

From The Editors of COMPUTE! Magazine

COMPUTE!'s
FIRST BOOK

OF
ATARI"

Published by COMPUTE! Books, A

A Division of Small System Services, Inc.,
Greensboro, North Carolina

SlYlall SystelYl
Services, Inc.

• Publication

I\fARIISC,l registe red trader nark 0 1 A IO l t Inc

Copyright © 1981, Small System Services, Inc. All rights reserved. Portions of this material
have appeared in various issues of COMPUTE! Magazine during 1980.

Reproduction or translation of any part of this work beyond that permitted by Sections 107
and 108 of the United States Copyright Act without the permission of the copyr ight owner
is unlawful.

Printed in the United States of America

ISBN 0-942386-00-0

10 9 8 7 6 5 4 3 2

11

Table of Contents

Introductio n Robert Lock, Page iv
Chapter One: Getting To Know Your Atari Page 1
Atari's Marketing Vice Pres ident Profiles The Personal

Computer Market Michael S. To mczyk, Page 2
Ata ri BAS[C And PET M icrosoft BAS[C. A BAS[C

Compari son Joretta Klepfer, Page 7
The Ouch [n Atari BASIC Glenn Fisher and Ro n Jeffries, Page 17
Atari BAS[C Part II John Victor, Page 19
Chapter Two: Beyond The Basics Page 25
Inside Atari BASIC Larry Isaacs , Page 26
Atari BASIC Structure W . A. Bell, Page 36
Input / Output On The Ata ri Larry Isaacs , Page 54
Why Machine Language? Jim Butterfield, Page 64
POKin' Aro und C harles Brannon, Page 67
Printing T o The Screen From Mach ine Language o n

The Atari Larry Isaacs , Page 69
Chapter Three: Graphics Page 75
Made In The Shade: An Int rod uction To "Three-Dimensio nal"

Graphics On The Atari Computers David D. Tho rnburg, Page 76
The Fluid Brush AI Baker, Page 80
Color Wheel For The Atari Neil H arris, Page 85
Card Games In Grap hics Modes 1 and 2 Willi am D. Seivert, Page 87
Ticker Tape Atari Messages Eric Martell and C hris Murdock, Page 91
Player/ Miss ile Graphics \X/ith The Atari Personal Computer

System C hris C rawford, Page 93
The Basics O f Using POKE in Atari

Graphics C harles G . Fortner, Page 102
Des igning Your Own Atari G rap hics Modes Craig Patchett, Page 105
G rap hics Of Polar Functions Henrique V eludo, Page III
Chapter Four: Programming Hints Page 115
Reading The Atari Keyboard On The Fly James L. Bruun, Page 11 6
Atari Sounds Tutorial Jerry White, Page 118
A I Baker's Programming Hints: Apple And Atari AI Baker, Page 121
Error Reporting System For The Atari Len Lindsay , Page 129
Chapter Five: Applications Page 135
Atari Tape Data Files : A Consumer Oriented

Approach AI Baker, Page 136
An Atari BASIC Tuto ria l: Mo nthly Bar Graph

Program Jerry Whi te, Page 144
Chapter Six: Peripheral Information Page 147
Adding A Voice Track To Atari Programs John Victor, Page 148
The Atari Disk Operat ing System Roger Beseke , Page 155
Review Of The Atari 8 10 Di sk

System Ro n Jeffries and G lenn Fisher, Page 159
An Atari Tu tor ial : Atari Disk Menu Len Lindsay , Page 162
WhatTo Do [fYou Don't Have Joysticks Steven Schu lman, Page 169
Using The Atari Console Switches James L. Brunn, Page 1 n
Atar i Meets The Real Wo rld Richard Kushner, Page 174
Appendix A Page 179
Atari Memory Locations Rona ld Marcuse , Page 180
Index Page 183

iii

INTRODUCTION
Robert Lock, Editor / Publisher, COMPUTE! Magazine

In the fall o f 1979 , COMPUTE! M agazine began with the initi al
vision of providing a resource and applications magazine to owners
and users of various perso n al compute rs. We made th e decision, at
th at time , to support the new person al computers from Atari, Inc.

Our fir st "Atari Gaze tte," a monthly part of COMPUTE!, was a
total of three pages long .. . Frequently we struggled, during those
ea rly issues , to seek out good edi torial support. Now , every issue of
COMPUTE! rou t inely ca rri es 40-50 pages of material for the Atari.
And we're still maintaining th e same sta ndards of qu ality . The Atari
reader base is growing faster than ever, and we 've n ever doubted our
dec ision to support it .

At the time of this writing, mid-November , 198 1, Ata ri, Inc. is
shipping more person al com puters each month, than they did in all
o f 1980!

On the pages whi ch follow, you'll find some of the best of the
AT ARI Perso n al Computer® materi al to appear in COMPUTE!
M agazine during the yea r 1980.

We've orga nized th e material and des igned the book so that it will
be easy to use. If you h ave any comments or suggestio ns regarding
thi s book , o r future books you 'd like to see from us, please let
us know .

Our special th anks to C h arles Bran non and Rich ard M ansfield of
the Edito ri al staff at COMPUTE!; Kate Taylo r, D ai Rees , and
D e Potter of the Productio n staff; Georgia Papadopoulos , Art
Director; and H arry Bl air, our illu strato r.

iv

COMPUTE! I'oob i, n cii\ 'i, i(l11 or Srn ;tli Sy>tL'rn SeJ'\' icc>, I" ",
puhli>hcr> or COMPUTE! lv1:Jg,,:iI1L',

Edi tnri,l l u!lin' :" ;l1'l' l l1C H c d ~H
(,25 Fult(l" StrcL't, (;rL'cl1,h'n), i\:C ~{4l11 L'S,\ , ('11')) 21'i - l)~l1q,

CHAPTER ONE:
Getting

To Know Your
Atari

Getting To Know Your Atari

Atari's Marketing
Vice President Profiles
the Personal Computer

Market
Michael S. Tomczyk

Atari's corporate character and I)rojected company goals. The inside word.

Conrad }utson

Atari doesn't especially like my nickname for their 4001800 personal
computer - "the POP -tol) computer" - but it's a fact the computer has a
"pop top" where the pl.lg- in RAM I ROM cartridges fit, part of their
innovative user-proof system which also includes interchangeable cards for
the computer's various peripherals. Atari also has a growing array of
educational and game software , incll~ding the most sophisticated real-time
simulation game (STAR RAIDERS) in the galaxy . .. a long way from
"Pong," the game that started it all.

Atari's competitors in the personal computer market chuckle at what
they see as the company's attempt to develop the "home" computer
market, in the face of extensive market research that says the home market
won't "happen" for another 4-5 years. Does that mean Acari is wasting
its resources? Are they really go ing after the home market? Or are they
laying the groundwork for a broader marketing program?

To answer some of these questions, I interviewed Atari's new Vice
President-Sales & Marketing for Personal Computers - he's Conrad
}utson, who came to Atari in November 1979 with a scant background in
computers but over 20 years experience in consumer electronics at G. E.
(12 yrs.), Toshiba (6 yrs.) and Texas Instntments (3 yrs.).

Jutson began by describing what he sees as the outlook for the
personal computer market: "Small business in the short run will
account for fifty percent of the personal computer business, dollar
wise," he predicted, defining small businesses as those with less than
$1 million in annual gross revenues, employing 10-15 people, and
usually involved in manufacturing or a service-oriented industry.
Typically, they do their bookkeeping by hand through a full or part
time employee, or have it done by a local service. The key to

2

Getting To Know Your Atari

reaching this market,]utson expl ain ed, is being able to show them
that a microcomputer will increase their productivity and m ake the
investment worthwhile.

The second broad market segment is the consumer market
which, h e said, consists of hundreds of subsets.

"If we were to profile th e person al computer buyer in the early
80's, it would be a male or female head of household, most likely in
a managerial, administrative or professional position , typically
earning over $25,000 per yea r and falling into the 25 to 50 age
bracket. M ost likely, this person is already familiar with what a
computer can do and ca n, in the home environment, identify a
need for co mputing to address va ri ous problems and functions.

"There are several millio ns of these households in the U. S.
that fit into the demographi cs I've described," he continued . "I
don't believe personal computers will ever be an 'impulse item' off
the shelf, partly beca use of th e expense. So th e logical question
becomes, 'Why should I bu y a person al computer and what will it
do for me? ' "

]utson's a nswer to th at questio n - wh at will a computer do for
me - provided an interesting way of categorizing the personal
computer market in term s of function . His list of person al com puter
uses included ...

1) Planning and Record Keeping:
"I believe this type of managerial/admini strative consumer does not
pay enough attention to hi s own fin ances - this is confirmed b y the
rapid growth of finan cial-pl anning servi ces. With the rapid inflation
of the past few years, projec ted to continue through the 1980 's ,
many consumers have found themselves in higher tax brackets with
a higher cost of living th at h as made their lives more and more
complex and difficult to m an age. They 've h ad to cope with budget
planning, fin ancial investments , mortgages, lo an payments, credit
unions, payroll stock plans, taxes , and pensions. In this new,
complex environment, consumers h ave to organize their home
record systems like they do a t wo rk - on a d aily, year-round b as is
instead of just once a year at tax time. They have to look at their
gross income, th eir investmen t tr adeoffs , and I believe this type of
consumer can justify the purch ase of a person al computer with the
appropri ate software to meet these va rious n eeds ... given that the
typical first purch ase of a perso n al co mputer is around
$2000-$2200."

2) Home Education:
The next ca tego ry of purchase th at adds value to the computer is

3

Getting To Know Your Atari

home education. Jutson noted that a majority of schools and
colleges are requiring some hands-on computer experience and more
and more schools are bring computers into the classroom as
instructional aids. There is already an enormous investment in
home education being made by the American family - cutting
across all demographic strata - in home courseware from
encyclopedias to books. As a supplement to classroom education,
this home courseware can be made much more exciting and "fun"
through visual display and interaction with a computer, Jutson
explained.

3) Personal Development & Interest:
There is also, he said, a huge market in how-to-books, all the way
from how to fix your appliances to learning foreign languages.
Literally hundreds of topics are addressed. Personal computers
provide for active hands-on demonstration for all age brackets and
interests, and speed the learning process.

4) Interactive Entertainment:
Having purchased a personal computer, we're all challenged by
interactive entertainment, he said, whether the entertainment is
one of skill or of strategy. The sale of strategic board games (chess,
backgammon) never seems to let up and, in the skill area, the video
arcades are doing extremely well. So entertainment accounts for a
good deal of software sales.

5) Home Information/Communications:
If we move away from computation and hook up an interface and
telephone modem, we have the capability to hook up to a
timesharing service. Using the computer as a terminal provides a
capability for dialing up and subscribing to a variety of evolving
services. Some, like Micronet and The Source already have a fairly
long menu. Atari has defined an informatin and communications
strategy - obviously it will leverage our installed base of hardware
to help our users gain access and may involve a wholly owned
subsidiary like Warner Amex Cable . Some of the future uses of this
home information system which we can envision include news,
stock data and other services which will cut down driving time,
mailing time, and minimize the hassle of shopping and bill paying.
It's a question now of "getting the players together," he said, and
making it happen.

6) Home Monitor & Control:
The decade of the 1980's will witness a growth of consumer
electronic products deriving in large part from introduction of smart

4

Getting To Know Your Atari

electronics into the home. The person al computer is the "leading
edge" of these products. By the mid-1980's, he expects to see
dedicated smart electronics - C PU devices which interact with the
electronic environment - in the home. It's unlikely that we'll see
one massive all-purpose CPU co ntro lling everything in the home . It
will happen step by step, b eginning with stand alone appliances
containing their own microprocesso rs and o ther sm art elec tronics .

These , then, are some of the major uses which]utson foresees for
personal computers.

He goes o n to say th at the A tari product was des igned to be
easy to use by consumers, easy to access , easily loaded (cartridges),
and eas ily connected (modul ar cords).

"Does the end user care about the architecture of the
machine?" he asked rhetorically . "The answer is no. 'What will it do
for me?' That's his majo r concern . We in th e consumer electronics
business are con cerned with leveraging technology and bringing
th at technology to the co nsumer for his or h er benefit, so wh y try to
scare the consumer off by m aking it so he o r she has to h ave a
double E or be a computer programmer to utili ze the full capabilities
of a perso nal computer?"

He drew a parallel between the person al computer industry
and the home stereo industry, pointing out th at 15 years ago there
were 1500 hi -fi sa lons in the United States and now there are about
15,000 outlets in the U. S. H e feels that computer stores will become
to the computer market what hi -fi specialty shops were o riginally to
the hi-fi industry, and predicted th at a number of stores will
proliferate and become stron g ch ains. A pa rallel development, he
sa id, is the entry of general merch andisers such as]. C. Penney
Department Sto res into the person al compute r distributio n scheme.

He emphas ized th at Atari o nly started shipping la te in the
fourth quarter of 1979 and is just get t ing in to the m arket with its
400/ 800 computers. H eavy advert ising is planned for the seco nd
and third quarters o f 1980, including a full dealer support program.

"Having just come out of th e ga te we h ave to and will co ntinue
to h ave, a lot of things to do to st rength en o ur position in the
industry," h e said . "Atari is a young compa n y th at h as already, in a
few years, achieved significant growth in co nsumer elec tronics
products . We h ave a verticall y integrated manufacturing capability ,
a marketing staff th at understands market ing, distributio n, sa les ,
and sales promotio n ; and a large blend of research and development
and engineering ex perti se.

"We believe th at th e Atari compute rs are different b ecause

5

Getting To Know Your Atari

from word one they were deve loped to t ake away whatever
apprehensions a first time user might h ave and help him or h er feel
good about interfacing with our product. With Atar i computers,
you don't have to stop and think before you use them. Of course,
more and more of the younger generat io n are lea rnin g to program
and work with more sophisticated app lications, and they will have
the capability of doing so with our product ."

6

8~_
\ I ~-"'/:

\
(~
~

......

/ //

Getting To Know Your Atari

Atari BASIC and PET
Microsoft BASIC.

A BASIC Comparison.
Joretta Klepfer

An important item to consider when shopping for a computer is the
language that you will use to communicate. You need to decide
what features are important for your application and examine the
language accordingly. The brand new Atari computers offer yet
another version of BASIC to tempt programmers and soon-to-be
programmers. The following table is a comparison of the Atari
BASIC (not Microsoft) language and the PET (Microsoft) BASIC
language. I have indicated various features of each and then
commented about the PET and Atari treatment or lack of treatment
of that feature.

The table is not an exhaustive treatment of either language,
but should assist you in learning the "basics" about both languages.
The references used to determine the contents of the table are listed
at the end of this article. You will also want to consult the manuals
provided with the variolls computer peripherals to learn more about
communication with these devices.

Two sources of information for the Atari BASIC language are
provided with the computers: Acari BASIC by Albrecht, Finkel, and
Brown and BASIC REFERENCE MANUAL (400-800) by Shaw and
Brewster. I would like to share some thoughts with you about each
one. Let's start with Atari BASIC.

The message on the binding indicates that Atari BASIC is "A
Self-Teaching Guide" and the design of the book is well suited to
accomplish that goal. The format uses proven teaching techniques.
Each chapter begins with the instructional goals for that section and
indicates what your skill levels should be when you finish it. The
material is organized into numbered sections called frames, each of
which presents information and then quizzes you about it. An
important part of the learning process is the active participation on
your part in answering the questions (without peeking at the
answers) and writing the programs that are requested. By all means,
turn your Atari on and use it in conjunction with the book.
Another nice feature is the self-test at the end of each chapter and

7

Getting To Know Your Atari

at the end of the book. Answers are give n to a ll the questions, but
you will learn more if you take the tests without referring to them.
This book is designed to teach BASIC to a novice and , if used
properly, will accomplish this task very well.

Acari BASIC is not a reference book however, and BASIC
programmers will grow frust rated trying to use it to learn about the
Atari brand of BASIC. A welcome add ition to the book sould be a
categorized append ix which li sts the Atari BASIC commands,
statements, arithm et ic and logical operators, spec ial symbols, and
va ri ab le naming conventio ns. (Th e bui lt -in fun ctions are already
listed in the append ix, alon g with the ASCII ch aracte r codes and
error messages.) This type of "quick reference" sect ion would also
assist those who use thi s book to learn BASIC as they may need to
refresh their memory from time to time.

The authors indicate in their message "To The Readers" that
the BASIC in your new Atari computer may be more advanced
th an the 8K Atari BASIC they used in writing this book. This
comment is an important one and means that you shou ld read
carefull y all the manu als you receive with your uni t to determine
what refinements, if any, have been made. I am aware of at least
o ne: Acari BASIC ind ica tes th at a var iab le n ame may be a single
letter or a letter and a number, whereas the BASIC REFERENCE
MANUAL gives you the freedom to create variable names of any
length up to 120 ch aracters as long as they begin with a lette r. This
difference should not crea te a lack of confidence in Atari BASIC, for
the va ri able naming co nventions given by Albrecht and company
are probably best for beginners and are obviously still valid.

Acari BASIC does not include adva nced programmi ng
techniques and app licat ions such as creating and manipulating data
fil es. You wll also not find information on saving and loading
programs on cassette or d isk; refer to the special opera tor's manuals
for I/O information on these periphera ls.

If you would like to learn Atari BASIC, Acari BASIC is an
excellent place to start and I hi ghly recommend it. If you already
know BASIC and want to learn the idiosyn cras ies of the Atari
brand, read on!

I h ave been read ing a prelim inary draft o f the new BASIC
REFERENCE MANUAL which will be shipped with the Atari
computers upon its completion . Thi s book is des igned in a more
traditional manner, presenting information interspersed with
examples. Be sure to start by reading the preface and the flowchart
of the program for using the manual. Chapter 1 gives a general

8

Getting To Know Your Atari

introduction to the manual and its terminology and notation
conventions. A lengthy list of abbreviations is given which you'll
refer to frequently as you read through the manual.

The book is written in a friendly, non-threatening manner
using a style that explains the BASIC language features in a very
"readable," straight-forward way. One very nice feature of the style
of text presentation is that the general format of a statement is
presented first and then an example is given. For the most part,
liberal use of visual aids such as flowcharts, diagrams, tables, and
examples will assist you in your search for facts.

I believe that one or two sections will cause some difficulty for
the beginning programmer, however. One of these is the section on
Input/Output Operations. Dealing with the general format of the
OPEN statement is not a trivial exercise and, since the book is
aimed at all levels of readers, a different treatment of this complex
subject would be easier for the newer computerist to grasp. The
section on game controller functions has no examples longer than
one line and very little information about the use of these functions.
We are told that the "imaginative programmer will think of many
uses" for these functions. Help! Atari - I'm not very imaginative
and others might not be also; in the final manual please give us
some ideas on how to use these unique functions.

I was pleased to find so many useful items in the appendices.
There are several user programs and sample routines listed. A
directory of BASIC keywords gives not only the keyword and a
brief summary, but also gives the chapter number if you need
further reference. A necessary listing is included of error messages
and their corresponding numbers. Utility listings of Decimal to
Hexadecimal conversion tables, and the AT ASCII character set as
well as PEEK and POKE information assist the serious programmer.
A listing of trigonometric functions derived from the built-in
functions should interest the scientific programmer. The section on
the keyboard and editing features is a good introduction to this
input device. It was an excellent idea to include, as an appendice,
the glossary and chapter index of the words in the glossary, however
I feel this addition should in no way replace a regular index.
Hopefully, one will be included in the final edition.

Let me restate that all the comments I have made about the
BASIC REFERENCE MANUAL came from examining a rough draft
of the document. I look forward to reading the final copy. I have
confidence that this manual will provide new Atari owners with
ready access to their brand of BASIC.

9

Getting To Know Your Atari

Variable names
The first two alph anumer ic characters form the unique
variable name. However, for ease of reading, the name
could be as long as you wish. Integer var iab les are created
by adding % to the name. String variables are created by
add ing $ to the name.

Variable names may be any length, given memory limitations,
and must start with a letter . 128 different variables are
allowed in a single program. Each letter (rather than just the
first two) is significant.

Subscripted variables
Three subscripts (i.e. three dimensional variables) are allowed.
Original ROM PETs are limited to 255 elements in an array;
on the newer models 8/16/32K PETs there is no limit on the
number of elements except for memory limitations.

Two subscripts (i .e. two-dimensional variables) are allowed.
Subscripts are numbered from O.

String variables
Character strings may contain up to 255 characters even
though the input buffer is limi ted to 80 characters. The
concatenation operator + may be used to create longer strings
(within the 255 limit). Non-subscripted str ing var iables need
not be dimensioned. Subscripted string variables must be
dimensioned if the numer of elements in the array is over 10.
The" symbol is used to designate characters strings.

All strings must be dimension ed. There is no limit on the
length of strings; however, a limit of 99 IS imposed for input of
strings. String arays are not allowed. The + cannot be used
for concatenation.

Integer variables
Integer variables may contain va lues of -32767 to 32767.
Not available

Dimensioning variables
No DIMension statement is necessary for arrays, single or
multiple, which have subscripts with values of 10 or less. The
dimension definition may be a constant, a variable, or an
expression.
All character string and mtmeric arrays must be dimensioned.

Significant digits
Numeric values may co ntain nine significant digits and are

10

Getting To Know Your Atari

rounded if necessary .

Numeric values may contain nine significant digits and are
truncated if necessary.

Scientific notation
Scientific notation is accepted for input as well as used to
output numbers greater than 9 digits.

Same as PET

Arithmetic operators
+ addition - subtraction * multiplication
/ division • exponentiation
Same as PET except • for exponentiation.

Physical line
40 characters

38 characters

Logical line
80 characters

114 characters

Multiple Statements/line
Multiple statements are allowed and are separated by a :
symbol.

Same as PET

Program Documenting
REM statements allow commenting in the body of your
program.

Same as PET

Assignment
Keyword for an assignment statement is LET, but is not
required. Assignment operator is the = symbol.
Same as PET

Looping
Looping may be accomplished by using the FOR-NEXT-STEP
statements. The STEP value may be an integer or fraction,
positive or negative (therefore allowing the value of the index
to ascend or descend). Whatever the beginning and ending
values of the index are, the loop will be executed at least once.
A single NEXT statement may be used to match multiple FOR
statements. For example: NEXT X,Y,Z.

Same as PET except the same NEXT may not be used for

11

Getting To Know Your Atari

multiple FOR statements. Also, NEXT must be followed by
its variable. PET allows NEXT with an implied variable.

Input
The INPUT statement may have a prompt message included
which will be presented to the user before the ? This statement
may be used with all types of variables.

You may not include a prompt message in the INPUT
statement. INPUT may not be used with a subscripted
variable.

The READ statement may be used for input with
corresponding DATA statements. Data may be reused if the
RESTORE statement is included appropr iately. This type of
input may be used with all type of variables.

READ . .. DATA also may not be used with a subscripted
variable.

The GET statement may be used to input a single byte.

GET statement: same as PET, except that it waits for a
keys troke .

Branching
Unconditional branching may be accomplished by using the
GOTO statement with the statement number of the target
statement. Conditional branching options include ON ...
GOTO and ON ... GOSUB statements.

The argument of a GOTO or GOSUB may be a variable or
an expression.

Subroutines
Subroutines are accessed by the GOSUB statement and need a
RETURN statement to indicate the end of the routine .

The command POP can be used to cancel a GOSUB.

Decision-making
The IF - THEN statement uses the conditional operators ,

, , =, and the Boolean operators AND, OR, NOT, for
comparing both numeric and string variable values. Multiple
statements following THEN will be executed if the condition is
true.

AND, OR, and NOT do not operate on the binary level.
Output

12

The PRINT statement may include variables, arithmetic
expressions, character strings, and constants. There are four
default print positions which are used if items in the list are

Getting To Know Your Atari

separated by commas. A semi-colon between items causes
closer printing with character strings being concatenated and
numbers separated by one space. Cursor movement may be
included in strings in the PRINT list. Output is automatically
sent to the screen; a special OPEN statement is needed to
cause printing on the printer. The? symbol may be used to
represent PRINT when keying in a program. The interpreter
will insert the full word for you.

Same as PET except: the semicolon causes concatenation of
numbers too. LPRINT is used to send output to the printer.
The? is not spelled out in a program.

Program termination
STOP and END will cause the program to cease execution.
There does not have to be and END statement as the last
statement in the program. The CONT command will allow
you to resume execution after and END or STOP has been
encountered.

CONT continues on the next line, not necessarily the next
statement.

User-defined functions
DEF FN will allow you to create your own function in BASIC.

User-defined functions are not available in BASIC.

Built-in functions
Standard trigonometric and arithmetic functions are available
as well as special purpose functions to do the following: PEEK
at memory locations, TAB the cursor to a specified column,
SPaCe the cursor the specified number of spaces, indicate the
POSition of the cursor, give the number of FREe bytes left in
memory, pass a parameter to a USeR machine language
program, and communicate with the PET clock. Functions
may be nested.
Standard trigonometric and arithmetic functions, FRE, and
PEEK are the same as PET. In addition there are CLOG for
base 10 logs, ADR to return decimal memory address of
specified string, DEG, RAD to specify either degrees or
radians for this function. Tab operations are accomplished by
keystroke combination, POSITION, or POKE.
Standard string functions are available, as well as special
functions to designate substrings. The + symbol is used as the
concatenation operator.

13

Getting To Know Your Atari

Same as PET but no functions for substringing. Substrings are
formed by using subscripts with the string variable name to
indicate characters in the string. The + is not used for
concatenation.

Graphics capabilities
Graphics symbols are accessed by pressing the shift key and
the appropriate key (printed on the front of the keys on the
PETs with graphic-style keyboards). These symbols may be
used in PRINT statements to create displays on the screen.
Graphic displays may also be created by using the POKE
statement to insert graphic symbols into the screen memory.

The Atari also has special characters, and provides special
keywords to make creating graphic displays much easier, such
as PLOT, DRAWTO, POSITION, FILL (XlO 18), POKE,
and GRAPHICS. There are nine different graphic modes:
three for text only, giving normal, double wide, and double
size characters; three modes with split screen & four colors;
two with split screen and only two colors; and one high
resolution mode.

Color capabilities
No color capability
Special keywords are provided to create color displays , such as
COLOR which selects one of four color registers, and
SETCOLOR to specify the hue and luminance of each color
register. By using a combination of 16 hues and 18 luminance
settings 128 colors can be created.

Sound capabilities
Sound is achieved by using the POKE statement to cause
signals to be sent to the parallel user port to which is attached
an external device to produce sound. Rhythm is controlled by
using timing loops. Non-Commodore products are available
for the PET to produce four-voice music similar to the Atari.

Atari provides a SOUND statement which allows
specification of voice, pitch, distortion, and volume. Four
voices can be played at the same time. Control of distrotion
creates interesting sound effects . Rhythm is controlled by
timing loops. The sound is heard through a speaker in the TV
monitor.

Game 110
No special statements or functions are available to aid in game

14

Files

Getting To Know Your Atari

interaction.

Four functions are provided for ease in programming paddle
and joystick control. They are PADDLE and STICK to
control movement, and PTRIG and STR IG to control the
trigger button.

Files must be OPENed before use with parameters specify ing
logical file number, device number, secondary address (permits
intelligent peripherals to operate in any number of modes),
and file name (for tapes, name may be up to 128 characters.
Only 16 characters are used by the system, though). The
CLOSE statement is used to close a file and needs o nly the
logical file number as a parameter. PRINT#, INPUT#, GET#
are used with tape or disk file I/O. Tape files are recorded
twice to aid in checking for errors.

Files must be OPENed before use with parameters specifying
logical file number, type of operation (read, write, both), file
name (8 characters or less) and device type. PRINT#,
INPUT# , PUT#, GET#, and XlO may be used for I/O
operations. NOTE and POINT are functions provided to
facilitate creation of random access files.

Commands
In addition to the standard commands of NEW, LIST, RUN,
CONT, LOAD, SAVE, and POKE, the PET h as a VERIFY
command to allow tape files to be verified before erasing
memory, and a CMD command to keep the IEEE-488 Bus
actively listen ing. The LOAD and SAVE commands may
include a file name.

Atari commands are the same as PET exce/Jt that Atari has no
VERIFY or CMD commands and file names may not be used
with the CLOAD and CSAVE commands . Program files can
be located on the tape by means of the counter on the cassette.

Error correction & editing
You may erase characters or an entire line while typing. Later
editing of programs is poss ible by cursor control and line
deletion, by typing the line number and RETURN.
Duplication of lines is possible by first LISTing the line,
changing the line number, and pressing RETURN.

Same as PET, with the addition of three editing functions:
insert line, delete line, and backspace (not the same as delete).

15

Getting To Know Your Atari

Error messages
For syntax errors, the li ne number is given, but not th e cause
of the error. For execut ion errors, the error message and line
number are printed on the screen .

S:·mtax errors are indicated b\, pringing the line and showing
the error in ret'erse t·ideo. Execution errors will cause a
message to appear on the screen git 'ing),OH an error message to
look up in :vour ma1llw /.

REFERENCES:
I. Bob Albrecht, Leroy Finkel, Jera ld R. Brown, Atari BASIC. John Wiley & Sons,
Inc. , Nell' York (1979)
2. Carol Shml', Keith Brewster. BASIC REFERENCE MANUAL. draft, Atari,
Inc., Sunnyvale, CA (1979)
3. CBM User Manual, First Edition. Commodore Business Machines, Santa
C lara, CA (1979)
4. Atari 400 Operators Man ual. Atari, Inc., Sunnyvale, CA (1979)
5. Atari 800 Operators Manual. Atari, Inc., Sunnyvale, CA (1979)

/*
?::'~,

fll(~,~ \~
/ /

\
16

Getting To Know Your Atari

The Ouch in Atari BASIC
Glenn Fisher and Ron Jeffries

Atari does have some flaws - not catastrophes, but flaws nonetheless.
Note that the LET operator does permit any name to be used as a
variable name.

After using the Atari 800 for a couple of months, we have found its
version of BASIC to be less than perfect. Please don't misunderstand;
we think that the Atari is a great machine, and is very usable in
spite of these faults. (Other computers will have an equally long list
of defects, they will just be different defects.)

Essentially, there are no character strings in Atari BASIC.
Instead, you h ave arrays of characters, which ain't the same thing!
(On the good side, however, you are not limited to 255 character
strings as in Microsoft BASIC.)

Would you believe there are no error messages? Well, unless
you consider ERROR 9 to be an error message ... (it means
"Subscript out of range").

There is not a DELETE command. True, few of the competing
BASICS h ave this essentia l feature, either. But hope springs eternal.

Atari doesn't have user-defined functions (such as DEF
FNA(X))). This is one of those th ings you don't miss until you need
it, but when you need it you really need it!

Would you believe - there is not a TAB function? This is
essential when you need to produce neatly formatted output.

AND and OR do not allow you to get at individual bits of a
number. (We see you yawning! but this is more important than you
might suspect, especia lly when dealing with PEEKs and POKEs.)

Unlike some of Atari's competitors, the Atari does not, repeat
NOT, have any "typeahead." Typeahead allows you to give
commands before previous commands finish, which is very nice
when you want to quickly give a series of commands.

As best we can tell, there is no way to verify a saved file to see
that it got saved properly. Of all the things to omit ...

The GET statement has an interesting "feature": it waits until
there is a character avai lab le. It would be far more convenient if it
returned a special "no data yet" va lue.

There is a clock in the Atari, but you, Dear Reader, don't get
easy access to it. There are BASICs that give you clock values in
two flavors: as "ticks" since the machine was turned on, and as time
of day measured from when the machine was turned on.

17

Getting To Know Your Atari

Although you can h ave long, meaningful variable names (all of
whose characters are significant, as opposed to lesser BASICs that
only use the first two ch aracters), there is a problem ! Variable
names cannot contain keywords. For example , POINTS and
SCORE are both illegal. (This from a company known for its
games!)

You can't list an open-ended li ne range. So, you have to say
LIST 500,32767 when what you want to do is list everything from
line 500 on . Sigh!

The INPUT statement doesn't allow a prompt string. You have
to fir st PRINT the prompt, then do the INPUT. Sure, you can live
with it, but it's a pain.

Here's one for the books: in Atari BASIC you can't READ or
INPUT a value into an array element! (You guessed it: you fir st
READ into an ordinary variable, then assign that var iable to the
array element. I h ope that somebody on the design team at least has
a gu il ty conscience.)

You can only h ave four colors on the screen at o nce . (The
Apple has a minimum of six.)

The BREAK key sh ou ld turn off sound. (It is nice that typing
END will do it, however.)

Obviously, this li st represents wh at we know as of November,
1979, when this was wr itten. To the best of our know ledge, all of the
problems are rea l. We won't be surprised if some of these flaws are
corrected by Atari. (We may also have misunderstood the
preliminary manuals.)

Finally, if you feel th at we are really "down" on the Atari,
please reali ze that none of the problems mentioned h ere are serious
enough to keep us from publishing our Atari software product.
Despite its fl aws, the Atari is a very useful and fl exible personal
computer.

18

Getting To Know Your Atari

Atari BASIC Part II
John Victor

There is no question that the Atari graphics and other machine
features make it superior to its predecessors as a personal computer.
But these great features would be worth little if programmers could
not readily take advantage of them. Atari BASIC makes the use of
color graphics and the generation of sound incredibly easy.

A good example of what can be done with Atari BASIC can
be found in the December issue of INTERFACE AGE. Al Baker of
the Image Producers wrote a short version of the game of SIMON
for the Atari 400 (using about 80 instructions). The game used color
graphics and musical chords. The player attempts to duplicate a
series of notes and colors made by the computer in ever increasing
lengths, and his or her entries are made by pushing a joystick. All of
the versions of this game that I have seen on other computers have
involved some machine language kluges to make them work, but
this Atari program is done entirely in BASIC. The only thing here
that might give the novice programmer some difficulties is the
mathematical relationships of musical notes in a chord. Otherwise,
the program is a model of simplicity.

Although Atari BASIC is not Microsoft BASIC, it is pretty
much like the BASICs found on Apple, PET, and the TRS-80. The
BASIC interpreter resides in a 10K ROM cartridge that plugs into a
slot in the front of the Atari 400 or 800. (Both computers use the
same BASIC.) Its floating point software computes to 9 place
accuracy, it supports multiple statement lines, and it contains the
usual compliment of library routines. Its execution speed appears to
be a bit slower than Applesoft's, but it seems to be better than
TRS-BO Level 11. If the BASIC has any deficiencies, it is in the area
of string handling logic. It does not support string arrays.

In some ways the BASIC resembles Apple's integer BASIC.
This is particularly noticeable to Apple programmers when the
computers enters the graphics modes and finds an area at the
bottom of the screen with 4 lines of text. Atari BASIC also allows
the programmer to use variables in GOTO and GOSUB statements
(GOTO A). In addition, the variables can be words, (GOSUB
ERRORROUTINE, GOTO CHOICE, etc.), where CHOICE, for
example, has a line number as a value.

There is one incredible innovation here that makes Atari
BASIC unique. ANY WORD CAN BE USED AS A VARIABLE

19

Getting To Know Your Atari

- EVEN SO-CALLED 'FORBIDDEN' WORDS! The programmer
could use the word END or LIST as a variable . This is definitely not
allowed in any other version of BASIC. LIST can also be used as a
program statement to make the listing of the resident program print
out during the running of the program.

Here are some examples of the use of words as variables in
Atari BASIC. Note that if a program command is goin to be used as
a variable, the word LET must precede it when setting its value.

10 LET LISTING = 1000 :
LET ERRORCOUNT = 2000 :
LET CHOICE = 3000

120 IF ANSWER$ = CORRECT$
THEN RETURN
130 GOTO CHOICE

Variable graphics modes can be entered by giving the graphics
instruction along with a number. Most of these will have an area at
the bottom of the screen for four lines of text. The programmer can
eliminate this area by adding 16 to the number of the graphics
mode. For example, GRAPHICS 3 has four lines of text, but
GRAPHICS 3 + 16 does not. The graphics instruction will clear the
screen. This can also be deactivated by adding 32 to the graphics
mode number (i.e. GRAPHICS 35 enters GRAPHICS 3 without
clearing the screen .)

The following is a brief description of some of the GRAPHICS
modes.

Graphics 0
This is the regular text mode for BASIC. The user gets 24 lines of 40
characters, where the characters can be upper or lower case, regular
or reversed. In addition, the user can access, by pressing the
CONTROL key, a set of pseudo graphics from the keyboard. These
special characters can be used to draw pictures (very much like the
special characters found on the PET).

The user has the abi lity to change the background color using
the SETCOLOR instruct ion. The user can change the color
designated by color register 2 (which controls background color)
with the following instruction: SETCOLOR 2,4,14. The screen will
turn light pink, since color register 2 contains the number 4 for red
and the number 14 for the luminescence (0 for darkest to 14 for

20

Getting To Know Your Atari

lightest).
In GRAPHICS 0 the user ca nnot mi x th e color of the type ,

wh ich can only be a darker or li ghter versio n of the b ackground
color. By setting colo r register 1 wit h a luminescence of 0, we get a
dark type against a light background. SETCOLOR 1,0,14 plus
SETCOLOR 2,0,0 will produce a dark grey b ackground with light
characters. Using the luminescen ces , the user has a choice of about
120 different sh ades of colors.

Graphics 1 And Graphics 2
There are the "large type" modes, with GRAPHICS 2 producing the
largest type. In this mode the charac ters ca n be put on the screen in
a variety of ways - they can be PLOTed o n li ke graphics, or
PRINTed on. Different color characters ca n be made by defining the
ch aracters as upper case, lower case , or reversed characters. When
the type appears on the screen, it appears as a ll capitals, but the
colo r of the characters is different. A word printed as lower case
may appear on the screen as upper case red ch aracters , while a word
printed as reverse capitals may be blu e. Fo r example , PRINT #6;
"BLUE green" produces 2 "all -capital" words in two different colors.

Graphics 3 To Graphics 11
These are the real graphi cs modes wh ere th e computer PLOTs
points at a given sc reen locat ion. GRAPHICS 3 h as the largest
points, and th e size goes down as the mode number increases.
GRAPHICS 11 is a high resolution mode. The color of th e poin ts is
taken from the co lo r register indi cated by the user. COLOR 3 tell s
the computer to make the poin t the same colo r as specified in color
registe r 3.

To make plo tting easier, the graphics modes use a DRAWTO
instruction whi ch wi ll auto mati ca lly plot a line from any given
point to any o th er point on the scree n, even if the line is a di agonal.
There is also a technique to fill in a predetermined area of the
screen to make a sq uare of a specifi c color.

Sound
The user has a cho ice of fOllr sound generato rs which ca n be used to
produce sounds o r mu sica l tones. The sound ge nerato rs ca n also be
used simultaneo usly to make cho rds. Once turned on, each sound
generator stays on until the program reac hes and END sta tement or
the program shuts it off. SOUND 0, 121, 10, 8 plays middle C on
sound register O.

21

Getting To Know Your Atari

Control Characters
Screen and cursor contro l fun ct ions can be put in a BASIC
program in PRINT statements as control characters. If the user
wants to clear the screen he or she can press the C lear Screen key.
This can also be done in the program by mak ing a PRINT statement
and then pressing the ESCAPE key. When the user hits the Clear
Screen key, a special control ch aracter is pr inted. When the
program is run and the PRINT statement is executed, the screen wi ll
be cleared. The statement will appear like this: PRINT" 1'''.

Editing And Error Messages
The screen editor on the Atari is the best I've seen. On the Appl e,
for example, the user cannot move type around the editor field, but
o n the Atari this can be done with sim ple keyboard inputs. The
user does not need to worry about hidden errors, or relisting since
all changes are immedi ate ly visible. If the user is m aking a line too
long, a bell rings a warning Uust as it does on a typewr iter).

If a syntax error is made while enter ing or editing a line, the
BASIC interpreter gives an immediate error message at the carr iage
return. This saves quite a bit of debugging time when entering a
program. Unfortunately, for errors encountered during a program
run, the user gets a numbered error message that mu st be checked
in the manual. There are several of these messages, so they are not
going to b e eas ily memorized.

Computer I/O
In order to get FCC approval for the computer (so it could be
plugged into a regul ar TV set) A tar i had to get approval for all of its
peripheral dev ices at the same time. So the computer and its
peripherals were designed as one package. Thi s is refl ected in the
ease of access to per ipherals from the BASIC. There are specific
instructio ns to access disk, joysticks, pri nters and the cassette
machine directly from BASIC. In addit ion to these , the user ca n
define periphera ls using an O PEN instruct ion . For example: OPEN
#2,8,0, "C:" open s the cassette machine for spec ial operations. The
cassette player is now specified by #2. PUT #2, A outputs the va lue
of A to the cassette player. The user can use INPUT, PRINT, GET,
PUT, etc. as I/O instruct io ns to peripherals.

BASIC can also treat the video sc reen and th e keyboard as
I/O devices for certa in kinds of operations.

Atari BASIC, like an y oth er vers ion of BASIC, suffers from
some deficiencies when consider ing it for some spec ial application .

22

Getting To Know Your Atari

H owever, in th e area of graphi cs and man ipul at io n of text di spl ays ,
this version of BASIC is, in m y opinio n, h a nd s down superi o r to
A pple, PET o r TRS-80 BASIC. Its fun ctions are com plex , b ut th e
user will find th e BASIC relat ively easy to use com pa red to some
oth er forms of BASIC.

23

CHAPTER TWO:
Beyond The Basics

Beyond The Basics

Inside Atari BASIC
Larry Isaacs

For those who want to experiment with the machine, write utility aids, or
just tinker around ...

This article will present informatin on how ATARI BASIC stores
programs in memory. If you are new to the field of microcomputer
programming, this information shou ld help increase your awareness
of what your ATARI is doing.

The following information is based solely on what I have been
able to observe while working with an ATARI 800. I believe the
information to be accurate. H owever, it is h ard to know how
complete the information is.

Also, for those new to microcomputer programming, the next
section gives some prelimin ary information whi ch should help make
the rest of the article more understandable.

Preliminary Information
One very important term in the field of microcomputing is the term
"byte." For purposes of this article, it can be considered a number
which can have a value ranging from 0 to 255. The memory in your
ATARI consists of groups of bytes, each byte of which can be
referenced by a unique address. The part of memory which is
changeable, called RAM, starts with a byte at address 0 and
continues with bytes at increasing sequential addresses until the top
of RAM is reached. The top of RAM is determined by the type and
number of memory modules you h ave in your ATARI.

Bytes, or combinations of bytes, can be used to represent
anything you want. Some common uses for bytes include
representing memory addresses, ch aracters, numbers, and
instructions for the CPU in your ATARI. You will be exposed to
several different uses for bytes in this article. Some of these uses will
make reference to two byte binary numbers. This is where two bytes
are used to represent a number whose va lue ranges from 0 to 65535.
The decimal value of a two byte binary number can be computed
using the formula: FIRST BYTE + (SECOND BYTE *256).

Also in this article, reference will be made to page zero. Page
zero simply is the first 256 bytes of memory, i.e . addresses 0 through
255. This part of memory differs from the rest of memory in that
these bytes can be referenced using a single byte address. The rest of
memory requires two byte addresses.

26

Beyond The Basics

The Conversion
A fter typ ing in a BASIC line, h itting RET URN causes th e line to
be passed to the programs found in the AT ARI BASIC cartridge.
H ere the li ne will undergo a certain amount of conversion before it
is stored in memory. O ne part of t h is conversion involves
converting all of the BASIC reserved words and symbols to a one
byte n umber called a token.

Another part of the conversion involves replac ing each
var iable name in the line with an ass igned number which wi ll range
fro m 128 to 255. If a variable name h as been previously used , it will
be replaced by the n umber previously assigned. If it hasn't been
used before, it will be assigned the lowest unused n umber , start ing
with 128 for th e first var iab le name. Also, numbers in the BASIC
line must be converted into t he form which t he AT ARI BASIC uses
before they can be stored in memory.

After the conversion is finished , the line is stored in memory .
If th e BASIC line does not have a li ne n umber, it will be stored
after the last statement of your BASIC program, an d executed
immediately. If it does contain a li ne number , the converted li ne
will be inserted in t he proper place in your program. After the li ne
has been executed or stored, your ATARI wi ll wait for you to type
in another line . Even though the li ne undergoes th is conversion,
the order in which the reserved words, var iables, and symbols occur
in the line isn 't ch anged when it is stored in memory.

The Memory Format For A Basic Line
Let's begin with the general format of how a BASIC li ne is stored.
Once a BASIC line has been converted and stored, the line n umber
is found in the first two bytes of the memory conta ining the BASIC
line. These bytes form a two byte binary number wh ic h h as th e
va lue of the li ne nu mber. T he va lue of th is number ca n range from
o to 32767 .

The th ird byte conta ins the total number of bytes in th is
BASIC li ne. This mea ns you can find the first byte of t he n ext line
us ing the fo llowing formula: ADDRESS OF FIRST BYTE OF
NEXT LINE = ADDRESS OF FIRST BYTE OF CURRENT
LINE + NUMBER IN THIRD BYTE OF CURRENT LINE.

The fourth byte con ta ins the number of bytes in t he first
statement in th e li ne, in cluding the first four bytes. If the BASIC
li ne conta ined only one statement, the th ird and fo urth bytes will
contain t he same va lue. If the lin e h ad more than o ne statement,
th ese bytes wi ll be different .

27

Beyond The Basics

Next come the bytes which represent the first statement in the
line. If there is more than one statement, the next byte following the
first statement contains the number of bytes in the first two
statements. Naturally, if there is another statement after the second
one, the first byte after the end of the second statement contains the
number of bytes in the first three statements, etc.

This completes the format of a BASIC line as it is found in
memory. Before going on, let's put this information to use in a short
program which lists out its own line numbers along with the
beginning address of each line. To do this we must first find out
where the first byte of the first line is found. It turns out there is a
two byte binary number found in page zero which contains the
beginning address of the first line . This number is contained in
bytes 136 and 137. Also, we will know when we've reached the end
of the program when we find a line number of 32768, which is one
more than the maximum allowed by ATARI BASIC. The program
to print the line numbers and their beginning addresses is shown in
Listing 1.

Tokens
In order to conserve memory, all of the BASIC reserved words,
operators, and various punctuation symbols are converted into a
one byte number called a token. This conversion also makes
execution simpler and faster. The tokens can be divided into two
groups. One group contains the tokens which occur only at the
beginning of a BASIC statement and the other group contains the
tokens which occur elsewhere in a BASIC statement.

Let's first take a look at the tokens which occur at the
beginning of a BASIC statement . It turns out that all statements
will begin with one of these tokens. After some investigation, I
found that these tokens will range in value from 0 to 54.

The procedure for listing the tokens is fairly simple, though the
actual implementation is a bit more involved than the brief
explanation which follows. The idea is to put" 1 REM" as the first
statement of the program. Ther use POKEs to change the line
number and token of this RE}' 1 statement. By setting the line
number and token to the same number, listing the line will print
the token and corresponding BASIC reserved word. Fortunately the
programs in the BASIC cartridge which do the listing tole~ate the
incomplete BASIC statements. The program for displaying these
tokens is shown in Listing 2. Notice when you run this program, no
reserved word is printed for token 54. This is the invis ible LET.

28

Beyond The Basics

token which is used for assignment statements which don't begin
with LET.

A similar procedure can be used to list the other tokens as
well. The main differences are to make the first statement" 1 REM
A", POKE 54 (the invisible LET token) into the first byte of the
statement, and make the changes for the token to the second byte
of the statement. The va lues for the tokens which occur after the
beginning of a statement range from 20 to 84. The program for
printing these tokens is given in Listing 3.

After running this program, you will notice there is no
reserved word or symbol printed for token 22. Token 22 is the
terminator token found at the end of each BASIC line, except those
whose last statement is a REM or DATA statement . Also, tokens 56
and 57 didn't print a reserved word or symbol. Both of these tokens
represent the "(" symbol. The "(" doesn't print because these two
tokens are associated with array names, and the "(" symbol is kept
with the associated variable name, as will be seen in the next
section.

Of course you noticed that most of the symbols occur more
than once. There is a different token for each of the different uses of
the symbol. For example, the word" =" has four different tokens.
Token 45 calls for an arithmetic assignment operation as in
A=A+ 1. Token 46 calls for a string assignment as in A$="ABC".
Token 34 is used in arithmetic testing as in IF A= 1 THEN STOP.
And finally, token 52 is the same as token 34 except that it's for
testing strings.

One more token, found after the ones listed in the previous program:
token 14, which indicates a constant is stored in a following six-byte
grouping.

Variable Names And Constants
As each new variable is encountered, it is assigned a number. These
numbers begin with 128 and are assigned sequentially up to 255.
Notice these numbers will fit into one byte. Also, as each new
variable is encountered, the variable name is added to a variable
name list, and 8 bytes of memory are reserved for that variable. In
the case of undimensioned variables, these 8 bytes will contain the
va lue of the variable. For strings and arrays, these 8 bytes will
contain parameters, with the actual values and characters stored
elsewhere.

This method of handling variables has some advantages. One
advantage is that it keeps usage to a minimum. The variable name is

29

Beyond The Basics

only stored once, and each time that name is referenced in a BASIC
statement, it occupies only one byte in the stored program. Another
advantage is that the address where the value for a variable is stored
can be computed from the assigned number. This isn't true of the
BASIC found in some other microcomputers where values must be
searched for.

There are also some disadvantages as well. First, it limits you
to 128 different variable names. However, the great majority of
programs won't need more than 128 variable names. One other
disadvantage is that, should a variable name be no longer needed,
or accidentally entered due to a typo, there is no quick way to
remove that variable from the variable name list and reuse the 8
bytes reserved for it.

Apparently, the only way to get rid of unwanted variables is to
LIST the program to cassette or disk. For example, LIST "c" will
list the program to cassette. Once the program is saved, use the
NEW command to clear the old program. Then use the ENTER
command to reload the program. For cassette this wou ld be ENTER
"C." Using the LIST command saves the program in character
form. ENTERing the program then causes each line to be converted
again as was done when you first typed it in. Now only the variables
found in the program will be placed in the var iab le name list, and
space reserved for their value. Using CSAVE and CLOAD won't
do this because these save and load a copy of the memory where the
program is stored. Unwanted variables are saved and loaded with
the rest of the program.

Constants are stored in the BASIC statements along with the
rest of the line. The constant wi ll be preceded by a "14" token as
mentioned previously. Explaining how ATARI BASIC represents
the numbers used as constants and as variable values will require
some explanation about BCD (Binary Coded Decimal) numbers. I
will save this information for a later article.

To give an example of using the information in this section,
let's take a look at the variable name list. Fortunately bytes 130 and
131 contain the address of the beginning of the variable name list.
The list will consist of a string of characters, each character
occupying one byte of memory. To indicate the last character of a
name, ATARI BASIC adds 128 to the value representing that
character. Since the values representing the characters won't exceed
127, the new value will still fit into one byte. To indicate the end of
the list, a 0 is placed in the byte following the last character of the
last name. The program which prints the variable name list is given

30

Beyond The Basics

in Listing 4. Notice, when you ru n this program, that the "(" is
saved as part of an array name, and the "$" as part of a string name.

Memory Organization
Finally, let's look at h ow the memory is organized for a BASIC
program. The order in which the various parts of a program are
found in memory is shown in Figure 1. The only part whose
beginning is fi xed is the var iab le name list which begins at address
2048. The beginning of the oth er parts will move appropriately, as
the program grows. There are addresses in page zero which can be
used to find each of the parts shown in Figure 1. These addresses,
usually called pointers, are shown in Table 1. This table includes the
two pointers which were used in the previous programs.

Figure 1. MEMORY ORGANIZATION
Increasing
Addresses
I??? End of Array Storage Area

I??? Beginning of Array Storage Area
I??? End of Program

I??? Beginning of Program
???? End of Variable Storage Area

I??? Beginning of Variable Storage Area
I??? End of Variable Name List

2048 Beginning of Variable Name List

ADDRESSES
130 & 131
132 & 133
134 & 135
136 & 137
138 & 139

140 & 141
142 & 143

Application

NAME
BON
EON
BOV
BOP
CEL

BOA
EOA

TABLE 1

CONTENTS POINT TO
Beginning Of variable Names list
End Of variable Name list
Beginning Of Variable storage area
Beginning Of Program
Beginning Of Currently

Executing Line
Begipning Of Array storage area
End of Array storage area

For those who are interested in putting this information to use, I will
present one example here. I will try to give more examples in futur~
issues of COMPUTE!.

3l

Beyond The Basics

At some time you may find it useful to be able to
"undimension" some array s of strings and reuse the memory for
some other ar rays and strings. It turns out that the CLR function
o nly clears th e var iables found between the BOV (Beginning Of
Variables) pointer and the BOP (Beginning Of P rogr am) pointer.
By temporarily ch anging the BOP pointer, we ca n keep some of the
variab les from being cleared. The array sto rage area is cleared by
setting the EOA (End Of A rrays) pointer equal to th e BOA
(Beginning Of Arrays) pointer. We ca n save some of the array
storage area by temporar il y ch anging the BOA pointer.

The li sting for this UNDIMENSION routine is shown in
List ing 5. The li sting also includes a small demo program to
illustrate its use . Note th at all of the names of var iables which are to
be cleared sho uld occur in the program prior to any of the n ames of
variables which are to be saved. This puts the storage for the
var iables to be cleared at th e beginning of the var iab le storage area.
Also no te that a dummy str ing which ca n be cleared is needed by
the UNDIMENSION routine. In your main program, this dummy
string should be dimensio ned just before dimensioning the strings
and arrays th at you will late r clear, as was done in statements 120
and 150. This allows the use of the ADR funct io ns to find the end
of the array area to be saved.

The reason th e UNDIMENSION routine is not executed by a
GOSUB is that the return line number is lost in the clearing
process. Loop parameters will also be lost , so the rout ine shou ldn't
be executed wh ile in a FOR .. NEXT loop.

Conclusion
I h ope that you found the inform ation in this article
understandable and will find it useful at some point in the future.
The information does show th at ATARI BASIC is fairly effi cient at
using memory to store programs. A lso, the re is' very li tt le penalty in
memory usage when using long va riable names . If you have a ny
quest ions please send them to COMPUTE!.

32

10 REM PROGRAM TO PRINT THE tiUMBERS
20 REM AND HE I r=~ AOORESSE::;
30 REM
40 REt1 Get addr'ess of first 1 ine
50 AOORESS=PEEK(136)+PEEK(137)~Q56
60 F£t1 Get the 1 i r~ rlUlrlber'

Beyond The Basics

70 UU1=PEEK(AODPE::S)+PEEl:(AOO~~ES::;+ 1)t25
6
80 ~'EM Test for· end of pr·oor·aiil
90 IF LNlt1=32768 THH~ OCI
100 REt1 Fl' int. 1 ir!€: r~jtliber· and addr·ess
110 ? uLI~E ill j Lt-i..Jt1.;
120 ? U STARTS AT AODF~E::S II j ADDF.:E::;::;
13e REM Get addr·e55 of ne;~:t. 1 i ne
140 ~RESS=ADOF.:E:; :;+F'EEK(ADOFE::S+2)
150 ,))TO ,70

1 REM
1 00 ~£M PROGRAM TO PR nn T~ TOkB4:;
110 REM ~~ICH BEGIN BA:3IC :3TATEt1HnS
120 REM ,::;et t.he t.e9inrlins of pr·(,sr·aili
13e E~SE=PEEK(136)+PEEKt:: 137):*-256
140 REM l:hanse sb. teillent. ter·iil i m. t.or·
150 F'CtE BASE+5.,22
160 ? O"lRt(125 ::0 : RH1 CLEA~: :;C~~EEt·~
170 REM PRUH TOI<H~:;
100 F~: I:;0 TO :4
190 REt-1 l:harlse 1 i ne r~.I(llber· and t.ok en
200 Pc.::E BAf;E ., I : pm<E 8~6E +4, I
210 LIST I :RH1 Print tokerl
220 R81 UrdJ 1 i ne feed if needed
230 I F I:> 1 THEH .? CHRt\ c.'8) j
240 REM Chanse 1 ef t. i1iar·s i n f or· co 1 Uiilt"IS

250 I F I = 19 TI-E}~ F'OKE :3"2 I 12: PO:; I T lOt·l 12 ..
1
260 I F 1=39 TItH F'OKE 82 } 24 : POS I T IOt·j 24 I
1
270 ~£XT I
280 ~S1 Put Proor·alii back t.o nor· ill a 1
290 POKE BASE J 1 : POKE BASE +4, 0
300 F~ BASE+5J155
310 PIl<E 82,2: POS I TION 2,22

1 REM A
190 i?IfSE=PEEK(136)+PEEK(137)*256

33

Beyond The Basics

34

11€1 REM Chat"lge besinnins token
12€1 POKE 8A::£ +4, 54 : POKE BAS E +E., 22
13f1 F.B1 F'r i nt. oper'::t t.ot", and f unct. ion t.ok e
r:5
140 F'RIHT CHF:$(125)
15(1 FOR I =20 TO 84
160 POKE B~";E" I : POKE 8A::;E +5, I
170 LIST I
100 REM IJrtdo 1 ine feeds
190 ? CHR$(28::' j : IF I =22 THEN ',' CHP$(28) i

200 IF 1=39 ll£N PM 82J 11 : POSITION 1 L
1
210 IF 1=59 TI£H POKE 82J 13: POSIT I ().I 19,
1
220 IF 1=79 TI£N POKE 82, ~.'B: POSITION 28,
1
230 t-£XT I
240 P()(E BASE, 1 : POKE ~E +4 J 13
250 POKE BASE+5,65:POkI BASE+6, 155
260 PM 82J2:POSITIct·t 2,22

100 REM PROGRAt1 TO PRHIT TI£ I)~.'IABLE t~
tE LIST
110 OIt1 ARRA'T1'4iME(1)JSTRINGNAt1E$(1)
12eJ REM GET T~ BEGHtm·~ OF THE LIST
130 F«F:ESS=PEEI« 130)+PEEK(131):t.256
140 ? CH\'$(125); II ~~.' I.:tl.E t'~1E LI ST"
150 REM GET C~RACTER AND TEST F~: H4D
160 A=PEEK(ADDRESS): IF A=0 THH~ ENO
170 REM PRHn (;tlAPACTH: _
180 IF A(12B TI£N? CI-Rf.(A);:GOTO 210
190 ? CHR$(A-128)
200 REM I~T t-EKT ADDRESS AND REPEAT
210 f«JRESS=AODRES:3+1 :I])TO 160

1 REM DU1Ht;ION THE £JJMt'W STF:H~:;
2 DI t1 W11'{$(1)
3 REM DIMENSION THE ARRA"I'S At-ID ST~:mG:3

Beyond The Basics

4 REM WHICH WILL NEED QEAPH~::;
5 DIM Al(1), A2(1)
6 ClR : RH1 QEAR THE IJ~ I Ab'lES
7 H=3: REM # OF UARIA81ES JUST DHlEt1SIOHE
o
8 REM IOCLUOWG rull'W$
9 REM YruR PROGRAM ~.N BEG I t·~ HEPE
100 REM ~E IS AN EXAMPLE OF HQl.J TO
110 REM USE T~ UI'{J I t1Ht3 I Ot·~ ROUT I t·£
120 DIM TEST$(2fD: TEST$=" I I M STILL ~PE"

130 DIM OU~1!'r"i'$(1) I A 1(50, W)
140 A1(50,10)=1: 'c' Ai(50,1(1) .. TEST!
150 PH1 E:~ECUTE Ut·IO I r1Ett:: I Ot·~ POUT I t·I:
160 LIHE = 170 : I:;JJTO 1 ~120
170 DIt1 DUt1t1\'$(1 -:., A2(5(10)
100 A2<: 500)=2 : '7' H2(500 :" TE:T$
190 Et-I1
~'OO ~~EM
100(1 REM UND I t'1Ett:: I O~I F.~jUT I ~iE
101~1 RH1 :3AUE CUF:PEtn PO HiTEF-' i')ALLlE'=::
102(1 :3136=PEHI: 13t,) : :;137=F'EEf:(137·
10."3(1 ::;i 4J:J=FEEV< 14~) ::. : :; 141 =F'EE~:/ 141'
104(1 RH1 tn)E D[I C!}=" i.IAF: I HEt u:
1050 T1=F'EEK(134 >+t:n'i: T2=F'EEf:.(13:;'
1060 IF T1 >255 THEJI T2=12+1: Tl=T1 <:':',1::;
107(1 POKE 13t,) T1 : F'OKE 137,"12
10:::0 REt1 tl0UE bEG I t1H I t·jG OF hF'F.'::·:(t'::::
109(1 T2= Hn(AuF'(OUr1tl\t \ '256 :.
110(1 T 1 =ADF.\ DUt1t1\'j:)- 12~::2':;6
111 (1 POKE 140) T i : F'Df::E 141, T2
112(1 CL~: : FHl CtEAP THE AP~'At:,
1130 PH1 RE:~;Tc!PE F'CI!fHU::::: Ar·1D ;:;'ETUPtj
1140 F;OKE 13t:. ::: 136 : F'Oi::E 137, ::; i ??
1150 POKE 140.' ::;140 : F'CfT 141. ':: 141
116(1 GOTO Ln~E

35

Beyond The Basics

Atari BASIC Structure
W. A. Bell

By now you probably have had your Atari® Computer for a few
months, and have had a chance to put in some fairly large programs
and tinker with and embellish them. You may have even written
some programs of that type. If so, then you have undoubtedly
wished for a renumber command. In fact, if you have used BASIC
on other systems, then you have probably roundly cursed those
programmers who left that facility out. Or you may have wanted to
change the name of a variable to make it more self-documenting,
but didn't know everywhere it occurred. This article will explore, in
tutorial fashion, the structure of Atari BASIC programs as they are
stored in memory. It will provide you some tools for doing more of
your own exploring, and then show how you can put this type of
information to use.

To begin our exploration inside BASIC, the program shown in
Listing 1 is useful. It lets us peek around in memory to find things
that are of interest. It will search memory from a specified starting
address and tell you where it finds a string of characters or data you
have specified, or it will find address pointers to a specified memory
location. It will also let you dump memory in two formats, decimal
or hexadecimal, and character. If your Atari is plugged in, it may
help your understanding to follow along on your keyboard.

Do the following steps in direct mode:

NEW
TESTV AR 1 = 999
TESTVAR2= 123456
TESTV AR3 = 98765432

Now enter the memory analysis utility program in Listing 1 (you
may want to save it for future investigations). As an initial
objective, let's try to find the following:

• Where the BASIC statements are stored
• Where variable names are stored
• Where variable values are stored

Let's start our search by seeing if we can find where the actual lines
of the program are stored in memory. To do that, we RUN the
memory analysis utility program, and request that it find the
character string in the first REM statement (Line 10). To do that
specify "S" for function required and enter the characer search
mode by responding with a "C". Then enter the character string

36

Beyond The Basics

"MEMORY ANALYSIS UTILITY." Be sure to request the dump in
decimal this time. After the appropriate pause, a match should be
found at address 2264 and you should see the first lines of comment.

At this point it should be explained that the article assumes
throughout that you have a system without disk. For those of you
with disk systems most of the addresses will be different, and there
may be some variation in some of the commands, but the
fundamental concepts remain the same. If you have trouble
reproducing these results with a cassette system, it probably is
because of differences in the sequence in which the program was
entered, or errors in variable names. To resolve this you can do a
LIST ere, a NEW, enter the variables again in direct mode, and do
an ENTER "C.

Examining this more carefully, you will note that there are a
few bytes in between the comments of each of the REM lines. After
some study, you may note that the line numbers appear to start five
bytes before each comment, at addresses 2259, 2288, etc. At this
point you may wish to request another search, again with a decimal
dump, looking for the character string "A DUMMY LINE" as listed
in Line 256. The search will find a match at address 2847, and you
will find that the value at address 2342 is now zero, but the next
byte now has a value of one, where it previously was always zero. In
fact the line number occupies two bytes, with the low order byte
containing the low order bits, and the higher byte containing the
high order eight bits. Thus the line number is 256 times the second
byte plus the first byte, or 256*1 +0=256. All binary 16-bit numbers
in the Atari (and most 6502 processors) are stored in this fashion,
including addresses. You may want to study lines 650 through 700
of Listing 1 to see how this type of number is manipulated.

To understand a little more of how this structure is laid out, try
adding the following line to Listing 1.

I REM

Now request the dump function starting at address 2259. You will
see that we now have Line Number one, followed by five bytes, and
then Line Number 10. Looking at the Line one dump, we see the
first two bytes represent the line number, while the next two bytes
contain the value six. Byte number five contains a zero, and byte
number six contains a 155, which from Apendix C of the Atari
Basic Reference Manual is a RETURN or EOL character. You will

37

Beyond The Basics

note that the rest of the REM statements follow a similar format.
In fact we can now deduce that the third byte gives the length

of the lines in bytes and by adding that to the address of the present
line, we can find the next line. (Let's reserve study of the fourth byte
until later). Similarly we can deduce that the fifth byte contains the
equivalent of an opcode for the REM statement, while the EOL
character signifies the end of the character string following the
REM. This also conforms to the information in Chapter 11 of the
BASIC Reference Manual under Item 2, where it states that each
logical line requires six bytes of overhead.

With these facts in hand, let's leave the subject of BASIC
statements for a moment, and see what we can observe about the
other things we want to find.

Note that the second and third items are alluded to in the
BASIC Reference Manual in Chapter 11, Item 3. The statement is
made that a variable takes eight bytes plus the number of characters
in the variable name the first time it is used, but that each
subsequent reference takes only one byte. Thus the variable name
and value cannot be stored in the BASIC statement.

Let's start the search for variable names by looking for the
variable TESTVARI that we entered before we keyed in Listing 1.
After typing RUN, specify a string search for the characters
"TESTVAR." With an appropriate wait for the computer to find it,
it should respond with an address of 2048 (decimal), and a dump of
the surrounding area.

Examining the dump received, you will see the characters
TESTV AR 1 starting at the indicated address. However, note that
the last character is in inverse video, or more precisely, that the
high bit of the last character in the name h as been set to a one.
Following TESTV AR 1, you will see the variable names TESTV AR2
and TESTVAR3, each with the last character in inverse video. You
will also see the variables used in the program displayed in the same
manner, each with the last character in inverse video.

Now specify an address pointer search for the address where
the variable name table was found (2048). In this case several will
probably be found, but the one of interest is the one found on
memory Page 0 at address 130 and 131. (For those of you not
familiar with the 6502 architecture and the significance of Page 0,
you may want to refer to one of the excellent references on this
subject.) One more problem with the variable name table remains.
Since it is of variable length, depending on how many variables
have been defined, and the length of each variable name, how do

38

Beyond The Basics

we know where the table ends?
A little deductive reasoning is in order. Remember that

variables can only contain alphanumeric characters. Thus any non
alphanumeric character could be used as a flag for the end of the
variable table. Looking at a dump starting at 2048, sure enough
after the variable BYTEO we see the value 0 (address 2122). Now
doing an address pointer search for address 2122, we find such a
pointer at 132 and 133 on memory Page O. We can also do a search
for an address pointer to the beginning of the program lines by
specifying a search for an address pointer to address 2259 where we
found the first line of the program. Again a reference will be found
on Page 0, this time at address 136 and 13 7.

Let's review what we found so far. We have a variable name
table stored from address 2048 to 2122, with a pointer to the
beginning of the table stored at addresses 130 and 131, and a
pointer to the end of the table at 132 and 133. We also have the
program lines stored beginning at address 2259, and an 'address
pointer at 136 and 137. So what do you suppose is stored in
between the end of the variable name table and the beginning of the
program lines?

To find out, let's do a dump starting with the byte after the
end of the variable name table, or address 2123, in decimal. After
doing so, nothing much jumps out at you - right! So let's try a
dump in hex starting at the same address. This time, with some
study you will find in order the hex characters 09 99, 123456, and
98 76 54 32 interspersed with other data. Looks like we may have
found the variable value table, doesn't it?

Let's study this dump a little closer. Looking at the other
bytes, and remembering what Chapter 11 said about 8 bytes per
variable, study the value of TESTVAR 1. What you should see is:

00 00 41 09 99 00 00 00

Similarly for TESTVAR2 and TESTVAR3 we see:

00 01 42 12 34 56 00 00 and
00 02 43 98 76 54 32 00

Thus the structure of the variable value is such that it is stored in
binary coded decimal (BCD) as a floating point number. The digits
are stored left-justified in bytes four through eight of the 8-byte
block, with the exponent stored in byte three. The exponent is
defined such that for numbers greater than one, the exponent is
from hex 40 to hex 7F, while for numbers less than one it will have
a value from 00 to 3F. For negative numbers the high order bit will

39

Beyond The Basics

be set to one, or the exponent will range from 80 to FF. At this
point you may want to end the dump program, change line 50 to
ass ign a different set of valu es to the three variables, and then run a
dump of this same area to see the ch anges.

Now that you have convinced yourself of the way numbers are
stored, we st ill h ave a mystery or two to solve. What about byte
two? Suppose that might be the variable number? Remember the
statement in Chapter 11 about h ow additional references of a
vari ab le only take one byte. Seems that the only way to do that
would be to assign a var iab le number. A lso note that you are
allowed a max imum of 127 different variables in a given BASIC
program (see C h apter 1 of the Reference Manual). So the deduction
that byte two of the 8-byte b lock is the variable number seems
logical. Furthermore it gives a method of finding th e variable name
for such purposes as listing the program o r operating in the direct
mode.

Let's leave the use of the high order bit of byte two and the use
of byte one of the 8-byte block to your investigation, with a couple
of hints. Try examining the variables A$, B$ and HEX$. You may
also want to define a numeric array in the direct mode and assign a
set of va lues to it, and then dump its 8-byte block. One final step in
this invest igation is to try to find an address poi nter to the variable
value table. Specify a pointer to the address 2123, and we find that
such an address pointer 'exists at 134 and 135 on Page 0 of memory.

Let's stop and summarize what we have learned at this point.
FIGURE 1 is a visual depiction of the layout in memory of the
address pointers on memory Page 0, the variable name table, the
va riable va lue table, and the program storage area.

At this point let's set our objective to create a fu ll featured
renumber utility. We h ave the fund amental information regarding
memory layout and usage. The only additional data n eeded is to
determine how line numbers are used in a program line. To
investigate this, LISTING 2 h as been developed. You can enter it at
this point, eith er clearing the old program out, or leaving it at your
option (if you h ave adequate memory).

The program in Listing 2 has been designed to let us dump a
specifi c BASIC line. It will give us a decimal, h ex, and character
dump of any line we want. To digress for a moment, what we will
get is a picture of the tokenized version of the BASIC line. This is
the form used to store a program in the save mode. The list mode
on the other hand stores the program just as you see it wh en you do

40

Beyond The Basics

a list to the screen or printer. Also note that a save operation will
save the variable name table and the variable value table as well.

The intention is to decipher the internal structure of a BASIC
line; since we want to generate a renumber utility, more specifically
we want to see what those lines with line number references look
like. Let's start with one of the most common line referencing
statements, the GOTO. When the program in Listing 2 has been
entered, add the line

10 GOTO 10

Then in direct mode type

GOTO 20000

Now request that the program find and dump Line 10. What you
will see as a dump is :

DEC 10
HEX OA
DEC 0
HEX 00

o
00
o

00

13
OD
22
16

Now change Line 10 to read

10 GOTO 123456

13 10
OD OA

14
OE

64
40

and with another GOTO 20000, the dump will read:

16
10

o
00

o
00

DEC 10 0 13 13 10 14 66 18 52 86
HEX OA 00 OD OD OA OE 42 12 34 56
DEC 0 0 22
HEX 00 00 16

From the change that takes place, it is obvious that the referenced
line number is stored in bytes seven through 12 of the line. Not
only that, but also it is stored in exactly the same format as variable
values are stored. You may want to try a few other values for the
referenced line number to convince yourself.

We can also speculate that the opcode for the GOTO must be
either byte five or byte six, or a combination of the two. Now let's
see how BASIC lines with multiple statements are formatted. Again
modify Line 10 as follows:

10 GOTO 999:GOTO 999:GOTO 999

and doing a GOTO 20000 we get the following dump:

DEC 10 0 33 13 10 14 65 9 153 0
HEX OA 00 21 OD OA OE 41 09 99 00
DEC 0 0 20 23 10 14 65 9 153 0
HEX 00 00 14 17 OA OE 41 09 99 00

41

Beyond The Basics

DEC 0 0 20 33 10 14 65 9 153 0
HEX 00 00 14 21 OA OE 41 09 99 00
DEC 0 0 22
HEX 00 00 16

From this we can conclude that bytes four, 13 and 23 are used to

describe the length of a given statement in the line. More precisely,
they are used to give the offset from the address of the line number
to the next statement, and the last of these in a multi-statement line
will always be the same as byte three of the line.

At this point we need to establish what statements use line
number references. After studying the BASIC Reference Manual,
the following types of statements can have a line number reference:

GOTO GOSUB ON () GOTO ON () GOSUB TRAP
LIST RESTORE IF()THEN IF () THEN GOTO
IF () THEN GOSUB

Taking each of these statements in order (entering the line number
as shown, and then dumping it) we get the following results:

1 GOTO 999
DEC 1 0 13 13 10 14 65 9 153 0
HEX 01 00 OD OD OA OE 41 09 00 00
DEC 0 0 22
HEX 00 00 16

2 GOSUB 999
DEC 2 0 13 13 12 13 65 9 153 0
HEX 02 00 OD OD OC OE 41 09 99 00
DEC 0 0 22
HEX 00 00 16

3 ON Z GOTO 997, 998, 999
DEC 3 0 31 31 30 133 23 14 65 9
HEX 03 00 IF IF IE 85 17 OE 41 09
DEC 151 0 0 0 18 14 65 9 152 0
HEX 97 00 00 00 12 OE 41 09 98 00
DEC 0 0 18 14 65 9 153 0 0 0
HEX 00 00 12 OE 41 09 99 00 00 00

4 ON Z GOSUB 997, 998, 999
DEC 4 0 31 31 30 133 24 14 65 9
HEX 04 00 IF IF IE 85 18 OE 41 09
DEC 151 0 0 0 18 14 65 9 152 0
HEX 97 00 00 00 12 OE 41 09 98 00
DEC 0 0 18 14 65 9 153 0 0 0
HEX 00 00 12 OE 41 09 99 00 00 00

5 TRAP 999
DEC 5 0 13 13 13 14 65 9 153 0
HEX 05 00 OD OD OD OE 41 09 99 00
DEC 0 0 22
HEX 00 00 16

42

Beyond The Basics

6 LIST 999
DEC 6 0 13 13 4 14 65 9 153 0
HEX 06 00 00 00 04 OE 41 09 99 00
DEC 0 0 22
HEX 00 00 16

7 RESTORE 999
DEC 7 0 13 13 35 14 65 9 153 0
HEX 06 00 00 00 04 OE 41 09 99 00
DEC 0 0 22
HEX 00 00 16

8 IF ZTHEN 999
DEC 8 0 15 15 7 133 27 14 65 9
HEX 08 00 OF OF 07 85 1B OE 41 09
DEC 153 0 0 0 22
HEX 99 00 00 00 16

9 IF Z THEN GOTO 999
DEC 9 0 17 7 7 133 27 17 10 14
HEX 09 00 11 07 07 85 1B 11 OA OE
DEC 65 9 153 0 0 0 22
HEX 41 09 99 00 00 00 16

10 IF Z THEN GOSUB 999
DEC 10 0 17 7 7 133 27 17 12 14
HEX OA 00 11 07 07 85 1B 11 OA OE
DEC 65 9 153 0 0 0 22
HEX 41 09 99 00 00 00 16

From these dumps we now deduce that all line number references
are preceded by a byte having the decimal value 14. Furthermore,
the byte preceding the byte with a value of 14 will have one of the
following values if a line number reference follows:

orcoDE
4

10
12
13
18
23
24
27
35

LIST
GOTO
GOSUB
TRAP

STATEMENT

ON () 2nd, 3rd, etc. line references
ON () 1st line reference
ON () GOSUB 1st line reference
IF()THEN
RESTORE

In fact, it appears that the actual usage of the value 14 in a BASIC
statement is to indicate that a BCD floating point constant follows.
To see this, you m ay want to reload the program in Listing 1 and
search for the decimal value 14 . You should find that any
occurrences in the program storage area, aside from line or
statement lengths, precede a numeric constant.

With this information in h and, we now know enough to
construct a Renumber utility. The basic algorithm is as follows:

1 - Find each line number reference

43

Beyond The Basics

2 - Find the line that is referenced, and count the number of
lines from the beginning

3 - Compute what the new line number will be
4 - Store that va lue as the new referenced line number
5 - When all line references have been set to their new va lue

then do the actua l renumbering of lines.

There remains a st icky implementation problem, since line numbers
are stored as floating point numbers. (Why this approach was
chosen by Atari remains a mystery - a b in ary format wou ld have
required two bytes instead of six, and no internal conversion.)
Listing 3 demonstrates one technique for so lving this problem, using
the var iable value table we found earlier. In this case, the location of
the va lue for a spec ifi c var iable (REFLINE) is established. That
varib le is used to store the new refe renced line number when it is
computed. Then that va lue is POKEd into the location for th e line
number reference.

Other more elegant solutions, requiring fewer statements, are
possib le, but they genera ll y require some additional exploration of
the structure of BASIC. At this point you wil l probably want to
study Listing 3 a lo;)g with its comments, and then enter it into your
Atari. You should also note that this implementation of a renumber
utility is not capable of renumbering itse lf. One other limitation is
that the program will not deal with situations where variables are
used as the line number reference. In such cases, you will have to
follow the computational rout ines used to set the va lue of the line
number reference, and either alter them appropriately, or else
restore those line numbers to their original value after renumber has
done its thing.

So how is such a program used? After the program has been
entered, ready the tape recorder and, in the direct mode, type;

UST"C

This will store the renumber utility on tape in a form so that it can
be merged with other programs alread y in memory. (A CSAVE
wou ld be advisab le, just for backup purposes.) First CLOAD a
program you want to test the utility on. When that has finished,
position the tape at the locat ion where yo u started the List "C, and
type:

ENTER "C

When the renumber utility has been loaded, a li st command will
show that it has been merged in at the end of the program
previously loaded .

44

Beyond The Basics

Now type GOTO 3200 and watch the results. One more step
o f course , is saving the p rogram once it h as bee n renumbered. If you
simply do a CSAVE, you will also store the renumber utilit y with
your original program. To avo id doing th at, (gobbling up a ll th at
precious memo ry, not to menti o n space on your tape) do the
following:

LIST "C l" ,O ,3 l999

Rew ind the tape to wh ere the li st started a nd

ENTER "C

You now have just the or igina l program in its renumbered form,
and it ca n be CSAVEd in the con vention al manner.

We h ave bee n abl e to develop a utility to renumber /jA~lC
programs using th e info rm at io n we have uncovered. We h ave a lso
found severa l techniqu es for co nserving memory, such as not using
the IF THEN GOTO statement, as it uses two more bytes than IF
THEN. U sing a va riabl e will a lso save over using a co nsta nt if it is
used mo re th an twice. And, of course , every statement put into a
multipl e statement line saves th ree bytes. There a re severa l other
functions th at could be im plemented: such as ch an gi ng variable
names; findin g a ll references to a given va riabl e ; th e del etion of
b locks of lines ; and renumbering se lec ted lines of a program. Some
of these ideas require add itiona l di gging to find a ll o f the data
necessary; oth ers ca n be im plemented with th e things we know at
this poi nt.

T wo problems ex ist at t hi s point. The fir st is th a t utilizes such
as that in Li st ing 3 require a good deal o f memory - a prec io us
commodity for mos t of us. The seco nd is that, for programs of any
signifi ca nt size, t h e use of such a utilit y will take a co nsiderab le
period of time. A futur e article will take wh at h as been developed to
date and co nvert some of th e more co m plex fu nctions to m achin e
language subroutines. These subro utines will be ge neral purpose in
nature, so th at th ey can a lso be used in im plement ing SO lTl e of t he
functions in th e previous paragraph. H appy PEEKing!

45

Beyond The Basics

Page ° - Address Po inte rs

FIGUREl

Memory Layout for
Atari Basic Tables

130, 131 Va r iable Name Table, Beginning >--------,

132 , 132

13-1, 135

136, 137

46

Va ri ab le Name Table, End >

Variab le Value Table, Beginn ing >

First BASIC Line >

Variable Na me Table

> FIRST NAME I Hig h bit o n, last byte
SECOND NAl\ IE I H igh bi t un , laS! by te

LAST NAME I Hig h bi t o n, laS! byte

> °
Va riable Value Table

> 'Undefi ned
U ndefined

Variable # Exponen t
Va riab le 1 Expo nen t

BASIC Li nes

'-----> Line ,# Line #
Li ne # Line #

O ffse t to nex t line
Offse t to next line

BCD Number, 5 by tes
BCD Number, 5 byt es

Beyond The Basics

Program

- 10 REM MEMORY ANALYSIS UTILITY
- 20 REM by W. A. Bell May 1981

30 REM * Englewood. Colorado *
40 DIM A$(100),B$(I) ,HEX$(16)
50 HEX$~ " 0123456789ABCDEF "

60 TESTVAR I ~999 : TESTVAR2~123456:TESTVAR3 ~98765432

70 PRINT CHR$(125)
90 PRINT" MEMORY ANALYSIS UTILITY"
100 PRINT "ENTER S FOR DATA SEARCH"
110 PRINT " D FOR MEMORY DUMP"
120 PRINT" A FOR ADDRESS POINTER SEARCH"
130 PRINT" E TO END"
140 INPUT B$
150 IF B$~"S" THEN 210
160 IF B$~"D" THEN 770
170 IF B$~"A" THEN 630
180 IF B$~"E" THEN END
190 GOSUB 1270 : GOTO 100
210 PRINT "ENTER C FOR CHARACTER DATA"
220 PRINT " D FOR DEC I MAL DATA"
230 INPUT B$
240 IF B$~"C" THEN 360
250 IF B$~"D" THEN 270
256 REM A DUMMY LINE
260 GOSUB 1270:GOTO 2 10
270 PRINT "ENTER DECIMAL DATA TO SEARCH FOR"
280 PRINT "IN THE FORM DI , D2 , Dn"
290 PRINT "END WITH A VALUE OF 999"
300 ALENGTH~O
3 I 0 INPUT I
320 IF 1>255 THEN 39 0
330 ALENGTH~ALENGTH + I

340 A$(ALENGTH , ALENGTH)~CHR$ (I)
350 GOTO 310
360 PRINT "ENTER CH AR STRING TO SEARCH FOR"
370 INPUT A$
380 ALENGTH~LEN(A$)
390 GOSUB 1200
400 GOSUB 1170
4 10 POKE 1408,0
420 FOR I~O TO 4000
430 IF PEEK(I)<>ASC (A$(I, I)) THEN 590
440 IF ALENGTH <2 THEN 490
450 FOR K~2 TO ALENGTH
460 IF PEEK(l+K- I) <> ASC (A$CK,K » THEN 590
470 NEXT K
490 PRINT CHR$ CI25) ;"MATCH AT ADDR ESS ~ ";1
500 POSITION 28,0:PRINT CHR $(138) ; CHR$(136)
5 10 PRINT "DUMP STARTS AT ";1-7
520 FOR K~I-7 TO 1+83 STEP 10
530 GOSUB 920
540 NEXT K
55 0 PR I NT "ENTER C TO CONTINUE SEARCH"
560 PRINT " RETURN TO QUIT";
570 I NPUT B$
580 IF B$<>"C" THEN 90
590 NEXT I

47

Beyond The Basics

48

600 PRINT" DATA NOT FOUND
610 GOTO 90-
630 PRINT "ENTER ADDRESS POINTER TO SEARCH FOR"
640 INPUT ADDRESS
650 K=0:BYTE1 =INT(ADD RESS /256l
660 B YTEO=ADDRESS-256 '-'BYTE 1
670 GOSUB 1170
680 FOR 1=0 TO 4000
690 IF PEEK (I)<>BYTEO THEN 730
700 IF PEEK (I+ l)<>BY TEI TEHN 730
710 PRINT "POINTER MATCH AT ";1;",";1+1
720 PRINT "LOOKING FOR OTHERS"
730 NEXT I
740 PRINT "NONE FOUND"
750 GOTO 90
770 PRINT "ENTER STARTING ADDRESS FOR DUMP"
780 INPUT ADDRESS
790 GOSUB 1200
ilOO PRINT CHRS (125 l ;"DUMP STARTS AT ";ADDRESS
810 FOR K=ADDRESS TO ADDRESS+90 STEP 10
820 GOSUB 920
830 NEXT K
840 PRINT "ENTER C TO CONTINUE DUMP"
850 PRINT " RETURN TO QUIT";
860 INPUT BS
870 IF BS<>"C" THEN 90
880 ADDRESS=ADDRESS+91
890 GOTO 800
900 END
920 IF DUMP=O THEN PR INT "DEC ";: GOTO 940
930 PRINT "HEX " -
940 FOR J=O TO 9
950 DEC=PEEK (K+J)
960 IF DUMP=O THEN 1020
980 HEX 1=I NT(DEC/ 16) : HEXO=DEC- 16*HEX I
990 PRINT HEXS(HEXI+ 1,HEX1 +l) ;HEXS(HEXO + l . HEXO+l);" " .
1000 GOTO 1050
1020 IF DEC<10 THEN PRINT DEC;" "; :GOTO 1050
1030 IF DEC <100 THEN PRINT DEC;" "; : GOTO 1050
1040 PRINT DEC;
1050 NEXT J
1060 PRIN T :PRINT "CHAR ";
1070 FOR J=O TO 9
1080 DEC=PEEK(K+J)
11 00 IF (DEC>26 AND DEC<32) OR (DEC>124 AND DEC<128)

THEN PRINT " "; : GOTO 1 130
111 0 IF (DEC>154 AND DEC<160) OR DEC>252

THEN PRINT" "; : GOTO 1 130
1120 PRINT CHRS (DEC) ;" ";
1130 NEXT J
1140 PRINT
1 150 RETURN
11 70 PRINT "patience - this may take a while"
1180 RETURN
1200 PRINT "ENTER H FOR HEX Dlmp"
1 210 PRINT " D FOR DECIMAL DUMP"
1220 INPUT BS
1230 IF BS="H" THEN DUMP=1 :RETURN
1240 IF B$="D" THEN DUHP=O:RETURN
1250 GOSUB 1270:GOTO 1200

Beyond The Basics

1270 PRINT " "'''' INPUT ERROR
1280 RETURN ------~--~~~----

Comments for Program I ,

General The underscore () is used to indicate that
characters are t~ be entered in inverse video

Lines Comments
~
90- 190
210-610
210-260
270-350
360-380
410
420-590
490-540
630- 750
650-660
680-730

Required since a RUN co~nand res ets all variables to zero
Determine the function to be performed

770-890
810-830
920- 1280
920-1150
950-1050
980-1000
1020-1040
1050-1 130
1100- 1110

1170- 1180
1200-1250
1270- 1280

Search memory for specified data
Determine if data input as character or decimal
Input of decimal data
Input of character data
Required to prevent match on BASIC input buffer
Act ual search of memory
Match was found. dump memory at that point
Search for an address pointer
Convert to internal address format
Conduct the search. noting that addresses are stored
low order byte. then high order byte
Dump spec ified area of memory
Dump a full screen of memory
Subroutines
Subroutine to dump memory
Dump one line (10 bytes) in hex or decimal
Hex dump after converting to hex
Decima l dump with appropriate spacing
One line of character dump for same memory
Check for cursor control characters and s ubstitute
inverse video spac e
Subroutine to print patience message
Subroutin e to determin e if dump is in hex or decimal
Subroutine for input error

Program 2.

'- 20000 REM BASIC LINE DUMP UTILITY
"20100 REM by W. A. Bell May 1981
· 20200 REM * Englewood, Colorado *
20300 CLR :DIM HEXS (16),QS(I)
20400 HEXS~"0123456789ABCDEF"
20500 LINEADR~ PEEK(136) +256*PEEK(137)
20600 PRINT "ENTER LINE NUMBER TO BE DUMPED";: INPUT LINENUM
20700 THI SLINE~PEEK(LINEADR)+2 56 "'PEEK(LINEADR+ 1)
20800 IF THISLINE>LINENUM THEN PRINT "LINE DOESN'T EXIST -

TRY ANOTHER":GOTO 20500
20900 IF THISLINE~LINENUM THEN 21300
21000 LINEADR~LINEADR+PEEK (LINEADR+ 2)
2 11 00 GOTO 20700
21300 PRINT CHRS(125);"LINE II ";THISLINE;" START ADDRESS

; LINEADR
21400 LI ST LINENilll
21500 Z=10:Y=5:MAXADR=LINEADR+PEEK (LINEADR+2)
2 1600 IF LINEADR +Z>MAXADR THEN Z=MAXADR-LINEADR
2 1700 FOR I~O TO Z-1

49

Beyond The Basics

21800 POSITION 2,Y
21900 PRINT "DEC"
22000 PRINT "HEX"
22100 PRINT "CHAR"
22400 Q=PEEK(LINEADR+I) : X=3*I+8
22500 QS=CHRS(Q)
22600 HEX1 =INT(Q/ 16) :HEXO=Q- 16'HEXI
22700 POSITION X,Y
22800 PRINT Q
22900 POSITION X,Y+ l
23000 PRINT HEXS(HEX1+l ,HEX1 + l):HEXS (HEXO+l,HEXO+l)
23 100 POSITION X,Y +2
23200 PRINT QS
23300 NEXT I
23400 LINEADR=LINEADR+Z:Y =Y+3
23500 If Y<21 THEN 23900
23600 PRINT "ENTER RETURN fOR NEXT PAGE":
23700 INPUT QS
23800 PRINT CHRS (125) ; " DUMP CONTINUES AT ADDRESS ":

LINEADR : Y=2
23900 If LINEADR<MAXADR THEN 21600
24000 PRINT "ENTER C TO DUMP MORE LINES"
24 100 PRINT" RETURN TO QUIT";
24200 INPUT QS
24300 If QS="C " THEN 20500
24400 END

Comments for Program 2.

General Th e under score (_) is used to indicate that
cha r acters are to be entered in inverse video

Li nes
20400
20500-21100
20500
20700
2 1000
21300-2 1400
21500-23500
21500

21700-23300
22700-22800
22900-23000
23100-23200

23500
23600-23800
23900

Comments
Constants used in hex conversion
find th~ line the dump was requested for
find starting address of first line
Compute line number of cu rr ent line
Compute address of next lin e
Set up to dump line
Dump one screen of memo ry
Z is how many bytes to dump on this line

.y is vertica l position on screen
MAXADR is start of next line
Dump Z bytes of memory
Dump byte in decimal
Dump byte in hex
Print character representation of byte - using
POSITION avoids mo st of the problems with cursor
movement except c l ear screen (Q= 125)
Test for full screen of dump
for line s that exceed a full screen
Check for end of line

Program 3.

32000 CLR : PRINT CHR$ (125); "
- 32005 REM by W. A. Bell May 1981

RENUMBER UTILITY "

50

Beyond The Basics

-32010 REM * Eng l ewood, Colorado *
32015 DI M OPCODE(10) ,REFNAME$ (7)
32025 REFNAME$="REFLINE"
32030 REFADR=PEEK(130)+256"PEEK(131)
320 35 REFCOUNT=O
32045 FOR 1=1 TO 7
32050 IF PEEK (REFADR +I-I)<> ASC(REFNAME$ (I ,I)) THEN 32090
32055 NEXT I
32070 REFADR =PEEK (I 34) + 256 " PEEK (I 35)+8"' REFCOUNT
32080 GOTO 32120
32090 REFCOUNT=REFCOUN T+ I
32095 IF REFCOUNT >127 THEN PRINT "FATAL PROGRAM ERROR":END
32100 REFADR =REFADR+ I
32105 IF PEEK (REFADR - I » 127 THEN 32045
32110 GOTO 32100
32120 RESTORE 32 125
32125 DATA 10, 12,23, 24, 13 , 4 , 35 ,2 7 ,18
32130 FOR 1=1 TO 9
32135 READ X
32140 OPCODE(I)=X
32145 NEXT I
321 50 START ADR=PEEK (136)+ 256 "PEEK (137)
321 60 LINEADR=STARTADR:REFLIN E= O
321 65 OLDLINE=-I :LINECOUNT=O
32170 NU LIN E=PEEK (LI NEADR)+ 256 "' PEEK(LINEADR+ I)
32175 IF NULINE >31999 THEN 32220
32 180 IF OLDLI NE<NU LI NE TH EN 32200
32185 PR I NT "SEQUENCE ERROR AFTER "; OLDLINE
321 90 LIST OLDL I NE-I,OLDLINE+ IO
32195 END
32200 LINEADR=LINEADR +PEEK (LINEADR +2)
32205 LINECOUNT=LINECOUNT + I
32210 OLDLINE=NULINE
32215 GOTO 32170
32220 PRINT "LINE SEQUENCE VALID"
32225 PRINT LINECOUNT;" LINES"
32235 PRINT "ENTER START, INCREMENT";: INPUT BASE,IN CR
32240 IF BASE+INCR*LINECOUNT<32000 THEN 32255
32245 PRINT "INPUT ERROR - WILL EXCEED MAXIMUM LINE

NUMBER AL LOWED ":END
32255 LINEAD R=STARTADR
32260 NULINE=PEEK (LI NEADR) +256 *PEEK(LINEADR +I)
32265 IF NULINE>31999 THEN 32470
322 70 LINEEND=LINEADR+PEEK(LINEADR+2)
32275 STMTSTART=L I NEADR+4
32280 STMTEND=LINEADR +PEEK (LINEADR+3)
32285 FOR I=STMTSTART TO STMTEND-I
32290 IF PEEK(I)<>14 THEN 32430
32300 FOR J=1 TO 9
32305 IF PEEK(I-I)=OPCODE (J) THEN 32325
323 10 NEXT J
32315 GOTO 32430
32325 FOR K=1 TO 6
32330 POKE REFADR+K+l,PEEK (I +K)
32335 NEXT K
32340 PRINT "LINE "; NULINE;" REFERENCES LINE " ; REFLINE
32345 IF REFLINE<32000 AND REFLINE>-1 AND REFLINE=INT(REFLINE)

THEN 32355
32350 PRINT "GARBAGE LINE NUMBER":GOTO 32430
32355 OLDADR-STARTADR:RE FCOUNT-O

51

Beyond The Basics

323600LDLINE=PEEK(OLDADR)+256*PEEK(OLDADR+l)
32365 IF OLDLINE=REFLINE THEN 32410
32370 IF OLDLINE>REFLINE THEN 32390
32375 OLDADR=OLDADR+PEEK(OLDADR+2)
32380 REFCOUNT=REFCOUNT+l
32385 GOTO 32360
32390 PRINT "ERROR - REFEREN CED LINE DOESN'T EXIST"
32395 LIST NULINE
32400 GOTO 32430
32410 REFLINE=BASE+INCR" 'REFCOUNT
32415 FOR K=l TO 6
32420 POKE I+K,PEEK (REFADR+K+ l)
32425 NEXT K
32430 NEXT' I
32435 STMTSTART=S TMTEND+ l
32440 IF STMTSTART >L INEEND THEN 32455
32445 STMTEND=LINEADR+PEEK (STMTEND)
32450 GOTO 32285
32455 LINEADR=LINEADR +PEEK(LINEADR +2)
32460 GO TO 32260
32470 LINEADR =S TARTADR
32475 FOR 1=1 TO LINECOUNT
32480 BASE 1=INT(BASE/256):BASEO=BASE-256*BASEl
32485 POKE LINEADR,BASEO
32490 POKE LINEADR+l ,B ASE l
32495 BASE=BASE+1NCR
32500 LINEADR =LINEADR+PEEK(LINEADR+2)
32505 NEXT I
32510 PRINT " ,',,',,', RENUMBER COMPLETE """":END

Comments for Program 3.

General The under score () is used to indicate that
characters are t~ be entered in inverse video

Lines
32025-32110

32030
32045-32055
32070-32080
32090- 32110

32120-32165
32120-32145
32170-32225

32235-32245

32260-32460

52

The program requires 2319 bytes of memory in this form.
To conserve memory, a number of lines could be deleted,
e limina ti ng some displ ays and error c hecki ng. These
lines should be considered: 32095, 32180 through
32195, 32220, 32225, 32240, 32245, 32340 through 32350,
and 32510. Smaller gains can also be made by converti ng
the computation of line addresses and lin e numbers to
subroutines, and by using shorter variable names.

Corrunents
Find the address of the variable REFLINE, used to store
the referenced line number
Beginning of the variable name table
Is this the correct variable?
Yes, compute the address in the variable value table
No, search for the end of this variable (inverse video)
and increment the variable number
Initialize other variables
Set up the array of opcodes which use line numbers
Count the number of lines and check to make sure they
are in ascending order
Input the renumber parameters and check see if they
will exceed the first line number of this program
Find each line number reference, and replace with the
new line number

32260-32280

32285-32430
32290
32300-32310
32325-32335
32345
32355-32385
32410-32425

32435-32460

32470-32505

Beyond The Basics

Compute address of line, line number, address of end
of line. start of statement and end of statement
Process each BASIC statement in the line
Test for a BCD constant
Check for line referencing opcode
Store referenced line number in variable REFLINE
Check for nonsense line numbers (just in case)
Scan program to locate referenced line
Referenced line found so compute what the new line
number will be and store in line
Check for end of line and update address pointers
accordingly
Now compute the new line number for each .line
and store in the first two bytes of the line

53

Beyond The Basics

Input/ Output on the
Atari
Larry Isaacs

Here is much that you wi ll want to Imow about dealing with fil es. There
is also an eX/Jlanation of the XIO commands.

In this article, I will try to explain how to use the va rious BASIC
commands at your disposal to communicate with the peripheral
devices in your system. These peripheral devices include the Screen
Editor (E:), keyboard (K:), a nd TV M onito r (S:), all of which are
part of your machine. External dev ices which are currentl y avail able
include disk drives (01: through 0 4:) , printer (P:), and cassette (C:) .
The I/O (Input / Output) commands we will be discuss ing are the
PUT, GET, PRINT, INPUT, XIOS , XI0 7, XI09, and XIOll
commands. Also, the discussion will be limited to the use of these
commands as it relates to logica l fil es .

Before we get into deta il s, there are two important facts to
remember. The fir st one is th at these I/O commands result in the
transfer of one or more bytes of data , and t hat , oft en, these bytes
will be AT ASC II characters. The seco nd fact is th at the byte or
bytes whi ch ge t transferred will be the same regardless of the device
with which you are communicating.

Open And Close
Before you can communica te with a peripheral device , it must fir st
be "opened ," and, in the case of the disk , a fil e name provided. The
sy ntax of the o pen com ma nd is as fo llows :

OPEN #iocb,mode,O,"device:name.ext"

iocb - I/O Cont ro l Block through which BASIC will send its
requ ests to the I/O softw are.

mode - This should be an arithmeti c express ion which evaluates to
4, 6 , 8,9, or 12. Fo r now we will jus t be using 4, 8 , and 12. Their
meaning is as fo llows :

4 = open for reading
8 = open for writing

12 = open fo r readi ng and wr i ti ng

device - This sh ould be a letter whic.h iden t ifies which device to
associate with the I/O C ontrol Block specified previously.

54

Beyond The Basics

name - This sh ould be a n ame of up to eight alph anumeri c
ch aracters , the fir st of whi ch must be a lette r .

ext - This is an extension to the nam e whi ch is usually used to

indica te the type of fil e, BASIC program, data , etc . It may include
up to three alphanumeric ch arac ters. The n ame plus exte nsio n fo rm
the fil e name whi ch is needed when communicating with the disk.
Once you have opened a dev ice , you communi cate with th at device
using the "iocb" number. To close a device o r fil e , you use the
CLOSE comma nd. The sy ntax for this comm and is as fo llows:

CLOSE #iocb

Only o ne device ca n be assoc ia ted with an IOCB at a time. If you
wish to associ ate a new dr ive with a n IOCB th at is currentl y in use ,

!
you must close th e old device fir st. In the case of the di sk, cassette ,
and the printer, a CLOSE comm a nd may be required fo r proper
operation . For exa mple, th e d isk ca n o n ly write groups of 128 bytes,
ca lled sectors , whi ch are written o nce enough d ata h as been
received to fill th e sec tor. The C LOSE comm and is required to
cause the last secto r of a fil e , which is o nly partially fill ed with data,
to be written to the disk . The cassette also needs a CLOSE
command to write the last group of bytes. And since th e printer
doesn't print a line until an EO L (End of Lin e) charac ter is received,
a CLOSE may be needed to print out th e last line .

If a program termin ates with out erro r, o r via an END
statement, all open dev ices and fil es will be closed auto mati call y. If
the program terminates beca use of an erro r, a STOP sta tement, o r
the BREAK key being struck, the dev ices and fil es will be left open.
If you aren't able to continue t he program, you may close t he
devi ces and fil es b y entering the necessa ry C LOSE co mm ands
directly, i.e. without line nu mbers. Also , executing the RUN
comma nd will close any ope n dev ices o r fil es.

Now we will begin our d iscuss io n of t he I/O comm ands. M a n y
of the examples make use of the di sk . If you wish to use cassette
instead, simply ch ange the fil e specificat ion in th e OPEN commands
to the cassette device . Just pl ace a blank cassette in the cassette
playe r. Then wh enever yo u hea r two beeps, rew ind the tape , press
PLAY and REC ORD on the player , then hit RETURN on the
ATARl. Whenever you near one beep , rewind the tape, press PLAY
on the player, th en hit RETURN o n the ATARl.

Put And Get
Let's look fir st at th e PUT and GET comm ands, whi ch are the most
bas ic of the I/O comm ands. These two comm a nds result in the

55

Beyond The Basics

transfer of a si ngle byte, with the PUT comm and se nding a byte,
and the GET command receiving a byte. Here is the sy n tax fo r the
commands:

GET #£n, variable ,,·here "fn" is a file number, and "va riable" is a
sim ple va ri ab le , not an ar ray or st ring va riable

PUT #£n, expression where "expression" is an arithmetic
expression

Listin g 1 prov ides an example for using the GET and PUT
commands. In thi s program the Screen d ev ice is opened for readi ng
and writing. This open command will also cause the sc ree n to be
cleared . The letters from "A" to "Z" are sent to the Screen using the
PUT command and, after the cursor is repositioned, the letters are
fet ched back from the Screen using the GET command.

Program 1

18 DIM T$(3e)
28 OPEN *L 121 ~L uS: U : REM (fEN F~: R/W
30 F~ I=ASC("AII) TO AS(:("211)

4e PUT #1 J 1 :~EXT I
58 POS IT 1 ~ PEEK(82) 1 13
60 F~ I =1 TO 26: GET #1 J C~OCTER
70 T $(1 .' I)=C~'$(CHAF:HCTER)
8e ~£)C:T I
90 GET # 1 J I : REt1 IiJvI£ C~~;C~: PAST TI-£ Z
100 ClOSE #1
110 PRun :PPHH 1$

Listing 2 provides a sim il ar exa mple whi ch communicates with
a disk. Note, if you run th is program a second titTle, opening the file
for writing will cause the old fil e to be deleted. Also, if you try to get
more bytes than were wr itten to th e file, an ERROR 136 (End of
File encountered) will be given. C ha nging the 26 to 27 in line 60
will illu strate this.

Program 2

113 OPEN iL8J0J"O:TEST.OOT"
20 F(l< I=ASc(UAII) TO ASC("2" :0
38 PUT #L I :t-£XT I

56

Beyond The Basics

40 CLOSE #1
50 OPEN ~H)4J0) 110: TEST .OOTII
6fj FCF: 1=1 TO ~'6
78 GET #1, C~ACTE~:
00 PRI HT .; ~$(C:~:ACTER).;
90 t·Ex:T I
100 CLOSE #1

The adva ntage of using GET and PUT is that you are
co ntro lling the tr ansfe r of individua l bytes. If this isn't necessary,
yo u will likely find it simpler and fas ter to use o ne of the fo llow ing
I/O commands. Each of th ese comm a nds involves the transfer of a
string of bytes .

Print And Input
The PRINT a nd IN PUT comm ands are used to transfer a st ring of
ch arac ters . The sy ntax of these com ma nds is as fo llows:

PRINT #iocb; list where the "list" is a li st o f express ions sepa rated
by comm as o r semicolo ns. The express ions may be numbers , strings,
simple va ri ables or string var iabl es. If a sem icolon is used prior to an
exp ress io n, the ch aracters fo r this express io n wi ll be sent
immed iately following any previo us ch aracters. If a comma is used
instead of a semicolon, including the one show n in the syntax ,
tabbing will occur before ch aracters froll, th e expression are sent. If
the list doesn't end with a comm a or semi colo n, an EOL ch arac ter
will be sent at the end of the li st. If you wish, the list need not
conta in any express io ns.

INPUT #iocb, list where the "list" is a li st of express io ns separated
by comm as. The express ions may be simple va riables or string
va riables.

When printing st rings , natura ll y the ch arac ters in the str ing
are sent. However, when you print a number, the number is
converted to a st ring of digits an d sent as ATASCII ch aracte rs.
When you input a str ing, ch aracters will be fetched until a n EOL
ch aracter is received . These ch aracte rs will be sto red in the string's
reserved memory un t il that is filled or the EOL character is
received. When you input a num ber, characters will be fetched until
an EOL character or a comm a is rece ived . At this point, assuming
all the ch aracters were va lid digits, t he st ring is con verted back to a
number.

Listing 3 prov ides an example of using PRINT and INPUT

57

Beyond The Basics

with the Editor devi ce . Like the Screen device, the Editor will print
and fetch characters from the screen memory. However, when
printing to the Editor, control characters will perform the assoc iated
fun ction instead of printing a character. When you input from the
Edito r, RETURN mu st be hit before the Editor wi ll begin sending
characters. Also, th e Editor remembers the line and co lumn of the
cursor when the input request is made. As long as you don't hit a
cursor-up or cursor-down, the fetching of characters wi ll begin with
the fir st character of the new line which the cursor occupies. The
fet ching of characters wi ll co ntinue until the last nonblank
ch aracter of the line occupied by the cursor when RETURN was
hit. You can explore the operation of the Editor further by making
changes to Listing 3, and finding out what happens.

Program 3

10 DIM T$(80)
20 OP£H #1> 12,0 .. liE: 1\

38 PRHH #1.; H123, C~ACTERSII
40 PRHH iii QF.$(28) j : RH1 t::f4 UP-CURSOP
50 II'fJUT il} 1$
6e PRItH iii C~$(28).;
70 I WlIT ~H} ~·U1E:EF.~
00 CLOSE #1
90 PRItH 111$=" .;1$
100 PRUH III'4Jt"18EF:= II ; Nljt'1E:H~

110 REM ...usT HIT R£TUPt1 HHH1 EACH
120 REM (f H£ HIPUT STATa1E~1E
138 REM EXECUTES

Li sting 4 gives an exa mple of using PRINT with the disk. The
program reads back the ch arac ters using the GET command so you
ca n see what was sent to the disk by the PRINT comm a nd. Again,
you ca n exper iment with ch a nges to this program to improve your
understanding of how these co mmands operate.

Program 4

10 DIM TS< 10)
20 T$::" ABCDEFGH"
~ OPH~ #1, 8,0, "0: TEST . ooT"

58

Beyond The Basics

~ PRItH i1.; T$
50 CLffiE #1
be OPH~ #1) 4,0 .. 11 [1: TEST. DATu
70 Fffi 1=0 TO 8
00 GET #1, A
90 "7' A, CHR:t(A)
100 t~'<T I
110 CLCI::;f # 1

XI09 And XI05
The XI09 and XIOS comm ands, like the PRINT and INPUT
commands, send and receive a str ing of cha racters. The syntax for
these commands is as follows:

XIO cmdn,#icob,mode,O,exp

"cmdn" is the XIO command number.
9 = PUT RECORD
5 = GET RECORD
"iocb" and "mode" h ave the same function as in th~ OPEN
statement.
"exp" may be a str ing or st ring va riable when writing, or a str ing
variable when read ing.
The XI09, or PUT RECORD co mmand will write characters from
the spec ified str ing until an EOL character is written. If the string
contains an EOL character, t h e XI09 terminates at this point, and
the rest of the str ing isn't written . If the str ing does not contain an
EOL character, one is appended. This differs from the PRINT
command where the entire str ing is written regardless of co ntent.
the program in List ing 5 illust rates this difference.

Program 5

19 DIM T$(10)
2e T$=II A8(:OEFGHIJ II

3e T $(5) 5)=C~j:(155)
4e OPEN #L8,~LIIE:1I
45 ? uPRHH lXIES THISII
58 PRINT tL T$
55 .? :1 11>(10 [(fS THI~:;u

68 >no 9,.1, 8,0. H
7e CLOSE #1

59

Beyond The Basics

The XIOS command, like the INPUT command, will fetch one
string and store it in memory. But where the INPUT command
stops (when the memory reserved for the string var iable is fi ll ed),
the XIOS command keeps going. This means that the XIOS
command can load more than one string variable. A second
difference is that the INPUT command doesn't store the EOL
character, where the XIOS command does. And one last difference,
the INPUT command will change the length of the str ing variable
to the number of characters stored, where the XIOS command
doesn't change the length of any string variable. Before you can
make productive use of the XIOS command, there is one more
necessary fact. Once the XIOS command fills the first string variable
to its current length, the next character fetched is apparently
discarded and the next memory location is left unchanged. This
applies only to the string variable specified in the command
statement . The program in Listing 6 illustrates the preceding
discussion.

60

Listing 6

1e DIM Ot< 1), U(4), T1$(4}, T2$(, un
20 OPH~ iL8,0, 110: TEST ,ooT"
3e ::-no 9,#L8,0, \I ~[£FGHIJK"
40 CLCtSE #1
50 T 1$= II >C(x::-<>~xx:«:x: II : RHl RESET T 1 $
~ T 1$= U 'lYYY,)' II : F£M I1*:E LENGTH 5
70 OPH~ #1,4,0,"0:TEST,OOT"
88 I tRIT 11) T2$
90 CLOSE: #1
100 ? \I I~F'\JT [fJES THI~;"
110 ? 12$, LEW: Tc.'$)
120 T2$= II ><:~>:X>~'?;1:>:::><:x: II : Fill ~H;ET E"t
130 T2$= II 'l(r'\"',JU : ~'Hl MAKE LH~:;TH 5
140 CfH~ #1.. 4,0 .. "D: TE:::;T ,OAT \I

150 >::10 5 .. 11.. 4 .. 0, T2$
160 CL(r.:;E #1
170 ? : '(":~l05 DC€(J THU;;"
100 '-:, 12$" LHK 12$:,
190 T2$(111,lO)="Z"
200 -:. T2$.. LEW Tal
210 ? u~.)TICE H£ >:: l';W T ~JPITTH1 I]I)EP"

Beyond The Basics

230 CfH~ #1.. 4J0. "[1: TE~;T . DAT"
240 >::10 5JiL4 .. l1J Crt
250 CUy3E # 1
260 .-;-, :? "CP' >nos CA~1 [(I THI~;"
270 .:-. T$'--:' T 1$: ';: T2$

XI011 And XI07
The XIOll and XI07 commands are used to write and read blocks
of 255 bytes, respectively . The syntax for these commands is the
same as for XI09 and XI05 except for the command number. The
commands transfer bytes beginning with the reserved memory of
the string variable specified in the com mand. Since you are
transferring bytes, their co ntent has no effect on the operation of
the command. As with the XI05 command, once the XI07
command fills the current length of the first st ring variable, the next
byte fetched isn't stored in memory.

Natura lly the XIO 11 and XI07 commands could be used for
handling strings of characters. However, if we knew where the
address of a string's reserved memory was kept, we could make
changes to it, and use these com mands to save and restore a ny
portion of memory we want. Fortunately this isn't too difficult.
Each string variable will have an entry in the variable storage area,
which contains 8 bytes of parameters for th e variable. The third and
fourth bytes of th e parameters conta in t he displacement from the
beginning of the array storage area to the reserved mernory for that
string. If we dimension a str ing var iable in the first statement of a
program, then this displacement ca n be found by PEEK(l34) +
(PEEK(l35)*256) + 2. Also, the address of the reserved memory for
this st ring will be at the beginning of the array storage area. For
more deta il about this, see INSIDE ATARI BASIC and AT ARI
TAPE DATA FILES in COMPUTE # 4.

Listing 7 shows how to save an array to disk and then read the
data from disk into a different array. In this program we direct the
XIO 11 com mand to save the desired portion o f memory by
POKEing the required displacement into the parameters of D$. We
then read the data into a different array, which cou ld h ave been in
a different program, by aga in POKEing the necessary displacement
into the parameters of 0$. Note the use of the MARK st rings and
the ADR function to find where the arrays are in memory. Another
application might be to add sonl e machin e la nguage routin es to a
program by reading them from disk or cassette and stor ing them in

61

Beyond The Basics

the required locatio n in memory.

62

Listing 7

10 DIM 0$(1):RH1 W1tW STRH~
15 ~:Et1 F I~ ~:ESS (f DISPLACEMENT
28 AOOR=(PEEK(134)+PEEI« 135):~256)+2
25 REM FIHO f£Glt-ii1~~ (f ARRAY STffiAGE
38 BOO=AOR< 0$)
4e DIH MARKU(1),~'RA'/1(OO), :~U:(23)
45 REM l,JlTH 6 B'lTES/ ARRA'l 1'Ut18E~:,
46 F21 THIS OlMHt;ION:; 1510 BYTES
47 REM tl< 2:k'55
48 R£t1 ~ FILL T~ ~RA\'
50 FtP. I =€I TO 8~1: ~:A\'l (I)= I : t·£><T 1
68 OP£H #L8,0,IID:TEST .0AT"
65 REM t-OJ l,JRITE THE AF:RA\' Hi :2 8LOCKS
70 Fffi t-t-=e TO 1
~ Ttfi::Affid'1APU$::'
90 C.osUB l00fl
110 1-:10 1 L #1. 8, €L DJ
1~ t-un H
130 CLOSE #1
140 DIM t1ARK2.1(1 .) , ARRA\'2(8~1), :~2$(23)
150 Cf'fH #1,4,0, liD: TEST . DATil
155 REt1 ~.()W ~'EAO Tf£ ~'F:A'/
160 F~ H=0 TO 1
1?e Ttf'=Arn;,\ t"lARK:2$::.
100 GffillB l~J(l
15{j >::10 7,41, 4,0., D$
200 i'lXT N
210 ClOSE #1
m Ffl< 1=0 TO 8(1 STEP 10
230 .~. ~A')'2< I ::.
240 t·£XT 1
250 EID
900 IDl SlBPCNJTIt~ TO FI>(THE
985 ~ OlSPLR'.H1HH - t'FBLOCK t·~Ut18EP
'1000 Ttf'= TtP-OOA+(tt~255 ::.
1810 PO<E HlDP., Hf'- HIT:: TtlP,':256):*256
1820 POKE rooR+l, IHT< Trf'./ 25E,::'
1830 k£TU~:N

Beyond The Basics

This co ncludes the expla n ati ons of the va rious I/O co mmands. I
hope I h ave expl ained th em well enough fo r you to put them to

productive use. SOlT1 e of the expla natio ns are fairly bri ef, so to find
out more, or to better understand their o peratio n, I highly
recommend th at you do so me experimenting of your own. This is
th e bes t way to find o ut wh at the comma nds will do in specifi c
situations.

63

Beyond The Basics

Why Machine Language?
Jim Butterfield

Here is an overview of several im/Jortant as/Jeces of machine language .

BASIC progra mm ers soo n discover th at th eir machines have an
"inner code. " Somew here inside , th ere seems to be anoth er language
that is very fa st, powerfu l, a nd compact. Yet th ere seems to be no
easy way to ga in access to this feature; it's not easy to learn, and
seems to be bou nd up with a spec ia l kind o f ma chin e jargon .

BASIC people o ft en sta nd in awe o f the machin e language
"guru s. " They might be surprised to find th at many machine
language programmers find BASIC an intimidating language . Such
people often find BASIC to be complex , poor ly defin ed, and riddled
with o bscure sy ntax rules. Many KIM, SYM and AIM owners are
quite nervous when th ey first meet BASIC - it's such a departure
from th e prec ise and (to them) sim ple machine language th at th ey
h ave learned.

Each language h as its ow n ad va ntages a nd di sad va ntages;
neither is "better." BASIC is part icul a rl y good for sc ientific and
business calcul ations , especiall y where a progra m is ch anged
frequ entl y. Machine language is used where speed is v ital; it tends to
be used in 111ech ani ca l enviro nm ents, especiall y fo r h a rd ware
interfaces . BASIC programmers tend to be d ata-o ri ented, and
con ce ntrate th eir efforts o n gett ing info rm at io n in and o ut .
Machine language program mers li ke to work with the inn ards of th e
machin e, and spend much o f t he ir time tinkeri ng with the
mec.h anics. There 's roo m fo r both types o f activity.

Let's compare BASIC and Machine Language to get an idea
where each h as adva ntages. Not hing in the fo ll ow ing li st is abso lute :
sometimes BASIC ca n be as fast as mac hine language ; sometimes
mach ine language ca n be as fast to code as BASIC. But t he
compari sons are ge nerall y va li d.

64

BASIC is eas ier to 'vv rite and get worki ng. You h ave a freedom
to ch an ge a line, inse rt new coding, and check o ut a program
that ca n't be.matc hed in Machine Language .

BASIC is ease l' to ;ead . Its English -like sy ntax m akes it
relative ly easy to pick up a program a nd see wh at it does . A
dozen lines of BASIC might requi re a hun d red lines of
m ach ine language (o r more) to do the sa me job.

Beyond The Basics

BASIC h as splendid built-in c8p8 bi lit ies . INPUT a nd PRIN T
8re ve ry powerful; in mac hine 18ngu8ge yo u'd need to program
the S8 rne capabil it ies t he h 8rd W8y . O th er fe 8t ures , such as th e
W8Y BASIC handl es v8 riablcs , str ings , and a lT8YS ca ll for a lo t
of m achine language coding.

BASIC usua ll y uses less memo ry space. S urpri se ! Except fo r
very sm all progr8ms, mac hin e langu8ge will gobble up more
memo ry.

M ac hine la ngu8ge is fa st. It 's not un common fo r m achine
bnguage p rogr8ms to run ten o r mo re times as f8st as simil a r
BASIC programs. Keep in mind , of course , t h at in put and
o utput of d at8 wi ll be gea red to th e speed o f th e ex ternal
devi ce you a re wo rking with; m8chin e la ngu8ge won't get
input fro m th e keyboa rd 8n y b ster t h an BASIC.

Machin e la nguage C8 n get at inner 1T1ech an isms t h at BASIC
ca n 't reach. BASIC is much mo re po rtab le between diffe rent
m ac hines .

So wh at do th ese cO ITlpar iso ns te ll us?

First, if BASIC C8 n do a jo b, and ca n do it fa st eno ugh, 8lways
use the BASIC. You' ll writ e th e program faster , and it will be easier
to change in the futu re.

But if you h ave a speed problen"l, o r if t h ere's someth ing you
need to do th at's beyo nd th e capab ili ty o f BASIC , t h en use
mac hine language. Remember that with m achine language you will
lose flexib ili ty a nd portabil ity. But if that's wh at you need to do th e
job, use it.

There are o ther re8so ns wh y it's good to kn ow m ac hine
langu8ge . It gives yo u 8 gli m pse of t he inn er secrets o f your
computer. Eve n BASIC itse lf is just a huge machine la ngu8ge
program stored in ROM . Eac h BASIC statemen t is executed b y
dozens of tin y m achine language instructions which dec ide wh at is
wanted a nd then perfo rm the t ask. If you wan ted to know preci se ly
ho w a BASIC statement worked , you wou ld ult im ate ly have to
tra ce t h ro ugh t he m8chine language th at did the job .

It's probab ly best to think of BASIC a nd machine language as
compl ementdrY tool s . Yo u ca n and sho uld use th em togeth er.
BASIC ca n ca ll in a machine la nguage program when it needs it by
using a SYS comm a nd o r a USR fun ct io n. The m ac hi ne language
code ca n return to BASIC when it's fini shed th e job by using th e
RTS code . D ata ca n be passed back a nd fo rth be tween the two
languages .

65

Beyond The Basics

The resu lt: you can have the best of both worlds. The main
part of your program wi ll be in BASIC so that you can code it
quickly and easily . The tricky bits, where you need speed or specia l
fun ct ions, will be in relat ive ly short machine language programs.

Machine language is picky and exacting. It doesn't allow you
many mistakes. If you're an impetuous programmer, you might be
h appier to stay with BASIC, which is very len ient towards your
mistakes. But if you're ready to take the time, and plot, scheme,
plan, code, check, test and review - you can do some remarkable
things with mac hi ne language.

It takes precision and patience. But there's noth ing to compare
with the rush you get when your machine langu age program fin all y
works the way you planned it .

66

Beyond The Basics

POKin' Around
Charles Brannon

Per h aps one of the most useful comm ands in BASIC is POKE.
Why ? Because POKE allows you to do some things that cannot be
done as eas ily in BASIC. I reca ll th e ear lier days of the PET, where
every time a nifty memory locat ion was discovered, it was published
with glee - indeed, they were real "tidbits." Nowadays , however,
there are several very good memory maps that document the inner
workings of the PET quite well.

In the Atari Bas ic Reference Manual, th ere is an appendix
enti tl ed "Memory Locations" (Append ix 1) . A lthough it is no t a
true memory map since it is in complete , it does list so me very
interest ing locat ion s.

During th e execution of a program, the cursor does not
d isappear. Rath er, it moves vvith the print statements and
sometimes is left behind, cluttering up the screen with lit tle white
squares . Fortunately, the visibility of the cursor can be zeroed out
with a simple statement : POKE 752,1. To resto re the cursor, press
the BREAK key or POKE 752,0. The well -known problem of the
no n-standard behavior of th e Atari's GET statement has led to th e
discovery of memory location 764. H ere is stored the code
represe nting th e last key pressed. Thi s is no t in AT ASCII, b u t is a
code used in th e sca nn ing of th e key boa rd. If no key h as been
pressed, a va lue of 255 wil l be found here. I fir st found this
techn ique right here in COMPUTE!. In "Adding a Voice Track to
Atar i Programs," th e author suggested using a subroutine like t h is
to check if a key has bee n pressed:

lineno IF PEEK (764) = 255 THEN lineno (same lineno)
lineno POKE 764,255: RETURN

The fir st statement waits for a key to be pressed; the second d isca rds
th at keypress by making BASIC think n o key was pressed so that
th e keystroke would not be pri nted acc identa ll y.

An example of h ow POKEing ca n be eas ier to use than a
BASIC equ iva lent is in direc tl y contro ll in g t he five colo r registers.
After all , they too are onl y mere memory locat io ns. Locations
708-712 correspo nd to SETCOLOR color registers 0-4. U sing the
notatio n SETCOLO R aexp,aexp,aex/) wh ere aexp is a n ar ithmetical
expression, the first number is from 0-4, so use the appropri ate
memory locat io n. Then multi ply aex{l number two b y 16 and add
th e third number to it. Thi s gives you a n intege r in th e range 0-255.

67

Beyond The Basics

NO\\' just enter POKE COLR, NUMBER whcre COLR is th e
memory location of the co lo r registcr and NUMBER is that number
you obtaincd, Figurin g o ut what co lo r is a lready being displayed is
done in the re\'ersc fa shio n, Gct the co nte nts of the colo r register
\\'ith PEEK(COLR), and assign it to some va riable, say X, (e,g,
X = PEEK(COLR)), Di vide X by sixtee n, thro\V a\Vay the fr act ion
using Y = IN T(X), then find the IUI1.inance (aexp#3) \V ith L=X-
16*Y, N o \\' you e m se t the color b y basic with SETCOLOR
COLR-708 , Y,L or you ca n just store the numbers so you can
meditatc o n th em at a late r date,

H m'c fun with these memo ry locatio ns, you hac kers! You
bcginners - step right up and add scveral ne\V functions to your
reperto i re !

I \\' a nt to lea\'e yo u o nc mo rc thing to try - POKE 755,6, It's
\\'eird l (Yo u ca n gct it back to no rmal \Vith POKE 755,2 or by
p ress ing RESET.

68

Beyond The Basics

Printing to the Screen
from Machine Language

on the Atari
Larry Isaacs

If :"Ol(l(se machine language)'ou'll find this LLsefLLI. There are two
teci1niqlLes presented here: screen OLLtPlLt and a relocating loader.

If you are mac hine la ngu age progrannning on the ATARI, it ca n be
very advantageous to know where some of the operating system
subroutines ca n be found. I ca n prov ide you with o n ly o ne at this
time, but it's o ne of the h and ier ones. This is the output subroutine
for th e Edi tor dev ice . It accep ts the full ATASCII ch aracter set,
pr in ti ng the di splayable ch arac ter on the screen, o r executing the
contro l ch arac ters . To use th e routine , simply load the ch aracter
into the accumul ato r and execute a]SR $F6A4 instruct ion. The
only oth er fa ct needed is th at the X and Y registers aren 't preserved
by thi s subroutine.

To il lustrate the use of this subroutine, the DUMP program is
provided. Thi s program also illustrates one way of using machine
language with BASIC. The program asks for starting and ending
add resses, which should be give n in hex. Then the reques ted
memory is dumped on the screen b y a machine language program
executed b y th e USR command.

Natura lly, before the mach ine la nguage ca n be executed, it
must be placed in memory. This is done by the BASIC subroutine
in state ments 10200- 10430. This subrou tine loads machine code
found in DATA statements, wh ich begin at line 20000 in this
program. The fir st thing th e subrout ine does is read th e number of
bytes in the mac hine lan guage program. It then dimensions DMY$
to length 1 and a n array ca ll ed ST ORAGE of sufficient size to ho ld
the machine code . .

The subroutine then starts read ing th e data as strings and
POKEing the appropriate code. If t he string read doesn't start with a
special ch aracter (".","*","+","=", o r " !") then t he string is assumed
to be two hex ch arac ters whi ch are stored in the n ext avail able byte.
If th e st ring begins with a ".", th en t he string is assumed to be a
comment and is ignored. If it begins with an "*", the subroutine

69

Beyond The Basics

assumes the rest of the str ing is four hex characters which form a
two byte address . This address is POKE'd low byte first, then the
high byte . If the str i ng begins with a "+", the rest of the str ing is
assumed to be four h ex characters which form a two byte
displ acement from the beginning location of the code. This
displacement is added to the beginning location of the code to form
a two byte address. This address is also POKE'd low byte first,
follow ed by high byte . If the fir st character is an "=", then th e rest
of the string is assumed to be a displacement as with "*". H owever,
once the address is computed, the current poke locat ion plus one is
subtracted from this address to form a one byte displacement which
is POKE'd in to the next locat ion. Finally, if the fir st character of the
string is an "!", the sub routine stops loading machine code. The rest
of the string is assumed to be a two byte d isplacement as with the
"*", and the computed address is checked with the current poke
location to see if it matches. If they don't match, it's likely that
you've miscounted some bytes and th at some of the displ acements
given by strings starting with the "*" or "=" ch aracter are in error.

This may seem somew h at complicated, but it really makes it
fairly simple to write relocatable code. This relocatability is
n ecessary becau~e you don't know where the code will be loaded
until the program is running. Relative addressed used by branch
instructions may be given as a h ex byte or as an " =" followed by
the displacement from th e beginning of the program. Internal
absolute addresses should be given with a "+" fo llowed by the
displacement. And finally, external addresses can be specified by
giving two hex bytes, or by an "*" fo llowed by the address.

Once the code is loaded, ADR(DMY$) gives th e fir st location .
This also h appens to be the entry point of the machine language
dump program. Now the dump routine can be executed by calling
for the USR function to be executed with ADR(DMY$) as its
address. This is done on line 80 of the BASIC program.

It is important to note that the dump routine ca n only be
executed while the BASIC program is running. Trying to execute it
by a direct co mm and wi ll n ot work because the direct command
gets inserted in between the end of the program and where the
machine code has been poked. This wi ll cause the machine code to
be moved. Since it conta in ed some internal abso lute addressing, it
wi ll not execute properly any more. If th e code contains no internal
absolute address ing, it can be executed by a direct command.

The machine code is fa irly sim ple, so you should be able to
understand wh at it is do ing. Upon entry, the machin e code first

70

Beyond The Basics

checks to see if the right number of parameters are present . If n o t,
the parameters are pulled off the stack and the program returns to
BASIC. If th e correct number (2) is present, th e machine code will
dump the reques ted memory, printing 8 bytes per line.

I hope you will find some of the techniq ues used in this
program useful, as well as the program itself.

1 0 I t'1 ~;A$(4) .. EA$(4)
10 GOSUB 10200
20 PR I tn II I ~iPUT ST APT I t·~G AOORE~;~; II .;
25 I tRlT '3A$
3e PRHn 11 It4PUT EtUH.~ ADOPES~;II .;
35 I t-PlIT EA$
oW ~·JIlID-t =SA$: GO';UE: 101 O~l
5e SA=t~l·~jR[I
60 l'~fI$=EA$: Gf];UE: 101~Xi
7e EA=t'M)PO
00 0l1'1t1\'=1).;~\ AO~:([It·ra » ~:;A , EA :<

90 GOTD 20
10000 PEJ1 COt1PU1E t·i8\'TE FRClt"1 HE><t
100 10 1=1 C.cr3UE: 10~140 t18\'1E=>:::::i 6
100~'f1 1=2 : GCf;U8 H104Cl : t~E:'I'TE=tlE:':!TE+>!

10030 Ff1UPt1
10040 :x:=A:;C(\ .. £:<$< 1 i 1:,)-A': ;(): "0" :'
10050 IF "0 11 <=1 .. £::<$(I, I > AtlD HE>:::t< I, I ><="
9° TIHi RtTUF.1'1
10060 IF "Aa <=l--E<:t\ I , I> AHO HE::·:::t': I ., I >< ="
P l1£ti ::<=>::-7: F.:ETUPtl
10070 STOP : REJ1 ERFfJF:
10100 FH1 COt·PUTE t'll,iOPO FR0t"1 l~OPO$
1011 t1 HE:>::$=~lOROt (1 .' 2 > : CO~:;LIE: 100t1l1: ta~OF:o=
tElTE*256
1 e 120 HEX:!=l·JOF.'[\t<:3) 4 ::. : C.OSUB 1 ~1000 : t ~~OPD=
t-l.jjPDHB'nE
1013Q. F.~ETUR~1
1 f~'f1lJ FfM FiJT THE CODE
1021 (1 READ tl: F:H1 t·U·18ER OF 8\,1E::;
10220 [I I t'1 CcnE$(40 :') HE::<:t(2> J l,~jFDt(4 ::.) 0t"1\'
S< 1 ::<) STO~~ACE< H/6+ 1)
10230 F'C=AOP< Otlii ::<
10240 FfAD CODEt
1024:, IF CO[£t(L 11=" . " THEt·j GOTel 1024~:1

71

Beyond The Basics

72

1025~1 IF COOEt(L 1'=":;·" lHH1 COFI 103l1(1
102£,0 IF CODE$(1, 1)=" +" THErj GOT CI 1031 >=1
10265 IF CODE!! L 1)=" =" THHi unCi 103':{1
10270 IF CODE!I L 1>=" I" THEt! C:}fCI 1Q410
102t:0 HE>($=C00E1\ 1 ' 2' • GCr::,U8 1 OOO>~1
lfr290 F'1JKE Pc. tlB\'TE' F'C=F'C+ i COTO 18240
103~1l1 ~,~ORD$=CCl[lE$ ' 2: .. ':" · :~U::;UE: 1111 [1>=1 • i~ '=;T:~:
1fB20
1031 (1 ~~IJR[I$=CO[lEJ< 2, 5, • GU:::i.IE: 1 C11 ,~;o t 1l·jc!~ . =:

=~I'~=IPO+AOPI Dt1,!'$ '
10320 tf3",' T E = I t·n' tR,lOP025f,1
10T30 F'OKE F'C , t1l,jOf?[;-t18'y'TE ';'2':,t,
10340 F'C=F'C+ 1 COTO Et29~=1
10350 ~~JP[l$=COOE:t(2') 5; • I~U:; UE: 1 (11 O>J
103t',O t~\'TE=H[lP (Dtl(l'+tR'lO~'[I-1 F'e+ 1;
103?l1 IF t1E:'/TE> 127 If-Oj ::;TOF'
103:::~1 IF t18', 'TE/- 12::: THEtj :::;T:=iF'
10390 IF t·1E:\'TE<ll THDi l iE:\'TE=tiE:'iTE+2S6
1 04~Hj COTe! 10290
1041 C1 l,i!"Jk'[I$=(:=I[lUI 2' ' '3 ;, • GO'::tiE: 11~H Cl~=1
1042C1 IF r1lKiF'=I=F'C -~CF'I [1[1\$) THE t1 PETUFoti

20~1>:10 [;ATh 1 ~7
2l1(11 C [if1 T H . 00(1)::;, 4C .. +1)j3C1, . Jt1P :;TAF:l
200~:O F.Hi 1t1CHHF.'
20tJ~; ~j CIA T H 0003 ., E£" [14 ., . I He F'h'TF:
20t34t=1 [:A T ri 000':" [i,j, =0009 .0 t:t1E 1~1
20~!:,C DA I H 0007 , Et" , 0':, .0 . H1C F'lrm+ 1
20CtJ=1 PU1 :~i
20~37>3 CIA 1 A 00'='9, t,~L . PT':;

201 1C~

PHH
L:;P H
L::;F.: H

20: :~:~=j DI~ T::::: . ~1,3'=~[. 4A) . L::;~: H
20 1 -;l~ ~\, 1 A ~\OOE ., 4h ; . L~;P H
20 i 40 =:~i: A OOl1F .' 20., +f10 15, . J:;F: F'Fll,!'8LE
2[11 ~~~=1 CIA -; H , Ct012 ,I 6::; .' .
20: t,ll [lATA OOi 3 .. 29 , OF, .
201 ('0 ~Hl i='Ptf:'ELE

PLA
Ar'[) #$l1F

201':::,=1 [:A T h
2,3190 DATA

Ot115) C9 I OA., . CMF' #~{1A
0fl1?, 30 ., =~11E:) . an I~

Beyond The Basics

202C{1 [tATH 001S , t,9 ; 06, .
202 i (1 ~nl :~2
202:20 CIA TA 001 E:, 69, 38, . HOC #$30
2~j230 DATA 001[" 20,:;:Ft".A4., . J:;P OmCHF:
20240 [lATA .0(0=1,60... PT~:;
202:,0 FH1 T:;TF'rHF:
iUit.l1 CIA T A . 0(121, 38· . SEC
20270 DATA 0022) AD. +(102[1 ... LOA
20"2:::0 ClAT A . 0025, E5 , [14, . S8C
2~1290 CiA TA O£C7 , AD! +(102E, . LOA
20300 DATA 002A .. E5. [6., .
20310 DATA . Ol12e; 6(1, .
20320 ~H1 EA
20330 C~AT A . 002D, 0~3. 00 , .
2034C: FHi CCtiJtH

:;8C
PTS

EA
PNTF:
EA+1
P~IT~:+ 1

2t13:,0 DA 1 A . 002F, OJ}, .
::''0360 REM ~;T AF.:T

.8\'TE

;:'037(1 OAT A . 0030 J 6:3 J • PLA
;:'03:::0 CIA TA . 003 L HL =(009) . EfO ~ 1
20390 ~1 TA .0033) [:9 J 02 J • CMP #$02
204(1~=1 DATA .0035, F0, =003E, BEel CC~H I t~JE
::''04 1 (1 DA T H . l)}3 7. A.~, . T A>::
20420 F.Bl 1~3
2(1430 DAT A 003::: , 6:3; . PLA
20440 DH TA 0039. 6:::. . F'lA
2(1450 DATA . (1(13 A , CA, DE:·:
204t:,fj [IAT A . 003E:. [10, =003::: . . ENE 1~3
;:'(1465 [lATA .003[1,60.,. ~:r:;

::''0470 FB1 com I t~JE
204:::(~ DATA . f)(13E ! 6:::, .
204 90 DATA . l1l-:nF, t:5 .. [15 .. .
2(1500 DAT A . 0(141 , t,:::.. .

FiA
STA PNTF.:+1
FiA

20510 DATA . 0042 , S'5 .. 04, . :;TA F'HTF:
20520 [lATA . 0044 .. 68, . F'LA
2(1530 OATA004::, . :::O , +OO2E .. ~;TA EA+l
20540 DATA f})4:::. 68. . FiA
2'£1550 DATA f)(:14 9 ., :::0 .. +002[1., :;T A EA
::''0560 F.H1 OUt-1P
2(157(1 OATA .004(:, A9 .. 98. . LDA
205:::0 DATA . 0(14E . 20,~::F 6A4, . J3~:
20590 DATA .f)35LA9,24.,. LOA
2'0600 DATA 0053, 20 .. ~:F 6A4, . .JSF:

#EOL
OUTCHP
#'$
OUTCHP

73

Beyond The Basics

74

2061 (1 DATA .1);J56, A5, 05, . LOA F'tITP+1
20620 DATA . 0W5::;, ~\L +OO0Aj3R PF:8'/TE
20630 DATA . 005E:, A5) 04, . LOA F'tHP
20640 DATA . 1))5[1, 20 ; +~3A, . .JSF: F'PE;'y'TE
~:(1650 DATA . 0060, A9, 20, . LOA # I
20660 DATA .0062,20 , :;::F6A4 ... J3R OUTCHF
~'0670 DATH . 0065, A9) 0:3) . LOA #$(1::;
~'06:::(1 [tAT A . 0(167) :3[:, +(1I}2F, . ~;TA COUt-H
~'069~j FH1 LOOP
~'0700 ClAT A . ~)6A ; A9, 20) . LOA # I
2071(1 D,; TA . 0(16C ; 20) :~~F f.A4, . ~;R OUTCHP
20720 DATA 0\<3f,F , A0, 130) . LO\' #$00
20730 DATA . 0(171 , 81 , [l4! . LDA (PHTF: /i'
;::''D740 DATA . 0(173) 20, +000A .. . JSF.: F'R8\'TE
2(1T:.0 DATA. 0076, 20 .' +0003 , .jSF: I t·~~FtITP
207f,O DATA . 0079 ; CE , +(1(12F , . [£c coa-n
207?0 DATA . 007C ; 00 , =0() 69 , . Bt·£ LOOP
207:::[1 DATA . 007E, 20 , +OC12iJSP T:3TFlHP
213790 OAT A . O~)::: 1 , 1 (1) =((14E:, . Ef'L Ol~·1F'
::'0:::0C1 ClAT A . 0(1:::3 ., A'3! 98 J . LDA #EOL
;::"(181 (1 DATA 00:::5) 20 , tF 6A4 . J3P OUTCHP
;::'~1::;20 [lATA .0(1:::::: } 60, . PT~:;
;::''17;::2;0 DATA 10t1:::'j

CHAPTER THREE:
Graphics

75

Graphics

Made In The Shade:
An Introduction To

"Three-Dimensional' ,
Graphics on the Atari

Computers
David D. Thornburg

If you know anything at all about the Atari 400 and 800, you
probably know th at these mach ines give you access to 128 colors .
W h at you may not rea li ze is th at these colo rs are specified with two
independent parameters which allow you to create "three
d imensiona l" objec ts on the display.

T he two parameters of interest are hu e and iolminosity. Atari
gives you access to sixteen colo rs (the hues), each of which can be
darkened or lightened by setting the luminance to one of eight
levels. T rad it iona lly, computers that offer limited colors (sixteen
tota l, for example) pre-select different hues and lu minosities for each
color so that inter-colo r contrast is always apparent, even when the
picture is shown on a black and white display. If two colors have the
same lu minosity, you wi ll not see any d ifference between the colors
when th ey are shown on a b lack and white d isplay - a
phenomenon you should demonstrate to yourself sometime.

The bea uty of the Atari scheme is that the wide range of
avai lable colo rs leads to the abi lity to crea te some pretty pictu res,
even though on ly four colors can be displayed at one time . The
program presented h ere illust rates a com mon graphics task - the
represen tation of a so lid three-dimension al object th rough shad ing.

Since we can d isplay three colors plus the background in a
moderate resolution graphi cs mode, thi s lets us rep resent a shaded
cube. After a ll , you can only see a max imum of three faces of a cube
at any given t ime. The fun ct ion of the program, then, is to create a
two-dimension al represe ntati on of a cube in wh ich the "rea lism"
results from the co ntro l of the shading on each visible face .

In case you are not fami liar with Atar i grap hi cs, a short
digress ion is in order. Displayed colors are establ ish ed by the

76

Graphics

SETCOLOR command wh ich takes the form SETCOLOR A, B,
C in which A is the color register (0-4), B is the hue (0-15) and C is
the luminosity (an even number from 0 to 14). (I don't know why
lu minosity isn't set with numbers between 0 and 7, but . the use of
even numbers doesn't present too much of a problem, as you will
see.) The hues (see Table I) are the various basic colors you can use
to draw your pictures, and the luminosities co ntrol the brightness
from 0 (very dark) to 14 (almost white). Once you have set the color
registers, you need to indicate which register should be used for the
various plotting commands. This function is performed with the
COLOR statement. This statement has the form COLOR D in
which D refers to the color register where the desired color is
located . Now, for reasons that I don't understa nd, the va lue of Dis
genera lly larger than the color register number by one. In other
words , 0 = A + 1.

Program Listing

Hi PEM ::H ~;HAD H~:; DH10
20 GRAPH I C; 23
30 OPH~ #1, 4., 0 .. 11K : 1I

40 FOr;~ 1=0 TO 4: SETCOLOF.: I .. 9} 4: t·E·n I
50 ::.~0=4:3: 1/0=36
60 COLO~: 1
70 FOR 1=0 TO 4(1
00 PLOT ><0 .. '/0+ I : DRAl.nO ::·;(1+4~1 .. \'(H I
90 HE)n I
100 COLO~: 2
110 FOR 1=1 TO 24
120 PLOT ::,:0+ I .. "I

J0- I : ORAlHO ::«H I +4~3 .. \ '0- I
13e ~£><T I
140 COLO~: 3
150 FCj:: 1=1 TO 24
160 PLOT :~0+40+ I) "1}0- I : DF~Al,nO >::0+40+ I .. \ '0+
40-1
170 ~£>n I
100 FOI=~ 1=0 TO 2
190 GET #LA
2e0 IF A< 48 TftH A=48
210 SETCllOR I) 1} 2:i(A-48::'
220 t·EXT I
230 GOTO 180

77

Graphics

Now that these tips on Atari color have been described , it is time to
tryout the program.

The listing starts out by setting a moderately high resolution
full -fr ame graphics mode in statement 20. This mode allows the
display of four colors and contains 160 x 96 picture elements -
plenty for our needs. The OPEN statement lets us use a GET
st atement to receive data from the keyboard without having to press
RETURN. Note that the Atari version of GET is very different
from the vers ion you may be accustomed to from Microsoft BASIC.
Next, the color registers are all set at the same color value so that
when the cube is first drawn you cannot see it. The front face of the
cube is drawn in COLOR 1 (from SETCOLOR register 0) in lines
70-90, and the other two faces are drawn in COLOR 2 and
COLOR 3 in lines 110-130 and 150-170 respectively. At this
point, the computer waits in line 190 until a key is typed . (Note
th at in Microsoft BASIC the program would not stay at a GET
command, but would look once and be o n its way.) Since I expect
to be GET-ting a keystroke from keys 0 through 7 (which h ave the
Atari-ASCII values 48 through 55), lines 200 and 210 convert the
keystroke to an even number between 09 and 14 for use in the
SETCOLOR command. This program looks for three keystrokes -
one for each face of the cube. As each key is typed (try 5, 6 and 7,
for example) a cube face will become visib le. The result is that a
"three-dimension al" representation of a cube is now nicely displayed
on your screen.

If you want to change the sh adings, type three more numbers
between 0 and 7 and see wh at h appens. Next, for some more
excitement, type J, K and L. Once aga in you will see the shaded
cube, but the color wi ll h ave ch anged from gold to more of a
magenta. As you can see, luminance va lues greater than 14 cause
the hue to ch ange .

Now that you know about sh ad ing, you should be able to
make some truly beautifu l pictures with the Atari.

Table 1. Hue Values For The Atari Computers

COLOR HUE VALUE
GRAY
LlGHT ORANGE
ORANGE
RED-ORANGE
PINK
PURPLE
PURPLE-BLUE
BLUE

78

o
I
2
3
4
5
6
7

ANOTHER BLUE
LlGHTBLUE
TURQUOISE
G REEN-BLUE
G REEN
YELLOW -GREEN
ORANGE-GREEN
LlGHT ORANGE

Graphics

8
9

10
II
12
!3
14
15

79

Graphics

The Fluid Brush
Al Baker

Picasso l('ol dcl hm'e lil<ed this one ' Compllfcrs H'on 't be replacing canvas
and pa int immedlareh , bl lf nobo(h is placing bets on th e limi ts of
COmpliter graphics .

This month I go t carri ed away. I h ad so much fun changing and
improving thi s program th at it incorporates several hints on how to
use th e Atari p lu s ano ther way to use the joysti cks. Before digging
into th e progra m , tho ugh, let us see wh at it does.

Type in the program and run it . All but the botto m four lines
o f th e sc reen turn black. Near th e ce nter of th e bl ac k area is a white
dot. Move joys tick 0 and you ca n pa in t with th e dot, just as if it
were a brush di pped in white pa int . The motion of th e dot o n the
sc reen is quite slow . Thi s is in te ntio na l. If th e dot moved too fast, it
\\'oul d be h ard to control. A s your sk ill increases , you ca n speed the
dot up.

H o ld down th e joys tick butto n and move the joystick. N o w
the do t moves much faster, but it doesn't pain t . It erases. You have
a paint brush which moves quickly fro m o ne a rea o f the screen to
another, and yet paints slowly enough to give you complete control!

Unl ess you are Tom Sawyer , pa inting with a white brush can
be quite bo ring . Let's change co lors. As you probably know, you
have three colo r registers ava il able in graphics mode 7. When the
program start s, you are paint ing with register 1 set to white . To pick
a no ther register, press either the 1, 2, o r 3 key . You are now using
this register. But before yo u ca n paint, yo u must choose a co lo r.
T ype in a colo r number betwee n 0, fo r white, and IS, for light gold .
Press RETURN. Table 1 li sts the 16 color poss ibiliti es. Now, as you
move th e joys tick, you are painting with this new color.

What's Going On
The program is initi a li zed between lines 1000 and 2030. The
beginning location of the dot is pos itio n (X = 90, Y = 48); its color,
C, is 0 ; its colo r register, R, is 1; and its b rightness , L, is 10.

Line 1090 opens the keyboard for input. This sta tment is
necessa ry if you wa nt to read single A SCII ch aracters from the
keyboard without usin g the IN PUT statement . The number 1 is my
choice for the fil e number. I could h ave chosen anything between 1
and 5. The 4 m eans input, the 0 is req uired , and the "K:" means the
input is from the keyboa rd.

80

Graphics

Look at Diagram 1. The joystick returns numbers between 5
and 15 depending on its position. The actual number is ued as the
subsc ri pt of arrays XD a nd YO to determine h ow the X and Y
positions of the dot o n the sc ree n are to be cha nged . For example, if
the joystick is pushed away fr o m the user and to the right, the
number is 6. XD(6) is eq ual to 1 and YD(6) eq ua ls - 1. The dot
would move o ne position right (+ 1) a nd o ne position up (-1) o n the
screen. The arrays XD and YO a re initi ali zed in lines 1110 to 2030.

The main progra m loop starts at line 150. Look closely at line
160. This statement determines the speed of the dot o n the screen . If
the button on joyst ick zero is p ushed, STRIG(O) = 0 and S will be
O. If th e button i sn~t pressed, STRIG = 1 and S = 100. Line 170
uses the var iab le S as the a larm on the delay timer. Fina lly, lines
150 and 180 cause the dot to b link. Line 200 makes sure that if the
button is pressed, then t he dot erases, o r leaves a b lack spot, when
the joys tick is moved.

The rest of the program loop is betwee n lines 250 and 310.
Line 250 gets the va lue of the joyst ick. This va lue is used to modify
the X and Y positions of the dot as previously discussed. Once these
values a re computed, line 290 places the dot in its n ew location .

The sta tement o n line 280 keeps t he dot from running off the
TV screen. If the PLO T statement tries to put the dot off the screen,
an error results. The trap on line 280 branches the computer to the
routine at line 3000. Th at routine adds o ne to Y if Y is above the
sc reen (Y <0) o r subtracts one from Y if Y is be low the screen
(Y>79). Likewi se , it adjusts X if X is to th e left (X <0) or right
(X>159) of the sc ree n. Finally, the rout ine jumps back to line 280 to
set the trap again and plot.

The user ca n type in a new register number and color. Line
300 sca ns the keyboard each time the program loops to see if the
a rtist is ready to ch a nge co lo rs. If locat ion 764 isn't equ a l to 255 ,
then a key has been pressed. The routine beginning on line 4000 is
ca lled o n to respond to the art ist 's req uest. .

The fir st thing done by t h e keyboard rou tine is get the ASCII
va lue of the key pressed. The GET statement must use the same
number as the open statement o n line 1090 a nd it puts the va lue of
the key in the va riab le R . The ASCII va lue fo r a one is 49 and for a
three is 51. If the key is no t between these two, it is ignored and
another is required . Once a proper key has been pressed, line 4020
converts it into the numbers 1, 2, o r 3 a nd line 4030 sets plotting to
that color register .

The POSITION statem ent d oes not control the location of

81

Graphics

pri n t st atements in the text window when graphics mode 1 th rough
8 are chosen . This is do ne by poking values into memory locations
656 and 657 . Poking a number between 0 and 3 into location 656
will position a statement vertica lly on the bo ttom four text lines .
Poking a number between 0 and 39 into location 657 will position a
pr int statement between co lumns 0 and 39 horizontall y on the
screen . Li ne 4040 positions the next print sta tement on the third
line of the text area at th e bottom of the screen .

Since the print statement on line 4050 is always printed in the
same location, it is necessary to erase any previous answers. This is
don e by including four spaces followed by four back-arrows after
the word C OLOR. To insert a back-arrow , o r any arrow, in a print
statement, press the ESC key before typing the arrow key.

Conclusion
I would like to th ank Dick A insworth for h is idea abo ut using two
d ifferen t speeds o n the joystick to co ntrol different fu nctions, and
I'd also like to th ank Willi am Bailey for his idea on using arrays to
simplify the con version of joystick va lues into direct ions . If you
would like to sh are your ideas with other readers , se nd them in . If I
use them , you will also be acknowledged.

A l Baker, Programming Director , The Im age Producers, Inc.

Table 1: The Atari Colors
NUMBER

0
1
2
J
4
5
6
7

82

COLOR NUMBER COLOR
Gray 8 Blue
Gold 9 G ray blue
O range 10 Turquoise
Red II O live Green
Pink 12 G reen
Violet 13 Yellow green
Purple 14 Brow n
Light blue 15 Light gold

Diagram 1: T he Joystick Control Arrays
CHAN GE IN X - XD
XD (lO) = - I XD(l 4) = 0 XD(6) = I
XD(ll) = - I XD(l 5) = 0 XD (7) = I
XD(9) = - I XD(l 3) = 0 XD (5) = I

CH ANGE IN Y - YD
YD(l O = - I YD(l4) = - 1 YD(6) = - I
YD(lI) = 0 YD(l 5) = 0 YD(7) = 0
YD(9) = 1 YD(13) = I YD(5) = I

Graphics

~0 REi'! T!-iE ~~;~jID e,RIJSH
2e, ~Et~

~0 REi'!
40 REi'! (:i':! SET UP c~:)t,m1T:Oi"5

S~ REt';
::,13 GO~,UE? 1 000
12~ REt'i
~ 2"~ REi'! (JET e, UTT(lf~ F')R S PE:::D
1 it~ REt~

!513 COLOR 4:PLOT X,V
16~ S=108*5TRIG(~)

170 FOR 1=1 TO S: NEXT •

1=10 RP1
~013 IF 5=0 THEN COLOR 4:PLOT X,V:COLOR R
22~ p.~rv:

.23~ REi'" :"IO\.lE DOT It=" JOVE,:I (~.< ;"lO',/ED

.2it~ REl~

.2 '.J~~ Y = 'y" + \{ :=, (..J :!
270 :.(=>:+;:D':I..I)
23~ TRA:=' 3Q)0~

290 PL')T X,'l
~00 IF PEE~(764)<>.255 THEN GOSUB 40013
31\3 G.)Tt:! 15iZ!
970 REi'l
980 REi'! SET UP CONDIT10~S
(N~ REM
101313 GRAPH I Cf:. 7
1 ~UZ:I);=qQ)

10.20 V=48
1:2)3:2) C=~

104·2) L=10
1Q)5~ R= 1
10613 SETCOLOR R-l,C,L
i QF\3 C,:'L'.)R 1
1080 PLOT :~, y
1 \39\3 (, PEl'~ # 1 , it, Q:I, " t': ~ "
~100 DIM >:D(lS),VD(lS)
111\3 FOR 1=1 TO 15
11.20 READ N:XD(I)=N
113\3 READ N:YD(I)=N
1140 i'~ EXT I
115\3 RETURN
~013i3 DATA 0,0,O,0,O,O,0,0
2'21 1!z\ vAT Ai, 1 , 1 , -1 , 1 , \3, ~, (ZI

~0.20 DATA - 1,1,-1,-1,-1,O ,O,0
2~3\3 DATA Q),1,0,-1,!Z\,iZ)

83

Graphics

84

2970 REM
2920 RE i'! '=,t,TC~ :- !O TIO~'! OF~ ""-!-'E :::=CREEi'!
299~ RE!'~

3000 Y=¥+(Y<0)-(Y>79l
3010 X=X+ (X< 0 >-o;X:1S;:J ,
:::020 GO""-O 280
]<:;;70 REt.-:

3990 ,9El"i
<+000 GET # l lR
4010 IF (p··: it Q :' +(R:·:,l ;' Ti-1Elj it000
itl2l20 R= R-48
it030 C'-:>L-':'R R
<+121'.0 POf':E 6:,6l2
it050 ~RINT "C OLOR

<+080 RETUR~,j

Graphics

Color Wheel for the Atari
Neil H arr is

This program shows ho~(' easy it is to ge t "/Jretty pictures" with a
minim~(m of coding. Yo~(might tl'Clnt to tr:v the follo wing changes:

110 GRAPHICS 7+16
145 COLOR INT(RND(1)*3) + I

The Color Wheel program was written to experiment with
some of the Atari's color graphic ca pabilities. The screen clears
and a se ri es of lines radiate from the ce nter of the screen in
random colors, forming a shape with the outline of an ell ipse.
As the co lo r bands sweep the screen, the colors shift in
intensity and hue, forming a co nsta ntl y changing set of
contrasts and shapes.

The program itself is quite simple, th a nks to the easy
Atari BASIC graphics comm a nds. Graphics mode 7 features
160 by 80 points of resolution in fo ur colo rs , wh ich are set up
in regi sters. One of the things th at made thi s program possible
was th at you ca n change a colo r registe r va lue, \,yh ich causes
all points on the screen associated with that register to ch ange
co lor instantly.

Line 100 selects degree mode fo r trigonometric fun ctio ns,
which in this case leads to less messy numbers in the FOR
NEXT loop in line 140. Lines 120 and 130 select va lues for DX
and DY, which determine the shape of the elli pse for that
cycle . The STEP in line 140 was added because the sma ller
ellipses otherwise took the same time to draw as bigger ones .
Line 145 randoml y selects the colo r regi ster for the current line
(an interesting variation is to move this lin e to line 135,
making each elli pse a so li d co lo r). Line 150 plots a point at the
ce nter of the sc reen. The fo rmul a in the DRAWTO in line 160
was arrived at by usi ng simple trigonometry to determine th e
point on the elli pse at any give n angle around th e center. The
SETCOLOR statement in line 180 ch anges a random co lo r
register o n the screen to a ra ndo m hue and intensity, and is
se lected 30% of the ti me by Ii ne 170. Li ne 190 completes the
loop, and 200 a llows the program to se lect a n ew el li pse shape
and keep draw ing. I usuall y put sonle PRINT statements
between lines 110 and 120 for a message in the text window.

85

Graphics

This program allows the Atari to show off its nice ra nge
of co lo rs, and th e plo tting ro utine h as bee n reduced to its bare
essentials ,

100 ((G
110 GRAPHICS 7
120 OX= I HT(R~[)(1);00)
130 oy= I HT(Rl'{)(, 1)*40)
140 FOR L=0 TO 360 STEP (140-[t.<-OY)/20
145 Cil..OR I HT (~tD(1)*5)
150 FtOT :33) 40
160 a<A~HO 80+0X*sHK L),. 40+0'{~COS(L)
170 IF RHIX 1 >:>0, 3 THH~ 190
180 SETCOLOR HlT(R~~O(1)i4») HIT(~:~~O(1):n6
) J I ~n (~'NO(1)t8):¥.2
1ge ~£>a L
'200 GOTO 12~
3 r 1 's. & a L

- ----- ----.. ~--------.------..

86

Graphics

Card Games In
Graphic Modes 1 and 2

William D. Seivert

With this subroutine, you can mix the four suit symbols with letters and
numbers in graphics modes lor 2, [=heart,]=club, I=diamond, and

I\ ·O=spade.

Have you ever wanted to design a card game to play in Graphics
Mode 1 or 2, only to find that you couldn't get the suit characters
(heart, spade, diamond, and club) to appear on the screen at the
same time as the ch aracters A, K, Q, J, and the digits 0 through 9?

Graphics modes 1 and 2 use the character base pointer
(CHBAS, locatio n 756) to point to the table defining the character
sets. When location 756 co ntains 224, you get uppercase letters and
the digits and normal punctuation. When you set it to 226, you get
small letters and the graphics charac ters, including the characters
for the suits. Since only 64 characters are available in these modes,
you can't have both at the sa me time!

Try this in Direct Mode:

GRAPHICS 2: PUT #6,ASQ"]"):POKE 756,226

When the POKE takes effect, the right bracket changes to its
graphics equivalent. (So does the rest of the graphics window!) The
table to look at is in the BASIC Reference Manual, Table 9 .6 .

The 224 or 226 that you POKE into location 756 is the Most
Significant Byte (MSB) of the start address of the character set table.
Since these tables are in ROM, they cannot be changed directly.
Also, since only the MSB of the address is used , the table must
begin on a page boundary.

It takes a lot of work and space in BASIC to hold the table
and ensure that it is on a page boundary. H owever, there is an
easier way!

The followin g BASIC subroutine will do the job .
Now I'll explain what this does by line number.

25000,25001 Just some documentation (Remember th at GOSUB
25000 will work; BASIC will skip the REMs).

25010 Location 106 contains RAMTOP, the number of pages of
RAM. Subtracting 8 leaves enough room for graphics modes 0, 1,
and 2, and allows space for the n ew character set table. Thus,) is

87

Graphics

the address wh ere th e table will start .
25020 Locat ions 144 and 145 contain MEMTOP which is

BASIC's cur rent top of memory. If, at the time the subroutine is
ca ll ed, the program is already too big to allow for th e n ew table, we
won't do it and leave. Thi s impli es that a ll a rrays should be
DIMensioned and variables defined before calli ng the subroutine.

25030,25040 This loop moves th e or iginal table (57344 =

224*256) from ROM to the location in RAM.

25050 Each ch aracter uses 8 bytes (1 byte per TV scan line) to

d efine whi ch pixe ls should be on for th e given character . Adding
472 (= 59*8) to the sta rting address gives the address of the left
bracket ([) character .

25060 The TRAP is used so th at if the subroutine is called
more than o nce in a run, we won't get ERROR 9 (String DIM
Error). We need 32 bytes for string ST$ (4 characters tim es 8 bytes
per ch aracter). Then we ca ncel the TRAP so other errors don't
come to this routine .

25070 Now we define the bytes for the four suit ch aracters.
The key ing sequence aft er ST $ =" is: C TRL comma, 6, ESC TAB,
ESC TAB, greater-than ESC C TRL minus, CTRL H, CTRL
comma, CTRL co mma, C TRL X, less-than, ESC BACK-S , ESC
BACK-S, less-than, C TRL-X, CTRL comm a, CTRL comma, ESC
CTRL minu s, ESC C TRL minus, lowercase W, lowercase W, CTRL
H, ESC CTRL minu s, CTRL comma , C TRL comma, CTRL X,
less-than, ESC BACK-S , ESC BACK-S , CTRL X, less-than, CTRL
comma, and the closing double quotes.

25080 Start the loop to put the bytes.

25090 Convert one ch aracter at a time to its ATASCII va lu e and
POKE it in the appropri ate loca tio n.

25100 Finish the loop .

25110 Put the address of the new tab le in C HBAS (location 756).

25120 Return to the ca ller.

That's a ll there is to it! Of course this method will work for any
characters you wa nt to redefin e. A ll YOll h ave to do is decide whi ch
characters you can do without, and the bit patterns of the
characters YO ll want.

With the above routine as it is, if you wa nt a heart, lise the left
bracket , etc. Use PUTs to the screen for the characters you want.
Remember that YOll ca n use inverse-video and / o r add va lues to
change colors.

88

Graphics

For example, without using any SETCOLOR statements, try

GRAPHICS 2: GOSUB 25000
PUT #6,ASC("inverse-video of right bracket")

to get a b lue C lub, or

PUT #6,ASC("inverse-video of left bracket') + 32

to get a red H eart.

A Few Words of Warning
Every t ime you ch a nge graph ics modes (even GRAPHICS n + 32
which doesn't ch ange the scree n) , the Operating System resets
locat io n 756 to 224, pointing to the nor mal ch aracter set. If you
want the suit ch aracters back aga in, just GOSUB 25 110.

A lso , if you use a graphi cs mode gre8 ter than 2, 'yo u migh t
destroy the tab le. So you wi ll probably want to GOSUB 25000 aft er
coming out of graph ics mode 3 or above .

Of course you do not h ave to use the same line numbers, and
you mi ght want to remove the memo ry over lap check 8t line 25020,
but th at's up to you.

Try it! You' ll li ke it!

25000 REM REOEF I ~~E CHA~~ACTEF: :;ET Ai'[) REF'
LACE / WITH [.,]
25001 REM DESTRO\'S TPAP) USE:::; ST~~ I t·~:; ST $
IKJ UAA I ABLES I AtU .J

25010 J=(PEEK(106)-8)t256
2502'0 IF .J<=PEEV(144)+:;:'56t:PEEK(145) Tt£l~
? upROGRAt'1 TOO L.A~~GE TO PE[lEFH~E IJ1ARSII

:GOTO 25120
~:5030 FOI=: I =0 TO 1 ~123
25040 POKE .J+ I .. F'EEK 0:: 57344+ I > : t·E,,:T I
,,'5050 J=.J+472
25060 TRAP ::'5(170: 0 I t"1 :;T $(32) : WAF' -#.100121
25065 RH1 (FOLLOl~HlG LHlE I:; PEF.: IPID E;
(:OHI.JEtH I ml -ED.)
25f17f1 :;T$=" {,)6{TAB TAB} > {UP} {H} { ::- C{:·<
·rnAC:t< BAC:~:::} -< {~:} -::) }) {iJF' IJP} 1.I.lI.V {H) {LIF') {.' .' ::- -::
X) < {BACt< 8AC.: ~<::· {>~) < { .1) II

250f,'0 FOR 1=1 TO 32
25090 POKE ' J+ 1-1, ASU :;T$(I, I »

89

Graphics

90

251 €10 HE:~T I
25110 POKE 756, F'EEV(106)-8
25120 RET~t·~

f
I

I \ .
\ ~

Graphics

Ticker Tape Messages
Eric Martell and Chris Murdock

The large text modes, [GR. 1, GR.2] are very co nvenient. With text
like this avai lable, the Atari ca n become a usefu l and eye-ca tching
message presentation device. The fo llowing program makes use of
some simple string manipulat io ns, to move text ac ross th e screen in
a manner rem iniscent of ticker tape or a marquee sign. 1l1e actual
text movement is done by li ne 50 in the fo ll ow ing manner:

The first 19 characters of the message string [A$] are printed at
position 1.5 [the vertical ce nter of the screen]. A temporary string
[C$) is set equal to the second through the 20t h characters in A$.
Then A$ is added [co n cate n ated] to C $. Since C$ and A$ are
dimensioned to be the same lengt h, this has the effect of attaching
the first character in A$ to the end of C$. A$ is then set eq ual to
C$ and printed once again.

The variable K is set up to check for any key being pressed.
This action will terminate th e program in li ne 55. A delay loop is
inserted in line 55 to increase readability, since the string
manipulation is so fast th at t he letters become b lurred unl ess slowed
down.

The rest of the program con tains enough remarks to be
se lf-explanatory.

o PEH Me,1.) I tiC; t1E:=SAC;E PPOGF:At'1 FOP H£ AT A
RI
1 p~: I t·rr II {(LEAP} II : REt1 CLEAP :;CPEEt·~ BEFOP
E GOH~~ Ot4
2 "H1 0 i ,)',ens i on str i rt9S
10 0 It1 >::$(1 OC~) ::.) 5'$(1 ::.) t·l:tC:.·1~j)) P'tC:''0) ,}$(2
0») 2$(20::'
15 ~j$=lIt t :t ::;(},:: t t t t t 1\: FH1 80PDEP
16 '/$=~j$

19 REM Clear' str· in95 3.nd set E:i=b 13.nk fo
t~ clear' i "9 t.he r·et't',3. i nder' of ::<$
2\-) >~$= II II : 9$= II 11

24 ~H1 I nF'ut. ~our te>:t lr,et-e
25 ? :? 11 Ent.er· ~our' IT18Ssa!O:<e 1\ .: : H1F'UT >~$
29 P81 CLEAP THE F.~E::n OF ::-::$ IF ::;HOF.:TEP T
~.~ ::;CREEt-~ l·HOTH <:: 19 >
3e I FLEW ::<$)< ,,'0 THEtl FOP C= 1 TO 20-LEtK

91

Graphics

92

:~$::. : X$(LE~j(::<$)+ 1)=B$ • r·jE::<T C· >~$< LHK ::<$)+ 1
)::B$
35 0 I t1 A$:(LEt-K : •.• :$::.) , C$(LEN(>::$::- > : At=>::!
39 REM GOTO GRAPH I C; ~~=IOE 2+ 16 AriD pp niT

STRlt·K;S
40 GRAPHICS 18
45 REM t'1,j'Je bor·der·s of shr·s
46 POS 1 T IOt-l 1) 3 :? #6; \'$(1 .. 19) : P$=l·l$(2 ':< : P
$(LHK P$)+ 1)=l·Ji: ~·J$=Pt
47 POSITION L7:? #6;\'$(1.,19):2$='/$(2):2
$(LEN(Z$)+ 1)=V$: ')"$=2$
49 REM Moc..,'e illess:age str i n9 and check loe
ation 764 to see if :a ke~ lIJ:aS st.r·uck
se POS 1 T I Ot-~ 1 .. 5 :? #6 j A$(1) 19) • C$=A$(2) : C
$(LEW ($)+ 1)=A$: At=C$: K=PEEK(764)
54 REM Pause to iner·ease r·ead::s.bi 1 i b .. se
t color rand:)ifll ~ J a.nd r·eset. attr·::s.d f 1a.9

55 Fffi Tl = 1 TO 50: ~E){T TI: POKE (7) 0 : SETC
fl..QR HIT (~m 0):*4) J INT (FID(fD% 15) J 8: IF K
=255 THEN 46

Graphics

Player/Missile Graphics
With the Atari Personal

Computer Systems
Chris Crawford

Some think that this is among the very best ideas printed about the Acari
to date. Study it, experiment, and the techniques here will considerably
amplify your programming ski lls.

Anybody who has seen AT ARI's Star Raiders ™ knows that the
Atari Personal Computer System has vastly greater graphics
capabilities than any other personal computer. Owners of these
computers might wonder if they can get their machines to do the
fabulous things that Star Raiders does. The good news is that you
can indeed write programs with graphics and animation every bit as
good as Star Raiders . In fact, I think it's possible to do better. The
bad news is that all this video wizardry isn't as easy to use as
BASIC. The Atari computer is a very complex machine; mastering
it takes a lot of work. In this art icle I will explain just one element of
the graphics capabilities of the Atari Personal Computer System:
player-missile graphics.

Player-missile graphics were designed to meet a common need
in personal computing, the need for animation. To understand
player-missile graphics you need to understand the old ways of
doing animation on machines like the Apple. These machines use
what we call pure playfield graphics , in whi ch bits in RAM are
directly mapped onto the television screen. You move an image
across the screen by moving a pattern of bits through RAM. The
procedure you must use is as follows: calculate the current addresses
of the bit pattern, erase th e bit pattern from these addresses,
calculate the new addresses of the bit pattern, and write the bit
pattern into the new addresses.

This can be a terribly slow and cumbersome process,
particularly when you are moving lots of bits (large objects or many
objects) or when the motion is complex. Consequently, most
animation on computers like the Apple is limited to pure horizontal
motion, pure vertical motion, sma ll objects, or slow motion.
Animation like you get in Star Raiders is utterly impossible.

93

r-----

Graphics

To understand the solution to this problem you must
understand its fundamental cause. The screen image is a two
dimensional entity, but the RAM that holds the screen image is a
one-dimensional entity. Images that are contiguous on the screen do
not necessarily occupy contiguous RAM locat ions (see Figure 1). To
move an image you must perform messy calcu lations to figure out
where it will end up in RAM. Those calcu lations eat up lots of time.
We need to eliminate these calcu lations by shortcutting past the
2d-to-ld transformation logjam. What we need is an image that is
effectively one-dimensional on the screen and one-dimensional in
RAM.

Let's set aside a table in RAM for this one-d imensional im age.
We'll call this table and its associated image a player. We'll have the
h ardware map this image directly onto the screen, on top of the
regular playfield graphics. The first byte in the table will go onto the
top line of the screen. The second byte will go onto the second line
of the screen, and so on down to the bottom of the screen.
Although I'm calling the image one-d imensional, it's actua lly 8 bits
wide, because there are 8 bits in a byte. It's a straight bit-map; if a
bit in the byte is turned on, then the corresponding pixel on the
screen will be lit up. If the bit in the byte is turned off, then the
corresponding pixel has nothing in it.

We can draw a picture with this sch eme by turn ing the
appropriate bits on or off. The picture we can draw is somewhat
limited; it is tall and skinn y, only 8 bits wide but stretch ing from the
top of the screen to the bottom. Let's say we want to draw a picture
of a little spaceship. We do this by storing zeros into most of the
player RAM. We put the bits that form the spaceship into the
middle of the player RAM so that it appears in the middle of the
screen . See Figure 2 for a depiction of this process.

So far we don't 'have much: just a dinky image of a little
spaceship . How do we get animat ion? We move it vertica ll y with the
same technique that other computers use. First we must erase the
o ld image from RAM, then we draw in the new im age. This time,
however, the problem is much simpler. We move the im age down by
moving its bit pattern one byte forward in RAM. We move the
image up by m oving its bit pattern one byte backwards in RAM.
We use no crazy two-dimensional calculat ions , just a simple one
dimensional move rout ine. It's trivial in BASIC and easy in
assembly language. Horizontal motion is even easier. We have a
h ardware register for the player called the horizontal position
register. When we put a number into the horizontal posit ion

94

Graphics

register, the pl aye r is immediately moved to that horizontal position
on the screen. Put a big number in a nd POW! - th e player is o n
the r ight side of the sc reen . Put a li ttle number in and POW! - the
player is on the left side of th e screen. Horizontal mot ion is ac h ieved
by changing the number you put into the horizontal position
register. The two techniques fo r ho ri zontal and vert ica l motio n ca n
be m ixed in any way to produce any complex mot ion you des ire.

This is the two-dimensional screen image

Here are the corresponding bytes in RAM (hexadec imal)

000
000
o 99 0
o Bd 0
o FF 0
o Bd 0
o 99 0
o 0 0
o 0 0

This is how the bytes wou ld be placed in one-dimensional RAM. Note how
the bytes that make up the spaceship are sca ttered through the RAM. What
a headache!

0
0
0
0
0
0
0

99
0
0

Bd
0
0

FF

95

Graphics

Figure 2
How to draw in binary

graphical
representation

o
o

Bd
o
o

Bd
o
o

99
o
o
o
o
o
o
o

one byte binary h exadecimal decimal

8 bits representat ion representation representation

..____ 10011001

1tti _ 10111101
-11111111
-10111101
- 10011001

99
Bd
FF
Bd
99

153
189
255
189
153

The capabiliti es I h ave described so far are nice , but taken
alone they do n't give yo u much . That's why Atari added a long li st
of embelli shments to this b as ic system which enormously extend its
power. The fir st embelli shment is th at you h ave no t just on e, not
two, no t three , but FOUR (count 'em , FO UR) playe rs ava il able.
This mea ns th at you ca n h ave four li t tl e spaceshi ps fl ying around on
the scree n . They are all independent an d so ca n move
independentl y. The n ext embellishment is th at each pl ayer h as its
own colo r register. Thus, you ca n set eac h pl ayer to a different
color , completely independent of the co lo rs in the playfield . This
gi ves you th e capabili ty of putting up to nine colors o nto the screen,
depending on your grap hi cs mode. Next, you h ave the capability of
making a pl aye r double o r qu adruple width. This doesn't change
the eight-bit reso lution of the playe r , but it does allow you to make
him fatt er o r skinni er as you please. Next, you can select the vertical

96

Graphics

resolution of the player to either single line resolution (each byte
occupies one scan line on the screen) or double line resolution (each
byte occupies two scan lines on the screen. Next, you can select the
im age priorities of players versus playfield. Since both players and
playfield will be imaged onto the same locat ion of the screen you
have to decide who h as priority in the event of a conflict. You can
set players to have higher priority than playfield, playfield to have
higher priority than players, or several mixtures of player-playfield
priority. This allows you to have players disappear behind playfield
or vice-versa. Finally, you have tiny two-bit players called missiles.
Each player has one missile associated with him. The missile takes
the same color as the player but can move independently of the
player. This allows bullets or other small graphics items. If you
want, you can group the four missiles together to form a fifth player.
They then get a separate color.

How do you use all of these fant ast ic capabilities? You think
that it would be terribly difficult to put all of this together into a
program, but it isn't. Listing 1 shows a program that puts a player
onto the screen and moves it around with the joystick. As you can
see, the program is ridiculously short . H ere's how it works:

Line 10 sets the background color to black (the better to see the
player by). It also sets up our starting positions, X being the
horizontal position and Y being the vertical position.

Program 1. Program to demonstrate player-missile graphics.

18 SETCOLOR 2J0J0:X=120:Y=48:REM set bac
k9rOtrld color and po 1 a~ POS i t i on
20 A=PEEK(106)-8: POKE 54279} A: PMBf6E=£.'56
:tA : REM Set po 1 a::ler·-ffi i 55 i 1 e address
38 Ptl<E 559 J 46: POKE 53277} 3 : REM Enab 1 e P
M sraph i C5 \JJ i tiro 2-1 i ne r·eso 1 ut i on
40 PO<E 53248} >~ : R81 Set \r.or i zont:a 1 P05 i t.
lon
50 Fll< I =PM8ASE +512 TO PMBASE +640 : POKE I
J 0 : ~EXT I: RH1 Clear· out P 1 a~er· f i r·st.
60 PO<E 704,216: PEM ~;et. color· to sr·een
?e F~ I=PMBASE+512+'r' TO PM8A~:;E+516+'l: PE
f() A: POKE I J A : t·();T I: RH1 Orll.J.I P 1 a.~er·
80 DATA 153,189,255) 189, l~J

97

\

Graphics

90 F£I1 t·~OIJJ COtT~5 the iilot i on to'out i ne
100 A=ST1CK(0): IF A=15 T~N GOTO 1((1
110 IF A=l1 T~~~ ::<=>~-1 : POKE 5324:::.,::-~
1 ~1 IF A= 7 TI'fJ~ >~=>(+ 1 : PC~<E 5324::: .. ::-::
1~ IF A=13 Tt{l~ FOR 1=6 TO 0 ::::TEP -1 :PO
KE pt'Bf6E+512+Y+ I I PEEK(Pt1BA::;E+511 +Y+ I): H
EXT I: Y=I.(+l
140 IF A=14 THEH FOR 1=0 TO 6: POf:::E F't'1BA::;
E+511+\,,+ I JF'EEf:::(Pt1BA:3E+512+\'+ I): t·E<T I: \'=
't~1
150 GOTO 100

Line 20 finds the top of RAM and steps back eight pages to reserve
space for the player-missile RAM. It then pokes the resultant page
number into a special h ardware register. This tells the computer
where it will find the player-missile data. The players are arranged
in memory as shown in Figure 3. Finally, line 20 keeps track of
where the player memory is through the var iable PMBASE. Because
of this arrangement, this program wi ll work on any Atari Personal
Computer System, regardless of the amount of RAM in place. The
number of pages by which you must step back (8 in this case)
depends on h ow much memory your graphics mode consumes and
whether you are in single-line resolution o r double-line resolution.
In any event , the number of pages you step back must be a multiple
of 4 for double-line resolution and a multiple of eigh t for single-line
resolution.

Line 30 fir st informs the computer that this program will use
double-line resolution. Poking a 62 into location 559 would give
single-line resolution. The next instruction en ables player-missile
graphics; that is , it authorizes the computer to begin displaying
player-missile graphics . Poking a 0 into location 53277 revokes
authorization and turns off th e player-miss ile graphics .

Line 40 sets the horizonta l position of the player.

Line 50 is a loop that pokes O's into the player 0 RAM area. This
clears the player and eliminates any loose garbage that was in the
player RAM area when the program started.

Line 60 sets the player's color to green . You can use any color you
want here. The colors h ere correspond exactly to the colors you get
from the SETCOLOR command. Take the hue valu e from the
SETCOLOR command, multiply by 16, and add the luminosity
value. The resu lt is the va lue you poke into the color register.

98

Graphics

Line 70 reads d ata b ytes out of line 80 and pokes th em into the
pl ayer RAM area . The bytes in line 80 define the sh ape of the
player. I calcul ated them with the process show n in Figure 2. H ere
you h ave lots of room for creativity. You can make any shape th at
you desire , as lo ng as it fits in to eight bits. You want more bits? Use
four players shoulder to shoulder and you h ave 32 bits. You can
make the look longer to give more ve rtical height to your player.

These seven lines are sufficient to put a pl ayer o n to the screen. If
you only put in this much of the program, and ran it , it would show
the player o n the screen . The next lines are fo r moving the player
with the joystick plugged into port O.

Line 100 reads th e joystick .

Line 110 ch ecks to see if the joystick h as been moved to the left. If
so , it decrements the horizontal position counter and pokes the
hori zontal positio n into the h o ri zon ta l position register. The line
does not protect aga inst b ad va lues of the h ori zontal position
(X <lor X> 255).
Line 120 ch ecks to see if the joystick is pressed to the right. If so , it
increments th e horizontal pos itio n counter and pokes the horizontal
position into the h o rizontal positio n register.

Line 130 checks to see if the joysti ck is pressed down. If so , it moves
the playe r im age in RAM forward by o ne b yte . There are six b ytes
in the playe r im age that must be moved . When it h as moved them,
it increments the vertical positio n counter.

Line 140 perfo rms th e same fun ctio n fo r upward motion.

Line 150 starts the joystick poll loop over aga in .

This program was written to h elp you underst and the principles of
player-miss ile graphics ; as such it h as many weaknesses . It also h as
much potential fo r improvement . Yo u might want to soup it up in a
variety of ways. Fo r example , you could speed it up with tighter
code or an assembly langu age subrout ine. You might add more
players; perh aps each could be co ntro lled b y a separate joystick. You
could change the graphics shapes. You could m ake the colo rs
ch ange with time o r position o r how much fu el th ey h ave left, o r
wh atever. Yo u could add miss iles fo r th em to shoot with. You could
ch ange width to give the impress io n of 3D motion that Star Raiders
gives. You could add playfi eld prio rities so they could move behind
some obj ects , but in front of oth ers. The possibilities are almost
limitless .

99

Graphics

Figure 3
Player-missile graphics RAM positioning
PMBASE must be on 1K boundary for double-line
resolution,
2K boundary for single-line resolution

PMBASE

100

+128

+256

+384

Missiles

+512

+640

+768

+896

+ 1024

double-line
resolution

unused

M3 1 M2 1 M 1 I MO

Player 0

Player 1

Player 2

Player 3

M3

single-line
resolution

unused

M2 M1

Player 0

Player 1

Player 2

Player 3

PMBASE

+768

MO Missiles

+ 1024

+1280

+ 1536

+ 1792

+2048

Graphics

Useful addresses
(all values in decimal)

559 put a 62 here for a single line, a 46 fo r double line
resolution
623 sets player/playfield pri orities (only one bit on!)

I: a ll players have priority over al l play field registers
4: a ll playfield registers have priority over all players
2: mixed. PO & PI, then all playfield , then P2 & P3
8: mixed . PFO & PF I, then all players, then PF2 & PF3

704 color of player-missi le 0
705 color of player-missile I
706 color of player-missile 2
707 colo r o f player-missile 3
53248 ho ri zontal position of player 0
53249 horizontal position of player I
53250 horizontal position of player 2
53251 horizontal position of player 3
53252 hori zontal position of miss ile 0
53253 horizontal position of missi le I
53254 horizontal positio n of missile 2
53255 horizontal position of missile 3
53256 size of player 0 (O=normal, I =doubl e,

3 = quadruple)
53257 size of player I (O=normal, I =double ,

3 = quadruple)
53258 size of player 2 (O=normal, I =double ,

3 = quadruple)
53259 size of player 3 (O=normal, 1 = do uble,

3 =quadruple)
53277 A 3 here enables player-missi le graphi cs, a 0

d isables them.
54279 put high byte of PM BASE here

101

Graphics

The Basics of Using POKE
in Atari Graphics

Charles G. Fortner

Did you ever wonder how the Atari can store 61,440 pixel in less than
8,000 bytes? With the information in this article, you'll have the
background to create graphics in machine language, high-speed screen
save/recall, mix text and graphics, and lots else.

In order to use the poke statement in Atari graphics, we must first
know two things:

1) Where to poke
2) What to poke

To display where to poke, we must look at the display li st for each
graphics mode. This display list is found by PEEK (560) + PEEK
(561) *256. The display list determines how the memory is displayed
on the screen. The 5th and 6th byte of the display list hold the
addresses of the first byte to be displayed. Table 1-1 gives the
starting address for each graphics mode plus other information.

Determining what to poke involved trial and error with the
following results:

1) Graphics Modes 3,5,7, 19,21,23
These modes are four color modes which display only four pixels for
each eight bit byte of memory displayed. Bits 7 and 6, numbered as
7 -6-5-4-3-2-1-0, determine the color of the first (left-most) pixel; bits
5 and 4 the second; 3 and 2 the third; and 1 and ° the fourth. The
two control bits act as a "COLOR" statement for each pixel. If the
hex value of the two control bits equals ° it corresponds to a
"COLOR 0" statement; if they equal 1, they correspond to a
"COLOR 1" statement, etc.

2) Graphics Modes 4, 6, 20, 22
These modes are two color modes which display eight pixels for
each eight bit byte of memory. Each bit acts as a "COLOR"
statement for an individua l pixel. A one in a locat ion corresponds
to a "COLOR 1" statement and a zero corresponds to a "COLOR
0" statement.

3) Graphics Mode 8, 1lf5r..2'i
These modes are high resolution modes with only one color. They
display eight pixels per memory byte with a "1" bit displaying a

102

Graphics

T AB LE 1· 1

BITS
GRAPHICS DISPLAY # OF # O F BYT ES DISPLAYED

MODE DATA ADDR. ROWS COLU MNS PEH RO W PEH BYTE

24 176 20 40 10 4
214 36 40 80 10 8

5 21456 40 80 20 4
6 22 496 80 160 10 8
i 20576 80 160 ·10 4
8 NOTE 1 160 320 40 Il

19 241 76 24 40 10 4
20 21436 48 HO 10 H
21 214')6 48 80 20 4
22 224% 96 160 20 8
2l 20')76 96 160 40 4
24 16720 192 160 40 8

NOTE # I: G r;lphic~ Mode 8 h~ s [wo addn.::-.:-.c:-. - I h720 i ! he liHlinl! 'llklrc :-.:-.
for rhL' fir st 80 Iinc!' ;lnd 20480 i ~ the st;lrting :ldd rl..· fo r IIll' Sl'\\l lld HO line

pixel of the sa me color as the background but with a high er
luminan e. A "0" bit displ ays a pi xel of the sa me colo r and
luminance as the b ackground .

#O F
COLORS

AVAILA BLE

The "COLOR" statements ment io ned in the above expla nat io ns
indirectly co ntro l th e color of eac h pixe l by determin ing which
colo r regi ster is active for a n indi vidu al pixe l. The exact manner in
which a "C OLO R" statement chooses thi s register is explained in
Table 9.5 of the Atari-Basic Reference Manual.

H ere 's an interesting program to get started in graph ics:

lS GRAPHICS 5
2e AOOF~=F'EEK< 560)+PEEk:< 561 *256
38 AOOP=PEEf« ~F.'+4)+PEEVr:: ADDF.'+5 >t2.'56
40 B= I t·n 0:: RHO(0):t80f1 > : RH1 -

PICK A ~.'ANOOt·1 8YTE IN OI~;PLH'1'
50 A= I HT (!<tID.:' 11 H:25:,) : kH1 -

PICK RAHOm1 I)ALUE 8EnJEEt~ [) AND :;:'55
6e F'1l<E H:(j~.'+8 .' A : PHi -

POKE ~~At'IDOt-1 UALUE H{fl) ~.'AtmOt1 8\'TE
7e GO TO 40

References: "Atari 400/800 Basic Reference M anu al," Copyright
1980, Atari , Inc.

103

Graphics

A note on using the basics of POKE ...

Larry rewrote the original program that Charles sent in so it will
adjust itself to your m achine's memory. After you try the program
in the article, take a look at these. I expanded them to randomly
alter the SETCOLOR parameters ... you'll discover some of the
versatility of your machine after you let the program run for five
minutes or so.

104

10 GRAPHICS 23
20 AOOF.:=PEEK(560)+PEEl« 561):t.256
30 ~:=PEEK(~~:+4)+PEEK(AOD~~+5):~~256
35 I=UH(RNO(0)*16)
36 J=I~ff(RHO(11):t.16:'
37 K=IH1(OO((1)t5)
38 SETCOlOR K,J., I
40 B=INT(F.t[)(0):n~:4~1): F£M -
PICK A RAt-[JOM BYTE Ul OISF'lA\'

59 A= I tH <: F.t[)(11)::~255) : RHl -
PICK RANOOt1 l.)fLUE BEn~EEt'l C1 AHD ~'55

6e PI)(E AOOR+B, A: PEtl -
PO<E ~:A~()Ot-1 UALUE HnO F:At·m:]1 E:\'TE

?e GOlO 35

10 GRU='HICS 7
20 AI:(f.:=PEEK(560)+PEH::C 561)t256
38 AOOP=PEEK(R.IOR+4)+PEEK(AOOP+5)~~~'56
35 I=UH(RHD(0):i16)
36 .J= lt~T (RtlD(0)* 1 f.)
37 K=IH1(RI'ID(0)*5)
38 SETCC"'Cf~ t<,.j) I
40 B= I HT (RND(0)t3200) : RHl -

PICK A RANDO!'l B\,TE Ul OI::;f'lAY
50 A= I NT (R~jD(0)t255) : RH1 -
PICK j;;:At·IDOM I.JALUE BEn~EEt-~ ~3 At'lD c.'55

6e PO<E AOOR+B, A : RHl -
POKE RH'·IDOt·1 UALUE HnO RA,·1[1i]1 E:'-iTE

?e GOTO 35

Graphics

Designing Your Own
Atari Graphics Modes

Craig Patchett

This one is on the list of "things you 'gotta know" about the Atari. Get
set fOT some video magic.

The graphics modes that Atari supplies with their 400 and 800
computers are nice, but what if you want a little more? For example,
how about a large-type heading, with a smaller-type sub-heading
below it, all over a graphics display? Terrific, you say, but you're not
an Atari engineer? Don't worry about a thing. With this article, a
little concentration, and some time in front of the keyboard, you'll
have Atari graphics modes performing at the snap of your fingers.

First, a simple explanation of what we'll be doing. In a series of
memory locations deep inside your Atari rests a special list of
numbers that tell the computer which graphics mode it's in. Each
time you change graphics modes, this list also changes. But wait a
minute. Why a list of numbers instead of just one? Because there is
one number for each graphics row on the screen. For example, in
graphics mode 2 + 16 (no text window) there are twelve graphics
rows, so there would be twelve numbers in the list. For graphics
mode 7 + 16, there would be 96 rows, or 96 numbers. The table
labeled Modes and Screen Formats in your Atari BASIC reference
manual shows the number of rows in each graphics mode. We'll be
referring to it again later.

As I said before, when you change graphics modes, using the
GRAPHICS command, the list changes . It may become longer or
shorter, depending on the mode, and the numbers in it will change.
But the numbers will all be the same . Obviously, since they stand
for the graphics mode of each row on the screen, if half of them
were one number and the other half another, then half of the screen
would be one mode and the other half another. This is not how
Atari BASIC was designed. It is, however, what we want. So what
we're going to be doing is changing the numbers in the list to make
the screen behave the way we want it to. Let's take a look at exactly
how it's done.

How Much Of Each Mode Should I Have?
The first thing we have to do is figure out exactly how we want the

105

Graphics

screen to look. Let's take the example from the beginning of the
article - a large-type heading (mode 2), with a smaller-type sub
heading below it (mode 1), a ll over a graphi cs display (mode 3).
Unfortunately, we can't just decide to h ave, for instance, four rows
of mode 2, two rows of mode 1, and nine rows of mode 3. There's a
simple rule we h ave to follow in deciding how many rows of each
mode we're going to h ave.

You may already know that your television picture is made up
of hundreds of little lines going across the screen from top to bottom
(if you don't, you know now!) If you look closely at the screen, you
can probably see them. These lines are formed by a single beam of
light that scans the screen very quickly (sixty times a second) to
make the picture, so we'll call them scan lines. The part of the
screen that your Atari lets you use for graphics h as 192 of these
lines.

Each graphics row is a certain number of scan lines "high." In
mode 1, for example, each row is eight scan lines high. If you look at
the T able of Modes and Screen Formats that I have mentioned
before , you'll see that there are 24 rows in mode 1 (remember, we 're
only interested in "full screen.") Surprise! Twenty-four rows, each
eight scan lines high , means 8x24= 192 scan lines in all. To figure
out how many scan lines high the rows in other modes are, just look
at the table and divide 192 by the number of rows in a full screen.

The reason we need to know all this is because we must make
our new mode so that it has a total of 192 scan lines. No more, no
less. This means you have to do a little bit of juggling around with
the different modes you want to use, but it's really not all that
difficult. I'll demonstrate with our example. Let's suppose we need
three rows of mode 2 and two rows of mode 1. A ll we need to do is
figure out how many rows of mode 3 we should have to m ake a total
of 192 scan lines. We look at the table and figure out that in mode
2, each row is sixteen (192 scan lines/ 12 rows) scan lines high . Since
we want three rows of mode 2, that makes forty-eight scan lines so
far. Similarly, we want two rows of mode 1, which uses eight (192
scan lines124 rows) scan lines for each row. So that makes another
sixteen scan lines, or sixty-four all together, wh ich leaves us 192 -
64= 128 scan lines still left over. We'll use these for mode 3. We look
at the table again and see that mode 3 uses eight scan lines for each
row also, so how many rows do we need? 128 leftover scan lines/ 8
scan lines per row of mode 3 = 16 rows of mode 3.

So now we know that our graphics mode is going to h ave three
rows of mode 2, two rows of mode I, and sixteen rows of mode 3.

106

Graphics

Let's tell the computer.

How Do I Tell The Computer?
We have to start by telling the Atari in a graphics mode it
understands. Of course, we can't use just any mode, but this time
the rule is a lot easier. Out of the modes you're going to be using,
take the one that uses the most memory (look at the table under
"RAM required"). In our example, mode 1 uses the most memory,
so the first line in our program is:

10 GRAPHICS 1

The next step is to find out where the li st of numbers begins. Since
it isn't always in exactly the same place, we must PEEK into the
computer's memory at two locations that tell us where it is. Since
we'll need to use the number that tells us where the list begins later,
we'll give it a name:

20 BEGIN = PEEK(560)+ PEEK(561)*256 + 4

This line will always be the same no matter what modes you are
going to be mixing.

The third step can be ignored if the mode you want at the top
of the screen is the same as the one that uses the most memory. If
not, as in our example. (mode 2 is at the top of the screen, mode 1
uses the most memory), then we have to change the number in the
memory location right before the beginning of the list. The table
below shows what number to use for the mode at the top of the
screen.

MODE 0 2 3 4 5 6 7 8

NUMBER 66 70 71 72 73 74 75 77 79

So, for example, we would need:

25 POKE BEGIN - 1,71

Remember, only do this step if the first graph ics row is not the same
mode as the one that uses the most memory.

Now we just have to go down the list and change the numbers
that need to be changed. The numbers for the graphics mode with
the most memory are already correct, since we start in that mode.
Therefore, all we have to change are the other numbers. In our
example, that would be the numbers for mode 2 and mode 3. To
make the necessary changes, we simply POKE BEGIN + row
number with the correct number for the mode we want in that row.
What are the correct numbers? Just subtract sixty-four from the
numbers in the table I gave above . That would mean, for example,

107

..------- - -.~ - -- -- ,----

Graphics

seven fo r mode 2, and eight for mode 3. So we h ave:
30 POKE BEGIN +2,7:POKE BEGIN +3,7

which takes care of mode 2. Note that we didn't POKE BEGIN + 1.
This was automat ica lly taken care of when we POKEd BEGIN-I in
line 25. Remember th at we also don't h ave to worry about the
numbers fo r mode I, since they are already correct . Therefore, all
th at's left is to ch ange the numbers for mode 3. Since we want
sixteen rows of mode 3, which mea ns changing sixteen numbers,
we 'll use a FOR/N EXT loop to make life eas ier:

40 FOR ROW =6 TO 21:POKE BEGIN+ROW,
8:NEXTROW

Now the list h as the correct mode numbers in it. There's st ill
one more thing we must do. Since there may be a fewer number of
rows now than there were in the mode we told the computer to
start with, we h ave to tell the computer where the new end of the
list is. We do this by POKEing the number 65 into the row number
right after the last one we used . This te lls the Atar i to go back to
the beginning of the list. We also tell it where the beginning is. For
our example:

50 POKE BEGIN + 22,65:POKE BEGIN + 23,
PEEK(560):POKE BEGIN +24, PEEK(561)

And now we're done. Note that the on ly changes that you would
need to make in line 50 when design ing your own modes is in the
numbers 22, 23, and 24. These are just th e three row numbers after
the last one you use on the screen.

How Often Do I Have To Do All This?
This wh ole procedure must b e repeated whenever you want to use a
specially designed graphics mode. You can't skip an y of the steps
except for the third one, and then on ly under the condition I
already described.

So Now What Do I Do?
The last thing I'm going to cover is how to print and draw in your
new mode. This only applies if the row you want to print or plot on
is within the normal range for wh atever mode it is. In simpler terms,
if we h ad put the sixteen rows of mode 3 at the top of the screen,
and mode 2 at the bottom, then mode 2 would h ave been in rows,
19, 20, and 21. But mode 2 usually only has twelve rows, so if you
tried to print o n line 19 you wou ld get an error message. Now, th ere
is a way around this, but it's somewh at complicated so I'm going to
leave it for a future ar ticle. For now, however, you can use the

108

Graphics

following rules as long as you stay within the normal range of the
mode you're working with.

The first thing you have to do is POKE location eighty-seven
with the number of the graphics mode for the row you want to
PRINT or PLOT in. Next, POSITION the cursor and PRINT, or
PLOT and DRAWTO . When you tell the Atari to POSITION X, Y
or PLOT X, Y, the X value is sti ll the number of spaces in from the
left that you want to go. The Y value is still the number of rows
down from the top that you want to go, but you may have to
experiment with different values to get it exactly where you want it.
Just make sure that you remember to POKE 87 with the mode
number you're going to PRINT or PLOT in.

To help you understand what I just said, and to show off the
example mode we've been working on, try entering these lines, as
well as the other ones that are included throughout the article.
When you've entered them in, just RUN the program, and BREAK
in when you're done. Notice that the commands for colors are the
same in the new mode; that is, you can st ill print different color
letters and use the COLOR command for graphics points, etc.
The one difficu lty that might rise is when you mix mode 0 with
other modes. Since mode 0 has a different background color (blue)
than the other modes (black) you will have to use the SETCOLOR
command to make the mode 0 rows invisible. Otherwise, you
should have no problems whatsoever.

60 SETCOLOP 4! 4! 2 : FH1 E:A1::::~::C;POUt·jD
70 PC~::E 87! 2 : F')~:; IT lOt·; 6,l1 F'P un #6; Ii TH IS

lSII :P~;ITIOt'1 3,1 :F'PIt-H #6.; Ii@AF'HIC::; t'100
Ell: PCr.; IT I m·j :::! 2 : F'P lIH #6,; H T(,10 i i
00 F'(J(.E 87, 1 : Ffl~:; I TI m·{ 6! :~:: PP HIT #t,; Ii t.h i 5

is ll :POSITIOt1 L4:F'PHH #6 .: i '::.r<1F'hics l'iiCd

e oneil
90 F'O<E 87 ! 3: COLOR 3: FO~: L H4E::: i TC :3: F'LC
T 15, LIHE:t.5+:3 : ORAl.JTCI 22 .' LH1E:;:5+::::: rE<:T LI
t£ : PLOT 22, 13: O~~Al.nCl 22) 23
100 GOTD 1~1: ~'EM KEEF' GPAF'HIC:; o~·{ ':;CPEH:

Look, Ma, New Modes!
That's all there is to making your own graphics modes on your
Atari computer. The easiest way to make sense of everything I've
covered here is to experiment. Start off by ch anging the example

109

Graphics

program and watching what happens, and then try designing your
own modes. Just a little practice and in no time you'll be an expert.
Above all, h ave fun doing it; after al l, the Atari works for you, not
the other way around.

110

Graphics

Graphics of
Polar Functions

Henrique Veludo

One interesting type of program allows you to explore relationships
between numbers and their visual analog. The routine here plots polar
functions - this might not drive you wild until you realize that this means
spirals and roses. A more seductive introdlKtion to the beauty of math is
difficult to imagine.

This program will plot polar functions such as roses, spirals,
polygons, on the high screen of the ATARl800, with
input from the programmer. The general equat ions for converting
the polar coord inates to rectangular coordinates are as follows:

x
cosO= r X=rcosO

y
y X,Y

sinO= r y=rsinO

x

First, the program will display a function menu (line 100), then ask
the user to input which function to display, together with its
parameters, INCR(element) and SC(ale). The INCR(element) is the
interval in degrees that the computer uses to "increment" the angle
T from 0° to 360°. One must decide whether the speed of execution
or accuracy in plotting is preferable. A small INCR(element), e.g.
0.1, will draw a very accurate graph very slowly . A larger
INCR(element), e.g. 5.0, will draw much faster and less accurately .
An INCR of 1.0 is a good compromise. The SC(ale) is included to
allow the graph to fill most of the screen. Without it, some functions
will appear too small, others will be too large to plot. A SC(ale)
between 10 and 100 should do for most functions. Lines 220 to 226
check for a 0 input that might confuse the program and display an

111

Graphics

error message. Line 230 asks if the x-y axes are to be displayed and
lines 390-395 display them. Lines 300-370 will select random colors
and intensities (with enough separat ion to be visible). Lines 400-690
contain the calculation and plotting routines for x,y . In line 410 the
variable U is included for use with the spiral function and dictates
how many revolutions the spiral will have; it can be changed at line
222. Line 420 converts degrees to rad ians (in this context the
program seems to work better with radians, but it cou ld be
converted to degrees, with the DEG function, and ch anging the
values of the functions). Line 430 will direct the program to the
proper function chosen in the input. Lines 610-620 calculate the x,y
coordinates. Li ne 630 will check for an out-of-range cursor, stop the
drawing, and avoid an error message. Line 670 will act ivate the
buzzer to signal that the plotting is over. Lines 680-690 wait for a
key to be pressed to clear the screen and return to the menu. If the
buzzer sounds without anything being plotted, it means that the
function is too large to plot. (Decrease the SC(ale) value to
continue.) I chose to use randomly-selected colors. They could be
chosen by the user in an input statement as well (where you input
the parameters after the menu display).

Here are some values for the functions that work beautifully:

R = Q:SC = 4:INCR = 60
R = 2(I-SIN (Q):SC = 20
R=COS(2 SIN(6 (Q»):SC=90
R=SIN(COS(lOO Q»:SC=90
R=COS(2 SIN(2 Q»:SC=90
R=I:INCR=45:SC=60 polygon

R = 2(1 + COS(Q»:SC = 20
R = SIN(3(Q»:SC = 80
R = SIN(4COS(2Q)):SC = 90
R = COS(3SIN(Q»:SC = 90
R =COS(SIN(lOO Q»:SC=90
R = I:INCR = 120:SC = 80 triangle

112

113 RH1 F'POGFU'1 TO PLOT POLAR FUtlCT I mE
~'0 REt1 BY HEHP I C!UE I)ELUDO FOP A TAP I :;'CJ0
80 DIM A'.$(1)
ge '7" II) II

1 00 PO~; IT IOH 7.' 1 :? II GF:AFH:; OF POLAP FLW::
T I Ot·t.3 II
110 F'OSITIC~'1 2J3:? "FUHCTlm1 t'1ENU: 11:'(

Graphics

E'0 '. II 1)R=E:tO , SPI F.H-.
II

13(1 r. II 2 ~~~=A:~~(1 +CCr.;(0) > .. CAPDIO
10"
14(1 '-. II 3)f;:~A:*(l-SIWO»)" :
150 -: II 4)P=A:~:~; I rV B;..~G.I) ROSE"
160 -: II 5)P=A:~~CCr';(BtO) II
170 -: II .;)R=COs(AtS I rK RiO :

180 -: II 7 :*:=S m(A:~COs(8:W II

19(1 -: II 8)~~A :

W
200 .-;., : .-;:. : .:' II HlPUT : II . :'

210:" II FUt.1CTlOtl #, A .. B, H1CR.)~;C. 1I j : ItiPUT
t·LA., B .. H1CR .. ~;C
22(1 IF t1=0 TrHl t'1=1
222 1 F t·t= 1 TI-EH U=4
2'24 I F A-~ Tf-Et·l A= 1
226 IF E:=O THHl 8= 1
230 .-;, : .-;:. : '7 "00 YOLI ~,.l!:trr THE ><-'y' A:~ES [II

SPLA'y'£D" ;
24(1 I~PUT A$: IF A$(1, 1)="\'11 THHl ~'Fl

3f~1 [CLOP 1: GRAFi·UC:; 24
310 I=HlT(RHO(1)*16)
3~'0 L 1 = I t·n (F:t[)(1):r.8):~~2
330 L2= I t·n (RHD(1):*E:)t2
34f1 IF A8S(L 1-L2 >< 4 Tf-EH 320
35(1 ~:HCOlOR 4) L L1
36(1 ~:8COLOR 2} L L1
37(1 ~:fTCOLOF.: L L L2
380 I F ~v:> 1 T~N 410: r;:H1 --[) I ~;F'lA\' A:~E::;':"

3'~J Fff.: 1 =0 TO 319 ~:;TEP 4: F'lOT ' 1,96: rEn
I

395 FfF. I =0 TO 191 STEF' 3: F'lOT 160 .' I : HE:>::
T I
400 F.il1 ----PLOTT I t·le CAlLULAT I ON
41(1 FC"~ T =0 TO 36fn::Li ';TEF' HiCf;:~
4~'f1 0=T.····57 . 3
43(1 Ctl t·l mTO 510., :,2~L 530, 540, 550 .. 560 .. 57
0 .. 5:::£1
50fl F.H1 ---EC~JAT I ON'; F~~ R
510 R=E:t:O : GI:JTO 610

11 3

Graphics

114

52(1 ~:=At(1+COS(1]):GOTO 61~1
53~1 R=At(l-:;UKO):GOTO 610
54~1 P=AtS IW 8tO::': GOTD 610
55~1 ~~::;::CO~;(8:1;0): GOTO 610
:r6~1 P=CCI:3(A::;~:; I ~K E~l~O)) : (;OTO 610
570 R=:; I t'K AtCO::/ B:W »: (;OTO 61(1
580 R=A: i::;01O 610
6OC1 ~fl1 F'lOT T m:; :~, y
61 (1 >::= I tH ((RlCOS(C!)):t.SC)
62~1 '/= I ton ((Rt; I WI;!))iSC)
63(1 IF AB;(><):> 159 OF: AB;(\') >95 THEN 670
64(1 IF T=0 Ttf}~ PLOT 160+>~, 96-"1'
65£1 [~~,nD 160+>; .. %-\'
66£1 t'fYT T
67(1 FlJ.: I:: 1 TO 75: POKE 53279 .. 0 : t,lE)::T I
675 ~,F0
680 U=l :OPEt~ #l,4,0 .. 1I 1(:" :GET #l , >:::CLOC-;E
#1
690 PUT #6, 125: GOTO 90

· CHAPTER FOUR:
Programming Hints

~- ~~

(BLAN k

~C/
o
a

11 5

Programming Hints

Reading the Atari
Keyboard on the Fly

James L. Bruun

For most programs, th e normal method o f using the INPUT
st atement to get keyboard characters in to a program is perfectly
sati sfactory. There are times, however , when we need to get a
keystroke without stopping t he program to wait for a key to be
struck.

The AT ARI computer has all the features needed to enable the
programmer to ch eck the keyboard without waiting for an INPUT
statement to get the character. Memory locat ion 764 retains a key
code for the last key pressed. Further, when the RUN command is
executed, that ce ll is set to 255 to indicate that no key h as been
pressed. During the running of a program, that locatio n can be
POKEd with a 255 to indicate that we've checked it si nce the last
key was pressed.

Cell 764 is POKEd with 25,yonly if it isn't alread y finding it
255, then h av ing a key pressed while the POKE 764, 255 instruct ion
is being interpreted. This would cause the keystroke to be lost. In a
long program the keystroke isn't often lost, but in a sh o rt program
it h appen s quite often .

The fo llowing program illustrates the use of these features in a
subroutine . First, initialize an I/O buffer and string var iab le.

19 C9EH #1,4,9, 11K: 11

20 DIM C~$(1)

Then build the subroutine. Always precede your block of
subroutines with an END statement to prevent accidental
execution.

116

30 PRltH II {CLEAf:;:} II

40 PO<E 752, 1
50 GOSUB 5000
60 IF CHAR=0 THEN 50
70 PffiITION 5,5
80 PRItH IICHAF:ACTER=(II jCHAF.:$i 1/)11
90 GOTO se
4999 00
5000 CHAR=0

Programming Hints

5el~1 IF PEEl>:: 764)< >255 TI·fJ~ GET ~L CHA~::
C~=CHR$(C~~:)
5020 ~UHj

Most programs th at would need this feature would perhaps be doing
complex things if the keystroke h as not occurred, but in this one we
have chosen to "do nothing" until a key is pressed.

117

Programming Hints

Atari Sounds Tutorial
Jerry White

This progra m was designed to help you discover some of the
amazi ng sounds of Atari. You wi ll enj oy experimenting with this
program and learn at the same time. Here 's how it works:

We wi ll use two FOR-NEXT loops to alter the volume and
pitch variables of the SOUND comm and. You will be prompted to
type th e required data. The program will th en execute using your
d ata and you wi ll hea r the sound you crea ted. H ere is sample data
fo r you to use to get the feel of the program. Respond to the
prompts with Dist 10, Pitch 20 , L1 from 15, L1 to 0, L1 step -0.5 , L2
fr om 3, L2 to 0, L2 step -1. Notice how the sound seems to vibrate
as it fad es. If you want to hear it aga in, just hit the option key.

You may want to use that sound in a program you write. At
this point you will no tice a Basic subroutine is disp layed near the
top of th e sc reen. Make note of it and any oth er interesti ng sounds
you come up with. Start a libra ry of subro utines. When you're
ready to try a n ew sound, hit the START key.

There are a few other useful routines in this program you may
want to study. Lines 12 and 14 will show you how to use random
color . You will find extensive error t rapping of input routines. The
loop fronl line 410 to 440 shows how to make use of the OPTION
and START keys. To see if the SELECT key h as been pressed,
PEEK at 53279 and see if it eq uals 5.

When yo u type in line 340 , type those messages using inverse
video. The routine from line 300 to line 380 will cause these
messages to fl ash . To further dress up you r display, I suggest you
also use inverse video for the messages at lines 10, 130, and 6000.

After you've used and studied this program for a while, you
will begin to reali ze that the va riety of poss ible sou nds is almost
endless. Now consider this. You have been using o nly one of the
fo ur vo ices ava il ab le. The four vo ices can be used at the sa me time.
You co ntrol the vo lume, pitch, and distortion of each voice. Take it
away , im agin ation !

11 8

o REM SOl.~·K.r3 PROGRAM BY JERRY ~ I TE 8/~'8
/00
1 GRAPHICS 0:OIM :>{$(1)/BL$(~iD:BL$=1I

II

3 ? :? uPITCH=AN'"t ~ F"'Ot1 0 TI-W 255

Programming Hints

. u:? Il~ WILL ~ TIE PITCH IH lCXF 2."

4 ? :1 "L1=OJTER LOCf> 1 UCl.ltE. II:? IITYPE
~ I'lH"£R FROM 13 T~ 15 AT PROt'f'T Fl"R

H, TO, MI STEP. II

5 ? :1 uL2=I~R LOOP 2 PITCH. II :? uT'l'PE
~N tu1BER FCRM 13 THRU 255 11 :? U AT PROt1PT

FRfJt1, TO, ~ STEp u

7 ? :? "HIT RETURN TO BEGIN II
j : INPUT X$

10 GRAPHIC-S 0:? :? II SOJt-ro TEST II

12 POKE 752,1 :C=RHO(0):i16:REPEAT=e
14 SETCOLOR L C 2: SETCOLOR 2} L 8: SETCCtO
R 4}C,2
30 POSITION 2,3:? "TYPE DIST II j :TRAP
34: I t·PUT 0: TRAP 40000
32 IF 0=0 OR 0=2 OR 0=4 OR 0--8 OR 0=10 0
R 0=12 OR 0=14 THH4 36
34 POSITIOt-4 2,3 :? Bl$:GOTO 3e
36 POSI T IOt-4 2,5 :? "TYPE PITCH " .; : TRAP

40: I !-f'UT p: TF~AP 40000
38 IF P< 255 Tl£H 42
40 POSI T ION 2,5:? Bl$: GOTO 36
42 POS I T IOt-4 2} 7 :? II TYPE L 1 FROM II i : TRAP

46 : I tf'UT F 1 : TRAP 40000
44 IF F1<33 Tl-EN 48
46 pee; I T ION 2, 7 :? BL$: GOTO 36
48 POSI T IOH 2,9:? IITYPE L1 TO II j : TRAP

52 : I ~f'UT T 1 : TRAP 40000
50 IF T1{33 nfl~ 54
52 Po.SITIOt·4 2,9:? BL$: I:;jTO 48
54 POS I T ION 2 .. 11 :? II TYPE L 1 STEP II j : TRAP
58: INPUT S1: TRAP 40000

56 IF Sl{33 Tl-EH 60
58 POS I T IO~~ 2, 11 :? BL$: GOTO 54
60 POS IT IOH 2, 13 :? 'TT'PE L2 FROM II j : TPAP

64 : I t-f'lIT F2: TRAP 400~j0
62 IF F2{256 THEN 70
64 PffiITION 2,13: '? BL$: I:;jTO 60
70 POSIT 101'4 2,15:? "TYPE L2 TO II i : TRAP
74: I tfJUT T2: T~'AP 40000

72 IF T2(256 THEN 80
74 PCe;ITION 2,15:? BL$:GOTO 70

119

Programming Hints

120

00 POSITION 2,17:." IITYPE L2 ~:;TEP II j :TRAP
84 : I t-PUT S2: TRAP 4eOC10

82 IF S2< 256 THE~~ 100
84 F,():3I T ION 2,17:? BL$: GOTO 00
100 IF F.:EPEAT)0 THH~ Gfr.;U8 5000: GOTO 400

130 ? :? II "{OUR SOI_~'ID ~;IJ8F.:OUT I HE: II
140 ? :? 1110f1 FOR U=II jFL II TO II ;TL II ST
EF' II; S1
160 ? "110 FOR L2= II j F2 j II TO II j T2 j II STEP
1I • ('"-.-.

) .j~

1813 '? II 1213 SOUND 0, II j P j II-L2, II j 0; II 1 U II

200 ? 11130 HE>-.'T L2 11 :? 111413 HE:~T U II
: '? 111

50 RETURN"
~'B0 FOR DELAY=1 TO 500: NEXT DELA\'
300 FOR TUE=1 TO 5 :POSITIOH 2,20:? II H
IT START TO RESTART II :? II HIT OPTION TO
REPEAT"
320 F~ D£LA'l=1 TO 10: t-EXT C£LAY
34e POSITION 2,20:? II HIT START TO REST
AAT":1 II HIT Cf>TION TO REPEAT II

360 FOR DELA\'=l TO 10: HEXT [£lA')'
300 ~(xT TItE
400 sru·~O 0/13,0,0
410 IF PEEK(53279)=6 TI-EN 10
423 IF PEEI<:< 53279)=3 T!e~ 500
440 GOTD 410
500 REPEAT=REPEAT+1 : GOT 0 100
seee FOR L1=F1 TO T1 STEP 51
5100 FCI< L2=F2 TO T2 STEP 52
5200 TRAP 6000: SOtJ{) 0, P-L2, 0, U : TRAP 40
830
5300 t£XT L2: t-EXT L1: RETURN
6000 ? :? II HfJAL 10 SOJ-.IO 1 TRY ~ IN.

-:S(lN) 0,0,0/0
6100 FCf< (£LAY=1 TO 250:t-£XT (£LAY
6110 GOlO 19

Programming Hints

AI Baker's Programming
Hints for Ataril Apple

Al Baker

Exploring joysticks . . .

Programming is the most complex and least organized of human
endeavors. Well, m aybe after the U.S. Government and raising
children. Many people h ave tried to bring order out of this chaos.
In this column, I will join that noble company. With your h elp, we
just might pull it off.

Two of my favorite computers are the Apple and Atari. They
are superbly designed machines. (It's not that I don't like the PET. I
do. I guess I'm just hopelessly addicted to sound and color, joysticks
and paddles.) In this column, I am going to h elp you use the sound,
color, and attachments of these two computers.

In each issue, I will show you one or two short routines fully
utilizing some feature of an Atari or Apple. I'll put the routines to

work and leave you with a chance to work on a programming
exercise, answered in the next issue.

r said I needed your help . Send me any routines you have and
would like to share. If I use them, you' ll be given credit as the
source.

The Atari Joystick
This month, we are go ing to explore the Atari joystick . The
position of a joystick is read with the function STICK . The joysticks
are numbered from 0 to 3. Thus, the position of the second joyst ick
is STICK(l). This function returns the number 15 when the joystick
is centered. Here are the results of STICK for the other joystick
positions.

14

1O~1 /6
11----- 15 ---- 7

9/ 1"-..5
13

121

Programming Hints

The button on the joyst ick is read with the function STRIG.
STRIG(O) reads the button of the fir st joystick. The function is zero
if the button is pushed and one if the button is not pushed.

Most programs use the joyst ick to move obj ects around on the
screen. As soon as th e program needs a yes or no response ,
however, the players must use the keyboard . This is inconvenient,
especially when there are several players, none sitting close to the
keyboard . Why not use the joyst ick to make the selection?

Two Entry Menu Selection
Look at the first list ing. This is a routine which uses the joystick to
get a yes or no response from a playe r. Line 45 turns off the cursor
on the screen. Lines 60 through 140 set the default answer and
display the options, YES NO, on the screen. The defau lt answer, in
this case YES, is highlighted in reverse video.

The routine assumes that the word YES is to the left of the
word NO. If the joystick is moved to the left, then lines 180 through
240 set the answer to Y and highligh t the word YES o n the screen.
If the joyst ick is moved to the right, then lines 280 to 340 set the
answer to N and highlight the word NO. Pushing the button ends
the routine. This is handled in line 380. The IF statement is true if
STRIG (PLAYER-I) is 1. Remember that this means the button is
not pushed. The program loops back to line 180 as long as the
button is not pushed.

Lots of lines and REM statements take up memo ry and slow
the program down. Look at the second listing. H ere is a short
program which uses the menu select ion routine. The routine has
been compressed into lines 1000 through 1050. The program needs
no explanat ion . Play it and get some feel for the convenience of
using the joystick instead of the keyboard.

At the tone the number is ...

Listing 3 is another joyst ick input routin e. This time we are using
the joystick to input a number. It is similar to the fir st routine.
Lines 60 through 140 set the defau lt input number and print it on
the screen . No tice that line 120 prints a blank after the number.
This prevents garbage from appear ing on the screen if lA' goes from
2 digits to 1 digit .

Look at lines 130 through 140. This generates a muted bell
sound, very simil ar to striking a xylopho ne. The SOUND statement
has four parameters. The first is the sound register. This can be any
number from 0 to 3. Up to four sounds ca n be created at one time.
The second parameter is the pitch of the sound. The higher the

122

Programming Hints

number, the lower the pitch. Using 100-A gives a pitch that goes up
as A gets bigger and goes down as A gets smaller.

The third parameter is the sound quality. A 10 gives a clear
tone. The fourth parameter is the loudness of the note. The NOTE
goes from 15-0 = 15 or loud to IS - IS = 0 or quiet. This creates
the bell effect.

Li ;, es 180 thro ugh 240 decrease th e input number as long as
the joyst ick is pushed to the left. Lines 280 through 340 increase the
input number as long as the joystick is pushed to th e ri ght. Line 380
ends th e rout ine if the button is pushed.

Conclusion
Next time we will com press the number input routine and use it in a
program. Try it yo urself and let's see who does a b et ter job at
compressing it! We'll a lso try our h and at using t h e Apple paddles to
do a menu select.

Al Baker is Programming Director of The Image Producers, In c. , 615
Academy Dr., Northbrook, IL 60062.

Program 1. Two Entry Menu Select
The words in the boxes are typed using the Atari key to put them in reverse
video .

10 ~H1
20 l\'EJ1
30 REJ1
40 REJ1

Tl.JO H4TV(t'1HlU ::;£LECT
FF.:Ot1 JO,·t3T I Cf:::

43 REJ1 TURt·~ OFF CU~::;OR
45 POVE 752 J 1
47 1\'8'1
50 REJ1 DEF AUL T A~4~;l~ER:
60 A!-="'y'''
70 REJ1
80 REJ1
90 REJ1
100 ~~EJ1
105 F.H1

DISPLA'y' MENU
XY,YY IS POSITION OF YES
>~t~, '-IN If; POSITIot~ OF t·m

110 F'O::;I T I III 1i'} V'l
120 pF.:mT I lE:=:o ';
130 POS I T I Ot~ >:JL Yt4
140 PRHH II t .• J II ;
150 REJ1

123

Programming Hints

160 RH1 SCAt'4 .jm"ST I CK FOP 'r'E~;
170 ~Hl
181-) IF STICI«F'lA'lH~-1)-()11 THH~ 2:)3
190 A$="Y"
200 POSITII~~ ~)i' .. yy
210 PRHH 'r'E~' ;
220 POS I T I Ot~ ;:':J~) y~~
230 PRINT "t..j(j" .i
240 GOTO 1 :30
250 ~Hl
260 REt1 SCAt'4 JOYST I CK FOR t·()
270 ~~Hl
280 IF STICf(PLAYE~~- l J<)7 n-£J~ 380
29~J A$= II ~~ II
300 POS I T I ON ~<'r'} YV
310 PF.~HH "YES" ;
320 POS I T ION ;:';J4} \,l~
330 PRHH 'OO' .i
340 GOTO 18~j
350 F.Hl
360 F.Hl SCAt'4 TRIGGEk' FOR CHOICE
370 ~~Hl

. 3BO IF STR H;(PLA,(E~~ -1;' THEt4 1 f;l1
390 ~Hl
400 REt1 WE HAU[A~~~;~~ER
410 REM
42~] PF.~ UH A$

Program 2. Do You Love Me?

10 RHi ... DO YOU LOIJE t1E
20 RHl
30 RH1
40 F~H1 DECLARE ~;H: I ~~G~; p;.[j C:m6TANT:3
50 [lH1 A:tt: 1)
60 C1=1
70 RHl
8£1 RHl ASK t1'l mJNE~~ IF HE LOt..JES ME
90 RHl
95 GF.~APHICS (1
100 ;.::\'= 12 : 'iV= 1 t:

124

Programming Hints

110 >J-I=24: YN=W
120 PUllER=1
130 POSIT IOt~ 12) 10
140 PF.:HH liDO YOU LOUE rlE';-'"
15(1 GOSU8 10l1(1

160 PH1
170 F.H1 ~~E~;F~]t'[J TO ANS~JER
180 F.H1
190 POS I T I m·i 3) 22
200 IF A$="'y'li THD~ PRHH II SHUCKS., I
LatE VOU TOO. II

210 IF A$="t·~" THH~ PRItH "~'I:LL .. I LOI.,I£ 'l
OU At·r,-'(,JA'r' . C3t-H FFLE) II
220 FOP DELA\'= 1 TO 10~3~3
2~J t·E :<T DELA\'
240 GOTO 95
96~3 F.H1
97(1 PH1 JO't3T I CK ~:OUT I t'~E
98[1 F~H1 (DISCUSSED ELSHJHEF.:E ::'
990 F:En
1000 POKE 752.,C1 :A$="Y"
1010 F'OS I T ION ;:{/) Y\' :? '1!E~;)' .; : POS I T I Ot·~ >:N
.,YN: ·-;:· "t~o".;

1020 IF STICJ/ F'LAYER- Cl)=11 THHi 1000
1030 IF STIc}::\ PLAYEF.:- Cl)=7 THHi A$="W :P
OSITIOt·i >:;Y .. Y'y': ? "YES" .; : PI}3 ITIOt·~ Xt·i .. 'rli :? 'm'.; : GOTO 1020
1[140 IF STF.:IG(PLAYEF.:-Cl) THHi 1020
10:.0 F.:ETUF.ti

Program 3. Number Select

1121 F~H1 t·-l./f·1E:ER SELECT
20 REf'1 FF.:O~1 JOY~;TICf:::
3121 REt1
40 RH1
43 REt1 TURt~ ()FF CURSOF.:
45 PCfI (52) 1
47 RH1
50 F~Et'1 DEFAULT AN~;(,JER:
60 A=1(1

125

Programming Hints

70 RH1
80 RHi OISPLA'I' ~iUr1BE~::
90 F~H1 ;~, Y IS POS I T I or~ OF t-iUME:E~:
105 REM
110 POS IT IOt·~ >~, y
120 PRINT fi.; II II i

130 FO~: St~O=0 TO 15
135 SOUND 0., 1OO-A, Hi, 15-St·[)
140 t'£~;T SNO
150 ~:Et1
160 REM SCAt~ J()'r'ST I CK FOR SUBTF~ACT
165 REr1 DON I T GO BELOW Lot~ LII1IT
170 ~:Et1
180 IF ST I CK(F'lA~I'E~:-l)<) 11 THa4 28[1
185 IF A=LOl.J HfJi 180
190 A=A-1
240 GOTO 110
250 REM
260 REM SCAN .JO'r'~;T I CK FOR 1'··10
265 REM DOt·~ I T GO ABOI)E HIGH L I 11 I T
270 ~:Et1
280 IF STIO((F'lAYEF.:-l)<)7 TI-IEt~ 380
285 IF A=H I GH THE~i 1 :30
290 A=A+1
340 GOTD 110
350 ~:EM
~) REM SCAN TRIGGE~: FOR CHCHCE
370 REM
3&-) IF STR IG(F'lA'I'ER-1) THH4 1 B0
390 F.:81
400 REI1 WE HAt£ At·iSWER
410 F.:Eti
420 F'RI~n A

126

Programming Hints

AI Baker's Programming
Hints: Apple and Atari

Al Baker

During games it is often easier to use a joystick than to play musical chairs
trying to share the console between two or more people. The subroutine is
from line 1000 up is useful in such applications .

Last Issue: Atari
I left the Atari readers with a problem last time: condense the
number selection routine as much as possible and use it in a
program. If you 'd like to sh are your solution with the rest of us,
send me a list ing. My solution is in Listing 1. The program is the
o ld favorite "Guessing Game."

The routine is condensed into lines 1000 to 1050. I made a few
ch anges in it to accommodate the game. The main change was to
remove the setup of the variable "A". The rest of the program is the
standard number guess ing program . Lines 7 through 23 initialize the
variab les , including "A", and lines 30 through 80 pick out a random
number and ask the player to guess it.

Line 90 calls the joyst ick number select ion routine. If the
player makes a correct guess, then lines 200 to 220 tell him so and
loop back for another game. Otherwise lines 117 to 140 give him a
Bronx cheer , tell him how he was wrong, and loop back for another
guess.

1 RH1 GUESS A t·U1BEF:
2 PH1
3 PH1
5 RH1 SET UP THE JO\':::;TICI< DATA
6 PH1
7 A=1(1
lH LQI,l= 1
~.'0 HIGH=20
21 ::<=17
22 1"1'=12
23 PlA\'EF:= 1
27 REt1
~·a PEt1 PLA\' THE GHt'1E

127

Programming Hints

128

~u3 PH1
31-) GRAPH I C~~ 11
4121 PCr.3ITIm·i 2 .. 5
50 '? II I At·, THHiKHiC OF A t·~Jt-1E:EP 8En.~EHill

6£1 ? LOl,J.; II Ai'() II j HIGH.; II . II j

7£1 ? u ~.I-lAT I:::; \'OUP GUES: II

80 GUE~:;S= I tH (Pt.[lt:: 121)t20)+ 1
B2 REM
84 REM GET THE PlA\'EP I ~:; AH;~'~EP
86 REM
90 GOSUB 10121121
10121 POSITIOH 14,2121
11121 IF A=GUESS THHi 200
112 RH1
114 F.H1 ~F.:miG GUESS
116 REt1
117 SOUHO 0J ~'00, 10 .. 15
118 FOR 1=1 TO 5121: t'iE>::T I
119 SOUND 0,121,0.,121
120 IF A<GUE::S THEt·i ? II TP'y' HIGHEP"
13f1 IF A>GUESS THHi ? IITR\-' LC~'!Ej;~ II

140 GOI0 90
170 RH1
18£1 RH1 CORRECT GUES~:;
190 RH1
200 '? 1I'y'OU GOT ITII
210 FOR 1=1 TO 50121: t'iE>~T I
Z~'0 GOTO 30
970 REt1 .JOYST I CK t-i!J~1BER SELECT
900 RH1 (Dl~;CUSSED L~3T ISSUE)
9'30 REt1
1000 POKE 752, 1
1010 POSITION ::(,'y':? A.; II II; : FOR St·iD=O TO
15 : SOUt·m 0, 100-A .. 10., 15-St'4D : t·EX:T SHO
10~'l!:1 IF (STICK(F'lA'lER-1)=11 »),::(A>Lm.D THE
H A--A-1 : GOTO 101121
10."30 IF (STICK(PLA'y'ER-1)=7):hA<HIGH) THE
H A=A+1 : GOT 0 101(1
104f1 IF ::;TF~IG(PLA'y'ER-1) THEH 1020
105121 RETU~~t'i

Programming Hints

Error Reporting System
for the Atari

Len Lindsay

One of the disappo inting aspec ts of the Atar i Computer System is
its lack of user-or iented messages . Particul arly di sturbing is the er ror
message, or should I say error number? It stops a nd tells you

ERROR 138

What? Where did I put my ma nu al? You then search through your
desk, find the manual, flip pages until you hit the error messages,
and look up number 138. If you have a disk sys tem, the following
program wil l do all the work for you, as we ll as offer you several
options for co ntinuing program execution . (Non-disk users will a lso
find several aspects of the program suitable for use without a disk).

Here is what the program does for you each time an error is
encountered:

1) It reports to you that an error was encountered and gives
you the error number and the line number where the error
was encountered.

2) If you h ave an error messages disket te in drive 1 it will next
print out an error message in plain Engli sh, te lling you what
went wrong and poss ibl y how to correct it. (Without a disk
you won't get this message but all the rest o f the program
works fine).

3) It offers you the choice of ending program execut ion or of
continuing in one of three ways:
a) continue with the line o n which the error was encountered.
b) continue with the line immediately following the error line.
c) continue with the LINK line (equi va lent to th e TRAP
function).

Th at is the system in a nutsh ell. It is st ructured to be of general use
and should be modified to your particular needs. To aid in this, I
will explain how th e program works.

Program Explanation
LINE 0 is the req uired DIM statements for st ring var iab les used in
the system.

LINE 1 sets the TRAP to 32500 - the start o f the reporting system.

129

Programming Hints

NOTE: The TRAP command cannot be used in your program.
Instead, simply set the va ri able LIN K to the line you n orm ally
would h ave used for TRAP. Example:

250 TRAP 5000
should be entered as:
250 LINK = 5000

LINE 32500 find s the line number in which th e error occurred . It
also finds the error number.

LINE 32510 prints the er ror number and the line at which it
occurred.

LINES 32520·32530 ass igns a fil e name to be used to recover the
appropriate error message fr om disk.

LINE 32540 sets a T RAP to report a default message if an erro r
occurs while retrieving the error message (fo r instance , if your disk is
turned off, o r if you h ave no disk).

LINE 32550 opens the appropriate disk fil e and, if successful, skips
over the default message .

LINE 32570 gets the error message fro m disk.

LINE 32580 jumps to the subroutine to find wh at the next line
after the erro r line is. It also resets the TRAP fo r future operation .

LINES 32581·3258 7 print your options.

LINE 32588 ask for your cho ice .

LINE 32589 clears the screen .

LINE 32590 turns o ff the TRAP and EN Ds if you hit liS" (for
STOP).

LINES 32591·32593 check for other legal cho ices and go to the
appropriate line .

LINES 32599 jumps back to print your opti ons once aga in if an
iIlega) entry is detected.

LINE 32600 star ts the routine to fin d th e next line number after
the error line . The va riable N XLINE is ini t iali zed.

LINE 32610 finds the fir st line nu mber in the program.

LINES 32620·32660 finds the line number by starting at the fir st
line and checking one line a t a time until it hits the er ro r line . The
next line is then used fo r the next line number .

LINE 32699 Returns back to the line calling this rou t ine.

That's it!

130

Programming Hints

o 0 Ul EFl~Jt"1$(5 ;.) EF-'F I LEt(12;') >::14$(100)
1 TRAP 32500: PHl TO EF.~F:OR REPORT POUT I r-lE
2 RHl :ttf EF.~ROR REPORT S',{:3TEt-l b~
3 REt-' :K~::t LEti Ll~(r.;A\' (n 19:30
4 RHl YOl...lF.~ PROGRAr-1 GOES HERE
5 REM ~:;ET UAR I ABLE L I ~lK TO TI-£
6 F:Hl BEG I t-U-j I t-iG L 1 tolE OF '-('OUR r-1COULE:3
7 REM - t-'£ED::; A DI::;y.ETTE Irl OF:lI..!E 1
8 REM WITH ERROR FILES CREATED WITH
9 RHl nE EF.~ROR FILE l,jF~ I T I r-~!. ~ F'ROGRHt-1
10 REt1 THAt-W: '-:'OU TO COnFUTE _ IPIDE J HtlD

ATARI FOR UFO It;t:[! Itl THI::;
3250(1 ERLlt-~E=256::;::PEtJ :.I. 1~:(HF'EEf:(It:6 _I : EPti
Ut1$=~3TRJ(PEEk(195) }: REt1 E~:~f!R F.'EF'C'FT ::;'{::;
TEt1
32501 RH1 ftt
32502 F.Hl :tn
32503 PHl :rn:
32504 FH1 :ttt
I NO HE><T L I ~iE

t-1EED:3 ' D I r-1 EFllUtlH ~I :.

D1t1 EPF I LEt.: 121
o I ~1 >::H:f(10e:.

1j:3ES 9£POUT I rolE 326~=~':'<

32510 PRWT ") ERFOP t-iUt1E:ER "; EFlllJt1:i ; I; If~

LIrE " i EF.~L H1E
32520 ERF I LE:f=" D : EF~POF:"
32530 EPF I LE!(Lav ERF I LE:t >+ 1 >=EFtlur-l$
32540 TRAP 32560
32550 OPEl #5) 4 , ~j _: EF.~F I LEt -uno 3257f::l
32560 PR nn "ERF.:OR t~J-18EF. " ; EF:t~jt!:! ;" 1:3
HOT ON FILE II : GOTO 325~:(1

32570 I rPUT #5; /A$ -F'R I tH >::AJ -CLU::E #5
32580 C;U3UB 326[1>:1: TPAF' 3250~1
32581 PRIHT " :3HALL I - I!

32582 F'P I HT II :3TOF' II
32583 PR I t-n II OR"
32584 PR Hn II COtn HlUE ~,n TH :"
32585 PR HlT II ERRI)~' LI tlE "; EFU tE
32586 PP 1 ~n " t-1E:>:T L I ~lE I!) t-l>J _ I tiE
32587 PEItH II LIt-W Llt-1E II iLlr1f
32588 F'P an II l,!H I CH CHO I CE " ; . U1F'U"! >~H$
325:39 F'R I tH ") It : RHl CLEAr;' ::;CFF:Eti
32590 IF :<14$=":3;1 Tf-Bl TF:AP -34:+:? ::' TOF'
32591 IF >::A:f= II E " THHl 1~c!Ti::) EFL FE

131

Programming Hints

32592 IF ::<A$=" tr THEI @TO t{ ::L H~E
32593 IF :<A$="L " THfJl GOTO LHiV
32599 C;OTO 325e1: F.Bi Hl1.lAUD FE':PCt(;:E
32600 t·NL I t·~E =0 : F-H1 F I t[1 tF .!,T L I t·£ tlUi"it:EF'
32601 RH1 :t\::;: EPL HIE 1 S H1F'UT T Ci T HI ::,
F.:OUT 11'1E A::; THE L I tiE t·1Ut18EP
32602 PH1 :~st t{' :L H~E E; PET UF'tE[; f-l ': THE

NE:><T L 1 ~iE t·IUt-18EF.'
32605 F.'El1 :ttt BA::;ED ClH CC!t1PUTE #4 PAGE J
2 PF.~)GFW1 L 1 '; T 1 t·~~
32610 HOORE:;::,=~' F..Et· 13f, '+F'EEf::' 137' :::2:" : : F.~ E
11 GET 11-£ F 1 F.ST L WE t·iUt-1E:EP
32620 LINE=PEEK(AODRESS)+PEEK(~DDRESS+l)
*256
32630 I F ~i.:<L I ~IE = 1 THEH H><I _ I tiE =L I r~E : GOT!)
32699
32640 IF L HIE =EPU HF. THEtj t·v:u rf: = 1
32650 AOOPE:;::;=AODF-:F;::;tPEEf:J. AODF'F'=:: + 2 :-
32660 (;OTO 32620
32699 RETUP~j

In order to full y use the Erro r Report System you must have a
di skette with all the error messages correctly recorded o n it. The
fo llowing program can be used to create your own custom-made
error messages master di skette. It sim ply asks you fo r a n erro r
number and its matching message. The message is then written to
disk under the appropriate error number fil e .

o REM :nt EF~ROR REP(JPT HR !TEE
1 REt1 :~ :~~t (C;' 1980
2 REM :~:: :~t LEt-I L U[JSAY
3 REt'1 :t~:*: PUT:3 ERROR It~FO TO [11 :;1<
10 0 It1 ERt·~jtU(5) .. ERF I LE$(12); ::<A:l\ 100;'
90 PP Hn 11 ;. 11 : REt'1 CLEAP SCREEt·!
100 PP WT "I~P liE EF~F'OF.' t·1f::mHt lG:::; TO D! ~; ~ :.'.

110 PF~IHT 11 GET OUT '/OUP EPROP LE:T - LE
T5 GO-II
120 TRAP 120 : F'R UH 11 I·JHA T 1:3 THE HE>'!'T E
RROP t~_l1BEF.' "; : I t·f'UT EF.:~IUt"1:t
125 E=I')AlJ EPHUtU:' : TF.'HF' 34567

132

Programming Hints

130 ERFILE$="[i:ERROP"
140 ERF I LE$(LEt·1(EF:F I LEt: >+ 1)=EFHJ1$
150 F'R It·IT U PLEf·::6E T'lF'E Hi I T::: t1EHtl HiG
~ H ItH~3" : H~PUT :":AJ
160 OFHl #L 8; 0 .. EPFI LE$
170 PR Hn ") ~lm·i ~ . .IR IT Itl,~ EF'F~OF.: t·H ·1E:EF ' I : E
RHUtl$
180 PRlt-IT #1 j ><M : CLO~E #1
190 GOTO 120

Possible System Uses or Modifications
The error reporting system can be used whil e develo ping your
programs, providing you with messages during your next run as well
as with several restart optio ns. The system is presentl y under
manual co ntrol aft er an erro r is encoun te red. This o f course ca n be
automated to provide error trapping A N D error co rrectio n .

Fo r example , your program may provide a h ardcopy printo ut
of the program results. If an erro r # 138 is encountered, you m ay
wish to pr int a message on the sc reen such as "Please turn o n the
printer" and then go back to the o ffendin g line . Print a cursor-up
after the message and you can loop unti l the printer is turned o n,
aft er which th e program immed iately continues execut(ng.

Yo u m ay also be able to use p ieces o f this system in your o wn
programs. For example, lines 32520-32 530 sho w how your program
can dyn ami cally create its o wn di sk fil e name , based o n th e value o f
va riab les .

/ /1

~
~

00/::15.

-: DC> OJ 0 - .
--

133

134

CHAPTER FIVE:
Applications

135

Applications

Atari Tape Data Files:
A Consumer Oriented

Approach
Al Baker

This complements Larry Isaacs ' article " Inside Atari BASIC." The
technique presented here is very ~!sefu l for cassette users.

Introduction
This article is based on a major axiom of consumer computing:

Easier is Better

The spec ific coroll ary when writ ing a program which saves data
between program runs is:

Use only one tape. Program and data should be on the same tape.
They should, in fact, be the same thing.

A consumer sh ould be able to load his program, run it to update' his
checkbook and b alance his budget, and then save the program on
tape wh en done. The next day, he can load his program and all
d ata ch anges from the previous day shou ld be there.

"Impossible," you say? Well , perh aps. It is certainly impossible
on some of the computers on the market. But it is not impossible on
the Atari. The trick is to fo ol Atari Basic into saving all
dimensioned var iab les when a program is saved to tape . We won't
try to save the simpl e var iab les . Since I am not a revered expert, I
won't make the mistake of say ing this is impossible . (But, I think it's
impossible .) Saving the dimensioned variables with a program is
relatively easy.

Write Your Program
Listing 1 is a simple program. Nothing tricky. But notice that I print
the dimensioned variables in Lines 70-130 and then ass ign va lues to
them in Lines 140- 190. I am assuming the variables h ave valid
contents before changing them! The only important restriction h ere
is to type the line containing th e DIM statement first . It doesn't
have to be the fir st line in the program. Just make sure it is the fir st
line typed.

136

Applications

The Atari Basic var iable symbol tab le is constructed when
each line is typed in, not when the program is run. Later we will
need to find the locations of the string va ri ables in the table. This is
eas ier if they are the first variab les present. For a more complex
discussion of the symbol table, see the text in the box.

50 DIM A$(10) ,B(2,3)
70 ? A$
80 FOR 1=0 TO 2
90 FOR J=0 TO 3
100 PRINT B(I,J),
110 NEXT J
120 PRINT
130 NEXT I
140 ? "STRING= "; :INPUT A$
150 ? "1=";: INPUT I
160 IF 1=9 THEN 200
170 ? "J="; :INPUT A:B(I,J)=A
190 GOTO 1 50
200 END

Suppose the program is already wr itten and you didn't type
the DIM statement first. Write your program to tape using the
command LIST"C". T ype NEW. Now type the DIM statement from
your program with th e str ing variables fir st. Finally, reload the
program from tape with the command ENTER "C". Now the str ing
va riables are at the beginning of the variable tables.

Protect The Dimensioned Variables
The next step is to fool Basic into treating the dimensioned
variables as part of the program. Also, you h ave to add the code to
let the program save itself to tape. In an application, sav ing the
program to tape will be the final program option selected by the
user. In Listing 2 this is added to the program in lines 200 through
230.

50 DIM A$(10) ,B(2 ,3)
70 ? A$
80 FOR 1=0 TO 2
90 FOR J=0 TO 3
100 PRINT B(I,J),
110 NEXT J
120 PRINT
130 NEXT I
140 ? "STRING=";:INPUT A$
150 ? "I=";:INPUT I
160 IF 1=9 THEN 200
170 ? "J=";:INPUT A:B(I,J) =A
190 GOTO 1 5 0
200 A=PEEK(140)+PEEK(141)*256
210 A=A+82
220 POKE 141,INT(A/256) :POKE 140,A-PEEK(141)*256
230 CSAVE

137

Applications

Locations 140 and 141 contain the address of the end of the
computer program. Program line 200 places this address in the
var iable A. In line 210 we add the size of the dimensioned variables.
Each string variable contains as ma ny bytes as its dimension. Each
numeric array contains 6 times the number of members of the array .
The B array is 6x(2+ l)x(3 + 1)= 6x3x4=72 bytes. Thus we had to
add 10+ 72 or 82 to the end of the program in the example.

Now run the program and let the internal CSAVE create a
tape. Turn the computer off and then on . Now reload the n ewly
created program from tape. For some reason this step is importa nt.
(I don't know why .) If you do not use the new tape, this procedure
won't work.

Finish The Program
We now have a progra m in memory which h as an invalid program
end pointer. See the third listing. Add lines 10 through 40 to your
program. Make sure that you use the correct number instead of
"-82" in line 10. Remember th at this number is the size of your
dimensioned var iables.

Refer to Table 1. Locations 140 and 141 form the program-end
address. Locations 142 and 143 form the stack address and loca tions
144 and 145 form the pointer to the end of memory used by the
program . The RUN command sets all of them equal to the incorrect
end-of-program pointer. Lines 10 through 40 correct them.

H ere comes the only h ard part. You are going to have to PEEK
around in memory. The RUN command sets the len gth of all

Table 1.

These two byte addresses po int to im portant areas used by Atar i Basic.

Use this To get the location of this
PEEK(130) + PEEK(13 1)*256 Variable name table
PEEK(134) + PEEK(135)*256 Variable value table
PEEK(l 36) + PEEK(l 37)*256 Beginning of program

Use these only when program running
PEEK(140) + PEEK(141)*256

End of program and beginning of dimensio ned
variab les

PEEK(l 42) + PEEK(l4 3)* 256
End of dimensio ned variables and beginning of
stack

PEEK(l44)+PEEK(145)*256
End of memory used by program

138

Applications

strings to zero. You must repair their lengths if you want to save
string data.

Table 2.

The variable name table: Entry lengths are different. Box symbolizes that 128
is added to ACSII value of last character to show the name's end.

Variable Variable

ASI
AR(J,4)
CDOG(17)
ALPHA$ (10)
E
FIG

name
AB []
AR ill
CDOG ITl
ALPH A UJ

[E]
FI [!]

J character number name
2 character array name
4 character array name
6 character string name
I ch a~ctcrnumbername

3 charac ter number name

Note: V ari able names can be up to 120 charac ters lo ng and are completely unique.
Variable ABC is different fro m va ri ab le ABC D . V ari able names DO NOT appear
in the program in memo ry. O nl y a I byte po inter to th e variable name in the
variable name tabl e appea rs.

Look at Table 3 . The third entry in the variable va lu e tab le
is the string ALPHA$. Its current length is 5+0*256 or 5. These
two bytes must be set to the correct length of the string. Type
command: PRINT PEEK(l34)+PEEK(135)*256. Now you know
wh ere the variable va lue table is. If you h ave been writing the
program in the listings, you should get the answer 2056. Assume the
string is the first entry in the table. The location of the length is
2060 and 2061. Since the length of th e string of data being saved in
the example is 10, I set loca tion 2060 to a 10 in line 60 of the
program.

Try it out
The program is complete. SAVE it. Now RUN it. You will probably
get garbage in the printollt . Put a 10 character string in the string
variable. Now put numbers in various entr ies in the B array. Typing
a 9 for the I subscript wi ll end the program with a CSA VE. Do this
CSAVE onto a new tape. Turn the computer off and on. Now load
this new copy of the program and RUN it. Viola! The data is sti ll
there! Now just imagine that this was your budget information,
address book or other files . You have a no-hassle, one-tape system.

Conclusion
I have provided more information about the internals of the Atari

139

U
)

c: o
+

i
"' u .-Q
.

Q
.

«

T
able 3

T
h

e variable value tab
le: E

ach en
try is eig

h
t bytes.

T
ab

le E
ntry

V
ariab

le
C

on
ten

ts
1

2
3

4

5

6 7
8

A
B

I
5

01
0

/6
4/5,0

, 0,0
, 0

A
R

(3,4)
d

o
esn

't
6

4
+

 11
1/0

,0
/4

,0
/5,0

m
atter

C
D

O
G

(1
7

)
do

esn
't

64 +
 1121

120,0/18
,0

1
1

,0

m
atter

A
L

P
H

A
$(lO

)
"12345"

128+ 1131228,0
/5, Ol

IO
, 0

E

.05
01

4
/6

3
/5

,0
, 0,0, 0

FIG

-5
01

5/64+
 128

/5
,0

,0
,0

M
ean

in
g

F
irst byte is 0: this is a num

ber. S
econd byte is 0: this is the first entry

. 64 is the
exponen

t. 5 is th
e binary coded decim

al value.

64 m
akes this an array. +

 I m
eans th

at it h
as been dim

en
sio

ned
. "+

0
*

2
5

6
 is

th
e displacem

en
t in

to
 the array area. 4 +

0*256 is th
e size o

f the first
dim

ensio
n

 an
d

 5 +
0*256 is th

e size o
f th

e seco
n

d
 dim

en
sion.

T
h

is array is displaced 120 bytes into th
e array area, an

d
 it is dim

ensioned
18

+
0*256 by 1 +

0*256.

128 m
akes this a string

. +
 I m

ea
n

s th
at it has been dim

ensio
ned. It starts

228+
0*256 b

ytes in
to

 th
e array area

. T
h

e cu
rren

t length o
f the string is

5 +
0*256. T

h
e m

axim
um

 size o
f th

e strin
g is 10

+
0*256.

T
h

is is a n
u

m
ber. T

h
e expo

nen
t is now

 63 so th
e n

u
m

b
er is o

n
ly 11

100 o
f its

integer valu
e, o

r .05.

T
h

is is a m
inu

s n
u

m
b

er (+
 128 o

n exponent).

o 7

Applications

than is really necessary to solve this problem. If you are interested in
this kind of information, study it. If not, sk ip it. If you have any
quest ions, I would be glad to answer them. One warn in g. Do not
press break whi le the program is running and then type RUN.
Always use the CONT command after pressing BREAK. Otherwise
the statements in lines 10-40 will dest roy the program data. This can
be prevented if you know what t he correct va lue of A sh ou ld be in
line 10. Replace line 10 with 10A=n, where n is this number. Do
this for your finished product.

10 A=PEEK(14 0)+PEEK(141)*256-82
20 POKE 141,INT(A/256) : POKE 140,A-PEEK(141)*256
30 POKE 1 43,INT(A/256):POKE 142,A-PEEK(l43)*256
40 POKE 14 5,INT(A/256) :POKE 144,A-PEEK(145)*256
50 DIM A$(l0),B(2,3)
70 ? A$
80 FOR 1=0 TO 2
90 FOR J=0 TO 3
100 PRINT B(I,J),
110 NEXT J
120 PRINT
130 NEXT I
140 ? "STRING=";:INPUT A$
1 50 ? "I=";:INPUT I
16 0 IF 1= 9 THEN 200
170 ? "J=" ;:INPUT A:B(I,J)=A
190 GOTO 1 50
200 A=PEEK(140)+PEEK(14 1)*256
210 A=A+82
220 POKE 1 41,INT(A/256) :POKE 1 40,A-PEEK(141)*256
230 CSAVE

Changing Atari programs to save the
dimensioned variables:

Get the program working.
Place the string variables at the beginning of the var iable table.
Change the program so that it internally points the program-end
address past the dimensioned variables and then saves itse lf to
tape.
Run the program, creating a copy on tape.
Turn the computer off, on , and then reload the program.
Add the statements to the beginning of the program to correct
th e program-end pointer, stack pointer, and end-of-memory
pointer.
Add the code to restore the actual st ring var iab le lengths to the
var iab le va lue table.
Save your finished program to tape.

141

Applications

The ATARI BASIC

Symbol Table

Most BASIC interpreters assign values to the symbol table as the
program is run. Not true with the Atari. New variables are placed
in the symbol table when the program line they are contained in is
first typed .

If you later change variable names, the old variable names are
not removed from the table. They stay forever! Even the CLR
command does not remove them.The continue to take up room.
How much room? Eight bytes plus the length of the name. Add
another byte if the variable is an array.

Fortunately, it is possible to clean up the variable table. Write
the program to cassette using the command LIST "C", type NEW,
and then reload the program from tape with the command ENTER
"C".

A program can often be made to run faster by placing selected
variables at the beginning of the variable table . This decreases the
time it takes to find variables which are used in time-critical
routines.

To place these variables at the beginning of the variable table,
write the program to cassette using the command LIST "c" and
then type NEW. Now use those variables. For example, if the
variable A must be the first variable in the table, type A=O. If the
string B$ must be used, type DIM B$(1). You are "ordering" the
variable table. When you have finished placing as many variables in
their correct order as you want, load the program you saved to tape
with the command ENTER "C". This does not interfere with the
contents of the variable table.

142

Applications

Figure 1:
BASIC Program Memory Layout

System and
Basic overhead

Variable name
table

Variable
Value table

Program

Dimensioned
Variables

Stack

Unused

Screen

143

Applications

An Atari BASIC Tutorial:
Monthly Bar Graph

Program
Jerry White

Atari sound and graphics are great for game programs. In this
monthly graph program, you will see how they can also be used to
display data.

Data is often processed and compared on a monthly basis.
Reports are generated to monitor things like cash flow or
production. Sometimes it is much more meaningful to see totals in
bar graph form rather than trying to compare a list of numbers.
Using this program, the user types in the monthly totals and the
program converts these figures into a beautiful graphic display.

For those who like to know how programs work: I'll break this
one down and explain what each section is doing. For those who
don't care: just key in the program and input your totals next to the
appropriate month. The program will do the rest.

We begin by dimensioning A$ for use as a work string and two
numeric arrays to hold 12 items. We go to the subroutine at 2000
and get our monthly totals and return to line 4. Here we get into
graphics mode 6 with the text window at the bottom. We position
our graphics window X and Y coordinates using PX and PY and put
our heading into A$. Now we're off to the subroutine at 20. We will
use this routine to convert our scratch string so that we can put text
in the graphics window. Returning to line 8 - we use color 1 and
draw a large rectangle. This is where we will draw our data bars. At
line 100 we determine the highest amount (HAMT) so that we can
base our key on that figure. The key will give meaning to the
lengths of the bars. We set J1 = HAMT divided by 65 which is the
length of the longest bar that fits into our rectangle. At line 130 we
determine the top position of each bar. Then we make the top key
figure (K) into a one or two position number and compute the
numbers that will appear along the left side of the graph. At line
240 we begin to position and place our key of the screen. Then we
set the screen margins as wide as possible and put the abbreviations
for each month in the text window directly below the bar it
represents. At line 310 we begin to draw our bars.

144

Applications

Being quite fond of sound, I couldn't resist adding line 360 as a
finishing touch, This loop creates a tone as each bar is completed,
Our purpose was to display data , Why not let the user use his ears
as well as his eyes? Before we exit - we set the screen m argins back
to normal and loop at line 500 , You could replace 500 with an end
or exit routine, If you remove the first "! :" from line 300 there will
be one line left in the text window for a message ,

J REM MONGRAPH RE~2 JERRY WHITE
1 REM FOR COMPUTE TUTORIAL
~ DIM AS (20) ,AMT (12),JW(12):GOSU8 2000
4 GRAPHICS 6:SETCOLOR 2 ,4,4 : SETCOLOR 4,4,4:2=I:SETCOLOR 0,1,10
t, F';":=4: PY=O: A:t=" t'101HHL',.. GRAPH ": GOSU8 20
8 COLOR Z:PLOT 18,9:DRAWTO 158,9:DRAWTO 158,75:DRAWTO 18 , 75:

['RAl.o.ITO 18, 9
10 GOTO 100
20 DL=PEEK(560)+PEEK (561) *256:Dl=PEEK(DL+4)+PEEK (DL+5)*256
22 FOR U=Z TO LEN (A:t):D2=57344+«ASC(AS(U,U»-32)*8) :

D3=Dl+PY*20+PX+U-Z:FOR JZ=OTO 7
24 POf<E ['3+JZ*20, F'EEI«D2+JZ) : 1-lE>':T JZ: 11E>:T U: RETUF:l1
100 FOR MON=Z TO 12:IF AMT(M(~ » HAMT THEN HAMT=AMT(MON)
110 11E:' :T ~1011
120 J 1 =HAtH ./ t,s
130 FOR MON=Z TO 12:TAMT=75- (AMT (MON) / Jl):JW(MON)=INT (TAMT) :

11D':T t'lOt1
140 IF HAMT) =10000 THEN K= INT (HAMT/ I000) :GOTO 200
150 IF HAMT) =1000 THEN K=INT(HAMT / I00):GOTO 200
160 IF HAMT) =100 THEN K=INT(HAMT / I0):GOTO 200
170 f: '" I NT (HAtH:'
200 KD=K/ 5:K2=INT(K-I<D):K3=INT (K- (KD*2»
220 K4=INT(K-(KD*3 » :K5=INT (K-(KD*4»
222 A:t=STR:t(K):PX=2-LEN(A:t) :PY= 10:Ga;U8 20
224 IF K(5 OR K)99 THEN 280
240 A:t=STRf(K2):PX=2-LEN(Af):PY=24:GOSU8 20
250 Af=STRf(K3):PX=2-LEN(A$):PY=38:GOSU8 20
260 Af=:;:TR$ 0<4) : P:'<=2-LEN (An: P'{=52: GO :;:U8 20
270 A$=STRf(K5):PX=2- LEN (A$) :PY=66:GOSU8 20
280 POKE 82 , 0:POKE 83,40:POKE 752,2
300:' : .;," K J F t'l A t'1 J .1 A :;:; 0 N [,"
302 .:' " E A E A P A U U U E C 0 E"
304 .-, " '" tl 8 F: F: ',.. 1·1 L 13 F' T ',' C"
310 FOR MON=Z TO 12:JY=MON-Z
312 PLOT 18+(JY*12),JW(MOtl)
314 DRAWTO 25+(JY*12),.1W(MOtl)
320 DRAWTO 25+(JY*12',75
330 DRAWTO 18+(.1'1'*12',75
340 POSITION 18+(JY*12),JW (MON)
350 POI<E 765 , 3: ~<IO IS, #6, 0, 0, " ~; :"
360 FOR VOL=10 TO 0 STEP - 1: S0UND 0,JW(MOtl),10,VOL:NEXT VOL:

tlD:T t'1011
400 POKE 82,2:POKE 83,39
500 GOTO 5(10
2000 GRAPHICS O:SETCOLOR 2, 0 , 0 :SETCOLOF: 1,0,10:SETCOLOR 4 , 0 , 0:

POKE 752, 1
2080-' : .;, "t'lOtHHL \' GRAPH "
2100 .:' : .:," n'PE At'10U1H:; FOf<: EACH t'101HH: ": .;,

145

Applications

2120 " [:'0 tlOT U:3E HECiAT FiE At'10UtH::; " ?
228~1 TF:AF' 2200: .-, , II JAt,~=II; : IHF'UT JAtl: Am =JAtl: TPAF' 40000
2210 TF:AF' 2210:;' , "FEE:=": : I tlF'UT FEE::Am =FEE:: TRAF' 4£10~10

2220 TF:AF' 2220: .-, , "t'lAF:=" .: : I tlF'UT t'lAF::AtH =t'lAF:: TRAF' 4£1000
2230 TF:AF' 2230: , "AF'F:= " : : I tlF'UT AF'F:: Am =AF'P: TF:AF' 40000
2240 TF:AF' 2240: .- , , "t'1A\'=1I ; : I tlF'UT t'lA\': Am =t'lA\': TF:AF' 40000
22S0 TPAF' 22S0:;' , " JUt·l=" : : I tlF'UT JUt·j: Am =JUtj: TF:AF' 4000£1
2260 TF:AF' 2260 , " JUL=" .: I tlF'UT JUL Am =JUL: T F.: AF' 40000
2270 TPHF' 2270 .-;:, , "AUI3=tI ; ItWUT AUCi Am =AUCi: TF:AF' 4~3000

22:::0 TF:AF' 22:::0 - ":::;EP "= "; ItlF'UT 3EF' Am 3EF': TPAF' 40000 , ,
2290 TF:AF' ..:...:'~u

.-;:, , IIOCT=II ; I tlF'UT OCT Am =OCT: TRAF' 40000
2300 TF:AF' 2300 ; , l 't .~OI)= 'I; I tlF'UT HO'.,' Am =tKl',J: TF:AF' 4000£1
2310 TF:AF' 2310 II [)EC-= II .~ I tlF'UT [:'EC Am =[)EC: TRAF' 40000
2400 F:ETUF:tj

146

CHAPTER SIX:

~

Peripheral
Information

· · · · · , · · -· · · · · · · · · · · · · 4 · .

~

Q9 '- ~E _-----.w.

o

)

147

ipheral Information

- Adding a Voice Track
to Atari Programs

John Victor

This technique shows you how to let your Atari talk - that is, play audio
cassettes totally under the control of your program.

We recently had a chance to see the latest in audio-visual
technology - a video tape machine being controlled by an Apple
computer. The student was shown selected film sequences on the
video tape. Then the video tape would stop and the student would
be asked questions by the computer.

This demonstration had some impressive features, but the most
important was the integration of voice with the computer question
and answer technique. The same effect can be generated on an
Atari 400 by combining text, graphics, animation, and color with a
sound track recorded on an audio cassette. And the Atari 400 is
significantly cheaper and easier to program than the combination
video tape player / computer.

There are several ways that a software designer/programmer
can sync a cassette voice track to visuals on the computer screen.
The cassette player that plugs into the Atari computer records and
plays in a stereo format. The right track on the tape records and
plays digital information (such as programs or data files), while the
left track plays audio recordings. The "Talk and Teach" ROM and
tapes supplied with Atari computers use both tracks simultaneously.
As the voice explains material, ASCII characters are read off the
digital track and shown on the screen. The two are coordinated in
the manufacturing process so that they are always synchronized.

The problem with the "Talk and Teach" system for the
average Atari owner is that the development of the Talk and Teach
cassettes requires different hardware than is supplied with the Atari
system. In fact, the system may be developed and run on non-Atari
equipment - we have seen the cassettes run on a modified TRS-80
computer.

The simplest and most practical method for Atari users to sync
voice with their own educational programs is to use a "timed
BASIC" method. The visuals are programmed into a BASIC
program 'and run simultaneously with an audio tape cassette. The

148

Peripheral Information

program would then start and stop the Atari cassette player and
change the visuals on the TV screen b ased on timing routines built
into the program. The key to making thi s system work is that the
audio tape must start at the same point each time it is used .

The computer course designer-programmer fir st writes a script
as though he or sh e were producing a sound/ filmstrip presentation.
The spoken words, music, etc. would be specified along with a
detailed description of what is to appear on the TV screen. The
designer-programmer then writes a BASIC program that will
produce the desired visu al effects .

The next step is to coordin ate the vo ice with the visuals . The
best way to do this is to h ave a preliminary routine within the
computer "freeze" each screen display until the programmer hits the
'RETURN' key. This can be done by sending the program to an
INPUT subroutine, but this has the undesired side effect of printing
an extraneous question mark on the screen . We prefer using the
subroutine shown below since it prints nothing at all on the screen:

5000 IF PEEK(764)< >255 THEN POKE
764,255:RETURN
5010 GOTO 5000

Memory location 764 indicates whether a key has been pressed. If
no key has been pressed, the number 255 will be stored there. When
a key h as been pressed, the routine sets the va lue back to 255 (to
keep the computer from printing the key press) and the program
returns from the subroutine.

The designer-programmer shou ld read through the script and
manually check th e screen ch anges to see that the BASIC program
and the script match up and produce the desired results.

The third step is to place timing routines into the program so
that the visuals will be in sync with the recorded voice. We do
NOT recommend using FOR . .. NEXT timing loops for these
routines. FOR ... NEXT loop t iming is not linear on th e Atari.
This means that the Atari might take one second to count from 1 to
300 in one loop , and less time to do the same count in another loop
of different length . In addition, the length of the program and
position of the subroutin e also affects the count.

Fortunately , the programmer can utilize a b uilt -in clock used
by the Atari computer to count th e scan lines in the TV display,
which is stored in memory locations 18, 19 and 20. Location 20
counts in "jiffies" or 1/60 second. Each 1/60 increases th e valu e
stored in location 20 by 1. When the count reach es 256 , the va lue is
cleared to 0 and locat io n 19 is incremented by 1. It takes the

149

~-- - ----------------

Peripheral Information

computer about 4. 27 seconds to count frOlTl 1 to 256 in locat io n 20,
and abou t 18.2 minutes to count from 1 to 256 in location 19. You
can watch thi s process with the follow ing program:

10 PRINT PEEK(20), PEEK(19), PEEK(18):
GOTOI0

The results from these PEEKs could be converted to seconds, but we
prefer to wo rk in jiffies , whi ch requires less m ath o n the computer's
part.

SECONDS = (PEEK(19)*256 + PEEK(20))/60
JIFFIES = PEEK(19)*256 + PEEK(20)

We recommend that at th is poin t the designer-programmer makes
the fin al audi o cassette that is to go with the computer program.
The p rogram ca n be t imed to this cassette , and, if all copies of the
cassette ca n be m ade to use the same starting po int, then the
program will wo rk with all copies as well.

The task now is to figure out the timing for each change so
th at the changes will be made in sync with the audio cassette .
Figure 1 shows a p rogram th at we developed to automat ica lly m ake
th ese m easurem ents fo r an audio tape . The user puts the audio tape
in th e Atari cassette playe r and rewinds it to the very beginning.
With th e play button depressed, the user runs th e program. Line 20
sta rts the cassette player, and the program begi ns timing. At each
po int where the user wished the computer to ch ange the visual (in
conjunction with the vo ice), the user hits the 'RETURN' key. At
the end of the program the cassette is shut off, and the user is given
the tim es between each point on the vo ice track where the
computer is to ch ange the visual.

The user sho uld note th at memory locations 19 a nd 20 are set
back to 0 after each timing, and th at line 55 looks spec ifically for an
input from the 'RETURN' key. Thi s program counts up to 15
changes , but this number ca n be increased by increas ing COUNT
in lines 40 and 100.

The las t step is to insert the time va lu es into the computer
program and to ch eck to see th at the voice cassette works in sy nc
with the program. Figu re 2 shows a progr am th at we wrote to
illustr ate how timing va lues ca n be coordinated with a teaching
p rogram and audio tape . Line 50 of the program defines the
subroutines , of which there are three: o ne to print q uestions o n the
screen , one to tim e the visual so that the vo ice on the tape can read
the quest ion , and one to shut off th e tape so th at the student can
an swer the question just asked .

The QUESTION ASK subroutine in lines 4000-4030 gets its

150

Peripheral Information

info rm atio n for eac h question from a OAT A line , which includes
question num ber , screen color, answer to the question, number of
lines to be read, and the lines of tex t m ak ing up th e question. After
printing the quest ion, the program sets the time va lue fo r the voice ,
and goes to the clock subroutine at 5000-5020. Wh en the correct
time elapses, the program goes to the QUESTION ANSWER
routine. H ere the tape is shut off, and the user is req uired to answer
the question. Upon answer ing, the tape is turned back on.

The time values in this program are based on our own personal
read ing of the quest ion s.

While it is possible to record both programs a nd audio on th e
same cassette and still utilize the method we h ave described h ere,
the best way is to record programs and aud io separa tely. Ideally, the
programs would be stored on disk and the voice on cassette .

It is possible that with very long aud io cassettes the computer
and tape wil l get out of sync due to small variations of the cassette
player. The designer-programmer ca n correct for this by
occasionally h avi n g the student press 'RETURN' when h e or she
hears a beep o n the audio track, This gives a frame of reference for
the program timing to match up to th e tape. The leas t obvious way
of doing this is to h ave the student press 'RETURN' before
answering a question.

Figure 1

5 REM TIMlt£ PROGRAM BY JOHN I)ICTOP
6 REM F(F- AT ~ I CCt1PUTER llO I CE TRACK
10 DUl TIt'E(15), A$(1)
29 POKE 54H 1 t: , 52 : REM TLI~H m~ CASSETTE
3e GRAPH I CS £1 : POS IT I (J~ '2., 6
35 PRINT "STAF.:T COUNTH~ ... n

4e FOR CellIT=! TO 15 :~;fTCOLOR 2, rNTC:RHO(
1)*15)} 4
50 POKE 19,13: POKE 2~L 0
55 I F PEEn 764 >0 12 TIt~~ 55
60 J I FFV=256:rPEEV(19 HPEEK(213 ;. : T I t'lF CDUN
T)::J I FF'y' : PR I NT II CHA~lGE # II ; COUrlT
73 POKE 764., 255
75 t£~'<T co...w
78 POKE 54elt: , 613: RE~l ~;l-JjT OFF CA~;f;ETTE
00 PRINT : PRHH "PRES~; PETUF.:~l TO ~;EE T H:
E l'~UES IH JIFFIES"
ge I~UT A:$

151

Peripheral Information

100 FOR Cru-IT=1 TO 15: PRIm "CHH~~~E #".; C
CUIT j 11=11; Tll'£(cou~n::.: NE:>::T coum
200 END

Figure 2
10 RHl [HO£TRATION CF ATARI TH1Ur;
28 REM FCf< TUTOR I ALS US I t~ lI0 I CE ~[)
3B REM TIMU(; LOOPS
4t3 REr1 PRCCRAr1 DESIGN; me.
50 CLOCK =5fJJ0 : QUEST I (J~6K =4£100 : QUEST I m~A
HSWER=3000 : REt1 SUBROUT I r£ LABELS At-.[l LOC
ATIONS
60 0 I M At-S..ER$(10). RESF'Or~SE$(10::') L I t·£$(4

100 ~ICS 2+16: pcr.;ITlm~ (1, 2: PRHn #6;
II BAS 1 C MOR I AL II : PR HIT #6 .; II DEJ10t~~;T

RATIOW' : PRHIT 16
105 PRINT #6j II wi th \..'oice"
11B TII'E=300 :GOSUB CLOCK
200 GRAPH I CS 0: PR WT : PR HiT
285 PRHfT "This is :i demonstration of th
e ATARII\: PRHH "computer' I s 3.b i 1 i t::1 to ut
i 1 ize a II
206 PR I ~fT "sound-'.)o i ce tr·a.ck. I 1.\1 i 11 3.5
k f OUt~ II : PR HIT I1 S3.ltll=·1 e=1IJest.i ons :about AT
~I BASIC.": PRINT
2e7 PRI~fT "Place audio Clssette in eb.::'1e
r and": PR I ~iT II rel'J l nd t.o bes i nn i t"l9 . " : P~' I t·i
T
210 PRltfT "Before start.in9 t.his delflot"lst.r
ation)"
215 F'RIrfT "make SIJre that. t.he PLA'y' bott.o
n is"
22e PRINT "pr'e5sed dOIJJt') 'In ::'1C·Ijt"' cassette
pla.~er . II

239 PRHfT : PRHH : PRHIT "P~~ESS RETLH~ TO
START. II : Hf'UT RESPOHSE$

25e POKE 54018) 52: PHl STARE; TAPE
300 GOSUB IllST I CrriASK : T I ~1E = 1274 : GOSUE: Cl
co:: : GOSIJ8 ~'£ST I OHArISl·£F'
31B GOSUB GtESTIONA::;!<= TH1E=681 : mSU8 CLO

152

Peripheral Information

CK: GOSUB G.tEST IONANSl·fR
32e GOSUB QEST I Ot-lA~;f< : T I ~lE =683 : GO'3UE: elO
CK : GOSUB G.tEST I ONAW;l·£P
33e GOSUB G!E~;T I Ot~ASK : T I r'1E =800 : GU:JJE: CLO
CK : GOSUB lUST I ONAN~;l·lEF.·
34e G0SU8 G!fSTIm~~;f:::' TH1E=653 GC6UE; CUj
CK : GOSUB GtEST I mlA~lSHf.:F:
400 GRAPHICS 1 :SETCOLOP 2 .. 0 .. 14~;ETCOLOP
4) ~L 14: POSITION 0,8: PRHH #6.;" Et·jD OF
[B[J II, TIr-£=392: GO~3U8 CLOer.:

41 e POKE 5#31 E: .. 60 : REM ';HUT OFF CA:;':;ETTE
see GRAPH I CS (1 , E~j[I

2999 REr1 At-f:l·£P I t·le ':U::FftUT I t·lE
300et POKE ~4018, 613 . PHl ~;HUE; OFF CA~:;:::ETT
E
3010 PRINT : PF~WT II\'OUF~ fW-:;l·JEP I~; ".', WF
LIT RESPONSE!
3320 IF RESPL'NSE!=ANS1·JEPJ: THH~ PR I r·n CHP
$(253): PRHIT : PRINT II CORPECT I" : GOTO 3100

3040 PR I ~IT : PR I ~n II NO .. THE AW:;l·JEF IS 1\ j A
NSWEF~$
3100 PR I ~IT : PP I NT II PPE;S RETURr·j TO COt·lT I
t-l.E ... 11": I~f'UT RESPONSEt
3110 POKE 54018,52: PHl TUR~l CA%ETTE 8AC
KCtf
3120 RE~
3999 REM (uST I ON SUBROUT I ~lE
4000 GRAPHICS (1: READ ~U18ER .. COLOR , LUlES ..
~R$
-te10 SETCCLffi 2, COLOP, 4 : F'PHlT ,PRun :PR
I NT n QlEST I ~ # n j NUf«R : F'F: I ~n : PR I t-rr
4e2e FOR Cellt-IT=! TO LI~~S: F:EAO LIt-lEt, PF.:I
NT L I 1'£$: ~E~ cou~n
4030 RETURN
4999 REt1 TH1H4G LOOP
seee POKE 19) 0: F'OKE 20. (1: PErl SETS CLOCr.::
TO e
se10 IF PEEK(19):r.256+F'EEf:J 20 >< T I t'lE THHi
se10

153

Peripheral Information

5020 RETl»~
600e DATA L 5, 3, CLOAD .. kh~.t is the USU3.1
BAS I C cOtTlrnand t.o, te 11 the COIYIP:Jt.er t.o 10
ad a pro9t'a,yl.. f r'om casset.t.e t.::I.I:·e'7
6010 DATA 2,10,2, LISL l·J...at c:om,"l,and l(Ji 11
$hoar ~ the pro-, gra.ln st.c,red i n t.he COt':'1

Mer memor~?
6020 DATA 3,1,2, RUN.. ~.i-,3.t. cO(l'IInnd e>~ec:ut.e
5 a pr09ran) i rr, the cOt'OPI.tt.er' 5 fIlerrror'~'i'
6030 OATA 4,3..3 .. CSAUL ~"",at. is the niOst. c:
0fl/II0n 1 ~-U5ed ATAR I .' BAS I C COI))lln.nd ,-sed t.eo
record prQ9r'aI'll5, t,) cassette h.pe·c·

6e4e OA TA 5, 14, 2, HE~~. l·I-!a t. cO(llmand ! .• J 1 pes
out the pr09ram, in memor'~1?

()

o

o o o

154

o

o
o

v

o

"

Peripheral Information

The Atari Disk
Operating System

Roger Beseke

A thorough examination of the disl< operating modes.

Now that you have your ATARI 8 10 disk system up and running
and have undo ubted ly saved and entered numerous programs and
data , you are probably wondering what else this m achine can do.
Well, to date Atari h as not released th eir DOS system manu al, but
there is a prelimin ary man ual w hi ch is ava il ab le and contain s a
wealth of inform at ion. The purpose of this art icl e is to bring into
the light some of the features hidden away in the preliminary
m an ual.

As we all know, afte r h av ing the disk up and running, there is
a disk system menu wh ich is di splayed upo n en try of the com m and
"DOS, RETURN". Some of these commands are st ra ightforward
and req uire little or no explanat ion, but we a re go ing to take a look
at all of them.

There are two neat ch arac ters we must di sc uss before we go
into the DOS menu of commands. Th ey a re the aster isk (*) and the
quest ion m ark (?). When these ch aracters are used in a DOS
command, th ey are referred to as wild card in g. They allow exce ll ent
fl ex ibility which can be used to great benefit or dismay depending
wh at the operator is using the wi ld ca rd ch aracter for. It probably
goes wi th ou t sayi ng that these ch aracte rs should not be used in a
fil e labe l.

In the AT ARI DOS, the (*) is used to free form a fil e name fo r
most of the comm ands. The asterisk ca n fo ll ow a por ti o n of a label
in either th e main file label or the extension. Note: The fil e n ame
does not have to be e ight ch aracters to use the ex tension. The
asterisk ca n be used in numerous ways to provide as many results. I
will cover a few h ere and leave the rest to your imagin at io n. By th e
way, all the comm ands in this a rti cle are in q uo tes. If the comm and
requires quotes, there will be double q uota ti on m arks. Al so w hen
return is spe ll ed out in caps, it mea ns the "RETURN" key is to be
pressed.

A command of t he form "*.*" will d isplay all files o n th e
screen if used with t he disk directory cO lTllTland (A). A command o f

155

Peripheral Information

the form 'PROG*. *" would list all programs that met the first four
character format. Similarly the command "*.U*" would only list
files that had an extension in either the main or extension field, all
characters following it are ignored.

The (?) in the AT ARI DOS is used to set a character to a do
not care cond ition when wild card ing is used. The following
example, "WORD?S.*", shows that all files having the form
"WORD" and any other character in the don't care character field
will be operated on. These wi ld card ch a racters can be used
anyplace in a legal label field.

Disk directory (A): The disk directory takes care of finding
and listing the files of a diskette. The files may be listed on the
screen or on your AT ARI 820 printer. It is common know lege that ,
to get a display of the files on a particular disk, you must issue the
command "A RETURN RETURN" and they are displayed on the
monitor. This is fine if you do not h ave many files or if you want to
see all the files there are on the disk. If you do not want to see them
all, there are commands that can be sent to se lect a certain group of
files. They also can be printed on the printer. To get hard copy,
issue a command of ",P:" before the second "RETURN". A
command of the form "RA *.B?,P:RETURN" will list all files with
the first two characters "RA" in the main field and characters in the
extension which begin with a "B" followed by one character.

Run cartridge (B). This command exits the DOS and executes
in the left ca rtridge if one is inserted. It will not exit the DOS if a
cartridge is not inserted in the left slot.

Copy (C). The copy comma nd enables the operator to copy a
file from one device to the disk or copy a file from one disk to
another file on anoth er disk. For instance, a command of the form
"Dl:FILE,D2:PROG" will copy a file named "FILE" from disk one
to a fil e named "PROG" on disk two. You can write a file from the
screen editor to a disk file by a command similar to one of the form
"E:,NAME". Thi s command must be terminated with a "CTRL 3"
key entry.

Delete (D). The delete command does allow wi ld card
commands and can take the form of any of the previous examples.
The DOS displays a cue to the operator to delete the file shown .
The operator makes the appropriate entry and the DOS brings up
another fil e if there are wild cards used and fil es that meet the wild
card form. A typical deletion of all files with an extension of Bl thru
B34 could be deleted one at a time wit h the command
"*.B??RETURN". If "I N" is appended to the command, it will

156

Peripheral Information

delete the appropriate fi les without a cue, so be ca reful. It must be
remembered th at loc ked fil es ca nno t be de leted .

Rename (E). The ren ame command allows you to change th e
name of a fil e to another, and wild ca rds are all owed. A typical
comm and would be "FILE,KEEPFILE RETURN". This command
will ch a nge the name of the prese nt fi le "FILE" to "KEEPFILE." It
must be noted that ex treme ca re is recommended with thi s
command when using wild ca rds because you ca n end up with a
group of fil es with th e same n ame.

Lock (F). The lock comm a nd as mentioned prev iously keeps
you from inadvertently writing to o r deleting those fil es. A locked
fil e ca n be recogni zed read il y in the disk d irectory mode because of
the asterisk a head of the fil e name. W il d ca rds are also a llowed in
this comm and . A typi cal comm and to lock a ll files would be
"*. *RETURN".

Unlock (G). The unlock comm and is the reve rse of t he
previous lock comm and a nd the sa me protocol is a llowed. Bu t
aga in, a word of ca uti on using wild cards: you may be unlocking
something you do no t wa nt to .

Write "DOS" File (H). Thi s co mlTland wr ites th e DOS on a
form atted di sk so that it ca n be booted in to the com puter at turn
on . This command allows you to make all your d isks boot-loadable
and gives you a backup for the DOS.

Format Disk (I) . Thi s com mand is req uired for a ll new disks
befo re they ca n be wri tten o n . The DOS cues the operato r as to
which disk to fo rm at. Aga in a double check is made to make sure
that is the disk the operato r wants formatted because , if the wrong
one is formatted , a ll fi les are lost o n that d isk.

Duplicate Disk G). The dup li ca te di sk co mm and allows you to
make a copy of your present d isk o n a not her eve n if you do not
h ave two dr ives to copy with. A typica l en t ry might be
" 1,2RETURN" where 1 is the source di sk and 2 is the destination
disk . If you do not have two dr ives, the DOS will iss ue commands
on which di sk to in se rt fo r wr iting or reading. Programs in memory
are des troyed when using thi s co mmand and the DOS rem inds you
of th at fact when thi s command is ente red.

Binary Save (K). Binary save is the command that one ca n
use to save a ll th ose machine code programs you gen erate if you
h ave an assemb ler. The binary save , un like most of t he oth er
commands utili zed b y th e ATARI, uses hex numbers as opposed to
decimal. I suppose if you wa nt to save those ma chine code
programs, you ca n cou nt to sixtee n using letters a n yway. A typ ica l

157

Peripheral Information

s,1\'e binary prog r ~lm appea rs like "D2:MACHINE.CDE,4FEO,
6BAC RETURN ". Thi s would write a file ca lled "MACHINE.C DE"
on disk 2. The data would be saved from addresses 4FEO to 6BAC
inclusive. Thi s Cl)mmand al5l' a ll O\\·, the append syn tax by plac ing it
imm ediat el\' fo llo\\ing the file name. An ex ample is as fo ll ows:
"D:OPCODEI Aj4E 2,2BC3".

NO\\· I am go ing to gi\'e yOU a clu e as to h ow to automat ica ll y
exec ute your program from a binary loa d comm and . Before you
become too elated, th ere are some pains with a ll nea t things, even in
th e \\'orld of ATARI. You h 3\'e to poke addresses 736 and 737 with
the sta rting address of your b in ary progra m. Address 736 is the low
order b\'te of t he starting address and 737 is t he high order byte .
For you machine code users, the add resses are 02 EO and 02E 1. Now
just append this to your program and away you go.

Binary Loa d (L). Thi s is the c0l11mand you use to load the
p re\' iously sa\'ed binar\' progralTI. There rea ll y is not too much to
say about it, especia ll \' if you append the starting add ress of your
program. Yo u just enter the fil e name and let the system do the rest .

Run at Address (M). Run at address is fo r those of us who did
not h a\'e th e book of hO\\· to do it. The DOS asks you run from
\\·hat address and you enter t he address in hex, of cou rse . After all,
we are binary programmers, are \\'e not?

Define Device (N). The pre li mina ry manual does not
recommend usin g thi s com mand as it is not perfected . Rumor h as it
that there will be a re\' ision out soo n to fix it, however. To me, that
is a challenge to find out what about it works and if it is useful. The
intent was to essent ia ll y ch ange the name of a device a nd create
pseudo files and names. One example is "P:FILE" where, wh enever
"P" is referenced, it \\· ill write to a fil e "FILE" of wh atever target you
directed it.

Duplicate File (0). Dupli cate fil e is li ke the] comma nd of
duplicating the disk except you do not duplica te as much : to be
exact , a file at a tim e. Again, if you only h ave one drive like some of
us, you can do it the sa me way as t he dupli cate disk comm and .

This h as been a ve ry br ief descri p ti on of wh at you can do with
the DOS and h ow it can work for you, I am sure that when the
DOS operator's m anual comes out, it will explain everything much
better, but until t hen, maybe this will keep some of you fil e
manipulators o ut th ere h appy.

158

Peripheral Information

Review of the Atari 810
Disk System

Ron Jeffri es and Glenn Fisher

The Atari 810 di sk system is very easy to insta ll : unpack it , read a
couple of pages o f the Operator's Manual, plug in two cords, turn it
on, insert a diskette , and you are up and running. (If, and on ly if,
you have 16K or more memory. Otherwise, the scree n does strange
things, including producing some fa sc inating patterns .)

The Disk Dri ve Operator's Manua l shi pped with the early
units is ac tually o nl y an 11 page loose leaf booklet. The inform ati o n
in the booklet is clear, with an exce ll ent di ag ram th at should m ake
it poss ible for a lmost an yone to set up the disk system correctl y.
M aybe that seems minor, but things h aven't a lways b ee n this way ,
folks . On the oth er hand, 11 pages is not enough to say all the
things th at need to be sa id to a perso n th a t just bought their fir st
di sk. We didn't h ave an y rea l prob lems, but then again the Atari
isn't the fir st di sk we 've used. A s o f late January, the Di sk Operating
System (DOS) Reference Manual isn 't ye t ava il able. Ata ri h as do ne
a grea t job gett ing a "tota l system" out , including disk and printer.
But docum entatio n seems to be much harder to get o ut the doo r
than eith er h ardware or softw are.

The disk dr ives are ni cely packaged in inj ection -mo lded p last ic
cases. Yo u can stack two di sk dri ves , and even put the 820 printer
o n top and still h ave a stable arra ngement that takes o nly a 10 inch
by 14 inch area. There are small indentat ions o n the top of each
di sk cabinet th at prov ide a solid platfo rm fo r the one stacked o n top
of it. Everyon e who has see n our unit has co mmented o n h ow
att ract ive the packaging is , and how it looks like a con sumer
product. One fa ct of life with the Ata ri is that there are lots of
cords to conn ect everything togeth er, as we ll as to supply power.
Since Atari uses separate UL-approved power adaptors for
everythi ng except the cassette recorder and th e 820 pri nter, you
soon find that there a re a lot of power adaptors to put somew here.
On the other h and, ha ving the tra nsfo rmers sepa rate from the di sks
and the computer probably contributes to their compac t look .

To load the DOS, th e 8 10 disk is turned o n and the Master
Diskette (containing th e DOS) is inserted. The Atari computer itse lf
is then turned on, which automati ca ll y drags the DOS into

159

Peripheral Information

memory. After about ten seco nds, th e message "READY" appears
on the screen . Now , when you type the command "DOS", a men u
wil l appear :

DISK OPERATIl\:G SYSTEM 9/ 2-1179
COPYRIGHT 1979 ATARI

A. DISK DIRECTOR Y
B. RUN CARTRIDGE
C. COPY FILE
D. DELETE FILE
E. REN AME FILE
F. LOCK FILE
G. UNLOCK FILE
H. WRITE DOS FILE
L FORMAT DI SK
]. DUPLICATE DISK
K. BINARY SAVE
L. BINARY LOAD
M. RUN AT ADDRESS
N . DEFINE DEVICE
O. DUPLICATE FILE

SELECT ITEM

"Run Cartridge" mea ns "leave DOS." At least for now, the DOS
can't be used unless you are using the BASIC cartridge . Late r on
th ere may be oth er languages. One that we hope to see soon is an
assembler and editor fo r wo rking with 6502 machine la nguage.

A good feature o(the Atari DOS is th e ab ili ty to "lock" a fil e,
so that it can 't be deleted, rena med, or wr itten into. Thi s ca n be
very h andy if you h ave an im portant file that you want to protect.
(As an as ide , we've hea rd th at th e same people that wrote th e Apple
DOS worked o n the Atari vers ion. Guess wh at? Apple is the only
o ther micro system we knolV of that has a "lock" capability.)

"Write DOS" is how you make new cop ies of the DOS. Un li ke
some systems, th e Atari DOS is a no rmal fi le , instead of being
hidden away in some secret location on the di sk. Each diskette can
h o ld 709 sec tors of 128 bytes each . The DOS takes 64 of these
sectors , leav ing 645 secto rs, or about 86K bytes , for your fil es.

A las, all is not sweet ness and light.
First, the DOS uses about 9K of your memory. So, on a 16K Atar i,
when you fir st turn on the system you' ll have about 4300 bytes left
of the 16K. (Here is the math: a "prist ine" 16K Atari h as 13326
b ytes of memo ry availab le for your program. The rest is used by
BASIC, the operat ing sys tern, and as sc reen memory. The A tari
DOS comes configured for four drives, and when it is loaded into

160

Peripheral Information

the com puter you h ave 4328 bytes left . If you ch an ge a couple of
parameters to tell the sys tem you o nl y h ave one dri ve you can fr ee
enough memory to h ave a total of 4622 bytes ava il ab le.)

There is a sh ort BASIC program th at you ca n run wh ich
th rows away most of the DOS , leav ing o nly th e abi lity to Load from
and Save to the disk, as well as access the d isk from BASIC
programs. H owver , when you do thi s, you can't even look at the
d irectory of the d isk without run n ing a special program , n o r is it
possible to save this small DOS so that you ca n "boot " fro m it,
since the abili ty to wr ite a DOS fil e went away wh en you th rew o ut
the menu . So , if you want to use "Tiny DOS," eac h time you boot
th e system you 'll h ave to run t he BASIC program . In this "st ri pped
dow n" mode you h ave abo ut 9.4K ava il able .

Wh at ca n we say? Well , a lth ough the menu seemed fr iend ly
and h andy at fir st, wh en you co nside r what it costs in memory, it
may not be wor th it. A mo re impo rtant issue is whi ch DOS
functi ons are crucial, and wh ich can be shun ted off in to a separate
"di sk ut ili ty. " G iven the tigh t memory situation, we'd vo te for th e
fo llowing as essential D OS functi ons, with everyth ing else ex il ed to
Siberia : direc to ry, delete file, and, of course, load and save files.
These impor tant DOS fun cti ons wou ld idea ll y be d irect com mands,
such as "DIR" o r "C ATA LOG" for the d irectory.

Atari file n ames ca n only be UPPER CASE let ters and d igits.
Why they chose such a res tri cted se t is a mystery, sin ce on ly
comm a, per iod, colon, as teri sk and the quest ion m ark h ave special
mean ing to th e DOS . Fil e n ames co nsist of eigh t charac ters fo llowed
by a three-ch aracter "exte nsion." Eigh t-charac ter names are too
short to be rea ll y mea ningful. Oust beca use CP/M a nd D EC made
th at mi stake doesn 't mea n it should be repeated . Comm odore
allows 16 ch aracter n ames, and th ey ca n contain alnlost any
ch aracters you like.) Speak ing of U PPER C A SE, th e 800 itself h as a
"feature" we fin d fru strating: it doesn't understand lower-case
BASIC keywords!

To summ ari ze , we fin d man y thi ngs about th e system th at we
li ke, as we ll as some thi ngs th at are n 't IV h at th ey coul d h ave been
with a li ttle better planning and design. Atari h as put togeth er a
good system, o ne that we think will se ll li ke gangbusters. It's
ava ilable now, at obscure places li ke Sears and J .C. Penneys and the
li ke, as we ll as your fr ie nd ly local computer store.

161

Peripheral Information

An Atari Tutorial:
Atari Disk Menu

Len Lindsay

This program permits greater efficiency when using disks.

Anyone with an AT ARI disk will really appreciate this program.
You will probably put a copy of MENU on each of your diskettes.

MENU will display the programs on the diskette along with an
10 number (1-44). It then asks you which program you wish to
RUN. If you wish to RUN program number 8, you simply answer 8.
It then LOADS and RUNs that program. No more hassles trying to
remember exactly what name you used for the program, or typing
the name exactly. MENU does it all for you.

Since MENU uses some special techniques, I will explain how
it works. You should be able to apply many of these concepts to
your own programs.

LINE 10·11 - Dimension the STRINGs. ARRAY$ will hold all
the names of the programs on the disk (12 characters per name).
FILE$ and NAME$ are used for the program names. DISK$ is used
to hold the ' drive number prefix.

LINE 15 - Set the margins to default, in case the previous
program used differed ones.

LINE 20 - Use GRAPHICS 0 full screen text mode. It also clears
the screen for you.

LINE 30 - Turn the cursor off - it looks nicer while writing the
program names on the screen.

LINE 40 - Set the color registers to the preferred colors. A light
orange background with warm brown letters is the easiest on your
eyes.

LINE 50 - Set DISK$ to the disk drive to be used. See
modification notes to make this more flexible.

LINE 60·70 - "01:*. *" will refer to the disk directory. It is a two
step process to add the DISK$ with "*.*" and call it NAME$.

LINE 100 - Open the disk directory for a READ. This line should
be useful for other applications. .

LINE 110 - Initialize the counter which counts each program as it

162

Peripheral Information

is read from the directory. This also acts as the program 10 number.

LINE 120 - READ one file from the directory. A program entry is
17 characters long. It is two spaces, 8 characters for name, 3
characters for extension, one space, 3 characters for sectors used.
After all the programs, there is a separate record of the number of
free sectors left on the diskette.

LINE 130 - Check if this is th e short record of tracks left on
diskette. If it is, then we are done and should go on to the next part
starting at line 500.

LINE 140 - Since we read in another program name, add one to
the counter.

LINE 150 - If this is the 23rd program, we must switch to the
right h alf of the screen (prevent scrolling and fit more on the screen
this way). To do this we set the margin to 20 and position the cursor
at the top line , 20th spot.

LINE 160 - Check if the screen is completely filled with program
names (44 is the maximum display allowed on one screen). If it is
full, ignore all the rest, adj ust the counter accordingly. See
modification notes for other ideas.

LINE 200 - Initialize the name field. To manipulate the string by
character position, the positions all must exist. Initi alizing to" "
(null) will not work . Note the extention dot is in position 9.

LINE 210 - If there is no extension, get rid of the dot in position 9.

LINE 220 - Assign the program name from FILE$ which we just
READ from the diskette. This is only the first 8 characters of the
name, not including the extension.

LINE 230 - Assign the extension of the program name. If there is
no extension, we st ill can ass ign it since the dot has already been
removed.

LINE 300 - To keep a justified column of 10 numbers, we must
allow for one digit numbers. So if the number is less th an 10, print
an extra space.

LINE 310 - Print the 10 number followed by) and a space.

LINE 320 - Print the program name.

LINE 400 - Add the name onto the ARRAY$ we are building. It
can now be referenced by number times 12 (since every name is
exactly 12 characters long).

LINE 410 - Processing complete for the program just read. Go
and do the next one.

163

Peripheral Information

LINE 500 - Set the trap to come back and redo the input if an
error occurs.

LINE 505 - CLOSE the fil e used to input the programs from the
directory.

LINE 510 - Turn the cursor back on for the INPUT request.

LINE 520 - Position the cursor on the message line (line 22). First
print a line-delete to erase the previous message. Then print the
current message. End the message with a BEEP (control 2).
LINE 525 - Set the left margin back to default so the next
program will not be affected.

LINE 530 - INPUT the lD number of the program to be RUN.

LINE 540 - Get rid of any fractions.

LINE 550 - If the choice was not in the range available, go and
ask again.

LINE 600 - Start FlLE$ with the disk number. The rest of the
name is assigned in line 630.
LINE 610 - Assign the name of the program chosen to NAME$
(taken from the ARRAY$ we just put together).

LINE 620 - Start a loop to go through the whole 12 character
program name and remove all spaces (spaces cannot be imbedded
within a program name when you ask for a LOAD or RUN).

LINE 630 - Add the characters in the program name one at a
time to FILE$. Ignore spaces.

LINE 640 - Do the next ch aracter.

LINE 700 - Set the trap to line 900 to print a can't load message if
there is a disk error.

LINE 720 - Position the cursor to the message line. First do a line
delete to erase the previous message. Then print the message
LOADING with the file n ame . Then print a BEEP (control 2).

LINE 730 - RUN the program and spri ng the trap.

LINE 900 - Print message the program can't be run (maybe
diskette was switched or removed since the directory was read).

LINE 910 - Pause to allow message to be read.

LINE 920 - Go and ask fo r program to RUN again.

Possible Modifications
MENU is set up to work with disk drive 1. It is easy to have it work
with both drive 1 and drive 2, and even alternate between them for

164

Peripheral Information

a wider MENU choice. Line 50 sets the disk drive number prefix to
be used by the MENU program. Some possible modifications follow;
the first asks you which drive to use for the MENU, while the
second can flip back and forth from drive to drive. I have
implemented the second set of modifications and find it works quite
well. Either way, it seems that it doesn't like trying to give you a
MENU for an empty drive.

Modification Set 1 - Ask Which Drive
50 PRINT "[CLEAR] WHAT DISK DRIVE TO USE)";
51 OPEN #1, 4, 0, "K:" :REM OPEN KEYBOARD FOR
GET
52 TRAP 52: GET #1, DRIVE: REM GET KEY PRESSED ATASCII VALUE
53 NAME$ = CHR$(DRIVE): REM CONVERT TO STRING - USE
NAME$ SINCE IT IS DIMed
54 IF NAME$<"l" OR NAME$> "4" THEN 52 : REM TRY AGAIN
55 PRINT NAME$: REM PRINT THE REPLY
56 CLOSE #1: REM CLOSE THE FILE
57 DISKS$ = "D1:": REM INITIALIZE STRING
58 DISK$(2,2) = NAME$: REM INSERT DRIVE NUMBER
Modifications For Alternating Drives
17 DRIVE = 2 : REM INITIALIZE FOR A TWO DRIVE SYSTEM -
DRIVE 1 WILL BE FIRST
18 DISK$ = "D1:": REM INITIALIZE
50 DRIVE = 3·DRIVE : REM SWITCH DRIVES, WILL DO DRIVE 1 FIRST
55 DISK$ (2,2) = STR$ (DRIVE) : REM PUT CORRECT DRIVE NUMBER
INTO DISK$
59 TRAP 50 : REM TRAP DISK ERROR
105 ARRAY$ =" ": REM INITIALIZE
115 PRINT "[CLEARn: REM CLEAR SCREEN
520 POKE 82, 2 : REM LEFT MARGIN TO DEFAULT
525 POSITION 2,22 : PRINT "[DELETE LINE]O = NEXT DRIVE WHICH
TO RUN [CONTROL 2]";
535 IF CHOICE = 0 THEN 50 : REM SWITCH DRIVES ON CHOICE OF 0
Another modification you may wish to make has to do with the
ability to jump into DOS immediately directly from MENU. If you
try to RUN it as your MENU choice, it will say "can't run dos."
Thus, if you think you may need to jump directly to DOS add this
line:

615IF NAME$ = "DOS .SYS" THEN DOS
Modifications To Overcome The 44 Program Limit
The MENU can only display 44 program choices at one time, thus
line 160 checks if the screen is full(44). If it is, it skips all the rest of
the programs. In practice this should not be a problem since most
diskettes will be filled before they reach the 45th program unless the
programs are all short.

165

Peripheral Information

Modifica ti ons mi ght be made so that after 44 programs, th ey
n o longer are printed o n the screen, but still are added to ARRAY$
with FILECOUNT co n tinuing its count. The DIM in line 10 fo r
ARRAY$ shou ld be in creased accordingly. The message line
(520-525) should also be appropriate ly changed. Perh aps a choice of
99 would mea n "display second scree n of menu." A subroutine
could calcul ate what program number to start with (filecount minus
43) and anoth er subrout ine could print the menu frortl ARRAY$ as
appropriate.

166

o F,'Hl
1 E'EJi
2 REJ1
:3 FiJ1

....... ',

. ';-, '~" ,-;-,
'.:: .. ~'-.:.' ,

tErn_' <:: 44 F'RDCFAtl i'1~i>: >
<: C:. 19£:0 i.Bl LI~[::::;A\'
U6T Ff' : I ::; I 0:1 11 ·- 15-80

1 (1 D I t'l ARPA':':!:;: 52:::: >, F I LEt::: 20 :' .' ~lAi'1E:!< 20 >
11 0 H1 [! 1Sf:::!:' J::
15 F'[~:::E :::2 .. 2 ' F'Ot::E ::::3,39 RHl DEFAU!.. T i'1HF~C;
HE
~'fj GPAPH I C; >3 : F.El CLEAF ':fF.:EEti At·lO ,~I] I ~l
TO TE>::T mOE (j
30 POKE 752, 1 : PH! CUF.::':;CF: OFF
40 :;ETCOUJF.~ 2., 2 .. 6: :;ETCOL.OF: 4) 2., 6: SET COLO

~,fj DI':¥:t= "[I 1 : "FBi THE DI:::;f::: TD BE USED F
OR A f'1H1U
60 t·lHr-1Et=DI':Jt · FHl THE rlHt-1E r-nJST :3iAPT l,J
ITH THE [J Ef< DF.:I I)E ~11X18EF
70 t'lA1'1E$(LUV rlAI'1E:t :,'-1 >=!I :::: . ::i:" : PEn LOADlt·jG
01: ::;::. t: C;1I)E'; THE DISi::::; OIF:EC:T::tVi

100 OPHJ # 1. b ~J.. t·l'::J1Ef : kH1 OF'EH n~E D EJ:
OIRECiO?/ FOP Ii READ
110 F I LE:a :T :::C~ FH1 Hl IT I AL IZE coum
120 I HFt:T it 1) F I L E$ • F.H~ F:EAD tiL::: PF.:OGF.'Hfl
[·lH:·:t

130 IF LDV FILES 5 THEij ~J0: FBI riOT A P
POGF.~Arl- TH; :~, E; THE ':;ECTIJF.S LEFT c:ourn
140 FILf'COUhT=FILECClUt;T+l :F-Hl HDD OtlE TO

COUr·jT
15(1 IFF I LECJ!J :T :<:?: THEil F'OKE ::::2) 20 : F'U:; I
TIOtJ 2'} .;3 FHl :=;~,HTCh TC F:~IGHT HALF OF ::;C
REHJ .: CHAriGE LEFT i'1HF:;~ I t~ TOO :.'
160 IF FILECOJjji>: P THE>J FILECC:Ur·fT=44 · GO

Peripheral Information

TO 120: F'Ell TC(i ;:Afi'/ F'~~i)~F.:Art:; - .JU3T f:EEF'
FfADIHG

200 [-/A:-1E:f c: :J " : f\'EJl UH TI AL 12E
THE r-!Ai'E FIELD TO ;~LL 8LArWS E;:::CEF'T THE
DOT E:EFC8E THE E:<TEf<:; ~ GrJ
2 HJ IFF I LU':: 1 L 13)=!I "THHi flAr·1n:.:: 9; :3
)=" ": FHi Tf-I.ERE IS tlC! E::<iHE I cr'l ~:;o GET F.~
10 OF THE DOT
22(1 t'lAr-1E:l\ L ::: >=F I LE:fC3., 1(1:' FHl AS:; I C;t·j TH
E FIPq :::: CHH~~HCTEF:::; iJF THE F'F:OGF'Ht-l r·lAnE

23(1 tlPJ-1E:f(W.' 12 :=F I L.EJ\ 1 L 13:' : FHl A:3SIOj
THE E>::TGI~; 10.'; CF THE F'FOCF:Ar-~ :lAi'iE

3(1[1 IF F I LEccu~r:. 10 THE:'i F'F: HH " "J REt-I
ADD I~h E: <T F~H ~:;PACE EE;=-CF:E THE ~:; FlGLE DI G
IT t·jlJ-1E:E~~~; T'J ALI !~: i ~.;: HI 2 [l C; IT~::
3W F'F:tiT FLECCUr· :: ;":, ".;: FE1 F'RHlT FILE

tU1EEP
320 F'F: 1 rF tlA; 1E$. :?G1 F'F.:: ~r: THE F'ROGRAf1 tlA
f'lE
400 A~k· 'i J.< :...EtV HF:F:(;/:f >"1)=NAf'1E:! . FEr': AOD
011 THE U :E::;; tj~J1E TC GlD OF ~;TF I t·IG OF ti
At'1[::: THU:::; F AF
410 COre: 12e · FEI CO F:EAD fE<T FILE tlAnE
500TTHF' 5e~=1 : FE; ~:;ET TRHF' FOR BAD I tiF-L1T
505 CLO':;E # 1 F:Er: CLC::E THE FILE U;EO TO
Hf'UT [lr~::Y CIFECTJVi
51 (; F'Of:::E 752, C . ~H1 TUFN C:.f~':,OF' BACt:: ON
52(i FO::; I -: r 'J!' i 2, 22 . F'P I r·n " F.~Ut·i t·;Ur18EF::: " .; :
PHl F'F I ~ r: f'1E':;::;H~t: Oh r-1E:::::::AGE L. I rlE
525 F'C;f:E :::2 , .? F.:EJ! ::,ET LEFT f1H~'G Hi TO OEF

:,30 I t·jFU -: CHO I CE : F'Ei'1 GET THE t·jUr-lEEF OF T
HE F'PCCF'·':Jl TO PUl
540 CRiI CE =I:jT'. CH:=iICE:' FH1 eEr- F~IO OF FF:
ACTlOt·C
550 IF CHOICE': 1 OR CHOICE>FILECOUrn THEJi

:,(1J.:::1· FH; l~iUT OF FWi;~E FOF: THI~; i'lHlij
60C~ F 1:..U=[I I::;f:::f : FHl THE t·jAr-lE TO USE m TH
A F'Uii :::;TATEilUn t-1i}::;T 8EGHi mTH THE DI:::

167

Peripheral Information

168

: REtl THE ~-lHi-1E OF THE F'POGFAn HlCLUOWG E

620 FOR LOOP=1 TO 12
630 I F t-ji~r-1E:~\ LDCF' , ~OOF' >< ::: I! II THH~ F I LE$(
LEH: F I LEt)+ 1)=tiAr-lE:r(LOOP, UJJP ::.
640 t-;£::<T UXJF'
700 H:~;F 900 -FHl ::;ET TRAP FOP D I Sf::: EF:PO~:

720 POS IT I Uti 10 I 22 : PR HiT !1 LOAD we :: " j t-jA
1-1Et : FHI FR I t-j T rlE::;::;;AGE Oli t-1E::;::;AGE L I tiE
730 F.:Ut-j FILE:! : TPAF' 34567 : RHl F:Ur-j THE F'm
GFAj-1 AriD TLf:t-j OFF TPAF'
9f10 F'(I::;lT IOtj 10,22 : F'RHiT !I CAW T F:Ul'l } I!_;

HAi'1Et -F.E1 F'R I tiT rlE:::; '::AGE :=Ir-j r-1E::;::::AGE L 1 ~l£
910 FOF.: PAU::E = 1 TO 999 : t-1E::<T PAUSE -F.Hl DE
LA\' TO HU-,j~,J T WE TO FEAO t-1E:3::;ACE
920 GO T 0 500 : F.H1~O H~l[i TVr' AGA I rj

~~

~. v~

(i~ \

~
(-\

/

Peripheral Information

What To Do If You Don't
Have Joysticks

Steven Schulm an

U se of joysti cks with the ATARI computer ca n add exc itement to
you r programs. But what d o yo u do if you don't ha ve joysti cks yet
and aren't ready to buy t hem ? Are yo u o ut of lu ck? Do you have to
type in numbers to se lect fro m a menu of answers? Does it mean you
ca n't use games like IRIDIS' ZAP o r th e latest fro m your computing
m agaz ines? No ! There 's anot her way.

We can look in amongs t th e bits and bytes th at make up the
memory of your ATARl. Any time you press a key on your
keyboa rd, the va lue of th e 764th wo rd ch a nges . By taking a PEEK
at what number is there yo u ca n find o ut wl,i ch key it was. Li sting I
shows you how to find out what the va lu e will be when any key is
pressed. Try running it and pressing d ifferen t keys, shifted and
unsh ifted , reverse video, etc. When yo u fini sh, use th e BREAK key
to stop th e program.

"How does t hi s h elp so lve my probl em o f not h av ing
joyst icks ?" you m ay ask. To see thi s you h ave to kn ow what
happen s when yo u use t he joysti cks . If yo ur program has a lin e I
STICK(l), th e va lu e of I will be one of 9 poss ible va lu es depending
on the positi o n of th e joyst ick when that lin e is reach ed. The values
will be

14

1O~1 /6
11-----15 ----- 7

9/ 1"'5
13

where the va lue o f I = 15 mean s th at t he joys ti ck is in the upri ght
position . In add iti o n, J = STRIG(l) will h ave a va lu e J = 0 if the
fir e button is pressed and a va lu e of J = 1 if the fir e button is no t
pressed.

Returning to wh at we know abo ut the va lu e of the last key

169

Peripheral Information

prL'~~cd, \\' c fo und tl, ;l t thc \'a lu e~ fo r the mro \\' s \\'ere :

[up-arro \\-] = 14
[dow n-arrow]= 15
[r i gh t -a rro\\'] = 7
[left-arrow] = 6

;l n d the \';l lu es fo r th e sh ifted ;l ITo\\'S \\'e re

Sh ift = 78 Sh ift = 71
Sh ift = 79 Shift = 70

Fin all y , th e \';l lue fo r the space bar is 33 ,
'\I/e ca n th erefo re h;l \'e t h e sa me result s as we woul d get from

using a jO\, ~t i c k by usi n g th e ar ro\\'s, shift arrows and space bar. The
space b a r \\' il l be o ur fir ing b ut ton , th e arrows will be th e ob\' io us
up , do\\'n, left and ri ght, and t h e shi ft up will be to the upper left,
th e sh ift do \\'n \\' ill b e to th e upper r ight, th e shift left wil l b e to t h e
lo \\'er left, and the sh ift r ight \\' ill be to the lower right, An y other
key , o r n o key at a ll , be i ng p ressed is eq ua l to the joyst icks bei n g in
an uprigh t pos itio n,

T h e routin e in listing II will p lay th e pa r t o f a joyst ick , After
ca ll ing the sub rout ine t h e \'a lue of I will be th e sa me as would h ave
bee n return ed by I = STIC K(I) a n d the va lue of J will be th e sam e
as \\'hat wo u ld h ave been returned by J = STRIG (l) , W h en you d o
b uy your joysti cks , si m ply rep lace th e subro ut ine ca ll a nd remove
the sub ro utine fro m your program , H appy com put in g!

170

Listing I

lQa I::PEEK(764)
118 ? III=u j I : REM PRIHT TIE ~UE Cf n£
KEY PRESSED
120 PO<E 764) 255 : REM TaL TIE COMPUTER T
~T t{) KEY ~4AS PRESSED
130 FIl< ~=1 TO 500: ~~ PAUSE : REM SL
c.l [O,t~ 11£ ~H I t-£ SO VOJ C~~ ~:EAO TI-£
RESULTS
14e GOTO 100

Listing II

100 JOYSTI CK= 1000 : RH1 LOCAT ION OF SUBPOU
Tn£
110 GOSUE: .JO',)::;T I CK : ~H1 a£CK THE I J)'y'ST I
ClC

Peripheral Information

12e ? liTHE I Jj'y'~;TICK I Hf.¥:; UALUE=".; 1
130 1" liTHE I FIRE BUTTON I HA~:; UALUE=" j.J
140 F~ PAI).=..E=1 10 50f1 :HO{T PAU~:;E
150 G010 110
1000 ID1 .JO'Y~;TIC:K SU8Ff"JTn~E
1010 I=PEH\ 764::'
1020 .J=1
1030 F'CR<E 764) ~'55
1040 IF 1=14 THt}~ 1=14 : PETUFJl
1050 IF 1=79 THH~ 1=6: RETUPI'1
1060 IF 1=7 T~H 1=7: RETUF~t~
1070 IF 1=71 nEl~ 1=5 : ~'EfUF.:t~
1000 IF 1=15 n£t~ 1=13: f\'ETUPt·1
1090 IF 1=70 HI}~ 1=9: RETUF.N
1100 IF 1=6 TI-Et-l 1=11 : RETUPt·l
1110 IF 1=78 H£t'1 1=10: f\'ETUPH
1120 IF 1=33 nB~ 1=15 : .J=0 : PETUFll : RH1 F
IRE EmTON .
1130 1=15:RETURH

171

Peripheral Information

Using the Atari
Console Switches

James L. Brunn

If only one key is pressed , ym(can we these values: (PEEK (53279)):7 =

no key, 6 = START, 5 = SELECT, and 3 = OPTION.

T he colored console sw itches to the r ight of the typewr iter keyboard
are just t h e ticket for programs with special features. T h e names
seem to in dicate just th e kind of th ings one m ight wish to do in a
program . OPTION - What better key to step through a choice of
options. SELECT - After stepping through the options, this key
cou ld be used to select t he current opt ion. START - T his key
m ight be used to transfer control back to the beginning of a
sequence or to start the program over again.

T h e problem is, how does one read th ese keys? Well , read on:
here is a meth od that works we ll for me. First, we note the memory
location 53279 is used to ind icate the condit ion of all t h ree switch es.
It 's done like thi s. If we just PEEK (53279) with no switches pressed,
we find a seven. Hold ing down one or more of the keys while doing
ou r PEEK returns a different number. Th e tab le below summarizes
the va lues returned when a console key is pressed. X means that the
key or keys are pressed.

Table 1

172

KEY VALUE 0 1 2 3 4 5 6 7

OPTION X X X X
SELECT X X X X
START X X X X

Now let's use th is knowledge in a program.

10 DIM OlSPlAV$(23)
20 PRIHT II {CLEAR} II : POKE 752, 1
30 POSITION 5,5
40 KEYS=PEEK(53279)
50 ~ KEYS+1 GOSUB 100 .. 110,120,130,140,1
58/160, 170
60 PRUrT DlSPLA'"IJ$
7e GOTO 30

Peripheral Information

100 OISPLAY$="OPTIm4 + :3ELECT + START II .

RETURN
lle DlSPLAV$=IlCfiTIOt·4 + :;ELECT
RETURN
120 DlSPLAY$="0PTIOt·t + STAPT
R£TU<~4
130 DISPLAY$="OPTIOH
RETURN
140 DlSPLAY$="SELECT + :;TA~:T
RETURN
150 DlSPLAY$="SELECT
RETURN
160 OlSPLAY$="STAPT
RETURN
170 DlSPLA··t$="t·~J KEV:; ARE PF.:E::SED
RETURN

Of course the subroutin es h ere are ve ry simple ,
but th is method ca n easily be expa nded to fit
your n eeds .

II .

II .

II .

II .

II.

II.

11 •

173

Peripheral Information

Atari Meets The
Real World

Richard Kushner

You've had your Atari computer for a while, reached the level of
Commander in Star Raiders, killed 754 aliens in Space Invaders,
learned the difference between PUT and GET and written some
programs to amuse and astound your friends and family. Now
you're looking for new worlds to conquer. Lurking out there past
the peripheral plug on your Atari, and just beyond the end of your
telephone line, is the real world. To get there from here means
connecting your Atari to something that speaks the language of the
outside world. As often as not, that means using an RS-232
compatible device. All this really means is that many devices that
can hook onto your computer require a connection with voltage
and signal specifications given by the RS-232 technical standard.
Printers use it, modems use it, and a wide range of other peripherals
are most comfortable communicating across it.

So what do you do? You can build an RS-.232 interface, but if
you're like me, your interest lies more at the programming end and
you'd prefer something that comes ready to go. I'm pleased to report
that such a device exists and works very well, thank you. It is the
Atari 850 Interface Module and it does a lot of things to make the
interfacing easy and understandable while, at the same time,
providing versatility and supporting future expansion. This article
will give a rundown of many of its useful features.

The Model 850 plugs into the Atari peripheral port and
provides connections to daisy chain other devices (like the tape
cassette) that do not require the interface. It has its own power
supply (identical to the power supply for the Atari computer) and
supports four RS-232 serial ports and one parallel port. The parallel
port is intended for the Atari 825 Printer (a slightly disguised
Centronics 73 7 Printer) and the manual describes the leads to all
the pins in case your parallel device is not Centronics compatible.
The four serial ports have different levels of support. Port #1 is
intended for modems, Ports #2 and #3 are intended for serial
printers and other generally receive-only devices, and Port #4
supports a 20ma current loop for teletype interfacing. The key word
here is RS-232 "compatible." The connections are nine pin as

174

Peripheral Information

opposed to the 25 pin on stand ard RS-232 conn ectors and therefore
cannot support all the possible RS-232 interconnections. Table 1
shows the connections that are ava il ab le on the four ports. They
should be adequate for most personal computer hook-ups. You'll
have to make a connector to bridge the gap between th e Model 850
and your RS-23 2 device. Carefully note th ai: the pin designations
are relative to each device, i.e., "receive" on the Model 850 goes to
"send" on the peripheral and vice versa. Understanding that fact
makes the interconnection reasonable and straightforward.

So far we've just scratched the surface. Inside the Model 850
resides its very own microprocessor. When the system is powered
up, the Model 850 passes a handler routine and ser ial port
information up to the computer and then waits for instructio ns. To
transmit or receive over any port you must configure the port (or

accept the default configuration) . You can specify baud rate (45.5 to
9600, concurrent (two way) or block (output only) communication,
port number, translation (how to send Atar i ASCII so that your
ASCII only device won't hiccup), bits per word, parity, and whether
or not to monitor signals from the device at the other end. The
length of the list and the variety within each item sh o uld give an
indication of the versati lity of this device. The cost to you (besides
the purchase price, of course) is the 1,762 bytes of memory used
when the interface loads its handler and tables into the computer
memory. The following is a brief description of some of the features:

1. Baud Rate: virtua lly all common baud rates from 45.5 (60
words per minute for Baudout teletypes) to 9600 baud are supported
and software-se lectable. 300 Baud is the defau lt va lue , making it
immediately compatible with modems. I cur rently h ave a 1200 Baud
ser ial printer running.

2. Translation Modes: three modes can be used -
a .) no translation - just like it says, no changes are made

on sending or receiving characters. This is only useful if
you have some way of processing the characters or if
your peripheral device understands the Atari versio n of
ASCII, as , for example, if you are talking to anoth er
Atari computer .

b.) light translation - on output End Of Line (EOL) is
translated in to Carriage Return (CR) and vice versa on
input. Also the high bit is set to zero. Thi s is the defau lt
mode.

c.) heavy trans lation - this mode does what light
translation does plus, on input, it looks for

175

Peripheral Information

correspondence between Atari ASCII and regular
ASCII. If there is correspondence then it passes the
character on and, if not, it translates the character into
whatever you have specified as the "won't translate"
character. On o utput, however, untranslatable
characters are not sent at all.

4. I/O Modes: the interface handles either concurrent or block
output. Input must always be done in the concurrent mode. In the
block output mode, data is sent to the interface module in 32
character blocks, then the computer waits for the block to be
transmitted before sending the next block. It is possible to force the
computer to send a block of less than 32 characters so that data
need not be lost. Concurrent mode output sends characters to a 32
character buffer which continuously empties out the other end.
Programs are not held up in this operation unless the buffer fills up,
in which case the computer must wait until space becomes ava ilable .

There are other capabi lities built into the interface, but it is my
intention here to give you a feel for the power of this device rather
than to give a recitation of the technical manual. Don't be afraid to
try to interface non-Atari RS-232 devices to your Atari. This
interface module should be able to support whatever you have,
although you'll probably have to experiment with the library of
commands to get communication to take place. For example, the
Atari directly supports the LPRINT command which outputs data
to a parallel printer on the appropriate connection of the interface
module. For my serial printer, it was necessary to 1) establish a port
for the device (calling OPENing a channel; 2) configure the port to
output data at the 1200 Baud rate that the printer required; and
3) look into whether or not I needed a line feed after a carriage

PORT-l

XMT
RCV
DTR
DSR
RTS
CRX
CTS

TABLE I
PORT-2

Transmit
Receive
Data Terminal Ready
Data Set Ready
Request to Send
Carrier Detect
Clear to Send

XMT
RCV
DTR
DSR

PORT -3

XMT
RCV
DTR
DSR

PORT-4

XMT
RCV
DTR

RTS

return. All of this really required only two statements near the
beginning of my program and the use of PRINT #4 (where 4 is the
device number I had set up) rather than LPRINT, when I wished to

176

Peripheral Information

send data to the printer.
The Model 850 Interface Module has been carefully thought

out to provide a great deal of versatility to the user. Several months
of experience with this device has conv inced me that it is a good
investment in future expansion of my Atari computer system and a
worthwhile item to have now.

o o

()

o

177

178

Appendix A

179

DEC AD DR

00014
00015
00016
00018
00019
O(Jc)2(J

0 0 065
(J(1077
0008:;
00083
000 84
00085
00086
00090
00091
0 009 2
0 0 09 3
0 (109 6
00097
00098
00106
001 2 8
00129
00144
00145
00186
00187
00195
0020 1
002 12
00213
00251
0055 9
005 6 (1
00561
00562
00564
00565
00580
00623
00624
00625
0062 6
00627
00628
00629
00630
00631
00632
00633
00634
00635
00644

180

Atari
Memory Locations

Ronald Marcuse

HEX ADR LA8EL DESCRIF'

0000 APPMHI BASIC HIGHEST LOC- LS8
(lOOE AF'PMHI BASIC HIGHEST LOC- MS8
0010 F'm:: MS~:: os INTERUPT REO ENA8LE
0012 RTCLOI< TV FRAME CNTR - LS8
001 3 RTCLOf< TV FRAME; CNTR - NS8
0014 RTCLm:' TV FRAME CNTR - MS8
0041 SOUNDR NOI SY liD FLAG (O~OUIET)

(1040 ATTRMOD ATTRACT MODE FLAG,128~YES
0052 LMARGIN LEFT SCREEN MARGIN
0053 RMARGIN RIGHT SCREEN MARGIN
0054 ROW CRS CUR CURSOR ROW,GR WINDOW
0055 COLCRS CUR CURSOR COL , GR LS8
0056 COLCRS CUR CURSOR COL, GR MS8
O(l5A OLDROW F'REV CURSOR ROW, GR WIND
C)05B [JLDC[JL PREV CURSOR COL, GR LS8
(lose Ol_DCOL F'REV CURSOR COL., GR MSB
(105D DAT CURS DATA UNDER CURS, GR / MD I)

006 0 NEWROW CUR SOR ROW FOR DRAWTO
006 1 NEW COL CURSOR COL FOR DRAW TO LSB
00 6 2 NEWCOL CURS OR COL FOR DRAW TO MSB
006A RAMTOP TOP OF MEMORY,# OF PAGES
0(1 8 0 LOM EM BAS IC LOW MEMORY PNTR LS8
0081 LOMEM BAS IC LOW MEMORY PNTR MS8
0 0 90 MEMTOF' 8AS IC MEMORY TOP PNTR LSB
0091 MEMTOP BASIC MEMORY TOP PNTR MS8
OOBA STeIPLN' 1st HALF STOP/TRAF' LINE II
008B S TOPLN 2 nd HALF STOF'/ TRAP LINE #
O(JC 3 ERRSA V ERROR NUMBER
00C9 PTA8W PRINT TAB WIDTH (DEF 10)
00D4 FRO LOW BYTE VAl_, USR FUNC
00D5 FRO HIGH BYTE VAL,USR FUNC
OOFB RADFL.G RAD/DEG FLAG 0-RAD, 6-DEG
0 22 F S DM CTL OS DIRECT MEM ACCESS CON
0 230 SDLSTL OS D I SF'L.AY LIST PNTR LS8
023 1 SDL S TH OS DISPLAY LIST PNTR MSB
0 232 S SI<CT L OS SERIAL PORT CONTROL
02 3 4 LPENH LIGHT PEN HORIZ 'JAL
0 235 LF'ENV LIGHT F'EN VERTICAL. VAL
0244 SYS RES SYS RESET , COLD START >0
0 26F GF'RIOR F'RIORITY SELECT (oS)
0 27 0 F'ADDIJ > PADDLE (>

0 2 71 PADDLI PADDLE
0272 PADDL 2 PADDLE 2
0 2 7 3 F'ADDL3 PADDLE 3
0 27 4 PADDL4 P ADDLE 4
0 27 5 F'ADDL5 PADDLE 5
0 2 7 6 PADDL 6 PADDLE 6
0277 PADDL7 PADDLE 7
0278 STICI<O JOY S TICI< 0
0279 5T I cn JOYSTICr.::
027A 5TICI<2 JO Y5TICr.:: 2
0278 5TICI<3 JOYSTICK 3
0284 5TRIGO JOYSTICf< TRIG (>

DEC ADDR

00645
00646
00647
00656
00657
00658
00704
00705
00706
00707
00708
00709
00710
00711
00712
00741
00742
00743
00744
(10752
0(1755
00756
(10763
00764
00765
00766
00767
00794
00832
53248
53248
53249
53249
53250
53250
53251
53251
53252
53252
53253
53253
53254
53254
53255
53255
53256
53256
53257
53257
53258
53258
53259
53259
53260
53260
53261
53261
53262
53262
53263
53263
53264
53264
53265

HEX ADR

0285
0286
0287
0290
0291
0292
02CO
02Cl
02C2
02C3
02C4
02C5
02C6
02C7
02C8
02E5
02E6
02E7
02E8
02FO
02F3
02F4
02FB
02FC
02FD
02FE
02FF
031A
0340
DOOO
0000
D001
D001
D002
D002
0003
O(l03
D004
D004
D005
D005
D006
D006
D007
D007
D008
D008
D009
D009
DOCIA
DOOA
DOCIB
DOOB
DOOC
DOOC
DOOD
DOOD
DOOE
DOOE
DOOF
DOOF
DOlO
DOlO
DOll

LABEL

STRIG1
STRIG2
STRIG3
TXTROW
TXTCOL
TXTCOL
PCOLRO
PCOLR1
PCOLR2
PCOLR3
COLORO
COLOR 1
COLOR2
COLOR3
COLOR4
MEMTOP
MEMTOP
MEMLO
MEMLO
CRSINH
CHACT
CHBAS
ATACHR
CH
FILDAT
DSPFLG
SSFLAG
HATABS
IOCB
HPOSPO
MOPF
HPOSPl
M1PF
HPOSP2
M2PF
HPOSP3
M3PF
HPOSMO
POPF
HPOSM1
P1PF
HPOSM2
P2PF
HPOSM3
P3PF
MOPL
SIZEPO
MIPL
SIZEPI
"M2PL
SIZEP2
M3PL
SIZEP3
POPL
SIZEM
PIPL
GRAFPO
GRAFPI
P2PL
GRAFP2
P3PL
GRAFP3
TRIGO
GRAFM

DESCRIP

JOYSTICK TRIG
JOYSTICk: TRIG 2
JOYSTI CK TR I G 3
CURSOR ROW, TEXT WINDOW
CURSOR COL, TEXT 1st HALF
CURSOR COL, TEXT 2nd HALF
OS PLAYER-MISSILE 0 COLOR
OS PLAYER-MISSILE COLOR
OS PLAYER-MISSILE 2 COLOR
OS PLAYER-MISSILE 3 COLOR
COLOR REGISTER 0
COLOR REGISTER 1
COLOR REGISTER 2
COLOR REGISTER 3
COLOR REGISTER 4
OS MEMORY TOP POINTER LSB
OS MEMORY TOP POINTER MSEr
OS LOW MEMORY POINTER LSB
OS LOW MEMORY POINTER MSEr
CURSOR INHIBIT O-ON,I - OFF
CHAR REG I-BL, 2-NOR,4- A

CHAR BASE 2 24 - UP,226-1ow
LAST ATASCII CHAR
LAST KEY HIT, 255 CLEARS
GR. FILL DATA (XIO)
DISF~AY FLAG I=DIS CON CH
START/STOP PAGING (CON/I)
HANDLER ADDR TBL,3 BY / HND
10 CON BLOCKS,I 6 BYT / IOCB
HORIZ POS, PLAYER 0
MIS 0 - PLAYFIELD COLLIS
HORIZ POS, PLAYER I
MIS I - PLAYFIELD COLLIS
HORIZ POS, PLAYER 2
MIS 2 - PLAYFIELD COLLIS
HORIZ POS, PLAYER -
MIS 3 - PLAYFIELD COLLIS
HORIZ POS, MISSILE 0
PLAY 0 - PLAYFIELD COLLIS
HORIZ POS, MISSILE
PLAY I - PLAYFIELD COLLIS
HORIZ POS, MISSILE 2
PLAY 2 - PLAYFIELD COLLIS
HORIZ POS, MISSILE 3
PLAY 3 - PLAYFIELD COLLIS
MIS 0 - PLAYER COLLISION
SIZE- PLAYER 0
MIS I - PLAYER COLLISION
SIZE- PLAYER 1
MIS 2 - PLAYER COLLISION
SIZE- PLAYER 2
MIS ~ - PLAYER COLLISION
SIZE- PLAYER 3
PLAY 0 - PLAYER COLLISION
SIZES FOR ALL MISSILES
PLAY 1 - PLAYER COLLISION
GRAPHICS, PLAYER 0
GRAPHICS, PLAYER 1
PLAY 2 - PLAYER COLLISION
GRAPHICS, PLAYER 2
PLAY 3 - PLAYER COLLISION
GRAPHICS, PLAYER 3
JOYSTICK TRIGGER CI
GRAPHICS, ALL MISSILES

181

DEC ADDR

53265
53266
53266
53267
53267
53268
53268
53269
53270
532 71
53272
53273
53274
53275
53277
53278
53279
53760
53760
53761
53761
53762
53762
5 3763
53763
53764
53764
5:!.765
53765
53766
53766
53767
53767
53768
53768
53769
53769
53770
53770
53771
53773
53774
53774
53774
53775
53775
54016
54017
54018
54019
54272
54273
54274
54275
54276
54276
54277
54279
54281
54282
54283
54284
54285
54286
54287

182

HEX ADR

0011
0012
0012
0013
0013
0014
D014
0015
D016
D017
D018
D019
DOIA
DOIB
DOID
DOlE
DOIF
D200
D200
D201
D2 01
D202
D202
D203
D2 0 3
D204
D204
D2 05
0 2 05
D2 06
D206
0 207
D207
0208
D208
D2 09
D2 09
D20A
D20A
D2 0B
D20D
D20E
D20E
D20E
D20F
D20F
D300
D301
0302
D303
D400
D401
D402
0403
0404
001C
0405
D407
D409
D40A
D40B
D40C
D40D
D40E
D40F

LABEL

TRIGI
COLPMO
TRIG2
COLPMl
TRIG3
PAL
COLF'M2
COLPM3
COLPFO
COLPFI
COLPF2
COLPF3
COLBK
PRIOR
GRACTL
HITCL.R
CONSOL
POTO
AUDFI
AUDCl
POTI
AUDF2
POT 2
POT3
AIJDC2
AUDF3
POT4
POT5
AUDC3
POT6
AUDF4
POT7
AIJDC4
AUDCTL
AL.LPOT
f<BCODE
STIMER
RANDOM
S~;REST

POTGO
SEROUT
SERIN
IRQST
IRQEN
SKSTAT
Sk:CTL.
PORTA
PORTB
PACTL.
PBCTL.
DMACTL
CHACTL
DLI STL
DLI STH
HSCROL.
VDEL.AY
VSCROL
PM BASE
CHBASE
WS YNC
VCOUNT
PENH
PENV
NMIEN
NMIRES

DESCRIP

JOYSTIO< TRIG 1
PLAYER-MISSIL.E 0 COL.OR
JOYSTICk: TRIG 2
PLAYER-MISSILE 1 COLOR
JOYSTICr.:: TRIG 3
PAL I NTSC INDICATOR
PL.AYER- MISSILE 2 COLOR
PLAYER- MI SS ILE 3 COLOR
PL.AYFIELD 0 COLOR
PLAYFIELD 1 COLOR
PL.A YFIELD 2 COLOR
PLAYFIELD 3 COLOR
BACf<GRND COLOR
PRIORITY SELECT
GRAPHIC CONTROL.
COLLISION CLEAR
CONSOL.E SWITCHES
POT 0
AUDIO CHANNEL
AUDIO CHANNEL
POT 1

FRED
CONTROL.

AUDIO CHANNEL 2 FREQ
POT 2
POT 3
AUDIO CHANNEL 2 CONTROL
AUDIO CHANNEL 3 FRED
F'OT 4
POT 5
AUDIO CHANNEL. 3 CONTROL.
POT 6
AUDIO CHANNEL 4 FREO
POT 7
AUDIO CHANNEL 4 CONTROL
AUDIO CONTROL
L.INE POT PORT ST,READ 8
LAST k:EY (INTERNAL CODE)
START TIMER
RANDOM NUMBER GENERATOR
SERIAL PORT STATUS RESET
START POT SCAN SEQUENCE
SERAIL. PORT OUTPUT
SERIAL PORT INPUT
INTERUPT REQUEST STATUS
INTERRUPT REQUEST ENABLE
SERIAL PORT STATUS

- SER I AL PORT CONTROL. REG
PIA CON JACk: l i D (A) $3C
PIA CON JACK 1 / 0 (A) $3C
PORT A CONTROL. REG
PORT B CONTROL REGISTER
DIRECT MEM ACCESS CON
CHARACTER CONTROL
DISPLAY LIST POINTER L.SB
DISPLAY LIST POINTER MSB
HORIZONTAL SCROLL
VERTICAL. DELAY
VERTICAL SCROLL
PLAYER MISSILE BASE ADR
CHARACTER BASE ADR
WAIT FOR HORIZ SYNC
VERTICAL LINE CNTR
L.IGHT PEN HORIZ VAL
LIGHT PEN VERTICAL POS
NON-MASk: INTERUPT ENABLE
NON- MASK INTERUPT RESET

Index
Applications 3-5
Arrays 17,1 9,29,31,32, 138
Assembly Language (See M achine
Language)
ATASCII 9,54,57,67,69,88,175
BASIC 7- 16,17-18,19-23,26-35,
36-53,64-66,1 61
Binary SAVE/LOAD 157- 158, 160
Bit 37
Branching 12
Byte 26,37
Cartridges 19, 156
Cassette 37 ,54,136-143, 148- 154
C haracters 38,39,1 61

AT ASCII (See AT ASCII)
Text Modes 91-92

C LOAD 30
C lock 17,149-150
C LOSE 55
Color 18,67-68,76-79,85-86,103 ,118

C hanging 68
Register 80

Computers
Background 2-6
in Business 2
in Education 3-4

Concatenat ion 14
Console Switches 172-173
Control Character 22,88
CSAVE30
Cursor 67
DATA 12
Debug (See Error Messages ; also
TRAP)
DEF FN 13, 17
Disk 37,54,155-158,159- 161,162-168
DOS 155- 158
Editing 22
Error Messages 16,17, 22 ,56,1 29-133
Files 15,54-63 ,136-1 43 , ISS, 161
Format 157
FOR/ NEXT 11,149
Games 2,14-15, 19
GET 17,22,55-57,67,78
GOTO 12,1 9,41,42,43,45
GOSUB (Also see Subroutines)
19,32,42,43

'Graphics 14,1 9,20-21,76-79,85-86,
87-89, 102-104, 105-110,111-11 4,
144-146

Player/ Missile (See Player/ Missile
G raphics)

G raphs 111,144-146
H ardcopy (See Printer)
Hardware (See Disk, Cassette, etc.)
IF/ THEN 12,42 ,45
Input 12, 18,22 ,57-58,60,80,116
Interface 174-177
Interface Module (See Interface)
IOCB 54-55
I/O 9, 14-15,22,54-63, 11 6
Joystick 80-84 ,99, 121-128, 169- 171
Keyboard 4,5, 11 6- 11 7, 169- 170
Keywords 11,27,28-30,40
List 15, 18,20,30,40-41,43
Load 15
Lock/Unlock 157, 160
LPRINT 13,176
Machi ne Language 64-66,69-74,
102-104
Memory (Also see RAM, ROM)
26-28,36-53 ,1 60- 161

Conservatio n of 142
Maps 31,100-10 1,103, 143,
Appendix A

Modes 19,20-21,85,87-89,105-110
Music (See Sound, Voice)
Operating System 69,89
Output 12 (Also see Disk, Files,
Interface , etc.)
PEEK 9,13,36,45, 107,138, 169, 172
Peripherals (See Disk, Cassette, etc.)
Player / M iss ile Graphics 93- 104
POKE 9,13, 14, 15,6 1,67-68,69-70,82,
87,102- 104, 107 -109,116
Pointers 31
POP 12
Printer 54,159
PUT 55-57,88-89
RAM 26,88 ,93-94,98, 107
READ 12,18
ROM 87,88
RS-232 , 174- 177
SAVE 15
Screen 54,69-74
Self-modifying programming
136-143
SETCOLOR 20-21 ,67-68,77-78,85,
89,98,104,109
Sound 14,21,11 8- 120, 124 ,145

183

Index

Strings 10,19,32,61,69-70,139-140
Subroutines 12,19
Telecommunications 4
Timing (See Clock)
Tokens (See Keywords)
TRAP 43,88,129-130
Variable 10,18,19,20,27,29,32,36-40,
61,136-143
Voice 118
Window 85
XIO 15,54-63
Zero Page 26,38,39

184

Notes

lRC;

Notes

186

Notes

187

Notes

188

	Cover
	TOC
	Introduction
	Getting to Know your Atari
	Profile: Atari Marketing Vice President
	Atari BASIC and PET BASIC
	The Ouch in Atari BASIC
	Atari BASIC Part II

	Beyond the Basics
	Inside Atari BASIC
	Atari BASIC Structure
	I/O on the Atari
	Why Machine Language?
	POKin' Around
	Printing to the Screen from Machine Language

	Graphics
	3D Graphics on Ataris
	The Fluid Brush
	Color Wheel for Atari
	Card Games in Graphic mode 1 and 2
	Ticker Tape Messages
	Player/Missle Graphics
	POKE in Atari Graphics
	Designing your own graphics modes
	Graphics of polar functions

	Programming Hints
	Reading the Keyboard on the fly
	Atari Sounds Tutorial
	Al Bakers Programming Hints
	Error Reporting System

	Applications
	Tape Data Files
	Monthly Bar Graph

	Peripheral Information
	Adding a voice track
	Atari DOS
	Review of DOS 1.0
	Tutorial Disk Menu
	Joystick Alternatives
	Console Switches
	Atari meets the real world

	Appendix
	Memory locations

	Index

