format
that was created specifically for the Silicon Graphics Powerflip demo program,
and it is not widely supported by SGI. However, it is a simple example of a basic
vector-object description language.

YAODL supports a small collection of object types, including NURBS, polygons,
and quad-meshes. Object properties such as normals (facet or vertex), colors
(object, facet, and vertex), and texture coordinates are also supported.

812 GRAPHICS FILE FORMATS

SGIYAODL (cont'd)

Advanced features of YAODL include hierarchical models, coordinate transfor
mations (rotations, scales, translations, and so forth), and instancing (using
the same data more than once).

File Organization
A YAODL file begins with the comment header #YA.ODL, followed by one or
more YA.ODL objects. Each object can be completely independent of all other
objects in the YAODL file, or it can rely on previously defined object data
within the same file.

Each object may be written to a YAODL file using either an ASCII or binary data
format. Therefore, a YAODL file may contain entirely ASCII data, entirely
binary data, or a mixture of the two.

The advantage of ASCII objects is that they are easy to modify using a simple
text editor and are portable between different machin~ platforms. And while
binary objects are less portable, they are smaller and faster to load than their
ASCII equivalents.

Comments may be inserted into ASCII YAODL files either by enclosing the com
ment in the Standard C comment tokens /* and *I, or by including the UNIX
shell-style comment# at the beginning of each line. All comments and white
space characters are ignored by YAODL file parsers.

File Details
An ASCII YAODL file contains one or more YAODL objects, delimited by com
mas. Each object may have one of the following syntaxes:

(object_type argumentl, argument2, ... l
(object_type argumentl, ... : propertyl, property2, ...
integer integer integer .. .
float float float ...
•some character String•
name = { one of the forms above }
name

Each YA.ODL object may contain zero or more arguments and have zero or
more properties. For example, a colors object contains a minimum of three
arguments:

(colors 0.0 1.0 0.0),

The three arguments here are RGB float values and define the color green. It is
possible for many objects to have multiple groups of arguments. For example,

SGI YAODL 813

SGI YAODL (cont'd)

a colors object may define more than one color, with each color represented
by a set of three float values:

(colors 0.0 1.0 0.0 0.0 1.1 0.0 0.0 1.2 0.2),

An object may be used by other objects that take objects as their arguments or
properties. For example, we may define a red polygon with four vertices in the
following way:

(polygons
(vertices -1. -1. 0. 1. -1. 0. 1. 1. 0. -1. 1. 0.),
: colors 0.0 1.0 0.0

) ,

Here we have a polygons object that takes one vertex's object as its argument
and a color object as its properties. We can shorten this declaration by assign
ing a name to the colors object and using the new name in the properties list
of the polygons object:

green= (colors 0.0 1.0 0.0), ·
(polygons
(vertices -1. -1. 0. 1. -1. 0. 1. 1. 0. -1. 1. 0.}, : green},

Note that the colors object, green, is a property of the polygons object, and
object properties affect only the object to which they are assigned. The proper
ties of each object must be explicitly specified or their default value(s) are
assumed.

You probably have noticed that all the objects we've seen so far are described
using their plural inflection, such as polygons rather than polygon. This is
because it is possible to describe more than one rendered object within a
YA.ODL object. For example, we could create three polygons, each red, green,
and blue, using three polygon objects:

/* Three polygons */
red= (colors 1.0 0.0 0.0},
green = (colors 0.0 1.0 0. 0) 1

blue = (colors 0.0 0.0 1.0),
(polygons

(vertices -1. -1. 0. 1. -1.0. 1. 1. o. -1. 1. 0.), red),
(polygons

(vertices 1. -1. 0. 1. 1.0. -1. 1. 0. -1. -1. 0.), green),
(polygons

(vertices 1. 1. 0. -1. 1.0. -1.-1. 0. 1. -1. 0.), blue),

Or we could nest all of these descriptions together to achieve e:xactly the same
rendering using a single polygon object:

814 GRAPHICS FILE FORMATS

SGI YAODL (cont'd)

(polygons
(vertices -1. -1. 0. 1. -1. 0. 1. 1. 0. -1. 1. 0.),
(vertices 1. -1. 0. 1. 1. 0. -1. 1. 0. -1. -1. 0.),
(vertices 1. 1. 0. -1. 1. 0. -1. -1. 0. 1. -1. 0.),
: colors 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0,

) '

It is important to realize that a YAODL reader does not perform any data type
conversion, so be careful not to use an integer when a float is needed, and so
on.

Normally, each name and object defined in an ASCII YAODL file has a global
scope across the entire file starting at the point where it is defined. Braces { }
may be used to create limited, block-scope variables within a YAODL file.
Names defined within this local scope have precedence over identical names
declared in the global scope and do not exist outside of their block.

blue= (colors 0.0 0.0 1.0), /*Define the color blue*/
(polygons

(vertices 1. 1. 0. 2. 2. 0.), :blue), /*Draw a blue line*/

blue= (colors 0.0 0.15 1.0),
/* Redefine the color blue for this block only */

(polygons
(vertices 2. 2. 0. 2.5 2.5 0.), :blue), /*Draw a blue line*/

This line is drawn in the original blue.
(polygons

(vertices 2.5 2.5 0. 3. 3. 0.), :blue), /*Draw a blue line*/

In all cases, names must be defined before they are referenced.

Hierarchies may be created within YAODL objects using the group object. A
group object may have any number of arguments, each of which is a YAODL
object. A group object may also contain properties, but each property must
have a definition for each object in the group. For example:

(group V =
(vertices -0.175000 0.350000 0.020000),

N =
(normals 0.000000 0.000000 1.000000),

I =
(indices 0 1 2),

half= (indexpolygons V, I, : N), half,
(group half,

) ,
) ,

(rotates 180.000000 0.000000 0.000000 1.000000),

SGI YAODL 815

SGI YAODL (cont'd)

As previously mentioned, objects within a YAODL file may also be stored using
a binary format. Binary YAODL objects start with an @ character followed by a
NULlrterminated ASCII string identifying the name of an object. Valid object
names are:

colors
contours
indexpolygons
indices
group
normals
nurbs

· polygons

regular Mesh
rotates
scales
texcoords
textures
translates
trim curves
vertices

Following the object name string is an 8-byte integer specifying the number of
bytes of binary data that follow. The format of the binary data depends on the
type of data used by the object. Integer and floating-point data are stored nor
mally, using the native byte order of the machine. Indices are stored using the
following format:

The number_of_lists specified is an integer indicating how many arguments
(groups of integers) the object has. The array length is a list of integers specify
ing the length of each group of integers. Following this array is the integer
data for each list.

The following is an example of a small YAODL file that renders a cube:

#YAODL
v =
(vertices 0.250000 -0.250000 -0.250000 0.250000 0.250000 -0.250000
-0.250000 0.250000 -0.250000 -0.250000 -0.250000 -0.250000
0.250000 0.250000 0.250000 0.250000 -0.250000 0.250000
-0.250000 0.250000 0.250000 -0.250000 -0.250000 0.250000 1)1

i =
(indices
0 1 2 3 1

0 1 4 5 1

4 1 2 6 1

7 6 2 3 1

0 5 7 3 1

7 6 4 5 1

)

(indexpolygons v~
il

(colors 1.000000 1.000000 0.400000 0.700000 0.500000 0.200000

816 GRAPHICS FILE FORMATS

SGIYAODL (cont'd)

0.000000 0.000000 1.000000 0.300000 1.000000 1.000000
0.200000 1.000000 0.700000 1.000000 0.700000 0.700000 ,),
(normals 0.000000 0.000000 -1.000000 1.000000. 0.000000 0.000000
0.000000 1.000000 0.000000 -1.000000 0.000000 0.000000
0.000000 -1.000000 0.000000 0.000000 0.0000001.000000
,) ,
) ,

ForFurtherlnfonnation
For further information about YAODL, see the YAODL(6D) manual page found
on the Silicon Graphics system. For more information, contact:

Silicon Graphics Inc.
Attn: Visual Magic Marketing
2011 North Shoreline Blvd.
Mountain View, CA 94039-7311
Voice: 800-800-4SGI
FTP: ftp:/ /sgi.com/
WWW: http://www.sgi.com/

SGI YAODL 817

ISGO
NAME:

ALSO KNOWN As:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

SGO

Showcase, Silicon Graphics Object

3D vector

Unlimited

None

Unlimited

No

Big-en dian

Silicon Graphics

UNIX

SGIShowcase

Yes

No

No

SGI Inventor

usAGE: Used primarily with Silicon Graphics Showcase.

coMMENTs: A useful format to examine if you are interested in interchange strategies.

Overview
SGO (Silicon Graphics Object) is a binary format used to store 3D image
rendering information. SGO was originally created for internal use at Silicon
Graphics, but is now associated with the Silicon Graphics Show~ase applica
tion. SGO is used primarily as a way to import 3D models into Showcase,
although the SGI Inventor format is generally preferred over SGO as an inter
change medium. (See the SGI Inventor article for information about this for
mat.)

File Organization
The SGO file format does not have an actual header as most image file formats
do. The first two bytes of every SGO file is a magic number value of 5424h. This
value identifies the file as being an SGO data file.

818 GRAPHICS FILE FORMATS

SGO (cont'd)

Following the magic number is a series of data objects. Each object begins with
a data token value indicating the type of data the object stores. Valid data
token values are:

01 h Quadrilateral List
02h Triangle List
03h Triangle Mesh
04h End Of Data

An SGO data file may contain any number of these objects in any order, except
that there is only one End Of Data object per file, and it must appear as the
last object stored in the data file. An End Of Data object contains only a token
value and no data.

File Details
The SGO Quadrilateral List and SGO Triangle List data objects have the same
structure, shown below:

typedef struct _QuadTriListObjects
{

LONG ObjectToken;
LONG DataSize;
struct _vertex

/* Object token identifier */
/* Size of the data in this object in WORDs */
/* Object vertex structure(s) */

{

FLOAT XNormalVector;
FLOAT YNormalVector;

/* X axis of the normal vector at the vertex */
/* Y axis of the normal vector at the vertex */

FLOAT ZNormalVector; /* z axis of the normal vector at the vertex */
FLOAT RedVertexComponent; /* Red color component at the vertex */
FLOAT GreenVertexComponent; /* Green color component at the vertex */
FLOAT BlueVertexComponent; /* Blue color component at the vertex */
FLOAT XVertex; /* X axis of the vertex */
FLOAT YVertex;
FLOAT ZVertex;
vertices[DataSize I 9];

/* Y axis of the vertex */
/* z axis of the vertex */

SGOQUADLIST, SGOTRIANGLIST;

ObjectToken is the object token identification value. This value is 01h for
Quadrilateral List objects and 02h for Triangle List objects.

DataSize is the size in WORDs of the data contained within this object. The
size of the Object Token and DataSize fields are not included in this value.

Each vertex in the object is encoded as an array of one or more 18-byte struc
tures. Each vertex structure contains nine fields of data defining a: vertex in the
object. The fields in each structure are defined as follows:

SGO 819

SGO (cont'd)

XNormalVector, YNormalVector, and ZNormalVector contain the position of
the normal vector at this vertex.

RedVertexComponent, Green VertexComponent, and BlueVertexComponent
hold the RGB values for the color of this vertex.

XVertex, Wertex, and ZVertex contain the position of the vertex itself.

The structure of the SGO Triangle Mesh data object is similar to the List
objects, but adds a few more fields of information:

typedef struct _TriMeshObject
{

LONG ObjectToken;
LONG DataSize;
LONG VertexSize;
struct _vertex

I* Object token identifier */
I* Size of the data in this object in WORDs */
I* Size of the vertex data in WORDs */
I* Object vertex structure(s) *I

{

FLOAT XNormalVector; /* X axis of the normal vector at the vertex */
FLOAT YNormalVector; /* Y axis of the normal vector at the vertex */
FLOAT ZNormalVector; /* z axis of the normal vector at the vertex */
FLOAT RedVertexComponent; I* Red color component at the vertex */
FLOAT GreenVertexComponent; /* Green color component at the vertex *I
FLOAT BlueVertexComponent; /* Blue color component at the vertex *I
FLOAT xvertex; I* X axis of the vertex *I
FLOAT YVertex; I* Y axis of the vertex *I
FLOAT ZVertex; I* z axis of the vertex *I
} Vertices[DataSize I 9];

struct ~eshControl I* Mesh Control structure(s) *I
{

LONG MeshControlid; I* Mesh Control identifier */
LONG NumOfindices; /* Number of indices stored in the control *I
LONG Indices[NumOfindices]; /*Index values*/
Vertices[];

SGOTRIANGMESH;

ObjectToken is the object token identification value. This value is 03h for Tri
angle Mesh objects.

DataSize is the size in bytes of the data contained within this object. The size of
the ObjectToken and DataSize fields are not included in this value.

VertexSize is the number of WORDs required to store the vertex data in the
object.

Each vertex in the object is encoded as an array of one or more 18-byte struc
tures. Each vertex structure contains nine fields of data defining a vertex in the
object. The fields in each vertex structure are defined as follows:

820 GRAPHICS FILE FORMATS

SGO (cont'd)

XNormalVector, YNormalVector, and ZNormalVector contain the position of
the normal vector at this vertex.

RedVertexComponent, GreenVertexComponent, and BlueVertexComponent
hold the RGB values for the color of this vertex.

:XVertex, Wertex, and ZVertex contain the position of the vertex itself.

Following the vertices array is an array of mesh control structures. These struc
tures hold data that specifies how the vertex data is to be linked together. The
fields in each mesh control structure are defined as follows:

MeshControlld is the identifier for the type of mesh control. The valid values
for this field are:

01h Begin Triangle Mesh
02h Swap Triangle Mesh
03h End Begin Triangle Mesh
04h End Triangle Mesh

NumOflndices indicates how many indices are stored in this mesh control.
Indices is an array of the index values for this mesh control.

ForFurtherhdonnation
For further information about the SGO file format, see the specification
included on the CD-ROM that accompanies this book. In addition, see the ref
erences in the SGI Inventor article and the following article, available from SGI:

Silicon Graphics, IRIS Showcase User's Guide, Appendix C, "Graphics
Library Programming Guide."

Contact:

Silicon Graphics Inc.
Attn: Visual Magic Marketing
2011 North Shoreline Blvd.
Mountain View, CA 94039-7311
Voice: 800-800-4SGI
FTP: ftp:/ /sgi. com/
WWW: http:/ /www.sg;i. com/

SGO 821

I SPIFF
NAME: SPIFF

ALso KNowN As: Still Picture Interchange File Format,JPG, SPF

TvPE: Bitmap

coLoRs: Bitonal to 32-bit

coMPREssioN: Modified Huffman, MR, MMR,JBIG,JPEG, uncom
pressed

MAXIMUM IMAGE SIZE: 4GX4G pixels, 64Kx64K pixels for non-tiled baseline
]PEG

MuLTIPLE IMAGEs PER FILE: No

NuMERICAL FoRMAT: Big-endian

ORIGINATOR: ISO/IEC

PLATFORM: All

SUPPORTING APPLICATIONS: All that SUpport the jfif format

SPEciFicATioN oN cD: No

cooE oN cD: No

IMAGEs oN cD: No

SEE ALso:. JFIF and the discussion of]PEG and JBIG compres
sion in Chapter 9, Data Compression

UsAGE: SPIFF is the official replacement for the JFIF file format for storing JPEG
data. It is also the format to use for storing JBIG data, and it offers an alter
native to CCITI Group 3, Group 4, and CALS for storing MR and MMR
data.

coMMENTs: SPIFF is a new international standard and is currently supported by very
few applications. MostjFIF readers, however, will have no problem inter
preting SPIFF:JPEG files.

Overview
SPIFF is a generic bitmap file format defined by ITU (International Telecom
munication Union) and ISO/IEC (International Standards Organiza
tion/International Electrotechnical Commission) for the storage,
compression, and interchange of color or gray-scale, continuous-tone images,
and bitonal image data.

822 GRAPHICS FILE FORMATS

SPIFF (cont'd)

SPIFF may be best described as the "official" JPEG file format. 'When the Joint
Photographic Experts Group (ISO/IECJTCl/SC29/WGl) established the]PEG
compression standard in 1990, they didn't create a corresponding standard file
format for the storage and interchange of JPEG data. Some five years later,
SPIFF has been ratified by the]PEG committee to fill this omission.

Why was an official JPEG file format not created by the original JPEG commit
tee? The official reason is that the JPEG Convener at that time realized that
numerous other standards groups were defining file formats for various appli
cation environments, such as SC18 for the Office Document Architecture
(ODA) and SC24 for image processing applications. Each of these groups was
planning on storing]PEG-compressed data within file formats of its own
design.

The Convener reasoned that a single file format covering the needs of all
applications could not be adequately defined and concluded that the other
standards bodies should be left to create their own formats to encapsulatejPEG
data. The Convener also indicated that any file format work undertaken by the
]PEG committee could be perceived as infringing upon the scope of work of
other standards bodies.

One unofficial reason for the decision was that the]PEG committee was under
pressure to release its standard and, with quite a bit of work left to do, could
not see taking on another major task, such as that of defining a file format.

But raw]PEG data stored in a file does require some ancillary information to
make it useful (such as the color space of the image), so creating a file format
for]PEG data was something that someone needed to do, even if the format
wasn't going to be officially sanctioned by the JPEG committee.

The format that emerged was the JPEG File Interchange Format (JFIF) created
in 1992 by Eric Hamilton of C-Cube Microsystems and other developers as well.
JFIF is the format typically used when software reads and writes what. is more
commonly referred to as a JPEG file. Although JFIF was a very simple format
containing litde more than a header followed by a JPEG data stream-it was
very portable across all operating systems, and it quickly became the de facto
standard file format for storing]PEG image data.

When Eric Hamilton took over as WGI Convener (]PEG and]BIG commit
tees), he started to work on a completely defined file format for JPEG data. His
rationale was that everybody else was working on large and complicated for
mats with lots of features, while the great majority of users only need some
thing simple that allowed image interchange. The interchange of compressed

SPIFF 823

SPIFF (cont'd)

pictures definitely falls within the scope of the ISO project]TC 1.29.04 (]PEG},
and, therefore, Hamilton reasoned that the committee could start work on
SPIFF without going through the red tape of balloting a new work item pro
posal.

Why use SPIFF rather than JFIF? JF1F is small, simple, and widespread, and prac
tically every]PEG image display program reads it. Why give it up?

One reason is that SPIFF is much more carefully designed, specified, and
thought-out than JFIF. SPIFF is an official standard rather than an ad hoc one,
and it has been through a more thorough review process.

SPIFF is also more flexible than JFIF. Extended features include support for
. more color spaces and a provision for specifying image gamma. JFIF took a
shortcut by attempting to require that all JFIF images have a gamma of 1.0.
That requirement has been widely ignored because many pre-existing images
have other gamma values, and, as it turns out, a gamma of around 0.4 to 0.5 is
technically superior.

The variation in gamma values means thatJFIF images frequently come out too
dark or too light, depending on their origins and the viewing system. SPIFF
offers the opportunity to improve the situation by marking files with their
image gamma. Viewers can then correct image brightness as needed for their
display hardware.

SPIFF is part of the]PEG standard and therefore is very well-defined in format,
application, and compliance testing. It is fully expected that SPIFF will eventu
ally replace JFIF as the file format of choice for continuous-tone color and gray
scale compressed image data.

SPIFF will also be supported by the Independent]PEG Group's (I]G)]PEG
library (included on the CD-ROM that accompanies this book). What this
means is that you can integrate SPIFF support into your image and graphics
applications using a well-known, well-written, widely distributed, and freely
available source code library that hundreds of applications already use.

·The SPIFF specification does not define a stapdard file extension or type indi
cator for SPIFF files. IJG recommends that the extension "JPG", and "JPEG"
type indicator, be used for SPIFF files containing lossy (DCT}]PEG-compressed
data, and that ".SPF" be used for all other variants of SPIFF. (Of course, the
JBIG community might prefer a "JBG" extension for SPIFF:JBIG files.)

The file extension JPG is already commonly used for JFIF-format]PEG files.
However, properly written JFIF-compatible software should read SPIFF:JPEG

824 GRAPHICS FILE FORMATS

•

SPIFF (cont'd)

files without difficulty. The SPIFF format has been carefully designed to make
this possible by defining the magic numbers and length fields to make the
SPIFF header look like a series of JPEG APPn markers, which old JPEG decoders
will just ignore.

It is also reasonable to expect that SPIFF:JPEG software will also read JFIF files
for backwards compatibility. Because]FIF and SPIFF:JPEG are interoperable,
there is no need to confuse the average user by introducing a new file exten
sion for SPIFF files containingJPEG data.

The non:JPEG variants of SPIFF, however, are not interoperable with any exist
ing software and, in fact, will confuse]FIF-only software considerably, so those
variants need a different extension. Using the extensions "JPG" and ".SPF"
also offers the advantage of maintaining a clear distinction between lossy and
lossless SPIFF image formats, which should help to minimize user confusion
and unintentional degradation of data.

File Organization
SPIFF files are composed of four major sections: the header, the information
directory, the image data, and an optional section containing indirect data
(that is, information too large to fit in the information directory).

Header

Directory.

Image Data

Indirect Data

The header is typical of most bitmap file headers and contains information
necessary to properly decode the image data. The directory may be thought of
as a secondary header that contains optional fields of information called direc
tory entries. The image data is stored immediately after the directory and is fol
lowed by any directory data that was too large to fit in a single directory entry.

File Details
This section describes the contents of the SPIFF header and directory and pro
vides other details of the format .

SPIFF 825

SPIFF (cont'd)

SPIFF Header

The header is 36 bytes in length and has the following format:

typedef struct _SpiffHeader
{

DWORD MagicNumber;

WORD HeaderLength;

CHAR Identifier[6];
WORD Version;
BYTE Profileid;
BYTE NumberComponents;
DWORD ImageHeight
DWORD ImageWidth;
BYTE ColorSpace;
BYTE BitsPerSample;
BYTE CompressionType;
BYTE ResolutionUnits;
DWORD VerticalResolution;

I* Primary identification value
(FFD8FFE8h) */

/* Header length (not including
MagicNumber) *I

/* Secondary ID value ("SPIFF\0") */
/* SPIFF version *I
/* Application profile */
/* Number of color components */
I* Number of lines in image */
/* Number of samples per line */
I* Color space used by image data */
I* Number of bits per sample *I
/* Type of data compression used *I
/* Type of resolution units */
I* Vertical resolution *I

DWORD HorizontalResolution; I* Horizontal resolution */
SPIFFHEADER;

MagicNumber is the identification value for SPIFF files. This 4-byte field always
contains the value FFD8FFE8h.

HeaderLength contains the length of the header excluding the MagicNumber
field. In vl.O of SPIFF, this value is always 32.

Identifier contains additional identification values. These values are 53h 50h
49h 46h 46h OOh (the NULL-terminated string "SPIFF").

Version contains the major and minor revision of SPIFF that the file conforms
to. The most significant byte contains the value 01h and the least significant
byte contains the value OOh. These values correspond to v 1.0.

Differing minor version numbers represent backward-compatible changes in
the SPIFF format. Differing major version numbers represent backward
incompatible changes in SPIFF. File readers should attempt to read SPIFF files
even if the minor revision number is not recognized, but should give up if the
major version is not recognized.

Profileid specifies the features that the file reader must support to read the
file. The possible values for this field are 0 (no profile specified), 1 (continu
ous-tone base profile), 2 (continuous-tone progressive profile), 3 (hi-level fac-

, simile profile), and 4 (continuous-tone facsimile profile).

826 GRAPHICS FILE FORMATS

0

SPIFF (cont'd)

NumberComponents indicates the number of color components (channels) in
the primary image. This value is 1 for a typical gray-scale image and 3 for ari
RGB or CMYimage.

ImageHeight and Image Width store the size of the image. ImageHeight is the
number of scan lines in the primary image. Image Width is the number of sam
ples per line.

ColorSpace specifies the color space coordinate system used to define the sam
ples. Allowed values for this field are:

0 Bi-level
I YCbCr, ITU-R BT 709, video
2 No color space specified
3 YCbCr, ITU-R BT 601-1, RGB
4 YCbCr, ITU-R BT 601-1, video
5 Reserved
6 Reserved
7 Reserved
8 Gray-scale
9 PhotoYCC
IO RGB
II CMY
I2 CMYK
13 YCCK
I4 CIELab

BitsPerSample specifies the number of bits per sample.

Compression Type indicates the type of compression algorithm used to encode
the image data. The possible values for this field are:

0 Uncompressed, interleaved, 8 bits per sample
I Modified Huffman
2 Modified READ
3 Modified Modified READ

4 JBIG
5 JPEG

Resolution Units indicates the type of units used to express the resolution of
the image. Possible values for this field are 0 (aspect ratio defined by Vertical
Resolution and HorizontalResolution), 1 (dots or samples per inch), or 2 (dots
or samples per centimeter).

SPIFF 827

SPIFF (cont'd)

VerticalResolution and HorizontalResolution contain the resolution of the
image. If Resolution Units is 0, the values of these fields contain, respectively,
the numerator and denominator of the aspect ratio of the samples. Otherwise,
these fields contain the image resolution as fixed-point numbers.

Directory

Following the header is a directory of references to information stored within
the SPIFF file. This directory may be thought of as a second header that con
tains one or more optional fields of information about the image data. See Fig
ure SPIFF-I for a diagram of the directory entry structure.

The directory will contain at least one directory entry; the End Of Directory is
mandatory; all other entries are optional. Data associated with the directory
entry may be stored "directly" within the directory entry or be stored "indi
rectly" outside of the directory and following the image data. The maximum
size of a block of data that may be stored within a directory entry is 65,527
bytes.

The header of each directory entry is 12 bytes in length and has the following
format:

typedef struct _SpiffDirectoryEntry
{

WORD EntryMagic;
WORD EntryLength;
DWORD EntryTag;

SPIFFDIRECTORYENTRY;

I* Directory entry magic number (FFESh) *I
I* Length of entry */
I* Identification value of the entry *I

EntryMagic identifies the start of each directory entry. This value is always
FFE8h.

Entry Length is the length of the entry, not including the Entry Magic field. The
value of this field may be in the range 6 to 65534.

EntryTag is a bit field identifying the format and type of data stored or refer
enced by the directory entry. Each directory entry will always have a unique
EntryTag value and a specific format of entry data.

The eight most significant bits (31:24) of EntryTag are always zero. The value
of the next three bits (23:21) define the originating standards body to which
the file data conforms. The possible values are:

0 SPIFF specification definition
1-3 ISO /IEC and common text generic standards

828 GRAPHICS FILE FORMATS

SPIFF (cont'd)

4 ISO application standards
5 ITU-T recommendations
6 National standards bodies
7 Application-specific

The remaining bits (20:0) are defined by the standards organization defining
the particular tag. The SPIFF specification defines the possible values of these
remaining 20 bits when the three identifier bits are set to zero. See the section
below called "Entry Tags" for more detailed information.

Each directory entry must be a multiple of four bytes in length. An entry with
no associated data is eight bytes in length. An entry containing an offset to
indirect data is 12 bytes in length. And an entry containing direct data must
have its data padded to end on the nearest 4-byte boundary.

EntryMagic ~
Entry Length Directory Entry Header

EntryTag

Entry Data +-- Directory Entry Data or Offset Value

FIGURE SPIFF-1: Format of a SPIFF directory entry

Directory entries are not linked together by offset values in the way that TIFF
image file directories are. Instead, entries occur in contiguous order after the
header and before the image data.

The last entry in a directory is the EOD (End Of Directory) entry and marks
the end of the directory. In an EOD entry, EntryMagic is FFESh, EntryLength
is always 8, and EntryTag is always 1.

Note that the EntryLength value of the EOD entry is two bytes larger than it
seems it should be. This is because the length of the EntryMagic field is also
added into this value, but only for the EOD entry. As we noted, the Entry
Magic, EntryLength, and Entry Tag fields are defined to appear as a JPEG SOl
marker followed by a series of JPEG APPS markers, so the SPIFF header and
directory entries are ignored by JFIF readers. The EOD EntryLength value is
two greater than it should be so that old JFIF decoders will also skip over the

SPIFF 829

SPIFF (cont'd)

SOl marker that appears at the beginning of the SPIFF data area. Otherwise,
older decoders would see two SOl markers and complain.

Header

Directory Entry 1

Directory Entry 2

Directory Entry N

EOD Entry

Image Data

Indirect Data

Entry Tags

SPIFF vl.O defines the format of 15 directory entries and EntryTag entries. All
of these entries (except the End of Directory entry) are optional, and many
may appear only once in a SPIFF file if used. The exact format of each entry is
documented in the SPIFF specification and summarized in Table SPIFF-I:

TABLE SPIFF· I: Standard SPIFF Directory Entries

Name Use EntryTag Multiple Entries

End Of Directory End of directory marker 1 No
Transfer Characteristics Gamma correction 2 No
ComponentRegffitration Location of components 3 No
Image Orientation Rotated, flipped 4 No
Thumbnail Image Thumbnail header 5 Yes
Image Title Text 6 Yes
Image Description Text 7 Yes
Time Stamp Time and date 8 No
Version Number Image version number 9 Yes
Creator Identification Text 10 Yes
Protection Indicator Level of authenticity 11 No
Copyright Information Text 12 Yes
Contact Information Text 13 Yes
Tile Index Pointer to tiles 14 No
Scan Index Pointers to scans 15 No
Set Reference Relationship to other files 16 Yes

830 GRAPHICS FILE FORMATS

SPIFF (cont'd)

End of Directory indicates the end of the directory. This entry contains no
associated data and is immediately followed by image data.

Transfer Characteristics describes the gamma correction value of the image.

Component Registration describes the positioning of samples within compo
nents (that is, color elements within a sample) relative to the samples within
other components.

Image Orientation specifies which edge of the image is the top and whether
the image is flipped.

Thumbnail Image is a lower resolution version of the primary image.

Image Title is a textual description for the image.

Image Description is an additional textual description of the image data.

Time Stamp is an ISO 8601 standard date and time string in the format YYYY
MM-DD and HH:MM:SS. mmmZ

Version Number is the number of revisions of the image.

Creator Identification is textual information that describes the creator of the
image data and file.

Protection Indicator specifies the usage rights of the image data.

Copyright Information contains the copyright text for the image data.

Contact Information is a textual description of how to contact the creator
and/ or owner of the image data.

Tile Index contains a listing of all the offset values for the tiles in the image
data.

Scan Index contains a listing of all the offset values for the scans in the image
~~ .

Set Reference is a reference number typically used to identify the file as related
to other groups of files.

Indirect storage is only allowed for the Thumbnail Image, Scan Index, Tile
Index, and all textual directory entries (Image Name, Image Description, and
so forth). Each of these entries contains a field specifying the offset of the data
from the beginning of the file. If this value is 0, then the data is stored directly
within the entry. It is recommended that direct storage be used whenever
possible (that is, when the entry data is less than 64K in size).

SPIFF 831

SPIFF (ccmt'd)

SPIFF requires that the Scan Index and Tile Index entries only be stored as
indirect data. These indexes are only useful to decoders that can perform ran
dom access on a file and are likely to be built on the fly by encoders, so requir
ing them to be stored at the end of a SPIFF file is a reasonable thing to do.

The SPIFF format also provides for application-specific directory entries that
would store any information not supported by the standard directory entries
defined in the SPIFF specification. These directory entries are identified by set
ting the bits 23:21 in the EntryTag to all ones.

There is currently no process for registering or reserving application-specific
directory tags, so it is recommended that additional identifying information be
present in the entry data. This will help prevent data interpretation problems
caused by duplicate application-specific directory tags defined by different
organizations. SPIFF readers should, of course, ignore any directory entries
with an unrecognized tag value.

Image Data

Although thought of as a file format for JPEG data, SPIFF is quite capable of
supporting data compressed using the Huffman ID, MR (Modified READ),
MMR (Modified Modified READ), and]BIG data compression methods as well.
And uncompressed data storage is also supported, as you might expect.

The data area of each variation of SPIFF contains the complete data stream
defined by the underlying compression standards. For example, SPIFF:JPEG
files contain a complete]PEG interchange data stream as defined by ITU-T
T.81; SPIFF:JBIG files contain a complete JBIG hi-level image entity as defined
by ITU-T T.82, and so on.

Application Profiles

An· application profile is a predefined set of features that a SPIFF file reader
must support to be able to interpret the contents of a SPIFF file. The Profileld
field of the header contains a value that specifies the profile required by the
data stored in the SPIFF file. This field makes it possible for a file reader to
determine the contents of the file without reading the entire directory.

The profiles currently defined apply to baseline JPEG data, progressive mode
]PEG data (for low-speed communications applications), hi-level image data,

832 GRAPHICS FILE FORMATS

SPIFF (cont'd)

and continuous-tone, color, or gray-scale facsimile images. The following pro
file values are currently defined:

0 No profile

1 Continuous-tone base profile
Compression is 5 (JPEG)

ColorSpace is 3 (YCbCr RGB) or 8 (gray-scale)

No Image Orientation directory entry

No indirect directory data allowed

Image data is encoded with baseline]PEG as a single scan with inter
leaved components

2 Continuous-tone progressive profile
Continuous-tone base profile

Support for DCT progressive mode]PEG with spectral selection and full
progressive

3 Bi-level facsimile profile
Support per ITU-T T.4 (Modifed Huffman and Modified READ), ITU-T
T.6 (Modified Modified READ), or ITU-T T.821ISO/IEC 11544 (JJU~)

4 Continuous-tone facsimile profile
· 8-bits per sample (12-bits optional)
2:1 Chrominance subsampling in each direction (no subsampling
optional)
CIE Standard Illuminant D50 (custom illuminant optional)
Default gamut range (custom gamut range optional)

The profile value should be 0 (no profile) if the file uses features that do not
fall into any of the other profiles. ·

Cmwerting JFIF to SPIFF:JPEG

When you first read through the SPIFF specification, you may conclude that it
is easy to convert a JFIF file to a SPIFF:JPEG file. Just fill in the SPIFF header
fields from information found in the]FIF file, write out the header and an End
Of Directory entry, and then append the entire JFIF file itself to the SPIFF:JPEG
file.

SPIFF 833

SPIFF (cont'd)

This technique for JFJF-to-SPIFF:JPEG conversion has the advantage of being a
simple and quick conversion that also preserves the JFIF markers, allowing
older decoders to read the resolution and thumbnail data present in the JFIF
data stream. It also allows a SPIFF:JPEG-to-]FIF conversion program to recover
the original]FIF data from the SPIFF file without the need to perform any type
of data conversions.

This technique, however, has the disadvantage of violating the]FIF specifica
tion by including a]FIF APPO marker that does not immediately follow the SOl
marker. While many]FIF encoders may not care about this violation, it is possi
ble that some]FIF decoders will complain. The greatest disadvantage, however,
is this is not the proper way to use the SPIFF format.

The JFIF format was created to embed ancillary information directly within a
raw]PEG data stream.]FIF accomplishes this by using APPO markers followed
by the ancillary data. Such data defined by the]FIF specification includes num
ber of components, sample precision, image height and width, thumbnail data,
and application-specific data.

A primary purpose of SPIFF:JPEG is to replace the function of]FIF's APPO mark
ers with SPIFF's header and directory information. While it is valid to store
]PEG data in a SPIFF file that contains APPO markers, it is not in the spirit of the
design and use of the SPIFF format.

What are the rules for a proper]FIF-to-SPIFF:JPEG conversion? The goal is to
convert all ancillary information in the]FIF file to the equivalent SPIFF infor
mation structures and only store a raw]PEG data stream in the SPIFF:JPEG file.
We offer the following guidelines:

• Convert all APPn data to the equivalent SPIFF header information.

The following JFIF and]PEG information must be used to initialize the
fields of the SPIFF header:

Description
SPIFF Header Field
JFIF or]PEG marker code
Number of color components
NumberComponents
SOFO (components)
Number of bits per sample

834 GRAPHICS FILE FORMATS

SOFO (width)
Color space
ColorS pace
SOFO (components)
Type of resolution units
Resolution Units
APPO (units)

BitsPerSample
SOFO (sample precision)
Number of lines in image
ImageHeight
SOFO (height)
Number of samples per line
Image Width

Vertical resolution
VerticalResolution
APPO (Ydensity)
Horizontal resolution
HorizontalResolution
APPO (Xdensity)

SPIFF (cont'd)

Note that the value of ColorSpace will be 3 if the JPEG number of color
components value is 3, or 8 if the same JPEG marker data is I. These Col
orSpace values correspond to the two color spaces allowed by the JFIF spec.
N on:JFIF, raw JPEG data files may convert to other SPIFF color-space codes;
for example, Adobe Photoshop can emit CMYKJPEG files.

• Convert any thumbnail data stored in the JFIF APPO marker segment or
extension marker segment to SPIFF thumbnail directory entries.

• ConvertjPEG comment blocks (COM markers) to SPIFF text entries.

Here is the black art of JFIF-to-SPIFF:JPEG conversion. The]PEG standard
does not define the type of information that is stored in a]PEG comment
block. It can be anything from your name to the Gettysburg Address to a
field of NULL values. It's up to the user and/ or application creating the
]PEG data stream.

The storage of generic blocks of "unspecified" or "miscellaneous" text is
not directly supported by the SPIFF format. The information content of tex
tual data that may be stored in a SPIFF directory entry is somewhat rigidly
defined to be the name of the SPIFF file creator, image title, image descrip
tion, copyright information, and so on.

A converter may choose to store any JPEG comment block information it
finds in the SPIFF image description directory entry, but it may not always
be the proper place for this information. Another possible solution is to
store miscellaneous text in application-specific directory entries, as pro
vided for by the SPIFF specification. This, however, will effectively hide the
comment block information from every SPIFF reader that doesn't recog
nize your application-specific directory tag (which is probably most of
them). Your last-and possibly best-solution is to simply leave the com
ment block in the JPEG data stream. At least this will make it possible for
any program that reads]PEG comment blocks to retrieve the information.

SPIFF 835

SPIFF (cont'd)

• Do not write out any indirect directory entries. Indirect data requires ran
dom access of the SPIFF file. Many JPEG decoders read the data file stricdy
serially and therefore cannot conveniently handle indirect data. You
should expect that a significant percentage of SPIFF readers will simply
ignore any indirect directory entries. If you have a choice of direct or indi
rect storage for a directory entry, direct storage is the better option.

It is worth noting that storing indirect data is not harmful. All JFIF readers
should stop at the EOI (End of Image) JPEG marker at the end of the com
pressed data, and should therefore never reach the indirect data. The rec
ommendation against indirect data is made just to accommodate simple
minded SPIFF decoders that don't handle indirect entries.

For Further Information
SPIFF is part of the International Standard and Recommendation "Digital
Compression and Coding of Continuous-Tone Still Images," which is published
by the ITU in three parts:

ITU-T T.81 Requirements and Guidelines ITU-T T.83 Compliance Test
ing ITU-T T.84 Extensions

The same standards are also published by the ISO/lEU:

ISO/IEC 10918-1 Requirements and Guidelines ISO/IEC 10918-2 Com
pliance Testing ISO/IEC 10918-3 Extensions

The actual document containing the SPIFF specification is the ISO/IEC 10918-3
standard, "Digital Compression and Coding of Continuous-Tone Still Images:
Extensions." This document is also published as the ITU-T Recommendation
T.84 under the same tide. Recommendation T.84 is available direcdy from ITU:

International Telecommunication Union (ITU)
Information Services Department
Place des Nations
1211 Geneva 20
Switzerland
Voice: +41 22 730-6666 or 730-5554
Fax: +41 22 730 533
Email: helpdesk@itu. ch
X.400: S=helpdesk; A=arcom; P=itu; C=ch

836 GRAPHICS FILE FORMATS

SPIFF (cont'd)

You can also order these documents via the ITU and ISO Web pages at:

http://www. itu. ch
http:/ /www.iso.ch

For information about ordering, you can also check out:

ftp:/ /ftp. uu. net/graphics/jpeg/jpeg.documents.gz

A future version of the IndependentjPEG Group'sJPEG library (found on the
CD-ROM that accompanies this book) will implement support for SPIFF and will
be an excellent source of SPIFF code.

SPIFF 83i

I Sun leon
NAME: . Sun Icon

ALso KNOWN As: ICO

TvPE: Bitmap

coLoRs: Mono

coMPREssioN: None

MAXIMUM IMAGE SIZE: 64X64 pixelS

MuLTIPLE IMAGEs PER FILE: No

NuMERicAL FoRMAT: Big-en dian

ORIGINAToR: Sun Microsystems

PLATFoRM: SunOS

suPPoRTING APPLicATioNs: Many UNIX-based

SPEciFICATioN oN cD: Yes

cooE oN cD: No

IMAGEs oN cD: Yes

SEE ALso: Sun Raster

usAGE: Used to store iconic images found in the Sun GUI environments.

coMMENTs: Sun Icon is an ASCII representation of a bitmap image format.

Overview
The icons found in the Open Look and SunView Graphical User Interfaces
available on the Sun Microsystems UNIX-based platforms are stored in a simple
format known as the Sun Icon format.

File Organization
Sun Icon files are ASCII text files that may be created and modified using a sim
ple text editor. Sun icons are typically 64x64 pixels in size and contain black
and-white image data. Files contain an ASCII header followed by a hexadecimal
representation of the bitmapped image data.

The header is found in the first 78 bytes of the icon file. The header contains
five fields of information composed of printable ASCII characters. Each field
has a keyword=value syntax and is delineated by a comma and a space character.

838 GRAPHICS FILE FORMATS

Sun leon (cont'd)

The header begins and ends with the standard C comment tokens /* *I. A
linefeed character (ASCII OAh) is preset at offset 49h within the header.

File Details
When you use a text editor to examine a Sun Icon header, you can see the for
mat shown below:

/* Format_version=l, Width=64, Height=64, Depth=l,
ValiQ_bits__per_item=16

*I

Format_ version is the version of the icon file format and is always 1.

Width and Height are the size of the icon in pixels; both are typically set to a
value of64.

Depth is the number of bits per pixel in the icon image data and is usually 1.

Valid_bits_per_item is the number of bits of image data contained in each item
of hexadecimal bitmapped data. Typical values for this field are 16 and 32.

The image data that follows the header is a series of hexadecimal numbers
called items. Each item represents a number of pixels equal to the
Valid_bits_per_item value divided by the Depth value. For images with a
Valid_bits_per_item value of 16 and a Depth of 1, each hexadecimal number
represents 16 pixels and is two bytes in size.

Items are separated by commas, and every eighth item is delimited by a line
feed character. All hexadecimal numbers begin with the standard C hexadeci
mal notational prefix Ox. The following illustration is a complete Sun Icon
image file. The <LF> symbols indicate the location of a linefeed character.

/*
Format_version=l,Width=64,Height=64,Depth=l,Valiq_pits...Per_item=16<LF>
*/<LF>
OxOOOO,OxOOOO,OxOOOO,OxOOOO,Ox01EO,Ox3COO,OxOOOO,OxOOOO,<LF>
OxlFSC,OxEBOO,OxOOOO,OxOOOO,Ox7AAB,OxBSCO,OxOOOO,Ox0000,<LF>
OxDSSS,Ox6BOO,OxOOOO,OxOOOO,OxFAAA,OxDCOO,OxOOOO,OxC600,<LF>
OxOFF7,0xOOOO,OxOOOl,Ox2900,0xOOOO,Ox0000,0xOOOO,OxlOOO,<LF>
OxOOOO,OxOOOO,Ox8000,0xOOOO,OxEOOO,Ox0000,0x8000,0xOOOO,<LF>
Ox5804,0xOOOl,OxC318,0xOOOO,OxAE06,0x0001,0x44A4,0x018C,<LF>
Ox5587,0x0001,0xC040,0x0252,0xAEOS,OxOOOl,Ox6000,0x0020,<LF>
OxF006,0x8082,0xAOOO,OxOOOO,OxOOOS,Ox4083,0x6000,0xOOOO,<LF>
Ox0002,0xCOC2,0xB020,0xOOOO,Ox0003,0x6145,0xS060,0xOOOO,<LF>
Ox0002,0xB1A6,0xB060,0xOOOO,Ox0003,0x5165,0xSOAO,OxOOCO,<LF>
Ox0001,0xB9B6,0xA9AO,Ox0340;0xOOOl,Ox575D,Ox5940,0xOD80,<LF>
Ox0041,0xAAAA,OxAACO,Ox7BOO,Ox0071,0xD77F,OxDS41,0xDSOO,<LF>

SUN ICON 839

Sun Icon (cont'd)

Ox803C,OxAF80,0x3EC6,0xAAOO,Ox602B,OxD815,0x035D,Ox5400,<LF>
Ox7815,0xE140,0x28EA,OxA800,0x2E1A,Ox8400,0x0235,0x5800,<LF>
Ox15CB,Ox1000,0x009A,OxBOOO,OxOABC,Ox4000,0x0005,0x6000,<LF>
Ox055D,OxOOOO,Ox0022,0xCOOO,Ox0550,0x0000,0x0009,0x4000,<LF>
Ox02A4,0x7800,0xOOOO,OxFFFO,Ox01AO,Ox8400,0x0002,0xAAAO,<LF>
Ox0150,0x8000,0xOOOO,Ox5540,0xFF80,0x8000,0x0001,0x2A80,<LF>
Ox55AO,Ox80E7,0x3700,0x3500,0x2BOO,Ox7842,0x1880,0x9BOO,<LF>
Ox1540,0x0442,0x1080,0x1600,0x1EOO,Ox0442,0x1080,0x4COO,<LF>
OxOA80,0x8442,0x1080,0xOCOO,Ox0600,0x8442,0x1080,0x2B80,<LF>
Ox0680,0x783C,Ox38CO,OxOAFO,Ox3COO,OxOOOO,OxOOOO,Ox155F,<LF>
OxEDOO,OxOOOO,OxOOOO,Ox06AC,Ox5400,0xOOOO,OxOOOO,Ox1550,<LF>
Ox2DOO,OxOOOO,OxOOOO,Ox06AO,OxFFDS,Ox5555,0x5555,0x5FFF,<LF>
OxFF88,0x8888,0x8888,0xB7FF,OxDDE2,0x2222,0x2222,0x5DDD,<LF>
OxBBD4,0x4444,0x4444,0xFBBB,OxFFFF,OxFFFF,OxFFFF,OxFFFF,<LF>
OxOOOO,OxOOOO,OxOOOO,OxOOOO,OxOOOO,OxOOOO,OxOOOO,OxOOOO,<LF>
OxOOOO,OxOOOO,OxOOOO,OxOOOO,OxOOOO,OxOOOO,OxOOOO,OxOOOO,<LF>
OxOOOO,OxOOOO,OxOOOO,OxOOOO,OxOOOO,OxOOOO,OxOOOO,OxOOOO,<LF>
OxOOOO,OxOOOO,OxOOOO,OxOOOO,OxOOOO,OxOOOO,OxOOOO,OxOOOO,<LF>
OxOOOO,OxOOOO,OxOOOO,OxOOOO,OxOOOO,OxOOOO,OxOOOO,OxOOOO,<LF>
OxOOOO,OxOOOO,OxOOOO,OxOOOO,OxOOOO,OxOOOO,OxOOOO,OxOOOO

ForFurtherhdonnation
For further information about the Sun Icon format, refer to the following files
on SunOS systems (and included on our CD-ROM):

/usr /include/suntool/icon. h
/usr /include/suntool/icon_load. h

These files contain the declaration for the Sun Icon format, as well as other
information about the format.

You can also contact Sun at:

Sun Microsystems Incorporated
2550 Garcia Avenue
Mountain View, CA 94043
Voice: 415-960-1300
FTP: ftp:/ /ftp.sun.com/
WWW: http:/ /www.sun. com/

There are also many available UNIX-based tools for reading, writing, and con
verting Sun Icon files. See the pbmplus package on the CD-ROM.

840 GRAPHICS FILE FORMATS

NAME:

ALSO KNOWN As:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CO:

CODE ON CO:

IMAGES ON CO:

SEE ALSO:

Sun Raster

RAS

Bitmap

Variable

RLE

Variable

No

Big-en dian

Sun Microsystems

Sun OS

Many UNIX-based

Yes

No

Yes

Sun Icon

Sun Raster I

UsAGE: Sun Raster is the native bitmap format of the Sun UNIX platforms.

coMMENTs: A simple bitmap format with wide distribution, particularly in the UNIX
world.

Overview
The Sun Raster image file format is the native bitmap format of the Sun
Microsystems UNIX platforms using the SunOS operating system. This format is
capable of storing black-and-white, gray-scale, and color bitmapped data of any
pixel depth. The use of color maps and a simple Run-Length data compression
are also supported. Typically, most images found on a SunOS system are Sun
Raster images, and this format is supported by most UNIX imaging applica
tions.

File Organization
The basic layout of a Sun Raster file is a header, followed by an optional color
map, and then by the bitmapped image data.

SUN RASTER 841

Sun Rnster (cont'd)

File Details
The Sun Raster file header is 32 bytes in length and has the following format

typedef struct _SunRaster
{

DWORD MagicNumber;
DWORD Width;
DWORD Height;
DWORD Depth;
DWORD Length;
DWORD Type;
DWORD ColorMapType;
DWORD ColorMapLength;

SUNRASTER;

I* Magic (identification) number *I
I* Width of image in pixels *I
I* Height of image in pixels *I
I* Number of bits per pixel *I
I* Size of image data in bytes *I
I* Type of raster file *I
I* Type of color map *I
I* Size of the color map in bytes *I

MagicNumber is used to identify a file as a Sun Raster image and always con
tains the value 59a66a95h. This value is stored in big-endian byte order, as are
the entire contents of every Sun Raster file. Reading this magic number using
the little-endian byte order (as is possible on the Intel-based Sun 386i system)
produces the value 956aa659h, a clue that you are not reading the raster file
using the proper byte order.

Width and Height specify the size of the image in pixels. The width of a scan
line is always a multiple of 16 bits, padded when necessary.

Depth is the number of bits per pixel of the image data. The typical values for
this field are 1, 8, 24, and 32; a value of 32 indicates 24-bit values with a pad
byte preceding the pixel values. Note that 24- and 32-bit pixel data (assuming
no color map) is in BGR format, rather than RGB, unless the image type is RGB.

Length is the actual size of the bitmapped data in the bitmap file (that is, the
file size minus the header and the color map length). Do not expect this value
to always be accurate, however. In the original release of the Sun Raster for
mat, this field indicated the type of encoding used on the bitmapped data and
was always set to OOh (no encoding). In the second release, this field was
renamed and was used to indicate the length of the bitmapped data. There
fore, older raster files will appear to have a length of OOh. In this case, the
Length must be calculated by multiplying together the values of the Height,
Width, and Depth fields.

Type is the version (or flavor) of the bitmap file. The following values are typi
cally found in the Type field:

842 GRAPHICS FILE FORMATS

OOOOh
OOOlh
0002h
0003h
0004h
0005h
FFFFh

Old
Standard
Byte-encoded
RGBformat
TIFF format
IFF format
Experimental

Sun Raster (cont'd)

Both Old and Standard formats are the same. They indicate that the image
data within th~ file is not compressed, and most Sun Raster files you will
encounter are stored in this manner.

The Byte-encoded type indicates that the image data is compressed using a
Run-length encoding scheme (described later in this section).

The TIFF and IFF format types indicate that the raster file was originally con
verted from either of these file formats.

The Experimental type is implementation-specific and is generally an indica
tion that the image file does not conform to the Sun Raster file format specifi
cation.

ColorMapType indicates the type of color map included in the raster file, or
whether a color map is included at all. The following values are typically found
in the ColorMapType field:

OOOOh
OOOlh
0002h

No color map
RGB color map
Raw color map

ColorMapLength contains the number of bytes stored in the color map.

If ColorMapType is OOOOh (no color map), ColorMapLength is OOOOh. If Col
orMapType is OOOlh (RGB color map) or 0002h (raw color map), Col
orMapLength is the number of bytes in the color map. In the case of an RGB
color map, the colors are separated into three planes, stored in RGB order,
with each plane being one-third the size of the ColorMapLength value. For
example, a 256-element color map for a 24-bit image consists of three 256-byte
color planes and has a length of 768 bytes (Depth = 24, ColorMapType = Olh,
ColorMapLength = 768). A raw color map is any other type of color map not
defined by the Sun Raster file format and is stored as individual byte values.

Bitmap files with a Depth of 1 contain 2-color image data. Typically, 1-bit
bitmap images do not have a color map. Each bit in the bitmap represents a

SUN RASTER 843

Sun Raster (cont'd)

pixel, with a value of 0 representing black and a value of 1 representing white
(the bits are stored most significant bit first within each byte). If a color map is
present in a 1-bit image file, it is a 2-color map, each color being 24 bits in
length (Depth= 1, ColorMapType = Olh, ColorMapLength = 6). Each bit of
image data is then an index pointing to one of these two colors in the map. ·

Raster files with a Depth of S may contain either color or gray-scale image data.
Images with pixels eight or fewer bits in depth do not include a color map
(Depth = 8, Color Map Type = OOh, ColorMapLength = 0). Each byte .of image
data contains the value of the color it stores. If a color map is present in an
8-bit raster file, the pixel values are index pointers into the color map. Such an
image, although it m~y contain a 24-bit color map (Depth = S, ColorMapType
= Olh, ColorMapLength = 76S), can contain only a maximum of 256 colors.

Raster files with a Depth of 24 (or 32) normally do not have color maps.
Instead, the colors values are stored directly in the image data itself (truecolor
bitmap). If a 24-bit image has a color map, it is either a raw color map, or an
RGB color map that contains more than 256 elements.

The Run-length encoding (RLE) scheme optionally used in Sun Raster files
(Type = 0002h) is used to encode bytes of image data separately. RLE encoding
may be found in any Sun Raster file regardless of the type of image data it ton
tains.

The RLE packets are typically three bytes in size:

• The first byte is a Flag Value indicating the type of RLE packet.

• The second byte i~ the Run Count.

• The third byte is the Run Value.

A Flag Value of SOh is followed by a Run Count in the range of Olh to FFh. The
Run Value follows the Run count and is in the range of OOh to FFh. The pixel
run is the Run Value repeated Run Count times.

There are two exceptions to this algorithm. First, if the Run Count following
the Flag Value is OOh, this is an indication that the run is a single byte in length
and has a value of SOh. And second, if the Flag Value is not SOh, then it is
assumed that the data is unencoded pixel data and is written directly to the
output stream.

For example, a run of 100 pixels with the value ofOAh would encode as the val
ues SOh 64h OAh. A single pixel value of SOh would encode as the values SOh
OOh. The four unencoded bytes 1234567Sh would be stored in the RLE stream
as 12h 34h 56h 7Sh.

844 GRAPHICS FILE FORMATS

Sun Raster (cont'd)

Note also that the Sun Raster bitmap is read as if it is a single stream of data.
Therefore, the encoding of pixel runs does not stop at the end of each scan
line.

ForFurtherhdonnation
For further information about the Sun Raster format, see the d~scriptions
included on the CD-ROM that accompanies this book and the SunOS manual
page entitled rasterfile. The man page entry describes only the basic layout of
the Sun Raster format. Information about the order of bit planes or the RLE
encoding used on the image data is not included. The following file contains
the Sun Raster header declaration and field values:

/usr /include/rasterfile. h

You can also contact Sun Microsystems at:

Sun Microsystems Incorporated
2550 Garcia Avenue
Mountain View, CA 94043
Voice: 415-960-1300
FTP: ftp:/ /ftp.sun.com/
WWW: http:/ /www.sun. com/

In addition, there are also many publicly available UNIX-based image file view
ers and converters that support the Sun Raster format. See the FBM,
ImageMagick, pbmplus, xli, xloadimage, and xv packages on the CD-ROM.

SUN RASTER 845

ITDDD
NAME:

ALSO KNOWN As:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

TODD

Turbo Silver 3D Data Description, T3D

3D vector and animation

16 million

Uncompressed

Unlimited

Yes

Big-endian

Impulse

All

Turbo Silver

Yes (summary description)

No

No

Interchange File Format

usAGE: Interchange of 30 image information, primarily on the Amiga.

coMMENTs: A slightly modified version of IFF that is widely used.

Overview
The TODD (Turbo Silver 3D Data Description) format is used to store object
data created by the Turbo Silver 3.0 application from Impulse. The TODD for
mat is actually the Electronic Arts Interchange File Format (IFF) with modifica
tions to two of its chunks. For this reason, please read the IFF article before you
read this article about TODD.

File Organization
Like IFF files, TDDD files consist of a series of sections called chunks.

The FORM chunk of a TDDD file uses only two types of IFF chunks: INFO and
OBJ.

846 GRAPHICS FILE FORMATS

TDDD (cont'd)

The INFO chunk stores information describing .observer data and appears in
. cell files. Each INFO chunk contains standard IFF sub-chunks. The INFO chunk
is optional and might not appear at all in the FORM chunk.

The OBJ chunk contains data which describes an object hierarchy and appears
in both cell and object files. One or more OBJ chunks are contained in the
FORM chunk and each OBJ chunk contains one or more sub-chunks.

There are three types of OBJ sub-chunks:

1. EXTR describes an "external" object in a separate file.

2. DESC describes a single node of a hierarchy.

3. TOBJ marks the end of a hierarchy chain.

Each hierarchy node is described either by an EXTR chunk or by a DESC and
TOBJ chunk pair.

The TOBJ sub-chunks contain no data and have a length of zero. The DESC
and EXTR sub-chunks contain sub-chunks as defined by the IFF file format.
Unrecognized sub-chunks are skipped over by TDDD readers, and the default
values are assumed for any missing sub-chunks.

The object hierarchy contains a head object and one or more brothers. Each
brother may have child objects; the children may have grandchildren; and so
on. The brother nodes are stored in a doubly linked list, and each node has a
pointer to a doubly linked "child" list. (If no child is present, then the pointer
is NULL.) Child lists point to grandchildren lists and back to their parent, and
soon.

Each of the "head" brothers is written in a separate OBJ chunk, along with all
its descendants. Each child, grandchild, and so on in the descendant hierarchy
begins a DESC chunk and ends with a TOBJ chunk. Objects stored in external
files are described only with a single EXTR chunk. The children and grand
children of this external object are also stored in the same external file.

File Details
Several data types are used to represent fields within several sub-chunks. RGB
values are always represented by an array of three BYTE values and the values
are stored in RGB order. Fractional (FRACT) and point values are stored as
LONG values. A VECTOR is an array of three FRACT values and a MATRIX is

TDDD 847

TDDD (cont'd)

an array of three VECTOR values. With this in mind, here are the structures
. for these data types:

typedef BYTE COLOR[3]; I* Red, Green, and Blue values *I
typedef LONG FRACT; I* Point *I
typedef struct _Vectors
{

FRACT X;
FRACT Y;
FRACT Z;

VECTOR;
typedef struct _Matrices
{

VECTOR I;
VECTOR J;
VECTOR K;

MATRIX;

The following structure is used in generating animated cells from a single cell.
It can be attached to an object or to the camera. It is also used for Turbo Sil
ver's "extrude along a path" feature.

typedef struct _Story
{

BYTE Path[lB];
VECTOR Translate;
VECTOR Rotate;
VECTOR Scale;
WORD Info;

STORY;

I* Name of object *I
I* Translate vector *I
I* Rotate vector *I
I* Scale vector *I
I* Coordinate flags *I

Path is the name of a named object in the cell data.

Translate is not used.

Rotate specifies rotation angles about the X, Y, and Z axes of the vector.

Scale specifies X, Y, and Z factors of the scale vector.

Info contains a collection of bitfield flags with the following definitions:

OxOOOl
Ox0002
Ox0004
OxOOIO
Ox0020

ABS_TRA
ABS_ROT
ABS_SCL
LOC_TRA
LOC_ROT

Translate in world coordinates (not used)
Rotation in world coordinates
Scaling in world coordinates
Translate in local coordinates (not used)
Rotation in local coordinates

848 GRAPHICS FILE FORMATS

Ox0040
Ox0100
Ox0200
Ox0400
Ox1000

LOC_SCL
X_ALIGN
Y_ALIGN
Z_ALIGN
FOLLOW_ME

INFO Chunk

Scaling in local coordinates
Not used
Align Yaxis to path's direction
Not used
Children follow parent on path

TDDD (cont'd)

The following sub-chunk structures are found only in the INFO chunk. All of
these INFO sub-chunks are optional, as is the INFO chunk itself. If a sub-chunk
is not present, then its default value is assumed. The base default values for an
INFO chunk are the following:

• No brushes, stencils, or textures defined

• No story for the camera

• Horizon and zenith and ambient light colors set to black

• Fade color set to (80, 80, 80)

• Unrotated, untracked camera at (-100, -100, 100)

• Global properties array set to [30, 0, 0, 0, 0, 100, 8, 0]

• Global properties array set to [30, 0, 0, 0, 0, 100, 8, 0]

The BRSH sub-chunk defines a brush. There may be up to eight brushes
defined in an INFO chunk.

typedef struct _Brush
{

WORD BrushNumber;
CHAR FileName[80];

} BRSH;

/* Brush number (0 to 7) */
I* IFF ILBM filename */

BrushNumber is the identification number of the brush, and this value may be
in the range of 0 to 7.

FileName is the name of the IFF file which stores the brush information.

The STNC sub-chunk defines a stencil. There may be up to eight stencils
defined in an INFO chunk.

typedef struct _Stencil
{

WORD StencilNumber; /* Stencil number (0 to 7) */

TDDD 849

TDDD (cont'd)

CHAR FileName[80]; I* IFF ILBM filename *I

STNC;

StencilNumber is the identification number of the stencil, and this value may
be in the range of 0 to 7. FileName is the name of the IFF file which stores the
stencil information.

The TXTR sub-chunk defines a text resource. There may be up to eight
resources defined in an INFO chunk.

typedef struct _Text
{

WORD TextNumber;
CHAR FileName[80];

TXTR;

I* Text number (0 to 7) */
I* Code module name */

TextNumber is the identification number of the resource, and this value may
be in the range of 0 to 7.

FileName is the name of a code module that can be loaded using the Load
Seg() function found in Turbo Silver.

The OBSV sub-chunk specifies the location, position, and focal length of the
camera observer. The rotation angles are in degrees and specify the degree of
rotation around the X, Y, and Z axes.

typedef struct _Observer
{

VECTOR Camera;
VECTOR Rotate;
FRACT Focal;

OBSV;

I* Camera position *I
I* Camera rotation angles *I
I* Camera focal length *I

The OTRK. sub-chunk specifies the name of an object; otherwise the camera
always follows the tracked object.

typedef struct _ObjectTrack
{

BYTE TrackName[l8]; I* Name of tracked object *I

OTRK;

The OSTR sub-chunk contains the story information for the camera.

typedef struct _ObjectStory
{

STORY CStory;
} OSTR;

I* STORY structure for the camera *I

850 GRAPHICS FILE FORMATS

FADE contains the parameters for a fading operation.

typedef struct _Fade
{

FRACT FadeAt;
FRACT FadeBy;
BYTE Pad;
COLOR FadeTo;

FADE;

I* Distance to start fade */
/* Distance of total fade */
I* Pad byte (always 0) *I
I* RGB color to fade to *I

The SKYC sub-chunk defines the color of a rendered sky.

typedef struct SkyColor
{

BYTE Padl;
COLOR Horizon;
BYTE Pad2;
COLOR Zenith;
SKYC;

I* Pad byte (always 0) *I
I* Horizon color *I
I* Pad byte (always 0) *I
I* Zenith color *I

TDDD (cont'd)

The AMBI sub-chunk defines the ambient light color of the rendering.

typedef struct _AmbientLightColor
{

·BYTE Pad;
COLOR Ambient;

AMBI;

/* Pad byte (always 0) *I
I* Ambient light color *I

The GLBO sub-chunk contains an array of eight global property values used by
Turbo Silver.

typedef struct _GlobalProperties
{

BYTE Props[8]; I* Eight global properties *I

GLBO;

The elements are defined as follows:

0 GLB_EDGING
1 GLB_PERTURB
2 GLB_SKY_BLEND
3 GLB_LENS
4 GLB_FADE
5 GLB_SIZE
6 GLB_RESOLVE
7 GLB_EXTRA

Edge level value
Perturbance value
Sky blending factor
Lens type
Sharp/fuzzy focus
Apparent size
Resolve depth
Genlock sky flag

TDDD 851

TDDD .(cont'd)

GLB_EDGING and GLB_PERTURB correspond to the edging and pertur
bance values heuristics control in ray tracing.

GLB_SKY_BLEND is zero for no blending and 255 for full blending.

The GLB_LENS value corresponds to the boxes in the "camera" requester, and
may be 0 (manual), 1 (wide angle), 2 (normal), 3 (telephoto), or 4 (custom).

GLB_FADE turns the "fade" feature ON (non-zero) and OFF (zero).

GLB_SIZE is 100 times the "custom size" parameter in the camera requester
and is .used to set the focal length for a custom lens. GLB_RESOLVE specifies
the number of rays the ray tracer will shoot for a single pixel.

The GLB_EXTRA flag indicates if the sky is colored or is set to the "genlock"
color (color 0 to black) in the final picture. If "genlock" is set in TurboSilver, a
"zero color" is written into the bitplanes for genlock video to show through.

DESCChunk

The following sub-chunk structures are only found in the DESC chunk. Many
of these sub-chunks are optional (the SHAP sub-chunk is required to appear),
and all have default values if they are not present. Note that if there is a fACE
chunk, there must also be a CLST, an RLST, and a TLST sub-chunk as well, all
with matching Count fields.

The default for the DESC chunk sub-chunks are: Colors set to (240,240,240);
reflection and transmission coefficients set to zero; illegal shape; no story or
special surface types; position at {0,0,0); axes aligned to the world axes; size
fields all 32.0; intensity at 300; no name; no points/ edges or faces; texture
parameters set to zero; refraction type 0 with index 1.00; specular, hardness
and roughness set to zero; blending at 255; glossy off; phong shading on; not a
light source and not brightly lit.

The NAME sub-chunk contains the name of the object itself and is used by a
number of operations, including camera tracking and specifying story paths.

typedef struct _ObjectName
{

BYTE Name [18] ; /* The name of the object */

} NAME;

852 GRAPHICS FILE FORMATS

TDDD (cont'd)

The SHAP sub-chunk defines the visible appearance of an object.

typedef struct _ObjectShape
{

WORD Shape;
WORD Lamp;

SHAP;

Shape values include:

0 Sphere
I Stencil
2 Axis
3 Facets
4 Surface
5 Ground

Lamp values include:

0 No lamp
I Light is sunlight

I* Object type *I
1*. Lamp type *I

2 Light is from a lamp, and intensity falls off with distance

The POSI sub-chunk specifies the position of an object in a rendering.

typedef struct _ObjectPosition
{

VECTOR Position; I* The object's position in space */

} POSI;

Legal coordinates are in the range -32.768 to 32767 and 65535/65536.

The AXIS sub-chunk describes a direction (orthogonal unit) vector for the
object coordinate system.

typedef struct _VectorAxis
{

VECTOR XAxis;
VECTOR YAxis;
VECTOR ZAxis;

AXIS;

I* X axis of vector *I
!* Y axis of vector */
I* Z axis of vector */

TDDD 853

TDDD (cont'd)

The SIZE sub-chunk is used by a variety of operations requiring a vector size
value.

typedef struct _Size
{

VECTOR Size;

SIZE;

I* Object size *I

The PNTS sub-chunk stores all the points defining a custom objects.

typedef struct _Points
{

WORD PCount;
VECTOR Points[PCount];

PNTS;

I* Point count *I
I* Points *I

The EDGE sub-chunk contains the edge list for custom objects.

typedef struct _EdgeList
{

WORD ECount;
WORD Edges[ECount] [2];

EDGE;

I* Edge count *I
I* Edges *I

The FACE sub-chunk contains the triangle (face) list for custom objects.

typedef struct _FaceList
{

WORD TCount; I* Face count *I
WORD Connects[TCount] [3]; I* Faces *I

FACE;

The COLR sub-chunk contains the main object color coefficients.

typedef struct _Color
{

BYTE Pad;
COLOR Color;

COLR;

I* Pad byte (always 0) *I
I* RGB color *I

The REFL sub-chunk contains the main object reflection coefficients.

typedef struct _Reflection
{

BYTE Pad;
COLOR Color;

REFL;

854 GRAPHICS FILE FORMATS

I* Pad byte (always 0) *I
I* RGB color *I

TDDD (cont'd)

The TRAN sub-chunk contains the main object transmission coefficients.

typedef struct _Transmission
{

BYTE Pad;
COLOR Color;

TRAN;

I* Pad byte (always 0) *I
I* RGB color *I

The CLST sub-chunk contains the main object color coefficients for each face
in custom objects.

typedef struct _ColorList
{

WORD Count;
COLOR Colors[Count];

CLST;

I* Count of colors *I
I* Colors *I

The count should match the face count in the FACE chunk and the ordering
corresponds to the face order.

The RLST sub-chunk contains the main object reflection coefficients for each
face in custom objects.

typedef struct _ReflectionList
{

WORD Count;
COLOR Colors[Count];

RLST;

I* Count of colors *I
I* Colors *I

The count should match the face count in the FACE chunk and the ordering
corresponds to the face order.

The TLST sub-chunk contains the main object transmission coefficients for
each face in custom objects.

typedef struct _TransmissionList
{

WORD Count; I* Count of colors *I
COLOR Colors[Count]; I* Colors *I

TLST;

The count should match the face count in the FACE chunk and the ordering
corresponds to the face order.

TDDD 855

TDDD (cont'd)

The TPAR sub-chunk contains a list of parameters for texture modules when
texture mapping is used.

typedef struct _TextureParameters
{

FRACT Params[16]; /* Texture parameters */

} TPAR;

The SURF sub-chunk contains an array of five surface property specifications.

typedef struct _SurfaceProperties
{

BYTE SProps[S]; /* Object properties */

} SURF;

The elements are defined as follows:

0 PRP _SURFACE
1 PRP_BRUSH
2 PRP_WRAP
3 PRP _STENCIL
4 PRP_TEXTURE

Surface type
Brush number
IFF brush wrapping type
Stencil number for stencil objects
Texture number if texture mapped

PRP _SURFACE is the type of surface. Values for this element include 0 (nor
mal), 4 (genlock), and 5 (IFF brush).

PRP _BRUSH is the brush identification number if the brush is mapped to an
IFF file.

PRP _WRAP is the IFF brush-wrapping type. Values for this element may be 0
(no wrapping), 1 (wrap X), 2 (wrap Z), or 3 (wrap X and Z).

PRP _STENCIL is the stencil number for stencil objects.

PRP _TEXTURE is the texture number if the object is texture-mapped.

The M'ITR sub-chunk contains refraction data for transparent or glossy
objects. Type may have a value of 0 for air (refraction index of 1.00), 1 for
water (1.33), 2 for glass (1.67), 3 for crystal(2.00), or 4 for a custom index
(1.00 to 3.55). Index contains the value of the custom refraction index.

typedef struct _RefractionData
{

BYTE Type; /* Refraction type (0-4) */
BYTE Index; /* Custom index of refraction */

} MTTR;

856 GRAPHICS FILE FORMATS

The SPEC sub-chunk contains specularity information.

typede£ struct _Specularinfo
{

BYTE Specularity; /* Specular reflection (0 to 255) */
BYTE Hardness; /* Specular exponent (0 to 31) */
} SPEC;

TDDD (cont'd)

Specularity contains the amount of. specular reflection in the range of 0
(none) to 255 (fully specular).

Hardness specifies the "tightness" of the specular spots. A value of zero gives
broad specular spots and a value of 31 gives smaller spots.

The PRPO sub-chunk contains an array of object properties that programs
other than Turbo Silver might support.

typedef struct _MiscProperties
(

BYTE Props[6];
} PRPO;

/* Object properties */

The elements are defined as follows:

0 PRP_BLEND
1 PRP _SMOOTH
2 PRP_SHADE
3 PRP_PHONG
4 PRP_GLOSSY
5 PRP_QUICK

Blending factor
Roughness factor
Shading flag
Phong shading flag
Glossy flag
QU;ickdraw flag

PRP _BLEND controls the amount of dithering used on the object in the range
of 0 to 255 (255 being fully dithered).

PRP _SMOOTH specifies how rough the object should appear in the range of 0
(completely smooth) to 255 (maximal roughness).

PRP _SHADE indicates how the object is shaded. If the object is a light source
and the flag is ON, then the object casts a shadow; otherwise it does not. If the
object is a normal object and the flag is ON, the object is always considered
fully lit and is not affected by other light sources.

PRP _PHONG indicates that phong shading is on by default. Any non-zero
value turns it off.

PRP _GLOSSY indicates if an object is to be rendered as glossy or normal.

TDDD 857

TDDD (cont'd)

PRP_QUICKflag, when set, indicates that the image should not be drawn with
all the points and edges, but instead should be drawn as a rectangular solid
centered at the object position using sizes determined by the axis lengths.

The INTS sulrchunk is the intensity field for light source objects.

typedef struct _Intensity
{

FRACT Intensity; I* Light intensity *I

INTS;

An intensity of 255 for a sun-like light fully lights object surfaces which are per
pendicular to the direction to the light source. For lamp-like light sources, the
necessary intensity will depend on the distance to the light.

The STRY sulrchunk contains the story information for the description.

typedef struct _story
{

STORY CStory;

} STRY;

The EXTR chunk only contain sulrchunks which are required to appear.

EXTRChunk

MTRX is used to represent a set of matrix coordinates.

typedef struct _Matrix
{

VECTOR Translate;
VECTOR Scale;
MATRIX Rotate;

} MTRX;

I* Translation vector *I
I* X, Y, and z scaling factors *I
I* Rotation matrix *I

Translate is the translation vector in world coordinates.

Scale is the scaling factors with respect to local axes.

Rotate is the rotation matrix with respect to the world axes.

The LOAD sulrchunk contains the name of an external FORM object file,
which may contain any number of objects, possibly grouped into hierarchies.

typedef struct _FileName
{

BYTE FileName[80]; I* External object file name *I
} LOAD;

858 GRAPHICS FILE FORMATS

TDDD (cont'd)

ForFurtherhdonnation
For further information about TDDD, see the summary description included
on the CD-ROM that accompanies this book. See also the article about TIDDD,
an ASCII format based on TDDD, and the article on IFF, the format on which
TDDD is based.

TDDD 859

ITGA
NAME:

ALSO KNOWN As:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

TGA

Truevision Graphics Adapter, Targa Graphics
Adapter Image File, VST, VDA, ICB, TPIC

Bi~ap

8-bit, 16-bit, 24-bit, 32-bit

RLE, uncompressed

None

No

Little-en dian

Truevision, Inc.

MS-DOS, Windows, UNIX, Atari, Amiga, others

Too numerous to list

Yes

Yes

Yes

Lumena Paint, RIX

usAGE: Used for the storage and interchange of deep-pixel images, paint, and
image manipulation programs.

coMMENTs: A well-defined, well-documented format in wide use, which is quick and
easy to read and decompress. It lacks, however, a superior compression
scheme.

Overview
The TGA (Truevision Graphics Adapter) format is used widely in paint, graph
ics, and imaging applications that require the storage of image data containing
up to 32 bits per pixel. TGA is associated with the Truevision product line of
Targa, Vista, Nu Vista, and Targa 2000 graphics adapters for the PC and Macin
tosh, all of which can capture NTSC and/ or PAL video image signals and store
them in a digital frame buffer. For this reason, TGA has also become popular in
the world of still-video editing.

Early work on the the TGA file format was performed at the EPICenter division
of AT&T. EPICenter (Electronic Photography and Imaging Center), established

860 GRAPHICS FILE FORMATS

TGA (cont'd)

in 1984 to manufacture graphics boards, was purchased by EPICenter employ
ees from AT&T in 1987 and renamed Truevision.

The first product produced by EPICenter was called the VDA (Video Display
Adapter), which had a resolution of 256x200 and a 24-bit palette providing 16
milllion colors. At the time, it competed with the CGA from IBM. EPICenter's
second product was the ICB (Image Capture Board), which launched both EPI
Center and AT&T into the realm of video graphics (that is, video capture,
manipulation, and output).

At this time, EPICenter purchased a paint package, written by Island Graphics,
that later came to be known as TIPS (Truevision Image Paint System). TIPS
gave VDA and ICB (and later Targa and TrueVista) users the ability to capture
live video images, to create and overlay graphics, and to perform a variety of
image-processing functions on bitmap data.

Although there was only one original TGA file format, applications using it cre
ated many different filename extensions-one for every graphics display board
that EPICenter, and later Truevision, produced. Therefore, .VDA, .ICB, .TGA,
and .VST image files created by Truevision applications all are actually in TGA
format. Today, the only filename extensions supported are TGA and TPIC on
the Macintosh and .TGA on the PC and other platforms.

In 1989, the TGA format was revised, and Truevision has chosen to designate
the old and new formats as original TGA format and ·new TGA format, respec
tively. The original TGA format is very simple in design and quite easy to imple
ment in code. This makes it an appealing format for developers to work with.
As the available hardware technology has become more complex, however,
additional file format features, such as the storage of gamma and color correc
tion information and pixel aspect ratio data, have become necessary. The new
TGA format was created as a wrapper around the original TGA format to add
functionality without sacrificing backwards compatibility with older applica
tions.

Today the TGA format is used on many different platforms world-wide for a
variety of image storage, processing, and analysis needs. The Truevision solu
tions source book lists more than 200 software applications that support the
TGAformat.

The TGA format became popular primarily because it was the first 24-bit, true
color bitmap format generally available to the PC community, even predating
24-bit support in TIFF. Truevision also gave developers access to the file format

TGA 861

TGA (cont'd)

specification and provided support for developers when necessary, including
working code and sample images.

TGA is device-dependent in that the structure of the format is designed to fit
the requirements of certain display hardware manufactured by Truevision. In
practice, this is not a severe limitation, with one minor caveat: TGA does not
support the storage of image data as planes of color information.

TGA comes in several flavors, the most common of which are usually referred
to as the Targa 16, Targa 24, and Targa 32 formats. These designations identify
the type ofTruevision hardware that created the file, and the numbers indicate
the depth (number of bits per pixel) of the image data the files contain. Less
commonly found variants include VDA, ICB, and Targa MS.

All of the Truevision adapters were originally designed to interface with the ISA
bus found in the IBM PC platform. For this reason, all data in TGA format files,
including the image data, is stored in litde-endian format. This includes TGA
files created by the Nu Vista card residing in the otherwise big-en dian Macin
tosh, and the PCI-bus versions of the Targa 2000 series of boards, for which
both PC and Macintosh versions currently exist.

As with many popular and useful formats, TGA variants have come into being,
designed by third parties to incorporate proprietary extensions. Versions of the
popular freeware program Fractint at one time created unreadable TGA files. A
campaign by one of the authors of this book to get the Stone Soup Group, the
creators of Fractint, to change the filename suffix (from TGA to something
else) seems to have been successful.

File Organization
The original TGA format (vl.O) is structured as follows:

• Header containing information on the image data and palette

• Optional image identification field

• Optional color map

• Bitmap data

The new TGA format (v2.0) contains all of the structures included in the origi
nal TGA format and also appends several data structures onto the end of the
original TGA format. The following structures may follow the bitmap data:

862 GRAPHICS FILE FORMATS

TGA (cont'd)

• Optional developer directory, which may contain a variable number of tags
pointing to pieces of information stored in the TGA file

• Optional developer area

• Optional extension area, which contains information typically found in the
header of a bitmap file

• Optional color-correction table

• Optional postage-stamp image

• Optional scan-line table

• Footer, which points to the developer and extension areas and identifies
the TGA file as a new TGA format file

As you can see, both the new and original TGA format files are identical in
structure from the· header to the image data area. For this reason, applications
that read only original TGA format image files should have no problem read
ing new TGA format images. All information occurring after the image data
may be ignored.

The TGA format specification available from Truevision is detailed and well
written. It is, in fact, one of the best written format specifications that was
reviewed for this book, and we heartily congratulate Truevision on their effort.
The TGA format is complex, but the clarity of the description in Truevision's
specification makes it easy to read and understand. Truevision also 4istributes
on floppy disk the Truevision TGA Utilities, which is a collection of utilities and
C source code used to manipulate both TGA-format files and Targa video
graphics display adapters.

File Details
This section describes the various components of a TGA file in greater detail.

Header

The TGA header is eighteen bytes in length and is identical in both versions of
the TGA file format. The structure of the TGA header is as follows:

typedef struct _TgaHeader
{

BYTE IDLength;
BYTE ColorMapType;
BYTE ImageType;
WORD CMapStart;
WORD CMapLength;

I* OOh Size of Image ID field *I
I* Olh Color map type *I
I* 02h Image type code *I
I* 03h Color map origin *I
I* OSh Color map length *I

TGA 863

TGA (cont'd)

BYTE CMapDepth;
WORD XOffset;
WORD YOffset;
WORD Width;

/* 07h
/* 08h
/* OAh
I* OCh

Depth of color map entries */
X origin of image */
Y origin of image */
Width of image */

WORD Height; /* OEh Height of image */
BYTE PixelDepth; /* lOb Image pixel size */
BYTE ImageDescriptor; /* llh Image descriptor byte */

} TGAHEAD;

IDLength is the number of significant bytes in the image identification field
starting at byte 12h (following the header) and may be in the range of 0 to
255. The IDLength set to 0 indicates that there is no image identification field
in the TGA file.

ColorMapType indicates whether the TGA file includes a palette. A value of 1
indicates the presence of a palette, while a value of 0 indicates that no palette
is included. If the value of this field is not 0 or 1, then it is probably a value spe
cific to the program or developer that created the TGA file. Truevision reserves
the ColorMapType values 0 to 127 for its own use and allots values 128 to 255
for use by developers.

ImageType indicates the type of image stored in the TGA file. There are cur
rently seven TGA image types. Colormapped images (pseudocolor) use a
palette. Truecolor images do not use a palette and store their pixel data
directly in the image data, although truecolor TGA image files may contain a
palette that is used to store the color information from a paint program. True
vision reserves the ImageType values 0 to 127 for its own use and allots values
128 to 255 for use by developers.

Valid Image Type values are listed below:

Image'I)pe Image Data 'I)'pe Colormap Encoding
0 No image data included in file No No
1 Colormapped image data Yes No
2 Truecolor image data No No
3 Monochrome image data No No
9 Colormapped image data Yes Yes

10 Truecolor image data No Yes
11 Monochrome image data No Yes

The next three fields are known collectively as the Color Map Specification;
the information contained in these fields is used to manipulate the image

864 GRAPHICS FILE FORMATS

TGA (ccmt'd)

palette. If the ColorMapType field value is zero, then all three of these fields
have a value of zero.

CMapStart defines the offset of the first entry in the palette. Although all
palette entries must be contiguous, the entries may start anywhere in the
palette; for example, 16-color values may be stored in a 64-element palette
starting at entry 31 rather than at entry 0.

CMapLength defines the number of elements in the colormap. If an image
contains only 57 colors, then it is possible to construct a 57-element palette
using this field.

CMapDepth contains the number of bits in each palette entry. The value is typ
ically 15, 16, 24, or 32 and need not be the same value as the image data pixel
depth. Table TGA-1 shows valid entries for different types ofTGA palettes.

TABLE TGA·t: TGA Palette Entry Sizes

Truevision Bits Per Attribute Bits Color Formats
Display Adapter Colormap Entry Per Pixel Supported

TargaM8 24 0 Pseudo
Targa 16 15 1 True
Targa 24 24 0 True
Targa32 32 8 True
ICB 0 0 True
VDA 16 0 Pseudo
VDA/D 16 0 Pseudo
Vista 24 or 32 Oor8 True, Pseudo, Direct

The next six fields in the header (the last 10 bytes) are referred to collectively
as the image specification. The data in these fields is used to describe the
image data found in the TGA file.

X Offset and YOffset describe the position of the image on the display screen.
Normally, the coordinate 0,0 defaults to the lower-left corner of the screen, but
any of the four comers may be designated the origin point by the
lmageDescriptor field (the last field in the header).

Width and Height are the size of the image in pixels. The maximum size of a
TGA image is 512 pixels wide by 482 pixels high.

TGA 865

TGA (cont'd)

PixelDepth is the number of bits per pixel, including attribute bits, if any. Typi
cal PixelDepth values are 8, 16, 24, and 32, although other depth values may
be specified, as shown in Table TGA-1.

ImageDescriptor contains two pieces of information. Bits 0 through 3 contain
the number of attribute bits per pixel. Attribute bits are found only in pixels
for the 16- and 32-bit flavors of the TGA format and are called alpha channel,
overlay, or interrupt bits. Bits 4 and 5 contain the image origin location (coor
dinate 0,0) of the image. This position may be any of the four comers of the
display screen. When both o~ these bits are set to zero, the image origin is the
lower-left comer of the screen. Bits 6 and 7 of the ImageDescriptor field are
unused and should be set to 0.

lmagelD

The Image ID (image description) field is an optional field that may appear
immediately after the TGA header. The Image ID field stores information that
identifies the image in some way (filename, author name, serial number, and
so on). This field is not required to be NULL-terminated, although it should
be if it is used to store string data. The size of this field is indicated by the value
of the IDLength field in the header. This value may be in the range 0-255. A
value of 0 indicates that no Image ID field is present in the TGA file.

Colonnap

The TGA format defines three methods of arranging image data: psuedocolor,
direct-color, and truecolor.

Pseudocolor images store an index value into a palette in each pixel value of
data. It is the palette that contains the actual pixel values that are displayed.
Pseudocolor image palettes store each pixel value as a single element in the
palette. The color channels of each pixel value are not accessible individually.

Direct-color images are similar to pseudocolor images, except that each color
channel (red, green, and blue) is stored in separate elements and may be indi
vidually altered. Each pixel value of direct-color image data contains three
index values, one for each color channel in the colormap.

Truecolor images store the pixel color information directly in the image data
and do not use a palette.

866 GRAPHICS FILE FORMATS

TGA (cont'd)

The presence of a palette and the format of the image data found in a TGA file
is determined by the type of Truevision hardware that was used to create the
image data (see Table TGA-1). TGA images created with a Targa 24 are only
truecolor images and therefore never use a palette. TGA images created with a
VDA/D card are only in the pse:udocolor format and will therefore always use a
palette. The Vista series of cards (ATVista and NuVista) may create and store
TGA data in any of the three color formats. A palette is present in a TGA file if
the Color Map Type field is set to 1. A value of 0 indicates that no palette is pre
sent in the TGA file.

It is important to realize that a palette may be present in a TGA image file even
if it is not used by the image data. All TGA image files created by the TIPS paint
program contain a palette that stores the 256 colors found in the TIPS color
palette. This palette is not actually used to display the image data but is instead
used by TIPS. A TGA reader should therefore never assume that truecolor TGA
files never contain a palette.

The TGA format supports variable-size palettes. Most other formats require a
palette to have a fixed number of entries based on the pixel depth of the
image data. Thus, an 8-bit image contains a 256-element colormap even if only
four colors are needed to reproduce the image. The TGA format, however,
does not determine the number of colormap elements based on the pixel
depth, so an image with 57 colors may only have a 57-element palette. The
number of elements in the palette is contained in the CMapLength field in the
header.

The size of each palette element in bits is found in the CMapDepth field of the
header. The depth of a pixel and the depth of a palette element are not always
the same. A 24-bit image may contain a 256-element palette, with each element
having a depth of 24 bits, but it may contain pixel data with only an 8-bit
depth. This _.is because 8 bits is all that is required to index a 256-element
palette. It is also possible for a TGA image to contain a 4096-element palette
where each element is eight bits in depth. Each pixel value of the image data
therefore needs to have a minimum depth of 12 bits for indexing into the
palette, although 16-bit pixel values are easier to read and write. The depth of
a palette element always includes alpha channel, overlay, or interrupt bit infor
mation, if any.

TGA 867

TGA (cont'd)

Image Data Encoding

Image data stored in a TGA file is normally raw (unencoded). For this reason,
TGA files tend to be quite large, especially when the bitmap data is 24 or 32 bits
deep. To address this problem, the TGA specification incorporates a simple,
but effective, RLE compression scheme. For more detailed information on run
length encoding, see Chapter 9, Data Compression.

The RLE encoding method used by the TGA format encodes runs of identical
pixels rather than runs of identical bits or bytes. This achieves a higher com
pression ratio over a bit-wise or byte-wise RLE scheme, because TGA pixel data
often occurs as multiple-byte values rather than single-byte values. Therefore,
contiguous runs of identical bytes in TGA image data often occur only in very
short lengths.

Data encoded using the TGA RLE scheme may contain two types of encoded
data packets. The first type is a run-length packet that is used to encode multi
ple runs of the same pixel value into a single data packet. A run-length packet
begins with a single byte used as the pixel count. The value for the lower seven
bits of this byte is in the range 0 to 127, and the count is always one plus this
value (1 to 128). There can never be an' encoded run length of zero pixels.
The high bit of the pixel count value is always set to 1 to indicate that this is a
run-length encoded packet. Following the pixel count is the pixel data value.
This value is the number of bits equal to the Pixel Depth value in the Image
Specification section of the header. Because the size of TGA pixels can range
from one to·four bytes in size, this value varies from between two to five bytes
in length, depending upon the type of TGA image data encoded.

The second type of packet is the raw or non-run-length encoded packet. When
a run of pixel values is too short in length to justify using the run-length packet
format, the run is encoded using the raw packet format. Raw packets start with
a byte that is used as the pixel count. Just as with the encoded packet, the
count value is in the range of 0 to 127, with the actual pixel count being one
plus this value (1 to 128). A run length of zero pixels can never be encoded.
Raw packets, however, have the high bit of the count byte always set to zero.
This differentiates raw packets from encoded packets, in which the high byte is
always one. Following the count byte is the number of pixels equal to the
count. The number of bytes that follows the raw count is equal to the count
value multiplied by the number of bytes per pixel.

868 GRAPHICS FILE FORMATS

TGA (cont'd)

The following TGA RLE pseudocode algorithm is used to encode a pixel run
. using an encoded packet:

Set counter to zero
Read a pixel of scan-line data
Read a second pixel of scan-line data
If the first pixel is the same as the second pixel

increment tlie counter
Else

write the counter value (with high bit ON)
write the pixel value

The following TGA RLE pseudocode algorithm is used to encode a pixel run
using a raw packet:

Set counter to zero
Read a certain number of pixels of scan-line data
Increment the counter for each pixel read
Write the counter value (with high bit OFF)
Write all pixel values read

Figure TGA-1 shows the RLE packet types for various pixel sizes.

Image Data

Image data is usually found following the header, but may occur after a palette
or Image ID field if these are present in the TGA file. For this reason, never
read image data from a TGA file without first checking for the presence of
palette and Image ID fields. If you do, you will quickly notice that the displayed
image is skewed, because the image was read starting at the wrong offset. (See
the section called "Colormap" above.)

The size of a TGA image is limited to 65,535 pixels high by 65,535 pixels wide.
This is because a 16-bit field is used to store the size of the image in the header.
Otherwise, the size of a TGA image would be unlimited. A typical size for Targa
16, 24, and 32 images is 512x482 pixels; the NuVista is 640x480 pixels; and the
ATVista is 756x486 pixels.

Figure TGA-2 shows different pixel data formats.

Most of the Truevision display adapters store pixel data in 8-, 16-, 24-, or 32-bit ·
increments. Reading or writing pixel information for these formats is as siipple
as reading and writing bytes of data. Targa 16-bit pixel data, however, is slightly
more complicated, as described below.

TGA 869

TGA (cant'd)

MSB
(most significant bit)

Alpha
Channel

Red

Red

LSB
(least significant bit)

Index
Value

B·blt pixel (VOA, VOA/0, HR, and Targa MB)

a Red Green I Blue

16-blt pixel with overlay bit {Targa 16}

Green Blue

24-bit pixel (Targa 24, ATVista, and NuVIsta)

Green Blue

32-blt pixel {Targa 32 and Targa 64)

FIGURE TGA-1: Run-length encoding packet types

When a value of 15 appears in the PixelDepth field of the Image Specification
section of the header, there are five bits each of red, green, and blue pixel data
and one bit of overlay data in each pixel (see the section below called "Pixel
Attribute Bits"). This is the format the Targa 16 uses to store data. Because
these 16 bits are stored in two bytes of data, a little shifting and masking is
required to read and write these pixel data values.

In the following example, a scan line of unencoded pixel data is stored in the
byte array pixeldata[]. The red, green, and blue values are five bits in size, and
the overlay attribute is a single bit in size. Data from the first pixel (array
elements 0 and 1) are read and stored in the variables defined:

870 GRAPHICS FILE FORMATS

0 Uncoded pixel run {four pixels, each with a value of 114)

PixeiO Pixel 1 Pixel2

114 114 114

e Encoded run-length packet

Pixel Count - 1 Pixel Value

@ 3

G Non-run-length encoded packet

Pixel Count · 1 Pixel Run

114 114

FIGURE TGA-2: Pixel data formats

I *
** Reading and writing 16-bit pixel data stored
** in an 8-bit BYTE array . Note that the green
** value is split between t wo bytes .
* I
BYTE red, green, blue, overlay;
BYTE pixeldata[SCAN_LINE_LENGTH];
I* Read *I
red (pixeldata[O] & OxfB) >> 3;

TGA (cont'd)

Pixel 3

114 114

green = ((pixeldata[OJ & Ox07) << 2) I ((pixeldata [1) & Oxfbl » 6 l ;
blue (pixeldata[1] & Ox3e) >> 1;
overlay pixeldata[l] & Ox01;

I* Write *I
pixeldata[OJ (red << 3) (pixeldata[O]
pixeldata[O] ((green & Ox1c) >> 2) (pixeldata [OJ
pixeldata[1] ((green & Ox03) << 6) (pixeldata [1]
pixeldata[1] (blue << 1) (pixeldata[1]
pixeldata[1] overlay (pixeldata [1)

I*
** Reading and writing 16- bit pixel data stored
** i n a 16- bit WORD array
*I

& Ox07);
& OxfB);
& OxfB);
& Oxc1);
& Oxfe);

TGA 871

TGA (cont'd)

BYTE red, green, blue, overlay;
WORD pixeldata[SCAN_LINE_LENGTH];

/* Read */
red (pixeldata[O] & OxfcOO)
green (pixeldata[O] & Ox07e0)
blue (pixeldata[O] & Ox003f)
overlay pixeldata[O] & Ox0001;

>> 11;
>> 6;
>> 1;

/* Write */
pixeldata[OJ
pixeldata[OJ
pixeldata[O]
pixeldata[O]

(red << 11) (pixeldata[O] & Ox03ff);
(green<< 6) (pixeldata[O] & Oxfc1f);
(blue << 1) (pixeldata[O] & Oxffc1);
overlay (pixeldata[O] & Oxfffe);

Pixel Attribute Bits

The names of the Targa display adapters include a designation that indicates
the number of bits per pixel that they are capable of storing. This seems logical
for the Targa 16 and the Targa 24, but not for the Targa 32 and Targa 64. It's
difficult to believe 32 and 64 bits per pixel until you realize that color data is
not the only informatiQn you can store in a pixel.

The number of bits a pixel may contain that are not directly associated with
the color value of the pixel are stored in bits 0 through 3 of the ImageDescrip
tor field of the header (attribute bits per pixel). In the case of the Targa 16,
only 15 of the 16 pixel bits are used for color information. The sixteenth bit,
also called the overlay bit, is used to indicate whether the pixel is transparent
(invisible) or opaque (visible) when displayed on a video monitor. The ICB
board also uses 15 bits per pixel for color information and a single bit for over
lay control. The VDA/D board is similar in that it uses five bits per primary
color and uses the sixteenth bit for interrupt control. The Targa 32 and the
True Vista boards (ATVista and NuVista) each use 32 bits per pixel. Color infor
mation is stored in 24 bits, and the additional eight attribute bits in each pixel
are used as an alpha channel value.

Alpha channel is a nondescript name that indicates the degree of transparency
of a displayed pixel. Alpha channel and overlay values are used when one
image is overlaid onto another image or onto a live video picture. A single
overlay bit (as in the Targa 16) can only indicate that the pixel is visible or
invisible. Eight bits of precision can vary the visibility of a pixel from com
pletely transparent (0) to completely opaque (255).

872 GRAPHICS FILE FORMATS

TGA (cont'd)

The alpha channel value also describes the degree to which a pixel from an
image is mixed with a live video source. An alpha value of 0 displays the pixel
entirely from the graphics image stored in the frame buffer memory. An alpha
value of 255 displays the pixel entirely from the live video source. An alpha
value of 84 displays the pixel as 33 percent graphics image (85 of 256) and 67
percent live video (171 of 256). A pixel with an alpha value of 84 appears as a
translucent graphics image overlaid on a field of live video.

The ability to control graphical and live video images using 256 alpha channel
levels allows the superimposing of graphical text over video, fading into and
out of an image, and cross-fading between graphical images and live video. All
of these effects can be rendered using the Truevision Targa+ and Nu Vista+
graphical display boards.

When storing pixel data or pixel size, the attribute bits are always included in
any reads, writes, or calculations. Attribute bits are also stored in colormaps
and lookup tables, although in these cases their values are usually set to zero
and ignored.

The New TGA Format

Version 2.0 adds several features to the original TGA format, which increases
the amount of information the TGA format can support. The original TGA for
mat is fairly simple in design, which allows it to be quickly and easily imple
mented in software. However, it does not contain many features needed by
developers-features that are found in several other image file formats. There
fore, extensions have been added to the TGA format to allow the storage of
additional image information and to create a customizable area for the storage
of developer-specific information.

The extensions added by the new TGA format are called the Developer Area,
the Extension Area, and the TGA File Footer. These areas were appended to
the original TGA format without making any changes to the TGA file header.
Applications that read only original TGA image files should have no problems
reading new TGA format files unless the Developer or Extension Areas contain
information necessary to read or display the image data properly. For newer
applications that support the new TGA format, it is important to correctly inter
pret as much of the Extension and Developer Areas information as possible.

TGA 873

TGA (cont'd)

Footer
The footer is 26 bytes in length and is always the last piece of information
found in a v2.0 TGA format file. It contains a total of three fields that are repre
sented in the following structure:

typedef struct _TgaFooter
(

DWORD ExtensionOffset;
DWORD DeveloperOffset;
CHAR Signature[l8];

TGAFOOT;

I* Extension Area Offse *I
I* Developer Directory Offset *I
I* TGA Signature *I

Extension Offset is a 4-byte offset value of the extension area of the TGA file. If
this value is zero, then there is no extension area present in the TGA file.

DeveloperOffset is the number of bytes from the beginning of the file (byte 0)
to the first byte of the developer directory. If this value is zero, then the TGA
file does not contain a Developer Area.

Signature contains an identifying signature string. The TGA format does not
contain a field in the header indicating the version of the format. Instead, v2.0
includes a footer containing a 16-byte character string that identifies the ver
sion of the file.

To determine the version of a TGA file, read the file footer and check bytes 8
through 23 of the footer for the presence of the character string TRUE
VISION-XFILE. If this signature string is present, the TGA file is v2.0 and thus
may contain a Developer and Extension Areas.

Following the signature is the ASCII value 2Eh (period) and the ASCII value
OOh (NULL). All of these fields must contain the correct information for the
file to be recognized as a v2.0 TGA format file.

A vl.O TGA file may be converted to a v2.0 TGA file simply by appending a
footer with the appropriate signature string, a period, and NULL characters.
In this case, you could set the ExtensionOffset and DeveloperOffset to 0. Be
cautious about doing this, however. This conversion adds nothing to the func
tionality of the file unless an Extension or Developer Area is added. It will not,
however, interfere with the ability of older, pre-v2.0 TGA fo.rmat software to
read the file.

874 GRAPHICS FILE FORMATS

TGA (cont'd)

Developer Area
The Developer Area begins with a directory that resembles the structure of the
Image File Directory found in the TIFF format. The first entry in the directory
is the number of directory entries, or tags, that the directory contains. This
field is two bytes in size. The offset value of this field is stored in the footer
described in the previous section.

Following the number of directory entries is a series of 10-byte tags, one for
each entry specified. The structure of a Developer Area tag is as follows:

typedef struct _TgaTag
{

WORD TagNumber;
DWORD DataOffset;
DWORD DataSize;

TGATAG;

I* ID Number of the tag *I
I* Offset location of the tag data *I
I* Size of the tag data in bytes *I

TagNumber is the identification number of the tag. Tag number values from 0
to 32767 are reserved for developer use, while tag number values 32768 to
65535 are reserved for use by Truevision only. Tags may be registered with the
Truevision Developer Services to assure permanent and exclusive use by your
application.

DataOffset contains the offset location of the data in the TGA file. Note that
offsets are always calculated from the beginning of the file.

DataSize is the size of the data in bytes.

The tags in the developer directory are always stored as a contiguous block,
and the tags do not have to be_ sorted by tag number. Tags do not indicate the
type of data pointed to by the tag (BITE-, WORD-, or DWORD-oriented data),
so an application that is reading tag data is required to have prior knowledge
of the type of data the tag points to.

Extension Area
The Extension Area can be thought of as a second header that contains infor
mation not found in the original TGA format header. The offset of the Exten
sion Area is stored in the TGA footer. The size of the Extension Area in v2.0 is
495 bytes. The structure of the Extension Area is as follows:

typedef struct _TgaExtension
{

WORD Size;
CHAR AuthorName[41];
CHAR AuthorComment[324];

I* Extension Size *I
I* Author Name *I
I* Author Comment *I

TGA 875

TGA (cont'd)

WORD StampMonth;
WORD StampDay;
WORD StampYear;
WORD StampHour;
WORD StampMinute;
WORD StampSecond;
CHAR JobName [411 ;
WORD JobHour;
WORD JobMinute;
WORD JobSecond;
CHAR Softwareid[41];
WORD VersionNumber;
BYTE VersionLetter;
DWORD KeyColor;
WORD PixelNumerator;
WORD PixelDenominator;
WORD GammaNumerator;
WORD GammaDenominator;
DWORD ColorOffset;
DWORD StampOffset;
DWORD ScanOffset;
BYTE AttributesType;

TGAEXTEN;

/* Date/Time Stamp: Month */

I* Date/Time Stamp: Day */

I* Date/Time Stamp: Year */

I* Date/Time Stamp: Hour */
/* Date/Time Stamp: Minute *I
I* Date/Time Stamp: Second *I
/* Job Name/ID */

I* Job Time: Hours */

I* Job Time: Minutes */
/* Job Time: Seconds */
I* Software ID */

I* Software Version Number *I
I* Software Version Letter *I
I* Key Color */

I* Pixel Aspect Ratio *I
I* Pixel Aspect Ratio *I
I* Gamma Value */
I* Gamma Value */
I* Color Correction Offset *I
I* Postage Stamp Offset */
I* Scan-Line Table Offset *I
/* Attributes Types */

Size specifies the number of bytes in the extension area. This value is 495 for
v2.0 of the TGAformat.

AuthorName allows the name of the TGA file creator to be stored using up to
40 characters. Unused characters are padded with spaces and the field is
NULL-terminated.

AuthorComment is also a string field containing 324 bytes (four SO-character
lines) in which to store information. This field is similar to the Image ID field
that follows the header. This field is also padded with spaces and is NULL
terminated.

The six Stamp fields contain the time and date the image was created or last
modified. These fields may have the following values:

StampMonth
StampDay .
Stamp Year
StampHour
StampMinute
StampSecond

1 to 12
1 to 31
0000 to 9999
0 to 23
0 to 59
0 to 59

876 GRAPHICS FILE FORMATS

TGA (cont'd)

Unused fields are set to zero.

JobName is a 4-byte, NULL-terminated string identifying the production job
with which the image is associated. JobHour, JobMinute, and JobSecond indi
cate the amount of time expended on the job.

The Softwareid field is a 40-character, NULL-terminated string that identifies
the software application that created the file. The VersionNumber and Version
Letter fields contain the. version of the software application.

KeyColor contains the background color of the image. This is the pixel color
used to paint the areas of the display screen not covered by the image or the
color used to clear the screen if the image is erased. The default value for this
field is 0, which corresponds to black.

PixelNumerator and PixelDenominator store the aspect ratio of the pixels
used in the image. If no aspect ratio is specified, then these fields are set to 0.

GammaNumerator and GammaDenominCl;tor are the gamma correction values
to be used when displaying the image. If both fields are 0, then a gamma value
is not used.

ColorOffset contains an offset value of the color correction table. If the file
does not contain a color correction table, then the value of this field is set to 0.

The StampOffset field contains an offset value of the postage-stamp image
included in the TGA file. If no postage-stamp image is present, the value of this
field is 0.

Scan Offset contains the offset value of the scan-line offset table.

AttributesType describes the type of alpha channel data contained within the
pixel data. A value of OOh indicates that the image data contains no alpha
channel value. A value of Olh, 02, 04h, or 08h indicates the presence of alpha
channel data. (See the TGA specification for more information on this field.)

Scan-line table, postage-stamp image, and color correction table
A new TGA format file may contain three additional data structures not found
in the original TGA format. These structures are the scan-line table, the
postage-stamp image, and the color correction table. There may only be one of
each of these data structures per TGA file, and offsets to these structures
appear· in the Extension Area.

The scan-line table is a method of accessing scan lines at any location within
raw or compressed image data. The table is an array of DWORD values. Each
value is the offset location from the beginning of the file to the beginning of

TGA 877

TGA (cont'd)

the corresponding scan line in the image data. There is one entry in the scan
line table per scan line in the image. Entries are written to the table in the
order in which the scan lines appear within the image.

The postage-stamp image is a smaller rendering of the primary image stored
within the TGA file. The first byte of the postage-stamp data specifies the width
of th~ stamp in pixels, and the second byte specifies the height, also in pixels.
Postage stamps should not be larger than 64x64 pixels, are typically stored in
the same format as the primary image, and are never compressed.

The color correction table is an array 2048 bytes in length, which contains 256
entries used to store values used for color remapping. The entire table has the
following format:

typedef struct _TGAColorCorrectionTable
{

SHORT Alpha;
SHORT Red;
SHORT Green;
SHORT Blue;

} TGACCT[256];

The fields Alpha, Red, Green, and Blue store the color values for each entry.
The range of each value is 0 to 65535. Black is 0,0,0,0, and white is
65535,65535,65535,65535.

ForFurtherhttonnation
For further information about the TGA format, see the specification and code
example included on the CD-ROM that accompanies this book.

The TGA format is maintained by Truevision, Inc. Prior to this writing, True
vision was acquired by RasterOps, Inc., but for the time being Truevision
remains an independent subsidiary. Copies of the latest TGA specification,
including a sample code disk, may be obtained directly from Truevision:

Truevision Incorporated
7340 Shadeland Station
Indianapolis, IN 46256-3925
Voice: 317-841-0332
FAX: 317-576-7700
BBS: 317-577-8783
FTP: ftp:/ /ftp.truevision.com/
WWW: http://www. truevision. com/Truevision. html

878 GRAPHICS FILE FORMATS

1:(;il (c~t'cl)

Also on their Internet sites, you can get the TGA v2.0 file format specifications,
as well as tools in C that read and write the format, and sample images.

TGA 879

NAME:

ALSO KNOWN As:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

TIFF

Tag Image File Format

Bitmap

1- to 24-bit

Uncompressed, RLE, LZW, CCITT Group 3 and
Group 4, JPEG

232_1

Yes

See article for discussion

Aldus

MS-DOS, Macintosh, UNIX, others

Most paint, imaging, and desktop publishing pro
grams

SPEciFICATioN oN cD: Yes

cooE oN cD: Yes (in libtiff package)

IMAGEs oN cD: Yes

SEE ALso: Chapter 9, Data Compression (RLE, LZW, CCITT, and
JPEG)

usAGE: Used for data storage and interchange. The general nature of TIFF allows
it to be used in any operating environment, and it is found on most plat
forms requiring image data storage.

coMMENTs: The TIFF format is perhaps the most versatile and diverse bitmap format
in existence. Its extensible nature and support for numerous data com
pression schemes allow developers to customize the TIFF format to fit any
peculiar data storage needs.

Overview
The TIFF specification was originally released in 1986 by Aldus Corporation as
a standard method of storing black-and-white images created by scanners and
desktop publishing applications. This first public release of TIFF was the third
major revision of the TIFF format, and although it was not assigned a specific
version number, this release may be thought of as TIFF Revision 3.0. The first
widely used revision of TIFF, 4.0, was released in April 1987. TIFF 4.0 added

880 GRAPHICS FILE FORMATS

TIFF (cont'd)

support for uncompressed RGB color images and was quickly followed by the
release of TIFF Revision 5.0 in August 1988. TIFF 5.0 was the first revision to
add the capability of storing palette color images and support for the LZW
compression algorithm. (See the sidebar on LZW compression in the section
called "Compression" later in this article.) TIFF 6.0 was released in June 1992
and added support for CMYK and YCbCr color images and the]PEG compres
sion method. (See the section called "Color" in Chapter 2, Computer Graphics
Basics, for a discussion of these color images. See Chapter 9, for a discussion of
]PEG compression.)

Today, TIFF is a standard file format found in most paint, imaging, and desktop
publishing programs and is a format native to the Microsoft Windows GUI.
TIFF's extensible nature, allowing storage of multiple bitmap images of any
pixel depth, makes it ideal for most image storage needs.

The majority of the description in this chapter covers the current TIFF revision
6.0. Because each successive TIFF revision is built upon the previous revision,
most of the information present in this chapter also pertains to TIFF Revision
5.0 as well. And, although more images are currently stored in the TIFF 5.0 for
mat than in any other revision of TIFF, quite a few TIFF 4.0 image files are still
in existence. For this reason, information is also inchided that details the dif
ferences between the TIFF 4.0, 5.0, and 6.0 revisions.

TIFF has garnered a reputation for pow~r and flexibility, but it is considered
complicated and mysterious as well. In its design, TIFF attempts to be very
extensible and provide many features that a programmer might need in a file
format. Because TIFF is so extensible and has many capabilities beyond all
other image file formats, this format is probably the most confusing format to
understand and use.

A common misconception about TIFF is that TIFF files are not very portable
between software applications. This is amazing considering that TIFF is widely
used as an image data interchange format. Complaints include, "I've down
loaded a number of TIFF clip art packages from some BBSs and my paint pro
gram or word processor is able to display only some of the TIFF image files, but
not all of them," ''When I try to display certain TIFF files using my favorite
image display program, I get the error message 'Unknown Tag Type' or
'Unsupported Compression Type'," and "I have a TIFF file created by one
applic::ation and a second application on the same machine cannot read or dis
play the image, even though TIFF files created by the second applicatiot;1 can
be read and displayed by the first application."

TIFF 881

TIFF (cont'd)

These complaints are almost always immediately blamed on the TIFF image
files themselves. The files are labeled "bad," because they have been munged
during a data file transfer or were exported by software applications that did
not know how to properly write a TIFF file. In reality, most TIFF files that do
not import or display properly are not bad, and the fault usually lies, instead,
with the program that is reading the TIFF file.

If an application only uses black-and-white images, it certainly does not need to
support the reading and writing of color and gray-scale TIFF image files. In this
case, the application should simply, and politely, refuse to read non-black-and
white TIFF image files and tell you the reason why. By doing this, the applica
tion would prevent the user from trying to read unusable image data ·and
would also cut down on the amount of TIFF code the application programmers
need to write.

Some applications that read TIFF image files-or any type of image files, for
that matter-may just return an ambiguous error code indicating that the file
could not be read, leaving the user with the impression that the TIFF file itself
is bad (not that the application could not use the image data the TIFF file con
tained). Such an occurrence is the fault of the application designer in not pro
viding a clearer message informing the user what has happened.

Sometimes, however, you may have an application that should be able to read a
TIFF file, and it does not, even though the type of image data contained in the
TIFF file is supported by the application. There are numerous reasons why a
perfecdy good TIFF file cannot be read by an application, and most of them
have to do with the application programmer's .lack of understanding of the
TIFF format itself.

A major source of TIFF reader problems is the inability to read data regardless
of byte-ordering scheme. The bytes in a 16-bit and 32-bit word of data are
stored in a different order on litde-endian architectures (such as the Intel
i.APX86), than on big-endian machines (such as the Motorola MC68000A).
Reading big-endian data using the little-endian format results in little more
than garbage.

Another major source of problems is readers that do not support the encoding
algorithm used to compress the image data. Most readers support both raw
(uncompressed) and RLE-encoded data but do not support CCITT T.4 and T.6
compression. It is also surprising how many TIFF readers support the reading
of color TIFF files, which are either stored as raw or RLE-compressed data, but
do not support the decompression of LZW-encoded data.

882 GRAPHICS FILE FORMATS

TIFF (cont'd)

Most other TIFF reader problems are quite minor, but usually fatal. Such prob
lems include failure to correctly interpret tag data, no support for color
mapped images, or the inability to read a bitmap scan line that contains an
odd number of bytes.

File Organization
TIFF files are organized into three sections: the Image File Header (IFH), the
Image File Directory (IFD), and the bitmap data. Of these three sections, only
the IFH and IFD are required. It is therefore quite possible to have a TIFF file
that contains no bitmapped data at all, although such a file would be highly
unusual. A TIFF file that contains multiple images has one IFD and one bitmap
per image stored.

TIFF has a reputation for being a complicated format in part because the loca
tion of each Image File Directory arid the data the IFD points to-including
the bitmapped data-may vary. In fact, the only part of a TIFF file that has a
fixed location is the Image File Header, which is always the first eight bytes of
every TIFF file. All other data in a TIFF file is found by using information found
in the IFD. Each IFD and its associated bitmap are known as a TIFF subfile.
There is no limit to the number of subfiles a TIFF image file may contain.

Each IFD contains one or more data structures called tags. Each tag is a 12-byte
record that contains a specific piece of information about the bitmapped data.
A tag may contain any type of data, and the TIFF specification defines over 70
tags that are used to represent specific information. Tags are always found in
contiguous groups within each IFD.

Tags that are defined by the TIFF specification are called public tags and may
not be modified outside of the parameters given in the latest TIFF specifica
tion. User-definable tags, called private tags, are assigned for proprietary use by
software developers through the Aldus Developer's Desk. See the TIFF 6.0 spec
ification for more information on private tags.

Note that the TIFF 6.0 specification has replaced the term tag with the term
field. Field now refers to the entire 12-byte data record, while the term tag has
been redefined to refer only to a field's identifying number. Because so many
programmers are familiar with the older definition of the term tag, the authors
have choosen to continue using tag, rather than field, in this description of
TIFF to avoid confusion.

Figure TIFF-I shows three possible arrangements of the internal data structure
of a TIFF file containing three images. In each example, the IFH appears first

TIFF 883

TIFF (cant'd)

in the TIFF file. In the first example, each of the IFDs has been written to the
file first and the bitmaps last. This arrangement is the most efficient for read
ing IFD data quickly. In the second example, each IFD is written, followed by its
bitmapped data. This is perhaps the most common internal format of a multi
image TIFF file. In the last example, we see that the bitmapped data has been
written first, followed by the IFDs. This seemingly unusual arrangement might
occur if the bitmapped data is available to be written before the information
that appears in the IFDs.

i HeUer Header Header I

I IFDO IFDD I ImageD I
IFD1 ImageD 1 lmaga1 I

j iFD n J IFD1 II lmaga2 I
lmapD I lmage1 IFDD l

lmap1 ! I 1FD2 r IFD1

lmapn j I lmage2 ' [1FD2 ____J

IFD
Image File Directory

FIGURE Tl FF- 1: Three possible physical arrangements of data in a TD'F file

Each IFD is a road map of where all the data associated with a bitmap can be
found within a TIFF file. The data is found by reading it directly from within
the IFD data structure or by retrieving it from an offset location whose value is
stored in the IFD. Because TIFF's internal components are linked together by
offset values rather than by fixed positions, as with stream-oriented image file
formats, programs that read and write TIFF files are often very complex, thus
giving TIFF its reputation.

The offset values used in a TIFF file are found in three locations. The first off
set value is found in the last four bytes of the header and indicates the position
of the first IFD. The last four bytes of each IFD is an offset value to the next IFD.
And the last four bytes of each tag may contain an offset value to the data it
represents, or possibly the data itself.

NOTE

Offsets are always interpreted as a number of bytes from the
beginning of the TIFF file .

884 GRAPHICS FILE FORMATS

TIFF (cant'd)

Figure TIFF-2 shows the way data structures of a TIFF file are linked together .

.,....,..
VMIIDI

F1r1t IFD Dlfllt

IFH
Image File Header

IFD
Image File Directory l l

1'11 EltrJ Clint 1'11 EltrJ Clut I Taa E11rr Cent

1'110 1'110 I TagO
Taa1 I 1'111 Tal1

r--, Tal• ,--- Tal• rl Tal•
latH Offill latiDOfbet L llat IFD Offset

l

•aeDatao lmlpData1 lmgeDatall

FIGURE TIFF-2: Logical organization of a TIFF file

File Details
This section describes the various components of a TIFF file.

Image File Header

TIFF, despite its complexity, has the simplest header of all of the formats
described in this book. The TIFF Image File Header (IFH) contains three fields
of information and is a total of only eight bytes in length:

typedef struct _TiffHeader
(

WORD Identifier; /* Byte-order Identifier */
WORD Version; /* TIFF version number (always 2Ah) */
DWORD IFDOffset; /* Offset of the first Image File Directory* /

TIFHEAD;

TIFF 885

TIFF (cont'd)

Identifier contains either the value 4949h (II) or 4D4Dh (MM). These values
indicate whether the data in the TIFF file is written in little-endian (Intel for
mat) or big-endian (Motorola format) order, respectively. All data encountered
past the first two bytes in the file obey the byte-ordering scheme indicated by
this field. These two values were chosen because they would always be the
same, regardless of the byte order of the file.

Version, according to the TIFF specification, contains the version number of
the TIFF format. This version number is always 42, regardless of the TIFF revi
sion, so it may be regarded more as an identification number, (or possibly the
answer to life, the universe, etc.) than a version number.

A quick way to check whether a file is indeed a TIFF file is to read the first four
bytes of the file. If they are:

49h 49h 2Ah OOh

or:

4Dh 4Dh OOh 2Ah

then it's a good bet that you have a TIFF file.

IFDOffset is a 32-bit value that is the offset position of the first Image File
Directory in the TIFF file. This value may be passed as a parameter to a file seek
function to find the start of the image file information. If the Image File Direc
tory occurs immediately after the header, the value of the IFDOffset field is
08h.

Image File Directory

An Image File Directory (IFD) is a collection of information similar to a
header, and it is used to describe the bitmapped data to which it is attached.
Like a header, it contains information on the height, width, and depth of the
image, the number of color planes, and the type of data compression used on
the bitmapped data. Unlike a typical fixed header, however, an IFD is dynamic
and may .not only vary in size, but also may be found anywhere within the TIFF
file. There may be more than one IFD contained within any file. The format of
an Image File Directory is shown in Figure TIFF-I.

One of the misconceptions about TIFF is that the information stored in the
Image File Directory tags is actually part of the TIFF header. In fact, this infor
mation is often referred to as the ''TIFF Header Information." While it is true

886 GRAPHICS FILE FORMATS

TIFF (cont'd)

that other formats do store the type of information found in the IFD in the
header, the TIFF header does not contain this information. It is possible to
think of the IFDs in a TIFF file as extensions of the TIFF file header.

A TIFF file may contain any number of images, from zero on up. Each image is
considered to be a separate subfile (i.e., a bitmap) and has an IFD d~scribing
the bitmapped data. Each TIFF subfile can be written as a separate TIFF file or
can be stored with other subfiles in a single TIFF file. Each subfile bitmap and
IFD may reside anywhere in the TIFF file after the headers, and there may be
only one IFD per image.

This may sound confusing, but it's not really. We have seen that the TIFF
header contains an offset value that points to the location of the first IFD in the
TIFF file. To find the first IFD, all we need do is seek to this offset and start
reading the IFD information. The last field of every IFD contains an offset value
to the next IFD, if any. If the offset value of any IFD is OOh, then there are no
more images left to read in the TIFF file.

An IFD may vary in size, because it may contain a variable number of data
records, called tags. Each tag contains a unique piece of information, just as
fields do within a header. However, there is a difference. Tags may be added
and deleted from an IFD much the same way that· notebook paper may be
added to or removed from a three-ring binder. The fields of a conventional
header, on the other hand, are fixed and unmovable, much like the pages of
this book. Also, the number of tags found in an IFD may vary, while the num
ber of fields in a type header is fixed.

The format of an Image File Directory is shown in the following structure:

typedef struct _Tififd
{

WORD NumDirEntries;
TIFTAG TagList[];
DWORD NextiFDOffset;

} TIFIFD;

/* Number of Tags in IFD */
/* Array of Tags */
/* Offset to next IFD */

NumDirEntries is a 2-byte value indicating the number of tags found in the
IFD. Following this field is a series of tags; the number of tags corresponds to
the value of the NumDirEntries field. Each tag structure is 12 bytes in size and,
in the sample code above, is represented by an array of structures of the data
type definition TIFTAG. (See the next section for more information on TIFF
tags.) The number of tags per IFD is limited to 65,535.

TIFF 887

TIFF (cant'd)

NextiFDOffset contains the offset position of the beginning of the next IFD. If
there are no more IFDs, then the value of this field is OOh.

Tag Entry Cauat 2 bytes

TagO 12 bytes

Tag1 12 bytes

[
Tag D 12 bytes

Next IFD Offset
~

4 bytes

Data too large to
fit Inside a tag

FIGURE TIFF-3: Format of an Image File Directory

Tags

As mentioned in the previous section, a tag can be thought of as a data field in
a file header. However, whereas a header data field may only contain data.of a
fixed size and is normally located only at a fixed position within a file header, a
tag may contain, or point to, data that is any number of bytes in size and is
located anywhere within an IFD.

The versatility of the TIFF tag pays a price in its size. A header field used to
hold a byte of data need only be a byte in size. A tag containing one byte of
information, however, must always be twelve bytes in size.

A TIFF tag has the following 12-byte structure:

typedef struct _TifTag
{

WORD Tagid; /* The tag identifier * /
WORD DataType; /* The scalar t ype of t he data items * /
DWORD DataCount; /* The number of items in the tag data * I
DWORD DataOffset; /* The byte offset to the data items */

TIFTAG;

Tagld is a numeric value identifying the type of information the tag contains.
More specifically, the Tagld indicates what the tag information represents.

888 GRAPHICS FILE FORMATS

. TIFF (cont'd)

Typical information found in every TIFF file includes the height and width of
the image, the depth of each pixel, and the type of data encoding used to com
press the bitmap. Tags are normally identified by their Tagid value and should
always be written to an IFD in ascending order of the values found in the Tagid
field.

DataType contains a value indicating the scalar data type of the information
found in the tag. The following values are supported:

1 BYTE
2 ASCII
3 SHORT
4 LONG
5 RATIONAL

8-bit unsigned integer
8-bit, NULL-terminated string
16-bit unsigned integer
32-bit unsigned integer
Two 32-bit unsigned integers

The BYTE, SHORT, and LONG data types correspond to the BYrE, WORD,
and DWORD data types used throughout this book. The ASCII data type con
tains strings of 7-bit ASCII character data, which are always NULL-terminated
and may be padded out to an even length if necessary. The RATIONAL data
type is actually two LONG values and is used to store the two components of a
fractional value. The first value stores the numerator, and the second value
stores the denominator.

The TIFF 6.0 revision added the following new data types:

6
7
8
9
10
11
12

SBYTE
UNDEFINE
SSHORT
SLONG
SRATIONAL
FLOAT
DOUBLE

8-bit signed integer
8-bit byte
16-bit signed integer ·
32-bit signed integer
Two 32-bit signed integers
4-byte single-precision IEEE floating-point value
8-byte double-precision IEEE floating-point value

The SBYTE, SSHORT, SLONG, and SRATIONAL data types are used to store
signed values. The FLOAT. and DOUBLE data types are used specifically to
store IEEE-format single- and double-precision values. The UNDEFINE data
type is an 8-bit byte that may contain untyped or opaque data and is typically
used in private tags. An example of the use of this data type is to store an entire
data structure within a private tag specifying the DataType as UNDEFINE
(value of 7) and a Data Count equal to the number of bytes in the structure.

TIFF 889

TIFF (cont'd)

With the exception of the SMinSampleValue and SMaxSampleValue tags
(which may use any data type), none of these newer data types is used by any
TIFF 6.0 tags. They are therefore found only in private tags.

DataCount indicates the number of items referenced by the tag and doesn't
show the actual size of the data itself. Therefore, a DataCount of 08h does not
necessarily indicate that eight bytes of data exist in the tag. This value indicates
that eight items exist for the data type specified by this tag. For example, a
DataCount value of 08h and a DataType of 03h indicate that the tag data is
eight contiguous 16-bit unsigned integers, a total of 32 bytes in size. A Data
Count of 28h and a D~taType of 02h indicate an ASCII character string 40 bytes
in length, including the NULL-terminator character, but not any padding if
present. And a DataCount of Olh and a DataType of 05h indicate a single
RATIONAL value a total of eight bytes in size.

DataOffset is a 4-byte field that COJ?.tains the offset location of the actual tag
. data within the TIFF file. H the tag data is four bytes or less in size, the data may
be found in this field. H the tag data is greater than four bytes in size, then this
field contains an offset to the position of the data in the TIFF file. Packing data
within the DataOffset field is an optimization within the TIFF specification and
is not required to be performed. Most data is typically stored outside the tag,
occurring before or after the IFD (see Figure TIFF-3).

Table TIFF-I lists all of the public tags included in the TIFF 4.0, 5.0, and 6.0
specifications. Note that some tags have become obsolete and are not found in
the current revision of TIFF; however, we provide them because the TIFF 4.0
and TIFF 5.0 specs are still in some use. Also, note that several tags may support
more than one data type.

In the table below, an asterisk (*) means that the tag is defined, a hyphen (-)
means that the tag is not defined, and an "x" means that the tag is obsolete.

TABLE TIFF-t: TIFF Tag 'J}pes Listed Alphabetically by Name

Tag Name TagiD Tag'I}'pe 4.0 5.0 6.0

Artist 315 ASCII * *
BadFaxLinesa 326 SHORT or LONG
BitsPerSample 258 SHORT * * *
CellLength 265 SHORT * * *
CellWidth 264 SHORT * * *
CleanFaxDataa 327 SHORT

890 GRAPHICS FILE FORMATS

TIFF (cont'd)

Tag Name TagiD Tag'l)rpe 4.0 5.0 6.0
Color Map 320 SHORT * *
ColorResponseCurve 30l SHORT * * X

ColorResponseUnit 300 SHORT * X X

Compression 259 SHORT * * *
Uncompressed I * * *
CCI'IT ID 2 * * *
CCITI Group 3 3 * * *
CCI'IT Group 4 4 * * *
LZW 5 * *
JPEG 6 *
Uncompressed 32771 * X X

Packbits 32773 * * *
ConsecutiveBadFaxLinesa 328 LONG or SHORT
Copyright 33432 ASCII *
Date Time 306 ASCII * *
DocumentName 269 ASCII * * *
DotRange 336 BYTE or SHORT *
ExtraSamples 338 BYTE *
Fill Order 266 SHORT * * *
FreeByteCounts 289 LONG * * *
FreeOffsets 288 LONG * * *
GrayResponseCurve 291 SHORT * * *
GrayResponseUnit 290 SHORT * * *
HalftoneHints 321 SHORT *
HostComputer 316 ASCII * *
ImageDescription 270 ASCII * * *
Image Height 257 SHORT or LONG * * *
Image Width 256 SHORT or LONG * * *
InkNames 333 ASCII *
InkSet 332 SHORT *
JPEGACTiables 521 LONG *
JPEGDCTiables 520 LONG *
JPEGinterchangeFormat 513 LONG *
JPEGinterchangeFormatLength 514 LONG *
JPEGLosslessPredictors 517 SHORT *
JPEGPointTransforms 518 SHORT *
JPEGProc 512 SHORT *
JPEGRestartlnterval 515 SHORT *
JPEGQTables 519 LONG *
Make 271 ASCII * * *

TIFF 891

TIFF (cont'd)

Tag Name TagiD Tag1'}rpe 4.0 5.0 6.0
MaxSampleValue 281 SHORT * * *
MinSampleValue 280 SHORT * * *
Model 272 ASCII * * *
NewSubFileType 254 LONG * *
NumberOflnks 334 SHORT *
Orientation 274 SHORT * * *
PageName 285 ASCII * * *
PageNumber 297 SHORT * * *
Photometricln terpretation 262 SHORT * * *

WhitelsZero 0 * * *
BlacklsZero 1 * * *
RGB 2 * * *
RGB Palette 3 * *
Tranparency Mask 4 *
CMYK 5 *
YCbCr 6 *
CIELab 8 *

PlanarConfiguration 284 SHORT * * *
Predictor 317 SHORT * *
PrimaryChromaticities 319 RATIONAL * *
ReferenceBlackWhite 532 LONG *
Resolution Unit 296 SHORT * * *
RowsPerStrip 278 SHORT or LONG * * *
SampleFormat 339 SHORT *
SamplesPerPixel 277 SHORT * * *
SMaxSampleValue 341 Any *
SMinSampleValue 340 Any *
Software 305 ASCII * *
StripByteCounts 279 LONG or SHORT * * *
StripOffsets 273 SHORT or LONG * * *
SubFileType 255 SHORT * X X

T40ptionsb 292 LONG * * *
T60ptionsc 293 LONG * * *
TargetPrinter 337 ASCII *
Thresholding 263 SHORT * * *
TileByteCounts 325 SHORT or LONG *
TileLength 323 SHORT or LONG *
TileOffsets 324 LONG *
Tile Width 322 SHORT or LONG *
TransferFunction d 301 SHORT *

892 GRAPHICS FILE FORMATS

TIFF (cont'd)

Tag Name TagiD Tag'I)pe 4.0 5.0 6.0
Transfer Range 342 SHORT *
XPosition 286 RATIONAL * * *
XResolution 282 RATIONAL * * *
YCbCrCoefficients 529 RATIONAL *
YCbCrPositioning 531 SHORT *
YCbCrSubSampling 530 SHORT *
YPosition 287 RATIONAL * * *
YResolution 283 RATIONAL * * *
WhitePoint 318 RATIONAL * *
a Tags Bad.FaxLines, CleanFaxData, and ConsecutiveBadFaxLines are part of TIFF Class F now maintained by
Aldus and are not actually defined by the TIFF 6.0 specification.
b Tag 292 was renamed from Group30ptions to T40ptions in TIFF 6.0.
c Tag 293 was renamed from Group30ptions to T60ptions by TIFF 6.0.
d Tag 301 was renamed from ColorResponseCurve to Transfer Function by TIFF 6.0.

Organization ofTIF~ Tag Data

To keep developers from having to guess which tags should be written to a TIFF
file and what tags are important to read, the TIFF specification defines the con
cept of baseline TIFF images. These baselines are defined by the type of image
data they store: hi-level, gray-scale, palette-color, and full-color. Each baseline
has a minimum set of tags, which are required to appear in each type of TIFF
file.

In the TIFF 5.0 specification, these baselines were referred to as TIFF classes.
Each TIFF file consisted of a common baseline (Class X) and was modified by
an additional class depending upon the type of image data stored. The classes
were Class B (hi-level), Class G (gray-scale), Class P (palette-color), and Class R
(full-color RGB).

The TIFF 6.0 specification redefines these classes into four separate baseline
TIFF file configurations. Class X is combined with each of the other four classes
to form the hi-level, gray-scale, color-palette, and full-color baselines. Although
TIFF 6.0 largely does away with the concept of TIFF classes, it is likely that
because more TIFF 5.0 format files exist than any other, TIFF files will be
referred to by these class designations for many years to come.

It is worth mentioning that a de facto TIFF class, Class F, exists specifically for
the storage of facsimile images using the TIFF format. This class of TIFF file,
created by Cygnet Technologies; is used by Everex products to store facsimile

TIFF 893

TIFF (ccmt'd)

data, and is also known as the Everex Fax File Format. Although Cygnet Tech
nologies is no longer in business, TIFF Class F remains in use and is considered
by some to be an excellent storage format for facsimile data.

Table TIFF-2 lists the minimum required tags that must appear in the IFD of
each TIFF 6.0 baseline. Note that several of these tags have default values that
are used if the tag does not actually appear in a TIFF file:

• Bi-level (formerly Class B) and gray-scale (formerly Class G) TIFF files must
contain the thirteen tags listed. These tags must appear in all revision 5.0
and 6.0 TIFF files regardless of the type of image data stored.

• Palette-color (formerly Class P) TIFF files add a fourteenth required tag
that describes the type of palette information found within the TIFF image
file.

• RGB (formerly Class R) TIFF files contain the same tags as hi-level TIFF files
and add a fourteenth required tag, which describes the format of the
bitmapped data in the image.

• YCbCr TIFF files add four additional tags to the baseline.

• Class F TIFF files add three tags.

TABLE Tl FF-2: Minimum Required Tags for Each TIFF Class

Class Name Tag Type Tag Name

Bi-level and 254 NewSubfileType
Gray-scale 256 Image Width

257 Image Length
258 BitsPerSample
259 Compression
262 Photometricln terpretation
273 StripOffsets
277 SamplesPerPixel
278 RowsPerStrip
279 StripByteCounts
282 XResolution
283 YR.esolution
296 Resolution Unit

The following classes contain the above 13 tags plus the
following tags:

894 GRAPHICS FILE FORMATS

Class Name Tag Type

Palette-color 320
RGB 284
YCbCr 529

530
531
532

Class F 326
327
328

Tag Name

ColorMap
PlanarConfiguration
YCbCrCoefficien ts

YCbCrSubSampling
YCbCrPositioning
ReferenceBlackWhite
BadFaxLines
CleanFaxData
ConsecutiveBadFaxLines

TIFF (ccmt'd)

All other tags found in the TIFF specification are available to meet developer's
needs. While a TIFF reader must be able to support the parsing and interpreta
tion of all tags it considers necessary, it is certainly not necessary for a TIFF
writer to include as many tags as possible in every TIFF file written.

Image Data

TIFF files contain only bitmap data, although adding a few tags to support
vector- or text-based images would not be a hard thing to do. As we have seen,
the bitmapped data in a TIFF. file does not always appear immediately after the
image header, as with most other formats. Instead, it may appear almost any
where within the TIFF file. And, because the majority of the work performed by
a TIFF reader and writer is the creation and manipulation of the image data, a
thorough understanding of how the image data is stored within a TIFF file is
necessary, starting with the concept of strips.

NOTE

TIFF 6.0 images may contain tiles rather than strips.

Strips
It is always amusing to come across a TIFF reader or viewer whose author posts
the caveat in the source code, ''This TIFF reader does not support stripped
images." A large proportion of TIFF readers who fail to read certain TIFF image
files do so because the author of the reader did not quite understand the con
cept of how image data can be organized within a TIFF file. In this case, not
only did the author of the reader fail to understand how to write code to read
strips, he or she also failed to realize that every TIFF 5.0 (and earlier) image
contains strips.

TIFF 895

TIFF (cont'd)

A strip is an individual collection of one or more contiguous rows of bitmapped
image data. Dividing the image data into strips makes buffering, random
access, and interleaving of the image data much easier. This concept exists in
several other image file formats, and is given names such as blocks, bands, and
chunks. TIFF strips differ from other such concepts in several important ways
due to the structure of the TIFF format.

Three tags are necessary to define the strips of bitmapped data within a TIFF
file. These three tags are RowsPerStrip, StripOffsets, and StripByteCounts.

The first required tag, RowsPerStrip, indicates the number of rows of com
pressed bitmapped data found in each strip. The default value for RowsPer
Strip is 232_1, which is the maximum possible size of a TIFF image. All of the
strips in a TIFF subfile must use the same compression scheme and have the
same bit sex, color sex, pixel depth, and so on. To find the number of strips in
a non-YCbCr subtile image, we would use the RowsPerStrip tag, the Image
Length tag, and the following calculation:

Stripsinimage =
floor((ImageLength + RowsPerStrip- 1) I RowsPerStrip);

The second required tag, StripOffsets, is important because without it a TIFF
reader has absolutely no hope of locating the image data within a TIFF file.
This tag contains an array of offset values, one per strip, which indicate the
position of the first byte of each strip within the TIFF file. The first value in the
array is for the first strip, the second value for the second strip, and so on. If
the image data is separated into planes (PlanarConfiguration = 2), StripOffsets
contains a 2D array of values, which is SamplesPerPixel in width. All of the
columns for color component (plane) 0 are stored first, followed by all the
columns for color component (plane) 1, and so forth. The strips of planar
image data may be written to the TIFF file in any order but are typically written
by plane (RRRRGGGGBBBB) or by color component (RGBRGBRGBRGB).
StripOffsets values are always interpreted from the beginning of the file.

The StripOffsets tag allows each strip in a TIFF file to have a location that is
completely independent from all other strips in the same subfile. This means
that strips may occur in any order and be found anywhere within the TIFF file.
Many "quick and dirty" TIFF readers find the beginning of the first strip and
then attempt to read in the image data as one large chunk without checking
the StripOffsets array for the position of each additional strip. This technique
works if all the strips in the TIFF file are contiguously written to the TIFF file

896 GRAPHICS FILE FORMATS

TIFF (cont'd)

and are in the same consecutive order as the original rows in the bitmap. If the
strips are stored out of sequence, perhaps in a planar or interlaced fashion, or
are aligned on paragraph or page boundaries, the image data read will not be
in its proper order, and the image will appear sliced up and rearranged on the
display. If the strips are stored in a fairly random fashion, a large part of the
data read might not be part of the image, or even the TIFF file itself. In this
case, anything that is displayed would be mostly garbage.

The value of the RowsPerStrip tag and the size of each element in the array of
the StripOffsets tag is usually a LONG (32-bit) value. TIFF 5.0 added the ability
of this tag to use SHORT (16-bit) values instead. Very old TIFF readers may
expect the values in this tag to always be LONG and will therefore read the off
set values improperly if they are SHORT. This modification was made primarily
for TIFF readers that read the StripOffsets values into an array in memory
before using them. The TIFF 6.0 specification suggests that the offset values
should not require such an array to be larger than 64K in size.

The third tag, StripByteCounts, maintains an array of values that indicates the
size of each strip in bytes. And, like the StripOffsets tag, this tag is also an array
of values, one per strip, ID for chunky format and 2D for planar format, each
of which is calculated from the number of bytes of compressed bitmapped data
stored in each strip.

This tag is necessary because there are several cases in which the strips in an
image may each contain a different number of bytes. The first case occurs
when using compressed bitmapped image data. As we have said, the Strip
BytesCounts value is the size of the image data after it is compressed. Although
there is a fixed number of bytes in an uncompressed row, the size of a com
pressed row varLes depending upon the data it contains. Because we are always
storing a fixed number of rows, not bytes, per strip, it is likely that most strips
will be of different lengths because each compressed row will vary in size. Only
when the bitmap data is not compressed will each strip be the same size.

Well, almost ... The last strip in an image is sometimes an exception. TIFF writ
ers typically attempt to create strips so that each strip in a TIFF image has the
same number of rows. For example, a bitmap with 2200 rows can be divided
into 22 strips, each containing 100 rows of bitmapped data. However, it is not
always possible to divide the number of rows equally among the desired num
ber of strips. For example, if we needed to divide a bitmap containing 482 rows
into strips containing five rows each, we would end up with a total of 97 strips,

TIFF 897

TIFF (cont'd)

96 strips containing five rows of data and the 97th strip containing the remain
ing two rows. The RowsPerStrip tag value of 5 would be correct for all strip
lengths except for the last strip.

The truth is that a TIFF reader does not need to know the number of rows in
each strip to read the image data, only the number of bytes. Otherwise, the
TIFF specification would require that every "short" strip be padded with addi
tional rows of dummy data, but it doesn't. Instead, we simply read the last
StripByteCounts value to determine how many bytes to read for the last strip.
What the TIFF specification doesn't make clear is that the RowsPerStrip value
specifies the maximum value, and not the required value, of the number of
rows per strip. Many TIFF files, in fact, store a single strip of data and specify an
arbitrarily large RowsPerStrip value.

There are several advantages to organizing bitmap data in strips.

First, not all applications can read an entire file into memory. Many desktop
machines still have only one megabyte or less of memory available to them.
And even if a system has gobs of memory, there is no guarantee that a TIFF
reader will be able to use it. Such a TIFF reader can allocate the largest buffer it
can manage and then read in the bitmapped data one strip at a time until the
buffer is filled. If the image is panned or scrolled, data in the buffer can be dis
carded and more strips read in. If the entire image can fit in memory, all the
strips in the TIFF file would then be read.

Because compressed strips can vary in size, the StripByteCounts values cannot
be accurately used by an application to dynamically allocate a buffer in mem
ory (unless every value is read and the largest value is used to allocate the
buffer). Therefore, it is recommended that each strip be limited to about BK in
size. If a TlFF reader can allocate a much larger buffer than 8K, then multiple
strips may be read into the buffer. Although TIFF strips can be larger, perhaps
to support an image where each compressed or uncompressed row is greater
than BK in size, the size of a strip should never exceed 64K. Allocating a buffer
greater than 64K can be a bit tricky when using certain system architectures.

Second, having access to a table of strip offsets makes random access of the
bitmapped data easier. If a TIFF reader needed to display the last 100 rows of a
480-row image, and the bitmaps were divided into 48 strips of 10 rows each, the
reader would skip over the first 380 rows and read in the strips stored at the
last 10 offsets in the StripOffsets tag array. If no strip offsets were present, the
entire image would need to be read to find the starting position of the last 100
rows.

898 GRAPHICS FILE FORMATS

TIFF (cont'd)

And while it is possible that the bitmap in a TIFF file may be written out as one
long strip-and many TIFF files are written this way-it is not a good idea to
do so. These so-called unstripped images often fail because an application
must attempt to allocate enough memory to hold the entire image. For large
images, or small systems, enough memory may not be available. One can only
hope that a TIFF file reader would exit from such a situation gracefully.

Tiles
Strips are not the only possible way to organize bitmapped data. TIFF 6.0 intro
duced the concept of tiled, rather than stripped, bitmapped data. A strip is a
lD object that only has a length. A tile can be thought of as a 2D strip that has
both width and length, very similar to a bitmap. In fact, you can think of each
tile in an image as a small bitmap containing a piece of a larger bitmap. All you
need to do is fit the tiles together in their proper locations to get the image.
(This concept only serves to remind me that I must replace the linoleum in my
bathroom one day.)

Dividing an image into rectangular tiles rather than horizontal strips has the
greatest benefit on very large high-resolution images. Many electronic docu
ment imaging (EDI) applications cannot manipulate images larger than E size
(6848 pixels wide by 8800 pixels long) because of the large amount of memory
required to buffer, decompress, and manipulate even a few hundred rows of
image data. Even if you just wanted to display the upper-left corner of an image
you would still be forced to decompress the entire strip and maintain h in
memory. If the image data were tiled, however, you would only decompress the
tiles that contained the image data for the part of the image you wanted to dis
play.

Many compression algorithms, such as JPEG, compress data not as lD strips,
but instead as 2D tiles. Storing the compressed data as tiles optimizes the
decompression of the data quite a bit. In fact, the support of 2D compression
algorithms is perhaps the primary reason why the capability of tiling image
data was added to TIFF 6.0.

When tiles are used instead of strips, the three strip tags, RowsPerStrip, Strip
ByteCounts, and StripOffsets, are replaced by the tags TileWidth, TileLength,
TileOffsets, and TileByteCounts. As you might have guessed, the tile tags are
used in much the same way that the strips tags are. And, like strips, tiles are
either all uncompressed, or all compressed using the same scheme. Also, TIFF
images are either striped or tiled, but never both.

TIFF 899

TIFF (cont'd)

Tile Width and TileLength describe the size of the tiles storing the image data.
The values ofTileWidth and TileLength must be a multiple of 16, and all tiles
in a subfile are always the same size. These are important compatibility consid
erations for some applications, especially when using the tile-oriented JPEG

compression scheme. The TIFF 6.0 specification recommends that tiles should
contain 4K to 32K of image data before compression. Finally, tiles need not be
square. Rectangular tiles compress just as well.

The Tile Width and TileLength tag values can be used to determine the num
ber of tiles in non-YCbCr image subfiles:

TilesAcross = {ImageWidth + {TileWidth- 1)) I TileWidth;
TilesDown = {ImageLength + {TileLength- 1)) I TileLength;
Tilesinimage = TilesAcross * TilesDown;

If the image is separated into planes (PlanarConfiguration = 2), the number of
tiles is calculated like this:

Tilesinimage = TilesAcross * TilesDown * SamplesPerPixel;

The TileOffsets tag contains an array of offsets to the first byte of each tile.
Tiles are not necessarily stored in a contiguous sequence in a subtile. Each tile
has a separate location offset value and is independent of all other tiles in the
subfile. The offsets in this tag are ordered left-to-right and top-to-bottom. If the
image data is separated into planes, all of the offsets for the first plane are
stored first, followed by the offsets for the second plane, and so on. The num
ber of offset values in this tag are equal to the number of tiles in the image
(PlanarConfiguration = 1) or the number of tiles multiplied by the Samples
Per Pixel tag value (PlanarConfiguration = 2). All offset values are interpreted
from the beginning of the TIFF file.

The final tag, TileByteCounts, contains the number of bytes in each com
pressed tile. The number of values in this tag is also equal to the number of
tags in the image, and the values are ordered the same way as the values in the
TileOffsets tag.

Normally, a tile size is chosen that fits an image exactly. An image 6400 pixels
wide by 4800 pixels long may 'be divided evenly into 150 tiles, each 640 pixels
wide by 320 pixels long. However, not all image dimensions are divisible by 16.
An image 2200 pixels wide by 2850 long cannot be evenly divided into tiles
whose size must be multiples of 16. The solution is to choose a "best-fit" tile
.size and fill out the image data with padding.

900 GRAPHICS FILE FORMATS

TIFF (cont'd)

To find a best-fit tile size, we must choose a tile size that minimally overlaps the
size of the image. In this example, we want to use tiles that are 256 pixels wide
by 320 pixels long, roughly the same aspect ratio as the image. Using tiles this
size requires that 104 extra pixels of padding be added to each row and that 30
additional rows be added to the image length. The size of the image data plus
padding is now 2304 pixels wide by 2880 pixels long and can be evenly divided
among 81 of our 256 by 320 pixel tiles.

In this example, you may notice that the total amount of padding added to the
image before tiling is 365,520 pixels. For a 1-bit image, this equals an extra
45,690 bytes of image data. No appreciable gain in compression results from
tiling small images. Also, avoid using tiles that are excessively large and require
excessive amounts of padding.

Compression

TIFF supports perhaps more types of data compression than any other image
file format. It is also quite possible to use an unsupported compression scheme
just by adding the needed user-defined tags. TIFF 4.0 supported only Run
Length Encoding (RLE} and CCITT T.4 and T.6 compression. These compres
sion schemes are typically only for use with 8-bit color, and gray-scale and 1-bit
black-and-white images, respectively. TIFF 5.0 added the LZW compression
scheme, typically for color images, and TIFF 6.0 added the JPEG compression
method for use with continuous-tone color and gray-scale images. (All of these
data compression schemes, including a variety of RLE algorithms, are discussed
in Chapter 9.)

TIFF uses the PackBits RLE compression scheme found in the Macintosh tool
box. PackBits is a simple and effective algorithm for compressing data and is
easy to implement. The name "PackBits" would lead a programmer to believe
that it is a bit-wise RLE, packing runs of bits. However, PackBits is a byte-wise
RLE and is most efficient at encoding runs of bytes.

PackBits actually has three types of data packets that may be written to the
encoded data stream. The first is a two-byte encoded run packet. The first byte
(the run-count byte) indicates the number of bytes in the run, and the second
byte stores the value of each byte in the run. The actual run-count value stored
is in the range 0 to 127 and represents the values 1 to 128 (run count+ 1).

TIFF 901

TIFF (cont'd)

LZW Is Not Free

If you are creating or modifying software that implements the LZW algo
rithm, be aware that under certain circumstances, you will need to pay a
licensing fee for the use of LZW.

Unisys Corporation owns the patent for the LZW co<~:ec (encod
ing/decoding algorithm) and requires that a licensing fee be paid for
each software program which implements the LZW algorithm.

Many people have concluded that the Unisys licensing claim applies only
to LZW encoders (software that creates LZW data) and not to LZW
decoders (software that only reads LZW data). However, Unisys believes
that its patent covers the full LZW codec and requires a licensing fee even
for software that reads, but does not write, LZW data.

For more information about the entire issue of LZW licensing, refer to the
section called "LZW Legal Issues" in Chapter 9. For a popular alternative
to graphics file formats that use LZW, consider using the Portable Net
work Graphics (PNG) file format, described in Part Two of this book.

Another type of packet, the literal run packet, stores 12 to 128 bytes literally in
the encoded data stream without compressing them. Literal run packets are
used to store data with very few runs, as found in very complex or noisy images.
The literal run packet's run count is in the range of -127 to -1, indicating that
2 to 128 run values (-(run count)+ 1) follow the run count byte.

The last type of packet is the no-op packet. No-ops are one byte in length and
have a value of -128. The no-op packet has no use in the PackBits compression
scheme and is therefore never found in PackBits-encoded data.

Decompressing PackBits-encoded data is a simple matter of reading a packet of
encoded data and converting it to the appropriate byte run. Once again, the
run-count byte value is stored one less than the actual number of bytes in the
run. It is therefore necessary to add one to the run-count value before using it.

Refer to the TIFF 6.0 specification for more information on PackBits compres
sion, and to Chapter 9, for more information on RLE algorithms.

902 GRAPHICS FILE FORMATS ...

TIFF (cont'd)

Problems with TIFF 6.0 JPEG

Commentary by Dr. Tom Lane of the Independent]PEG Group, a mem
ber of the TIFF Advisory Committee

TIFF 6.0 added JPEG to the list of TIFF compression schemes.
Unfortunately, the approach taken in the 6.0 specification is a
very poor design. A new design has been developed by the TIFF
Advisory Committee. If you are considering implementingjPEG
in TIFF, I strongly urge you to follow the revised design
described in TIFF Tech Note #2 rather than that of the 6.0 spec.

The fundamental problem with the TIFF 6.0]PEG design is that
]PEG's various tables and parameters are broken out as separate
fields, which the TIFF control logic must manage. This is bad
software engineering-that information should be private to
the]PEG compressor I decompressor. Worse, the fields them
selves are specified without thought for future extension and
without regard to well-established TIFF conventions. Here are
some of the more significant problems:

• The]PEG table fields use a highly nonstandard layout:
rather than containing data directly in the field structure,
the fields hold pointers to information elsewhere in the file.
This requires special-purpose code to be added to every
TIFF-manipulating application. Even a trivial TIFF editor
(for example, a program to add an ImageDescription field
to a TIFF file) must be explicitly aware of the internal struc
ture of the]PEG-related tables, or it will probably break the
file. Every other auxiliary field in TIFF follows the normal
TIFF rules and can be copied or relocated by standard code.

• The specification requires the TIFF control logic to know a
great deal about]PEG details-for example, such arcana as
how to compute the length of a Huffman code table. The
length is not supplied in the field structure and can be
found only by inspecting the table contents.

• The design specifies separate Huffman tables for each color
component. This neglects the fact that baseline]PEG codecs
may support only two sets of Huffman tables. Thus, an
encoder must either waste space (by storing duplicate Huff
man tables) or violate the TIFF convention that prohibits

TIFF 903

TIFF (cont'd)

duplicate pointers. Furthermore, baseline decoders must
test to see which tables are identical-a waste of time and
code space.

• The JPEGinterchangeFormat field again violates the pro
scription against duplicate pointers; it envisions having the
normal strip/tile pointers pointing into the larger data area
pointed to by JPEGinterchangeFormat. TIFF editing appli
cations must be specifically aware of this relationship,
because they must maintain it or, if they can't, must delete
the JPEGinterchangeFormat field.

• The JPEGQTables field is fixed at a byte per table entry;
there is no way to support 16-bit quantization values. This is
a serious impediment to extending TIFF to use 12-bit]PEG.

• The design cannot support using different quantization
tables in different strips/tiles of an image (so as to encode
some areas at higher quality than others). Furthermore,
because quantization tables are tied one-for-one to color
components, the design cannot support table switching
options that are likely to be added in future]PEG exten
sions.

In addition to these major design errors, the TIFF 6.0]PEG spec
ification is seriously ambiguous. In particular, several incompati
ble interpretations are possible for its handling of]PEG restart
markers, and Section 22, ':JPEG Compression," actually contra
dicts Section 15, ''Tiled Images," about the restrictions on tile
sizes.

Finally, the 6.0 design creates problems for implementations
that need to keep the JPEG codec separate from the TIFF con
trol logic-consider using a]PEG chip that was not designed
specifically for TIFF. JPEG codecs generally want to produce or
consume a standard JPEG datastream, not just raw data. (H they
do handle raw data, a separate out-of-band mechanism must be
provided to load tables into the codec.) With such a codec, the
TIFF control logic must be prepared to parse JPEG markers to
create the TIFF table fields (when encoding) or to synthesize
JPEG markers from the fields (when decoding). Of course, this
means that the control logic must know a great deal more
aboutjPEG than we would like. The parsing and reconstruction

904 GRAPHICS FILE FORMATS

TIFF (cont'd)

of the markers also represents a fair amount of unnecessary
work.

Due to all these problems, the TIFF Advisory Committee has
developed a replacement]PEG-in-TIFF scheme. The rough out
line is as follows:

1. Each image segment {strip or tile) in a]PEG-compressed
TIFF image contains a legal JPEG datastream, complete with
all markers. This data forms an independent image of the
proper dimensions for the strip or tile.

2. To avoid duplicate tables iii a multi-segment file, segments
may use the JPEG "abbreviated image data" datastream
structure, in which DQT and DHT tables are omitted. The
common tables are to be supplied in a]PEG "abbreviated
table specification" datastream, which is contained in a
newly defined ':JPEGTables" TIFF field. Because the tables in
question typically amount to .550 bytes or so, the savings are
worthwhile.

3. All the field definitions in the existing Section 22, 'jPEG
Compression," are deleted. (In practice, those field tag val
ues will remain reserved indefinitely, and this scheme will
use a new Compression code, Compression= 7. Implemen
tations that have TIFF 6.0-style files to contend with may
continue to read them, using whatever interpretation of 6.0
they used before.)

This replacement design is described in TIFF Tech Note #2. The
Tech Note is currently being distributed in draft form, because
Adobe has not yet formally accepted it. However, I expect that
the Note will be accepted as is, and that the design it describes
will replace the existing Section 22 when version 7.0 of the TIFF
spec is released.

If you are considering implementing]PEG in TIFF, please use
the design of the Tech Note. The 6.0 JPEG design has not been
widely implemented, and with any luck it will stay that way.

TIFF 905

TIFF (cont'd)

ForFurtherhllonnation
For further information about the TIFF format, see the specification included
on the CD-ROM that accompanies this book.

TIFF was formerly maintained by the Aldus Developer's Association. Aldus has
recently merged with Adobe Systems, which now holds the copyright to the
TIFF specification and administers and maintains the TIFF format

All information on the TIFF format may now be obtained through the Adobe
Developer Support group. However, this group supplies only general TIFF
information and does not provide any TIFF tutoring, sample TIFF source code,
or sample TIFF files. Contact the Adobe Developer Support group, at devsup
person@adobe. com

Questions about the the Adobe Developer's Association should be directed to:

Adobe Developer's Association
1585 Charleston Road
P.O. Box 7900
Mountain View CA 94039-7900
Voice: 415-961-4111
FAX: 415-967-9231
FTP: ftp:/ lftp.adobe.com
WWW: http:/ /www.adobe.com/Support/ADA.html
BBS: 206-623-6984

Adobe distributes the TIFF 6.0 specifiction in PDF format in the ''Technical
Notes for Developers" section on the Adobe homepage, at:

http:/ /www.adobe. com/Support/TechNotes.html#tiff
http:/ /www.adobe.com/PDFs/TN/TIFF6.pdf

or on the Adobe FTP server:

ftp:/ /ftp.adobe. com/pub/ adobe/DeveloperSupport/TechNotes/PDF.fiks/TIFF6.pdj

or in paper form for $25US by calling 1-800-831-6395.

TIFF support in Europe may be obtained via email or from Adobe's BBS in
Edinburgh, Scotland:

Email: eurosupport®adobe. com
BBS: +44 131 458 4666

906 GRAPHICS FILE FORMATS

TIFF (cont'd)

The Adobe Acrobat reader for PDF files may be obtained for free from:

Jtp:/ /ftp.adobe. com/pub/ adobe/ Applications/ Acrobat/

Technical information on Aldus products, including the TIFF Class F specifica
tion, is available from Adobe's Automated Technical Support for Aldus Prod
ucts FAXback service in which information may be requested automatically via
a FAX machine. This service may be reached at 800-288-6832 (toll-free), or
206-628-5 728.

You will also find useful TIFF information and tools at:

ftp:/ /Jtp.sgi.com/graphics/tiff/ (maintained by Sam Leffier)
http:/ /www-mipl.jpl. nasa.gov/-ndr/tiff/index.html (maintained by Niles Ritter)

See the following references for more information about TIFF:

Aldus Corporation. TIFF Developer's Toolkit, Revision 5.0. Seatde,
WA, November 1988.

Aldus Corporation. TIFF Developer's Toolkit, Revision 6.0, Seattle,
WA,June 1992.

Aldus Corporation. Aldus Developer News, Seatde, WA.

Campbell, Joe. The Spirit of TIFF Class F, Cygnet Technologies,
Berkeley, CA. April1990.

Hewlett-Packard Company. HP TIFF Developer's Manual, Greeley,
CO, November 1988.

Katz, Alan, and Danny Cohen, "RFC 1314: A File Format for the
Exchange of Images in the Internet,'' USC Information Sciences
Institute, Marina Del Rey, CA, April 1992.

This document oudines the use of TIFF as a stan
dard format for exchanging facsimile images
within the Internet.

Murray, James. ''TIFF File Format," C Gazette, Winter 1990--91, pp.
27-42.

TIFF 907

TIFF (cont'd)

RFC 804, "Standardization of Group 3 Facsimile Apparatus for
Document Transmission."

This document is a draft of the CCIIT Recommen
dation T.4 explaining the CCITI Group 3 encoding
scheme used by TIFF.

908 GRAPHICS FILE FORMATS

TfDDD I
NAME: TIDDD

ALso KNowN As: Textual Three-Dimensional Data Description

TYPE: Vector I animation

COLORS! . 16 million

coMPREssioN: None

MAxiMuM IMAGE s1zE: Unlimited

MuLTIPLE IMAGEs PER FILE: Yes

NUMERICAL FORMAT: ASCII

ORIGINAToR: Glenn Lewis

PLATFORM: All

SUPPORTING APPLICATIONS: T3DLIB

SPEciFicATioN oN co: Yes (documentation by the author)

cooE oN cD: Yes

IMAGEs oN cD: Yes

SEE ALSO: IFF, TDDD

usAGE: Used primarily as a method of editing and interchanging TODD file for
mat information.

coMMENTs: For a complete understanding of ITDDD you need to read about the IFF
and TDDD file formats as well.

Overview
The TTDDD (Textual Three-Dimensional Data Description format) is an ASCII
data representation of the TDDD (T3D) file format used by Impulse for its
Turbo Silver and Imagine rendering and animation software products. In fact,
so much of the information in the TDDD specification is relevant to TTDDD
that no official separate TTDDD file format specification has ever been written.

TIDDD was created as part ~f two, now obsolete, programs, ReadTDDD and
WriteTDDD. These programs were capable of reading a TDDD file and writing.
out a TIDDD file and vice versa. They have now been replaced by the newer
T3DLIB shareware library and utilities. (See "For Further Information" later in
this article for more details about T3DLIB.)

TTDDD 909

ITDDD (cont'd)

File Organization
All TTDDD files are simple ASCII files that may be read with any text editor.
Each line contains a 4-letter case-insensitive keyword, followed by an optional
parameter name and one or more values. Array subscripts need not be con
tained within double quotes. Comments may appear in TTDDD files in the
form of the standard C comment tokens /* *I surrounding the comment, or
the TeX token % appearing at the beginning of the comment. Here are some
examples of valid keyword/ parameter /value combinations:

NAME "Fred"
NAME Fred
BRSH[O]=•Brush 0"
BRSH 0 =Brush 0
OBSV Focal 2.82
OBSV Rotate Z=2.7 X=4.3
FADE FadeTo 23 99 254
OSTR Info ABS_TRA Z~IGN

File Details

% Keyword and value
% Same, but no double quotes
% String assigned to array element 0
% Same, but no double quotes or brackets
% Keyword, parameter, and one value
% Keyword, parameter, and two values
% Keyword, parameter, and three values
% Keyword, parameter, and two flags

TTDDD files do not have a header, other than possibly a few comment lines
identifying the file contents, author, and time and date of creation. The actual
vector data is organized as a series of chunks, each enclosed by a BEGIN and
END keyword pair. The INFO chunk usually appears first in older TTDDD files.
Newer TTDDD files do not typically have an INFO chunk because the Imagine
product does not use them.

An example of an INFO chunk is shown here:

INFO Begin
NAME "Gizmo•
BRSH[O]="This is the IFF ILBM filename of Brush 0"
BRSH 1 ="Brush 1" % Brackets are optional.
STNC[O] •stencil 0 filename• % etc.
TXTR[O) Texture % Quotes not necessary here.
OBSV Camera X=5.0 Y=2.7 Z=5.3 %Default: -100 -100 100
OBSV Rotate Z=2.7 X=4.3 % In this case, Y=O.O
OBSV Focal 2.82
OTRK "Object for Camera Tracking•

% If parameters are too long,
% they are simply truncated.

OSTR Path "Path object name•
OSTR Translate X=2.8 Y=7.3 Z=2.1

OSTR Rotate Y=90
OSTR Scale 2.5

910 GRAPHICS FILE FORMATS

% Defaults to zero.
% Defaults to zero.

OSTR Info ABS_TRA Z_ALIGN
FADE FadeAt 50.0
FADE FadeBy 500
FADE FadeTo 23 99 254

SKYC Horizon R=12 B=30
SKYC Zenith R=2 B=50
AMBI 5 27 32
GLBO[O] 5
GLBO 1 2
GLB0[2) 255
GLB0[3) 2
GLBO 4 1
GLB0[5]=9
GLBO 6 =2
GLB0[7] 0

End INFO

ITDDD (coot'd)

% Keep all flags on THIS LINE!

% "R=23 G=99 B=254"
% Defaults to 80 80 80
% Defaults to zero.

% Also RGB
% Edging
% Perturb
% Sky_Blend
% Lens
% Fade
% Size
% Resolve
% Extra

The order of data within each Begin/End block pair is completely arbitrary,
except for variable-length arrays. These arrays must begin with the C<;>unt field,
specifying the number of e~tries in the array, followed by the values for the
array starting with the first element.

Following the INFO chunk will always be one OBJ chunk per object hierarchy
stored in the TIDDD file. Each OBJ chunk contains one DESC sub-chunk or an
EXTR sub-chunk. DESC sub-chunks describe object data stored internally
within the TIDDD file. EXTR sub-chunks describe the same type of data stored
in an external file. Newer TIDDD files typically do not have EXTR sub-chunks.
External information is usually imported directly into the TIDDD file as a
DESCsub-chunk. ·

Following is an example of a DESC and an EXTR sub-chunk:

OBJ Begin
/*
** DESC sub-chunk
*I
DESC Begin

NAME nGizmo"
SHAP Shape 2
SHAP Lamp 0
POSI X=5.7 Y=200.9 Z=132.7
AXIS XAxis X=1
AXIS YAxis Y=1
AXIS ZAxis Z=f
SIZE X=1 Y=1 Z=1
PNTS PCount 3
PNTS Point[O] 12 27 52
PNTS Point 1 21 72 25

% Object name. Defaults to no name
% This must be supplied!
% ditto
% Defaults to zero.
% Defaults to 1 0 0
% Defaults to 0 1 0
% Defaults to 0 0 1
% Defaults to 32.0

%Brackets and "X= ... • optional
% ditto

TTDDD 911

ITDDD (cont'd)

PNTS Point[2] 72 25 21
EDGE ECount 3
EDGE Edge[O] 0 1
EDGE Edge 1 1 2
EDGE Edge 2 2 0
FACE TCount 1
FACE Connect[O] 0 1 2
COLR 87 23 232
REFL G=12 R=240 B=97
TRAN 25 72 53
CLST Count 1
CLST Color[O] 240 12 57
RLST Count 1
RLST Color[O] 120 24 23
TLST Count 1
TLST Color[O] 255 92 87
TPAR[O] 42.73
TPAR[12]=72.67
SURF[2]=0
SURF[4] 1
MTTR Type 4
MTTR Index 2.972

SPEC Specularity 28
SPEC Hardriess 16
PRPO[O] 100
PRP0[1]=5
PRPO 2 =1

PRP0[3] 1
PRP0[4]=0
PRPO 5 1
INTS 200
STRY Path •Path object name•
STRY Translate 2.8 7.3 2.1
STRY Rotate Z=90
STRY Scale 3.5
STRY Info ABS_TRA X-ALIGN

End DESC

% ditto

% Edge connection between two points
% Brackets optional

% List of 3 edges to make a triangle
% RGB. Def.aults to 240 240 240
% RGB. Defaults to zero.
% RGB. Defaults to zero.
% Must match TCount above.
% RGB. Defaults to 240 240 240
% Must match TCount above.
% RGB. Defaults to zero.
% Must match TCount above.
% RGB. Defaults to zero.

% Defaults to zero.

% Defaults to zero.
% Defaults to zero.
% Defaults to 1.0.
% (1.00 <= Index <= 3.55)
% Defaults to zero.
% Defaults to zero.
% Blending factor. Defaults to 255.
% Roughness factor. Defaults to 0.
%Shading On/Off flag (1/0).
% Defaults to 1.
% Phong shading flag. Defaults to 1
% Glossy flag. Defaults to 0
% Quickdraw flag. Defaults to 1
% Defaults to 300

% Defaults to zero.
% Defaults to zero.

% Keep all the flags on THIS LINE!

% Possible child (including external) objects go here to
% build object hierarchy.
I*
** EXTR sub-chunk
*I
EXTR Begin

MTRX Translate 34 72 56
MTRX Scale 1 5 9
MTRX Rotate 1 0 0 0 1 0 0 0 1
LOAD "External file name•

912 GRAPHICS FILE FORMATS

% Defaults to zero.
% Defaults to 1.

% A Matrix MUST be in the proper order!

EndEXTR
TOBJ % Ends current object hierarchy.
End OBJ

For Further Information

TI'DDD (cont'd)

For further information about TIDDD, see the documentation included on the
CD-ROM that accompanies this book. TIDDD was created by Glenn M. Lewis
for his shareware package T3DLIB. The current revision of T3DUB contains
many useful utilities and a platform-independent library for C programmers to
use that allows easy manipulation of TDDD objects algorithmically.

You can obtain the T3DLIB package via FTP from any Aminet site, such as:

ftp:/ /ftp. wustll.edu/pub/ Aminet/gfx/3d/
jtp:/ /ftp.luth.se/pub/Aminet/gfx/3d/

The T3DUB files have R42 in their names.

You can also contact the author for information:

Glenn M. Lewis
8341 Olive Hill Court
Fair Oaks, CA 95628
Voice: 916-721-7196
Email: glewis®pcocd2. intel. com

TrDDD 913

luRay
NAME:

ALSO KNOWN As:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CO:

CODE ON CO:

IMAGES ON CO:

SEE ALSO:

uRay

DBW_uRay, Microray

Scene description

NA

Uncompressed

NA

NA

NA

David B. Wecker

All

uRay ray tracing application

Yes

Yes

No

NFF, POV, PRT, QRT, Radiance

usAG~: Description of 3D scenes for ray tracing or other rendering applications.

coMMENTs: A simple scene description format useful for specifying 3D objects. This is
a good format to look at if you are considering building your own ray
trace format or application.

Overview
uRay is the format created by David B. Wecker for use by the uRay (Microray)
ray tracer. It provides a simple way of specifying a small number of 3D objects.

File Organization
Like those of many other ray-trace formats, uRay files consist of a number of
ASCII lines implementing a proprietary command language, in this case the
uRay scene description language.

914 GRAPHICS FILE FORMATS

uRay (cont'd)

File Details
Commands used in writing uRay files may consist of the following:

DEPTH
COLS
ROWS
START
END
BPP
AOV
ASPECT
NEAR
FAR
GROUND
BASE

Recursion depth
Columns in an image
Rows in an image
Row number at which to begin rendering operations
Row number at which to end rendering operations
Bits per pixel in output image (12 or 24)
View angle
Image aspect ratio
Background color for "sky" near eye
Background color for "sky" far from eye
Background color below horizon
Blackness of shadows

WAVES n where n is the number of lines following the WAVES keyword. Each
line consists of the following:

xyz
amp
phase
length
damp

ATTRIBUTESn

Wave center
Starting amplitude of the wave
Starting phase shift
Wave length
Damping between successive waves

where n is the number of lines following the ATTRI~UTES key
word. Each line consists of the following:

r g b Diffuse color
Kd Diffuse coloring
Ks Reflection
Kt Transmission
Ir Index of refraction
Kl Self lighting
dist Inverse square law distance
Kf Fuzz

URAY 915

uRay (cont'd)

Wave Wave number
tex Texture; may be one of the following:

0 No texture
1 r g b x y z Checks in color (r g b) at scale (x y z)
2 r g b Random motding
3 r g b a b c Blend in x direction
4 r g b a b c Blend in y direction
5 r g b a b c Blend in z direction

The following objects are predefined:

SPHERE Sphere
QUAD Rectangle
TRIANGLE Triangle
RING Ring

See the uRay documentation for detailed information about parameters.

For Further Information
For further information about the uRay format, see the uRay documentation
included on the CD-ROM accompanying this book. You can also contact the
author:

David B. Wecker
Digital Equipment Corporation
Cambridge Research Lab
One Kendall Square
Cambridge, MA 02139
Voice: 617-621-6699
FAJ<:617-621-6650
Email: wecker@crl.dec. com

916 GRAPHICS FILE FORMATS

NAME:

ALSO KNOWN AS:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

Utah RLE

RLE

Bitmap

256

RLE

32Kx32K

No

Little-en dian

University of Utah

UNIX, others

Utah Raster Toolkit, others

Yes

No

No

Chapter 9, Data Compression

UtabRLEI

usAGE: Primarily used in support of the Utah Raster Toolkit, though other appli
cations, mainly on UNIX platforms, occasionally choose to support it.

coMMENTs: A simple, well-defined and well-documented bitmap format. Too bad it's
not in wider use. Consider using it in a pinch for interapplication
exchange o£8-bit images ifyou have no alternative.

Overview
The Utah RLE format was developed by Spencer Thomas at the University of
Utah Department of Computer Science. The first version appeared around
1983. The work was partially funded by the NSF, DARPA, the Army Research
Office, and the Office of Naval Research. It was developed mainly to support
the Utah Raster Toolkit (URT), which is widely distributed in source form on
the Internet. Although superseded by more recent work, the Utah Raster
Toolkit remains a source of ideas and bitmap manipulation code for many.

Utah RLE was intended to be device-independent. Documentation associated
with the URT claims that Utah RLE format files often require about one-third
of the available space necessary for most "image synthesis"-style images. If the
image data does not compress well, the format accommodates storage as

UTAH RLE 917

Utah RLE (cont'd)

uncompressed pixel data with litde extra overhead. Despite its age, slighdy
idiosyncratic terminology, and some missing information, the Utah RLE format
specification is well-written and reasonably clear. Aspiring format creators, take
note!

File Organization
The file consists of a header, followed by palette information, a comment area,
and the bitmap data.

File Details
The header looks like this:

typedef struct _RLE_Header
{

WORD Magic;
SHORT Xpos;
SHORT Ypos;
SHORT Xsize;
SHORT Ysize;
BYTE Flags;
BYTE Ncolors;
BYTE Pixelbits;
BYTE Ncmap;
BYTE Cmaplen;
BYTE Redbg;
BYTE Greenbg;
BYTE Bluebg;

RLE_HEADER;

I* Magic number *I
I* Lower left x of image *I
I* Lower left y of image *I
I* Image width *I
I* Image height *I
I* Mise flags *I
I* Number of colors *I
I* Number of bits per pixel *I
I* Number of color channels in palette *I
I* Color map length *I
I* Red value of background color *I
I* Green value of background color *I
I* Blue value of background color *I

Magic is, naturally enough, a magic number identifying the file type. Unfortu
nately, the magic number is not documented in the specification.

Xpos and Ypos are the position of the lower-left corner of the image, in pixels.

Xsize and Ysize are the size of the image, in pixels.

Flags is an 8-bit field used by the format writer to store miscellaneous informa
tion.

Ncolors is the total number of colors in the image, limited to 256.

Pixelbits provides information on the number of bits per pixel in the image.
This is curren dy limited to 8.

Ncmap denotes the number of colors channels in the palette.

918 GRAPHICS FILE FORMATS

UtahRLE (cont'd)

Cmaplen provides the number of bits in the palette and limits ncolors
(defined above), the total number of c.ol<?rs in the image. For example, a
cmaplen value of 8 denotes a 256-color palette.

Redbg, Greenbg, and Bluebg together provide a 24-bit specification of the
image background color.

A key concept used in the Utah RLE format specification is that of the color
channel. Each color channel contains eight bits, and the format supports up to
255 of them. This makes for an extremely flexible color model, but one, per
haps, that has never been utilized fully. Gray-scale images, for example, nor
mally use one color channel; 24-bit RGB images use three channels; and RGBA,
where an alpha channel is included, uses four channels.

The comment area is a series of null-terminated ASCII strings, each of which is
preceded by a 16-bit length value. Each comment is WORD-aligned and is
padded if necessary. Comments have the form:

name= value

The bitmap data is in stream format and is amply documented in the specifica
tion and the sample code.

ForFurtherhrronnation
For further information about the Utah RLE format, see the following article
included on the CD-ROM:

Thomas, Spencer W., Design of the Utah RLE Format, University of Utah,
Department of Computer Science.

See also the URT for actual implemention details.

The URT package may be obtained via FTP from the sites listed below.

· ftp:/ /cs. utah.edu/
ftp:/ /weedeater. math. yale. edu/
ftp:/ /freebie.engin. umich.edu/

You will find the package in the urt-3.0.tar.Z file, and sample images in urt
img.tar.Z

URT is copyrighted, but is freely redistributable on a GNU-like basis. You can
send questions about the URT or Utah RLE to eith~r of the following:

toolkit-request@cs. utah. edu
urt-request@caen. engin. umich.edu

UTAH RLE 919

NAME:

ALSO KNOWN AS:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

VICAR2

Planetary File Format

Bitmap

Unlimited

Uncompressed

Unlimited

No

Little-en dian

NASA

VAX/VMS

Many

Yes

No

Yes

mS,PDS

usAGE: Storage of bitmap data.

VICAR21

coMMENTs: You are unlikely to see the VICAR2 format unless you deal with planetary
data from NASA or JPL.

Overview
The VICAR2 image file format is used primarily for storing planetary image
data collected by both interplanetary spacecraft and Earth-based stations. Many
astronomical and astrophysical organizations use and support the VICAR2 for
mat.

File Organization
VICAR2 is very similar in construction to the FITS and PDS image file formats. A
VICAR2 image file is divided into an ASCII header (called a label) and a collec
tion of binary image data.

VICAR2 921

VICAR2 (cont'd)

File Details
This section contains information on the label and image data in a VICAR2 file.

Labels

A VICAR2 label contains system label items and may contain history label items
as well. History label items are added to the label during software processing,
and it is possible for history label items not to be present in a VICAR2 label at
all. If history label items do exist, they always occur following the last system
label item.

The history label section may also contain other, software:.specific keywords
called user labels. They are for informational purposes for any software appli
cation that knows how to interpret them. If a VICAR2 reader does not recog
nize them, then they are ignored and always preserved whenever the file is
written or read.

The label is always located at the beginning of the file, starting on the first
byte, and is always arranged in system-/history-/user-section order.

All label sections contain one or more fixed-length records in the form of
ASCII character strings. Because all records in the label must be the same
length, the last record must be padded out to the proper size with NULL
(ASCII OOh) characters if it is too short.

All records in the label use the standard keyword=value format for storing infor
mation about the image. Keywords are written in uppercase and have a maxi
mum of eight characters. The value may be one of four data types:

• INTEGER (fixed-point)

• REAL (floating-point)

• DOUBLE (double-precision REAL)

• STRING

STRING data is delimited by single quotation marks (') containing any print
able ASCII characters and spaces except for single quotation mark characters.
Strings may be from 1 to 512 characters in length. ·

A keyword=Value pair is always separated by an equals sign (=). There are never
any spaces between the equal sign and the keyword/value data. Each key
word=Value pair is separated from the next pair by one more spaces.

922 GRAPHICS FILE FORMATS

VICAR2 (cont'd)

The following is a list of valid VICAR2 label keywords. Refer to the VICAR2 spec
ification on the CD-ROM for an explanation of each keyword and the data for
mat of its associated value:

BUFSIZE
LBLSIZE
DAT_TIM
DIM
EOL
FORMAT
HOST
INTFMT
N1
N2
N3

N4
NB
NBB
NL
NLB
NS
ORG
REALFMT
RECSIZE
TASK
USER

The first keyword of the system section of the label is always LBLSIZE, which
specifies the total number of bytes in the label, including any NULL bytes used
for padding out the last record. LBLSIZE is always a multiple of the file record
size.

A system label may end with the keyword TASK, which marks the beginning of
the history section of the label. If no history section exists, then the label ends
with an ASCII NULL value, or simply after the number of characters specified
byLBLSIZE.

If the EOL KEYWORD is present in the label and has a VALUE of 1, then an
additional label record appears at the end of the file following the image data.
Your guess is as good as ours as to the use of this End-Of-File trailing record.

Image Data

The image data begins on the next record boundary following the label. The
image data contains one record per scan line in the image. The size of each
record is a number of bytes equal to the number of bytes in one scan line.

The image data is represented by one of the following data types, indicated by
the FORMAT keyword in the image label:

BYTE 8 bits
HALF 16 bits
FULL 32 bits

VICAR2 923

VICAR2 (cont'd)

REAL
DOUB
COMPLEX

32 bits
64 bits
64 bits

The following is a typical VIGAR2 label section, including history and user
records. Note that in this example, carriage returns have been inserted for clar
ity; none actually exist in a real label.

LBLSIZE=1680 FORMAT='BYTE' TYPE='IMAGE' BUFSIZ=20480 DIM=3 EOL=O
RECSIZE=840 ORG='BSQ' NL=738 NS=840 NB=1 N1=840 N2=738 N3=1
N4=0 NBB=O NLB=O HOST='VAX-VMS' INTFMT='LOW' REALFMT='VAX'
TASK='LOGMOS' USER='HXS343' DAT_TIM='Fri Nov 2 17:41:32 1990'
SPECSAMP=493943 PROJSAMP=4096 PROJ_L ON=350.7789496599263
PRODTYPE='F-MIDR' PIXSIZ=75 SEAM= 1 CORRECTED' MAP_PROJ= 1 SINUSOIDAL 1

SEAMLOC= I NO, IMAGE=, RADAR CROSS SECTION POWER I DN_UNITS= I DECI BELS,
SPECLINE=38724 LAT_UR=27.5 LAT_UL=27.5 LAT_LR=22.4102769981245
LAT_LL =22.4102769981245 LON_UL=347.5 LON_UR=354.0578993198525
LON_LL=347.6328878639 307 LON_LR=353.9250114559218
M_SPDN_1='MISSING DATA' LOW_REP=-20.0 HI_REP=30 .0 LOW_DN=1
HI_DN=250 N_SPDN=1 SPDN_1=0 REV_STRT=460 REV_END=4 93
PRODUCT='F-MIDR.25N351;1' TASK= 1 COPY' USER='DNJ345'
DAT_TIM='Sat Apr 20 12:29:24 1991 1 TASK= 1 STRETCH' USER= 1 DNJ345 1

DAT_TIM='Sat Apr 20 12:29: 39 1991' PARMS=' LINEAR STRETCH:
71 TO 0 AND 155 TO 255'

ForFurtherhrronnation
For further information about VICAR2, see the documentation included on the
CD-ROM that accompanies this book. You can also contact:

National Aeronautics and Space Administration (NASA)
Attn: Bob Deen
Image Processing Laboratory
Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, CA 91109
Email: rgd059@mipl3.jpl. nasa.gov
WWW: http:/ /stardust.jpl. nasa.gov/pds_home.html

You can also obtain VICAR2 images from the FTP archive:

ftp://ames.arc.nasa.gov/pub/SPACE/VICAR/

924 GRAPHICS FILE FORMATS

NAME:

ALSO KNOWN As:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

VIFF

Khoros Visualization/Image File Format

Bitmap

Unlimited

None, RLE

Unlimited

Yes

Any

Kh'oral Research

UNIX (X Window)

Khoros

Yes

No

Yes

None

usAGE: Used by the Khoros System as its native format.

VIFFI

coMMENTs: The VIFF format is capable of storing any type of information generated
by the Khoros System, making VIFF a very diverse and feature-rich format.

Overview
VIFF (Khoros Visualization/Image File Format) is the native file format of the
Khon:~s System environment. Khoros is a visual programming and software
development environment used to create image processing and visualization
tools for commercial and scientific research. Khoros is implemented using
UNIX and the X Window System.

Khoros contains a complete visual programming language, code generators,
and a user interface editor. Khoros' capabilities include interactive image dis
play; image, numerical, and signal processing and analysis functions; and 2D
and 3D plotting.

Khoros is especially useful for conducting research in the areas of image and
signal processing, pattern recognition, machine vision, remote sensing, and
geographic information systems. Khoros is capable of converting many image

VIFF 925

VIFF (cont'd)

file formats to and from VIFF, including TIFF, TGA, FITS, PBM, XBM, DEM,
DLG, MATLAB, BIG, ElAS, Sun raster, ASCII, and raw binary. This capability
makes the Khoros source code distribution a prime source of image file format
information (see "For Further Information" later in this article).

File Organization
All VIFF files contain a header, which is followed by either image data or one or
more data (color) maps, or both. If both image and colormap data is present,
the image data precedes the map data. VIFF image data need not use a col
ormap to be valid, and colormaps may be stored in VIFF files with only a
header and. no image data.

The VIFF specification uses the term "bands" to indicate color channels. An
RGB image divided into its component color planes (R,G,B) is said to contain
"three bands" of data. Also, multiband data is stored "by pixel" rather than "by
plane." In other words, each pixel is stored as an RGB triplet, rather than three
separate color planes.

Single-band VIFF images contain a single channel (or plane) of index values
and a colormap. Many of the Khoros image-processing functions require that
three-band images be converted into single-band pseudocolor images before
they can be used.

File Details
This section describes the VIFF header, the data maps, and the location and
image data in a VIFF file.

Header

The VIFF header is 1024 bytes in size and has the following format:

typedef struct _viffHeader
{

CHAR Fileid;
CHAR FileType;
CHAR Release;
CHAR Version;
CHAR MachineDep;
CHAR Padding [3] ;
CHAR Comment[512);

I* Khoros file ID value (always ABh)*l
I* VIFF file ID value (always Olh) *I
/* Release number *I
I* Version number *I
I* Machine dependencies indicator *I
I* Structure alignment padding (always OOh)*l
I* Image comment text *I

DWORD NumberOfRows; I* Length of image rows in pixels *I
DWORD NurnberOfColumns; I* Length of image columns in pixels *I
DWORD LengthOfSubrow; I* Size of any sub-rows in the image *I

926 GRAPHICS FILE FORMATS

VIFF (cont'd)

LONG StartX;
LONG StartY;
FLOAT XPixelSize;

I* Left-most display starting position *I
I* Upper-most display starting position *I
I* Width of pixels in meters *I

FLOAT YPixelSize; I* Height of pixels in meters *I
DWORD LocationType; I* Type of pixel addressing used *I
DWORD LocationDim; I* Number of location dimensions *I
DWORD NumberOfimages; I* Number of images in the file *I
DWORD NumberOfBands; I* Number of bands (color channels) *I
DWORD DataStorageType; I* Pixel data type *I
DWORD DataEncodingScheme;l* Type of data compression used *I
DWORD MapScheme; I* How map is to be interpreted *I
DWORD MapStorageType; I* Map element data type *I
DWORD MapRowSize; I* Length of map rows in pixels *I
DWORD MapColumnSize; I* Length of map columns in pixels *I
DWORD MapSubrowSize; I* Size of any subrows in the map *I
DWORD MapEnable; I* Map is optional or reQ!.lired *I
DWORD MapsPerCycle; I* Number of different maps present *I
DWORD ColorSpaceModel; I* Color model used to represent image *I
DWORD ISparel; I* User-defined field *I
DWORD ISpare2; I* User-defined field *I
FLOAT FSparel; I* User-defined field *I
FLOAT FSpare2; I* User-defined field *I
CHAR Reserve[404]; I* Padding *I

} VIFFHEADER;

Fileld is a magic number indicating that this is a VIFF file. This value is always
ABh.

File Type is a value indicating the type of Khoros file. This value. is always Olh,
indicating a VIFF file.

Release indicates the release number of the viff.h file in which the VIFF file
information structure is defined. This value is currently Olh and does not nec
essarily match the Khoros system release number.

Version indicates the version number of the viff.h file in which the VIFF file
information structure is defined. This value is currently 03h and does not nec
essarily match the Khoros system version number.

MachineDep contains a value indicating the format of the image data and how
the image data was last processed. Values currently defined for this field are:

02h IEEE and big-endian byte ordering
04h Digital Equipment Corporation/VAX byte ordering
08h NS32000 and little-endian byte ordering
OAh Cray byte size and ordering

Padding is a 3-byte field containing the values OOh OOh OOh. This field is used
only to word-align the header structure.

VIFF 927

VIFF (cont'd)

Comment is a 512-byte field typically containing ASCII plain-text information
documenting the contents of a VIFF image data. This field may also be used for
other purposes, but such uses are strictly user-defined and are not supported
byKhoros.

NumberOfRows and NumberOfColumns indicate the size of the image data in
pixels (the number of data items). If these two values are set to OOh, then no
image data is present in the file, but a colormap may still exist.

LengthOfSubrow is the length in pixels of any subrows that may exist in the
image data.

StartX and StartY specify the location of a sub-image within a parent image.
The home coordinate (0,0) is always the upper-left comer of the image. If
these values are equal to OOh, then the image is not a sub-image.

XPixelSize and YPixelSize indicate the actual size of the pixels in meters. The
ratio of these two values gives the aspect ratio of the pixels in the image data.

LocationType indicates whether the image data contains implicit (Olh) or
explicit (02h) locations.

LocationDim has a value of OOh if the locations are stored implicitly (Location
Type is Olh); in this case, there is no location data stored in the VIFF file. Loca
tion data is present in the image file if the locations are stored explicitly
(Location Type is 02h); in this case, LocationDim indicates the number of
dimensions represented by the location data (typically OOh, Olh, or 02h for 1-,
2-, and 3-dimensional data).

NumberOflmages contains a value equal to the number of images stored in
the VIFF file.

NumberOffiands indicates the number of bands per image (or dimensions per
vector). A three-band RGB image would have a value of03h in this field.

DataStorageType specifies the data type used to store each pixel. Supported
values include:

OOh Bit
Olh BITE
02h WORD
04h DWORD
05h Single-precision float
06h Complex float

928 GRAPHICS FILE FORMATS

JliFF (coot'd)

09h Double-precision float
OAh Complex double

Note that when pixels are stored as bits, eight pixels are packed per BYTE,
least significant bit first, and are padded out to end on a BYTE boundary.

DataEncodingScheme indicates the type of encoding used to compress the
image data. Defined values for this field include:

OOh No compression
Olh ALZ
02h RLE
03h Transform-based
04h CCI'IT
05h ADPCM
06h User-defined

Only values OOh and Olh are currendy supported by Khoros 1.0.

MapScheme indicates the type of mapping present in the VIFF file. Possible val
ues are:

Olh Each image band uses its own map
02h The image is displayed by cycling through two or more maps
03h All bands share the same map
04h All bands are grouped together to point into one map

The mapping scheme indicated by a MapScheme value of 04h is not supported
by Khoros 1.0.

MapStorageType specifies the type of data in the map or the resulting pixel
data type after the mapping has been performed. Valid values for this field are:

OOh No data type
Olh Unsigned CHAR
02h Short INT
04h INT
05h Single-precision float
06h Complex float
07h Double-precision float

MapRowSize and MapColumnSize indicate the width and height of the map.

VIFF 929

VIFF (cont'd)

MapSubrowSize stores the number of sub-rows in the map, if any.

MapEnable indicates whether the image data is valid if it is not mapped. Possi
ble values for this field are:

01h Image data may be used without first mapping it
02h Map data must be applied to the image data before it can be used.

MapsPerCycle is the number of maps used to cycle the image when it is dis
played. The value of this field is valid only if MapScheme is equal to a value of
02h.

ColorSpaceModel specifies the color model used to interpret the image data.
The recognized values for this field are:

OOh No color space model used
01h NTSC.RGB
02h NTSCCMY
03h NTSCYIQ
04h HSV
05h HLS
06h IHS
07h CIE RGB
OSh CIE CMY
09h CIE YIQ
OAh CIE UCSUVW
OBh CIE UCSSOW
OCh CIE UCSLab
ODh CIE UCS Luv
OEh User-defined
OFh User-defined RGB

!Spare 1, 1Spare2, FSpare 1, and FSpare2 are spare fields included for use by a
user application. These fields are typically used to store data while the header
is stored in memory and may not contain any information when the format is
stored to a disk file.

Reserve is a chunk of padding which fills out the VIFF header to 1024 bytes in
length. The bytes in this field are normally set to OOh, but may contain user
defined data as well.

930 GRAPHICS FILE FORMATS

VIFF (cont'd)

Maps

Following the header may be a collection of one or more data maps. A data
map contains information that is used to transform the image data in a speci
fied way. By far the most common example of a map is a simple colormap,
where each pixel contains an index value that references a color value stored
in the map. Although VIFF data maps may contain any type of data necessary to
interpret the image data properly, the image data always contains index values
if a data map is present in the file.

All maps are stored as !-dimensional data, and all map values are referenced as
elements in an array. The size of the map is indicated in the MapRowSize and
MapColumnSize header fields. The size of each element of the map is speci
fied by the MapStorageType field.

Although there may be only one physical map data structure per VIFF file, the
map may be divided into two more logical maps, each containing specific data.
For example, 3-band image data might use three separate maps (one for each
band), or it might use a single map for all three bands. Multiple maps may also
be stored that are continually read in sequence as the image is displayed. Such
a technique is used to render the image as an animation rather than as a still
image.

· Maps may also be specified as optional or forced. An optional map need not be
used in the interpretation of the image data. A forced map is data that is
required in order for the image data is to have any real validity. Forced maps
are more common and usually indicate that the map contains color data and
that the image data contains map index values.

Location and Image Data

Following any map data in a VIFF file may be a block of data called the location
data. This data, if present, stores the coordinate information for each pixel in
the image. Location data is a I -dimensional array of float values and may con
tain one or more bands (dimensions) of location data. Each location value cor
responds to a pixel in the image data. But before we can talk of pixel locations,
we must understand how VIFF expresses the pixel data itself.

Pixels may be addressed as if they reside either in a !-dimensional or in a
multi-dimensional space. These addressing types are called implied locations
and explicit locations, respectively. The implied location of a pixel is a refer
ence to a pixel stored in a !-dimensional array, but using the canonical
2-dimensional XY coordinates. For example, if we have a 256x256 image stored

VIFF 931

VIFF (cont'd)

in a !-dimensional array and we need to reference the value of the pixel at
location 100xl35, we use its implicit coordinates:

WORD ImageWidth = 256; /* Number of pixel in X axis */
WORD ImageLength = 256; /* Number of pixel in Y axis */
BYTE PixelArray[ImageWidth * ImageLength]; /* 256x256 image*/
BYTE PixelValue;

/* Get the value of the pixel at 100x135 */
PixelValue = PixelArray[(100 * ImageWidth) + 135];

You can see that the formula array [(X* ImageWidth) + YJ yields the value we
need. Note that this formula assumes that the pixels in the array are stored by
row. If the pixel data is stored by column, then ImageLength value should be
used in place of the ImageWidth.

Explicit pixel locations are used to reference pixel data stored in two or more
dimensions. If explicit pixel locations are indicated, a block of location data
appears in the VIFF file just prior to the image data. This location data stores
the coordinates of each pixel in the rendered space. For example:

WORD ImageWidth = 256; /* Number of pixel in X axis */
WORD ImageLength = 256; /* Number of pixel in Y axis */
WORD NumberOfDims = 2; /* Dimensions of pixel locations */
BYTE PixelArray[ImageWidth * ImageLength]; /* 256x256 image*/
FLOAT LocationArray[ImageWidth * ImageLength * NumberOfDims];
BYTE Pixe1Value;
FLOAT LocationX;
FLOAT LocationY;

/* Get the value of the pixel at 100x135 */
PixelValue = PixelArray[(100 * ImageWidth) + 135];

I* Get the location of the pixel at 100x135 */
Locationx = LocationArray[(100 * ImageWidth) + 135];
LocationY = LocationArray[(100 * ImageWidth) + 135

+ (ImageWidth * ImageLength)];

As you can see, the image data is referenced in the same way for explicit data
as it is for implicit data. If a map is present, the pixel values serve as indices
into that map. If no map is present, then the pixel values are the actual color
or intensity values of the image data.

Location data is stored as bands, but in a planar fashion. In the case of
2-dimensional data, all of the X location values are stored first, followed by all
of the Y location values. And although a VIFF image can support thousands of
dimensions, 1-, 2-, and 3-dimensional pixel locations are the most common.

932 GRAPHICS FILE FORMATS

VIFF (cont'd)

ForFurtherhiTonnation
For further information about VIFF, see the documentation and sample code
included on the CD-ROM that accompanies this book.

The Khoros System is owned and copyright by Khoral Research, Inc. and is
maintained by the Khoros Consortium. To obtain further information on the
Khoros package and its distribution, or to support further research and devel
opment of software environments for data processing and visualization, con
tact:

Khoral Research, Inc.
6001 Indian School Road NE
Suite 200
Albuquerque, NM 87110
Voice: 505-837-6500
FAX: 505-881-3842
WWW: http:/ /www.khoros. unm.edu/khoros/
Email: khoros-request@chama.eece. unm. edu

You can also contact the Khoros User Group at:

khoros@chama.eece. unm.edu

You can join the Khoros mailing list by sending email to:

khoros-request@bullwinkle. eece. unm.edu.

Khoros information may also be found posted in the USENET newsgroup
comp.soft-sys.khoros, which is the home of the Khoros FAQ, posted weekly to this
group and to news.answers. This and other Khoros FAQs, in addition to the
complete Khoros distribution, may also be found in the /release directory of the
Khoros System distribution at the following FfP sites:

ftp:/ /ftp.eece. unm.edu/pub/khoros
ftp:/ /ftp. uu. net/pub/window-sys/khoros
ftp:/ /popcye.genie. uottawa. ca/pub/khoros
ftp: I /ipifidpt. difi. unipi. it/pub/khoros
ftp:/ /ftp. waseda.ac.jp/pub/khoros

Your best source of further VIFF information is the Khoros package itself. The
Khoros System distribution is quite large (65 megabytes, not including executa
hies), and it is not practical to download the entire package just to find VIFF
information. Instead, you should obtain the files you need from an installed

VIFF 933

VIFF (cont'd)

Khoros System or one of the distribution sites previously listed. Information
specifically about the VIFF format can be found in the following directories:

src/fileJormats/noJormat
Programs for converting VIFF files to and from raw binary and ASCII data

src/fileJormats/remote_gis
Programs for converting VIFF files to and from remote sensing and GIS file
formats.

src/fileJormats/standard
Programs for converting VIFF files to and from many other file formats

include/viff. h
VIFF format header file

data/images
Sample VIFF image files

The VIFF format is also described in Chapter 1 of Volume II, Programmer's Man
ua~ of the Khoros Manual Set. Both Chapter 1 and the viff.h file are included
on the CD-ROM.

934 GRAPHICS FILE FORMATS

VIS-5D I
NAME: VI~5D

ALso KNowN As: Visualization-50, MciDAS, Grid File Format

TYPE: Vector

COLORS: NA

coMPREssioN: Uncompressed

MAXIMUM IMAGE s1zE: Unlimited

MuLTIPLE IMAGEs PER FILE: No

NuMERICAL FoRMAT: Big- and little-endian

ORIGINAToR: University of Wisconsin- Madison

PLATFORM: UNIX

suPPoRTING APPLICATioNs: VIs-5D, MciDAS

SPEciFICATioN oN cD: Yes

cocE oN cD: Yes

IMAGEs oN cD: No

SEE ALso: None

usAGE: Designed to support the VIs-5D application by providing for the storage of
multi-dimensional data.

coMMENTs: Although VI5-5D was designed to support scientific applications, multi
dimensional data visualization is a growing area. This format may become
more important outside of scientific circles in the future.

Overview
The VI~5D (Visualization-50) format is the native file format of the VIs-5D sci
entific visualization UNIX application. VIs-5D is used to store a 3D rendering of
numerical data. Such data is typically acquired from scientific sources such as
weather data and topographical measurements. Because the numerical data
often contains a time component, VI~5D file data may be animated to show
changes over time, such as the movements of cloud patterns.

The VIs-5D application is actually a stand-alone subsystem of the proprietary
MciDAS (Man-computer Interactive Data Access System) system maintained by
the Space Science and Engineering Center of the University of Wisconsin at
Madison. MciDAS also uses the VIs-5D format to store data, and users of both

VIS-SD 935

VIS-5D (cont'd)

systems often refer to VIs-50 files as "MciDAS 5D grid files", or simply as "grid
files."

Because the VIs-50 system is distributed under the GNU public license, it is
freely available with full source code. This makes the VIs-5D distribution itself
your best source of information for this file format.

File Organization
All VIs-50 files contain three sections of data:

• The 50 file header

• A sequence of 3D grid information headers

• An array of 3D grid data sequences

The file header contains information about the contents of the entire file. The
grid information headers are a directory of the grid data sequences stored in
the file. The data is a sequence of one or more 3D grids, each of which defines
a coordinate point in the numerical data.

There is one 3D grid information header per grid stored in the file. The infor
mation header stores the size and location, time and date stamp, variable
name, and unit description of a grid or grid point. Each grid point is con
structed of five floating-point values referred to as a five-dimensional data set.
The five values stored are the three coordinate locations of the grid point, a
time step value, and the physical variable name of the grid point.

The three coordinate locations store the spatial dimensions of latitude, longi
tude, and altitude (rows, columns, and levels) of a point in the 3D grid data
set. The time step value indicates the moment in time that the point exists.
The variable name is the label used to refer to the point.

Grid points are divided into logical groupings called grid sequences. A grid
sequence is one or more grid points that all exist in the same moment in time.
A grid sequence is and similar to a single still-image frame in an animation.
Displaying the grid sequences in their orderly succession causes the numerical
data to become animated.

The duration of time between each grid sequence is called a time step. The
time step increments may be as short as one second or as long as years. All of
the time steps in a grid data set are the same length of time, and the rate at
which the data is displayed by an application may or may not depend on the
size of these increments.

936 GRAPHICS FILE FORMATS

VIS-5D (ctmt'd)

Time step values are derived from the time and date stamp data associated
with each grid. Time stamps are constructed using the familiar HHMMSS
(hours, minutes, seconds) format. For example, 183426 would be 6:34p.m.
and 26 seconds. Date stamps are constructed using the less familiar YYDDD for
mat, where YY is the last two digits of the year and DDD is the number of the
day .of the year. For example, June 20th is the 171st day of the year 1994 and
would be represented by the date format 94171.

In the following hypothetical example, we have a data set containing 20 grid
points. Each point is identified by an integer starting with 1. The data set con
tains five grid sequences, each containing four grid points. There are five time
steps, one per grid sequence, starting ·on April 7, 1994 at 11:00 p.m. and
advancing in 30-minute increments. Each time step is composed of four grid
points using the physical variable names A, B, C, and D. Each grid contains
data in all three spatial dimensions:

Grid
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Seq.
1
1
1
1
2
2
2
2

"3
3
3
3
4
4
4
4
5
5
5
5

Date
94097
94097
94097
94097
94097
94097
94097
94097
94098
94098
94098
94098
94098
94098
94098
94098
94098
94098
94098
94098

Time
230000
230000
230000
230000
233000
233000
233000
233000
000000
000000
000000
000000
003000
003000
003000
003000
010000
010000
010000
010000

Var.
A
B
·c
D
A
B
c
D
A
B
c
D
A
B
c
D
A
B
c
D

Latitude
34076.67
29086.56
32567.67
16095.34
34184.22
29006.56
32567.67
16567.34
34262.47
29008.22
32567.67
16456.34
34666.14
28055.46
32567.67
16234.34
34776.20
28006.01
32567.67
16123.34

Longitude
123543.90
135789.74
129086.56
116865.91
123543.90
135789.75
129186.56
115765.91
123543.90
135789.76
129286.56
114365.91
123543.90
135789.77
129386.56
112165.91
123543.90
135789.78
129486.56
120486.91

Altitude
4365.7
4405.6
4445.5
4495.4
4375.7
4415.6
4455.5
4505.4
4385.7
4425.6
4465.5
4515.4
4395.7
4435.6
4475.5
4525.4
4405.7
4445.6
4485.5
4535.4

As you can see, this data is animated by displaying each successive grid
sequence as a frame in a movie. In this example, the four grid points are

VIS·5D 937

VIS-5D (cont'd)

displayed in sequence and would appear to move as their position changes
over time.

Although it is possible to construct a simple data set consisting of one dimen
sion, no time dynamic, and only one variable, it is more likely that data stored
using the VI8-5D format will use all five dimensions.

Grid files are typically named using file mask GR3Dnnnn, where nnnn is a zero
padded number in the range of 0001 to 9999. This number is referred to as
the grid file number and is used to sequence and identify grid files associated
with a project. Grid files typically do not use a file extension.

A single grid file may contain a maximum of 100,000,000 grid points, which is
400 megabytes of data. H this is not enough for your application, VI8-5D allows
single data sets to span multiple disk files.

File Details
All VI8-5D files begin with a 256-byte header in the following format:

typedef struct _VisSDHeader
{

CHAR Identifier[32];
LONG ProjectNumber;
LONG CreationDate;
LONG MaximumSize;
LONG NumberOfGrids;
LONG FirstGrid;
LONG Padding[Sl];

} VISSDHEADER;

I* File description field *I
I* Project number *I
I* Date file was created *I
I* No. of data points in largest 3D grid *I
I* No. of 3D grids in the data *I
I* Location of first grid *I
I* Alignment padding *I

Identifier is a 32-byte field used to store a NULI.rterminated character string
which is used to identify the file and its contents. This field, when blank, may.
be filled with all NULL (OOh) or SPACE (20h) characters.

ProjectNumber is a user-defined value used to identify the project to which a
VI8-5D file belongs. H a project number is not required, this value may then
equal the grid file number used to construct the file name, or may be set to
OOh.

CreationDate is the date the VI8-5D file was created in YYDDD format. A value
of Olh indicates that no creation date was specified.

MaximumSize is the number of data points in the largest 3D grid. This value is
the product of the number of rows, columns, and levels in the largest grid.

938 GRAPHICS FILE FORMATS

VIS-5D (ctmt'd)

NumberOfGrids is the total number of 3D grids in the data. This value is the
product of the number of time steps and parameters in the data.

FirstGrid is the offset location of the first grid in the data. This offset value is
the number of 4-byte LONG values from the first grid to the beginning of the
file. The first grid usually follows the last 3D grid information header in the
file.

Padding is 204 bytes of filler used to pad the header out to a length of 256
bytes. This field is set to a value of OOh.

Following the header is a sequence of 3D grid information headers. Each
header may be thought of as an entry in a directory of grid point data found in
a grid file. There will be one information header per grid point stored in the
file, and the number of grids is equal to the product of the number of time
steps and physical parameters.

All 3D grid information headers are 256 bytes in length and have the following
format:

typedef struct _3DGridinformationHeader
{

LONG Size;
LONG NwnberOfRows;
LONG NumberOfColumns;
LONG NumberOfLevels;
LONG DataLocation;
LONG Date;
LONG Time;
LONG Padding!;
CHAR ParamName [4];
CHAR UnitsDesc[4];
LONG Padding2[11];
LONG !Type;
LONG NorthLatitude;
LONG WestLongitude;
LONG Latitudeincrement;
LONG Longitudeincrement;
LONG Padding3[4];
LONG IhType;
LONG TopAltitude;
LONG Altitudeincrement;
LONG Padding4[31];

3DGRIDINFOHEADER;

I* Number of data points *I
I* Number of rows *I
I* Number of columns *I
I* Number of levels *I
I* Location of grid data *I
I* Grid date stamp *I
I* Grid time stamp *I
I* Alignment padding *I
I* 4-character variable or parameter name *I
I* 4-character units description *I
I* Alignment padding *I
I* Always 04h *I
I* North latitude * 10000 *I
I* West longitude * 10000 *I
I* Latitude increment * 10000 *I
I* Longitude increment * 10000 *I
I* Alignment padding *I
I* Always 01h *I
I* Top altitude * 1000 */
I* Altitude increment * 1000 *I
I* Alignment padding *I

Size is equal to the number of 4-byte data points in the grid. This value is
always equal to NumberOfRows * NumberOfColumns * NumberOfLevels.

VIS-SD 939

VIS-5D (cont'd)

NumberOfR.ows, NumberOfColumns, and NumberOfLevels are the number of
rows, columns, and levels, respectively, in the grid data.

DataLocation is the location of the grid data in the file stored as the number of
4-byte LONG values from the beginning of the file.

Date is the date stamp of the grid data in YYDDD format.

Time is the time stamp of the grid in HHMMSSformat.

Padding 1 is four bytes of filler used to align the first seven fields of the header
on a 32-byte boundary. This field is set to a value of OOh.

ParamName is a 4-character ASCII string which is the physical variable name
used to represent the grid point. This field is not NULL-terminated and is
padded with SPACE (20h) characters if needed.

UnitsDesc is a 4-character ASCII string which describes the unit of measure
used by the grid point. This field is not NULL-terminated and is padded with
SPACE (20h) characters if needed.

Padding2 is 44 bytes of filler used to align the previous ten fields. This field is
set to a value of OOh.

!Type is always set to the value 04h.

NorthLatitude is the northernmost latitude in the grid data multiplied by
10000.

WestLongitude is the westernmost longitude in the grid data multiplied by
10000.

Latitudelncrement is the latitude increment multiplied by 10000.

Longitudelncrement is the longitude increment multiplied by 10000.

Padding3 is 16 bytes of filler used to align the previous 16 fields. This field is
set to a value of OOh.

IhType is always set to the value 01h.

TopAltitude is the highest altitude multiplied by 1000.

Altitudelncrement is the altitude increment multiplied by 1000.

Padding4 is 124 bytes of filler used to pad the information header out to a
length of 256 bytes. This field is set to a value of OOh.

94Q GRAPHICS FILE FORMATS

VIS-5D (cont'd)

The actual grid data is a five-dimensional array of floating-point values:

FLOAT GridArray[TimeSteps] [Parameters] [Levels] [Columns] [Rows];

TimeSteps is the number of time steps in this grid data set.

Parameters is the number of physical parameters used by the grid data set.

Levels is the number of levels (altitude).

Columns is the number of columns (longitude).

Rows is the number of rows (latitude).

An array containing only one grid using one time step and one variable would
be declared as:

FLOAT GridArray[1] [1] [1] [1] [1];

while an array containing 1644 grids using 12 parameters and 137 time steps in
each sequence would be declared as:

FLOAT GridArray[137] [12] [1644] [1644] [1644];

The Northwest-bottom corner of the data set is:

GridArray[TimeSteps] [Parameters] [0] [0)[0);

The Southeast-top corner is:

GridArray[TimeSteps] [Parameters] [Levels- 1] [Columns- 1] [Rows- 1);

Empty or missing data in a grid element is indicated by a value of l.Oe35.

ForFurtherhdonnation
For further information about VI5-5D, see the documentation and sample code
on the CD-ROM that accompanies this book. For additional information or to
be added to the VIs-5D mailing list, contact:

Space Science and Engineering Center
Attn: Bill Hibbard or Brian Paul
University of Wisconsin-Madison
1225 West Dayton Street
Madison, WI 53706
Bill Hibbard: whibbard@macc. wisc.edu
Brian Paul: Urianp®ssec. wisc.edu
WWW: http:/ /java. meteor. wise. edu/

VIS-SD 941

VIS-5D (ccmt'd)

The VI8-5D distribution is available via ITP at the following site:

ftp:/ /iris.ssec. wisc.edu/pub/vis5d/

There is no official VI8-5D file format specification, but the files README and
util/sample.c (included on the CD-ROM) should be of special interest.

942 GRAPHICS FILE FORMATS

NAME:

ALSO KNOWN As:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

Vivid, Bob

None

Scene description

NA

No

NA

NA

NA

Stephen Coy

All

Vivid and Bob I

Vivid and Bob ray tracers, other ray-trace applica
tions

No

No

No

DKB, NFF, P3D, POV, PRT, QRT, Radiance, Rayshade

usAGE: Vivid has been widely distributed on the Internet.

coMMENTs: You might want to look at these if you're thinking about writing a ray
tracer, mainly because the code is available.

Overview
Vivid and Bob are two separate ray-trace applications originated and main
tained by their author, Stephen Coy. They both use proprietary scene-input for-·
mats designed by the author. We are not able to include file format
specifications for Vivid and Bob on the CD-ROM that accompanies this book,
although we would like to, because these formats have had a substantial impact
on other ray trace formats. About Vivid, Mr. Coy writes:

Vivid's file format is constantly changing, so that anything I could give
you would be out-of-date even before you could publish it. In the last
year since version 2.0 came out, I've released 18 new test versions

VIVID AND BOB 943

Vivid and Bob (cont'd)

covering bug fixes and new features, with several hundred lines of
notes and changes to the documentation. Vivid 3.0 will be released
within the next couple of moriths, but until that time there's no single
document fully describing the file format as it currently is.

About Bob, he writes:

The Bob file formats are documented in the book Photorealism and Ray
Tracing in C, which anyone who is legally using Bob already has.

File Organization and Details
We've pulled together what information we have been able to obtain about the
Vivid and Bob formats here.

The Vivid input module is case-sensitive, and the system understands a right
hand coordinate system. Colors are expressed as RGB triplets, and each of R,
G, and B falls into the range 0 to 1. Certain mathematical operations are avail
able, and are designed for use with both vectors and numerical values. Vector
operations include the following:

Addition
Subtraction
Scalar multiplication
Dot and cross products

Scalar operations include the following:

Addition
Subtraction
Multiplication
Division
Exponentiation

The system also supports the following functions:

Sine
Cosine
Tangent
Arcsine

944 GRAPHICS FILE FORMATS

Arccosin
Arctangent
Square roots

Vivid and Bob (coot'd)

Operator precedence appears to be poorly developed, so liberal use of paren
theses in complex expressions is recommended.

Comments are the same as in ANSI C, which means that both

I* a comment *I

and

II a comment

are supported.

Normal files contain what the documentation refers to as a studio description,
which consists of the image size, antialiasing state, and viewpoint. This descrip
tion is followed by definitions of lights, surfaces, and objects. Lights and sur
face definitions persist until redefined. Objects, as in most systems of this type,
are simply geometric descriptions.

The Vivid system is implemented partly through the use of a preprocessor.
Some versions of Vivid leave a temporary file, XYZZY.V subsequent to invoca
tion. This appears to be an error in the system, but it may have some utility in
debugging. Macros are contained between normal parentheses, and multiline
macros, as in the C preprocessor, must have each line terminated with the line
continuation character (\).

ForFurtherhUonnation
For further information about the Vivid and Bob file formats, refer to the doc
umentation that comes with the applications. In particular, for Bob, refer to
the following book that comes with the system:

Photorealism and Ray Tracing in C

For information about obtaining these applications, contact the author:

Stephen Coy
Email: coy®plato.ds. boeing. com

VIVID AND BOB 945

· I Wavefront OBJ
NAME:

ALSO KNOWN As:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

Wavefront OBJ*

Wavefront Object, OBJ

3D Vector

Unlimited

Uncompressed

Unlimited

Yes

NA

Wavefront

UNIX

Advanced Visualizer

Yes

No

No

Wavefront RLA

UsAGE: Used to store and exchange 3D data.

coMMENTs: The Wavefront OBJ format is a useful standard for representing polygonal
data in ASCII form.

Overview
Wavefront OBJ (object) files are used by Wavefront's Advanced Visualizer appli
cation to store geometric objects composed of lines, polygons, and free-form
curves and surfaces. Wavefront is best known for its high-end computer graph
ics tools, including modeling, animation, and image compositing tools. These
programs run on powerful workstations such as those made by Silicon Graph
ics, Inc.

Wavefront OBJ files are often stored with the extension ".obj" following the
UNIX convention of lowercase letters for filenames. The most recently docu
mented version of OBJ is v3.0, superseding the previous v2.11 release.

* Our thanks to John Foust for his contributions to this article.

946 GRAPHICS FILE FORMATS

Wavefront OBJ (cont'd)

In Wavefront's 3D software, geometric object files may be stored in ASCII for
mat '(using the ".obj" file extension) or in binary format (using the .MOD
extension). The binary format is proprietary and undocumented, so only the
ASCII format is described here.

The OBJ file format supports lines, polygons, and free-form curves and sur
faces. Lines and polygons are described in terms of their points, while curves
and surfaces are defined with control points and other information depending
on the type of curve. The format supports rational and non-rational curves,
including those based on Bezier, B-spline, Cardinal (Catmull-Rom splines),
and Taylor equations.

File Organization
OBJ files do not require any sort of header, although it is common to begin the
file with a comment line of some kind. Comment lines begin with a hash mark
(#). Blank space and blank lines can be freely added to the file to aid in for
matting and readability. Each non-blank line begins with a keyword and may be
followed on the same line with the data for that keyword. Lines are read and
processed until the end of the file. Lines can be logically joined with the line
continuation character(\) at the end of a line.

The following keywords may be included in an OBJ file. In this list, keywords
are arranged by data type, and each is followed by a brief description.

Vertex data:

v Geometric vertices
vt Texture vertices
vn Vertex normals
vp Parameter space vertices

Free-form curve/ surface attributes:

deg
bmat
step
cstype

Degree
Basis matrix
Step size
Curve or surface type

WAVEFRONT OBJ 94 7

WavE!fr'ont OBJ (cont'd)

Elements:

p Point
I Line
f Face
curv Curve
curv2 2D curve
surf Surface

Free-form curve/ surface body statements:

parm
trim
hole·
scrv
sp
end

Parameter values
Outer trimming loop
I~ner trimming loop
Special curve
Special point
End statement

Connectivity between free-form surfaces:

con Connect

Grouping:

g Groupname
s Smoothing group
mg Merging group
o Object name

Display I render attributes:

bevel Bevel interpolation
Color interpolation
Dissolve interpolation
Level of detail
Material name
Material library
Shadow casting

c_interp
d_interp
lod
usemtl
mtllib
shadow_obj
trace_obj
ctech
stech

Ray tracing
Curve approximation technique
Surface approximation technique

948 GRAPHICS FILE FORMATS

Wavefront OBJ (cont'd)

File Details
The most commonly encountered OBJ files contain only polygonal faces. To
describe a polygon, the file first describes each point with the "v" keyword,
then describes the face with the "f' keyword. The line of a face command con
tains the enumerations of the points in the face, as 1-based indices into the list
of points, in the order they occurred in the file. For example, the following
describes a simple triangle:

Simple Wavefront file
v 0.0 0.0 0.0
v 0.0 1.0 0.0
v 1.0 0.0 0.0
f 1 2 3

It is also possible to reference points using negative indices. This makes it easy
to describe the points in a face, then the face, without the need to store a large
list of points and their indexes. In this way, "v" commands and "f' commands
can be interspersed.

v -0.500000 0.000000 0.400000
v -0.500000 0.000000 -0.800000
v -0.500000 1.000000 -0.800000
v -0.500000 1.000000 0.400000
f -4 -3 -2 -1

OBJ files do not contain color definitions for faces, although they c~ refer
ence materials that are stored in a separate material library file. The material
library can be loaded using the "mtllib" keyword. The material library contains
the definitions for the RGB values for the material's diffuse, ambient, and spec
ular colors, along with other characteristics such as specularity, refraction,
transparency, etc.

The OBJ file references materials by name with the "usemtl" keyword. All faces
that follow are given the attributes of this material until the next "usemtl" com
mand is encountered.

Faces and surfaces can be assigned into named groups with the "g" keyword.
This is used to create convenient sub-objects to make it easier· to edit and ani
mate 3D models. Faces can belong to more than one group.

The following demonstrate more complicated examples of smooth surfaces of
different types, material assignment, line continuation, and grouping.

WAVEFRONT OB.J 949

~av~ontOBJ(cont'd)

Cube with Materials
This cube has a different material
applied to each of its ~aces.

mtllib master.mtl

v 0.000000
v 0.000000
v 2.000000
v 2.000000
v 0.000000
v 0.000000
v 2.000000
v 2.000000
8 vertices

g front
usemtl red
f 1 2 3 4
g back
usemtl blue
f 8 7 6 5
g right
usemtl green
f 4 3 7 8
g top
usemtl gold
f 5 1 4 8
g left
usemtl orange
f 5 6 2 1
g bottom
usemt1 purple
f 2 6 7 3
6 elements

Bezier Patch
3.0 Bezier patch

2.000000
0.000000
0.000000
2.000000
2.000000
0.000000
0.000000
2.000000

v -5.000000 -5.000000 0.000000
v -5.000000 -1.666667 0.000000
v -5.000000 1.666667 0.000000
v -5.000000 5.000000 0.000000
v -1.666667 -5.000000 0.000000
v -1.666667 -1.666667 0.000000
v -1.666667 1.666667 0.000000
v -1.666667 5.000000 0.000000
v 1.666667 -5.000000 0.000000
v 1.666667 -1.666667 0.000000
v 1.666667 1.666667 0.000000

950 GRAPHICS FILE FORMATS

2.000000
2.000000
2.000000
2.000000
0.000000
0.000000
0.000000
0.000000

v 1.666667 5.000000 0.000000
v 5.000000 -5.000000 0.000000
v 5.000000 -1.666667 0.000000
v 5.000000 1.666667 0.000000
v 5.000000 5.000000 0.000000

16 vertices

cstype bezier
deg 3 3
Example of line continuation
surf 0.000000 1.000000 0.000000 1.000000 13 14 \

15 16 9 10 11 12 5 6 7 8 1 2 3 4
parm u 0.000000 1.000000
parm v 0.000000 1.000000
end
1 element

Cardinal Curoe
3.0 Cardinal curve

v 0.940000 1.340000 0.000000
v -0.670000 0.820000 0.000000
v -0.770000 -0.940000 0.000000
v 1.030000 -1.350000 0.000000
v 3.070000 -1.310000 0.000000
6 vertices

cstype cardinal
deg 3
curv 0.000000 3.000000 1 2 3 4 5 6
parm u o.nooooo 1.000000 2.000000 3.000000 end
i 1 element

Texture-Mapped Square
A 2 x 2 square mapped with a 1 x 1 square
texture stretched to fit the square exactly.

mtllib master.mtl

v 0.000000 2.000000 0.000000
v 0.000000 0.000000 0.000000
v 2.000000 0.000000 0.000000
v 2.000000 2.000000 0.000000
vt 0.000000 1.000000 0.000000
vt 0.000000 0.000000 0.000000
vt 1.000000 0.000000 0.000000
vt 1.000000 1.000000 0.000000
4 vertices

~av~ontOBJ(cont'd)

WAVEFRONT OB.J 951

Wavefront DB] (cont'd)

usemtl wood

The first number is the point,
then the slash,
and the second is the texture point
f 1/1 2/2 3/3 4/4
1 element

For Further Infonnation
For further information about the Wavefront OBJ format, see the specification
included on the CD-ROM that accompanies this book.

You can also contact:

Wavefront Technologies
530 East Montecito Street
Santa Barbara, CA 93103
Voice: 805-962-8117
FAX: 805-963-0410 ·
WWW: http:/ /www.aw.sgi.com/

Wavefront also maintains a toll-free support number and a BBS for its cus
tomers. There are many Wavefront user groups, too.

952 GRAPHICS FILE FORMATS

NAME:

ALSO KNOWN As:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

Wavefront RLAI
Wavefront RI.A

RIA, RLB, Run-length Encoded Version A, Run
length Encoded Version B

3D bitmap

16 million

RLE

64Kx64K pixels

Yes

Big-en dian

Wavefront

UNIX

Wavefront Advanced Visualizer

Yes

No

Ys

None

UsAGE: Storage of 3D output data.

coMMENTs: Proprietary, but associated with a well-known application, so likely to be
important in the future.

Overview
The Wavefront RIA (Run-Length Encoded Version A) image file format is used
to store three types of data:

• Graphics images

• Field-rendered images captured from live video

• Three-dimensionally rendered image data

RIA is used primarily by the Wavefront Advanced Visualizer animation package
to store output data and to exchange graphical data with other software appli
cations. There are actually three variations of the RIA image file format.

WAVEFRONT RLA 953

Wavtjront RLA (cont'd)

Prior to 1990, the original RIA format was in use. In this format, RIA was capa
ble of storing only standard graphics images, such as those found in many
other bitmap file formats.

In 1990, the capabilities of RIA expanded to include the storage of field
rendered images. Rather than revising RIA (and upsetting many customers in
the process), Wavefront created the RLB (Run-Length Encoded Version B)
image file format to incorporate these new features. RLB is essentially the origi
nal RlA format with a few extra fields added to the header.

Some time later, Wavefront released version 3.0 of the Advanced Visualizer ani
mation package and updated the original RLA format to include all of the new
fields found in the RLB format. Wavefront also added and expanded several
fields in the header to include the capability of storing multichannel rendered
image data-a feature not supported by the RLB format. Thus, the new RLA
image file format was born.

Today, the new RIA image file format is the standard format for Wavefront soft
ware applications. Both RLB and the original RIA format are considered to be
outdated, and future support of these two older formats by Wavefront is ques
tionable.

File Organization
Both RIA formats and the RLB format are always stored using the big-endian
byte order. Floating-point data is always stored as ASCII strings to avoid prob
lems with machine-dependent representations of floating-point data. String
data stored in the header is composed entirely of ASCII data and is always
NULL-terminated. Blank character fields contain all NULL (ASCII OOh) values.

All three formats contain three major sections:

• Header

• Scan-line offset table

• Image data

File Details
This section contains information about each of the components in an RLA or
RLB file. ·

954 GRAPHICS FILE FORMATS

Wavefront RLA (cont'd)

Header

The RIA header is 7 40 bytes in length and has the following format:

typedef struct _WavefrontHeader
{

SHORT WindowLeft;
SHORT WindowRight;
SHORT WindowBottom;
SHORT WindowTop;
SHORT ActiveLeft;
SHORT ActiveRight;
SHORT ActiveBottom;
SHORT ActiveTop;
SHORT FrameNumber;
SHORT ColorChannelType;
SHORT NumOfColorChannels;

I* Left side of the full image *I
I* Right side of the full image *I
I* Bottom of the full image *I
I* Top of the full image *I
I* Left side of the viewable image *I
I* Right side of viewable image *I
I* Bottom of the viewable image *I
I* Top of the viewable image *I
I* Frame sequence number *I
I* Data format of the image channels *I
I* Number of color channels in image *I

SHORT NumOfMatteChannels; I* Number of matte channels in image *I
SHORT NumOfAuxChannels;
SHORT Revision;
CHAR Gamma[16];
CHAR RedChroma[24];
CHAR GreenChroma[24];
CHAR BlueChroma[24];
CHAR WhitePoint[24];
LONG JobNumber;
CHAR FileName[128];
CHAR Description[128];
CHAR ProgramName[64];
CHAR MachineName[32];
CHAR UserName[32];
CHAR DateCreated[20];
CHAR Aspect[24];
CHAR AspectRatio[S];
CHAR ColorChannel[32];
SHORT Field;
CHAR Time [12] ;

CHAR Filter[32];
SHORT NumOfChannelBits;
SHORT MatteChannelType;
SHORT NumOfMatteBits;
SHORT AuxChannelType;
SHORT NumOfAuxBits;

CHAR AuxData[32];
CHAR Reserved[36];
LONG NextOffset;

WAVEFRONT;

I* Number of auxiliary channels in image *I
/* File format revision number *I
/* Gamma setting of image *I
/* Red chromaticity *I
/* Green chromaticity *I
I* Blue chromaticity */
I* White point chromaticity*/
I* Job number ID of the file *I
I* Image file name *I
I* Description of the file contents */
I* Name of the program that created the file */
/* Name of machine used to create the file *I
I* Name of user who created the file */
/* Date the file was created */
/* Aspect format of the image *I
/* Aspect ratio of the image */
/* Format of color channel data */
/* Image contains field-rendered data */
I* Length of time used to create the image

file *I
/* Name of post-proce~sing filter */
I* Number of bits in each color channel pixel */
I* Data format of the matte channels */
I* Number of bits in each matte channel pixel */
I* Data format of the auxiliary channels */
I* Number of bits in each auxiliary channel

pixel *I
I* Auxiliary channel data description */
I* Unused *I
I* Location of the next image header in the

file */

WAVEFRONT RLA 955

Wavefront RIA (cont'd)

WindowLeft, WindowRight, WindowBottom, and WindowTop specify the abso
lute size of the image in pixels. The home position of the window is normally
the bottom-left comer of the display. An image displayed starting from this
position has WindowLeft and WindowBottom values of 0.

ActiveLeft, ActiveRight, ActiveBottom, and ActiveTop define the part of the
image that is actually stored in the file. Normally, these values are the same as
the WindowLeft, WindowRight, WindowBottom, and WindowTop values. How
ever, if the stored image is a clip from a larger image, these values indicate the
position of the stored image on the original image. Only the clipped portion
of the original image is stored in the file.

The size of the image may be determined using the following calculations:

ImageHeight = (ActiveBottom - ActiveTop) + 1;
ImageWidth = (ActiveRight - ActiveLeft) + 1;

FrameNumber is the image number if the image is one frame in a sequence.
· Values for this field start at 01 h.

ColorChannelType indicates the format of the color-channel data. A value of 0
indicates that the data is stored as 8-bit BYrEs. A value· of 1 indicates that the
data is stored as 16-bit WORDs. A value of 2 indicates that the data is stored as
32-bit DWORDs. And a value of 3 indicates that 32-bit IEEE floats are used to
store the data.

NumOfColorChannels specifies the number of color channels in the file.
There are typically three color channels (red, green, and blue) in an image.

NumOfMatteChannels specifies the number of matte information channels in
the file. There is typically only one matte channel, or possibly one matte chan
nel per color channel.

NumOfAuxChannels specifies the number of auxiliary information channels
in the file. There are normally no auxiliary channels (unless the file contains
3D image data), and this field is set to OOh.

Revision holds the current revision identifier for the image format. This value
is always FFFEh. This field holds an auxiliary data-mask value in original RLA
format images.

Gamma contains an ASCII floating-point number representing the gamma cor
rection factor applied to the image before it was stored. A value of 2.2 is con
sidered typical. A value of 0.0 indicates no gamma setting.

956 GRAPHICS FILE FORMATS

WavefruntRLA (cunt'd)

RedChroma, Green Chroma, BlueChroma, and WhitePoint specify the X andY
. chromaticity values for the red, green, and blue primary colors and the white
point reference value. These values are written as ASCII floating-point numbers
and have the standard NTSC cq.romaticity values as their default:

X y
Red 0.670 0.330
Green 0.210 0.710
Blue 0.140 0.080
White 0.310 0.316

JobNumber is a user-defined number that identifies the project or task of
which the image is part.

FileName is the name of the image file which stores the data. A maximum of
128 characters may be stored in this field.

Description is a string describing the contents of the image file. A maximum of
128 characters may be stored in this field.

ProgramName is the name of the software program that created the file. A
maximum of 64 characters may be stored in this field.

MachineName is the name of the computer system that created the image file.
A maximum of 32 characters may be stored in this field.

UserName is the name of the user or system account that created the image
file. A maximum of 32 characters may be stored in this field.

DateCreated is the date that the image file was created. A maximum of 20 char
acters may be stored in this field. Wavefront images typically use the date for
mat MMM DD hh:mm yyyy (e.g., SEP 1716:30 1994).

Aspect is a user-defined string describing the aspect ratio of the image. This
string is used to locate size and aspect ratio information stored in a table. A
maximum of 24 characters may be stored in this field. Following is a list of
aspect description strings defined by Wavefront:

Description

1k_square
2k_square
3k_square

Width

1024
2048
3072

Height

1024
2048
3072

Aspect

1.00
1.00
1.00

WAVEFRONT RLA 957

Wavefrcmt RIA (ccmt'd)

Description Width Height Aspect

4k_square 4096 4096 1.00
5k_square 5120 5120 1.00
6k_square 6144 6144 1.00
7k_square 7168 7168 1.00
8k_square 8192 8192 1.00
Creator 640 484 1.33
ImageN ode 512 486 1.33
Iris-8-10 3000 2400 1.25
Abekas 720 486 1.33
ccir_pal 720 576 1.33
full_1024 1024 768 1.33
full_1280 1280 1024 1.33
iris_1400 1022 768 1.33
iris_2400 1024 768 1.33
iris_ntsc 636 484 1.33
iris_pal 768 576 1.33
matrix_2k 2048 1366 1.50
matrix_2k_ntsc 1821 1366 1.33
matrix_4k 4096 2732 1.50
matrix_ 4k_ntsc 3642 2732 1.33
ntsc_4d 646 485 1.33
ntsc_512 512 484 1.33
ntsc_512_fld 512 242 1.33
ntsc_636 636 484 1.33
ntsc_636_fld 636 242 1.33
ntsc_640 640 486 1.33
ntsc_640_fld 640 243 1.33
pal_768 768 576 . 1.33
pal_780 780 576 1.33
pixar 1024 768 1.33
pixar_ntsc 640 486 1.33
pv_2k 2048 1638 1.25
pv_3k 3072 2457 1.25
pv_ntsc 646 486 1.33
pv_pal 768 576 1.33
qnt_pal 720 576 1.33
qtl_ntsc 720 486 1.33

958 GRAPHICS FILE FORMATS

Wavifront RLA (ccmt'd)

Description Width Height Aspect

screen 1280 1024 1.25
shiba_soku 1600 1045 1.33
sony_hdtv 1920 1035 1.855
tek_ntsc 720 486 1.33
tek_pal 720 576 1.33
texture_512 512 512 1.00
tga_486 512 486 1.33
tga_ntsc 512 482 1.33
vc_ntsc 640 486 1.33
vfr_comp 768 486 1.33
vfr_rgb 720 486 1.33
vst_hires 1024 768 1.33
vst_ntsc 756 486 1.33
vst_pal 738 576 1.33
vst_pal2 740 578 1.33
vst_targa 512 486 1.33
vtc_mvbhm 1440 1200 1.33
vte_720 720 576 1.33
window 1024 820 1.25

AspectRatio is an ASCII floating-point number used to determine the pixel
aspect ratio of the image. This number is the display width divided by the dis
play height.

ColorChannel is an ASCII string identifying the color space model used to rep
resent the image data. Values for this field may be rgb, xyz, or sampled.

Field is set to 01h if the file contains a field-rendered image. Otherwise, the
value of this field is OOh.

Time is a string storing the amount of CPU time in seconds that was required
to create the image. A maximum of 12 characters may be stored in this field.

Filter is the name of the filter used to post-process the image data before stor
age. A maximum of 32 characters may be stored in this field.

NumOfChannelBits specifies. the number of bits per pixel in each color chan
nel. The value for this field may be in the range of 1 to 32.

WAVEFRONT RLA 959

Wavefront RIA (cont'd)

MatteChannelType indicates the format of the matte channel data. A value of 0
indicates that the data is stored as 8-bit BYrEs. A value of 1 indicates that the
data is stored as 16-bit WORDs. A value of 2 indicates that the data is stored as
32-bit DWORDs. And a value of 3 indicates that the data is stored as 32-bit IEEE
floats.

NumOfMatteBits specifies the number of bits per pixel in each matte channel.
The value for this field may be in the range of 1 to 32.

AuxChannelType indicates the format of the auxiliary channel data. A value of
0 indicates that the data is stored as 8-bit BYrEs. A value of 1 indicates that the
data is stored as 16-bit WORDs. A value of 2 indicates that the data is stored as
32-bit DWORDs. And a value of 3 that indicates that the data is stored as 32-bit
IEEE floats.

NumOfAuxBits specifies the number of bits per pixel in the auxiliary channel.
The value for this field may be in the range 1 to 32.

AuxData indicates the format of the auxiliary channel data. Valid strings for
this field are range and depth.

Reserved is unused space that is reserved for future header fields. All bytes in
this field are always set to OOh.

NextOffset is the offset value to the header of the next image stored in the file.
The value of this field is OOh if no other images appear in the file.

Scan-Line Offset Table

Immediately following the header is a scan-line offset table. This table is a 1D
array of 4-byte integers indicating the starting position of each scan line in the
image data.

Each scan line in an RIA and RLB image file is run-length encoded. Because of
the variable lengths of the RLE records and packets, it is impossible to detect
easily where any scan line begins unless the image is decoded from the begin
ning.

To locate easily any scan line in the image data, store the offsets to the begin
ning of each encoded scan line in the scan-line offset table. Each entry in the
offset table is four bytes in size, and there is one entry per scan line in the
image. All offsets are calculated from the beginning of the image file, even if a
file contains multiple images.

960 GRAPHICS FILE FORMATS

Wavefront RIA (cont'd)

Image Data

The image data in RLA and RLB files is separated into one or more color chan
nels (also called color planes) and one or more matte channels (also called
alpha channels). An image using the RGB color model contains three color
channels, one each for red, green, and blue color information.

Typically, there is only one matte channel per image, although one matte chan
nel per color channel is possible. The matte channel contains information on
the visual appearance of each pixel in the image and indicates the degree of
transparency or opaqueness of each pixel when the image is displayed.

The channel information is organized into scan lines. Each scan line of image
data therefore contains four (or more) channels of information in the order of
red, green, blue, and matte. When a scan line is read, all of the red informa
tion is read first, followed by the green information, then blue, and so on.

Multiple images may be stored in a single disk file by simply appending them
together. The NextOffset value in the header of one image should contain the
offset value of the first byte of the header of the next image. The last image in
a file will have a NextOffset value of OOh. This is common way to store a full
sized image and a postage-stamp image (called a swatch in Wavefront lingo) in
the same file.

Field-Rendered Images

The RLB and the newer RLA format have the capability of storing field
rendered image data. Normally, an image bitmap contains both odd- and even
numbered scan lines. Interlaced video signals, such as those used by television,
display frames of video data as alternating fields of odd- and even-numbered
scan lines. There are always two fields per frame.

When an interlaced video field is captured and stored as an image, only half of
the scan lines in the frame are present in the field. It is therefore possible to
store a captured video frame as two separate fields by using two RLA or RLB
image files. Odd-numbered scan lines are stored in one file, and even
numbered scan lines are stored in the other. Images stored in this way usually
have file names with odd and even numbers to indicate frame and field desig
nations.

Note that in field-rendered images, the header values ActiveBottom and Active
Top indicates the full size of the frame image. The actual number of scan lines
stored in each field-image file is half the difference between these values. For
example; a 640-line frame creates two 320-line field-image files.

WAVEFRONT RLA 961

Wavifrcmt RIA (cont'd)

3D Image Data

New RIA images normally contain four channels of information in the form of
red, green, blue, and matte data. If a 3-dimensional scene has been rendered
to an image, a fifth channel, known as the auxiliary channel, is present and
contains information on the depth of each pixel relative to the camera's, or
viewer's, location. Auxiliary channel information is stored as floating-point
data in the range 0.00 to 1.00 inclusive.

Run-Length Encoding

Each channel of image data in RLA and RLB image files is always run-length
encoded (RLE). Each channel within a scan line is encoded into a separate
RLE record. Each record begins with a 2-byte value indicating the number of
bytes of encoded data in the record. This count byte is followed by the
encoded channel data itself. There may be a maximum of 65,535 bytes of
encoded data in any record. ·

Image data with a pixel depth of one byte (one to eight bits) is encoded into
packets containing a run-count byte and a run-value byte. If the run-count
value is a positive value, then the run value is repeated "run count+ 1" times. If
the run-count value is negative, the following "run count" bytes are repeated
~iterally. Only runs of three or more pixels are encoded into repeated runs.

Image data with a pixel depth of two bytes (nine to 16 bits) is encoded using a
similar algorithm, but the actual bytes of pixel data are read in an interleaved
fashion. Two separate passes are made over the pixel data in each channel.
The first pass run-length encodes the least significant byte of each pixel in the
channel; the second pass encodes the most significant byte of each pixel in the
channel.

With image data that contains four bytes (17 to 32 bits) per pixel, a 4-pass pro
cess is used, encoding from the least to most significant byte in each pixel. The
same algorithm is used for encoding each pass of 2- and 4-byte pixel data as is
used for 1-byte pixel data.

ForFurtherhrronnation
For further information about the Wavefront RLA and RLB formats, see the
specification included on the CD-ROM that accompanies this book.

962 GRAPHICS FILE FORMATS

WavtfrontRIA (cont'd)

The specification for the RIA and RLB file formats is also available in Appendix
B of the Wavefront Advanced Visualizer User Manuals available from Wavefront:

Wavefront Technologies
530 East Montecito Street
Santa Barbara, CA 93103
Voice: 805-962-8117
FAX: 805-963-0410
WWW: http:/ /www.aw.sgi.com/

Wavefront also maintains a toll-free support number and a BBS for its cus
tomers. Many Wavefront users' groups exist to support customers.

WAVEFRONT RLA 963

I WordPerfect Graphics Metafile
NAME: WordPerfect Graphics Metafile

ALso KNOWN As: WPG

TvPE: Metafile

COLORS: 256

COMPRESSION: RLE

MAXIMUM IMAGE SIZE: NA

MuLTIPLE IMAGEs PER FILE: Yes

NuMERICAL FoRMAT: Big-endian

ORIGINAToR: WordPerfect Corporation

PLATFoRM: MS-DOS, Microsoft Windows, Macintosh, UNIX

suPPoRTING APPLICATioNs: WordPerfect, other word processing programs

SPEciFICATioN oN cD: No

cooE oN cD: No

IMAGEs oN cD: Yes

SEE ALso: None

usAGE: Used for storage of document and image data.

coMMENTs: WPG is supported by other applications mainly for compatibility, due to
the widespread distribution of WordPerfect for MS-DOS, which is the num
ber one word processing application on that platform in terms of unit
sales. Not used much as an interchange format.

Overview
The WordPerfect Graphics Metafile (WPG) file format is a creation of Word
Perfect Corporation (WPC) specifically for use with its line of software prod
ucts. WPG image files are likely to be found in any environment that is
supported by WPC products, including MS-DOS, UNIX, and the Apple Macin-
tosh. ··

WPG files are capable of storing both bitmap and vector data, which may con
tain up to 256 individual colors chosen from a palette of more than one mil
lion total colors. It is also possible to store Encapsulated PostScript (EPS) code
in a WPG file.

964 GRAPHICS FILE FORMATS

WordPerfect Graphics Metafile (coot'd)

The particular version described in this article is the WordPerfect Graphic file
format as created by the WPC products WordPerfect 5.x and DrawPerfect l.x.
For a complete description of the WPG format, refer to the WordPerfect Cor
poration Developer's Toolkit for IBM PC Products. Information on how to
obtain this toolkit is provided in the "For Further Information" section later in
this article.

A WPG-format file created using WordPerfect 5.0 can store either bitmap or
vector image data, but not both at once. WPG files created under WordPerfect
5.1 and later can store both bitmap and vector image data in the same file.
Unfortunately, there is no way to tell whether a WPG file contains both bitmap
and vector data by reading the header. The actual record data from the body
of the file must be read and interpreted.

File Organization
In WPC terminology, a WordPerfect Graphics Metafile contains a prefix area
(the header) and a record area (the graphics data). All data in the metafile is
written using the big-endian byte order.

File Details
This section contains information about the prefix and record areas of a Word
Perfect Graphics Metafile.

Prefix

The prefix is 16 bytes in length and has the following format:

typedef struct _WordPerfectGraphic
{

BYTE Fileid[4]; /*File Id Code (always FFh 57h SOh 43h) */
DWORD DataOffset; /* Stat of data in the WPG file (always 10h)*/
BYTE ProductType; /* Product Code (always 1) */
BYTE FileType; /* WPC File Code (always 16h) */
BYTE MajorVersion; /* Major Version Code (always 1) */
BYTE MinorVersion; /* Minor Version Code (always 0) */
WORD EncryptionKey;/* Password Checksum (0 =not encrypted) */
WORD Reserved; /* Reserved field (always 0) */

} WPGHEAD;

Fileld values are four contiguous bytes that contain the standard WPC File ID
code. All WPC files starting with those created by WordPerfect 5.0 begin with
this code. The values for these fields, in order, are FFh, 57h, 50h, and 43h.

WORDPERFECT GRAPHICS METAFILE 965

WordPerfect Graphics Metafile (cont'd)

DataOffset contains an offset value pointing to the start of the record data in
the WordPerfect Graphics Metafile. Because the record data always immedi
ately follows the prefix, and the prefix is always 16 bytes in length, this value is
always lOb.

ProductType identifies the WPC software product that created the WPG file.
This field always contains the value Olh, indicating that the file was created by
the WordPerfect word processor. This value is always the same, even if the WPG
file was created by a third-party software application. ·

File Type identifies the type of data the file contains. For WPG files, the value of
this field is always 16h.

MajorVersion and MinorVersion contain the internal version number of the
product for which the WPG file was created (which may not match the pub
lished, external version number of the product). For all WPG files, the
MajorVersion field always contains a value of Olh, and the MinorVersion field
always contains a value of OOh.

EncryptionKey normally contains a value of OOh if the file is not encrypted. If
the value of this field is non-zero, then the value is used as the checksum of the
password and is used to decrypt the file. In the current version, WPG files are
never encrypted and therefore the value of this field is always OOh.

Reserved is not currently used and always contains a value of OOh.

Record Area

Fallowing the prefix in a WordPerfect Graphics Metafile is the record area.
This area contains a sequence of objects and their attributes; this information
is used to render the image. Any colormaps, bitmaps, and sections of
PostScript code are also considered objects within the WPG file record area.

Record prefix
Each record begins with a record prefix (a header in almost any other format).
The record prefix may be two, four, or six bytes in length depending on the
type of record it precedes. Here are the three possible record prefix formats:

/* Two-byte prefix */
typedef struct _TwoByteRecPrefix
{

BYTE RecordType; /* The Record Type identifier */ .
BYTE RecordLength; /*The length of the record in bytes (0-FEh)*/

} RECPREFIX2BYTE;

966 GRAPHICS FILE FORMATS

WordPerfect Graphics Metafile (cont'd)

I* Four-byte prefix *I
typedef struct _FourByteRecPrefix
{

BYTE RecordType;
BYTE Sizeindicator;
WORD RecordLength;

RECPREFIX4BYTE;

I* The Record Type identifier *I
I* WORD or DWORD length follows (always FFh)*l
I* The length of the record in bytes *I

I* Six-byte prefix *I
typedef struct _SixByteRecPrefix
{

BYTE RecordType;
BYTE Sizeindicator;
DWORD RecordLength;

RECPREFIX6BYTE;

I* The Record Type identifier *I
I* WORD or DWORD length follows (always FFh)*l
I* The length of the record in bytes *I

Record type
RecordType, the first field of each record, contains a value that identifies the
type of data stored in the record as follows:

Record 'JYpe
01h
02h
03h
04h
05h
06h
07h
08h
09h
OAh
OBh
OCh
ODh
OEh
OFh
10h
11h
12h
13h

Record Description
Fill attributes
Line attributes
Marker attributes
Polymarker
Line
Polyline
Rectangle
Polygon
Ellipse
Reserved
Bitmap (Type 1)
Graphics text (Type 1)
Graphics text attributes
Color map
Start ofWPG data (Type 1)
End ofWPG data
PostScript data follows (Type 1)
Output attributes
Curved polyline

WORDPERFECT GRAPHICS METAFILE 967

WordPerfect Graphics Metafile (cont'd)

Record 'IYPe
14h

Record Description
Bitmap (Type 2)

15h
16h
17h
ISh
19h
lAb
lBh

Start figure
Start chart
PlanPerfect data
Graphics text (Type 2)
Start ofWPG data (Type 2)
Graphics text (Type 3)
PostScript data follows (Type 2)

The following is a listing of the record types, their formats, and the flags associ
ated with them. For more information, please consult the Wordperfect docu
mentation.

Fill Attributes
BITE 0 Hollow

1 Solid
2 Finely spaced 45-degree lines
3 Medium spaced 45-degree lines
4 Coarsely spaced 45-degree lines
5 Fine 45-degree hatching ·
6 Medium 45-degree hatching
7 Coarse 45-degree hatching
8 Fine vertical lines
9 Medium vertical lines

10 Coarse vertical lines
11 Dots density 1 (least dense)
12 Dots density 2
11 Dots density 3
13 Dots density 4
14 Dots density 5
15 Dots density 6
16 Dots density 7 (densest)
18 Dots (medium)
19 Dots (coarse)
20 Fine horizontal
21 Medium horizontal
22 Coarse horizontal
23 Fine 90-degree cross-hatching

968 GRAPHICS FILE FORMATS

WordPerfect Graphics Metafile (cont'd)

24
25
26
27
28
29
30
31
32
33
34
35
36
37

Medium 90-degree cross-hatching
Coarse 90-degree cross-hatching
Fine 45-degree lines
Medium 45-degree lines
Coarse 45-degree lines
Brick pattern (horizontal)
Brick pattern (vertical)
NA
Interweaving
NA
NA
Tile pattern
Coarse lines (thick)

BYTE
Alternating dark and light squares
Fill-color palette index (0-fth)

Line Attributes
BYTEO None

1 Solid
2 Dash 1 (long)
3 Dots
4 Dash-dot
5 Dash 2 (medium)
6 Dash-dot-dot
7 Dash 3 (short)

BYTE Line color (0-fih)
WORD Line width (arbitrary units)

Marker Attributes
BYTEO None

1 Dots
2 Plus sign
3 Star
4 Circle
5 Square
6 Triangle
7 Inverted triangle

WORDPERFECT GRAPHICS METAFILE 969

WordPerfect Graphics Metafile (cont'd)

s·
9

BYTE
WORD

Diamond
45-degree cross
Marker color (0-ffh)
Marker height (arbitrary units)

Polymarker
The first area, two byt~s in length, holds the number of points. This is followed
by a list of WORD coordinate pairs denoting the position of the actual points
in arbitrary units.

Line
WORD
WORD
WORD
WORD

X value of start of line
Y value of start of line
X value of end of line
Yvalue of end of line

These are all in arbitrary units.

Polyline
The first area, two bytes in length, holds the number of points. This is followed
by a list of WORD coordinate pairs denoting the position of the actual points
in arbitrary units.

Rectangle
WORD
WORD
WORD
WORD

X of lower left of rectangle
Y of lower left of rectangle
Width
Height

These are all in arbitrary units.

Polygon
The first area, two bytes in length, holds the number of vertices. This is fol
lowed by a list of WORD coordinate pairs denoting the position of the actual
vertices in arbitrary units.

970 GRAPHICS FILE FORMATS

X value of center
Y value of center
X radius
Yradius

WordPerfect Graphics Metafile (cont'd)

Ellipse
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD

Rotation angle measured from the x axis
Start of arc (degrees)
End of arc (degrees)
Flags: bit 0 connect ends of arc to center, bit 1 connect to each other

Bitmap 'Pjpe 1
WORD Width (pixels)
WORD Height (pixels)
WORD Bits-per-pixel (1,2,4,8)
WORD X-resolution of source (pixels/inch)
WORD ¥-resolution of source (pixels/inch)

This is followed by the bitmap data in BYTE format. Note that this may be RLE
compressed. ·

Graphic Text 7YPe 1
WORD Text length in bytes
WORD X value of text position
WORD Y value of text position

This is followed by the text string in BYTE format.

Graphics Text Attributes
WORD Font character width (arbitrary units)
WORD Font character height (arbitrary units)
WORD Reserved
WORD Reserved
WORD Reserved
WORD Reserved
WORD Reserved
WORD Font type-e.g., Od£0 Courier, 1150 Helvetica, 1950 Times
BYTE Reserved
BYTE Alignment, vertical (0 left, 1 center, 2 right)

WORDPERFECT GRAPHICS METAFILE 971

WordPerfect Graphics Metafile (cont'd)

BYfE
BYfE
WORD

Coltmnap
WORD
WORD
BYTE
BYfE
BYTE

BYTE
BYTE
BYTE

Alignment, horizontal (0 base, 1 center, 2 cap, 3 bottom, 4 top)
Color (0-ffh)
Rotation (degrees from horizontal)

Start color (0-ffh)
Number of colors
Red value of first color
Green value of first color
Blue value of first color

Red value of last color
Green value of last color
Blue value of last color

Start of WPG Data
BYTE Version number
BYTE Flags (bit 0 PostScript, maybe bitmap, bit I PostScript, no bitmap
WORD Width of image (arbitrary units)
WORD Height of image (arbitrary units)

End ofWPG Data
This record has no data associated with it. It is used to signal the end of a data
section in the file and acts as an end-of-file marker.

PostScript Data Follows
BYTE Actual PostScript data

BYTE

Output Attributes (WordPerfect 5. 0 only)
BYTE Background color (0-ffh)
BYTE Foreground color (0-ffh)
WORD X value of lower left of clipping window
WORD Yvalue of lower left of clipping window

972 GRAPHICS FILE FORMATS

WORD
WORD

Clip window width
Clip window height

WordPerfect Graphics Metafile (cont'd)

Size and position values are in arbitrary units.

Curoed Polyline (WordPeifect 5.1 and later)
DWORD Size of equivalent data in pre-5.1 files
WORD Number of points
WORD X value of first point
WORD Yvalue of first point
WORD X value of first control point
WORD Yvalue of first control point

X value of last point
Yvalue of last point

WORD
WORD
WORD
WORD

X value of last control point
Y value of last control point

Bitmap 'Pype 2 (WordPeifect 5.1 and later)
WORD Rotation angle from horizontal (degrees)
WORD X value of lower left
WORD Y value of lower left
WORD X value of upper right
WORD Yvalue of upper right
WORD Width (pixels)
WORD Height (pixels)
WORD Pixel depth (bits)
WORD Horizontal resolution (pixels/inch)
WORD Vertical resolution (pixels/inch)

This is followed by the actual bitmap data, which is RLE compressed, although
there appear to be some (possibly illegal) variants produced by third-party pro
grams which are not.

WORDPERFECT GRAPHICS METAFILE 973

WordPerfect Graphics Metafile (cont'd)

Start Figure
DWORD Length of object data
WORD Rotation angle from horizontal (degrees)
WORD X value of lower left
WORD Y value of lower left
WORD X value of upper right
WORD Y value of upper right

This is followed by the figure data.

Start Chart
DWORD
WORD
WORD
WORD
WORD

Length of chart data in file
X value lower left
Yvalue lower left
X value upper right
Y value upper right

This is followed by the actual chart data.

PlanPerfect Data
This is data associated with WordPerfect Corporation's PlanPerfect applica
tion. Please contact WordPerfect for more information.

Graphics Text 'JYPe 2 (WordPerfect version 5.1 and later)
DWORD Size of equivalent data written by version prior to 5.1
WORD Rotation angle from horizontal (degrees)
WORD Length of text (characters)
WORD X value of text start
WORD Yvalue of text start
WORD X value of text end
WORD Y value of text end
WORD X scale factor
WORD Yscale factor
BYTE Type (0 window, I line, 2 bullet chart, 3 simple chart, 4 free-format chart)

This is followed by the string data.

974 GRAPHICS FILE FORMATS

WordPerfect Graphics Metafile (cont'd)

Start of WPG Data TYPe 2
BYTE Type
WORD Length of data in file

This is followed by the actual data.

Recordl.ength
RecordLength, the second field of each record, may be a BYTE, WORD, or
DWORD in size, depending upon the value stored in the first BYTE of this
field (Sizelndicator above). Because it is possible for the same RecordType to
have a different size each time it appears in the same WPG file, each record
cannot be assigned a Record Type field of a fixed size. You must therefore
determine the size of the RecordLength field when you read the record prefix.

If the BYTE value read after the RecordType field is in the range of OOh to FEh,
the RecordLength field is a BYTE in size, and this value is used as the number
of bytes in the record. If the BYfE is the value FFh, then the RecordLength
field is either a WORD or a DWORD in size.

The next WORD of the prefix is then read. If the high bit of this WORD is 0,
then this value is the length of the record. If the high bit is 1, then this value is
the upper WORD value of a DWORD length value. The next WORD is read
and is used as the lower WORD value in the DWORD. This DWORD value is
then the length of the record. The following code should help to clarify this
logic:

_BYTE RecordType;
DWORD RecordLength;
FILE *fp;

RecordType = GetByte(fp); /*Read the RecordType */
RecordLength = GetByte (fp) ; I* Read the RecordLength *I

if (RecordLength == OxFF) /* Not a BYTE value */
{

RecordLength = GetWord(fp); /*Read the next WORD value*/
if(RecordLength & Ox8000) /* Not a WORD value */
{

RecordLength <<= 16; /* Shift value into the high WORD */
RecordLength += GetWord(fp); /*Read the low WORD value*/
}

WORDPERFECT GRAPHICS METAFILE 975

WordPerfect Graphics Metafile (cont'd)

Example Records

The following is a description of several of the records found in the WPG for
mat. For a complete listing of all records and values, refer to the WordPerfect
Developer's Toolkit.

The first record of a WPG file is always the Start WPG Data (OFh) record. This
record contains information on the size of the image and the version number
of the WPG file and has the following format:

typedef struct _StartWpgRecord
{

BYTE Version;
BYTE WpgFlags;
WORD Width;
WORD Height;

} STARTWPGREC;

I* WPG Version Flags (always Olh) *I
I* Bit flags *I
I* Width of image in WP Units *I
I* Height of image in WP Units *I

Version indicates the WPG file version. This value is currently defined to be
01h.

The eight bits in the WpgFlags field are used as flag values. If Bit 0 is set to 0,
then there is no PostScript code included in this WPG file. If Bit 0 is set to 1,
then PostScipt code is included in this file. Bits 1 through 7 are reserved and
always set to 0.

Width and Height contain the size of the image in WP Units (WPU}, each of
which is equal to 1/1200th of an inch.

A ColorMapRecord (OEh) normally follows the StartWpgRecord, unless the
image is black and white. If no ColorMapRecord is present, then the default
colormap is used instead. There is only one ColorMapRecord per WPG file,
regardless of how many bitmap or vector objects the file contains. The current
WPG format does not provide a way to assign separate colormaps to specific
vector objects and bitmaps.

All images stored in a WPG file, both bitmap and vector, use index values into
the colormap to define their colors. This record may define an entire color
map unique to this image, or it may define only a smaller colormap used to
overlay a portion of the default colormap. To avoid problems with WPC prod
ucts, the first 16 colors in the colormap should never be changed from their
default values. The ColorMapRecord has the following format:

976 GRAPHICS FILE FORMATS

typedef struct _ColorMapRecord
{

WordPerfect Graphics Metafile (cont'd)

WORD Startindex; /* The starting index of this color map */
WORD NumberOfEntries;/* The number of entries in this color map*/
BYTE *ColorMap [l [3] .; I* Color map triples *I

} COLORMAPREC;

Startlndex indicates the starting color index number of this map.

NumberOfEntries indicates the number of contiguous entries in the colonnap
from the starting index. H entries 178 though 244 in the default colonnap
were being replaced by this colormap, the value of Startlndex would be 178,
and the value of NumberOfEntries would be 66. H the entire colonnap were
being replaced, the values of these fields would be 0 and 256 respectively.

These two fields are followed by a sequence of three-byte triples, which hold
the actual colonnap data. The number of triples is equal to the value stored in
the NumberOfEntries field. The number of bytes in this field is calculated by
multiplying the value of the NumberOfEntries field by 3. The default col
onnap for WPG files is the same as the IBM VGA standard color table defined in
the PS/2 Display Adapter manual.

The VGA colonnap structure is also shown in Chapter 2, in the section called
"Examples of Palettes."

This colormap contains 256 color entries, each with a 1-byte red, green, and
blue color value for a total of 768 map elements. The first 16 colors are those
of the IBM EGA color table. Colors 17 through 32 are 16 gray-scale shades. The
remaining 224 colors are a palette of 24 individual colors, each with three dif
ferent intensity levels and three different saturation levels. The WPG color map
uses eight bits for red and six bits each for green and blue.

When displaying WPG images using a display adapter, such as the VGA, with
fewer bits per primary color, the color· values are truncated starting with the
least significant bits. For a VGA adapter that has only 6 bits for red, ailS-bit red
values in the color table are shifted to the right twice before the value is used.
The green and blue values are not changed.

As previously mentioned, a WPG file created with WordPerfect 5.0 can store
either bitmap or vector image data, but not both. This is due to a limitation of
the Bitmap (OBh) record structure. This record is now considered obsolete
and should not be used when you create new WPG files. The structure of this
record is as follows:

WORDPERFECT GRAPHICS METAFILE 977

WordPerfect Graphics Metafile (cont'd)

typedef struct _BitmapTypel
{

WORD Width;
WORD Height;
WORD Depth;
WORD HorzRes;
WORD VertRes;

BITMAP1REC;

/* Width of image in pixels */
/* Height of image in pixels */
/* Number of bits per pixel */
/* Horizontal resolution of image */
/* vertical resolution of image */

Width and Height describe the size of the bitmap in pixels.

Depth contains the number of bits per pixel. The possible values of this field
are 1, 2, 4, or 8 for 2-, 4-, 16-, and 256-color images.

HorzRes and VertRes are the horizontal and vertical resolution of the original
bitmap in pixels per inch. These valu.es can also describe the minimum resolu
tion of the screen required to display the image.

The bitmap data follows this record structure. The Bitmap Type 1 (OBh) record
was superseded by the Bitmap Type 2 (14h) record introduced with WordPer
fect 5.1. This new record added five fields not found in the Bitmap Type 1
record. These fields contain information on the position of the bitmap on the
output device. If you use a Bitmap Type 2 record, it is also possible to store
multiple bitmaps in a single WPG file.

The structure of the Bitmap Type 2 record is shown below:

typedef struct _BitmapType2
{

WORD RotAngle; /* Rotation angle of bitmap (0-359)
WORD LowerLeftX; /* Lower-left X coordinate of image
WORD LowerLeftY; /*.Lower-leftY coordinate of image
WORD UpperRightX; /* Upper-right X coordinate of image
WORD UpperRightY; /* Upper-right Y coordinate of image
WORD Width; /* Width of image in pixels */
WORD Height; /* Height of image in pixels */
WORD Depth; /* Number of bits per pixel *I
WORD HorzRes; /* Horizontal resolution of image *I
WORD VertRes; /* Vertical resolution of image */
BITMAP2REC;

*I
*I
*I
*I
*I

RotAngle is the rotation angle of the bitmap in degrees. This value may be in
the range of 0 to 359, with 0 indicating the image is not rotated.

LowerLeftX and LowerLeftY describe the location of the lower-left comer of
the image in WPUs.

978 GRAPHICS FILE FORMATS

WordPerfect Graphics Metafile (cont'd)

UpperRightX and UpperRightY describe the loc.ation of the upper-right cor
ner of the image in WPUs. Note that the origin point (0,0) of all WPG images is
the lower left-hand corner of the output device.

The remaining five fields, Width, Height, Depth, HorzRes, and VertRes, are
identical to those in the Bitmap Type 1 record.

It is possible to store two or more images in a WPG file by using multiple
Bitmap records. The coordinate information found in a Bitmap Type 2 record
will allow the images to be positioned on the output device so they do not over
lap. The size of a bitmap in bytes may be determined by multiplying the
Height, Width, and Depth fields and then dividing the product by 8:

SizeinBytes = (Height * Width * Depth) I 8;

Bitmap data is always stored in a WPG file using a byte-wise run-length encod
ing (RLE) algorithm. (See Chapter 9, Data Compression, for more information
on run-length encoding algorithms.) Each scan line is encoded separately.

There are four possible types ofRLE packets in the WPG algorithm:

• Encoded packet

• Literal packet

• All-bits-on packet

• Repeat scan-line packet

An encoded packet may encode a run of from 1 to 127 bytes in length. An
encoded packet always has the most significant bit (MSB} as 1 and the seven
least significant bits (LSBs) are a non-zero value. The length of the run is the
value of the seven LSBs. If the MSB of this byte is 1, but the seven LSBs are set to
0, then the next byte is read as the run count· and the byte value FFh is
repeated "run count" times. If the MSB of the byte read is 0, and the seven LSBs
are a non-zero value; then this is a literal run. The seven LSBs hold the run
count value and th~ next "run count" bytes are read literally from the encoded
data stream. If the run count is 0, then the next byte is read as the run count
and the previous scan line is repeated "run count" times. ·

The pseudocode for the WPG RLE algorithm is shown below:

Read a BYTE
If the Most Significant Bit is ON

If the 7 LSB are not 0
The Run Count is the 7 least significant bits
Read the next BYTE and repeat it Run Count times

WORDPERFECT GRAPHICS METAFILE 979

WordPerfect Graphics Metafile (cont'd)

Hthe 7 LSB are 0
Read the next BYTE as the Run Count
Repeat the value FFh RunCount times

If the Most Significant Bit is OFF
H the 7 LSB are not 0

The RunCount is the 7least significant bits
The next Run Count BYTEs are read literally

Hthe 7 LSB are 0
Read the next BYTE as the Run Count
Repeat the previous scan line RunCount times

Encapsulated PostScript (EPS} data may be included in a WPG file by using the
PostScript Data Type 1 (11h) record or the PostScript Data Type 2 (1Bh)
record. The PostScript Data Type 1 record contains a set of output commands
needed to print the EPS code included in the WPG file on a PostScript printer.
The structure for the PostScript Data Type 1 record is as follows:

typedef struct _PsDataTypel
{

WORD BbLowerLeftX;
WORD BbLowerLeftY;
WORD BbUpperRightX;
WORD BbUpperRightY;

I* Lower left X coordinate of image *I
I* Lower left Y coordinate of image *I
I* Upper right X coordinate of image *I
I* Upper right Y coordinate of image *I

} PSTYPElREC;

The four fields in this record contain the bounding-box values of the
PostScript image in points. These are the values found in the %%Bounding
Box field in the EPS header. The EPS data immediately follows this record. The
PostScript Data Type 2 record is used to store one or more EPS images. H the
EPS data also contains a TIFF, Pier, WMF, or EPSI image, as is found in a Dis
play PostScript file, this data is converted to a Bitmap Type 2 record that fol
lows the PostScript Data Type 2 record.

The structure for the PostScript Data Type 2 record is shown below:

typedef struct _PsDataType2
{

DWORD RecordLength;
WORD RotAngle;
WORD LowerLeftX;
WORD LowerLeftY;
WORD UpperRightX;
WORD UpperRightY;
BYTE FileName[40];
WORD BbLowerLeftX;

980 GRAPHICS FILE FORMATS

I* Length of the following record *I
I* Angle of roation of image *I
I* Lower-left X coordinate of image *I
I* Lower-left Y coordinate of image *I
I* Upper-right X coordinate of image *I
I* Upper-right Y coordinate of image *I
I* File name of original EPSF file *I
I* Lower-left X coordinate of bounding box */

WordPerfect Graphics Metafile (cont'd)

WORD BbLowerLeftY;
WORD BbUpperRightX;
WORD BbUpperRightY;

I* Lower-left Y coordinate of bounding box *I
I* Upper-right X coordinate of bounding box *I
I* Upper-right Y coordinate of bounding box *I

} PSTYPE2REC;

RecordLength indicates the number of bytes occuring in the Bitmap Type 2
record following the EPS data. If the EPS data does not have an associated
Bitmap Type 2 record, then the value of this field is 0.

The RotAngle, LowerLeftX, LowerLeftY, UpperRightX, and UpperRightY
fields have the same meaning as in the Bitmap Type 2 (14h) record.

FileName contains the name of the original EPSF file from which this EPSF
code was derived.

The BbLowerLeftX, BbLowerLeftY, BbUpperRightX, and BbUpperRightY
fields are the same as in the PostScript Data Type 1 (11h) record.

The EPSF code immediately follows this record. The PostScript Data Type 2
record found in WordPerfect 5.1 and DrawPerfect supersedes the PostScript
bata Type 1 record found only in WordPerfect 5.0 and DrawPerfect 1.0. You
should always use the Type 2 record rather than the Type 1 when creating new
WPGfiles.

The last record in every WPG file is the End of WPG Data (10h) record. This
record has a NULL body; it merely marks the end of the WPG record stream.

ForFunherhttonnatlon
The WordPerfect Graphics Metafile format was created and is maintained by
WordPerfect Corporation. You can try to get information from:

WordPerfect Corporation
1555 North Technology Way
Orem, UT 84057
Voice: 801-222-4477
Voice: 800-526-5068
FAX: 801-222-5077
BBS: 801-225-4414
FfP: ftp:/ /ftp. wordperject. com/
WWW: http://www. wordperject.com/

WORDPERFECT GRAPHICS METAFILE 981

Win-dPerfect Graphics Metafile (cont'd)

WordPerfect was recently acquired by Corel. You can contact Corel at:

Corel Corporation
1600 Carling Avenue
Ottawa, ON, Canada K1Z 8R7
Voice: 613-728-8200
FAX: 613-761-9176
BBS: 613-728-4 752
Email: custserv@corel. ca
FfP: ftp:/ /ftp.corel.com/
WWW: http://www.corel.com/

Corel has a page discussing their recent purchase of WordPerfect, and the
issues and questions that may arise as a result, at:

http: I /www. corel. com/novell/menu.htm

A complete description of the WPG format and other technical information
associated with WordPerfect software applications may be found in the Word
Perfect Corporation Developer's Toolkit for IBM PC Products. This toolkit is
available directly from WordPerfect by calling:

WordPerfect Information Services
Voice: 801-225-5000

You can submit technical questions regarding the toolkit to:

WordPerfect Manufacturer /Developer Relations Department
Voice: 801-228-7700
FAX: 801-228-7777
CompuServe: 72567,3612

Please direct all FAX and CompuServe correspondence to "Developer's
Toolkit."

982 GRAPHICS FILE FORMATS

NAME:

ALSO KNOWN AS:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

XBM

X BitMap

Bitmap

Mono

None

Unlimited

Yes

ASCII

X Consortium

Any supporting X Window System

BRL-CAD

No

Yes

Yes

XPM

usAGE: Primarily used for the storage of cursor and icon biunaps for use in the X
graphical user interface.

coMMENTs: XBM is a monochrome bitmap format in which data is stored as a C lan
guage data array.

Overview
Normally, we think of images as data being stored as binary information in a
file. In many cases, however, it is more convenient to represent smaller
bitmapped images as collections of ASCII data rather than binary data. If such
a small bitmapped image is being used by a software application, such as the
cursors and icons found in all graphical user interfaces, the images may be
stored as an array of ASCII characters, or even as an array of data values stored
in the actual software source code.

Storing small amounts of image data directly as C language source code is the
philosophy behind the XBM (X BitMap) format. Small images that will be com
piled into a software program are stored as simple arrays of data values, with
one array used per stored image. XBM files are therefore nothing more than C

XBM 983

XBM (cont'd)

language source files that are read by a compiler, rather than by a graphical
display program or bitmap editor, as are most other graphical files.

XBM bitmap data is mosdy found in C source header files (with a .h file exten
sion) and in separate XBM bitmap files (with no file extension). Multiple XBM
image-data arrays may be stored in a single file, but none of ·the images may
have the same name, or a naming conflict will result.

The XPM (X PixMap) format is similar to XBM. XPM is a cousin of XBM and is
capable of storing color bitmap image data and a colormap. XPM is also an
ASCII format and is described in the XPM article.

File Organization
XBM files have a height and width, and may define an optional hotspot within
the image. The hotspot is used for bitmapped cursors and indicates the abso
lute position of the cursor on the screen. The hotspot on an arrow cursor is
the tip of the arrow, which is usually located at position 0,0 in the bitmap.

In place of the usual image file format header, XBM files have two or four
#define statements. The first two #defines specify the height and width of the
bitmap in pixels. The second two specify the position of the hotspot within the
bitmap, and are not present if no hotspot is defined in the image.

The labels of each #define contain the name of the image. Consider an image
that is 8x8 pixels in size, named FOO, with a hotspot at pixel 0,7. This image
contains the following #define statements:

#define FOO_width 8
#define FOO_height 8
#define FOO_x_hot 0
#define FOO_y_hot 7

The image data itself is a single line of pixel values stored in a static array. Data
representing our FOO image appears as follows:

static unsigned char FOO_bits[] = {
Ox3E, Ox80, OxOO, Ox7C, OxOO, Ox82, Ox41, OxOO};

Because each pixel is only one bit in size, each byte in the array contains the
information for eight pixels, with the first pixel in the bitmap (at position 0,0)
represented by the high bit of the first byte in the array. If the image width is
not a multiple of eight, the extra bits in the last byte of each row are not used
and are ignored.

984 GRAPHICS FILE FORMATS

XBM (cont'd)

XBM files are found in two variations: the older XI9 format and the newer (as
of I986) XII format. The only difference between these formats is how the
pixel data is packed. The XII flavor stores pixel data as 8-bit BYTEs. The older
XIO flavor stores pixel data as I6-bit WORDs. There are no markers separating
the rows of image data in either of these formats, and the size of an XBM array
is limited only by the compiler and machine using the bitmap.

The XI 0 XBM is considered obsolete. Make sure that any X software you write
is able to read both the XBM XI 0 and XII formats, but when you write data,
use only the XII XBM format.

File Details
Following is an example of a I6xi6 XBM bitmap stored using both its XIO and
XII variations. Note that each array contains exactly the same data, but is
stored using different data word types:

I* XBM X.10 format *I
#define xlogo16_width 16
#define xlogo16_height 16

static unsigned short xlogo16_bits[] = {
Ox0f80, Ox1e80, Ox3c40, Ox7820, Ox7810, Oxf008, Oxe009, OxcOOS,
Oxc002, Ox4007, Ox200f, Ox201e, Ox101e, Ox083c, Ox0478,
Ox02f0};

I* XBM X11 format *I
#define xlogo16_width 16
#define xlogo16_height 16

static unsigned char xlogo16_bits[] = {

OxOf, Ox80, Ox1e, Ox80, Ox3c, Ox40,
OxfO, Ox08, OxeO, Ox09, OxcO, OxOS,
Ox20, OxOf, Ox20, Oxle, OxlO, Oxle,
Ox02, OxfO};

ForFurtherhUonnation

Ox78, Ox20, Ox78, Ox10,
OxcO, Ox02, Ox40, Ox07,
Ox08, Ox3c, Ox04, Ox78,

For further information about the XBM format, see the code examples
included on the CD-ROM that accompanies this book.

The XBM format is part of the X Window System created by the X Consortium.
The XII source code distribution contains many XBM files (in the /bitmaps
directory) and C language source code functions (such as XCre
ateBitmapFromData, XCreatePixmapFromBitmapData, XReadBitmapFile, and

XBM 985

XBM (cont'd)

X.WriteBitmapFile), which operate upon XBM data. The central FTP site for
XII distribution is:

ftp:/ /ftp.x.org/
Other references containing information on XBM include the following:

Gettys, James, and Robert W. Scheiffler, X Wzndow System, Digital Press,
I992.

Gettys, James, Robert W. Scheiffler, et al. Xlib-C language X Interface, X
Consortium Standard, X Version II, Release 5, First Revision, August
1991. .

Nye, Adrian, Xlib Programming Manuat third edition, O'Reilly & Associ
ates, Inc., Sebastopol, CA, I992.

986 GRAPHICS FILE FORMATS

NAME:

ALSO KNOWN As:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

XPM

XPixMap

Bitmap

Unlimited

Uncompressed

NA

Yes

NA

Groupe Bull

X Window

XPM Library

No

Yes

Yes

XBM

usAGE: Used to store X Window pixmap information to a disk file.

coMMENTs: XPM is a de facto format only. There is no official standard file format for
storing X multibit bitmap data. ·

Overview
The XPM (X PixMap) format is the current de facto standard for storing X
Wmdow pixmap data to a disk file. This form~t is supported by many image
editors, graphics window managers, and image file converters. (See "For Fur
ther Information" later in this article.)

XPM is capable of storing black-and-white, gray-scale, or col9r image data.
Hotspot information for cursor bitmaps may also be stored. Although small
collections of data, such as icons, are typically associated with XPM files, there
is no limit to the size of an image or the number of colors that may be stored
in an XPM file.

XPM 987

XPM (cont'd)

File Organization
XPM stores image data in the form of ASCII text formatted as a Standard C
character string array. This type of format allows XPM files to be edited easily
with any text editor, to have comments inserted at any point within the file, to
be included as data in C and C++ programs, and to be easily transmitted via
electronic mail.

Also, because of its human-readable, plain-text format, XPM does not support
any native form of data compression. External compression programs, such as
the UNIX compress program, must be used to reduce the physical size of an XPM
file.

File Details
The basic syntax of an XPM file is:

/* XPM */
static char * <pixmap_name>[]
<Values>
<Colors>
<Pixels>
<Extensions>
} ;

XPM files always start with the string XPM, delimited by Standard C comment
tokens. This is an identifier indicating that the file contains an XPM data struc
ture. Following this identification comment is a Standard. C array containing
the actual pixmap data in the form of character strings. The data in this array
is arranged into four sections: Values, Colors, Pixels, and Extensions.

The <Values> section is similar to an image file format header. It contains val
ues indicating the width and height of the pixmap, the number of colors in the
image, the number of characters per pixel, the hotspot coordinates in the
image, and a marker indicating whether the XPM file contains an optional
extension section. The hotspot values and. the extension marker are optional
values and need not appear if there is no hotspot or extension section.

The expanded syntax of the <Values> section is shown below:

<width><height><numcolors><cpp> [<x_hotspot><y_hotspot>] [XPMEXT]

The <Colors> section defines the ASCII characters that represent the pixmap
data in the <Pixels> section of this array. There is one string in this section per

988 GRAPHICS FILE FORMATS

XPM (cont'd)

color in the pixmap. Each string in the <Colors> section may be defined using
the following expanded syntax:

<character> { <key> <color> } { <key> <color> }

The <character> is the character(s) used to present a single pixel. The actual
number of characters in this field equals the <cpp> value in the <Values> sec
tion. The <character> is followed by one or more groups of values. These
groups define the type of color(s) each <character> represents.

The <key> indicates the type of color or data represented, and may have one of
the following values:

m Mono
s Symbolic name
g4 Four-level gray scale
g Gray scale (more than four levels)
c Color

The <color> is any of the following:

• A color name

• A# followed by the RGB code in hexadecimal

• A % followed by the HSV code in hexadecimal

• A symbolic name

• The string None, indicating that the pixel is transparent and is part of a
masking bitmap rather than a pixmap~

The <Pixels> section contains the actual bitmap data. There is <height> num
ber of strings, each containing <width> number of characters. Each character
in a pixel string is a character previously defined in the <Colors> section.

The <Extension> section lets additional string information be stored in the
xPM file data. If the XPMEXT marker appears in the <Values> section, then an
extension block is found after the <Pixels> section. If there is no marker, then
the XPM file extension section does not appear and is said to be empty.

An <Extension> section is composed of one or more sub-sections. Each sub
section may have one of two possible formats. The first format is a single exten
sion composed of only one string:

XPMEXT <extension_name> <extension_data_string>

XPM 989

XPM (cont'd)

The second format is a single extension sub-section composed of multiple
strings:

XPMEXT <extension_name> <extension_data_stringl>
<extension_data_string2>

The <Extension> section always ends with the XPMENDEXT marker.

The following is an example of an XPM file containing a bitmap, a hotspot,
four bitmap character colors, and an extension section with four sub-sections:

!* XPM */
static char * plaid[]
{

/* plaid pixmap */
/* width height ncolors chars_per_pixel */
"22 22 4 2 0 0 XPMEXT",
/* colors */

c red
"Y c green
"+ c yellow
"X

/* pixels */
"X X

X

"x X

X

"x X

X

X

XXX
X

XXX
X

XXX

m white
m black
m white
m black

S light_color n 1

S ines_in_mix n 1

s lines_in_dark n

8 dark_color n 1

X

X

X

X

X

X

X

xxxxxx+xxxxx",
xxxxxxxxxxx"

X X X X X X + X X X X X •

X X X X X X X X X X X "
X X X X X X + X X X X X "

"Y Y Y Y Y X Y Y Y Y Y + X +X + X + X + X + ",
"X X

X

"x X

X

"x X

X

X

XXX
X

XXX
X

XXX
X

X

X

X

X

X

X

X

X

X

X

X

xxxxxx+xxxxx•,
xxxxxxxxxxx•

xxxxxx+xxxxx•
xxxxxxxxxxx"

xxxxxx+xxxxx•
xxxYxxx •

X X y X X

X X X y X X X II

X y X .
I X X

xxxYxxx 11

"X "
X

X

X

X

X

"XPMEXT extl datal",
"XPMEXT ext2 n I

"data2_1",
"data2_2",
"XPMEXT ext3",
"data3",

X X X Y X X X "
X X Y X X

xxxYxxx•
X X y X X

X X X Y X X X "

990 GRAPHICS FILE FORMATS

•xpMEXT•,
"data4•,
• XPMENDEXT"
} ;

ForFurtherlnfonnation

XPM (cont'd)

For further information about the XPM format, see the code examples
included on the CD-ROM that accompanies this book.

The XPM file format was created by Arnaud Le Hors and Colas Nahaboo of the
KOAlA Project at Groupe Bull Research. If you have questions or comments
about XPM, you can contact:

BULL Research
c/o INRIA
2004 route des Lucoiles
06565 Valbonne Cedex
France
lehors@x.org

You can subscribe to the XPM mailing list by sending an email request to:

xpm-talk-request@sophia. inria . .fr
The XPM Library is a collection of Xlib-level functions for the X Window Sys
tem that read, write, and manipulate XPM data in both files and in memory.
The latest version of this library may be obtained by anonymous FTP from:

ftp: I I avahi. inria..fr I contrib/xpm. tar. Z
ftp:/ /export.lcs. mit.edu

The current version of the XPM library is 3.2g (April1993).

Other applications capable of generating XPM output include xsnap and pixt,
both available via anonymous FTP from:

ftp:/ /avahi.inria.fr/
ftp:/ /ftp.x.org/

A number of software packages included on the CD-ROM also support the con
version of XPM files; see the discussion of FBM, ImageMagick, pbmplus, xli,
XLoadimage, and xv in Appendix C, Installation and Setup.

A collection of XPM icons also exists in:

ftp:/ /ftp.x. org/ contrib/ A/cons/

XPM 991

IXWD
NAME:

ALSO KNOWN As:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CO:

CODE ON CO:

IMAGES ON CO:

SEE ALSO:

XWD

X Window Dump

Bitmap

Unlimited

Uncompressed

64Kx64K

No

Big- and little-endian

X Consortium

UNIX X Windows

Many

Yes

No

Yes

None

usAGE: XWD is used to store images of captured X window displays.

coMMENTs: Many image-processing and display applications and toolkits read and
write XWD format image files.

Overview
The XWD (X Window Dump) format is used specifically to store screen dumps
created by the X Window System. Under XII, screen dumps are created by the
xwd client Using xwd, the window or background is selected to dump and an
XWD file. is produced containing an image of the window. If you issue the fol
lowing command:

% xwd -root > output.xwd

the entire contents of the current display are saved to the file output.xwd. The
id of the window to dump may also be specified by using the -id command-line
flag on versions of xwd prior to Release 5.

992 GRAPHICS FILE FORMATS

XWD (cunt'd)

File Organization
The first version of the X Window System to support window dumps was XIO.
Only gray-scale and color-mapped dumps were supported, and the bitmapped
data was never compressed. The XI 0 version of XWD contains the following
header:

typedef struct _XlOWindowDump
{

I* Header size in bytes *I LONG HeaderSize;
LONG FileVersion;
LONG DisplayType;
LONG DisplayPlanes;
LONG PixmapFormat;
LONG PixmapWidth;
LONG PixmapHeight;
SHORT WindowWidth;

I* XlO XWD file version (.always 06h) *I
I* Display type *I
I* Number of display planes *I
I* Pixmap format *I
I* Pixmap width *I
I* Pixmap height *I
I* Window width *I

SHORT WindowHeight; I* Window height *I
SHORT WindowX; I* Window upper left X coordinate *I
SHORT WindowY; I* Window upper left Y coordinate *I
S~ORT WindowBorderWidth; I* Window border width *I
SHORT WindowNumColors; I* Number of color entries in window *I

XlOWIN.DOWDUMP;

HeaderSize is the size of the header in bytes. This value is always 40.

File Version contains the version number of the XWD file. This value is always
06h.

DisplayType is the type of the display from which the image was dumped.

DisplayPlanes is the number of color planes in the image data. This value is
typically Olh or 03h.

PixmapFormat indicates the format of the bitmap. A value of OOh indicates a
single-plane bitmap (XYFormat), and a value of Olh indicates a bitmap with
two or more planes (ZFormat).

PixmapWidth and PixmapHeight represent the size of the image in pixels.

WindowWidth and WindowHeight represent the size of the window to display.

Window X and WindowY represent the position of the window on the display.

WindowBorderWidth indicates the width of the window border in pixels.

WindowNumColors specifies the number of colors that can be displayed in the
window.

XWD 993

XWD (cont'd)

If the image is a PseudoColor image, a color map immediately follows the
header. The color map contains one entry per color in the image, and each
entry has the following format:

typedef struct _XlOColorMap
{

WORD EntryNumber;
WORD Red;

I* Number of the .color-map entry *I
I* Red-channel value *I

WORD Green; /* Green-channel value */
WORD Blue; /* Blue-channel value */
XlOCOLORMAP[WindowNumColors];

EntryNumber is the number of the color-map entry. This value starts at OOh.
Color maps t.ypicaily do not exceed·256 entries in size.

Red, Green, and Blue are the RGB channel values for this entry. The range of
each of these values is typically 0 to 65535; often, only the high byte of the
value is set (i.e., the value is 0-255 shifted left eight bits.)

The XWD format was revised for Version 11 of the X Window System. The new
format can store more types of image data and many fields have been added to
the header and to the color map, reflecting the increased graphics capabilities
ofX11 over X10.

The Version 11 XWD file format contains the following header:

typedef struct _XllWindowDump
{

DWORD HeaderSize;
DWORD FileVersion;
DWORD PixmapFormat;
DWORD PixmapDepth;
DWORD PixmapWidth;
DWORD PixmapHeight;
DWORD XOffset;
DWORD ByteOrder;
DWORD BitmapUnit;
DWORD BitmapBitOrder;
DWORD BitmapPad;
DWORD BitsPerPixel;
DWORD BytesPerLine;
DWORD VisualClass;
DWORD RedMask;
DWORD GreenMask;
DWORD BlueMask;
DWORD BitsPerRgb;
DWORD NumberOfColors;

/*
/*
/*
/*
/*
/*
/*

I*
I*
/*
I*
I*
/*

I*
I*
I*
/*
/*

Size of the header in bytes */
XllWD file version (always 07h) *I
Pixmap format */
Pixmap depth in pixels */
Pixmap width in pixels */ 1
Pixmap height in pixels *I
Bitmap X offset *I
Byte order of image data */
Bitmap base data size *I
Bit-order of image data *I
Bitmap scan-line pad*/
Bits per pixel *I
Bytes per scan-line */
Class of the image *I
Red mask */
Green mask *I
Blue mask */
Size of each color mask in bits */

I* Number of colors in image *I
DWORD ColorMapEntries; /* Number of entries in color map *I
DWORD WindowWidth; I* Window width */
DWORD WindowHeight; /* Window height */

994 (3RAPHICS FILE FORMATS

XWD (cmtt'd)

LONG WindowX; /* Window upper left X coordinate */
LONG WindowY; /* Window upper left Y coordinate */
DWORD WindowBorderWidth; /* Window border width */

XllWINDOWDUMP;

HeaderSize is the size of the header in bytes. This value is always 40.

File Version contains the version number of the XWD file. This value is always
07h.

PixmapFormat is the format of the image data. A value of OOh indicates a 1-bit
(XYBitmap) format. A value of 01h indicates a single-plane bitmap (XYP
ixmap). A value of 02h indicates a bitmap with two or more planes (ZPixmap).

PixmapDepth is the depth of the bitmap in pixels. This value is 1 to 32.

PixmapWidth and Pix~apHeight represent the size of the image in pixels.

X Offset specifies the number of pixels to ignore at the beginning of each scan
line.

ByteOrder indicates the byte order of the image data. Values for this field are
OOh for least significant byte first, and 0 for most significant byte first.

Bitmap Unit is the size of each data unit in each scan line. This value may be 8,
16, or 32. ·

BitmapBitOrder indicates the order of the bits within each byte of image data.
Values for this field are OOh for least significant byte first, and 0 for most signifi
cant byte first.

BitmapPad is the number of bits of padding added to each scan line. This
value may be 8, 16, or 32.

BitsPerPixel contains the size of each pixel in bits. For StaticGray and
GrayScale images, this value is 1. For StaticColor and PseudoColor images, this
value is 2 to 15 (typically 8). For TrueColor and DirectColor images, this value
is 16, 24, or 32.

BytesPerLine is the size of each scan line in bytes.

Visual Class indicates the format of the image data:

• Even-numbered values indicate fixed-image data that cannot be changed in
memory.

• Odd-numbered values indicate dynamic image data that may be altered.

XWD 995

XWD (cont'd)

• The values OOh (StaticGray) and Olh (GrayScale) specify a gray-scale
image.

• The values 02h (StaticColor) and 03h (PseudoColor) indicate a color
mapped image.

• The values 04h (TrueColor) and 05h (DirectColor) indicat~ true-color
image data.

RedMask, GreenMask, and BlueMask are the RGB mask values used by
ZPixmaps.

BitsPerRgb is the size of each RedMask, GreenMask, and BlueMask in bits.

NumberOfColors specifies the number of colors in the image. This value also
indicates the number of colors for colormapped images as well.

ColorMapEntries contains the number of entries in the color map. This value
is OOh if there is no color map.

WindowWidth and Window Height are the size of the window to display.

Window X and WindowY contain the position of the window on the display.

WindowBorderWidth is the width of the X Window border in pixels. H the bor
der has not been captured in the dump, this value is OOh.

The color map immediately follows the header. Each entry in the color map is
12 bytes in. size and has the following format:

typedef struct _XllColorMap
{

DWORD EntryNumber;
WORD Red;
WORD Green;
WORD Blue;
CHAR Flags;
CHAR Padding;

I* Number of the color map entry *I
I* Red-channel value *I
I* Green-channel value *I
I* Blue-channel value *I
I* Flag for this entry *I
I* WORD-align padding *I

} XllCOLORMAP[ColorMapEntries];

EntryNumber is the number of the color map entry. This value starts at OOh.
Color maps typically do not exceed 256 entries in size.

Red, Green, and Blue are the RGB channel values for this entry. The range of
each of these values is typically 0 to 65535; often, only the high byte of the
value is set (i.e., the value is 0-255 shifted left eight bits.)

996 GRAPHICS FILE FORMATS

XWD (cont'd)

Flags indicates which of the color channels in the· color map are actually used.
The value of this field is typically 07h, indicating that all three channels are
used.

Padding is a byte set to a value of OOh and used to pad the color map entry out
to an even WORD boundary in size.

For Further Information
For further information about the XWD format, see the documentation
included on the CD-ROM that accompanies this book.

The XWD format is part of the X Window System created by the X Consortium.
Information about the XWD format, and, indeed, all of the file formats associ
ated with the X Window System, is scattered over a wide variety of header files
(in /usr/include/Xll) and UNIX manual pages.

The central FTP distribution site for XII is:

jtp:/ /ftp.x.org/

Many image-processing and display applications and toolkits included on the
CD-ROM (e.g., FBM, ImageMagick, pbmplus, xli, xloadimage, and xvread) and
write XWD-format image files, and documentation for those tools may contain
additional information about XWD.

XWD 997

IZBR
NAME:

ALSO KNOWN As:

TYPE:

COLORS:

COMPRESSION:

MAXIMUM IMAGE SIZE:

MULTIPLE IMAGES PER FILE:

NUMERICAL FORMAT:

ORIGINATOR:

PLATFORM:

SUPPORTING APPLICATIONS:

SPECIFICATION ON CD:

CODE ON CD:

IMAGES ON CD:

SEE ALSO:

ZBR

Zebra Metafile

Metafile

24.-bit

None

1 meter x 1 meter 2560 dpi

No

Litde-endian

Zoner Software

Microsoft Windows

Zoner Zebra for Windows, Zoner Archive, Zoner
Present

No

Yes

Yes

Microsoft Windows Bitmap, Microsoft Windows
Metafile

usAGE: Storage and exchange of vector graphics including bitmaps and multi
layered sheets.

coMMENTs: Usable in DTP applications.

Overview
ZBR (Zebra Metafile) is the native metafile format of the Zebra for Windows
vector graphics editor supported by Zoner Software. ZBR vl.O supports these
main types of raster and vector entities:

Polyline (combination of lines and Bezier curves)
Rectangle (including rounded and sharp corners, etc.)
Ellipse
Star
Polygon
Bitmap

998 GRAPHICS FILE FORMATS

Table
Paragraph text
Artistic text
WMFobject

ZBR (cont'd)

All of these entities, excluding bitmaps, can be defined using the following
attributes:

Style of pen
type
width
line endings (arrow, circle, ...)

Style of fill
solid color
gradient (multicolor)

linear
radial
conical
square
cross

pattern fill (user defined)
bitmap fill ·

Shadow
offset
color or change of brightness of object

ZBR2.0, due out sometime in 1996, will support multi-page documents and will
conform to Microsoft's Structured Storage specification and OLE 2.0. New enti
ties will be added (such as arc and braced), and Microsoft Windows Metafile
(WMF) objects will be supported as a main entity.

File Organization
ZBR files contain a header followed by a thumbnail bitmap of the primary
graphics data, a variable-size section of configuration data, a color palette, and
one or more object entities.

ZBR 999

ZBR (cont'd)

Header

Preview Bitmap

Configuration Data

Color Palette

Object 1

Object 2

Object n

File Details
The ZBR file header is 104 bytes in length and has the following format:

typedef struct _ZbrHeader
{ .

WORD Fileid;
WORD FileVersion;
CHAR Comment[lOO];

ZBRHEADER;

/* File ID value (always 029Ah) */
/* Version of the file */
/* Text comment */

Fileld is the file identification value and is always 029Ah.

FileVersion is the version of the ZBR format to which the file conforms. This
value is 1 for vl.x, 2 for vl.1x and 1.2x, 3 for vl.49, and 4 for v1.50.

Comment is a NULL-terminated text comment string 100 bytes in length.

Following Comment is a preview image of the file's primary graphics data. This
preview is always 5264 bytes in size:

typedef struct _ZbrPreview
{

BYTE PreviewDibPalette[64]; /*Preview bitmap color palette*/
BYTE PreviewDib[5200]; /*Preview bitmap of primary image*/

ZBRPREVIEW;

PreviewDibPalette is a 64-byte, Windows color palette containing 16
RGBQUAD entries. See the information on Windows color palettes below.

PreviewDib is a 5200-byte, 16-color Microsoft Windows Device Independent
Bitmap (DIB) 100x100 pixels in size. Each pixel is four bits in depth, packed
two pixels per byte, and padded to the nearest byte boundary. The pixels con
tain index values pointing into the color palette stored in the PreviewDib
Palette field.

1000 GRAPHICS FILE FORMATS

ZBR (cont'd)

Following PreviewDib is a variable-size block of configuration data used by
Zoner software applications. The format of the data in this configuration block
is not currently published, but we can assume that it is at least four bytes in
size:

typedef struct _ZbrConfiguration
{

DWORD ConfigLength; /* Size of the local configuration data in bytes */
BYTE *LocalConfig; /* Local configuration data (variable size) */

ZBRCONFIGURATION;

ConfigLength is the length of the LocalConfig field in bytes.

LocalConfig is the actual configuration data.

Following LocalConfig is the color palette information for the primary graph
ics data. We can also assume that this structure is at least four bytes in length:

typedef struct _ZbrPalette
{ .

DWORD PaletteLength; /* Length of color palette in bytes */
BYTE *Palette; /* Color palette (variable size) */

} ZBRPALETTE;

PaletteLength is the total length of the palette in bytes. Each palette entry is
four bytes in size~ so a 256-color palette would be 1024 bytes in length.

Palette is an array of Microsoft RGBQUAD palette entry structures. Each
palette entry is four bytes in size and has the following structure:

typedef struct _RgbQuad
{

BYTE Blue; /* Blue component */
BYTE Green; /* Green component */
BYTE Red; /* Red component *I
BYTE Reserved; /* Padding (always 0) */

RGBQUAD;

Blue, Green, and Red hold the color component values for a pixel each in the
range 0 to 255.

Reserved is used to pad the structure to end on an even-byte boundary and is
always zero.

The number of palette entries may be calculated as such:

NumOfEntries = PaletteLength I sizeof(RGBQUAD);

ZBR 1001

ZBR (cont'd)

Given the structure of these four sections, we can construct the following struc
ture of a ZBR file:

typedef struct _ZbrFile
(

ZBRHEADER Header;
ZBRPREVIEW Preview;
ZBRCONFIGURATION Configuration;
ZBRPALETTE Palette;
VOID *Objects;

ZBRFILE;

Image Data

The structure and layout of the object entities in the ZBR forn;1at is not pub
lished. It is, however, possible to read the header and to display the preview
bitmap. Example code for a ~ndows application that displays the preview
bitmap from a ZBR file may b~ found on the CD-ROM.

ForFurtherhiTonnation
For further information about the ZBR format, please contact:

Zoner Software Ltd.
Development Department.
Kozeluzska 7
Brno CZ-602 00
Czech Republic
Voice: +42-5-45214788
FAX: +42-5-45214788
Email: zoner@zoner. a net. cz

1002 GRAPHICS FILE FORMATS

PART THREE I

Appendices

0

APPENDIX A I

Graphics Files and Resources
on the Internet

Graphics files may be found in a variety of places on the Internet. They are
stored as files in FTP archives, used on World Wide Web (WWW) pages as wall
paper and menus, exchanged between people as electronic mail, and dis
tributed around the earth on the USENET global bulletin board system (BBS).

Graphics files are just chunks of data. The Internet was specifically designed to
move chunks of data, easily and efficiently, from one computer to another. So
you can probably guess that there is more than one way to send, retrieve, store,
find, and view graphics files on the Internet.

This section explores a number of ways you can use the information services
found on the Internet to collect, transport, and distribute graphics files. These
include email, USENET, FTP, Archie, and the World Wide Web. We'll also
briefly mention the Internet etiquette, or netiquette, that you should follow
when you use these services.

Encoding of Graphics Files
Before discussing specific Internet services, let's look at a legacy of the Inter
net, the 7-bit da~ path, and how this affects the transmission and handling of
graphics files.

It is reasonable to expect that a byte sent from one computer along a data path
to another computer will retain the value it stores. For example, if I send from
my computer a byte of data containing the value A and if the byte arrives at
your computer still containing the value· A, we can say that an error-free trans
fer of data has occurred. If I send you the byte value A, but when you receive
this byte, it contains the value Q instead, we can say that a data transmission
error has occurred.

GRAPHICS FILES AND RESOURCES ON THE INTERNET 1005

0

Parity

A very popular method of detecting such data transmission errors is called sin
gle-bit parity. Parity is used to determine whether the bits in a received byte are
the same value they were when the byte was sent. The lower seven bits of each
byte contain the data (hence the term 7-bit data path), and the eighth bit con
tains the parity information. We refer to these bits as the data bits and the par
ity hit, respectively.

Parity may use either an even or an odd encoding scheme. If a communica
tions link uses an even parity scheme, the parity bit would be 1 if there were an
even number of 1 's data bits in the byte, and 0 if the number of 1 's data bits
were an odd number. If a communications link uses an odd parity scheme, it's
just the opposite; a parity value of one indicates an odd number of 1 's data bits
in the byte. Any byte received that contained a mismatch between the number
of 1 's data bit values and the parity bit value is said to have a parity error and
would therefore be considered corrupt.

It should be obvious from this description that parity is a very limited form of
error checking, one that has no built-in form of error recovery, and that it is by
no means a foolproof method of detecting errop.eous data. However, parity is
probably the simplest and most inexpensive form of data transmission error
detection yet devised. Although parity has been outdated by error-correcting
protocols, many of the Internet's communications links still use parity.

Unfortunately, the use of parity error checking prevents the direct transmis
sion of 8-bit binary data. When parity is used, only seven bits in a byte may con
tain data. Binary data requires eight data bits per byte for storage and
transmission, precluding the use of conventional parity schemes. For this rea
son, data in binary form cannot be reliably sent to any point on the Internet.
This presents a problem for us because most graphics files contain binary data.

How, then, do we exchange binary data across the Internet? The solution is to
convert our 8-bit binary data to a 7-bit format. ASCII is the de facto standard for
7-bit data on the Internet (although habitual users of mainframes, where one
of the several flavors of EBCDIC presides, may disagree). Another de facto
Internet standard is used for binary-to-ASCII data conversion and is called
uucoding.

Uucoding with uuencode and uudecode

Uucoding (UNIX-to-UNIX coding) is a simple algorithm used to convert three
bytes of 8-bit binary data to four bytes of 7-bit ASCII data. The uuencode
program converts a binary file to an ASCII equivalent in a process called uuen
coding.

1006, APPENDICES

A uuencoded file is approximately 30 percent larger than the original file.
Converting every three bytes into four accounts for 25 percent of the growth,
with the other 5 percent being eaten up by control information. Uuencoding
is also perfectly lossless; you will decode the exact file that was encoded· every
time.

The uuencode and uudecode programs originated on the UNIX operating sys
tem, but have long since been ported to almost every other operating system
(certainly any operating system running on a computer that exchanges infor
mation over the Internet).

Let's look at an example. Suppose that we have a graphics file named toshi.jpg
and we want to email it to someone on the Internet. We would first need to
convert the binary graphics file to an ASCII uuencoded file by issuing the fol
lowing command:

uuencode toohi.jpg toshi.jpg > toshi.uue

In this command line, uuencode reads the file toshi.jpg and encodes it using
the file label toshi.jpg. (Note that the input filename and the file label need not
be the same.) Uuencode always sends its output to the display, but here we've
redirected it to the file toshi. uue. If we were to look at the file toshi. uue via a text
editor, we might see:

begin 600 toshi.jpg
M' ' ' ! ' ' $ ' (a ' 0 ' ' ' ' ' ' #H' @ ' ' %@ ' ' ' •@ ' ' ' ' @ ' ' ' ' 0 ' ' ' ' ' $ ' ! ' ' ' ' ' ' ' @ ' (' •

M'' ' ' ''' ' ' '''' ' '' ' ' ''' ''' '' ' '''A' '' n' ' ' ' '@ {' '@.' ' ' ' (' '8' a' 8' '' 6
M@ {a ' ' , # 'P' ' ' 'I\' 'I\' ' '#_P#_' ' ' '_P#_' I_' '#_\' ' ' ' ' ' ' ' ' ' ' ' 'L

'--' end

All of the uuencoded data is contained between the "begin" and "end" lines.
· The "600" is the UNIX file mode, and "toshiJpg" is the file label used by uude
code as the name of the file in which to save the uudecoded data.

To convert a uuencoded file back to its original form, we issue the uudecode
command:

uudecode toohi.uue

This command reads the toshi. uue file and recreates the original file. Uudecode
is also smart enough to strip away all lines that precede the "begin" line and
that follow the "end" line. Hyou need to change the.name of the decoded file,
you can use a simple text editor to change the file label on the "begin" line.

In this example, the uuencoded file toshi. uue is called a single-part uuencoded
file because it is stored in a single file. Large uuencoded files are frequently

GRAPHICS FILES AND RESOURCES ON THE INTERNET 1007

spilt into smaller parts and are stored in separate files for purposes of posting
·and emailing. (See the section on email that follows.) These split files are
called multi-part uuencoded files.

Uudecoding a multi-part file is an easy job if you have a smart uudecoding pro
gram (such as aub, unc, uudo, uuexe, uucat, uuconvert, uulite, or uuxfer)
which is able to read the headers of news articles or email messages and to
decode the parts in the proper order. But, if you only have a simple uudecod
ing program that expects all of the data to be in a single file or file stream,
then you have a bit of manual work to do.

First, make sure that you have all the parts of the uuencoded file. For example,
if the file is separated into three parts, then you should have three files, each
with some kind of part designation, such as a "Subject:" or a separator line con
taining the strings "Part [1/3] ", "Part [2/3] ", and so on. You must next con
catenate these files together in the proper order. With UNIX you would do the
following:

cat file.Ol file.02 file.03 > file.uue

With MS-DOS, you would type:

copy file.Ol+file.02+file.03 file.uue

Now edit file. uue and remove all headers and blank lines, returning the uuen
coded data to its original contiguous state. This is how the contents of file. uue
might look before editing:

[Start of Part 113 1
begin 644 judi.jpg
M' ' ' ! ' '$' (11 '0' ' ' ' ' '#H'@' '%@' ' 'n@' ' ' '@' ' ' '0' ' ' ' '$' ! 1

' ' ' ' ' '@' (' .
M' ' ' 1 1

' ' '' ''
1

' '
1

' '
1 1 1

'
1 1 1 1 1

' ' ' 'n 1 1
'•''

1 1 1 @. (1 1 8 1
' ' ' (' '@.' n 1 @ 1 1 1 6

M@ (a ' ' 1 # 'P' ' ' 'I\' 'I\' ' '#_P#_' ' ' '_P#_' I_' '#_\' ' ' ' ' ' ' ' ' ' ' ' 'L
[End of Part 113 1

, [Start of Part 213 1
M875D(')A=&SS+@T*#OH@("'@("U(I'-T<FEN9SX-"B'@(••@("'@("!W;W)K>
M<R!J=7-T(&QI:V4@+6@@97AC97!T('1H870@:6YS=&SA9"!09B'@<VST=&ENG
M9R'@=&AE#OH@("'@("'@("'@:&ED:6YG(•!F;&%G(•!F;W(@82!H96%D97(@2
[End of Part 213 1

[Start of Part 313 1
M @?_"'#_''?_P''E
M_"''_P'I_"'!_@'?_D'#_P''_\''I_''#_Y@'_X'? __ S
! __ \

end

[End of Part 313

1008 APPENDICES

And after editing:

begin 644 judi.jpg
M' ' ' ! ' ' $ ' (A ' 0 ' ' ' ' ' ' #H' @ ' ' %@ ' ' ' n@ ' ' ' ' @ ' ' ' ' 0 ' ' ' ' ' $ ' ! ' ' ' ' ' ' ' @ ' (' ,
M''' ''' '' ''' ''' ''' '' '' ''' ''''' '"' '' 11

' '' ''9 (' '@'' '' (' '@'" '@' '' 6
M@ (. ' ' I#' p' ' ' 'I\' ' I\ ' ' '#_P#_' ' ' '_P#_' I-' '#_\ ' ' ' ' ' ' ' ' ' ' ' ' 'L
M875D(')A=&SS+@T*#OH@("'@(•U(/'-T<FEN9SX-"B'@("'@(•'@("!W;W)K>
M<R!J=7-T(&QI:V4@+6@@97AC97!T('1H870@:6YS=&SA9"!09B'@<VST=&ENG
M9R'@=&AE#OH@(•'@(•'@(•'@:&ED:6YG("!F;&%G(•!F;W(@82!H96%D97(@2
• .._ ________________ @?_A'#_' '?_P' 'E

M__"' '_P' I_"' I_@'?_D'#_P' '_\''I_' '#_Y@'_X'? __ S
! __ ,

end

Now, all you need to do is convert the file using uudecode to retrieve the origi
nal file.

You may experience a problem with uudecode arising from the fact that the
character sequence used to terminate lines in an ASCII file differs depending
upon the operating system. UNIX and the Amiga use a linefeed {ASCII 10); the
Macintosh uses a carriage return (ASCII 13); and MS-DOS uses both a carriage
return and a linefeed in combination.

Many uudecoders (including the original UNIX prograni) do not handle uuen
coded files with something other than native end-of-line character(s) very well.
For example, a uudecode program that expects lines of ASCII text to be termi
nated using only linefeeds will not be able to handle a uuencoded file whose
lines are terminated only with carriage returns. The same program may com
plain if every linefeed in a file is also followed by a carriage return (the notori
ous, but harmless, "short file" error under UNIX}.

For those EBCDIC people who are wondering ''What about me? I don't/can't
use ASCII!", there is a program called xxencode. This program converts binary
files to an EBCDIC-compatible ASCII format that resembles the output from
uuencode but is not readable by uudecode. If you've been having problems
with uuencoded files being munged by ASCII-to-EBCDIC converters, then using
xxencode instead of uuencode on your files may solve your problems.

The uuencode and uudecode programs are included with every flavor of the
UNIX operating system. Implementations of these programs have been ported
to almost every other operating system and are freely available in most major
software. archives. However, not all uuencode programs use the same encoding
algorithm as the original UNIX uuencode program, or even the same com
mand-line syntax. As uuencode has been ported to other operating systems,
people have changed it to make it more efficient or compatible with other

GRAPHICS FILES AND RESOURCES ON THE INTERNET 1009

utilities, sacrificing the backward compatibility with the original program. This
unfortunate occurrence has led to a widespread criticism of the de facto uuen
code program and has given rise to a movement to officially replace uuencode
with a more standard and robust binary-to-ASCII translation program, such as
btoa (binary-to-ASCII) and mmencode (also known as mimencode).

Email
Email is the most basic form of data transfer on the Internet. If you have access
to the Internet, through either a simple shell account or a full TCP /IP connec
tion, then you most likely have email capability. If you need to send one or
more graphics files to only a few people, email is the best way to do so.

If you are going to email graphics files, then you must first convert them from
binary to ASCII data. Sophisticated mail programs will transparently perform
the binary-to-ASCII translation for you when sending mail and will convert the
file back again when it is received. But not everyone has such a mail program,
so let's look at how we would manually control this process.

We already know how to use uuencode to create an ASCll file from binary data.
A uuencoded file may be emailed as you would any other text file, for example:

uuencode toshi.jpg toshi.jpg > toshi.uue
Mail -s "JPEG file of ~ cat" user@site.domain < toshi.uue

This example shows the two commands used to uuencode and email the
graphics file toshi.jpg using the Berkeley UNIX mail program. The person
receiving the email will see the uuencoded data of a file named toshi.jpg. All
that person needs to do is save the email to a file and uudecode it.

One other way of sending binary files via email is. by using Multipurpose Inter
net Mail Extensions (MIME). MIME is an extension of the Internet's Simple
Mail Transfer Protocol (SMTP) and is a common way to move multiple items of
data as a single package across the Internet. MIME has a method of sending
binary information in an email message that allows you to avoid the uuen
code/uudecode steps. In fact, any MIME-compliant email program does all the
work for you. All you need to do is specify that a file (often called an attach
ment) is to be sent using MIME. The other half of the bargain is that the person
receiving your email must also be using a MIME-compliant email program to
decode your MIME-encoded binary file.

1010 APPENDICES

Email Etiquette: splitting Large Files

Email etiquette for graphics files is mostly about bandwidth. The email that
you send may seem to travel directly from you to your friends, but it does so by
passing through possibly dozens of computers, which costs the other people
who use those computers each a small bit of time and money. Therefore, avoid
sending large volumes of email, especially in a short period of time.

If you must email a file larger than 64K in size, split it into several smaller parts
and email them separately. Older mailer software frequently cannot handle
single email messages longer than 64K. (This arcane limitation includes mail
ing headers, so be sure that your text is no larger than 60K in size.) Splitting a
file offers another benefit as well. If a file transmission error occurs, you will
only need to resend the segment of the file that was corrupted, not the entire
file.

You can manually split a file into multiple parts using a text editor, or automati
cally using a text-splitting program. Some uuencoders will automatically split
their output into multiple parts and will store each in a separate file. A third
alternative is to use a utility such as the UNIX "split" program.

If you are emailing large graphics files, then you should uuencode and split
them before sending them. A uuencoded file split into 950-line parts results in
files that are 60K or less in size-just perfect for email. You can use the follow
ing commands to uuencode and split in two steps:

uuencode toshi.jpg toshi.jpg > toshi.uue
split -950 toshi.uue toshi.

or in one step using a pipe:

uuencode toshi.jpg toshi.jpg· I split -950 - toshi.

In both cases, the split program will store the uuencoded output into 950-line
files named toshi.aa, toshi.ah, toshi.ac, and so on. Each of these files is then
emailed separately, with the part numbers in the mail header "Subject:" lines.

USENETNews
USENET is a globally distributed bulletin board system that resides on the
Internet, providing messaging and conferencing for Internet users. USENET
does not have any central location or control There is no system operator
(sysop) who decides who can be a member, when you can have access, or how
much information you can download per day. USENET is not a private informa
tion network used for the transportation of proprietary or secret data. Instead,

GRAPHICS FILES AND RESOURCES ON THE INTERNET 1011

information is placed on USENET for people to read, copy, rebut, and use in
just about any way that they see fit.* USENET is a global community; what you
and the people in your local community may consider to be "fair use" and "fair
play" are not necessarily shared by your fellow USENET brethren on other parts
of this great planet. Please practice tolerance and open-mindedness when
browsing through the USENET global information village.

Information is "posted" to a USENET newsgroup in the form of an "article." An
article is just a piece of email that you send to USENET using a program called
a newsreader. A newsreader is a special client program that enables you to read
and post articles to USENET newsgroups. Any computer running USENET news
hub server software will also have available one or more different newsreader
programs, such as m or tin.

When you post an article to one or more USENET newsgroups, your local news
hub will send your article to other computers that are also running news hub
software, who in turn will send it on to others. Your article will spread out over
the. earth-via the regional telephone companies-to be stored and made
available to all of the other many thousands of computers linked to USENET.

News~oups

The many thousands of newsgroups in USENET are organized as a hierarchy,
with the most general grouping appearing first in the newsgroup name, fol
lowed by more specific subgroups. For example, graphics files are found in all
the newsgroups in the hierarchy alt. binaries.pictures. We can be more specific
and look for graphics of fine art in the alt. binaries.pictures.jine-art newsgroup. In
doing so, we would see that this newsgroup contains three subgroups, one for
the posting of original artwork, one for posting of scanned artwork, and one
for the discussion of files posted on either of these two newsgroups. This
branch of the hierarchy appears as follows:

alt.binaries.pictures
alt.binaries.pictures.fine-art
alt.binaries.pictures.fine-art.graphics
alt.binaries.pictures.fine-art.digitized
alt.binaries.pictures.fine-art.d

Don't think that fine art graphics is all that you'll find on USENET. As of Jan
uary 1, 1996, no fewer than 124 alt. binaries.pictures subgroups were listed on
USENET. Most of these groups are frequented by regular readers and some

* Note, though, that an implicit international copyright is assigned to all information posted to
USENET by authority of the Berne Convention of 1989.

1012 APPENDICES

receive dozens, if not hundreds, of posts a day. To give you an idea of what's
available, here is a very abbreviated listing of the alt. binaries. pictures.* hierarchy:

alt.binaries.pictures.animals
alt.binaries.pictures.anime
alt.binaries.pictures.art
alt.binaries.pictures.arts
alt.binaries.pictures.ascii
alt.binaries.pictures.astro
alt.binaries.pictures.babies
alt.binaries.pictures.black
alt.binaries.pictures.bodyart
alt.binaries.pictures.boys
alt.binaries.pictures.cartoons
alt.binaries.pictures.celebrities
alt.binaries.pictures.cemeteries
alt.binaries.pictures.children
alt.binaries.pictures.cops
alt.binaries.pictures.d
alt.binaries.pictures.erotic
alt.binaries.pictures.erotica
alt.binaries.pictures.fine-art
alt.binaries.pictures.fractals
alt.binaries.pictures.furniture
alt.binaries.pictures.furry
alt.binaries.pictures.girlfriends
alt.binaries.pictures.girls
alt.binaries.pictures.lingerie
alt.binaries.pictures.misc
alt.binaries.pictures.nude
alt.binaries.pictures.nudism
alt.binaries.pictures.personal
alt.binaries.pictures.photo-modeling
alt.binaries.pictures.rail
alt.binaries.pictures.supermodels
alt.binaries.pictures.tasteless
alt.binaries.pictures.teen-idols
alt.binaries.pictures.teen-starlets
alt.binaries.pictures.tools
alt.binaries.pictures.utilities
alt.binaries.pictures.vehicles
alt.binaries.pictures.voyeurism

The intellectual content of the images posted to these groups includes any per
son, place, object, or idea that may be captured with a camera, scanner, or
graphics art program. You can find or request practically any image you might
need or want. Such requests should only be posted to the discussion news
groups (those ending in ".d").

Before you deem some subjects as "unsuitable" or even "illegal," remember
that the Internet is a global information network. It is not owned by any one
company that may set restrictions and policies, nor is it governed by only one

GRAPHICS FILES AND RESOURCES ON THE INTERNET 1013

social or cultural viewpoint. The Internet is truly the human race's first step at
achieving a global community.* For a list of the newsgroups most often fre
quented by graphics programmers and others interested in graphics files, see
''Internet Graphics Resource.s" later in this appendix.

Frequently Asked Qpestions (FAQ) Listings

FAQ listings are specialized newsgroup postings that contain a list of answers to
questions commonly asked on a particular newsgroup. If you are new to read
ing a newsgroup, you should obtain and read a copy of the FAQ for that news
group before you post any questions to the group. This will give you an
immediate answer to most common questions, lower the traffic on USENET,
and reduce the need for regular readers of the newsgroup to answer the same
basic questions over and over again.

Over the years, FAQs have evolved from simple Q&A listings to entire treatises
on a particular subject, or even (unfortunately) infomercials for a particular
product. FAQs have grown to the point where they have been published as
books, and fierce battles have arisen when the freely available, yet copyrighted,
material available in FAQs has b~en used without permission in for-profit ven
tures.

Nearly all FAQs may be found on the *.answers newsgroups. The master news
group is news.answers, and all FAQs registered with the FAQ administrators at
rtfm. mit.edu are posted there. Every major newsgroup category also has a
*.answers newsgroup as well (comp.answers, rec.answers, alt.answers, and so on).
Each FAQ may also have one or more home newsgroups to which it is also
posted. For example, the JPEG FAQ is posted to news. answers, comp.answers, and
comp. compression.

FAQs are usually posted at regular intervals, which can be anywhere from once
every two weeks to once every few months. The information in a FAQ may
change each time the FAQ is posted or may hardly change at all, depending on
the discretion of the FAQ's author and its subject matter.

FAQs are authored by people known as "FAQ maintainers." Each maintainer is
just another member of the USENET community. Maintainers offer their time
and service to the USENET community for free by accepting the responsibility
of maintaining and posting one or more FAQs that may be used by tens of
thousands of people. Maintainers are regarded as the de facto Internet experts
on their FAQ's subject (even if they really are not). Maintainers must answer

* But note that as we write this, issues of censorship on the Net are being hotly debated in the
governments and press of many countries, and by both free speech advocates and those who
advocate restrictions of various kinds.

1014 APPENDICES

questions, gather accurate and up-to-date information, present it in a format
that is easily readable, and make their FAQs freely available to the USENET and
Internet communities.

To familiarize yourself with USENET FAQs, look through the postings on the
news. answers newsgroup. If graphics files are your interest, then you will want to
check out James Murray's Graphics File Formats FAQ. This FAQ contains
detailed information on graphics file formats, including where to find specifi
cations, viewing programs, and source code,. and on the problems and legali
ties of using certain formats. This FAQ is also available on the CD-ROM that
accompanies this book (with links to the updated FAQ), and it also contains
information on other graphics and file format-related FAQs.

USENEI Posting Etiquette

There are a few rules to follow when you post articles to USENET. Because
there are no USENET police, per se, no one will break down your door and
haul you away in chains if you do not follow these rules. However, if you choose
to ignore these rules of etiquette you are likely to receive everything from
friendly advice to something close to death threats from your follow USENET
newsgroup patrons.

• Do not post an article to a "pictures" newsgroup that is not a graphics file
or graphics file archive. Post all questions to the appropriate
alt. binaries. pictures. *.d discussion newsgroup.

• Do not post articles that do not follow the subject of the newsgroup. For
example, if you have a picture of your pet cat that you wish to share, post it
to a newsgroup that contains graphics of the same subject, such as
alt.binaries.pictures.animals. Another newsgroup, such as
alt.binaries.pictures.vehicles, would not be a good choice.

• When in doubt about where to post a graphics file, post it on the
alt. binaries.pictures. mise newsgroup. When in doubt about where to post a
question, post it to the alt.binaries.pictures.d newsgroup.

• Put an accurate description of the image in the post's "Subject:" line. For
example, the line:

Subject: TOSHI.JPG (01/01) "Picture of my cat, Toshi• [640x480x256]

is more descriptive than, and is preferred to:

Subject: my cat

GRAPHICS FILES AND RESOURCES ON THE INTERNET 1015

• Do not post more than 400K of articles to the alt. binaries. pictures.* news
groups a day. This limit may be in the form of eight 50K posts, four 1 OOK
posts, one 400K post, or whatever. The pictures
newsgroups account for nearly 50 percent of the traffic on the Internet

and 75 percent of the alt.* newsgroup traffic; it costs time and money to
transmit every byte of data that you post. Dumping many megabytes of data
on to a newsgroup is like trying to pour 100 gallons of water down your
kitchen sink. The water will only drain so fast, so it's better just to pour a lit
tle at a time.

• Email graphics files, rather than post them, if you only need to get them to
a few people. Making them available on an FTP site (see the section on FTP
below) is also an option.

• Don't attempt to compress GIF or JPG graphics files using a file archiving·
program, such as pkzip or zoo. Graphics files that contain compressed data
cannot typically be reduced in size by further compression and may actu
ally grow in size. If you need to store graphics files in an archive file format,
then turn the compression feature off when you add the graphics files to
the archive. For pkzip, use the '-eO' option; for zoo, use the 'f option modi
fier.

• Use uuencode to convert all binary graphics files to ASCII text before post
ing. The uuencode scheme is the de facto standard used on USENET for
converting binary data to ASCII text for posting. Although you can use
mmencode, BinHex, btoa, and other encoders, not everyone has the pro
grams required to decode the data created by these programs.

• If you are unsure about how to post an article, try posting a test article on
one of the test newsgroups, such as news. test, misc. test, or local. test. You
should also change the distribution of your posting to "local" to limit its
travel on the Internet. Once you post your test article, you can use a news
reader to check whether your article was posted to the test
newsgroup to see what it looks like. If you post a uuencoded graphics file,

you can save and decode it to see whether your posting method worked.
Never post to any newsgroup unless you know what you are doing!

For further information on posting to the alt.binaries.pictures. * newsgroups,
read jim Howard's alt.binaries.pictures FAQ. This FAQ contains the official infor
mation on the alt.binaries.pictures newsgroups and their netiquette, gives a list
ing of graphics file viewers for all popular operating systems, and provides
detailed troubleshooting information.

1016 APPENDICES

The FAQ is available.on the alt.binaries.pictures.d and news.answcrs newsgroups.
You can get a copy via email by sending a message with the body:

send usenet/news.answers/pictures-faq/partl
send usenet/news.answers/pictures-faq/part2
send usenet/news.answers/pictures-faq/part3

to mail-server®pit-manager. mit. edu.

All introductory information on USENET can be found in the
news.announce.newusers newsgroup. Be sure to read through all of the docu
ments posted to this newsgroup before you attempt to post messages or create
a new newsgroup. A list of all the available documents may be found in the
'Welcome to USENET!" FAQ, which may be obtained by sending email to mail
server@rtjm.mit.edu with the body "send usenet/welco~e/partl". All of these
documents may also be found on the World Wide Web at:

http:/ /www.smartpages. com/bngfaqs/news/ announce/newuscrs/top.html

Mailing Lists
Mailing lists are a less visible, and often less costly, alternative to USENET news
groups. Mailing lists are also distributed across the Internet, but via email
rather than through a mechanism such as USENET. This access method is less
costly in that only basic email service is required to join a mailing list, so users
of information services such as CompuServe may join any Internet mailing list.
Having access to USENET is not required.

A mailing list is similar to a newsgroup in that it is a discussion composed of
contributions made by the mailing list members. Members of the list receive
other members' contributions to the list as email and may contribute their
own. You can save the email listings you receive and review them later. Most
mailing list sites also archive their users' contributions, so you can join a list,
request (or FTP) the last few weeks' worth of listings, and catch up on what
you've missed.

To subscribe to a mailing list, you normally append "-request" to the name of
the list in the Internet address name. For example, to subscribe to the mailing
list cogneuro®ptolemy. arc. nasa.gov, send an email message to cogneuro
request®ptolemy.arc.nasa.gov. In the body of the message put the word "sub
scribe" followed by the name of the list, such as "subscribe cogneuro" (or
"unsubscribe cogneuro" to remove yourself ·from the mailing list). You may
contribute to the list by sending email to the cogneuro®ptolemy.arc.nasa.gov
address. Whenever any other subscriber contributes to the list, you will receive
email of that subscriber's listing.

GRAPHICS FILES AND RESOURCES ON THE INTERNET 1017

For a list of the mailing lists of most interest to graphics programmers and oth
ers interested in graphics files, see "Internet Graphics Resources" later in this
appendix.

FTP Archives
ITP (File Transfer Protocol) is the way that files are moved from one location
to another on the Internet. Using a program called an ITP client ("ftp" under
UNIX), you can attempt to log on to any other computer on the network that is
an ITP server and in this way gain access to its files.

ITP was originally designed to give people private access to their files on
remote machines, and also to furnish them with an easy way to transfer files
between their local and remote machines. People soon realized that ITP was
also a very good method for giving others access to public files without requir
ing private system accounts. The files, called an ITP archive, can be accessed by
anyone who logs into a general public account named "anonymous" with the
password "ftp". Thus, the concept of anonymous ITP was born.

Today the Internet contains thousands of anonymous FfP sites, each open to
share information and data files with the Internet community. The rules have
changed only slightly from early times. Now most sites require you to give your
email address as a password rather than "ftp".

Once you have started to explore the Net using ITP, you will quickly find that
many of the more popular ITP archive sites can be quite difficult to log in to
during what is referred to as "the peak hours." It may be difficult to imagine
300 people all using a single FfP server at the same time, but consider the tens
of thousands of people who access the Internet at any time of the day or night,
and realize that most of these people have FfP capability. Actually, once you do
successfully log in, you will feel the crawl of an overloaded FfP server at peak
hours and experience a 1 0-minute file transfer (one that would take only fO
seconds if you had only done it at 3 a.m. rather than at 3 p.m.).

FI'P Etiquette

ITP etiquette is more or less about not being. a file hog and behaving yourself
on other people's systems. Here is some common sense advice:

• Limit the amount of time you spend logged into an FfP site. Other people
with needs greater than your own may be trying to access the site.

• Don't download more than a few files. Each minute you spend online
browsing and downloading files is being paid for by th~ owners of the ITP

1018 APPENDICES

site on their telephone bill. Yes, the site is offered as a free service, but you
shouldn't abuse it. (We compare it to sitting in a restaurant for hours writ
ing a book on a notebook computer while guzzling gallons of free iced tea
refills.)

• Don't upload files to the /incoming directory that the administrators of the
FfP site do not want. This includes commercial software and graphics files
containing erotic images.

• When in doubt, read the README (or equivalent) file found in the FfP
home directory, or displayed when you log in.

FfP servers are an excellent method of distributing graphics files and related
information. Listings of FfP archive sites may be found in FAQ lists posted to
the *.answers newsgroups on USENET. You can also ask on relevant newsgroups
about any additional FfP ·sites that may not be listed in a particular FAQ. For
example, if you are interested in FfP sites that contain archives of graphics file
format specifications, look in the Graphics File Formats FAQ; you'll find an up
to-date list of sites. For a copy of this list, as well as other FfP sites of interest to
graphics programmers and others interested in graphics files, see "Internet
Graphics Resources" later in this appendix.

Using an FfP client, you can log into any one of these FfP servers and browse
and download their files.

Probably the only bad thing about FfP is that you don't get any fancy menus or
searching capabilities. You navigate through the directory tree as you would in
MS-DOS, VMS, or a UNIX shell account, reading through the occasional out
dated OOindex.txt, ls-lR, or README file. Although there isn't a better way to
search for files on a specific FfP server, there is a better way to search for files
on all FfP servers, as we describe in the next section.

Archie
Archie search servers maintain file listings, updated monthly, of more than
1000 FTP sites containing nearly three million files. Any FTP server can register
to be part of the Archie search service. The FfP site will then generate an ls-lr
file containing a complete recursive listing of all the files on the archive.
Archie will download these listings onto an Archie server and use them as a
master index for remotely searching ITP sites.

GRAPHICS FILES AND RESOURCES ON THE INTERNET 1019

You can search for a specific filename or regular expression using the archie
client command as follows:

archie -s cat -h arc:hie.unl.edu

This command searches the Archie server at archie.unl.edu for any files with a
name that contains the string "cat" and outputs a listing (the UNIX "Is -IR" list
ing, to be exact) of the FI'P sites and pathname~ of these files. It's always good
netiquette to search the archie server geographically closest to you.

You can also perform an Archie search via email. This is often more conve
nient because the results of the search are then sent to you as email. To per
form the Archie search shown in the previous example via email, send an
email message to archie@archie. unl.edu with the body:

set search sub
find cat

Sending an email to an Archie server with only the word "help" in the body
returns all of the information needed to use their archie client.

The World Wide Web (WWW)
The only medium that is more congenial than ITP and Archie for locating and
distributing graphics files is the World Wide Web (WWW). For graphics files,
the Web offers the same basic service as FTP archives. In fact, many sites that
grant access to graphics file archives using an FTP server also grant access to
the same archive using a Web server. In this case, you may browse directories
and download graphics files using your Web browser much the same way you
would using FI'P.

The added beauty of the Web is its graphics capabilities. Web browsers allow
you to view files as you download them. And with some extra work, the Web
server maintainer can provi.de thumbnail images of each file embedded in the
Web page, so you can see what the image looks like before you decide to down
load it.

Another wonderful feature available in Web browsers is the Web Search. You
can perform a search across the Web on a key word or phrase to help you
locate information. Performing a search using the key phrases "file format",
"graphics file", or "file archive" will tum up hundreds of pieces of information,
most of which will probably be of inte~est to you.

For a list of some of the Web sites of most interest to graphics programmers
and others interested in graphics files, see "Internet Graphics Resources" later
in this appendix.

1020 APPENDICES

The following sections present some Web basics and describe ways you can use
the Web both to retrieve graphics files and to ei:llbed them in your own Web
pages.

~bBasics

The World Wide Web is a set of software programs called Web clients and ~b
servers. Servers contain information stored on disk, which they make available
on the Internet. Clients (commonly called ~b browsers) connect to the servers
using a special networking protocol and retrieve the server's information. The
networking protocol used by Web clients and servers is called HyperText Trans
fer Protocol (HITP). HITP is a protocol that does the following:

• Enables a client to connect to a server.

• Allows the client to request a piece of data (called a ~b resource).

• Provides the server with the ability to transfer the requested data to the
client. ·

• Enables the server to close the connection once the transfer has been com-
pleted.

Each time you click a new item on a Web page, your Web browser opens a con
nection to the specified Web server, makes a request for a Web resource (such
as an image file), receives the resource (you hope!) from the Web server, and
renders, displays, or plays the file on your local workstation.

The data that is delivered to your Web browser across the HITP link is a MIME
file. This file is a wrapper containing all of the data belonging to the requested
resource.

A Web browser will immediately begin 'displaying the resource information as it
is received. The information stored first in the MIME file is a textual descrip
tion of the resource data. This description is known as the Web page and is
stored using a format description language known as HyperText Markup Lan
guage (HTML). HTML is a standardized language developed specifically for
applications-level communications between Web clients and servers. While
HTTP negotiates the transfer of data between client and server, it does not care
what that data actually is. HTML is the actual hypertext data being transferred
between the clients and the servers.

HTML contains the hypertext structure and format of the Web page and the
links to other Web resources. HTML is, however, only a framework built from
text. Graphics, sound, video, and other non-textual data are not actually part

GRAPHICS FILES AND RESOURCES ON THE INTERNET 1021

of the HTML text. They are instead separate files that are referenced as MIME
attachments. When the attachments are graphics data, that data is stored and
transported using graphics file formats.

Graphics on the Web

For most of its history, the Internet has been a character-based communica
tions channel. But in 1993, the National Center for Supercomputing Applica
tions (NCSA) released Mosaic for X (v0.10) and changed the face of the
Internet forever. Mosaic is a Web browser that is not only easy to use, but also
supports the display of images embedded in the text. Prior to the release of
Mosaic, Web browsers were character-based, able to display hypertext links only
as blue or underlined words. Graphics data could be downloaded as files by a
text-only Web browser but not displayed in a useful way.

Mosaic was the first graphical Web browser. Like character-based browsers, it
was a piece of communications software, capable of interpreting and displaying
HTML information. But Mosaic was built as an application under the graphical
user interface (GUI) of MIT's X Window System. Mosaic presented an easy-to
use menu and a scrollable and resizeable window in which to display the
retrieved text (the Web page), and it supported inline graphics. Now there are
a number of other Web browsers, and Netscape Navigator at this point is the
most popular. All graphics data on the Web is packaged using standard graph
ics file formats-the same ones in use throughout the rest of the computer
industry. The three formats supported by all Web browsers today are GIF,JPEG,
andXBM:

• GIF files are used for storing graphics containing up to 256 colors, such as
line drawings, cartoons, and simple color and gray-scale graphics and pho
tographic images.

• JPEG files are used for storing up to 16- and 24-bit photographic and photo
realistic images.

• XBM files, a part of the legacy inherited from the original X Window imple
mentation of Mosaic, is an ASCII file format used for storing mono.chrome
data only.

GIF is the format used for most Web graphics. GIF was created by CompuServe
specifically as a serial graphics data transmission format, exactly what is used by
the Web. GIF uses an efficient, if legally encumbered, method of data compres
sion that results in reasonably small files. (For information about these legal
encumbrances, see "Legal Issues" below and also the discussion in the section
called "LZW Legal Issues" in Chapter 9, Data Compression).

1022 APPENDICES

GIF images are always. displayed as inline graphics. That is, GIF images appear
embedded in the text of the Web page itself. JPEG images, however, are dis
played as external images in a separate window. An extension added to HTML
2.0 allows JPEG images to be displayed as inline images as well. This capability
has been added to many Web browsers and it is expected to be a standard fea
ture in HTML 3.0.

Graphics images may be an active part of your Web page, serving as the
selectable items in a menu, or even as an entire menu itself. Other images may
be the actual data you are retrieving, such as images from a database or an
image file archive. And graphics images may only serve as pretty wallpaper
something to please the eye rather than to download or actively interact with.

Embedding Graphics Files Using_HTML

Only a single line of HTML code is required to embed an inline image in the
source code of a Web page. This is accomplished using the tag in the
HTML language. Here is an example of an IMG tag that displays an inline
image stored in a file called logo.gif:

The image stored in logo.gifwill appear wherever this statement appears in the
HTML text. You can set certain attributes associated with the IMG tag to con
trol how the image is displayed-for example:

Looking at this statement from left to right we see the following:

• IMG indicates a tag containing the source file.

• ALIGN indicates the alignment of the image with respect to adjacent text
on the page.

• WIDTH and HEIGHT indicate the size of the image, allowing the Web
browser to fully display the text of the page before the image data is
received.

In the above example, the file logo.gif resides on the same server as the Web
page source. However, a graphic used in a Web page need not reside on the
same Web server as the page that references it. For example, if the logo.gijfi.le
were on another Web site we could reference it as follows:

This example references an image file located on a machine with the named
address www.ora.com. When this HTML statement is executed, an HTTP link is

GRAPHICS FILES AND RESOURCES ON THE INTERNET 1023

opened to the specified server, and the image resource is requested, trans
ferred, and displayed.

This example also contains the ALT attribute, which specifies a string of text to
. display if the Web client cannot display graphics images (such as the text-based

Lynx Web browser). Without the ALT attribute, the image would be repre
sented by the default string "[IMAGE]". In the above example, the image
stored in logo.gifwould instead be represented by the text ''Welcome!".

External images are referenced using the anchor <A> tag, as follows:

Fast draw and cut

This example creates the underlined and highlighted line of text "Fast draw
and cut" on the Web page. When you click on this line, the image file is
retrieved from the Web server by your browser. This image may then be viewed
or saved to disk as a file.

We can replace the text with a reference to an inline image. Now we have a
thumbnail image that, if clicked on, will download the image:

Of course, we can have both an inline image and text together:

Fast draw and cut

So far, we've shown only examples of linking to static images. You can view or
save such images, but you don't really interact with them. The most common
type of interactive graphics that you will find on a Web page are called clickable
images.

Clickable graphics allow users to select a region of a graphics image just as they
would select a push button or a menu item. This process is described as click
able because the selection is made using a point-and-click device, such as a
mouse or another pointing device.

To make a graphics image clickable, you need to construct a pixel coordinate
map of the image. This click map specifies the clickable regions of the image
in pixel coordinates. Clickable regions may be described as circles, rectangles,
polygons, or single points. Each clickable region is also assigned a URL (Uni
form Resource Locator) to reference when that region is selected.

Once the map has been created and is in place, you need to add two tags to
your HTML document that reference the image and its map:

} 024 APPENDICES

These HTML statements associate the map and the graphics file and display the
graphics. The user is then presented with a graphics image to be used as a
point-and-click menu. But what about clients who access the Web site using
non-graphical browsers? How can they access this menu? The simple answer is
"They can't." But you can display a text menu that both graphical and non
graphical Web browsers can use:

<P>
BackI
HomeI
search

These additional statements will display a three-item menu under the graphic
that will be visible and clickable by both graphical and non-graphical Web
browsers. These statements are not physically attached to the IMG tag. They
are placed to appear just after the image, so the eye naturally associates them
with the menu image.

H you have ever wondered what the HTML code for a particular Web page
looks like, you can select you.r Web browser's View /Source menu item and see
for yourself. You can also save the text of any Web page by using the browser's
File/Save As command. These are very useful tools for anyone who is learning
HTML.

Web Browser Helper Applications

All Web browsers have the ability to display HTML text, inline GIF images, and
external XBM and JPEG images. (Many browsers also support inline JPEG
images.) In fact, a browser will display or play back any type of data that it is
configured to recognize. Because many of the resources on the Web are made
of data such as audio, video, and PostScript, it is therefore important to know
how to configure your Web browser to recognize as many types of data as possi
ble.

A Web browser may be initially configured in such a way that it does not display
or play back any unrecognized information that it receives. You will, however,
want to configure your browser to ask you what you want to do with any unrec
ognized data. That way, you will at least have the option of saving the data to a
file. You should also have the option of having the data sent to an external pro
gram that is capable of displaying it or playing it back. Such external programs
are called helper applications.

GRAPHICS FILES AND RESOURCES ON THE INTERNET 1025

When you configure a browser to use a helper application, you are creating an
association between an external application and a type of data. Whenever the
browser receives data of a recognized type, it automatically launches the associ
ated helper application to display or play back the data. This transparent oper
ation allows uninterrupted viewing of any HTML document that contains links
to many different types of data.

The browser identifies all of the data it receives by the data's MIME type.
Remember that all data received by your Web browser is in the form of a MIME
mail message. Each section of data in the message has a tag called a MIME type,
which describes the type of data stored in· the message. The Web browser reads
the MIME message and compares the MIME type tag in each section of data
with a list of associated helper applications in a file. If the MIME type associa
tion is found, the data is sent to the associated helper application.

The MIME type of a file is assigned to the message by the Web server to which
your client has connected. If you are accessing local files, or files via FTP, your
browser will attempt to determine the data type from the file's extension. The
number of data types supported by a Web server can be very extensive. For
example, Table A-I .lists the MIME types supported by the Netscape client for X
Window:

TABLE A-t: Netscape MIME Types (for X Windows)

MIME 'IYPe/Subtype Extension(s) Description

application/ fractals fif Fractal Image Format
application/ mac-binhex40 hqx Macintosh BinHex Archive
application/ octet-stream exe bin Binary Executable
application/postscript ai eps ps PostScript Program
application/ rtf rtf Rich Text Format
application/ x-cpio cpio UNIX CPIO Archive
application/ x-csh csh C Shell Program
application/x-dvi dvi TeXDVI Data
application/ x-gtar gtar GNU Tape Archive
application/ x-latex latex LaTeX Document
application/ x-sh sh Bourne Shell Program
application/ x-shar shar UNIX Shell Archive
application/ x-stuffi t sit Macintosh Archive
application/x-tar tar UNIX Tape Archive
application/ x-tcl tel TCLProgram
application/ x-tex tex TeX Document
application/ x-texinfo texi texinfo GNU TeXinfo Document
application/ x-troff t tr roff TROFF Document

1026 APPENDICES

MIME 'I)pe/Subtype Extension(s) Description

application/x-troff-me me TROFF Document
application/x-troff-ms ms TROFF Document
application/x-troff-man man UNIX Manual Page
application/x-zip-compressed zip Zip Compressed Data
audio/basic ausnd UlAW Audio Data
audio/x-aiff aif aiff aifc AIFF Audio
audio/x-wav wav WAVAudio
encoding/x-compress z Compressed Data
encoding/x-gzip gz GNU Zip Compressed Data
image/gif gif CompuServe Image Format
image/ief ief IEFimage
image/jpeg jpegjpgjpe JPEGimage
image/tiff tiff tif TIFF Image
image/ x-cmu-raster ras CMU Raster Image
image/x-portable-anymap pnm PBMimage
image/x-portable-bitmap pbm PBMimage
image/x-portable-graymap pgm PGMimage
image/x-portable-pixmap ppm PPM Image
image/x-rgb rgb RGBimage
image/x-xbitmap xbm X Bitmap
image/x-xpixmap xpm XPixmap
image/x-xwindowdump xwd X Window Dump Image
text/html htmlhtm Hypertext Markup Language
text/plain txt text Plain Text
video/mpeg mpegmpgmpe MPEGVideo
video I quick time qtmov Quicktime Video
video/x-msvideo a vi Microsoft Video
video I x-sgi-movie movie SGIVideo

Most books on HTTP and the World Wide Web contain extensive information
on helper applications. A great deal of information is also available on the Web
itself on this subject. (Perform a Web search on the key phrase "helper applica
tions" and see for yourself.) We advise you to take a look at a Web page con
taining links to software archives that collect helper applications, such as:

http:/ /home. mcom. com/ assist/helper_apps/

Tips for Including Graphics on web Pages

Here are some tips for using graphics on Web pages:

• Use graphics sparingly on each page. Too many images may make it diffi
cult for users to navigate easily through your Web pages.

GRAPHICS FILES AND RESOURCES ON THE INTERNET 1027

• Keep your graphics files small to reduce the amount of time it takes to
transfer them across a network. A maximum size of 1 OOK is an acceptable
limit.

• Make graphics files smaller by using compressed data formats, such as GIF
and]PEG. Avoid uncompressed formats, such as XBM and PostScript Level
1 unless necessary.

• Remember that solid colors compress better than dithered or gradient fill
patterns.

• Keep the size of the images as small as is convenient. Use 500x400 as a sug
gested maximum image size. Don't force the user to scroll or resize his or
her browser window to see your graphics.

• Display the text on the page first to give the user something to read while
the graphics are loading.

• Always specify the WIDTH and HEIGHT attributes of the IMG tag to allow
a browser to format and display the page's text before all the inline image
data has loaded.

• If a page's menu selections are graphical, store them in an interlaced for
mat so it may be possible for the user to select menu items before the
graphic has completely loaded.

• Access your Web page using a 9600bps link to get a reasonable worst-case
access feel of the page. Trim or remove graphics to speed things up.

Here are some additional tips for increasing the performance of Web browsers:

• Use the fastest possible data link. A single user with a 28.8kbps modem will
experience much quicker access than a user with a 14.4 or 9.6kbps modem,
or many users jammed on to a 56kbps DSO line.

• On slow data links, disable the loading of inline images to speed up your
apparent access.

• Enable text and image caching. It is faster for your browser to read previ
ously loaded text and images from memory or disk than to constantly
request data from a server. Use a large cache size.

• Remember that you can never have too much memory installed in your
computer or workstation.

1028 APPENDICES

Legal Issues

Under U.S. copyright law, and in other nations through the authority of the
Berne Convention, all graphics and images are implicitly copyrighted upon
creation. This means that the graphics images you see on a Web page are not
freely available, unless explicitly permitted by the owners of the graphics files.
Remember this the next time you fire up your screen capture application to
get a sample of the wallpaper or the logo on somebody else's Web page. (See
the section called "Trademarks, Patents, and Copyrights" in Chapter 8, Working
With Graphics Files, for additional information.)

Note also that the LZW compression algorithm used to create all GIF files cur
rently requires a licensing fee for its use. See the section called "LZW Legal
Issues" in Chapter 9, for more details.

Internet Graphics Resources
This section contains references to a variety of newsgroups, mailing lists, FTP
archives, and World Wide Web sites that will be helpful to graphics program
mers and others who need information and graphics resources.

General Resources

The prime source of graphics information on USENET is the FAQ for the
comp.graphics newsgroup. Information on file formats, image processing and
analysis, books and journal articles, and graphics and imaging software pack
ages is updated monthly in this FAQ.

The image-processing FAQ found in the sci.image.processing newsgroup gives a
list of Macintosh image-processing information availaole via FTP, USENET,
email, telephone, and the postal service.

The Pilot European Image Processing Archive (PEIPA) is a repository and dis
tribution service for software, digests, and newsgroup archives concerned with
image processing, analysis, manipulation, generation, and the display of graph
ics. The PEIPA FTP site (peipa.essex.ac. uk) contains the British Machine Vision
Association (BMVA) and Society for Pattern Recognition newsletter (directory
ipa/digest/bmva), the International Association for Pattern Recognition newslet
ter (directory ipa/digest/IAPR), and the archives for the pixel (ipa/digests/pixel)
and Vision-List (directory ipa/digests/vision-list) mailing lists.

* Our thanks to Shari L.S. Worthington for her contribution to a similar summary that appeared
in the first edition of this book. Many of the Internet resources listed here were included in her
article, "Imaging on the Internet: Scientific/Industrial Resources," which appeared in Advanced
Imaging, February 1994.

GRAPHICS FILES AND RESOURCES ON THE INTERNET 1029

Newsgroups
alt. 3d

3D imaging

alt. binaries. multimedia
An excellent source of multimedia files

alt. binaries. pictures. mise
An excellent source of graphics files

alt. comp. compression
An alternative to comp. compression

alt. graphics
An alternative to comp.graphics. mise

alt.graphics.pixutils
Discussion of image manipulation software

alt. image. medical
Medical image processing and analysis

comp. compression
Data compression algorithms and theory

comp. compression. research
Discussions about data compression research, including]PEG and MPEG

comp.dsp
Digital signal processing and audio formats

compjonts
Font file formats

comp.graphics. mise
Computer graphics, art, animation, image processing, and file formats

comp.graphics.animation
Technical aspects of computer animation

comp.graphics. research
Technical discussion on latest graphics research

comp.graphics. visualization
Information on scientific visualization

1030 APPENDICES

comp. infosystems.gis
Geographic information systems

comp. infosystems. www. authoring. images
Information on using image files on Web pages

comp. multimedia
Interactive multimedia technologies

comp.speech
Speech processing topics

comp.sys. mac.scitech
Macintosh scientific and engineering applications

comp.sys.sgi.graphics
Graphics software and issues on SGI systems

sci. data.Jormats
Modeling, storage, and retrieval of scientific data

sci. image. processing
Scientific image processing and analysis

Mailing lists
arachnet@uottowa

Association of electronic lists and journals on electronic publishing

To subscribe: send email to dkovacs@kentvm.kent.edu

nih-image®soils. umn.edu
Discussion of the NIH Image software package for the Macintosh

To subscribe: send email to listserv@soils.umn.edu with the body "subscribe
nih-image yourfirstname yourlastname"

pixel®essex. ac. uk
British Machine Vision Association newsletter for all image processing,
machine vision, pattern recognition, remote sensing, and related topics

To subscribe: send email to pixel-request@essex. ac. uk

vision-list@ads. com
Computer vision discussion of algorithms and techniques .

To subscribe: send email to vision-list-request®ads. com with the body "sub
scribe vision-list"

GRAPHICS FILES AND RESOURCES ON THE INTERNET 1031

ximage@expo.lcs. mit.edu
Image processing using the X Window System

To subscribe: send email to ximage-request@expo.lcs.mit.edu with "subscribe
xi mage" in the body of the message

FfP Archives
jtp:/ I avalon. chinalake. navy. mil/pub/Jormat_specs/

3D object repository; archive of graphics file format specifications

ftp:/ I avalon. viewpoint. com/pub/Jormat_specs/
File format archive

ftp:/ /Jtp. cc. monash.edu. au/pub/graphics.formats/
File format archive

ftp:/ /Jtp.cica.indiana.edu
Clearinghouse for Microsoft Windows applications, tips, utilities, drivers,
and bitmaps

ftp:/ /ftp. ncsa. uiuc.edu/misc/Jilejurmats/graphicsjormats/
National Center for Supercomputing Applications. Publicly available soft
ware for image processing, data analysis, and visualization for the Macin
tosh, PC, and UNIX platforms. Archive of graphics file specifications.

ftp:/ /ftp.std. com/ obi/Standards/Graphics/Formats/
File format archive

ftp:/ /ftp.sdsc.edu/
San Diego Supercomputer Center (SDSC). Image Tools, Image Typer, and
Interactive Color Tutorial. Sound and image file archive.

jtp:/ /ftp.switch.ch/mirror/simtel/msdos/graphics/
File format archive

Jtp:/ /ftp. uu. net/graphics/
ftp:/ /ftp. uu. net/doc/literary/obi/Standards/Graphics/Furmats/

UUNET archive. Large collection of graphics and imaging software includ
ing the comp.graphics. mise archive.

Jtp:/ /Jtp. wustl.edu/doc/graphicformats/
File format archive

ftp:/ /mirrors. aol. com/pub/pc_games/programming/Jormats/
File format archive

1032 APPENDICES

ftp:/ /mom.spie.org/
International Society for Optical Engineering. Proceedings, programs, and
information on Technical Working Groups, including electronic imaging.

ftp:/ /peipa.essex.ac. uk/ipa/info/file.Jormats/
ftp:/ /peipa.essex.ac. uk/ipa/khoros/

Pilot European Image Processing Archive. Contains many images and soft
ware packages, including the Khoros GUI development environment. Also
contains a modest collection of graphics file formats specifications.

ftp:/ /ra. nrl. navy. mil/
Naval Research Laboratory Research Computation Division Visualization
Laboratory. Mostly Macintosh programs for chemistry, biology, math, imag
ing, AI, data acquisition, etc.

ftp:/ /photol.si.edu/images/ .
Smithsonian Institution photoimage archives

ftp:/ /sumex-aim.stanford.edu/info-mac/
Large repository of Macintosh software

ftp:/ /sunsite. unc.edu/pub/multimedia/
University of North Carolina. Information on multimedia images, video,
and sound. Graphical image collection.

ftp:/ /telva. ccu. uniovi.es/pub/graphics/file.farmats/
Archive of graphics file format specifications

ftp:/ /titan. cs. rice.edu/public/graphics/graphics.Jormats/
Large archive of graphics software and graphics file format specifications
and information

ftp://wuarchive.wustl.edu/graphics/graphics/packages/
ftp://wuarchive.wustl.edu/graphics/graphics/mirrors/avalon/farmat_specs/

Mirror site for most major FTP archive sites. Also contains a large archive of
graphics and images for math and life science educators, as well as file for
mats.

ftp:/ /x2ftp. oulu.fi/pub/msdos/programming/formats/
File format archives

ftp:/ /zippy. nimh. nih.gov/pub/nih-image/
National Institutes of Health archive for the Macintosh NIH Image and
related publicly available programs.

GRAPHICS FILES AND RESOURCES ON THE INTERNET 1033

Web sites
http://www. w3.org/hypertext/DataSourcesl]ournals. html

Electronic journals and newsletters

Chemical and Biomedical Imaging Resources

The following resources contain information on the sciences of chemistry, biol
ogy, biomedicine, and nuclear medicine. The Biomedical Computer Labora
tory {BCL) is supported by the National Institute of Health's {NIH} National
Center for Research Resources {NCRR}. The BCL promotes the application of
advances in computer science and engineering, mathematics, and the physical
sciences to research problems in the biological and medical fields by support
ing the development of advanced research technologies. Emphasis is on quan
titative imaging, including PET image reconstruction, computational optical
sectioning microscopy, shape modeling and segmentation, electron
microscopic autoradiography {EMA}, image acquisition and quantitative analy
sis of DNA electrophoretic gels and autoradiograms, and parallel processing.

Mailing lists
cogneuro@ptolemy.arc. nasa.gov

Cognitive science and neuroscience discussion

To subscribe: send email to cogneuro-request®ptolemy. arc. nasa.gov with the
body "subscribe cogneuro"

medimage®polygraf
Medical imaging discussion

To subscribe: send email to listserv%polygraf.bitnet@mitvma. \%mit.edu*with
the body "subscribe medimage"

nucmed@uwovax. uwo.ca
A discussion of nuclear medicine and related issues, including the format
of digital images

To subscribe: send email to listserv@largnet. uwo. ca with the body "subscribe
nucmed yourfirstname yourlastname"

listproc@u. washington.edu
Radiology Special Interest Group

To subscribe: send email to listserv@u. washington.edu with the body "sub
scribe radsig your.firstname yourlastname"

1034 APPENDICES

listserv@listserv@ksuvm. ksu. edu
Veterinary medicine computer assisted instruction

Topics include imaging, expert systems, and UMs.

To subscribe: send email to listserv@ksuvm.ksu.edu with body "subscribe vet
cai-1 your.firstname yourlastname"

FfP archives
ftp:/ /ftp.sdsc.edu/pub/sdsc/

Computational chemistry and biology information

jtp:/ /sunsite. unc.edu/pub/academic/
University of North Carolina. Information on astronomy, biology, chem
istry, molecular modeling, geology, and GIS.

ftp:/ /wubcl. wustl.edu/pub/
Biomedical Computer Laboratory. Quantitative imaging data.

Telnet archives
130.199.112.132

Nuclear Data Center

·Login: nndc

Web Sites
http://www.ozemail.eom.au/-mmajor/cci/maillist.html

Agricultural-related mailing lists

hup:/ /www.seas.gwu.edu/seas/i'Mtitutes/medimage/
Medical imaging, George Washington University

http://www. ashe. miami. edu/ ab/medweb. html
MedWeb: Adam's Guide to medical resources on the Internet images

http: I /http2.sils. umich. edu/Public/nirg/nirg1. html
Neurosciences Internet resource guide

http:/ /ivory.lm. com/-nab/neurolist. html
Neuroscience mailing lists

http://www.cs.cmu.edu/Web/Groups/CNBC/other/other-neuro.html
Other Internet neuroscience resources

GRAPHICS FILES AND RESOURCES ON THE INTERNET 1035

http:/ /johns.largnet. uwo. ca/nucmed/index.html
Nuclear medicine resources.

http: I /bpass. dentistry. dal. ca/nucmed. html
Nuclear medicine resources on the Internet

http:/ /netvet. wustl.edu/vetmed.htm
Veterinary medicine

Meteorological, Oceanographic, and GeDjJhysicallmaging Resources

The latest weather data sources are located in the FAQ for the newsgroup
sci.geo. meteorology. The FAQ contains current information on weather satellite
data and images, and on meteorological, oceanographic, and geophysical
research data. Information on Geographical Information Systems (GIS) may be
found in the Gis-L mailing list, the newsgroup comp. infosystems.gis, or on the
FTP site csn. org.

Newsgroups
comp. infosystems.gis

Information on all aspects of Geographical Information Systems (GIS)

sci.geo. meteorology
Discussion of meteorology

Mailing lists
GIS-L@ubvm. cc. buffalo.edu

Forum for the discussion of Geographical Information Systems

To subscribe: send email to listsero@ubvm.cc.buffalo.edu with the body "sub
scribe GIS-L your.firstname yourlastname"

FfP archives
ftp:/ /ftp.csn.org/COGS/

Geologic, GIS, mapping, earth science software and resources for the PC
and Macintosh

ftp:/ lies. uci.edu/honig/
Synthetic stereo satellite images of earth

ftp:/ /liasun3.epjl.ch/pub/weather/
Weather map of England, Europe, and the earth in GIF format

1036 APPENDICES

jtp:/ /vmd. cso. uiuc.edu/wx/
Weather satellite images of North America and Surface Analysis weather
maps in GIF format

Telnet archives
128.175.24.1

Ocean Information Center. Data sets related to oceanography.

Login: info

Web Sites
http:/ /www.lib. berkeley. edu/EART /listservers. html

Earth sciences listservers

http:/ /www.hdm.com/gis3.htm
GIS net sites

http:/ /rigel.csuchico.edu/ores.html
Online resources for earth sciences

Astronomy and space Exploration Imaging Resources

The Internet abounds with information on astronomy, astrophysics, and space
exploration. Archives contain thousands of images collected from telescopic,
satellite, and spacecraft data. ·

The Space Telescope Electronic Information System (stsci.edu) is a very com
prehensive resource for all astronomical information, accessible both via the
Web and FTP. It includes many spacecraft and Hubble Space Telescope images.

The NASA archive ftp.gsfc. nasa.gov contains not only a huge collection of
images but also references to other resources, s~ch as UUNET, the Washington
University archives, and the Lawrence Berkeley Labs.

Newsgroups
alt. sci. astro

An astronomy discussion

alt.sci. astro.figaro
Figaro data-reduction package discussion

GRAPHICS FILES AND RESOURCES ON THE INTERNET 1037

alt. sci. astro. aips
Discussions on the Astronomical Image Processing System (AlPS)

sci.astro
An astronomy discussion

sci. astro.fits
Issues related to the Flexible Image Transport System (FITS)

sci. astro. hubble
Hubble Space Telescope data

sci. astro.planetarium
A planetarium-oriented discussion

llectro~cjo~

COSMIC UPDATE
Information on new NASA software for astronomy and space exploration

To subscribe: send email to service@cossack.cosmic.uga.edu.

FrP archives
ftp:/ /ames.arc.nasa.gov/pub/SPACE/

NASA/ Ames Archives. Data files, GIF images, and NASA press releases and
indexes.

ftp:/ /suncub.bbso.caltech.edu
Big Bear Solar Observatory. Solar full-disk and high-resolution images.

ftp:/ /ftp.gsfc. nasa.gov/pub/images/
NASA images in GIF, JPEG, PostScript, Sun Raster, and X Bitmap formats.
Links to LBL, Washington University, and UUNET.

ftp:/ /wuarchive. wustl.edu/graphit;S/magellan/
Planetary Data System (PDS) Geosciences Node and Magellan spacecraft
images

Telnet archives
envnet.gsfc. nasa.gov

EnviroNET (Space Environment Information Service) .. Space data from
NASA and the European Space Agency.

Usemame: envnet
Password: henniker

1038 APPENDICES

nssdc.gsfc. nasa.gov
nssdca.gsfc. nasa.gov

National Space Sciences Data Center. Archive for space and.earth science
researchers.

Login: nodis

ForFurtherhttonnation
For information about the Internet and the various types of Internet services,
see:

Harrison, Mark, The USENET Handbook, O'Reilly & Associates,
Sebastopol, CA, 1995.

Krol, Ed, The Whole Internet User's Guide & Catalog, second edition,
O'Reilly & Associates, Sebastopol, CA, 1994.

Liu, Cricket, Jerry Peek, Russ Jones, Bryan Buss, and Adrian Nye, Man
aging Internet Information Services, O'Reilly & Associates, Sebastopol, CA,
1994.

Musciano, Chuck and Bill Kennedy, HTML: The Definitive Guide, O'Reilly
& Associates, Sebastopol, CA, 1996.

Niederst, Jennifer with Edie Freedman, Designing for the ~b: Getting
Started in a New Medium, O'Reilly & Associates, Sebastopol, CA, 1996.

The Web itself is crammed full of information about creating and using inline
graphics (try performing a Web search using the key phrase ''Web graphics").
The following Web resources contain very good information on Web page
graphics, but they are by no means the only available sources:

http:/ /hakatai. mcli.dist. maricopa.edu/tut/
Writing HTML: A Tutorial for Creating Web Pages

A complete Web page construction tutorial courtesy of the Maricopa Cen
ter for Learning and Instruction. Tutorial 7 contains the inline graphics
information.

http://www.w3.org/CERN/Divisions/SL/off-comp/links.html
Jaap's Link Collection

Links to many useful Web pages for HTML development.

GRAPHICS FIL~S AND RESOURCES ON THE INTERNET 1039

http://www. ncsa. uiuc.edu/Gencral/Internet/WWW /HTMLPrimer. html
A Beginner's Guide to HTML

Contains a nice section on inline images.

http://home.netscape.com/assist/net_sites/html_extensions.html
Extensions to HTML 2.0

Information on advanced features of Web graphics.

http://www. cs. indiana.edu/docproject/mail/mime.html
What is MIME?

An introduction to MIME.

http://www.yahoo.com/Computcrs/World_ Wide_ Web/Programming/Icons/
Yahoo Icons and Bitmaps

Links to numerous icon and bitmap archives. All suitable for use as Web
graphics.

http:/ I dragon.jpl. nasa.gov ;-adam/transparent.html
The Transparent/Interlace GIF Resource Page

A terrific source of information for using GIF files to store Web page graph
ics.

http:/ /www.galcit. caltech. edu/-ta/tgif/transgifnotes. html
The Creative Internet: Transparent GIF Info

More info on transparent GIFs and GIF software lools.

http:/1www.softlab.ntua.gr/www/inline-imagesfaq.html
WWW lnline Images FAQ

Frequently asked questions about inline images on the Web.

http:/ /sunsite.unc.edu/boutell/faq/WU!WJaq.html
WWWFAQ

Tom Boutell's excellent FAQ on the World Wide Web.

http:/ /melmac. corp. harris. com/transparent_ images. html
Transparent Background Images

More info on transparent GIFs and how to create them.

http:/ /sd-www.jsc. nasa.gov/webJOffltO,ts.html
Recommended File Formats for WWW Documents

Information on file formats used on the Web.

1040 APPENDICES

APPENDIX B I

Graphics Files and Resources
on the Commercial Services

This appendix provides some pointers to information on graphics files and
resources on the major commercial online information services, CompuServe
and America Online, as well as on a variety of bulletin board systems (BBSs).
The other services-Prodigy, Delphi, BIX, GEnie, and others-also offer
graphics information, though to a lesser extent.

Some of the graphics files and programs available on the commercial services
and the BBSs eventually make their way to the Internet file archive sites, but lit
tle of the message traffic does. Worldwide, traffic through CompuServe and
the private BBSs has been estimated to be at least as large as the volume of traf
fic through the entire Internet. The number of files on these services is many
times greater than on the Internet.

Despite the plethora of valuable information on the commercial services, it is
unfortunately often difficult to find what you want; CompuServe, for example,
hosts more than one thousand forums. Another disadvantage of the commer
cial services is that it's not possible to redistribute materials provided by ven
dors for their own customers' use.

CompuServe
As we've mentioned, CompuServe contains an enormous amount of informa
tion, images, and discussion forums of interest to graphics programmers and
others who need information about graphics files and formats. In particular,
CompuServe is the place to go for system-specific programming information in
the PC and Macintosh worlds. Most major companies provide support through
CompuServe, so if you know what graphics information you want, CompuServe
is the first place to look.

GRAPHICS FILES AND RESOURCES ON THE COMMERCIAL SERVICES 1041

We won't try to tell you how to use CompuServe in any detail but will simply
point you to the most helpful resources now available. Because things change
so rapidly, initially you should find out what graphics information is currendy
available. Do a search on "graphics" or "computer graphics" or "Macintosh
graphics" or "3D rendering" or whatever your area of interest might be. Com
puServe will return a list of the forums that contain information that might
potentially be of interest to you. A recent search on the word "graphics" turned
up 189 separate forums. A search on "graphics programming" turned up 18.

Here are just a few forums that might be of interest. Remember that the
forums and areas of interest change rapidly, and new forums are always being
added, so check frequently for new resources.

Amiga Tech Forum Graphics Vendor Forum
Animation Vendor A Forum IBM OS/2 Vendor Forum
Atari ST Prod. Forum Imaging Vendor A Forum
CADD/CAM/CAE Vendor Forum MIDI A Vendor Forum
Computer Animation Forum MS Windows AV Forum
Desktop/Electronic Publ. Mac A Vendor Forum
Graphics B Vendor Forum Macintosh Multimedia Forum
Graphics Corner Forum Multimedia A Vendor Forum
Graphics Developers Forum PC Vendor G Forum
Graphics Forums Windows 3rd Party A Forum
Graphics Support Forum World of Graphics Forum

Each graphics forum has its own associated keyword. To speed things up or to
access a forum from a command-line-oriented system or terminal, you can type
the keyword (e.g., GO GRAPHDEV gets you to the Graphics Developers Forum
and GO GRAPHSUPPORT gets you to the Graphics Support Forum).

Within each forum, you'll find all kinds of resources. There are libraries con
taining GIF and JPEG images that you can view and download, as well as
libraries containing free software and shareware, also available for download
ing. There are discussion forums where you can exchange mail or post news or
opinions about current events in the graphics world, such as the LZW/GIF
patent issue and the development of the new PNG file format. There are also
other resources, such as conferences with particular people or vendors, special
news stories, and more.

The GRAPHSUPPORT forum is a particularly important source of graphics
information on CompuServe. It is the central distribution point of GIF-related
materials (recall that GIF was designed, and continues to be maintained, by
CompuServe engineers). Because of the widespread popularity of GIF, the

1042 APPENDICES

GRAPHSUPPORT forum has become an attractive place to post more general
graphics-related information and queries and to upload files, including images
and program-related materials.

Here is what GRAPHSUPPORT offered at the time we went to press. Remem
. her that this menu js subject to change at any time.

Forum Information
Online Viewing
Graphic Viewers
Format Conversion
Paint/Draw Programs
Digitizing Hardware
Video Adapters
Printing Graphics
Publishing Projects
GIFTools
Animation Players
Compression/UU

]PEG Tools
Developers' Den
Misc. U til & GIF Tools
Non-GIF Software
Standards and Specs
Copyright & More!
'Go Graphics' Lab!
GIF /LZW Discussion
PNG Developments
Ghostscript
Last Chance!

You'll find a similar depth
forums.

of information in many of the other graphics

America Online
IT you are using America Online (AOL), you will also find many forums con
taining graphics information. Some include images, applications, and file for
mat specifications available for downloading. The focus of graphics
information on AOL is the Graphic Arts Program (keyword GRAPHICS), a
repository of graphics information. There are two versions of the Graphic Arts
Program-one for the PC and one for the Macintosh. You can easily navigate
from one to the other. A recent look at the PC Graphic Arts Program showed
the following categories of resources and a total of 92,000 messages in 20 cate
gories:

About the PC Graphics Forum
Weekly Forum News
Meet the Graphics Staff
Graphics Help and Info
Forum Conference Schedule
Artists' Spotlight

Suggestion Box
Software Libraries
Message Boards
Conference Center
Special Interest Groups
World Wide Web

GRAPHICS FILES AND RESOURCES ON THE COMMERCIAL SERVICES 1043

Special Interest Groups
Recommended Viewers
Free Uploading
PC Vendor Database

Feature
Resource Center
Help Desk

Special Interest Groups branches out to many different topics,. vendors, and prod
ucts (e.g., Autodesk, CorelDraw!, Virtual Reality, 3D Rendering). Software
Libraries includes such categories as Clip Art, GIF Images, and Animations).
Within each category there are further subcategories (e.g., 3D Rendering con
tains 3D Models, Free Uploading, and Rendered Images). Graphics and Presen
tation Companies includes categories for Adobe, Apple, Disney, Island Graphics,·
SGI, and many more vendors.

Bulletin Board Systems
In addition to the Internet and the large commercial services, there are private
bulletin board systems (BBSs} dedicated to discussions and distributions of
information for specific hardware platforms (e.g., PC, Macintosh, or Amiga),
corporations (e.g., Adobe, Apple}, and software products (e.g., CorelDraw!).
Some estimates put the total number of BBSs at as many as 60,000. The largest
amount of traffic in these BBSs is in files, but the FidoNet, RIME, and !Link net
works provide conferences of services akin to the Internet newsgroups
described in Appendix A, Graphics Files and Resources on the Internet, or the Com
puServe and AOL conferences described earlier in this appendix. --
Here is a sampling of private BBSs of special interest to graphics programmers;
for each, the network technology (e.g., Fido) is specified.

• AtariNet (uses Fido and includes discussions about Atari home computers
and related topics). Conference topics include Atari graphics
(ATARI.GRAPHICS).

• FidoNet (uses Fido and includes a host network and many subnets}. Con
ference topics include . Amiga video graphics and desktop video
(AMIGA_VIDEO). .

• Inter-Comm Network (ICN} (uses Fido and includes many echomail con
ference areas). Conference topics include image processing and graphics
(~MAGEPRO) and CD-ROM technology and multimedia (CDROM).

• ILink (uses QWK and includes many professional forums, including those
from AT&T, Novell, and Hayes). Conference topics include graphics
(GRAPHICS) and CD-ROM technology (CD-ROM).

1044 APPENDICES

• Magnet (uses Fido and is aimed at the computer hobbyist). Conference
topics include graphics (GRAFIC).

• RIME (uses Postlink). Conference topics include graphics (GRAPHICS).

• SourceNet (uses Fido/QWK and is aimed particularly at programmers).
Conference topics include compression software (COMPRESSION) and
the various hardware platforms and operating systems (e.g., MAC, WIN
DOWS, UNIX, HARDWARE).

• WildNet (uses Fido/QWK and contains a broad range of topics, both tech
nical and personal). Conference topics include application areas (e.g.,
COREL DRAW), CD-ROM technology (CD-ROM), and graphics software
and files (GRAPHICS).

GRAPHICS FILES AND RESOURCES ON THE COMMERCIAL SERVICES 1045

APPENDIX c I

Installation and Setup

This book includes a CD-ROM (Compact Disc-Read-Only Memory) containing
a great deal of information that will help you understand, use, convert, manip
ulate, and otherwise make sense of the more than 100 graphics file formats
described in the book. The CD-ROM contains the full text of the book, file for
mat specifications from vendors, contributed software, sample code and·
images, and_ our own GFF product software.

Our GFF software provides browser support for searching, image maps, and
forms. Usually, these are functions that are performed by a server (for example,
if you are viewing a page at www.ora.com, that's the server). Since you view the
Encylcopedia on your local machine, without installing it on a server, there is no
way to provide searching, forms, or other sorts of dynamic behavior, without a
helper application for the browser. GFF runs silently in the background; you'll
probably forget it's even there.

This appendix describes how to install and set up the GFF software so you'll be.
able to browse the book, obtain the files you need, run demos, and get up-to
date information about graphics file formats.

The information provided on the CO-ROM-voluminous as it is-is only the
beginning. If you have an Internet connection, you can link to the GFF Web
Center to find updates to specs, software, and the book itself. At that site, you'll
also be able to view relevant Frequently Asked Questions (FAQ) listings and
graphics news, and request additional information. ·

For the most up-to-date and accurate information about GFF, check out GFF
Web Center. The information that follows was written during th~ final testing
stages of the GFF application; it is always possible that some last-minute
changes may have been required. In addition to reading this appendix, be sure
to read the informational files on the CD-ROM for specific, updated instruc
tions.

INSTALLATION AND SETUP 1047

Using the CD-ROM
CD-ROMs provide a durable, cost-effective distribution medium that is becom
ing the standard way to distribute operating systems, third-party software, and
other types of information. If you are new to CD-ROMs, you will need to learn
about some specific CD-ROM issues before you can use the information on the
CD-ROM that accompanies this book.

The CD-ROM Format

Because graphics file formats are of interest to users of many different plat
forms-by their very nature, these formats are meant for interchange between
platforms-we have chosen to develop a multi-platform CD-ROM for inclusion
in this book. This CD-ROM is in a hybrid ISO. 9600/Macintosh HFS format. It
conforms to the ISO 9660 and Apple HFS standards. Virtually all CD-ROM
drives support the ISO 9660 standard, although there are some differences in
how the files are read and presented, as we'll describe below. (All Macintosh
drives support the HFS standard with no significant variation.)

ISO 9660 is the standard approved by the International Standards Organiza
tion (ISO} in 1987. This standard is adapted slightly from the original standard
proposed by CD-ROM application developers and computer vendors. That orig
inal standard was known as the High Sierra format. You will sometimes see the
terms High Sierra and ISO 9660 used interchangeably, but they are actually
slightly different. ISO 9660 is the standard that will be supported from now on,
although ISO 9660-compliant CD-ROM drives will continue to be able to read
disks created in the older High Sierra format.

The ISO 9660 standard has the major advantage that it is relatively consistent
across platforms. It does, however, impose a few limitations on files and direc
tories:

• Directories may not be more than eight levels deep.

• Directory names may contain up to eight characters with no extensions.
The name may consist only of the characters A-Z (or a-z, but cases may not
be mixed) and the digits 0-9.

• All file and directory names are monocase. Depending on the driver pro
gram associated with your particular CD-ROM drive, they will appear as
either all uppercase or all lowercase. For example, the README. TXT file
name may be displayed as either README. TXT or readme. txt.

1048 APPENDICES

• A filename may contain up to eight characters, with an extension of up to
three characters. Filenames (both the name and the extension) may con
sist only of the characters A-Z (or a-z, but cases may not be mixed), the dig
its 0-9, and the underscore (_).

With some CD-ROM driver programs, you will notice that a period is appended·
to the filename (if the filename does not have an extension). You will also
notice that a semicolon, followed by a version number, is appended. For exam
ple, the README. TXT filename might be displayed as any of the following,
depending on which system and CD-ROM driver you use:

README. TXT
README. TXT; 1
readme. txt
readme. txt; 1

For PC users, ISO 9660 will have familiar characteristics because it is basically
an MS-DOS format (for example, the familiar 8-character filenames with 3-char
acter extensions) .

For UNIX users, ISO 9660 will look quite different. Lengthy UNIX filenames
and multiple extensions have had to be changed to conform to the ISO 9660
standard.

For Macintosh users, this CD-ROM will look like a normal Macintosh file sys
tem.

Organization of the CD-ROM

The following directories are on the CD-ROM:

/gff
Contains the full text of the book, sample images, code and vendor specifi
cations. The book is available in two separate versions; a graphics version,
in /gff/graphics, and a text-only version in /gff/textonly.

Note that using the HTML files in these directories requires the GFF appli
cation; if you simply point your browser at these files, using your browser's
option for opening local documents, for example·, some links will not work.
See below for instructions on customizing your view of GFF.

/Mac
Contains the Macintosh implementation ofGFF and the Spyglass Enhanced
Mosaic browser.

INSTALLATION AND SETUP 1049

/pc
Contains the Windows implementations of GFF and the Spyglass Enhanced
Mosaic browser. Use the Windows 95 implementation (under /pc/win95) of
GfF for Windows 95 and Windows NT. Use the Windows 3.1 i.Inplementa
tion (under /pc/win31) for Windows 3.1.

/unix
Contains the UNIX implementations of GFF. The directories under /unix
are divided by platform. Each directory contains the appropriate GFF
implementation and the Spyglass Enhanced Mosaic browser. Consult the
README and INSTALL files in these directories for more information.

/software
Contains the third-party contributed software. There are separate directo
ries below /software for each platform. The UNIX applications are provided
in source form and are not pre<ompiled. You can navigate to these direc
tories through GFF or directly as you wish.

Any late-breaking information about GFF is stored in the README file in the
appropriate directory. Please read this file before you install GFF.

InstaJJing GFF
Installing GFF is straightforward. Follow the rules for your platform, as
described in the following sections.

Installing GFF on a Windows System

In the descriptions that follow, wherever you see a reference to the drive D: ,

substitute the drive letter of the CD-ROM drive on your system containing GFF.

If you do not have Spyglass Enhanced Mosaic version 2.11 or later installe~ on
your system, begin by installing it. Run:

D:\PC\MOSAIC\DISKl\SETUP.EXE

To install GFF under Windows 95 or Windows NT, run the setup program:

D:\PC\WIN95\SETUP.EXE

To install GFF under Windows 3.1, run the.setup program:

D:\PC\WIN31\SETUP.EXE

Installing GFF will create an 0 'Reilly Online Books program group; select the GFF
icon within that group to start GFF.

1050 APPENDICES

InstaUing GFF on a Macintosh

If you do not have Spyglass Enhanced Mosaic version 2.11 or later installed on
your system, begin by installing it. Double-click the self-extracting archive icon
in the Spyglas Enhanced Mosaic folder in the Mac folder on the CD-ROM.

On the Macintosh, you can run GFF directly from the CD-ROM. Simply double
click the GFF icon in the Mac folder on the CD-ROM.

If you want to install GFF on your hard drive, simply drag the GFFand GFF !nit
icons into a folder on your hard disk. GFF and GFF !nit must remain in the
same folder.

InstaUing GFF on UNIX

In the descriptions that follow, the GFF CD-ROM is assumed to be mounted on
/cdrom. If you have mounted it somewhere else, subsitute its real mount point
everywhere you see I cdrom. ·

Many different UNIX implementations are stored on the CD-ROM; find yours in
a subdirectory under /cdrom/unix. For example, if you are on a SunOS 4.x
machine, the subdirectory is /cdrom/unix/sunos. For a complete list of the UNIX
platforms supported, read /cdrom/unix/README.

If you do not have Spyglass Enhanced Mosaic version 2.11 or later installed on
your system, begin by installing it. Unpack the distribution in the mosaic direc
tory in the directory for your platform and follow the instructions from Spy
glass.

To complete the installation of GFF, copy the gffand gffx programs from the
CD-ROM into /usr/local/lJin* on your system. Copy gff.ini into /usr/local/lib.

Look at gff and gff.ini. Make sure that the default values and configuration
options in these files match the installation directories and CD-ROM mount
point that you actually selected.

Removing GFF
If you should decide to remove GFF from your system temporarily, following
the instructions below will ensure that GFF is completely and safely removed.

* If you prefer, you may install the files in another directory; /usr/local/bin is merely a suggestion.
The same is true of /usr/local/lib in the following sentence.

INSTALLATION AND SETUP 1051

Removing GFF under Windows

Use the uninstall program that is created as part of the Windows installation
process to remove GFF from your system.

Removing GFF under UNIX

To remove GFF under UNIX, delete the following files:

• gffand gffx, probably from /usr/local/bin.

• gff.ini, probably from /usr/local/lib.

• Individual users may have created personal customization files, .gff.ini or
gff. ini in their home directories. Remove them at your discretion.

Removing GFF on the Macintosh

Simply delete GFF and GFF !nit from the folder on your hard disk where you
installed them.

Which Browsers Can I Use?
The state-of-the-art in browser technology changes very fast, almost daily. In
order to be used with GFF, a browser must meet two requirements: it must sup
port tables and it must support the Software Development Interface (SDI)
developed by Spyglass. GFF communicates with the browser using the Spyglass
SDI to provide support for searching and other dynamic behavior.

In GFF version 1.0, the SDI is the only communication mechanism supported.
In future versions of GFF, other mechanisms may be supported. At the time of
this writing (March, 1996), the following browsers are known to work:

Windows
Spyglass Enhanced Mosaic version 2.11 and Netscape Navigator 2.0 (the
real release, not the beta releases). Microsoft's Internet Explorer 2.0 seems
to work, although it works a little strangely.

Macintosh
Spyglass Enhanced Mosaic version 2.11. Check the GFF Web Center for
other supported browsers.

UNIX
Spyglass Enhanced Mosaic version 2.11.

1052 APPENDICES

What if the Browser Crashes?

Some browsers, at least under Windows, crash when GFF exists. In versions of
Spyglass Mosaic prior to 2.11, this was caused by a bug in the browser. Other
browsers, built on the Spyglass code base, may exhibit similar problems.

If your browser crashes, stick with Spyglass Enhanced Mosaic, included on the
CD-ROM.

Accessing Software on the CD-ROM
The contributed freeware and shareware on the CD-ROM are stored in directo
ries below /software.

You can view these directories by following links from the software page~ in
GFF, but you cannot install the software directly from your browser.

To install a software package, use whatever commands you would normally use
to access the appropriate directory on the CD-ROM and run the install program
or follow the instructions provided.

The source code and UNIX directories contain only source code, no compiled
binaries. These packages are provided by their authors in this form; instruc
tions for building these programs is beyond the scope of this book. For help
building UNIX binaries, you may want to consider contacting Ready-to-Run
software (see the accompanying sidebar) the company that helped us build the
CD-ROM for this book.

How Does GFF Work?
GFF runs in the background and communicates with the browser, using an
appropriate operating system mechanism. GFF has no user interface to speak
of. In the normal course of events, GFF behaves like this:

During initialization, GFF attempts to contact a running browser. If it fails, GFF
starts a browser for you. Mter contacting a browser, GFF sets up the communi
cation mechanism and recedes into the background. From this point on, you
can ignore GFF; it will run silently in the background handling requests from
the browser.

When the browser exits, GFF notices this fact and silently exits as well.

You can end GFF explicitly, without closing the browser:

• On Windows, open the GFF window (it was automatically minimized after
initialization) and choose Exit off the system menu (the pull-down menu
under the icon in the upper-left comer of the window).

INSTALLATION AND SETUP 1053

Need Help Building Binaries?
If you need help with the process of building UNIX binaries, you might
want to contact Ready-to-Run Software. RTR has precompiled versions of
many of the packages described in this appendix for common UNIX plat
forms, including Sun 3, Spare (Sun 4), DECSTATION, IBM RS6000 (AIX),
HP 700 Series (HP /UX), SCO UNIX, and SCO Xenix.

Contact them at:

Ready-to-Run Software, Inc.
Software Porting Specialists.
4 Pleasant Street
Forge Village, MA. 01886 USA
Voice: 508-692-9922
FAX: 508-692-9990
Email: injo@rtr. com

If you have a copy of UNIX Power Tools (O'Reilly & Associates, 1993) you
will find on the accompanying CD-ROM prebuilt binaries for two of these
packages (pbmplus and xloadimage) for a variety of UNIX systems.

• On the Macintosh, select GFF from the Finder menu in the upper-right
hand corner and choose QJJ,it from the File menu.

0

• On UNIX, run giJ -quit or manually kill the background process by sending
it the TERM. In order to send it a signal, you must know its process id. That
id is stored in the file .gff.pid iri your home directory. The following com
mand will quit GFF on most versions of UNIX:

kill -TERM 'cat $HOME/.gff.pid'

On some systems, if GFF started the browser, GFF can be configured to end the
browser if you exit GFF directly.

Customizing GFF
Most aspects of GFF are configured by modifying the giJ. ini file in the same
directory as the executable.* This is a plain text file that can be edited with any
text editor you wish. If you edit this file using a word processor, make sure that

* On UNIX systems, where there may be multiple users, you can create a copy of the global con
figuration in your home directory and modify that file. Ask your system administrator where the 0

global configuration file is on your system.

} 054 APPENDICES

you save the file in plain text mode so that additional control codes are not
inserted by your application.

WARNING

Modifying the configuration file has a direct impact on the per
formance of GFF. Inappropriate changes to the configuration
file will completely cripple GFF. Always make a backup copy before
you make any changes.

Please visit the GFF Web Center for late-breaking news and the most up-to-date
customization information.

The install process creates a default gff. ini, and you should not need to make
any changes in order to get GFF to run.

Format of the gfJ. ini File

The following rules define the format of the gff. ini file:

• gff.ini is a plain text file divided into named sections. Each section begins
with its name in square brackets. The ord~r of sections within the file is
irrelevant.

• Within each section, variable-value pairs are stored by assignment in the
form variableavalue. .

• Section and variable names are case-insensitive.

• The names of variables must be unique within each section. The order of
variables within a section is mostly irrelevant. However, in the [format list]
and [software list] sections, the order is relevant. The variables in each of
these sections are used to construct lists; items are placed in the lists in the
order that they appear in these sections.

• The names of sections must be unique within the file.

• Lines beginning with a semicolon are comments; they are ignored.

Note: changes to the initialization file while GFF is running have no effect. In
the 1.0 release of GFF, GFF never makes any changes to the gff.ini file.

Sectians in the g1f. ini File

Unless otherwise noted, a section is used by all implementations of GFF (Wm
dows, Macintosh, and UNIX). The following sections occur within the file:

INSTALLATION AND SETUP 1055

[config]
This section defines general configuration options for GFF.

CDROMRoot
Defines the root directory of the CD-ROM drive. On a PC running Wm
dows, this should be the drive letter of the CD-ROM drive that contains the
GFF CD-ROM followed by a slash (for example, d:/). On the Macintosh, this
should be the volume name of the GFF CD-ROM followed by a slash (for
example, OReilly_GFF_l_O/). On UNIX, this should be the name of the CD
ROM mount point (for example, /cdrom).

GFFDir
Defines the root directory of the Encyclopedia of Graphics File Formats. It is set
to /gff/graphics during installation. If you prefer the text-only version of
GFF, set it to /gff/textonly (also change the "substitution" sections of the
gff. ini file, described below, if you do this).

HomePage
Defines the initial file displayed by GFF, relative to the root directory of the
Encyclopedia. When GFF is installed, this is set to . ./index.htm, which dis
plays the GFF "splash screen." You can bypass this screen by changing
HomePage to main.htm.

LogFile
Under UNIX, setting this value to the name of a file will cause GFF to write
a log of transactions and some additional status information to that file.
This variable is not supported on any other platforms in GFF 1.0.

CloseBrowser
Normally, GFF does not close the browser if you exit GFF direcdy (as
opposed to dosing the browser yourself, which automatically ends GFF). If
this variable is set to 1, GFF will close the browser if it started it.

[DDE]
This section identifies browsers that GFF can communicate with. It is only used
by the Windows implementations of GFF.

In this section, each variable should be the DDE (Dynamic Data Exchange)
name registered by an SDI-compliant browser. The value of that variable should
be the full path and filename of that browser.

When GFF starts, it searches for a running instance of each of these browsers,
in order. If it fails to find one, it attempts to start each of them, in order.

1056 APPENDICES

[UnixSockets]
This section identifies browsers that GFF can communicate with. It is only used
by the UNIX implementations of GFF.

At present, this section is unused. GFF determines which browser it can com
municate with by examining environment variables at run time. Consult the
INSTAlL file in the directory containing your UNIX implementation of GFF for
more information.

[AppleEvents]
This section identifies browsers that GFF can communicate with. It is only used
by Macintosh imple~entation of GFF.

In this section, each variable should be the name of an SDI-compliant browser,
for example "Mosaic" or "Netscape". The name is not really relevant, it is sim
ply a mnemonic for the user. The value of that variable should be the creator
code of the browser.

When GFF starts, it searches for a running instance of each of these browsers,
in order. If it fails to find one, it attempts to start each of them, in order.

[imagemap mapname]
This section of the file is used internally by GFF. Do not change any values in
this section.

[pages]
This section of the file is used internally by GFF. Do not change any values in
this section.

[substitute]
This section of the file is used internally by GFF. Do not change any values in
this section. If you plan to use the text-only version of GFF, rename this section
to [graphics substitute] .

[textonly substitute]
This section of the file is used internally by GFF. Do not not change any values
in this section. H you plan to use the text-only version of GFF, rename this sec
tion to [substitute] .

[format list]
Each of the variables in this section is a short name, a key, for a file format. The
value of each key is the full name of that format. When additional formats

INSTALLATION AND SETUP 1057

become available on the GFF Web Center, you will be able to incorporate them
into your installed version of GFF by adding a new section to the gff.ini file and
updating this list. For now, don't make any changes to this section.

[formatkey 1
There is one section for each key variable defined in the [format list] ,
described above. Within this section, the following variables are defined:

Names

File

A comma-separated list of alternate names for this format. All of the names
of the format should be listed here. This is the list that GFF searches when
you search for a particular format by name.

If you set the file to the complete path name of a file, GFF will display that
file when you view this format, instead of trying to display the version on
the CD-ROM.

Several other variables are defined for each format in the gff. ini file that is cre
ated during installation. In GFF 1.0, these variables are not used.

[software 1
The variables in this section determine how software on the CD-ROM is dis
played when you view a particular format. By default, all packages are dis
played.

Message
Defines the text of the message displayed before the list of software.

Platforms
Defines the platforms that should be displayed. This is a simple space
delimited list of values. In GFF 1.0, only the following values are defined:
mac, mswin, msdos, os2, and unix.

If a platform occurs in this list, software for that platform will be displayed
when you view a format. Regardless of the value that you use here, you can
always look at all of the software packages from the Software page.

platform-value
Defines the full name of each platform.

1058 APPENDICES

[software list]
Each of the variables in this section is a short name, a key, for a software pack
age. The value of each key is the full name of that package. Additional pack
ages can be incorporated into your installed version of GFF by adding a new
section to the gff.ini file and updating this list. For more complete instructions
about how to do this, please check the GFF Web Center.

[softwarekey]
There is one section for each key variable defined in the [software list] ,
described above. Within this section, the following variables are defined:

Name
Defines the full name of the software package.

Platform
Defines the platform that the software package runs on. In GFF 1.0, only
the following values are defined: mac, mswin, msdos, os2, and unix. Also,
in GFF 1.0, only a single platform may be defined.

Formats
A simple space-delimited list of the formats which this software package
understands. These values must be key variables in the [format list] sec
tion of gff.ini in order to be of any use.

Additional Customization for the UNIX Version

While the Macintosh and Windows versions of GFF use information in the
gff.ini file to find the browser, the UNIX version uses environment variables.
This is the more common means of customization under UNIX. Four variables
maybe set:

GFF_HOST
Defines the name of the host where the browser is running. The default is
localhost. This variabl~ is of dubious utility since GFF and the browser must
each have access to the CD-ROM. In most cases, GFF and the browser run
on the same host, so the default value, localhost, is correct.

GFF_BROWSER
Defines the command line which must be executed in order to start your
browser. This command line should include the full pathname of the
browser executable and any arguments required to start the SDI. The
default value is /path/emosaic -sdi.

INSTALLATION AND SETUP 1059

GFF_SDIFILE
In order to communicate with the browser, GFF must know what port the
browser is "listening" to for SDI requests. Spyglass Mosaic, the only browser
known to support the SDI under UNIX at this time, stores the port number
in a file in the users home directory. The default value for the name of this
file is stored in GFF. GFF _SDIFILE is provided so that you can specify an
alternate name, in case some other browser supports the SDI specification
under UNIX in the future.

GFF_DEBUG
If this value is set to 1, additional messages are displayed while GFF initial
izes.

1Q6Q APPENDICES

GLOSSARY

4-bit color
Refers to a way of representing bitmap or other data that can handle up to
16 (24) colors. .

8-bit color
Refers to a way of representing bitmap or other data that can handle up to
256 (28) colors. .

8-mm
Tape backup format and medium. Video recording format and medium,
usually used for home use due to the compact size of the physical medium,
and not considered of broadcast quality. See VHS and Beta. ·

15-bit color
Refers to a way of representing bitmap or other data that can handle up to
32,768 (215) colors.

16-bit color
Refers to a way of representing bitmap or other data that can handle up to
65,536 (216) colors.

24-bit color
Refers to a wal, of representing bitmap or other data that can handle up to
16,777,216 (2 4) colors.

GLOSSARY 1061

accelerator card
A video display card with active components designed to enhance or speed
up the display of image data sent to it by a rendering application. Contrast
with dumb frame buffer.

active information device
An electronic device with which the user must constantly interact in order
to obtain information. Video arcade games and most multimedia applica
tions are active information devices. Contrast with passive information device.

adaptive encoding
An algorithm that has no certain prior knowledge about the format of the
data it is encoding. It must adapt to the format of the data as it encodes it.
LZW is an adaptive encoding algorithm.

additive system
A color system in which colors are created by adding colors to black. The
more color that is added, the more the resulting color tends toward white.

aliasing
Artifact produced on a pixel-based output device where diagonal or curved
edges appear jagged.

alpha channel
An additional channel of bitmap data used to store transparency data for
an image, which can be on a per-pixel, per-block, or per-image basis. The
degree of pixel transparency for an 8-bit alpha value ranges from 0 (the
pixel is completely invisible or transparent) to 255 (the pixel is completely
visible or opaque) . See also overlay bit.

animation
A sequence of two or more images displayed in a rapid sequence so as to
provide the illusion of continuous motion: Animations are typically played
back at a rate of 12 to 15 frames per second.

anti-aliasing
The process of reducing artifacts by interpolating intermediate colors per
pendicular to an aliased edge.

1062 APPENDICES

aperture mask
A shadow mask with vertical strips instead of round holes. See Trinitron,
shadow mask, and dot pitch.

array of pixels
An ordered set of colored display elements on an output device. This term
is used loosely to refer to an array of numerical values used by an applica
tion program to specify colored elements on an output device.

ART
A method of compression developed by the Johnson-Grace company.

artifact
A detectable change· in an image produced by a rendex1ng application,
such as a filter, or an editing tool, such as a paint program. Such changes
are said to be introduced by human intervention and are therefore artifac
tual influences upon natural, ecofactual data.

aspect ratio
The proportional measurement of an image or pixel based on its horizon
tal and vertical size. For example, an image with an aspect ratio of 4:3 has a
horizontal width that is 4/3 of the vertical height.

band
See strip.

banding .
Horizontal, vertical, or, more rarely, diagonal bands of discoloration inad
vertently placed in an image during creation or rendering.

BBS
Bulletin Board System. A telecommunications program running on a com
puter that allows other computers with modems to dial in and access files.
BBSs are a prime source of image files and file format information. Older
names for BBSs include Computer Bulletin Board System (CBBS) and Elec
tronic Bulletin Board System {EBBS).

Beta
Video recording format and medium, considered to be of superior quality
to VHS but not widely used. Not considered broadcast quality. See VHS.

GLOSSARY } 063

Betacam
Broadcast quality video recording format and medium. See Beta, VHS, U
Matic, M-Il, and D-2.

Bezier curve
A smooth curve specified by a small set of values, including tangent and
control point information.

hi-level
An image that contains only two colors: a background color and a fore
ground color. See monochrome and halftone.

big-en dian
Refers to systems or machines that store the most significant byte (MSB) at
the lowest address in a word, usually referred to as byte 0. Contrast with lit
tle-endian.

bit depth
The size of a value used to represent a pixel in bitmap graphics data. This
is usually stated as the number of bits making up the individual data value,
or sometimes the number of bytes. The number 2 raised to the power bit
depth specifies the maximum number of values the pixel can assume. Same
as pixel depth.

bit order
The order of the bits within a byte. The first bit in a byte may be either the
most significant or the least significant bit. See also LSB and MSB.

bit plane
A 2D array of bits one bit deep. A bitmap containing pixels with a depth of
eight bits may be said to contain eight bit planes. A monochrome image
(one bit per pixel) is usually stored as a single bit plane.

bit sex
The state of a bit (0 or 1).

bitmap
A set of numerical values specifying the colors of pixels on an output
device. In older usage, the term referred to data intended for display on an
output device capable of displaying only two levels. It is used in this book as
a synonym for raster.

1064 APPENDICES

bitmap data
The portion of a bitmap file containing information associated with the
actual image.

bitmap image
A representation of a graphics work on a raster device or in a bitmap file.
Redundant in our terminology.

bitonal
See hi-leveL

bits per pixel
See bit depth.

block
See chunk.

bpp
Same as bits per pixel.

broadcast quality
Video recording medium retaining sufficient quality after multiple edit
and copy operations to be broadcast on commercial television.

byte order
The order of bytes within a word of data. The first byte in a word may be
either the most significant or least significant byte. See also big-endian, liUle
endian, LSB, and MSB.

bytes per pixel
Bit depth expressed in bytes.

CAD
See Computer Aided Design.

CCD
Charge coupled device. An array of electronic components which convert
light into electrical signals. Used in scanners and video cameras. See scan
ner.

GLOSSARY 1065

CCITT
International Telegraph and Telephone Consultative Committee. See ITU.

CD
See Compact Disc.

CD-DA
Compact Disc-Digital Audio. The standard used for encoding audio data
onto a compact disc.

CD-I
Compact Disc-Interactive. The standard used for encoding audio and
video information onto compact discs for use in interactive multimedia sys
tems.

CD-R
Compact Disc-Recordable. The standard for creating write-once compact
discs that may be mastered on a standard PC.

CD-ROM
Compact Disc-Read-Only Memory. A compact disc containing data
encoded using the CD-XA standard. See also CD-XA and IS0-9660.

CD-XA
Compact Disc-Extended Architecture. The standard used for encoding
data onto what we know as a CD-ROM. See also IS0-9660.

chroma
Term used when referring to color. Same as chrominance.

chromakeying
The process of creating an image, a portion of which is placed on a back
ground of uniform color, usually blue, so that another image can later be
added by placing it in the area of uniform color.

chrominance
The color portion of an image. It is the mixture of hue and saturation, or
the combination of three primary colors, such as red, green, and blue.

1066 APPENDICES

chunk
A collection of data with a known format within a graphics file. Chunks are
also called blocks in some graphics file format specifications. See also
packet.

chunking

CIE

The breaking up of a block of data into two or more smaller pieces, usually
to accommodate memory limitations or to avoid hardware dependencies.

International Commission on Illumination (Commission Internationale de
l'E'clairage). The CIE established an international standard for primary
colors in 1931. This standard allows all colors to be defined as a weighted
sum of three primary colors.

CLUT
Color Look-Up Table. See look-up table.

CMY
Acronym for Cyan/Magenta/Yellow. A subtractive color system based on
the primary colors cyan, magenta, and yellow.

CMYK
Acronym for Cyan/Magenta/Yellow/Key. A subtractive color system based
on the primary colors cyan, magenta, and yellow. Key color is the color
black, which is not reproducible using the CMY model alone.

co dec
Shortened version of encoder I decoder (similar to modem for modula
tor/demodulator). A codec is any hardware device or set of software algo
rithms that can encode data and decode it back to it original (lossless) or
reasonably original (lossy) state.

color calibration
The process of determining and adjusting the properties of a display device
or the colors in an image to ensure that the rendered image is accurate to
some standard, usually the human eye.

GLOSSARY 1067

color channel
One of the numerical elements used to specify a color in a particular color
model when that color is specified using an ordered n-tuple. Green is one
channel in the RGB color model, which is specified using the ordered
triplet (R,G,B).

color correction table
A section of a file for the storage of information designed to help a render
ing application in displaying an image on a particular output device or
class of output devices different from that assumed by the creator applica
tion.

color def"mition scheme
A system by which colors are specified, usually by numerical values or
ordered sets of numbers.

color gamut
The range of colors which can be displayed using a particular color model

· or output device.

color map
See look-up table.

color-mapped image
Image data whose colors are not stored in the bitmap itself, bu·t in a sepa
rate data array.

color models
The way colors are broken down and specified in a particular application
or system.

color plane
A section of a file holding information about one color component of the
color model currently in use.

color space
When a particular color scheme uses an ordered n-tuple to specify color, all
the possible values corresponding to colors can be plotted on an n
dimensional graph. All the points plotted, which correspond to colors in
the color model, constitute the color space.

1068 APPENDICES

color table
See loqk-up table.

color values
Same as pixel values.

Compact Disc
A circular plastic disc used for the storage of audio, video, textual, and
other data that can be represented in a digital form, and from which data
can be retrieved using an optical process. Although there are various for
mats, the one in most common use is 4.75 inches (12 centimeters) in diam
eter. See also CD-ROM.

component video
Color video information transmitted using three separate .signal channels.
RGB, YIQ, and YUV are examples of component video signals. ·

composite color
A color specified in a color model where that· color is specified using an
ordered n-tuple. A system where more than one color channel value exists,
and where more than one channel value is needed to specify the color.

composite image
An image formed of two or more subimages stored separately in a file.
Sometimes refers to a bitmap image with a lot of color variation per unit
area.

composite video
Color video information transmitted using a single signal channel. NTSC,
PAL, and SECAM are examples of composite video signals.

compression artifact
Spurious addition to or degradation of an image due to the process used to
compress or decompress it.

compression type
The algorithm or family of algorithms used by the creator application in
producing the file.

GLOSSARY 1069

Computer Aided Design
The use of applications, usually vector-based, for the design and rendering
of graphical data of architectural and mechanical drawings, electronic
schematics, and 3D models. Commonly referred to as CAD.

contiguous data
Image data stored as a continuous block of pixel values without scan-line or
block delimiters.

continuous tone
An image consisting of smooth gradations of color between adjacent ele
ments, requiring an output device capable of displaying thousands or mil
lions of colors at high resolution in order to prevent image artifacts.

convenjencerevbdon
A file format version created by an application vendor to accommodate a
bug or quirk in a program. This is sometimes caused by ignorance or hon
est error, but in many cases is intentional. There is ample evidence that at
least one vendor, the custodian (but not the originator) of a file format
specification, knowingly released format revisions so as to avoid shipping
delays caused by bugs introduced .by junior programmers.

convolution
The process of transforming the value of a pixel, or a field of pixels, based
on a mathematical formula. Convolution is used to alter the color of an
image (filtering), or to re-encode the data (compression).

copyright
The exclusive rights to the production, publication, and sale of a work of
authorship, such as a photograph or a captured image.

CRC

D-2

Cyclic Redundancy Check. An algorithm that recursively generates a 16- or
32-bit numerical value based on a stream of data. The value can be used to
verify whether the data has changed. See digital signature.

Broadcast quality video recording format and medium. See Beta, VHS, U
Matic, M-Il, and Betacam.

1070 APPENDICES

data compression
The process of converting data from one format to another format that is
physically smaller in size. The same logical information is stored using less
physical information.

data element
Typically the smallest units of readable data with a collection of data. Bits,
bytes, WORDs, and DWORDs are all data elements.

data encoding
A generic term for the process of converting data from one format to
another. Data compression and data encryption are both forms of data
encoding.

data encryption
The process of converting data from an intelligible format to an unintelli
gible, but decryptable, format.

DCT
Discrete Cosine Transform. A mathematical transform used to convert data
from a 3D to a 2D form. Used by lossy compression methods such as JPEG
andMPEG.

DDB
Device Dependent Bitmap. A bitmap format designed to support the capa
bilities of a specific type of display hardware. A bitmap format not designed
with portability in mind.

decimation
The process of throwing away portions of a bitmap image when reducing it
in size.

decoder

nm

An algorithm that converts encoded data to a raw format.

Device Independent Bitmap. A bitmap format that is designed not to be
limited by the capabilities of a specific type of display hardware. A portable
or interchange data format.

GLOSSARY 1071

dichroic f'dter
A light producing mechanism which concentrates and directs visible light
but not infrared radiation (heat). Used in movie and multimedia produc
tion, and in some scanners. See scanner.

digital camera
An input device in the form of a camera, capable of delivering bitmap
image data of real-world scenes in digital form to a creator application.

digital signature .
An electronic method of verifying the authenticity of a message or file. A
block of data is attached to the message that can be used to validate who
sent the message and when it was sent. If a change is made to the file, the
signature will not verify.

digitizing
The process of converting an analog signal to a digital signal. See sampling.

digitizing device
A device that creates a version of a physical graphical representation by cre
ating a digital version. Common digitizing devices are scanners, image cap
ture boards that work with video cameras, and digital cameras.

digitizing tablet
An input device incorporating a pen-like component and a flat surface,
and meant to provide a simulation of the interaction between the hand, a
pen or pencil, and paper. Can be pressure-sensftive.

display adapter
See video display card.

display surface
The portion of an output device where an image appears. The screen of a
monitor, or printed paper.

dithering
The process of displaying colors not available on an output device. Patterns
of other colors are created by intermixing monochrome pixel values with
color pixels to produce shading and highlighting that appears to the eye as
differing colors. See monochrome and contrast with halftone.

1072 APPENDICES

dot pitch
The measure of the spacing between the centers of physical pixels on an
output device, usually a monitor. On monitors, dot pitch is expressed in
millimeters (mm) between the centers of like-colored pixels. See shadow
mask.

down-bit ordering
Where the most significant bit (MSB) is the first bit read in a byte. See MSB.

drawing surface
The area on an output device where a rendered image appears.

drum scanner
A high-resolution scanning device used in the most demanding profes
sional applications. They can often be the source of extremely large files.
See scanner and .film scanner.

dumb frame buffer
A video display card consisting mainly of a frame buffer with few enhance
ments. Contrast with accelerator card.

EDIP
See Electronic Document Image Processing.

Electronic Document Image Processing
A subfield of image processing specializing in the creation, storage, and
manipulation of black-and-white images derived from printed documents.
At least 75 percent of the image-processing market today is based on EDIP
systems and applications.

element attributes
Information, such as color, line width, pen style, and fill color, stored in a
file for use by a rendering application in reconstructing an image element.

encoder
An algorithm that converts raw data to an encoded form, usually to physi
cally compress the data.

GLOSSARY 1073

entropy encoder
See lossless encoding.

FAX files
Graphics files produced by a program that manages FAX-modem hardware.
These are generally bitmap files and may be compressed. They are .often in
a proprietary format, although versions of TIFF and PCX are popular.

field
A ftxed-size data structure in a file.

fields
Images stored in a video or animation file designed to support various dis
play technologies. NTSC video consists of two sets of images meant to be
displayed alternately, each of which is a field.

f'tle element
The smallest unit of logical information within a file. Examples include
fields within graphics file headers and color triples used to store RGB pixel
data.

f'tle header
A data structure containing information on the data stored within a file.
Graphics file headers contain information such as the height and width of
an image and the number of bits per pixel.

f'tle ID
See file identifier value.

f'tle identifier value
A specific value, or set of values, used to positively identify a file as being of
a particular file format. File ID values may be an integer, such as
59A66A95h, or a string of ASCII characters, such as BITMAP, and they usu- ·
ally appear in the first field of a file header. Also called magic number.

f'ill attributes
Fill color and/ or other information associated with an image element, and
used by the rendering application to reconstruct an image.

1074 APPENDICES

fill color
A color meant to be used by a rendering application when filling a closed
area, usually polygonal, when recon~tructing an image element.

rtller
See padding.

film scanner
See slide scanner.

filter
A section of code or program which operates on an entire block of data.
Contrast with scanner.

frxed
Refers to an element in a file that has a known position, usually identified
by an offset from a landmark in a file.

f'rxed frequency
A monitor or other output device with fixed frame rate and horizontal fre
quency, only capable of displaying a small set of resolutions. See horizontal
frequency and frame rate.

footer
A data structure similar to a header but appended to the end of a file.

format creator
The person or organization responsible for the definition of the physical
structure of, and conventions associated with, a file format. Often this per
son is a programmer called on to produce a file format in association with
an application. In some cases, the format crea~or is a standards committee.

fractal
Repetitious patterns that naturally occur in the texture of all surfaces.
Mathematics is used to described the properties of fractals.

fractal compression
The use of fractal encoding to reduce the amount of physical data required
to store an image. See fractal encoding.

GLOSSARY I 075

fractal encoding
The process of describing a bitmapped image as a sequence of fractals and
by its fractal properties. See fractal.

frame
A single image. Multiple frames of slightly differing images displayed in
rapid sequence are used to create animations.

frame buffer
Older term for video display card. Technically, the portion of a video dis
play adapter containing memory in which digital image data is assembled
prior to sending it to a monitor. See· video display card.

frame rate
Number of full images which can be displayed by an output device, usually
a monitor. Number of fields a monitor can display in a given time. Usually
expressed in hertz (Hz). See fields, interlaced, non-interlaced, and vertical
retrace.

frames
Series of single images stored in a video, animation, or multimedia format
file, meant to give the illusion of motion when rendered in rapid succes-
sion.

frequency
Factor that determines the quality of the image a monitor or other output
device can display. Higher frequency monitors update the screen faster and
theoretically can display more information in a given amount of time. See
vertical retrace, interlaced, and non-interlaced.

FfP
File Transfer Protocol. A low-level protocol used to transfer files between
computers over computer networks. FTP is the primary means by which
binary files are transferred between machines on the Internet.

fullcolor display
A term sometimes used to imply that a device is capable of displaying 215
(32,768) or 216 (65,536) colors; however, this actually describes hicolor, full
color tends to be a marketing term, rather than a technical one.

1076 APPENDICES

full-motion video
Video image frames displayed at a rate of 30 frames per second for NTSC
and 25 frames per second for PAL.

fuzzy logic

G3

G4

A sub-discipline of mathematics used to quantify subjective linguistic con
cepts, such as bright, dark, very far, quite close, most usually, almost impos
sible, etc.

Abbreviation for CCITI Group 3 encoding.

Abbreviation for CCITI Group 4 encoding.

gamma
A numerical value used to indicate the non-linear response curve of an out
put device to light intensity. Used to correct the intensity of an image on a
display device (gamma correction). Also called gamma value.

gradient rill
An elaboration on a fill color consisting of two colors placed at opposite
ends of a closed area of an image element. The area is filled with a continu
ous blend of color intermediate to the two colors and between the two
ends. See fill color.

graphic work
The end result of effort by a graphic artist. A drawing or other artifact.

graphics adapter
See video display card.

graphics card
See video display card.

graphics data
Data which may or may not have a physical representation, intended for
display on an output device.

GLOSSARY 1077

graphics ide
A file containing graphics data.

graphics ide format
The definition of, and conventions associated with, a file structure used for
the storage of graphics data.

graymap
In older terminology, raster data composed of values with more than two
levels, intended for an output device capable of displaying only shades of
gray.

gray-scale
A term used when referring to an image. A gray shade is any color whose
three primary colors are the same value. Gray shades only have intensity
(luminance) and no color (chrominance).

halftone
The use of hi-level pixels or dots to create the appearance of shades of gray
by grouping the pixels in patterns that produce the desired shades. Used in
printing and liquid crystal displays. See bi-leuel and contrast with dithering.

HBL
Acronym for Hue/Brightness/Luminosity. See HSL

heuristics
A set of rules derived from experimentation or experience.

HiS
Video recording format offering resolution of over 400 lines. See VHS, S
VHS, 8-mm, and Beta.

hicolor display _
A term used to imply that a device is capable of displaying 215 (32,768) or
216 (65,536) colors.

HLS
Acronym for Hue/Lightness/Saturation. See HSL

1078 APPENDICES

horizontal frequency
Measure of the speed at which the electron beam in a monitor sweeps
across the width of the active area of the screen. Usually expressed in kilo
hertz (kHz).

HSB

HSI

Acronym for Hue/Saturation/Brightness. See HSL

Acronym for Hue/Saturation/Intensity. An additive color system based on
the attributes of color (hue), percentage of white (saturation}, and bright
ness (intensity). Similar or identical color systems include HBL, HLS, HSB,
HSL, and HSV.

HSL
Acronym for Hue/Saturation/Luminosity. See HSL

HSV
Acronym for Hue/Saturation/Value. See HSL

hue
Any color, such as red, violet, orange, and so on.

hybrid text
The storage and display of bitmap and textual data using a single graphics
file format. GIF89A is an example of a format with a hybrid text capability.

hybrid database
The ability to store complex and highly organized database information in
conjunction with graphical data. See also hybrid text.

hypertext
A collection of graphical and textual data organized in such a way as to
facilitate easy access to all of the information it contains. Hypertext may be
thought of as a precursor to multimedia, or simply as an extension of it.
Certain extensions of hypertext are becoming known as hypermedia.

icon
A small bitmap image used as a placeholder to represent an object. An icon
may also be though of as a graphical file name. Contrast with thumbnail
image.

GLOSSARY } 079

IDvalue
See file identifier value.

IEC
International Electrotechnical Commission. See ISO.

image
A visual representation of graphics data .displayed on the display surface of
an output device. Output of a rendering application. One end of the
graphics production pipeline. A single frame from an animation or video
sequence.

image bi1map
See bitmap image.

image data
A term used loosely to refer to bitmap data, or the portion of a bitmap file
containing bitmap data.

image elements
Portions of an image, often repeated, from which the image is composed
by duplication, rotation, scaling, and translation.

image f'Ile index
Image offset table. An area of a file designed to hold descriptions of subim
ages, image components, or individual images in a multi-image file.

image height
The vertical size of an image, usually expressed in pixels or scan-lines or
other non-device-depef\dent units.

image length
The horizontal size of an image, usually expressed in pixels or other non
device-dependent units.

image offset table
A portion of a file designed to hold offsets, usually measured in bytes,
where subimages, image components, or individual images in a multi
image file can be found.

1080 APPENDICES

index map
See look-up table.

index values
Pairs of numbers arranged in a table so that an application can match
numbers it knows about to numbers representing colors that an output
device knows about.

indexed-color image
See color-mapped image.

indirect color
The specification of colors through the use of a palette or look-up table.

input
Generic term in computer technology referring to any data which is pro
cessed or transformed.

interframe encoding
The creation of encoded data from two or more image frames. MPEG
encoding is an interframe encoding method.

interlaced
Refers to a strategy used by televisions and some older monitors, where the
electron gun draws every other line during a single sweep across the active
area of the screen. The alternate lines are filled in during a second pass.
See vertical retrace, non-interlaced, and fields.

interlaced encoding
See interleaved encoding.

interleaved encoding
The storage of bitmap scan-lines, or pixels within scan lines, in a non
sequential pattern. Contrast with sequential encoding.

interleaving
In reference to a single image, the storage of two or more subimages which
are combined to create a final image by displaying alternate scan-lines
from each subimage. In reference to video, multimedia, or animation for
mats, the process of storing or displaying information other than that used
to reconstruct the video portion between video frames.

GLOSSARY 1081

interpolation
The addition of pixels between pairs of others. Usually made necessary
when enlarging a bitmap.

intraframe encoding

ISO

The creation of encoded data from a single image frame. JPEG encoding is
an intraframe encoding method. ·

International Standards Orgainzation. The primary organization for creat
ing world-wide technical standards. Along with the IEC and the ITU, the
ISO authors and maintains standards for everything from nuts and bolts to
computer languages.

IS0-9660
A file system standard developed for CD-ROMs using the CD-XA encoding
standard. An IS0-9660 file system is readable by many operating systems,
including MS-DOS, Macintosh OS, and UNIX.

lTU
International Telecommunications Union. An agency of the United
Nations responsible for telecommunications. The ITU replaced the CCITI
on Februrary 28, 1993. ·

ITU-T
ITU Telecommunications Standardization Sector. The body within the ITU
responsible for setting world telecommunications standards (Recommen
dations).

jaggies
Term denoting the presence of aliasing in an image.

JBIG
Joint Bi-level Image Experts Group. The ISO/IEC JTC1/SC29/WG9 and
CCITT SGVIII group formed in 1988 to establish a standard for the progres
sive encoding of hi-level image data. JBIG is also the name given to the
codec created by this group.

1082 APPENDICES

JPEG
Joint Photographic Experts Group. The group of the ISO responsible for
the creation and maintenance of the]PEG still-image compression stan
dard.

JTCl
Joint Technical Committee 1. A group within the ISO/IEC that handles
information technology.

key points
Points necessary for. the reconstruction of a graphics object from vector
data. These are usually the minimum needed to specify the object. Two
points at the comers of a rectangle are the key points.

landmark
Refers to an element in a file from which other positions and offsets are
calculated. The canonical landmarks are the beginning, end, and current
position. Other features, such as prominent data structures, may at· times
act as landmarks.

laser disc
Recording medium used for video; similar to a large CD or CD-ROM, offer
ing the advantage of random access and high quality.

leak
Image artifact, usually generated from vector data, produced by a render
ing application from an image element incorrectly designated as closed.
Usually consists of horizontal lines of the fill color in an inappropriate area
of the image.

little-en dian
Refers to systems or machines which store the least significant byte (LSB) at
the lowest address in a word, usually referred to as byte 0. Contrast with big
endian.

logical pixels
Idealized pixels having perfectly defined characteristics and occupying no
physical extent. The graphics equivalent of a mathematical point. Contrast
with physical pixels.

GLOSSARY 1083

look-up table
A series of pairs of numerical values whereby a program can match a mean
ingful value to one which specifies a color on an output device.

lossless encoding
A data compression or encoding algorithm that does not lose or discard
any input data during the encoding process.

lossy encoding

LPI

A data compression or encoding algorithm that loses, or purposely throws
away, input data during the encoding process to gain a better compression
ratio.]PEG is an example of a lossy encoding method.

Lines per inch, usually used to refer to screen size or the resolution of an
output device. See screen.

luminance
The brightness or intensity of a color. The pixels in a monochrome image
have a luminance of either 100 percent or 0 percent.

LSB
Depending on context, either the least significant byte (of more than one
juxtaposed bytes) or the least significant bit (of the bits in a byte or word of
data). Contrast with MSB.

LUT
See look-up table.

M-IT
Broadcast quality video recording format and medium. See Beta, VHS, U
Matic, Betacam, and D-2.

magic number
See file identifier value.

magic values
Arbitrary numbers or text strings, often picked "out of the air" by a format
creator for the purpose of identifying the format.

1084 APPENDICES

message digest function
A family of algorithms used to create digital signatures.

metadata
Data comprised of attributes, parameters, notebooks, and other types of
miscellaneous complex data aggregates associated with primary scientific
data.

metaf"tle
A file format capable of storing two or more types of image data, usually
vector and bitmap, in the same file.

MIDI
Acronym for Musical Instrument Digital Interface. A standard for digital
signals used to control electronic musical instruments. MIDI information
may be stored as a data file and is found in many multimedia file formats.

MMR
Modified Modified READ, The compression algorithm used in CCITI
Group 4 facsimile compression.

monochrome
An image composed of a single color and black. Most monochrome images
are black and white, although any color might be substituted for white.
Also called 1-bit images. Although the term monochrome, of course,
means single-colored, in computer graphics it is used to denote a system
where two colors can be specified: the foreground color and the back
ground.

:MPEG

MR

Motion Picture Experts Group. The group of the ISO responsible for the
creation and maintenance of the MPEG video compression standard.

Modified READ, The compression algorithm used in CCITI Group 3 fac
simile compression.

MSB
Depending on context, either the most significant byte (of more than one
juxtaposed bytes) or the most significant bit (of the bits in a byte or word
of data). Contrast with LSB.

GLOSSARY 1085

multi-channel palette
A palette with two or more individual color values per color element. Con
trast with single-color palette.

multi-sync
A monitor or other output device with frame rate and horizontal frequency
adaptable to demand. See horizontal frequency, fixed frequency, and frame rate.

multimedia
The concept of creating, storing, and playing back two or more forms of
electronic information simultaneously. Such information includes still
images, motion-video, animations, digitized sound, and control informa
tion such as MIDI codes.

non-interlaced
Refers to a strategy used by higher-frequency monitors where the electron
gun draws all lines of the active area of the screen during a single sweep.
See interlaced, vertical retrace, and fields.

NTSC
Acronym for National Television Standards Committee. The standards
committee responsible for, among other things, the creation of the color
television signal used in the United States (NTSC video).

objects
Image elements, particularly in vector files. Descriptions of complex image
elements. Image element information stored along with code for use by
the rendering application.

output
Generic term in computer technology meaning the result of any process or
transformation of data.

output device
Physical mechanism used to create a display.

output device language
A computer language or set of commands created by a vendor to commu
nicate with a particular output device, such as a printer. Hewlett Packard's
PCL is one well-known output device language and is understood by
Hewlett Packard printers and HP-compatible printers. It may or may not be
easily human-readable. See page description language.

1086 APPENDICES

overflow
A condition which results when data of a certain size is placed in a storage
cell, such as location in memory or a register, which is too small to hold it.
This is usually a problem resulting in loss or corruption of data.

overlay bit
An additional bit found in a pixel or pixel plane that indicates whether the
pixel is displayed as visible (opaque) or transparent (overlayed). See alpha
channel

packet
A block of data with a known structure, usually used to denote elements of
a stream.

padding
Portion of a file usually included to accommodate machine dependencies
or to increase reading or writing speed.

page description language
A computer language created by a vendor to communicate with output
devices. It may be a fully functional language and is always human
readable. It is generally more sophisticated than an output device language
and is not tailored to any particular output device. The most popular page
description language in use today is Adobe's PostScript.

page table
An array of offset values used to index the location of multiple bitmaps
within a single graphics file. Each offset value indicates the starting posi
tion of each bitmap.

PAL
Acronym for Phase Alternation Line. PAL is a standard of color television
and video signals developed in West Germany and used throughout
Europe (PAL video).

palette
The gamut of colors which a device can display; a software data structure
used to match numbers that are meaningful to a software program to num
bers that cause colors to appear on an output device.

GLOSSARY 1087

passive information device
An electronic device with which the user need not interact in order to
obtain data. Television and newspapers are examples of passive informa
tion devices. Contrast with active information device.

PDL

pel

Page Description Language. A computer language used for describing the
layout, font information, and graphics of printed and displayed pages.

See pixeL

pen
A logical device used by creator applications to draw lines or curves or
objects composed of them, having the properties of width, color, and possi
bly line style. An area in a file holding information used by a rendering
application in reconstructing lines.

persistence
A term often used in object-oriented technology to describe data that is
stored in a static medium, such as a disk file or database. The data is said to
"persist" even after the application that created it is no longer in memory.
Spreadsheet, word processing, and graphics files are examples of persistent
data.

PGP
Pretty Good Privacy. A powerful public-key encryption system authored by
Phil Zimmermann that is freely available on the Internet.

physical pixels
The actual pixels which appear on the display surface of a raster output
device. Contrast with logical pixels.

picture element
See pixel.

pixel
In traditional usage, short for "picture elements." These are irreducible
elements of color created by an output device on its display surface. The
term is sometimes used loosely to refer to the values of bitmap data ele
ments used by an application to order the display of color elements on an
output device.

I 088 APPENDICES

pixel depth
See hit depth.

pixelmap
In older terminology, bitmap data composed of values with more than two
levels, intended for an output device capable of displaying color.

pixel values
Numerical data items in a graphics file indicating the color or other infor
mation associated with an individual pixel.

pixmap
See pixelmap.

planar data
Image data stored as separate color planes, and meant to be assembled
into the final image by the rendering application. Contrast with scan-line
data.

planar f':des
Graphics files with image data stored as bit planes or color planes rather
than as pixels.

plotter
A bitmap rendering of vector or 3D graphical data used to display an
approximation of the graphical data. See thumbnail.

predictive encoding
An algorithm that has certain prior knowledge about the format of the
data it is encoding. Huffman is a predictive encoding algorithm.

preview
A bitmap rendering of vector or 3D graphical data used to display an
approximation of the graphical data. See thumbnail.

primary colors
Colors in a particular color model from which other colors can be con
structed. In the RGB color model, red, green, and blue are the primary col
ors because other colors can be produced by mixing them.

GLOSSARY 1089

production pipeline
The series of operations involved in defining, creating, and displaying an
image, from conception to its realization or recording on an output device.

progressive encoding
The storage of a single bitmap as several different images, each at a differ
ent level of resolution.

pseudo-color
A color specified through the use of a palette or look-up table.

quantization
The process of reducing the number of colors defined in the source data
to match the number available on an output device.

quantization artifacts
Generally refers to features introduced in an image when the data used to
render that image is converted to a data format capable of displaying fewer
colors than the original. Banding and false color are two examples of possi
ble quantization artifacts. Usually considered undesirable.

raster

raw

Refers to graphics data r~presented by color values at points, which taken
together describe the display on ·an output device. Bitmap is used in prefer
ence to rasterin this book.

Image data without header information. Sometimes refers to image data,
especially bitmap data, which is uncompressed or otherwise unencoded.

READ
Relative Element Address Differentiation code. A compression method
used by CCITI Group 3 and 4 facsimile transmission.

realization
The representation of an image on an output device. Sometimes meant to
signify the current rendered version of some particular graphics data.

1090 APPENDICES

render
To produce a visual representation of graphics data on an output device.

rendering
The actual representation of an image on an output device.

representation
The actual artifact produced as the end result of the computer graphics
production process, which may be an image on a monitor or on paper.

reserved fields
Fields in a file designated in the format specification as reserved space.

reserved space
Portion of a file designated in the format specification as space for addi
tional information should it become necessary in the future.

resolution
The measure of detail within an image. The resolution of an image is its
physical size (number of pixels wide by number of scan lines long). The
resolution of a display is the number of scan lines it may display (800x600
is a higher resolution than 320x200).

RGB
Acronym for Red/Green/Blue. An additive color system based on the pri
mary colors red, green, and blue. The RGB model is loosely patterned after
human eyes, which have a peak sensitivity to the colors red, green, and
blue light.

RLE
Run-Length Encoding. A simple method of compressing runs of identical
byte sequence values into a code only a few bytes in length.

S-VHS
Video recording format and medium offering horizontal resolution of over
400 lines. See VHS and Beta.

sample rate
The number of digital samples recorded per second. The sample rate
increases with the number of samples recorded per second. Same as sample
resolution.

GLOSSARY 1091

sample resolution
See sample rate.

sampling
The process of readi;ng an analog signal at specific increments in time
(sample rate) and storing the data as digital values. Sampling is the basic
process used to create digital audio and video.

saturation
The percentage of white in a color. Zero percent saturation is full white
(no color). 100 percent saturation is no white (pure color).

scalable
An image, such as that stored as vector data, which can be scaled without
introducing artifacts.

scaling
The process of enlarging an image in one or more directions.

scan line
A row of pixels. The term comes from the scanning action of raster CRT
output devices, which produces successive lines of output on the display
surface.

scan-line data
Image data stored as scan lines, and meant to be displayed a line at a time
by the rendering application. Contrast with planar data.

scan-line table
An atray of offset values used to index the location of each scan line or tile
within a collection of bitmap data, which may or may not be compressed.
Each offset value indicates the starting position of each scan line or tile.

scanner
An input device generating a bitmap image of a surface. A section of code
or program allowing random access to a block of data and which treats dif
ferent portions of the block differently in accord with its informational
content. Contrast with filter.

1092 APPENDICES

scene description language
A computer language used to describe the postuon and attributes of
objects within a 2D or 3D image. A file produced by such a language is
called a scene format or scene description file.

screen
Term borrowed from traditional graphics denoting a device or process
designed to turn a continuous tone image into an array of dots, usually for
display on a low-resolution output device. See IPL

SECAM
Acronym for Sequential Coleur Avec Memoire (sequential color with mem
ory). SECAM is a standard of color television and video signals used in
France and several other European countries (SECAM video).

segment
An independent section of a data stream. For example, a JPEG data stream
is composed of many different types of information, each stored in a sepa
rate segment.

sequential encoding
The storage of a bitmap using the natural order of its scan lines from the
top-to-bottom or bottom-to-top of image. Contrast with interleaved encoding.

shadow mask
A plate with tiny holes, usually in a monitor, which helps locate and focus
the electron beam. The spacing of the holes in monitors with a shadow
mask determines the dot pitch. See dot pitch.

single-channel palette
A palette with one color value per element. Contrast with multi-channel
palette.

single pass scanner
A scanner which images an object in a single pass of its mechanism. See
scanner, three-light method, and three-filter method.

slide scanner
A device allowing the digitization of slides taken with conventional film
cameras. Usually much higher resolution devices than scanners designed
with paper in mind. See scanner.

GLOSSARY } 093

stream
Data with no fixed position in a file, composed of sub-elements with a
known structure.

strip
A collection of one or more contiguous scan lines in a bitmap. Scan lines
are often grouped in strips to buffer them in memory more efficiently. Also
called bands in some file format specillcations.

stripe mask
See aperture mask.

stroke font
A file of character information meant to be rendered by drawing single
lines, usually by a plotter or other device responding only to pen up, pen
down, and move to commands.

subsampling
See decimation.

subtractive system

tag

A color system in which colors are created by subtracting colors from white.
The more color that is added, the more the resulting color tends toward
black.

A data structure in a file which can vary in both size and position.

three-f':alter method
Process whereby color images are produced, usually in scanners, by illumi
nating the object to be imaged with white light which is made to pass
through three successive colored filters. Contrast with three-light method. See
color model and scanner.

three-light method
Process whereby color images are produced, usually in scanners, by succes
sively illuminating the object to be imaged with three colors, usually red,
green, and blue. Contrast with three-filter method. See color model and scanner.

1094 APPENDICES

thumbnail

tile

A small image derived from a larger image used to quickly display· an
approximation of the contents of an image. See preview.

A 2D sub-section of a bitmap. For example, a bitmap lOOxlOO pixels in size
may be divided into four 25x25 pixel tiles. Pixels are often grouped as tiles
rather than scan lines to achieve a more efficient use of memory.

trailer
See footer.

transcode
Convert from one encoded data format to another encoded data format
for example, converting CCITI Group 3-encoded data to RLE-encoded
data.

transform
See convolution.

transparency
The degree of visibility of a pixel against a fixed background. A totally
transparent pixel is invisible. See also alpha channel.

trichromatic colorimetric
Color models that use three color channels to specify a color. The RGB
color model is a trichromatic colorimetric system.

Trinitron
Trademark of Sony Corporation, referring to picture tubes used in moni
tors and televisions using aperture mask technology, and where dot pitch is
an expression of the horizontal distance between strips in the aperture
mask. See aperture mask, shadow mask, and dot pitch.

triplesensorscwnner
A scanner which images an object using three recording devices at once,
usually CCDs. See scanner and CCD.

GLOSSARY I 095

truecolor display
A term used to imply that a device is capable of displaying 224 (16,777 ,216)
colors or more (said to match or exceed the color-resolving power of the
human eye). Truecolor formerly referred to any device capable of displaying
215 (32, 768) colors or more, but hicolor more accurately describes the dis
play of215 (32,768) or 216 (65,536) colors.

U-Matic
Broadcast quality video recording format and medium. See Beta, VHS, Beta
cam, M-Il, and D-2.

up-bit ordering
Where the least significant bit (LSB) is the first bit read in a byte. See LSB.

vector
Refers to graphics data composed mainly of representations of lines and
outlines of objects, which can be compactly represented by specifying sets
of key points. A program displaying vector data must know how to draw
lines by interpolating points between the key points.

vertical refresh rate
See frame rate.

vertical retrace
The interval between when an electron beam in a monitor reaches the end
of its sweep across the active area of the screen and when it returns to the
start.

vertical scanning frequency
See frame rate.

VHS
Video recording format and medium in wide use in conjunction with tele
vision technology, offering horizontal resolution of 240 lines. Not consid
en~d broadcast quality. See Beta.

video adapter
See video display card. Also, a device allowing output in NTSC, PAL, or other
video format.

1096 APPENDICES

video adapter card
See video display card.

video controller
See video display card. Also, a video adapter which may have circuitry for
controlling a video recording or playback deck.

video display card
Device which takes digital information from a rendering application and
converts it to an analog format suitable for output on a monitor.

virtual output
Data or an ·image that is produced, but that can't be seen-in other words,
for which no physical representation yet exists. Data in a file.

virus
A computer program that mimics a biological virus in its characteristics
and actions, including hiding, replicating, and possibly causing the death
of its host.

voxel
A 3D pixel. Voxels contain all of the components of a pixel (such as color
values) and include an extra component that specifies the distance of the
voxel from the point of observation.

VRML
Virtual Reality Modeling Language. An interpreted language used to ren
der both still and animated 3D objects.

VTR
Video tape recorder used as an output device for video, animation, and
multimedia creator applications.

x origin of image
The point in an image from which pixels are numbered in the horizontal
direction. Usually at a corner or at the center of the image.

y origin of image
The point in an image from which to start counting scan-lines_. Usually at
the top, bottom, or center of the rendered image.

GLOSSARY 1097

YIQ
The color model used by NTSC video signals. See NTSC.

YUV
Acronym for ¥signal, U-signal, and V-signal, which is based on early color
television terminology. A luminance/ chrominance-base color model (Y
specifies gray-scale or luminance, U and V chrominance) used by many
video compression algorithms, such as MPEG.

1098 APPENDICES

INDEX

1-bit displays, 29
3D file formats, 15

3D Studio, 282-309
SenseS NFF, 796-800

3D Interchange File (see SGI)
3D Studio, 15, 282-309
3DS (see 3D Studio)
8-, 15-, 16-, 24-bit color, 1061
8-mm recording format, 1061
BSVX file format, 229

absolute format, 35
accelerator card, 1062
AID conversion, 223
Adaptive Differential Pulse Code Modulation

(ADPCM), 226
adaptive encoding, 157, 1062

for audio information, 226
additive color systems, 47, 1062
ADI (see AutoCAD DXF)
Adobe

Illustrator, 235-249
LZW compression and, 177
Photoshop, 250-260
Streamline, 105

ADPCM (Adaptive Differential Pulse Code
Modulation), 226

Advanced Programming Interface (see API)
AI (see Adobe Illustrator)
AIFF (Audio Interchange File Format), 229

and QuickTime, 749
aliasing, 104, 1062
alignment of elements within structure, 110
alpha channel, 52, 1062
alphanumeric fonts, 17-20

America Online (AOL), 1043-1044
LZW agreement with, 177

American Standards National Institute
(ANSI), 330

Amiga IFF, 122
Amiga Paint (see IFF)
AMSC's SAF format (see SAF)
Andrew Formats (see CMU file formats)
Andrew Toolkit API, 336-341
ANI (see Atari ST file formats)
Animatic Film, 262
animation, 13, 222, 1062

frames,224,402, 1076
Animation Compressor method, 749
animation file formats, 3, 372, 604

Atari ST, 262-275
DEGAS (see Atari ST file formats)
DVM Movie, 372-375
FLI, 401-416
GRASP, 451-456
MIFF, 599
MPEG, 604
NEOchrome (.ANI), 270
POV, 342,720-724
QuickTime, 229,498
SGI, 806-811, 818
TTDDD, 909-913
Wavefront RIA, 953-963
(see also DPX; multimedia file formats;

video file formats)
ANM (see Atari ST file formats)
ANSI (American Standards National Insti

tute), 330
anti-aliasing, 1062
AOL (America Online), 1043-1044

INDEX 1099

AOL (America Online) (cont'd)
LZW agreement with, 177

aperture mask, 1063
API (Advanced -Programming Interface), 345

Andrew Toolkit, 336-341
and GEM VDI, 423

Archie, 1019-1020
archivers, error checking, 126
archiving programs

arj, 170
lzh, 217
pkzip,170,217,228,437
zoo, 170,217,228,437

arithmetic encoding, 199
arj program, 170
array of pixels, 1063
ART compression, 23, 210-212, 1063
artifact (in image), 1063
ASC (see 3D Studio)
ASCII data, 17

(see also fonts)
ASCII readers, 108
aspect ratio, 1063
astronomical file formats

FITS, 392-400, 926
PDS, 678-682
VICAR2, 921-924

astronomy imaging resources, 1037-1039
asymmetric compression, 156
Atari ST file formats, 262-274
.AU file format, 229
audio file formats, 16, 225, 229

8SVX,229
AIFF,229, 749
.AU, 229
AVSS (see Intel DVI)
.HCOM,229
Microsoft RIFF, 229, 554-563
.SND, 229
.VOC, 229

audio information, 221
binary representation of, 226
compression, 226
digital, 225-229

Audio Interchange File Format (AIFF), 229
and QuickTime, 749

Audio/Video Support System (see Intel DVI)

authorship (see copyrights; patents; trade
marks)

AutoCAD DXB (see AutoCAD DXF)
AutoCAD DXF (Data Exchange Format), 13,

77,82,108,276-281
conversion to another format, 103

Autodesk
3D Studio (see 3D Studio)
Animator Pro, 402
DXF (see AutoCAD DXF)

AVI (see Microsoft RIFF)
AVS (see Dore Raster File Format; Intel DVI)
AVSS (see Intel DVI)

Ballistic Research Laboratory (BR.lr) CAD,
315-317

banding, I 063
bands (see strips)
baselineJPEG, 194-198
BBS (Bulletin Board System), 1044-1045
BBS (Bulletin Board Systems), 1063
BDF (Biunap Distribution Format), 310-314
Beta video format, 1063
Bezier splines, 82, 235, 1064
BIG file format, and VIFF, 926
big-endian byte ordering, 92, 1064

and header reading, 115
on a little-endian machine, 112

hi-level displays, 29, 1064
binary file formats

DXB (see AutoCAD DXF)
Macintosh PICT, 103,544-548
.MOD,947
SGO, 818
XBM,926

binary readers, 108
binary representation, 120

of sound, 226
Binary Universal Form for the Representation

of Meteorological Data (BUFR),
318-320

biomedical imaging resources, 1034-1036
bit

depth, 9, 1064
order, 94-95, 1064
per pixel (bpp), 1064
plane, 1064

..
1100 ENCYCLOPEDIA OF GRAPHICS FILE FORMATS

bit (cont'd)
sex,95, 1064

bit-level RLE, 16~
bitmap data, 8
Bitmap Distribution Format (BDF), 310-314
bitmap file formats, 3, 430

BMP (see Microsoft Windows BMP)
DPX, 350-367
EPSI (see Encapsulated PostScript)
GEM Raster, 169,417-422
Lumena Paint (BPX, PIX), 532-536
Microsoft RIFF, 229,554-563
MIFF, 599
OS/2 BMP, 631-650
PNG, 150, 700-719
Presentation Manager Metafile, 725
SPIFF, 202,822-837
TIFF (see TIFF)
Utah RLE, 917
XBM, 122, 983

bitmap files, 9, 55-74, 1065
compressing, 154
conversion

to bitmap, 102
to metafile, 105
to vector, 105

organization of, 55-57
and pixel data, 74
scaling, 74
strips and tiles, 69

bitmap fonts, 18
bitmap headers

Kofax Raster format, 63
Microsoft Windows BMP, 62
reading speed, 65
Sun Raster format, 63

bitmap images, 7-24, 1065
converting to fractal data, 213
monochrome, 73

bit-ordering schemes, 94
Black, White, and Gray color model, 50
blocks, 1067
BMP (see Microsoft Windows BMP; OS/2

Bitmap)
BND (see Microsoft RIFF)
Bob (see Vivid and Bob)
bpp (bits per pixel), 1064
BPX (see Lumena Paint)

BRL-CAD (Ballistic Research Laboratory
CAD), 315-317

broadcast quality, 1065
browsers, web (see World Wide Web)
BSAVE (see Pictor PC Paint)
BUFR (Binary Universal Form for the Repre

sentation of Meteorological Data),
318-320

bugs, corrupting graphics files, 123
Bulletin Board System (BBS), 1044-1045,

1063
BW (see SGI)
byte ordering, 91-93, 1065

big-endian, 92, 112, 115, 1064
little-endian, 92, 112, 1083
LSB (least significant byte), 92
middle-endian, 92
MSB (most significant byte), 92

byte-level RLE, 164

C16 (see Intel DVI)
CAD (Computer Aided Design), 77, 1070

BRL-CAD, 315-317
CALS (see CALS raster format)
DXF (see AutoCAD DXF)
graphics, 222
and SGI, 806

CAL (see CALS raster format)
CALS raster format, 321-329

and bit order, 95
and PostScript PDL, 322
Type II, 71

case sensitivity and filenames, 98
CCDs (charge coupled devices), 1065
CCIR-601 digital television standards, 605,

610
CCITT encoding schemes, 16, 23, 179-191

Group 3,179
Group 4, 179
]BIG versus, 206
as non-adaptive, 180
tips for designing, 188

CD-DA (Compact Disc-Digital Audio) stan
dard,221,228, 1066

CD-I (Compact Disc-Interactive) standard,
221, 1066

CD-R (Compact Disc-Recordable or Compact
Disc-Write Once) standard, 221, 1066

INDEX 1101

CD-ROMs (Compact Disc-Read Only Mem-
ory), 1066

Kodak Photo CD, 516-519
and QuickTime, 747
of spacecraft data, 679
for storing multimedia information, 220

CDs (compact discs), 221, 1069
and MPEG, 605

CD-XA (Compact Disc-Extended Architec
ture) strndard,221, 1066

CE1, CE2, CE3 (see Atari ST file formats)
CGM (Computer Graphics Metafile), 13, 77,

81-83, 330-335
converting to another format, 104
and GKS strndard, 331
and Lotus PIC, 529

character data, 17-20
chemical imaging resources, 1034-1036
chroma, 1066
chrominance components, 196, 1066
CHT (see Harvard Graphics)
chunks, 1067

3DS file (see 3D Studio)
in Microsoft RIFF, 555

CIE (Commission Intemationale de
l'E'clairage), 1067

CLP (see GRASP; Pictor PC Paint)
CLUT (Color Look-Up Table), 1084
CMI, CMQ (see Intel DVI)
CMU file formats, 336-341
CMY (Cyan/Magenta/Yellow), 49, 1067
CMYfile format (see Intel DVI)
CMYK (Cyan/Magenta/Yellow/Key), 1067
codec,l067
color, 45-51

attributes, 80
books about, 52
calibration, 1067
channels, 35, 1068
correction tables, 56, 1068
definition scheme, 32, 1068
few colored-data on many-colored device,

30
fullcolor, 29, 1076
gamut, 47, 1068
hicolor, 29, 1076
how we see, 45
map, 32, 1084

palettes, 32, 42
plane, 60
representation, 47-51
sex problems, 95
spaces, 35, 1068
specification, 31-45
subtraction, 47
systems, 4 7, 1062
tables, 32, 1084
truecolor (see truecolor)
values, 1089

Color Look-Up Table (CLUT), 1084
color models, 37, 1068

Black, White, and Gray, 50
CMY, 49
HSB,1079
HSI, 1079
HSL, 1079
HSV, 49, 1079
RGB, 35
YUV,50

ColoRIX VGA Paint (see RIX)
compact discs (CDs), 221, 1069

and MPEG, 605
strndards (see CD-DA; CD-I; CR-R; CD

XA)
Compact Video Compressor method, 748
Compatible Bitmap (see Microsoft Windows

BMP)
comp.compression newsgroup, 217,611
comp.graphics newsgroup, 611, 1029

andMTV,613
comp.graphics.misc newsgroup, 141
comp.multimedia newsgroup, 611
component selective refinement,JPEG, 201
component video, 1069
composite

colors, 35, 1069
image tiling, 202
video, 1069

compress program, 170
compression, 22, 153-218, 1071

adaptive, semi-adaptive, and non-adaptive,
156

algorithms, 23
ART, 23, 154, 210-212, 1063
artifact, 1069
CCITT (see CCITT)

1102 ENCYCLOPEDIA OF GRAPHICS FILE FORMATS

compression (cont'd)
Discrete Cosine Transform, 154, 194, 225,

1071
fractal image, 154, 212-217
JBIG, 154, 205-210
lossless (see lossless compression)
lossy (see lossy compression)
LZW (see LZW)
MR and MMR, 180, 205
negative, 166
physical and logical, 155
proprietary methods of, 128
ratio, 155
RLE (see RLE)
symmetric and asymmetric, 156
type, 60

CompuServe, 1041-1043
Unisys and, 174

Computer Aided Acquisition and Logistics
Support (see CALS Raster)

computer graphics, 27-54
books about, 52

Computer Graphics Metafile (see CGM)
computer-aided design (see CAD)
Computer Eyes Raw Data Format, 263
conforming software, 120
Constrained Parameters Bitstreams (CPBs),

606
contiguous data, 69-70, 1070
convenience revisions, 59, 1070
conversion applications, 102
converted file, 102
convolution,30, 1070
copy protection, 131
copyrights, 145-151, 1070

on graphics files, 145, 150
object code, 14 7
rights of ownership, 149

Corel Trace, 105
corruption of graphics files, 121-126
count value, 166
CPBs (Constrained Parameters Bitstreams),

606
CRC (Cyclic Redundancy Check), 1070
cross-coding, 162
CRTs, 75
cryptography, 127-136

misconceptions and benefits, 131
private versus public key, 132

CUT (see Dr. Halo)
Cyber Paint Sequence, 264
Cyclic Redundancy Check (CRC), 1070

D-2 video recording format, 1070
DAT (Digital Audio Tape) systems, 226
data

compression (see compression)
contiguous, 69-70
corrupt, in graphics files, 123
dictionary, 170
elements of, 20, 1071
encoding,22,60,153,1071, 1084
encryption, 1071

Data Interchange Format (see Lotus DIF)
DataBeam DBX and Hijaak Conversion Util

ity, 487
DBW_uRay (see uRay)
DCT (Discrete Cosine Transform), 154, 194,

1071
and digital video, 225

DCX (see PCX)
DDB (Device Dependent Bitmap), 1071
DeBabelizer, 22
decimation, 1071
decompressor (data), 153
decryption, 127-136
DEGAS (see Atari ST file formats)
delta compression, 222, 225
DEM file format and VIFF, 926
DIB (see Microsoft Windows Bitmap; OS/2

Bitmap)
dichroic filter, 1072
dictionary (data), 170
dictionary-based encoding algorithm, 170
DIF (see Lotus DIF) .
differencing, 172
Differential Pulse Code Modulation (DPCM),

199,226
digital audio, 225-229

(see also audio file formats; audio informa-
tion)

Digital Audio Tapes (DAT) and MPEG, 605
digital signatures, 126, 131, 135, 1072
digital video, 223-225, 1072
Digital Video Interface (see Intel DVI)
digitizing, 1072

analog-to-digital, 223
audio-to-digital, 226

INDEX 1103

digitizing (cont'd)
device, 1072
(see also video; video file formats)

Discrete Cosine Transform (see DCf)
display

hi-level, 29
environment, 122
hicolor, 1078
rights, 149
surface, 1072
truecolor, 1096

Display PostScript, 377
distribution rights, 149
dithering, 102, 1072
DKB ray trace application, 342
DLG file forinat and VIFF, 926
Dore Raster File Format (Dore RFF), 344-349
dot pitch, 1073
down bit ordering, 94, 1073
downsampling pixel groups in JPEG, 196
DPCM (Differential Pulse Code Modulation),

199,226
DPX, 350-367

copyrightnoticesin, 150
Dr. Halo, 368-371
drawing surface, 61
drum scanner, 1073
DVI (see Intel DVI)
DVM Movie, 372-375
DXB (see AutoCAD DXF)
DXF (see AutoCAD DXF)

edge detection, 105
EDIP (Electronic Document Image Process

ing), 1073
EGA (Enhanced Graphics Adapter) and PCX,

663
ELAS file format and VIFF, 926
elecronic mail (see email)
Electronic Arts Interchange File Format (see

IFF)
Electronic Document Image Processing

(EDIP), 1073
element attributes, 80
email (electronic mail), 1010-1011

mailing lists, 1017-1018
Encapsulated PostScript (EPSF), 108, 376-385

and CALS, 322
and Lumena Paint, 532

andWMF,592
enclosed elements, 80
encoding, 155, 1005-1009

adaptive, 157,226,1062
arithmetic, 199
dictionary-based, 170
Huffman, 16, 179
progressive, 208
sequential, 208

encryption, 127-136
Enhanced Graphics Adapter (EGA) and PCX,

663
EOF marker, 124
EOL (End Of Line) for CCITT Group 3, 184
.EPI (see Encapsulated PostScript)
EPICenter (Electronic Photography and

Imaging Center), 860
. EPS, EPSF, EPSI (see Encapsulated

PostScript)
errors, detecting (see corruption)
etiquette (see netiquette)
Excel, 77
explicit copyrights, 146
extended vector formats, 15
extensions, file, 122

FaceSaver, 386-388
FAQ (Frequently Asked Questions) listings,

1014
FAX file formats, 7, 389, 1074

and CCITT encoding, 179
field (in file), 21, 1074
FII (see FLI Animation)
file format

. error-detecting reader, 125
proprietary, 128
writers, 126
writing specifications for, 141-144

file identifier value (ID), 58, 1074
File Transfer Protocol (see FI'P)
filenames, 97
files

detecting corruption of, 124-125
elements of, 20, 1074
extensions to, 122
fully conforming, 120
reader for, 122
test, 120
unexpected characters in, 124

1104 ENCYCLOPEDIA OF GRAPHICS FILE FORMATS

fill attributes, 80, 1074
fill colors, 80
filler, 61
filter, 107
fingerprint (see digital signatures)
FITS, 392-400

and VIFF, 926
flag value, 166
FLC (see FLI Animation)
Flexible Image Transport System (see FITS)
FLI Animation, 401-416
Flic (see FLI Animation)
FLM (see Atari ST file formats)
floating-point formats, 94
FM 92-VIII Ext. GRIB (see GRIB)
FM 94-IX Ext. BUFR (see BUFR1)
FNT (see GRASP)
fonts, 17-20

Hershey character sets, 19, 84
footers, 72, 81
formal copyrights, 146
format

absolute, 35
conversion, 101-106
creator, 1075
graphics file (see graphics file formats)
image (see image file formats)

Fractal, 24
fractal image compression, 212-217, 1075
Fractal Transform, 213
frames (animation),224,402, 1076
Frequently Asked Questions (FAQ) listings,

1014
FTI (see FITS)
FTP (File Transfer Protocol), 1076

graphics archives, 1018, 1032, 1040
(see also graphics files, resources for)

fullcolor, 29, 1076
full-motion video, 1077
fully conforming software, 120
fuzzy logic, 1077

G3.1D encoding, 181
G32D encoding, 186
G42D encoding, 188
GDI (see GEM VDI)
GEM Raster (IMG), 169,417-422

GEM VDI (vector) metafile format, 103,423
GEMDOS format, 269
geometrical shapes (see vector files)

three-dimensional (see 3D formats)
geophysical imaging resources, 1036-1037
GIF (Graphics Interchange Format), 429-450,

1022
compressing with archive programs, 1016
copyright notices in, 150
file identifier, 59
for test purposes, 120
LZW compression of (see LZW)
versus JPEG, 191

GKS (Graphical Kernel System), 331
GL (see GRASP)
government file format (see CALS raster)
graphic work, 1077
Graphical Kernel System (GKS) standard, 331
Graphical System for Presentation (see

GRASP)
Graphical User Interface (see GUI)
graphics, 4, 27-54, 1077

adapter/card (see video display card)
CAD (see CAD)
general resources for, 1029-1040
logos and trademarks, 144

Graphics Compressor method, 749
graphics file formats, 3, 55, 1078

animation (see animation file formats)
bitmap (see bitmap file formats)
designing your own, 139
immortality of, xvii
metafile (see metafi!e formats)
multimedia (see multimedia file formats)
scene description (see scene description

file formats)
vector (see vector file formats)

graphics files, 102, 1078
copyrights, patents, and trademarks,

144-151
corruption of, 121-126
embedding using HTML, 1023
encryption of, 127-136
physical protection of, 127
protecting with PGP, 134-136
reading and writing, 125
resources for, 1005-1040

INDEX 1105

graphics files (cont'd)
testing, 120
viruses in, 137-138
over the Web, 1022

Graphics Interchange Format (see GIF)
GRASP (GRAphical System for Presentation},

451-456
graymap, 9, 1078
gray-scale, 1078

on Kodak XL 7700 printer, 520
Green Book, 221
GRIB (GRidded Binary), 457-459
Grid File Format (see VIS-5D)
Gridded Binary (see GRIB)
Group 3 One-Dimensional encoding, 181-185
Group 3 Two-Dimensional encoding, 186
Group 4 Two-Dimensional encoding, 188
GUI (Graphical User Interface)

applications, 3
Microsoft Windows, 592,881

and RIFF, 554
Open Look, 838
Sun View, 838

Haeberli (see SGI)
HALO Image File Format Library, 368
Harvard Graphics, 460
.HCOM file format, 229
HDF (Hierarchical Data Format), 462
headers

of vector files, 78
reading, 108-116

Hershey character sets, 19, 84
hicolor, 29, 1076

display, 1078
hierarchical selective refinement,JPEG, 201
Hijaak Graphics File Conversion Utility, 22,

487
hints (see fonts)
HLS (Hue/Lightness/Saturation), 1078
HPGL and Hijaak Conversion Utility, 487
HPPCL and Hijaak Conversion Utility, 487
HSB (Hue/Saturation/Brightness), 1079
HSI (Hue/Saturation/Intensity), 1079
HSL (Hue/Saturation/Luminosity), 1079
HSV (Hue/Saturation/Value}, 49, 1079
HTML (Hypertext Markup Language), 12,

138, 1021
embedding graphics files with, 1023

(see also page description languages)
HTIP (Hypertext Transfer Protocol), 16
hue, 1079
Huffman encoding, 16, 179
hybrid database, 14, 1079
hybrid text, 14, 1079
hypermedia, 15
hypertext, 14, 1079
Hypertext Markup Language (HTML), 12,

138, 1021
embedding graphics files with, 1023

Hypertext Transfer Protocol (HTTP), 16

18, 116 (see Intel DVI)
IBM Multimedia Tool Series, 402
IC1, IC2, IC3 (see Atari ST file formats)
ICB (see TGA)
ICC (see Kodak YCC)
ICO (see Sun Icon)
ID value, file, 58
IDL terminal communication protocol, 699
IFF (Interchange File Format), 465-483

Amiga IFF, 122
and byte order, 93
copyrightnoticesin, 150
and Microsoft RIFF, 555

IGES (Initial Graphics Exchange Specifica-
tion), 485

ILBM (see IFF)
ILM (see IFF)
IMA, 1MB, IMC (see Intel DVI)
image bitmap, 10, 1080
image data, 1080
image elements, 75
image file formats, 35, 860

Atari ST (see Atari ST file formats)
CALS (see CALS raster)
Dore RFF, 344-349
EPSF (see Encapsulated PostScript)
FaceSaver, 386-388
FITS, 392-400
GIF (see GIF)
.ICBA, 861
Lumena Paint, 532-536
MSP, 549
NEOchrome (.NEO}, 269
P3D, 651-657
PDS, 678-682
Pictor PC Paint, 683-694

1106 ENCYCLOPEDIA OF GRAPHICS FILE FORMATS

image file formats (cont'd)
raw, 55
SGI (see SGI)
STAD (.PAC), 271
stream-based, 430
SunRaster (see SunRaster)
TGA, 51
VICAR2, 393, 921-924
Wavefront RLA, 953-963
XPM (XPix.Map), 987-991
XWD (X Window Dump), 992-997
(see also animation file formats; multime-

dia file formats; video file formats)
image file index, 73
image height, 60
image length, 60
image offset table, 73
image portion, 10
image tiling, 201
image width, 60
ImageMagick toolkit

and MIFF, 599
images, 5, 10, 1080

examples of, xx
interlacing, 438
x origin of, 60

Imagic Film/Picture Format, 268
imaging resources

astronomy, 1037-1039
biomedical, 1034-1036
chemical, 1034-1036
geophysical, 1036-1037
meteorological, 1036-103 7
oceanographic, H)36-1037

IMG (see GEM Raster; Intel DVI)
IMI, IMI, IMQ, IMR, IMY (see Intel DVI)
implicit copyrights, 146
lndependentJPEG Group, 193
index map, 32, 1081
index values, 32, 1081
indirect color, 1081
indirect storage, 32
information devices

active,219, 1062
passive, 219, 1088

Initial Graphics Exchange Specification (see
IGES)

input (of graphics process), 4, 1081
Inset IGF and Hijaak Conversion Utility, 487
Inset PIX, 487-496
Integrated Services Digital Network (IDSN),

191
Intel DVI (Digital Video Interactive), 497-509

AVSS (.AVS), 499
Intel Real-Time Video (see Intel DVI)
Interchange File Format (see IFF)
interframe encoding, 1081
interlaced images, 438
International Telecommunications Union

(ITU), 1082
interpolation, 1082
intraframe encoding, 1082
Inventor (see SGI)
IRIS (see SGI)
IRIS Inventor 3d Toolkit, 806
ISDN (Integrated Services Digital Network)

lines, 191
ISO (International Staridards Organization),

191,330
and MPEG, 604

IS0-9660 standard, 1082
ITU (International Telecommuncations

Union), 1082

jaggies, 104
Java, 12
JBIG Qoint Bi-level Image Experts Group)

compression, 23, 154, 205-210
. JBIG-KIT, 209
JFI,JFIF (seeJPEG File Interchange Format;

SPIFF) .
JPEG Qoint Photographic Experts Group),

23,823
baseline, 194-198
component selective refinement, 201
File Interchange Format (JFIF), 72,

191-205, 510-515 .
extensions to, 198-202

versus fractal compression, 214
Tiled Image Pyramid QTIP), 201
(see also SPIFF)

JPG (see JPEG File Interchange Format;
SPIFF)

JTIP QPEG Tiled Image Pyramid), 201

INDEX 1107

key points, 7, 1083
Khoros Visualization/Image File Format

(VIFF), 925-934
Kodak Cineon file format (see DPX)
Kodak Photo CD, 516-519
Kodak XL 7700 printer, 520
Kodak YCC format, 520
Kofax Raster format, 63

landmark, 1083
LBM (see IFF)
legal issues

copyrights, patents, and trademarks,
144-151

graphics on Web, 1029
LZW co~pression, 174-177

Lempel-Zev-Welch compression (see LZW)
lha program, 170
license notice, 148
licensing, Unisys LZW, 174-177
literal format, 35
little-en dian byte ordering, 92, 1083

and header reading, 115
on a big-endian machine, 112

logical compression, 155
logical pixels, 1083
logos and trademarks, 144
look-up table, 32, 1084
lossless compression, 157, 1084

ofaudioinformation,228
withJPEG, 199

lossy compression, 157, 1084
of audio information, 228
withJPEG, 192

Lotus 1-2-3, 77
and Lotus DIF, 523
and Lotus PIC, 529

Lotus DIF (Data Interchange Format), 77,
522

conversion to another format, 103
Lotus PIC, 529
Lotus Print Graph, 529
LSB (least significant byte), 92, 1084
Lumena Paint, 532-536
luminance, 1084
LUT (Look-Up Table), 1084
LZ77 and LZ78 compression algorithms, 170
lzh program, 217

LZMW data compression, 173
LZW (Lempel-Ziv-Welch) compression, 23,

170-179,431,437
GIF format licensing, 139
legal issues, 174-177
variations on, 173

MAC (see Macintosh Paint)
MacBinary standards, 538
Machine Independent File Format (MIFF),

599
Macintosh Paint, 537-543

and byte order, 93
Macintosh PICf (Macintosh Picture), 13, 103,

544-548
and previewing EPSF files, 381

MacPaint (see Macintosh Paint)
magic numbers, 1074
magic values, 58, 1084

errors in, 125
mail (see email)
mailing lists, 1017-1018

resources via, 1031
makeup code words, 182
MathCAD and Hijaak Conversion Utility, 487
MATLAB and VIFF, 926
MciDAS (see VIS-5D)
MET (Presentation Manager Metafile),

725-729
metadata, 463, 1085
metafile formats, 3

CGM (see CGM)
GEM VDI (see GEM VDI)
Microsoft RTF, 564-568
Microsoft Wmdows Metafile, 592-598
WPG, 169,964-982

metafiles, 13, 87, 1085
ASCII, 88
compression of, 154
conversion to bitmap, 104
conversion to metafile, 104
conversion to vector, 105

meteorological file formats
BUFR, 318-320
GRIB, 457-459
VIS-5D, 935-942

meteorological imaging resources, 1036-1037
Microray (see uRay)

1108 ENCYCLOPEDIA OF GRAPHICS FILE FORMATS

Microsoft Paint (MSP), 549
Microsoft RIFF (Resource Interchange File

Format), 229,554-563
Microsoft RTF (Rich Text Format), 564-568
Microsoft SYLK (Symbolic Link), 13, 77, 569
Microsoft Video (for Windows), 402
Microsoft Waveform, 229
Microsoft Windows BMP, 130,572-591

compression of, 154
copyrightnoticesin, 150
and Run-Length Encoding, 160
Version 1.x, 62
versus JPEG, 191

Microsoft Windows Metafile (WMF), 105,
592-598

converting to another format, 104
and previewing EPSF files, 381

middle-endian byte ordering, 92
MIDI (Musical Instrument Digital Interface),

220,230,1085
and .RMI files, 555

MIFF (Machine Independent File Format),
599

MIME (Multipurpose Internet Mail Exten
sions), 1010, 1021, 1026, 1040

MJPEG (MotionJPEG), 606
MMR (Modified Modified Read) compres

sion algorithm, 180,205
(see also]BIG compression)

.MOD file format, 947
modification rights, 149
monochrome, 1085

bitmaps, 73
motion compensation, 225
motion-video data, 605
movie resource, 749
Movie Toolbox, 747
MPEG (Motion Picture Experts Group), 604
MPEG-1, MPEG-2 (see MPEG)
MPG (see MPEG)
MR (Modified Read) compression algorithm,

205
(see also]BIG compression)

MSB (most significant byte), 92, 1085
MS-DOS, 19
MSP (see Microsoft Paint)
MTV, 613-616
multi-channel palette, 1086
multimedia, 14, 26, 219-231, 1086

application files, viruses in, 138
and CD-ROMs, 220
(see also hypermedia)

multimedia file formats, 3, 372
Intel DVI, 497-509
Microsoft RIFF, 229, 554-563
MPEG,605
(see also animation file formats; video file

formats)
multi-platform file formats

Andrew Toolkit {CMU file formats), 336
CALS (see CALS raster)
CGM (see CGM)
EPSF (see Encapsulated PostScript))
FTTS,392-400,926
GIF (see GIF)
HDF, 463
Microsoft RTF, 565-568
MIFF, 599
MTV, 613-616
P3D, 651-657
PCX (see PCX)
Pixar RIB, 695-697
Quick Time (see Quick Time)
TIFF (see TIFF)
YAODL, 812-817

multiple-channel, 38
Multipurpose Internet Mail Extensions (see

MIME)
Musical Instrucment Digital Interface (see

MIDI)

NAPLPS (North American Presentation Layer
Protocol Syntax), 617

National Center for Supercomputer Applica
tions (NCSA), 462

National Television Standards Committee
(see NTSC)

n-bit color (n=4,8,15,16,24), 1061
NCGA (National Computer Graphics Associa

tion) and IGES, 486
negative compression, 166
NEOchrome animation, 26,269-270

(see also Atari ST file formats)
netiquette

Archie, 1020
email, 1011
FfP, 1018
USENET posting, 1015

INDEX 1109

Neutral File Format (see NFF)
newsgroups(gener.U), 1012
newsgroups (graphics-related)

comp.compression, 217, 611
comp.graphics, 611, 613, 1029
comp.graphics.misc, 141
comp.multimedia, 611
list of, 1030
sci.astro.fits, 399
sci.data.formats, 399
sci.image.processing, 1029

NewTek's Lightwave, 15
NFF (Neutral File Format), 620-626

and PRT, 730 '
and RTrace, 776

noise removal, 172
non-adaptive compression, 156

for audio information, 226
North American Presentation Layer Protocol

Syntax (NAPLPS), 617
NTSC (National Television Standards Com

mittee), 196, 224, 1086
and TGA, 860

numerical format: Lotus DIF, 522

OBJ (see Wavefront OBJ)
object code copyright, 147
object data, 10, 75
Object Description Language (ODL) and

PDS, 678
Object File Format (OFF), 627
object-based file systems, 3
object-oriented databases, 807
object-oriented files, viruses in, 138
oceanographic imaging resources, 1036-1037
ODA, ODIF, 321
ODL (Object Description Language) and

PDS, 678
OFF (Object File Format), 627
Office Document formats (ORA, ODIF), 321
offset values, out of range, 125
Open Look GUI and Sun Icon, 838
order, bit, 94-95
OS/2 BMP, 631-650
outputdevice,4, 102,1086

language, 7, 1086
output (of graphics process), 4, 1086
overlay bit, 51, 1087
overlays, 51-52

OVR (see Pictor PC Paint)
ownership (see copyrights; patents; trade

marks)

PlO (see Plot-10)
P3D, 651-657
PAC (see Atari ST file formats)
packets, 21, 1087
padding, 61
page description languages (PDLs), 20, 1087

virusus and, 138
page table, 73, 1087
PAL file format (see Dr. Halo)
PAL (Phase Alternation Line) digital televi

sion standards, 224,605, 1087
and TGA,860

palettes, 63, 1087
color, 32, 42
in vector files, 80
multi-channel, 38, 1086
single-channel, 38, 1093
types of, 39
VGA color, 669

Parallel Ray Trace (see PRT)
parity, 1006
parser, 107
patents on graphics files, 144
PBM utilities, 22, 26, 659

and FaceSaver, 386
and VIFF, 926
(see also PGM; PNM; PPM)

pbmplus (see PBM; PGM; PNM; PPM)
PC Paint (see Pictor PC Paint)
PC Paintbrush File Format (see PCX)
PCI, PC2, PC3 (see Atari ST file formats)
PCC (see PCX)
PCT (see Macintosh PICT)
PCX, 108, 122,662-677

copyright notices in, 150
and Run-Length Encoding, 160
and testing, 120

PDL, 235
PDS (Planetary Data System), 678-682
pels, 8, 1088
pen styles, 80
Persistance ofVision (see POV)
persistence, 1088
PGM (Portable GreyMap Utilities), 26, 658

(see also PBM; PNM; PPM)

1110 ENCYCLOPEDIA OF GRAPHICS FILE FORMATS

PGP (Pretty Good Privacy), 134-136
Photo CD (see Kodak Photo CD)
Photo Compressor method, 748
Photoshop (see Adobe Photoshop)
PhotoYCC file format (Kodak), 518
physical compression, 155
physical pixels, 27, 1088
Pll, Pl2, PI3 (see Atari ST file formats)
PIC (see GRASP; Lotus PIC; Pictor PC Paint)
PICT (see Macintosh PICT)
Pictor PC Paint, 683-694

and GRASP animation, 455
picture elements, 8
Pittsburgh Supercomputer Center 3D

Metafile (see P3D)
PIX (see Inset PIX; Lumena Paint)
Pixar RIB (RenderMan Interface

Bytestream), 695-697
pixel-level RLE, 165
pixelmap, 9, 1089
pixels, 8, 1083, 1088

array of, 1063
depth of, 60, 1064
packing, 23, 154, 158-160
physical versus logical, 27
three-dimensional, 345
values of, 1089

pixmap, 9, 1089
pkzip program, 126, 170,217,228

and GIF files, 437
planar data, 67-69
planar files, 1089
Planetary Data System Format (see PDS)
Planetary File Format (see VICAR2)
platform dependencies, 91-99
platform-independent file formats (see multi-

platform file formats)
plot file formats: .AD I, 276
Plot-10 file format, 698
PM Bitmap (see OS/2 BMP)
PM BMP, PM DIB (see OS/2 Bitmap)
PNG, 126, 700-719

copyrightnoticesin,150
PNM (Portable ANyMap Utilities), 658
PNTG (see Macintosh Paint)
polygon elements (see vector files)
Portable Bitmap Utilities (see PBM; PGM;

PNM;PPM)
Portable Bitmap Utilities (PBM), 658-661

Portable Network Graphic format (see PNG)
POS (see SAF)
postage-stamp images, 381

and Lumena Paint, 534
PostScript, 138, 235, 377-378

Encapsulated (see Encapsulated
PostScript)

files, 20
for storing text (in multimedia format),

220
lZW compression and, 170, 177
Page Description Language (PDL)

and BDF, 310
and CALS, 322
and EPSF, 376

(see also page description languages)
POV (Persistence of Vision)

file format, 720-724
ray trace application, 342

POV-Ray (see POV)
Powerflip Format (see YAODL)
PPM file format (see POV)
PPM (Portable PixMap Utilities), 26, 658

(see also PBM; PGM; PNM)
predictive encoding, 1089
Presentation Manager Bitmap (see OS/2

Bitmap)
Presentation Manager Metafile (MET),

725-729
previewing

Encapsulated PostScript files, 381
Lumena files, 534
QuickTime files, 748

primary colors, 47, 1089
primary three-color systems, 4 7
private key cryptography, 132
Prodigy

and NAPLPS, 617
Unisys agreement for LZW, 177

production pipeline, 5, 1090
program code, corrupting graphics files, 123
progressing selective refinement,JPEG, 201
progressive encoding/ decoding, 208
progressive image buildup, 198
proprietary information, 128-129
PRT, 730-735
PSD (see Adobe Photoshop)
pseudo-color, 1090
pseudo-color storage, 32

INDEX 1111

public display rights, 149
public domain, 148
public key cryptography, 132
Pulse Code Modulation (PCM), 226
pyramidal image tiling, 201

Qfactor and lossless compression, 199
Q-coder algorithm, 199

and MIFF, 602
QRT (Quick Ray Trace), 736
QTM (see QuickTime)
quantization,30,102,1090

artifacts, 1090
coefficient, 197
JPEG (see variable quantization,]PEG)
table, 197

Quattro Pro, 77
and Lotus DIF, 523

Quick Ray Trace (see QRT)
QuickDraw Picture Format (see Macintosh

PICT)
QuickTime, 229, 747-759

and AIFF, 749
CD-ROMs and, 747
andDVI,498

Radiance, 760
radix-64, 134
RAS (see CALS Raster; Sun Raster)
raster file formats (see bitmap file formats)
rasters, 7, 9, 1064, 1090
Raw Compressor method, 749
raw data, 60, 155
raw formats, 55
ray tracing and MTV, 613
ray tracing file formats

POV, 720-724
PRT, 730-735
QRT, 736
Radiance, 760
Rayshade, 764-771
uRay, 914
Vivid and Bob, 943-945

Rayshade, 764-771
RDI (see Microsoft RIFF)
READ (Relative Element Address Designate)

codes, 187

readers
ASCII, 105
binary, 105, 108
FITS,396
FLI,401,411
RIFF, 556
TIFF,882,895

reading graphics data, 107-117, 125
realization, 5, 1090
registered trademarks (see trademarks)
rendering, 5, 1091

applications, 760
RenderMan Interface Bytestream (see Pixar

RIB)
repeat scan line packet, 168
replicating files (see viruses)
representation, 4, 1091
reproduction rights, 149
reserved fields, 61
reserved space, 61
resolution, 1091
Resource Interchange File Format (see

Microsoft RIFF)
RFF (see Dore Raster File Format)
RGB format (see Atari ST file formats; SGI)
RGB (Red-Green-Blue) color model, 35, 1091

and digital video, 224
RGBA (see SGI)
RIB (see Pixar RIB)
Rich Text Format (see Microsoft RTF)
RIFF, RIFX (see Microsoft RIFF)
RIX, 772
RIA, RLB (see Wavefront RIA)
RLE (see run-length encoding)
RMI (see Microsoft RIFF)
RTC (Return To Control) code, 185
RTF (see Microsoft RTF)
RTrace, 776-785
RTV (see Intel DVI)
run count, 160
run lengths, code words for, 182
run value, 160, 166
Run-length Encoded Versions A, B (see Wave

front RIA)
run-length encoding (RLE), 23, 26, 153,

160-170
and animation, 222
(see also SGI; Utah RLE; Utah RLE)

runs (strings), 160, 182

1112 ENCYCLOPEDIA OF GRAPHICS FILE FORMATS

SAF, 786-795
sample rate, 223, 227, 1091
sample resolution, 227, I 092
sampling, 1092
saturation, 1092
scaling vector files, 83
scan lines, 9, I092
scan-line data, 66-67
scan-line tables, 56, 73, 1092
scan-line width, 60
Scanmaster, ISO
scanning, I07, 224
scene description file formats, 3, 13, 1093

NFF, 620-626
OFF, 627
P3D, 651-657
Pixar RIB, 695-697
POV, 720-724
QRT, 736
Radiance, 760
Rayshade, 764
RTrace, 776
SGI Inventor, 807
uRay, 9I4
Vivid and Bob, 943-945
YAODL, 812-817

scenes, I3
scientific data management and HDF, 462
sci.image.processing newsgroup, 1029
SCN (see RTrace)
screen dumps and XWD, 992
SECAM (Sequential Coleur Avec Memoire)

digital television standards, 224, 605,
1093

security, file (see cryptography)
selecti,ve refinement,JPEG, 201
semi-adaptive encoder, I57
SenseS NFF, 796-800
SEQ (see Atari ST file formats)
sequential encoding/ decoding, 208
SET (see GRASP)
sex, bit, 95, I064
sex, color, 95
SFF, 776-785
SGI (Silicon Graphics Inventor), 26, 801-811

RLE, bit/byte-level, I64
and SGO, SIS
(see also YAODL)

SGO (Silicon Graphics Object), SIS

Showcase (see SGO)
SIGGRAPH, 87
Silicon Graphics Object (see SGO)
simple image tiling, 20I
single-channel palette, 38, I 093
size of structure, 111
SLD (see AutoCAD DXF)
slides, format for, 276
SLK (see Microsoft SYLK)
SMPTE DPX (see DPX)
.SND file format, 229
Society of Motion Picture and Television

Engineers (SMPTE) DPX (see DPX)
software

driver, 122
fully conforming, 120
public domain, I48

sound (see audio formats)
specifications, file format, I4I-I44
Sperry Corporation (see Unisys)
SPF (see SPIFF)
SPIFF (Still Picture Interchange File Format),

202,822-837
copyright notices in files, 150

spline-based outline fonts, 19
splines, Bezier, 82, 235, I 064
spreadsheet file formats

Microsoft SYLK, 569
vector formats, 77

spreadsheet file formats and Lotus DIF, 522
STAD image, 271
Standard Archive Format (see SAF)
stereo sampling, 227
STI terminal communication protocol, 699
Still Picture Interchange File Format (see

SPIFF)
storage, 32
stream, 2I, I094
stream-based image format, 430
Streamline (Adobe), 105
string table, 170
strips, 70, I 094
stroke fonts, 19
structure, determining size of, Ill
substitutional encoding algorithm, 170
substrings, 170
subtractive color systems, 47, 1094
Sun Icon, 838

INDEX 1113

SunRaster image, 63, 841-845
and byte order, 93
and VIFF, 926

Sun View GUI and Sun Icon, 838
SYLK (see Microsoft SYLK)
Symbolic Link Format (see Microsoft SYLK)
symbols (see fonts)
symmetric compression, 156

T3D (see TODD)
T3DLIB shareware library, 909
tag, 21, 1094
Tag Image File Format (see TIFF)
Targa Image File (see TGA)
Targa market, 532
TCS terminal communication protocol, 699
TODD (Turbo Silver 3D Data Description)

format, 846-859
technical writing, suggestions for, 143
Tek Plot-10 (see Plot-10)
television standards (digital), 605
terminating code words, 182
test files, 120
text in vector files, 83-84
Textual 3D Data Description (see TTDDD)
TGA (Truevision Targa Image File), 122,

860-879
copyrightnoticesin,150
and Lumena Paint, 532
and VIFF, 926

three-dimensional formats (see 3D file for
mats)

TIFF (Tag Image File Format), 72, 108, 120,
122,880-908

and bit order, 95
and byte order, 93
and CCITI encoding, 179
Class F (FAX) encoding, 186,390
compression of, 154
copyright notices in files, 150
and Lumena Paint, 532
LZW compression and, 171, 173
LZW compression and, 170, 177
and previewing EPSF files, 381
and Run-Length Encoding, 160
TIFF Developers Toolkit, 174
Type 2 Compression, 185

versus]PEG, 191
and VIFF, 926

tiles, 71, 1095
tiling, image, 201
Tiny image file format, 273
TN1, TN2, TN3 (see Atari ST file formats)
TNY (see Atari ST file formats)
TPIC (see TGA)
trademarks on graphics files, 144
trailers, 72
transform, 1070
translation table, 170
transparency, 51-52, 1095
trichromatic colorimetric, 4 7, 1095
truecolor, 29

bitmap formats, 35
TGA, 51,861-879

display, 1096
display adapters, 532
on Kodak XL7700 printer, 520

TTDDD (Textual Three-Dimensional Data
Description), 909-913

Turbo Silver 3D Data Description (see
TODD)

tutorials, advice on writing, 143
twip (twentieth of a point), 592
TXT (see GRASP)
Type II CALS raster format, 71

UCI, UC2, UC3 (see Atari ST file formats)
unencoded data, 155
Unisys Corporation, 174-177
UNIX, 19
up bit ordering, 94
uRay, 914
U.S. Product Data Association (USPRO), 486
USENET news, 1011-1017

resources via (see graphics files, resources
for)

Utah Raster Toolkit (URT), 917
Utah RLE, 917
utility patents, 145
uuencode and uudecode, 1006-1009, 1016

V.42bis modem compression standard, 170
variable quantization,JPEG, 200
VDA (see TGA)
VDI (see GEM VDI)

1114 ENCYCLOPEDIA OF GRAPHICS FILE FORMATS

vector data, 75, 79-80, 212
vector file formats, 3

CGM (see CGM)
DXF (see AutoCAD DXF)
EPSF (see Encapsulated PostScript)
and floating-point, 94
GEM VDI (see GEM VDI)
Lotus DIF, 522-523
NFF, 620-626
POV, 720-724
Presentation Manager Metafile, 725-727

vector files, 7, 13, 75-85, 1096
applications of, 77
compression of, 154
converting to bitmap files, 104
converting to metafiles, 105
converting to vector files, 103
device dependence of, 76
extended formats, 15
pros and cons of, 84
scaling, 83
size of, 82
structure of, 77
text in, 83-84
versus bitmap files, 75

vectorization, 105
version marker segments,JPEG, 202
vertical replication packet, 168
VGA color palette, 42
VGA display adapter and PCX, 663
VICAR2 (Video Image Communication and

Retrieval), 393,921-924
video

digital, 223-225
full-motion, 1077
information, 221

Video Compressor method, 748
Video Display Adapter (VDA) (see TGA)
video display processor (VDP) and DVI, 498
video file formats, 372

FLI, 401-416
GRASP, 451-456
Intel DVI, 497-509
Microsoft RIFF, 554-563
TGA (see TGA)
(see also animation files formats; multime

dia file formats)

VIFF (Khoros Visualization/Image File For-
mat), 925-934

virtual device, 61
virtual output, 4, 1097
Virtual Reality Modeling Language (VRML),

16
viruses in graphics files, 137-138
VIS-50, 935-942
VisiCalc spreadsheet program

and Lotus DIF, 522
Visualization-50 (see VIS-50)
Vivid and Bob, 943-945
VMG (see RIX)
.VOC file format, 229
voxels, 345, 1097
VRML (Virtual Reality Modeling Language),

16
VST (see TGA)

WAV (see Microsoft RIFF)
Wavefront OBJ, 946-952
Wavefront Object (see Wavefront OBJ)
Wavefront RLA image, 953-963
weather data file formats (see meteorological

file formats)
Windows BMP, Windows DIB (see Microsoft

Windows BMP)
Windows Metafile (see Microsoft Windows

Metafile)
.WK.l, .WKS (see Lotus 1-2-3)
WMF (see Microsoft Windows Metafile)
WordPerfect Graphics Metafile (WPG), 13,

169,964-982
work for hire, copyright and, 146
WorkdToolkit NFF (see SenseS NFF)
Working Group on Astronomical Software

(WGAS}, 399
World Meteorological Organization (WMO),

318
World Wide Web (WWW), 1020,1034

browser helper applications, 1025
·browsers, using CD-ROM with, 1052-1053
general graphics resources, 1020, 1040

(see also graphics files, resources for)
WPG (see WordPerfect Graphics Metafile)
writing

file format specifications, 141-144

INDEX 1115

writing (cont'd)
file formats, 139-141
graphics files, 117-120, 125
suggestions for, 143

WWW (World Wide Web), 1034

X Bitmap (see XBM)
x origin of image, 60
X PixMap (see XPM)
X Windows Dump (see XWD)
XBM, 122, 983

and VIFF, 926
.XLS, 77
XPM (X PixMap), 987-991
XWD (X Window Dump), 992-997

y origin of image, 60
YAODL (Yet Another Object Description Lan

guage), 812-817

YCbCr color model
and digital video, 224
andJPEG, 195

YCC (see Kodak YCC)
Yellow Book, 221
Yet Another Object Description Language

(see YAODL)
YIQ, 1098

and digital video, 224
YUV (¥signal, U-signal, and V-signal) color

model, 50
and digital video, 224
and]PEG, 195

YUV (¥signal, U-signal, V-signal), 1098

ZBR, 998-1002
Zebra Metafile (see ZBR)
zoo program, 126, 170,217,228

and GIF files, 437

1116 ENCYCLOPEDIA OF GRAPHICS FILE FORMATS

About the Authors

James D. Murray started his computer career in 1981 on a Version 6 UNIX
system running on a PDP-11/45 and programming in C. Over the years he has
specialized in serial communications, image processing and analysis, and UNIX
systems programming. Currently he works for a telecommunications company
developing network management stations and as a staff writer for O'Reilly &
Associates. James lives in Southern California, has a degree in cultural anthro
pology, has studied computer science and both Western and non-Western
music, and practices the Japanese martial arts of Aikido and Iaido (Japanese
swordsmanship).

William vanRyper has been writing graphics software since 1982_ and was chief
scientist at Flamingo Graphics. He is the president of uvr, a private consulting
firm, and has designed and implemented drawing packages, animation soft
ware, and visualization systems for many major corporate clients. He is currently

· working on systems for the creation of 3D sacred geometry animations.

Colophon

The cover was designed and produced by Edie Freedman in QuarkXpress 3.3.
The cover image is from the Dover Pictorial Archive. Inside layouts were
designed by Jennifer Niederst, and modified by Nancy Priest. The cover and the
contents of the book. were formatted using Copperplate and New Baskerville
fonts from Adobe.

Text was prepared in SGML using the DocBook 2.1 DTD. The print version of
this book was created by translating the SGML source into a set of gtroff macros
using a filter developed at ORA by Norman Walsh. Steve Talbott designed and
wrote the underlying macro set on the basis of the GNU gtroff -gs macros; Lenny
Muellner adapted them to SGML and implemented the book design. The GNU
groff text formatter version 1.08 was used to generate PostScript output.

Norman Walsh designed the GFF application and wrote the Microsoft Windows
and UNIX implementations. Ken DeCanio (Ken@LittleTrain.com) at Little Train
Software wrote the Macintosh implementation.

The figures were created by Chris Reilley in Aldus Freehand 4.0, and imported
into the final page layouts.

THE IDEAL REFERENCE
FOR DESIGNERS WHO NEED TO
HIT THE GROUN·D RUNNING

You may have little or no experience designing for the Web but know you need to get up
to-speed fast. This book will show you what you need to know to design effective Web
pages, from working with HTM L to designing for a variety of browsers.

The Web design book you'll refer to again and again. Written with a designer's point of
view, Designing for the Web shows you how to work with HTML documents, deal with
the special problems of presenting information online, incorporate images into Web
pages, and design for different browsers. Pick up a copy at your local bookstore or call
O'Reilly at 1-8oo-88g-8g6g Weekdays 6AM-SPM PST.

Check out our online catalog at http://www.ora.comf

O'REILLY'"
TO ORDER: 800.889-8989 (CREDIT CARD ORDERS ONLY); ORD£R@ORA.COM

AND
Books from O'Reilly & Associates, ln c.

Basics

Our UNIX in a Nutshell guides are the most comprehensive
quick reference on the market-il must for every UNIX user.
No matter what system you use, we've got a version to cover
your needs.

UNIX in a Nutshell: System V Edition
By Da11iel Gilly & the staff of O'Reilly & Associates
21ld Edilio11 ju11e 1992
444 pages, ISBN 1-56592-001-5

rw---.-, You may have seen UNIX quick-reference
guides, but you've never seen anything
like UNIX in a Nutshell. Not a scaled-down
quick reference of common commands,
UNIX in a Nutshell is a complete reference
containing all commands and options,
along with generous descriptions and
examples that put the commands in

® -~-·-- context. For all but the thorniest UNIX
problems, this one reference should be all the documentation
you need. Covers System V, Releases 3 and 4, and Solaris 2.0.

"This book is the perfect desktop reference The authors
have presented a clear and concisely written book which
would make an excellent addition to any UNIX user's library."
-SysAdmin

"Whether you are setting up your first UNIX system or adding
your fiftieth user, these books can ease you through learning
the fundamentals of the UNIX system."
- Michael). O'Brien, Hardware Editor,

ABA/[]nix/group Newsletter

FALL / WINTER 1995·96

SCO UNIX in a Nutshell
By Ellie Cutler & the staff of O'Reilly & Associates .:
1st Edilioll Febmary 1994
590pages, ISBN 1-56592-037-6

Contents include:

The desktop reference to SCO UNIX
and Open Desktop•, this version of UNIX
in a Nutshell shows you what's under
the hood of your SCO system. It isn't a
scaled-down quick reference of common
commands, but a complete reference
containing all user, programming, admin
istration, and networking commands.

• All commands and options
• Shell syntax for the Bourne, Korn, C, and SCO shells
• Pattern matching, with vi, ex, sed, and awk commands
• Compiler and debugging commands for software

development
• Networking with email, TCPIIP, NFS, and UUCP
• System administration commands and the SCO

sysadmsh shell

This edition of UNIX in a Nutshell is the most comprehensive
SCO quick reference on the market, a must for any SCO user.
You'll want to keep SCO UNIX in a Nutshell close by as you
use your computer: it'll become a handy, indispensible
reference for working with your SCO system.

FOR INFORMATION: 800.998·9938, 707-829-0515; INFo@oRA.COAf,' HTTP://WWW.ORA.COAf/

Learning the UNIX Operating System
By G'mce 1'odino, jolm Slmng & jerry Peek
3rd Edition Artgu.st 1993
lOB pages, ISBN 1-56592-060-0

If you are new to UNIX, this concise
introduction will tell you just what you
need to get sta11ed and no more. Why
wade through a 600-page book when
you can begin working productively in
a matter of minutes? It's an ideal primer
for Mac and PC users of the Internet who
need to know a little bit about UNIX on

!.! .__ ___ ___. the systems they visit.

This book is the most effective introduction to UNIX in print.
The third edition has been updated and expanded to provide
increased coverage of window systems and networking. It's
a handy book for someone just starting with UNIX, as weU
as someone who encounters a UNIX system as a "visitor" via
remote login over the Internet.

"Once you've established a connection \vith the network,
there's"bften a secondary obstacle to surmount... leamitJg
/be UNIX Operating System helps you figure out what to do
next by presenting in a nutshell the basics of how to deal with
the 'U-word.' Obviously a 108-page book isn't going to make
you an instant UNIX guru, but it does an excellent job of
introducing basic operations in a concise nontechnical
way, including how to navigate through the file system,
send and receive E-mail and-most importantly-get to
the online help "
- Michael L. Porter, Associate Editor, Personal Engineering
& Instmmentation News

Learning the vi Editor
By linda lamb
5tb Edmon October 1990
192 pages, ISBN 0-937175-67-6

A complete guide to text editing \vith vi,
the editor available on nearly every UNIX
system. Early chapters cover the basics;
later chapters explain more advanced
editing tools, such as ex commands and
global search and replacement.

"For those who are looking for an
a introductory book to give to new staff

members who have no acquaintance
with either screen editing or with UNIX screen editing, tllis is
it: a book on vi that is neither designed for the UNIX in-crowd,
nor so imbecilic that one is ashamed to use it."
- ;login

When You Can't Find
Your UNIX System Administrator
BylindoMui
1st Edition Aprr1 1995
156pages, ISBN 1-56592-104-6

r;;;;;;;;;;;;;;;~;;;;-, This book is written for UNIX users,
when you can't find who are often cast adrift in a confusing l .- "'""'""'"''· It ' ""' " ili< b"k· ground and practical solutions you

need to solve problems you're likely
to encounter- problems \vith logging
in, printing, sharing files, running

-·-- programs, managing space resources,
etc. It also describes the kind of info

to gather when you're asking for a diagnosis from a busy
sys admin. And, it gives you a list of site-specific information
that you should know, as well as a place to write it down.

When You Gall 'I Find Your UNIX System Administrator, part
of our new What You Need to Know series, gives you tools for
solving problems. The goal of this book is not to make you a
guru, but to get you back to the job you'd rather be doing.

Learning the Korn Shell
By Bill Rosenblall
lsi Editi011 jrme 1993
363pages, ISBN 1-56592-054-6

.........

~I
§ --

A thorough introduction to the Korn
shell, both as a user interface and as
a programming language. This book
provides a clear explanation of the Korn
shell's features, including ksb string
operations, co-processes, signals and
signal handling, and command-line inter
pretation. Leaming tbe Kom Sbelt also ·
includes real-life programming examples
and a Korn shell debugger (ksbdb) .

"Readers still bending back the pages of Korn-shell manuals
will find relief in ... Learniug tbe Kom Sbell ... a gentle intro
duction to the shell. Rather than focusing on syntax issues,
tl1e book quickly takes on the task of solving day-to-day
problems witll Korn-shell scripts. Application scripts are
also shown and explained in detail. In fact, the book even
presents a script debugger written for ksb. This is a good
book for improving your knowledge of the shell."
-Unix Review

TO ORDER: 800·889·8969 (CREDIT CARD ORDERS ONLY); OROER@oRA,COM

MH & xmh: Email for Users & Programmers
By jerry Peek
3rd Edition April 1995
782pages, ISBN 1-56592-093-7

• MH&xmh

There are lots of mail programs in use
these days, but MH is one of the most
durable and flexible. Best of all, it's
available on almost all UNIX systems. It
has spawned a number of interfaces that
many users prefer. This book covers
three popular interfaces: ,_-mh (for the
X environment), exmh (written with
tcVtk) , and mh-e (for GNU Emacs users).

The book contains a quick tour through MH, xmh, exmb,
and mh-e for new users; configuration and custornization
information; lots of tips and techniques for programmers
and plenty of practical examples for everyone; information
beyond the manual pages, explaining how to make MH do
things you never thought an email program could do; and
quick-reference pages.
In addition, the third edition describes the Multipurpose
Internet Mail Extensions (MIMJl) and how to use it with these
mail progran1s. M1ME is an extension that allows users to
send graphics, sound, and other multimedia formats through
mail between otherwise incompatible systems.

''The MH bible is irrefutably Jerry Peek's MH & :xmh: Email
for Users & Programmers. This book covers just about
everything that is known about MH and :cmh (the X Windows
front end to MH), presented in a clear and easy-to-read
format I strongly recommend that anybody serious about
MH get a copy."-james Hantilton, Unix World

Learning GNU Emacs
By Debra Cameron & Bill Rosenb/a/1
lsi Edition October 1991
442 pages, ISBN 0-937175·84-6

~
GNU Emacs

An introduction to the GNU Emacs editor,
one of the most widely used and powerful
editors available under UNIX. Provides
a solid introduction to basic editing, a
look at several important editing modes
(special Emacs features for editing
specific types of documents), and a brief
introduction to customization and Emacs
llSP programnting. The book is aimed at

new Emacs users, whether or not they are progran1mers.

"Authors Debra Cameron and Bill Rosenblatt do a particularly
admirable job presenting the extensive functionality of GNU
Emacs in well-organized, easily digested chapters Despite
its title, Learning GNU Emacs could easily serve as a
reference for the experienced Emacs user."
-Unda Branagan, Convex Computer Corporation

The USENET Handbook
By Mark Harrison
lsi Edition May 1995
388pages, ISBN 1-56592-101-1

USENET, also called Netnews, is the
THE

USENET world's largest discussion forum,
encompassing the worldwide Internet
and many other sites that aren't formally
connected to any network. USENET
provides a forum for asking and
answering technical questions,

e arguing politics, religion, and society,
.__ ____ __. or discussing most scientific, artistic,

or humanistic disciplines. It's also
a forum for distributing free software, as well as digitized
pictures and sound.

This book unlocks USENET for you. It's not just a technical
book, al\hough it includes tutorials on the most popular news
readers for UNIX and Windows (tin, m1, GNUS, and Trumpet).
It also explains what goes on on the Net: where to look for
information and what to do witl1 it once you get it. And, it gives
you an introduction into the culture: Net etiquette, the private
language, and some of the history ... including some of the
more notable practical jokes.

Using and Managing UUCP
By Tim O'Reilly, Dale Dougber'/y, Grace Todino & Ed Ravi11
I sl Ed ilion March 1996 (est.)
350pages (esi.), ISBN I-56592-153-4

Using and Managing UUCP describes,
in one volume, this popular communica-

•

UUCJ.2 lions and file transfer program. UUCP is
regaining its popularity among computer
users because it works efficiently on the
PC-sized computers most people use
today. UUCP is very attractive to computer

-·-~ users with limited resources, a small
,__ ____ _J machine, and a dial-up connection.

Unllx users admire the efficiency of UUCP. ln fact, Taylor
UUCP, which is described in this book, ships \vith the major
Unux distributions. In addition to Taylor UUCP, this book
covers the latest versions of HoneyDanBer UUCP, sometimes
called Basic Network Utilities, or BNU. It also describes the
specific implementation details of UUCP versions shipped by
major UNIX vendors.

This book combines material about UUCP formerly contained
in two other O'Reilly & Associates books, Using UUCP and
Usenet and Managing UUCP and Usenet.

FOR INFORMATION: 800·998·9938, 707-829-0515; INFo@oRA.COM; HTTP://WWW.ORA.COM/

Running Linux
By Malt We&! & lor Kllufman
lsi Edition February 1995
600pages, ISBN 1-56592-100-3

Linux is the most exciting development
L'!:JI,~~~'=-dl::l today in the UNIX world-and some

would say in the world of the PC-com
patible. A complete, UNIX-compatible
operating system developed by volunteers
on the Internet, Unux Is distributed
freely in electronic fonn and for low
cost from many vendors. Its software
packages include the X Window System

(XIIR6); TCPIIP networking (including SLIP, PPP, and NFS
support); popular software tools such as Emacs and TeX;
a complete software development environment including C,
C++, Perl, TcVfk, and more; libraries, debuggers, multimedia
support, scientific and database applications; and much more.

Running Linux covers topics not addressed in any Unux
documentation, including everything you need to understand,
install, and use the Linux operating system. This includes a
comprehensive installation tutorial, complete infonnation on
system maintenance, tools for document development and
programming, and guidelines for network administration.

X User Tools
By linda Mui & Valerie Quercia
lsi Edilio11 November 1994
856 pages (CD-ROM induded)
ISBN 1-56592-019-8

C!liil X User Tools provides for X users what
UNIX Power Tools provides for UNIX
users: hundreds of tips, tricks, scripts,
techniques, and programs-plus a

CD-ROM-to make the X
Window System more enjoy
able, more powerlul, and

111 easier to use. This browser's
book emphasizes useful pro-

grams culled from the network,
offers tips for configuring individual and systemwide environ
ments, and includes a CD-ROM of source files for all-and
binary files for some--of the programs.

Volume 3: X Window System User's Guide
Standard Edition
By Valerie Quercia & Tim O'Reilly
4th Edili<m May 1993
836pages, ISBN 1-56592-014-7

1 -~'== 1 The X Window System User's Guide
, orients the new user to window system

concepts and provides detailed tutorials
for many client programs, including the
xterm terminal emulator and window
managers. Building on this basic knowl
edge, later chapters explain how to

-·-- customize the X environment and
provide sample configurations. The

Standard Edition uses the twm manager in most examples
and illustrations. Revised for XII Release 5. This popular
manual is available in two editions, one for users of the MIT
software, and one for users of Motif (see below).

"for the novice, this is the best introduction to X available.
It will also be a convenient reference for experienced users
and X applications developers."
-Computing Reviews

Volume 3M: X Window System User's Guide
Motif Edili<m
By Valerie Quercia & Tim O'Reilly
2nd Edition january 1993
956pages, ISBN 1-56592-015-5

This alternative edition of the User's Guide highlights the
Motif \vindow manager for users of the Motif graphical user
interface. Revised for Motif 1.2 and XII Release 5.

Material covered in this second edition includes:

• Overview of the X Color Management System (Xcms)

• Creating your own Xcms color database

• Tutorials for two "color editors": xcoloredit and xtici

• Using the X font server

• Tutorial for editres, a resource editor

• Extensive coverage of the new implementations of
bitmap and xmag

• Overview of internationalization features

• Features common to Motif 1.2 applications:
tear-off menus and drag-and-drop

TO ORDER: 800-889·8969 (CREDIT CARD ORDERS ONLY); ORDER@oRA.COM

Advanced

UNIX Power Tools
By jerry Peek, Mike Loukides, Tim O'Reilly, eJ a/.
lsi Edition March 1993
1162 pages (includes CD-ROM)
Random House ISBN 0-679-79073-X

Ideal for UNIX users who hunger for
technical- yet accessible-infonnation,
UNIX Power Tools consists of tips,
tricks, concepts, and freeware (CD-ROM
included). It also covers add-on utilities
and how to take advantage of clever fea
tures in the most popular UNIX utilities.

~~;;;;,,,

This is a browser's book. .. like a
magazine that you don't read
from start to finish, but leaf

through repeatedly until you
realize that you'Ve read it alL You'll

find articles abstracted from O'Reilly Nutshell Handbooks'",
new information that highlights program "tricks" and
"gotcbas," tips posted to the Net over the years, and other
accumulated wisdom. The goal of UNIX Power Tools is to
help you think creatively about UNIX and get you to the
point where you can analyze your own problems. Your
own solutions won't be far behind.

The CD-ROM includes all of the scripts and aliases from
the book, plus pert, GNU emacs,pbmp!us (manipulation
utilities), ispell, screen, the sc spreadsheet, and about 60
other freeware programs. In addition to the source code, all
the software is precompiled for Sun3, Sun4, DECstation, ffiM
RS/6000, HP 9000 (700 series) , SCO Xenix, and SCO UNIX.
(SCO UNIX binaries will likely also run on other Intel UNIX
platforms, including Univel's new UNIXware.)

'1'his substantial volume (1 ,100-plus pages) is about the power
use of existing UNIX tools, with a CD distribution of others. It
goes into the kind of wonderful detail that most administrators
will relish. Take find for example. Most people use it only to
find a file by name or age, but this book shows you how to do
things such as finding all the root-owned executables with the
set-user ID bit on that have been deposited in the last four
months. (Naturally, this would be very bandy for catching
potential security boles.) You'll learn a lot from this book
I recommend it highly. "-Bruce Hunter, Open Systems Today

Making T£X Work
By Nomrmz lfals'h
Is/ EdiiionApri/1994
522pages, ISBN 1-56592-051-1

TeX is a powerful tool for creating
"""'"" professional-quality typeset text and 'lEX is unsurpassed at typesetting math-

_. ematical equations, scientific text,
and multiple languages. Many books
describe how you use TeX to construct
sentences, paragraphs, and chapters.

' 6 _ ,...:::: Uthntil ~ow, nothbook basallde
1
scribedballuild

e sOllware at actu y ets you · ,
run, and use TeX to best advantage on your platform. Because
creating a TeX document requires the use of many tools, this
lack of information is a serious problem for TeX users.

Making TeX IVork guides you through the maze of tools
available in the TeX system. Beyond the core TeX program
there are myriad drivers, macro packages, previewers,
printing programs, online documentation facilities, graphics
programs, and much more. This book describes them all.

The Frame Handbook
By linda Branagan & Mike Sierra
lsi Edilio11 November 1994
542 pages, ISBN 1-56592-009-0

A thorough, single-volume guide to
using the UNIX version of FrameMaker
4.0, a sophisticated document produc
tion system. This book is for everyone
who creates technical manuals and
reports, from technical writers and
editors who will become power users
to administrative assistants and engi
neers. The book contains a thorough
introduction to Frame and covers

creating document templates, assembling books, and Frame
tips and tricks. It begins by discussing the basic features of
any text-formatting system: how it handles text and text-based
tools (like spell-checking). It quickly gets into areas that
benefit from a sophisticated tool like Frame: cross-references
and footnotes; styles, master pages, and templates; tables and
graphics; tables of contents and indexes; and, for those
interested in online access, hyperte.xt. Once you've finished
this book, you'll be able to use Frame to create and produce
a book or even a series of books.

FOR INFORMATION: 800·998·9938, 707-829-0515; INFO@oRA.COM; HTTP://www.ORA.COM/

Exploring Expect
By Don Libes
lsi Edilion December 1994
602pages, ISBN 1-56592-090-2

~====:--1 Written by the author of Expect, this is
the first book to explain how this new
part of the UNIX toolbox can be used to
automate Telnet, FTP, passwd, rlogin,
and hundreds of other interactive appli
cations. Based on Tel (Tool Command
Language) , Expect lets you automate

l1l interactive applications that have previ-
L_ ____ ___, ously been extremely difficult to handle

with any scripting language.

The book briefly describes Tel and how Expect relates to it.
It then describes the Expect language, using a combination of
reference material and specific, useful examples of its features.
It shows how to use Expect in background, in multiple
processes, and with standard languages and tools like C, C++,
and Tk, the X-based extension to Tel. The strength in the book
is in its scripts, conveniently listed in a separate index.

"Expect was the first widely used Tel application, and it is still
one of the most popular. This is a must-know tool for system
administrators and many others."
-:John Ousterhout, John.Ousterhout@Eng.Sun.COM

sed&awk
By Dale Dougherty
lsi Edition November 1990
414 pages, ISBN 0-937175-59-5

.,_
sed&awk

For people who create and modify text
files, sed and awk are power tools for
editing. Most of the things that you can
do with these programs can be done
interactively with a text editor; however,
using sed and awk can save many hours
of repetitive work in achieving the
same result.

"sed & awk is a must for UNIX system
programmers and administr.ltors, and even general UNIX
readers will benefit. I have over a hundred UNIX and C
books in my personal library at home, but only a dozen are
duplicated on the shelf where I work. This one just became
number twelve."
-Root journal

Learning Perl
By Randal L Schwartz, ForetUord by Larry Wall
1st Edition November 1993
274 pages, ISBN 1-56592-042-2

learning Perl is ideal for system adminis-
Lea · trators, programmers, and anyone else

yun& wanting a down-to-earth introduction to
this useful language. Written by a Perl
tratner, its aim is to make a competent,
hands-on Perl programmer out of the
reader as quickly as possible. The book

§ ._.::::: takes a tutorial approach and includes
L_ _ _ _ ___, hundreds of short code examples, along
\vith some lengthy ones. The relatively inexperienced
programmer will find Learning Perl easily accessible.
Each chapter of the book includes practical programming
exercises. Solutions are presented for all exercises.

For a comprehensive and detailed guide to advanced
programming witlt Perl, read O'Reilly's companion book,
Programming pert.

"AII-in-all, Learning Perl is a fine introductory text that can
dramatically ease moving into the world of Perl. It fills a niche
previously filled only by hllorials taught by a small number of
Perl experts The UNIX community too often lacks the kind
of tutorial that this book offers."
-Rob Kolstad, ;login

Programming per/
By wrry Wall & Randal L Schwartz
1st Edition january 1991
482 pages, ISBN 0-937175-64-1

~
This is the authoritative guide to the
hottest new UNIX utility in years,
coauthored by its creator, Larry Wall.
Perl is a language for easily manipulating
text, files, and processes. Perl provides
a more concise and readable way to do
many jobs that were formerly accom-

.<a plished (with difficulty) by progranuning
.__ ___ __, in the C language or one of the shells.

_peri
Programmi11g pert covers Perl syntax, functions, debugging,
efficiency, the Perl library, and more, including real-world
Perl programs dealing with such issues as system administra
tion and text manipulation. Also includes a pull-out quick
reference card (designed and created by johan Vromans).

TO ORDER: 800.889·8969 (CREDIT CARD ORDERS ONLY); ORDER@oRA,COM

At Your Fingertips-
A COMPLETE GUIDE TO
O'REILLY'S ONLINE SERVICES
O'Reilly & Associates offers extensive product and customer service infonnation online. We invite you to come and
explore our little neck-of-the-woods.

For product information and insight into new
technologies, visit the O'Reilly Online Center
Most comprehensive among our online offerings is the
O'Reilly Online Center. You'll find detailed information
on all O'Reilly products, including tides, prices, tables of
contents, indexes, author bios, software contents, and
reviews. You can also view images of all our products.
In addition, watch for informative articles that provide
perspective on the technologies we write about. Interviews,
excerpts, and bibliographies are also included.

After browsing online, it's easy to order, too by sending
email to orcler@ora.com. The O'Reilly Online Center
shows you how. Here's how to visit us online:

~Via tbe World Wide Web

If you are connected to the Internet, point your Web browser
(e.g., IOOsaic, netscape, or lynx) to:

http://www.ora.com/

For the plaintext version, telnet to:
www. ora. com (login: oraweb)

~VIa Gopher

If you have a Gopher program, connect your gopher to:
gopher. ora. com
Or, point your Web browser to:
gopher://gopher.ora.cam/

Or, you can telnet to: gopher. ora. com
(login: gopher)

A convenient way to stay informsd:
email mailing lists
An easy way to learn of the latest projects and products &om
O'Reilly & Associates is to subscribe to our mailing lists.
We have email announcements and discussions on various
topics. Subscribers receive email as soon as the infor
mation breaks.

~To join 11 11111iling list:

Send email to:
listproc@online.ora.com

Leave the message "subject" empty if possible.

If you know the name of the mailing list you want to subscribe
to, put the following information on the first line of your
message: subscribe "listname" "your name" of
''your company."

For example: subscribe ora..;.news
Kris Webber of Pine Enterprises

If you don't know the name of the mailing list, listproc will
send you a listing of all the mailing lists. Put this word on the
first line of the body: lists

To find out more about a particular list, send a message with
this word as the first line of the body: info "listname"

For more information and help, send this message: help

For specific help, email to: listmaster@online.ora.com

FOR INFORMATION: 800.998-9938, 707-829-0515; INFo@oRA.COM; HTTP://WWW.ORA.COII/

The complete O'Reilly catalog is now
available via email
You can now receive a text-only version of our complete
catalog via email. It contains detailed information about
all our products, so it's mighty big: over 200 kbytes, or
200,000 characters.

To get the whole catalog in one message, send an empty
email message to: catalog@online.ora.com

H your email system can't handle large messages, you
can get the catalog split into smaller messages.
Send email to: catalog-split@online.ora.com

To receive a print catalog, send your snail mail address to:
catalog@ora.com

Check out Web Review, our new publication
on the Web
Web Review is our new magazine that offers fresh insights
into the Web. The editorial mission of Web Review is to
answer the question: How and where do you BEST spend
your time online? Each issue contains reviews that look at
the most interesting and creative sites on the Web.
Visit us at http://gnn.com/wr/

Web Review is a product of the recently formed Songline
Studios, a venture between O'Reilly and America Online.

Get the files you want with FTP
We have an archive of example rues from our books, the covers
of our books, and much more available by anonymous FfP.

ftpto:
ftp. ora. cam (login: anonymous- use your email

address as the password)
Or, if you have a WWW browser, point it to:

ftp://ftp.ora.com/

FTPMAIL
The ftpmail service connects to O'Reilly's FfP server and
sends the results (the rues you want) by email. This service
is for people who can't use Fl'P-but who can use email.

For help and examples, send an email message to:
ftpmail@online.ora.com
(In the message body, put the single word: help)

Helpful information is just an email
message away
Many customer services are provided via email. Here are
a few of the most popular and useful:

info@ora.com
For general questions and information.

bookquestions@ora.com
For technical questions, or corrections, concerning
book contents.

order@ora.com
To order books online and for ordering questions.

catalog@online.ora.com
To receive an online copy of our catalog.

catalog@ora.com
To receive a free copy of ora com, our combination
magazine and catalog. Please include your snail
mail address.

intematiooal@ora.com
Comments or questions about international ordering
or distribution.

xresource@ora.com
To order or inquire about The X Resource journal.

proposals@ora.com
To submit book proposals.

O'Reilly & Associates, Inc.
103A Morris Street, Sebastopol, CA 95472
Inquiries: 707-829-0515, 800-998-9938
Credit card orders: 800-889-8969 (Weekdays 6 .ua.- 5 P.M. PST)

FAX: 707-829-0104

TO ORDER: 8Q0.889-B969 (CREDIT CARD ORDERS ONLY); ORDER@oRA.COAf

O'Reilly & Associates
LISTING OF TITLES
INTERNET USING UNIX PROGRAMMING
CGI Scripting on the World Wtde Web BASICS Applying RCS and SCCS

(Winter '95-96 est) learning GNU Emacs C++: The Core Language
Connecting to the Internet learning the bash Shell Checking C Programs with lint An O'Reilly Buyer's Guide

Learning the Korn Shell DCE Security Programming Getting Connected (Winter '95-96 est.)
Learning the UNIX Operating System Distributing Applications Across DCE HTML Handbook (Winter '95-96 est.)
l.eaming the vi Editor and Windmvs NT

Smileys
MH & xmh: Email for Users & Encyclopedia of Graphics File Formats

The USENET Handbook Programmers Guide to Writing DCE Applications
The Whole Internet User's PGP: Pretty Good Privacy High Performance Computing Guide & catalog

SCO UNIX in a Nutshell lex&yacc The Whole Internet for Windows 95
Web Design for Designers

UNIX in a Nutshell: System V Edition Managing Projects with make

(W'mter '95-96 est) Using and Managing UUCP Microsoft RPC Programming Guide

The World Wide Web journal
(Spring '96 est) Migrating to Fortran 90

(Winter '95·96 est) Using csh and tcsh Multi-Platform Code Management
ADVANCED ORACLE Performance Tuning

SOFI'WARE
Exploring Expect ORACLE PUSQL Programming
The Frame Handbook Porting UNIX Software

Internet In A Box 'fM Version 2.0 Learning Perl POSIX Programmer's Guide
WebSite ™ 1.1 Making TeX Work POSIX.4: Programming for

Programming peri the Real World
Running Linux Power Programming with RPC

WHAT You NEED To
Running Linux Companion CD-ROM Practical C Programming KNow SERIES (Wmter '95·96est.) Practical C++ Programming

Bandits on the Information sed&awk Programming with curses Superhighway (W'mter '95-96 est) UNIX Power Tools (with CD-ROM) Programming with GNU Software Marketing on the Internet (W'mter '95-96est) (W'mter '95-96 est)
Programming with Pthreads When You Can't Find Your SYSTEM (W'mter '95-96est) System Administrator

ADMINISTRATION Software Portability\vith !make Using Email Elf~
Building Internet Firewalls Understanding and Using COFF
Computer Crime: Understanding DCE

HEALTH, CAREER A Crimefighter's Handbook Understandingjapanese Information
& BUSINESS Computer Security Basics Processing

DNSandBIND UNIX S)~tems Programming for SVR4 Building a Su~l Software Business
Essential System Administration (Winter '95-96 est.)

The Computer User's Survival Guide
Unux Network Administrator's Guide Dictionary of Computer Terms
Managing Internet Infonnatlon Services BERKELEY 4.4 (Winter '95·96 est)

The Future Does Not Compute Managing NFS and NIS
SOFIWARE

Love Your job! Managing UUCP and Usenet

TWI Day Calendar- 1996 Networking Personal Computers DISTRIBUTION
withTCPIIP 4.4BSD System Manager's Manual

Practical UNIX and Internet Security 4.4BSD User's Reference Manual
(Wmter '95-96 est.) 4ABSD User's Supplementary Docs.

sendmail 4ABSD Programmer's Reference Man.
System Performance Tuning 4.4BSD Programmer's Supp. Docs.
TCP/IP Network Administration 4.4BSD·Ute CD Companion
termcap & terminfo 4.4BSD-Ute CD Companion: Int Ver.
\'olmne 8: X Window System

Administrator's Guide
The X Companion CD for R6

X WINDOW SYSTEM

Volume 0: X Protocol Referenre Manual
Volume I: Xl!b Programming Manual
Volume 2: Xlib Reference Manual
Volume 3: X Window System

User's Guide
Volume. 3M: X Window System

User's Guide, Motif Ed.
Volume. 4: X Toolkit Intrinsics

Programming Manual
Volume 4M: X Toolkit Intrins!cs

Programming Manual, Motif Ed.
Volume 5: X Toolkit Intrinsics

Reference Manual
Volume 6A: Motif Programming Man.
Volume 6B: Motif Reference Manual
Volume 6C: Motif Tools
Volume 8: X Window System

Administrator's Guide
Volume 9: X Window Window

Programming Extentions
(Winter '95·96est.)

Programmer's Supplement for Release 6
The X Companion CD for R6
X User Tools (with CD-ROM)
The X Window System In a Nutshell

THE X REsoURCE
A QUARTERLY WORKING JOURNAL

FOR X PROGRAMMERS

The X Resource: Issues 0 through 16

TRAVEL
Travelers' Tales France
Tra\-elers' Tales Hong Kong (l/96est.)

Travelers' Tales India
Travelers' Tales Mexico
Travelers' Tales Spain
Tra\-elers' Tales Thailand
Tra-relers' Tales: A Woman's World

FOR INFORMATION: 800.998·9938, 707-829-0515; INFo@oRA.COM; HTTP-J/WWW.ORA.CONJ/

O'Reilly & Associates-
INTERNATIONAL DISTRIBUTORS
Customers ou~ide North America can now order O'Reilly & ~ates books through the following distributors. They offer our

international customers faster order processing, more bookstores, increased representation at tradeshows worldwide, and the high

quality, responsive service our customers have come to expect

EUROPE, MIDDLE EAST, AND AFRICA
(except Germany, Switzerland, and Austria)
INQUIRIES
International Thom5on Publishing Europe
Berkshire House
168-173 High Holbom
London WC1V 7M, United Kingdom
Telephone: 44-71-497-1422
Fax: 44-71-497-1426
Email: itpint@itps.co.uk

ORDERS
International Thomson Publishing Services, Ltd.
Cheriton House, North Way
Andover, Hampshire SP10 5BE, United Kingdom
Telephone: 44-264-342-832 (UK orders)
Telephone: 44-264-342-806 (outside UK)
Fax: 44-264-364418 (UK orders)
Fax: 44-264-342761 (outside UK)

GERMANY, SWITZERLAND, AND AUSTRIA
International Thomson Publishing GmbH
O'Reilly-International Thomson Verlag
K'dnigswinterer StraSe 418
53227 Bonn, Gennany
Telephone: 49-228-97024 0
Fax: 49-228-441342
Email: anfragen@ora.de

AsiA (except Japan)
INQUIRIES
International Thomson Publishing Asia
221 Henderson Road
#08-03 Henderson Industrial Park
Singapore 0315
Telephone: 65-272-6496
Fax: 65-272-6498

ORDERS
Telephone: 65-268-7867
Fax: 65-268-6727

JAPAN
O'Reilly & Associates, Inc.
103A Morris Street
Sebastopol, CA. 95472 U.S.A
Telephone: 707-829-0515
Telephone: 800-998-9938 (U.S. & Canada)
Fax: 707-829-0104
Email: order@ora.com

AUSTRALIA
WoodsLane Pty. Ltd.
715 Vuko Place, Warriewood NSW 2102
P.O. Box 935, Mona Vale NSW 2103
Australia
Telephone: 02-970-5111
Fax: 02-970-5002
Email: woods@bnx.mhs.oz.au

NEW ZEALAND
Woodsl.a.ne New Zealand Ltd.
21 Cooks Street (P.O. Box 575)
Wanganui, New Zealand
Telephone: 64-6-347-6543
Fax: 64-6-345-4840
Email: woods@bnx.mhs.oz.au

11IE AMERICAS
O'Reilly & Associates, Inc.
103A Morris Street
Sebastopol, CA 95472 U.S.A
Telephone: 707-829-0515
Telephone: 800-998-9938 (U.S. & Canada)
Fax: 707-829-0104
Email: order@oracom

TO ORDER: 800-IJB9-8969 (CREDIT CARD ORDERS ONLY); ORDBR@oRA.COM

Here's a page we encourage readers to tear out ...

Please send me the following:

Oora.com
O'Reilly's magazine/catalog,
containing behind-the-scenes
articles and interviews on the
technology we write about, and
a complete listing of O'Reilly
books and products.

Plet1se priut leglb(y

Name

Address

City

Telephone

Which book did tltis card come from?

Where did you buy this book?
0 Bookstore 0 Direct from O'Reilly
0 Bundled with hardware/software 0 Class/seminar

Your job description: 0 SysAdmin 0 Programmer
0 Other _______________ _

Describe your operating system:

Company/Organization Name

Stale Zip/Postal Code Counlry

lnlcmel or olher email address (specify ncrwork)

~ineteenth century wood engraving
>f raccoons from the O'Reilly
l Associates Nutshell Handbook®
tpplying ees and sees.

Ill II
BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 80 SEBASTOPOL, CA

Postage will be paid by addressee

O'Reilly & Associates, Inc.
103A Morris Street
Sebastopol, CA 95472-9902

11.1 ••• 1.1 .. 1 •• 11 ... 1 •• 1.11.1 •• 1.1 •• 11 ••••• 1.1 •• 11.1

PLACE

STAMP

HERE

NO POSTAGE
NECESSARY IF
MAILED IN THE
UNITED STATES

The Graphics File Formats (GFF) online prod
uct runs on a variety of platforms
Windows 95, Windows NT, Windows 3.1,
the Macintosh , and UNIX. Installation
is easy; follow the instructions below,
and for more detailed installation
instructions, see Appendix C,
Installation and Setup.

• For Windows 95 and Windows NT:
Run D:\PC\WIN95\SETUP.EXE
where D: is the drive le tter of your
CD-ROM drive.

• For Windows 3.1:
Run D:\PC\WIN31\SETUP.EXE

• For the Macintosh:
The GFF application and its configuration fi le
are in the Mac fo lde r on the CD-ROM. You can run them directly from there,
or drag them both into any folder you wish on your Macintosh.

• ForUNIX:
To install GFF on a UNIX workstation , follow the instructions in the INSTALL
file in the appropriate directory on the CD-ROM. Look in /unix/platforrn, where
platfO'rm is the name of your platform (or an abbreviation of it).

To get started:
Click on the title page, and
you'll see the Main Menu.
From there, you can begin
to explore the book text, file
format specs, images, and
software provided with the
product.

ENCYCLOPEDIA OF

GRAPHICS FILE FORMATS
SECOND EDITION

O'Reilly's new edition of the Encyclopedia of Graphics File Formats is a book, a CD-ROM, and a
World Wide Web product, all in one. In addi tion to the print book, you 'll be able to access file
format specifications, images, software, and the entire book on the CD-ROM. And you 'll be
able to link automatically from the product to the O'Reilly GFF Web Center-and from there
to the larger world or the Internet-for even more comple te and up-to-date information.

The Encyclopedia of Graphics File Formals is the definitive work on file formats-more than 100 of
them-from Adobe Illustrator to ZBR. It's fo r graphics programmers, illustrators, and every
one who needs to deal with the low-level technical details of graph ics files. The boo k includes
detailed technical information on fi le formats (including new ones like PNG and SPIFF), as
well as chapters on graphics and file format basics; conversion from o ne f01·mat type to
another; compression methods like RLE, LZvV, CCITT,JPEG,JBIG, ART, and fractal; and the
use of graphics fi les on the Internet and the World Wide Web (how to post, download, and
convert them).

The multi-plalform CD-ROM included with this book contains:

• Updated vendor fi le format specifications (from vendors li ke Adobe, Apple, IBM, Microsoft,
and Silicon Graphics)

• The best of the free graph ics software and shareware-fo r Microsoft Windows, MS-DOS,
OS/ 2, Macin tosh, and UNIX platforms

• A variety of test graphics images

• The entire conten ts of the book, along with a World Wide Web browser

The new Encyclopedia of Graphics File Fannals is a product that \\~ll never go ~ut of date. If you
have an Internet connection, you can go to the O'Re illy GFF Web Center to get updated ver
sio ns of file format specs and software; see a roadmap to other resources of interest to graphics
programmers; find out about online archives of graphics software and images; and learn
what's new in the graphics world.

"It seemed like fate. No sooner had I opened this resource when my beeper went off and I was
asked about how to handle a file format conversion. The answer was in the Encyclopedia."

us $79.95
I S BN 1-5 659 2-161-5 CAN $113.95

90000

9 781565 921610

--Steve j ewell, Service Bureau Proprietor

System Requireme11ts to use C[).ROM:

• PC running Microsoft Windows (3.1,
95, o r NT), Macintosh worksr.ation ,
or UNIX plarforn• s upporred by

Spyglass Enhanced Mos.'lic

• Internal or external CD-ROM drive

• 256 color display recommended

@
Pri11t~d 011

RPcycled PajJPT

---------~--=----_::.:-.-

