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Preface

“Audience, level,

and treatment —

a description of
such matters is
what prefaces are
supposed to be
about.”

—P. R. Halmos [173]

“People do acquire a
little brief author-
ity by equipping
themselves with
Jjargon: they can
pontificate and air a
superficial expertise.
But what we should
ask of educated
mathematicians is
not what they can
speechify about,
nor even what they
know about the
existing corpus
of mathematical
knowledge, but
rather what can
they now do with
their learning and
whether they can
actually solve math-
ematical problems
arising in practice.
In short, we look for
deeds not words.”
—J. Hammersley [176]

THIS BOOK IS BASED on a course of the same name that has been taught
annually at Stanford University since 1970. About fifty students have taken it
each year — juniors and seniors, but mostly graduate students —and alumni
of these classes have begun to spawn similar courses elsewhere. Thus the time
seems ripe to present the material to a wider audience (including sophomores).

It was a dark and stormy decade when Concrete Mathematics was born.
Long-held values were constantly being questioned during those turbulent
years; college campuses were hotbeds of controversy. The college curriculum
itself was challenged, and mathematics did not escape scrutiny. John Ham-
mersley had just written a thought-provoking article “On the enfeeblement of
mathematical skills by ‘Modern Mathematics’ and by similar soft intellectual
trash in schools and universities” [176]; other worried mathematicians [332]
even asked, “Can mathematics be saved?” One of the present authors had
embarked on a series of books called The Art of Computer Programming, and
in writing the first volume he (DEK) had found that there were mathematical
tools missing from his repertoire; the mathematics he needed for a thorough,
well-grounded understanding of computer programs was quite different from
what he’d learned as a mathematics major in college. So he introduced a new
course, teaching what he wished somebody had taught him.

The course title “Concrete Mathematics” was originally intended as an
antidote to “Abstract Mathematics,” since concrete classical results were rap-
idly being swept out of the modern mathematical curriculum by a new wave
of abstract ideas popularly called the “New Math” Abstract mathematics is a
wonderful subject, and there’s nothing wrong with it: It’s beautiful, general,
and useful. But its adherents had become deluded that the rest of mathemat-
ics was inferior and no longer worthy of attention. The goal of generalization
had become so fashionable that a generation of mathematicians had become
unable to relish beauty in the particular, to enjoy the challenge of solving
quantitative problems, or to appreciate the value of technique. Abstract math-
ematics was becoming inbred and losing touch with reality; mathematical ed-
ucation needed a concrete counterweight in order to restore a healthy balance.

When DEK taught Concrete Mathematics at Stanford for the first time,
he explained the somewhat strange title by saying that it was his attempt
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to teach a math course that was hard instead of soft. He announced that,
contrary to the expectations of some of his colleagues, he was not going to
teach the Theory of Aggregates, nor Stone’'s Embedding Theorem, nor even
the Stone-Cech compactification. (Several students from the civil engineering
department got up and quietly left the room.)

Although Concrete Mathematics began as a reaction against other trends,
the main reasons for its existence were positive instead of negative. And as
the course continued its popular place in the curriculum, its subject matter
“solidified” and proved to be valuable in a variety of new applications. Mean-
while, independent confirmation for the appropriateness of the name came
from another direction, when Z. A. Melzak published two volumes entitled
Companion to Concrete Mathematics [267)].

The material of concrete mathematics may seem at first to be a disparate
bag of tricks, but practice makes it into a disciplined set of tools. Indeed, the
techniques have an underlying unity and a strong appeal for many people.
When another one of the authors (RLG) first taught the course in 1979, the
students had such fun that they decided to hold a class reunion a year later.

But what exactly is Concrete Mathematics? It is a blend of cONtinuous
and disCRETE mathematics. More concretely, it is the controlled manipulation
of mathematical formulas, using a collection of techniques for solving prob-
lems. Once you, the reader, have learned the material in this book, all you
will need is a cool head, a large sheet of paper, and fairly decent handwriting
in order to evaluate horrendous-looking sums, to solve complex recurrence
relations, and to discover subtle patterns in data. You will be so fluent in
algebraic techniques that you will often find it easier to obtain exact results
than to settle for approximate answers that are valid only in a limiting sense.

The major topics treated in this book include sums, recurrences, ele-
mentary number theory, binomial coefficients, generating functions, discrete
probability, and asymptotic methods. The emphasis is on manipulative tech-
nique rather than on existence theorems or combinatorial reasoning; the goal
is for each reader to become as familiar with discrete operations (like the
greatest-integer function and finite summation) as a student of calculus is
familiar with continuous operations (like the absolute-value function and in-
finite integration).

Notice that this list of topics is quite different from what is usually taught
nowadays in undergraduate courses entitled “Discrete Mathematics” There-
fore the subject needs a distinctive name, and “Concrete Mathematics” has
proved to be as suitable as any other.

The original textbook for Stanford’s course on concrete mathematics was
the “Mathematical Preliminaries” section in The Art of Computer Program-
ming [207]. But the presentation in those 110 pages is quite terse, so another
author (OP) was inspired to draft a lengthy set of supplementary notes. The

“The heart of math-
ematics consists

of concrete exam-
ples and concrete
problems.”

—P. R. Halmos [172]

“It is downright
sinful to teach the
abstract before the
concrete.”

— 7. A. Melzak [267]

Concrete Mathe-
matics is a bridge
to abstract mathe-
matics.

“The advanced
reader who skips
parts that appear
too elementary may
miss more than
the less advanced
reader who skips
parts that appear
too complex.”

—G. Pdlya [297]

(We're not bold
enough to try
Distinuous Math-
ematics.)



“ .. aconcrete

life preserver
thrown to students
sinking in a sea of
abstraction.”

— W. Gottschalk

Math graffiti:

Kilroy wasn’t Haar.

Free the group.
Nuke the kernel.
Power to the n.
N=1 = P=NP.

I have only a
marginal interest
in this subject.

This was the most
enjoyable course
I’ve ever had. But
it might be nice
to summarize the
material as you
go along.

PREFACE vii

present book is an outgrowth of those notes; it is an expansion of, and a more
leisurely introduction to, the material of Mathematical Preliminaries. Some of
the more advanced parts have been omitted; on the other hand, several topics
not found there have been included here so that the story will be complete.

The authors have enjoyed putting this book together because the subject
began to jell and to take on a life of its own before our eyes; this book almost
seemed to write itself. Moreover, the somewhat unconventional approaches
we have adopted in several places have seemed to fit together so well, after
these years of experience, that we can’t help feeling that this book is a kind
of manifesto about our favorite way to do mathematics. So we think the book
has turned out to be a tale of mathematical beauty and surprise, and we hope
that our readers will share at least € of the pleasure we had while writing it.

Since this book was born in a university setting, we have tried to capture
the spirit of a contemporary classroom by adopting an informal style. Some
people think that mathematics is a serious business that must always be cold
and dry; but we think mathematics is fun, and we aren’t ashamed to admit
the fact. Why should a strict boundary line be drawn between work and
play? Concrete mathematics is full of appealing patterns; the manipulations
are not always easy, but the answers can be astonishingly attractive. The
joys and sorrows of mathematical work are reflected explicitly in this book
because they are part of our lives.

Students always know better than their teachers, so we have asked the
first students of this material to contribute their frank opinions, as “graffiti”
in the margins. Some of these marginal markings are merely corny, some
are profound; some of them warn about ambiguities or obscurities, others
are typical comments made by wise guys in the back row; some are positive,
some are negative, some are zero. But they all are real indications of feelings
that should make the text material easier to assimilate. (The inspiration for
such marginal notes comes from a student handbook entitled Approaching
Stanford, where the official university line is counterbalanced by the remarks
of outgoing students. For example, Stanford says, “There are a few things
you cannot miss in this amorphous shape which is Stanford”; the margin
says, “Amorphous ... what the h*** does that mean? Typical of the pseudo-
intellectualism around here.” Stanford: “There is no end to the potential of
a group of students living together.” Graffito: “Stanford dorms are like zoos
without a keeper.”)

The margins also include direct quotations from famous mathematicians
of past generations, giving the actual words in which they announced some
of their fundamental discoveries. Somehow it seems appropriate to mix the
words of Leibniz, Euler, Gauss, and others with those of the people who
will be continuing the work. Mathematics is an ongoing endeavor for people
everywhere; many strands are being woven into one rich fabric.
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This book contains more than 500 exercises, divided into six categories:

o Warmups are exercises that EVERY READER should try to do when first
reading the material.

e Basics are exercises to develop facts that are best learned by trying
one’s own derivation rather than by reading somebody else’s.

e Homework exercises are problems intended to deepen an understand-
ing of material in the current chapter.

e Exam problems typically involve ideas from two or more chapters si-
multaneously; they are generally intended for use in take-home exams
(not for in-class exams under time pressure).

e Bonus problems go beyond what an average student of concrete math-
ematics is expected to handle while taking a course based on this book;
they extend the text in interesting ways.

e Research problems may or may not be humanly solvable, but the ones
presented here seem to be worth a try (without time pressure).

Answers to all the exercises appear in Appendix A, often with additional infor-
mation about related results. (Of course, the “answers” to research problems
are incomplete; but even in these cases, partial results or hints are given that
might prove to be helpful.) Readers are encouraged to look at the answers,
especially the answers to the warmup problems, but only AFTER making a
serious attempt to solve the problem without peeking.

We have tried in Appendix C to give proper credit to the sources of
each exercise, since a great deal of creativity and/or luck often goes into
the design of an instructive problem. Mathematicians have unfortunately
developed a tradition of borrowing exercises without any acknowledgment;
we believe that the opposite tradition, practiced for example by books and
magazines about chess (where names, dates, and locations of original chess
problems are routinely specified) is far superior. However, we have not been
able to pin down the sources of many problems that have become part of the
folklore. If any reader knows the origin of an exercise for which our citation
is missing or inaccurate, we would be glad to learn the details so that we can
correct the omission in subsequent editions of this book.

The typeface used for mathematics throughout this book is a new design
by Hermann Zapf [227], commissioned by the American Mathematical Society
and developed with the help of a committee that included B. Beeton, R.P.
Boas, L. K. Durst, D. E. Knuth, P. Murdock, R. S. Palais, P. Renz, E. Swanson,
S.B. Whidden, and W.B. Woolf. The underlying philosophy of Zapf’s design
is to capture the flavor of mathematics as it might be written by a mathemati-
cian with excellent handwriting. A handwritten rather than mechanical style
is appropriate because people generally create mathematics with pen, pencil,

I see:
Concrete mathemat-
ics means drilling.

The homework was
tough but I learned
a lot. It was worth
every hour.

Take-home exams
are vital — keep
them.

Exams were harder
than the homework
led me to expect.

Cheaters may pass
this course by just
copying the an-
swers, but they’re
only cheating
themselves.

Difficult exams
don’t take into ac-
count students who
have other classes
to prepare for.



I’'m unaccustomed
to this face.

Dear prof: Thanks
for (1) the puns,
(2) the subject
matter.

I don’t see how
what I've learned
will ever help me.

I had a Iot of trou-
ble in this class, but
I know it sharpened
my math skills and
my thinking skills.

I would advise the
casual student to
stay away from this
course.

PREFACE

or chalk. (For example, one of the trademarks of the new design is the symbol
for zero, ‘0’, which is slightly pointed at the top because a handwritten zero
rarely closes together smoothly when the curve returns to its starting point.)
The letters are upright, not italic, so that subscripts, superscripts, and ac-
cents are more easily fitted with ordinary symbols. This new type family has
been named AMS Euler, after the great Swiss mathematician Leonhard Euler
(1707-1783) who discovered so much of mathematics as we know it today.
The alphabets include Euler Text (Aa Bb Cc through Xx Yy Zz), Euler Frak-
tur (AaBb ¢ through XrYy 33), and Euler Script Capitals (A B € through
XY2Z), as well as Euler Greek (AaxBR 'y through Xx Wi Qw) and special
symbols such as p and X. We are especially pleased to be able to inaugurate
the Euler family of typefaces in this book, because Leonhard Euler’s spirit
truly lives on every page: Concrete mathematics is Eulerian mathematics.

The authors are extremely grateful to Andrei Broder, Ernst Mayr, An-
drew Yao, and Frances Yao, who contributed greatly to this book during the
years that they taught Concrete Mathematics at Stanford. Furthermore we
offer 1024 thanks to the teaching assistants who creatively transcribed what
took place in class each year and who helped to design the examination ques-
tions; their names are listed in Appendix C. This book, which is essentially
a compendium of sixteen years’ worth of lecture notes, would have been im-
possible without their first-rate work.

Many other people have helped to make this book a reality. For example,
we wish to commend the students at Brown, Columbia, CUNY, Princeton,
Rice, and Stanford who contributed the choice graffiti and helped to debug
our first drafts. Our contacts at Addison-Wesley were especially efficient
and helpful; in particular, we wish to thank our publisher (Peter Gordon),
production supervisor (Bette Aaronson), designer (Roy Brown), and copy ed-
itor (Lyn Dupré). The National Science Foundation and the Office of Naval
Research have given invaluable support. Cheryl Graham was tremendously
helpful as we prepared the index. And above all, we wish to thank our wives
(Fan, Jill, and Amy) for their patience, support, encouragement, and ideas.

This second edition features a new Section 5.8, which describes some
important ideas that Doron Zeilberger discovered shortly after the first edition
went to press. Additional improvements to the first printing can also be found
on almost every page.

We have tried to produce a perfect book, but we are imperfect authors.
Therefore we solicit help in correcting any mistakes that we've made. A re-
ward of $2.56 will gratefully be paid to the first finder of any error, whether
it is mathematical, historical, or typographical.

Murray Hill, New Jersey —RLG
and Stanford, California DEK
May 1988 and October 1993 OP

ix



A Note on Notation

SOME OF THE SYMBOLISM in this book has not (yet?) become standard.
Here is a list of notations that might be unfamiliar to readers who have learned
similar material from other books, together with the page numbers where
these notations are explained. (See the general index, at the end of the book,
for references to more standard notations.)

Notation Name Page

Inx natural logarithm: log, x 276

lgx binary logarithm: log, x 70

logx common logarithm: log;, x 449

[x] floor: max{n | n < x, integer n} 67

[x] ceiling: min{n | n > x, integer n} 67

x mod y remainder: x —y|x/y| 82

{x} fractional part: x mod 1 70

Z f(x) dx indefinite summation 48

b : .
Z f(x) dx definite summation 49
a

x& falling factorial power: x!/(x —n)! 47,211

x™ rising factorial power: I'(x + n)/T'(x) 48,211

nj subfactorial: n!/0! —n!/11 4+ .- - 4+ (=1)"n!/n! 194
If you don’t under-

Rz real part: x, if z=x+ 1y 64  stand what the
X denotes at the

Jz imaginary part: y,if z=x+1y 64  bottom of this page,
try asking your

Hn harmonic number: 1/1+---4+1/n 29  Latin professor
instead of your

Hil") generalized harmonic number: 1/1* 4 ---+1/n* 277  math professor.



Prestressed concrete
mathematics is con-
crete mathematics
that’s preceded by
a bewildering list
of notations.

Also ‘nonstring’ is
a string.

A NOTE ON NOTATION xi

fm(2) mth derivative of f at z 470
[:1] Stirling cycle number (the “first kind”) 259
{:L} Stirling subset number (the “second kind”) 258
n .
< > Eulerian number 267
m
n .
<<m>> Second-order Eulerian number 270
(am...a0)p radix notation for ) |, aib* 11
K(ay,...,an)  continuant polynomial 302
a,b . .
F < c ’ z) hypergeometric function 205
#A cardinality: number of elements in the set A 39
™ f(z) coefficient of z™ in f(z) 197
(.. pB] closed interval: the set {x | « < x < B} 73
[m=n] 1 if m = n, otherwise 0* 24
[m\n] 1 if m divides n, otherwise 0 * 102
[m\n] 1 if m exactly divides n, otherwise 0 * 146
[mLn] 1 if m is relatively prime to n, otherwise 0 * 115

*In general, if S is any statement that can be true or false, the bracketed
notation [S] stands for 1 if S is true, 0 otherwise.

Throughout this text, we use single-quote marks (‘...’) to delimit text as
it is written, double-quote marks (“...”) for a phrase as it is spoken. Thus,
the string of letters ‘string’ is sometimes called a “string”

An expression of the form ‘a/bc’ means the same as ‘a/(bc)’. Moreover,
log x/logy = (logx)/(logy) and 2n! = 2(n!).
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Recurrent Problems

Raise your hand
if you've never
seen this.

OK, the rest of
you can cut to
equation (1.1).

Gold — wow.
Are our disks made
of concrete?

THIS CHAPTER EXPLORES three sample problems that give a feel for
what’s to come. They have two traits in common: They’ve all been investi-
gated repeatedly by mathematicians; and their solutions all use the idea of
recurrence, in which the solution to each problem depends on the solutions
to smaller instances of the same problem.

1.1 THE TOWER OF HANOI

Let’s look first at a neat little puzzle called the Tower of Hanoi,
invented by the French mathematician Edouard Lucas in 1883. We are given
a tower of eight disks, initially stacked in decreasing size on one of three pegs:

The objective is to transfer the entire tower to one of the other pegs, moving
only one disk at a time and never moving a larger one onto a smaller.

Lucas [260] furnished his toy with a romantic legend about a much larger
Tower of Brahma, which supposedly has 64 disks of pure gold resting on three
diamond needles. At the beginning of time, he said, God placed these golden
disks on the first needle and ordained that a group of priests should transfer
them to the third, according to the rules above. The priests reportedly work
day and night at their task. When they finish, the Tower will crumble and
the world will end.



2 RECURRENT PROBLEMS

It’s not immediately obvious that the puzzle has a solution, but a little
thought (or having seen the problem before) convinces us that it does. Now
the question arises: What’s the best we can do? That is, how many moves
are necessary and sufficient to perform the task?

The best way to tackle a question like this is to generalize it a bit. The
Tower of Brahma has 64 disks and the Tower of Hanoi has 8; let's consider
what happens if there are n disks.

One advantage of this generalization is that we can scale the problem
down even more. In fact, we'll see repeatedly in this book that it’s advanta-
geous to LOOK AT SMALL CASES first. It’s easy to see how to transfer a tower
that contains only one or two disks. And a small amount of experimentation
shows how to transfer a tower of three.

The next step in solving the problem is to introduce appropriate notation:
NAME AND CONQUER. Let’s say that T,, is the minimum number of moves
that will transfer n disks from one peg to another under Lucas’s rules. Then
Ty is obviously 1, and T, = 3.

We can also get another piece of data for free, by considering the smallest
case of all: Clearly Tp = 0, because no moves at all are needed to transfer a
tower of 1 = 0 disks! Smart mathematicians are not ashamed to think small,
because general patterns are easier to perceive when the extreme cases are
well understood (even when they are trivial).

But now let’s change our perspective and try to think big; how can we
transfer a large tower? Experiments with three disks show that the winning
idea is to transfer the top two disks to the middle peg, then move the third,
then bring the other two onto it. This gives us a clue for transferring n disks
in general: We first transfer the n — 1 smallest to a different peg (requiring
Tn—1 moves), then move the largest (requiring one move), and finally transfer
the n—1 smallest back onto the largest (requiring another T,, 1 moves). Thus
we can transfer n disks (for n > 0) in at most 2T,,_7 + 1 moves:

T, < 2T 1 +1, for n > 0.

This formula uses ‘ <’ instead of ‘=’ because our construction proves only
that 2T,,_1; + 1 moves suffice; we haven’t shown that 2T, ; + 1 moves are
necessary. A clever person might be able to think of a shortcut.
But is there a better way? Actually no. At some point we must move the  Most of the pub-

largest disk. When we do, the n — 1 smallest must be on a single peg, and it [ished “solutions”
to Lucas’s problem,

. ) B ) like the early one
disk more than once, if we're not too alert. But after moving the largest disk  of Allardice and

for the last time, we must transfer the n — 1 smallest disks (which must again  Fraser [7], fail to ex-
plain why T, must

be > 2T,,_1 + 1.

has taken at least T,,_1 moves to put them there. We might move the largest

be on a single peg) back onto the largest; this too requires T,,_; moves. Hence

Tn 2 ZTn71+], for n > 0.



Yeah, yeah. ..
I seen that word
before.

Mathematical in-
duction proves that
we can climb as
high as we like on
a ladder, by proving
that we can climb
onto the bottom
rung (the basis)
and that from each
rung we can climb
up to the next one
(the induction).

1.1 THE TOWER OF HANOI 3

These two inequalities, together with the trivial solution for n = 0, yield

To=0;

T =2Tu 1 +1, (2:2)

forn > 0.
(Notice that these formulas are consistent with the known values Ty = 1 and
T, = 3. Our experience with small cases has not only helped us to discover
a general formula, it has also provided a convenient way to check that we
haven't made a foolish error. Such checks will be especially valuable when we
get into more complicated maneuvers in later chapters.)

A set of equalities like (1.1) is called a recurrence (a.k.a. recurrence
relation or recursion relation). It gives a boundary value and an equation for
the general value in terms of earlier ones. Sometimes we refer to the general
equation alone as a recurrence, although technically it needs a boundary value
to be complete.

The recurrence allows us to compute T,, for any n we like. But nobody
really likes to compute from a recurrence, when n is large; it takes too long.
The recurrence only gives indirect, local information. A solution to the
recurrence would make us much happier. That is, we’d like a nice, neat,
“closed form” for T, that lets us compute it quickly, even for large n. With
a closed form, we can understand what T,, really is.

So how do we solve a recurrence? One way is to guess the correct solution,
then to prove that our guess is correct. And our best hope for guessing
the solution is to look (again) at small cases. So we compute, successively,
T3=234+1=7;T4=2-741=15;T5 =2-154+1=31; T¢ =2-314+ 1 =63.
Aha! It certainly looks as if

T, = 2" -1 forn > 0.

(1.2)

)

At least this works for n < 6.

Mathematical induction is a general way to prove that some statement
about the integer n is true for all n > ny. First we prove the statement
when n has its smallest value, no; this is called the basts. Then we prove the
statement for n > ng, assuming that it has already been proved for all values
between np and n — 1, inclusive; this is called the induction. Such a proof
gives infinitely many results with only a finite amount of work.

Recurrences are ideally set up for mathematical induction. In our case,
for example, (1.2) follows easily from (1.1): The basis is trivial, since Ty =
29 —1 =0. And the induction follows for n > 0 if we assume that (1.2) holds
when n is replaced by n — 1:

T = 2Ta g +1 =22 T —1)41 = 2" —1.

Hence (1.2) holds for n as well. Good! Our quest for T,, has ended successfully.



4 RECURRENT PROBLEMS

Of course the priests’ task hasn’t ended; they’re still dutifully moving
disks, and will be for a while, because for n = 64 there are 2°4—1 moves (about
18 quintillion). Even at the impossible rate of one move per microsecond, they
will need more than 5000 centuries to transfer the Tower of Brahma. Lucas’s
original puzzle is a bit more practical. It requires 22 — 1 = 255 moves, which
takes about four minutes for the quick of hand.

The Tower of Hanoi recurrence is typical of many that arise in applica-
tions of all kinds. In finding a closed-form expression for some quantity of
interest like T,, we go through three stages:

1 Look at small cases. This gives us insight into the problem and helps us
in stages 2 and 3.
2 PFind and prove a mathematical expression for the quantity of interest.  What is a proof?
For the Tower of Hanoi, this is the recurrence (1.1) that allows us, given One half of one
e ae percent pure alco-
the inclination, to compute T,, for any n. hol.”
3 Find and prove a closed form for our mathematical expression. For the

Tower of Hanoi, this is the recurrence solution (1.2).

The third stage is the one we will concentrate on throughout this book. In
fact, we'll frequently skip stages 1 and 2 entirely, because a mathematical
expression will be given to us as a starting point. But even then, we'll be
getting into subproblems whose solutions will take us through all three stages.

Our analysis of the Tower of Hanoi led to the correct answer, but it
required an “inductive leap”; we relied on a lucky guess about the answer.
One of the main objectives of this book is to explain how a person can solve
recurrences without being clairvoyant. For example, we’ll see that recurrence
(1.1) can be simplified by adding 1 to both sides of the equations:

To+1=1;
Ta+1=2Th_1+2, for n > 0.

Now if we let U, = T,, + 1, we have Interesting: We get
rid of the +1 in
Up=1; (1.1) by adding, not

(1.3) by subtracting.
U, =2U,_1, for n > 0.

It doesn’t take genius to discover that the solution to this recurrence is just
U,, =2"; hence T, = 2™ — 1. Even a computer could discover this.

1.2 LINES IN THE PLANE

Our second sample problem has a more geometric flavor: How many
slices of pizza can a person obtain by making n straight cuts with a pizza
knife? Or, more academically: What is the maximum number L,, of regions



(A pizza with Swiss
cheese?)

A region is convex
if it includes all

line segments be-
tween any two of its
points. (That’s not
what my dictionary
says, but it’s what
mathematicians
believe.)

1.2 LINES IN THE PLANE

defined by n lines in the plane? This problem was first solved in 1826, by the
Swiss mathematician Jacob Steiner [338].

Again we start by looking at small cases, remembering to begin with the
smallest of all. The plane with no lines has one region; with one line it has
two regions; and with two lines it has four regions:

1
1 /
2
LO:] L1:2 L, =4

(Each line extends infinitely in both directions.)

Sure, we think, L,, = 2™; of course! Adding a new line simply doubles
the number of regions. Unfortunately this is wrong. We could achieve the
doubling if the nth line would split each old region in two; certainly it can
split an old region in at most two pieces, since each old region is convex. (A
straight line can split a convex region into at most two new regions, which
will also be convex.) But when we add the third line —the thick one in the
diagram below — we soon find that it can split at most three of the old regions,
no matter how we've placed the first two lines:

la
1b 4 3a

4b

Thus L3 =4 + 3 =7 is the best we can do.

And after some thought we realize the appropriate generalization. The
nth line (for n > 0) increases the number of regions by k if and only if it
splits k of the old regions, and it splits k old regions if and only if it hits the
previous lines in k — 1 different places. Two lines can intersect in at most one
point. Therefore the new line can intersect the n—1 old lines in at most n—1
different points, and we must have k < n. We have established the upper
bound

L, < Laqg+n, for n > 0.
Furthermore it's easy to show by induction that we can achieve equality in

this formula. We simply place the nth line in such a way that it’s not parallel
to any of the others (hence it intersects them all), and such that it doesn’t go
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through any of the existing intersection points (hence it intersects them all
in different places). The recurrence is therefore

LOZ];
Lhn=Lna_q1+mn, for n > 0.

(1.4)

The known values of L, Ly, and L3 check perfectly here, so we'll buy this.

Now we need a closed-form solution. We could play the guessing game
again, but 1, 2, 4, 7, 11, 16, ... doesn’t look familiar; so let’s try another
tack. We can often understand a recurrence by “unfolding” or “unwinding”
it all the way to the end, as follows:

L, =Li1+n
=Lh2+M—=1)4+n Unfolding?

- I’d call this
- LTL—3 + (Tl - 2) + (TL - ]) +n « ]Ugglﬂg in.

”»

Lo+1+24+---+(m—=2)+(n—1)+n
1T + S, where S, =14+2+3+---+(n—1)+n.

In other words, L, is one more than the sum S, of the first n positive integers.

The quantity S,, pops up now and again, so it’s worth making a table of
small values. Then we might recognize such numbers more easily when we
see them the next time:

n‘1234567891011121314
Sn‘13610 15 21 28 36 45 55 66 78 91 105

These values are also called the triangular numbers, because S,, is the num-
ber of bowling pins in an n-row triangular array. For example, the usual
four-row array .t has S; = 10 pins.
To evaluate S,, we can use a trick that Gauss reportedly came up with
in 1786, when he was nine years old [88] (see also Euler [114, part 1, §415]): It seems a lot of

stuff is attributed
to Gauss—
Sn = T+ 2 + 3 +--+Mm=-1)+ n either he was really
+S, = n +Mm=-1)+m=2)+-+ 2 + 1 smart or he had a

great press agent.

25y = M+ +Mm+D)+Mm+)+--+n+1)+ (n+1)

We merely add S,, to its reversal, so that each of the n columns on the right

Maybe he just
sums to n + 1. Simplifying, had a magnetic
personality.
nmn+1
Sh = g, forn > 0. (1.5)

2



Actually Gauss is
often called the
greatest mathe-
matician of all time.
So it’s nice to be
able to understand
at least one of his
discoveries.

When in doubt,
look at the words.
Why is it “closed,”
as opposed to
“open”? What
image does it bring
to mind?

Answer: The equa-
tion is “closed,” not
defined in terms of
itself—not leading
to recurrence. The
case is “closed” —it
won’t happen again.
Metaphors are the
key.

Is “zig” a technical
term?

1.2 LINES IN THE PLANE
OK, we have our solution:

nmn+1)

L = —

+1, for n > 0.

(1.6)

As experts, we might be satisfied with this derivation and consider it
a proof, even though we waved our hands a bit when doing the unfolding
and reflecting. But students of mathematics should be able to meet stricter
standards; so it’s a good idea to construct a rigorous proof by induction. The
key induction step is

Ln =Lug+n=(Fm=—In+1)+n = Inmn+1)+1.

Now there can be no doubt about the closed form (1.6).

Incidentally we've been talking about “closed forms” without explic-
itly saying what we mean. Usually it’s pretty clear. Recurrences like (1.1)
and (1.4) are not in closed form —they express a quantity in terms of itself;
but solutions like (1.2) and (1.6) are. Sums like 1 +2 4 --- 4+ n are not in
closed form —they cheat by using ‘- - -’; but expressions like n(n+ 1)/2 are.
We could give a rough definition like this: An expression for a quantity f(n)
is in closed form if we can compute it using at most a fixed number of “well
known” standard operations, independent of n. For example, 2™ — 1 and
n(n+ 1)/2 are closed forms because they involve only addition, subtraction,
multiplication, division, and exponentiation, in explicit ways.

The total number of simple closed forms is limited, and there are recur-
rences that don’t have simple closed forms. When such recurrences turn out
to be important, because they arise repeatedly, we add new operations to our
repertoire; this can greatly extend the range of problems solvable in “simple”
closed form. For example, the product of the first n integers, n!, has proved
to be so important that we now consider it a basic operation. The formula
‘n!” is therefore in closed form, although its equivalent ‘1-2-...-n’ is not.

And now, briefly, a variation of the lines-in-the-plane problem: Suppose
that instead of straight lines we use bent lines, each containing one “zig”
What is the maximum number Z,, of regions determined by n such bent lines
in the plane? We might expect Z,, to be about twice as big as L,,, or maybe
three times as big. Let’s see:
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From these small cases, and after a little thought, we realize that a bent
line is like two straight lines except that regions merge when the “two” lines
don’t extend past their intersection point.

Regions 2, 3, and 4, which would be distinct with two lines, become a single
region when there’s a bent line; we lose two regions. However, if we arrange
things properly —the zig point must lie “beyond” the intersections with the
other lines—that’s all we lose; that is, we lose only two regions per line. Thus
Zn = Lon—2n =2n2n+1)/24+1-2n
=2m?>—n+1, forn=0. (1.7)

Comparing the closed forms (1.6) and (1.7), we find that for large n,

1..2
I_nNle,
Zn ~ 2n%:

so we get about four times as many regions with bent lines as with straight
lines. (In later chapters we’ll be discussing how to analyze the approximate
behavior of integer functions when n is large. The ‘~’ symbol is defined in

Section 9.1.)

THE JOSEPHUS PROBLEM

Our final introductory example is a variant of an ancient problem
named for Flavius Josephus, a famous historian of the first century. Legend
has it that Josephus wouldn't have lived to become famous without his math-
ematical talents. During the Jewish-Roman war, he was among a band of 41
Jewish rebels trapped in a cave by the Romans. Preferring suicide to capture,
the rebels decided to form a circle and, proceeding around it, to kill every
third remaining person until no one was left. But Josephus, along with an
unindicted co-conspirator, wanted none of this suicide nonsense; so he quickly
calculated where he and his friend should stand in the vicious circle.

1.3

In our variation, we start with n people numbered 1 to n around a circle,
and we eliminate every second remaining person until only one survives. For

. and a little
afterthought. . .

Exercise 18 has the
details.

(Ahrens [5, vol. 2]
and Herstein

and Kaplansky [187]
discuss the interest-
ing history of this
problem. Josephus
himself [197] is a bit
vague.)

... thereby saving
his tale for us to
hear.



1.3 THE JOSEPHUS PROBLEM

example, here’s the starting configuration for n = 10:

The elimination order is 2, 4, 6, 8, 10, 3, 7, 1, 9, so 5 survives. The problem:
Here’s a case where ~ Determine the survivor’s number, J(n).
n = 0 makes no We just saw that J(10) = 5. We might conjecture that J(n) = n/2 when
sense. . .

n is even; and the case n = 2 supports the conjecture: J(2) = 1. But a few

other small cases dissuade us —the conjecture fails for n =4 and n = 6.

n| 1234

Jy| 11
Even so, a bad It’s back to the drawing board; let’s try to make a better guess. Hmmm ...
glf1§§s 'S"l;t a WaSt,i J(n) always seems to be odd. And in fact, there’s a good reason for this: The
Zetsllgjmsg}a‘f; ;n first trip around the circle eliminates all the even numbers. Furthermore, if
the problem. T itself is an even number, we arrive at a situation similar to what we began
with, except that there are only half as many people, and their numbers have
changed.

So let’s suppose that we have 2n people originally. After the first go-
round, we're left with
m-1 1 3
2n—3 5

and 3 will be the next to go. This is just like starting out with n people, except

This is the tricky that each person’s number has been doubled and decreased by 1. That is,
part: We have

J(2n) = J2n) = 2J(n) -1, forn>1.

newnumber (J(n)),
where

newnumber (k) =
2k —1.

We can now go quickly to large n. For example, we know that J(10) =5, so
J(20) = 2J(10)—1 = 2-5—1 = 9.

Similarly J(40) = 17, and we can deduce that J(5-2™) =2™m+T 41,
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But what about the odd case? With 2n + 1 people, it turns out that
person number 1 is wiped out just after person number 2n, and we’re left with

2n+1 3 5

n—1 7

Again we almost have the original situation with n people, but this time their
numbers are doubled and increased by 1. Thus

J2n+1) = 2J(n)+1, forn>1.

Combining these equations with J(1) = 1 gives us a recurrence that defines |
in all cases:

J() =1,
J2n) =2J(n) -1, forn>1, (1.8)
J2n+1)=2](n)+1, forn>1.

Instead of getting J(n) from J(n—1), this recurrence is much more “efficient,’
because it reduces n by a factor of 2 or more each time it’s applied. We could
compute J(1000000), say, with only 19 applications of (1.8). But still, we seek
a closed form, because that will be even quicker and more informative. After
all, this is a matter of life or death.

Our recurrence makes it possible to build a table of small values very
quickly. Perhaps we’ll be able to spot a pattern and guess the answer.

n [1]23|4567[89101112131415]16
Jm) [1]13[1357[13 5 7 9111315 1

Voula! It seems we can group by powers of 2 (marked by vertical lines in
the table); J(n) is always 1 at the beginning of a group and it increases by 2
within a group. So if we write n in the form n = 2™ + 1, where 2™ is the
largest power of 2 not exceeding n and where 1 is what’s left, the solution to
our recurrence seems to be

J2™+1) = 2141, form>0and 0 <1< 2™ (1.9)

(Notice that if 2™ < m < 2™*1  the remainder 1 = n — 2™ satisfies 0 < 1 <
om+1 __ogm _ zm.)

We must now prove (1.9). As in the past we use induction, but this time
the induction is on m. When m = 0 we must have | = 0; thus the basis of

Odd case? Hey,
leave my brother
out of it.



But there’s a sim-
pler way! The

key fact is that
J(2™) = 1 for

all m, and this
follows immedi-
ately from our first
equation,

J(2n) =2](n)-1.
Hence we know that
the first person will
survive whenever

T is a power of 2.
And in the gen-
eral case, when
n=2"+1,

the number of
people is reduced

to a power of 2
after there have
been 1 executions.
The first remaining
person at this point,
the survivor, is
number 21+ 1.
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(1.9) reduces to J(1) = 1, which is true. The induction step has two parts,
depending on whether 1 is even or odd. If m > 0 and 2™ + 1 = 2n, then 1l is
even and

J2™41) = 2J2™ T +1/2) =1 = 2212+ 1)—1 = 2141,

by (1.8) and the induction hypothesis; this is exactly what we want. A similar
proof works in the odd case, when 2™ + 1 =2n + 1. We might also note that
(1.8) implies the relation

J(2n+1)—J@2n) = 2.

Either way, the induction is complete and (1.9) is established.

To illustrate solution (1.9), let’s compute J(100). In this case we have
100 = 2° + 36, so J(100) =2-36 + 1 = 73.

Now that we've done the hard stuff (solved the problem) we seek the
soft: Every solution to a problem can be generalized so that it applies to a
wider class of problems. Once we've learned a technique, it’s instructive to
look at it closely and see how far we can go with it. Hence, for the rest of this
section, we will examine the solution (1.9) and explore some generalizations
of the recurrence (1.8). These explorations will uncover the structure that
underlies all such problems.

Powers of 2 played an important role in our finding the solution, so it’s
natural to look at the radix 2 representations of n and J(n). Suppose n’s
binary expansion is

n = (bmbmf] b] bO)Z;

that is,
n = bm2™ + bm_12™ " + - + b2 + by,

where each b; is either 0 or 1 and where the leading bit by, is 1. Recalling
that n = 2™ + 1, we have, successively,

n = (1 bm_1 bm_z...b1 bo)z,
l = (0bm_1bm2...b1bg)2,

2l = (bp—1bm—2...b1b00)2,
(

(

2141 = bm,]bmfz...b]bo”z
Jm) = (bm—1bm—2...b1bobm);.

(The last step follows because J(n) = 21+ 1 and because b,, = 1.) We have
proved that

J((bm bm—1...51b0)2) = (bm—1...b1bobm)2; (1.10)
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that is, in the lingo of computer programming, we get J(n) from n by doing
a one-bit cyclic shift left! Magic. For example, if n = 100 = (1100100); then
J(m) = ]((1100100)2) = (1001001),, which is 64+ 8 + 1 = 73. If we had been
working all along in binary notation, we probably would have spotted this
pattern immediately.

If we start with n and iterate the | function m + 1 times, we're doing
m + 1 one-bit cyclic shifts; so, since n is an (m+1)-bit number, we might
expect to end up with n again. But this doesn’t quite work. For instance
if n = 13 we have ]((1101)2) = (1011),, but then ]((1011)2) = (111), and
the process breaks down; the 0 disappears when it becomes the leading bit.
In fact, J(n) must always be < n by definition, since J(n) is the survivor’s
number; hence if J(n) < n we can never get back up to n by continuing to
iterate.

Repeated application of | produces a sequence of decreasing values that
eventually reach a “fixed point,” where J(n) = n. The cyclic shift property
makes it easy to see what that fixed point will be: Iterating the function
enough times will always produce a pattern of all 1’s whose value is 2¥(™ —1,
where v(n) is the number of 1 bits in the binary representation of n. Thus,
since v(13) = 3, we have

2 or more J's

—_—
100.J03)..)) = 221 = 7;
similarly

8 or more

‘ : 10
JOJ(...J((101101101101011)32)...)) = 2" —1 = 1023.
Curious, but true.

Let’s return briefly to our first guess, that J(n) = n/2 when n is even.
This is obviously not true in general, but we can now determine exactly when

it s true:

Jn) = n/2,
2L+1 = (2™ +1)/2,
1= 12m-2).

If this number 1 = 1§(2m —2) is an integer, then n = 2™ + 1 will be a solution,
because | will be less than 2™. It’s not hard to verify that 2™ —2 is a multiple
of 3 when m is odd, but not when m is even. (We will study such things in
Chapter 4.) Therefore there are infinitely many solutions to the equation

(“Iteration” here
means applying a
function to itself.)

Curiously enough,
if M is a compact
C° m-manifold
(n > 1), there
exists a differen-
tiable immersion of
M into R*™ (M)
but not necessarily
into RZM(W-T,
I wonder if Jose-
phus was secretly
a topologist?
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J(n) =n/2, beginning as follows:

m l n=2m+1 Jm)=21+1=n/2 n (binary)
1 0 2 1 10
3 2 10 5 1010
5 10 42 21 101010
7 42 170 85 10101010

Notice the pattern in the rightmost column. These are the binary numbers
for which cyclic-shifting one place left produces the same result as ordinary-
shifting one place right (halving).

OK, we understand the | function pretty well; the next step is to general-
ize it. What would have happened if our problem had produced a recurrence
that was something like (1.8), but with different constants? Then we might
not have been lucky enough to guess the solution, because the solution might
have been really weird. Let’s investigate this by introducing constants «, f3,

Looks like Greek and v and trying to find a closed form for the more general recurrence
to me.
f(1) = «;
f(2n) = 2f(n) + B, forn>1; (1.11)

f(2n+1) =2f(n) + v, forn > 1.

(Our original recurrence had « = 1, = —1, and vy = 1.) Starting with
f(1) = o and working our way up, we can construct the following general
table for small values of n:

f(n)

x

200+ P
2x + v

doc + 30 (1.12)
doo + 23 + v
4o+ B+ 2y
4 + 3y

8ax + 7P
8x + 6B+ v

O |lNo g hA|wN| =3

It seems that 's coefficient is n’s largest power of 2. Furthermore, between
powers of 2, 3’s coefficient decreases by 1 down to 0 and y’s increases by 1
up from 0. Therefore if we express f(n) in the form

fln) = An)ac + B(n)B + C(n)y, (1.13)
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by separating out its dependence on «, 3, and v, it seems that

An) = 2™;
Bn) = 2m™—-1-1; (1.14)
C(n) = 1.

Here, as usual, n=2"+1land 0 <1< 2™ forn > 1.

It’s not terribly hard to prove (1.13) and (1.14) by induction, but the
calculations are messy and uninformative. Fortunately there’'s a better way
to proceed, by choosing particular values and then combining them. Let’s
illustrate this by considering the special case x =1, § =y =0, when f(n) is
supposed to be equal to A(n): Recurrence (1.11) becomes

A1) = 1;
A(2n) = 2A(n), forn>1,
A2n+1) = 2A(n), forn>1.

Sure enough, it’s true (by induction on m) that A(2™ +1) =2™.

Next, let’s use recurrence (1.11) and solution (1.13) in reverse, by start-
ing with a simple function f(n) and seeing if there are any constants (&, f3,v)
that will define it. Plugging the constant function f(n) =1 into (1.11) says that

1 =«
1 =2-1+p;
1 =2-1T+7;

hence the values («, ,v) = (1,—1,—1) satisfying these equations will yield
A(n)—B(n)— C(n) = f(n) = 1. Similarly, we can plug in f(n) = n:

1 =«
2n = 2-n+ B;
n+1 =2n+vy;

These equations hold for all n when x =1, 3 =0, and v = 1, so we don’t
need to prove by induction that these parameters will yield f(n) = n. We
already know that f(n) = n will be the solution in such a case, because the
recurrence (1.11) uniquely defines f(n) for every value of n.

And now we're essentially done! We have shown that the functions A(n),
B(n), and C(n) of (1.13), which solve (1.11) in general, satisfy the equations

>

(n) = 2™, wheren=2"+4+1land 0 <1< 2™;
An)—Bn)—C(n) = 1;
An)+Cn) = n.

Hold onto your
hats, this next part
is new stuff.

A neat idea!



Beware: The au-
thors are expecting
us to figure out
the idea of the
repertoire method
from seat-of-the-
pants examples,
instead of giving
us a top-down
presentation. The
method works best
with recurrences
that are “linear,”
in the sense that
the solutions can be
expressed as a sum
of arbitrary param-
eters multiplied by
functions of m, as
in (1.13). Equation
(1.13) is the key.

‘relax’ = ‘destroy’
y

I think I get it:

The binary repre-
sentations of A(n),
B(n), and C(n)
have 1’s in different
positions.

1.3 THE JOSEPHUS PROBLEM

Our conjectures in (1.14) follow immediately, since we can solve these equa-
tions to get C(n) =n—An)=land B((n)=An)—1-C(n)=2m—-1-1

This approach illustrates a surprisingly useful repertoire method for solv-
ing recurrences. First we find settings of general parameters for which we
know the solution; this gives us a repertoire of special cases that we can solve.
Then we obtain the general case by combining the special cases. We need as
many independent special solutions as there are independent parameters (in
this case three, for «, 8, and v). Exercises 16 and 20 provide further examples
of the repertoire approach.

We know that the original J-recurrence has a magical solution, in binary:

]((bmbm_] . ..b] bo)z) = (bm_1 .. .b] bo bm)z, where bm =1.

Does the generalized Josephus recurrence admit of such magic?
Sure, why not? We can rewrite the generalized recurrence (1.11) as

f(1) = «;

f(2n +§) = 2f(n) + B, (335)

forj=0,1 and n=>1,

if we let Bo = and 1 =<y. And this recurrence unfolds, binary-wise:

f(bmbm_1...b100)2) = 2f((bmbm_1...01)2) + By,
= 4f((bmbm-1...b2)2) +2Bv, + B,

2™f((bm)2)+2™ "Bo,, - +2Bb, +Bos
= 2™+ 2™ By, + o+ 2Pv, + Bos -

Suppose we now relax the radix 2 notation to allow arbitrary digits instead
of just 0 and 1. The derivation above tells us that

f((bmbm—1...b1b0)2) = (&Bv, 1 Boy s ---Bo, Bry)2- (1.16)

Nice. We would have seen this pattern earlier if we had written (1.12) in
another way:

n f(n)

1 o
2 20 + B
3 200 + v
4] 4o+ 2B+ B
5|4+ 23+ v
6| 4+ 2y + B
7| 4o+ 2y + v

15
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For example, when n = 100 = (1100100);, our original Josephus values
a=1,3=—-1,and vy =1 yield

n= (1 1 0o 0 1 0 0) = 100
fln)= (1 1T =1 -1 1T =1 —1);
= +64 +32 —-16 -8 +4 -2 -1 = 73

as before. The cyclic-shift property follows because each block of binary digits

(10...00); in the representation of n is transformed into

(1=1...-1=1); = (00...01);.
So our change of notation has given us the compact solution (1.16) to the
general recurrence (1.15). If we're really uninhibited we can now generalize

even more. The recurrence

) = oy, for

1
f(dn +j) = cf(n) + B;,  for 0 (127)

<j
<j <d and n=>1,

1s the same as the previous one except that we start with numbers in radix d
and produce values in radix c. That is, it has the radix-changing solution

f((bmbm—1...b1bo)a) = (&b, Bo, s Bow »---Bby Poole-  (1.18)

For example, suppose that by some stroke of luck we're given the recurrence

f(1) = 34,

f(2) =5,

f(3n) = 10f(n)+ 76, forn>1,
f3n+1) = 10f(n) -2, forn >1,
f3n+2) = 10f(n) + 8, forn>1,

and suppose we want to compute f(19). Here we have d = 3 and ¢ = 10. Now
19 = (201)3, and the radix-changing solution tells us to perform a digit-by-
digit replacement from radix 3 to radix 10. So the leading 2 becomes a 5, and
the 0 and 1 become 76 and —2, giving

f(19) = f((201)3) = (576 =2)10 = 1258,
which is our answer.

Thus Josephus and the Jewish—-Roman war have led us to some interesting

general recurrences.

“There are two

kinds of general-
izations. One is
cheap and the other
is valuable.
It is easy to gen-
eralize by diluting
a little idea with a
big terminology.
It is much more
difficult to pre-
pare a refined and
condensed extract
from several good
ingredients.”

—G. Pdlya [297]

Perhaps this was a
stroke of bad luck.

But in general I'm
against recurrences
of war.
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Exercises

Warmups
Please do all the 1  All horses are the same color; we can prove this by induction on the
V!;Iamzllpsl in all the number of horses in a given set. Here’s how: “If there’s just one horse
chap ei The Mgm’t then it’s the same color as itself, so the basis is trivial. For the induction

step, assume that there are n horses numbered 1 to n. By the induc-
tion hypothesis, horses 1 through n — 1 are the same color, and similarly
horses 2 through n are the same color. But the middle horses, 2 through
n — 1, can’t change color when they're in different groups; these are
horses, not chameleons. So horses 1 and n must be the same color as
well, by transitivity. Thus all n horses are the same color; QED.” What,
if anything, is wrong with this reasoning?

2  Find the shortest sequence of moves that transfers a tower of n disks
from the left peg A to the right peg B, if direct moves between A and B
are disallowed. (Each move must be to or from the middle peg. As usual,
a larger disk must never appear above a smaller one.)

3  Show that, in the process of transferring a tower under the restrictions of
the preceding exercise, we will actually encounter every properly stacked
arrangement of n disks on three pegs.

4  Are there any starting and ending configurations of n disks on three pegs
that are more than 2™ — 1 moves apart, under Lucas’s original rules?

5 A “Venn diagram” with three overlapping circles is often used to illustrate
the eight possible subsets associated with three given sets:

()
VaV,
y

Can the sixteen possibilities that arise with four given sets be illustrated
by four overlapping circles?

6 Some of the regions defined by n lines in the plane are infinite, while
others are bounded. What’s the maximum possible number of bounded
regions?

7 Let Hn) =J(n+1) —J(n). Equation (1.8) tells us that H(2n) = 2, and
H(2n+1) = J(2n+2)—J(2n+1) = (2] (n+1)=1)—(2](n)+1) = 2H(n)-2,
for all n > 1. Therefore it seems possible to prove that H(n) = 2 for all n,
by induction on n. What’s wrong here?
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RECURRENT PROBLEMS

Homework exercises

8

10

11

12

Solve the recurrence

Qo = «; Q1 = B;
Qn = (14+Qn-1)/Qn-2, forn > 1.

Assume that Q # 0 for all n > 0. Hint: Q4 = (1+ o)/P.

Sometimes it’s possible to use induction backwards, proving things from
n to n — 1 instead of vice versa! For example, consider the statement

n
Pn) : x7...xp < ()q—i—n-l—xn) , 1 x1,...,xn =0.
This is true when n = 2, since (x7 +x2)% —4x1x2 = (x1 —x2)? > 0.
a By setting xn = (x1 + -+ + xn—1)/(n — 1), prove that P(n) im-
plies P(n — 1) whenever n > 1.
b  Show that P(n) and P(2) imply P(2n).
¢ Explain why this implies the truth of P(n) for all n.

Let Q. be the minimum number of moves needed to transfer a tower of
n disks from A to B if all moves must be clockwise —that is, from A
to B, or from B to the other peg, or from the other peg to A. Also let R,
be the minimum number of moves needed to go from B back to A under
this restriction. Prove that

0.0 ifn=0 . [0 ifn=0;
"l 2Raq 1, ifn >0 "l 0On+Qno1 41, ifn>0.

(You need not solve these recurrences; we'll see how to do that in Chap-
ter 7.)

A Double Tower of Hanoi contains 2n disks of n different sizes, two of
each size. As usual, we're required to move only one disk at a time,
without putting a larger one over a smaller one.

a How many moves does it take to transfer a double tower from one
peg to another, if disks of equal size are indistinguishable from each
other?

b  What if we are required to reproduce the original top-to-bottom
order of all the equal-size disks in the final arrangement? [Hint:
This is difficult—it’s really a “bonus problem.”]

Let's generalize exercise 1la even further, by assuming that there are
n different sizes of disks and exactly my disks of size k. Determine
A(mq,...,my), the minimum number of moves needed to transfer a
tower when equal-size disks are considered to be indistinguishable.

. now that’s a
horse of a different
color.



Good luck keep-
ing the cheese in
position.

Is this like a
five-star general
recurrence?

13

14

15

16
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What’s the maximum number of regions definable by n zig-zag lines,

Z7; =12

each of which consists of two parallel infinite half-lines joined by a straight
segment?

How many pieces of cheese can you obtain from a single thick piece by
making five straight slices? (The cheese must stay in its original position
while you do all the cutting, and each slice must correspond to a plane
in 3D.) Find a recurrence relation for P,,, the maximum number of three-
dimensional regions that can be defined by n different planes.

Josephus had a friend who was saved by getting into the next-to-last
position. What is I(n), the number of the penultimate survivor when
every second person is executed?

Use the repertoire method to solve the general four-parameter recurrence

9(1) = «;
g(2n+j) = 3g(n) +yn+B;, forj=0,1T and n=>1.

Hint: Try the function g(n) =n.

Exam problems

17

18

19

20

If W,, is the minimum number of moves needed to transfer a tower of n
disks from one peg to another when there are four pegs instead of three,
show that

Wn(n+1)/2 < ZWn(n,”/z -|—Tn, for n > 0.
(Here T, = 2™ — 1 is the ordinary three-peg number.) Use this to find a

closed form f(n) such that Wy (n11y/2 < f(n) for all n > 0.

Show that the following set of n bent lines defines Z,, regions, where Z,,
is defined in (1.7): The jth bent line, for 1 <j < n, has its zig at (n?,0)
and goes up through the points (n% —nJ, 1) and (N —nJ —n™1).

Is it possible to obtain Z, regions with n bent lines when the angle at
each zig is 30°7

Use the repertoire method to solve the general five-parameter recurrence

h(1) = «;
h(2n+j) = 4h(n)+vyn+ B;, forj=0,1T and n>1.

Hint: Try the functions h(n) =n and h(n) = n?.
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21

Suppose there are 2n people in a circle; the first n are “good guys”
and the last n are “bad guys” Show that there is always an integer m
(depending on n) such that, if we go around the circle executing every
mth person, all the bad guys are first to go. (For example, when n =3
we can take m = 5; when n =4 we can take m = 30.)

Bonus problems

22

23

Show that it’s possible to construct a Venn diagram for all 2™ possible
subsets of n given sets, using n convex polygons that are congruent to
each other and rotated about a common center.

Suppose that Josephus finds himself in a given position j, but he has a
chance to name the elimination parameter q such that every qth person
is executed. Can he always save himself?

Research problems

24

25

26

Find all recurrence relations of the form

T+arXn 1+ 4+ aXn_k

Xn =
biXno1 + - F biXnx

whose solution is periodic.

Solve infinitely many cases of the four-peg Tower of Hanoi problem by
proving that equality holds in the relation of exercise 17.

Generalizing exercise 23, let’s say that a Josephus subset of {1,2,..., 1}
is a set of k numbers such that, for some g, the people with the other n—k
numbers will be eliminated first. (These are the k positions of the “good
guys” Josephus wants to save.) It turns out that when n = 9, three of the
27 possible subsets are non-Josephus, namely {1,2,5,8,9}, {2,3,4,5,8},
and {2,5,6,7,8}. There are 13 non-Josephus sets when n = 12, none for
any other values of n < 12. Are non-Josephus subsets rare for large n?

Yes, and well done
if you find them.



Sums

A term is how long
this course lasts.

SUMS ARE EVERYWHERE in mathematics, so we need basic tools to handle
them. This chapter develops the notation and general techniques that make
summation user-friendly.

2.1 NOTATION

In Chapter 1 we encountered the sum of the first n integers, which
we wroteout as 1+2+3+---+(n—1)+n. The ¢---’ in such formulas tells
us to complete the pattern established by the surrounding terms. Of course
we have to watch out for sums like 1 +7 + - - - +41.7, which are meaningless
without a mitigating context. On the other hand, the inclusion of terms like
3 and (n — 1) was a bit of overkill; the pattern would presumably have been
clear if we had written simply 1+ 2+ --- +n. Sometimes we might even be
so bold as to write just 1+ --- 4+ n.

We'll be working with sums of the general form

ar+a;+-+an, (2.2)

where each ay is a number that has been defined somehow. This notation has
the advantage that we can “see” the whole sum, almost as if it were written
out in full, if we have a good enough imagination.

BEach element ayx of a sum is called a term. The terms are often specified
implicitly as formulas that follow a readily perceived pattern, and in such cases
we must sometimes write them in an expanded form so that the meaning is
clear. For example, if

142442

is supposed to denote a sum of n terms, not of 2", we should write it more
explicitly as

20+21+“_+2n—1‘

21
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e}

The three-dots notation has many uses, but it can be ambiguous and a “Le signe 3 :=;° in-

bit long-winded. Other alternatives are available, notably the delimited form

n
§ Q. ,
k=1

which is called Sigma-notation because it uses the Greek letter ) (upper-
case sigma). This notation tells us to include in the sum precisely those

(2.2)

terms ay whose index k is an integer that lies between the lower and upper
limits 1 and n, inclusive. In words, we “sum over k, from 1 to n.” Joseph
Fourier introduced this delimited ) -notation in 1820, and it soon took the
mathematical world by storm.

Incidentally, the quantity after )} (here ay) is called the summand.

The index variable k is said to be bound to the ) sign in (2.2), because
the k in ay is unrelated to appearances of k outside the Sigma-notation. Any
other letter could be substituted for k here without changing the meaning of
(2.2). The letter 1 is often used (perhaps because it stands for “index”), but
we’'ll generally sum on k since it’s wise to keep i for /—1.

It turns out that a generalized Sigma-notation is even more useful than
the delimited form: We simply write one or more conditions under the >,
to specify the set of indices over which summation should take place. For
example, the sums in (2.1) and (2.2) can also be written as

Y a

I<k<n

(2.3)

In this particular example there isn’t much difference between the new form
and (2.2), but the general form allows us to take sums over index sets that
aren't restricted to consecutive integers. For example, we can express the sum
of the squares of all odd positive integers below 100 as follows:

>
1<k<100
k odd
The delimited equivalent of this sum,

49

D (2k+1)%,

k=0

is more cumbersome and less clear. Similarly, the sum of reciprocals of all
prime numbers between 1 and N is

1
> o
p<N P
P prime

dique que I'on doit
donner au nombre
entier i toutes ses
valeurs 1, 2, 3,
..., et prendre la
somme des termes.”
—J. Fourier [127]

Well, I wouldn’t
want to use a or n
as the index vari-
able instead of k in
(2.2); those letters
are “free variables”
that do have mean-
ing outside the _
here.
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the delimited form would require us to write

A
z

(N)

1

)
1 Px

where py denotes the kth prime and 7t(N) is the number of primes < N.
(Incidentally, this sum gives the approximate average number of distinct
prime factors of a random integer near N, since about 1/p of those inte-
gers are divisible by p. Its value for large N is approximately Inln N + M,
where M ~ 0.2614972128476427837554268386086958590515666 is Mertens’s
constant [271]; Inx stands for the natural logarithm of x, and Inlnx stands
for In(Inx).)
The biggest advantage of general Sigma-notation is that we can manip-
The summation ulate it more easily than the delimited form. For example, suppose we want
symbol looks like to change the index variable k to k + 1. With the general form, we have

a distorted pacman.
E ax = E ak+1;
1<k<n T1<k+1<n

it’s easy to see what's going on, and we can do the substitution almost without
thinking. But with the delimited form, we have

n n—1
E ax = E Ak+1;
k=1 k=0

it’s harder to see what’s happened, and we’re more likely to make a mistake.
On the other hand, the delimited form isn't completely useless. It’s
A tidy sum. nice and tidy, and we can write it quickly because (2.2) has seven symbols
compared with (2.3)’s eight. Therefore we’ll often use Y with upper and
lower delimiters when we state a problem or present a result, but we’ll prefer
to work with relations-under-)  when we're manipulating a sum whose index
variables need to be transformed.
That’s nothing. The ) sign occurs more than 1000 times in this book, so we should be

You should see how  gyre that we know exactly what it means. Formally, we write
many times ¥ ap-

pears in The Iliad.
Y a (2.0)
P(k)

as an abbreviation for the sum of all terms ay such that k is an integer
satisfying a given property P(k). (A “property P(k)” is any statement about
k that can be either true or false.) For the time being, we'll assume that
only finitely many integers k satisfying P(k) have ay # 0; otherwise infinitely
many nonzero numbers are being added together, and things can get a bit
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tricky. At the other extreme, if P(k) is false for all integers k, we have an
“empty” sum; the value of an empty sum is defined to be zero.

A slightly modified form of (2.4) is used when a sum appears within the
text of a paragraph rather than in a displayed equation: We write ‘Zp(k) ax’,
attaching property P(k) as a subscript of }_, so that the formula won't stick
out too much. Similarly, ‘Y '_; ai’ is a convenient alternative to (2.2) when
we want to confine the notation to a single line.

People are often tempted to write

n—1 n
> k(k—1)(n—k) insteadof ) k(k—T1)(n—k)
k=2 k=0

because the terms for k = 0, 1, and n in this sum are zero. Somehow it
seems more efficient to add up n — 2 terms instead of n + 1 terms. But such
temptations should be resisted; efficiency of computation is not the same as
efficiency of understanding! We will find it advantageous to keep upper and
lower bounds on an index of summation as simple as possible, because sums
can be manipulated much more easily when the bounds are simple. Indeed,
the form ZTkl;zl can even be dangerously ambiguous, because its meaning is
not at all clear when n =0 or n = 1 (see exercise 1). Zero-valued terms cause
no harm, and they often save a lot of trouble.

So far the notations we’ve been discussing are quite standard, but now
we are about to make a radical departure from tradition. Kenneth E. Iverson
introduced a wonderful idea in his programming language APL [191, page 11;
see also 220], and we’'ll see that it greatly simplifies many of the things we
want to do in this book. The idea is simply to enclose a true-or-false statement
in brackets, and to say that the result is 1 if the statement is true, O if the Hey: The “Kro-

statement is false. For example, necker delta” that
I've seen in other
books (I mean
L . dwn, which is 1 if
if p is not a prime number. k=n, 0 oth-

[p prime] — { (1), if p is a prime number;

) ] ] erwise) is just a
Iverson’s convention allows us to express sums with no constraints whatever special case of
on the index of summation, because we can rewrite (2.4) in the form Iverson’s conven-

tion: We can write
> a[P(k)]. (2.5)
k

[k=mn] instead.

If P(k) is false, the term aj [P(k)] is zero, so we can safely include it among
the terms being summed. This makes it easy to manipulate the index of

[{

summation, because we don’t have to fuss with boundary conditions. ‘I am often surprised

A slight technicality needs to be mentioned: Sometimes ay isn’t defined by r;few%'imporﬁlzt_
for all integers k. We get around this difficulty by assuming that [P(k)] is gfaltiirff’[’m [of this

“yery strongly zero” when P(k) is false; it’s so much zero, it makes ay [P(k)} —B. de Finetti [123]



2.1 NOTATION 25

equal to zero even when ay is undefined. For example, if we use Iverson’s
convention to write the sum of reciprocal primes < N as

Z[‘p prime][p <N]/p,
P

there’s no problem of division by zero when p = 0, because our convention
tells us that [0 prime][0 < N]/0 =0.
Let’s sum up what we’ve discussed so far about sums. There are two
good ways to express a sum of terms: One way uses ‘---’, the other uses
*> '. The three-dots form often suggests useful manipulations, particularly
the combination of adjacent terms, since we might be able to spot a simplifying
pattern if we let the whole sum hang out before our eyes. But too much detail
can also be overwhelming. Sigma-notation is compact, impressive to family
. and it’s less and friends, and often suggestive of manipulations that are not obvious in
likely to lose points  three-dots form. When we work with Sigma-notation, zero terms are not

f . . . .
?‘7&;? :;(?Iggoro"r generally harmful; in fact, zeros often make ) -manipulation easier.

2.2 SUMS AND RECURRENCES

OK, we understand now how to express sums with fancy notation.
But how does a person actually go about finding the value of a sum? One way
1s to observe that there’s an intimate relation between sums and recurrences.

The sum
n
Sn = Z Ay
k=0

(Think of Sy as is equivalent to the recurrence
not just a single
number, but as a So=aop;
sequence defined for (2.6)
aln=0.) Sh=Sn_1+an, for n > 0.

Therefore we can evaluate sums in closed form by using the methods we
learned in Chapter 1 to solve recurrences in closed form.

For example, if a,, is equal to a constant plus a multiple of n, the sum-
recurrence (2.6) takes the following general form:

ROZOC;

_ (2.7)
Ri=Rn_1+p+vn, for n > 0.

Proceeding as in Chapter 1, we find Ry = a+ 3 +v, R, =+ 23 + 3y, and
so onm; in general the solution can be written in the form

Rn = A(MJac+B(n)p + C(n)y, (2.8)
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where A(n), B(n), and C(n) are the coefficients of dependence on the general
parameters «, (3, and vy.

The repertoire method tells us to try plugging in simple functions of n
for R,,, hoping to find constant parameters «, 3, and vy where the solution is
especially simple. Setting R,, =1 implies « =1, f =0, v = 0; hence

An) = 1.

Setting R, = n implies « =0, B =1, vy = 0; hence

and we have C(n) = (n? +n)/2. Easy as pie. Actually easier; m=
Therefore if we wish to evaluate 8

Zn;O (4n+1)(4n+3) "
n
> (a+bk),
k=0

the sum-recurrence (2.6) boils down to (2.7) with « =3 = a, v = b, and the
answer is aA(n) + aB(n)+bC(n) =an+1)+b(n+1)n/2.

Conversely, many recurrences can be reduced to sums; therefore the spe-
cial methods for evaluating sums that we’ll be learning later in this chapter
will help us solve recurrences that might otherwise be difficult. The Tower of
Hanoi recurrence is a case in point:

To = O;
Th = 2Th1 +1, for n > 0.

It can be put into the special form (2.6) if we divide both sides by 2™:

To/2° = 0;
To/2™ = Toq/2™ ' +1/2™, for n > 0.

Now we can set S;, = T,,/2", and we have

So = 0;
Sp = S +27T, for n > 0.

It follows that

Sn = i 27K,

k=1



(The value of s1
cancels out, so it
can be anything
but zero.)
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(Notice that we've left the term for k = 0 out of this sum.) The sum of the
geometric series 271 4+272 4. .. 427 = (%)1 +(%)2+~ . ~—|—(%)“ will be derived
later in this chapter; it turns out to be 1 — (%)“. Hence T,, =2"S,, =2" —1.
We have converted T, to S, in this derivation by noticing that the re-

currence could be divided by 2™. This trick is a special case of a general
technique that can reduce virtually any recurrence of the form

anTh = bnTno1 ten (2.9)
to a sum. The idea is to multiply both sides by a summation factor, sy:
SnanTn = snbnTh_1 +sncn.
This factor sy, is cleverly chosen to make
Snbn = Sn_10n_1.
Then if we write S;, = spanTn Wwe have a sum-recurrence,

Sh = Snu_1+SncCn.

n n
Sh = spapTp + Z skCk = s1b1 Ty + Z Sk Ck ,
k=1 k=1

and the solution to the original recurrence (2.9) is

1 n
T, = T a (S]b]To-i-];Ska). (2.10)

n“¥n

For example, whenn =1we get Ty = (s1b1To+s1¢1)/s1a1 = (biTo+c1)/a;.

But how can we be clever enough to find the right s, ? No problem: The
relation $n = Sp—1an_1/byn can be unfolded to tell us that the fraction

o = An—-10n—2...0Qq ‘ (2.11)

bnbn_1...b2

or any convenient constant multiple of this value, will be a suitable summation
factor. For example, the Tower of Hanoi recurrence has a, = 1 and b,, = 2;
the general method we’ve just derived says that s,, =27 ™ is a good thing to
multiply by, if we want to reduce the recurrence to a sum. We don’t need a
brilliant flash of inspiration to discover this multiplier.

We must be careful, as always, not to divide by zero. The summation-
factor method works whenever all the a’s and all the b’s are nonzero.
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Let’s apply these ideas to a recurrence that arises in the study of “quick-
sort.)” one of the most important methods for sorting data inside a computer.  (Quicksort was
The average number of comparison steps made by quicksort when it is applied ~invented by Hoare

. . . in 1962 [189].
to n items in random order satisfies the recurrence in 1962 [189].)

COZO;

o ! 2.12
Ch=n+1+=) C, forn>0. (2:12)
nka

Hmmm. This looks much scarier than the recurrences we've seen before; it
includes a sum over all previous values, and a division by n. Trying small
cases gives us some data (C; =2, C; =5, C3 = %) but doesn’t do anything
to quell our fears.

We can, however, reduce the complexity of (2.12) systematically, by first
getting rid of the division and then getting rid of the > sign. The idea is to
multiply both sides by n, obtaining the relation

n—1
nCn :nz—l—n—l—ZZCk, for n > 0;
k=0

hence, if we replace n by n — 1,
n—2
M=1)Chn1 = =1+ (m=1+2) C, forn—1>0.
k=0

We can now subtract the second equation from the first, and the > sign

disappears:
nC,—M—1)Cnh7 = 2n+2C_1, forn > 1.
It turns out that this relation also holds when n = 1, because C; = 2.

Therefore the original recurrence for C,, reduces to a much simpler one:

Co = 0;
nCh, = M+1)Ch_1+2n, for n > 0.

Progress. We're now in a position to apply a summation factor, since this
recurrence has the form of (2.9) with a,, = n, b, =n+1, and ¢, = 2n.
The general method described on the preceding page tells us to multiply the
recurrence through by some multiple of

an—10n—2...04] m—=1)-n-2)-...-1 2

T Thbng.. b mtl)n-....3 (miim’
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We started with a The solution, according to (2.10), is therefore
>~ in the recur-

rence, and worked n :

hard to get rid of it.

But thefafter ap- Cn = 2(n+1) Z k+1°

plying a summation k=1

factor, we came up

with another 3. The sum that remains is very similar to a quantity that arises frequently
?;:2 Sgrm;hg: t()?d’ or in applications. It arises so often, in fact, that we give it a special name and

a special notation:

1 1 =
Ho = Tdg+ot— =3

3 . (2.13)
k=1

&=

The letter H stands for “harmonic”; H, is a harmonic number, so called
because the kth harmonic produced by a violin string is the fundamental
tone produced by a string that is 1/k times as long.

We can complete our study of the quicksort recurrence (2.12) by putting
C,, into closed form; this will be possible if we can express C,, in terms of
H,.. The sum in our formula for C,, is

i;_ T
Lyt K+ 1

T1<k<n

/N

We can relate this to Hy without much difficulty by changing k to k — 1 and
revising the boundary conditions:

M

-
I Il
M 1M

k

A

//

2<ksn+1
1 > 1 1 n
= - —=+ = Hp———.
(1 T k T n+1 n+1
But your spelling is ~ Alright! We have found the sum needed to complete the solution to (2.12):

alwrong. The average number of comparisons made by quicksort when it is applied to
n randomly ordered items of data is

/N

Ch = 2(n+1)Hy —2n. (2.14)

As usual, we check that small cases are correct: Co =0, C; =2, C, =5.
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2.3 MANIPULATION OF SUMS Not to be confused

. . . . with finance.
The key to success with sums is an ability to change one ) into

another that is simpler or closer to some goal. And it’s easy to do this by
learning a few basic rules of transformation and by practicing their use.

Let K be any finite set of integers. Sums over the elements of K can be
transformed by using three simple rules:

Z cap = ¢ Z ax; (distributive law) (2.15)
keK keK
Z (ax +by) = Z ax + Z by ; (associative law) (2.16)
keK keK keK
Z ax = Z ap (k) - (commutative law) (2.17)
keK p(k)eK

The distributive law allows us to move constants in and out of a ) . The
associative law allows us to break a >_ into two parts, or to combine two Y ’s
into one. The commutative law says that we can reorder the terms in any way
we please; here p(k) is any permutation of the set of all integers. For example, Why not call it

if K={—1,0,+1} and if p(k) = —k, these three laws tell us respectively that Permutative instead
of commutative?

ca_1+cap+ca; = cla_1+ap+ar); (distributive law)

(a_1 +b_1)+ (ao +bo) + (a; +by)
= (ay+ap+a;)+(b_1+bo+by); (associative law)

aq1+ay+a; = a;+ayt+a_. (commutative law)

Gauss’s trick in Chapter 1 can be viewed as an application of these three
basic laws. Suppose we want to compute the general sum of an arithmetic

progression,
S= > (a+Dbk).
os<k<sn
By the commutative law we can replace k by n — k, obtaining This is something
like changing vari-
ables inside an
S = Z (a+bn—%) = Z (a+bn—Dbk). integral, but easier.
0s<n—k<n os<ksn

These two equations can be added by using the associative law:

25 = ) (la+bk)+(a+bn—bk)) = ) (2a+bn).

o<ksn ogksn
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“What’s one And we can now apply the distributive law and evaluate a trivial sum:
and one and one
and one and one

and one and one 28 = (2a+bn) Z T = (2a+bn)(n+1).

and one and one o<k<n

and one?” oL
“ don’t know,” Dividing by 2, we have proved that

said Alice. n

“I lost count.”

“She can’t do Z(a—f—bk) = (a+ %bn)(“‘f' 1). (2.18)
Addition.” k=0

— Lewis Carroll [50
50/ The right-hand side can be remembered as the average of the first and last

terms, namely %(a + (a+ bn)), times the number of terms, namely (n+ 1).

It’s important to bear in mind that the function p(k) in the general
commutative law (2.17) is supposed to be a permutation of all the integers. In
other words, for every integer n there should be exactly one integer k such that
p(k) = n. Otherwise the commutative law might fail; exercise 3 illustrates
this with a vengeance. Transformations like p(k) = k+ ¢ or p(k) = ¢ — k,
where ¢ is an integer constant, are always permutations, so they always work.

On the other hand, we can relax the permutation restriction a little bit:
We need to require only that there be exactly one integer k with p(k) = n
when n is an element of the index set K. If n ¢ K (that is, if n is not in K),
it doesn’t matter how often p(k) = n occurs, because such k don’t take part
in the sum. Thus, for example, we can argue that

Z a = Z an = Z azk = Z azk, (2.19)

kekK nek 2keK 2keK
k even n even 2k even

since there’s exactly one k such that 2k =n when n € K and n is even.
Iverson’s convention, which allows us to obtain the values 0 or 1 from
logical statements in the middle of a formula, can be used together with the
Additional, eh? distributive, associative, and commutative laws to deduce additional proper-
ties of sums. For example, here is an important rule for combining different
sets of indices: If K and K’ are any sets of integers, then

Zak + Zak = Z ax + Z ag . (2.20)

kekK keK’ keKNK/ keKUK/

This follows from the general formulas

Y a = ) axlkeK] (2.21)
k

kekK

and

keK]+[keK'] = [keKNK']+[keKUK']. (2.22)
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Typically we use rule (2.20) either to combine two almost-disjoint index sets,
as in

m mn n
aw + ) ax = am + Y ax, forl<ms<my
k=1 k=m k=1

or to split off a single term from a sum, as in

Z ax = ag + Z ag, forn > 0. (2.23) ?The)tr;lvo si%es of
2.20) have been
osksn ISk switched here.)

This operation of splitting off a term is the basis of a perturbation
method that often allows us to evaluate a sum in closed form. The idea
is to start with an unknown sum and call it S,

Sn = E ayg .
o0<k<n

(Name and conquer.) Then we rewrite S,,11 in two ways, by splitting off both
its last term and its first term:

Sntangr = Z ax = ap+ Z ay

o<k<n+1 1<k<n+1

= ao+ Z Ax+1

T<k+1<n+1

ap + Z Ax+1 - (2.24)

os<ksn

Now we can work on this last sum and try to express it in terms of S,,. If we
succeed, we obtain an equation whose solution is the sum we seek.

For example, let’s use this approach to find the sum of a general geomet-  If it’s geometric,
there should be a

7iC Progression, ¢
geometric proof.

S, = Z ax®.

osksn

The general perturbation scheme in (2.24) tells us that

il

Sn—l—axn'ﬂ _ axo—l— Z an-H)

o<k<n

and the sum on the right is XZogkgn ax® = xS, by the distributive law.
Therefore Sy, + ax™*! = a + xSy, and we can solve for S, to obtain

AN

n+1

Z ax® = %, for x # 1. (2.25)
k=0
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(When x = 1, the sum is of course simply (n + 1)a.) The right-hand side
Ah yes, this formula  can be remembered as the first term included in the sum minus the first term
was drilled into me  excluded (the term after the last), divided by 1 minus the term ratio.
in high school. That was almost too easy. Let’s try the perturbation technique on a
slightly more difficult sum,

Sno= ) k2~

o<k<sn

In this case we have So =0, S;1 =2, S, =10, S3 = 34, S;, = 98; what is the
general formula? According to (2.24) we have

SnAm+12MT = 3 (k1)25

osksn

so we want to express the right-hand sum in terms of S;,. Well, we can break
it into two sums with the help of the associative law,

Z k2k+1 + Z 2k+1’

osks<n osksn

and the first of the remaining sums is 2S,,. The other sum is a geometric
progression, which equals (2 —2"*2)/(1 —2) = 2"*2 — 2 by (=2.25). Therefore
we have S,, + (n+ 1)2"*+1 =25, +2™*+2 — 2. and algebra yields

> k2F = (m-120 42

os<ksn

Now we understand why Sz = 34: It's 32+ 2, not 2-17.
A similar derivation with x in place of 2 would have given us the equation
Sn+ (M +1x™T =xS,, + (x —x™"2)/(1 — x); hence we can deduce that

n

o 1 n+1 n+2
kak == (n+ Dx™ + nx for x # 1. (2.26)
k=0

(1—x)? ’

It’s interesting to note that we could have derived this closed form in a
completely different way, by using elementary techniques of differential cal-
culus. If we start with the equation

n _ ym+1

1—x
K
X< = —
> —
and take the derivative of both sides with respect to x, we get

(1—x)2 a (1—x)2 ’

i kT (1-%) (—(n+1)x™) + T—x"+ T— (n+1)x™ 4+ nx™H!
k=0
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because the derivative of a sum is the sum of the derivatives of its terms. We
will see many more connections between calculus and discrete mathematics
in later chapters.

2.4 MULTIPLE SUMS

The terms of a sum might be specified by two or more indices, not
just by one. For example, here’s a double sum of nine terms, governed by two  Oh no, a nine-term

indices j and k: governor.
> ajbk = arby +arby +arbs Notice that this
1<j,k<3 + asby + asbs + azbs doesn’t mean to

sumover all j > 1
+ aszby; + azby + azbs. and all k < 3.

We use the same notations and methods for such sums as we do for sums with
a single index. Thus, if P(j, k) is a property of j and k, the sum of all terms
a;j x such that P(j, k) is true can be written in two ways, one of which uses
Iverson’s convention and sums over all pairs of integers j and k:

Y gk =) a4 [PG,K)].
P(,k) jk

Ounly one )_ sign is needed, although there is more than one index of sum-
mation; > denotes a sum over all combinations of indices that apply.

We also have occasion to use two ) ’s, when we're talking about a sum
of sums. For example,

> > a5 [PG,K)]
ik
1s an abbreviation for
> (Z ajk [P(i,k)]) ,
j k

which is the sum, over all integers j, of } | aj i [P(j, k)}, the latter being the  Multiple s are
sum over all integers k of all terms a; x for which P(j, k) is true. In such cases z’;h(’;f;‘; er_ ’gftt)to
we say that the double sum is “summed first on k” A sum that depends on ’
more than one index can be summed first on any one of its indices.

In this regard we have a basic law called interchanging the order of
summation, which generalizes the associative law (2.16) we saw earlier:

ZZQj>k[P(j’k)] = Z ajx = ZZaj,k[P(j,k)} . (2.27)
ik P(j,k) k
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The middle term of this law is a sum over two indices. On the left, Zi D x
stands for summing first on k, then on j. On the right, } | Zj stands for
summing first on j, then on k. In practice when we want to evaluate a double
sum in closed form, it’s usually easier to sum it first on one index rather than
on the other; we get to choose whichever is more convenient.

Who’s panicking? Sums of sums are no reason to panic, but they can appear confusing to

I'think this rule a beginner, so let’s do some more examples. The nine-term sum we began
is fairly obvious

compared to some with provides a good illustration of the manipulation of double sums, because
of the stuff in that sum can actually be simplified, and the simplification process is typical
Chapter 1. of what we can do with }_ ) ’s:

D ab = ) aibilI<j k<3 = ) ajb[1<i<3IT<k<3]
i,k ik

1<),k<3

=) ) ab1<i<3<k<3]
ik

= > q[1<i<3]) bill<k<3]
j

_ Zajﬂsiss}(Zbknskss])

j k

(Z a;[1<j <3]) <Zbk“ gkgg])
“(Be)(Zm):

j=1

The first line here denotes a sum of nine terms in no particular order. The
second line groups them in threes, (a1b; + a1bz + a;bz) + (azby + azbs +
asbz) + (asby + azbz + azbz). The third line uses the distributive law to
factor out the a’s, since a; and [1<j<3] do not depend on k; this gives
ai(by + by +b3)+ az(by + by +b3)+ az(by + by + b3). The fourth line is
the same as the third, but with a redundant pair of parentheses thrown in
so that the fifth line won’t look so mysterious. The fifth line factors out the
(by + by + b3z) that occurs for each value of j: (a7 + az + az)(by + bz + bs).
The last line is just another way to write the previous line. This method of
derivation can be used to prove a general distributive law,

D ajbx = (Z%‘) (Zbk> : (2.28)

je] j€] keK

keK
valid for all sets of indices | and K.

The basic law (2.27) for interchanging the order of summation has many
variations, which arise when we want to restrict the ranges of the indices
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instead of summing over all integers j and k. These variations come in two
flavors, vanilla and rocky road. First, the vanilla version:

Zzajvk = Z 4k = Zzaj,k~ (2.29)

jeJ kekK j€] keK j€]
kekK
This is just another way to write (2.27), since the Iversonian [j €],k e€XK]
factors into [j € J][k € K]. The vanilla-flavored law applies whenever the ranges
of j and k are independent of each other.
The rocky-road formula for interchange is a little trickier. It applies when
the range of an inner sum depends on the index variable of the outer sum:

Z Z Gk = Z Z aj k- (2.30)

J€] kEK()) keK” jeJ’ (k)

Here the sets J, K(j), K/, and J’(k) must be related in such a way that
je]l[keK({)] = [keK[je]'(K)].

A factorization like this is always possible in principle, because we can let
] = K’ be the set of all integers and K(j) = J’(k) be the basic property P(j, k)
that governs a double sum. But there are important special cases where the
sets J, K(j), K’, and J/(k) have a simple form. These arise frequently in
applications. For example, here’s a particularly useful factorization:

N<j<nllisksnl = (I<j<k<n] = (I<k<n]1<j<kl. (2.31)

This Iversonian equation allows us to write

n  k

Zzaj»k = Z ajk = ZZGj‘k- (2.32)

i=1 k=j 1<j<k<n k=1j=1

One of these two sums of sums is usually easier to evaluate than the other; (Now is a good
we can use (2.32) to switch from the hard one to the easy one. time to do warmup

Let’s apply these ideas to a useful example. Consider the array exercises 4 and 6.)
(Or to check out

aja; aa; ajaz ... ajQp Ithe Sqi}c)lfers_barh
anguishing in the

aa; aza azaz ... azap freegzer) g

aza; asa; asds ... asdn '

an,a; and; andsz ... QapQn

of n? products ajax. Our goal will be to find a simple formula for

Sv = Z ajax,

1<j<ksn



Does rocky road
have fudge in it?
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the sum of all elements on or above the main diagonal of this array. Because
a;ax = axaj, the array is symmetrical about its main diagonal; therefore Sy
will be approximately half the sum of all the elements (except for a fudge
factor that takes account of the main diagonal).

Such considerations motivate the following manipulations. We have

S = Z ajax = Z axa; = Z ajax = Sy,

Isjisksn I<k<jsn I<k<jsn
because we can rename (j, k) as (k,j). Furthermore, since
<<k +[1<kgis<n] = 1<), k<n] +[1<j=k<n],
we have

2Sq = S+ S, = Z aqax + Z a;ay .

1<), ksn T<j=ksn

The first sum is (Z?:] o) (X ax) = (X, ak)z, by the general distribu-
tive law (2.28). The second sum is } ,_; aZ. Therefore we have

1 n 2 n
Sq = Z Gax = 5 ((Z ak) + Z ai) , (2.33)
1<j<k<n k=1 k=1

an expression for the upper triangular sum in terms of simpler single sums.
Encouraged by such success, let’s look at another double sum:

S = Z (ax —aj)(bx —bj).

1<j<k<n

Again we have symmetry when j and k are interchanged:

S= Y (oy—adby—bd) = > (ax—a)lb—b;).

1<k<j<n 1<k<j<n

So we can add S to itself, making use of the identity

to conclude that

25 = ) (g—adby—b) — Y (a—ax)(bj—b).

1<j,ksn 1<j=k<n
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The second sum here is zero; what about the first? It expands into four
separate sums, each of which is vanilla flavored:

Z Clkbj + Z ay by

1<j,k<n 1<j,k<n 1<j,k<n 1<j,k<n
=2 Z akbk - 2 Z O.jbk
1<j,k<n 1<,k<n
n n
= 2n Z akbk — Z(Z ak) (Z bk) .
1<k<n k=1 k=1

In the last step both sums have been simplified according to the general
distributive law (2.28). If the manipulation of the first sum seems mysterious,
here it is again in slow motion:

2 Z akbk =2 Z Z Clkbk

1<), ksn Tsksn Igjsn

ZZ akka1

1<k<n 1<5<n
=2 E Clkkal = 2n E O.kbk.
1<k<n 1<k<n

An index variable that doesn’t appear in the summand (here j) can simply
be eliminated if we multiply what’s left by the size of that variable’s index
set (here n).

Returning to where we left off, we can now divide everything by 2 and
rearrange things to obtain an interesting formula:

(i (1k> (; bk) = n; axbyx —

k=1

D (ak—a;)(bk—b;). (2.34)

1<j<k<n

This identity yields Chebyshev’s monotonic inequalities as a special case:

n n n
(Zak> (Zbk) < nZakbk> far<---<apand by <+ <y

k=1 k=1 k=1

n n n
(Zak> (Zbk) >n) aby, far<--<apandby = >by

k=1 k=1 k=1
(In general, if a; < -+ < an and if p is a permutation of {1,...,n}, it’s

not difficult to prove that the largest value of ZLI:] axbp (k) occurs when
by(1) < -+ < by(n), and the smallest value occurs when by, (1) = --- = by (n).)

(Chebyshev [58]
actually proved the
analogous result
for integrals
instead of sums,

(f2f(x) dx)

([ alx) dx)
<(b—a)
([of()g(x) dx),

if f(x) and g(x)
are monotone

nondecreasing
functions.)
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Multiple summation has an interesting connection with the general op-
eration of changing the index of summation in single sums. We know by the
commutative law that

Zak = Z Qp (k) >
p(k)eK

keK

if p(k) is any permutation of the integers. But what happens when we replace
k by f(j), where f is an arbitrary function

f: ] - K

that takes an integer j € ] into an integer f(j) € K? The general formula for
index replacement is

Z ag;j)y = Z ap #17(k), (2.35)

je] keK

where #f (k) stands for the number of elements in the set
(k) = {j|fG) = k},

that is, the number of values of j € | such that f(j) equals k.
It’s easy to prove (2.35) by interchanging the order of summation,

D ag = Y a[fl)=k = ) a) [f(G)=X],

je] j€] kekK je]
kekK
since Zje][f(j) zk] = #f (k). In the special case that f is a one-to-one
correspondence between ] and K, we have #f (k) = 1 for all k, and the
general formula (2.35) reduces to

Zafm = Z af) = Zak-
f(jleK

i€l keK

This is the commutative law (2.17) we had before, slightly disguised.

Our examples of multiple sums so far have all involved general terms like
ax or by. But this book is supposed to be concrete, so let’s take a look at a
multiple sum that involves actual numbers:

1
Sno= Y -

1<i<k<n

8119

For example, S1 = 0; 32:1;83:21ﬁ+31j+31f2=
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The normal way to evaluate a double sum is to sum first on j or first
on Kk, so let’s explore both options.

1
Sh = Z Z K summing first on j

1<k<n 1<j<k

=) 2

1

- replacing j by k —j
1<ken 1<k—j<k )

1

)

=2 2

1<k<n O<j<k—1

simplifying the bounds on j

= Z Hy_q by (2.13), the definition of Hy_;
T1<k<n

= Z Hy replacing k by k 4 1
1<k+1<n

= Z Hy . simplifying the bounds on k
o<k<n

Alas! We don'’t know how to get a sum of harmonic numbers into closed form.  Get out the whip.
If we try summing first the other way, we get

1
Sh = Z . Z — summing first on k
1<5<n j<k<n
1
= Z Z X replacing k by k +j
I<isn j<k+jsn
1
= Z X simplifying the bounds on k
1<j<n O0<k<n—j
= Z Hn_; by (2.13), the definition of Hy,,_;
I<jisn
= Z H; replacing j by n —j
I<n—js<n
= Z H; . simplifying the bounds on j
oji<n

We're back at the same impasse.
But there’s another way to proceed, if we replace k by k + j before
deciding to reduce S, to a sum of sums:

1
Sh = Z P recopying the given sum
1<j<k<n
1
= Z X replacing k by k +j

1<<k+i<n
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It’s smart to say = Z = summing first on j
k < n instead of 1<k<n 1<j<n—k k
k < n—1 here. n—k
Simple bounds save = Z —_ the sum on j is trivial
energy. 1<ken k
n _
= P 1 by the associative law
T1<k<n 1<k<n
1
=n X —-n by gosh
1<k<n
= nH,, —n. by (2.13), the definition of Hy

Aha! We've found S,. Combining this with the false starts we made gives us
a further identity as a bonus:

Z Hy = nH,, —n. (2.36)
os<k<n

We can understand the trick that worked here in two ways, one algebraic
and one geometric. (1) Algebraically, if we have a double sum whose terms in-
volve k+1(j), where f is an arbitrary function, this example indicates that it’s
a good idea to try replacing k by k—f(j) and summing on j. (2) Geometrically,
we can look at this particular sum S;, as follows, in the case n = 4:

k=1 k=2 k=3 k=4
j=1 T+ 3+
j +

_= N

—= N—= =

Our first attempts, summing first on j (by columns) or on k (by rows), gave
us Hy + H, + H3 = H3z + H, + Hy. The winning idea was essentially to sum
by diagonals, getting % + % + %

2.5 GENERAL METHODS

Now let’s consolidate what we've learned, by looking at a single
example from several different angles. On the next few pages we're going to
try to find a closed form for the sum of the first n squares, which we’ll call O :

O, = Z K%, for n > 0. (2:37)
os<ksn

We'll see that there are at least seven different ways to solve this problem,
and in the process we'll learn useful strategies for attacking sums in general.
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First, as usual, we look at some small cases.

o012 3 4 5 6 7 8 2 10 11 12
n?| 01 4 9 16 25 36 49 64 81 100 121 144
On| O 1 5 14 30 55 91 140 204 285 385 506 650

No closed form for O, is immediately evident; but when we do find one, we
can use these values as a check.

Method 0: You could look it up.

A problem like the sum of the first n squares has probably been solved
before, so we can most likely find the solution in a handy reference book.
Sure enough, page 36 of the CRC Standard Mathematical Tables [28] has the
answer:

nn+12n+1)

O, = c , forn > 0. (2.38)

Just to make sure we haven’t misread it, we check that this formula correctly
gives 005 = 5-6-11/6 = 55. Incidentally, page 36 of the CRC Tables has
further information about the sums of cubes, ..., tenth powers.

The definitive reference for mathematical formulas is the Handbook of
Mathematical Functions, edited by Abramowitz and Stegun [2]. Pages 813— (Harder sums
814 of that book list the values of O,, for n < 100; and pages 804 and 809 ¢a be fo”,"d
exhibit formulas equivalent to (2.38), together with the analogous formulas Icrég;?f:;gnssive
for sums of cubes, ..., fifteenth powers, with or without alternating signs. table [178].)

But the best source for answers to questions about sequences is an amaz-
ing little book called the Handbook of Integer Sequences, by Sloane [330],
which lists thousands of sequences by their numerical values. If you come
up with a recurrence that you suspect has already been studied, all you have
to do is compute enough terms to distinguish your recurrence from other fa-
mous ones; then chances are you'll find a pointer to the relevant literature in
Sloane’s Handbook. For example, 1, 5, 14, 30, ... turns out to be Sloane’s
sequence number 1574, and it’s called the sequence of “square pyramidal
numbers” (because there are O, balls in a pyramid that has a square base of
n? balls). Sloane gives three references, one of which is to the handbook of
Abramowitz and Stegun that we've already mentioned.

Still another way to probe the world’s store of accumulated mathematical
wisdom is to use a computer program (such as Axiom, MACSYMA, Maple, or
Mathematica) that provides tools for symbolic manipulation. Such programs
are indispensable, especially for people who need to deal with large formulas.

It’s good to be familiar with standard sources of information, because
they can be extremely helpful. But Method 0 isn't really consistent with the
spirit of this book, because we want to know how to figure out the answers
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Or, at least to by ourselves. The look-up method is limited to problems that other people
problems having have decided are worth considering; a new problem won’t be there.

the same answers

as problems that Method 1: Guess the answer, prove it by induction.

other people have

decided to consider. Perhaps a little bird has told us the answer to a problem, or we have

arrived at a closed form by some other less-than-rigorous means. Then we
merely have to prove that it is correct.

We might, for example, have noticed that the values of O,, have rather
small prime factors, so we may have come up with formula (2.38) as something
that works for all small values of n. We might also have conjectured the
equivalent formula

n(n+ %)(n +1)

O, = — 3 for n > 0, (2.39)
which is nicer because it’s easier to remember. The preponderance of the
evidence supports (2.39), but we must prove our conjectures beyond all rea-
sonable doubt. Mathematical induction was invented for this purpose.

“Well, Your Honor, we know that (o =0 = O(O—I—%)(O—H )/3, so the basis
is easy. For the induction, suppose that n > 0, and assume that (2.39) holds
when n is replaced by n — 1. Since

On = On- +T12,
we have

300 = (n—1)(n—%)(n) + 3n?
= m*—3n?2+In) + 3n?
= M3 +3n?+1n)

= n(n—i—%)(n—H).

Therefore (2.39) indeed holds, beyond a reasonable doubt, for all n > 0.”
Judge Wapner, in his infinite wisdom, agrees.

Induction has its place, and it is somewhat more defensible than trying
to look up the answer. But it’s still not really what we're seeking. All of
the other sums we have evaluated so far in this chapter have been conquered
without induction; we should likewise be able to determine a sum like O
from scratch. Flashes of inspiration should not be necessary. We should be
able to do sums even on our less creative days.

Method 2: Perturb the sum.
So let’s go back to the perturbation method that worked so well for the
geometric progression (2.25). We extract the first and last terms of Oy, 41 in
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order to get an equation for Oy :

On+m+D2 = ) (k+1)2 = > (K+2k+1)

o<k<n osk<sn
Y R Y ke Y
os<ksn os<ksn o<k<sn
:Dn+ZZk+(n—l—1).

os<ksn

Oops —the Oy, 's cancel each other. Occasionally, despite our best efforts, the

perturbation method produces something like O,, = O, so we lose. Seems more like a
On the other hand, this derivation is not a total loss; it does reveal a way  draw.

to sum the first n integers in closed form,

2 Z k=Mm+1)2=—(n+1),
o<k<n

even though we'd hoped to discover the sum of first integers squared. Could
it be that if we start with the sum of the integers cubed, which we might
call o7, we will get an expression for the integers squared? Let’s try it.

Dnt+m+17° = > (k+12 = ) (K¥+3K+3k+1)

osksn o<ksn

= 00 +30n +3

(n—l;)n + (n+1).

Sure enough, the &3, 's cancel, and we have enough information to determine  Method 2':
O,, without relying on induction: Perturb your TA.

300 = M+1)P =3n+1)n/2—n+1)
=M+ +2m+1-3n—1) = (n+1)(n+I)n.

Method 3: Build a repertoire.
A slight generalization of the recurrence (2.7) will also suffice for sum-
mands involving n?. The solution to

Ro = «;
_ 2 (2.40)
Rhn=Rn_1+pB+yn+om-, forn > 0,
will be of the general form
Rn = A(n)a+B(n)B + C(n)y+D(n)s; (2.41)

and we have already determined A(n), B(n), and C(n), because (2.40) is the
same as (2.7) when & = 0. If we now plug in R,, = n3, we find that n3 is the
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solution when « =0, 3 =1,y =—3, 8 = 3. Hence
3D(n) —3C(n) +B(n) = n?;

this determines D(n).

We're interested in the sum O, which equals [I,,_1 + n?; thus we get
On =R, ifweset x =B =v =0and &§ =1 in (2.41). Consequently
On = D(n). We needn’t do the algebra to compute D(n) from B(n) and
C(n), since we already know what the answer will be; but doubters among us
should be reassured to find that

(n+1)n

3D(n) = n®+3CM)—Bn) = n®+3 5

-n = n(n—&-%)(n—l—]).
Method 4: Replace sums by integrals.

People who have been raised on calculus instead of discrete mathematics
tend to be more familiar with [ than with ), so they find it natural to try
changing ) to [. One of our goals in this book is to become so comfortable
with ) that we’ll think [ is more difficult than ) (at least for exact results).
But still, it’s a good idea to explore the relation between ) and [, since
summation and integration are based on very similar ideas.

In calculus, an integral can be regarded as the area under a curve, and we
can approximate this area by adding up the areas of long, skinny rectangles
that touch the curve. We can also go the other way if a collection of long,
skinny rectangles is given: Since [y, is the sum of the areas of rectangles
whose sizes are 1 x 1, 1 x4, ..., 1 x n?, it is approximately equal to the area
under the curve f(x) = x? between 0 and n.

/

f(x),

The horizontal scale 7
here is ten times the
vertical scale. f(x) = x2 7

123 n X

The area under this curve is fg x? dx = n3/3; therefore we know that [, is

approximately %n3.
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One way to use this fact is to examine the error in the approximation,
En =0, — %n3. Since [, satisfies the recurrence Oy, = On_1 +n?, we find
that E,, satisfies the simpler recurrence

En = On—1n® = On+n?—Ind = By + i1 +n2 — Ind

= En_1 +Tl—%.

Another way to pursue the integral approach is to find a formula for E,, by
summing the areas of the wedge-shaped error terms. We have

n n k
2 2 2
Un — J x“dx = E (k - J x dx) This is for people
0 k=1 k=1 addicted to calculus.
n n
k3 —(k—1)3
E 2 § 1

k=1 k=1

Either way, we could find E,, and then O,,.

Method 5: Expand and contract.

Yet another way to discover a closed form for O, is to replace the orig-
inal sum by a seemingly more complicated double sum that can actually be
simplified if we massage it properly:

On= ) kK= ) &k

1<k<n 1<i<ksn

2 )k

1<j<n j<k<n

j+n .
-y (]2 )(n]+1)
1<j<n (The last step here
1

=1 nm4+1)+j—ij? is something like
21<jZ<n( ( J+i=i ) the last step of

the perturbation

— 1,2 1 1 -1 1 1 thod, because
= n"m+1)+ znn+1 On = sn(n+3)(n+1 On . method,
2 ( ) 4 ( ) 2 2 ( 2 ) ) 2 we get an equation

Going from a single sum to a double sum may appear at first to be a backward ;Vllzt;;ttf;; ggkéz oivgn

step, but it’s actually progress, because it produces sums that are easier to sides.)
work with. We can'’t expect to solve every problem by continually simplifying,
simplifying, and simplifying: You can’t scale the highest mountain peaks by
climbing only uphill.

Method 6: Use finite calculus.
Method 7: Use generating functions.

Stay tuned for still more exciting calculations of Oy, = ) ,_, k?, as we
learn further techniques in the next section and in later chapters.
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2.6 FINITE AND INFINITE CALCULUS

We've learned a variety of ways to deal with sums directly. Now it’s
time to acquire a broader perspective, by looking at the problem of summa-
tion from a higher level. Mathematicians have developed a “finite calculus,”
analogous to the more traditional infinite calculus, by which it’s possible to
approach summation in a nice, systematic fashion.

Infinite calculus is based on the properties of the derivative operator D,
defined by

Df(x) = %%w

Finite calculus is based on the properties of the difference operator A, defined
by

Af(x) = f(x+1)—1(x). (2.42)

This is the finite analog of the derivative in which we restrict ourselves to

positive integer values of h. Thus, h = 1 is the closest we can get to the

“limit” as h — 0, and Af(x) is the value of (f(x +h)— f(x))/h when h = 1.

The symbols D and A are called operators because they operate on

functions to give new functions; they are functions of functions that produce

functions. If f is a suitably smooth function of real numbers to real numbers,

As opposed to a then Df is also a function from reals to reals. And if f is any real-to-real

cassette function. function, so is Af. The values of the functions Df and Af at a point x are
given by the definitions above.

Early on in calculus we learn how D operates on the powers f(x) = x™.

In such cases Df(x) = mx™ . We can write this informally with f omitted,

D(x™) = mx™ .

It would be nice if the A operator would produce an equally elegant result;
unfortunately it doesn’t. We have, for example,

AXP) = (x+1)2=x3 = 3x2+3x+1.

Math power. But there is a type of “mth power” that does transform nicely under A,
and this is what makes finite calculus interesting. Such newfangled mth
powers are defined by the rule

m factors

X = x(x—=1)...(x—m+1), integer m > 0. (2.43)

Notice the little straight line under the m; this implies that the m factors
are supposed to go down and down, stepwise. There’s also a corresponding
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definition where the factors go up and up:

m factors
x™ = x(x+1)...(x+m—1), integer m > 0. (2.44)
When m = 0, we have x® = X0 = 1, because a product of no factors is

conventionally taken to be 1 (just as a sum of no terms is conventionally 0).

The quantity x™ is called “x to the m falling” if we have to read it
aloud; similarly, x™ is “x to the m rising” These functions are also called
falling factorial powers and rising factorial powers, since they are closely
related to the factorial function n! =n(n—1)...(1). In fact, n! = n =17,

Several other notations for factorial powers appear in the mathematical
literature, notably “Pochhammer’s symbol” (x)m for x™ or x™; notations
like x(™) or x(;,) are also seen for x™. But the underline/overline convention
is catching on, because it’s easy to write, easy to remember, and free of
redundant parentheses.

Falling powers x™ are especially nice with respect to A. We have

AX™) = (x+ 1) —x™
x+1x...x—m+2) — x...x—m+2)(x—m+1)

mx(x—1)...(x —m+2),

hence the finite calculus has a handy law to match D(x™) = mx™ ':

= meﬁl‘

A(x™) (2.45)
This is the basic factorial fact.
The operator D of infinite calculus has an inverse, the anti-derivative

(or integration) operator |. The Fundamental Theorem of Calculus relates D

to [:

g(x) = Df(x) if and only if Jg(x) dx = f(x)+C.
Here [ g(x) dx, the indefinite integral of g(x), is the class of functions whose
derivative is g(x). Analogously, A has as an inverse, the anti-difference (or
summation) operator > ; and there’s another Fundamental Theorem:

g(x) = Af(x) if and only if

Z g(x)dx = f(x)+C. (2.46)

Here > g(x) 6x, the indefinite sum of g(x), is the class of functions whose
difference is g(x). (Notice that the lowercase & relates to uppercase A as
d relates to D.) The “C” for indefinite integrals is an arbitrary constant; the
“C" for indefinite sums is any function p(x) such that p(x + 1) = p(x). For

Mathematical
terminology is
sometimes crazy:
Pochhammer [293]
actually used the
notation (x)m

for the binomial
coefficient * , not
for factorial powers.

“Quemadmodum
ad differentiam
denotandam usi
sumus signo A,
ita summam indi-
cabimus signo X.
. €ex quo &quatio

z = Ay, si inver-
tatur, dabit quoque
y=xz+C.”

—L. Euler [110]
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example, C might be the periodic function a + b sin 27tx; such functions get
washed out when we take differences, just as constants get washed out when
we take derivatives. At integer values of x, the function C is constant.

Now we're almost ready for the punch line. Infinite calculus also has
definite integrals: If g(x) = Df(x), then

b b
J g(x)dx = f(x)| = f(b)—f(a).

Therefore finite calculus — ever mimicking its more famous cousin — has def-
inite sums: If g(x) = Af(x), then

° = f(b) — fla). (2.47)

a

> ol sx = f(x)

This formula gives a meaning to the notation Zz g(x) Ox, just as the previous
b
formula defines [ g(x) dx.

But what does ZZ g(x) &x really mean, intuitively? We've defined it by
analogy, not by necessity. We want the analogy to hold, so that we can easily
remember the rules of finite calculus; but the notation will be useless if we
don't understand its significance. Let’s try to deduce its meaning by looking
first at some special cases, assuming that g(x) = Af(x) = f(x + 1) — f(x). If
b = a, we have

ZZg(x)éx — f(a)—f(a) = 0.

Next, if b = a + 1, the result is

Y o sx = fla+ 1)~ fla) = gla).
More generally, if b increases by 1, we have
S abaex — Y ax)sx = (f(b+ 1)~ f(a)) — (f(b) — f(a))
= f(b+1)—f(b) = g(b).

These observations, and mathematical induction, allow us to deduce exactly
what ZZ g(x) &x means in general, when a and b are integers with b > a:

b—1

b .

E Clg(x) ox = E gk) = E g(k), for integers b > a. (2.48)
k=a a<k<b

You call this a In other words, the definite sum is the same as an ordinary sum with limits,
punch line? but excluding the value at the upper limit.
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Let’s try to recap this in a slightly different way. Suppose we’ve been
given an unknown sum that’s supposed to be evaluated in closed form, and
suppose we can write it in the form } . _ g(k) = Zz g(x) 6x. The theory
of finite calculus tells us that we can express the answer as f(b) — f(a), if
we can only find an indefinite sum or anti-difference function f such that
g(x) = f(x +1) — f(x). One way to understand this principle is to write
Za<k<b g(k) out in full, using the three-dots notation:

> (flk+ 1) =f(k) = (fla+1) —f(a)) + (f(a+2) — f(a+1)) +---
a<k<b

+ (f(b=1) = f(b=2)) + (f(b) — f(b—1)).

Everything on the right-hand side cancels, except f(b) — f(a); so f(b) — f(a)
is the value of the sum. (Sums of the form Zagk<b (f(k +1)— f(k)) are
often called telescoping, by analogy with a collapsed telescope, because the
thickness of a collapsed telescope is determined solely by the outer radius of  And all this time
the outermost tube and the inner radius of the innermost tube.) I'thought it was
. . telescoping because
But rule (2.48) applies only when b > a; what happens if b < a? Well, jt collapsed from a

(2.47) says that we must have very long expression
to a very short one.

> ol 8x = f(b) ~ f(a)
~(fla)—f(0)) = =) glx)ox.

This is analogous to the corresponding equation for definite integration. A
similar argument proves Zz +Y 5 =2 ¢, the summation analog of the iden-

tity fz +[¢ = [5. In full garb,

S ob)sx+ Y Cal)sx = Y glx)x, (2.49)

for all integers a, b, and c.
At this point a few of us are probably starting to wonder what all these
parallels and analogies buy us. Well for one, definite summation gives us a  Others have been
simple way to compute sums of falling powers: The basic laws (2.45), (2.47), wondering this for
. some time now.
and (2.48) imply the general law

n
nm+1

= il for integers m,n > 0. (2.50)
0

km+1

e

o<k<n

This formula is easy to remember because it’s so much like the familiar
fo x™dx =nm"/(m+1).
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In particular, when m = 1 we have kI = k, so the principles of finite
calculus give us an easy way to remember the fact that

n;
Z k = 5 = nn—1)/2.

0<k<n

The definite-sum method also gives us an inkling that sums over the range
0 < k < n often turn out to be simpler than sums over 1 < k < n; the former
are just f(n) — f(0), while the latter must be evaluated as f(n+ 1) — f(1).

Ordinary powers can also be summed in this new way, if we first express
them in terms of falling powers. For example,

kK = K2+ Kb,
hence
nd n2
y K= T+t5 = Inm—-1Nn-2+3) = Inn-Hn-1.
os<k<n

Replacing n by n 4 1 gives us yet another way to compute the value of our
With friends like old friend On =} 51y k? in closed form.
this. .. Gee, that was pretty easy. In fact, it was easier than any of the umpteen
other ways that beat this formula to death in the previous section. So let’s

try to go up a notch, from squares to cubes: A simple calculation shows that
K o= k2 +3kE+ kL.

(It’s always possible to convert between ordinary powers and factorial powers
by using Stirling numbers, which we will study in Chapter 6.) Thus

4 2 |b
Y K= L L

a<k<b 4 2 a

Falling powers are therefore very nice for sums. But do they have any
other redeeming features? Must we convert our old friendly ordinary powers
to falling powers before summing, but then convert back before we can do
anything else? Well, no, it’s often possible to work directly with factorial
powers, because they have additional properties. For example, just as we
have (x +y)? = x% 4+ 2xy + y?, it turns out that (x +y)% = x2 4+ 2xIyl + y2,
and the same analogy holds between (x +y)™ and (x +y)™. (This “factorial
binomial theorem” is proved in exercise 5.37.)

So far we've considered only falling powers that have nonnegative expo-
nents. To extend the analogies with ordinary powers to negative exponents,
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we need an appropriate definition of x™ for m < 0. Looking at the sequence

x> = x(x—1)(x—2),
x2 = x(x—1),

X = x,

x& =1

)

we notice that to get from X2 to xZ to x! to x2 we divide by x — 2, then
by x — 1, then by x. [t seems reasonable (if not imperative) that we should
divide by x + 1 next, to get from x2 to x=1, thereby making x=" = 1/(x +1).
Continuing, the first few negative-exponent falling powers are

| 1
T X
o 1

T kA Nx+2)

_3 1

T (x+1)(x+2)(x+3)’

)

and our general definition for negative falling powers is

L 1
T RE 1) gm) e O (2.51)

(It’s also possible to define falling powers for real or even complex m, but we How can a complex

will defer that until Chapter 5.) number be even?
With this definition, falling powers have additional nice properties. Per-

haps the most important is a general law of exponents, analogous to the law

for ordinary powers. The falling-power version is

XM — M (x —m) D integers m and n. (2.52)

For example, x2=3 = xZ (x — 2)3; and with a negative n we have

1 1
== =) T T T T

If we had chosen to define x=! as 1/x instead of as 1/(x + 1), the law of

exponents (2.52) would have failed in cases like m = —1 and n = 1. In fact,
we could have used (2.52) to tell us exactly how falling powers ought to be
defined in the case of negative exponents, by setting m = —m. When an Laws have their

existing notation is being extended to cover more cases, it’s always best to let"’"‘zﬂts and their
formulate definitions in such a way that general laws continue to hold. erackors.
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Now let’s make sure that the crucial difference property holds for our
newly defined falling powers. Does Ax™ = mx™=! when m < 0?7 If m = —2,
for example, the difference is

1 1

72 _ o
A = T3 ikt 2)

B (x+1)—(x+3)
o (x+D)x+2)(x+3)

= —2x=3.

Yes —it works! A similar argument applies for all m < 0.
Therefore the summation property (2.50) holds for negative falling powers
as well as positive ones, as long as no division by zero occurs:

b XL’H b
Z xMox = , for m # —1.
a m+ 1 a
But what about when m = —17 Recall that for integration we use
b b
J x 'dx = Inx
a a
when m = —1. We'd like to have a finite analog of Inx; in other words, we
seek a function f(x) such that
1 1
Xx— = = Af(x) = f(x+1) —f(x).

X+ 1
It’s not too hard to see that

1 1 1

f = — 4+ — 4. 4 —

() = 3+5++

is such a function, when x is an integer, and this quantity is just the harmonic
number Hy of (2.13). Thus Hy is the discrete analog of the continuous ln x.
(We will define Hy for noninteger x in Chapter 6, but integer values are good

enough for present purposes. We'll also see in Chapter 9 that, for large x, the

0.577 exactly? value of H, —In x is approximately 0.577 4+ 1/(2x). Hence H, and Inx are not
Maybe they mean only analogous, their values usually differ by less than 1.)
13, We can now give a complete description of the sums of falling powers:
Then again,
maybe not. ymt1 |P
b il if m#—1;
m
Zaxméx = e (2.53)

H,| , ifm=-1.

a
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This formula indicates why harmonic numbers tend to pop up in the solutions
to discrete problems like the analysis of quicksort, just as so-called natural
logarithms arise naturally in the solutions to continuous problems.

Now that we've found an analog for Inx, let’s see if there'’s one for e*.
What function f(x) has the property that Af(x) = f(x), corresponding to the
identity De* = e*? Easy:

flx+1)—f(x) = f(x) = flx+1) = 2f(x);

so we're dealing with a simple recurrence, and we can take f(x) = 2* as the
discrete exponential function.
The difference of c* is also quite simple, for arbitrary c, namely

Alc¥) = T —c* = (c—T)c*.

Hence the anti-difference of c¢* is ¢*/(c — 1), if ¢ # 1. This fact, together with
the fundamental laws (2.47) and (2.48), gives us a tidy way to understand the
general formula for the sum of a geometric progression:

X b b

. b ¢ ¢’ —c"
Z o —Zac 5X_c—1 =<7 for c # 1.

a<k<b a

Every time we encounter a function f that might be useful as a closed
form, we can compute its difference Af = g; then we have a function g whose
indefinite sum ) g(x) 6x is known. Table 55 is the beginning of a table of  “Table 55’ is on
difference/anti-difference pairs useful for summation. page 55. Get it?
Despite all the parallels between continuous and discrete math, some
continuous notions have no discrete analog. For example, the chain rule of
infinite calculus is a handy rule for the derivative of a function of a function;
but there’s no corresponding chain rule of finite calculus, because there’s no
nice form for Af(g(x)). Discrete change-of-variables is hard, except in certain
cases like the replacement of x by ¢ 4 x.
However, A(f(x) g(x)) does have a fairly nice form, and it provides us
with a rule for summation by parts, the finite analog of what infinite calculus
calls integration by parts. Let’s recall that the formula

D(uw) = uDv+vDu

of infinite calculus leads to the rule for integration by parts,

JuDv = uv—JvDu,
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Table 55 What’s the difference?

f=2%Xg Af =g f=2xXg Af=g

x0 =1 0 2% 2%

xt=x 1 cX (c—1)c*
x2 =x(x—1) 2x c/(c—1) cx

xm mxm=1 cf cAf

X2/ (m 4 1) X f+g Af+ Ag
H, x—L=1/(x+1) fg fAg + EgAf

after integration and rearranging terms; we can do a similar thing in finite
calculus.

We start by applying the difference operator to the product of two func-
tions u(x) and v(x):

= u(x) Av(x) + v(x+1) Au(x). (2-54)

This formula can be put into a convenient form using the shift operator E,
defined by

Ef(x) = f(x+1).

Substituting Ev(x) for v(x+1) yields a compact rule for the difference of a

product:
Aluv) = wAv + EvAu. (2.55)
Infinite calculus (The E is a bit of a nuisance, but it makes the equation correct.) Taking
avoids E here by the indefinite sum on both sides of this equation, and rearranging its terms,

letting 1= 0. yields the advertised rule for summation by parts:

ZuAv = uv—ZEvAu. (2.56)

As with infinite calculus, limits can be placed on all three terms, making the
indefinite sums definite.
This rule is useful when the sum on the left is harder to evaluate than the
one on the right. Let’s look at an example. The function [ xe* dx is typically
ioiuse;faﬁxva;e?] integrated by parts; its discrete analog is > x2* 6x, which we encountered
of 1. earlier this chapter in the form Zrkl:Oka. To sum this by parts, we let
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u(x) = x and Av(x) = 2%; hence Au(x) = 1, v(x) = 2%, and Ev(x) = 2¥*1.
Plugging into (2.56) gives

ZX2X5X = x2* — ZZ"+1 Sx = x2* — 2¢T1 4 C.

And we can use this to evaluate the sum we did before, by attaching limits:

i K2k = Z;H x2* dx
k=0

1
— x2% — 2x+1 ’n+
0

= ((n+12""—2n2) —(0:2°-2") = (n—1)2""" +2.

It’s easier to find the sum this way than to use the perturbation method,
because we don't have to think. The ultimate goal
We stumbled across a formula for ) ,_,_, Hi earlier in this chapter, of mathematics
> is to eliminate all
and counted ourselves lucky. But we could have found our formula (2.36) |ceq for intelligent
systematically, if we had known about summation by parts. Let’s demonstrate  thought.
this assertion by tackling a sum that looks even harder, ) , <k<n KHk. The
solution is not difficult if we are guided by analogy with [ xInx dx: We take
u(x) = Hy and Av(x) = x = x!, hence Au(x) = x=1, v(x) = x%/2, Ev(x) =
(x + 1)2/2, and we have

x% (x+12
ZXHXSX = SHe - fofsx
x2 1 ]
== THX - EZX*&X
= SH«— 5 +C.

(In going from the first line to the second, we've combined two falling pow-
ers (x+1)2x=' by using the law of exponents (2.52) with m = —1 and n = 2.)
Now we can attach limits and conclude that

n 2
> kHy = ZO xH, &x = %(Hn—%)‘ (2:57)

0<k<n

2.7 INFINITE SUMS

When we defined } -notation at the beginning of this chapter, we
finessed the question of infinite sums by saying, in essence, “Wait until later.  This is finesse?
For now, we can assume that all the sums we meet have only finitely many
nonzero terms.” But the time of reckoning has finally arrived; we must face
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the fact that sums can be infinite. And the truth is that infinite sums are
bearers of both good news and bad news.

First, the bad news: It turns out that the methods we’ve used for manip-
ulating ) 's are not always valid when infinite sums are involved. But next,
the good news: There is a large, easily understood class of infinite sums for
which all the operations we've been performing are perfectly legitimate. The
reasons underlying both these news items will be clear after we have looked
more closely at the underlying meaning of summation.

Everybody knows what a finite sum is: We add up a bunch of terms, one
by one, until they've all been added. But an infinite sum needs to be defined
more carefully, lest we get into paradoxical situations.

For example, it seems natural to define things so that the infinite sum

S=1+3+i+3+c+m+
1s equal to 2, because if we double it we get
2S =241+ 5+3+3+7+ =2+S.
On the other hand, this same reasoning suggests that we ought to define

T=1+42+4+8+16+32+--

Sure: 1+ 2 + to be —1, for if we double it we get
4+ 8+ - isthe
“infinite precision” 2T = 2+4+84+16+32+64+--- = T—1.

representation of

the number —1, - . . . . -
in a binary com. Something funny is going on; how can we get a negative number by summing

puter with infinite positive quantities? It seems better to leave T undefined; or perhaps we should

word size. say that T = oo, since the terms being added in T become larger than any
fixed, finite number. (Notice that co is another “solution” to the equation
2T =T —1; it also “solves” the equation 2S =2+ 8S.)

Let’s try to formulate a good definition for the value of a general sum
> xek Ak, where K might be infinite. For starters, let’s assume that all the
terms ay are nonnegative. Then a suitable definition is not hard to find: If
there’s a bounding constant A such that

ZaksA

keF

for all finite subsets F C K, then we define ) , . ax to be the least such A.
(It follows from well-known properties of the real numbers that the set of
all such A always contains a smallest element.) But if there’s no bounding
constant A, we say that ) , , ax = oo; this means that if A is any real
number, there’s a set of finitely many terms ax whose sum exceeds A.
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The definition in the previous paragraph has been formulated carefully
so that it doesn’t depend on any order that might exist in the index set K.
Therefore the arguments we are about to make will apply to multiple sums
with many indices k1, k2, ..., not just to sums over the set of integers. The set K might

In the special case that K is the set of nonnegative integers, our definition ~€ven be uncount-
able. But only a

countable num-
ber of terms can

n
. be nonzero, if a
a, = lim E ay. S
Z k n—eo k bounding constant
k=0 k=0 A exists, because at

. .. . most NA terms are
Here’s why: Any nondecreasing sequence of real numbers has a limit (possi- - /n

bly oo). If the limit is A, and if F is any finite set of nonnegative integers
whose elements are all < n, we have ) | ; ax < Yk oak <A; hence A =00
or A is a bounding constant. And if A’ is any number less than the stated
limit A, then there’s an n such that Y |_,ax > A’; hence the finite set
F=1{0,1,...,n} witnesses to the fact that A’ is not a bounding constant.
We can now easily compute the value of certain infinite sums, according

for nonnegative terms ay implies that

to the definition just given. For example, if a) = x*, we have

1— n+1 . . )

> xk = hm 1= P/ =), i0sx <
n—oo 1T—x oQ, if x 2 1.

k=0

In particular, the infinite sums S and T considered a minute ago have the re-
spective values 2 and oo, just as we suspected. Another interesting example is

1 _
2 g - XK

k=0 k>0
n 1 n
. _ . k=
= lim E k=2 = lim —| =1.
n—oo n—oo —1
k=0 0

Now let’s consider the case that the sum might have negative terms as
well as nonnegative ones. What, for example, should be the value of

DN =111 =TT =147

k=0 “Aggregatum quan-
. . titatum a — a +
If we group the terms in pairs, we get a—a+a—a
etc. nunc est = a,
a-n+0-+00-1+--- =04+0+0+---, nunc = 0, adeoque

continuata in infini-
so the sum comes out zero; but if we start the pairing one step later, we get  tum serie ponendus
= a/2, fateor
1—-(1-1)-01-1)=1=1)=- =1=0—-0—0—"---; acumen et veritatem
! animadversionis
. tuze.”
the sum is 1. —G. Grandi [163]
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We might also try setting x = —1 in the formula Zk;oxk =1/(1—-x),
since we've proved that this formula holds when 0 < x < 1; but then we are
forced to conclude that the infinite sum is %, although it’s a sum of integers!

Another interesting example is the doubly infinite ) , ax where ay =
1/(k+1)for k>0and ax =1/(k—1) for k < 0. We can write this as

e R O e O AR e o o AR (2:58)

If we evaluate this sum by starting at the “center” element and working
outward,

et (O D D )

we get the value 1; and we obtain the same value 1 if we shift all the paren-
theses one step to the left,

~+(f%+(f%+(f§+(—%)+1)+%)+§)+~~~ ,
because the sum of all numbers inside the innermost n parentheses is

n+1l n 2 2 n—1 n n+l’
A similar argument shows that the value is 1 if these parentheses are shifted
any fixed amount to the left or right; this encourages us to believe that the
sum is indeed 1. On the other hand, if we group terms in the following way,

S R T I P U
the nth pair of parentheses from inside out contains the numbers

1 1 1 1 1 1

—m—a——§+1+i++m+ﬂ = 1‘|‘H2n_Hn+1-
We'll prove in Chapter 9 that lim, . (H2n —Hn41) = In2; hence this group-
ing suggests that the doubly infinite sum should really be equal to 1 +1n2.

There’s something flaky about a sum that gives different values when
its terms are added up in different ways. Advanced texts on analysis have
a variety of definitions by which meaningful values can be assigned to such
pathological sums; but if we adopt those definitions, we cannot operate with
> -notation as freely as we have been doing. We don’t need the delicate refine-
ments of “conditional convergence” for the purposes of this book; therefore
we'll stick to a definition of infinite sums that preserves the validity of all the
operations we've been doing in this chapter.
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In fact, our definition of infinite sums is quite simple. Let K be any
set, and let ax be a real-valued term defined for each k € K. (Here ‘K’
might actually stand for several indices kq, kz, ..., and K might therefore be
multidimensional.) Any real number x can be written as the difference of its
positive and negative parts,

x = x" —x7, where x™ = x-[x>0] and x~ = —x- [x < 0].
(Either x* =0 or x~ =0.) We've already explained how to define values for
the infinite sums } | .y a, and 2 ek Gy, because a, and a, are nonnega-
tive. Therefore our general definition is

D =) af — Y ap, (259)

kekK kekK keK

unless the right-hand sums are both equal to co. In the latter case, we leave
2 ek Gk undefined.
Let AT =)  afand A~ =), a. f A" and A~ are both finite,
the sum ) | .« ax is said to converge absolutely to the value A = At — A~. In other words, ab-
If A* = oo but A™ is finite, the sum ) |, ai is said to diverge to +oo. fgé’;iesct‘l’]’;‘t’etrf:’;;
Similarly, if A~ = co but A" is finite, 2 ek Ok is said to diverge to —oo. If of absolute values
AT = A~ = oo, all bets are off. converges.
We started with a definition that worked for nonnegative terms, then we
extended it to real-valued terms. If the terms ayx are complex numbers, we
can extend the definition once again, in the obvious way: The sum } , ., ax
is defined to be ) . Rax +1) .k Jax, where Ray and Jay are the real
and imaginary parts of ax —provided that both of those sums are defined.
Otherwise ) , .« ax is undefined. (See exercise 18.)
The bad news, as stated earlier, is that some infinite sums must be left
undefined, because the manipulations we've been doing can produce inconsis-
tencies in all such cases. (See exercise 34.) The good news is that all of the
manipulations of this chapter are perfectly valid whenever we're dealing with
sums that converge absolutely, as just defined.
We can verify the good news by showing that each of our transformation
rules preserves the value of all absolutely convergent sums. This means, more
explicitly, that we must prove the distributive, associative, and commutative
laws, plus the rule for summing first on one index variable; everything else
we've done has been derived from those four basic operations on sums.
The distributive law (2.15) can be formulated more precisely as follows:
If ) ok Gk converges absolutely to A and if ¢ is any complex number, then
2 xek Cax converges absolutely to cA. We can prove this by breaking the
sum into real and imaginary, positive and negative parts as above, and by
proving the special case in which ¢ > 0 and each term ay is nonnegative. The
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proof in this special case works because ) | rcax =c) . ax for all finite
sets F; the latter fact follows by induction on the size of F.

The associative law (2.16) can be stated as follows: If } | . ax and
> ek b converge absolutely to A and B, respectively, then } , ., (ax + by)
converges absolutely to A + B. This turns out to be a special case of a more
general theorem that we will prove shortly.

The commutative law (2.17) doesn’t really need to be proved, because
we have shown in the discussion following (2.35) how to derive it as a special
case of a general rule for interchanging the order of summation.

The main result we need to prove is the fundamental principle of multiple
sums: Absolutely convergent sums over two or more indices can always be
summed first with respect to any one of those indices. Formally, we shall

Best to skim this prove that if ] and the elements of {K; | j € J} are any sets of indices such that
page the first time

ou get here.
o }érour friendly TA Z ajx converges absolutely to A,

j€]
KeK;

then there exist complex numbers A; for each j € ] such that

Z ajx converges absolutely to Aj, and
keK;

Z A; converges absolutely to A.

je]

It suffices to prove this assertion when all terms are nonnegative, because we

can prove the general case by breaking everything into real and imaginary,

positive and negative parts as before. Let’s assume therefore that aj > 0

for all pairs (j, k) € M, where M is the master index set {(j,k) | j € ],k € K;}.
We are given that ) (; )cam @k is finite, namely that

Z ajx <A

(3,k)€F

for all finite subsets F C M, and that A is the least such upper bound. If j is
any element of J, each sum of the form ZkeFj aj x where F; is a finite subset
of K; is bounded above by A. Hence these finite sums have a least upper
bound Aj >0, and } ;¢ 0,k = A;j by definition.

We still need to prove that A is the least upper bound of ZjeG A;, for all
finite subsets G C J. Suppose that G is a finite subset of | with ZjeG Aj =
A’ > A. We can find finite subsets F; C K; such that } ;¢ ajx > (A/A')A;
for each j € G with A; > 0. There is at least one such j. But then
2_jeG ker; %k > (A/A') ) 5c5 Aj = A, contradicting the fact that we have
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2 (j.x)er @,k < A for all finite subsets F C M. Hence } ;.5 A;j < A, for all
finite subsets G C J.

Finally, let A’ be any real number less than A. Our proof will be complete
if we can find a finite set G C ] such that Z)'EG A; > A’. We know that there’s
a finite set F C M such that } ;, crajx > A'; let G be the set of j’s in
this F, and let F; /: {k | (j,k) € F}. Then Z]'GG A = Z).GG ZkeFj ajx =
Z(i,k)GF aj k > A’; QED.

OK, we'’re now legitimate! Everything we've been doing with infinite
sums 1s justified, as long as there’s a finite bound on all finite sums of the
absolute values of the terms. Since the doubly infinite sum (2.58) gave us
two different answers when we evaluated it in two different ways, its positive .

1.1 . ] . hearing a lot lately

terms 1+ 5 + 3+ - - must diverge to co; otherwise we would have gotten the ,p0.+ “harmonic
same answer no matter how we grouped the terms. convergence”?

So why have I been

Exercises

Warmups

1  What does the notation
0
D_ax
k=4
mean?
2  Simplify the expression x - ([x >0]—[x< O]).
3 Demonstrate your understanding of ) -notation by writing out the sums
Z ax and Z a2
0<k<5 0<k2<5
in full. (Watch out —the second sum is a bit tricky.)
4  Express the triple sum

E Aijx

T<i<j<k<4

as a three-fold summation (with three } ’s),

a summing first on k, then j, then i;

b  summing first on i, then j, then k.

Also write your triple sums out in full without the ) -notation, using
parentheses to show what is being added together first.



Yield to the rising
power.

2 EXERCISES

5 What’s wrong with the following derivation?
— ot N Sk _ — n2
(o)) -Yro -3y -yn-n
j=1 k=1 j=1 k=1 k=1k=1 k=T
6  What is the value of } ,[1<j<k<n], as a function of j and n?
7 Let Vf(x) = f(x) — f(x—1). What is V(x™)?
8 What is the value of 0™, when m is a given integer?
9 What is the law of exponents for rising factorial powers, analogous to
(2.52)? Use this to define x ™.
10 The text derives the following formula for the difference of a product:
A(uv) = wAv + EvAu.
How can this formula be correct, when the left-hand side is symmetric
with respect to u and v but the right-hand side is not?
Basics
11 The general rule (2.56) for summation by parts is equivalent to
> (aky1 —ar)be = anbn —agbg
o<k<n
— Z a41(bypr —by), form>0.
o<k<n
Prove this formula directly by using the distributive, associative, and
commutative laws.
12 Show that the function p(k) =k + (—1)¥c is a permutation of the set of
all integers, whenever c is an integer.
13 Use the repertoire method to find a closed form for 22:0(71 kK2,
14 Evaluate Y | _; k2* by rewriting it as the multiple sum 2 1<j<k<n 2k,
15 Evaluate 69, = ) ,_; k3 by the text’s Method 5 as follows: First write
Pn 4+ 0On =23 1 jcren ik; then apply (2.33).
16 Prove that x™/(x —n)™ = x%/(x — m)%, unless one of the denominators
is zero.
17 Show that the following formulas can be used to convert between rising

and falling factorial powers, for all integers m:

5

L

E
|

=
E
|

X = — (A m—Tm = 1/ (x— 1),

X = (=) (=)™ = (x—m+ 1™ = 1/ (x+1)™.

E

(The answer to exercise 9 defines x™™.)

63
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18 Let Rz and Jz be the real and imaginary parts of the complex num-

ber z. The absolute value |z| is \/(Rz)? + (Jz)2. A sum ),y ax of

complex terms ay is said to converge absolutely when the real-valued
sums ) ., Rax and ) . Jax both converge absolutely. Prove that
2 rek Ak converges absolutely if and only if there is a bounding con-
stant B such that } . lax| < B for all finite subsets F C K.

Homework exercises

19 Use a summation factor to solve the recurrence

To = 5;
2T, nl,_1+3-nl, for n > 0.

20 Try to evaluate ZE:O kHy by the perturbation method, but deduce the
value of ZE:O Hy instead.

21 Evaluate the sums S, = Y |_,(—1)"%, T, = > _,(—1)""¥k, and
U, =Y _,(—1)""¥k? by the perturbation method, assuming that n >
0.

22 Prove Lagrange’s identity (without using induction):

S (ommant - (5) (o) (San)

1<j<k<n k=1

Prove, in fact, an identity for the more general double sum

D (ajbx — axb;)(AjBr — AiB;).
1<j<k<n
23 Evaluate the sum Zgﬂ (2k+ 1)/k(k + 1) in two ways:
a  Replace 1/k(k + 1) by the “partial fractions” 1/k—1/(k+1).
b  Sum by parts.
24 What is ZO§k<n Hy/(k+1)(k+2)? Hint: Generalize the derivation of
(2.57)-
25 The notation erK ax means the product of the numbers ay for all
k € K. Assume for simplicity that ay # 1 for only finitely many k; hence
infinite products need not be defined. What laws does this | [-notation

satisfy, analogous to the distributive, associative, and commutative laws
that hold for } ?

26 Express the double product [ [, <j<k<n j0k in terms of the single prod-
uct HTkl:] ax by manipulating [ [-notation. (This exercise gives us a
product analog of the upper-triangle identity (2.33).)

It’s hard to prove
the identity of
somebody who’s
been dead for 175
years.

This notation was
introduced by
Jacobi in 1829 [192].
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27 Compute A(cX), and use it to deduce the value of ) ,_,(—2)k/k.
28 At what point does the following derivation go astray?

ko k1
'= Zkk—l—l - Z(lﬂ—]k)

k=1 k=1

j
= ]—k—|—1 [)-k—]])
= i=k+1]— [)*k 1])

J>1k>1( k

k
= Z(j[k—)ﬂ[ —J+1]>
ji=1 k=1

_ 51') _ Z;] _
. ( i i+ iG+1)
Exam problems

29 Evaluate the sum Y ,_,(—1)¥k/(4k* —1).

30 Cribbage players have long been aware that 15 =7+8 =4+5+6 =
14+2+4+3+4+5. Find the number of ways to represent 1050 as a sum of
consecutive positive integers. (The trivial representation ‘1050’ by itself
counts as one way; thus there are four, not three, ways to represent 15
as a sum of consecutive positive integers. Incidentally, a knowledge of
cribbage rules is of no use in this problem.)

31 Riemann’s zeta function ((k) is defined to be the infinite sum
1 1 1
Ttop et = > =

Prove that Zkgz(C(k) - 1) = 1. What is the value of Zk>1 (C(Zk) - 1)?
32 Let a~b=max(0,a—b). Prove that
Y min(k,x k) = ) (x=(2k+1))
k=0 k=0
for all real x > 0, and evaluate the sums in closed form.
Bonus problems

33 Let A\, g ax denote the minimum of the numbers aj (or their greatest

lower bound, if K is infinite), assuming that each ay is either real or +c0.

The laws of the What laws are valid for /\-notation, analogous to those that work for }_
Jungle. and [? (See exercise 25.)
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34

35

36

Prove that if the sum ) | .y ax is undefined according to (2.59), then it
is extremely flaky in the following sense: If A~ and A" are any given
real numbers, it's possible to find a sequence of finite subsets F; C F, C
F3 C --- of K such that

E ax < A7, when n is odd,; E ax > A", when n is even.
KEFn keF,

Prove Goldbach’s theorem

]_l+1+l+l+l+l+l+l+ _ZL
37 8 15 24 2 31 35 _kPk—1’

where P is the set of “perfect powers” defined recursively as follows:
P={(m™"|m>22n>2m¢P}.

Solomon Golomb’s “self-describing sequence” (f(1),f(2),f(3),...) is the
only nondecreasing sequence of positive integers with the property that
it contains exactly f(k) occurrences of k for each k. A few moments’
thought reveals that the sequence must begin as follows:

n| 12345678910 11 12
fm) 1223344455 5 6

Let g(n) be the largest integer m such that f(m) = n. Show that
a g(n)=3yf(k).

b g(gm) = Xy kf(k).

¢ g(glo(m)) = gngn)(g(n) +1) = 3 Ty a(k) (g(k) +1).

Research problem

37

Will all the 1/k by 1/(k + 1) rectangles, for k > 1, fit together inside a
1 by 1 square? (Recall that their areas sum to 1.)

etc.

=
K=
%-ﬁ

W= W=

ST
Nf—=

Perfect power
corrupts perfectly.



Integer Functions

)Ouch.(

WHOLE NUMBERS constitute the backbone of discrete mathematics, and we
often need to convert from fractions or arbitrary real numbers to integers. Our
goal in this chapter is to gain familiarity and fluency with such conversions
and to learn some of their remarkable properties.

3.1 FLOORS AND CEILINGS

We start by covering the floor (greatest integer) and ceiling (least
integer) functions, which are defined for all real x as follows:

| x| = the greatest integer less than or equal to x;

(3-1)

[x] = the least integer greater than or equal to x.

Kenneth E. Iverson introduced this notation, as well as the names “floor” and
“ceiling,” early in the 1960s [191, page 12]. He found that typesetters could
handle the symbols by shaving the tops and bottoms off of ‘[’ and ‘]’. His
notation has become sufficiently popular that floor and ceiling brackets can
now be used in a technical paper without an explanation of what they mean.
Until recently, people had most often been writing ‘[x]’ for the greatest integer
< x, without a good equivalent for the least integer function. Some authors
had even tried to use ‘]x['— with a predictable lack of success.

Besides variations in notation, there are variations in the functions them-
selves. For example, some pocket calculators have an INT function, defined
as |x] when x is positive and [x]| when x is negative. The designers of
these calculators probably wanted their INT function to satisfy the iden-
tity INT(—x) = —INT(x). But we’ll stick to our floor and ceiling functions,
because they have even nicer properties than this.

One good way to become familiar with the floor and ceiling functions
is to understand their graphs, which form staircase-like patterns above and

67
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below the line f(x) = x:

X =—e +f(x) f(x) =x
30 e .4

le] =2, |—e] =-3,

[e] =3, [—el] =-2,
since e = 2.71828... .

By staring at this illustration we can observe several facts about floors
and ceilings. First, since the floor function lies on or below the diagonal line
f(x) = x, we have |x| < x; similarly [x] > x. (This, of course, is quite
obvious from the definition.) The two functions are equal precisely at the
integer points:

[x] = x = X is an integer = [x] = x.

(We use the notation ‘=’ to mean “if and only if”) Furthermore, when
they differ the ceiling is exactly 1 higher than the floor:

[x] — [x] = [x is not an integer] . (3.2)

If we shift the diagonal line down one unit, it lies completely below the floor
function, so x — 1 < |x]; similarly x4+ 1 > [x]. Combining these observations
gives us

x—1 < |x] € x < [x] < x+1. (3.3)
Finally, the functions are reflections of each other about both axes:

=] = —[x]; [—x] = —[x]. (3-4)

Cute.

By Iverson’s bracket
convention, this is a
complete equation.
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Thus each is easily expressible in terms of the other. This fact helps to
explain why the ceiling function once had no notation of its own. But we
see ceilings often enough to warrant giving them special symbols, just as we
have adopted special notations for rising powers as well as falling powers.
Mathematicians have long had both sine and cosine, tangent and cotangent,
secant and cosecant, max and min; now we also have both floor and ceiling.

To actually prove properties about the floor and ceiling functions, rather
than just to observe such facts graphically, the following four rules are espe-
cially useful:

[x

]
[x]
1
|

n<x<n+1, a)
b)
<)
d)

x—l<n<x,
Ix (3:5)

[x

(We assume in all four cases that n is an integer and that x is real.) Rules

(a) and (c) are immediate consequences of definition (3.1); rules (b) and (d)

are the same but with the inequalities rearranged so that n is in the middle.
It’s possible to move an integer term in or out of a floor (or ceiling):

n—1l<x<n,

1117

(
(
(
(

x<n<x+1.

[x+n| = |x]+n, integer 1. (3.6)

(Because rule (3.5(a)) says that this assertion is equivalent to the inequalities
[x] +n < x+n < [x] +n+1.) But similar operations, like moving out a
constant factor, cannot be done in general. For example, we have [nx| # n|x|
when n = 2 and x = 1/2. This means that floor and ceiling brackets are
comparatively inflexible. We are usually happy if we can get rid of them or if
we can prove anything at all when they are present.

It turns out that there are many situations in which floor and ceiling
brackets are redundant, so that we can insert or delete them at will. For
example, any inequality between a real and an integer is equivalent to a floor
or ceiling inequality between integers:

x<n <& |x]<n, (a)
n<x &= n<[x], (b)
vsn & Wen, (37)
n<x <<= n<]|x|. (d)

These rules are easily proved. For example, if x < n then surely |x| < n, since
|x] < x. Conversely, if [x] < n then we must have x < n, since x < [x] + 1
and [x] +1<n.

It would be nice if the four rules in (3.7) were as easy to remember as
they are to prove. Each inequality without floor or ceiling corresponds to the
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same inequality with floor or with ceiling; but we need to think twice before
deciding which of the two is appropriate.

The difference between x and |x] is called the fractional part of x, and
it arises often enough in applications to deserve its own notation:

(3-8)

We sometimes call |x| the integer part of x, since x = |x| + {x}. If a real
number X can be written in the form x = n 4 0, where n is an integer and
0 <0 <1, we can conclude by (3.5(a)) that n = [x| and 6 = {x}.

Identity (3.6) doesn’t hold if n is an arbitrary real. But we can deduce
that there are only two possibilities for |x + y| in general: If we write x =
[x] +{x} and y = |y] + {y}, then we have [x +y] = [x]| + [y] + [{x} + {y}].
And since 0 < {x} + {y} < 2, we find that sometimes |x 4+ y] is [x] + |y],
otherwise it’s [x] + [y] + 1.

{x} = x—1[x].

3.2 FLOOR/CEILING APPLICATIONS

We’ve now seen the basic tools for handling floors and ceilings. Let’s
put them to use, starting with an easy problem: What’s [1g35]? (Following a
suggestion of Edward M. Reingold, we use ‘lg’ to denote the base-2 logarithm.)
Well, since 2° < 35 < 2°, we can take logs to get 5 < lg35 < 6; so relation
(3.5(c)) tells us that [1g35] = 6.

Note that the number 35 is six bits long when written in radix 2 notation:
35 = (100011),. Is it always true that [lgn] is the length of n written in
binary? Not quite. We also need six bits to write 32 = (100000),. So [lgn]
is the wrong answer to the problem. (It fails only when n is a power of 2,
but that’s infinitely many failures.) We can find a correct answer by realizing
that it takes m bits to write each number n such that 2™~ < n < 2™; thus
(3.5(a)) tells us that m — 1 = [lgn], so m = |lgn| + 1. That is, we need
|lgn] + 1 bits to express n in binary, for all n > 0. Alternatively, a similar
derivation yields the answer [lg(n + 1)]; this formula holds for n = 0 as well,
if we're willing to say that it takes zero bits to write n = 0 in binary.

Let’s look next at expressions with several floors or ceilings. What is
[[x]]? Easy—since [x] is an integer, [[x]| is just [x|. So is any other ex-
pression with an innermost | x| surrounded by any number of floors or ceilings.

Here’s a tougher problem: Prove or disprove the assertion

[VIx]] = Lvx],

Equality obviously holds when x is an integer, because x = [x|. And there’s
equality in the special cases m = 3.14159..., e = 2.71828..., and ¢ =
(14++/5)/2 =1.61803..., because we get 1 = 1. Our failure to find a coun-
terexample suggests that equality holds in general, so let’s try to prove it.

real x > 0. (3.9)

Hmmm. We’d bet-
ter not write {x}
for the fractional
part when it could
be confused with
the set containing x
as its only element.

The second case
occurs if and only
if there’s a “carry”
at the position of
the decimal point,
when the fractional
parts {x} and {y}
are added together.

(Of course T, e,
and ¢ are the
obvious first real
numbers to try,
aren't they?)



Skepticism is
healthy only to
a limited extent.
Being skeptical
about proofs and
programs (particu-
larly your own) will
probably keep your
grades healthy and
your job fairly se-
cure. But applying
that much skepti-
cism will probably
also keep you shut
away working all
the time, instead
of letting you get
out for exercise and
relaxation.
Too much skepti-
cism is an open in-
vitation to the state
of rigor mortis,
where you become
so worried about
being correct and
rigorous that you
never get anything
finished.

— A skeptic

(This observation
was made by R. J.
McEliece when he
was an undergrad.)
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Incidentally, when we're faced with a “prove or disprove,” we're usually
better off trying first to disprove with a counterexample, for two reasons:
A disproof is potentially easier (we need just one counterexample); and nit-
picking arouses our creative juices. Hven if the given assertion is true, our
search for a counterexample often leads us to a proof, as soon as we see why
a counterexample is impossible. Besides, it's healthy to be skeptical.

If we try to prove that |\/[x]| = [\/x] with the help of calculus, we might
start by decomposing x into its integer and fractional parts |x| +{x} =n+0
and then expanding the square root using the binomial theorem: (n+0)'/? =
n'/2 41 n=120/2 —n=3/202/8 + - ... But this approach gets pretty messy.

It’s much easier to use the tools we've developed. Here's a possible strat-
egy: Somehow strip off the outer floor and square root of L\/MJ, then re-
move the inner floor, then add back the outer stuff to get |/x|. OK. We let
m = |/[x]| and invoke (3.5(a)), giving m < /[x] < m+ 1. That removes
the outer floor bracket without losing any information. Squaring, since all
three expressions are nonnegative, we have m? < [x] < (m + 1)2 That gets
rid of the square root. Next we remove the floor, using (3.7(d)) for the left
inequality and (3.7(a)) for the right: m? < x < (m + 1) It’s now a simple
matter to retrace our steps, taking square roots to get m < /x <m+ 1 and
invoking (3.5(a)) to get m = [\/x]. Thus [\/[x]] = m = [\/x]; the assertion
1s true. Similarly, we can prove that

[VIXIT = [vxT,

The proof we just found doesn’t rely heavily on the properties of square
roots. A closer look shows that we can generalize the ideas and prove much
more: Let f(x) be any continuous, monotonically increasing function with the
property that

real x > 0.

f(x) = integer S x = integer.

(The symbol ‘—>" means “implies”) Then we have

LE([x])] (XD,

whenever f(x), f(|x]), and f([x]) are defined. Let’s prove this general prop-
erty for ceilings, since we did floors earlier and since the proof for floors is
almost the same. If x = [x], there's nothing to prove. Otherwise x < [x],
and f(x) < f([x]) since f is increasing. Hence [f(x)] < [f([x])], since [] is
nondecreasing. If [f(x)] < [f([x])], there must be a number y such that
x <y < [x] and f(y) = [f(x)], since f is continuous. This y is an integer, be-
cause of f’s special property. But there cannot be an integer strictly between
x and [x]. This contradiction implies that we must have [f(x)] = [f([x])].

and [f(x)] = (3.10)
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An important special case of this theorem is worth noting explicitly:

(][] [R]

n n n n

if m and n are integers and the denominator n is positive. For example, let

m = 0; we have HLX/]OJ/]OJ/]OJ = |x/1000]. Dividing thrice by 10 and

throwing off digits is the same as dividing by 1000 and tossing the remainder.
Let’s try now to prove or disprove another statement:

VIx]] £ [vx], real x > 0.

This works when x = 7t and x = e, but it fails when x = ¢; so we know that
it isn't true in general.

Before going any further, let’s digress a minute to discuss different levels
of problems that might appear in books about mathematics:

Level 1. Given an explicit object x and an explicit property P(x), prove that
P(x) is true. For example, “Prove that [7t| = 3.” Here the problem involves
finding a proof of some purported fact.

Level 2. Given an explicit set X and an explicit property P(x), prove that
P(x) is true for all x € X. For example, “Prove that |x] < x for all real x.”
Again the problem involves finding a proof, but the proof this time must be
general. We're doing algebra, not just arithmetic.

Level 3. Given an explicit set X and an explicit property P(x), prove or
disprove that P(x) is true for all x € X. For example, “Prove or disprove In my other texts

that ( LXH = [v/x] for all real x > 0.” Here there’s an additional level “prove or disprove”

. . . . seems to mean the
of uncertainty; the outcome might go either way. This is closer to the real ;e as “prove.”
situation a mathematician constantly faces: Assertions that get into books about 99.44% of
tend to be true, but new things have to be looked at with a jaundiced eye. If ?hilg{mgi b}’;t not
the statement is false, our job is to find a counterexample. If the statement 1 PhIS ook

is true, we must find a proof as in level 2.

Level 4. Given an explicit set X and an explicit property P(x), find a neces-

sary and sufficient condition Q(x) that P(x) is true. For example, “Find a

necessary and sufficient condition that |x| > [x].” The problem is to find Q

such that P(x) < Q(x). Of course, there’s always a trivial answer; we can

take Q(x) = P(x). But the implied requirement is to find a condition that’s as

simple as possible. Creativity is required to discover a simple condition that But no simpler.
will work. (For example, in this case, “|x| > [x] <= xis an integer.”) The —A. Binstein
extra element of discovery needed to find Q(x) makes this sort of problem

more difficult, but it’s more typical of what mathematicians must do in the

“real world” Finally, of course, a proof must be given that P(x) is true if and

only if Q(x) is true.
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Level 5. Given an explicit set X, find an interesting property P(x) of its
elements. Now we're in the scary domain of pure research, where students
might think that total chaos reigns. This is real mathematics. Authors of
textbooks rarely dare to pose level 5 problems.

End of digression. But let’s convert the last question we looked at from
level 3 to level 4: What is a necessary and sufficient condition that [ |x] ] =
[vx]? We have observed that equality holds when x = 3.142 but not when
x = 1.618; further experimentation shows that it fails also when x is between

Home of the 9 and 10. Oho. Yes. We see that bad cases occur whenever m? < x < m? +1,

Toledo Mudhens. since this gives m on the left and m + 1 on the right. In all other cases
where /X is defined, namely when x = 0O or m? +1 < x < (m + 1)?, we
get equality. The following statement is therefore necessary and sufficient for
equality: Either x is an integer or /[x] isn't.

For our next problem let's consider a handy new notation, suggested
by C.A.R. Hoare and Lyle Ramshaw, for intervals of the real line: [«x..f]
denotes the set of real numbers x such that &« < x < . This set is called
a closed wnterval because it contains both endpoints « and 3. The interval
containing neither endpoint, denoted by (.. ), consists of all x such that
a < x < B; this is called an open interval. And the intervals [x..f3) and
(oc..B], which contain just one endpoint, are defined similarly and called

(Or, by pessimists, half-open.

half-closed.) How many integers are contained in such intervals? The half-open inter-
vals are easier, so we start with them. In fact half-open intervals are almost
always nicer than open or closed intervals. For example, they’re additive — we
can combine the half-open intervals [x..[3) and [ ..7Y) to form the half-open
interval [x..y). This wouldn’t work with open intervals because the point 3
would be excluded, and it could cause problems with closed intervals because
p would be included twice.

Back to our problem. The answer is easy if « and 3 are integers: Then
[..B) contains the B — « integers o, «+ 1, ..., B — 1, assuming that o < .
Similarly (x..p] contains 3 — o integers in such a case. But our problem is
harder, because « and 3 are arbitrary reals. We can convert it to the easier
problem, though, since

a<n<p = [x] < n <

x<n<pP = ] <n < B,
when n is an integer, according to (3.7). The intervals on the right have
integer endpoints and contain the same number of integers as those on the left,
which have real endpoints. So the interval [«..3) contains exactly [B] — [«]
integers, and («..p] contains [B| — |]. This is a case where we actually

want to introduce floor or ceiling brackets, instead of getting rid of them.
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By the way, there’s a mnemonic for remembering which case uses floors
and which uses ceilings: Half-open intervals that include the left endpoint
but not the right (such as 0 < 0 < 1) are slightly more common than those
that include the right endpoint but not the left; and floors are slightly more
common than ceilings. So by Murphy’s Law, the correct rule is the opposite
of what we’d expect — ceilings for [«.. () and floors for (.. B].

Similar analyses show that the closed interval [«..[] contains exactly
[B]—Tec]+1 integers and that the open interval («..[3) contains [R]—|a]—1;
but we place the additional restriction o # 3 on the latter so that the formula
won't ever embarrass us by claiming that an empty interval (x..«) contains
a total of —1 integers. To summarize, we've deduced the following facts:

interval integers contained restrictions

[x..B] [B) — ] +1 x<B,

(.. B) B — o] x< B, (3.12)
(.. ] [B) — L] x< P,

(c..B) [B] — ] —1 x<f.

Now here’s a problem we can’t refuse. The Concrete Math Club has a
casino (open only to purchasers of this book) in which there’s a roulette wheel
with one thousand slots, numbered 1 to 1000. If the number n that comes up
on a spin is divisible by the floor of its cube root, that is, if

[Vn] A\ n,

then it’s a winner and the house pays us $5; otherwise it’s a loser and we
must pay $1. (The notation a\b, read “a divides b,” means that b is an exact
multiple of a; Chapter 4 investigates this relation carefully.) Can we expect
to make money if we play this game?

We can compute the average winnings —that is, the amount we’ll win
(or lose) per play — by first counting the number W of winners and the num-
ber L = 1000 — W of losers. If each number comes up once during 1000 plays,
we win 5W dollars and lose L dollars, so the average winnings will be

5W — (1000 — W)

1000

SW—-L
1000

6W — 1000
1000

If there are 167 or more winners, we have the advantage; otherwise the ad-
vantage is with the house.

How can we count the number of winners among 1 through 10007 It’s
not hard to spot a pattern. The numbers from 1 through 23 —1 = 7 are all
winners because |{/n| = 1 for each. Among the numbers 23 = 8 through
33 —1 = 26, only the even numbers are winners. And among 3% = 27 through

43 — 1 =63, only those divisible by 3 are. And so on.

Just like we can re-
member the date of
Columbus’s depar-
ture by singing, “In
fourteen hundred
and ninety-three/
Columbus sailed the
deep blue sea.”

(A poll of the class
at this point showed
that 28 students
thought it was a
bad idea to play,

13 wanted to gam-
ble, and the rest
were too confused
to answer.)

(So we hit them

with the Concrete
Math Club.)
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The whole setup can be analyzed systematically if we use the summa-
tion techniques of Chapter 2, taking advantage of Iverson’s convention about
logical statements evaluating to 0 or 1:

1000
W = Z[n is a winner]
n=1
= D> [lvm\n] = 3 [k=[¥n]]lk\nilT <n<1000]
1<n<1000 n
= ) [K¥<n<(k+1)*]n=km][1<n<1000]
k,m,n

=1+ ) [K¥<km<(k+1)3]1<k<10]

k,m
T+ [me k.. (k+1¥k)][1<k<10]
k,m

=1+ Y (K +3k+3+1/k] —[k*])

1<k<10
7+31
=T+ ) Bk+d) = 14+°59 =172,
1<k<10

This derivation merits careful study. Notice that line 6 uses our formula
(3-12) for the number of integers in a half-open interval. The only “difficult”
maneuver is the decision made between lines 3 and 4 to treat n = 1000 as a
special case. (The inequality k> < n < (k+ 1)3 does not combine easily with
1 < n <1000 when k = 10.) In general, boundary conditions tend to be the
True. most critical part of ) -manipulations.
The bottom line says that W = 172; hence our formula for average win-
Where did you say ~ nings per play reduces to (6-172—1000)/1000 dollars, which is 3.2 cents. We
this casino is? can expect to be about $3.20 richer after making 100 bets of $1 each. (Of
course, the house may have made some numbers more equal than others.)
The casino problem we just solved is a dressed-up version of the more
mundane question, “How many integers n, where 1 < n < 1000, satisfy the re-
lation | /] \ n?” Mathematically the two questions are the same. But some-
times it’s a good idea to dress up a problem. We get to use more vocabulary
(like “winners” and “losers”), which helps us to understand what’s going on.
Let’s get general. Suppose we change 1000 to 1000000, or to an even
larger number, N. (We assume that the casino has connections and can get a
bigger wheel.) Now how many winners are there?
The same argument applies, but we need to deal more carefully with the
largest value of k, which we can call K for convenience:

K = |[VN]J.
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(Previously K was 10.) The total number of winners for general N comes to
W= 3 (Bk+4)+) [K3<Km<N]
m

1<k<K

= J7+3K+N(K=1)+ ) [me[K2..N/K]]
= 3K24+3K—-4+) [melk?..N/K]].

We know that the remaining sum is |[N/K| — [K?] +1 = [N/K] — K? + 1;
hence the formula

W = |[N/K|+1K2+3K-3, K = |[VN] (3.13)

gives the general answer for a wheel of size N.

The first two terms of this formula are approximately N2/3 + %NZ/ 3 =
%Nz/ 3, and the other terms are much smaller in comparison, when N is large.
In Chapter 9 we'll learn how to derive expressions like

W = 3N23 4 O(N'/3),

where O(N'/3) stands for a quantity that is no more than a constant times
N'/3_ Whatever the constant is, we know that it’s independent of N; so for
large N the contribution of the O-term to W will be quite small compared
with %Nz/s. For example, the following table shows how close %Nz/s is to
W:

N %NZ/S w % error

1,000 150.0 172 12.791

10,000 696.2 746 6.670
100,000 3231.7 3343 3.331
1,000,000 15000.0 15247 1.620
10,000,000 69623.8 70158 0.761
100,000,000 323165.2 324322 0.357
1,000,000,000 1500000.0 1502496 0.166

It’s a pretty good approximation.

Approximate formulas are useful because they’re simpler than formu-
las with floors and ceilings. However, the exact truth is often important,
too, especially for the smaller values of N that tend to occur in practice.
For example, the casino owner may have falsely assumed that there are only
3N2/3 = 150 winners when N = 1000 (in which case there would be a 10¢
advantage for the house).



. without lots
of generality . ..

“If x be an in-
commensurable
number less than
unity, one of the
series of quantities
m/x‘y m/(] 7X))
where m is a whole
number, can be
found which shall
lie between any
given consecutive
integers, and but
one such quantity
can be found.”

— Rayleigh [304]

Right, because
exactly one of
the counts must
increase when n
increases by 1.
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Qur last application in this section looks at so-called spectra. We define
the spectrum of a real number « to be an infinite multiset of integers,

Spec(a) = {|«f, |2«], 3], ...}.

(A multiset is like a set but it can have repeated elements.) For example, the
spectrum of 1/2 starts out {0,1,1,2,2,3,3,...}.

It’s easy to prove that no two spectra are equal—that & # 3 implies
Spec(a) # Spec(PB). For, assuming without loss of generality that o« < f3,
there’s a positive integer m such that m(f — «) > 1. (In fact, any m >
[1/(f — «)] will do; but we needn’t show off our knowledge of floors and
ceilings all the time.) Hence mp — ma > 1, and |[mf| > [moa. Thus
Spec(B) has fewer than m elements < |maJ, while Spec(«) has at least m.

Spectra have many beautiful properties. For example, consider the two
multisets

Spec(V2) = {1,2,4,5,7,8,9,11,12,14,15,16,18,19,21,22,24,. ..},
Spec(2+V2) = {3,6,10,13,17,20,23,27,30,34,37,40,44,47 51,...}.

It’s easy to calculate Spec(v/2) with a pocket calculator, and the nth element
of Spec(2+v/2) is just 2n more than the nth element of Spec(v/2), by (3.6).
A closer look shows that these two spectra are also related in a much more
surprising way: [t seems that any number missing from one is in the other,
but that no number is in both! And it’s true: The positive integers are the
disjoint union of Spec(v/2 ) and Spec(2++/2 ). We say that these spectra form
a partition of the positive integers.

To prove this assertion, we will count how many of the elements of
Spec(v/2) are < 1, and how many of the elements of Spec(2++1/2) are < n. If
the total is n, for each n, these two spectra do indeed partition the integers.

Let o be positive. The number of elements in Spec(«) that are < n is

> [lkaf <n]

k>0

= Z[Lkocj <n+1]

k>0

D Tka<n+1]

k>0

Y [o<k<(m+1)/«]

k
= [n+1)/a] —1.

N(a,n) =

(3-14)
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This derivation has two special points of interest. First, it uses the law
m<n Sl m<n+1, integers m and n (3-15)

to change ‘<’ to ‘<’, so that the floor brackets can be removed by (3.7).
Also— and this is more subtle —it sums over the range k > 0 instead of k > 1,
because (n + 1)/« might be less than 1 for certain n and «. If we had tried
to apply (3.12) to determine the number of integers in [1..(n+1)/«), rather
than the number of integers in (0..(n+1)/«), we would have gotten the right
answer; but our derivation would have been faulty because the conditions of
applicability wouldn’t have been met.

Good, we have a formula for N(a,n). Now we can test whether or not
Spec(v/2) and Spec(2++/2 ) partition the positive integers, by testing whether
or not N(v/2,1n) + N(2 +v2,1n) = n for all integers n > 0, using (3.14):

E RN

TR o0

n\g - {n\g } " 2n++\/]i - {Zn:\%} =" by (38)

Everything simplifies now because of the neat identity
LR
V2 242

our condition reduces to testing whether or not

{n+1}+{ n+1 } o

V2 242 ’

for all m > 0. And we win, because these are the fractional parts of two
noninteger numbers that add up to the integer n + 1. A partition it is.

3.3 FLOOR/CEILING RECURRENCES

Floors and ceilings add an interesting new dimension to the study
of recurrence relations. Let’s look first at the recurrence

K():];

B : (3.16)
Kny1 =1+ mln(ZKLn/zJ,fﬁKLn/gJ), forn > 0.

Thus, for example, K; is 14 min(2Ky,3Ko) = 3; the sequence begins 1, 3, 3,
4,7,7,7,9, 9,10, 13, ... . One of the authors of this book has modestly
decided to call these the Knuth numbers.
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Exercise 25 asks for a proof or disproof that K, > n, for all n > 0. The
first few K’s just listed do satisfy the inequality, so there’s a good chance that
it’s true in general. Let’s try an induction proof: The basis n = 0 comes
directly from the defining recurrence. For the induction step, we assume
that the inequality holds for all values up through some fixed nonnegative n,
and we try to show that K, 7 > n+ 1. From the recurrence we know that
Kny1 = 1+ min(2K |y, /2),3K|n/3)). The induction hypothesis tells us that
2K|n/2) = 2[n/2] and 3K|,,/3) = 3|n/3]. However, 2[n/2| can be as small
as n— 1, and 3|[n/3] can be as small as n — 2. The most we can conclude
from our induction hypothesis is that K,,. 1 > 1+ (n — 2); this falls far short
of Knpp =2n+1.

We now have reason to worry about the truth of K,, > n, so let’s try to
disprove it. If we can find an n such that either 2K|,, ) <n or 3K|,/3) <m,
or in other words such that

KI_TL/ZJ < n/2 or KL“/3J < Tl./3,

we will have K;, 11 <+ 1. Can this be possible? We'd better not give the
answer away here, because that will spoil exercise 25.

Recurrence relations involving floors and/or ceilings arise often in com-
puter science, because algorithms based on the important technique of “divide
and conquer” often reduce a problem of size n to the solution of similar prob-
lems of integer sizes that are fractions of n. For example, one way to sort
n records, if n > 1, is to divide them into two approximately equal parts, one
of size [n/2] and the other of size [n/2]. (Notice, incidentally, that

n = [n/2]+ [n/2]; (3-17)

this formula comes in handy rather often.) After each part has been sorted
separately (by the same method, applied recursively), we can merge the
records into their final order by doing at most n — 1 further comparisons.
Therefore the total number of comparisons performed is at most f(n), where

f(1) =0;

fn) =f([n/2) +f(In/2))+n—1, forn>1, (3.18)

A solution to this recurrence appears in exercise 34.
The Josephus problem of Chapter 1 has a similar recurrence, which can
be cast in the form

J(1) = 1;
Jm) = 2J(In/2]) — (1", forn > 1.
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We've got more tools to work with than we had in Chapter 1, so let’s
consider the more authentic Josephus problem in which every third person is
eliminated, instead of every second. If we apply the methods that worked in
Chapter 1 to this more difficult problem, we wind up with a recurrence like

Jan) = [%IS(L%TID‘FGTJ‘ modn+1,

where ‘mod’ is a function that we will be studying shortly, and where we have
an = —2, +1, or —% according as n mod 3 =0, 1, or 2. But this recurrence
is too horrible to pursue.

There’s another approach to the Josephus problem that gives a much
better setup. Whenever a person is passed over, we can assign a new number.
Thus, 1 and 2 become n + 1 and n + 2, then 3 is executed; 4 and 5 become
n+ 3 and n+4, then 6 is executed; ...; 3k+ 1 and 3k + 2 become n+ 2k + 1
and n + 2k + 2, then 3k + 3 is executed; ... then 3n is executed (or left to

survive). For example, when n = 10 the numbers are

1T 2 3 4 5 6 7 8§ 9 10

1 12 13 14 15 16 17
18 19 20 21 22
23 24 25
26 27
28
29
30

The kth person eliminated ends up with number 3k. So we can figure out who
the survivor is if we can figure out the original number of person number 3n.

If N > n, person number N must have had a previous number, and we
can find it as follows: We have N = n+ 2k + 1 or N = n + 2k + 2, hence
k=[(N—n—1)/2]; the previous number was 3k 4+ 1 or 3k + 2, respectively.
That is, it was 3k + (N —n — 2k) = k+ N — n. Hence we can calculate the
survivor’s number J3(n) as follows:

N := 3n;
N—mn-—1

while N >n do sz{ 7

J +N—mn;
J3(n) = N.

This is not a closed form for J3(n); it’s not even a recurrence. But at least it
tells us how to calculate the answer reasonably fast, if n is large.

“Not too slow,
not too fast.”
—L. Armstrong
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Fortunately there’s a way to simplify this algorithm if we use the variable
D = 3n+1—N in place of N. (This change in notation corresponds to
assigning numbers from 3n down to 1, instead of from 1 up to 3n; it’s sort of
like a countdown.) Then the complicated assignment to N becomes

D = 3n+1q(3“+1?)“1J +(3n+1D)n>

—n—i-D—VnZ_DJ - D—bDJ - D+Fﬂ = [3D],

and we can rewrite the algorithm as follows:

D :=1;

while D<2n do D:=]
Js(n) == 3n+1-D.

3D

Aha! This looks much nicer, because n enters the calculation in a very simple
way. In fact, we can show by the same reasoning that the survivor J4(n) when
every qth person is eliminated can be calculated as follows:

D :=1;
while D<(q—1)n do D := (quD1 ; (3.19)
J¢gm) == qn+1-D.

In the case q = 2 that we know so well, this makes D grow to 2™*! when
n=2M+1 hence Jo(n) =22™ +1) +1—-2mF" =214+ 1. Good.

The recipe in (3.19) computes a sequence of integers that can be defined
by the following recurrence:

ng] =1;
20
D4 = [ﬁD:ﬂJ for n > 0. (3-20)

These numbers don’t seem to relate to any familiar functions in a simple
way, except when q = 2; hence they probably don’t have a nice closed form.

“Known” like, say, But if we're willing to accept the sequence Dilq) as “known,’ then it’s easy to
Za’ﬁoggl””énber Z describe the solution to the generalized Josephus problem: The survivor J4(n)
H S.'Wﬂf);lza‘fean saqn+1— Dliq), where k is as small as possible such that D]((q) > (qg—1)n.

shown [283] that
DR =13"Cl, 3.4  “MOD’: THE BINARY OPERATION

where
C ~ 1.622270503. The quotient of n divided by mis [n/m/|, when m and n are positive

integers. It’s handy to have a simple notation also for the remainder of this
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division, and we call it ‘n mod m’. The basic formula

n = m|n/m| + nmodm

~—

quotient remainder

tells us that we can express n mod m as n—m|n/m|. We can generalize this
to negative integers, and in fact to arbitrary real numbers:

xmody =

x —y[x/y],  fory#0. (3.21)

This defines ‘mod’ as a binary operation, just as addition and subtraction are
binary operations. Mathematicians have used mod this way informally for a
long time, taking various quantities mod 10, mod 27, and so on, but only in
the last twenty years has it caught on formally. Old notion, new notation.

We can easily grasp the intuitive meaning of x mod y, when x and y
are positive real numbers, if we imagine a circle of circumference y whose
points have been assigned real numbers in the interval [0..y). If we travel a
distance x around the circle, starting at 0, we end up at x mod y. (And the
number of times we encounter 0 as we go is [x/y].)

When x or y is negative, we need to look at the definition carefully in
order to see exactly what it means. Here are some integer-valued examples:

5mod 3 = 5-3|5/3] = 2;
5mod -3 = 5—(-3)[5/(-3)] = —1;
—5mod 3 = —5—-3|-5/3] =1,

“5mod —3 = —5— (—3)|-5/(~3)] = —2.

The number after ‘mod’ is called the modulus; nobody has yet decided what
to call the number before ‘mod’. In applications, the modulus is usually
positive, but the definition makes perfect sense when the modulus is negative.
In both cases the value of x mod y is between 0 and the modulus:

for y > 0;
fory < 0.

What about y = 0? Definition (3.21) leaves this case undefined, in order to
avoid division by zero, but to be complete we can define

xmod 0 = x. (3.22)

This convention preserves the property that x mod y always differs from x by
a multiple of y. (It might seem more natural to make the function continuous
at 0, by defining x mod 0 = lim,_,o x mod y = 0. But we'll see in Chapter 4

Why do they call it
‘mod’: The Binary
Operation? Stay
tuned to find out in
the next, exciting,
chapter!

Beware of computer
languages that use
another definition.

How about calling
the other number
the modumor?
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that this would be much less useful. Continuity is not an important aspect
of the mod operation.)

We've already seen one special case of mod in disguise, when we wrote x
in terms of its integer and fractional parts, x = |x| 4+ {x}. The fractional part
can also be written x mod 1, because we have

x = [x] + xmod 1.

Notice that parentheses aren’t needed in this formula; we take mod to bind
more tightly than addition or subtraction.

The floor function has been used to define mod, and the ceiling function
hasn’t gotten equal time. We could perhaps use the ceiling to define a mod
analog like

xmumbley = y[x/y] —x;

There was a time in  in our circle analogy this represents the distance the traveler needs to continue,
the 70s when ‘mod’  after going a distance x, to get back to the starting point 0. But of course

the fashion. . ..
}/\V/Izsybeetha: HIZ:I we’'d need a better name than ‘mumble’. If sufficient applications come along,

mumble function an appropriate name will probably suggest itself.

should be called The distributive law is mod’s most important algebraic property: We
punk’? have

No—1 like

‘mumble’. c(xmody) = (cx) mod (cy) (3.23)

for all real c, x, and y. (Those who like mod to bind less tightly than multi-
plication may remove the parentheses from the right side here, too.) It’s easy
to prove this law from definition (3.21), since

c(xmody) = c(x—y|x/y]) = cx—rcylex/cy] = cxmod cy,

if cy # 0; and the zero-modulus cases are trivially true. Qur four examples
using +5 and +3 illustrate this law twice, with ¢ = —1. An identity like
(3-23) is reassuring, because it gives us reason to believe that ‘mod’ has not
been defined improperly.

The remainder, eh? In the remainder of this section, we’ll consider an application in which
‘mod’ turns out to be helpful although it doesn’t play a central role. The
problem arises frequently in a variety of situations: We want to partition
n things into m groups as equally as possible.

Suppose, for example, that we have n short lines of text that we'd like
to arrange in m columns. For zesthetic reasons, we want the columns to be
arranged in decreasing order of length (actually nonincreasing order); and the
lengths should be approximately the same —mno two columns should differ by



84

INTEGER FUNCTIONS

more than one line's worth of text. If 37 lines of text are being divided into
five columns, we would therefore prefer the arrangement on the right:

8 8 8 8 5 8 8 7 7 7
line 1 line 9 linel7 line25 line 33 line 1 line 9 line1l7 line24 line 31
line 2 line 10 line 18 line 26 line 34 line 2 line 10 line 18 line 25 line 32
line 3 line 11 line 19 line 27 line 35 line 3 line 11 line 19 line 26 line 33
line 4 line 12 line 20 line 28 line 36 line 4 line 12 line 20 line 27 line 34
line 5 line 13 line 21 line 29 line 37 line 5 line 13 line 21 line 28 line 35
line 6 line 14 line 22 line 30 line 6 line 14 line 22 line 29 line 36
line 7 line 15 line 23 line 31 line 7 line 15 line 23 line 30 line 37
line 8 line 16 line 24 line 32 line 8 line 16

Furthermore we want to distribute the lines of text columnwise — first decid-
ing how many lines go into the first column and then moving on to the second,
the third, and so on— because that’s the way people read. Distributing row
by row would give us the correct number of lines in each column, but the
ordering would be wrong. (We would get something like the arrangement on
the right, but column 1 would contain lines 1, 6, 11, ..., 36, instead of lines
1,2,3, ..., 8 as desired.)

A row-by-row distribution strategy can’t be used, but it does tell us how
many lines to put in each column. If n is not a multiple of m, the row-
by-row procedure makes it clear that the long columns should each contain
[n/m] lines, and the short columns should each contain |n/m|. There will
be exactly n mod m long columns (and, as it turns out, there will be exactly
n mumble m short ones).

Let’s generalize the terminology and talk about ‘things’ and ‘groups’
instead of ‘lines’ and ‘columns’. We have just decided that the first group
should contain [n/m] things; therefore the following sequential distribution
scheme ought to work: To distribute n things into m groups, when m > 0,
put [n/m] things into one group, then use the same procedure recursively to
put the remaining n’ = n— [n/m] things into m’ = m—1 additional groups.

For example, if n = 314 and m = 6, the distribution goes like this:

remaining things remaining groups [things/groups]

314 6 53
261 5 53
208 4 52
156 3 52
104 2 52

52 1 52

It works. We get groups of approximately the same size, even though the
divisor keeps changing.

Why does it work? In general we can suppose that n = qm + r, where
g = [n/m| and v = nmod m. The process is simple if + = 0: We put
[n/m] = g things into the first group and replace n by n’ = n — q, leaving
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n’ = gm’ things to put into the remaining m’ = m — 1 groups. And if
r > 0, we put [n/m] = q + 1 things into the first group and replace n
by n' =n—q—1, leaving n’ = gqm’ + r — 1 things for subsequent groups.
The new remainder is 1/ = r — 1, but g stays the same. It follows that there
will be v groups with q + 1 things, followed by m — r groups with q things.

How many things are in the kth group? We'd like a formula that gives
[n/m] when k < nmod m, and |[n/m| otherwise. It’s not hard to verify
that

n—k+1
=]
has the desired properties, because this reduces to q + [(r—k 4+ 1)/m] if we
write n = qm + 1 as in the preceding paragraph; here ¢ = [n/m|. We have
[r—k+1)/m] =[k<r],if 1 <k <mand 0 <1< m. Therefore we can
write an identity that expresses the partition of n into m as-equal-as-possible
parts in nonincreasing order:

o [n%[n—‘%...ﬁn—m“w (3.24)
m m m
This identity is valid for all positive integers m, and for all integers n (whether
positive, negative, or zero). We have already encountered the case m = 2 in
(3.17), although we wrote it in a slightly different form, n = [n/2] + [n/2].
If we had wanted the parts to be in nondecreasing order, with the small
groups coming before the larger ones, we could have proceeded in the same
way but with [n/m] things in the first group. Then we would have derived
the corresponding identity

n = {HJ + {TJ +ot {nﬂ:]J : (3-25)

m

It’s possible to convert between (3.25) and (3.24) by using either (3.4) or the
identity of exercise 12.
Some claim that it’s Now if we replace n in (3.25) by |mx|, and apply rule (3.11) to remove
too dangerous to
replace anything by
an mx.

floors inside of floors, we get an identity that holds for all real x:

|mx| = ij+{x+:nJ+---+{x+mn:]J . (3.26)

This is rather amazing, because the floor function is an integer approximation
of a real value, but the single approximation on the left equals the sum of a
bunch of them on the right. If we assume that |x] is roughly x — % on the
average, the left-hand side is roughly mx — %, while the right-hand side comes
to roughly (x—%)Jr(x—%+im)+---+(x—1§+mT’1) :mx—%; the sum
of all these rough approximations turns out to be exact!
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3.5 FLOOR/CEILING SUMS

Equation (3.26) demonstrates that it’s possible to get a closed form
for at least one kind of sum that involves | |. Are there others? Yes. The
trick that usually works in such cases is to get rid of the floor or ceiling by
introducing a new variable.

For example, let’s see if it’s possible to do the sum

D LV

o<k<n

in closed form. One idea is to introduce the variable m = |v'k|; we can do
this “mechanically” by proceeding as we did in the roulette problem:

> Wkl = ) mik<n][m=[Vk]]

o<k<n k,m=0

= Z mlk<n][m< ﬁ<m+1]

k,m=0

= ) mk<n][m?<k<(m+1)?]
k,m=0
= Z mm?<k<(m+1)2<n]
k,m=0
+ Z mm?<k<n<(m+1)?].

k,m=0

Once again the boundary conditions are a bit delicate. Let’s assume first that
n = a? is a perfect square. Then the second sum is zero, and the first can be
evaluated by our usual routine:

Z m[m?<k<(m+1)?<a?]
k,m=0

= Z m((m+1)z—m2)[m+1§a]

m=0

= Z m(2m+ 1)[m<a]

m=0

= Z (2m2 + 3mY)[m < a]

m=0

a .
= E (2m2 + 3mb) om Falling powers
0 make the sum come

= Zala—1)(a—2)+3ala—1) = L{da+Nala—1). Fumbling down.
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In the general case we can let a = |/n|; then we merely need to add the
terms for a? < k < n, which are all equal to a, so they sum to (n — a?)a.

This gives the desired closed form,
Z VK| = na—1a®—Tta? - la, a=[vn]. (3.27)
os<k<n

Another approach to such sums is to replace an expression of the form

[x] by 3 ;[1<j<x]; this is legal whenever x > 0. Here’s how that method

works in the sum of |square roots|, if we assume for convenience that n = a?:

> WK = Y D<igvklogk<a?]
j,k
D D liP<k<a’l

1<j<a k

= Z (a2 —j%) = a®—tala+ Hla+1).

1<j<a

Now here’s another example where a change of variable leads to a trans-
formed sum. A remarkable theorem was discovered independently by three
mathematicians — Bohl [34], Sierpiriski [326], and Weyl [368] —at about the
same time in 1909: If o is irrational then the fractional parts {no} are very uni-
formly distributed between 0 and 1, as n — co. One way to state this is that

1

lim 1 Z f({koc}) = J f(x) dx (3.28)

o<k<n 0

for all irrational « and all functions f that are continuous almost everywhere.
For example, the average value of {n«} can be found by setting f(x) = x; we
get % (That’s exactly what we might expect; but it’s nice to know that it is
really, provably true, no matter how irrational « is.)

The theorem of Bohl, Sierpiniski, and Weyl is proved by approximating

Warning: This stuff  f(x) above and below by “step functions,” which are linear combinations of
is fairly advanced.
Better skim the
next two pages on

first reading; they fu(x)
aren tir;;;:[]]'dly T4 When 0 < v < 1. Our purpose here is not to prove the theorem; that’s a job

for calculus books. But let’s try to figure out the basic reason why it holds,

the simple functions

= [0<x<V]

Start by seeing how well it works in the special case f(x) = f,,(x). In other words,
Skimming let’s try to see how close the sum
> [{kad<v]
o<k<n

gets to the “ideal” value nv, when n is large and « is irrational.
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For this purpose we define the discrepancy D(«,n) to be the maximum
absolute value, over all 0 <v < 1, of the sum

s, n,v) = Z ([{koc}<v] —v). (3.29)

o<k<n

Our goal is to show that D(«,n) is “not too large” when compared with n,
by showing that |s(«, n,v)| is always reasonably small when « is irrational.

First we can rewrite s(x,m,v) in simpler form, then introduce a new
index variable j:

Z ([{kcx}<v]—v> Z (lkee) — [k —v] —v)

o<k<n o<k<n

= —nv+ Z Z[koc—v<j§koc]

og<k<n j

= —nv+ Z Z o '<k<(+v)a'].

0<j<[nu] k<n

If we're lucky, we can do the sum on k. But we ought to introduce some
new variables, so that the formula won't be such a mess. Without loss of
generality, we can assume that 0 < o < 1; let us write

a= |, o« = a+ta;

b= [va '], va'=b-v".

Thus &’ = {oc '} is the fractional part of «~', and v’ is the mumble-fractional
part of va~ .

Once again the boundary conditions are our only source of grief. For
now, let’s forget the restriction ‘k < n' and evaluate the sum on k without it:

Z [ke BN —I—v)oc_1)}

k

[G+v)(a+a)] = [ila+ )]

b+ [jo'—v']—Tja'].
OK, that’s pretty simple; we plug it in and plug away:

s(a,n,v) = —nv + [nab + Z (Mj'=v'"T—=Tjx'1) =S, (3-30)

0<ji<[na]

where S is a correction for the cases with k > n that we have failed to exclude.
The quantity jo’ will never be an integer, since « (hence ') is irrational; and
jo! — v’ will be an integer for at most one value of j. So we can change the

Right, name and
conquer.
The change of vari-
able from k to j is
the main point.

— Friendly TA
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ceiling terms to floors:

s(a,n,v) = —nv+ [nab — Z (L] = [ja’=v']) =S +{0 or 1}.
(The formula 0<j<na]
{0 or 1} stands
fq;hsomoethm]g .that’s Interesting. Instead of a closed form, we're getting a sum that looks rather
Elee;;’t CZ;?m’I-twe like s(ot,1,v) but with different parameters: o’ instead of «, [no«] instead
ourselves, becaise of n, and v’ instead of v. So we’ll have a recurrence for s(x,n,v), which
the details don’t (hopefully) will lead to a recurrence for the discrepancy D(«,n). This means

really matter.) we want to get
s(a, [na],v') = Z (Lje') = [jo' = v’ = V')
0<j<[n«]
into the act:
s(a,n,v) = —nv + [nalb — [na]v’ —s(a’, [ne],v’) =S +{0 or 1}.

Recalling that b —v/ = va™!

if we replace [no](b —v’) by na(b —v’) =nwv:

, we see that everything will simplify beautifully

s(a,n,v) = —s(a/, [ne],v') —S+e+{0or 1}.

Here € is a positive error of at most vae™'. Exercise 18 proves that S is, simi-
larly, between O and [vo™']. And we can remove the term for j = [na] —1 =
[na| from the sum, since it contributes either v/ or v/ — 1. Hence, if we take
the maximum of absolute values over all v, we get

D(e,n) < D(o’, [on]) + o' +2. (3-31)

The methods we’ll learn in succeeding chapters will allow us to conclude
from this recurrence that D(a,n) is always much smaller than n, when n is

Stop sufficiently large. Hence the theorem (3.28) is not only true, it can also be
lSkimming strengthened: Convergence to the limit is very fast.

Whew,; that was quite an exercise in manipulation of sums, floors, and
ceilings. Readers who are not accustomed to “proving that errors are small”
might find it hard to believe that anybody would have the courage to keep
going, when faced with such weird-looking sums. But actually, a second look
shows that there’s a simple motivating thread running through the whole
calculation. The main idea is that a certain sum s(«,n,v) of n terms can be
reduced to a similar sum of at most [an] terms. Everything else cancels out
except for a small residual left over from terms near the boundaries.

Let’s take a deep breath now and do one more sum, which is not trivial
but has the great advantage (compared with what we’ve just been doing) that
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it comes out in closed form so that we can easily check the answer. Our goal
now will be to generalize the sum in (3.26) by finding an expression for

>

O0<k<m

nk +x . .

, integer m > 0, integer n.

m
Finding a closed form for this sum is tougher than what we’ve done so far
(except perhaps for the discrepancy problem we just looked at). But it's
instructive, so we'll hack away at it for the rest of this chapter.

As usual, especially with tough problems, we start by looking at small

cases. The special case n =1 is (3.26), with x replaced by x/mu:

1 —1
<]+ { +XJ T {HJ _
m m m
And as in Chapter 1, we find it useful to get more data by generalizing
downwards to the case n = 0:

X X X X
R R iR
m m m m
Our problem has two parameters, m and n; let’s look at some small cases
for m. When m = 1 there’s just a single term in the sum and its value is [x].
When m = 2 the sum is [x/2] + [(x +n)/2]. We can remove the interaction
between x and n by removing n from inside the floor function, but to do that

we must consider even and odd n separately. If n is even, n/2 is an integer,
so we can remove it from the floor:

Bl (Gl+3) =257

If nis odd, (n—1)/2 is an integer so we get

X x+1 n—1
M*Q 2 J+ 2 ) -
The last step follows from (3.26) with m = 2.
These formulas for even and odd n slightly resemble those for n = 0 and 1,

but no clear pattern has emerged yet; so we had better continue exploring
some more small cases. For m = 3 the sum is

PJ n x+mn n x+2n

3 3 3 '

and we consider three cases for n: Either it’s a multiple of 3, or it’s T more
than a multiple, or it’s 2 more. That is, nmod 3 =0, 1,0r 2. i nmod 3 =0

[x] .

LXJ+T.

Is this a harder sum
of floors, or a sum
of harder floors?

Be forewarned: This
is the beginning of
a pattern, in that
the last part of the
chapter consists
of the solution of
some long, difficult
problem, with little
more motivation
than curiosity.

— Students

Touché. But c’mon,
gang, do you always
need to be told
about applications
before you can get
interested in some-
thing? This sum
arises, for example,
in the study of
random number
generation and
testing. But math-
ematicians looked
at it Iong before
computers came
along, because they
found it natural to
ask if there’s a way
to sum arithmetic
progressions that
have been “floored.”
— Your instructor
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then n/3 and 2n/3 are integers, so the sum is

HR(HE R (HEE SRR HES

If nmod 3 =1then (n—1)/3 and (2n — 2)/3 are integers, so we have

X x+1 n—1 x+2 2n—2
Again this last step follows from (3.26), this time with m = 3. And finally, if
n mod 3 =2 then

i (552252) (55225 - o

“Inventive genius The left hemispheres of our brains have finished the case m = 3, but the

requires pleasurable  right hemispheres still can’t recognize the pattern, so we proceed to m = 4:
mental activity as

a.condition for.its X {X + nJ \‘X + sz {X + 3nJ
vigorous exercise. {fJ + + + .
‘Necessity is the 4 4 4 4
mother of invention’

is a silly proverb. At least we know enough by now to consider cases based on n mod m. If
‘Necessity is the n mod 4 = 0 then

mother of futile

dodges’ is much X X n X 2n X 3n X 3n
nearer t0 he iruih al (G a) (G ) (G 7)) =26+

The basis of the
growth of modern
invention is science,
and science is al-

And if nmod 4 =1,

most wholly the X x+1 n—1 x+2 2n—-2 x+3 3n—3
outgrowth of plea- {ZJ + <L 4 J + 4 ) + (L 4 J + 4 > + ({ 4 J + 4 )
surable intellectual 3 3
curiosity.” n
—A.N. White- = xJ+5 5.
head [371]

The case n mod 4 = 3 turns out to give the same answer. Finally, in the case
nmod 4 = 2 we get something a bit different, and this turns out to be an
important clue to the behavior in general:

G (R - (B3 (15 +29)
SRS IR SRR

This last step simplifies something of the form |y/2| + |(y + 1)/2], which
again is a special case of (3.26).




92 INTEGER FUNCTIONS

To summarize, here’s the value of our sum for small m:

m| nmodm=0 nmodm=1 nmodm=2 nmodm=23

SRR SRS S
3 3gJ—|—n x| +n—1 Ix] +n —1

IREIE N RIS NI =

It looks as if we're getting something of the form

Q{EJ +bn+c,

where a, b, and ¢ somehow depend on m and n. Even the myopic among
us can see that b is probably (m — 1)/2. It’s harder to discern an expression
for a; but the case n mod 4 = 2 gives us a hint that a is probably ged(m,n),
the greatest common divisor of m and n. This makes sense because gcd(m,n)
is the factor we remove from m and n when reducing the fraction n/m to
lowest terms, and our sum involves the fraction n/m. (We'll look carefully
at ged operations in Chapter 4.) The value of ¢ seems more mysterious, but
perhaps it will drop out of our proofs for a and b.

In computing the sum for small m, we've effectively rewritten each term
of the sum as

x+kn| |x+knmodm _i_kiniknmodm
o m m m

)

m

because (kn —kn mod m)/m is an integer that can be removed from inside
the floor brackets. Thus the original sum can be expanded into the following

tableau:

X 0 0 mod m
HE S =

m m m
{x—l—nmode n n mod m
+ _ + — — E—

m m m
X + 2n mod m n Zj B 2nmod m

m m m

m

N {er(m—])nmode n (m—1)n (m—])nmodm.
m m
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When we experimented with small values of m, these three columns led re-
spectively to a|x/a], bn, and c.

In particular, we can see how b arises. The second column is an arithmetic
progression, whose sum we know —it’s the average of the first and last terms,
times the number of terms:

1 (m—1n ~(m—1)n
z(‘”m) m= g

So our guess that b = (m — 1)/2 has been verified.
The first and third columns seem tougher; to determine a and ¢ we must
take a closer look at the sequence of numbers

Omodm, nmodm, 2nmodm, ..., (m—1)n mod m.

Suppose, for example, that m = 12 and n = 5. If we think of the
sequence as times on a clock, the numbers are 0 o’'clock (we take 12 o’clock
to be 0 o’clock), then 5 o’clock, 10 o’clock, 3 o’clock (= 15 o’clock), 8 o’clock,
and so on. It turns out that we hit every hour exactly once.

Now suppose m = 12 and n = 8. The numbers are 0 o’clock, 8 o’clock,
4 o’clock (= 16 o’clock), but then 0, 8, and 4 repeat. Since both 8 and 12 are
multiples of 4, and since the numbers start at 0 (also a multiple of 4), there’s
no way to break out of this pattern —they must all be multiples of 4.

In these two cases we have gcd(12,5) = 1 and gcd(12,8) = 4. The general

Lemma now, rule, which we will prove next chapter, states that if d = gcd(m,n) then we

dilemma later. get the numbers 0, d, 2d, ..., m — d in some order, followed by d — 1 more
copies of the same sequence. For example, with m = 12 and n = 8 the pattern
0, 8, 4 occurs four times.

The first column of our sum now makes complete sense. It contains
d copies of the terms |x/m|, |(x +d)/m][, ..., |(x + m —d)/m], in some
order, so its sum is

(R[5 e [5))
- o (Rl [t o [ )
~a[3)-

This last step is yet another application of (3.26). Our guess for a has been
verified:

a=d = ged(m,n).
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Also, as we guessed, we can now compute ¢, because the third column
has become easy to fathom. It contains d copies of the arithmetic progression
0/m, d/m, 2d/m, ..., (m —d)/m, so its sum is

1 m—d m m—d
d(z(°+m)'d> =7

the third column is actually subtracted, not added, so we have

Z {nk—l—xJ _ d{fJ +m—1n+d—m

o<k<m

where d = gcd(m, n). As a check, we can make sure this works in the special
cases 1 = 0 and n = 1 that we knew before: When n = 0 we get d =
ged(m,0) = m; the last two terms of the formula are zero so the formula
properly gives m|x/m|. And for n = 1 we get d = gcd(m,1) = 1; the last
two terms cancel nicely, and the sum is just |x].

By manipulating the closed form a bit, we can actually make it symmetric
in m and n:

nk 4+ x X m—1 d—m
2 { ™ J:dth+ 2 "2

O0<k<m
B X (m—1)(n-1) m—1 d—m
= alg)+ 2 = 2
—1 —1 d—1
= dL%J + (m )z(n ) + > (3-32)

This is astonishing, because there’s no algebraic reason to suspect that such  Yup, I'm floored.
a sum should be symmetrical. We have proved a “reciprocity law,’

nk + x mk + x .
p— t 0.
E { m J E { o J , integers m,n >

0<k<m os<k<n

For example, if m =41 and n = 127, the left sum has 41 terms and the right
has 127; but they still come out equal, for all real x.
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Exercises

Warmups

1 When we analyzed the Josephus problem in Chapter 1, we represented
an arbitrary positive integer n in the form n = 2™ +1, where 0 <1< 2™,
Give explicit formulas for 1 and m as functions of n, using floor and/or
ceiling brackets.

2  What is a formula for the nearest integer to a given real number x? In case
of ties, when x is exactly halfway between two integers, give an expression
that rounds (a) up—that is, to [x]; (b) down —that is, to |x].

3  Evaluate Hmocj n/cxj, when m and n are positive integers and « is an
irrational number greater than n.

4  The text describes problems at levels 1 through 5. What is a level 0
problem? (This, by the way, is not a level 0 problem.)

5 Find a necessary and sufficient condition that |[nx| =n|x|, when n is a
positive integer. (Your condition should involve {x}.)

6 Can something interesting be said about | f(x)| when f(x) is a continuous,
monotonically decreasing function that takes integer values only when
X is an integer?

7  Solve the recurrence

Xn = n, for0<n<m;

Xn = Xnom + 1, for n > m.
You know you'’re 8 Prove the Dirichlet box principle: If n objects are put into m boxes,
in college when the some box must contain > [n/m] objects, and some box must contain
book doesn’t tell < [n/m

you how to pro-

nounce ‘Dirichlet’. . . . X
Egyptian mathematicians in 1800 B.C. represented rational numbers be-

tween O and 1 as sums of unit fractions 1/x; + -+ - + 1/xx, where the x’s
were distinct positive integers. For example, they wrote 1§ + %5 instead
of % Prove that it is always possible to do this in a systematic way: If
0<m/n<1,then

1 n

1 . m
— = — + qrepresentation of — — — 5, q = {fw .
q n q m

(This is Fibonacci’s algorithm, due to Leonardo Fibonacci, A.D. 1202.)
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Basics

10

11

12

13

14

15
16

17

18

Show that the expression

=]

is always either |x| or [x]. In what circumstances does each case arise?

Give details of the proof alluded to in the text, that the open interval
(cc..p) contains exactly [] — || — 1 integers when « < 3. Why does
the case o« = 3 have to be excluded in order to make the proof correct?

Prove that

{ n 1 _nt+m—1
ml m ’
for all integers n and all positive integers m. [This identity gives us

another way to convert ceilings to floors and vice versa, instead of using
the reflective law (3.4).]

Let o and 3 be positive real numbers. Prove that Spec(«) and Spec(B)
partition the positive integers if and only if o and 3 are irrational and

1/a+1/3=1.

Prove or disprove:
(x mod ny) mody = xmodvy, integer n.

Is there an identity analogous to (3.26) that uses ceilings instead of floors?

Prove that n mod 2 = (1 — (=1 )“)/2. Find and prove a similar expression
for n mod 3 in the form a+bw™ +cw?™, where w is the complex number
(—141v3)/2. Hint: w® =1and 1+ w + w? =0.

Evaluate the sum ),y _,,|[x +k/m| in the case x > 0 by substituting
Zjﬂ <j<x+k/m] for |x + k/m| and summing first on k. Does your
answer agree with (3.26)7?

Prove that the boundary-value error term S in (3.30) is at most [~ 'v].
Hint: Show that small values of j are not involved.

Homework exercises

19

Find a necessary and sufficient condition on the real number b > 1 such
that

|logy, x| = Uogb LXJJ

for all real x > 1.



There’s a discrep-
ancy between this
formula and (3.31).

20

21

22
23

24

25

26

27

28

29

30

3 EXERCISES

Find the sum of all multiples of x in the closed interval [x.. (], when
x > 0.

How many of the numbers 2™, for 0 < m < M, have leading digit 1 in
decimal notation?

Evaluate the sums S, =3, 4 n/2%+%] and T, = 2 ko 2%|n/2%+1 2
Show that the nth element of the sequence

1,2,2,3,3,3,4,4,4,4,5,5,5,5,5, ...

is L\/Zn + %J (The sequence contains exactly m occurrences of m.)

Exercise 13 establishes an interesting relation between the two multisets
Spec(a) and Spec(oc/(oc — 1)), when « is any irrational number > 1,
because 1/c+ (¢ — 1)/ = 1. Find (and prove) an interesting relation
between the two multisets Spec(a) and Spec(cx/(oc + 1)), when « is any
positive real number.

Prove or disprove that the Knuth numbers, defined by (3.16), satisfy
Ky = n for all nonnegative n.

Show that the auxiliary Josephus numbers (3.20) satisfy

qg \" qg \"
— ) <D <q(——) , formxo.
q—1 qg—1

Prove that infinitely many of the numbers DS ) defined by (3.20) are
even, and that infinitely many are odd.

Solve the recurrence
a = 1,
an = Qn-1+ [Van-1], for n > 0.
Show that, in addition to (3.31), we have
D(x,n) > D(a/, |an]) — =2,

Show that the recurrence

Xo = m,
Xn = X2 -2, for n >0,

has the solution X, = [a?"], if m is an integer greater than 2, where
o+« ' =m and « > 1. For example, if m = 3 the solution is

1++5
2 )

Xo = [¢2"7], ¢ = a = $2.

97
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31 Prove or disprove: |x| + [y] + |[x+y] < |2x] + [2y].

32 Let [|x|| = min(x— [x], [x] —x) denote the distance from x to the nearest
integer. What is the value of

> 2x/2¥ "2
k

(Note that this sum can be doubly infinite. For example, when x = 1/3
the terms are nonzero as k — —oo and also as k — +00.)

Exam problems

33 A circle, 2n — 1 units in diameter, has been drawn symmetrically on a
2n x 2n chessboard, illustrated here for n = 3:

T

T
~—T1

a  How many cells of the board contain a segment of the circle?
b Find a function f(n, k) such that exactly ZE;: f(n, k) cells of the
board lie entirely within the circle.
34 Let f(n)=3 . ,[lgk].
a Find a closed form for f(n), when n > 1.
b Prove that f(n) =n —1+f([n/2]) +f([n/2]) for alln > 1.

35 Simplify the formula Un +1)?n! eJ mod n. Simplify it, but
. . .. don’t change the
36 Assuming that n is a nonnegative integer, find a closed form for the sum

1
Z 2llgkj4llglg k] *

T<k<22™

37 Prove the identity

5 (R |E]) - [ et o e’

o<k<m

for all positive integers m and n.

38 Let x1, ..., Xn be real numbers such that the identity
n
|mx| = {m Z ka
k=1 T<k<n

holds for all positive integers m. Prove something interesting about
X1y evvy Xn©
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39 Prove that the double sum 3y <100« 2 0<j<b [(x +jb*)/b** 1] equals
(b —1)(logy x] + 1) + [x] — 1, for every real number x > 1 and every
integer b > 1.

40 The spiral function o(n), indicated in the diagram below, maps a non-
negative integer n onto an ordered pair of integers (x(n),y(n)). For
example, it maps 1 = 9 onto the ordered pair (1,2).

Y A
People in the south-
ern hemisphere use
a different spiral. 9
2 1 18
3 0 |7 X
4 5 6

a  Prove that if m = [\/n],
x(n) = (=)™ ((n—=m(m+1))-[|2y7] is even] + [Jm]),

and find a similar formula for y(n). Hint: Classify the spiral into
segments Wy, Sk, Ex, Ny according as |2/n| =4k — 2, 4k — 1, 4k,
4k + 1.

b  Prove that, conversely, we can determine n from o(n) by a formula
of the form

n = (2k)* £ (2k+x(n) +ym)), k = max(x(n)ly(n)]).

Give a rule for when the sign is + and when the sign is —.

Bonus problems

41 Let f and g be increasing functions such that the sets {f(1),f(2),...} and
{g(1),9(2),...} partition the positive integers. Suppose that f and g are
related by the condition g(n) = f(f(n)) + 1 for all n > 0. Prove that
f(n) = [n¢| and g(n) = [nd?|, where ¢ = (1 ++/5)/2.

42 Do there exist real numbers «, {3, and y such that Spec(«), Spec(f3), and
Spec(y) together partition the set of positive integers?
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43

44

45

46

47

48

Find an interesting interpretation of the Knuth numbers, by unfolding
the recurrence (3.16).

Show that there are integers ailq) and d%q) such that

(a) (a) (a) (a)
D +d D d
a;‘” = —n-l n _ Dn tdn , for n > 0,
q—1 q

when D;q) is the solution to (3.20). Use this fact to obtain another form
of the solution to the generalized Josephus problem:

Jam) = 1+ d¥ +qn—al?), for al <n < a,(ﬂr)].

Extend the trick of exercise 30 to find a closed-form solution to

Y():m,

Yo =2Y2 -1,  forn>0,

if m is a positive integer.
Prove that if n = L(\fZL + ﬂl_I)mJ, where m and | are nonnegative
integers, then L\/Zn(n + 1” = L(\fZlH + \/il)mj. Use this remarkable

property to find a closed form solution to the recurrence

Lo =a integer a > 0;

Ln = |V2Laq(Lar+ 1)),  forn>0.

Hint: [/2nn+1)| = [V2(n+ 3)].

The function f(x) is said to be replicative if it satisfies

fmx) = f(x)+f(x+%) -I----—l—f(x-l—m?_])

for every positive integer m. Find necessary and sufficient conditions on
the real number c for the following functions to be replicative:

a f(x)=x+c.

b  f(x) =[x+ c is an integer].

¢ f(x) =max(|x],c).

d f(x) =x+c|x] — J[x is not an integer].

Prove the identity

X3 = 3x|x|x]| +30H{x[x]} +{xP —3]x]|x|x]| + [x]?,

and show how to obtain similar formulas for x™ when n > 3.
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49 Find a necessary and sufficient condition on the real numbers 0 < « < 1
and 3 > 0 such that we can determine « and (3 from the infinite multiset
of values

{[n«]+[nB] | n>0}.

Research problems

50 Find a necessary and sufficient condition on the nonnegative real numbers
o« and 3 such that we can determine « and {3 from the infinite multiset
of values

{|IneJB] | n>0}.
51 Let x be a real number > ¢ = %(1 ++/5). The solution to the recurrence

ZO(X) = X,
Zo(x) = Zn_1(x)*> =1, for n >0,

can be written Z,(x) = (f(x)zw, if x is an integer, where

f(x) = lim Z,(x)"/?",
n—oo
because Z,, (x)—1 < f(x)?" < Z,(x) in that case. What other interesting
properties does this function f(x) have?

52 Given nonnegative real numbers « and f3, let

Spec(o; B) = {loc+ B, [2a+ B], [3ax+BJ,... }

be a multiset that generalizes Spec(a) = Spec(«;0). Prove or disprove:
If the m > 3 multisets Spec(o1; 1), Spec(az; B2), ..., Spec(ctm; Pm)
partition the positive integers, and if the parameters o1 < o < -+ < oty
are rational, then
2m—1
ockzzki_], forT<k<m.

53 Fibonacci’s algorithm (exercise 9) is “greedy” in the sense that it chooses
the least conceivable q at every step. A more complicated algorithm is
known by which every fraction m/n with n odd can be represented as a
sum of distinct unit fractions 1/q1 + -+ 1/qx with odd denominators.
Does the greedy algorithm for such a representation always terminate?



Number Theory

INTEGERS ARE CENTRAL to the discrete mathematics we are emphasiz-
ing in this book. Therefore we want to explore the theory of numbers, an
important branch of mathematics concerned with the properties of integers.

We tested the number theory waters in the previous chapter, by intro-
ducing binary operations called ‘mod’ and ‘ged’. Now let’s plunge in and
really immerse ourselves in the subject.

4.1 DIVISIBILITY

We say that m divides n (or n is divisible by m) if m > 0 and the
ratio n/m is an integer. This property underlies all of number theory, so it’s
convenient to have a special notation for it. We therefore write

m\n = m > 0 and n = mk for some integer k. (4.1)

(The notation ‘m|n’ is actually much more common than ‘m\n’ in current
mathematics literature. But vertical lines are overused —for absolute val-
ues, set delimiters, conditional probabilities, etc. —and backward slashes are
underused. Moreover, ‘m\n’ gives an impression that m is the denominator of
an implied ratio. So we shall boldly let our divisibility symbol lean leftward.)

If m does not divide n we write ‘m¥n’.

There’s a similar relation, “n is a multiple of m,” which means almost
the same thing except that m doesn’t have to be positive. In this case we
simply mean that n = mk for some integer k. Thus, for example, there’s only
one multiple of 0 (namely 0), but nothing is divisible by 0. Every integer is
a multiple of —1, but no integer is divisible by —1 (strictly speaking). These
definitions apply when m and n are any real numbers; for example, 27 is
divisible by 7. But we’'ll almost always be using them when m and n are
integers. After all, this is number theory.

102

In other words, be
prepared to drown.

“ .. no integer is

divisible by —1

(strictly speaking).”
— Graham, Knuth,
and Patashnik [161]
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In Britain we call The greatest common divisor of two integers m and n is the largest

this ‘hef” (highest integer that divides them both:
common factor).

gcd(m,n) = max{k | k\m and k\n}. (4.2)

For example, ged(12,18) = 6. This is a familiar notion, because it’s the
common factor that fourth graders learn to take out of a fraction m/n when
reducing it to lowest terms: 12/18 = (12/6)/(18/6) = 2/3. Notice that if
n > 0 we have ged(0,n) = n, because any positive number divides 0, and
because n is the largest divisor of itself. The value of ged(0,0) is undefined.

Not to be confused Another familiar notion is the least common multiple,
with the greatest
common multiple. lem(m,n) = min{k | k>0, m\k and n\k}; (4.3)

this is undefined if m < 0 or n < 0. Students of arithmetic recognize this
as the least common denominator, which is used when adding fractions with
denominators m and n. For example, lcm(12,18) = 36, and fourth graders
know that % + 11—8 = % + 32—6 = g—g. The lcm is somewhat analogous to the
gcd, but we don't give it equal time because the gcd has nicer properties.

One of the nicest properties of the ged is that it is easy to compute, using
a 2300-year-old method called Euclid’s algorithm. To calculate gcd(m,n),
for given values 0 < m < n, Euclid’s algorithm uses the recurrence

ged(0,n) = n;
ged(m,n) = ged(n mod m, m), for m > 0. (4.4)

Thus, for example, gcd(12,18) = gcd(6,12) = ged(0,6) = 6. The stated
recurrence is valid, because any common divisor of m and n must also be a
common divisor of both m and the number n mod m, which is n — |[n/m|m.
There doesn’t seem to be any recurrence for lem(m,n) that’s anywhere near
as simple as this. (See exercise 2.)

Euclid’s algorithm also gives us more: We can extend it so that it will
compute integers m’ and n’ satisfying

m'm+n'n = ged(m,n). (4.5)

(Remember that Here’s how. If m = 0, we simply take m’ = 0 and n’ = 1. Otherwise we
/ /
m’ orm can be let 1 = n mod m and apply the method recursively with v and m in place of
negative.) - _
m and n, computing T and m such that

Fr+mm = ged(r,m).
Since r =n— [n/m|m and gcd(r, m) = gcd(m, n), this equation tells us that

T(n—[n/mjm)+mm = ged(m,n).
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The left side can be rewritten to show its dependency on m and n:
(M—[n/mJF)m+7Tn = ged(m,n);

hence m’ = M — |[n/m|T and n’ = T are the integers we need in (4.5). For
example, in our favorite case m = 12, n = 18, this method gives 6 = 0-0+1-6 =
1.640-12=(-1)-12+1-18.

But why is (4.5) such a neat result? The main reason is that there’s a
sense in which the numbers m’ and n’ actually prove that Euclid’s algorithm
has produced the correct answer in any particular case. Let’s suppose that
our computer has told us after a lengthy calculation that gcd(m,n) = d and
that m’m + n'n = d; but we're skeptical and think that there's really a
greater common divisor, which the machine has somehow overlooked. This
cannot be, however, because any common divisor of m and n has to divide
m’m + n’'n; so it has to divide d; so it has to be < d. Furthermore we can
easily check that d does divide both m and n. (Algorithms that output their
own proofs of correctness are called self-certifying.)

We'll be using (4.5) a lot in the rest of this chapter. One of its important
consequences is the following mini-theorem:

k\m and k\n = k\ ged(m,n). (4.6)

(Proof: If k divides both m and n, it divides m’m + n'n, so it divides
gcd(m, n). Conversely, if k divides gcd(m, n), it divides a divisor of m and a
divisor of n, so it divides both m and n.) We always knew that any common
divisor of m and n must be less than or equal to their gcd; that’s the
definition of greatest common divisor. But now we know that any common
divisor is, in fact, a divisor of their gcd.

Sometimes we need to do sums over all divisors of n. In this case it’s
often useful to use the handy rule

Z am = Z An/m integer n > 0, (4.7)

m\n m\n

which holds since n/m runs through all divisors of n when m does. For
example, when n = 12 this says that a1 + a2 +az + a4+ ag+ a2 = a2 +
Qg +a4 +a3 +az +aj.

There’s also a slightly more general identity,

Z Ay = Z Z am[n=mk], (4.8)

m\n k m>0

which is an immediate consequence of the definition (4.1). If n is positive, the
right-hand side of (4.8) is Zk\n Gy /x; hence (4.8) implies (4.7). And equation
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(4.8) works also when n is negative. (In such cases, the nonzero terms on the
right occur when k is the negative of a divisor of n.)
Moreover, a double sum over divisors can be “interchanged” by the law

2 D Gkm =) ) Gk (4.9)

m\n k\m kK\n W\ (n/k)

For example, this law takes the following form when n = 12:

a1 + (ar2+az22) + (a13+az3)
+ (a1a+ars+ass) + (a16+a26+ase6+ as6)
+ (a112+az12+az 2 +as,12+ag 12 +aiz12)
= (g +ar2+arz+ars+aie+an)
+ (a4 axa+are+azi12) + (az3+aze+aszi2)
+ (as,4 +a4,12) + (ae6 +ae,12) + a12,12.

We can prove (4.9) with Iversonian manipulation. The left-hand side is

Z Z ak,m[n:jm][m:ku = Z Z Gk>k1[n=jk1];

il k,m>0 j k,1>0

the right-hand side is

Z Z axn=jklln/k=ml] = Z Z ax xi[n=mlk],

j,m k,1>0 m k,1>0

which is the same except for renaming the indices. This example indicates
that the techniques we’ve learned in Chapter 2 will come in handy as we study
number theory.

4.2 PRIMES

A positive integer p is called prime if it has just two divisors, namely

1 and p. Throughout the rest of this chapter, the letter p will always stand

How about the pin  for a prime number, even when we don’t say so explicitly. By convention,
‘explicitly’? 1 isn’t prime, so the sequence of primes starts out like this:

2,3,5 7,11,13, 17,19, 23, 29,31, 37,41, ....

Some numbers look prime but aren’t, like 91 (= 7-13) and 161 (= 7-23). These
numbers and others that have three or more divisors are called composzte.
Every integer greater than 1 is either prime or composite, but not both.
Primes are of great importance, because they’re the fundamental building
blocks of all the positive integers. Any positive integer n can be written as a
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product of primes,
m
n=pi...pm=][re, P << Pm. (4.10)
k=1

For example, 12 =2-2-3; 11011 =7-11-11-13; 11111 = 41-271. (Products
denoted by [] are analogous to sums denoted by >, as explained in exer-
cise 2.25. If m = 0, we consider this to be an empty product, whose value
is 1 by definition; that’s the way n = 1 gets represented by (4.10).) Such a
factorization is always possible because if n > 1 is not prime it has a divisor
n; such that T < ny < n; thus we can write n = n; -ny, and (by induction)
we know that n; and n, can be written as products of primes.

Moreover, the expansion in (4.10) is unigque: There’s only one way to
write n as a product of primes in nondecreasing order. This statement is
called the Fundamental Theorem of Arithmetic, and it seems so obvious that
we might wonder why it needs to be proved. How could there be two different
sets of primes with the same product? Well, there can’t, but the reason isn’t
simply “by definition of prime numbers!” For example, if we consider the set
of all real numbers of the form m + n+/10 when m and n are integers, the
product of any two such numbers is again of the same form, and we can call
such a number “prime” if it can’t be factored in a nontrivial way. The number
6 has two representations, 2-3 = (4 + v/10)(4 — V10 ); yet exercise 36 shows
that 2, 3, 4 + /10, and 4 — /10 are all “prime” in this system.

Therefore we should prove rigorously that (4.10) is unique. There is
certainly only one possibility when n = 1, since the product must be empty
in that case; so let’s suppose that n > 1 and that all smaller numbers factor
uniquely. Suppose we have two factorizations

n=7pr...pm = dq1...4xk, p1<--<pm and i< <k,

where the p’s and q’s are all prime. We will prove that p; = q;. If not, we
can assume that p; < g7, making p; smaller than all the q’s. Since p; and
g7 are prime, their gcd must be 1; hence Euclid’s self-certifying algorithm
gives us integers a and b such that ap; + bq; = 1. Therefore

apidz...qx + baidz...dx = q2...4x.

Now p; divides both terms on the left, since q1q2 ... qx = n; hence p; divides
the right-hand side, q2...qx. Thus g2 ...qx/p1 is an integer, and q> ... qx
has a prime factorization in which p; appears. But q2...qx <n, so it has a
unique factorization (by induction). This contradiction shows that p; must
be equal to q; after all. Therefore we can divide both of n’s factorizations by
Pp1, obtaining p2...Pm = d2...dk < n. The other factors must likewise be
equal (by induction), so our proof of uniqueness is complete.
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It’s the factor- Sometimes it’s more useful to state the Fundamental Theorem in another

ization, not the way: Hvery positive integer can be written uniquely in the form

theorem, that’s

tnique. n = Hpnp , where each n, > 0. (4.11)
P

The right-hand side is a product over infinitely many primes; but for any
particular n all but a few exponents are zero, so the corresponding factors
are 1. Therefore it’s really a finite product, just as many “infinite” sums are
really finite because their terms are mostly zero.

Formula (4.11) represents n uniquely, so we can think of the sequence
(n2,n3,ns,...) as a number system for positive integers. For example, the
prime-exponent representation of 12 is (2,1,0,0,...) and the prime-exponent
representation of 18 is (1,2,0,0,...). To multiply two numbers, we simply
add their representations. In other words,

k = mn = kp, = mp +n, for all p. (4.12)
This implies that

m\n = m, < n, forallp, (4.13)
and it follows immediately that

k = ged(m,n) = k, = min(my,,n,) for all p; (4.14)
k = lem(m,n) = kp = max(my,n,) forall p. (4.15)

For example, since 12 =2%-3" and 18 = 2'-3?, we can get their gcd and lcm
by taking the min and max of common exponents:

ng(]2,18) _ zmin(Z,U .3min(1,2) _ 21_31 — 6;
1CII1(12,18) — 2max(2,1) .3max(1,2) _ 22.32 — 36.

If the prime p divides a product mn then it divides either m or n, perhaps
both, because of the unique factorization theorem. But composite numbers
do not have this property. For example, the nonprime 4 divides 60 = 6- 10,
but it divides neither 6 nor 10. The reason is simple: In the factorization
60 =6-10 = (2-3)(2-5), the two prime factors of 4 = 2-2 have been split
into two parts, hence 4 divides neither part. But a prime is unsplittable, so
it must divide one of the original factors.

4.3 PRIME EXAMPLES

How many primes are there? A lot. In fact, infinitely many. Euclid
proved this long ago in his Theorem 9 : 20, as follows. Suppose there were only
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finitely many primes, say k of them —2, 3, 5, ..., Px. Then, said Fuclid, we
should consider the number “OL wpioTot
apLBpol welovs
M=2-3-5-...-P + 1. €lol TaVTOS TOD
TpoTedévTog

None of the k primes can divide M, because each divides M — 1. Thus there ?)‘fieoyg TPOTWY
must be some other prime that divides M; perhaps M itself is prime. This “” LQW_UEHC” d [98]
contradicts our assumption that 2, 3, ..., Py are the only primes, so there

) . . Translation:
must indeed be infinitely many. “[I‘here are more

Euclid’s proof suggests that we define Fuclid numbers by the recurrence  primes than in
any given set

en = ejez...en_1 + 1, when n > 1. (4.16) of primes.”]
The sequence starts out

eg = 1+1 = 2;
e; = 2+1 = 3;

e3 = 2-3+1 =7,
e = 2:3-74+1 = 43;

these are all prime. But the next case, es, is 1807 = 13-139. It turns out that
es = 3263443 is prime, while

e7 = 547-607-1033-31051;
es = 29881-67003-9119521-6212157481 .

It is known that eo, ..., 17 are composite, and the remaining e,, are probably
composite as well. However, the Euclid numbers are all relatively prime to
each other; that is,

gcd(em,en) = 1, when m # n.

Euclid’s algorithm (what else?) tells us this in three short steps, because
e, mod e, =1 when n > m:

ged(em,en) = ged(l,em) = ged(0,1) = 1.

Therefore, if we let q; be the smallest factor of e; for all j > 1, the primes q1,
d2, 93, ... are all different. This is a sequence of infinitely many primes.

Let’s pause to consider the Euclid numbers from the standpoint of Chap-
ter 1. Can we express e, in closed form? Recurrence (4.16) can be simplified
by removing the three dots: If n > 1 we have

en = e1...en2en1+1 = (en1—len1+1 = eﬁq —en_1+1.
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Thus e, has about twice as many decimal digits as e, 1. Exercise 37 proves
that there’s a constant E ~ 1.264 such that

en = [E*" +3]. (4.17)
And exercise 60 provides a similar formula that gives nothing but primes:

Pn = LPy‘J, (4.18)

for some constant P. But equations like (4.17) and (4.18) cannot really be
considered to be in closed form, because the constants E and P are computed
from the numbers e, and p, in a sort of sneaky way. No independent re-
lation is known (or likely) that would connect them with other constants of
mathematical interest.

Indeed, nobody knows any useful formula that gives arbitrarily large
primes but only primes. Computer scientists at Chevron Geosciences did,
however, strike mathematical oil in 1984. Using a program developed by
David Slowinski, they discovered the largest prime known at that time,

2216091 _ 1
while testing a new Cray X-MP supercomputer. It’s easy to compute this
number in a few milliseconds on a personal computer, because modern com-
puters work in binary notation and this number is simply (11...1);. All
216,091 of its bits are ‘1’. But it’s much harder to prove that this number
is prime. In fact, just about any computation with it takes a lot of time,
because it’s so large. For example, even a sophisticated algorithm requires
several minutes just to convert 2216077 —1 to radix 10 on a PC. When printed

Or probably more, out, its 65,050 decimal digits require 75 cents U.S. postage to mail first class.

by the time you Incidentally, 227°%?T — 1 is the number of moves necessary to solve the

read this. Tower of Hanoi problem when there are 216,091 disks. Numbers of the form

2P —1

(where p is prime, as always in this chapter) are called Mersenne numbers,
after Father Marin Mersenne who investigated some of their properties in
the seventeenth century [269]. . The Mersenne primes known to date occur
for p = 2, 3,5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203,
2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243,
110503, 132049, 216091, and 756839.

The number 2™ — 1 can't possibly be prime if n is composite, because
2m 1 has 2™ — 1 as a factor:

ka_] _ (zm_])(zm(k—1)+2m(k—2)++])
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But 2P — 1 isn’t always prime when p is prime; 2'" —1 = 2047 = 2389 is the
smallest such nonprime. (Mersenne knew this.)
Factoring and primality testing of large numbers are hot topics nowadays.
A summary of what was known up to 1981 appears in Section 4.5.4 of [208],
and many new results continue to be discovered. Pages 391-394 of that book
explain a special way to test Mersenne numbers for primality.
For most of the last two hundred years, the largest known prime has
been a Mersenne prime, although only 31 Mersenne primes are known. Many
people are trying to find larger ones, but it's getting tough. So those really
interested in fame (if not fortune) and a spot in The Guinness Book of World
Records might instead try numbers of the form 2"k + 1, for small values of k
like 3 or 5. These numbers can be tested for primality almost as quickly as
Mersenne numbers can; exercise 4.5.4-27 of [208] gives the details.
We haven'’t fully answered our original question about how many primes
there are. There are infinitely many, but some infinite sets are “denser” than
others. For instance, among the positive integers there are infinitely many
even numbers and infinitely many perfect squares, yet in several important
senses there are more even numbers than perfect squares. One such sense Weird. I thought
looks at the size of the nth value. The nth even integer is 2n and the nth there were the same
. number of even
perfect square is n integers as per-
integer occurs much sooner than the nth perfect square, so we can say there fect squares, since
are many more even integers than perfect squares. A similar sense looks at  there’s a one-to-one
the number of values not exceeding x. There are |x/2| such even integers and 2‘;;?;:5 ;ntizlr]nce
|v/x] perfect squares; since x/2 is much larger than /x for large x, again we
can say there are many more even integers.
What can we say about the primes in these two senses? It turns out that
the nth prime, Py, is about n times the natural log of n:

: since 2n is much less than n? for large n, the nth even

Phn ~ nlnn.

(The symbol ‘~’ can be read “is asymptotic to”; it means that the limit of
the ratio Pp/nlnn is 1 as n goes to infinity.) Similarly, for the number of
primes 7t(x) not exceeding x we have what’s known as the prime number
theorem:

m(x) ~ ——.
Inx
Proving these two facts is beyond the scope of this book, although we can
show easily that each of them implies the other. In Chapter 9 we will discuss
the rates at which functions approach infinity, and we’'ll see that the func-
tion nlnn, our approximation to Py, lies between 2n and n? asymptotically.
Hence there are fewer primes than even integers, but there are more primes

than perfect squares.



“Je me sers de la
notation trés simple
n! pour désigner le
produit de nombres
décroissans depuis
n jusqu’a I'unité,
savoir n(n — 1)
m—2)....3.2.1.
L’emploi continuel
de analyse combi-
natoire que je fais
dans la plupart de
mes démonstrations,
a rendu cette nota-
tion indispensable.”

—Ch. Kramp [228]
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These formulas, which hold only in the limit as n or x — oo, can be
replaced by more exact estimates. For example, Rosser and Schoenfeld [312]
have established the handy bounds

Inx—3 < g < Inx— 7, for x > 67; (4.19)
3 1

n(lnn+khnlnn—3) <Py <n(lan+Inlnn—3), for n >20. (4.20)

If we look at a “random” integer n, the chances of its being prime are
about one in Inn. For example, if we look at numbers near 10'°, we’ll have to
examine about 161n10 ~ 36.8 of them before finding a prime. (It turns out
that there are exactly 10 primes between 10'® — 370 and 10'® — 1.) Yet the
distribution of primes has many irregularities. For example, all the numbers
between P1P,...P, +2 and P1P,... P, + P71 — 1 inclusive are composite.
Many examples of “twin primes” p and p + 2 are known (5 and 7, 11 and 13,
17 and 19, 29 and 31, ..., 9999999999999641 and 9999999999999643, ... ), yet
nobody knows whether or not there are infinitely many pairs of twin primes.
(See Hardy and Wright [181, §1.4 and §2.8].)

One simple way to calculate all 7t(x) primes < x is to form the so-called
sieve of Hratosthenes: First write down all integers from 2 through x. Next
circle 2, marking it prime, and cross out all other multiples of 2. Then repeat-
edly circle the smallest uncircled, uncrossed number and cross out its other
multiples. When everything has been circled or crossed out, the circled num-
bers are the primes. For example when x = 10 we write down 2 through 10,
circle 2, then cross out its multiples 4, 6, 8, and 10. Next 3 is the smallest
uncircled, uncrossed number, so we circle it and cross out 6 and 9. Now
5 is smallest, so we circle it and cross out 10. Finally we circle 7. The circled
numbers are 2, 3, 5, and 7; so these are the 71(10) = 4 primes not exceeding 10.

FACTORIAL FACTORS

Now let’s take a look at the factorization of some interesting highly
composite numbers, the factorials:

1-2.....n = ﬁk,

k=1

4.4

integer n > 0.

nl = (4.21)

According to our convention for an empty product, this defines 0! to be 1.
Thus n! = (n — 1)!n for every positive integer n. This is the number of
permutations of n distinct objects. That is, it’s the number of ways to arrange
n things in a row: There are n choices for the first thing; for each choice of
first thing, there are n — 1 choices for the second; for each of these n(n — 1)
choices, there are n — 2 for the third; and so on, giving n(n—1)(n—2)...(1)
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arrangements in all. Here are the first few values of the factorial function.

n|o1234 5 6 7 3 9 10
1

n! ‘ 1 2 6 24 120 720 5040 40320 362880 3628800
It’s useful to know a few factorial facts, like the first six or so values, and the
fact that 10! is about 3% million plus change; another interesting fact is that
the number of digits in n! exceeds n when n > 25.

We can prove that n! is plenty big by using something like Gauss’s trick
of Chapter 1:

n? = (1-2-...n)mn-....2-1) = ﬁk(n—H—k).
k=1

We have n < k(n + 1 —k) < ];(n + 1)?, since the quadratic polynomial
k(in+1—k) = %(n—&— 1) — (kf %(n—l— 1))2 has its smallest value at k = 1
and its largest value at k = %(n + 1). Therefore

k=1 k=1
that is,
m+1"
/2 < nl < - (4.22)

This relation tells us that the factorial function grows exponentially!!
To approximate n! more accurately for large n we can use Stirling’s
formula, which we will derive in Chapter 9:

n! ~ Vv2mn (%)ﬂ . (4.23)

And a still more precise approximation tells us the asymptotic relative error:
Stirling’s formula undershoots n! by a factor of about 1/(12n). Even for fairly
small n this more precise estimate is pretty good. For example, Stirling’s
approximation (4.23) gives a value near 3598696 when n = 10, and this is
about 0.83% = 1/120 too small. Good stuff, asymptotics.

But let’s get back to primes. We'd like to determine, for any given
prime p, the largest power of p that divides n!; that is, we want the exponent
of p in n!’s unique factorization. We denote this number by €, (n!), and we
start our investigations with the small case p =2 and n = 10. Since 10! is the
product of ten numbers, €,(10!) can be found by summing the powers-of-2
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contributions of those ten numbers; this calculation corresponds to summing
the columns of the following array:

12345678910 |powers of 2

divisibleby 2| x x x x x |5=110/2]

divisible by 4 X X 2=110/4]
divisible by 8 X 1=110/8]
powers of 2| 010201030 1 8
A powerful ruler. (The column sums form what’s sometimes called the ruler function p(k),

because of their similarity to ‘[ T 7 7T T’ the lengths of lines marking
fractions of an inch.) The sum of these ten sums is 8; hence 2% divides 10!
but 27 doesn’t.

There’s also another way: We can sum the contributions of the rows.
The first row marks the numbers that contribute a power of 2 (and thus are
divisible by 2); there are [10/2] = 5 of them. The second row marks those
that contribute an additional power of 2; there are [10/4] = 2 of them. And
the third row marks those that contribute yet another; there are |10/8| =1 of
them. These account for all contributions, so we have €,(10!) =5+2+1=38.

For general n this method gives

ot = [3]+[3]+[3]+- = Z 13-

This sum is actually finite, since the summand is zero when 2% > n. Therefore
it has only |lgn| nonzero terms, and it’s computationally quite easy. For
instance, when n = 100 we have

€2(100!1) = 50 +254+12+6+3+1 = 97.

Each term is just the floor of half the previous term. This is true for all n,
because as a special case of (3.11) we have [n/2%"'| = | [n/2%|/2]. It’s espe-
cially easy to see what’s going on here when we write the numbers in binary:

100 = (1100100), = 100

1100/2] = (110010); = 50
]

)

)
100/4] = (11001), = 25
1100/8] = (1100); = 12
1100/16) = (110),= 6
[100/32) = (1M)2= 3
100/64) = (Mr= 1

We merely drop the least significant bit from one term to get the next.
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The binary representation also shows us how to derive another formula,
e2(n!) = n—vy(n), (4-24)

where v;(n) is the number of 1’s in the binary representation of n. This

simplification works because each 1 that contributes 2™ to the value of n

contributes 2m~1 42m—2 1 ... 420 = 2™ _ 1 o the value of €,(n!).
Generalizing our findings to an arbitrary prime p, we have

o - Bl - ElE e

by the same reasoning as before.

About how large is €, (1n!)? We get an easy (but good) upper bound by
simply removing the floor from the summand and then summing an infinite
geometric progression:

ep(n!) <

S|z T2 °is
S/~ +
+ -GN‘S

S| =

<
| |
~— 4+ <

]
|

For p = 2 and n = 100 this inequality says that 97 < 100. Thus the up-
per bound 100 is not only correct, it's also close to the true value 97. In
fact, the true value n —v;(n) is ~ n in general, because v2(n) < [lgn] is
asymptotically much smaller than n.

When p = 2 and 3 our formulas give €2(n!) ~ n and e3(n!) ~ n/2, so
it seems reasonable that every once in awhile e3(n!) should be exactly half
as big as €;(n!). For example, this happens when n = 6 and n = 7, because
6! = 24.32.5 = 7!/7. But nobody has yet proved that such coincidences
happen infinitely often.

The bound on e, (n!) in turn gives us a bound on pe» (™) which is p’s
contribution to n!:

per(n) o pn/(p=1)
And we can simplify this formula (at the risk of greatly loosening the upper

bound) by noting that p < 2P~ '; hence p™/P~1) < (2P~ 1"/ (P=1) = 2" In
other words, the contribution that any prime makes to n! is less than 2™.
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We can use this observation to get another proof that there are infinitely
many primes. For if there were only the k primes 2, 3, ..., Py, then we'd
have n! < (2™)* = 2™* for all n > 1, since each prime can contribute at most
a factor of 2™ — 1. But we can easily contradict the inequality n! < 2™* by
choosing n large enough, say n = 22%. Then

nl < an — ZZZkk — nn/z
contradicting the inequality n! > n™/? that we derived in (4.22). There are
infinitely many primes, still.

We can even beef up this argument to get a crude bound on 7t(n), the

number of primes not exceeding n. Every such prime contributes a factor of
less than 2™ to n!; so, as before,

nl < 2

If we replace n! here by Stirling’s approximation (4.23), which is a lower
bound, and take logarithms, we get

nn(n) > nlg(n/e) + %lg(ZmU :
hence
n(n) > lg(n/e).

This lower bound is quite weak, compared with the actual value 7t(n) ~
n/Inn, because logn is much smaller than n/logn when n is large. But we
didn’t have to work very hard to get it, and a bound is a bound.

4.5 RELATIVE PRIMALITY

When gcd(m,n) = 1, the integers m and n have no prime factors in
common and we say that they're relatively prime.

This concept is so important in practice, we ought to have a special
notation for it; but alas, number theorists haven’t agreed on a very good one
yet. Therefore we cry: HEAR US, O MATHEMATICIANS OF THE WORLD! LET
US NOT WAIT ANY LONGER! WE CAN MAKE MANY FORMULAS CLEARER BY

Like perpendicular ADOPTING A NEW NOTATION NOW! LET US AGREE TO WRITE ‘m L n', AND
lines don’t have TO SAY “m IS PRIME TO M,” IF M AND N ARE RELATIVELY PRIME. In other

direc-
‘Zigz(;mplzgengiiz lar  Words, let us declare that

numbers don’t have
common factors. m 1l n = m,n are integers and ged(m,n) =1. (4.26)
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A fraction m/n is in lowest terms if and only if m L n. Since we
reduce fractions to lowest terms by casting out the largest common factor of
numerator and denominator, we suspect that, in general,

m/ged(m,n) L n/ged(m,n); (4.27)

and indeed this is true. It follows from a more general law, gcd(km,kn) =
kged(m,n), proved in exercise 14.

The L relation has a simple formulation when we work with the prime-
exponent representations of numbers, because of the ged rule (4.14):

mln = min(mp,ny,) = 0 for all p. (4.28)
Furthermore, since m,, and n, are nonnegative, we can rewrite this as The dot product is
zero, like orthogonal
mln = mpn, = 0 for all p. (a.29)  Vectors.

And now we can prove an important law by which we can split and combine
two L relations with the same left-hand side:

k1l m and k L n = k L mn. (4.30)

In view of (4.29), this law is another way of saying that k,m, = 0 and
kpny, =0 if and only if ky, (my, +ny,) =0, when m,, and n, are nonnegative.

There’s a beautiful way to construct the set of all nonnegative fractions
m/n with m L n, called the Stern—Brocot tree because it was discovered Interesting how
independently by Moriz Stern [339], a German mathematician, and Achille mathematicians

Brocot [40], a French clockmaker. The idea is to start with the two fractions géld,sya{vhg;s;g:;_

(19, %) and then to repeat the following operation as many times as desired:  [utely anyone else
would have said
m+m/ . . m m’ “invented.”
Insert ——— between two adjacent fractions — and —.
n+n’ n n’

The new fraction (m+m’)/(n+mn’) is called the mediant of m/n and m’/n’.
For example, the first step gives us one new entry between 19 and %,

—lo
—_]—

!

o=

) )

and the next gives two more:

—|o
_4‘_.
=N

1
)))O'

[STE

)

The next gives four more,

1
» T

_A‘O
WIN

2 3
T

1

o=

) ) )

W[ —
N|—
NI
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and then we'll get 8, 16, and so on. The entire array can be regarded as an

I guess 1/0 is infinite binary tree structure whose top levels look like this:
infinity, “in lowest
terms.” 0 1
T 0
........ T e
/ T \
1 2
RN RN
1 2 3 3
3 3 2 1
NN SN N
3 5 5 4 3 3 2 1

m+m’
n+n’?

is the nearest ancestor above and to the right. (An “ancestor” is a

Each fraction is
m/
n’

fraction that’s reachable by following the branches upward.) Many patterns
can be observed in this tree.

where = is the nearest ancestor above and to the left,
and

Why does this construction work? Why, for example, does each mediant
fraction (m+m’)/(n+n’) turn out to be in lowest terms when it appears in
Conserve parody. this tree? (If m, m’, n, and n’ were all odd, we’d get even/even; somehow the
construction guarantees that fractions with odd numerators and denominators
never appear next to each other.) And why do all possible fractions m/n occur
exactly once? Why can’t a particular fraction occur twice, or not at all?
All of these questions have amazingly simple answers, based on the fol-
lowing fundamental fact: If m/n and m’/n’ are consecutive fractions at any
stage of the construction, we have

mn—mn’ = 1. (4.31)

This relation is true initially (1-1 —0-0 = 1); and when we insert a new
mediant (m + m’)/(n +n'), the new cases that need to be checked are

m+m'’Mm—mn+n’) = 1;
mnh+n)—(m+m')n’ = 1.

Both of these equations are equivalent to the original condition (4.31) that
they replace. Therefore (4.31) is invariant at all stages of the construction.

Furthermore, if m/n < m’/n’ and if all values are nonnegative, it’s easy
to verify that

m/n < (m+m')/(n+n’) < m'/n’.
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A mediant fraction isn’t halfway between its progenitors, but it does lie some-

where in between. Therefore the construction preserves order, and we couldn’t

possibly get the same fraction in two different places. True, but if you get
One question still remains. Can any positive fraction a/b with a 1 b & compound frac-
. . . ture you’d better go

possibly be omitted? The answer is no, because we can confine the construc- .7 .+ -

tion to the immediate neighborhood of a/b, and in this region the behavior

is easy to analyze: Initially we have

23
—|o

< (%) <

ol—
|
3

where we put parentheses around  to indicate that it’s not really present
yet. Then if at some stage we have

< ($) <%

n’

23

the construction forms (m + m’)/(n +n’) and there are three cases. Either
(m+m’)/(n+n’) =a/b and we win; or (m+ m’)/(n+n’) < a/b and we
canset m— m+m/, n—n+n’;or (m+m’)/(n+n’) > a/b and we
can set m’ « m+m’, n’ « n+n’. This process cannot go on indefinitely,
because the conditions

%—%>0 and TT‘:,—%>O
imply that

an—bm > 1 and bm’ —an’ > 1;
hence

(m +n')(an—bm)+ (m+n)(bm’ —an’) > m’' +n’+m+n;

and this is the same as a+b > m’+n’+m+n by (4.31). Either m or n or
m’ or n’ increases at each step, so we must win after at most a + b steps.

The Farey series of order N, denoted by Fy, is the set of all reduced
fractions between 0 and 1 whose denominators are N or less, arranged in
increasing order. For example, if N = 6 we have

We can obtain Fy in general by starting with 7 = %,% and then inserting
mediants whenever it’s possible to do so without getting a denominator that
is too large. We don't miss any fractions in this way, because we know that
the Stern—Brocot construction doesn’t miss any, and because a mediant with
denominator < N is never formed from a fraction whose denominator is > N.
(In other words, Fn defines a subtree of the Stern—Brocot tree, obtained by
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pruning off unwanted branches.) It follows that m’n — mn’ = 1 whenever
m/n and m’/n’ are consecutive elements of a Farey series.

This method of construction reveals that N can be obtained in a simple
way from FN_1: We simply insert the fraction (m + m’)/N between con-
secutive fractions m/n, m’/n’ of F_1 whose denominators sum to N. For
example, it's easy to obtain F; from the elements of F¢, by inserting %, %,

. % according to the stated rule:

When N is prime, N — 1 new fractions will appear; but otherwise we’ll have
fewer than N — 1, because this process generates only numerators that are
relatively prime to N.

Long ago in (4.5) we proved —in different words — that whenever m L n
and 0 < m < n we can find integers a and b such that

ma—nb = 1. (4.32)

(Actually we said m’m+n’'n = ged(m, n), but we can write 1 for ged(m,n),
a for m’/, and b for —m’.) The Farey series gives us another proof of (4.32),
because we can let b/a be the fraction that precedes m/n in F,,. Thus (4.5)
is just (4.31) again. For example, one solution to 3a—7b=1isa=5,b =2,
since % precedes % in F7. This construction implies that we can always find a
solution to (4.32) with 0 <b<a<n,if 0 <m<n. Similarly, f 0<n<m
and m L n, we can solve (4.32) with 0 < a < b < m by letting a/b be the
fraction that follows n/m in JF,.

Sequences of three consecutive terms in a Farey series have an amazing
property that is proved in exercise 61. But we had better not discuss the

Farey ’nough. Farey series any further, because the entire Stern—-Brocot tree turns out to be
even more interesting.

We can, in fact, regard the Stern—-Brocot tree as a number system for
representing rational numbers, because each positive, reduced fraction occurs
exactly once. Let’s use the letters L and R to stand for going down to the
left or right branch as we proceed from the root of the tree to a particular
fraction; then a string of L’s and R’s uniquely identifies a place in the tree.
For example, LRRL means that we go left from }7 down to %, then right to %,
then right to %, then left to % We can consider LRRL to be a representation
of % Every positive fraction gets represented in this way as a unique string
of L's and R’s.

Well, actually there’s a slight problem: The fraction % corresponds to
the empty string, and we need a notation for that. Let’s agree to call it I,
because that looks something like 1 and it stands for “identity”
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This representation raises two natural questions: (1) Given positive inte-
gers m and n with m L n, what is the string of L's and R’s that corresponds
to m/n? (2) Given a string of L’s and R’s, what fraction corresponds to it?
Question 2 seems easier, so let’s work on it first. We define

f(S) = fraction corresponding to S

when S is a string of I’s and R’s. For example, f(LRRL) = %

According to the construction, f(S) = (m+ m’)/(n +n’) if m/n and
m’/n’ are the closest fractions preceding and following S in the upper levels
of the tree. Imitially m/n = 0/1 and m’/n’ = 1/0; then we successively
replace either m/n or m’/n’ by the mediant (m+m’)/(n+n’) as we move
right or left in the tree, respectively.

How can we capture this behavior in mathematical formulas that are
easy to deal with? A bit of experimentation suggests that the best way is to
maintain a 2 X 2 matrix

M) = ()

that holds the four quantities involved in the ancestral fractions m/n and
m’/n’ enclosing f(S). We could put the m’s on top and the n’s on the bot-
tom, fractionwise; but this upside-down arrangement works out more nicely
because we have M(I) = (g) (1)) when the process starts, and ((]) ?) is tradition-
ally called the identity matrix 1.

A step to the left replaces n’ by n +n’ and m’ by m + m’; hence

n n+n’ n n’ 1 1 1 1
M(SL) = <m m+m/) - (m m’> <O 1> _M(S)(O 1>'

(This is a special case of the general rule

a b w x\ _ [faw+by ax+bz
c d y z) \ecw+dy cx+dz

for multiplying 2 x 2 matrices.) Similarly it turns out that If you're clueless
about matrices,
’ ’ don’t panic; this
M(SR) = ( nm , n/) = M(S) (1 O) . book uses them
m+m’ m 11 only here.

Therefore if we define L and R as 2 x 2 matrices,

L—(é 1) R—G ?) (4-33)
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we get the simple formula M(S) = S, by induction on the length of S. Isn’t
that nice? (The letters L and R serve dual roles, as matrices and as letters in
the string representation.) For example,

M(LRRL) = LRRL = (3)(1DGDG1) = GDGY) = G3);

the ancestral fractions that enclose LRRL = % are % and %. And this con-

struction gives us the answer to Question 2:

£(S) = f<(:l ;‘1>> - “T:r:, . (4-34)

How about Question 17 That’s easy, now that we understand the fun-
damental connection between tree nodes and 2 x 2 matrices. Given a pair of

positive integers m and n, with m | n, we can find the position of m/n in
the Stern—Brocot tree by “binary search” as follows:

S =1
while m/n #f(S) do
if m/n < f(S) then (output(l_); S = SL)
else (output(R); S = SR).

This outputs the desired string of L’s and R’s.
There’s also another way to do the same job, by changing m and n instead
of maintaining the state S. If S is any 2 x 2 matrix, we have

f(RS) = f(S)+1

because RS is like S but with the top row added to the bottom row. (Let’s
look at it in slow motion:

n n’ n n’
S = (m m’)’ RS = <m+n m’+n’>’

hence f(S) = (m+m/)/(n+n') and f(RS) = ((m+n)+(m'+n’))/(n+n’).)
If we carry out the binary search algorithm on a fraction m/n with m > n,
the first output will be R; hence the subsequent behavior of the algorithm will
have f(S) exactly 1 greater than if we had begun with (m —n)/n instead of
m/n. A similar property holds for [, and we have

= f(RS) — m-n o f(S), when m > n;

n
£(LS) — ni‘m — £(S), whenm<n.

CAERERE!
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This means that we can transform the binary search algorithm to the following
matrix-free procedure:

while m#n do

if m<n then (output(L); n := n—m)

n
else (output(R); m = m-— n) .
For example, given m/n = 5/7, we have successively

5 3 1 1
2 2 21
output L R R L
in the simplified algorithm.
Irrational numbers don’t appear in the Stern-Brocot tree, but all the
rational numbers that are “close” to them do. For example, if we try the

binary search algorithm with the number e = 2.71828. .., instead of with a
fraction m/n, we’ll get an infinite string of L’s and R’s that begins

RRLRRLRLLLLRLRRRRRRLRLLLLLLLLRLR ... .

We can consider this infinite string to be the representation of e in the Stern—
Brocot number system, just as we can represent e as an infinite decimal
2.718281828459... or as an infinite binary fraction (10.101101111110...),.
Incidentally, it turns out that e’s representation has a regular pattern in the
Stern—Brocot system:

e = RLRLR?LRL*RLR®LRLERLR'OLRL'?RL ... ;

this is equivalent to a special case of something that Euler [105] discovered
when he was 24 years old.
From this representation we can deduce that the fractions

R RLRR [ R [» [ L L R L R R R R
1 2 3 5 8 11 19 30 49 68 87 106 193 299 492 685 878

are the simplest rational upper and lower approximations to e. For if m/n
does not appear in this list, then some fraction in this list whose numerator
is < m and whose denominator is < n lies between m/n and e. For example,
% is not as simple an approximation as g = 2.714 ..., which appears in
the list and is closer to e. We can see this because the Stern—Brocot tree
not only includes all rationals, it includes them in order, and because all
fractions with small numerator and denominator appear above all less simple

ones. Thus, 22 = RRLRRLL is less than %7 = RRLRRL, which is less than
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e = RRLRRLR.... Excellent approximations can be found in this way. For
example, % ~ 2.718280 agrees with e to six decimal places; we obtained this
fraction from the first 19 letters of e’s Stern—Brocot representation, and the
accuracy is about what we would get with 19 bits of e’s binary representation.

We can find the infinite representation of an irrational number « by a

simple modification of the matrix-free binary search procedure:

if x < 1 then (output(L); o = /(1 f(x))
14

else (output(R); o := a—1).

(These steps are to be repeated infinitely many times, or until we get tired.)
If « is rational, the infinite representation obtained in this way is the same as
before but with RL*™ appended at the right of o’s (finite) representation. For

example, if « = 1, we get RLLL..., corresponding to the infinite sequence of
fractions }7, 1;, %, %, %, ..., which approach 1 in the limit. This situation is

exactly analogous to ordinary binary notation, if we think of L as 0 and R as 1:
Just as every real number x in [0..1) has an infinite binary representation
(.b1babs...)2 not ending with all 1’s, every real number « in [0..oc0) has
an infinite Stern—Brocot representation B1B,Bs ... not ending with all R’s.
Thus we have a one-to-one order-preserving correspondence between [0..1)
and [0..00) if welet 0+ Land 1 < R.

There’s an intimate relationship between Euclid’s algorithm and the
Stern—Brocot representations of rationals. Given o = m/n, we get |m/n|
R’s, then [n/(mmodn)| L’s, then |(m modn)/(nmod (mmodn))| R’s,
and so on. These numbers m mod n, n mod (m mod n), ... are just the val-
ues examined in Euclid’s algorithm. (A little fudging is needed at the end
to make sure that there aren’t infinitely many R’s.) We will explore this
relationship further in Chapter 6.

4.6 ‘MOD’: THE CONGRUENCE RELATION

Modular arithmetic is one of the main tools provided by number
“Numerorum congru-  theory. We got a glimpse of it in Chapter 3 when we used the binary operation

entiam hotc signo, ‘mod’, usually as one operation amidst others in an expression. In this chapter
=, In posterum
)

denotabimus, mod- '€ will use ‘mod’ also with entire equations, for which a slightly different

ulum ubi opus erit notation is more convenient:

in clausulis adiun-

gentes, —16 = 9 a =b (modm) = amodm = bmodm. (4.35)
(mod.5), —7 =

15 (mod. 11) . For example, 9 = —16 (mod 5), because 9 mod 5 = 4 = (—16) mod 5. The

—C.F. 142, .
C.F. Gauss [142] formula ‘a = b (mod m)’ can be read “a is congruent to b modulo m” The

definition makes sense when a, b, and m are arbitrary real numbers, but we
almost always use it with integers only.
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Since x mod m differs from x by a multiple of m, we can understand
congruences in another way:

a =b (modm) S a — b is a multiple of m. (4-36)

For if a mod m = b mod m, then the definition of ‘mod’ in (3.21) tells us
that a — b = a mod m+ km — (b mod m + lm) = (k — l)m for some integers
k and 1. Conversely if a —b = km, then a = b if m = 0; otherwise

amodm = a—[a/m|/m = b+km— |(b+km)/m|m
= b—|b/m|/m = bmodm.

The characterization of = in (4.36) is often easier to apply than (4.35). For
example, we have 8§ = 23 (mod 5) because 8 —23 = —15 is a multiple of 5; we
don’t have to compute both 8 mod 5 and 23 mod 5.

The congruence sign ‘=’ looks conveniently like ‘=", because congru- I feel fine today
ences are almost like equations. For example, congruence is an equivalence modulo a slight
lation; that is, it satisfies the reflexive law ‘a = a’, th tric law edache
relation; that is, it satisfies the reflexive law ‘a = a’, the symmetric law — The Hacker’s
‘a =b = b = a, and the transitive law ‘a = b =c¢ = a = ¢ Dictionary [337]

All these properties are easy to prove, because any relation ‘=’ that satisfies
‘a=b & f(a) = f(b)’ for some function f is an equivalence relation. (In
our case, f(x) = x mod m.) Moreover