


Otober 3, 2015

Note to readers:Please ignore thesesidenotes; they're justhints to myself forpreparing the index,and they're often aky!KNUTHTHE ART OFCOMPUTER PROGRAMMINGVOLUME 4 PRE-FASCICLE 5A
MATHEMATICALPRELIMINARIESREDUX
DONALD E. KNUTH Stanford University
ADDISON{WESLEY 677



Otober 3, 2015

InternetStanford GraphBaseMMIX

Internet page http://www-s-faulty.stanford.edu/~knuth/taop.html ontainsurrent information about this book and related books.See also http://www-s-faulty.stanford.edu/~knuth/sgb.html for informationabout The Stanford GraphBase, inluding downloadable software for dealing withthe graphs used in many of the examples in Chapter 7.See also http://www-s-faulty.stanford.edu/~knuth/mmixware.html for down-loadable software to simulate the MMIX omputer.Copyright  2015 by Addison{WesleyAll rights reserved. No part of this publiation may be reprodued, stored in a retrievalsystem, or transmitted, in any form, or by any means, eletroni, mehanial, photo-opying, reording, or otherwise, without the prior onsent of the publisher, exeptthat the oÆial eletroni �le may be used to print single opies for personal (notommerial) use.Zeroth printing (revision 21), 01 Otober 2015



Otober 3, 2015

KnuthSTROSSInternetPREFACEWe|or the Blak Chamber|have a little agreement with [Knuth℄;he doesn't publish the real Volume 4 of The Art of Computer Programming,and they don't render him metabolially hallenged.| CHARLES STROSS, The Atroity Arhive (2001)This booklet ontains draft material that I'm irulating to experts in the�eld, in hopes that they an help remove its most egregious errors before toomany other people see it. I am also, however, posting it on the Internet forourageous and/or random readers who don't mind the risk of reading a fewpages that have not yet reahed a very mature state. Beware: This materialhas not yet been proofread as thoroughly as the manusripts of Volumes 1, 2,3, and 4A were at the time of their �rst printings. And those arefully-hekedvolumes, alas, were subsequently found to ontain thousands of mistakes.Given this aveat, I hope that my errors this time will not be so numerousand/or obtrusive that you will be disouraged from reading the material arefully.I did try to make the text both interesting and authoritative, as far as it goes.But the �eld is vast; I annot hope to have surrounded it enough to orral itompletely. So I beg you to let me know about any de�ienies that you disover.To put the material in ontext, this pre-fasile ontains an exposition ofmathematial material (mostly about probability theory) that I plan to inludeat the beginning of Volume 4B. Its raison d'être is explained below, in an exerptfrom the prefae to that volume.� � �Probability theory has made huge strides sine I \ompleted" my ollegeeduation in 1963; hene I'm basially self-taught with respet to these new-fangled ideas, and I fear that in many respets my knowledge lags behind thatof today's students. I've tried my best to get the story right, yet I fear that inmany respets I'm woefully ignorant.For example, I urgently need your help with respet to some exerises that Imade up as I was preparing this material. I ertainly don't like to reeive reditfor things that have already been published by others, and most of these resultsare quite natural \fruits" that were just waiting to be \pluked." Thereforeplease tell me if you know who deserves to be redited, with respet to the ideasfound in exerises 6, 8, 9, 19, 32, 33, 38, 73, 88, or 96.iii
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iv PREFACE DiaonisEtesamiJansonRossShulte-GeersKnuth� � �Speial thanks are due to Persi Diaonis, Omid Etesami, Svante Janson, SheldonRoss, Ernst Shulte-Geers, and : : : for their detailed omments on my earlyattempts at exposition, as well as to numerous other orrespondents who haveontributed ruial orretions. � � �I happily o�er a \�nder's fee" of $2.56 for eah error in this draft when it is �rstreported to me, whether that error be typographial, tehnial, or historial.The same reward holds for items that I forgot to put in the index. And valuablesuggestions for improvements to the text are worth 32/ eah. (Furthermore, ifyou �nd a better solution to an exerise, I'll atually do my best to give youimmortal glory, by publishing your name in the eventual book:�)Cross referenes to yet-unwritten material sometimes appear as `00'; thisimpossible value is a plaeholder for the atual numbers to be supplied later.Happy reading!Stanford, California D. E. K.21 Otober 2012
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MPRPart of the Prefae to Volume 4BDuring the years that I've been preparing Volume 4, I've often run arossbasi tehniques of probability theory that I would have put into Setion 1.2of Volume 1 if I'd been lairvoyant enough to antiipate them in the 1960s.Finally I realized that I ought to ollet most of them together in one plae,near the beginning of Volume 4B, beause the story of these developments is toointeresting to be broken up into little piees sattered here and there.Therefore this volume begins with a speial setion entitled \MathematialPreliminaries Redux," and future setions use the abbreviation `MPR' to referto its equations and its exerises.
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In books of this nature I an only suggest you keep itas simple as the subjet will allow.| KODE VICIOUS (2012)
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disrete probabilitiesatomi eventsprobability spaeshu�eplaying ardseventrandom variableindependentrandom variablesk-wise independentpairwise independent random variablesonditional probabilityMATHEMATICAL PRELIMINARIES REDUXMany parts of this book deal with disrete probabilities, namely with a �nite orountably in�nite set 
 of atomi events !, eah of whih has a given probabilityPr(!), where 0 � Pr(!) � 1 and X!2
Pr(!) = 1: (1)This set 
, together with the funtion Pr, is alled a \probability spae." Forexample, 
 might be the set of all ways to shu�e a pak of 52 playing ards,with Pr(!) = 1=52! for every suh arrangement.An event is, intuitively, a proposition that an be either true or false withertain probability. It might, for instane, be the statement \the top ard is anae," with probability 1=13. Formally, an event A is a subset of 
, namely theset of all atomi events for whih the orresponding proposition A is true; andPr(A) = X!2APr(!) = X!2
Pr(!)[!2A℄: (2)A random variable is a funtion that assigns a value to every atomi event.We typially use upperase letters for random variables, and lowerase lettersfor the values that they might assume; thus, we might say that the probabilityof the event X = x is Pr(X = x) =P!2
 Pr(!)[X(!)=x℄. In our playing ardexample, the top ard T is a random variable, and we have Pr(T = Q�) = 1=52.(Sometimes, as here, the lowerase-letter onvention is ignored.)The random variables X1, : : : , Xk are said to be independent ifPr(X1 = x1 and � � � and Xk = xk) = Pr(X1 = x1) : : :Pr(Xk = xk) (3)for all (x1; : : : ; xk). For example, if F and S denote the fae value and suit ofthe top ard T , learly F and S are independent. Hene in partiular we havePr(T = Q�) = Pr(F = Q) Pr(S = �). But T is not independent of the bottomard, B; indeed, we have Pr(T = t and B = b) 6= 1=522 for any ards t and b.A system of n random variables is alled k-wise independent if no k ofits variables are dependent. With pairwise (2-wise) independene, for example,we ould have variable X independent of Y, variable Y independent of Z, andvariable Z independent of X; yet all three variables needn't be independent(see exerise 6). Similarly, k-wise independene does not imply (k + 1)-wiseindependene. But (k + 1)-wise independene does imply k-wise independene.The onditional probability of an event A, given an event B, isPr(A j B) = Pr(A \B)Pr(B) = Pr(A and B)Pr(B) ; (4)1
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2 MATHEMATICAL PRELIMINARIES REDUX notation Bprobability spaesindependentBraket notationexpeted valueabsolutely onvergentbinary random variableovarianevarianeonditional expetation+
when Pr(B) > 0, otherwise it's Pr(A). Imagine breaking the whole probabilityspae 
 into two parts, 
0 = B and 
00 = B = 
 nB, with Pr(
0) = Pr(B) andPr(
00) = 1�Pr(B). If we assign new probabilities to atomi events by the rulesPr 0(!) = Pr(! j
0) = Pr(!)[!2
0 ℄Pr(
0) ; Pr 00(!) = Pr(! j
00) = Pr(!)[! 2
00 ℄Pr(
00) ;we obtain new probability spaes 
0 and 
00, allowing us to ontemplate a worldwhere B is always true and another world where B is always false. It's like takingtwo branhes in a tree, eah of whih has its own logi. Conditional probability isimportant for the analysis of algorithms beause algorithms often get into di�er-ent states where di�erent probabilities are relevant. Notie that we always havePr(A) = Pr(A jB) � Pr(B) + Pr(A jB) � Pr(B): (5)The events A1, : : : , Ak are said to be independent if the random variables[A1 ℄, : : : , [Ak ℄ are independent. (Braket notation applies in the usual way toevents-as-statements, not just to events-as-subsets: [A℄ = 1 if A is true, otherwise[A℄ = 0.) Exerise 20 proves that this happens if and only ifPr�\j2J Aj� = Yj2J Pr(Aj); for all J � f1; : : : ; kg. (6)In partiular, events A and B are independent if and only if Pr(AjB) = Pr(A).When the values of a random variable X are real numbers or omplexnumbers, we've de�ned its expeted value EX in Setion 1.2.10: We said thatEX = X!2
X(!) Pr(!) = Xx xPr(X = x); (7)provided that this de�nition makes sense when the sums are taken over in�nitelymany nonzero values. (The sum should be absolutely onvergent.) A simple butextremely important ase arises when A is any event, and when X = [A℄ is abinary random variable representing the truth of that event; thenE[A℄ = X!2
[A℄(!) Pr(!) = X!2
[!2A℄ Pr(!) = X!2APr(!) = Pr(A): (8)We've also noted that the expetation of a sum, E(X1 + � � � +Xk), alwaysequals the sum of the expetations, (EX1) + � � � + (EXk), whether or not therandom variablesXj are independent. Furthermore the expetation of a produt,EX1 : : : Xk, is the produt of the expetations, (EX1) : : : (EXk), if those vari-ables do happen to be independent. In Setion 3.3.2 we de�ned the ovariane,ovar(X;Y ) = E�(X � EX)(Y � EY )� = (EXY )� (EX)(EY ); (9)whih tends to measure the way X and Y depend on eah other. The variane,var(X), is ovar(X;X); the middle formula in (9) shows why it is nonnegativewhenever the random variable X takes on only real values.All of these notions of expeted value arry over to onditional expetation,E(X jA) = X!2AX(!) Pr(!)Pr(A) = Xx xPr(X = x and A)Pr(A) ; (10)
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MATHEMATICAL PRELIMINARIES REDUX 3 binary random variablesprobability estimates{onditioned on any event A, when we want to work in the probability spae forwhih A is true. One of the most important formulas, analogous to (5), isEX = Xy E(X j Y = y) Pr(Y = y)= Xy Xx xPr(X =x j Y = y) Pr(Y = y): (11)Furthermore there's also another important kind of onditional expetation:When X and Y are random variables, it's often helpful to write `E(X j Y )' for\the expetation of X given Y." Using that notation, Eq. (11) beomes simplyEX = E�E(X jY )�: (12)This is a truly marvelous identity, great for hand-waving and for impressingoutsiders|exept that it an be onfusing until you understand what it means.In the �rst plae, if Y is a Boolean variable, `E(X j Y )' might look as if itmeans `E(X jY =1)', thus asserting that Y is true, just as `E(X jA)' asserts thetruth of A in (10). No; that interpretation is wrong, quite wrong. Be warned.In the seond plae, you might think of E(X jY ) as a funtion of Y. Well,yes; but the best way to understand E(X jY ) is to regard it as a random variable.That's why we're allowed to ompute its expeted value in (12).All random variables are funtions of the atomi events !. The value ofE(X jY ) at ! is the average of X(!0) over all events !0 suh that Y (!0) = Y (!):E(X jY )(!) = X!02
X(!0) Pr(!0)[Y (!0)=Y (!)℄=Pr(Y = Y (!)): (13)Similarly, E(X jY1; : : : ; Yr) averages over events withYj(!0)=Yj(!) for 1�j�r.For example, suppose X1 through Xn are binary random variables on-strained by the ondition that �(X1 : : : Xn) = X1+� � �+Xn = m, wherem and nare onstants with 0 � m � n; all �nm� suh bit vetors X1 : : : Xn are assumed tobe equally likely. Clearly EX1 = m=n. But what is E(X2 jX1)? If X1 = 0, theexpetation of X2 is m=(n � 1); otherwise that expetation is (m � 1)=(n� 1);onsequently E(X2 jX1) = (m�X1)=(n�1). And what is E(Xk jX1; : : : ; Xk�1)?The answer is easy, one you get used to the notation: If �(X1 : : :Xk�1) = r,then Xk : : : Xn is a random bit vetor with �(Xk : : :Xn) = m � r; hene theaverage value of Xk will be (m� r)=(n+ 1� k) in that ase. We onlude thatE(Xk jX1; : : : ; Xk�1) = m� �(X1 : : : Xk�1)n+ 1� k ; for 1 � k � n: (14)The random variables on both sides of these equations are the same.Inequalities. In pratie we often want to prove that ertain events are rare,in the sense that they our with very small probability. Conversely, our goalis sometimes to show that an event is not rare. And we're in luk, beausemathematiians have devised several fairly easy ways to derive upper bounds orlower bounds on probabilities, even when the exat values are unknown.
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4 MATHEMATICAL PRELIMINARIES REDUX tail inequalitiesMarkov's inequalityBienaym�eChebyshevJensen's inequalityonvexonave�rst moment prinipleseond moment priniple
We've already disussed the most important tehnique of this kind in Se-tion 1.2.10. Stated in highly general terms, the basi idea an be formulated asfollows: Let f be any nonnegative funtion suh that f(x) � s > 0 when x 2 S.Then Pr(X 2 S) � E f(X)=s; (15)provided that Pr(X 2 S) and E f(X) both exist. For example, f(x) = jxj yieldsPr(jX j � m) � E jX j=m (16)whenever m > 0. The proof is amazingly simple, beause we obviously haveE f(X) � Pr(X 2 S) � s+Pr(X =2 S) � 0: (17)Formula (15) is often alledMarkov's inequality, beause A. A. Markov disussedthe speial ase f(x) = jxja in Izv��est����a Imp. Akad. Nauk (6) 1 (1907), 707{716.If we set f(x) = (x � EX)2, we get the famous 19th-entury inequality ofBienaym�e and Chebyshev:Pr�jX � EX j � r� � var(X)=r2: (18)The ase f(x) = eax is also extremely useful.Another fundamental estimate, known as Jensen's inequality [Ata Mathe-matia 30 (1906), 175{193℄, applies to onvex funtions f ; we've seen it so faronly as a \hint" to exerise 6.2.2{36(!). The real-valued funtion f is said to beonvex in an interval I of the real line, and �f is said to be onave in I , iff(px+ qy) � pf(x) + qf(y) for all x; y 2 I; (19)whenever p � 0, q � 0, and p+q = 1. This ondition turns out to be equivalent tosaying that f 00(x) � 0 for all x 2 I , if f has a seond derivative f 00. For example,the funtions eax and x2n are onvex for all onstants a and all nonnegativeintegers n; and if we restrit onsideration to positive values of x, then f(x) = xnis onvex for all integers n (notably f(x) = 1=x when n = �1). The funtionsln(1=x) and x ln x are also onvex for x > 0. Jensen's inequality states thatf(EX) � E(f(X)) (20)when f is onvex in the interval I and the random variable X takes values onlyin I . (See exerise 42 for a proof.) For example, we have 1=EX � E(1=X) andln EX � E lnX and (EX) ln EX � E(X lnX), when X is positive. Notie that(20) atually redues to the very de�nition of onvexity, (19), in the speial asewhen X = x with probability p and X = y with probability q.Third and fourth on our list of remarkably useful inequalities are two lassialresults that apply to any random variable X whose values are nonnegativeintegers:Pr(X > 0) � EX ; (\the �rst moment priniple") (21)Pr(X > 0) � (EX)2=(EX2): (\the seond moment priniple") (22)Formula (21) is obvious, beause the left side is p1 + p2 + p3 + � � � when pk is theprobability that X = k, while the right side is p1 + 2p2 + 3p3 + � � � .
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MATHEMATICAL PRELIMINARIES REDUX 5 Markov's inequalitybinaryRossonditional expetation inequalityreliability polynomialmonotone Boolean funtionBDDprime impliantsFKG inequality
Formula (22) isn't quite so obvious; it is p1 + p2 + p3 + � � � on the left and(p1 + 2p2 + 3p3 + � � � )2=(p1 + 4p2 + 9p3 + � � � ) on the right. However, as we sawwith Markov's inequality, there is a remarkably simple proof, one we happen todisover it:EX2 = E(X2 jX > 0)Pr(X > 0) + E(X2 jX = 0)Pr(X = 0)= E(X2 jX > 0)Pr(X > 0)� �E(X jX > 0)�2 Pr(X > 0) = (EX)2=Pr(X > 0): (23)In fat this proof shows that the seond moment priniple is valid even when X isnot restrited to integer values (see exerise 46). Furthermore the argument anbe strengthened to show that (22) holds even when X an take arbitrary negativevalues, provided only that EX � 0 (see exerise 47). See also exerise 118.Exerise 54 applies (21) and (22) to the study of random graphs.Another important inequality, whih applies in the speial ase where X =X1 + � � �+Xm is the sum of binary random variables Xj , was introdued morereently by S. M. Ross [Probability, Statistis, and Optimization (New York:Wiley, 1994), 185{190℄, who alls it the \onditional expetation inequality":Pr(X > 0) � mXj=1 EXjE(X jXj=1) : (24)Ross showed that the right-hand side of this inequality is always at least as bigas the bound (EX)2=(EX2) that we get from the seond moment priniple (seeexerise 50). Furthermore, (24) is often easier to ompute, even though it maylook more ompliated at �rst glane.For example, his method applies niely to the problem of estimating areliability polynomial, f(p1; : : : ; pn), when f is a monotone Boolean funtion;here pj represents the probability that omponent j of a system is \up." We ob-served in Setion 7.1.4 that reliability polynomials an be evaluated exatly, usingBDD methods, when n is reasonably small; but approximations are neessarywhen f gets ompliated. The simple example f(x1; : : : ; x5) = x1x2x3_x2x3x4_x4x5 illustrates Ross's general method: Let (Y1; : : : ; Y5) be independent binaryrandom variables, with EYj = pj ; and letX = X1+X2+X3, whereX1 = Y1Y2Y3,X2 = Y2Y3Y4, and X3 = Y4Y5 orrespond to the prime impliants of f . ThenPr(X > 0) = Pr(f(Y1; : : : ; Y5) = 1) = E f(Y1; : : : ; Y5) = f(p1; : : : ; p5); beausethe Y 's are independent. And we an evaluate the bound in (24) easily:Pr(X > 0) � p1p2p31 + p4 + p4p5 + p2p3p4p1 + 1 + p5 + p4p5p1p2p3 + p2p3 + 1 : (25)If, for example, eah pj is 0.9, this formula gives � 0:848, while (EX)2=(EX2) �0:847; the true value, p1p2p3 + p2p3p4 + p4p5 � p1p2p3p4 � p2p3p4p5, is 0.9558.Many other important inequalities relating to expeted values have beendisovered, of whih the most signi�ant for our purposes in this book is theFKG inequality disussed in exerise 61. It yields easy proofs that ertain eventsare orrelated, as illustrated in exerise 62.
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6 MATHEMATICAL PRELIMINARIES REDUX martingales{DoobP�olyaurn modelEggenbergerP�olyamartingale with respet to the sequeneMartingales. A sequene of dependent random variables an be diÆult toanalyze, but if those variables obey invariant onstraints we an often exploittheir struture. In partiular, the \martingale" property, named after a lassibetting strategy (see exerise 67), proves to be amazingly useful when it applies.Joseph L. Doob featured martingales in his pioneering book Stohasti Proesses(New York: Wiley, 1953), and developed their extensive theory.The sequene hZni = Z0, Z1, Z2, : : : of real-valued random variables isalled a martingale if it satis�es the onditionE(Zn+1 jZ0; : : : ; Zn) = Zn for all n � 0. (26)(We also impliitly assume, as usual, that the expetations EZn are well de�ned.)For example, when n = 0, the random variable E(Z1 jZ0) must be the same asthe random variable Z0 (see exerise 63).Figure 1 illustrates George P�olya's famous \urn model" [F. Eggenbergerand G. P�olya, Zeitshrift f�ur angewandte Math. und Meh. 3 (1923), 279{289℄,whih is assoiated with a partiularly interesting martingale. Imagine an urnthat initially ontains two balls, one red and one blak. Repeatedly remove arandomly hosen ball from the urn, then replae it and ontribute a new ball ofthe same olor. The numbers (r; b) of red and blak balls will follow a path inthe diagram, with the respetive loal probabilities indiated on eah branh.One an show without diÆulty that all n+1 nodes on level n of Fig. 1 will bereahed with the same probability, 1=(n+1). Furthermore, the probability thata red ball is hosen when going from any level to the next is always 1/2. Thusthe urn sheme might seem at �rst glane to be rather tame and uniform. Butin fat the proess turns out to be full of surprises, beause any inequity betweenred and blak tends to perpetuate itself. For example, if the �rst ball hosen isblak, so that we go from (1; 1) to (1; 2), the probability is only 2 ln 2� 1 � :386that the red balls will ever overtake the blak ones in the future (see exerise 88).One good way to analyze P�olya's proess is to use the fat that the ratiosr=(r + b) form a martingale. Eah visit to the urn hanges this ratio either to(r+1)=(r+b+1) (with probability r=(r+b)) or to r=(r+b+1) (with probabilityb=(r+b)); so the expeted new ratio is (rb+r2+r)=((r+b)(r+b+1)) = r=(r+b),no di�erent from what it was before. More formally, let X0 = 1, and for n > 0let Xn be the random variable `[the nth ball hosen is red℄'. Then there areX0 + � � �+Xn red balls and X0 + � � �+Xn + 1 blak balls at level n of Fig. 1;and the sequene hZni is a martingale if we de�neZn = (X0 + � � �+Xn)=(n+ 2): (27)In pratie it's usually most onvenient to de�ne martingales Z0, Z1, : : :in terms of auxiliary random variables X0, X1, : : : , as we've just done. Thesequene hZni is said to be a martingale with respet to the sequene hXni ifZn is a funtion of (X0; : : : ; Xn) that satis�esE(Zn+1 jX0; : : : ; Xn) = Zn for all n � 0. (28)
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MATHEMATICAL PRELIMINARIES REDUX 7 fair with respet to the sequenemartingale di�erenes, see fair sequenesfairindependentstopping rule1;11;2 2;11;3 2;2 3;11;4 2;3 3;2 4;1
1/2 1/22/3 1/3 1/3 2/33/4 1/4 2/4 2/4 1/4 3/44/5 1/5 3/5 2/5 2/5 3/5 1/5 4/5

Level 0Level 1Level 2Level 3Fig. 1. P�olya's urn model. The probability of taking any downward pathfrom (1; 1) to (r; b) is the produt of the probabilities shown on the branhes.Furthermore we say that a sequene hYni is fair with respet to the sequene hXniif Yn is a funtion of (X0; : : : ; Xn) that satis�es the simpler onditionE(Yn+1 jX0; : : : ; Xn) = 0 for all n � 0; (29)and we all hYni fair wheneverE(Yn+1 jY0; : : : ; Yn) = 0 for all n � 0. (30)Exerise 77 proves that (28) implies (26) and that (29) implies (30); thus anauxiliary sequene hXni is suÆient but not neessary for de�ning martingalesand fair sequenes.Whenever hZni is a martingale, we obtain a fair sequene hYni by lettingY0 = Z0 and Yn = Zn � Zn�1 for n > 0, beause the identity E(Yn+1 jZ0; : : : ; Zn) = E(Zn+1 � Zn j Z0; : : : ; Zn) = Zn � Zn shows that hYni is fairwith respet to hZni. Conversely, whenever hYni is fair, we obtain a martingalehZni by letting Zn = Y0 + � � �+ Yn, beause the identity E(Zn+1 jY0; : : : ; Yn) =E(Zn + Yn+1 j Y0; : : : ; Yn) = Zn shows that hZni is a martingale with respetto hYni. In other words, fairness and martingaleness are essentially equivalent.The Y 's represent unbiased \tweaks" that hange one Z to its suessor.It's easy to onstrut fair sequenes. For example, every sequene of inde-pendent random variables with mean 0 is fair. And if hYni is fair with re-spet to hXni, so is the sequene hY 0ni de�ned by Y 0n = fn(X0; : : : ; Xn�1)Ynwhen fn(X0; : : : ; Xn�1) is almost any funtion whatsoever! (We need onlykeep fn small enough that EY 0n is well de�ned.) In partiular, we an letfn(X0; : : : ; Xn�1) = 0 for all large n, thereby making hZni eventually �xed.A sequene of funtions Nn(x0; : : : ; xn�1) is alled a stopping rule if eahvalue is either 0 or 1 and if Nn(x0; : : : ; xn�1) = 0 implies Nn+1(x0; : : : ; xn) = 0.We an assume that N0 = 1. The number of steps before stopping, with respetto a sequene of random variables hXni, is then the random variableN = N1(X0) +N2(X0; X1) +N3(X0; X1; X2) + � � � : (31)(Intuitively, Nn(x0; : : : ; xn�1) means [the values X0 = x0, : : : , Xn�1 = xn�1 donot stop the proess℄; hene it's really more about \going" than \stopping.")Any martingale Zn = Y0 + � � � + Yn with respet to hXni an be adapted to
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8 MATHEMATICAL PRELIMINARIES REDUX Ae Nowoptional stopping prinipleplaying ardsTail inequalitieslarge deviations, see tail inequalitiessubmartingalesupermartingaleonvex funtionstopping rulemaximal inequality
stop with this strategy if we hange it to Z 0n = Y 00 + � � � + Y 0n, where Y 0n =Nn(X0; : : : ; Xn�1)Yn. Gamblers who wish to \quit when ahead" are using thestopping rule Nn+1(X0; : : : ; Xn) = [Z 0n� 0℄, when Z 0n is their urrent balane.Notie that if the stopping rule always stops after at most m steps| inother words, if the funtion Nm(x0; : : : ; xm�1) is identially zero| then we haveZ 0m = Z 0N , beause Z 0n doesn't hange after the proess has stopped. ThereforeEZ 0N = EZ 0m = EZ 00 = EZ0: No stopping rule an hange the expeted outomeof a martingale when the number of steps is bounded.An amusing game of hane alled Ae Now illustrates this optional stoppingpriniple. Take a dek of ards, shu�e it and plae the ards fae down; thenturn them fae up one at a time as follows: Just before seeing the nth ard, youare supposed to say either \Stop" or \Deal," based on the ards you've alreadyobserved. (If n = 52 you must say \Stop.") After you've deided to stop, youwin $12 if the next ard is an ae; otherwise you lose $1. What is the beststrategy for playing this game? Should you hold bak until you have a prettygood hane at the $12? What is the worst strategy? Exerise 82 has the answer.Tail inequalities from martingales. The essene of martingales is equalityof expetations. Yet martingales turn out to be important in the analysis ofalgorithms beause we an use them to derive inequalities, namely to show thatertain events our with very small probability.To begin our study, let's introdue inequality into Eq. (26): A sequene hZniis alled a submartingale if it satis�esE(Zn+1 jZ0; : : : ; Zn) � Zn for all n � 0. (32)Similarly, it's alled a supermartingale if `�' is hanged to `�' in the left-handpart of this de�nition. (Thus a martingale is both sub- and super-.) In asubmartingale we have EZ0 � EZ1 � EZ2 � � � � , by taking expetations in (32).A supermartingale, similarly, has ever smaller expetations as n grows. One wayto remember the di�erene between submartingales and supermartingales is toobserve that their names are the reverse of what you might expet.Submartingales are signi�ant largely beause of the fat that they're quiteommon. Indeed, if hZni is any martingale and if f is any onvex funtion, thenhf(Zn)i is a submartingale (see exerise 84). For example, the sequenes hjZnjiand hmax(Zn; )i and hZ2ni and heZni all are submartingales whenever hZni isknown to be a martingale. If, furthermore, Zn is always positive, then hZ3ni andh1=Zni and hln(1=Zn)i and hZn lnZni, et., are submartingales.If we modify a submartingale by applying a stopping rule, it's easy to see thatwe get another submartingale. Furthermore, if that stopping rule is guaranteedto quit within m steps, we'll have EZm � EZN = EZ 0N = EZ 0m. Therefore nostopping rule an inrease the expeted outome of a submartingale, when thenumber of steps is bounded.That omparatively simple observation has many important onsequenes.For example, exerise 86 uses it to give a simple proof of the so-alled \maximal
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MATHEMATICAL PRELIMINARIES REDUX 9 Kolmogorov's inequalityindependentChebyshev's inequalityHoe�ding{Azuma inequalityHoe�dingAzumaHoe�ding{Azuma inequalityDoob martingalesDoobanalysis of algorithmsrandom bitshashing
inequality": If hZni is a nonnegative submartingale thenPr�max(Z0; Z1; : : : ; Zn) � x� � (EZn)=x; for all x > 0. (33)Speial ases of this inequality are legion. For instane, martingales hZni satisfyPr�max�jZ0j; jZ1j; : : : ; jZnj� � x� � E�jZnj�=x, for all x > 0; (34)Pr�max(Z20 ; Z21 ; : : : ; Z2n) � x� � E(Z2n)=x, for all x > 0. (35)Relation (35) is known as Kolmogorov's inequality, beause A. N. Kolmogorovproved it when Zn = X1 + � � �+Xn is the sum of independent random variableswith EXk = 0 and var(Xk) = �2k for 1 � k � n [Math. Annalen 99 (1928), 309{311℄. In that ase var(Zn) = �21+� � �+�2n = �2, and the inequality an be writtenPr�jX1j < t�; jX1 +X2j < t�; : : : ; jX1 + � � �+Xnj < t�� � 1� 1=t2: (36)Chebyshev's inequality gives only Pr�jX1 + � � �+Xnj < t�� � 1� 1=t2, whih isa onsiderably weaker result.Another important inequality applies in the ommon ase where we havegood bounds on the terms Y1, : : : , Yn that enter into the standard representationZn = Y0+Y1+ � � �+Yn of a martingale. This one is alled the Hoe�ding{Azumainequality, after papers by W. Hoe�ding [J. Amer. Statistial Assoiation 58(1963), 13{30℄ and K. Azuma [Tôhoku Math. Journal (2) 19 (1967), 357{367℄.It reads as follows: If hYni is any fair sequene with an � Yn � bn, thenPr(Y1 + � � �+ Yn � x) � e�2x2=((b1�a1)2+���+(bn�an)2): (37)The same bound applies to Pr(Y1 + � � �+Yn � �x), sine �bn � �Yn � �an; soPr(jY1 + � � �+ Yn j � x) � 2e�2x2=((b1�a1)2+���+(bn�an)2): (38)Exerise 90 breaks the proof of this result into small steps. In fat, the proofeven shows that an and bn may be funtions of fY0; : : : ; Yn�1g.Appliations. The Hoe�ding{Azuma inequality is useful in the analysis ofmany algorithms beause it applies to \Doob martingales," a very general lassof martingales that J. L. Doob featured as Example 1 in his Stohasti Proesses(1953), page 92. (In fat, he had already onsidered them many years earlier,in Trans. Amer. Math. So. 47 (1940), 486.) Doob martingales arise from anysequene of random variables hXni, independent or not, and from any otherrandom variable Q: We simply de�neZn = E(Q jX0; : : : ; Xn): (39)Then, as Doob pointed out, the resulting sequene is a martingale (see exerise91). In our appliations, Q is an aspet of some algorithm that we wish to study,and the variables X0, X1, : : : reet the inputs to the algorithm. For example,in an algorithm that uses random bits, the X 's are those bits.Consider a hashing algorithm in whih t objets are plaed into m randomlists, where the nth objet goes into list Xn; thus 1 � Xn � m for 1 � n � t, andwe assume that eah of the mt possibilities is equally likely. Let Q(x1; : : : ; xt) be
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10 MATHEMATICAL PRELIMINARIES REDUX fair sequenemethod of bounded di�erenesLipshitz onditionMDiarmidthe number of lists that remain empty after the objets have been plaed into listsx1, : : : , xt, and let Zn = E(Q jX1; : : : ; Xn) be the assoiated Doob martingale.Then Z0 = E(Q) is the average number of empty lists; and Zt = Q(X1; : : : ; Xt)is the atual number, in any partiular run of the algorithm.What fair sequene orresponds to this martingale? If 1 � n � t, the randomvariable Yn = Zn �Zn�1 is fn(X1; : : : ; Xn), where fn(x1; : : : ; xn) is the averageof �(x1; : : : ; xt) = mXx=1Pr(Xn = x)�Q(x1; : : : ; xn�1; xn; xn+1; : : : ; xt)�Q(x1; : : : ; xn�1; x; xn+1; : : : ; xt)� (40)taken over all mt�n values of (xn+1; : : : ; xt).In our appliation the funtion Q(x1; : : : ; xt) has the property that��Q(x1; : : : ; xn�1; x0; xn+1; : : : ; xt)�Q(x1; : : : ; xn�1; x; xn+1; : : : ; xt)�� � 1 (41)for all x and x0, beause a hange to any one hash address always hanges thenumber of empty lists by either 1, 0, or �1. Consequently, for any �xed settingof the variables (x1; : : : ; xn�1; xn+1; : : : ; xt), we havemaxxn �(x1; : : : ; xt) � minxn �(x1; : : : ; xt) + 1: (42)The Hoe�ding{Azuma inequality (37) therefore allows us to onlude thatPr(Zt � Z0 � x) = Pr(Y1 + � � �+ Yt � x) � e�2x2=t: (43)Furthermore, Z0 in this example is m(m � 1)t=mt, beause exatly (m � 1)t ofthe mt possible hash sequenes leave any partiular list empty. And the randomvariable Zt is the atual number of empty lists when the algorithm is run. Henewe an, for example, set x =pt lnf(t) in (43), thereby proving thatPr�Zt � (m� 1)t=mt�1 +pt lnf(t) � � 1=f(t)2; whenever f(t) > 1. (44)The same upper bound applies to Pr�Zt � (m� 1)t=mt�1 �pt lnf(t) �.Notie that the inequality (41) was ruial in this analysis. Thereforethe strategy we've used to prove (43) is often alled the \method of boundeddi�erenes." In general, a funtion Q(x1; : : : ; xt) is said to satisfy a Lipshitzondition in oordinate n if we have��Q(x1; : : : ; xn�1; x; xn+1; : : : ; xt)�Q(x1; : : : ; xn�1; x0; xn+1; : : : ; xt)�� � n (45)for all x and x0. (This terminology mimis a well-known but only slightlysimilar onstraint that was introdued long ago into funtional analysis by RudolfLipshitz [Crelle 63 (1864), 296{308℄.) Whenever ondition (45) holds, for afuntion Q assoiated with a Doob martingale for independent random variablesX1, : : : , Xt, we an prove that Pr(Y1+ � � �+Yt � x) � exp(�2x2=(21+ � � �+ 2t )).Let's work out one more example, due to Colin MDiarmid [London Math.So. Leture Notes 141 (1989), 148{188, x8(a)℄: Again we onsider independentinteger-valued random variables X1, : : : , Xt with 1 � Xn � m for 1 � n � t;
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MATHEMATICAL PRELIMINARIES REDUX 11 bin-paking problemNP-ompleteGareyJohnsonsubadditive lawJAMES{martingalesalmost surelya.s.oin tosses
but this time we allow eah Xn to have a di�erent probability distribution.Furthermore we de�ne Q(x1; : : : ; xt) to be the minimum number of bins intowhih objets of sizes x1, : : : , xt an be paked, where eah bin has apaity m.This bin-paking problem sounds a lot harder than the hashing problem thatwe just solved. Indeed, the task of evaluating Q(x1; : : : ; xt) is well known to beNP-omplete [see M. R. Garey and D. S. Johnson, SICOMP 4 (1975), 397{411℄.Yet Q obviously satis�es the ondition (45) with n = 1 for 1 � n � t. Thereforethe method of bounded di�erenes tells us that inequality (43) is true, in spiteof the apparent diÆulty of this problem!The only di�erene between this bin-paking problem and the hashing prob-lem is that we're lueless about the value of Z0. Nobody knows how to omputeEQ(X1; : : : ; Xt), exept for very speial distributions of the random variables.However|and this is the magi of martingales|we do know that, whatever thevalue is, the atual numbers Zt will be tightly onentrated around that average.If all the X 's have the same distribution, the values �t = EQ(X1; : : : ; Xt)satisfy �t+t0 � �t+�t0 , beause we ould always pak the t and t0 items separately.Therefore, by the subadditive law (see the answer to exerise 2.5{39), �t=tapproahes a limit � as t!1. Still, however, random trials won't give us deentbounds on that limit, beause we have no good way to ompute the Q funtion.If only he ould have enjoyed Martingale for its beauty and its peaewithout being hained to it by this band of responsibility and guilt!| P. D. JAMES, Cover Her Fae (1962)Statements that are almost sure, or quite sure. Probabilities that dependon an integer n often have the property that they approah 0 or 1 as n ! 1,and speial terminology simpli�es the disussion of suh phenomena. If, say, Anis an event for whih limn!1 Pr(An) = 1, it's onvenient to express this fatin words by saying, \An ours almost surely, when n is large." (Indeed, weusually don't bother to state that n is large, if we already understand that n isapproahing in�nity in the ontext of the urrent disussion.)For example, if we toss a fair oin n times, we'll �nd that the oin almostsurely omes up heads more than :49n times, but fewer than :51n times.Furthermore, we'll oasionally want to express this onept tersely in for-mulas, by writing just `a.s.' instead of spelling out the words \almost surely."For instane, the statement just made about n oin tosses an be formulated as:49n < X1 + � � �+Xn < :51n a:s:; (46)if X1, : : : , Xn are independent binary random variables, eah with EXj = 1=2.In general a statement suh as \An a.s." means that limn!1 Pr(An) = 1; or,equivalently, that limn!1 Pr(An) = 0.If An and Bn are both a.s., then the ombined event Cn = An \ Bn isalso a.s., regardless of whether those events are independent. The reason is thatPr(Cn) = Pr(An [ Bn) � Pr(An) + Pr(Bn), whih approahes 0 as n!1.Thus, to prove (46) we need only show that X1 + � � �+Xn > :49n a.s. andthat X1 + � � �+Xn < :51n a.s., or in other words that Pr(X1 + � � �+Xn � :49n)
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and Pr(X1 + � � �+Xn � :51n) both approah 0. Those probabilities are atuallyequal, by symmetry between heads and tails; so we need only show that pn =Pr(X1 + � � �+Xn � :49n) approahes 0. And that's no sweat, beause we knowfrom exerise 1.2.10{21 that pn � e�:0001n.In fat, we've proved more: We've shown that pn is superpolynomially small,namely that pn = O(n�K) for all �xed numbers K. (47)When the probability of an event An is superpolynomially small, we say that Anholds \quite surely," and abbreviate that by `q.s.'. In other words, we've proved:49n < X1 + � � �+Xn < :51n q:s: (48)We've seen that the ombination of any two a.s. events is a.s.; hene the om-bination of any �nite number of a.s. events is also a.s. That's nie, but q.s. eventsare even nier: The ombination of any polynomial number of q.s. events isalso q.s. For example, if n4 di�erent people eah toss n oins, it is quite sure thatevery one of them, without exeption, will obtain between :49n and :51n heads!(When making suh asymptoti statements we ignore the inonvenient truththat our bound on the failure of the assertion, 2n4e�:0001n in this ase, beomesnegligible only when n is greater than 700,000 or so.)EXERCISES1. [M21 ℄ (Nontransitive die.) Suppose three biased die with the respetive faesA = qqqq q q qqqq qqqqq q q qqqq q ; B = q qq q qqq q qq qq qq q qqq qqq qqq ; C = qqq q q qqqqqq qqq q q qqq qqqare rolled independently at random.a) Show that Pr(A>B) = Pr(B>C) = Pr(C>A) = 5=9.b) Find die with Pr(A>B), Pr(B>C), Pr(C>A) all greater than 5/9.) If Fibonai die have Fm faes instead of just six, show that we ould havePr(A>B) = Pr(B>C) = Fm�1=Fm and Pr(C>A) = Fm�1=Fm � 1=F 2m:2. [M32 ℄ Prove that the previous exerise is asymptotially optimum, in the sensethat min(Pr(A>B);Pr(B>C);Pr(C>A)) < 1=�, regardless of the number of faes.3. [22 ℄ (Lake Wobegon die.) Continuing the previous exerises, �nd three die suhthat Pr(A> 13 (A+B+C)) � Pr(B> 13 (A+B+C)) � Pr(C> 13 (A+B+C)) � 16=27.Eah fae of eah die should be p or p p or p p p or p pp p or p p pp p or ppp ppp .4. [22 ℄ (Nontransitive Bingo.) Eah player in the game of NanoBingo has a ardontaining four numbers from the set S = f1; 2; 3; 4; 5; 6g, arranged in two rows. Anannouner alls out the elements of S, in random order; the �rst player whose ard hasa horizontal row with both numbers alled shouts \Bingo!" and wins. (Or vitory is
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MATHEMATICAL PRELIMINARIES REDUX 13 Covergamesjoint distributionpairwise independentk-wise independentShulte-Geersparitysideways sumshared when there are multiple Bingoes.) For example, onsider the four ardsA = 1 23 5 ; B = 2 34 6 ; C = 3 41 5 ; D = 1 42 6 :If the announer alls \6, 2, 5, 1" whenA plays against B, thenA wins; but the sequene\1, 3, 2" would yield a tie. One an show that Pr(A beats B) = 336720 , Pr(B beats A) =312720 , and Pr(A and B tie) = 72720 . Determine the probabilities of all possible outomeswhen there are (a) two (b) three () four di�erent players using those ards.x 5. [HM22 ℄ (T. M. Cover, 1989.) Common wisdom asserts that longer games favorthe stronger player, beause they provide more evidene of the relative skills.However, onsider an n-round game in whih Alie sores A1+� � �+An points whileBob sores B1 + � � � + Bn points, where eah of A1, : : : , An are independent randomvariables representing Alie's strength, and eah of B1, : : : , Bn independently representBob's (and are independent of the A's). Suppose Alie wins with probability Pn.a) Show that it's possible to have P1 = :99 but P1000 < :0001.b) Let mk = 2k3 , nk = 2k2+k, and qk = 2�k2=D, where D = 2�0 + 2�1 + 2�4 + 2�9 +� � � � 1:56447. Suppose A and B are zero exept that A = mk with probabilityqk when k � 0 is even, B = mk with probability qk when k � 1 is odd. What arePr(A > B), Pr(A < B), and Pr(A = B)?) With the distributions in (b), prove that Pnk ! [k even℄ as k!1.x 6. [M22 ℄ Consider n � 2 random Boolean (or binary) variables X1 : : : Xn with thefollowing joint distribution: The vetor x1 : : : xn ours with probability 1=(n � 1)2 ifx1 + � � � + xn = 2, with probability (n � 2)=(2n � 2) if x1 + � � � + xn = 0, and withprobability 0 otherwise. Show that the variables are pairwise independent (that is, Xiis independent of Xj when i 6= j); but they are not k-wise independent for k > 2.Also �nd a joint distribution, depending only on �x = x1 + � � �+xn, that is k-wiseindependent for k = 2 and k = 3 but not k = 4.7. [M30 ℄ (Ernst Shulte-Geers, 2012.) Generalizing exerise 6, onstrut a �x-baseddistribution that has k-wise but not (k + 1)-wise independene, given k � 1.x 8. [M20 ℄ Suppose the Boolean vetor x1 : : : xn ours with probability (2+(�1)�x)=2n+1, where �x = x1 + � � �+ xn. For what k is this distribution k-wise independent?9. [M20 ℄ Find a distribution of Boolean vetors x1 : : : xn suh that any two variablesare dependent; yet if we know the value of any xj , the remaining variables are (n� 1)-wise independent. Hint: The answer is so simple, you might feel hornswoggled.x 10. [M21 ℄ Let Y1, : : : , Ym be independent and uniformly distributed elements off0; 1; : : : ; p� 1g, where p is prime. Also let Xj = (jm + Y1jm�1 + � � �+ Ym) mod p, for1 � j � n. For what k are the X's k-wise independent?11. [M20 ℄ If X1, : : : , X2n are independent random variables with the same disretedistribution, and if � is any real number whatsoever, prove thatPr����X1 + � � �+X2n2n � ���� � ���X1 + � � �+Xnn � ����� > 12 :12. [18 ℄ Whih of the following four statements are equivalent to the statement thatPr(A jB) > Pr(A)? (i) Pr(B jA) > Pr(B); (ii) Pr(A jB) > Pr(A j �B); (iii) Pr(B jA) >Pr(B j �A); (iv) Pr( �A j �B) > Pr( �A jB).13. [15 ℄ True or false: Pr(A jC) > Pr(A) if Pr(A jB) > Pr(A) and Pr(B jC) > Pr(B).
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14. [10 ℄ (Thomas Bayes, 1763.) Prove the \hain rule" for onditional probability:Pr(A1 \ � � � \ An) = Pr(A1) Pr(A2 jA1) : : : Pr(An j A1 \ � � � \An�1):15. [12 ℄ True or false: Pr(A j B \ C ) Pr(B jC ) = Pr(A \ B j C ).16. [M15 ℄ Under what irumstanes is Pr(A jB) = Pr(A [ C j B)?x 17. [15 ℄ Evaluate the onditional probability Pr(T is an ae j B = Q�) in the playingard example of the text, where T and B denote the top and bottom ards.18. [20 ℄ Let M and m be the maximum and minimum values of the random vari-able X. Prove that var(X) � (M � EX)(EX �m).x 19. [HM28 ℄ Let X be a random nonnegative integer, with Pr(X = x) = 1=2x+1, andsuppose that X = ( : : : X2X1X0)2 and X + 1 = ( : : : Y2Y1Y0)2 in binary notation.a) What is EXn? Hint: Express this number in the binary number system.b) Prove that the random variables fX0; X1; : : : ; Xn�1g are independent.) Find the mean and variane of S = X0 +X1 +X2 + � � � .d) Find the mean and variane of R = X0 �X1 �X2 � � � � .e) Let � = (11:p0p1p2 : : : )2. What is the probability that Xn = pn for all n � 0?f) What is EYn? Show that Y0 and Y1 are not independent.g) Find the mean and variane of T = Y0 + Y1 + Y2 + � � � .20. [M18 ℄ Let X1, : : : , Xk be binary random variables for whih we know thatE(Qj2J Xj) = Qj2J EXj for all J � f1; : : : ; kg. Prove that the X's are independent.21. [M20 ℄ Find a small-as-possible example of random variables X and Y that satisfyovar(X;Y ) = 0, that is, EXY = (EX)(EY ), although they aren't independent.22. [M20 ℄ Use Eq. (8) to prove the \union inequality"Pr(A1 [ � � � [An) � Pr(A1) + � � � + Pr(An):x 23. [M21 ℄ If eah Xk is an independent binary random variable with EXk = p, theumulative binomial distribution Bm;n(p) is the probability that X1 + � � � + Xn � m.Thus it's easy to see that Bm;n(p) = Pmk=0 �nk�pk(1� p)n�k.Show that Bm;n(p) is also equal to Pmk=0 �n�m�1+kk �pk(1�p)n�m, for 0 � m � n.Hint: Consider the random variables J1, J2, : : : , and T de�ned by the rule that Xj = 0if and only if j has one of the T values fJ1; J2; : : : ; JT g, where 1 � J1 < J2 < � � � <JT � n. What is Pr(T � r and Jr = s)?x 24. [HM27 ℄ The umulative binomial distribution also has many other properties.a) Prove that Bm;n(p) = (n�m)�nm� R 1p xm(1� x)n�1�mdx, for 0 � m < n.b) Use that formula to prove that Bm;n(m=n) > 12 , for 0 � m < n=2. Hint: Showthat Rm=n0 xm(1� x)n�1�mdx < R 1m=n xm(1� x)n�1�mdx.) Show furthermore that Bm;n(m=n) > 12 when n=2 � m � n. [Thus m is themedian value of X1 + � � �+Xn, when p = m=n and m is an integer.℄25. [M25 ℄ Suppose X1, X2, : : : are independent random binary variables, with meansEXk = pk. Let ��nk�� be the probability that X1+� � �+Xn = k; thus ��nk�� = pn��n�1k�1��+qn��n�1k �� = [zk℄ (q1 + p1z) : : : (qn + pnz), where qk = 1� pk.a) Prove that ��nk�� � �� nk+1��, if pj � (k + 1)=(n + 1) for 1 � j � n.b) Furthermore ��nk�� � �nk�pkqn�k, if pj � p � k=n for 1 � j � n.26. [M27 ℄ Continuing exerise 25, prove that ��nk��2 � �� nk�1���� nk+1��(1 + 1k )(1 + 1n�k )for 0 < k < n. Hint: Consider rn;k = ��nk��/�nk�.
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27. [M22 ℄ Find an expression for the generalized umulative binomial distributionPmk=0 ��nk�� that is analogous to the alternative formula in exerise 23.28. [HM28 ℄ (W. Hoe�ding, 1956.) Let X = X1 + � � �+Xn and p1 + � � �+ pn = np inexerise 25, and suppose that E g(X) = Pnk=0 g(k)��nk�� for some funtion g.a) Prove that E g(X) �Pnk=0 g(k)�nk�pk(1� p)n�k if g is onvex in [0 : : n℄.b) If g isn't onvex, show that the maximum of E g(X), over all hoies of fp1; : : : ; pngwith p1 + � � �+ pn = np an always be attained by a set of probabilities for whihat most three distint values f0; a; 1g our among the pj .) Furthermore Pmk=0 ��nk�� � Bm;n(p), whenever p1 + � � �+ pn = np � m+ 1.29. [HM29 ℄ (S. M. Samuels, 1965.) Continuing exerise 28, prove that we haveBm;n(p) � ((1� p)(m+ 1)=((1� p)m+ 1))n�m whenever np � m+ 1.30. [HM34 ℄ Let X1, : : : , Xn be independent random variables whose values are non-negative integers, where EXk = 1 for all k, and let p = Pr(X1 + � � � +Xn� n).a) What is p, if eah Xk takes only the values 0 and n+ 1?b) Show that, in any set of distributions that minimize p, eah Xk assumes only twointeger values, 0 and mk, where 1 � mk � n+ 1.) Furthermore we have p > 1=e, if eah Xk has the same two-valued distribution.x 31. [M20 ℄ Assume that A1, : : : , An are random events suh that, for every subsetI � f1; : : : ; ng, the probability Pr(Ti2I Ai) that all Ai for i 2 I our simultaneouslyis �I ; here �I is a number with 0 � �I � 1, and �; = 1. Show that the probability ofany ombination of the events, Pr(f([A1 ℄; : : : ; [An ℄)) for any Boolean funtion f , an befound by expanding f 's multilinear reliability polynomial f([A1 ℄; : : : ; [An ℄) and repla-ing eah termQi2I [Ai ℄ by �I . For example, the reliability polynomial of x1�x2�x3 isx1 + x2 + x3 � 2x1x2 � 2x1x3 � 2x2x3 + 4x1x2x3; hene Pr([A1 ℄ � [A2 ℄ � [A3 ℄) =�1 + �2 + �3 � 2�12 � 2�13 � 2�23 + 4�123. (Here `�12' is short for �f1;2g, et.)32. [M21 ℄ Not all sets of numbers �I in the preeding exerise an arise in an atualprobability distribution. For example, if I � J we must have �I � �J . What is aneessary and suÆient ondition for the 2n values of �I to be legitimate?33. [M20 ℄ Suppose X and Y are binary random variables whose joint distribution isde�ned by the probability generating funtion G(w; z) = E(wXzY ) = pw + qz + rwz,where p; q; r > 0 and p + q + r = 1. Use the de�nitions in the text to ompute theprobability generating funtion E(zE(XjY )) for the onditional expetation E(X jY ).34. [M17 ℄ Write out an algebrai proof of (12), using the de�nitions (7) and (13).x 35. [M22 ℄ True or false: (a) E(E(X jY ) jY )=E(X jY ); (b) E(E(X jY ) jZ)=E(X jZ).36. [M21 ℄ Simplify the formulas (a) E(f(X) jX); (b) E(f(Y ) E(g(X) jY )).x 37. [M20 ℄ Suppose X1 : : : Xn is a random permutation of f1; : : : ; ng, with every per-mutation ourring with probability 1=n!. What is E(Xk jX1; : : : ; Xk�1)?38. [M26 ℄ Let X1 : : : Xn be a random restrited growth string of length n, eah withprobability 1=$n (see Setion 7.2.1.5). What is E(Xk jX1; : : : ; Xk�1)?x 39. [HM21 ℄ A hen lays N eggs, where Pr(N = n) = e���n=n! obeys the Poissondistribution. Eah egg hathes with probability p, independent of all other eggs. LetK be the resulting number of hiks. Express (a) E(K jN), (b) EK, and () E(N jK)in terms of N , K, �, and p.40. [M16 ℄ Suppose X is a random variable with X �M , and let m be any value withm < M . Show that Pr(X > m) � (EX �m)=(M �m).
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16 MATHEMATICAL PRELIMINARIES REDUX onvexJensen's inequality�rst moment prinipleMarkov's inequalityChebyshev's inequalityseond moment prinipleone-sided estimateJensen's inequalityonditional expetation inequalityreliability polynomialSymmetri Boolean funtionS�mrandom graphliquetriangles (3-liques)seond moment priniple�rst moment prinipleasymptotiallyonditional expetation inequalityseond moment priniple

41. [HM21 ℄ Whih of the following funtions are onvex in the set of all real num-bers x? (a) jxja, where a is a onstant; (b) Pk�n xk=k!, where n � 0 is an integer;() eejxj; (d) f(x)[x2 I ℄ +1[x =2 I ℄, where f is onvex in the interval I.42. [HM21 ℄ Prove Jensen's inequality (20).x 43. [M18 ℄ Use (12) and (20) to strengthen (20): If f is onvex in I and if the randomvariable X takes values in I, then f(EX) � E(f(E(X jY ))) � E(f(X)).x 44. [M25 ℄ If f is onvex on the real line and if EX = 0, prove that E f(aX) � E f(bX)whenever 0 � a � b.45. [M18 ℄ Derive the �rst moment priniple (21) from Markov's inequality (15).46. [M15 ℄ Explain why E(X2 jX > 0) � (E(X jX > 0))2 in (23).47. [M15 ℄ If X is random and Y = max(0; X), show that EY � EX and EY 2� EX2.x 48. [M20 ℄ Suppose X1, : : : , Xn are independent random variables with EXk = 0 andEX2k = �2k for 1 � k � n. Chebyshev's inequality tells us that Pr(jX1+� � �+Xnj � a) �(�21 + � � � + �2n)=a2; show that the seond moment priniple gives a somewhat betterone-sided estimate, Pr(X1+� � �+Xn � a) � (�21+� � �+�2n)=(a2+�21 +� � �+�2n), if a � 0.49. [M20 ℄ If X is random and � 0, prove that Pr(X = 0) � (EX2)=(EX)2 � 1.x 50. [M27 ℄ Let X = X1 + � � � + Xm be the sum of binary random variables, withEXj = pj . Let J be independent of the X's, and uniformly distributed in f1; : : : ; mg.a) Prove that Pr(X > 0) = Pmj=1 E(Xj=X j Xj>0) � Pr(Xj>0).b) Therefore (24) holds. Hint: Use Jensen's inequality with f(x) = 1=x.) What are Pr(XJ = 1) and Pr(J = j jXJ=1)?d) Let tj = E(X jJ = j and XJ = 1). Prove that EX2 = Pmj=1 pjtj .e) Jensen's inequality now implies that the right side of (24) is � (EX)2=(EX2).x 51. [M21 ℄ Show how to use the onditional expetation inequality (24) to obtain alsoan upper bound on the value of a reliability polynomial, and apply your method to thease illustrated in (25).52. [M21 ℄ What lower bound does inequality (24) give for the reliability polynomialof the symmetri funtion S�k(x1; : : : ; xn), when p1 = � � � = pn = p?53. [M20 ℄ Use (24) to obtain a lower bound for the reliability polynomial of the non-monotoni Boolean funtion f(x1; : : : ; x6) = x1x2�x3 _ x2x3�x4 _ � � � _ x5x6�x1 _ x6x1�x2.x 54. [M22 ℄ Suppose eah edge of a random graph on the verties f1; : : : ; ng is presentwith probability p, independent of every other edge. If u, v, w are distint verties,let Xuvw be the probability that fu; v; wg is a 3-lique, namely the probability thatu���v, u���w, and v���w. Also let X = P1�u<v<w�nXuvw be the total number of3-liques. Use the (a) �rst and (b) seond moment priniple to derive bounds on theprobability that the graph ontains at least one 3-lique.55. [23 ℄ Evaluate the upper and lower bounds in the previous exerise numeriallyin the ase n = 10, and ompare them to the true probability, when (a) p = 1=2;(b) p = 1=10.56. [HM20 ℄ Evaluate the upper and lower bounds of exerise 54 asymptotially whenp = �=n and n!1.x 57. [M21 ℄ Obtain a lower bound for the probability in exerise 54(b) by using theonditional expetation inequality (24) instead of the seond moment priniple (22).
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MATHEMATICAL PRELIMINARIES REDUX 17 k-liquefour funtions theoremfamily of setsmultivariate total positivity, see FKG inequalityFortuinKasteleynGinibrepositively orrelatedorrelation inequalitiesovarianenonnegatively orrelatedsupported
58. [M22 ℄ Generalizing exerise 54, �nd bounds on the probability that a randomgraph on n verties has a k-lique, when eah edge has probability p.x 59. [HM25 ℄ (The four funtions theorem.) The purpose of this exerise is to prove aninequality that applies to four sequenes hani, hbni, hni, hdni of nonnegative numbers:aj bk � j jkdj&k for 0 � j; k <1 implies 1Xj=0 1Xk=0ajbk � 1Xj=0 1Xk=0 jdk: (�)(The sums will be1 if they don't onverge.) Although the inequality might appear at�rst to be merely a uriosity, of interest only to a few lovers of esoteri formulas, weshall see that it's a fundamental result with many appliations of great importane.a) Prove the speial ase where aj = bj = j = dj = 0 for j � 2, namely thata0b0 � 0d0; a0b1 � 1d0; a1b0 � 1d0; and a1b1 � 1d1implies (a0 + a1)(b0 + b1) � (0 + 1)(d0 + d1):Can equality hold in the �rst four relations but not in the last one? Can equalityhold in the last relation but not in the �rst four?b) Use that result to prove (�) when aj = bj = j = dj = 0 for all j � 2n, given n > 0.) Conlude that (�) is true in general.x 60. [M21 ℄ If F is a family of sets, and if � is a funtion that maps sets into realnumbers, let �(F) = PS2F �(S). Suppose F and G are �nite families of sets for whihnonnegative set funtions �, �, , and Æ have been de�ned with the property that�(S) �(T ) � (S [ T ) Æ(S \ T ) for all S 2 F and T 2 G:a) Use exerise 59 to prove that �(F)�(G) � (F t G)Æ(F u G).b) In partiular, jFj jGj � jF t Gj jF u Gj for all families F and G.x 61. [M28 ℄ Consider random sets in whih S ours with probability �(S), where�(S) � 0 and �(S)�(T ) � �(S [ T )�(S \ T ) for all sets S and T : (��)Assume also that U = S�(S)>0 S is a �nite set.a) Prove the FKG inequality (whih is named for C. M. Fortuin, P. W. Kasteleyn,and J. Ginibre): If f and g are real-valued set funtions, thenf(S) � f(T ) and g(S) � g(T ) for all S � T implies E(fg) � E(f) E(g):Here, as usual, E(f) stands for PS �(S)f(S). The onlusion an also be written`ovar(f; g) � 0', using the notation of (9); we say that f and g are \positivelyorrelated" when this is true. (The awkward term \nonnegatively orrelated"would be more aurate, beause f and g might atually be independent.) Hint:Prove the result �rst in the speial ase that both f and g are nonnegative.b) Furthermore,f(S) � f(T ) and g(S) � g(T ) for all S � T implies E(fg) � E(f) E(g);f(S) � f(T ) and g(S) � g(T ) for all S � T implies E(fg) � E(f) E(g):) It isn't neessary to verify ondition (��) for all sets, if (��) is known to holdfor suÆiently many pairs of \neighboring" sets. Given �, let's say that set S issupported if �(S) 6= 0. Prove that (��) holds for all S and T whenever the followingthree onditions are satis�ed: (i) If S and T are supported, so are S[T and S\T .
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18 MATHEMATICAL PRELIMINARIES REDUX Bernoulli, James, distributionrandom graphnegatively orrelatedsubsequeneQuik(ii) If S and T are supported and S � T , the elements of T n S an be labeledt1, : : : , tk suh that eah of the intermediate sets S [ft1; : : : ; tjg is supported, for1�j�k. (iii) Condition (��) holds whenever S = R[s and T = R[ t and s; t =2R.d) The multivariate Bernoulli distribution B(p1; : : : ; pm) on subsets of f1; : : : ;mg is�(S) = � mYj=1 p[j2S℄j �� mYj=1 (1� pj)[j =2S℄�;given 0 � p1; : : : ; pm � 1. (Thus eah element j is inluded independently withprobability pj , as in exerise 25.) Show that this distribution satis�es (��).e) Desribe other simple distributions for whih (��) holds.x 62. [M20 ℄ Suppose the m = �n2� edges E of a random graph G on n verties arehosen with the Bernoulli distribution B(p1; : : : ; pm). Let f(E) = [G is onneted℄ andg(E) = [G is 4-olorable℄. Prove that f is negatively orrelated with g.63. [M17 ℄ Suppose Z0 and Z1 are random ternary variables with Pr(Z0 = a andZ1 = b) = pab for 0 � a; b � 2, where p00 + p01 + � � � + p22 = 1. What an you sayabout those probabilities pab when E(Z1 jZ0) = Z0?x 64. [M22 ℄ (a) If E(Zn+1 jZn) = Zn for all n � 0, is hZni a martingale? (b) If hZni isa martingale, is E(Zn+1 jZn) = Zn for all n � 0?65. [M21 ℄ If hZni is any martingale, show that any subsequene hZm(n)i is also amartingale, where the nonnegative integers hm(n)i satisfy m(0) < m(1) < m(2) < � � � .x 66. [M22 ℄ Find all martingales Z0, Z1, : : : suh that eah random variable Zn assumesonly the values �n.67. [M20 ℄ The Equitable Bank of El Dorado features a money mahine suh that, ifyou insert k dollars, you reeive 2k dollars bak with probability exatly 1/2; otherwiseyou get nothing. Thus you either gain $k or lose $k, and your expeted pro�t is $0.(Of ourse these transations are all done eletronially.)a) Consider, however, the following sheme: Insert $1; if that loses, insert $2; if thatalso loses, insert $4; then $8, et. If you �rst sueed after inserting 2n dollars,stop (and take the 2n+1 dollars). What's your expeted net pro�t at the end?b) Continuing (a), what's the expeted total amount that you put into the mahine?) If Zn is your net pro�t after n trials, show that hZni is a martingale.68. [HM23 ℄ When J. H. Quik (a student) visited El Dorado, he deided to proeedby making repeated bets of $1 eah, and to stop when he �rst ame out ahead. (He wasin no hurry, and was well aware of the perils of the high-stakes strategy in exerise 67.)a) What martingale hZni orresponds to this more onservative strategy?b) Let N be the number of bets that Quik made before stopping. What is theprobability that N = n?) What is the probability that N � n?d) What is EN?e) What is the probability that min(Z0; Z1; : : : ) = �m? (Possible \gambler's ruin.")f) What is the expeted number of indies n suh that Zn = �m, given m � 0?69. [M20 ℄ Setion 1.2.5 disusses two basi ways by whih we an go from permuta-tions of f1; : : : ; n� 1g to permutations of f1; : : : ; ng: \Method 1" inserts n among theprevious elements in all possible ways; \Method 2" puts a number k from 1 to n in the�nal position, and adds 1 to eah previous number that was � k.



Otober 3, 2015

MATHEMATICAL PRELIMINARIES REDUX 19 P�olya's urn modelP�olyaFriedman's urnmultipliatively fairDe Moivre's martingaleoin tossesfair sequeneFibonai martingaleAe Now
Show that, using either method, every permutation an be assoiated with a nodeof Fig. 1, using a rule that obeys the probability assumptions of P�olya's urn model.70. [M25 ℄ If P�olya's urn model is generalized so that we start with  balls of di�erentolors, is there a martingale that generalizes Fig. 1?71. [M21 ℄ (G. P�olya.) What is the probability of going from node (r; b) to node (r0; b0)in Fig. 1, given r, r0, b, and b0 with r0 � r and b0 � b?72. [M21 ℄ Let Xn be the red-ball indiator for P�olya's urn, as disussed in the text.What is E(Xn1Xn2 : : : Xnm) when 0 < n1 < n2 < � � � < nm?73. [M24 ℄ The ratio Zn = r=(n+2) at node (r; n+2�r) of Fig. 1 is not the only mar-tingale de�nable on P�olya's urn. For example, r[n= r � 1℄ is another; so is r�n+1r �=2n.Find the most general martingale hZni for this model: Given any sequene a0, a1,: : : , show that there's exatly one suitable funtion Zn = f(r; n) suh that f(1; k) = ak.74. [M20 ℄ (Bernard Friedman's urn.) Instead of ontributing a ball of the same olor,as in Fig. 1, suppose we use the opposite olor. Then the proess hanges to1;11;2 2;11;3 2;2 3;11;4 2;3 3;2 4;1

1/2 1/21/3 2/3 2/3 1/31/4 3/4 2/4 2/4 3/4 1/41/5 4/5 2/5 3/5 3/5 2/5 4/5 1/5
Level 0Level 1Level 2Level 3and the probabilities of reahing eah node beome quite di�erent. What are they?75. [M25 ℄ Find an interesting martingale for Bernard Friedman's urn.76. [M20 ℄ If hZni and hZ0ni are martingales, is hZn + Z0ni a martingale?77. [M21 ℄ Prove or disprove: If hZni is a martingale with respet to hXni, then hZniis a martingale with respet to itself (that is, a martingale).78. [M20 ℄ A sequene of random variables hVni for whih E(Vn+1 j V0; : : : ; Vn) = 1is alled \multipliatively fair." Show that Zn = V0V1 : : : Vn is a martingale in suha ase. Conversely, does every martingale lead to a multipliatively fair sequene?79. [M20 ℄ (De Moivre's martingale.) Let X1, X2, : : : be a sequene of independentoin tosses, with Pr([\heads" ourred on the nth toss℄) = Pr(Xn = 1) = p for eah n.Show that Zn = (q=p)2(X1+���+Xn)�n de�nes a martingale, where q = 1� p.80. [M20 ℄ Are the following statements true or false for every fair sequene hYni?(a) E(Y 23 Y5) = 0. (b) E(Y3Y 25 ) = 0. () E(Yn1Yn2 : : : Ynm) = 0 if n1 < n2 < � � � < nm.81. [M21 ℄ Suppose E(Xn+1 jX0; : : : ; Xn) = Xn + Xn�1 for n � 0, where X�1 = 0.Find sequenes an and bn of oeÆients so that Zn = anXn + bnXn�1 is a martingale,where Z0 = X0 and Z1 = 2X0 �X1. (We might all this a \Fibonai martingale.")x 82. [M20 ℄ In the game of Ae Now, let Xn = [the nth ard is an ae℄, with X0 = 0.a) Show that Zn = (4�X1 � � � � �Xn)=(52 � n) satis�es (28) for 0 � n < 52.b) Consequently EZN = 1=13, regardless of the stopping rule employed.) Hene all strategies are equally good (or bad); you win $0 on average.
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20 MATHEMATICAL PRELIMINARIES REDUX stopping ruleWald's equationonvex funtionsubmartingaleP�olya's urnstopping rulemaximal inequalityP�olya's urnBernoulli distributionHoe�ding{Azuma inequalityTaylor's formulaDoob martingaleP�olya's urnhashingindependentP�olya's urnoina.s.q.s.hashed

x 83. [HM22 ℄ Given a sequene hXni of independent and nonnegative random variables,let Sn = X1 + � � � + Xn. If Nn(x0; : : : ; xn�1) is any stopping rule and if N is de�nedby (31), prove that ESN = EPNk=1 EXk. (In partiular, if EXn = EX1 for all n > 0we have \Wald's equation," whih states that ESN = (EN)(EX1).)84. [HM21 ℄ Let f(x) be a onvex funtion for a � x � b, and assume that hZni is amartingale suh that a � Zn � b for all n � 0. (Possibly a = �1 and/or b = +1.)a) Prove that hf(Zn)i is a submartingale.b) What an you say if the sequene hZni is assumed only to be a submartingale?85. [M20 ℄ Suppose there are Rn red balls and Bn blak balls at level n of P�olya's urn(Fig. 1). Prove that the sequene hRn=Bni is a submartingale.x 86. [M22 ℄ Prove (33) by inventing a suitable stopping rule Nn+1(Z0; : : : ; Zn).87. [M17 ℄ What does the maximal inequality (33) reveal about the hanes thatP�olya's urn will hold thrie as many red balls as blak balls at some point?x 88. [HM30 ℄ Let S = supZn be the least upper bound of Zn as n!1 in Fig. 1.a) Prove that S > 1=2 with probability ln 2 � :693.b) Similarly, show that Pr(S > 2=3) = ln 3� �=p27 � :494.) Generalize to Pr(S > (t� 1)=t), for all t � 2. Hint: See exerise 7.2.1.6{36.89. [M16 ℄ Let (X1; : : : ; Xn) be random variables that have the Bernoulli distributionB(p1; : : : ; pn). Use (37) to show that Pr(X1 + � � �+Xn � p1 + � � �+ pn + x) � e�2x2=n.90. [HM25 ℄ The Hoe�ding{Azuma inequality (37) an be derived as follows:a) Show �rst that Pr(Y1 + � � �+ Yn � x) � E(e(Y1+���+Yn)t)=etx for all t > 0.b) If 0 � p � 1 and q = 1� p, show that eyt � ef(t) + yeg(t) when �p � y � q andt > 0, where f(t) = �pt+ ln(q + pet) and g(t) = �pt+ ln(et � 1).) Prove that f(t) � t2=8. Hint: Use Taylor's formula, Eq. 1.2.11.3{(5).d) Consequently a � Y � b implies eY t � e(b�a)2t2=8 + Y h(t), for some funtion h(t).e) Let  = (21 + � � �+ 2n)=2, where k = bk� ak. Prove that E(e(Y1+���+Yn)t) � et2=4.f) We obtain (37) by hoosing the best value of t.91. [M20 ℄ Prove that Doob's general formula (39) always de�nes a martingale.x 92. [M20 ℄ Let hQni be the Doob martingale that orresponds to P�olya's urn (27)when Q = Xm, for some �xed m > 0. Calulate Q0, Q1, Q2, et.93. [M20 ℄ Solve the text's hashing problem under the more general model onsideredin the bin-paking problem: Eah variable Xn has probability pnk of being equal to k,for 1 � n � t and 1 � k � m. What formula do you get instead of (44)?x 94. [M22 ℄ Where is the fat that the variables fX1; : : : ; Xtg are independent used inthe previous exerise?95. [M20 ℄ True or false: \P�olya's urn q.s. aumulates more than 100 red balls."96. [HM22 ℄ Let X be the number of heads seen in n ips of an unbiased oin. Deidewhether eah of the following statements about X is a.s., q.s., or neither, as n!1:(i) jX � n=2j < pn lnn; (ii) jX � n=2j < pn lnn;(iii) jX � n=2j < pn ln lnn; (iv) jX � n=2j < pn:x 97. [HM21 ℄ Suppose bn1+Æ items are hashed into n bins, where Æ is a positiveonstant. Prove that every bin q.s. gets between 12nÆ and 2nÆ of them.
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MATHEMATICAL PRELIMINARIES REDUX 21 loopanalysis of algorithmsrandomized algorithmgeometrially distributedtail inequalitiesLarrie, Cora Maea.s.q.s.monussaturating addition/subtrationoalesing random walkanalysis of algorithmsforward versus bakwardbakward versus forward
x 98. [M21 ℄ Many algorithms are governed by a loop of the formX  n; while X > 0, set X  X � F (X)where F (X) is a random integer in the range [1 : : X℄. We assume that eah integerF (X) is ompletely independent of any previously generated values, subjet only tothe requirement that EF (j) � gj , where 0 < g1 � g2 � � � � � gn.Prove that the loop sets X  X�F (X) at most 1=g1 +1=g2 + � � �+1=gn times, onthe average. (\If one step redues by gn, then perhaps (1=gn)th of a step redues by 1.")99. [HM30 ℄ Show that the result in the previous exerise holds even when the rangeof F (X) is (�1 : : X℄, given 0 < g1 � � � � � gn � gn+1 � � � � . (Thus X might inrease.)100. [HM17 ℄ A ertain randomized algorithm takes T steps, where Pr(T = t) = pt for1 � t � 1. Prove that (a) limm!1 E min(m;T ) = ET ; (b) ET <1 implies p1 = 0.101. [HM22 ℄ Suppose X = X1 + � � � + Xm is the sum of independent geometriallydistributed random integers, with Pr(Xk = n) = pk(1� pk)n�1 for n � 1. Prove thatPr(X � r�) � re1�r for all r � 1, where � = EX = Pmk=1 1=pk.102. [M20 ℄ Cora ollets oupons, using a random proess. After already owningk � 1 of them, her hane of suess when trying for the kth is at least one hanein sk, independent of any previous suesses or failures. Prove that she will a.s. ownm oupons before making (s1 + � � � + sm) lnn trials. And she will q.s. need at mostsk lnn ln lnn trials to obtain the kth oupon, for eah k � m, if m = O(n1000).x 103. [M30 ℄ This exerise is based on two funtions of the ternary digits f0; 1; 2g:f0(x) = max(0; x� 1); f1(x) = min(2; x+ 1):a) What is Pr(fX1(fX2(: : : (fXn(i)) : : :)) = j), for eah i; j 2 f0; 1; 2g, assuming thatX1, X2, : : : , Xn are independent, uniformly random bits?b) Here's an algorithm that omputes fX1(fX2(: : : (fXn(i)) : : :)) for i 2 f0; 1; 2g, andstops when all three values have oalesed to a ommon value:Set a0a1a2  012 and n  0. Then while a0 6= a2, set n  n + 1,t0t1t2  (Xn? 122: 001), and a0a1a2  at0at1at2 . Output a0.(Notie that a0 � a1 � a2 always holds.) What is the probability that thisalgorithm outputs j? What are the mean and variane of N , the �nal value of n?) A similar algorithm omputes fXn(: : : (fX2(fX1(i))) : : :), if we hange `at0at1at2 'to `ta0ta1ta2 '. What's the probability of output j in this algorithm?d) Why on earth are the results of (b) and () so di�erent?e) The algorithm in () doesn't really use a1. Therefore we might try to speedup proess (b) by leverly evaluating the funtions in the opposite diretion.Consider the following subroutine, alled sub(T ):Set a0a2  02 and n 0. Then while n < T set n n+1, X  randombit, and a0a2  (Xn? f1(a0)f1(a2): f0(a0)f0(a2)). If a0 = a2 output a0,otherwise output �1.Then the algorithm of (b) would seem to be equivalent toSet T  1, a �1; while a < 0 set T  2T and a sub(T ); output a.Prove, however, that this fails. (Randomized algorithms an be quite deliate!)f) Path the algorithm of (e) and obtain a orret alternative to (b).104. [M21 ℄ Solve exerise 103(b) and 103() when eah Xk is 1 with probability p.



Otober 3, 2015

22 MATHEMATICAL PRELIMINARIES REDUX Random walkn-ylegenerating funtiongenerating funtionanalysis of algsCouplingpartially ordered setrow sumsolumn sumsow in a networkmax-ow min-ut theorem
x 105. [M30 ℄ (Random walk on an n-yle.) Given integers a and n, with 0 � a � n,let N be minimum suh that (a+ (�1)X1 + (�1)X2 + � � �+ (�1)XN ) mod n = 0, whereX1, X2, : : : is a sequene of independent random bits. Find the generating funtionga = P1k=0 Pr(N = k)zk. What are the mean and variane of N?106. [M25 ℄ Consider the algorithm of exerise 103(b) when the digits are d-ary insteadof ternary; thus f0(x) = max(0; x � 1) and f1(x) = min(d � 1; x + 1). Find thegenerating funtion, mean, and variane of the number N of steps required beforea0 = a1 = � � � = ad�1 is �rst reahed in this more general situation.x 107. [M22 ℄ (Coupling.) If X is a random variable on the probability spae 
0 andY is another random variable on another probability spae 
00, we an study themtogether by rede�ning them on a ommon probability spae 
. All onlusions aboutX or Y are valid with respet to 
, provided that we have Pr(X = x) = Pr0(X = x)and Pr(Y = y) = Pr00(Y = y) for all x and y.Suh \oupling" is obviously possible if we let 
 be the set 
0 � 
00 of pairsf!0!00 j ! 2 
0 and !00 2 
00g, and if we de�ne Pr(!0!00) = Pr0(!0) Pr00(!00) for eahpair of events. But oupling an also be ahieved in many other ways.For example, suppose 
0 and 
00 eah ontain only two events, fQ; Kg and f|;�g,with Pr0(Q) = p, Pr0(K) = 1 � p, Pr00(|) = q, Pr00(�) = 1 � q. We ould ouple themwith a four-event spae 
 = fQ|; Q�; K|; K�g, having Pr(Q|) = pq, Pr(Q�) = p(1�q),Pr(K|) = (1� p)q, Pr(K�) = (1� p)(1� q). But if p < q we ould also get by with justthree events, letting Pr(Q|) = p, Pr(K|) = q � p, Pr(K�) = 1 � q. A similar shemeworks when p > q, omitting K|. And if p = q we need only two events, Q| and K�.a) Show that if 
0 and 
00 eah have just three events, with respetive probabilitiesfp1; p2; p3g and fq1; q2; q3g, they an always be oupled in a �ve-event spae 
.b) Also, four events suÆe if fp1; p2; p3g = f 112 ; 512 ; 612g, fq1; q2; q3g = f 212 ; 312 ; 712g.) But some three-event distributions annot be oupled with fewer than �ve.108. [HM21 ℄ If X and Y are integer-valued random variables suh that Pr0(X � n) �Pr00(Y � n) for all integers n, �nd a way to ouple them so that X� Y always holds.109. [M27 ℄ Suppose X and Y have values in a �nite partially ordered set P , and thatPr 0(X � a for some a 2 A) � Pr 00(Y � a for some a 2 A); for all A � P:We will show that there's a oupling in whih X � Y always holds.a) Write out exatly what needs to be proved, in the simple ase where P = f1; 2; 3gand the partial order has 1� 3, 2� 3. (Let pk = Pr0(X= k) and qk = Pr00(Y = k)for k 2 P . When P = f1; : : : ; ng, a oupling is an n�n matrix (pij) of nonnegativeprobabilities whose row sums are Pj pij = pi and olumn sums are Pi pij = qj .)Compare this to the result proved in the preeding exerise.b) Prove that Pr0(X� b for some b 2 B) � Pr00(Y� b for some b 2 B), for all B�P .) A oupling between n pairs of events an be viewed as a ow in a network thathas 2n + 2 verties fs; x1; : : : ; xn; y1; : : : ; yn; tg, where there are pi units of owfrom s to xi, pij units of ow from xi to yj , and qj units of ow from yj to t. The\max-ow min-ut theorem" [see Setion 7.5.3℄ states that suh a ow is possibleif and only if there are no subsets I; J � f1; : : : ; ng suh that (i) every path froms to t goes through some ar s��!xi for i 2 I or some ar yj��!t for j 2 J , and(ii) Pi2I pi +Pj2J qj < 1. Use that theorem to prove the desired result.110. [M25 ℄ IfX and Y take values in f1; : : : ; ng, let pk = Pr0(X= k), qk = Pr00(Y = k),and rk = min(pk; qk) for 1 � k � n. The probability that X = Y in any oupling isobviously at most r = Pnk=1 rk.
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MATHEMATICAL PRELIMINARIES REDUX 23 minwise independentskethleast ommon multipleombinatorial nullstellensatzNullstellensatz, ombinatorialpolynomialdegreegridovereddiagonal lines
a) Show that there always is a oupling with Pr(X = Y ) = r.b) Can the result of the previous exerise be extended, so that we have not onlyPr(X � Y ) = 1 but also Pr(X = Y ) = r?x 111. [M20 ℄ A family of N permutations of the numbers f1; : : : ; ng is alled minwiseindependent if, whenever 1 � j � k � n and fa1; : : : ; akg � f1; : : : ; ng, exatly N=k ofthe permutations � have min(a1�; : : : ; ak�) = aj .For example, the family F of N = 60 permutations obtained by yli shifts of123456; 126345; 152346; 152634; 164235; 154263; 165324; 164523; 156342; 165432an be shown to be minwise independent permutations of f1; 2; 3; 4; 5; 6g.a) Verify the independene ondition for F in the ase k = 3, a1 = 1, a2 = 3, a3 = 4.b) Suppose we hoose a random � from a minwise independent family, and assignthe \sketh" SA = mina2A a� to every A � f1; : : : ; ng. Prove that, if A and Bare arbitrary subsets, Pr(SA = SB) = jA \Bj = jA [Bj:) Given three subsets A, B, C, what is Pr(SA = SB = SC)?112. [M25 ℄ The size of a family F of minwise independent permutations must be amultiple of k for eah k � n, by de�nition. In this exerise we'll see how to onstrutsuh a family with the minimum possible size, namely N = lm(1; 2; : : : ; n).The basi idea is that, if all elements of the permutations in F that exeed m arereplaed by1, the \trunated" family is still minwise independent in the sense that, ifmina2� a� =1, we an imagine that the minimum ours at a random element of A.(This an happen only if � takes all elements of A to 1.)a) Conversely, show that an m-trunated family an be lifted to an (m+1)-trunatedfamily if, for eah subset B of size n�m, we insert m+ 1 equally often into eahof B's n �m positions, within the permutations whose 1's are in B.b) Use this priniple to onstrut minimum-size families F .113. [M25 ℄ Although minwise permutations are de�ned only in terms of the mini-mum operation, a minwise independent family atually turns out to be also maxwiseindependent | and even more is true!a) Let E be the event that ai� < k, b� = k, and j� > k, for any disjoint setsfa1; : : : ; alg, fbg, f1; : : : ; rg � f1; : : : ; ng. Prove that, if � is hosen randomlyfrom a minwise independent set, Pr(E) is the same as the probability that Eours when � is hosen randomly from the set of all permutations. (For example,Pr(5�<7; 2�=7; 1�>7; 8�>7) = 6(n� 7)(n � 8)(n� 4)!=n!, whenever n � 8.)b) Furthermore, if fa1; : : : ; akg � f1; : : : ; ng, the probability that aj is the rth largestelement of fa1�; : : : ; ak�g is 1=k, whenever 1 � j; r � k.x 114. [M28 ℄ (The \ombinatorial nullstellensatz.") Let f(x1; : : : ; xn) be a polynomialin whih the oeÆient of xd11 : : : xdnn is nonzero and eah term has degree � d1+� � �+dn.Given subsets S1, : : : , Sn of the �eld of oeÆients, with jSj j > dj for 1 � j � n, hooseX1, : : : , Xn independently and uniformly, with eah Xj 2 Sj . Prove thatPr(f(X1; : : : ; Xn) 6= 0) � jS1j + � � �+ jSnj � (d1 + � � � + dn + n) + 1jS1j : : : jSnj :Hint: See exerise 4.6.1{16.115. [M21 ℄ Prove that an m � n grid annot be fully overed by p horizontal lines,q vertial lines, r diagonal lines of slope +1, and r diagonal lines of slope �1, ifm = p + 2br=2 + 1 and n = q + 2dr=2e + 1. Hint: Apply exerise 114 to a suitablepolynomial f(x; y).



Otober 3, 2015

24 MATHEMATICAL PRELIMINARIES REDUX multigraphregularloopbinomial distributionseond moment priniplePaleyZygmundmedianuniformly distributedbinary searh treesuniform deviatesmartingalegenerating funtionDensity, relativeEntropy, relativeKullbakLeiblerdieuniform distribution\loaded" dieentropyjoint distributionjoint entropymutual informationgeometri distributionPoisson distributionbinomial distribution

116. [HM25 ℄ Use exerise 114 to prove that, if p is prime, any multigraph G on nverties with more than (p � 1)n edges ontains a nonempty subgraph in whih thedegree of every vertex is a multiple of p. (In partiular, if eah vertex of G has fewerthan 2p neighbors, G ontains a p-regular subgraph. A loop from v to itself adds twoto v's degree.) Hint: Let the polynomial ontain a variable xe for eah edge e of G.x 117. [HM25 ℄ Let X have the binomial distribution Bn(p), so that Pr(X = k) =�nk�pk(1� p)n�k for 0 � k � n. Prove that X modm is approximately uniform:���Pr(X modm = r)� 1m ��� < 2m 1Xj=1 e�8p(1�p)j2n=m2 ; for 0 � r < m:118. [M20 ℄ Prove that the seond moment priniple implies the Paley{Zygmund in-equality Pr(X � x) � (EX � x)2EX2 ; if 0 � x � EX.119. [HM24 ℄ Let x be a �xed value in [0 : : 1℄. Prove that, if we independently anduniformly hoose U 2 [0 : : x℄, V 2 [x : : 1℄, W 2 [0 : : 1℄, then the median hUVW i isuniformly distributed in [min(U; V;W ) : :max(U; V;W )℄.120. [M20 ℄ Consider random binary searh trees Tn obtained by suessively insertingindependent uniform deviates U1, U2, : : : into an initially empty tree. Let Tnk be thenumber of external nodes on level k, and de�ne Tn(z) = P1k=0 Tnkzk=(n+1). Prove thatZn = Tn(z)=gn+1(z) is a martingale, where gn(z) = (2z+n� 2)(2z+n� 3) : : : (2z)=n!is the generating funtion for the ost of the nth insertion (exerise 6.2.2{6).x 121. [M25 ℄ Let X and Y be random variables with the distributions Pr(X = t) = x(t)and Pr(Y = t) = y(t). The ratio �(t) = y(t)=x(t), whih may be in�nity, is alled theprobability density of Y with respet to X. We de�ne the relative entropy of X withrespet to Y, also alled the Kullbak{Leibler divergene of Y from X, by the formulasD(y jjx) = E(�(X) lg �(X)) = E lg �(Y ) = Xt y(t) lg y(t)x(t) ;with 0 lg 0 and 0 lg(0=0) understood to mean 0. It an be viewed intuitively as thenumber of bits of information that are lost when X is used to approximate Y .a) Suppose X is a random six-sided die with the uniform distribution, but Y isa \loaded" die in whih Pr(Y = p ) = 15 and Pr(Y = ppp ppp ) = 215 , instead of 16 .Compute D(y jjx) and D(xjjy).b) Prove that D(y jjx) � 0. When is it zero?) If p = Pr(X 2 T ) and q = Pr(Y 2 T ), show that E(lg �(Y ) jY 2 T ) � lg(q=p).d) Suppose x(t) = 1=m for all t in an m-element set S, and y(t) 6= 0 only when t 2 S.Express D(y jjx) in terms of the entropy HY = E lg(1=Y ) (see Eq. 6.2.2{(18)).e) Let Z(u; v) = Pr(X = u andY = v) when X and Y have any joint distribution,and let W (u; v) be that same probability under the assumption that X and Y areindependent. The joint entropy HX;Y is de�ned to be HZ , and the mutual infor-mation IX;Y is de�ned to be D(z jjw). Prove that HW = HX +HY and IX;Y =HW �HZ . (Consequently HX;Y � HX +HY , and IX;Y measures the di�erene.)122. [HM24 ℄ Continuing exerise 121, ompute D(y jjx) and D(xjjy) whena) x(t) = 1=2t+1 and y(t) = 3t=4t+1 for t = 0, 1, 2, : : : ;b) x(t) = e�np(np)t=t! and y(t) = �nt�pt(1 � p)n�t, for t � 0 and 0 < p < 1. (Giveasymptoti answers with absolute error O(1=n), for �xed p as n!1.)
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MATHEMATICAL PRELIMINARIES REDUX 25 a prioriinformation gainedImportane samplingDARWINvon Mengdenx 123. [M20 ℄ Let X and Y be as in exerise 121. The random variable Z = A? Y : Xeither has the distribution x(t) or y(t), but we don't know whether A is true or false. Ifwe believe that the hypothesis Z = Y holds with the a priori probability Pr(A) = pk,we assume that zk(t) = Prk(Z = t) = pkx(t) + (1 � pk)y(t). But after seeing anew value of Z, say Z = Zk, we will believe the hypothesis with the a posterioriprobability pk+1 = Pr(A jZk). Show that D(y jjx) is the expeted \information gained,"lg(pk+1=(1� pk+1))� lg(pk=(1� pk)), averaged with respet to the distribution of Y.124. [HM22 ℄ (Importane sampling.) In the setting of exerise 121, we have E f(Y ) =E(�(X)f(X)) for any funtion f ; thus �(t) measures the \importane" of the X-value twith respet to the Y-value t. Many situations arise when it's easy to generate randomvariables with an approximate distribution x(t), but diÆult to generate them withthe exat distribution y(t). In suh ases we an estimate the average value E(f) =E f(Y ) by alulating En(f) = (�(X1)f(X1) + � � �+�(Xn)f(Xn))=n, where the Xj areindependent random variables, eah distributed as x(t).Let n = 42D(yjjx). Prove that if  > 1, this estimate En is relatively aurate:jE(f)�En(f)j � kfk (1= + 2p� ); where � = Pr(�(Y ) > 22D(yjjx)):(Here kfk denotes (E f(Y )2)1=2.) On the other hand if  < 1 the estimate is poor:Pr(En(1) � a) � 2 + (1��)=a: for 0 < a < 1;Here `1' denotes the onstant funtion f(y) = 1 (hene E(1) = 1).Every man must judge for himself between oniting vague probabilities.| CHARLES DARWIN, letter to N. A. von Mengden (5 June 1879)



Otober 3, 2015

CHESTERTONBrownSavageANSWERS TO EXERCISESIt isn't that they an't see the solution.It is that they an't see the problem.| G. K. CHESTERTON, The Sandal of Father Brown (1935)MATHEMATICAL PRELIMINARIES REDUX1. (a) A beats B in 5+0+5+5+0+5 ases out of 36; B beats C in 4+2+4+4+2+4;C beats A in 2 + 2 + 2 + 6 + 2 + 6.(b) The unique solution, without going to more than six spots per fae, isA = qqq qqq qqqqqq qqq qqq qqq ; B = q q q q q qqqqq q qqqq q qqqq q ; C = q q qq q q qq qq qq q q qq q q qq q :() A = fFm�2 � 1; Fm�1 � 4g, B = fFm � 3g, C = fFm�1 � 2; Fm�2 � 5g makesPr(C>A) = Fm�2Fm+1=F 2m; and we have Fm�2Fm+1 = Fm�1Fm� (�1)m. [Similarly,with n faes and A = fbn=�2� 1; dn=�e� 4g, et. the probabilities are 1=��O(1=n).See R. P. Savage, Jr., AMM 101 (1994), 429{436.℄2. Let Pr(A>B) = A, Pr(B >C) = B, Pr(C >A) = C. We an assume that no xappears on more than one die; if it did, we ould replae it by x+ � in A and x� � in C(for small enough �) without dereasing A, B, or C. So we an list the fae elements innondereasing order and replae eah one by the name of its die; for example, the pre-vious answer (b) yields CBBBAAAAACCCCCBBBA. Clearly AB, BC, and CA arenever onseutive in an optimal arrangement of this kind: BA is always better thanAB.Suppose the sequene is C1Bb1Aa1 : : : CkBbkAak where i > 0 for 1 � i � kand bi; ai > 0 for 1 � i < k. Let �i = ai=(a1 + � � � + ak), �i = bi=(b1 + � � � + bk),i = i=(1 + � � �+k); then A = �1�1 +�2(�1 +�2)+ � � � , B = �11 +�2(1 +2)+ � � � ,C = 2�1 + 3(�1 + �2) + � � � . We will show that min(A;B; C) � 1=� when the �'s,�'s, and 's are nonnegative real numbers; then it is < 1=� when they are rational.The key idea is that we an assume k � 2 and �2 = 0. Otherwise the followingtransformation leads to a shorter array without dereasing A, B, or C:02 = �2; 01 = 1+2�02; �02 = ��2; �01 = �1+�2��02; �01 = �1=�; �02 = �1+�2��01:Indeed, A0 = A, C0 = C, and B0 �B = (1� �)(�1 � ��2)2, and we an hoose � thus:Case 1: �1 � �2. Choose � = �1=(�1 + �2), making �02 = 0.Case 2: �1 < �2 and 1=2 � �1=�2. Choose � = 1 + 1=2, making 01 = 0.Case 3: �1 < �2 and 1=2 > �1=�2. Choose � = 1 + �1=�2, making �01 = 0.Finally, then, A = �1, B = 1� �12, C = 2; they an't all be greater than 1=�.[Similarly, with n die, the asymptoti optimum probability pn satis�es pn =�(n)2 = 1� �(n�1)1 �(n)2 = � � � = 1� �(2)1 �(3)2 = �(2)1 . One an show that fn(1� pn) = 0,26
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MPR ANSWERS TO EXERCISES 27 Chebyshev polynomialUsiskinTrybu laMoraledaStorkquite surelywhere fn+1(x) = fn(x)�xfn�1(x), f0(x) = 1, f1(x) = 1�x. Then fn(x2) is expressibleas the Chebyshev polynomial xn+1Un+1( 12x ); and we have pn = 1�1=(4 os2 �=(n+2)).See Z. Usiskin, Annals of Mathematial Statistis 35 (1964), 857{862; S. Trybu la,Zastosowania Matematyki 8 (1965), 143{156.℄3. Brute fore (namely a program) �nds eight solutions, of whih the simplest isA = qqq qqq qqqqqq qqq qqqq q ; B = C = q qq q q q qq qq qq q q q qq q ;all with respetive probabilities 1727 , 1627 , 1627 . [If qqq q qqq is also allowed, the unique solutionA = qqq qqq qqq qqq qqq qqqqqq qqq qqq qqq qqq qqq ; B = qqqqqqq q qqqqqqqqqqqqqq q qqqqqqq ; C = q qq q q qq q q qq qqqqqqqq qqqqqqq qqqqqqqhas the property that every roll has exatly one die below the average and two above,with eah of A, B, C equally likely to be below; hene all three probabilities are 2/3.See J. Moraleda and D. G. Stork, College Mathematis Journal 43 (2012), 152{159.℄4. (a) The permutation (1 2 3 4)(5 6) takes A ! B ! C ! D ! A. So B versus Cis like A versus B, et. Also Pr(A beats C) = Pr(C beats A) = Pr(B beats D) =Pr(D beats B) = 288720 ; Pr(A and C tie) = Pr(B and D tie) = 144720 .(b) Assume by symmetry the players are A, B, C. Then the bingoers are (A;B;C;AB;AC;BC;ABC) with respetive probabilities (168; 216; 168; 48; 72; 36; 12)=720.() It's (A;AB;AC;ABC;ABCD) with probabilities (120; 24; 48; 12; 0)=720.5. (a) If Ak = 1001 with probability .99, otherwise Ak = 0, but Bk = 1000 always,then P1000 = :991000 � :000043. (This example gives the smallest possible P1000,beause Pr((A1 �B1) + � � �+ (An �Bn) > 0) � Pr([A1>B1 ℄ : : : [An>Bn ℄) = Pn1 .)(b) Let E = q0 + q2 + q4 + � � � � 0:67915 be the probability that B = 0. ThenPr(A > B) = P1k=0 q2k(E +Pk�1j=0 q2j+1) � :47402; Pr(A < B) = P1k=0 q2k+1(1�E +Pkj=0 q2j ) � :30807; and Pr(A = B) = Pr(A = B = 0) = E(1�E) � :21790 is also theprobability that AB > 0.() During the �rst nk rounds, the probability that either Alie or Bob has soredmore than mk is at most nk(qk+1 + qk+2 + � � � ) = O(2�k); and the probability thatneither has ever sored mk is (1 � qk)nk < exp(�qknk) = exp(�2k=D). Also mk >nkmk�1 when k > 1. Thus Alie \quite surely" wins when k is even, but loses when kis odd, as k !1. [The Amerian Statistiian 43 (1989), 277{278.℄6. The probability that Xj = 1 is learly p1 = 1=(n�1); hene Xj = 0 with probabil-ity p0 = (n�2)=(n�1). And the probability that Xi = Xj = 1 when i < j is p21. Thus(see exerise 20), (Xi; Xj) will equal (0; 1), (1; 0), or (0; 0) with the orret probabilitiesp0p1, p1p0, p0p0. But Xi = Xj = Xk = 1 with probability 0 when i < j < k.For 3-wise independene let Pr(X1 : : : Xn = x1 : : : xn) = ax1+���+xn=(n�2)3, wherea0 = 2�n�23 �, a1 = �n�22 �, a3 = 1, otherwise aj = 0.7. Let fm(n) = Pmj=0 �nj�(�1)j(n + 1 � m)m�j , and de�ne probabilities via aj =fk�j(n�j) as in answer 6. (In partiular, we have f0(n) = 1, f1(n) = 0, f2(n) = �n�12 �,f3(n) = 2�n�23 �, f4(n) = 3�n�34 �+ �n�32 �2.) This de�nition is valid if we an prove thatfm(n) � 0 for n � m, beause of the identity Pj �nj�fm�j(n� j) = (n+ 1�m)m.To prove that inequality, Shulte-Geers notes (see CMath (5.19)) that fm(n) =Pmk=0 �m�nk �(n � m)m�k = Pmk=0 �n�m�1+kk �(�1)k(n � m)m�k; these terms pair upniely to yield Pm�1k=0 k�n�m�1+kk+1 �(n �m)m�k�1[k even℄ + �n�1m �[m even℄.
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28 ANSWERS TO EXERCISES MPR Vandermonde's matrixCoverpositively orrelatedGeorgiadishain ruleDavisBhatiamagi masksLukasparity numberGosperShroeppelHAKMEMtransendentalMahlerThue{Morse onstant
8. If 0 < k < n, the probability that k of the variables have any partiular settingis 1=2k, beause the remaining variables have even parity as often as odd parity. Sothere's (n� 1)-wise independene, but not n-wise.9. Give probability 1/2 to 0 : : : 0 and 1 : : : 1; all other vetors have probability 0.10. If n > p we have Xp+1 = X1, so there's no independene. Otherwise, if m < n � p,there's m-wise independene beause any m vetors (1; j; : : : ; jm�1) are linearly inde-pendent modulo p (they're olumns of Vandermonde's matrix, exerise 1.2.3{37); butthe X's are dependent (m + 1)-wise, beause a polynomial of degree m annot havem+ 1 di�erent roots. If m � n and n � p there is omplete independene.Instead of working mod p, we ould use any �nite �eld in this onstrution.11. We an assume that n = 1, beause (X1 + � � �+Xn)=n and (Xn+1 + � � �+X2n)=nare independent random variables with the same disrete distribution. Then Pr(jX1 +X2 � 2�j � 2jX1 � �j) � Pr(jX1 � �j + jX2 � �j � 2jX1 � �j) = Pr(jX2 � �j �jX1��j) = (1+Pr(X1 = X2))=2 > 1=2. [This exerise was suggested by T. M. Cover.℄12. Let w = Pr(A andB), x = Pr(A and �B), y = Pr( �A andB), z = Pr( �A and �B). All�ve statements are equivalent to wz > xy, or to jwy xz j > 0, or to \A and B are stritlypositively orrelated" (see exerise 61). [This exerise was suggested by E. Georgiadis.℄13. False in many ases. For example, take Pr( �A and �B and �C) = Pr( �A andB and �C) =0, Pr(A andB andC) = 2=7, and all other probabilities 1=7.14. Indution on n. [Philosophial Transations 53 (1763), 370{418, proof of Prop. 6.℄15. If Pr(C) > 0, this is the hain rule, onditional on C. But if Pr(C) = 0, it's falseby our onventions, unless A and B are independent.16. If and only if Pr(A \B \ C) = 0 6= Pr(B) or Pr(A \ C) = 0.17. 4/51, beause four of the ards other than Q� are aes.18. Sine (M � X)(X �m) � 0, we have (M EX) � (EX2) + (mEX) �mM � 0.[See C. Davis and R. Bhatia, AMM 107 (2000), 353{356, for generalizations.℄19. (a) The binary values of Pr(Xn = 1) = E(Xn) for n = 0, 1, 2, : : : , are respe-tively (:0101010101010101 : : : )2, (:0011001100110011 : : : )2, (:0000111100001111 : : : )2,: : : ; thus they're the omplemented reetions of the \magi masks" 7.1.3{(47). Theanswer is therefore (22n� 1)=(22n+1� 1) = 1=(22n+ 1).(b) Pr(X0X1 : : : Xn�1 = x0x1 : : : xn�1) = 2(�xn�1:::�x1�x0)2=(22n�1) an be \read o�"from the magi masks by ANDing and omplementing. [See E. Lukas, Charateristifuntions (1960), 119, for related theory.℄() The in�nite sum S is well de�ned beause Pr(S = 1) = 0. Its expetationES = P1n=0 1=(22n+ 1) � 0:59606 orresponds to the ase z = 1=2 in answer 7.1.3{41(). By independene, varS = P1n=0 varXn = P1n=0 22n=(22n+ 1)2 � 0:44148.(d) The parity number ER = (:0110100110010110 : : : )2 has the deimal value0:41245 40336 40107 59778 33613 68258 45528 30895�;and an be shown to equal 12 � 14P where P = Q1k=0(1 � 1=22k) [R. W. Gosper andR. Shroeppel, MIT AI Laboratory Memo 239 (29 February 1972), Hak 122℄, whih istransendental [K. Mahler, Mathematishe Annalen 101 (1929), 342{366; 103 (1930),532℄. (Furthermore it turns out that 1=P � 1=2 = P1k=0 1/Qk�1j=0 (22j� 1).) Sine R isbinary, var(R) = (ER)(1� ER) � 0:242336.
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MPR ANSWERS TO EXERCISES 29 Euler's onstantnegatively orrelatedPearson(e) Zero (beause � is irrational, hene p0 + p1 + � � � =1). However, if we ask theanalogous question for Euler's onstant  instead of �, nobody knows the answer.(f) EYn = 2 EXn; in fat, Pr(Y0Y1Y2 : : : = x0x1x2 : : : ), for any in�nite stringx0x1x2 : : : , is equal to 2 Pr(X0X1X2 : : : = x0x1x2 : : : ) mod 1, beause we shift thebinary representation one plae to the left (and drop any arry). Thus in partiular,EYmYn = 2 EXmXn = 12 EYm EYn when m 6= n; Ym and Yn are negatively orrelatedbeause ovar(Ym; Yn) = � 12 EYm EYn.(g) Clearly ET = 2 ES. Also ET 2 = 2 ES2, beause EYmYn = 2 EXmXn for allm and n. So var(T ) = 2(var(S) + (ES)2)� (2 ES)2 = 2 var(S)� 2(ES)2 � 0:17237.20. Let pj = EXj . We must prove, for example, that E(X1(1 � X2)(1 � X3)X4) =p1(1 � p2)(1 � p3)p4 when k � 4. But this is E(X1X4 � X1X2X4 � X1X3X4 +X1X2X3X4) = p1p4 � p1p2p4 � p1p3p4 + p1p2p3p4.21. From the previous exerise we know that they an't both be binary. Let X bebinary and Y ternary, taking the values (0; 0), (0; 1), (0; 2), (1; 0), (1; 1), (1; 2) withprobabilities respetively proportional to (a; b; 3a+ b+ 3d; d; 1; 1). Then EXY = 3=D,EX = 2=D, and EY = 3=2, where D = 4a + 2b + 4d + 2.22. By (8) we have Pr(A1 [ � � � [ An) = E [A1 [ � � � [An ℄ = E max([A1 ℄; : : : ; [An ℄) �E([A1 ℄ + � � �+ [An ℄) = E[A1 ℄ + � � �+ E[An ℄ = Pr(A1) + � � �+ Pr(An).23. The hinted probability is Pr(Xs = 0 and X1 + � � � +Xs�1 = s� r), so it equals�s�1s�r�ps�r(1� p)r. To get Bm;n(p), sum it for r = n �m and n �m � s � n. [For analgebrai rather than probabilisti/ombinatorial proof, see CMath, exerise 8.17.℄24. (a) The derivative of Bm;n(x) = Pmk=0 �nk�xk(1� x)n�k isB0m;n(x) = mXk=0�nk�(kxk�1(1� x)n�k � (n � k)xk(1� x)n�1�k)= n�m�1Xk=0�n�1k �xk(1� x)n�1�k � mXk=0�n�1k �xk(1� x)n�1�k�= �n�n�1m �xm(1� x)n�1�m:[See Karl Pearson, Biometrika 16 (1924), 202{203.℄(b) The hint, whih says that R a=(a+b+1)0 xa(1 � x)bdx < R 1a=(a+b+1) xa(1 � x)bdxwhen 0 � a � b, will prove that 1�Bm;n(m=n) < Bm;n(m=n). It suÆes to show thatR a=(a+b)0 xa(1�x)bdx � R 1a=(a+b) xa(1�x)bdx, beause we have R a=(a+b+1)0 < R a=(a+b)0 �R 1a=(a+b) < R 1a=(a+b+1). Let x = (a� �)=(a+ b), and observe that (a� �)a(b+ �)b is lessthan or equal to (a+ �)a(b� �)b for 0 � � � a, beause the quantity�a� �a+ ��a = ea(ln(1��=a)�ln(1+�=a)) = exp��2��1 + �23a2 + �45a4 + � � ���inreases when a inreases.() Let tk = �nk�mk(n�m)n�k. When m � n=2 we an show that 1�Bm;n(m=n) =Pk>m tk=nn < Bm;n(m=n) = Pmk=0 tk=nn, beause tm+d < tm+1�d for 1 � d � n�m.For if rd = tm+d=tm+1�d, we have r1 = m=(m+ 1) < 1; alsord+1rd = (n �m+ d)(n�m� d)m2(m+ 1 + d)(m+ 1� d)(n�m)2 < 1;
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30 ANSWERS TO EXERCISES MPR NeumannLordNewtonSylvesterPitmanbeause ((m+1)2�d2)(n�m)2 � ((n�m)2�d2)m2 = (2m+1)(n�m)2+(2m�n)nd2.[Peter Neumann proved in Wissenshaftlihe Zeitshrift der Tehnishen Univer-sit�at Dresden 15 (1966), 223{226, that m is the median. The argument in part () isdue to Nik Lord, in The Mathematial Gazette 94 (2010), 331{332.℄25. (a) ��nk��� �� nk+1�� is P pIqJ(qt=(n � k)� pt=(k + 1)), summed over all partitionsof f1; : : : ; ng into disjoint sets I [ J [ftg, where jIj = k, jJ j = n� k� 1, pI = Qi2I pi,qJ = Qj2J qj . And qt=(n� k)� pt=(k + 1) � 0 () pt � (k + 1)=(n+ 1).(b) Given p1, : : : , pn�1, the quantity ��nk�� is maximized when pn = p, by (a). Thesame argument applies symmetrially to all indies j.26. The inequality is equivalent to r2n;k � rn;k�1rn;k+1, whih was stated withoutproof on pages 242{245 of Newton's Arithmetia Universalis (1707), then �nally provedby Sylvester many years later [Pro. London Math. So. 1 (1865), 1{16℄. We havenrn;k = kpnrn�1;k�1 + (n�k)qnrn�1;k; hene n2(r2n;k� rn;k�1rn;k+1) = (pnrn�1;k�1�qnrn�1;k)2 + (k2 � 1)p2nA+ (k � 1)(n � 1� k)pnqnB + ((n � k)2 � 1)q2nC, where A =r2n�1;k�1 � rn�1;k�2rn�1;k, B = rn�1;k�1rn�1;k � rn�1;k�2rn�1;k+1, and C = r2n�1;k �rn�1;k�1rn�1;k+1 are nonnegative, by indution on n.27. Pmk=0 ��nk�� = Pmk=0 ��n�m�1+kk ��(1� pn�m+k), by the same argument as before.28. (a) ��nk�� = ��n�2k ��A+ ��n�2k�1��B + ��n�2k�2��C and E g(X) = Pn�2k=0 ��n�2k ��hk, whereA = (1� pn�1)(1� pn), C = pn�1pn, B = 1�A� C, and hk = Ag(k) +Bg(k + 1) +Cg(k + 2). If the pj 's aren't all equal, we may assume that pn�1 < p < pn. Settingp0n�1 = pn�1 + � and p0n = pn � �, where � = min(pn � p; p � pn�1), hanges A, B,C to A0 = A + Æ, B0 = B � 2Æ, C0 = C + Æ, where Æ = (pn � p)(p � pn�1); henehk hanges to h0k = hk + Æ(g(k) � 2g(k + 1) + g(k + 2)). Convex funtions satisfyg(k) � 2g(k + 1) + g(k + 2) � 0, by (19) with x = k and y = k + 2; hene we anpermute the p's and repeat this transformation until pj = p for 1 � j � n.(b) Suppose E g(X) is maximum, and that r of the p's are 0 and s of them are 1.Let a satisfy (n � r � s)a + s = np and assume that 0 < pn�1 < a < pn < 1. As inpart (a) we an write E g(X) = �A+ �B + C for some oeÆients �, �, .If ��2�+ > 0, the transformation in (a) (but with a in plae of p) would inreaseE g(X). And if � � 2� +  < 0, we ould inrease it with a similar transformation,using Æ = �min(pn�1; 1 � pn). Therefore � � 2� +  = 0; and we an repeat thetransformation of (a) until every pj is 0, 1, or a.() SinePmk=0 ��nk�� = 0 when s > m, we may assume that s � m, hene r+s < n.For this funtion g(k) = [0� k�m℄ we have � � 2� +  = ��n�2m �� � ��n�2m�1��. Thisdi�erene annot be positive if the hoie of fp1; : : : ; png is optimum; in partiular weannot have s = m. If r > 0 we an make pn�1 = 0 and pn = a, so that ��n�2m �� =�n�r�s�1m�s �am�s(1 � a)n�r�1�m and ��n�2m�1�� = �n�r�s�1m�1�s �am�1�s(1 � a)n�r�m. Butthen the ratio ��n�2m ��=��n�2m�1�� = (n� r�m)a=((m� s)(1� a)) exeeds 1; hene r = 0.Similarly if s > 0 we an set (pn�1; pn) = (a; 1), getting the ratio ��n�2m ��=��n�2m�1�� =(n � 1 �m)a=((m � s + 1)(1 � a)) � 1. In this ase ��n�2m �� = ��n�2m�1�� if and only ifnp = m+ 1; we an transform without hanging E g(X), until s = 0 and eah pj = p.[Referene: Annals of Mathematial Statistis 27 (1956), 713{721. The oeÆients��nk�� also have many other important properties; see exerise 7.2.1.5{63, and the surveyby J. Pitman in J. Combinatorial Theory A77 (1997), 279{303.℄29. The result is obvious when m = 0 or n; and there's a diret proof when m = n�1:Bn�1;n(p) = 1 � pn � (1 � p)n=((1 � p)n + p) beause p � npn + (n � 1)pn+1 =p(1� p)(1 + p+ � � �+ pn�1 � pn�1n) � 0. The result is also lear when p = 0 or 1.



Otober 3, 2015

MPR ANSWERS TO EXERCISES 31 EltonShulte-GeersSamuelsarithmeti{geometri mean inequalityWinklergumball mahine problemEltonFeigemintermsinlusion-exlusion
If p = (m + 1)=n we have Rm;n(p) = ((1 � p)(m + 1)=((1 � p)m + 1))n�m =((n�m�1)=(n�m))n�m. So if m > 0 and p̂ = m=(n�1), we an apply exerise 28()with p1 = � � � = pn�1 = p̂ and pn = 1:Bm;n(p) �Pmk=0 ��nk�� = Pmk=0 �n�1k�1�p̂k�1(1� p̂)n�k = Bm�1;n�1(p̂):When 1 � m < n� 1, let Qm;n(p) = Bm;n(p)�Rm;n(p). The derivativeQ0m;n(p) = (n�m)�nm�(1� p)n�m�1(A� F (p))=((1� p)m+ 1)n�m+1;where A = (m+ 1)n�m=�nm� > 1 and F (p) = pm((1� p)m+ 1)n�m+1, begins positiveat p = 0, eventually beomes negative but then is positive again at p = 1. (Notie thatF (0) = 0, and F (p) inreases dramatially until p = (m+ 1)=(n+ 1); then it dereasesto F (1) = 1.) The fats that Qm;n(m+1n ) � 0 = Qm;n(0) = Qm;n(1) now omplete theproof, beause Q0m;n(p) hanges sign only one in [0 : : m+1n ℄. [Annals of MathematialStatistis 36 (1965), 1272{1278.℄30. (a) Pr(Xk = 0) = n=(n + 1); hene p = nn=(n+ 1)n > 1=e � 0:368.(b) (Solution by J. H. Elton.) Let pkm = Pr(Xk = m). Assume that theseprobabilities are �xed for 1 � k < n, and let xm = pnm. Then x0 = x2+2x3+3x4+� � � ;we want to minimize p = P1m=1(Am + (m� 1)A0)xm in nonnegative variables x1, x2,: : : , where Am = Pr(X1+� � �+Xn�1 � n�m), subjet to the onditionP1m=1mxm = 1.Sine all oeÆients of p are nonnegative, the minimum is ahieved when all xm form � 1 are zero exept for one value m = mn, whih minimizes (Am + (m� 1)A0)=m.And mn � n+1, beause Am = 0 whenever m > n. Similarly m1, : : : , mn�1 also exist.() (Solution by E. Shulte-Geers.) Letting m1 = � � � = mn = t � n+ 1, we wantto minimize Bbn=t;n(1=t). The inequality of Samuels in exerise 29 implies thatBm;n(p) � �1� 1f(m;n; p) + 1�n for p � m+ 1n , where f(m;n; p) = (m+ 1)(1� p)n(n�m)p ;beause we an set x = ((1 � p)m + 1)=((1 � p)(m + 1)) in the arithmeti{geometrimean inequality xn�m � ((n � m)x + m)n=nn. Now 1=t � (bn=t + 1)=(n + 1) andf(bn=t; n; 1=t) � n; hene Bbn=t;n(1=t) � nn=(n + 1)n.[Peter Winkler alled this the \gumball mahine problem" in CACM 52, 8 (August2009), 104{105. J. H. Elton has veri�ed that the joint distributions in (a) are optimumwhen n � 20; see arXiv:0908.3528 [math.PR℄ (2009), 7 pages. Do those distributionsin fat minimize p for all n? Uriel Feige has onjetured more generally that we havePr(X1 + � � � + Xn < n + 1=(e�1)) � 1=e whenever X1, : : : , Xn are independentnonnegative random variables with EXk � 1; see SICOMP 35 (2006), 964{984.℄31. This result is immediate beause Pr(f([A1 ℄; : : : ; [An ℄)) = E f([A1 ℄; : : : ; [An ℄). Buta more detailed, lower-level proof will be helpful with respet to exerise 32.Suppose, for example, that n = 4. The reliability polynomial is the sum of thereliability polynomials for the minterms of f ; so it suÆes to show that the result istrue for funtions like x1 ^ �x2 ^ �x3 ^ x4 = x1(1 � x2)(1 � x3)x4. And it's lear thatPr(A1\A2\A3\A4) = Pr(A1\A2\A4)�Pr(A1\A2\A3\A4) = �14��124��134+�1234.(See exerise 7.1.1{12; also reall the inlusion-exlusion priniple.)32. The 2n minterm probabilities in the previous answer must all be nonnegative, andthey must sum to 1. We've already stipulated that �; = 1, so the sum-to-1 ondition isautomatially satis�ed. (The ondition stated in the exerise when I � J is neessarybut not suÆient; for example, �12 must be � �1 + �2 � 1.)
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32 ANSWERS TO EXERCISES MPR martingaleset partitionsgenerating funtionbinomial distributionGrimmettStirzakeronave33. The three events (X;Y ) = (1; 0), (0; 1), (1; 1) our with probabilities p, q, r,respetively. The value of E(X jY ) is 1, r=(q + r), r=(q + r) in those ases. Hene theanswer is pz + (q + r)zr=(q+r). (This example demonstrates why univariate generatingfuntions are not used in the study of onditional random variables suh as E(X jY ).But we do have the simple formula E(X jY =k) = ([zk℄ ��wG(1; z))/([zk℄G(1; z)).)34. The right-hand side isX! E(X jY ) Pr(!) = X! Pr(!)X!0 X(!0) Pr(!0)[Y (!0) =Y (!)℄=Pr(Y =Y (!))= X! Pr(!)X!0 X(!0) Pr(!0)[Y (!0) =Y (!)℄=Pr(Y =Y (!0))= X!0 X(!0) Pr(!0)X! Pr(!)[Y (!) =Y (!0)℄=Pr(Y =Y (!0)):35. Part (b) is false. If, for instane, X and Y are independent random bits andZ = X, we have E(X jY ) = 12 and E( 12 jZ) = 12 6= X = E(X jZ). The orret formulainstead of (b) is E(E(X jY; Z) jZ) = E(X jZ): (�)This is (12) in the probability spaes onditioned by Z, and it is the ruial identitythat underlies exerise 91. Part (a) is true beause it is the ase Y = Z of (�).36. (a) f(X); (b) E(f(Y )g(X)), generalizing (12). Proof: E(f(Y ) E(g(X) j Y )) =Py f(y) E(g(X) jY =y) Pr(Y =y) = Px;y f(y)g(x) Pr(X=x; Y =y) = E(f(Y )g(X)).37. If we're given the values of X1, : : : , Xk�1, the value of Xk is equally likely to beany of the n + 1� k values in f1; : : : ; ng n fX1; : : : ; Xk�1g. Hene its average value is(1 + � � �+ n�X1 � � � � �Xk�1)=(n+ 1� k). We onlude that E(Xk jX1; : : : ; Xk�1) =(n(n + 1)=2 � X1 � � � � � Xk�1)=(n + 1 � k). [Inidentally, the sequene Z0, Z1, : : : ,de�ned by Zj = (n+ j)X1 + (n+ j � 2)X2 + � � �+ (n� j)Xj+1 � (j + 1)n(n+ 1)=2 for0 � j < n and Zj = Zn�1 for j � n, is therefore a martingale.℄38. Let tm;n be the number of restrited growth strings of length m + n that beginwith 01 : : : (m�1). (This is the number of set partitions of f1; : : : ; m+ng in whih eahof f1; : : : ;mg appears in a di�erent blok.) The generating funtion Pn�0 tm;nzn=n!turns out to be exp(ez � 1 +mz); hene tm;n = Pk$k�nk�mn�k.Suppose M = max(X1; : : : ; Xk�1) + 1. Then Pr(Xk = j) = tM;n�k=tM;n+1�kfor 0 � j < M , and tM+1;n�k=tM;n+1�k for j = M . Hene E(Xk jX0; : : : ; Xk�1) =(�M2 �tM;n�k +MtM+1;n�k)/tM;n+1�k.39. (a) Sine E(K jN=n) = pn we have E(K jN) = pN .(b) Hene EK = E(E(K jN)) = E pN = p�.() Let pnk = Pr(N=n;K =k) = (e���n=n!)� �nk�pk(1� p)n�k = (e���kpk=k!)�f(n � k), where f(n) = (1� p)n�n=n!. Then E(N jK=k) = Pn npnk=Pn pnk. Sinenf(n � k) = kf(n � k) + (n � k)f(n � k) and nf(n) = (1 � p)�f(n � 1), the answeris k + (1 � p)�; hene E(N j K) = K + (1 � p)�. [G. Grimmett and D. Stirzaker,Probability and Random Proesses (Oxford: 1982), x3.7.℄40. If p = Pr(X > m), learly EX � (1 � p)m + pM . [We also get this result from(15), by taking S = fx j x � mg, f(x) = M � x, s = M �m.℄41. (a) Convex when a � 1 or a = 0; otherwise neither onvex nor onave. (However,xa is onave when 0 < a < 1 and onvex when a < 0, if we onsider only positivevalues of x.) (b) Convex when n is even or n = 1; otherwise neither onvex nor onave.
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MPR ANSWERS TO EXERCISES 33 power seriesonvex ombinationJensenRossBoydVandenbergheJensen's inequalityonvexChebyshevCantelli's inequalityseond moment prinipleAldousdual of a Boolean funtion
(This funtion is R x0 tn�1ex�tdt=(n�1)!, aording to 1.2.11.3{(5); so f 00(x)=x > 0 whenn � 3 is odd.) () Convex. (In fat f(jxj) is onvex whenever f(z) has a power serieswith nonnegative oeÆients, onvergent for all z.) (d) Convex, provided of ourse thatwe allow f to be in�nite in the de�nition (19).42. We an show by indution on n that f(p1x1+� � �+pnxn) � p1f(x1)+� � �+pnf(xn),when p1, : : : , pn � 0 and p1 + � � �+ pn = 1, as in exerise 6.2.2{36. The general resultfollows by taking limits as n!1. [The quantity p1x1 + � � �+ pnxn is alled a \onvexombination" of fx1; : : : ; xng; similarly, EX is a onvex ombination of X values.Jensen atually began his study by assuming only the ase p = q = 12 of (19).℄43. f(EX) = f(E(E(X j Y ))) � E(f(E(X j Y ))) � E(E f(X) j Y ) = E f(X). [S. M.Ross, Probability Models for Computer Siene (2002), Lemma 3.2.1.℄44. The funtion f(xy) is onvex in y for any �xed x. Therefore g(y) = E f(Xy) isonvex in y: It's a onvex ombination of onvex funtions. Also g(y) � f(EXy) =f(0) = g(0) by (20). Hene 0 � a � b implies g(0) � g(a) � g(b) by onvexity of g.[S. Boyd and L. Vandenberghe, Convex Optimization (2004), exerise 3.10.℄45. Pr(X > 0) = Pr(jXj � 1); set m = 1 in (16).46. EX2 � (EX)2 in any probability distribution, by Jensen's inequality, beausesquaring is onvex. We an also prove it diretly, sine EX2� (EX)2 = E(X �EX)2.47. We always have Y � X and Y 2 � X2. (Consequently (22) yields Pr(X > 0) =Pr(Y > 0) � (EY )2=(EY 2) � (EX)2=(EX2) when EX � 0.)48. Pr(a�X1�� � ��Xn > 0) � a2=(a2+�21 +� � �+�2n), by exerise 47. [This inequalitywas also known to Chebyshev; see J. Math. Pures et Appl. (2) 19 (1874), 157{160. Inthe speial ase n = 1 it is equivalent to \Cantelli's inequality,"Pr(X � EX + a) � var(X)=(var(X) + a2); for a � 0;see Atti del Congresso Internazionale dei Matematii 6 (Bologna: 1928), 47{59, x6{x7.℄49. Pr(X = 0) = 1�Pr(X > 0) � (EX2�(EX)2)=EX2 � (EX2�(EX)2)=(EX)2 =(EX2)=(EX)2 � 1. [Some authors all this inequality the \seond moment priniple,"but it is stritly weaker than (22).℄50. (a) Let Yj = Xj=X if Xj > 0, otherwise Yj = 0. Then Y1 + � � � + Ym = [X > 0℄.Hene Pr(X > 0) = Pmj=1 EYj ; and EYj = E(Xj=X j Xj>0) � Pr(Xj>0). [This iden-tity, whih requires only that Xj � 0, is elementary yet nonlinear, so it apparently layundisovered for many years. See D. Aldous, Disrete Math. 76 (1989), 168.℄(b) Sine Xj 2 f0; 1g, we have Pr(Xj > 0) = EXj = pj ; and E(Xj=X jXj >0) =E(Xj=X jXj=1) = E(1=X jXj=1) � 1=E(X jXj=1).() Pr(XJ = 1) = Pmj=1 Pr(J = j and Xj = 1) = Pmj=1 pj=m = EX=m. HenePr(J = j jXJ = 1) = Pr(J = j and Xj = 1)=Pr(XJ = 1) = (pj=m)=(EX=m) = pj=EX.(d) Sine J is independent we have tj = E(X jJ = j and Xj = 1) = E(X jXj = 1).(e) The right side is (EX)Pmj=1(pj=EX)=tj � (EX)=Pmj=1(pj=EX)tj .51. If g(q1; : : : ; qm) = 1 � f(p1; : : : ; pm) is the dual of f , where qj = 1 � pj , a lowerbound on g gives an upper bound on f . For example, when f is x1x2x3_x2x3x4_x4x5,�f is �x1�x4 + �x2�x4 + �x3�x4 + �x2�x5 + �x3�x5. So the inequality (24) gives g(q1; : : : ; q5) �q1q4=(1+q2 +q3 +q2q5 +q3q5)+q2q4=(q1 +1+q3 +q5 +q3q5)+q3q4=(q1 +q2 +1+q2q5 +q5) + q2q5=(q1q4 + q4 + q3q4 + 1 + q3) + q3q5=(q1q4 + q2q4 + q4 + q2 + 1). In partiular,g(:1; : : : ; :1) > 0:039 and f(:9; : : : ; :9) < 0:961.52. �nk�pk=Pkj=0 �kj��n�kj �pj .
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53. f(p1; : : : ; p6) � p1p2(1�p3)=(1+p4p5(1�p6))+� � �+p6p1(1�p2)=(1+p3p4(1�p5)).Monotoniity is not required when applying this method, nor need the impliants beprime. The result is exat when the impliants are disjoint.54. (a) Pr(X > 0) � EX = �n3�p3, beause EXuvw = p3 for all u < v < w.(b) Pr(X > 0) � (EX)2=(EX2), where the numerator is the square of (a) and thedenominator an be shown to be �n3�p3 + 12�n4�p5 + 30�n5�p6 + 20�n6�p6. For example,the expansion of X2 ontains 12 terms of the form XuvwXuvw0 with u < v < w < w0,and eah of those terms has expeted value p5.55. A BDD for the orresponding Boolean funtion of �102 � = 45 variables has about1.4 million nodes, and allows us to evaluate the true probability (1� p)45G(p=(1� p))exatly, where G(z) is the orresponding generating funtion (see exerise 7.1.4{25).The results are: (a) 30=37 � :811 < 35165158461687=245 � :999 < 15; (b) 10=109 �:092 < 4180246784470862526910349589019919032987399=(4 � 1043) � :105 < :12.56. The upper bound is � = �3=6; the lower bound divides this by 1 + �. [The exatasymptoti value an be obtained using the priniple of inlusion and exlusion and its\braketing" property, as in Eq. 7.2.1.4{(48); the result is 1� e��. See P. Erd}os andA. R�enyi, Magyar Tudom�anyos Akad�emia Mat. Kut. Int. K�ozl. 5 (1960), 17{61, x3.℄57. To ompute E(X jXuvw = 1) we sum Pr(Xu0v0w0 jXuvw = 1) over all �n3� hoiesof u0 < v0 < w0. If fu0; v0; w0g \ fu; v; wg has t elements, this probability is p3�t(t�1)=2;and there are �3t��n�33�t� suh ases. Consequently we getPr(X > 0) � �n3�p3/(�n�33 �p3 + 3�n�32 �p3 + 3�n�31 �p2 + �n�30 �p0):[In this problem the lower bound turns out to be the same using either inequality; butthe derivation here was easier.℄58. Pr(X > 0) � �nk�pk(k�1)=2. The lower bound, using the onditional expetationinequality as in the previous answer, divides this by Pkt=0 �kt��n�kk�t�pk(k�1)=2�t(t�1)=2.59. (a) The hypotheses imply that a0a1b0b1 � 01d0d1. The key observation is that1d0((0+1)(d0+d1)�(a0+a1)(b0+b1)) =1d0(0d0�a0b0+1d1�a1b1)+(1d0�a0b1)(1d0�a1b0)+01d0d1�a0a1b0b1:Thus the result holds when 1d0 6= 0. If 1 = 0 we have a0b0 + a0b1 + a1b0 + a1b1 =a0b0 � 0d0 � 0(d0 + d1). And a similar argument applies to the ase d0 = 0.All four hypotheses hold with equality when a0 = b0 = d0 = 0 and the othervariables are 1, yet the onlusion is that 1 � 2. Conversely, when b1 = 1 = 2 and theother variables are 1, we have a1b0 < 1d0 but onlude only that 6 � 6.(b) Let Al = Pfa2j+l j 0 � j < 2n�1g for l = 0 and l = 1, and de�ne Bl, Cl, Dlsimilarly from b2j+l, 2j+l, d2j+l. The hypotheses for j mod 2 = l and k mod 2 = mprove that AlBm � CljmDl&m, by indution on n. Hene, by part (a), we have thedesired inequality (A0 + A1)(B0 + B1) � (C0 + C1)(D0 + D1). [This result is dueto R. Ahlswede and D. E. Daykin, Zeitshrift f�ur Wahrsheinlihkeitstheorie und ver-wandte Gebiete 43 (1978), 183{185, who stated it in the language of the next exerise.℄() Now let An = a0 + � � �+ a2n�1, and de�ne Bn, Cn, Dn similarly. If A1B1 >C1D1, we'll have AnBn > C1D1 for some n. But C1D1 � CnDn, ontra (b).60. (a) We an onsider eah set to be a subset of the nonnegative integers. Let �(S) =�(S)[S 2F ℄, �(S) = �(S)[S 2G ℄, (S) = (S)[S 2F t G ℄, Æ(S) = Æ(S)[S 2F u G ℄;then �(}) = �(F), �(}) = �(G), (}) = (F tG), and Æ(}) = Æ(F uG), where } is the
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family of all possible subsets. Sine any set S of nonnegative integers an be enodedin the usual way as the binary number s = Pj2S 2j , the desired result follows from thefour funtions theorem if we let as = �(S), bs = �(S), s = (S), ds = Æ(S).(b) Let �(S) = �(S) = (S) = Æ(S) = 1 for all sets S.61. (a) In the hinted ase we an let �(S) = f(S)�(S), �(S) = g(S)�(S), (S) =f(S)g(S)�(S), Æ(S) = �(S); the four funtions theorem yields the result. The generalase follows beause we have E(fg) � E(f) E(g) = E(f̂ ĝ) � E(f̂) E(ĝ), where f̂(S) =f(S)� f(;) and ĝ(S) = g(S)� g(;). [See Commun. Math. Physis 22 (1971), 89{103.℄(b) Changing f(S) to �f(S) and g(S) to �g(S) hanges E(fg) � E(f) E(g) to��(E(fg)� E(f) E(g)), for all real numbers � and �.() If S and T are supported, then R = S \ T and U = S [ T are supported.Furthermore we an write S = R [ fs1; : : : ; skg and T = R [ ft1; : : : ; tlg where thesets Si = R [ fs1; : : : ; sig and Tj = R [ ft1; : : : ; tjg are supported, as are their unionsUi;j = Si [ Tj , for 0 � i � k and 0 � j � l. By (iii) we know that �(Ui+1;j)=�(Ui;j) ��(Ui+1;j+1)=�(Ui;j+1) when 0 � i < k and 0 � j < l. Multiplying these inequalitiesfor 0 � i < k, we obtain �(Uk;j)=�(U0;j ) � �(Uk;j+1)=�(U0;j+1). Hene �(S)=�(R) =�(Uk;0)=�(U0;0) � �(Uk;l)=�(U0;l) = �(U)=�(T ).(d) In fat, equality holds, beause [j 2S ℄ + [j 2T ℄ = [j 2S [ T ℄ + [j 2S \ T ℄.[Note: Random variables with this distribution are often onfusingly alled \Poisson tri-als," a term that onits with the (quite di�erent) Poisson distribution of exerise 39.℄(e) Choose  in the following examples so that PS �(S) = 1. In eah ase thesupported sets are subsets of U = f1; : : : ;mg. (i) Let �(S) = r1r2 : : : rjSj, where0 < r1 � � � � � rm. (ii) Let �(S) = pj when S = f1; : : : ; jg and 1 � j � m, otherwise�(S) = 0. (If p1 = � � � = pm in this ase, the FKG inequality redues to Chebyshev'smonotoni inequality of exerise 1.2.3{31.) (iii) Let�(S) = �1(S \ U1)�2(S \ U2) : : : �k(S \ Uk);where eah �j is a distribution on the subsets of Uj � U that satis�es (��). Thesubuniverses U1, : : : , Uk needn't be disjoint. (iv) Let �(S) = e�f(S), where f isa submodular set funtion on the supported subsets of U : f(S [ T ) + f(S \ T ) �f(S) + f(T ) whenever f(S) and f(T ) are de�ned. (See Setion 7.6.)62. A Boolean funtion is essentially a set funtion whose values are 0 or 1. Ingeneral, under the Bernoulli distribution or any other distribution that satis�es theondition of exerise 61, the FKG inequality implies that any monotone inreasingBoolean funtion is positively orrelated with any other monotone inreasing Booleanfuntion, but negatively orrelated with any monotone dereasing Boolean funtion.In this ase, f is monotone inreasing but g is monotone dereasing: Adding an edgedoesn't disonnet a graph; deleting an edge doesn't invalidate a 4-oloring.(Notie that when f is a Boolean funtion, E f is the probability that f is trueunder the given distribution. The fat that ovar(f; g) � 0 in suh a ase is equivalentto saying that the onditional probability Pr(f j g) is � Pr(f).)63. If ! is the event (Z0 = a; Z1 = b), we have Z0(!) = a and E(Z1 j Z0)(!) =(pa1 + 2pa2)=(pa0 + pa1 + pa2). Hene p01 = p02 = p20 = p21 = 0, and p10 = p12; theseonditions are neessary and suÆient for E(Z1 jZ0) = Z0.64. (a) No. Consider the probability spae onsisting of just three events (Z0; Z1; Z2) =(0; 0;�2), (1; 0; 2), (1; 2; 2), eah with probability 1/3. Call those events a, b, . ThenE(Z1 j Z0)(a) = 0 = Z0(a); E(Z1 j Z0)(b; ) = 12 (0 + 2) = Z0(b; ); E(Z2 j Z1)(a; b) =12 (�2 + 2) = Z1(a; b); E(Z2 jZ1)() = 2 = Z1(). But E(Z2 jZ0; Z1)(a) = �2 6= Z1(a).



Otober 3, 2015

36 ANSWERS TO EXERCISES MPR CasanovaBernoullide MontmortBernoulliSt. Petersburg paradoxparadoxCatalan numberreurrenein�nite meangenerating funtionFellerinverses
(b) Yes. We have Pzn+1(zn+1 � zn) Pr(Z0 = z0; : : : ; Zn+1 = zn+1) = 0 for all�xed (z0; : : : ; zn). Sum these to get Pzn+1(zn+1 � zn) Pr(Zn = zn; Zn+1 = zn+1) = 0.65. Observe �rst that E(Zn+1 j Z0; : : : ; Zk) = E(E(Zn+1 j Z0; : : : ; Zn) j Z0; : : : ; Zk) =E(Zn j Z0; : : : ; Zk) whenever k < n. Thus E(Zm(n+1) j Z0; : : : ; Zm(n)) = Zm(n) for alln � 0. Hene E(Zm(n+1) jZm(0); : : : ; Zm(n)) = Zm(n), as in the previous exerise.66. We need to speify the joint distribution of fZ0; : : : ; Zng, and it's not diÆult to seethat there is only one solution. Let p(�1; : : : ; �n) = Pr(Z1 = �1; : : : ; Zn = �nn) when�1, : : : , �n are eah �1. The martingale law p(�1 : : : �n1)(n+1)�p(�1 : : : �n�1)(n+1) =�np(�1 : : : �n)n = �n(p(�1 : : : �n1)+p(�1 : : : �n�1))n gives p(�1 : : : �n+1)=p(�1 : : : �n) =(1 + 2n[�n�n+1> 0℄)=(2n + 2). Hene we �nd that Pr(Z1 = z1; : : : ; Zn = zn) =(Qn�1k=1 (1 + 2k[zkzk+1> 0℄))=(2nn!). When n = 3, for example, the eight possible asesz1z2z3 = 123, 12�3, : : : , �1�2�3 our with probabilities (15; 3; 1; 5; 5; 1; 3; 15)=48.67. (a) You \always" (with probability 1) make 2n+1� (1 + 2 + � � � + 2n) = 1 dollar.(b) Your total payments are X = X0 + X1 + � � � dollars, where Xn = 2n withprobability 2�n, otherwise Xn = 0. So EXn = 1, and EX = EX0 + EX1 + � � � =1.() Let hTni be a sequene of uniformly random bits; and de�ne the fair sequeneYn = (�1)Tn2nT0 : : : Tn�1, or Yn = 0 if there is no nth bet. Then Zn = Y0 + � � �+ Yn.[The famous adventurer Casanova lost a fortune in 1754 using this strategy, whihhe alled \the martingale" in his autobiography Histoire de ma vie. A similar bet-ting sheme had been proposed by Niolas Bernoulli (see P. R. de Montmort, Essayd'Analyse sur les Jeux de Hazard, seond edition (1713), page 402); and the perplexitiesof (a) and (b) were studied by his ousin Daniel Bernoulli, whose important paper inCommentarii Aademi� Sientiarum Imperialis Petropolitan� 5 (1731), 175{192, hasaused this senario to beome known as the St. Petersburg paradox.℄68. (a) Now Zn = Y1 + � � �+ Yn, where Yn = (�1)Tn [N �n℄. Again Pr(ZN = 1) = 1.(b) The generating funtion g(z) equals z(1 + g(z)2)=2, sine he must win $2if the �rst bet loses. Hene g(z) = (1 � p1� z2)=z; and the desired probability is[zn℄ g(z) = C(n�1)=2[n odd℄=2n, where Ck is the Catalan number �2kk �=(k + 1).() Pr(N � n) = [zn℄ (1� zg(z))=(1� z) = [zn℄ (1 + z)=p1� z2 = �2bn=2bn=2 �=2bn=2.(d) EN = g0(1) =1. (It's also P1n=1 Pr(N � n), where Pr(N � n) � 1=p�n.)(e) Let pm = Pr(Zn � �m) for all n � 0. Clearly p0 = 1=2 and pm = (1 +pm�1pm)=2 for m > 0; this reurrene has the solution pm = (m+ 1)=(m+ 2). So theanswer is 1=((m+ 1)(m+ 2)); it's another probability distribution with in�nite mean.(f) The generating funtion gm(z) for the number of times �m is hit satis�esg0(z) = z=(2�z), gm(z) = (1+gm�1(z)gm(z))=2 for m > 0. So gm(z) = hm(z)=hm+1(z)for m � 0, where hm(z) = 2m� (2m� 1)z, and g0m(1) = 2. [A distribution with �nitemean! See W. Feller, An Intro. to Probability Theory 2, seond edition (1971), XII.2.℄69. Eah permutation of n elements orresponds to a on�guration of n + 1 balls inthe urn. For Method 1, the number of orresponding \red balls" is the position ofelement 1; for Method 2, it is the value in position 1. For example, we'd put 3 1 2 4into node (2; 3) with respet to Method 1 but into (3; 2) with respet to Method 2. (Infat, Methods 1 and 2 onstrut permutations that are inverses of eah other.)70. Start with the permutation 1 2 : : : ( � 1) at the root, and use Method 1 of theprevious exerise to generate all n!=(�1)! permutations in whih these elements retainthat order. A permutation with j in position Pj for 1 � j <  stands for Pj � Pj�1balls of olor j, where P0 = 0 and P = n + 1; for example, if  = 3, the permutation
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3 1 4 2 would orrespond to node (2; 2; 1). The resulting tuples (A1; : : : ; A)=(n + 1)then form a martingale for n = , + 1, : : : , uniformly distributed (for eah n) amongall � n�1� ompositions of n+ 1 into  positive parts.[We an also use this setup to deal with P�olya's two-olor model when there arer red balls and b blak balls at the beginning: Imagine r + b olors, then identify the�rst r of them with red. This model was �rst studied by D. Blakwell and D. Kendall,J. Applied Probability 1 (1964), 284{296.℄71. If m = r0� r and n = b0� b we must move m times to the right and n times to theleft; there are �m+nn � suh paths. Every path ours with the same probability, beausethe numerators of the frations are r �(r+1) � : : : �(r0�1) �b �(b+1) � : : : �(b0�1) = rmbn insome order, and the denominators are (r+ b) � (r+ b+ 1) � : : : � (r0+ b0�1) = (r+ b)m+n.The answer, �m+nn �rmbn=(r + b)m+n, redues to 1=(r0 + b0 � 1) when r = b = 1.72. Sine all paths have the same probability, this expeted value is the same asE(X1X2 : : : Xm), whih is obviously 1=(m+1). (Thus theX's are very highly orrelated:This expeted value would be 1=2m if they were independent. Notie that the proba-bility of an event suh as (X2 = 1; X5 = 0; X6 = 1) is E(X2 (1�X5)X6) = 1=3� 1=4.)[The far-reahing rami�ations of suh exhangeable random variables are surveyedin O. Kallenberg's book Probabilisti Symmetries and Invariane Priniples (2005).℄73. f(r; n)=r�n+1r �Pk�r�1k �(�1)kqn+1�r+k, where qk = ak=(k+1), by indution on r.74. Node (r; n+ 2� r) on level n is reahed with probability 
 nr�1�=n!, proportional toan Eulerian number (see Setion 5.1.3). (Indeed, we an assoiate the permutations off1; : : : ; n+1g that have exatly r runs with this node, using Method 1 as in exerise 69.)Referene: Communiations on Pure and Applied Mathematis 2 (1949), 59{70.75. As before, let Rn = X0+� � �+Xn be the number of red balls at level n. Now we haveE(Xn+1 jX0; : : : ; Xn) = 1�Rn=(n+ 2). Hene E(Rn+1 jRn) = (n+ 1)Rn=(n+ 2) + 1,and the de�nition Zn = (n+ 1)Rn � (n+ 2)(n + 1)=2 is a natural hoie.76. No. For example, let Z0 = X, Z00 = Y , and Z1 = Z01 = X + Y , where X and Yare independent with EX = EY = 0. Then E(Z1 jZ0) = Z0 and E(Z01 jZ00) = Z00, butE(Z1 + Z01 j Z0 + Z00) = 2(Z0 + Z00). (On the other hand, if hZni and hZ0ni are bothmartingales with respet to some ommon sequene hXni, then hZn + Z0ni is also.)77. E(Zn+1 j Z0; : : : ; Zn) = E(E(Zn+1 j Z0; : : : ; Zn; X0; : : : ; Xn) j Z0; : : : ; Zn), whihequals E(E(Zn+1 jX0; : : : ; Xn) j Z0; : : : ; Zn) beause Zn is a funtion of X0, : : : , Xn;and that equals E(Zn j Z0; : : : ; Zn) = Zn. (Furthermore hZni is a martingale withrespet to, say, a onstant sequene. But not with respet to every sequene.)A similar proof shows that any sequene hYni that is fair with respet to hXniis also fair with respet to itself.78. E(Zn+1 jV0; : : : ; Vn) = E(ZnVn+1 jV0; : : : ; Vn) = Zn.The onverse holds with V0 = Z0 and Vn = Zn=Zn�1 for n > 0, provided thatZn�1 = 0 implies Zn = 0, and that we de�ne Vn = 1 when that happens.79. Zn = V0V1 : : : Vn, where V0 = 1 and eah Vn for n > 0 is independently equal toq=p (with probability p) or to p=q (with probability q). Sine E(Vn) = q+p = 1, hVni ismultipliatively fair. [See A. de Moivre, The Dotrine of Chanes (1718), 102{154.℄80. (a) True; in fat E(fn(Y0 : : : Yn�1)Yn) = 0 for any funtion fn.(b) False: For example, let Y5 = �1 if Y3 > 0, otherwise Y5 = 0. (Henepermutations of a fair sequene needn't be fair. The statement is, however, true ifthe Y 's are independent with mean zero.)
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() False if n1 = 0 and m = 1 (or if m = 0); otherwise true. (Sequenes thatsatisfy E((Yn1 � EYn1) : : : (Ynm � EYnm)) = E(Yn1 � EYn1) : : :E(Ynm � EYnm) arealled totally unorrelated. Suh sequenes, with EYn = 0 for all n, are not always fair;but fair sequenes are always totally unorrelated.)81. Assuming that X0, : : : , Xn an be dedued from Z0, : : : , Zn, we have anXn +bnXn�1 = Zn = E(Zn+1 j Z0; : : : ; Zn) = E(an+1Xn+1 + bn+1Xn j X0; : : : ; Xn) =an+1(Xn+Xn�1)+bn+1Xn for n � 1. Hene an+1 = bn, bn+1 = an�an+1 = bn�1�bn;and we have an = F�n�1, bn = F�n�2 by indution, verifying the assumption.[See J. B. MaQueen, Annals of Probability 1 (1973), 263{271.℄82. (a) Zn = An=Cn, where An = 4 � X1 � � � � � Xn is the number of aes andCn is the number of ards remaining after you've seen n ards. Hene EZn+1 =(An=Cn)(An�1)=(Cn�1)+(1�An=Cn)An=(Cn�1) = An=Cn. (In every generalizationof P�olya's urn for whih the nth step adds kn balls of the hosen olor, the ratiored=(red + blak) is always a martingale, even when kn is negative, as long as enoughballs of the hosen olor remain. This exerise represents the ase kn = �1.)(b) This is the optional stopping priniple in a bounded-time martingale.() ZN = AN=CN is the probability that an ae will be next. [\Ae Now" is avariant of R. Connelly's game \Say Red"; see Pallbearers Review 9 (1974), 702.℄83. Zn = Pnk=1(Xn � EXn) is a martingale, for whih we an study the boundedstopping rules min(m;N) for any m. But Svante Janson suggests a diret omputation,beginning with the formula Sn = P1n=1Xn[N �n℄ where N might be 1: We haveE(Xn[N �n℄) = (EXn)(E[N �n℄), beause [N �n℄ is a funtion of fX0; : : : ; Xn�1g,hene independent of Xn. And sine Xn � 0, we have ESN = P1n=1 E(Xn[N �n℄) =P1n=1(EXn) E[N �n℄ = P1n=1 E((EXn)[N �n℄) = EP1n=1(EXn)[N �n℄, whih isEPNn=1 EXn. (The equation might be `1 =1'.)[Wald's original papers, in Annals of Mathematial Statistis 15 (1944), 283{296,16 (1945), 287{293, solved a somewhat di�erent problem and proved more.℄84. (a) We have f(Zn) = f(E(Zn+1 j Z0; : : : ; Zn)) � E(f(Zn+1) j Z0; : : : ; Zn) byJensen's inequality. And the latter is E(f(Zn+1) j f(Z0); : : : ; f(Zn)) as in answer 77.[Inidentally, D. Gilat has shown that every nonnegative submartingale is hjZnji forsome martingale hZni; see Annals of Probability 5 (1977), 475{481.℄(b) Again we get a submartingale, provided that we also have f(x) � f(y) fora � x � y � b. [J. L. Doob, Stohasti Proesses (1953), 295{296.℄85. Sine hBn=(Rn + Bn)i = h1 � Rn=(Rn + Bn)i is a martingale by (27), and sinef(x) = 1=x is onvex for positive x, h(Rn +Bn)=Bni = hRn=Bn +1i is a submartingaleby exerise 84. (A diret proof ould also be given.)86. The rule Nn+1(Z0; : : : ; Zn) = [max(Z0; : : : ; Zn)<x and n+ 1 < m℄ is bounded.If max(Z0; : : : ; Zm�1) < x then we have ZN < x, where N is de�ned by (31); similarly,if max(Z0; : : : ; Zm�1) � x then ZN � x. Hene Pr(max(Z0; : : : ; Zn) � x) = (EZN )=xby Markov's inequality; and EZN � EZn in a submartingale.87. This is the probability that Zn beomes 3/4, whih also is Pr(max(Z0; : : : ; Zn) �3=4). But EZn = 1=2 for all n, hene (33) tells us that it is at most (1=2)=(3=4) = 2=3.(The exat value an be alulated as in the following exerise. It turns out to beP1k=0 2(4k+2)(4k+3) = 12H3=4 � 12H1=2 + 13 = 14� � 12 ln 2 � :439.)88. (a) We have S > 1=2 if and only if there omes a time when there are more redballs than blak balls. Sine that happens if and only if the proess passes through one
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of the nodes (2; 1), (3; 2), (4; 3), : : : , the desired probability is p1 + p2 + � � � , where pkis the probability that node (k + 1; k) is hit before any of (j + 1; j) for j < k.All paths from the root to (k+1; k) are equally likely, and the paths that meet ourrestritions are equivalent to the paths in 7.2.1.6{(28). Thus we an use Eq. 7.2.1.6{(23)to show that pk = 1=(2k � 1)� 1=(2k); and 1� 1=2 + 1=3 � 1=4 + � � � = ln 2.(b, ) If pk is the probability of hitting node ((t� 1)k + 1; k) before any previous((t� 1)j + 1; j), a similar alulation using the t-ary ballot numbers C(t)pq yields pk =(t� 1)(1=(tk � 1)� 1=(tk)). Then P1k=1 pk = 1� (1� 1=t)H1�1=t (see Appendix A).Notes: We have Pr(S = 1=2) = 1 � ln 2, sine S is always � 1=2. But we annotlaim that Pr(S � 2=3) is the sum of ases that pass through (2; 1), (4; 2), (6; 3), et.,beause the supremum might be 2=3 even though the value 2/3 is never reahed. Thoseases our with probability �=p27; hene Pr(S = 2=3) � 2�=p27� ln 3 � :111. A de-termination of the exat value of Pr(S = 2=3) is beyond the sope of this book, beausewe've avoided the ompliations of measure theory by de�ning probability only in dis-rete spaes; we an't onsider a limiting quantity suh as S to be a random variable, byour de�nitions! But we an assign a probability to the event that max(Z0; Z1; : : : ; Zn) >x, for any given n and x, and we an reason about the limits of suh probabilities.With the help of deeper methods, E. Shulte-Geers and W. Stadje have provedthat the supremum is reahed within n steps, a.s. Hene Pr(S = 2=3) = 2�=p27� ln 3;indeed, Pr(S is rational) = 1, sine only rationals are reahed; and Pr(S = (t� 1)=t) =(2�3=t)H1�1=t�(1�2=t)H1�2=t�(t�2)=(t�1). [J. Applied Prob. 52 (2015), 180{190.℄89. Set Yn = Xn � pn, an = �pn, bn = 1� pn. (Inidentally, exerise 1.2.10{22 givesan upper bound for this quantity that has quite a di�erent form.)90. (a) Apply Markov's inequality to Pr(e(Y1+���+Yn)t � etx).(b) eyt � e�pt(q�y)+eqt(y+p) = ef(t)+yeg(t) beause the funtion eyt is onvex.() We have f 0(t) = �p+ pet=(q + pet) and f 00(t) = pqet=(q + pet)2; hene f(0) =f 0(0) = 0. And f 00(t) � 1=4, beause the geometri mean of q and pet, (pqet)1=2, is lessthan or equal to the arithmeti mean, (q + pet)=2.(d) Set  = b� a, p = �a=, q = b=, Y = Y=, t = t, h(t) = eg(t)=.(e) In E((e21t2=4 + Y1h1(t)) : : : (e2nt2=4 + Ynhn(t))) the terms involving hk(t) alldrop out, beause hYni is fair. So we're left with the onstant term, et2=4.(f) Let t = 2x=, to make t2=4� xt = �x2=.91. E(Zn+1 jX0; : : : ; Xn) = E(E(Q jX0; : : : ; Xn; Xn+1) jX0; : : : ; Xn), and this is equalto E(Q jX0; : : : ; Xn) by formula (�) in answer 35. Apply exerise 77.92. Q0 = EXm = 1=2. If n < m we have Qn = E(Xm j X0; : : : ; Xn), whih is thesame as E(Xn+1 jX0; : : : ; Xn) (see exerise 72); and this is (1 +X1 + � � �+Xn)=(n+ 2),whih is the same as Zn in (27). If n � m, however, we have Qn = Xm.93. Everything goes through exatly as before, exept that we must replae the quan-tity (m� 1)t=mt�1 by the generalized expeted value, whih is Pmk=1Qtn=1(1� pnk).94. If the X's are dependent, the Doob martingale still is well de�ned; but whenwe write its fair sequene as an average of �(x1; : : : ; xt) there is no longer a nieformula suh as (40). In any formula for � that has the form Px px(Q( : : : xn : : : ) �Q( : : : x : : : )), Pr(Xn = xn; Xn+1 = xn+1; : : : )=(Pr(Xn = xn) Pr(Xn+1 = xn+1; : : : ))must equal Px px, so it must be independent of xn. Thus (41) an't be used.95. False; the probability of only one red ball at level n is 1=(n+1) = 
(n�1). But thereare a.s. more than 100 red balls, beause that happens with probability (n�99)=(n+1).
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96. Exerise 1.2.10{21, with �n equal to the bound on jX � n=2j, tells us that (i) isq.s. and that (i); (ii); (iii) are a.s. To prove that (iv) isn't a.s., we an use Stirling'sapproximation to show that � nn=2�k�=2n is �(n�1=2) when k = pn; onsequentlyPr(jXj < pn ) = �(1). A similar alulation shows that (ii) isn't q.s.97. We need to show only that a single bin q.s. reeives that many. The probabilitygenerating funtion for the number of items H that appear in any partiular bin isG(z) = ((n� 1 + z)=n)N , where N = bn1+Æ. If r = 12nÆ, we havePr(H � r) � �12��rG�12� = 2r�1� 12n�b2nr � 2r�1� 12n�2nr�1 � 2r+1e�r;by 1.2.10{(24). And if r = 2nÆ we havePr(H � r) � 2�rG(2) = 2�r�1 + 1n�bnr=2 � 2�r�1 + 1n�nr=2 � 2�rer=2;by 1.2.10{(25). Both are exponentially small. [See Knuth, Motwani, and Pittel,Random Strutures & Algorithms 1 (1990), 1{14, Lemma 1.℄98. Let En = ER, where R is the number of redution steps; and suppose F (n) = kwith probability pk, where Pnk=1 pk = 1 and Pnk=1 kpk = g � gn. (The values of p1,: : : , pn, and g might be di�erent, in general, every time we ompute F (n).)Let �ba = Pbj=a 1=gj . Clearly E0 = 0. And if n > 0, we have by indutionEn = 1 + nXk=1 pkEn�k � 1 + nXk=1 pk�n�k1 = 1 + nXk=1 pk(�n1 � �nn�k+1)= �n1 + 1� nXk=1 pk�nn�k+1 � �n1 + 1� nXk=1 pk kgn � �n1 :[See R. M. Karp, E. Upfal, and A. Wigderson, J. Comp. and Syst. Si. 36 (1988), 252.℄99. The same proof would work, provided that indution ould be justi�ed, if we wereto do the sums from k = �1 to n and de�ne �ba = �Pa�1j=b+1 1=gj when a > b. (Forexample, that de�nition gives ��nn+3 = 1=gn+1 + 1=gn+2 � 2=gn.)And in fat it does beome a proof, by indution on m, that we have Em;n � �n1for all m;n � 0, where Em;n = E min(m;R). Indeed, we have E0;n = Em+1;0 = 0;and Em+1;n = 1 + Pnk=�1 pkEm;n�k when n > 0. [This problem is exerise 1.6 inRandomized Algorithms by Motwani and Raghavan (1995). Svante Janson observesthat the random variable Zm = �Xm1 + min(m;R) is a supermartingale, where Xm isthe value of X after m iterations, as a onsequene of this proof.℄100. (a) Pmk=1 kpk � E min(m;T ) = p1+2p2+ � � �+mpm+mpm+1+ � � �+mp1 � ET .(b) E min(m;T ) � mp1 for all m. (We assume that 1 � p = (p > 0? 1: 0).101. (Solution by Svante Janson.) If 0 < t < min(p1; : : : ; pm) = p, we have E etX =Qmk=1 E etXk = Qmk=1 pk=(e�t � 1 + pk) <Qmk=1 pk=(pk � t), beause e�t � 1 > �t. By1.2.10{(25), therefore, and setting t = �=�, Pr(X � r�) � e�rt�Qmk=1 pk=(pk � t) =exp(�r� �Pmk=1 ln(1 � t=pk)) � exp(�r� �Pmk=1(t=pk) ln(1 � �)=�) = exp(�r� �ln(1� �)). Choose � = (r� 1)=r to get the desired bound re1�r. (The bound is nearlysharp when m = 1 and p is small, sine Pr(X � r=p) = (1� p)dr=pe�1 � e�r.)102. Applying exerise 101 with � � s1 + � � � + sm and r = lnn gives probabilityO(n�1 log n) that (s1 + � � � + sm)r trials aren't enough. And if r = f(n) lnn, wheref(n) is any inreasing funtion that is unbounded as n!1, the probability that skrtrials don't obtain oupon k is superpolynomially small. So is the probability that anyone of a polynomial number of suh failures will our.
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103. (a) The reurrene p0ij = [i= j ℄, p(n+1)ij = P2k=0 pnik([f0(k) = j ℄+[f1(k) = j ℄)=2leads to generating funtions gij = P1n=0 pnijzn that satisfy gi0 = [i= 0℄+(gi0+gi1)z=2,gi1 = [i= 1℄ + (gi0 + gi2)z=2, gi2 = [i= 2℄ + (gi1 + gi2)z=2. From the solution gi0 =A+B+C, gi1 = A�2B, gi2 = A+B�C, A = 13=(1�z), B = 16 (1�3[i= 1℄)=(1+z=2),and C = 12 ([i= 0℄� [i= 2℄)=(1� z=2), we onlude that the probability is 13 +O(2�n);in fat it is always either b2n=3=2n or d2n=3e=2n. The former ours if and only ifi 6= j and n is even, or i+ j = 2 and n is odd.(b) Letting g012 = z2 (g001 + g112), g001 = z2 ([j = 0℄ + g011), et., yields thegenerating funtion g012 = ([j 6= 1℄ + [j = 1℄z)z2=(4 � z2). Hene eah j ours withprobability 1/3, and the generating funtion for N is z2=(2�z); mean = 3, variane = 2.() Now g001 = z2 ([j = 0℄ + g112), et.; the output is never 1; 0 and 2 are equallylikely; and N has the same distribution as before.(d) Funtional omposition isn't ommutative, so the stopping riterion is di�er-ent: In the seond ase, 111 annot our unless the previous step had 000 or 222. Theruial di�erene is that, without stopping, proess (b) beomes �xed at oalesene;proess () ontinues to hange a0a1a2 as n inreases (although all three remain equal).(e) If T is even, sub(T ) returns (�1; 0; 1; 2) with probability (2; (2T � 1)=3;(2T � 4)=3; (2T � 1)=3)=2T . Thus the supposed alternative to (b) will output 0 withprobability 14 + 532 + 854096 + � � � = 13 P1k=1 2k+1(22k� 1)=22k+1 � 0:427, not 1/3.(f) Change sub(T ) to use onsistent bits XT , XT�1, : : : , X1 instead of generatingnew random bits X eah time; then the method of (b) is faithfully simulated. (Theneessary onsisteny an be ahieved by arefully resetting the seed of a suitablerandom number generator at appropriate times.)[The tehnique of (f) is alled \oupling from the past" in a monotone Monte Carlosimulation. It an be used to generate uniformly random objets of many importantkinds, and it runs substantially faster than method (b) when there are thousands ormillions of possible states instead of just three. See J. G. Propp and D. B. Wilson,Random Strutures & Algorithms 9 (1996), 223{252.℄104. Let q = 1� p. The probability of output (0; 1; 2) in (b) is (q2; 2pq; p2); in () it is(p2+pq2; 0; q2+qp2). In both ases N has generating funtion (1�pq(2�z))z2=(1�pqz2),mean 3=(1� pq)� 1, variane (5� 2pq)pq=(1� pq)2.105. Suppose n = 2m is even. Experiments for small m suggest that there arepolynomials tk suh that ga = zatm�a=tm for 0 � a � m; and indeed, the polyno-mials de�ned by t0 = t1 = 1, tk+1 = 2tk � z2tk�1 �ll the bill, beause they makegm = zgm�1. The generating funtion T (w) = P1m=0 tmwm = (1�w)=(1�2w+w2z2)now shows, after di�erentiation by z, that we have t0m(1) = �m(m� 1) and t00m(1) =(m2 � 5m + 3)m(m� 1)=3; hene t00m(1) + t0m(1) � t0m(1)2 = 23 (m2 �m4). The meanand variane, given a, are therefore a� (m� a)(m� a� 1) +m(m� 1) = a(n� a) and23 (m� a)2 � (m� a)4 �m2 +m4 = 13 (n2 � 2a(n� a)� 2)a(n � a), respetively.When n = 2m� 1 we an write ga = zaum�a=um for 0 � a � m, with um+1 =2um � z2um�1. In this ase we want u0 = 1 and u1 = z, so that gm = gm�1. FromU(w) = P1m=0 umwm = (1+(z�2)w)=(1�2w+w2z2) we dedue u0m(1) = �m(m�2)and u00m(1) = m(m � 1)(m2 � 7m + 7)=3. It follows that, also in this ase, the meannumber of steps in the walk is a(n�a) and the variane is 13 (n2�2a(n�a)�2)a(n�a).[The polynomials tm and um in this analysis are disguised relatives of the lassialChebyshev polynomials de�ned by Tm(os �) = osm�, Um(os �) = sin(m+ 1)�=sin �.Let us also write Vm(os �) = os(m � 12 )�=os 12�. Then Vm(x) = (2 � 1=x)Tm(x) +(1=x� 1)Um(x); and we have tm = zmTm(1=z), um = zmVm(1=z).℄
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42 ANSWERS TO EXERCISES MPR random walk on the t-yleorder idealsNawrotzkiStrassenDoeblinDobrushinJaard indexJaard106. Before oalesing, the array a0a1 : : : ad�1 always has the form ar(a+1) : : : (b�1)bsfor some 0 � a < b < d, r > 0, and s > 0, where r + s+ b� a = d+ 1. Initially a = 0,b = d�1, r = s = 1. The behavior of the algorithm while r+s = t is like a random walkon the t-yle, as in the previous exerise, starting at a = 1. Let Gt be the generatingfuntion for that problem, whih has mean t� 1 and variane 2�t3�. Then this problemhas the generating funtion G2G3 : : : Gd; so its mean is Pdk=2(k � 1) = �d2�, and thevariane is Pdk=2 2�k3� = 2�d+14 �.107. (a) If the probabilities an be renumbered so that p1 � q1 and p2 � q2, the�ve events of 
 an have probabilities p1, p2, q1 � p1, q2 � p2, and q3, beause p3 =(q1 � p1) + (q2 � p2) + q3. But if that doesn't work, we an suppose that p1 < q1 �q2 � q3 < p2 � p3. Then p1, q1 � p1, p1 + p2 � q1, p3 � q3, and q3 are nonnegative.(b) Give 
's events the probabilities 112 , 212 , 312 , 612 .() For example, let p1 = 19 , p2 = p3 = 49 , q1 = q2 = q3 = 13 .108. Let pk = Pr0(X = k) and qk = Pr00(Y = k). The set SnfPk�n pk;Pk�n qkgdivides the unit interval [0 : : 1) into ountably many subintervals, whih we take as theset 
 of atomi events !. Let X(!) = n if and only if ! � [Pk<n pk : :Pk�n pk); asimilar de�nition works for Y (!). And X(!) � Y (!) for all !.109. (a) We're given that p1 + p3 � q1 + q3, p2 + p3 � q2 + q3, and p3 � q3. (Alsothat 0 � 0 and p1 + p2 + p3 � q1 + q2 + q3; but those inequalities always hold.) Wemust �nd a oupling with p12 = p21 = p31 = p32 = 0, beause 1 6� 2, 2 6� 1, 3 6� 1, and3 6� 2. In the previous problem we were given that p2 + p3 � q2 + q3 and p3 � q3, andwe had to �nd a oupling with p21 = p31 = p32 = 0.(b) Let A" = fx j x � a for some a 2 Ag and B# = fx j x � b for some b 2 Bg.We're given that Pr0(X2A") � Pr00(Y 2A") for all A. Let A = f1; : : : ; ngnB#, so thatPr0(X 2 B#) = 1� Pr0(X 2 A). The result follows beause A = A".() Remove all ars xi ��! xj from the network when i 6� j. Then a blokingpair (I; J) has the property that i � j implies i 2 I or j 2 J . Let A = fx j x � afor some a =2 Jg and B = f1; : : : ; ng n A. Then A � I, B � J , and B = B#. HenePi2I pi +Pj2J qj �Pi2A pi +Pj2B qj �Pi2A qi +Pj2B qj = 1.[See K. Nawrotzki, Mathematishe Nahrihten 24 (1962), 193{200; V. Strassen,Annals of Mathematial Statistis 36 (1965), 423{439.℄110. (a) The result is trivial if r = 1. Otherwise onsider the probability distributionsp0k = (pk � rk)=(1� r) and q0k = (qk � rk)=(1� r); use the oupling pij = (1� r)p0iq0j +rj [i= j ℄. [See W. Doeblin, Revue math�ematique de l'Union Interbalkanique 2 (1938),77{105; R. L. Dobrushin, Teoriya Veroyatnoste�� i ee Primeneni��a 15 (1970), 469{497.℄(b) Yes, beause the (p0; q0) distribution satis�es the hypotheses of that exerise.111. (a) Here are the 60 triples 1� 3� 4�, with the minima in bold type:134 163 123 126 142 142 153 145 163 154 245 234 534 563 623 526 632 652 534 643356 645 246 234 435 463 524 423 642 532 461 351 361 641 251 231 341 531 321 421512 412 415 315 316 615 216 216 415 316 623 526 652 452 564 354 465 364 256 265(b) Both SA and SB lie in A[B. Eah element of A[B is equally likely to havethe minimum value a�; exatly jA\Bj of those elements have that value as their sketh.() jA \ B \ Cj=jA [B [ Cj.Notes: The ratio jA\Bj=jA[Bj is a useful measure of similarity alled the Ja-ard index, beause Paul Jaard used it to ompare di�erent Swiss sites aording tothe sets of plant speies seen at eah plae [Bulletin de la Soi�et�e Vaudoise des Sienes
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Naturelles 37 (1901), 249℄. It is ommonly used today to rank the similarity betweenweb pages, based on a ertain set of words in eah page.Minwise independene was introdued by Andrei Broder for that appliation in1997, using n = 264 and a method of identifying roughly 1000 words A on a typial webpage. By alulating, say, independent skethes S1(A), : : : , S100(A) for eah page, thenumber of j suh that Sj(A) = Sj(B) gives a highly reliable and quikly omputableestimate of the Jaard index. A perfetly minwise independent family is impossiblein pratie when n is huge, but the assoiated theory has suggested approximate\minhash" algorithms that work well. See A. Z. Broder, M. Charikar, A. M. Frieze,and M. Mitzenmaher, J. Computer and System Sienes 60 (2000), 630{659.112. (a) Suh a rule breaks ties properly, provided that the number of � with1's in Bis a multiple of n �m. Eah B an have its own rule.(b) In fat we an produe families whose permutations are all obtained fromN=n = d \seeds" by yli shifts, as in exerise 111. Begin with m = 1 and a tableof N = lm(1; 2; : : : ; n) partial permutations whose entries �ij for 1 � i � N and1 � j � n are entirely blank, exept that �ij = 1 for eah pair ij with (j�1)d < i � jdand 1 � j � n. When n = 4, for instane, the initial tableau1   1   1    1   1   1    1   1   1    1    1    1represents N = 12 trunated permutations with m = 1. We'll insert some 2s next.Let A be a subset of size n � m that is all blank, in some �. Eah A o-urs equally often (as in uniform probing, Setion 6.4); so the number of suh � isN=� nn�m�. Fortunately this is a multiple of n �m, beause exerise 1.2.6{48 tells usthat N=((n�m)� nn�m�) = NPmk=0(�1)k�mk �=(n �m+ k).Take n�m suh � and insert m+1 into di�erent positions within them. Then �ndanother suh A, if possible, and repeat the proess until no blank subsets of size n�mremain. Then set m m+ 1, and ontinue in the same way until m = n.It's not hard to see that the insertions an be done so that �j , �d+j , : : : , �(n�1)d+jare maintained as yli shifts of eah other. When n = 4 the 2s are essentially fored:12  1 2 1  2  12  1 2 21    12 2 1  21 2  1  2 1   21But then there are two ways to �ll the two ases with A = f3; 4g:123 1 2 13 2  123  1 2 21 3 3 12 2 1  213 23 1  2 1 3 2112 3 1 2 13 2 312  1 2 213  312 2 1  213 2 31  2 1 3 21Adopting the �rst of these leads to two ways to �ll A = f2; 4g:123 132 13 2  123  132 21 3 3 12 2 13  213 23 1 32 1 3 21123 1 23 13 2  123 31 2 21 3 3 12 231  213 23 1  231 3 21Here A is a yli shift of itself, but onsistent plaement is always possible.[See Yoshinori Takei, Toshiya Itoh, and Takahiro Shinozaki, IEICE Transationson Fundamentals E83-A (2000), 646{655, 747{755.℄113. (a) The probability is zero if l � k or r > n�k. Otherwise the result follows if wean prove it in the \omplete" ase when l = k� 1 and r = n� k, beause we an sumthe probabilities of omplete ases over all ways to speify whih of the unonstrainedelements are < k and whih are > k.To prove the omplete ase, we may assume that ai = i, b = k, and j = k + jfor 1 � i � l = k � 1 and 1 � j � r = n � k. The probability an be omputed
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44 ANSWERS TO EXERCISES MPR inlusion and exlusionBroderMitzenmaherChebyshevde la Vall�ee PoussinAlonBollob�asAlonFriedlandKalaiJansonKnuth
via the priniple of inlusion and exlusion, beause we know Pr(mina2A a� = k�) =1=(n � k + t) = PB whenever A = fk; : : : ; ng [ B and B onsists of t elements lessthan k. For example, if k = 4 the probability that 4� = 4 and f1�; 2�; 3�g = f1; 2; 3gis P;�Pf1g�Pf2g�Pf3g+Pf1;2g+Pf1;3g+Pf2;3g�Pf1;2;3g; eah of those probabilitiesis orret for truly random �.(b) This event is the disjoint union of omplete events of type (a). [See A. Z.Broder and M. Mitzenmaher, Random Strutures & Algorithms 18 (2001), 18{30.℄Notes: The funtion  (n) = ln(lm(1; 2; : : : ; n)) = Ppk�n[p prime℄ ln p wasintrodued by P. L. Chebyshev [see J. de math�ematiques pures et appliqu�ees 17 (1852),366{390℄, who proved that it is �(n). Re�nements by C.-J. de la Vall�ee Poussin[Annales de la Soi�et�e Sienti�que de Bruxelles 20 (1896), 183{256℄ showed that in fat (n) = n + O(ne�C log n) for some positive onstant C. Thus lm(1; 2; : : : ; n) growsroughly as en, and we annot hope to generate a list of minwise independent permuta-tions when n is large; the length of suh a list is 232,792,560 already for 19 � n � 22.114. First assume that jSj j = dj + 1 for all j, and let gj(x) = Qf(x� s) j s 2 Sjg. Wean replae xdj+1j by gj(xj), without hanging the value of f(x1; : : : ; xn), when xj 2 Sj .Doing this repeatedly until every term of f has degree � dj in eah variable xj willprodue a polynomial that has at least one nonroot in S1 � � � � � Sn, aording toexerise 4.6.1{16. [See N. Alon, Combinatoris, Probab. and Comput. 8 (1999), 7{29.℄Now in general, if there were at most jS1j + � � � + jSnj � (d1 + � � � + dn + n)nonroots, we ould �nd subsets S0j � Sj with jS0j j = dj + 1 suh that S0j di�ers from xjin jSj j � dj � 1 of the nonroots and S01 � � � � � S0n avoids them all | a ontradition.(This inequality also implies stronger lower bounds when the sets Sj are large.If, for example, d1 = � � � = dn = d and if eah jSj j � s, where s = d+ 1 + dd=(n � 1)e,we an derease eah jSj j to s and inrease the right-hand side. For further asymptotiimprovements see B�ela Bollob�as, Extremal Graph Theory (1978), x6.2 and x6.3.)115. Representing the vertex in row x and olumn y by (x; y), if all points ould beovered we'd have f(x; y) = Qpj=1(x�aj)Qqj=1(y�bj)Qrj=1(x+y+j)(x�y+dj) = 0,for all 1 � x � m and 1 � y � n and for some hoies of aj , bj , j , dj . But f hasdegree p+ q + 2r = m+ n� 2, and the oeÆient of xm�1yn�1 is �� rbr=2� 6= 0.116. Let gv = Pfxe j v 2 eg for eah vertex v, inluding xe twie if e is a loop fromv to itself. Apply the nullstellensatz with f = Qv(1 � gp�1v ) �Qe(1 � xe) and witheah Sj = f0; 1g, using mod p arithmeti. This polynomial has degree m, the numberof edges and variables, beause the �rst produt has degree (p � 1)n < m; and theoeÆient of Qe xe is (�1)m 6= 0. Hene there is a solution x that makes f(x) nonzero.The subgraph onsisting of all edges with xe = 1 in this solution is nonempty andsatis�es the desired ondition, beause gv(x) mod p = 0 for all v.(This proof works also if we onsider that a loop ontributes just 1 to the degree.See N. Alon, S. Friedland, and G. Kalai, J. Combinatorial Theory B37 (1984), 79{91.)117. If ! = e2�i=m, we have E!jX = Pnk=0 �nk�pk(1 � p)n�k!jk = (!jp + 1 � p)n.Also j!jp + 1 � pj2 = p2 + (1� p)2 + p(1� p)(!j + !�j) = 1� 4p(1 � p) sin2(�j=m).Now sin�t � 2t for 0 � t � 1=2. Hene, if 0 � j � m=2 we have j!jp + 1 � pj2 �1� 16p(1� p)j2=m2 � exp(�16p(1� p)j2=m2); if m=2 � j � m we have sin(�j=m) =sin(�(m� j)=m). Thus Pm�1j=1 jE!jX j � 2Pm�1j=1 exp(�8p(1� p)j2n=m2).The result follows, sine Pr(X modm = r) = 1mPm�1j=0 !�jr E!jX . [S. Jansonand D. E. Knuth, Random Strutures & Algorithms 10 (1997), 130{131.℄
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MPR ANSWERS TO EXERCISES 45 PaleyZygmundTerpaionditional distributionVolkovJabbour-HattabJensen's inequalitystritly onvexuniform distributiononditional probability
118. Indeed, (22) with Y = X � x yields more (when we also apply exerise 47):Pr(X � x) � Pr(X > x) � (EX � x)2E(X � x)2 = (EX � x)2EX2 � x(2 EX � x)� (EX � x)2EX2 � xEX � (EX � x)2EX2 � x2 :(The attribution of this result to Paley and Zygmund is somewhat dubious. They did,however, write an important series of papers [Pro. Cambridge Philosophial Soiety 26(1930), 337{357, 458{474; 28 (1932), 190{205℄ in whih a related inequality appearedin the proof of Lemma 19.)119. Let f(x; t) = Pr(U � V �W and V � (1� t)U + tW ), g(x; t) = Pr(U �W � Vand W � (1� t)U + tV ), h(x; t) = Pr(W � U � V and U � (1� t)W + tV ). We wantto prove that f(x; t) + g(x; t) + h(x; t) = t. Notie that, if U = 1 � U , V = 1 � V ,W = 1�W , we have Pr(W � U � V and U � (1� t)W + tV ) = Pr(V � U �W andU � tV +(1� t)W). Hene x2 �h(x; t) = f(1�x; 1� t), and we may assume that t � x.Clearly g(x; t) = R x0 dux R 1x dv1�x t(v � u) = t2 . And t � x implies thatf(x; t) = R x(x�t)=(1�t) dux R (1�t)u+tx dv1�x (1� (v � (1� t)u)=t) = t2(1� x)2=(6(1 � t)x);h(x; t) = R 1x dv1�x�R vt0 dux u+ R xvt dux t1�t (v � u)� = t2 � f(x; t):Instead of this elaborate alulation, Tam�as Terpai has found a muh simplerproof: Let A = min(U;V;W ), M = hUVW i, and Z = max(U;V;W ). Then theonditional distribution of M , given A and Z, is a mixture of three distributions:Either A = U , Z = V , and M is uniform in [A : : Z℄; or A = U , Z = W , and M isuniform in [x : : Z℄; or A = W , Z = V , and M is uniform in [A : : x℄. (These three asesour with respetive probabilities (Z�A;Z�x; x�A)=(2Z� 2A), but we don't needto know that detail.) The overall distribution of M , being an average of onditionaluniform distributions over all A � x and Z � x, is therefore uniform.[See S. Volkov, Random Strut. & Algorithms 43 (2013), 115{130, Theorem 5.℄120. See J. Jabbour-Hattab, Random Strutures & Algorithms 19 (2001), 112{127.121. (a) D(y jjx) = 15 lg 65 + 215 lg 45 � :0097; D(xjjy) = 16 lg 56 + 16 lg 54 � :0098.(b) We have E(�(X) lg �(X)) � (E �(X)) lg E �(X) by Jensen's inequality (20);and E �(X) = Pt y(t) = 1, so the logarithm evaluates to 0.The question about zero is the hard part of this exerise. We need to observe thatthe funtion f(x) = x lg x is stritly onvex, in the sense that equality holds in (19) onlywhen x = y. Thus we have (EZ) lg EZ = E(Z lgZ) for a positive random variable Zonly when Z is onstant. Consequently D(y jjx) = 0 if and only if x(t) = y(t) for all t.() Let x̂(t) = x(t)=p and ŷ(t) = y(t)=q be the distributions of X and Y within T .Then 0 � D(ŷ jjx̂) = Pt2T ŷ(t) lg(ŷ(t)=x̂(t)) = E(lg �(Y ) jY 2 T ) + lg(p=q).(d) D(y jjx) = (E lgm)�HY = lgm�HY . (Hene, by (b), the maximum entropyof any suh random variable Y is lgm, attainable only with the uniform distribution.)(e) IX;Y = �HZ �Pu;v z(u; v)(lg x(u) + lg y(v)) = �HZ +Pu x(u) lg(1=x(u)) +Pv y(v) lg(1=y(v)), beause Pv z(u; v) = x(u) and Pu z(u; v) = y(v). (One an alsowrite IX;Y = HY �HYjX , where HYjX = Pt x(t)HYjt.)122. (a) D(y jjx) = P1t=0(3t=4t+1) lg(3t=2t+1) = lg 2716 � 0:755; D(xjjy) = lg 43 � 0:415.
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46 ANSWERS TO EXERCISES MPR trading tailsKullbakLeiblerCauhy{Shwarz inequalityvarianeMarkov's inequalityChatterjeeDiaonis(b) Let q = 1� p and t = pn+ upn. Then we havey(t) = e�u2=(2pq)p 2�pqn exp � u2q � u2p + u36p2 � u36q2� 1pn +O� 1n�!;ln �(t) = �u22q � 12 ln q + � u2q � u36q2� 1pn +O� 1n�:By restriting juj � n� and trading tails (see 7.2.1.5{(20)), we obtainD(y jjx) = 1p 2�pqn Z 1�1 e�u2=(2pq)�� u22q ln 2 � 12 lg q� dupn+O� 1n�= 12 ln 2�ln 11� p � p�+O� 1n�:In this ase D(xjjy) is trivially 1, beause x(n+ 1) > 0 but y(n+ 1) = 0.123. Sine pk+1 = pky(t)=zk(t) we have �(t) = (1 � pk)pk+1=(pk(1 � pk+1)). [Thisrelation was the original motivation that led S. Kullbak and R. E. Leibler to de�neD(y jjx), in Annals of Mathematial Statistis 22 (1951), 79{86.℄124. Let m = 22D(yjjx) and g(t) = f(t)[�(t)�m℄; thus g(t) = f(t) exept with prob-ability �. We have jE(f)�En(f)j = (E(f)�E(g))+jE(g)�En(g)j+(En(f)�En(g)).The Cauhy{Shwarz inequality (exerise 1.2.3{30) implies that the �rst and last arebounded by kfkp�, beause f(t)� g(t) = f(t)[�(t)>m℄.Now var(�(X)g(X)) � E(�(X)2g(X)2) � mE(�(X)f(X)2) = mE(f(Y )2) =mkfk2. Hene (E(g)�En(g))2 = varEn(g) = var(�(X)g(X))=n � kfk2=2.Consider now the ase  < 1. From Markov's inequality we have Pr(�(X) > m) �(E �(X))=m = 1=m. Also E(�(X)[�(X)�m℄) = E[�(Y )�m℄ = 1��. ConsequentlyPr(En(1) � a) � Pr(max1�k�n �(Xk) > m) + Pr(Pnk=1 �(Xk)[�(Xk)�m℄ � na) �n=m+ E(Pnk=1 �(Xk)[�(Xk)�m℄)=(na) = 2 + (1��)=a.[S. Chatterjee and P. Diaonis, preprint (September 2015).℄
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GOLDSMITHINDEX AND GLOSSARYHe writes indexes to perfetion.| OLIVER GOLDSMITH, Citizen of the World (1762)When an index entry refers to a page ontaining a relevant exerise, see also the answer tothat exerise for further information. An answer page is not indexed here unless it refers to atopi not inluded in the statement of the exerise. (Euler's onstant), 29.�(x) (sideways sum), 13.� (irle ratio), 14.� (golden ratio), 12, 26.A priori versus a posteriori probabilities, 25.a.s.: Almost surely, 11{12, 20, 21, 39, 40.Ae Now, 8, 19.Ahlswede, Rudolph, 34.Aldous, David John, 33.Almost sure events, 11.Alon, Noga (OEL� DBEP), 44.Analysis of algorithms, 9, 21, 22.Arithmeti{geometri mean inequality,31, 39.Asymptoti methods, 11, 12, 16.Atomi events, 1.Azuma, Kazuoki ( ), 9, 20.B(p1; : : : ; pm), see Multivariate Bernoullidistribution.Bn(p), see Binomial distribution.Bm;n(p), see Cumulative binomialdistribution.Bakward versus forward, 21.Ballot numbers, 39.Bayes, Thomas, 14.BDD (binary deision diagram), 5, 34.Bell, Eri Temple, numbers $n, 15.Bernoulli, Daniel, 36.Bernoulli, Jaques (= Jakob = James),distribution, multivariate, 14, 18, 20.Bernoulli, Niolas (= Nikolaus), 36.Beta distribution, 14.Bhatia, Rajendra (rA�j�}d BAEVyA), 28.Bienaym�e, Ir�en�ee Jules, inequality, 4.Bin-paking problem, 11, 20.Binary notation, 14.Binary random variables, 2, 3, 5, 13{15, 20.Binary searh trees, 24.Bingo, 12{13.Binomial distribution, 14, 24, 32.umulative, 14{15, 31.Bit vetors, 3, 9, 13{14.Bits of information, 24.Blakwell, David Harold, 37.Bollob�as, B�ela, 44.

Boolean funtions, 5, 15, 33, 35.dual of, 33.monotone, 5, 35.symmetri, 16.Boolean random variables, see Binaryrandom variables.Boolean vetors, see Bit vetors.Boyd, Stephen Poythress, 33.Braket notation, 2.Braketing property, 34.Broder, Andrei Zary, 43, 44.Brown, John O'Connor, 26.Cantelli, Franeso Paolo, inequality, 33.Casanova de Seingalt, GiaomoGirolamo, 36.Catalan, Eug�ene Charles, numbers, 36.Cauhy, Augustin Louis, inequality, 46.Chain rule for onditional probability,14, 28.Charikar, Moses Samson (moJ�s sA�msnrFkr), 43.Chatterjee, Sourav (esor& *;$;jRI), 46.Chebyshev (= Tshebyshe�), PafnutiiLvovih (Qebyxev�, Pafnut��L~voviq� = Qebyxev, Pafnuti�L~voviq), 33, 44.inequality, 4, 9, 16.monotoni inequality, 35.polynomials, 27, 41.Chesterton, Gilbert Keith, 26.Chiks, 15.Cirle ratio (�), 14.Cliques, 16{17.CMath: Conrete Mathematis, a bookby R. L. Graham, D. E. Knuth, andO. Patashnik, 27, 29.Coalesing random walk, 21.Coin tosses, 11{12, 19, 20.Column sums, 22.Combinatorial nullstellensatz, 23.Commutative law, 41.Compositions, 37.Conave funtions, 4, 32.Conditional distribution, 3, 45.Conditional expetation, 2{3, 15{19.inequality, 5, 16, 34.Conditional probability, 1, 13{14, 35, 45.47
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48 INDEX AND GLOSSARYConnelly, Robert, Jr., 38.Convex ombinations, 33.Convex funtions, 4, 8, 16, 20, 33, 38, 39.stritly, 45.Correlated random variables, 17{18, 28, 37.Correlation inequalities, 17.Coupling, 22.from the past, 41.Covariane, 2, 14, 17, 28, 35.Cover, Thomas Merrill, 13, 28.Covering all points, 23.Cumulative binomial distribution, 14{15, 31.Cyle graph (Cn), 22, 41.Darwin, Charles Robert, 25.Davis, Chandler, 28.Daykin, David Edward, 34.de La Vall�ee Poussin, Charles JeanGustave Niolas, 44.de Moivre, Abraham, 37.martingale, 19.de Montmort, Pierre R�emond, 36.Density, relative, 24.Degree of a multivariate polynomial, 23.Diaonis, Persi Warren, iv, 46.Diagonal lines, 23.Die, 12, 24.Disrete probabilities, 1.D�oblin, Wolfgang (= Doeblin, Vinent), 42.Dobrushin, Roland L'vovih (Dobruxin,Roland L~voviq), 42.Doob, Joseph Leo, 6, 9, 38.martingales, 9{10, 20, 37, 39.Dual of a Boolean funtion, 33.Eggenberger, Florian, 6.Elton, John Hanok, 31.Entropy, 24.relative, 24.Enveloping series, 34.Erd}os, P�al (= Paul), 34.Etesami, Omid (ÜËn�w«m �ÛËm), iv.Euler, Leonhard (E�ler�, Leonard� =��ler, Leonard), onstant , 29.Eulerian numbers, 37.Events, 1{3.Exhangeable random variables, 37.Expeted value, 2{5, 14{16, see alsoConditional expetation.Fair sequenes, 7, 10, 19, 38.with respet to a sequene, 7, 37.Families of sets, 17.Feige, Uriel (DBIIT L�IXE�), 31.Feller, Willibald (= Vilim = Willy =William), 36.Fibonai, Leonardo, of Pisa (= Leonardo�lio Bonaii Pisano), die, 12.martingale, 19.numbers, 12, 38.

First moment priniple, 4, 16.FKG inequality, 5, 17, 35.Flow in a network, 22.Fortuin, Cornelis Marius, 17.Forward versus bakward, 21.Four funtions theorem, 17, 34.Friedland, Shmuel (CPLCIXT L�ENY), 44.Friedman, Bernard, urn, 19.Frieze, Alan Mihael, 43.Games, 4, 8, 13.Garey, Mihael Randolph, 11.Generating funtions, 15, 22, 24, 32,33, 36, 40, 41.Generation of random objets, 41.Geometri distribution, 21, 24.Geometri mean and arithmeti mean,31, 39.Georgiadis, Evangelos (Gewrgi�dh,Eu�ggelo), 28.Gilat, David, 38.Ginibre, Jean, 17.Golden ratio (�), 12, 26.Goldsmith, Oliver, 47.Gosper, Ralph William, Jr., 28.Graham, Ronald Lewis ( ), 47.Grid, 23.Grimmett, Geo�rey Rihard, 32.Gumball mahine problem, 31.HAKMEM, 28.Harmoni numbers, frational, 38.Hashing, 9{10, 20.Hoe�ding, Wassily, 9, 15.inequality, 9{10, 20.Importane sampling, 25.Inlusion and exlusion, 31, 34, 44.Inomplete beta funtion, 14.Independent events, 2.Independent random variables, 1, 7, 9,10, 13{15, 20, 37.k-wise, 1, 13.In�nite mean, 36, 38.Information, bits of, 24.Information gained, 25.Integer multilinear representation, seeReliability polynomials.Internet, ii, iii.Inverses, 36.Itoh, Toshiya ( ), 43.Jabbour-Hattab, Jean (on¤� �Øq~ În�¯), 45.Jaard, Paul, 42.index, 42{43.James White, Phyllis Dorothy, 11.Janson, Carl Svante, iv, 38, 40, 44.Jensen, Johan Ludvig William Valdemar, 33.inequality, 4, 16, 33, 38, 45.



Otober 3, 2015

INDEX AND GLOSSARY 49Johnson, David Stier, 11.Joint distribution, 13, 24, 35.Joint entropy, 24.k-liques, 17.k-wise independene, 1, 13.Kalai, Gil (IRLW LIB), 44.Kallenberg, Olav Herbert, 37.Karp, Rihard Manning, 40.Kasteleyn, Pieter Willem, 17.Kendall, David George, 37.Knuth, Donald Ervin ( ), i, iii,iv, 37, 40, 44, 47.Kolmogorov, Andrei Nikolaevih(Kolmogorov, Andre� Nikolaeviq), 9.inequality, 9.Kullbak, Solomon, 46.divergene, D(yjjx), 24{25.La Vall�ee Poussin, Charles Jean GustaveNiolas de, 44.Lake Wobegon die, 12.Large deviations, see Tail inequalities.Larrie, Cora Mae, 21.Least ommon multiple, 23.Leibler, Rihard Arthur, 46.divergene, D(yjjx), 24{25.Lipshitz, Rudolph Otto Sigismund,ondition, 10.Loaded die, 24.Loop, running time of, 21.Loops from a vertex to itself, 24.Lord, Niholas John, 30.Luk�as, Eugene (= Jen}o), 28.MaQueen, James Buford, 38.Magi masks, 28.Mahler, Kurt, 28.Markov (= Marko�), Andrei Andreevih(Markov, Andre� Andreeviq),the elder, 4.inequality, 4, 5, 16, 38, 39, 46.Martingale di�erenes, see Fair sequenes.Martingales, 6{11, 18{20, 24, 32.with respet to a sequene, 7, 19, 37.Max-ow min-ut theorem, 22, 42.Maximal inequality, 8{9, 20.MDiarmid, Colin John Hunter, 10.Median value of a random variable, 14, 24.Mengden, Niolai Alexandrovith von(Mengden�, Nikola� Aleksandroviq�fon�), 25.Method of bounded di�erenes, 10.Minhash algorithms, 43.Minterms, 31.Minwise independent permutations, 23.Mitzenmaher, Mihael David, 43, 44.Moivre, Abraham de, 19, 37.

Monotone Boolean funtions, 5, 35.Monotone Monte Carlo method, 41.Montmort, Pierre R�emond de, 36.Monus operation, 21{22.Moraleda Oliv�an, Jorge Alfonso, 27.Morse, Harold Calvin Marston, onstant, 28.Motwani, Rajeev (rAjFv moVvAnF), 40.MPR: Mathematial Preliminaries Redux, v.Multigraphs, 24.Multipliatively fair sequenes, 19.Multivariate Bernoulli distribution,14, 18, 20.Multivariate total positivity, see FKGinequality.Mutual information, 24.NanoBingo, 12{13.Nawrotzki, Kurt, 42.Negative binomial distribution,umulative, 14.Negatively orrelated random variables,18, 29.Neumann, Peter, 30.Neville-Neil, George Vernon, III, 50.Newton, Isaa, 30.Nonnegative submartingales, 9, 38.Nonnegatively orrelated randomvariables, 17.Nontransitive die, 12.NP-omplete problems, 11.Nullstellensatz, ombinatorial, 23.One-sided estimates, 16.Optional stopping priniple, 8, 38.Order ideals, 42.} (power set, the family of all subsets), 34.Pairwise independent random variables,1, 13.Paley, Raymond Edward Alan Christopher,24, 45.Paradoxes, 12, 13, 36.Parity number, 28.Parity of a binary integer, 13.Partial ordering, 22.Patashnik, Oren, 47.Pearson, Karl (= Carl), 29.Pi (�), 14.Pitman, James William, 30.Pittel, Boris Gershon (Pittel~, BorisGerxonoviq), 40.Playing ards, 1, 8, 14, 19.Poisson, Sim�eon Denis, distribution,15, 24, 35.trials, 35.P�olya, Gy�orgy (= George), 6, 19.urn model, iv, 6{7, 19{20, 38.Polynomials, 23; see also Chebyshevpolynomials, Reliability polynomials.
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50 INDEX AND GLOSSARYPositively orrelated random variables,17, 28.Power series, 33.Prime impliants of a Boolean funtion,5, 34.Probability estimates, 3{5, 8{9, 16.Probability generating funtions, 15, 40.Probability spaes, 1{2.Propp, James Gary, 41.q.s.: Quite surely, 12, 20, 21.Quik, Jonathan Horatio, 18.Quite sure events, 12, 27.Raghavan, Prabhakar (���Wxm�Wx�h), 40.Random bits, 2, 3, 5, 9, 13{15, 36.Random graphs, 16, 18.Random number generators, 41.Random permutations, 15.Random variables, 1{21.Random walk, 18.oalesing, 21.on r-yle, 22, 42.Randomized algorithms, 21.Reurrene relations, 36, 41.Regular graphs and multigraphs, 24.Reliability polynomials, 5, 15, 16.R�emond de Montmort, Pierre, 36.R�enyi, Alfr�ed, 34.Restrited growth strings, 15.Ross, Sheldon Mark, iv, 5, 33.Row sums, 22.Runs of a permutation, 37.S�m (a symmetri threshold funtion), 16.Samuels, Stephen Mithell, 15, 31.Saturating addition and subtration, 21{22.Savage, Rihard Preston, Jr., 26.Say Red, 38.Shroeppel, Rihard Crabtree, 28.Shulte-Geers, Ernst Franz Fred, iv,13, 31, 39.Shwarz, Karl Hermann Amandus,inequality, 46.Seond moment priniple, 4, 16, 24, 33.Set partitions, 30, 32.Sets, represented as integers, 35.Shinozaki, Takahiro ( ), 43.Shu�es, 1.Sideways sum (�x), 13.Skethes, 23.St. Petersburg paradox, 36.Stadje, Gert Wolfgang, 39.Stirzaker, David Robert, 32.Stopping rules, 7, 8, 19{20.Stork, David Goe�rey, 27.

Strassen, Volker, 42.Stross, Charles David George, iii.Subadditive law, 11.Submartingales, 8{9, 20.Submodular set funtions, 35.Subsequene of a martingale, 18.Summation by parts, 38.Supermartingales, 8, 40.Superpolynomially small, 12, 40.Supported sets, 17.Sylvester, James Joseph, 30.Symmetri Boolean funtions, 16.t-ary ballot numbers, 39.Tail inequalities, 4, 8{11, 15, 20, 21.Takei, Yoshinori ( ), 43.Taylor, Brook, formula, 20.Terpai, Tam�as, 45.Thue, Axel, onstant, 28.Totally unorrelated sequenes, 38.Trading tails, 46.Transendental numbers, 28.Triangles (3-liques), 16.Trybu la, Stanis law, 27.Unorrelated sequenes, 38.Uniform distribution, 1, 13, 16, 22{24,36, 37, 41, 45.Uniform probing, 43.Union inequality, 14.Upfal, Eli (LTA� IL�), 40.Urn models, 6{7, 18{20, 38.Usiskin, Zalman Philip, 27.Vall�ee Poussin, Charles Jean GustaveNiolas de la, 44.Vandenberghe, Lieven Lodewijk Andr�e, 33.Vandermonde, Alexandre Th�eophile,matrix, 28.Variane, 2, 4, 9, 14, 35, 46.Viious, Kode (pen name of George VernonNeville-Neil III), vi.Volkov, Stanislav Evgenyevih (Volkov,Stanislav Evgen~eviq), 45.von Mengden, Niolai Alexandrovith(fon� Mengden�, Nikola�Aleksandroviq�), 25.Wald, Abraham (= �Abrah�am), 38.equation, 20.Web pages, 43.whp (with high probability), see a.s.Wigderson, Avi (OEFXCBIE IA�), 40.Wilson, David Brue, 41.Winkler, Peter Mann, 31.Zygmund, Antoni, 24, 45.
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CARROLLInternetPREFACEBegin at the beginning, and do not allow yourself to gratifya mere idle uriosity by dipping into the book, here and there.This would very likely lead to your throwing it aside,with the remark \This is muh too hard for me!,"and thus losing the hane of adding a very large itemto your stok of mental delights.| LEWIS CARROLL, in Symboli Logi (1896)This booklet ontains draft material that I'm irulating to experts in the�eld, in hopes that they an help remove its most egregious errors before toomany other people see it. I am also, however, posting it on the Internet forourageous and/or random readers who don't mind the risk of reading a fewpages that have not yet reahed a very mature state. Beware: This materialhas not yet been proofread as thoroughly as the manusripts of Volumes 1, 2, 3,and 4A were at the time of their �rst printings. And alas, those arefully-hekedvolumes were subsequently found to ontain thousands of mistakes.Given this aveat, I hope that my errors this time will not be so numerousand/or obtrusive that you will be disouraged from reading the material arefully.I did try to make the text both interesting and authoritative, as far as it goes.But the �eld is vast; I annot hope to have surrounded it enough to orral itompletely. So I beg you to let me know about any de�ienies that you disover.To put the material in ontext, this portion of fasile 5 previews the openingpages of Setion 7.2.2 of The Art of Computer Programming, entitled \Baktrakprogramming." The preeding setion, 7.2.1, was about \Generating basi om-binatorial patterns"|namely tuples, permutations, ombinations, partitions,and trees. Now it's time to onsider the non-basi patterns, the ones that havea muh less uniform struture. For these we generally need to make tentativehoies and then we need to bak up when those hoies need revision. Severalsubsetions (7.2.2.1, 7.2.2.2, et.) will follow this introdutory material.� � �The explosion of researh in ombinatorial algorithms sine the 1970s hasmeant that I annot hope to be aware of all the important ideas in this �eld.I've tried my best to get the story right, yet I fear that in many respets I'mwoefully ignorant. So I beg expert readers to steer me in appropriate diretions.iii
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iv PREFACE stampingKnuthPlease look, for example, at the exerises that I've lassed as researhproblems (rated with diÆulty level 46 or higher), namely exerises 14, : : : ; I'vealso impliitly mentioned or posed additional unsolved questions in the answersto exerises 6, 8, 42, 45, : : : . Are those problems still open? Please inform me ifyou know of a solution to any of these intriguing questions. And of ourse if nosolution is known today but you do make progress on any of them in the future,I hope you'll let me know.I urgently need your help also with respet to some exerises that I madeup as I was preparing this material. I ertainly don't like to reeive redit forthings that have already been published by others, and most of these results arequite natural \fruits" that were just waiting to be \pluked." Therefore pleasetell me if you know who deserves to be redited, with respet to the ideas foundin exerises 31(b), 33, 44, 50, 51, 62, 66, 67, 75, 100, : : : . Furthermore I'veredited exerises : : : to unpublished work of : : : . Have any of those results everappeared in print, to your knowledge?I've got a historial question too: Have you any idea who originated theidea of \stamping" in data strutures? (See 7.2.2{(26). This onept is quitedi�erent from the so-alled time stamps in persistent data strutures, and quitedi�erent from the so-alled time stamps in depth-�rst searh algorithms, andquite di�erent from the so-alled time stamps in ryptology, although manyprogrammers do use the name \time stamp" for those kinds of stamp.) It'sa tehnique that I've seen often, in programs that have ome to my attentionduring reent deades, but I wonder if it ever appeared in a book or paper thatwas published before, say, 1980. � � �Speial thanks are due to : : : for their detailed omments on my early attemptsat exposition, as well as to numerous other orrespondents who have ontributedruial orretions. � � �I happily o�er a \�nder's fee" of $2.56 for eah error in this draft when it is �rstreported to me, whether that error be typographial, tehnial, or historial.The same reward holds for items that I forgot to put in the index. And valuablesuggestions for improvements to the text are worth 32/ eah. (Furthermore, ifyou �nd a better solution to an exerise, I'll atually do my best to give youimmortal glory, by publishing your name in the eventual book:�)Cross referenes to yet-unwritten material sometimes appear as `00'; thisimpossible value is a plaeholder for the atual numbers to be supplied later.Happy reading!Stanford, California D. E. K.99 Umbruary 2016
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MPRPart of the Prefae to Volume 4BDuring the years that I've been preparing Volume 4, I've often run arossbasi tehniques of probability theory that I would have put into Setion 1.2of Volume 1 if I'd been lairvoyant enough to antiipate them in the 1960s.Finally I realized that I ought to ollet most of them together in one plae,near the beginning of Volume 4B, beause the story of these developments is toointeresting to be broken up into little piees sattered here and there.Therefore this volume begins with a speial setion entitled \MathematialPreliminaries Redux," and future setions use the abbreviation `MPR' to referto its equations and its exerises.

v
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MATHEMATICAL PRELIMINARIES REDUXMany parts of this book deal with disrete probabilities, namely with a �nite orountably in�nite set 
 of atomi events !, eah of whih has a given probabilityPr(!), where 0 � Pr(!) � 1 and X!2
Pr(!) = 1: (1): : : For the omplete text of the speial MPR setion, please see Pre-Fasile 5a.Inidentally, Setion 7.2.2 intentionally begins on a left-hand page, and itsillustrations are numbered beginning with Fig. 68, beause Setion 7.2.1 endedon a right-hand page and its �nal illustration was Fig. 67. The editor has deidedto treat Chapter 7 as a single unit, even though it will be split aross severalphysial volumes.

1
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2 COMBINATORIAL SEARCHING (F5B: 12Nov 2016�1636) KINGMASONGardner ESLENNONbaktrakWalkerdomainuto�properties: logial propositions (relations)P0()lexiographially
Nowhere to go but out,Nowhere to ome but bak.| BEN KING, in The Sum of Life (. 1893)When you ome to one legal road that's bloked,you bak up and try another.| PERRY MASON, in The Case of the Blak-Eyed Blonde (1944)No one I think is in my tree.| JOHN LENNON, in Strawberry Fields Forever (1967)7.2.2. Baktrak ProgrammingNow that we know how to generate simple ombinatorial patterns suh as tuples,permutations, ombinations, partitions, and trees, we're ready to takle moreexoti patterns that have subtler and less uniform struture. Instanes of almostany desired pattern an be generated systematially, at least in priniple, if weorganize the searh arefully. Suh a method was hristened \baktrak" byR. J. Walker in the 1950s, beause it is basially a way to examine all fruitfulpossibilities while exiting graefully from situations that have been fully explored.Most of the patterns we shall deal with an be ast in a simple, gen-eral framework: We seek all sequenes x1x2 : : : xn for whih some propertyPn(x1; x2; : : : ; xn) holds, where eah item xk belongs to some given domain Dkof integers. The baktrak method, in its most elementary form, onsists ofinventing intermediate \uto�" properties Pl(x1; : : : ; xl) for 1 � l < n, suhthat Pl(x1; : : : ; xl) is true whenever Pl+1(x1; : : : ; xl+1) is true; (1)Pl(x1; : : : ; xl) is fairly easy to test, if Pl�1(x1; : : : ; xl�1) holds. (2)(We assume that P0() is always true. Exerise 1 shows that all of the basipatterns studied in Setion 7.2.1 an easily be formulated in terms of domainsDkand uto� properties Pl.) Then we an proeed lexiographially as follows:Algorithm B (Basi baktrak). Given domains Dk and properties Pl as above,this algorithm visits all sequenes x1x2 : : : xn that satisfy Pn(x1; x2; : : : ; xn).B1. [Initialize.℄ Set l  1, and initialize the data strutures needed later.B2. [Enter level l.℄ (Now Pl�1(x1; : : : ; xl�1) holds.) If l > n, visit x1x2 : : : xnand go to B5. Otherwise set xl  minDl, the smallest element of Dl.B3. [Try xl.℄ If Pl(x1; : : : ; xl) holds, update the data strutures to failitatetesting Pl+1, set l l + 1, and go to B2.B4. [Try again.℄ If xl 6= maxDl, set xl to the next larger element of Dl andreturn to B3.B5. [Baktrak.℄ Set l l�1. If l > 0, downdate the data strutures by undoingthe hanges reently made in step B3, and return to B4. (Otherwise stop.)The main point is that if Pl(x1; : : : ; xl) is false in step B3, we needn't waste timetrying to append any further values xl+1 : : : xn. Thus we an often rule out hugeregions of the spae of all potential solutions. A seond important point is thatvery little memory is needed, although there may be many, many solutions.
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7.2.2 BACKTRACK PROGRAMMING 3 n queens{diagonalbaktrak treepro�leFor example, let's onsider the lassi problem of n queens : In how manyways an n queens be plaed on an n� n board so that no two are in the samerow, olumn, or diagonal? We an suppose that one queen is in eah row, andthat the queen in row k is in olumn xk , for 1 � k � n. Then eah domain Dkis f1; 2; : : : ; ng; and Pn(x1; : : : ; xn) is the ondition thatxj 6= xk and jxk � xj j 6= k � j; for 1 � j < k � n. (3)(If xj = xk and j < k, two queens are in the same olumn; if jxk � xj j = k � j,they're in the same diagonal.)This problem is easy to set up for Algorithm B, beause we an let propertyPl(x1; : : : ; xl) be the same as (3) but restrited to 1 � j < k � l. Condition (1)is lear; and so is ondition (2), beause Pl requires testing (3) only for k = lwhen Pl�1 is known. Notie that P1(x1) is always true in this example.One of the best ways to learn about baktraking is to exeute Algorithm Bby hand in the speial ase n = 4 of the n queens problem: First we set x1  1.Then when l = 2 we �nd P2(1; 1) and P2(1; 2) false; hene we don't get to l = 3until trying x2  3. Then, however, we're stuk, beause P3(1; 3; x) is false for1 � x � 4. Baktraking to level 2, we now try x2  4; and this allows us toset x3  2. However, we're stuk again, at level 4; and this time we must bakup all the way to level 1, beause there are no further valid hoies at levels 3and 2. The next hoie x1  2 does, happily, lead to a solution without muhfurther ado, namely x1x2x3x4 = 2413. And one more solution (3142) turns upbefore the algorithm terminates.The behavior of Algorithm B is niely visualized as a tree struture, alled asearh tree or baktrak tree. For example, the baktrak tree for the four queensproblem has just 17 nodes, 1 2 3 43 42 413 241 31 2 ; (4)orresponding to the 17 times step B2 is performed. Here xl is shown as thelabel of an edge from level l � 1 to level l of the tree. (Level l of the algorithmatually orresponds to the tree's level l � 1, beause we've hosen to representpatterns using subsripts from 1 to n instead of from 0 to n�1 in this disussion.)The pro�le (p0; p1; : : : ; pn) of this partiular tree| the number of nodes at eahlevel| is (1; 4; 6; 4; 2); and we see that the number of solutions, pn = p4, is 2.Figure 68 shows the orresponding tree when n = 8. This tree has 2057nodes, distributed aording to the pro�le (1; 8; 42; 140; 344; 568; 550; 312; 92).Thus the early uto�s failitated by baktraking have allowed us to �nd all 92solutions by examining only 0.01% of the 88 = 16;777;216 possible sequenesx1 : : : x8. (And 88 is only 0.38% of the �648 � = 4;426;165;368 ways to put eightqueens on the board.)
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4 COMBINATORIAL SEARCHING (F5B: 12Nov 2016�1636) 7.2.2 data strutures{memsdowndating vs updating+undoes
Fig. 68. The problem of plaing eight nonattaking queens has this baktrak tree.Notie that, in this ase, Algorithm B spends most of its time in the viinityof level 5. Suh behavior is typial: The baktrak tree for n = 16 queens has1,141,190,303 nodes, and its pro�le is (1, 16, 210, 2236, 19688, 141812, 838816,3998456, 15324708, 46358876, 108478966, 193892860, 260303408, 253897632,171158018, 72002088, 14772512), onentrated near level 12.Data strutures. Baktrak programming is often used when a huge tree ofpossibilities needs to be examined. Thus we want to be able to test property Plas quikly as possible in step B3.One way to implement Algorithm B for the n queens problem is to avoidauxiliary data strutures and simply to make a bunh of sequential omparisonsin that step: \Is xl � xj 2 fj � l; 0; l � jg for some j < l?" Assuming that weaess memory whenever referring to xj , given a trial value xl in a register, suhan implementation performs approximately 112 billion memory aesses whenn = 16; that's about 98 mems per node.We an do better by introduing three simple arrays. Property Pl in (3)says essentially that the numbers xk are distint, and so are the numbers xk+k,and so are the numbers xk � k. Therefore we an use auxiliary Boolean arraysa1 : : : an, b1 : : : b2n�1, and 1 : : : 2n�1, where aj means `some xk = j', bj means`some xk + k � 1 = j', and j means `some xk � k + n = j'. Those arrays arereadily updated and downdated if we ustomize Algorithm B as follows:B1*. [Initialize.℄ Set a1 : : : an  0 : : : 0, b1 : : : b2n�1  0 : : : 0, 1 : : : 2n�1  0 : : : 0, and l 1.B2*. [Enter level l.℄ (Now Pl�1(x1; : : : ; xl�1) holds.) If l > n, visit x1x2 : : : xnand go to B5*. Otherwise set t 1.B3*. [Try t.℄ If at = 1 or bt+l�1 = 1 or t�l+n = 1, go to B4*. Otherwise setat  1, bt+l�1  1, t�l+n  1, xl  t, l  l + 1, and go to B2*.B4*. [Try again.℄ If t < n, set t t+ 1 and return to B3*.B5*. [Baktrak.℄ Set l  l � 1. If l > 0, set t  xl, t�l+n  0, bt+l�1  0,at  0, and return to B4*. (Otherwise stop.)Notie how step B5* neatly undoes the updates that step B3* had made, in thereverse order. Reverse order for downdating is typial of baktrak algorithms,
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7.2.2 BACKTRACK PROGRAMMING 5 registersWalkeruto� propertiesvisitsbitwise operationshistorial notes+Spraguealthough there is some exibility; we ould, for example, have restored at beforebt+l�1 and t�l+n, beause those arrays are independent.The auxiliary arrays a, b,  make it easy to test property Pl at the beginningof step B3*, but we must also aess memory when we update them and downdatethem. Does that ost us more than it saves? Fortunately, no: The running timefor n = 16 goes down to about 34 billion mems, roughly 30 mems per node.Furthermore we ould keep the bit vetors a, b,  entirely in registers, on amahine with 64-bit registers, assuming that n � 32. Then there would be justtwo memory aesses per node, namely to store xl  t and later to feth t xl;however, quite a lot of in-register omputation would beome neessary.Walker's method. The 1950s-era programs of R. J. Walker organized bak-traking in a somewhat di�erent way. Instead of letting xl run through allelements of Dl, he alulated and stored the setSl  �x 2 Dl �� Pl(x1; : : : ; xl�1; x) holdsg (5)upon entry to eah node at level l. This omputation an often be done eÆientlyall at one, instead of pieemeal, beause some uto� properties make it possibleto ombine steps that would otherwise have to be repeated for eah x 2 Dl. Inessene, he used the following variant of Algorithm B:AlgorithmW (Walker's baktrak). Given domainsDk and uto�s Pl as above,this algorithm visits all sequenes x1x2 : : : xn that satisfy Pn(x1; x2; : : : ; xn).W1. [Initialize.℄ Set l 1, and initialize the data strutures needed later.W2. [Enter level l.℄ (Now Pl�1(x1; : : : ; xl�1) holds.) If l > n, visit x1x2 : : : xnand go to W4. Otherwise determine the set Sl as in (5).W3. [Try to advane.℄ If Sl is nonempty, set xl  minSl, update the datastrutures to failitate omputing Sl+1, set l  l+ 1, and go to W2.W4. [Baktrak.℄ Set l  l � 1. If l > 0, downdate the data strutures byundoing hanges made in step W3, set Sl  Sl nxl, and retreat to W3.Walker applied this method to the n queens problem by omputing Sl =U nAl nBl n Cl, where U = Dl = f1; : : : ; ng andAl= fxj j 1� j < lg; Bl= fxj+j� l j 1� j < lg; Cl= fxj�j+ l j 1� j < lg: (6)He represented these auxiliary sets by bit vetors a, b, , analogous to (butdi�erent from) the bit vetors of Algorithm B* above. Exerise 9 shows thatthe updating in step W3 is easy, using bitwise operations on n-bit numbers;furthermore, no downdating is needed in step W4. The orresponding run timewhen n = 16 turns out to be just 9.1 gigamems, or 8 mems per node.Let Q(n) be the number of solutions to the n queens problem. Then we haven = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16Q(n) = 1 1 0 0 2 10 4 40 92 352 724 2680 14200 73712 365596 2279184 14772512and the values for n � 11 were omputed independently by several people duringthe nineteenth entury. Small ases were relatively easy; but when T. B. Sprague
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6 COMBINATORIAL SEARCHING (F5B: 12Nov 2016�1636) 7.2.2 SpragueOnnenAhrensWalkerSWAC omputerUCLAKennedyUniversity of TennesseeIBM 1620BunhUniversity of IllinoisIBM System 360-75BitnerPreu�erEngelhardtdistributed omputationFPGApermutationdata struturesLangford pairsduallinked list

had �nished omputing Q(11) he remarked that \This was a very heavy piee ofwork, and oupied most of my leisure time for several months. : : : It will, I imag-ine, be sarely possible to obtain results for larger boards, unless a number ofpersons o-operate in the work." [See Pro. Edinburgh Math. So. 17 (1899), 43{68; Sprague was the leading atuary of his day.℄ Nevertheless, H. Onnen went onto evaluate Q(12) = 14;200|an astonishing feat of hand alulation| in 1910.[See W. Ahrens,Math. Unterhaltungen und Spiele 2, seond edition (1918), 344.℄All of these hard-won results were on�rmed in 1960 by R. J. Walker,using the SWAC omputer at UCLA and the method of exerise 9. Walker alsoomputed Q(13); but he ouldn't go any further with the mahine available tohim at the time. The next step, Q(14), was omputed by Mihael D. Kennedy atthe University of Tennessee in 1963, ommandeering an IBM 1620 for 120 hours.S. R. Bunh evaluated Q(15) in 1974 at the University of Illinois, using abouttwo hours on an IBM System 360-75; then J. R. Bitner found Q(16) after aboutthree hours on the same omputer, but with an improved method.Computers and algorithms have ontinued to get better, of ourse, and suhresults are now obtained almost instantly. Hene larger and larger values of n lieat the frontier. The whopping value Q(27) = 234,907,967,154,122,528, found in2016 by Thomas B. Preu�er and Matthias R. Engelhardt, probably won't be ex-eeded for awhile! [See J. Signal Proessing Systems 89 (2017), to appear. Thisdistributed omputation oupied a dynami luster of diverse FPGA devies for383 days; those devies provided a total peak of more than 7000 ustom-designedhardware solvers to handle 2,024,110,796 independent subproblems.℄Permutations and Langford pairs. Every solution x1 : : : xn to the n queensproblem is a permutation of f1; : : : ; ng, and many other problems are permu-tation-based. Indeed, we've already seen Algorithm 7.2.1.2X, whih is an ele-gant baktrak proedure spei�ally designed for speial kinds of permutations.When that algorithm begins to hoose the value of xl, it makes all of the appropri-ate elements f1; 2; : : : ; ngnfx1; : : : ; xl�1g onveniently aessible in a linked list.We an get further insight into suh data strutures by returning to theproblem of Langford pairs, whih was disussed at the very beginning of Chap-ter 7. That problem an be reformulated as the task of �nding all permutationsof f1; 2; : : : ; ng [ f�1;�2; : : : ;�ng with the property thatxj = k implies xj+k+1 = �k; for 1 � j � 2n and 1 � k � n. (7)For example, when n = 4 there are two solutions, namely 234�21�3�1�4 and 413�12�4�3�2.(As usual we �nd it onvenient to write �1 for �1, �2 for �2, et.) Notie that ifx = x1x2 : : : x2n is a solution, so is its \dual" �xR = (�x2n) : : : (�x2)(�x1).Here's a Langford-inspired adaptation of Algorithm 7.2.1.2X, with the for-mer notation modi�ed slightly to math Algorithms B and W: We want to main-tain pointers p0p1 : : : pn suh that, if the positive integers not already present inx1 : : : xl�1 are k1 < k2 < � � � < kt when we're hoosing xl, we have the linked listp0 = k1; pk1 = k2; : : : ; pkt�1 = kt; pkt = 0: (8)Suh a ondition turns out to be easy to maintain.
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7.2.2 BACKTRACK PROGRAMMING 7 undoesdeletion operationdaning linkssearh treeuto� prinipleAlgorithm L (Langford pairs). This algorithm visits all solutions x1 : : : x2nto (7) in lexiographi order, using pointers p0p1 : : : pn that satisfy (8), and alsousing an auxiliary array y1 : : : y2n for baktraking.L1. [Initialize.℄ Set x1 : : : x2n  0 : : : 0, pk  k+1 for 0 � k < n, pn  0, l  1.L2. [Enter level l.℄ Set k  p0. If k = 0, visit x1x2 : : : x2n and go to L5.Otherwise set j  0, and while xl < 0 set l l + 1.L3. [Try xl = k.℄ (At this point we have k = pj .) If l + k + 1 > 2n, go to L5.Otherwise, if xl+k+1 = 0, set xl  k, xl+k+1  �k, yl  j, pj  pk,l l + 1, and return to L2.L4. [Try again.℄ (We've found all solutions that begin with x1 : : : xl�1k orsomething smaller.) Set j  k and k  pj , then go to L3 if k 6= 0.L5. [Baktrak.℄ Set l  l � 1. If l > 0 do the following: While xl < 0, setl  l � 1. Then set k  xl, xl  0, xl+k+1  0, j  yl, pj  k, and gobak to L4. Otherwise terminate the algorithm.Careful study of these steps will reveal how everything �ts together niely. Notiethat, for example, step L3 removes k from the linked list (8) by simply settingpj  pk. That step also sets xl+k+1  �k, in aordane with (7), so that wean skip over position l + k + 1 when we enounter it later in step L2.The main point of Algorithm L is the somewhat subtle way in whih step L5undoes the deletion operation by setting pj  k. The pointer pk still retains theappropriate link to the next element in the list, beause pk has not been hangedby any of the intervening updates. (Think about it.) This is the germ of an ideaalled \daning links" that we will explore in Setion 7.2.2.1.To draw the searh tree orresponding to a run of Algorithm L, we an labelthe edges with the positive hoies of xl as we did in (4), while labeling thenodes with any previously set negative values that are passed over in step L2.For instane the tree for n = 4 is12 1 1 213 2314 21 132 13 1432
1 2 3 42 3 43 2 3 3 41 41 1 1 42 4 2 1 232 3 : (9)Solutions appear at depth n in this tree, even though they involve 2n valuesx1x2 : : : x2n.Algorithm L sometimes makes false starts and doesn't realize the problemuntil probing further than neessary. Notie that the value xl = k an appearonly when l + k + 1 � 2n; hene if we haven't seen k by the time l reahes2n � k � 1, we're fored to hoose xl = k. For example, the branh 12�1 in (9)needn't be pursued, beause 4 must appear in fx1; x2; x3g. Exerise 20 explainshow to inorporate this uto� priniple into Algorithm L. When n = 17, itredues the number of nodes in the searh tree from 1.29 trillion to 330 billion,
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8 COMBINATORIAL SEARCHING (F5B: 12Nov 2016�1636) 7.2.2 break the symmetrydualword retangles{footnote doesn't show up heren-letter wordsWORDS5-letter wordsStanford GraphBasetrie
and redues the running time from 25.0 teramems to 8.1 teramems. (The amountof work has gone from 19.4 mems per node to 24.4 mems per node, beause ofthe extra tests for uto�s, yet there's a signi�ant overall redution.)Furthermore, we an \break the symmetry" by ensuring that we don'tonsider both a solution and its dual. This idea, exploited in exerise 21, reduesthe searh tree to just 160 billion nodes and osts just 3.94 teramems|that's24.6 mems per node.Word retangles. Let's look next at a problem where the searh domains Dlare muh larger. An m� n word retangle is an array of n-letter words* whoseolumns are m-letter words. For example,statuslowestutopiamakingsledge (10)is a 5�6 word retangle whose olumns all belong to WORDS(5757), the olletionof 5-letter words in the Stanford GraphBase. To �nd suh patterns, we an sup-pose that olumn l ontains the xlth most ommon 5-letter word, where 1 � xl �5757 for 1 � l � 6; hene there are 57576 = 36,406,369,848,837,732,146,649 waysto hoose the olumns. In (10) we have x1 : : : x6 = 1446 185 1021 2537 66 255.Of ourse very few of those hoies will yield suitable rows; but baktraking willhopefully help us to �nd all solutions in a reasonable amount of time.We an set this problem up for Algorithm B by storing the n-letter wordsin a trie (see Setion 6.3), with one trie node of size 26 for eah l-letter pre�x ofa legitimate word, 0 � l � n.For example, suh a trie for n = 6 represents 15727 words with 23667 nodes.The pre�x st orresponds to node number 260, whose 26 entries are(484;0;0;0;1589;0;0;0;2609;0;0;0;0;0;1280;0;0;251;0;0;563;0;0;0;1621;0); (11)this means that sta is node 484, ste is node 1589, : : : , sty is node 1621, andthere are no 6-letter words beginning with stb, st, : : : , stx, stz. A slightlydi�erent onvention is used for pre�xes of length n� 1; for example, the entriesfor node 580, `orne', are(3879;0;0;3878;0;0;0;0;0;0;0;9602;0;0;0;0;0;171;0;5013;0;0;0;0;0;0); (12)meaning that ornea, orned, ornel, orner, and ornet are ranked 3879,3878, 9602, 171, and 5013 in the list of 6-letter words.* Whenever �ve-letter words are used in the examples of this book, they're taken from the5757 Stanford GraphBase words as explained at the beginning of Chapter 7. Words of otherlengths are taken from the The OÆial SCRABBLE RPlayers Ditionary, fourth edition (Hasbro,2005), beause those words have been inorporated into many widely available omputer games.Suh words have been ranked aording to the British National Corpus of 2007|where `the'ours 5,405,633 times and the next-most ommon word, `of', ours roughly half as often(3,021,525). The OSPD4 list inludes respetively (101, 1004, 4002, 8887, 15727, 23958, 29718,29130, 22314, 16161, 11412) words of lengths (2, 3, : : : , 12), of whih (97, 771, 2451, 4474, 6910,8852, 9205, 8225, 6626, 4642, 3061) our at least six times in the British National Corpus.
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7.2.2 BACKTRACK PROGRAMMING 9 teramemspro�lesearh treedata strutureommafree odes{4-letter odewordsfour-letter wordsoding theoryonatenatingodewordsself-synhronizing blok odeblok odeCrikGriÆthOrgelGolombGordonWelh
Suppose x1 and x2 speify the 5-letter olumn-words slums and total asin (10). Then the trie tells us that the next olumn-word x3 must have the form12345 where 1 2 fa; e; i; o; r; u; yg, 2 =2 fe; h; j; k; y; zg, 3 2 fe; m; o; tg,4 =2 fa; b; og, and 5 2 fa; e; i; o; u; yg. (There are 221 suh words.)Let al1 : : : alm be the trie nodes orresponding to the pre�xes of the �rstl olumns of a partial solution to the word retangle problem. This auxiliaryarray enables Algorithm B to �nd all solutions, as explained in exerise 24. Itturns out that there are exatly 625,415 valid 5� 6 word retangles, aordingto our onventions; and the method of exerise 24 needs about 19 teramems ofomputation to �nd them all. In fat, the pro�le of the searh tree is(1; 5757; 2458830; 360728099; 579940198; 29621728; 625415); (13)indiating for example that just 360,728,099 of the 57573 = 190,804,533,093hoies for x1x2x3 will lead to valid pre�xes of 6-letter words.With are, exerise 24's running time an be signi�antly dereased, onewe realize that every node of the searh tree for 1 � l � n requires testing 5757possibilities for xl in step B3. If we build a more elaborate data struture for the5-letter words, so that it beomes easy to run though all words that have a spei�letter in a spei� position, we an re�ne the algorithm so that the averagenumber of possibilities per level that need to be investigated beomes only(5757:0; 1697:9; 844:1; 273:5; 153:5; 100:8); (14)the total running time then drops to 1.15 teramems. Exerise 25 has the details.And exerise 28 disusses a method that's faster yet.Commafree odes. Our next example deals entirely with four -letter words.But it's not obsene; it's an intriguing question of oding theory. The problemis to �nd a set of four-letter words that an be deoded even if we don't putspaes or other delimiters between them. If we take any message that's formedfrom words of the set by simply onatenating them together, likethis, andif we look at any seven onseutive letters : : : x1x2x3x4x5x6x7 : : : , exatly oneof the four-letter substrings x1x2x3x4, x2x3x4x5, x3x4x5x6, x4x5x6x7 will be aodeword. Equivalently, if x1x2x3x4 and x5x6x7x8 are odewords, then x2x3x4x5and x3x4x5x6 and x4x5x6x7 aren't. (For example, iket isn't.) Suh a set isalled a \ommafree ode" or a \self-synhronizing blok ode" of length four.Commafree odes were introdued by F. H. C. Crik, J. S. GriÆth, andL. E. Orgel [Pro. National Aad. Si. 43 (1957), 416{421℄, and studied furtherby S. W. Golomb, B. Gordon, and L. R. Welh [Canadian Journal of Mathematis10 (1958), 202{209℄, who onsidered the general ase ofm-letter alphabets and n-letter words. They onstruted optimum ommafree odes for all m when n = 2,3, 5, 7, 9, 11, 13, and 15; and optimum odes for all m were subsequently foundalso for n = 17, 19, 21, : : : (see exerise 32). We will fous our attention on thefour-letter ase here (n = 4), partly beause that ase is still very far from beingresolved, but mostly beause the task of �nding suh odes is espeially instru-tive. Indeed, our disussion will lead us naturally to an understanding of severalsigni�ant tehniques that are important for baktrak programming in general.
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10 COMBINATORIAL SEARCHING (F5B: 12Nov 2016�1636) 7.2.2 periodiaperiodiyli shiftsprime stringslookaheaddynami ordering{searh rearrangement, see dynami orderinguto� propertiesTo begin, we an see immediately that a ommafree odeword annot be\periodi," like dodo or gaga. Suh a word already appears within two adjaentopies of itself. Thus we're restrited to aperiodi words like item, of whih thereare m4 � m2. Notie further that if item has been hosen, we aren't allowedto inlude any of its yli shifts temi, emit, or mite, beause they all appearwithin itemitem. Hene the maximum number of odewords in our ommafreeode annot exeed (m4 �m2)=4.For example, onsider the binary ase, m = 2, when this maximum is 3.Can we hoose three four-bit \words," one from eah of the yli lasses[0001℄ = f0001; 0010; 0100; 1000g;[0011℄ = f0011; 0110; 1100; 1001g;[0111℄ = f0111; 1110; 1101; 1011g; (15)so that the resulting ode is ommafree? Yes: One solution in this ase is simplyto hoose the smallest word in eah lass, namely 0001, 0011, and 0111. (Alertreaders will reall that we studied the smallest word in the yli lass of anyaperiodi string in Setion 7.2.1.1, where suh words were alled prime stringsand where some of the remarkable properties of prime strings were proved.)That trik doesn't work when m = 3, however, when there are (81� 9)=4 =18 yli lasses. Then we annot inlude 1112 after we've hosen 0001 and 0011.Indeed, a ode that ontains 0001 and 1112 an't ontain either 0011 or 0111.We ould systematially baktrak through 18 levels, hoosing x1 in [0001℄and x2 in [0011℄, et., and rejeting eah xl as in Algorithm B whenever wedisover that fx1; x2; : : : ; xlg isn't ommafree. For example, if x1 = 0010 andwe try x2 = 1001, this approah would baktrak beause x1 ours inside x2x1.But a na��ve strategy of that kind, whih reognizes failure only after abad hoie has been made, an be vastly improved. If we had been leverenough, we ould have looked a little bit ahead, and never even onsidered thehoie x2 = 1001 in the �rst plae. Indeed, after hoosing x1 = 0010, we anautomatially exlude all further words of the form �001, suh as 2001 whenm � 3 and 3001 when m � 4.Even better pruning ours if, for example, we've hosen x1 = 0001 andx2 = 0011. Then we an immediately rule out all words of the forms 1��� or���0, beause x11��� inludes x2 and ���0x2 inludes x1. Already we ould thendedue, in the ase m � 3, that lasses [0002℄, [0021℄, [0111℄, [0211℄, and [1112℄must be represented by 0002, 0021, 0111, 0211, and 2111, respetively; eah ofthe other three possibilities in those lasses has been wiped out!Thus we see the desirability of a lookahead mehanism.Dynami ordering of hoies. Furthermore, we an see from this examplethat it's not always good to hoose x1, then x2, then x3, and so on when tryingto satisfy a general property Pn(x1; x2; : : : ; xn) in the setting of Algorithm B.Maybe the searh tree will be muh smaller if we �rst hoose x5, say, and thenturn next to some other xj , depending on the partiular value of x5 that wasseleted. Some orderings might have muh better uto� properties than others,and every branh of the tree is free to hoose its variables in any desired order.
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7.2.2 BACKTRACK PROGRAMMING 11 framemovesequential lists{downdating vs updatingahe-friendlyunordered sequential listells of memoryMEM, an array of \ells"{Indeed, our ommafree oding problem for ternary 4-tuples doesn't ditateany partiular ordering of the 18 lasses that would be likely to keep the searhtree small. Therefore, instead of alling those hoies x1, x2, : : : , x18, it's betterto identify them by the various lass names, namely x0001, x0002, x0011, x0012,x0021, x0022, x0102, x0111, x0112, x0121, x0122, x0211, x0212, x0221, x0222, x1112,x1122, x1222. (Algorithm 7.2.1.1F is a good way to generate those names.) Atevery node of the searh tree we then an hoose a onvenient variable on whihto branh, based on previous hoies. After beginning with x0001  0001 atlevel 1 we might deide to try x0011  0011 at level 2; and then, as we've seen,the hoies x0002  0002, x0021  0021, x0111  0111, x0211  0211, andx1112  2111 are fored, so we should make them at levels 3 through 7.Furthermore, after those fored moves are made, it turns out that they don'tfore any others. But only two hoies for x0012 will remain, while x0122 will havethree. Therefore it will probably be wiser to branh on x0012 rather than on x0122at level 8. (Inidentally, it also turns out that there is no ommafree ode withx0001 = 0001 and x0011 = 0011, exept when m = 2.)It's easy to adapt Algorithms B and W to allow dynami ordering. Everynode of the searh tree an be given a \frame" in whih we reord the variablebeing set and the hoie that was made. This hoie of variable and value anbe alled a \move" made by the baktrak proedure.Dynami ordering an be helpful also after baktraking has taken plae. Ifwe ontinue the example above, where x0001 = 0001 and we've explored all asesin whih x0011 = 0011, we aren't obliged to ontinue by trying another valuefor x0011. We do want to remember that 0011 should no longer be onsideredlegal, until x0001 hanges; but we ould deide to explore next a ase suh asx0002 = 2000 at level 2. In fat, x0002 = 2000 is quikly seen to be impossible inthe presene of 0001 (see exerise 34). An even more eÆient hoie at level 2,however, is x0012 = 0012, beause that branh immediately fores x0002 = 0002,x0022 = 0022, x0122 = 0122, x0222 = 0222, x1222 = 1222, and x0011 = 1001.Sequential alloation redux. The hoie of a variable and value on whih tobranh is a deliate tradeo�. We don't want to devote more time to planningthan we'll save by having a good plan.If we're going to bene�t from dynami ordering, we'll need eÆient datastrutures that will lead to good deisions without muh deliberation. On theother hand, elaborate data strutures need to be updated whenever we branhto a new level, and they need to be downdated whenever we return from thatlevel. Algorithm L illustrates an eÆient mehanism based on linked lists; butsequentially alloated lists are often even more appealing, beause they are ahe-friendly and they involve fewer aesses to memory.Assume then that we wish to represent a set of items as an unorderedsequential list. The list begins in a ell of memory pointed to by HEAD, andTAIL points just beyond the end of the list. For example,3 9 1 4HEAD TAIL� � � � � � (16)
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12 COMBINATORIAL SEARCHING (F5B: 12Nov 2016�1636) 7.2.2 emptyinsertoverowinverse listinverse permutationativeis one way to represent the set f1; 3; 4; 9g. The number of items urrently in theset is TAIL� HEAD; thus TAIL = HEAD if and only if the list is empty. If we wishto insert a new item x, knowing that x isn't already present, we simply setMEM[TAIL℄ x; TAIL TAIL+ 1: (17)Conversely, if HEAD � P < TAIL, we an easily delete MEM[P℄:TAIL TAIL� 1; if P 6= TAIL, set MEM[P℄ MEM[TAIL℄: (18)(We've taitly assumed in (17) that MEM[TAIL℄ is available for use whenever anew item is inserted. Otherwise we would have had to test for memory overow.)We an't delete an item from a list without knowing its MEM loation. Thuswe will often want to maintain an \inverse list," assuming that all items x lie inthe range 0 � x < M. For example, (16) beomes the following, if M = 10:3 9 1 4HEAD TAIL� � � � � �IHEAD� � � � � � (19)(Shaded ells have unde�ned ontents.) With this setup, insertion (17) beomesMEM[TAIL℄ x; MEM[IHEAD+ x℄ TAIL; TAIL TAIL+ 1; (20)and TAIL will never exeed HEAD+M. Similarly, deletion of x beomesP MEM[IHEAD+ x℄; TAIL TAIL� 1;if P 6= TAIL, set y  MEM[TAIL℄, MEM[P℄ y, MEM[IHEAD+ y℄ P. (21)For example, after deleting `9' from (19) we would obtain this:3 4 1HEAD TAIL
IHEAD� � � � � �� � � � � � (22)In more elaborate situations we also want to test whether or not a givenitem x is present. If so, we an keep more information in the inverse list.A partiularly useful variation arises when the list that begins at IHEAD ontainsa omplete permutation of the values fHEAD; HEAD+ 1; : : : ; HEAD+M � 1g, andthe memory ells beginning at HEAD ontain the inverse permutation|althoughonly the �rst TAIL� HEAD elements of that list are onsidered to be \ative."For example, in our ommafree ode problem with m = 3, we an begin byputting items representing the M = 18 yle lasses [0001℄, [0002℄, : : : , [1222℄into memory ells HEAD through HEAD + 17. Initially they're all ative, with
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7.2.2 BACKTRACK PROGRAMMING 13 deletedata struturesperiodiradix mTAIL = HEAD + 18 and MEM[IHEAD+ ℄ = HEAD +  for 0 �  < 18. Thenwhenever we deide to hoose a odeword for lass , we delete  from the ativelist by using a souped-up version of (21) that maintains full permutations:P MEM[IHEAD+ ℄; TAIL TAIL� 1;if P 6= TAIL, set y  MEM[TAIL℄, MEM[TAIL℄ , MEM[P℄ y,MEM[IHEAD+ ℄ TAIL; MEM[IHEAD+ y℄ P: (23)Later on, after baktraking to a state where we one again want  to be onsid-ered ative, we simply set TAIL TAIL+ 1, beause  will already be in plae!Lists for the ommafree problem. The task of �nding all four-letter omma-free odes is not diÆult when m = 3 and only 18 yle lasses are involved. Butit already beomes hallenging when m = 4, beause we must then deal with(44� 42)=4 = 60 lasses. Therefore we'll want to give it some areful thought aswe try to set it up for baktraking.The example senarios for m = 3 onsidered above suggest that we'll repeat-edly want to know the answers to questions suh as, \How many words of theform 02�� are still available for seletion as odewords?" Redundant data stru-tures, oriented to queries of that kind, appear to be needed. Fortunately, we shallsee that there's a nie way to provide them, using sequential lists as in (19){(23).In Algorithm C below, eah of the m4 four-letter words is given one of threepossible states during the searh for ommafree odes. A word is green if it's partof the urrent set of tentative odewords. It is red if it's not urrently a andidatefor suh status, either beause it is inompatible with the existing green wordsor beause the algorithm has already examined all senarios in whih it is greenin their presene. Every other word is blue, and sort of in limbo; the algorithmmight or might not deide to make it red or green. All words are initially blue|exept for the m2 periodi words, whih are permanently red.We'll use the Greek letter � to stand for the integer value of a four-letterword x in radix m. For example, if m = 3 and if x is the word 0102, then� = (0102)3 = 11. The urrent state of word x is kept in MEM[�℄, using one ofthe arbitrary internal odes 2 (GREEN), 0 (RED), or 1 (BLUE).The most important feature of the algorithm is that every blue word x =x1x2x3x4 is potentially present in seven di�erent lists, alled P1(x), P2(x),P3(x), S1(x), S2(x), S3(x), and CL(x), where� P1(x), P2(x), P3(x) are the blue words mathing x1���, x1x2��, x1x2x3�;� S1(x), S2(x), S3(x) are the blue words mathing ���x4, ��x3x4, �x2x3x4;� CL(x) hosts the blue words in fx1x2x3x4; x2x3x4x1; x3x4x1x2; x4x1x2x3g.These seven lists begin respetively in MEM loations P1OFF+p1(�), P2OFF+p2(�),P3OFF+p3(�), S1OFF+s1(�), S2OFF+s2(�), S3OFF+s3(�), and CLOFF+4l(�);here (P1OFF, P2OFF, P3OFF, S1OFF, S2OFF, S3OFF, CLOFF) are respetively (2m4,5m4, 8m4, 11m4, 14m4, 17m4, 20m4). We de�ne p1((x1x2x3x4)m) = (x1)m,p2((x1x2x3x4)m) = (x1x2)m, p3((x1x2x3x4)m) = (x1x2x3)m, s1((x1x2x3x4)m) =(x4)m, s2((x1x2x3x4)m) = (x3x4)m, s3((x1x2x3x4)m) = (x2x3x4)m; and �nallyl((x1x2x3x4)m) is an internal number between 0 and (m4�m2)=4� 1 assigned



November 12, 2016

14 COMBINATORIAL SEARCHING (F5B: 12Nov 2016�1636) 7.2.2 reetionsymmetry breakinglosedTable 1LISTS USED BY ALGORITHM C (m = 2), ENTERING LEVEL 10 1 2 3 4 5 6 7 8 9 a b  d e f0 RED BLUE BLUE BLUE RED RED BLUE BLUE RED BLUE RED BLUE BLUE BLUE BLUE RED10 20 21 22 23 24 29 2 28 2b 2a20 0001 0010 0011 0110 0111 1100 1001 1110 1101 1011 P130 25 2d40 50 51 52 54 55 58 59 5 5e 5d50 0001 0010 0011 0110 0111 1001 1011 1100 1110 1101 P260 53 56 5a 5f70 80 82 83 86 87 88 8a 8 8d 8e80 0001 0010 0011 0110 0111 1001 1011 1100 1101 1110 P390 81 84 84 88 89 8b 8e 8fa0 b8 b0 b9 b1 bb ba bd b2 b b3b0 0010 0110 1100 1110 0001 0011 1001 0111 1101 1011 S10 b4 bed0 e4 e8 e e9 ed e5 ee e0 e6 eae0 1100 0001 1001 1101 0010 0110 1110 0011 0111 1011 S2f0 e1 e7 eb ef100 112 114 116 11 11e 113 117 118 11a 11d110 0001 1001 0010 0011 1011 1100 1101 0110 1110 0111 S3120 110 114 115 118 119 11b 11e 11f130 140 141 144 145 148 147 14b 146 14a 149140 0001 0010 0011 0110 1100 1001 0111 1110 1101 1011 CL150 142 148 14This table shows MEM loations 0000 through 150f, using hexadeimal notation. (Forexample, MEM[40d℄=5e; see exerise 36.) Blank entries are unused by the algorithm.to eah lass. The seven MEM loations where x appears in these seven lists arerespetively kept in inverse lists that begin in MEM loations P1OFF � m4 + �,P2OFF�m4+�, : : : , CLOFF�m4+�. And the TAIL pointers, whih indiate theurrent list sizes as in (19){(23), are respetively kept in MEM loations P1OFF+m4 + �, P2OFF+m4 + �, : : : , CLOFF+m4 + �. (Whew; got that?)This vast apparatus, whih oupies 22m4 ells of MEM, is illustrated inTable 1, at the beginning of the omputation for the ase m = 2. Fortunatelyit's not really as ompliated as it may seem at �rst. Nor is it espeially vast:After all, 22m4 is only 13,750 when m = 5.(A lose inspetion of Table 1 reveals inidentally that the words 0100 and1000 have been olored red, not blue. That's beause we an assume withoutloss of generality that lass [0001℄ is represented either by 0001 or by 0010. Theother two ases are overed by left-right reetion of all odewords.)Algorithm C �nds these lists invaluable when it is deiding where next tobranh. But it has no further use for a list in whih one of the items has beomegreen. Therefore it delares suh lists \losed"; and it saves most of the workof list maintenane by updating only the lists that remain open. A losed list isrepresented internally by setting its TAIL pointer to HEAD� 1.For example, Table 2 shows how the lists in MEM will have hanged justafter x = 0010 has been hosen to be a tentative odeword. The elementsf0001; 0010; 0011; 0110; 0111g of P1(x) are e�etively hidden, beause the tailpointer MEM[30℄ = 1f = 20�1 marks that list as losed. (Those list elements a-
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7.2.2 BACKTRACK PROGRAMMING 15 undoing{FloydompilerTable 2LISTS USED BY ALGORITHM C (m = 2), ENTERING LEVEL 20 1 2 3 4 5 6 7 8 9 a b  d e f0 RED RED GREEN BLUE RED RED BLUE BLUE RED RED RED BLUE BLUE BLUE BLUE RED10 29 28 2b 2a20 1100 1011 1110 1101 P130 1f 240 54 55 58 5 5e 5d50 0110 0111 1011 1100 1110 1101 P260 4f 56 59 5f70 86 87 8a 8 8d 8e80 0110 0111 1011 1100 1101 1110 P390 80 81 84 88 88 8b 8e 8fa0 b9 bb b8 bab0 1011 0011 1101 0111 S10 af bd0 e ed ee e0 e4e0 1100 1101 0011 0111 1011 S2f0 e1 e5 e7 ef100 116 11 11e 117 118 11a 11d110 0011 1011 1100 1101 0110 1110 0111 S3120 110 112 113 118 119 11b 11e 11f130 144 145 148 14b 146 14a 149140 0011 0110 1100 0111 1110 1101 1011 CL150 13f 147 14The word 0010 has beome green, thus losing its seven lists and making 0001 red. Thelogi of Algorithm C has also made 1001 red. Hene 0001 and 1001 have been deletedfrom the open lists in whih they formerly appeared (see exerise 37).tually do still appear in MEM loations 200 through 204, just as they did in Table 1.But there's no need to look at that list while any word of the form 0��� is green.)A general mehanism for doing and undoing. We're almost ready to�nalize the details of Algorithm C and to get on with the searh for ommafreeodes, but a big problem still remains: The state of omputation at every levelof the searh involves all of the marvelous lists that we've just spei�ed, andthose lists aren't tiny. They oupy more than 5000 ells of MEM when m = 4,and they an hange substantially from level to level.We ould make a new opy of the entire state, whenever we advane to anew node of the searh tree. But that's a bad idea, beause we don't want toperform thousands of memory aesses per node. A muh better strategy wouldbe to stik with a single instane of MEM, and to update and downdate the listsas the searh progresses, if we ould only think of a simple way to do that.And we're in luk: There is suh a way, �rst formulated by R. W. Floydin his lassi paper \Nondeterministi algorithms" [JACM 14 (1967), 636{644℄.Floyd's original idea, whih required a speial ompiler to generate forward andbakward versions of every program step, an in fat be greatly simpli�ed whenall of the hanges in state are on�ned to a single MEM array. All we need todo is to replae every assignment operation of the form `MEM[a℄  v' by the
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16 COMBINATORIAL SEARCHING (F5B: 12Nov 2016�1636) 7.2.2 UNDOstakreversible-memorystampingfallbak pointbumpoverowlookaheadpoison list
slightly more umbersome operationstore(a; v) : Set UNDO[u℄ �a; MEM[a℄�, MEM[a℄ v, and u u+ 1. (24)Here UNDO is a sequential stak that holds (address, value) pairs; in our appli-ation we ould say `UNDO[u℄ (a� 16) + MEM[a℄', beause the ell addressesand values never exeed 16 bits. Of ourse we'll also need to hek that the stakpointer u doesn't get too large, if the number of assignments has no a priori limit.Later on, when we want to undo all hanges to MEM sine the time when uhad reahed a partiular value u0, we simply do this:unstore(u0) : While u > u0, set u u� 1,(a; v) UNDO[u℄, and MEM[a℄ v. (25)In our appliation the unstaking operation `(a; v)  UNDO[u℄' here ould beimplemented by saying `a UNDO[u℄� 16, v  UNDO[u℄& #ffff'.A useful re�nement of this reversible-memory tehnique is often advanta-geous, based on the idea of \stamping" that is part of the folklore of program-ming. It puts only one item on the UNDO stak when the same memory addressis updated more than one in the same round.store(a; v) : If STAMP[a℄ 6= �, set STAMP[a℄ �,UNDO[u℄ �a; MEM[a℄�, and u u+ 1.Then set MEM[a℄ v. (26)Here STAMP is an array with one entry for eah address in MEM. It's initiallyall zero, and � is initially 1. Whenever we ome to a fallbak point, wherethe urrent stak pointer will be remembered as the value u0 for some futureundoing, we \bump" the urrent stamp by setting �  � + 1. Then (26) willontinue to do the right thing. (In programs that run for a long time, we mustbe areful when integer overow auses � to be bumped to zero; see exerise 38.)Notie that the ombination of (24) and (25) will perform �ve memoryaesses for eah assignment and its undoing. The ombination of (26) and (25)will ost seven mems for the �rst assignment to MEM[a℄, but only two memsfor every subsequent assignment to the same address. So (26) wins, if multipleassignments exeed one-time-only assignments.Baktraking through ommafree odes. OK, we're now equipped withenough basi knowhow to write a pretty good baktrak program for the problemof generating all ommafree four-letter odes.Algorithm C below inorporates one more key idea, whih is a lookaheadmehanism that is spei� to ommafree baktraking; we'll all it the \poisonlist." Every item on the poison list is a pair, onsisting of a suÆx and a pre�xthat the ommafree rule forbids from ourring together. Every green wordx1x2x3x4|that is, every word that will be a �nal odeword in the urrentbranh of our baktrak searh|ontributes three items to the poison list,namely (�x1x2x3; x4���); (��x1x2; x3x4��); and (���x1; x2x3x4�): (27)
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7.2.2 BACKTRACK PROGRAMMING 17 inverse listLaxdalJiggsstamping++If there's a green word on both sides of a poison list entry, we're dead: Theommafree ondition fails, and we must baktrak. If there's a green word onone side but not the other, we an kill o� all blue words on the other side bymaking them red. And if either side of a poison list entry orresponds to anempty list, we an remove this entry from the poison list beause it will nevera�et the outome. (Blue words beome red or green, but red words stay red.)For example, onsider the transition from Table 1 to Table 2. When word0010 beomes green, the poison list reeives its �rst three items:(�001; 0���); (��00; 10��); (���0; 010�):The �rst of these kills o� the �001 list, beause 0��� ontains the green word 0010.That makes 1001 red. The last of these, similarly, kills o� the 010� list; butthat list is empty when m = 2. The poison list now redues to a singleitem, (��00; 10��), whih remains poisonous beause list ��00 ontains the blueword 1100 and 10�� ontains the blue word 1011.We'll maintain the poison list at the end of MEM, following the CL lists. Itobviously will ontain at most 3(m4�m2)=4 entries, and in fat it usually turnsout to be quite small. No inverse list is required; so we shall adopt the simplemethod of (17) and (18), but with two ells per entry so that TAIL will hangeby �2 instead of by �1. The value of TAIL will be stored in MEM at key times sothat temporary hanges to it an be undone.The ase m = 4, in whih eah odeword onsists of four quaternary digitsf0; 1; 2; 3g, is partiularly interesting, beause an early baktrak program by LeeLaxdal found that no suh ommafree ode an make use of all 60 of the ylelasses [0001℄, [0002℄, : : : , [2333℄. [See B. H. Jiggs, Canadian Journal of Math. 15(1963), 178{187.℄ Laxdal's program also reportedly showed that at least three ofthose lasses must be omitted; and it found several valid 57-word sets. Furtherdetails were never published, beause the proof that 58 odewords are impossibledepended on what Jiggs alled a \quite time-onsuming" omputation.Beause size 60 is impossible, our algorithm annot simply assume that amove suh as 1001 is fored when the other words 0011, 0110, 1100 of its lasshave been ruled out. We must also onsider the possibility that lass [0011℄ isentirely absent from the ode. Suh onsiderations add an interesting furthertwist to the problem, and Algorithm C desribes one way to ope with it.Algorithm C (Four-letter ommafree odes). Given an alphabet size m � 7and a goal g in the range L�m(m� 1) � g � L, where L = (m4 �m2)=4, thisalgorithm �nds all sets of g four-letter words that are ommafree and inludeeither 0001 or 0010. It uses an array MEM of M = b23:5m4 16-bit numbers, aswell as several more auxiliary arrays: ALF of size 163m; STAMP of size M ; X, C,S, and U of size L + 1; FREE and IFREE of size L; and a suÆiently large arrayalled UNDO whose maximum size is diÆult to guess.C1. [Initialize.℄ Set ALF[(abd)16℄  (abd)m for 0 � a; b; ; d < m. SetSTAMP[k℄  0 for 0 � k < M and �  0. Put the initial pre�x, suÆx,and lass lists into MEM, as in Table 1. Also reate an empty poison list by
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18 COMBINATORIAL SEARCHING (F5B: 12Nov 2016�1636) 7.2.2 Running timeestimates of run time{Monte Carlo algorithmrandom samplingpenil-and-paper methoduto� strategiesdata struturesauthorsetting MEM[PP℄  POISON, where POISON = 22m4 and PP = POISON� 1.Set FREE[k℄ IFREE[k℄ k for 0 � k < L. Then set l  1, x #0001,  0, s  L � g, f  L, u  0, and go to step C3. (Variable l is thelevel, x is a trial word,  is its lass, s is the \slak," f is the number of freelasses, and u is the size of the UNDO stak.)C2. [Enter level l.℄ If l > L, visit the solution x1 : : : xL and go to C6. Otherwisehoose a andidate word x and lass  as desribed in exerise 39.C3. [Try the andidate.℄ Set U[l℄ u and �  �+1. If x < 0, go to C6 if s = 0or l = 1, otherwise set s  s � 1. If x � 0, update the data strutures tomake x green, as desribed in exerise 40, esaping to C5 if trouble arises.C4. [Make the move.℄ Set X[l℄  x, C[l℄  , S[l℄  s, p  IFREE[℄, f  f�1. If p 6= f , set y  FREE[f℄, FREE[p℄ y, IFREE[y℄ p, FREE[f℄ , IFREE[℄ f . (This is (23).) Then set l l+ 1 and go to C2.C5. [Try again.℄ While u > U[l℄, set u  u � 1 and MEM[UNDO[u℄� 16℄  UNDO[u℄&#ffff. (Those operations restore the previous state, as in (25).)Then �  � + 1 and redden x (see exerise 40). Go to C2.C6. [Baktrak.℄ Set l l � 1, and terminate if l = 0. Otherwise set x X[l℄,  C[l℄, f  f � 1. If x < 0, repeat this step (lass  was omitted fromthe ode). Otherwise set s S[l℄ and go bak to C5.Exerises 39 and 40 provide the instrutive details that esh out this skeleton.Algorithm C needs just 13, 177, and 2380 megamems to prove that no solu-tions exist for m = 4 when g is 60, 59, and 58. It needs about 22800 megamemsto �nd the 1152 solutions for g = 57; see exerise 44. There are roughly (14,240, 3700, 38000) thousand nodes in the respetive searh trees, with most ofthe ativity taking plae on levels 30� 10. The height of the UNDO stak neverexeeds 2804, and the poison list never ontains more than 12 entries at a time.Running time estimates. Baktrak programs are full of surprises. Sometimesthey produe instant answers to a supposedly diÆult problem. But sometimesthey spin their wheels endlessly, trying to traverse an astronomially large searhtree. And sometimes they deliver results just about as fast as we might expet.Fortunately, we needn't sit in the dark. There's a simple Monte Carlo algo-rithm by whih we an often tell in advane whether or not a given baktrakstrategy will be feasible. This method, based on random sampling, an atuallybe worked out by hand before writing a program, in order to help deide whetherto invest further time while following a partiular approah. In fat, the very atof arrying out this pleasant penil-and-paper method often suggests useful uto�strategies and/or data strutures that will be valuable later when a program isbeing written. For example, the author developed Algorithm C above after �rstdoing some armhair experiments with random hoies of potential ommafreeodewords, and notiing that a family of lists suh as those in Tables 1 and 2would be quite helpful when making further hoies.To illustrate the method, let's onsider the n queens problem again, as rep-resented in Algorithm B* above. When n = 8, we an obtain a deent \ballpark
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7.2.2 BACKTRACK PROGRAMMING 19 searh treeroot nodedegreepi as soure+rejetion methode, as sourephi, as souregamma, as sourerandom variablesost funtion
q 8q 5q 4q 3q 1q 1q 100̂01̂001̂00̂00̂(a)

q 8q 5q 3q 3q 2q 1q 101̂01̂101̂111̂110̂000̂10̂10̂1̂(b)
q 8q 5q 4q 2q 1q 201̂00̂111̂100̂01̂1̂0̂()

q 8q 5q 4q 3q 2q 101̂00̂100̂11̂11̂00̂0̂(d)Fig. 69. Four random attempts to solve the 8 queens problem. Suh experiments helpto estimate the size of the baktrak tree in Fig. 68. The branhing degrees are shown atthe right of eah diagram, while the random bits used for sampling appear below. Cellshave been shaded in gray if they are attaked by one or more queens in earlier rows.estimate" of the size of Fig. 68 by examining only a few random paths in thatsearh tree. We start by writing down the number D1  8, beause there areeight ways to plae the queen in row 1. (In other words, the root node of thesearh tree has degree 8.) Then we use a soure of random numbers| say thebinary digits of � mod 1 = (:001001000011 : : :)2|to selet one of those plae-ments. Eight hoies are possible, so we look at three of those bits; we shall setX1  2, beause 001 is the seond of the eight possibilities (000, 001, : : : , 111).Given X1 = 2, the queen in row 2 an't go into olumns 1, 2, or 3. Hene�ve possibilities remain for X2, and we write down D2  5. The next three bitsof � lead us to set X2  5, sine 5 is the seond of the available olumns (4, 5, 6,7, 8) and 001 is the seond value of (000, 001, : : : , 100). If � had ontinued with101 or 110 or 111 instead of 001, we would inidentally have used the \rejetionmethod" of Setion 3.4.1 and moved to the next three bits; see exerise 47.Continuing in this way leads to D3  4, X3  1; then D4  3, X4  4.(Here we used the two bits 00 to selet X3, and the next two bits 00 to selet X4.)The remaining branhes are fored: D5  1, X5  7; D6  1, X6  3; D7  1,X7  6; and we're stuk when we reah level 8 and �nd D8  0.These sequential random hoies are depited in Fig. 69(a), where we'veused them to plae eah queen suessively into an unshaded ell. Parts (b), (),and (d) of Fig. 69 orrespond in the same way to hoies based on the binarydigits of emod 1, �mod 1, and  mod 1. Exatly 10 bits of �, 20 bits of e, 13 bitsof �, and 13 bits of  were used to generate these examples.In this disussion the notation Dk stands for a branhing degree, not for adomain of values. We've used upperase letters for the numbers D1, X1, D2,et., beause those quantities are random variables. One we've reahed Dl = 0at some level, we're ready to estimate the overall ost, by impliitly assumingthat the path we've taken is representative of all root-to-leaf paths in the tree.The ost of a baktrak program an be assessed by summing the individualamounts of time spent at eah node of the searh tree. Notie that every node onlevel l of that tree an be labeled uniquely by a sequene x1 : : : xl�1, whih de�nesthe path from the root to that node. Thus our goal is to estimate the sum of all(x1 : : : xl�1), where (x1 : : : xl�1) is the ost assoiated with node x1 : : : xl�1.
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20 COMBINATORIAL SEARCHING (F5B: 12Nov 2016�1636) 7.2.2 subtreesize of the treestandard deviationFor example, the four queens problem is represented by the searh tree (4),and its ost is the sum of 17 individual osts() + (1) + (13) + (14) + (142) + (2) + (24) + � � �+ (413) + (42): (28)If C(x1 : : : xl) denotes the total ost of the subtree rooted at x1 : : : xl, thenC(x1 : : : xl) = (x1 : : : xl) + C(x1 : : : xlx(1)l+1) + � � �+ C(x1 : : : xlx(d)l+1) (29)when the hoies for xl+1 at node x1 : : : xl are fx(1)l+1; : : : ; x(d)l+1g. For instanein (4) we have C(1) = (1) + C(13) + C(14); C(13) = (13); and C() = () +C(1) + C(2) + C(3) + C(4) is the overall ost (28).In these terms a Monte Carlo estimate for C() is extremely easy to ompute:Theorem E. Given D1, X1, D2, X2, : : : as above, the ost of baktraking isC() = E�() +D1((X1) +D2((X1X2) +D3((X1X2X3) + � � � )))�: (30)Proof. Node x1 : : : xl, with branh degrees d1, : : : , dl above it, is reahed withprobability 1=d1 : : : dl; so it ontributes d1 : : : dl(x1 : : : xl)=d1 : : : dl = (x1 : : : xl)to the expeted value in this formula.For example, the tree (4) has six root-to-leaf paths, and they our withrespetive probabilities 1/8, 1/8, 1/4, 1/4, 1/8, 1/8. The �rst one ontributes1/8 times ()+4((1)+2((13))), namely ()=8+ (1)=2+ (13), to the expetedvalue. The seond ontributes ()=8 + (1)=2 + (14) + (142); and so on.A speial ase of Theorem E, with all (x1 : : : xl) = 1, tells us how to estimatethe total size of the tree, whih is often a ruial quantity:Corollary E. The number of nodes in the searh tree, given D1, D2, : : : , isE(1 +D1 +D1D2 + � � � ) = E�1 +D1�1 +D2(1 +D3(1 + � � � ))��: (31)For example, Fig. 69 gives us four estimates for the size of the tree in Fig. 68,using the numbers Dj at the right of eah 8 � 8 diagram. The estimate fromFig. 69(a) is 1+8�1+5�1+4(1+3(1+1(1+1(1+1))))�� = 2129; and the otherthree are respetively 2689, 1489, 2609. None of them is extremely far from thetrue number, 2057, although we an't expet to be so luky all the time.The detailed study in exerise 51 shows that the estimate (31) in the aseof 8 queens turns out to be quite well behaved:�min 489; ave 2057; max 7409; dev p1146640� 1071�: (32)The analogous problem for 16 queens has a muh less homogeneous searh tree:�min 2597105; ave 1141190303; max 131048318769; dev � 1234000000�: (33)Still, this standard deviation is roughly the same as the mean, so we'll usuallyguess the orret order of magnitude. (For example, ten independent experimentspredited .632, .866, .237, 1.027, 4.006, .982, .143, .140, 3.402, and .510 billionnodes, respetively. The mean of these is 1.195.) A thousand trials with n = 64suggest that the problem of 64 queens will have about 3� 1065 nodes in its tree.
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7.2.2 BACKTRACK PROGRAMMING 21 binomial treeestimating solutionsLet's formulate this estimation proedure preisely, so that it an be per-formed onveniently by mahine as well as by hand:Algorithm E (Estimated ost of baktrak). Given domains Dk and propertiesPl as in Algorithm B, together with node osts (x1 : : : xl) as above, this algo-rithm omputes the quantity S whose expeted value is the total ost C() in (30).It uses an auxiliary array y1y2 : : : whose size should be � max(jD1j; : : : ; jDnj).E1. [Initialize.℄ Set l D  1, S  0, and initialize any data strutures needed.E2. [Enter level l.℄ (At this point Pl�1(X1; : : : ; Xl�1) holds.) Set S  S +D � (X1 : : : Xl�1). If l > n, terminate the algorithm. Otherwise set d  0and set x minDl, the smallest element of Dl.E3. [Test x.℄ If Pl(X1; : : : ; Xl�1; x) holds, set yd  x and d d+ 1.E4. [Try again.℄ If x 6= maxDl, set x to the next larger element of Dl and returnto step E3.E5. [Choose and try.℄ If d = 0, terminate. Otherwise set D  D �d and Xl  yI ,where I is a uniformly random integer in f0; : : : ; d � 1g. Update the datastrutures to failitate testing Pl+1, set l  l + 1, and go bak to E2.Although Algorithm E looks rather like Algorithm B, it never baktraks.Of ourse we an't expet this algorithm to give deent estimates in aseswhere the baktrak tree is wildly errati. The expeted value of S, namely ES,is indeed the true ost; but the probable values of S might be quite di�erent.An extreme example of bad behavior ours if property Pl is the simple on-dition `x1 > � � � > xl' and all domains are f1; : : : ; ng. Then there's only one solu-tion, x1 : : : xn = n : : : 1; and baktraking is a partiularly stupid way to �nd it!The searh tree for this somewhat ridiulous problem is, nevertheless, quiteinteresting. It is none other than the binomial tree Tn of Eq. 7.2.1.3{(21), whihhas �nl� nodes on level l + 1 and 2n nodes in total. If we set all osts to 1,the expeted value of S is therefore 2n = en ln 2. But exerise 50 proves thatS will almost always be muh smaller, less than e(lnn)2 ln lnn. Furthermore theaverage value of l when Algorithm E terminates with respet to Tn is onlyHn+1.When n = 100, for example, the probability that l � 20 on termination is only0.0000000027, while the vast majority of the nodes are near level 51.Many re�nements of Algorithm E are possible. For example, exerise 52shows that the hoies in step E5 need not be uniform. We shall disuss improvedestimation tehniques in Setion 7.2.2.9, after having seen numerous examplesof baktraking in pratie.*Estimating the number of solutions. Sometimes we know that a problemhas more solutions than we ould ever hope to generate, yet we still want toknow roughly how many there are. Algorithm E will tell us the approximatenumber, in ases where the baktrak proess never reahes a dead end|thatis, if it never terminates with d = 0 in step E5. There may be another riterionfor suessful termination in step E2 even though l might still be � n. Theexpeted �nal value of D is exatly the total number of solutions, beause everysolutionX1 : : :Xl onstruted by the algorithm is obtained with probability 1=D.
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22 COMBINATORIAL SEARCHING (F5B: 12Nov 2016�1636) 7.2.2 kinghessboardsimple pathspaths, simple� for guidanestatistissample varianevarianeerror barsdisarded dataDiaonisChatterjee
For example, suppose we want to know the number of di�erent paths bywhih a king an go from one orner of a hessboard to the opposite orner,without revisiting any square. One suh path, hosen at random using the bitsof � for guidane as we did in Fig. 69(a), is shown here. Starting in the upper leftorner, we have 3 hoies for the �rst move.Then, after moving to the right, there are4 hoies for the seond move. And so on.We never make a move that would dison-net us from the goal; in partiular, two ofthe moves are atually fored. (Exerise 58explains one way to avoid fatal mistakes.)

k
3 46 62 6 754541 43442 52 63 55 44 456 55 6 41352

The probability of obtaining this parti-ular path is exatly 13 14 16 16 12 16 17 : : : 12 = 1=D,where D = 3�4�6�6�2�6�7�� � ��2 =12 � 24 � 34 � 410 � 59 � 66 � 71 � 8:7� 1020. Thuswe an reasonably guess, at least tentatively,that there are 1021 suh paths, more or less.Of ourse that guess, based on a singlerandom sample, rests on very shaky grounds.But we know that the average value MN = (D(1)+ � � �+D(N))=N of N guesses,in N independent experiments, will almost surely approah the orret number.How large should N be, before we an have any on�dene in the results?The atual values of D obtained from random king paths tend to vary all overthe map. Figure 70 plots typial results, as N varies from 1 to 10000. For eahvalue of N we an follow the advie of statistis textbooks and alulate thesample variane VN = SN=(N � 1) as in Eq. 4.2.2{(16); then MN �pVN=N isthe textbook estimate. The top diagram in Fig. 70 shows these \error bars" ingray, surrounding blak dots for MN . This sequene MN does appear to settledown after N reahes 3000 or so, and to approah a value near 5� 1025. That'smuh higher than our �rst guess, but it has lots of evidene to bak it up.On the other hand, the bottom hart in Fig. 70 shows the distribution ofthe logarithms of the 10000 values of D that were used to make the top hart.Almost half of those values were totally negligible| less than 1020. About 75%of them were less than 1024. But some of them* exeeded 1028. Can we reallyrely on a result that's based on suh haoti behavior? Is it really right to throwaway most of our data and to trust almost entirely on observations that wereobtained from omparatively few rare events?Yes, we're okay! Some of the justi�ation appears in exerise MPR{124,whih is based on theoretial work by P. Diaonis and S. Chatterjee. In thepaper ited with that exerise, they defend a simple measure of quality,QN = max(D(1); : : : ; D(N))=(NMN) = max(D(1); : : : ; D(N))D(1) + � � �+D(N) ; (34)* Four of the atual values that led to Fig. 70 were larger than 1028; the largest, � 2:1�1028 ,ame from a path of length 57. The smallest estimate, 19361664, ame from a path of length 10.
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7.2.2 BACKTRACK PROGRAMMING 23 ZDDHamiltonian pathsknight0 1000 2000 3000 4000 5000 6000 7000 8000 9000 100000.00.5
2�10255�10258�1025
1025�1020Fig. 70. Estimates of the number of king paths, based on up to 10000 random trials.The middle graph shows the orresponding quality measures of Eq. (34). The lowergraph shows the logarithms of the individual estimates D(k), after they've been sorted.arguing that a reasonable poliy in most experiments suh as these is to stopsampling when QN gets small. (Values of this statisti QN have been plotted inthe middle of Fig. 70.)Furthermore we an estimate other properties of the solutions to a baktrakproblem, instead of merely ounting those solutions. For example, the expetedvalue of lD on termination of the random king's path algorithm is the totallength of suh paths. The data underlying Fig. 70 suggests that this total is(2:66� :14)� 1027; hene the average path length appears to be about 53. Thesamples also indiate that about 34% of the paths pass through the enter; about46% touh the upper right orner; about 22% touh both orners; and about 7%pass through the enter and both orners.For this partiular problem we don't atually need to rely on estimates,beause the ZDD tehnology of Setion 7.1.4 allows us to ompute the truevalues. (See exerise 59.) The total number of simple orner-to-orner king pathson a hessboard is exatly 50,819,542,770,311,581,606,906,543; this value liesalmost within the error bars of Fig. 70 for all N � 250, exept for a brief intervalnear N = 1400. And the total length of all these paths turns out to be exatly2,700,911,171,651,251,701,712,099,831, whih is a little higher than our estimate.The true average length is therefore � 53:15. The true probabilities of hitting theenter, a given orner, both orners, and all three of those spots are respetivelyabout 38.96%, 50.32%, 25.32%, and 9.86%.The total number of orner-to-orner king paths of the maximum length, 63,is 2,811,002,302,704,446,996,926. This is a number that an not be estimatedwell by a method suh as Algorithm E without additional heuristis.The analogous problem for orner-to-orner knight paths, of any length, liesa bit beyond ZDD tehnology beause many more ZDD nodes are needed. UsingAlgorithm E we an estimate that there are about (8:6� 1:2)� 1019 suh paths.
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Fatoring the problem. Imagine an instane of baktraking that is equivalentto solving two independent subproblems. For example, we might be looking forall sequenes x = x1x2 : : : xn that satisfy Pn(x1; x2; : : : ; xn) = F (x1; x2; : : : ; xn),where F (x1; x2; : : : ; xn) = G(x1; : : : ; xk) ^ H(xk+1; : : : ; xn): (35)Then the size of the baktrak tree is essentially the produt of the tree sizes forG and for H , even if we use dynami ordering. Hene it's obviously foolish toapply the general setup of (1) and (2). We an do muh better by �nding allsolutions to G �rst, then �nding all solutions to H , thereby reduing the amountof omputation to the sum of the tree sizes. Again we've divided and onquered,by fatoring the ompound problem (35) into separate subproblems.We disussed a less obvious appliation of problem fatorization near thebeginning of Chapter 7, in onnetion with latin squares: Reall that E. T.Parker sped up the solution of 7{(6) by more than a dozen orders of magnitude,when he disovered 7{(7) by essentially fatoring 7{(6) into ten subproblemswhose solutions ould readily be ombined.In general, eah solution x to some problem F often implies the existene ofsolutions x(p) = �p(x) to various simpler problems Fp that are \homomorphiimages" of F . And if we're luky, the solutions to those simpler problems anbe ombined and \lifted" to a solution of the overall problem. Thus it pays tobe on the lookout for suh simpli�ations.Let's look at another example. F. A. Shossow invented a tantalizing puzzle[U.S. Patent 646463 (3 April 1900)℄ that \went viral" in 1967 when a marketinggenius deided to rename it Instant Insanity R. The problem is to take four ubessuh as |�} |�~ Cube 1 |}|~|� Cube 2 ~ |� }~} Cube 3 } ~~ ��| Cube 4 (36)where eah fae has been marked in one of four ways, and to arrange them in arow so that all four markings appear on the top, bottom, front, and bak sides.The plaement in (36) is inorret, beause there are two |s (and no �) on top.But we get a solution if we rotate eah ube by 90Æ.There are 24 ways to plae eah ube, beause any of the six faes an beon top and we an rotate four ways while keeping the top unhanged. So thetotal number of plaements is 244 = 331776. But this problem an be fatoredin an ingenious way, so that all solutions an be found quikly by hand! [SeeF. de Carteblanhe, Eureka 9 (1947), 9{11.℄ The idea is that any solution to thepuzzle gives us two eah of f|;};~;�g, if we look only at the top and bottomor only at the front and bak. That's a muh easier problem to solve.For this purpose a ube an be haraterized by its three pairs of markingson opposite faes; in (36) these fae-pairs are respetivelyf|};|�;�~g; f||;|~;�}g; f~~;|};�}g; f|~;�~;�}g: (37)
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Whih of the 34 = 81 ways to hoose one fae-pair from eah ube will give usf|;|;};};~;~;�;�g? They an all be disovered in a minute or two, by list-ing the nine possibilities for ubes (1; 2) and the nine for (3; 4). We get just three,(|};|~;�};�~); (�~;|~;|};�}); (�~;�};|};|~): (38)Notie furthermore that eah solution an be \halved" so that one eah off|;};~;�g appears on both sides, by swapping fae-pairs; we an hange (38) to(}|;|~;�};~�); (~�;|~;}|;�}); (~�;�};}|;|~): (39)Eah of these solutions to the opposite-fae subproblem an be regarded as a2-regular graph, beause every vertex of the multigraph whose edges are (say)}���|, |���~, ����}, ~���� has exatly two neighbors.A solution to Instant Insanity R will give us two suh 2-regular fators, onefor top-and-bottom and one for front-and-bak. Furthermore those two fatorswill have disjoint edges: We an't use the same fae-pair in both. Thereforeproblem (36) an be solved only by using the �rst and third fator in (39).Conversely, whenever we have two disjoint 2-regular graphs, we an alwaysuse them to position the ubes as desired, thus \lifting" the fators to a solutionof the full problem.Exerise 75 illustrates another kind of problem fatorization.I may deide to insert a (small?) amount of additional material here, as Iprepare setions 7.2.2.1{7.2.2.9.Historial notes. The origins of baktrak programming are obsure. Equiva-lent ideas must have ourred to many people, yet there was hardly any reason towrite them down until omputers existed. We an be reasonably sure that JamesBernoulli used suh priniples in the 17th entury, when he suessfully solvedthe \Tot tibi sunt dotes" problem that had eluded so many others (see Setion7.2.1.7), beause traes of the method exist in his exhaustive list of solutions.Baktrak programs typially traverse the tree of possibilities by using whatis now alled depth-�rst searh, a general graph exploration proedure that�Edouard Luas redited to a student named Tr�emaux [R�er�eations Math�ema-tiques 1 (Paris: Gauthier-Villars, 1882), 47{50℄.The eight queens problem was �rst proposed by Max Bezzel [Shahzeitung3 (1848), 363; 4 (1849), 40℄ and by Franz Nauk [Illustrirte Zeitung 14, 361(1 June 1850), 352; 15, 377 (21 September 1850), 182℄, perhaps independently.C. F. Gauss saw the latter publiation, and wrote several letters about it tohis friend H. C. Shumaher. Gauss's letter of 27 September 1850 is espeiallyinteresting, beause it explained how to �nd all the solutions by baktraking|whih he alled `Tatonniren', from a Frenh term meaning \to feel one's way."He also listed the lexiographially �rst solutions of eah equivalene lass underreetion and rotation: 15863724, 16837425, 24683175, 25713864, 25741863,26174835, 26831475, 27368514, 27581463, 35281746, 35841726, and 36258174.
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Computers arrived a hundred years later, and people began to use themfor ombinatorial problems. The time was therefore ripe for baktraking tobe desribed as a general tehnique, and Robert J. Walker rose to the oasion[Pro. Symposia in Applied Math. 10 (1960), 91{94℄. His brief note introduedAlgorithm W in mahine-oriented form, and mentioned that the proedure ouldreadily be extended to �nd variable-length patterns x1 : : : xn where n is not �xed.The next milestone was a paper by Solomon W. Golomb and Leonard D.Baumert [JACM 12 (1965), 516{524℄, who formulated the general problem are-fully and presented a variety of examples. In partiular, they disussed the searhfor maximum ommafree odes, and noted that baktraking an be used to �ndsuessively better and better solutions to ombinatorial optimization problems.They introdued ertain kinds of lookahead, as well as the important idea ofdynami ordering by branhing on variables with the fewest remaining hoies.Other noteworthy early disussions of baktrak programming appear inMark Wells's book Elements of Combinatorial Computing (1971), Chapter 4; ina survey by J. R. Bitner and E. M. Reingold, CACM 18 (1975), 651{656; andin the Ph.D. thesis of John Gashnig [Report CMU-CS-79-124 (Carnegie MellonUniversity, 1979), Chapter 4℄. Gashnig introdued tehniques of \bakmarking"and \bakjumping" that we shall disuss later.Monte Carlo estimates of the ost of baktraking were �rst desribed brieyby M. Hall, Jr., and D. E. Knuth in Computers and Computing, AMM 72, 2,part 2, Slaught Memorial Papers No. 10 (February 1965), 21{28. Knuth gave amuh more detailed exposition a deade later, in Math. Comp. 29 (1975), 121{136. Suh methods an be onsidered as speial ases of so-alled \importanesampling"; see J. M. Hammersley and D. C. Handsomb, Monte Carlo Methods(London: Methuen, 1964), 57{59. Studies of random self-avoiding walks suhas the king paths disussed above were inaugurated by M. N. Rosenbluth andA. W. Rosenbluth, J. Chemial Physis 23 (1955), 356{359.Baktrak appliations are niely adaptable to parallel programming, be-ause di�erent parts of the searh tree are often ompletely independent ofeah other; thus disjoint subtrees an be explored on di�erent mahines, witha minimum of interproess ommuniation. Already in 1964, D. H. Lehmerexplained how to subdivide a problem so that two omputers of di�erent speedsould work on it simultaneously and �nish at the same time. The problem thathe onsidered had a searh tree of known shape (see Theorem 7.2.1.3L); butwe an do essentially similar load balaning even in muh more ompliatedsituations, by using Monte Carlo estimates of the subtree sizes. Although manyideas for parallelizing ombinatorial searhes have been developed over the years,suh tehniques are beyond the sope of this book. Readers an �nd a nie intro-dution to a fairly general approah in the paper by R. Finkel and U. Manber,ACM Transations on Programming Languages and Systems 9 (1987), 235{256.M. Alekhnovih, A. Borodin, J. Buresh-Oppenheim, R. Impagliazzo, A. Ma-gen, and T. Pitassi have de�ned priority branhing trees, a general model of om-putation with whih they were able to prove rigorous bounds on what baktrakprograms an do, in Computational Complexity 20 (2011), 679{740.
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EXERCISESx 1. [22 ℄ Explain how the tasks of generating (i) n-tuples, (ii) permutations of distintitems, (iii) ombinations, (iv) integer partitions, (v) set partitions, and (vi) nestedparentheses an all be regarded as speial ases of baktrak programming, by present-ing suitable domains Dk and uto� properties Pl(x1; : : : ; xl) that satisfy (1) and (2).2. [10 ℄ True or false: We an hoose D1 so that P1(x1) is always true.3. [16 ℄ Using a hessboard and eight oins to represent queens, one an follow thesteps of Algorithm B and essentially traverse the tree of Fig. 68 by hand in about threehours. Invent a trik to save half of the work.x 4. [20 ℄ Reformulate Algorithm B as a reursive proedure alled try (l), having globalvariables n and x1 : : : xn, to be invoked by saying `try (1)'. Can you imagine why theauthor of this book deided not to present the algorithm in suh a reursive form?5. [20 ℄ Given r, with 1 � r � n, in how many ways an 7 nonattaking queens beplaed on an 8� 8 hessboard, if no queen is plaed in row r?6. [20 ℄ (T. B. Sprague, 1890.) Are there any values n > 5 for whih the n queensproblem has a \framed" solution with x1 = 2, x2 = n, xn�1 = 1, and xn = n� 1?7. [20 ℄ Are there two 8-queen plaements with the same x1x2x3x4x5x6?8. [21 ℄ Can a 4m-queen plaement have 3m queens on \white" squares?x 9. [22 ℄ Adapt Algorithm W to the n queens problem, using bitwise operations onn-bit numbers as suggested in the text.10. [M25 ℄ (W. Ahrens, 1910.) Both solutions of the n queens prob-lem when n = 4 have hiral symmetry : Rotation by 90Æ leaves themunhanged, but reetion doesn't.a) Can the n queens problem have a solution with reetion symmetry?b) Show that hiral symmetry is impossible when nmod 4 2 f2; 3g.) Sometimes the solution to an n queens problem ontains four queensthat form the orners of a tilted square, as shown here. Prove that wean always get another solution by tilting the square the other way (butleaving the other n � 4 queens in plae).d) Let Cn be the number of hirally symmetri solutions, and supposen of them have xk > k for 1 � k � n=2. Prove that Cn = 2bn=4n.
Q QQ QQ QQQ QQ QQQ Q QQ QQ QQ Q Q11. [M28 ℄ (Wraparound queens.) Replae (3) by the stronger onditions `xj 6= xk,(xk � xj) mod n 6= k � j, (xj � xk) mod n 6= k � j'. (The n� n grid beomes a torus.)Prove that the resulting problem is solvable if and only if n is not divisible by 2 or 3.12. [M30 ℄ For whih n � 0 does the n queens problem have at least one solution?13. [M25 ℄ If exerise 11 has T (n) toroidal solutions, show that Q(mn) � Q(m)nT (n).14. [HM47 ℄ Does (lnQ(n))=(n lnn) approah a positive onstant as n!1?15. [21 ℄ Let H(n) be the number of ways that n queen bees an oupyan n � n honeyomb so that no two are in the same line. (For example,one of the H(4) = 7 ways is shown here.) Compute H(n) for small n. Q Q QQ16. [15 ℄ J. H. Quik (a student) notied that the loop in step L2 of Algorithm L anbe hanged from `while xl < 0' to `while xl 6= 0', beause xl annot be positive atthat point of the algorithm. So he deided to eliminate the minus signs and just setxl+k+1  k in step L3. Was it a good idea?
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17. [17 ℄ Suppose that n = 4 and Algorithm L has reahed step L2 with l = 4 andx1x2x3 = 241. What are the urrent values of x4x5x6x7x8, p0p1p2p3p4, and y1y2y3?19. [M19 ℄ What are the domains Dl in Langford's problem (7)?x 20. [21 ℄ Extend Algorithm L so that it fores xl  k whenever k =2 fx1; : : : ; xl�1g.x 21. [M25 ℄ If x = x1x2 : : : x2n, let xD = (�x2n) : : : (�x2)(�x1) = �xR be its dual.a) Show that if n is odd and x solves Langford's problem (7), we have xk = n forsome k � bn=2 if and only if xDk = n for some k > bn=2.b) Find a similar rule that distinguishes x from xD when n is even.) Consequently the algorithm of exerise 20 an be modi�ed so that exatly one ofeah dual pair of solutions fx; xDg is visited.22. [M26 ℄ Explore \loose Langford pairs": Replae `j + k + 1' in (7) by `j + b3k=2'.23. [17 ℄ We an often obtain one word retangle from another by hanging only aletter or two. Can you think of any 5� 6 retangles that almost math (10)?24. [20 ℄ Customize Algorithm B so that it will �nd all 5� 6 word retangles.x 25. [25 ℄ Explain how to use orthogonal lists, as in Fig. 13 of Setion 2.2.6, so that it'seasy to visit all 5-letter words whose kth harater is , given 1 � k � 5 and a �  � z.Use those sublists to speed up the algorithm of exerise 24.26. [21 ℄ Can you �nd nie word retangles of sizes 5� 7, 5� 8, 5� 9, 5� 10?27. [22 ℄ What pro�le and average node osts replae (13) and (14) when we ask thealgorithm of exerise 25 for 6� 5 word retangles instead of 5� 6?x 28. [23 ℄ The method of exerises 24 and 25 does n levels of baktraking to �ll theells of an m� n retangle one olumn at a time, using a trie to detet illegal pre�xesin the rows. Devise a method that does mn levels of baktraking and �lls just oneell per level, using tries for both rows and olumns.29. [15 ℄ What's the largest ommafree subset of the following words?aed babe bade bead beef afe ede dada dead deaf fae fade feedx 30. [22 ℄ Let w1, w2, : : : , wm be four-letter words on an m-letter alphabet. Design analgorithm that aepts or rejets eah wj , aording as wj is ommafree or not withrespet to the aepted words of fw1; : : : ; wj�1g.31. [M22 ℄ A two-letter blok ode on an m-letter alphabet an be represented as adigraph D on m verties, with a! b if and only if ab is a odeword.a) Prove that the ode is ommafree () D has no oriented paths of length 3.b) How many ars an be in a digraph with no oriented paths of length r?x 32. [M30 ℄ (W. L. Eastman, 1965.) The following elegant onstrution yields a omma-free ode of maximum size for any odd blok length n, over any alphabet. Given asequene of x = x0x1 : : : xn�1 of nonnegative integers, where x di�ers from eah of itsother yli shifts xk : : : xn�1x0 : : : xk�1 for 0 < k < n, the proedure outputs a ylishift �x with the property that the set of all suh �x is ommafree.We regard x as an in�nite periodi sequene hxni with xk = xk�n for all k � n.Eah yli shift then has the form xkxk+1 : : : xk+n�1. The simplest nontrivial exampleours when n = 3, where x = x0x1x2x0x1x2x0 : : : and we don't have x0 = x1 = x2.In this ase the algorithm outputs xkxk+1xk+2 where xk > xk+1 � xk+2; and the setof all suh triples learly satis�es the ommafree ondition.
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One key idea is to think of x as partitioned into t substrings by boundary mark-ers bj , where 0 � b0 < b1 < � � � < bt�1 < n and bj = bj�t+ n for j � t. Then substringyj is xbjxbj+1 : : : xbj+1�1. The number t of substrings is always odd. Initially t = nand bj = j for all j; ultimately t = 1, and �x = y0 is the desired output.Eastman's algorithm is based on omparison of adjaent substrings yj�1 and yj .If those substrings have the same length, we use lexiographi omparison; otherwisewe delare that the longer substring is bigger.The seond key idea is the notion of \dips," whih are substrings of the formz = z1 : : : zk where k � 2 and z1 � � � � � zk�1 < zk. It's easy to see that any stringy = y0y1 : : : in whih we have yi < yi+1 for in�nitely many i an be fatored into asequene of dips, y = z(0)z(1) : : : , and this fatorization is unique. For example,3141592653589793238462643383 : : : = 314 15 926 535 89 79 323 846 26 4338 3 : : : :Furthermore, if y is a periodi sequene, its fatorization into dips is also ultimatelyperiodi, although some of the initial fators may not our in the period. For example,123443550123443550123443550 : : : = 12 34 435 501 23 4435 501 23 4435 : : : :Given a periodi, nononstant sequene y desribed by boundary markers as above,where the period length t is odd, its periodi fatorization will ontain an odd numberof odd-length dips. Eah round of Eastman's algorithm simply retains the boundarypoints at the left of those odd-length dips. Then t is reset to the number of retainedboundary points, and another round begins if t > 1.a) Play through the algorithm by hand when n = 19 and x = 3141592653589793238.b) Show that the number of rounds is at most blog3 n.) Exhibit a binary x that ahieves this worst-ase bound when n = 3e.d) Implement the algorithm with full details. (It's surprisingly short!)e) Explain why the algorithm yields a ommafree ode.33. [HM28 ℄ What is the probability that Eastman's algorithm �nishes in one round?(Assume that x is a random m-ary string of odd length n > 1, unequal to any of itsother yli shifts. Use a generating funtion to express the answer.)34. [18 ℄ Why an't a ommafree ode of length (m4 �m2)=4 ontain 0001 and 2000?x 35. [15 ℄ Why do you think sequential data strutures suh as (16){(23) weren't fea-tured in Setion 2.2.2 of this series of books (entitled \Sequential Alloation")?36. [17 ℄ What's the signi�ane of (a) MEM[40d℄=5e and (b) MEM[904℄=84 in Table 1?37. [18 ℄ Why is (a) MEM[f8℄ = e7 and (b) MEM[a0d℄ = ba in Table 2?38. [20 ℄ Suppose you're using the undoing sheme (26) and the operation �  � + 1has just bumped the urrent stamp � to zero. What should you do?x 39. [25 ℄ Spell out the low-level implementation details of the andidate seletionproess in step C2 of Algorithm C. Use the routine store(a; v) of (26) whenever hangingthe ontents of MEM, and use the following seletion strategy:a) Find a lass  with the least number r of blue words.b) If r = 0, set x �1; otherwise set x to a word in lass .) If r > 1, use the poison list to �nd an x that maximizes the number of blue wordsthat ould be killed on the other side of the pre�x or suÆx list that ontains x.x 40. [28 ℄ Continuing exerise 39, spell out the details of step C3 when x � 0.a) What updates should be done to MEM when a blue word x beomes red?b) What updates should be done to MEM when a blue word x beomes green?
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) Step C3 begins its job by making x green as in part (b). Explain how it should�nish its job by updating the poison list.42. [M30 ℄ Is there a binary (m = 2) ommafree ode with one odeword in eah ofthe (Pdnn �(d)2n=d)=n yle lasses, for every word length n?44. [HM29 ℄ A ommafree ode on m letters is equivalent to 2m! suh odes if wepermute the letters and/or replae eah odeword by its left-right reetion.Determine all of the nonisomorphi ommafree odes of length 4 onm letters whenm is (a) 2 (b) 3 () 4 and there are (a) 3 (b) 18 () 57 odewords.45. [M42 ℄ Find a maximum-size ommafree ode of length 4 on m = 5 letters.47. [20 ℄ Explain how the hoies in Fig. 69 were determined from the \random" bitsthat are displayed. For instane, why was X2 set to 1 in Fig. 69(b)?48. [M15 ℄ Interpret the value E(D1 : : : Dl), in the text's Monte Carlo algorithm.49. [M22 ℄ What's a simple martingale that orresponds to Theorem E?x 50. [HM25 ℄ Elmo uses Algorithm E with Dk = f1; : : : ; ng, Pl = [x1 > � � �>xl ℄,  = 1.a) Alie ips n oins independently, where oin k yields \heads" with probability 1=k.True or false: She obtains exatly l heads with probability �nl�=n!.b) Let Y1, Y2, : : : , Yl be the numbers on the oins that ome up heads. (Thus Y1 = 1,and Y2 = 2 with probability 1=2.) Show that Pr(Alie obtains Y1, Y2, : : : , Yl) =Pr(Elmo obtains X1 = Yl, X2 = Yl�1, : : : , Xl = Y1).) Prove that Alie q.s. obtains at most (lnn)(ln lnn) heads.d) Consequently Elmo's S is q.s. less than exp((lnn)2(ln lnn)).x 51. [M30 ℄ Extend Algorithm B so that it also omputes the minimum, maximum,mean, and variane of the Monte Carlo estimates S produed by Algorithm E.52. [M21 ℄ Instead of hoosing eah yi in step E5 with probability 1=d, we ould usea biased distribution where Pr(I = i jX1; : : : ; Xl�1) = pX1:::Xl�1(yi) > 0. How shouldthe estimate S be modi�ed so that its expeted value in this general sheme is still C()?53. [M20 ℄ If all osts (x1; : : : ; xl) are positive, show that the biased probabilities ofexerise 52 an be hosen in suh a way that the estimate S is always exat.x 55. [M25 ℄ The ommafree ode searh proedure in Algorithm C doesn't atually�t the mold of Algorithm E, beause it inorporates lookahead, dynami ordering,reversible memory, and other enhanements to the basi baktrak paradigms. Howould its running time be reliably estimated with Monte Carlo methods?57. [M20 ℄ Algorithm E an potentially follow M di�erent paths X1 : : : Xl�1 before itterminates, where M is the number of leaves of the baktrak tree. Suppose the �nalvalues of D at those leaves are D(1), : : : , D(M). Prove that (D(1) : : : D(M))1=M �M .58. [27 ℄ The text's king path problem is a speial ase of the general problem ofounting simple paths from vertex s to vertex t in a given graph.We an generate suh paths by random walks from s that don't get stuk, if wemaintain a table of values DIST(v) for all verties v not yet in the path, representingthe shortest distane from v to t through unused verties. For with suh a table wean simply move at eah step to a vertex for whih DIST(v) <1.Devise a way to update the DIST table dynamially without unneessary work.59. [26 ℄ A ZDD with 3,174,197 nodes an be onstruted for the family of all simpleorner-to-orner king paths on a hessboard, using the method of exerise 7.1.4{225.Explain how to use this ZDD to ompute (a) the total length of all paths; (b) thenumber of paths that touh any given subset of the enter and/or orner points.
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7.2.2 BACKTRACK PROGRAMMING 31 biased random walksCayleybinary partitionspartitionspro�lesheight nInstant Insanityfatoredspeedy shizophreniaubesupperase lettersalphabetInstant Insanity5-letter wordsFool's DiskRoyal Aquarium Thirteen PuzzleLe Nombre Treize, see Royal Aquarium Thirteen PuzzleHo�mannFator
x 60. [20 ℄ Experiment with biased random walks (see exerise 52), weighting eah non-dead-end king move to a new vertex v by 1 + DIST(v)2 instead of hoosing every suhmove with the same probability. Does this strategy improve on Fig. 70?61. [HM26 ℄ Let Pn be the number of integer sequenes x1 : : : xn suh that x1 = 1 and1 � xk+1 � 2xk for 1 � k < n. (The �rst few values are 1, 2, 6, 26, 166, 1626, : : : ;this sequene was introdued by A. Cayley in Philosophial Magazine (4) 13 (1857),245{248, who showed that Pn enumerates the partitions of 2n � 1 into powers of 2.)a) Show that Pn is the number of di�erent pro�les that are possible for a binary treeof height n.b) Find an eÆient way to ompute Pn for large n. Hint: Consider the more generalsequene P (m)n , de�ned similarly but with x1 = m.) Use the estimation proedure of Theorem E to prove that Pn � 2(n2)=(n � 1)!.x 66. [22 ℄ When the faes of four ubes are olored randomly with four olors, estimatethe probability that the orresponding \Instant Insanity" puzzle has a unique solution.How many 2-regular graphs tend to appear during the \fatored" solution proess?67. [20 ℄ Find �ve ubes, eah of whose faes has one of �ve olors, and where everyolor ours at least �ve times, suh that the orresponding puzzle has a unique solution.70. [24 ℄ Assemble �ve ubes with upperase letters on eah fae, using the patternsP O EZ G H S G SUR Z A R TH I Z D T EU W C U Y LZ O HBy extending the priniples of Instant Insanity, show that these ubes an be plaed in arow so that four 5-letter words are visible. (Eah word's letters should have a onsistentorientation. The letters C and U, H and I, N and Z are related by 90Æ rotation.)x 73. [23 ℄ (The Fool's Disk.) \Rotate the four disks of the lefthand illustration below sothat the four numbers on eah ray sum to 12." (The urrent sums are 4+3+2+4 = 13,et.) Show that this problem fators niely, so that it an be solved readily by hand.

4234 3433 1355 4141323523 1 43 1 2 25 5 2 3The Fool's Disk
2 515 1 153 2 7454 542 7 254 7 5578 374 3 454 5 735The Royal Aquarium Thirteen Puzzlex 75. [26 ℄ (The Royal Aquarium Thirteen Puzzle.) \Rearrange the nine ards of therighthand illustration above, optionally rotating some of them by 180Æ, so that the sixhorizontal sums of gray letters and the six vertial sums of blak letters all equal 13."(The urrent sums are 1 + 5 + 4 = 10, : : : , 7 + 5 + 7 = 19.) The author of Ho�mann'sPuzzles Old and New (1893) stated that \There is no royal road to the solution. Theproper order must be arrived at by suessive transpositions until the onditions areful�lled." Prove that he was wrong: \Fator" this problem and solve it by hand.
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32 COMBINATORIAL SEARCHING (F5B: 12Nov 2016�1636) 7.2.2 WoodsquestionnaireparadoxialTable 666TWENTY QUESTIONS (SEE EXERCISE 90)1. The �rst question whose answer is A is:(A) 1 (B) 2 (C) 3 (D) 4 (E) 52. The next question with the same answer as this one is:(A) 4 (B) 6 (C) 8 (D) 10 (E) 123. The only two onseutive questions with idential answers are questions:(A) 15 and 16 (B) 16 and 17 (C) 17 and 18 (D) 18 and 19 (E) 19 and 204. The answer to this question is the same as the answers to questions:(A) 10 and 13 (B) 14 and 16 (C) 7 and 20 (D) 1 and 15 (E) 8 and 125. The answer to question 14 is:(A) B (B) E (C) C (D) A (E) D6. The answer to this question is:(A) A (B) B (C) C (D) D (E) none of those7. An answer that appears most often is:(A) A (B) B (C) C (D) D (E) E8. Ignoring answers that appear equally often, the least ommon answer is:(A) A (B) B (C) C (D) D (E) E9. The sum of all question numbers whose answers are orret and the same as this one is:(A) 2 [59 : : 62℄ (B) 2 [52 : : 55℄ (C) 2 [44 : : 49℄ (D) 2 [61 : : 67℄ (E) 2 [44 : : 53℄10. The answer to question 17 is:(A) D (B) B (C) A (D) E (E) wrong11. The number of questions whose answer is D is:(A) 2 (B) 3 (C) 4 (D) 5 (E) 612. The number of other questions with the same answer as this one is the same as the numberof questions with answer:(A) B (B) C (C) D (D) E (E) none of those13. The number of questions whose answer is E is:(A) 5 (B) 4 (C) 3 (D) 2 (E) 114. No answer appears exatly this many times:(A) 2 (B) 3 (C) 4 (D) 5 (E) none of those15. The set of odd-numbered questions with answer A is:(A) f7g (B) f9g (C) not f11g (D) f13g (E) f15g16. The answer to question 8 is the same as the answer to question:(A) 3 (B) 2 (C) 13 (D) 18 (E) 2017. The answer to question 10 is:(A) C (B) D (C) B (D) A (E) orret18. The number of prime-numbered questions whose answers are vowels is:(A) prime (B) square (C) odd (D) even (E) zero19. The last question whose answer is B is:(A) 14 (B) 15 (C) 16 (D) 17 (E) 1820. The maximum sore that an be ahieved on this test is:(A) 18 (B) 19 (C) 20 (D) indeterminate(E) ahievable only by getting this question wrongx 90. [M29 ℄ (Donald R. Woods, 2000.) Find all ways to maximize the number of orretanswers to the questionnaire in Table 666. Eah question must be answered with aletter from A to E. Hint: Begin by larifying the exat meaning of this exerise. Whatanswers are best for the following two-question, two-letter \warmup problem"?1. (A) Answer 2 is B. (B) Answer 1 is A.2. (A) Answer 1 is orret. (B) Either answer 2 is wrong or answer 1 is A, but not both.91. [HM28 ℄ Show that exerise 90 has a surprising, somewhat paradoxial answer iftwo hanges are made to Table 666: 9(E) beomes `2 [39 : : 43℄'; 15(C) beomes `f11g'.
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7.2.2 BACKTRACK PROGRAMMING 33 luelessanarosti�ve-letter wordsWORDS(n)mystery textEnglish wordsfatorizationConneted subsetsanonialgridpentominoesspanning treelexiographially smallestSGB formatARCSTIPNEXTpolyominoes
x 95. [30 ℄ (A lueless anarosti.) The letters of 29 �ve-letter words1 2 3 4 5 ; 6 7 8 9 10 ; 11 12 13 14 15 ; 16 17 18 19 20 ; : : : ; 141142143144145 ;all belonging to WORDS(1000), have been shu�ed to form the following mystery text:30 29 9 140 12 13 145 90 45 99 26 107 47 84 53 51 27 133 39 137139 66 112 69 14 8 20 91 129 7016 7 93 19 85 101 76 78 44 10 106 60 118119 24 25 100 1 5 64 11 71 42 122123103104 63 49 31 121 98 79 80 46 48 134135131 143 96 142120 50 132 33 43 34 40 : : : :111 97 113105 38 102 62 65 114 74 82 81 83 136 37 21 61 88 86 55 ( 32 35 117116 23 5256 17 18 94 67 128 15 57 58 89 87 109 2 4 6 28 95 3 126 77 144 54 41 ) 68 11575 138 73 124 36 130127141 22 92 72 59 108125110:Furthermore, their initial letters 1 , 6 , 11 , 16 , : : : , 141 identify the soure of thatquotation, whih onsists entirely of ommon English words. What does it say?96. [21 ℄ The �fteenth mystery word in exerise 95 is `134135131'. Why does its speialform lead to a partial fatorization of that problem?x 100. [30 ℄ (Conneted subsets.) Let v be a vertex of some graph G, and let H be aonneted subset of G that ontains v. The verties of H an be listed in a anonialway by starting with v0  v and then letting v1, v2, : : : be the neighbors of v0 thatlie in H, followed by the neighbors of v1 that haven't yet been listed, and so on. (Weassume that the neighbors of eah vertex are listed in some �xed order.)For example, if G is the 3�3 grid P3 P3, exatly 21 of its onneted �ve-elementsubsets ontain the upper left orner element v. Their anonial orderings are0 12 34 0 12 34 0 12 34 0 12 34 0 12 3 4 0 12 34 0 123 40 1 23 4 0 1 234 0 1 234 0 12 34 0 12 34 0 1234 0 123 401 23 4 01 23 4 01 2 34 01 2 34 01 2 34 01 23 4 012 3 4if we order the verties from top to bottom and left to right when listing a vertex'sneighbors. (Verties labeled 0 , 1 , 2 , 3 , 4 indiate v0, v1, v2, v3, v4. Other vertiesare not in H.) Notie that in eah ase the numbered verties are impliitly onnetedby a spanning tree whose edges eah have the form vi���vj for some i < j.The anonial ordering orresponds to H's lexiographially smallest spanningtree; for example, the spanning tree in the �rst solution is v0���v1, v0���v2, v1���v3,v1 ��� v4. Furthermore, the 21 solutions appear here in lexiographi order of theirrespetive spanning trees.Design a baktrak algorithm to generate all of the n-element onneted subsetsthat ontain a spei�ed vertex v, given a graph that is represented in SGB format(whih has ARCS, TIP, and NEXT �elds, as desribed near the beginning of Chapter 7).101. [23 ℄ Use the algorithm of exerise 100 to generate all of the onneted n-elementsubsets of a given graph G. How many suh subsets does Pn Pn have, for 1 � n � 9?
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34 COMBINATORIAL SEARCHING (F5B: 12Nov 2016�1636) 7.2.2 v-reahable subsetreahable subsetsgrid, orientedoriented griddual oriented spanning treeoriented treeparentdireted graph versus undiretedundireted graph versus direted
102. [M22 ℄ A v-reahable subset of a direted graph G is a nonempty set of verties Hwith the property that every u 2 H an be reahed from v by at least one orientedpath in G jH. (In partiular, v itself must be in H.)a) The digraph P!3 P!3 is like P3 P3, exept that all ars between verties aredireted downward or to the right. Whih of the 21 onneted subsets in exerise100 are also v-reahable from the upper left orner element v of P!3 P!3 ?b) True or false: H is v-reahable if and only if G jH ontains a dual oriented span-ning tree rooted at v. (An oriented tree has ars u��!pu, where pu is the parentof the nonroot node u; in a dual oriented tree, the ars are reversed: pu��!u.)) True or false: If G is undireted, so that w��!u whenever u��!w, its v-reahablesubsets are the same as the onneted subsets that ontain v.d) Modify the algorithm of exerise 100 so that it generates all of the n-elementv-reahable subsets of a digraph G, given n, v, and G.999. [M00 ℄ this is a temporary exerise (for dummies)
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7.2.2 ANSWERS TO EXERCISES 35 restrited growth stringsreetionShumaherGausssymmetriinner loopbaktraking, eÆientiteration versus reursionPreu�erEngelhardtde Jaenishmask
SECTION 7.2.21. Although many formulations are possible, the following may be the niest: (i) Dkis arbitrary (but hopefully �nite), and Pl is always true. (ii) Dk = f1; 2; : : : ; ng andPl = `xj 6= xk for 1 � j < k � l'. (iii) For ombinations of n things from N ,Dk = f1; : : : ; N + 1 � kg and Pl = `x1 > � � � > xl'. (iv) Dk = f0; 1; : : : ; bn=kg; Pl =`x1 � � � � � xl and n� (n� l)xl � x1+ � � �+xl � n'. (v) For restrited growth strings,Dk = f0; : : : ; k�1g and Pl = `xj+1 � 1+max(x1; : : : ; xj) for 1 � j < l'. (vi) For indiesof left parentheses (see 7.2.1.6{(8)), Dk = f1; : : : ; 2k � 1g and Pl = `x1 < � � � < xl'.2. True. (If not, set D1  D1 \ fx j P1(x)g.)3. We an restrit D1 to f1; 2; 3; 4g, beause the reetion (9�x1) : : : (9�x8) of everysolution x1 : : : x8 is also a solution. (H. C. Shumaher made this observation in a letterto Gauss, 24 September 1850.) Notie that Fig. 68 is left-right symmetri.4. try (l) = \If l > n, visit x1 : : : xn. Otherwise, for xl  minDl, minDl + 1, : : : ,maxDl, if Pl(x1; : : : ; xl) all try (l+ 1)."This formulation is elegant, and �ne for simple problems. But it doesn't give anylue about why the method is alled \baktrak"! Nor does it yield eÆient ode forimportant problems whose inner loop is performed billions of times. We will see thatthe key to eÆient baktraking is to provide good ways to update and downdate thedata strutures that speed up the testing of property Pl. The overhead of reursion anget in the way, and the atual iterative struture of Algorithm B isn't diÆult to grasp.5. Exluding ases with j = r or k = r from (3) yields respetively (312, 396, 430,458, 458, 430, 396, 312) solutions. (With olumn r also omitted there are just (40, 46,42, 80, 80, 42, 46, 40).)6. Yes, almost surely for all n > 16. One suh is x1x2 : : : x17 = 2 17 12 10 7 14 35 9 13 15 4 11 8 6 1 16. [See Pro. Edinburgh Math. So. 8 (1890), 43 and Fig. 52.℄Preu�er and Engelhardt found 34,651,355,392 solutions when n = 27.7. Yes: (42736815; 42736851); also therefore (57263148; 57263184).8. Yes, at least when m = 4; e.g., x1 : : : x16 = 5 8 13 16 3 7 15 11 6 2 10 14 1 49 12. There are no solutions when m = 5, but 7 10 13 20 17 24 3 6 23 11 16 21 4 914 2 19 22 1 8 5 12 15 18 works for m = 6. (Are there solutions for all even m � 4?C. F. de Jaenish, Trait�e des appliations de l'analyse math�ematique au jeu des �ehes2 (1862), 132{133, noted that all 8-queen solutions have four of eah olor. He provedthat the number of white queens must be even, beause P4mk=1(xk + k) is even.)9. Let bit vetors al, bl, l represent the \useful" elements of the sets in (6), with al =Pf2x�1 j x 2 Alg, bl = Pf2x�1 j x 2 Bl \ [1 : : n℄g, l = Pf2x�1 j x 2 Cl \ [1 : : n℄g.Then step W2 sets sl  �& �al &�bl & �l, where � is the mask 2n � 1.In step W3 we an set t  sl & (�sl), al  al�1 + t, bl  (bl�1 + t) � 1,l  ((l�1+ t)�1)&�; and it's also onvenient to set sl  sl� t at this time, insteadof deferring this hange to step W4.(There's no need to store xl in memory, or even to ompute xl in step W3 as aninteger in [1 : : n℄, beause xl an be dedued from al � al�1 when a solution is found.)10. (a) Only when n = 1, beause reeted queens an apture eah other.(b) Queens not in the enter must appear in groups of four.() The four queens oupy the same rows, olumns, and diagonals in both ases.(d) In eah solution ounted by n we an independently tilt (or not) eah of thebn=4 groups of four. [Mathematishe Unterhaltungen und Spiele 1, seond edition(Leipzig: Teubner, 1910), 249{258.℄
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36 ANSWERS TO EXERCISES 7.2.2 AhrensP�olyaHurwitzLuasFranelPaulstreebreadth �rst searhRivinVardiZimmermannsemi-queensCavenaghWanless
11. Suppose the xk are distint. ThenPnk=1(xk+k) = 2�n+12 � � 0 (modulo n). If thenumbers (xk + k) mod n are also distint, we have also Pnk=1 k � �n+12 �. But that isimpossible when n is even.Now suppose further that the numbers (xk � k) mod n are distint. Then wehave Pnk=1(xk + k)2 � Pnk=1(xk � k)2 � Pnk=1 k2 = n(n + 1)(2n + 1)=6. And wealso have Pnk=1(xk + k)2 +Pnk=1(xk � k)2 = 4n(n + 1)(2n + 1)=6 � 2n=3, whih isimpossible when n is a multiple of 3. [See W. Ahrens, Mathematishe Unterhaltungenund Spiele 2, seond edition (1918), 364{366, where G. P�olya ites a more generalresult of A. Hurwitz that applies to wraparound diagonals of other slopes.℄Conversely, if n isn't divisible by 2 or 3, we an let xn = n and xk = (2k) mod nfor 1 � k < n. (The rule xk = (3k) mod n also works. See �Edouard Luas, R�er�eationsMath�ematiques 1 (1882), 84{86.)12. The (n+ 1) queens problem learly has a solution with a queen in a orner if andonly if the n queens problem has a solution with a queen-free main diagonal. Hene bythe previous answer there's always a solution when nmod 6 2 f0; 1; 4; 5g.Another nie solution was found by J. Franel [L'Interm�ediaire des Math�ematiiens1 (1894), 140{141℄ when nmod 6 2 f2; 4g: Let xk = (n=2 + 2k� 3[2k�n℄)mod n+1,for 1 � k � n. With this setup we �nd that xk � xj = �(k � j) and 1 � j < k � nimplies (1 or 3)(k � j) + (0 or 3) � 0 (modulo n); hene k � j = n� (1 or 3). But thevalues of x1, x2, x3, xn�2, xn�1, xn give no attaking queens exept when n = 2.Franel's solution has empty diagonals, so it provides solutions also for nmod 6 2f3; 5g. We onlude that only n = 2 and n = 3 are impossible.[A more ompliated onstrution for all n > 3 had been given earlier by E. Pauls,in Deutshe Shahzeitung 29 (1874), 129{134, 257{267. Pauls also explained how to�nd all solutions, in priniple, by building the tree level by level (not baktraking).℄13. For 1 � j � n, let x(j)1 : : : x(j)m be a solution for m queens, and let y1 : : : yn be asolution for n toroidal queens. Then X(i�1)n+j = (x(j)i � 1)n + yj (for 1 � i � m and1 � j � n) is a solution for mn queens. [I. Rivin, I. Vardi, and P. Zimmermann, AMM101 (1994), 629{639, Theorem 2.℄14. [Rivin, Vardi, and Zimmermann, in the paper just ited, observe that in fat thesequene (lnQ(n))=(n lnn) appears to be inreasing.℄15. Let the queen in row k be in ell k. Then we have a \relaxation" of the n queensproblem, with jxk � xj j beoming just xk � xj in (3); so we an ignore the b vetor inAlgorithm B* or in exerise 9. We getn = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14H(n) = 1 1 1 3 7 23 83 405 2113 12657 82297 596483 4698655 40071743 367854835[N. J. Cavenagh and I. M. Wanless, Disr. Appl. Math. 158 (2010), 136{146, Table 2.℄16. It fails spetaularly in step L5. The minus signs, whih mark deisions that werepreviously fored, are ruial tags for baktraking.17. x4 : : : x8 = �2�10�40, p0 : : : p4 = 33300, and y1y2y3 = 130. (If xi � 0 the algorithmwill never look at yi; hene the urrent state of y4 : : : y8 is irrelevant. But y4y5 happensto be 20, beause of past history; y6, y7, and y8 haven't yet been touhed.)19. We ould say Dl is f�n; : : : ;�2;�1; 1; 2; : : : ; ng, or fk j k 6= 0 and 2 � l � k �2n � l� 1g, or anything in between. (But this observation isn't very useful.)
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7.2.2 ANSWERS TO EXERCISES 37 parity argumenttriesignaturetriebitwise AND20. First we add a Boolean array a1 : : : an, where ak means \k has appeared," as inAlgorithm B*. It's 0 : : : 0 in step L1; we set ak  1 in step L3, ak  0 in step L5.The loop in step L2 beomes \while xl < 0, go to L5 if l � n� 1 and a2n�l�1 = 0,otherwise set l l+ 1." After �nding l+ k + 1 � 2n in L3, and before testing xl+k+1for 0, insert this: \If l � n�1 and a2n�l�1 = 0, while l+k+1 6= 2n set j  k, k  pk."21. (a) In any solution xk = n () xk+n+1 = �n () xDn�k = n.(b) xk = n� 1 for some k � n=2 if and only if xDk = n � 1 for some k > n=2.() Let n0 = n � [n is even℄. Change `l � n � 1 and a2n�l�1 = 0' in the modi�edstep L2 to `(l = bn=2 and an0 = 0) or (l � n�1 and a2n�l�1 = 0)'. Insert the followingbefore the other insertion into step L3: \If l = bn=2 and an0 = 0, while k 6= n0 setj  k, k  pk." And in step L5|this subtle detail is needed when n is even|go toL5 instead of L4 if l = bn=2 and k = n0.22. The solutions 1�1 and 21�1�2 for n = 1 and n = 2 are self-dual; the solutions for n = 4and n = 5 are 431�12�3�4�2, 245�231�1�4�3�5, 451�123�4�2�5�3, and their duals. The total numberof solutions for n = 1, 2, : : : is 1, 1, 0, 2, 4, 20, 0, 156, 516, 2008, 0, 52536, 297800,1767792, 0, 75678864, : : : ; there are none when nmod 4 = 3, by a parity argument.Algorithm L needs only obvious hanges. To ompute solutions by a streamlinedmethod like exerise 21, use n0 = n� (0; 1; 2; 0) and substitute `l = bn=4+ (0; 1; 2; 1)'for `l = bn=2', when nmod 4 = (0; 1; 2; 3); also replae `l � n � 1 and a2n�l�1 = 0'by `l � dn=2e and ab(4n+2�2l)=3 = 0'. The ase n = 15 is proved impossible with 397million nodes and 9.93 gigamems.23. slums ! sluff, slump, slurs, slurp, or sluts; (slums; total)! (slams; tonal).24. Build the list of 5-letter words and the trie of 6-letter words in step B1; also seta01a02a03a04a05  00000. Use minDl = 1 in step B2 and maxDl = 5757 in step B4.Testing Pl in step B3, if word x3 is 12345, onsists of forming al1 : : : al5, wherealk = trie [a(l�1)k; k℄ for 1 � k � 5; but jump to B4 if any alk is zero.25. There are 5 � 26 singly linked lists, aessed from pointers hk, all initially zero.The xth word x1x2x3x4x5, for 1 � x � 5757, belongs to 5 lists and has �ve pointerslx1lx2lx3lx4lx5. To insert it, set lxk  hkxk , hkxk  x, and skxk  skxk + 1, for1 � k � 5. (Thus sk will be the length of the list aessed from hk.)We an store a \signature" P26=1 2�1[trie [a; ℄ 6= 0℄ with eah node a of the trie.For example, the signature for node 260 is 20+24+28+214+217+220+224 = #1124111,aording to (11); here a$ 1, : : : , z$ 26.The proess of running through all x that math a given signature y with respetto position z, as needed in steps B2 and B4, now takes the following form: (i) Seti  0. (ii) While 2i & y = 0, set i  i + 1. (iii) Set x  hz(i+1); go to (vi) if x = 0.(iv) Visit x. (v) Set x lxz; go to (iv) if x 6= 0. (vi) Set i i+ 1; go to (ii) if 2i � y.Let trie [a; 0℄ be the signature of node a. We hoose z and y = trie [a(l�1)z; 0℄ instep B2 so that the number of nodes to visit, P26=1 sz[2�1 & y 6=0℄, is minimum for1 � z � 5. For example, when l = 3, x1 = 1446, and x2 = 185 as in (10), that sum forz = 1 is s11+s15+s19+s1(15)+s1(18)+s1(21)+s1(25) = 296+129+74+108+268+75+47 =997; and the sums for z = 2, 3, 4, 5 are 4722, 1370, 5057, and 1646. Hene we hoosez = 1 and y = #1124111; only 997 words, not 5757, need be tested for x3.The values yl and zl are maintained for use in baktraking. (In pratie we keepx, y, and z in registers during most of the omputation. Then we set xl  x, yl  y,zl  z before inreasing l  l + 1 in step B3; and we set x  xl, y  yl, z  zl in
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38 ANSWERS TO EXERCISES 7.2.2 authorGattegnoompressed trietrie, ompressedsaturating ternary additionstep B5. We also keep i in a register, while traversing the sublists as above; this valueis restored in step B5 by setting it to the zth letter of word x, dereased by 'a'.)26. Here are the author's favorite 5� 7 and 5� 8, and the only 5� 9's:smashespartialimmenseemergedsadness grandestrenouneepisodesbasementeyesores pastelistaidenemortgagorproreformandesytes varistorsagentivaloelomateundeletedoysterersNo 5� 10 word retangles exist, aording to our ground rules.27. (1, 15727, 8072679, 630967290 90962081, 625415) and (15727.0, 4321.6, 1749.7,450.4, 286.0). Total time � 18:3 teramems. (In Setion 7.2.2.1 we'll study a methodthat is symmetrial between rows and olumns.)28. Build a separate trie for the m-letter words; but instead of having trie nodes ofsize 26 as in (11), it's better to onvert this trie into a ompressed representation thatomits the zeros. For example, the ompressed representation of the node for pre�x`orne' in (12) onsists of �ve onseutively stored pairs of entries (`a', 3879), (`d',3878), (`l', 9602), (`r', 171), (`t', 5013), followed by (0; 0). Similarly, eah shorter pre�xwith  desendants is represented by  onseutive pairs (harater, link), followed by(0; 0) to mark the end of the node. Steps B3 and B4 are now very onvenient.Level l orresponds to row il = 1+(l�1) modm and olumn jl = 1+ b(l�1)=m.For baktraking we store the n-trie pointer ail;jl as before, together with an index xlinto the ompressed m-trie.This method was suggested by Bernard Gattegno in 1996 (unpublished). It �ndsall 5� 6 word retangles in just 400 gigamems; and its running time for \transposed"6�5 retangles turns out to be slightly less (380 gigamems). Notie that only one memis needed to aess eah (harater, link) pair in the ompressed trie.29. Leave out fae and (of ourse) dada; the remaining eleven are �ne.30. Keep tables pi, p0ij , p00ijk, si, s0ij , s00ijk, for 0 � i; j; k < m, eah apable of storing aternary digit. Also keep a table x0, x1, : : : of tentatively aepted words. Begin withg  0. Then for eah input wj = abd, where 0 � a; b; ; d < m, set xg  abd andalso do the following: Set pa  pa _+ 1, p0ab  p0ab _+ 1, p00ab  p00ab _+ 1, sd  sd _+ 1,s0d  s0d _+ 1, s00bd  s00bd _+ 1, where x _+ y = min(2; x+ y) denotes saturating ternaryaddition. Then if sa0 p00b00d0 + s0a0b0 p00d0 + s00a0b00 pd0 = 0 for all xk = a0b00d0, where0 � k � g, set g  g + 1. Otherwise rejet wj and set pa  pa � 1, p0ab  p0ab � 1,p00ab  p00ab � 1, sd  sd � 1, s0d  s0d � 1, s00bd  s00bd � 1.31. (a) The word b appears in message abd if and only if a! b, b! , and ! d.(b) For 0 � k < r, put vertex v into lass k if the longest path from v haslength k. Given any suh partition, we an inlude all ars from lass k to lass j < kwithout inreasing the path lengths. So it's a question of �nding the maximum ofP0�j<k<r pjpk subjet to p0+p1+� � �+pr�1 = m. The values pj = b(m+j)=r ahievethis (see exerise 7.2.1.4{68(a)). When r = 3 the maximum simpli�es to bm2=3.32. (a) The fators of the period, 15 926 535 89 79 323 8314, begin at the respetiveboundary points 3, 5, 8, 11, 13, 15, 18 (and then 3 + 19 = 22, et.). Thus round 1retains boundaries 5, 8, and 15. The seond-round substrings y0 = 926, y1 = 5358979,y2 = 323831415 have di�erent lengths, so lexiographi omparison is unneessary; theanswer is y2y0y1 = x15 : : : x33.(b) Eah substring onsists of at least three substrings of the previous round.
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7.2.2 ANSWERS TO EXERCISES 39 superdipEastmanSholtzaperiodi() Let a0 = 0, b0 = 1, ae+1 = aeaebe, be+1 = aebebe; use ae or be when n = 3e.(d) We use an auxiliary subroutine `less(i)', whih returns [yi�1 <yi ℄, given i > 0:If bi�bi�1 6= bi+1�bi, return [bi � bi�1<bi+1 � bi ℄. Otherwise, for j = 0, 1, : : : , whilebi + j < bi+1, if xbi�1+j 6= xbi+j return [xbi�1+j <xbi+j ℄. Otherwise return 0.The triky part of the algorithm is to disard initial fators that aren't periodi.The seret is to let i0 be the smallest index suh that yi�3 � yi�2 < yi�1; then we anbe sure that a fator begins with yi.O1. [Initialize.℄ Set xj  xj�n for n � j < 2n, bj  j for 0 � j < 2n, and t n.O2. [Begin a round.℄ Set t0  0. Find the smallest i > 0 suh that less(i) = 0.Then �nd the smallest j � i + 2 suh that less(j � 1) = 1 and j � t+ 2. (Ifno suh j exists, report an error: The input x was equal to one of its ylishifts.) Set i i0  j mod t. (Now a dip of the period begins at i0.)O3. [Find the next fator.℄ Find the smallest j � i+ 2 suh that less (j � 1) = 1.If j � i is even, go to O5.O4. [Retain a boundary.℄ If j < t, set b0t0  bj ; otherwise set b0k  b0k�1 fort0 � k > 0 and b00  bj�t. Finally set t0  t0 + 1.O5. [Done with round?℄ If j < i0 + t, set i  j and return to O3. Otherwise, ift0 = 1, terminate; �x begins at item xb00 . Otherwise set t  t0, bk  b0k for0 � k < t, and bk  bk�t + n for k � t while bk�t < n. Return to O2.(e) Say that a \superdip" is a dip of odd length followed by zero or more dips of evenlength. Any in�nite sequene y that begins with an odd-length dip has a unique fator-ization into superdips. Those superdips an, in turn, be regarded as atomi elementsof a higher-level string that an be fatored into dips. The result �x of Algorithm Ois an in�nite periodi sequene that allows repeated fatorization into in�nite periodisequenes of superdips at higher and higher levels, until beoming onstant.Notie that the �rst dip of �x ends at position i0 in the algorithm, beause itslength isn't 2. Therefore we an prove the ommafree property by observing that, ifodeword �x00 appears within the onatenation �x�x0 of two odewords, its superdipfators are also superdip fators of those odewords. This yields a ontradition if anyof �x, �x0, or �x00 is a superdip. Otherwise the same observation applies to the superdipfators at the next level. [Eastman's original algorithm was essentially the same, butpresented in a more ompliated way; see IEEE Trans. IT-11 (1965), 263{267. R. A.Sholtz subsequently disovered an interesting and totally di�erent way to de�ne theset of odewords produed by Algorithm O, in IEEE Trans. IT-15 (1969), 300{306.℄33. Let fk(m) be the number of dips of length k for whih m > z1 and zk < m. Thenumber of suh sequenes with z2 = j is (m � j � 1)�m�j+k�3k�2 � = (k � 1)�m�j+k�3k�1 �;summing for 0 � j < m gives fk(m) = (k�1)�m+k�2k �. Thus Fm(z) =P1k=0 fk(m)zk =(mz�1)=(1�z)m. (The fat that f0(m) = �1 in these formulas turns out to be useful!)Algorithm O �nishes in one round if and only if some yli shift of x is a superdip.The number of aperiodi x that �nish in one round is therefore n[zn℄Gm(z), whereGm(z) = Fm(�z)� Fm(z)Fm(�z) + Fm(z) = (1 +mz)(1� z)m � (1�mz)(1 + z)m(1 +mz)(1� z)m + (1�mz)(1 + z)m :To get the stated probability, divide by Pdnn �(d)mn=d, the number of aperiodi x.(See Eq. 7.2.1.1{(60). For n = 3, 5, 7, 9 these probabilities are 1, 1, 1, and 1�3=�m3�13 �.)34. If so, it ouldn't have 0011, 0110, 1100, or 1001.
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40 ANSWERS TO EXERCISES 7.2.2 staksqueuesmemory onstraints, historiunordered setsLinked listsdeletion35. That setion onsidered suh representations of staks and queues, but not ofunordered sets, beause large bloks of sequential memory were either nonexistent orultra-expensive in olden days. Linked lists were the only deent option for families ofvariable-size sets, beause they ould more readily �t in a limited high-speed memory.36. (a) The blue word x with � = d (namely 1101) appears in its P2 list at loation 5e.(b) The P3 list for words of the form 010� is empty. (Both 0100 and 0101 are red.)37. (a) The S2 list of 0010 has beome losed (hene 0110 and 1110 are hidden).(b) Word 1101 moved to the former position of 1001 in its S1 list, when 1001beame red. (Previously 1011 had moved to the former position of 0001.)38. In this ase, whih of ourse happens rarely, it's safe to set all elements of STAMPto zero and set �  1. (Do not be tempted to save one line of ode by setting all STAMPelements to �1 and leaving � = 0. That might fail when � reahes the value �1!)39. (a) Set r  m + 1. Then for k  0, 1, : : : , f � 1, set t  FREE[k℄, j  MEM[CLOFF + 4t+m4℄� (CLOFF + 4t), and if j < r set r  j,   t; break out of theloop if r = 0.(b) If r > 0 set x MEM[CLOFF + 4l(ALF[x℄)℄.() If r > 1 set q  0, p0  MEM[PP℄, and p  POISON. While p < p0 do thefollowing steps: Set y  MEM[p℄, z  MEM[p+ 1℄, y0  MEM[y +m4℄, and z0  MEM[z +m4℄. (Here y and z point to the heads of pre�x or suÆx lists; y0 and z0 pointto the tails.) If y = y0 or z = z0, delete entry p from the poison list; this means, asin (18), to set p0  p0�2, and if p 6= p0 to store(p; MEM[p0℄) and store(p+1; MEM[p0 + 1℄).Otherwise set p p+2; if y0�y � z0�z and y0�y > q, set q  y0�y and x MEM[z℄;if y0 � y < z0 � z and z0 � z > q, set q  z0 � z and x MEM[y℄. Finally, after p hasbeome equal to p0, store(PP; p0) and set  l(ALF[x℄). (Experiments show that this\max kill" strategy for r > 1 slightly outperforms a seletion strategy based on r alone.)40. (a) First there's a routine rem(�; Æ; o) that removes an item from a list, followingthe protool (21): Set p  Æ + o and q  MEM[p+m4℄ � 1. If q � p (meaning thatlist p isn't losed or being killed), store(p + m4; q), set t  MEM[�+ o�m4℄; and ift 6= q also set y MEM[q℄, store(t; y), and store(ALF[y℄+ o�m4; t).Now, to redden x we set �  ALF[x℄, store(�; RED); then rem(�; p1(�); P1OFF),rem(�; p2(�); P2OFF), : : : , rem(�; s3(�); S3OFF), and rem(�; 4l(�); CLOFF).(b) A simple routine lose(Æ; o) loses list Æ+o: Set p Æ+o and q  MEM[p+m4℄;if q 6= p� 1, store(p+m4; p� 1).Now, to green x we set �  ALF[x℄, store(�; GREEN); then lose(p1(�); P1OFF),lose(p2(�); P2OFF), : : : , lose(s3(�); S3OFF), and lose(4l(�); CLOFF). Finally, for p �r < q (using the p and q that were just set within `lose'), if MEM[r℄ 6= x redden MEM[r℄.() First set p0  MEM[PP℄+6, and store(p0�6; p1(�)+S1OFF), store(p0�5; s3(�)+P3OFF), store(p0 � 4; p2(�) + S2OFF), store(p0 � 3; s2(�) + P2OFF), store(p0 � 2; p3(�) +S3OFF), store(p0 � 1; s1(�) + P1OFF); this adds the three poison items (27).Then set p  POISON and do the following while p < p0: Set y, z, y0, z0 as inanswer 39(), and delete poison entry p if y = y0 or z = z0. Otherwise if y0 < y andz0 < z, go to C6 (a poisoned suÆx-pre�x pair is present). Otherwise if y0 > y andz0 > z, set p p+ 2. Otherwise if y0 < y and z0 > z, store(z +m4; z), redden MEM[r℄for z � r < z0, and delete poison entry p. Otherwise (namely if y0 > y and z0 < z),store(y +m4; y), redden MEM[r℄ for y � r < y0, and delete poison entry p.Finally, after p has beome equal to p0, store(PP; p0).
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7.2.2 ANSWERS TO EXERCISES 41 NihoCNFSAT solverunit lausesuniformly randomrejetKnuthYaoomplexity of alulationomputational omplexityTraub
42. Exerise 32 exhibits suh odes expliitly for all odd n. The earliest papers onthe subjet gave solutions for n = 2, 4, 6, 8. Yoji Niho subsequently found a ode forn = 10 but was unable to resolve the ase n = 12 [IEEE Trans. IT-19 (1973), 580{581℄.This problem an readily be enoded in CNF and given to a SAT solver. Thease n = 10 involves 990 variables and 8.6 million lauses, and is solved by Algo-rithm 7.2.2.2C in 10.5 gigamems. The ase n = 12 involves 4020 variables and 175million lauses. After being split into seven independent subproblems (by appendingmutually exlusive unit lauses), it was proved unsatis�able by that algorithm afterabout 86 teramems of omputation.So the answer is \No." The maximum-size ode for n = 12 remains unknown.44. (a) There are 28 ommafree binary odes of size 3 and length 4; Algorithm Cprodues half of them, beause it assumes that yle lass [0001℄ is represented by0001 or 0010. They form eight equivalene lasses, two of whih are symmetri underthe operation of omplementation-and-reetion; representatives are f0001; 0011; 0111gand f0010; 0011; 1011g. The other six are represented by f0001; 0110; 0111 or 1110g,f0001; 1001; 1011 or 1101g, f0001; 1100; 1101g, f0010; 0011; 1101g.(b) Algorithm C produes half of the 144 solutions, whih form twelve equivalenelasses. Eight are represented by f0001, 0002, 1001, 1002, 2201, 2001, 2002, 2011,2012, 2102, 2112, 2122 or 2212g and (f0102; 1011; 1012g or f1020; 1101; 2101g) and(f1202; 2202; 2111g or f2021; 2022; 1112g); four are represented by f0001, 0020, 0021,0022, 1001, 1020, 1021, 1022, 1121 or 1211, 1201, 1202, 1221, 2001, 2201, 2202g and(f1011; 1012; 2221g or f1101; 2101; 1222g).() Algorithm C yields half of the 2304 solutions, whih form 48 equivalene lasses.Twelve lasses have unique representatives that omit yle lasses [0123℄, [0103℄, [1213℄,one suh being the ode f0010, 0020, 0030, 0110, 0112, 0113, 0120, 0121, 0122, 0130,0131, 0132, 0133, 0210, 0212, 0213, 0220, 0222, 0230, 0310, 0312, 0313, 0320, 0322,0330, 0332, 0333, 1110, 1112, 1113, 2010, 2030, 2110, 2112, 2113, 2210, 2212, 2213,2230, 2310, 2312, 2313, 2320, 2322, 2330, 2332, 2333, 3110, 3112, 3113, 3210, 3212,3213, 3230, 3310, 3312, 3313g. The others eah have two representatives that omitlasses [0123℄, [0103℄, [0121℄, one suh being the ode f0001, 0002, 0003, 0201, 0203,1001, 1002, 1003, 1011, 1013, 1021, 1022, 1023, 1031, 1032, 1033, 1201, 1203, 1211,1213, 1221, 1223, 1231, 1232, 1233, 1311, 1321, 1323, 1331, 2001, 2002, 2003, 2021,2022, 2023, 2201, 2203, 2221, 2223, 3001, 3002, 3003, 3011, 3013, 3021, 3022, 3023,3031, 3032, 3033, 3201, 3203, 3221, 3223, 3321, 3323, 3331g and its isomorphi imageunder reetion and (01)(23).45. (The maximum size of suh a ode is urrently unknown. Algorithm C isn't fastenough to solve this problem on a single omputer, but a suÆiently large luster ofmahines and/or an improved algorithm should be able to disover the answer. Thease m = 3 and n = 6 is also urrently unsolved; a SAT solver shows quikly that a fullset of (36 � 33 � 32 + 31)=6 = 116 odewords annot be ahieved.)47. The 3-bit sequenes 101, 111, 110 were rejeted before seeing 000. In general, tomake a uniformly random hoie from q possibilities, the text suggests looking at thenext t = dlg qe bits b1 : : : bt. If (b1 : : : bt)2 < q, we use hoie (b1 : : : bt)2 + 1; otherwisewe rejet b1 : : : bt and try again. [This simple method is optimum when q � 4, and thebest possible running time for other values of q uses more than half as many bits. But abetter sheme is available for q = 5, using only 3 13 bits per hoie instead of 4 45 ; and forq = 6, one random bit redues to the ase q = 3. See D. E. Knuth and A. C. Yao, Al-gorithms and Complexity, edited by J. F. Traub (Aademi Press, 1976), 357{428, x2.℄
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42 ANSWERS TO EXERCISES 7.2.2 pro�legenerating funtiontail inequalityumulative binomial distributionreursive formulasa posterioriost funtionsearh treepoison listslak
48. It's the number of nodes on level l+1 (depth l) of the searh tree. (Hene we anestimate the pro�le. Notie that D = D1 : : : Dl�1 in step E2 of Algorithm E.)49. Z0 = C(), Zl+1 = () +D1(X1) +D1D2(X1X2) + � � � +D1 : : : Dl(X1 : : : Xl) +D1 : : : Dl+1C(X1 : : : Xl+1).50. (a) True: The generating funtion is z(z+1) : : : (z+n� 1)=n!; see Eq. 1.2.10{(9).(b) For instane, suppose Y1Y2 : : : Yl = 1457 and n = 9. Alie's probability is11 12 23 14 15 56 17 78 89 = 13 14 16 19 . Elmo obtains X1X2 : : : Xl = 7541 with probability 19 16 14 13 .() The upper tail inequality (see exerise 1.2.10{22 with � = Hn) tells us thatPr(l � (lnn)(ln lnn)) � exp(�(lnn)(ln lnn)(ln ln lnn) +O(lnn)(ln lnn)).(d) If k � n=3 we havePkj=0 �nj� � 2�nk�. By exerise 1.2.6{67, the number of nodeson the �rst (lnn)(ln lnn) levels is therefore at most 2(ne=((lnn)(ln lnn)))(lnn)(ln lnn).51. The key idea is to introdue reursive formulas analogous to (29):m(x1 : : : xl) = (x1 : : : xl) +min(m(x1 : : : xlx(1)l+1)d; : : : ; m(x1 : : : xlx(d)l+1)d);M(x1 : : : xl) = (x1 : : : xl) +max(M(x1 : : : xlx(1)l+1)d; : : : ;M(x1 : : : xlx(d)l+1)d);bC(x1 : : : xl) = (x1 : : : xl)2 + dXi=1( bC(x1 : : : xlx(i)l+1)d+ 2(x1 : : : xl)C(x1 : : : xlx(i)l+1)):They an be omputed via auxiliary arrays MIN, MAX, KIDS, COST, and CHAT as follows:At the beginning of step B2, set MIN[l℄  1, MAX[l℄  KIDS[l℄  COST[l℄  CHAT[l℄ 0. Set KIDS[l℄ KIDS[l℄ + 1 just before l l+ 1 in step B3.At the beginning of step B5, set m  (x1 : : : xl�1) + KIDS[l℄ � MIN[l℄, M  (x1 : : : xl�1) + KIDS[l℄� MAX[l℄, C  (x1 : : : xl�1) + COST[l℄, bC  (x1 : : : xl�1)2 +KIDS[l℄ � CHAT[l℄ + 2 � COST[l℄. Then, after l  l � 1 is positive, set MIN[l℄  min(m; MIN[l℄), MAX[l℄  max(M; MAX[l℄), COST[l℄  COST[l℄ + C, CHAT[l℄  CHAT[l℄ + bC. But when l reahes zero in step B5, return the values m, M, C, bC � C2.52. Let p(i) = pX1:::Xl�1(yi), and simply set D  D=p(I) instead of D  Dd. Thennode x1 : : : xl is reahed with probability �(x1 : : : xl) = p(x1)px1(x2) : : : px1:::xl(xl),and (x1 : : : xl) has weight 1=�(x1 : : : xl) in S; the proof of Theorem E goes throughas before. Notie that p(I) is the a posteriori probability of having taken branh I.(The formulas of answer 51 should now use `=p(i)' instead of `d'; and that algorithmshould be modi�ed appropriately, no longer needing the KIDS array.)53. Let pX1:::Xl�1(yi) = C(x1 : : : xl�1yi)=(C(x1 : : : xl�1)� (x1 : : : xl�1)). (Of oursewe generally need to know the ost of the tree before we know the exat values of theseideal probabilities, so we annot ahieve zero variane in pratie. But the form of thissolution shows what kinds of bias are likely to redue the variane.)55. The e�ets of lookahead, dynami ordering, and reversible memory are all apturedeasily by a well-designed ost funtion at eah node. But there's a fundamentaldi�erene in step C2, beause di�erent odeword lasses an be seleted for branhingat the same node (that is, with the same anestors x1 : : : xl�1) after C5 has undonethe e�ets of a prior hoie. The level l never surpasses L + 1, but in fat the searhtree involves hidden levels of branhing that are impliitly ombined into single nodes.Thus it's best to view Algorithm C's searh tree as a sequene of binary branhes:Should x be one of the odewords or not? (At least this is true when the \max kill"strategy of answer 39 has seleted the branhing variable x. But if r > 1 and the poisonlist is empty, an r-way branh is reasonable (or an (r + 1)-way branh when the slakis positive), beause r will be redued by 1 and the same lass  will be hosen after xhas been explored.)
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7.2.2 ANSWERS TO EXERCISES 43 biasKullbakLeiblerdivergenegenerating funtionVenn diagramIf x has been seleted beause it kills many other potential odewords, we probablyshould bias the branh probability as in exerise 52, giving smaller weight to the \yes"branh beause the branh that inludes x is less likely to lead to a large subtree.57. Let pk = 1=D(k) be the probability that Algorithm E terminates at the kth leaf.Then PMk=1(1=M) lg(1=(Mpk)) is the Kullbak{Leibler divergene D(q jjp), where q isthe uniform distribution (see exerise MPR{121). Hene 1M PMk=1 lgD(k) � lgM . (Theresult of this exerise is essentially true in any probability distribution.)58. Let 1 be any onvenient value � n. When vertex v beomes part of the path wewill perform a two-phase algorithm. The �rst phase identi�es all \tarnished" verties,whose DIST must hange; these are the verties u from whih every path to t passesthrough v. It also forms a queue of \resoure" verties, whih are untarnished butadjaent to tarnished ones. The seond phase updates the DISTs of all tarnished vertiesthat are still onneted to t. Eah vertex has LINK and STAMP �elds in addition to DIST.For the �rst phase, set d DIST(v), DIST(v) 1+1, R �, T v, LINK(v) �, then do the following while T 6= �: (�) Set u T, T  S �. For eah w���u, ifDIST(w) < d do nothing (this happens only when u = v); if DIST(w) � 1 do nothing(w is gone or already known to be tarnished); if DIST(w) = d, make w a resoure (seebelow); otherwise DIST(w) = d+1. If w has no neighbor at distane d, w is tarnished:Set LINK(w)  T, DIST(w)  1, T  w. Otherwise make w a resoure (see below).Then set u LINK(u), and return to (�) if u 6= �.The queue of resoures will start at R. We will stamp eah resoure with v sothat nothing is added twie to that queue. To make w a resoure when DIST(w) = d,do the following (unless u = v or STAMP(w) = v): Set STAMP(w)  v; if R = �, setR  RT  w; otherwise set LINK(RT)  w and RT  w. To make w a resoure whenDIST(w) = d + 1 and u 6= v and STAMP(w) 6= v, put it �rst on stak S as follows: SetSTAMP(w) v; if S = �, set S SB w; otherwise set LINK(w) S, S w.Finally, when u = �, we append S to R: Nothing needs to be done if S = �.Otherwise, if R = �, set R  S and RT  SB; but if R 6= �, set LINK(RT)  S andRT SB. (These shenanigans keep the resoure queue in order by DIST.)Phase 2 operates as follows: Nothing needs to be done if R = �. Otherwise we setLINK(RT)  �, S  �, and do the following while R 6= � or S 6= �: (i) If S = �, setd  DIST(R). Otherwise set u  S, d  DIST(u), S  �; while u 6= �, update theneighbors of u and set u  LINK(u). (ii) While R 6= � and DIST(R) = d, set u  R,R  LINK(u), and update the neighbors of u. In both ases \update the neighborsof u" means to look at all w ��� u, and if DIST(w) = 1 to set DIST(w)  d + 1,STAMP(w) v, LINK(w) S, and S w. (It works!)59. (a) Compute the generating funtion g(z) (see exerise 7.1.4{209) and then g0(1).(b) Let (A;B;C) denote paths that touh (enter, NE orner, SW orner). Re-ursively ompute eight ounts (0; : : : ; 7) at eah node, where j ounts paths �with j = 4[� 2A℄ + 2[� 2B ℄ + [� 2C ℄. At the sink node > we have 0 = 1,1 = � � � = 7 = 0. Other nodes have the form x = (�e? xl: xh) where e is an edge.Two edges go aross the enter and a�et A; three edges a�et eah of B and C. Saythat those edges have types 4, 2, 1, respetively; other edges have type 0. Suppose theounts for xl and xh are (00; : : : ; 07) and (000 ; : : : ; 007 ), and e has type t. Then ount jfor node x is 0j + [t=0℄00j + [t& j 6= 0℄(00j + 00j�t).(This proedure yields the following exat \Venn diagram" set ounts at the root:0 = jA \ B \ Cj = 7653685384889019648091604; 1 = 2 = jA \ B \ Cj = jA \ B \Cj = 7755019053779199171839134; 3 = jA \ B \ Cj = 7857706970503366819944024;
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44 ANSWERS TO EXERCISES 7.2.2 reurreneCookKleberMahlerunique solutionGridgeman4 = jA\B\Cj = 4888524166534573765995071; 5 = 6 = jA\B\Cj = jA\B\Cj =4949318991771252110605148; 7 = jA \B \ Cj = 5010950157283718807987280.)60. Yes, the paths are less haoti and the estimates are better:
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 100000.00.5

2�10255�10258�1025
1025�102061. (a) Let xk be the number of nodes at distane k � 1 from the root.(b) Let Q(m)n = P (1)n + � � � + P (m)n . Then we have the joint reurrene P (m)1 = 1,P (m)n+1 = Q(2m)n ; in partiular, Q(m)1 = m. And for n � 2, we have Q(m)n =Pnk=1 ank�mk �for ertain onstants ank that an omputed as follows: Set tk  P (k)n for 1 � k � n.Then for k = 2, : : : , n set tn  tn � tn�1, : : : , tk  tk � tk�1. Finally ank  tk for1 � k � n. For example, a21 = a22 = 2; a31 = 6, a32 = 14, a33 = 8. The numbers P (m)nhave O(n2 + n logm) bits, so this method needs O(n5) bit operations to ompute Pn.() P (m)n orresponds to random paths withX1 = m, Dk = 2Xk, Xk+1 = d2UkXke,where eah Uk is an independent uniform deviate. Therefore P (m)n = E(D1 : : : Dn�1)is the number of nodes on level n of an in�nite tree. We have Xk+1 � 2kU1 : : : Ukm,by indution; hene P (m)n � E(2(n2)Un�21 Un�32 : : : U1n�2mn�1) = 2(n2)mn�1=(n � 1)!.[M. Cook and M. Kleber have disussed similar sequenes in Eletroni Journalof Combinatoris 7 (2000), #R44. See also K. Mahler's asymptoti formula for binarypartitions, in J. London Math. Soiety 15 (1940), 115{123, whih shows that lgPn =�n2�� lg(n � 1)! + �lgn2 �+O(1).℄66. Random trials indiate that the expeted number of 2-regular graphs is � 3:115,and that the number of disjoint pairs is (0, 1, : : : , 9, and �10) approximately (74.4,4.3, 8.7, 1.3, 6.2, 0.2, 1.5, 0.1, 2.0, 0.0, and 12.2) perent of the time. If the ubes arerestrited to ases where eah olor ours at least �ve times, these numbers hange to� 4:89 and (37.3, 6.6, 17.5, 4.1, 16.3, 0.9, 5.3, 0.3, 6.7, 0.2, 5.0).However, the onept of \unique solution" is triky, beause a 2-regular graph withk yles yields 2k ways to position the ubes. Let's say that a set of ubes has a stronglyunique solution if (i) it has a unique disjoint pair of 2-regular graphs, and furthermore(ii) both elements of that pair are n-yles. Suh sets our with probability only about0.3% in the �rst ase, and 0.4% in the seond.[N. T. Gridgeman, in Mathematis Magazine 44 (1971), 243{252, showed thatpuzzles with four ubes and four olors have exatly 434 \types" of solutions.℄67. It's easy to �nd suh examples at random, as in the seond part of the previousanswer, sine strongly unique sets our about 0.5% of the time (and weakly unique
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7.2.2 ANSWERS TO EXERCISES 45 invariantErnstGoldsteinSloumBotermansWashington Monument Puzzle, see Fool's DiskRotating Century Puzzle, see Fool's DiskSafe Combination Puzzle, see Fool's Disksets our with probability � 8:4%). For example, the pairs of opposite faes might be(12; 13; 34), (02; 03; 14), (01; 14; 24), (04; 13; 23), (01; 12; 34).(Inidentally, if we require eah olor to our exatly six times, every set of ubesthat has at least one solution will have at least three solutions, beause the \hidden"pairs an be hosen in three ways.)70. Eah of these ubes an be plaed in 16 di�erent ways that ontribute legitimateletters to all four of the visible words. (A ube whose faes ontain only letters infC;H;I;N;O;U;X;Zg an be plaed in 24 ways. A ube with a pattern like B A Dannot be plaed at all.) We an restrit the �rst ube to just two plaements; thusthere are 2 � 16 � 16 � 16 � 16 = 131072 ways to plae those ubes without hanging theirorder. Of these, only 6144 are \ompatible," in the sense that no rightside-up-onlyletter appears together with an upside-down-only letter in the same word.The 6144 ompatible plaements an then eah be reordered in 5! = 120 ways. Oneof them, whose words before reordering are GRHTI, NCICY, NWRGO , OUNNI ,leads to the unique solution. (There's a partial solution with three words out of four.There also are 39 ways to get two valid words, inluding one that has UNTIL adjaentto HOURS, and several with SYRUP opposite ECHOS.)73. Call the rays N, NE, E, SE, S, SW, W, NW; all the disks 1, 2, 3, 4 from insideto outside. We an keep disk 1 �xed. The sum of rays N, S, E, W must be 48. It is16 (on disk 1) plus 13 or 10 (on disk 2) plus 8 or 13 (on disk 3) plus 11 or 14. So itis attained either as shown, or after rotating disks 2 and 4 lokwise by 45Æ. (Or weould rotate any disk by a multiple of 90Æ, sine that keeps the desired sum invariant.)Next, with optional 90Æ rotations, we must make the sum of rays N + S equal to24. In the �rst solution above it is 9 plus (6 or 7) plus (4 or 4) plus (7 or 4), henenever 24. But in the other solution it's 9 plus (4 or 6) plus (4 or 4) plus (5 or 9); henewe must rotate disk 2 lokwise by 90Æ, and possibly also disk 3. However, 90Æ rotationof disk 3 would make the NE + SW sum equal to 25, so we musn't move it.Finally, to get NE's sum to be 12, via optional rotations by 180Æ, we have 1 plus(2 or 5) plus (1 or 5) plus (3 or 4); we must shift disks 3 and 4. Hurray: That makesall eight rays orret. Fatoring twie has redued 83 trials to 23 + 23 + 23.[See George W. Ernst and Mihael M. Goldstein, JACM 29 (1982), 1{23. Suhpuzzles go bak to the 1800s; three early examples are illustrated on pages 28 of Sloumand Botermans's New Book of Puzzles (1992). One of them, with six rings and six rays,fators from 65 trials to 25 +35. A �ve-ray puzzle would have defeated fatorization.℄75. Call the ards 1525, 5113, : : : , 3755. The key observation is that all 12 sumsmust be odd, so we an �rst solve the problem mod 2. For this purpose we may allthe ards 1101, 1111, : : : , 1111; only three ards now hange under rotation, namely1101, 0100, and 1100 (whih are the mod 2 images of 1525, 4542, and 7384).A seond observation is that eah solution gives 6 � 6 � 2 others, by permutingrows and/or olumns and/or by rotating all nine ards. Hene we an assume thatthe upper left ard is 0011 (8473). Then 0100 (4542) must be in the �rst olumn,possibly rotated to 0001 (4245), to preserve parity in the left two blak sums. We anassume that it's in row 2. In fat, after retreating from 13 mod 2 to 13, we see that itmust be rotated. Hene the bottom left ard must be either 4725, 7755, or 3755.Similarly we see that 1101 (1525) must be in the �rst row, possibly rotated to0111 (2515); we an put it in olumn 2. It must be rotated, and the top right ardmust be 3454 or 3755. This leaves just six senarios to onsider, and we soon obtainthe solution: 8473, 2515, 3454; 4245, 2547, 7452; 7755, 1351, 5537.
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46 ANSWERS TO EXERCISES 7.2.2 studentgradervaliddynami orderingpropagation algorithmsearh treeauthor90. Suppose there are n questions, whose answers eah lie in a given set S. A studentsupplies an answer list � = a1 : : : an, with eah aj 2 S; a grader supplies a Booleanvetor � = x1 : : : xn. There is a Boolean funtion fjs(�; �) for eah j 2 f1; : : : ; ng andeah s 2 S. A graded answer list (�; �) is valid if and only if F (�; �) is true, whereF (�; �) = F (a1 : : : an; x1 : : : xn) = n̂j=1 ŝ2S([aj = s℄ ) xj � fjs(�; �)):The maximum sore is the largest value of x1 + � � � + xn over all graded answer lists(�; �) that are valid. A perfet sore is ahieved if and only if F (�; 1 : : : 1) holds.Thus, in the warmup problem we have n = 2, S = fA;Bg; f1A = [a2=B℄;f1B = [a1=A℄; f2A = x1; f2B = �x2 � [a1=A℄. The four possible answer lists are:AA: F = (x1 � [A=B℄) ^ (x2 � x1)AB: F = (x1 � [B=B℄) ^ (x2 � �x2 � [A=A℄)BA: F = (x1 � [B=A℄) ^ (x2 � x1)BB: F = (x1 � [B=A℄) ^ (x2 � �x2 � [B=A℄)Thus AA and BA must be graded 00; AB an be graded either 10 or 11; and BB hasno valid grading. Only AB an ahieve the maximum sore, 2; but 2 isn't guaranteed.In Table 666 we have, for example, f1C = [a2 6=A℄ ^ [a3=A℄; f4D = [a1=D℄ ^[a15 =D℄; f12A = [�A � 1=�B ℄, where �s = P1�j�20[aj = s℄. It's amusing to notethat f14E = [f�A; : : : ;�Eg= f2; 3; 4; 5; 6g℄.The other ases are similar (although often more ompliated) Boolean funtions|exept for 20D and 20E, whih are disussed further in exerise 91.Notie that an answer list that ontains both 10E and 17E must be disarded: Itan't be graded, beause 10E says `x10 � �x17' while 17E says `x17 � x10'.By suitable baktrak programming, we an prove �rst that no perfet sore ispossible. Indeed, if we onsider the answers in the order (3, 15, 20, 19, 2, 1, 17, 10, 5,4, 16, 11, 13, 14, 7, 18, 6, 8, 12, 9), many ases an quikly be ruled out. For example,suppose a3 = C. Then we must have a1 6= a2 6= � � � 6= a16 6= a17 = a18 6= a19 6= a20,and early uto�s are often possible. (We might reah a node where the remaininghoies for answers 5, 6, 7, 8, 9 are respetively fC;Dg, fA;Cg, fB;Dg, fA;B;Eg,fB;C;Dg, say. Then if answer 8 is fored to be B, answer 7 an only be D; heneanswer 6 is also fored to be A. Also answer 9 an no longer be B.) An instrutive littlepropagation algorithm will make suh dedutions niely at every node of the searhtree. On the other hand, diÆult questions like 7, 8, 9, are best not handled withompliated mehanisms; it's better just to wait until all twenty answers have beententatively seleted, and to hek suh hard ases only when the heking is easy andfast. In this way the author's program showed the impossibility of a perfet sore byexploring just 52859 nodes, after only 3.4 megamems of omputation.The next task was to try for sore 19 by asserting that only xj is false. This turnedout to be impossible for 1 � j � 18, based on very little omputation whatsoever(espeially, of ourse, when j = 6). The hardest ase, j = 15, needed just 56 nodes andfewer than 5 kilomems. But then, ta da, three solutions were found: One for j = 19 (185kilonodes, 11 megamems) and two for j = 20 (131 kilonodes, 8 megamems), namely1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20D C E A B E B C E A B E A E D B D A b BA E D C A B C D C A C E D B C A D A A D C E A B A D C D A E D A E D B D B E e (i)(ii)(iii)
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7.2.2 ANSWERS TO EXERCISES 47 reursivelyquanti�ed�xed pointindeterminateWOODSGolombBaumert(The inorret answers are shown here as lowerase letters. The �rst two solutionsestablish the truth of 20B and the falsity of 20E.)91. Now there's only one list of answers with sore � 19, namely (iii). But that isparadoxial|beause it laims 20E is false; hene the maximum sore annot be 19!Paradoxial situations are indeed possible when the global funtion F of answer 90is used reursively within one or more of the loal funtions fjs. Let's explore a bit ofreursive territory by onsidering the following two-question, two-letter example:1. (A) Answer 1 is inorret. (B) Answer 2 is inorret.2. (A) Some answers an't be graded onsistently. (B) No answers ahieve a perfet sore.Here we have f1A = �x1; f1B = �x2; f2A = 9a19a28x18x2:F (a1a2; x1x2); f2B =8a18a2:F (a1a2; 11). (Formulas quanti�ed by 9a or 8a expand into jSj terms, while 9xor 8x expand into two; for example, 9a8xg(a;x) = (g(A; 0)^g(A; 1))_(g(B; 0)^g(B; 1))when S = fA;Bg.) Sometimes the expansion is unde�ned, beause it has more thanone \�xed point"; but in this ase there's no problem beause f2A is true: Answer AAan't be graded, sine 1A implies x1 � �x1. Also f2B is true, beause both BA and BBimply x1 � �x2. Thus we get the maximum sore 1 with either BA or BB and grades 01.On the other hand the simple one-question, one-letter questionnaire `1. (A) Themaximum sore is 1' has an indeterminate maximum sore. For in this ase f1A =F (A; 1). We �nd that if F (A; 1) = 0, only (A; 0) is a valid grading, so the only possiblesore is 0; similarly, if F (A; 1) = 1, the only possible sore is 1.OK, suppose that the maximum sore for the modi�ed Table 666 is m. We knowthat m < 19; hene (iii) isn't a valid grading. It follows that 20E is true, whih meansthat every valid graded list of sore m has x20 false. And we an onlude that m = 18,beause of the following two solutions (whih are the only possibilities with 20C false):1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20B A d A B E D C D A E D A E D E D B E A E D C A B C D C A C E D B a C D A A But wait: If m = 18, we an sore 18 with 20A true and two errors, using (say)1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20D e D A B E D e C A E D A E D B D C C Aor 47 other answer lists. This ontradits m = 18, beause x20 is true.End of story? No. This argument has impliitly been prediated on the assumptionthat 20D is false. What if m is indeterminate? Then a new solution arises1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20D C E A B E D C E A E B A E D B D A d Dof sore 19. With (iii) it yields m = 19! If m is determinate, we've shown that mannot atually be de�ned onsistently; but if m is indeterminate, it's de�nitely 19.Question 20 was designed to reate diÆulties. [:-)℄| DONALD R. WOODS (2001)95. The 29 words spark, often, luky, other, month, ought, names, water, games,offer, lying, opens, magi, brik, lamps, empty, organ, noise, after, raise, drink,draft, baks, among, under, math, earth, roots, topi yield this: \The suess orfailure of baktrak often depends on the skill and ingenuity of the programmer. : : :Baktrak programming (as many other types of programming) is somewhat of an art."| Solomon W. Golomb, Leonard D. Baumert.



November 12, 2016

48 ANSWERS TO EXERCISES 7.2.2 two-letterthree-letterBritish National CorpusonstraintsauthorOSPD4double-rostisKingsleySpiegelthalIBM 704utility �eldtagged� the null pointer
That solution an be found interatively, using inspired guesses based on a knowl-edge of English and its ommon two-letter and three-letter words. But ould a omputerthat knows ommon English words disover it without understanding their meanings?We an formulate that question as follows: Let w1, : : : , w29 be the unknown wordsfrom WORDS(1000), and let q1, : : : , q29 be the unknown words of the quotation. (Byoinidene there happen to be just 29 of eah.) We an restrit the q's to words thatappear, say, 32 times or more in the British National Corpus. That gives respetively(85, 562, 1863, 3199, 4650, 5631, 5417, 4724, 3657, 2448) hoies for words of (2, 3, : : : ,11) letters; in partiular, we allow 3199 possibilities for the �ve-letter words q7, q11, q21,q22, beause they aren't required to lie in WORDS(1000). Is there a unique ombinationof words wi and qj that meets the given anarosti onstraints?This is a hallenging problem, whih we shall disuss in later setions. The answerturns out (surprisingly?) to be no; in fat, here is the �rst solution found by the author'smahine(!): \The suess or failure of baktrak often depends on roe skill and ingenuityat the programmer. : : : Baktrak programming (as lay o�al types of programming)as somewhat al an art." (The OSPD4 inludes `al' as the name of the Indian mulberrytree; the BNC has `al' 3515 times, mostly in unsuitable ontexts, but that orpus is ablunt instrument.) Altogether 720 solutions satisfy the stated onstraints; they di�erfrom the \truth" only in words of at most �ve letters.Anarosti puzzles, whih are also known by other names suh as double-rostis,were invented in 1933 by E. S. Kingsley. See E. S. Spiegelthal, Proeedings of theEastern Joint Computer Conferene 18 (1960), 39{56, for an interesting early attemptto solve them|without baktraking|on an IBM 704 omputer.96. Instead of onsidering 1000 possibilities for 131132133134135, it suÆes to onsiderthe 43 pairs xy suh that xyab is in WORDS(1000) and ab is a ommon three-letterword. (Of these pairs ab, ag, : : : , ve, only ar leads to a solution. And indeed, the720 solutions fator into three sets of 240, orresponding to hoosing earth, harsh, orlarge as 131132133134135.) Similar redutions, but not so dramati, our with respetto 137139, 118119, 46 48 , and 32 35 .100. The following algorithm uses an integer utility �eld TAG(u) in the representationof eah vertex u, representing the number of times u has been \tagged." The operations\tag u" and \untag u" stand respetively for TAG(u)  TAG(u) + 1 and TAG(u)  TAG(u)�1. Verties shown as ` ' in the 21 examples have a nonzero TAG �eld, indiatingthat the algorithm has deided not to inlude them in this partiular H.State variables vl (a vertex), il (an index), and al (an ar) are used at level l for0 � l < n. We assume that n > 1.R1. [Initialize.℄ Set TAG(u) 0 for all verties u. Then set v0  v, i i0  0,a a0  ARCS(v), TAG(v) 1, l 1, and go to R4.R2. [Enter level l.℄ (At this point i = il�1, v = vi, and a = al�1 is an ar from vto vl�1.) If l = n, visit the solution v0v1 : : : vn�1 and set l n � 1.R3. [Advane a.℄ Set a NEXT(a), the next neighbor of v.R4. [Done with level?℄ If a 6= �, go to R5. Otherwise if i = l � 1, go to R6.Otherwise set i i+ 1, v  vi, a ARCS(v).R5. [Try a.℄ Set u TIP(a) and tag u. If TAG(u) > 1, return to R3. Otherwiseset il  i, al  a, vl  u, l l+ 1, and go to R2.
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7.2.2 ANSWERS TO EXERCISES 49 baktraking, variant struturen-omino plaementR6. [Baktrak.℄ Set l l� 1, and stop if l = 0. Otherwise set i il. Untag allneighbors of vk, for l � k > i. Then set a  NEXT(al); while a 6= �, untagTIP(a) and set a NEXT(a). Finally set a al and return to R3.This instrutive algorithm di�ers subtly from the onventional struture of Algorithm B.Notie in partiular that TIP(al) is not untagged in step R6; that vertex won't beuntagged and hosen again until some previous deision has been reonsidered.101. Let G have N verties. For 1 � k � N , perform Algorithm R on the kth vertex vof G, exept that step R1 should tag the �rst k� 1 verties so that they are exluded.(A triky shortut an be used: If we untag all neighbors of v = v0 after Algorithm Rstops, the net e�et will be to tag only v.)The n-omino plaement ounts 1, 4, 22, 113, 571, 2816, 13616, 64678, 302574 areomputed almost instantly, for small n. (Larger n are disussed in Setion 7.2.3.)102. (a) All but the 13th and 18th, whih require an upward or leftward step.(b) True. If u 2 H and u 6= v, let pu be any node of H that's one step loser to v.() Again true: The oriented spanning trees are also ordinary spanning trees.(d) The same algorithm works, exept that step R4 must return to itself aftersetting a ARCS(v). (We an no longer be sure that ARCS(v) 6= �.)999. : : :
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GOLDSMITHINDEX AND GLOSSARYHe writes indexes to perfetion.| OLIVER GOLDSMITH, Citizen of the World (1762)When an index entry refers to a page ontaining a relevant exerise, see also the answer tothat exerise for further information. An answer page is not indexed here unless it refers to atopi not inluded in the statement of the exerise.2-letter blok odes, 28.2-letter words of English, 8, 48.2-regular graphs, 25, 31.3-letter words of English, 8, 48.4-letter odewords, 9{18, 28{30.4-letter words of English, 8, 48.5-letter words of English, 8{9, 28, 31, 33.6-letter and k-letter words of English,8{9, 48. (Euler's onstant), as soure of\random" data, 19.� (the null link), 43, 48.� (irle ratio), as soure of \random"data, 19{20, 22, 29.� (golden ratio), as soure of \random"data, 19.A posteriori probability, 42.Ative elements of a list, 12.Ahrens, Joahim Heinrih L�udeke,6, 27, 36.Alekhnovih, Mihael (Misha) Valentinovih(Alehnoviq, Mihael (Mixa)Valentinoviq), 26.Alphabet, 31.Anarosti puzzle, 33.Analysis of algorithms, 29, 30.Aperiodi words, 10, 28, 39.ARCS(v) (�rst ar of vertex v), 33, 48.Armbruster, Franz Owen, 24.Bakjumping, 26.Bakmarking, 26.Baktrak programming, 2{1.eÆieny of, 35.history of, 2, 5{6, 25{26.introdution to, 2{32.variant struture, 48{49.Baktrak trees, 3, 4, 7, 9{11, 18{20,24, 26, 41, 42, 44{46.estimating the size of, 20, 41.Baumert, Leonard Daniel, 26, 47, 51.Bees, queen, 27.Bernoulli, Jaques (= Jakob = James), 25.Bezzel, Max Friedrih Wilhelm, 25.Biased random walks, 30{31, 43.Binary partitions, 31.Binomial trees, 21.Bitner, James Rihard, 6, 26.

Bitwise operations, 5, 27, 37.Blok odes, 9, 28.Borodin, Allan Bertram, 26.Botermans, Jaobus (= Jak) PetrusHermana, 45.Boundary markers, 29.Breadth-�rst searh, 36.Breaking symmetry, 8, 14.British National Corpus, 8, 48.Broken diagonals, seeWraparound.Bumping the urrent stamp, 16, 29.Bunh, Steve Raymond, 6.Buresh-Oppenheim, Joshua, 26.Cahe-friendly data strutures, 11.Canonial labeling, 33.Carroll, Lewis (= Dodgson, CharlesLutwidge), iii.Carteblanhe, Filet de (pseudonym, mostlikely of C. A. B. Smith), 24.Cavenagh, Niholas John, 36.Cayley, Arthur, 31.Cells of memory, 11.Chatterjee, Sourav (esor& *;$;jRI), 22.Chessboard, 2{6, 22{26, 27, 31.Chiral symmetry, 27.Closed lists, 14.Clueless anarosti, 33.CNF: Conjuntive normal form, 41.Codewords, ommafree, 9{18, 28{30.Coin ipping, 30.Combinations, 27.Commafree odes, 9{18, 26, 28{30.Compilers, 15.Complexity of alulation, 41.Compressed tries, 38.Computational omplexity, 41.Conatenation, 9.Conneted subsets, 33.Constraints, 48.Cook, Matthew Makonnen, 44.Corner-to-orner paths, 22{23, 30{31.Cost funtion, 19, 42.Crik, Franis Harry Compton, 9.Cubes, 24{25, 31.Cumulative binomial distribution, 42.Cuto� priniple, 7.Cuto� properties, 2, 5, 10, 18, 27.Cyli shifts, 10, 28.50
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INDEX AND GLOSSARY 51Daning links, 7.Data strutures, 4{6, 9, 11{14, 18, 29.de Carteblanhe, Filet (pseudonym, mostlikely of C. A. B. Smith), 24.de Jaenish, Carl Friedrih Andreevith(�nix�, Karl� Andreeviq�), 35.Degree of a node, 19.Deletion operation, 7, 12{13, 40.Depth-�rst searh, 25.Diaonis, Persi Warren, 22.Diagonal lines (slope �1), 3, 36, seealso Wraparound.Digraphs, 28, 34.DIMACS: DIMACS Series in DisreteMathematis and Theoretial ComputerSiene, inaugurated in 1990.Dips, 29.Direted graphs versus undiretedgraphs, 34.Disarded data, 22.Disrete probabilities, 1.Disjoint sets, 25, 44.Distributed omputations, 6.Divergene, Kullbak{Leibler, 43.Divide and onquer paradigm, 24.Dodgson, Charles Lutwidge, iii.Domains, 2, 27, 28.Double-rostis, 48.Downdating versus updating, 4{5, 11, 15.Dual oriented spanning tree, 34.Dual solutions, 6, 8, 28.Dynami ordering, 10{11, 24, 26, 30, 46.Dynami shortest distanes, 30.e, as soure of \random" data, 19.Eastman, Willard Lawrene, 28, 29, 39.Eight queens problem, 3{4, 19{20, 25{26.Empty lists, 12, 17.Engelhardt, Matthias R�udiger, 6, 35.English words, 8{9, 28, 33.Ernst, George Werner, 45.Error bars, 22.Estimates of run time, 18{21.Estimating the number of solutions, 21{23.Fatorization of problems, 24{25, 31, 33.Fallbak points, 16.Finkel, Raphael Ari, 26.Five-letter words, 8{9, 28.Fixed point of reursive formula, 47.Floyd, Robert W, 15.Fool's Disk, 31.Four-letter odewords, 9{18, 28{30.FPGA devies: Field-programmablegate arrays, 6.Frames, 11.Franel, J�erome, 36.

Gardner, Erle Stanley, 2.Gashnig, John Gary, 26.Gattegno, Bernard, 38.Gau� (= Gauss), Johann Friderih Carl(= Carl Friedrih), 25, 35.Generating funtions, 29, 42, 43.Gigamem (G�): One billion memoryaesses, 5.Global variables, 27.Goldsmith, Oliver, 50.Goldstein, Mihael Milan, 45.Golomb, Solomon Wolf, 9, 26, 47, 51.Gordon, Basil, 9, 51.Graders, 46.Grid graphs, 27, 33.oriented, 34.Gridgeman, Norman Theodore, 44.GriÆth, John Stanley, 9.Hales, Alfred Washington, 51.Hall, Marshall, Jr., 26.Hamilton, William Rowan, paths, 23.Hammersley, John Mihael, 26.Handsomb, David Christopher, 26.Height of binary trees, 31.Hexagons, 27.Historial notes, 2, 5{6, 25{26.Ho�mann, Louis (pen name of AngeloJohn Lewis), 24.Homomorphi images, 24.Honeyombs, 27.Hurwitz, Adolf, 36.IBM 704 omputer, 48.IBM 1620 omputer, 6.IBM System 360-75 omputer, 6.Impagliazzo, Russell Graham, 26.Importane sampling, 26.Independent subproblems, 24.Indeterminate statements, 47.Inner loops, 35.Insertion operation, 12.Instant Insanity, 24{25, 31.Integer partitions, 27, 31.Internet, ii, iii.Invariant relations, 45.Inverse lists, 12{15, 17.Inverse permutations, 12{13.Iteration versus reursion, 27, 35.Jaenish, Carl Friedrih Andreevith de(�nix�, Karl� Andreeviq�), 35.Jewett, Robert Israel, 51.Jiggs, B. H. (pen name of Baumert, Hales,Jewett, Imaginary, Golomb, Gordon,and Selfridge), 17.Kennedy, Mihael David, 6.Kilomem (K�): One thousand memoryaesses, 44.King, Benjamin Franklin, Jr., 2.
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52 INDEX AND GLOSSARYKing paths, 22{23, 26, 30{31.Kingsley, Hannah Elizabeth Seelman, 48.Kleber, Mihael Steven, 44.Knight moves, 23.Knuth, Donald Ervin ( ), i, iv, 18,26, 27, 38, 41, 46, 48.Kullbak, Solomon, 43.Langford, Charles Dudley, pairs, 6{8, 27{28.Latin squares, 24.Laxdal, Albert Lee, 17.Le Nombre Treize, see Royal AquariumThirteen Puzzle.Lehmer, Derrik Henry, 26.Leibler, Rihard Arthur, 43.Lennon, John Winston Ono, 2.Lewis, Angelo John, 51.Lexiographi order, 2, 7, 25, 29, 33.Lifting, 24{25.Linked lists, 6{7, 40.Load balaning, 26.Lookahead, 10, 16, 26, 30.Loose Langford pairs, 28.Luas, Fran�ois �Edouard Anatole, 25, 36.Magen, Avner (OBN XEA�), 26.Mahler, Kurt, 44.Manber, Udi (XAPN ICER) [not ICE�!℄, 26.Martingales, 30.Masks, 35.Mason, Perry, 2.Megamem (M�): One million memoryaesses, 18.MEM, an array of \ells," 11{18, 29.Memory onstraints, histori, 40.Mem (�): One 64-bit memory aess, 4.Minimum remaining values heuristi, 26.MMIX omputer, ii.Monte Carlo estimates, 18{23, 26, 30.Moves, 11.MPR: Mathematial PreliminariesRedux, v, 1.Mystery text, 33.n-letter words of English, 8.n-omino plaement, 49.n queens problem, 3{6, 18{20, 25{27.n-tuples, 27.Nauk, Franz, 25.Nested parentheses, 27.NEXT(a) (the next ar with the same initialvertex as a), 33, 48.Niho, Yoji Go� ( ), 41.Nonisomorphi solutions, 30.Onnen, Hendrik, Sr., 6.Optimization, 26.Orgel, Leslie Eleazer, 9.Oriented grids, 34.

Oriented trees, 34.Orthogonal lists, 28.OSPD4: OÆial SCRABBLE R PlayersDitionary, 8, 48.Overow of memory, 12, 16.P0(), 2.Paradox, 32.Parallel programming, 46.Parent in a tree, 34.Parentheses, 27.Parity argument, 37, 45.Parker, Ernest Tilden, 24.Partitions, 27, 31.Patents, 24.Paths, simple, 22, 26, 30.Pauls, Emil, 36.Penil-and-paper method, 18{20.Pentominoes, 33.Periodi sequenes, 28.Periodi words, 10, 13.Permutations, 6, 27.Phi (�), as soure of \random" data, 19.Pi (�), as soure of \random" data,19{20, 22, 29.Pitassi, Toniann, 26.Poison list, 16{17, 29{30, 42.P�olya, Gy�orgy (= George), 36.Polyominoes, 33.Preu�er, Thomas Bernd, 6, 35.Prime strings, 10.Priority branhing trees, 26.Probabilities, 1.Pro�le of a tree, 3, 9, 28, 31, 42.Propagation algorithm, 46.Properties: Logial propositions(relations), 2, 27.q.s., 30.Quanti�ed Boolean formulas, 47.Queen bees, 27.Queens, see n queens problem.Questionnaires, 31.Queues, 40, 43.Quik, Jonathan Horatio, 27.Radix m representation, 13.Random bits, 30.Random sampling, 18.Random variables, 19.Random walks, 18{23, 30{31.Reahable subsets, 34.Reurrene relations, 42, 44.in a Boolean equation, 47.Reursion versus iteration, 27, 35.Reursive algorithms, 27, 42.Reetion symmetry, 14, 27, 35, seealso Dual solutions.Registers, 5, 37{38.
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INDEX AND GLOSSARY 53Reingold, Edward Martin (CLEBPIIX,MIIG OA DYN WGVI), 26.Rejetion method, 19, 41.Restrited growth strings, 35.Reversible memory tehnique, 16, 30.Rivin, Igor (Rivin, Igor~ Evgen~eviq), 36.Root node, 19.Rosenbluth, Arianna Wright, 26.Rosenbluth, Marshall Niholas, 26.Rotating Century Puzzle, see Fool's Disk.Rotation by 90Æ, 27.Royal Aquarium Thirteen Puzzle, 31.Running time estimates, 18{21.Safe Combination Puzzle, see Fool's Disk.Sample variane, 22.SAT solvers, 41.Saturating ternary addition, 38.Sholtz, Robert Arno, 39.Shossow, Frederik Alvin, 24.Shumaher, Heinrih Christian, 25, 35.Searh rearrangement, see Dynamiordering.Searh trees, 3, 4, 7, 9{11, 18{20, 24,26, 36, 41, 42, 44{46.estimating the size, 20, 41.Self-avoiding walks, 22, 26, 30.Self-referene, 32, 53.Self-synhronizing blok odes, 9.Selfridge, John Lewis, 51.Semi-queens, 36.Sequential alloation, 29.Sequential lists, 11{15.Set partitions, 27.SGB, see Stanford GraphBase.Shortest distanes, dynami, 30.Signature of a trie node, 37.Simple paths, 22, 26, 30.Slak, 18, 42.Sloum, Gerald Kenneth (= Jerry), 45.Smith, Cedri Austen Bardell, 51.Spanning trees, 33{34.Speedy Shizophrenia, 31.Spiegelthal, Edwin Simeon, 48.Sprague, Thomas Bond, 5, 6, 27.Staks, 16, 40.Stamping, iv, 16{19, 29.Standard deviation, 20, 22, 30.Stanford GraphBase, ii, 8.format for digraphs and graphs, 33, 48.Statistis, 22.Stirling, James, yle numbers, 30.Students, 46.Substrings, 29.Subtrees, 20, 26.Superdips, 39.SWAC omputer, 6.Symmetries, 30, 35.breaking, 8, 14.

Tagged verties, 48{49.Tail inequality, 42.Tantalizer, see Instant Insanity.Teramem (T�): One trillion memoryaesses, 9.TIP(a) (�nal vertex of ar a), 33, 48.Torus, 27.Tot tibi : : : , 25.Traub, Joseph Frederik, 41.Tr�emaux, Charles Pierre, 25.Tries, 8{9, 28, 37.ompressed, 38.Tuples, 27.Twenty Questions, 32.Two-letter blok odes, 28.UCLA: The University of Californiaat Los Angeles, 6.Undireted graphs versus diretedgraphs, 34.UNDO stak, 16.Undoing, 4{5, 7, 15{16, 29.Uniformly random numbers, 41.Unique solutions, 44{45.Unit lauses, 41.University of California, 6.University of Dresden, 6.University of Illinois, 6.University of Tennessee, 6.Unordered sequential lists, 11.Unordered sets, 40.Upperase letters, 31.Utility �elds in SGB format, 47.v-reahable subsets, 34.Valid gradings, 46.Vardi, Ilan, 36.Variane of a random variable, 22, 30.Venn, John, diagram, 43.Visiting an objet, 2, 4, 5, 7, 18.Walker, Robert John, 2, 5, 6, 26.Wanless, Ian Murray, 36.Washington Monument Puzzle, seeFool's Disk.Welh, Lloyd Rihard, 9.Wells, Mark Brimhall, 26.White squares, 27.Woods, Donald Roy, 32, 47.Word retangles, 8{9, 28.WORDS(n), the n most ommon �ve-letterwords of English, 8, 33.Worst-ase bounds, 29.Wraparound, 27.Yao, Andrew Chi-Chih ( ), 41.ZDD: A zero-suppressed deisiondiagram, 23, 30.Zimmermann, Paul Vinent Marie, 36.
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SHORTInternetPREFACEWith this issue we have terminated the setion \Short Notes.". . . It has never been \rystal lear" why a Contribution annot be short,just as it has oasionally been veri�ed in these pagesthat a Short Note might be long.| ROBERT A. SHORT, IEEE Transations on Computers (1973)This booklet ontains draft material that I'm irulating to experts in the�eld, in hopes that they an help remove its most egregious errors before toomany other people see it. I am also, however, posting it on the Internet forourageous and/or random readers who don't mind the risk of reading a fewpages that have not yet reahed a very mature state. Beware: This materialhas not yet been proofread as thoroughly as the manusripts of Volumes 1, 2, 3,and 4A were at the time of their �rst printings. And alas, those arefully-hekedvolumes were subsequently found to ontain thousands of mistakes.Given this aveat, I hope that my errors this time will not be so numerousand/or obtrusive that you will be disouraged from reading the material arefully.I did try to make the text both interesting and authoritative, as far as it goes.But the �eld is vast; I annot hope to have surrounded it enough to orral itompletely. So I beg you to let me know about any de�ienies that you disover.To put the material in ontext, this portion of fasile 5 previews Setion7.2.2.1 of The Art of Computer Programming, entitled \Daning links." Itdevelops an important data struture tehnique that is suitable for baktrakprogramming, whih is the main fous of Setion 7.2.2. Several subsetions(7.2.2.2, 7.2.2.3, et.) will follow.� � �The explosion of researh in ombinatorial algorithms sine the 1970s hasmeant that I annot hope to be aware of all the important ideas in this �eld.I've tried my best to get the story right, yet I fear that in many respets I'mwoefully ignorant. So I beg expert readers to steer me in appropriate diretions.Please look, for example, at the exerises that I've lassed as researhproblems (rated with diÆulty level 46 or higher), namely exerises 182, 263,: : : ; I've also impliitly mentioned or posed additional unsolved questions in theanswers to exerises 82, 86, 210, 250, 256, 261, : : : . Are those problems stillopen? Please inform me if you know of a solution to any of these intriguingiii
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iv PREFACE JellisHuangSihermanFGbookKnuthquestions. And of ourse if no solution is known today but you do make progresson any of them in the future, I hope you'll let me know.I urgently need your help also with respet to some exerises that I madeup as I was preparing this material. I ertainly don't like to reeive redit forthings that have already been published by others, and most of these results arequite natural \fruits" that were just waiting to be \pluked." Therefore pleasetell me if you know who deserves to be redited, with respet to the ideas foundin exerises 5, 6, 10, 15, 20, 21, 31, 40, 58, 60, 61, 75, 85, 158, 163, 177, 198(d),206, 207, 208, 210, 218, 222, 240, 241, 242, 243, 244, 247, 248, 249, 252, 253, 255,258, 261, 262, : : : . Furthermore I've redited exerises : : : to unpublished workof : : : . Have any of those results ever appeared in print, to your knowledge?� � �Speial thanks are due to George Jellis for answering dozens of historial queries,as well as to Wei-Hwa Huang, George Siherman, and : : : for their detailedomments on my early attempts at exposition. And I want to thank numerousother orrespondents who have ontributed ruial orretions.� � �I happily o�er a \�nder's fee" of $2.56 for eah error in this draft when it is �rstreported to me, whether that error be typographial, tehnial, or historial.The same reward holds for items that I forgot to put in the index. And valuablesuggestions for improvements to the text are worth 32/ eah. (Furthermore, ifyou �nd a better solution to an exerise, I'll atually do my best to give youimmortal glory, by publishing your name in the eventual book:�)In the prefae to Volume 4B I plan to introdue the abbreviation FGbookfor my book Seleted Papers on Fun and Games (Stanford: CSLI Publiations,2011), beause I will be making frequent referene to it in onnetion withrereational problems.Cross referenes to yet-unwritten material sometimes appear as `00'; thisimpossible value is a plaeholder for the atual numbers to be supplied later.Happy reading!Stanford, California D. E. K.99 Umbruary 2016
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MPREnglish wordsInternetPart of the Prefae to Volume 4BDuring the years that I've been preparing Volume 4, I've often run arossbasi tehniques of probability theory that I would have put into Setion 1.2of Volume 1 if I'd been lairvoyant enough to antiipate them in the 1960s.Finally I realized that I ought to ollet most of them together in one plae,near the beginning of Volume 4B, beause the story of these developments is toointeresting to be broken up into little piees sattered here and there.Therefore this volume begins with a speial setion entitled \MathematialPreliminaries Redux," and future setions use the abbreviation `MPR' to referto its equations and its exerises. � � �Several exerises involve the lists of English words that I've used in preparingexamples. You'll need the data fromhttp://www-s-faulty.stanford.edu/~knuth/wordlists.tgzif you have the ourage to work those exerises.

v
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7.2.2.1 DANCING LINKS 1 BARRISFIELDSundoingexat overing{0s and 1sWhat a danedo they doLordy, how I'm tellin' you!| HARRY BARRIS, Mississippi Mud (1927).Don't lose your on�dene if you slip,Be grateful for a pleasant trip,And pik yourself up, dust yourself o�, start all over again.| DOROTHY FIELDS, Pik Yourself Up (1936)7.2.2.1. Daning links. One of the hief harateristis of baktrak algo-rithms is the fat that they usually need to undo everything that they do totheir data strutures. Blah blah de blah blah blah.� � �Exat over problems. We will be seeing many examples where links danehappily and eÆiently, as we study more and more examples of baktraking.The beauty of the idea an perhaps be seen most naturally in an importantlass of problems known as exat overing : We're given an m � n matrix A of0s and 1s, and the problem is to �nd a subset of rows whose sum is exatly 1 inevery olumn. For example, onsider the 6� 7 matrixA = 0BBBBB� 0 0 1 0 1 1 01 0 0 1 0 0 10 1 1 0 0 1 01 0 0 1 0 0 00 1 0 0 0 0 10 0 0 1 1 0 1
1CCCCCA : (20)Eah row of A orresponds to a subset of a 7-element universe. A moment'sthought shows that there's only one way to over all seven of these olumns withdisjoint rows, namely by hoosing rows 1, 4, and 5. We want to teah a omputerhow to solve suh problems, when there are many, many rows and many olumns.
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2 COMBINATORIAL SEARCHING (F5C: 15Apr 2017� 0919) 7.2.2.1 DUDENEYCLARKEGOLOMBGolombConwayIf mounted on ardboard, [these piees℄will form a soure of perpetual amusement in the home.| HENRY E. DUDENEY, The Canterbury Puzzles (1907)Very gently, he replaed the titanite rossin its setting between the F, N, U, and V pentominoes.| ARTHUR C. CLARKE, Imperial Earth (1976)Whih English nouns ending in -o pluralize with -s and whih with -es?If the word is still felt as somewhat alien, it takes -s,while if it has been fully naturalized into English, it takes -es.Thus, ehoes, potatoes, tomatoes, dingoes, embargoes, et.,whereas Italian musial terms are altos, bassos, antos, pianos, solos, et.,and there are Spanish words like tangos, armadillos, et.I one held a trademark on `Pentomino(-es)', but I now preferto let these words be my ontribution to the language as publi domain.| SOLOMON W. GOLOMB, letter to Donald Knuth (16 February 1994)Everybody agrees that seven of the pentominoes should be named afterseven onseutive letters of the alphabet:
T U V W X Y ZBut two di�erent systems of nomenlature have been proposed for the other �ve:

F I L P N or O P Q R S(S. W. Golomb) (J. H. Conway)where Golomb likes to think of the word `Filipino' while Conway prefers to mapthe twelve pentominoes onto the twelve onseutive letters. Conway's shemetends to work better in omputer programs.
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7.2.2.1 DANCING LINKS 3 HEINuboidsparallelepipedsHeinSomaGardnerParker Brotherspentominoesanonialfatoring
A minimum number of bloks of simple form are employed. . . .Experiments and alulations have shown that from the set of seven bloksit is possible to onstrut approximately the same number of geometrial�gures as ould be onstruted from twenty-seven separate ubes.| PIET HEIN, United Kingdom Patent Spei�ation 420,349 (1934)� � �The simplest polyubes are uboids|also alled retangular parallelepipedsby people who like long names. But things get even more interesting when weonsider nonuboidal shapes. Piet Hein notied in 1933 that the seven smallestshapes of that kind, namely1: bent 2: ell 3: tee 4: skew 5: L-twist 6: R-twist 7: law , (30)an be put together to form a 3�3�3 ube, and he liked the piees so muh thathe alled them Soma. Notie that the �rst four piees are essentially planar, whilethe other three are inherently three-dimensional. Moreover, the two twists aremirror images: We an't hange one into the other without entering the fourthdimension. Martin Gardner wrote about the joys of Soma in Sienti� Amerian199, 3 (September 1958), 182{188, and it soon beame wildly popular: Morethan two million SOMA R ubes were sold in Ameria alone, after Parker Brothersbegan to market a well-made set with an instrution booklet written by Hein.The task of paking these seven piees into a ube is easy to formulate as anexat over problem, just as we did when paking pentominoes. This time wehave 24 3D-rotations of the piees to onsider, instead of 8 2D-rotations and/or3D-reetions; so exerise 200 is used instead of exerise 140 to generate the rowsof the problem. It turns out that there are 688 rows, involving 34 olumns thatwe an all 1, 2, : : : , 7, 111, 112, : : : , 333. For example, the �rst row1 111 121 211haraterizes one of the potential ways to plae the \bent" piee 1.Algorithm D needs just 407 megamems to �nd all 11,520 solutions to thisproblem. Furthermore, we an save most of that time by taking advantage ofsymmetry: Every solution an be rotated into a unique \anonial" solutionin whih the \ell" piee 2 has not been rotated; hene we an restrit thatpiee to only six plaements, namely (111; 121; 131; 211), (112; 122; 132; 212), : : : ,(213; 223; 233; 313)|all shifts of eah other. This removes 138 rows, and thealgorithm now �nds the 480 anonial solutions in just 20 megamems. (Theseanonial solutions form 240 mirror-image pairs.)Fatoring an exat over problem. In fat, we an simplify the Soma ubeproblem muh further, so that all of its solutions an atually be found by handin a reasonable time, by fatoring the problem in a lever way. : : :
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4 COMBINATORIAL SEARCHING (F5C: 15Apr 2017� 0919) 7.2.2.1 olor-ontrolled{word searholor odesColor-ontrolled overing. Take a break! Before reading any further, pleasespend a minute or two solving the \word searh" puzzle in Fig. 71; omparativelymindless puzzles like this one provide a low-stress way to sharpen your word-reognition skills. It an be solved easily| for instane, by making eight passesover the array|and the solution appears in Fig. 72.Fig. 71. Find the mathematiians*:Put ovals around the following nameswhere they appear in the 15 � 15 ar-ray shown here, reading either for-ward or bakward or upward or down-ward, or diagonally in any diretion.After you've �nished, the leftover let-ters will form a hidden message. (Thesolution appears on the next page.)ABEL HENSEL MELLINBERTRAND HERMITE MINKOWSKIBOREL HILBERT NETTOCANTOR HURWITZ PERRONCATALAN JENSEN RUNGEFROBENIUS KIRCHHOFF STERNGLAISHER KNOPP STIELTJESGRAM LANDAU SYLVESTERHADAMARD MARKOFF WEIERSTRASS

O T H E S C A T A L A N D A UT S E A P U S T H O R S R O FT L S E E A Y R R L Y H A P AE P E A R E L R G O U E M S IN N A R R C V L T R T A A M AI T H U O T E K W I A N D E ML A N T N B S I M I C M A A WL G D N A R T R E B L I H C EE R E C I Z E C E P T N E D YM E A R S H R H L I P K A T HE J E N S E N H R I E O N E TH S U I N E B O R F E W N A RT M A R K O F F O F C S O K MP L U T E R P F R O E K G R AG M M I N S E J T L E I T S GOur goal in this setion is not to disuss how to solve suh puzzles; instead, weshall onsider how to reate them. It's by no means easy to pak those 27 namesinto the box in suh a way that their 184 haraters oupy only 135 ells, witheight diretions well mixed. How an that be done with reasonable eÆieny?For this purpose we shall extend the idea of exat overing by introduing\olor odes." : : :
* The journal Ata Mathematia elebrated its 21st birthday by publishing a speial TableG�en�erale des Tomes 1{35, edited by Marel Riesz (Uppsala: 1913), 179 pp. It ontained aomplete list of all papers published so far in that journal, together with portraits and briefbiographies of all the authors. The 27 mathematiians mentioned in Fig. 71 are those whowere subsequently mentioned in Volumes 1, 2, or 3 of The Art of Computer Programming|exept for people like MITTAG-LEFFLER or POINCAR�E, whose names ontain speial haraters.



April 15, 2017

7.2.2.1 DANCING LINKS 5Fig. 72. Solution to the puzzle of thehidden mathematiians (Fig. 71). No-tie that the entral letter R atuallypartiipates in six di�erent names:BERTRANDGLAISHERHERMITEHILBERTKIRCHHOFFWEIERSTRASSThe T to its left partiipates in �ve.Here's what the leftover letters say:These authors of early papers inAtaMathematia were ited years laterin The Art of Computer Program-ming.

O T H E S C A T A L A N D A UT S E A P U S T H O R S R O FT L S E E A Y R R L Y H A P AE P E A R E L R G O U E M S IN N A R R C V L T R T A A M AI T H U O T E K W I A N D E ML A N T N B S I M I C M A A WL G D N A R T R E B L I H C EE R E C I Z E C E P T N E D YM E A R S H R H L I P K A T HE J E N S E N H R I E O N E TH S U I N E B O R F E W N A RT M A R K O F F O F C S O K MP L U T E R P F R O E K G R AG M M I N S E J T L E I T S G
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6 COMBINATORIAL SEARCHING (F5C: 15Apr 2017� 0919) 7.2.2.1 baktrak treedistaneHamming distanediversityuniformquasi-uniformNP-hardunique solutioninstant insanitygropebinary operationmultipliation tables
EXERCISES|First Setx 5. [26 ℄ Let T be any tree. Construt an unsolvable exat over problem for whih Tis the baktrak tree traversed by Algorithm D; a unique olumn should have the mini-mum size whenever step D? is enountered. Illustrate your onstrution when T = .6. [25 ℄ Continuing exerise 5, let T be a tree in whih ertain leaves have beendistinguished from the others and designated as \solutions."a) Show that some suh trees never math the behavior of Algorithm D.b) Charaterize all suh trees that do arise, having solutions where indiated.x 10. [21 ℄ Modify Algorithm D so that it doesn't require the presene of any primaryolumns in the rows. A valid solution should not ontain any purely seondary rows;but it must interset every suh row. (For example, if only olumns 1 and 2 of (20)were primary, the only valid solutions would be to hoose rows f2; 3g or f3; 4g.)15. [M21 ℄ The solution to an exat over problem with matrix A an be regarded asa binary vetor x suh that xA = 11 : : : 1. The distane between two solutions x andx0 an then be de�ned as the Hamming distane d(x; x0) = �(x� x0), the number ofplaes where x and x0 di�er. The diversity of A is the minimum distane between twoof its solutions. (If A has at most one solution, its diversity is in�nite.)a) Is it possible to have diversity 1?b) Is it possible to have diversity 2?) Is it possible to have diversity 3?d) Prove that if A represents a uniform exat over problem, the distane betweensolutions is always even.e) Most of the exat over problems that arise in appliations are at least quasi-uniform, in the sense that they have a nonempty subset C of primary olumnssuh that A j C has the same number of 1s in every row. (For example, everypolyomino or polyube paking problem is quasi-uniform, beause every row of thematrix spei�es exatly one piee name.) Can suh problems have odd distanes?19. [M16 ℄ Given an exat over problem A, onstrut an exat over problem A0 thathas exatly one more solution than A does. [Consequently it is NP-hard to determinewhether an exat over problem with at least one solution has more than one solution.℄Assume that A ontains no all-zero rows.20. [M25 ℄ Given an exat over problem A, onstrut an exat over problem A0 suhthat (i) A0 has at most three 1s in every olumn; (ii) A0 and A have exatly the samenumber of solutions.21. [M21 ℄ Continuing exerise 20, onstrut A0 having exatly three 1s per olumn.x 24. [30 ℄ Given an m � n exat over problem A with exatly three 1s per olumn,onstrut a generalized \instant insanity" problem with N = O(n) ubes and N olorsthat is solvable if and only if A is solvable. (See 7.2.2{(36).)x 26. [M24 ℄ A grope is a set G together with a binary operation Æ, in whih the identityx Æ (y Æ x) = y is satis�ed for all x 2 G and y 2 G.a) Prove that the identity (x Æ y) Æ x = y also holds, in every grope.b) Whih of the following \multipliation tables" de�ne a grope on f0; 1; 2; 3g?0123103223013210 ; 0321321021031032 ; 0132102332102301 ; 0231310213202013 ; 0312213030211203 :
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7.2.2.1 DANCING LINKS 7 idempotentommutativeidentity elementDominosasolitairegamePijanowski solitaire, see Dominosadominoes3D MATCHINGpermutations of the multisetqueen grapholored
(In the �rst example, x Æ y = x� y; in the seond, x Æ y = (�x� y) mod 4. Thelast two have x Æ y = x� f(x� y) for ertain funtions f .)) For all n, onstrut a grope whose elements are f0; 1; : : : ; n � 1g.d) Consider the exat over problem that has n2 olumns (x; y) for 0 � x; y < n andthe following n + (n3 � n)=3 rows:i) f(x; x)g, for 0 � x < n;ii) f(x; x); (x; y); (y; x)g, for 0 � x < y < n;iii) f(x; y); (y; z); (z; x)g, for 0 � x < y; z < n.Show that its solutions are in one-to-one orrespondene with the multipliationtables of gropes on the elements f0; 1; : : : ; n � 1g.e) Element x of a grope is idempotent if x Æ x = x. If k elements are idempotent andn� k are not, prove that k � n2 (modulo 3).27. [21 ℄ Modify the exat over problem of exerise 26(d) in order to �nd the mul-tipliation tables of (a) all idempotent gropes|gropes suh that x Æ x = x for all x;(b) all ommutative gropes|gropes suh that x Æ y = y Æ x for all x and y; () allgropes with an identity element|gropes suh that x Æ 0 = 0 Æ x = x for all x.30. [21 ℄ Dominosa is a solitaire game in whih you \shu�e" the 28 piees <0>0,<0>1, : : : ,<6>6 of double-six dominoes and plae them at random into a 7� 8 frame.Then you write down the number of spots in eah ell, put the dominoes away, and tryto reonstrut their positions based only on that 7� 8 array of numbers. For example,0̂0̂5̂<2>1<4>1²̂v1v4v5<3>5<3>5v¶<1>1<5>6<0>04̂4̂4̂<4>5¶̂<2>2v²v³v00̂5̂v¶<1>3<3>6¶̂v¶v²<0>3²̂<5>1v1<5>0<4>4v0<3>2 yields the array 0BBBBBBB� 0 0 5 2 1 4 1 21 4 5 3 5 3 5 61 1 5 6 0 0 4 44 4 5 6 2 2 2 30 0 5 6 1 3 3 66 6 2 0 3 2 5 11 5 0 4 4 0 3 2

1CCCCCCCA :a) Show that another plaement of dominoes also yields the same matrix of numbers.b) What domino plaement yields the array0BBBBBBB� 3 3 6 5 1 5 1 56 5 6 1 2 3 2 42 4 3 3 3 6 2 04 1 6 1 4 4 6 03 0 3 0 1 1 4 42 6 2 5 0 5 0 02 5 0 5 4 2 1 6
1CCCCCCCA ?x 31. [20 ℄ Show that Dominosa reonstrution is a speial ase of 3D MATCHING.32. [M22 ℄ Generate random instanes of Dominosa, and estimate the probability ofobtaining a 7�8 matrix with a unique solution. Use two models of randomness: (i) Eahmatrix whose elements are permutations of the multiset f8�0; 8�1; : : : ; 8�6g is equallylikely; (ii) eah matrix obtained from a random shu�e of the dominoes is equally likely.39. [20 ℄ By setting up an exat over problem and solving it with Algorithm D, showthat the queen graph Q8 (exerise 7.1.4{241) annot be olored with eight olors.40. [21 ℄ In how many ways an Q8 be olored in a \balaned" fashion, using eightqueens of olor 0 and seven eah of olors 1 to 8?
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8 COMBINATORIAL SEARCHING (F5C: 15Apr 2017� 0919) 7.2.2.1 exat over problembitwise manipulationbreadth-�rst0s and 1sprimary olumnsbitwise ANDbitwise ORnonprimary olumnsn queens problemminimax solutiondouble word squareword square, double
x 50. [21 ℄ If we merely want to ount the number of solutions to an exat over problem,without atually onstruting them, a ompletely di�erent approah based on bitwisemanipulation instead of list proessing is sometimes useful.The following na��ve algorithm illustrates the idea: We're given an m � n matrixof 0s and 1s, represented as n-bit vetors r1, : : : , rm. The algorithm works with a(potentially huge) database of pairs (sj ; j), where sj is an n-bit number representinga set of olumns, and j is a positive integer representing the number of ways to overthat set exatly. Let p be the n-bit mask that represents the primary olumns.N1. [Initialize.℄ Set N  1, s1  0, 1  1, k 1.N2. [Done?℄ If k > m, terminate; the answer is PNj=1 j [sj & p= p℄.N3. [Append rk where possible.℄ Set t  rk. For N � j � 1, if sj & t = 0, insert(sj + t; j) into the database (see below).N4. [Loop on k.℄ Set k  k + 1 and return to N2.To insert (s; ) there are two ases: If s = si for some (si; i) already present, we simplyset i  i + . Otherwise we set N  N + 1, sN  s, N  .Show that this algorithm an be signi�antly improved by using the following trik:Set uk  rk & �fk, where fk = rk+1 j � � � j rm is the bitwise OR of all future rows. Ifuk 6= 0, we an remove any item from the database for whih sj does not ontain uk&p.We an also exploit the nonprimary olumns of uk to ompress the database further.51. [25 ℄ Implement the improved algorithm of the previous exerise, and ompare itsrunning time to that of Algorithm D when applied to the n queens problem.52. [M21 ℄ Explain how the method of exerise 50 ould be extended to give represen-tations of all solutions, instead of simply ounting them.x 58. [20 ℄ Algorithm D an be extended in the following urious way: Let p be theprimary olumn that is overed �rst, and suppose that there are k ways to over it.Suppose further that the jth option for p ends with a seondary olumn sj , wherefs1; : : : ; skg are distint. Modify the algorithm so that, whenever a solution ontainsthe jth option for p, it leaves olumns fs1; : : : ; sj�1g unovered. (In other words, themodi�ed algorithm will emulate the behavior of the unmodi�ed algorithm on a muhlarger instane, in whih the jth option for p ontains all of s1, s2, : : : , sj .)x 60. [25 ℄ A minimax solution to an exat over problem is one whose maximum rownumber is as small as possible. Explain how to modify Algorithm C so that it deter-mines all of the minimax solutions (omitting any that are known to be worse).61. [22 ℄ Sharpen the algorithm of exerise 60 so that it produes exatly one minimaxsolution|unless, of ourse, there are no solutions at all.64. [20 ℄ A double word square is an n � n array whose rows and olumns ontain 2ndi�erent words. Enode this problem as an exat over problem with olor ontrols.Can you save a fator of 2 by not generating the transpose of previous solutions? DoesAlgorithm C ompete with the algorithm of exerise 7.2.2{28 (whih was designedexpliitly to handle word-square problems)?65. [21 ℄ Instead of �nding all of the double word squares, we usually are more inter-ested in �nding the best one, in the sense of using only words that are quite ommon.For example, it turns out that a double word square an be made from the words ofWORDS(1720) but not from those of WORDS(1719). Show that it's rather easy to �nd thesmallest N suh that WORDS(N) supports a double word square, via daning links.
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7.2.2.1 DANCING LINKS 9 OSPD4word stairolor ontrolsNP-omplete2D mathingword searh puzzlepresidentsI'm not surehow many ofthese namesshould go inthe index
66. [24 ℄ What are the best double word squares of sizes 2 � 2, 3 � 3, : : : , 7 � 7, inthe sense of exerise 65, with respet to The OÆial SCRABBLE R Players Ditionary?[Exerise 7.2.2{32 onsidered the analogous problem for symmetri word squares.℄x 68. [22 ℄ A word stair of period p is a yli arrangement of words, o�set stepwise, thatontains 2p distint words aross and down. They exist in two varieties, left and right:� � �S T A I RS H A R PS T E M SS C R A PS T A I RS H A R PS T E M SS C R A PS T A I R� � � p = 4 � � �S T A I RS L O O PS T O O DS T E E RS T A I RS L O O PS T O O DS T E E RS T A I R� � �What are the best �ve-letter word stairs, in the sense of exerise 65, for 1 � p � 10?Hint: You an save a fator of 2p by assuming that the �rst word is the most ommon.69. [40 ℄ For given N , �nd the largest p suh that WORDS(N) supports a word stair ofperiod p. (There are two questions for eah N , examining stairs to the fleft; rightg.)70. [24 ℄ Some p-word yles de�ne two-way word stairs that have 3p distint words:� � �R A P I DR A T E DL A C E SR O B E SR A P I DR A T E DL A C E SR O B E SR A P I D� � � p = 4 � � �R A P I DR A T E DL A C E SR O B E SR A P I DR A T E DL A C E SR O B E SR A P I D� � �What are the best �ve-letter examples of this variety, for 1 � p � 10?71. [22 ℄ Another periodi arrangement of 3p words, per-haps even nier than that of exerise 70 and illustrated herefor p = 3, lets us read them diagonally up or down, aswell as aross. What are the best �ve-letter examples ofthis variety, for 1 � p � 10? (Notie that there is 2p-waysymmetry.) � � �S L A N TF L U N KB L I N KS L A N TF L U N KB L I N KS L A N TF L U N K� � � F L I N TF L I N T( )S L U N KS L U N K( )B L A N KB L A N K( )F L I N TF L I N T( )S L I N KS L I N K( )F L A N KF L A N K( )B L U N TB L U N T( )S L I N KS L I N K( )75. [25 ℄ Prove that the exat over problem with olor ontrols is NP-omplete, evenif every row of the matrix has only two entries.80. [22 ℄ Using the \word searh puzzle" onventions of Figs. 71 and 72, show that thewords ONE, TWO, THREE, FOUR, FIVE, SIX, SEVEN, EIGHT, NINE, TEN, ELEVEN, and TWELVEan all be paked into a 6� 6 square, leaving one ell untouhed.81. [22 ℄ Also pak two opies of ONE, TWO, THREE, FOUR, FIVE into a 5� 5 square.x 82. [32 ℄ The �rst 44 presidents of the U.S.A. had 38 distint surnames: ADAMS, ARTHUR,BUCHANAN, BUSH, CARTER, CLEVELAND, CLINTON, COOLIDGE, EISENHOWER, FILLMORE, FORD,GARFIELD, GRANT, HARDING, HARRISON, HAYES, HOOVER, JACKSON, JEFFERSON, JOHNSON,KENNEDY, LINCOLN, MADISON, MCKINLEY, MONROE, NIXON, OBAMA, PIERCE, POLK, REAGAN,ROOSEVELT, TAFT, TAYLOR, TRUMAN, TYLER, VANBUREN, WASHINGTON, WILSON.
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10 COMBINATORIAL SEARCHING (F5C: 15Apr 2017� 0919) 7.2.2.1 onnetedword searhsudokuwordrossrissross puzzle, omposing, see wordrossrookwise onnetedomponentsrossword puzzle diagrams5-letter wordspolyomino sudokusudokuweighted exat over problem
a) What's the smallest square into whih all of these names an be paked, usingword searh onventions, and requiring all words to be onneted via overlaps?b) What's the smallest retangle, under the same onditions?x 83. [25 ℄ Pak as many of the following words as possible into a 9 � 9 array, simul-taneously satisfying the rules of both word searh and sudoku:ACREART COMPARECOMPUTER CORPORATECROP MACROMETA MOTETPARAMETER ROAMTAMEx 85. [28 ℄ A \wordross puzzle" is the hallenge of paking a given set ofwords into a retangle under the following onditions: (i) All words mustread either aross or down, as in a rossword puzzle. (ii) No letters areadjaent unless they belong to one of the given words. (iii) The words arerookwise onneted. For example, the eleven words ZERO, ONE, : : : , TENan be plaed into an 8�8 square under onstraints (i) and (ii) as shown;but (iii) is violated, beause there are three di�erent omponents. T H R E E FW S I XO N E VS E V E NZ IE I G H T NR E EF O U R NExplain how to enode a wordross puzzle as an exat over problem with olorontrols. Use your enoding to �nd a orret solution to the problem above. Do thoseeleven words �t into a smaller retangle, under onditions (i), (ii), and (iii)?86. [30 ℄ What's the smallest wordross square that ontains the surnames of the �rst44 U.S. presidents? (Use the names in exerise 82, but hange VANBUREN to VAN BUREN.)87. [21 ℄ Find all 8� 8 rossword puzzle diagrams that ontain exatly (a) 12 3-letterwords, 12 4-letter words, and 4 5-letter words; (b) 12 5-letter words, 8 2-letter words,and 4 8-letter words. They should have no words of other lengths.90. [24 ℄ Find the unique solutions to the following examples of polyomino sudoku:D A N C I N G L I N K S C O M P U T E R

A L G O R I T H M S O L V I N G S U D O K U P U Z Z L E100. [M25 ℄ Consider a weighted exat over problem in whih we must hoose 2 of 4rows to over olumn 1, and 5 of 7 rows to over olumn 2; the rows don't interat.a) What's the size of the searh tree if we branh �rst on olumn 1, then on olumn 2?Would it better to branh �rst on olumn 2, then on olumn 1?b) Generalize part (a) to the ase when olumn 1 needs p of p + d rows, whileolumn 2 needs q of q + d rows, where q > p and d > 0.
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7.2.2.1 DANCING LINKS 11 Conway�ve-letter wordspentominoesnonstraightsymmetrypentominoesClarketetrominoestetrominoesthree-olorablegraph oloring
EXERCISES|Seond SetHundreds of fasinating rereational problems have been based on polyominoes andtheir ousins (the polyubes, polyiamonds, polyhexes, polystiks, : : : ). The followingexerises explore \the ream of the rop" of suh lassi puzzles, as well as a few gemsthat were not disovered until reently.In most ases the idea is to �nd a good way to disover all solutions, usually bysetting up an appropriate exat over problem that an be solved without taking anenormous amount of time.x 140. [25 ℄ Sketh the design of a utility program that will reate sets of rows by whihan exat over solver will �ll a given shape with a given set of polyominoes.148. [18 ℄ Using Conway's piee names, pak �ve pentominoes into the shapeso that they spell a ommon English word when read from left to right.x 150. [21 ℄ There are 1010 ways to pak the twelve pentominoes into a 5� 12 box, notounting reetions. What's a good way to �nd them all, using Algorithm D?151. [21 ℄ How many of those 1010 pakings deompose into 5� k and 5� (12�k)?152. [21 ℄ In how many ways an the eleven nonstraight pentominoes be paked intoa 5� 11 box, not ounting reetions? (Redue symmetry leverly.)154. [20 ℄ There are 2339 ways to pak the twelve pentominoes into a 6� 10 box, notounting reetions. What's a good way to �nd them all, using Algorithm D?155. [23 ℄ Continuing exerise 154, explain how to �nd speial kinds of pakings:a) Those that deompose into 6� k and 6� (10�k).b) Those that have all twelve pentominoes touhing the outer boundary.) Those with all pentominoes touhing that boundary exept for V, whih doesn't.d) Same as (), with eah of the other eleven pentominoes in plae of V.e) Those with the minimum number of pentominoes touhing the outer boundary.f) Those that are haraterized by Arthur C. Clarke's desription, as quoted in thetext. (That is, the X should touh only the F, N, U, and V|no others.)157. [21 ℄ There are �ve di�erent tetrominoes, namelysquare; straight ; skew ; ell ; tee :In how many essentially di�erent ways an eah of them be paked into an 8�8 squaretogether with the twelve pentominoes?158. [21 ℄ If an 8�8 hekerboard is ut up into thirteen piees, representing the twelvepentominoes together with one of the tetrominoes, some of the pentominoes will havemore blak ells than white. Is it possible to do this in suh a way that U, V, W, X,Y, Z have a blak majority while the others do not?159. [18 ℄ Design a nie, simple tiling pattern that's based on the �ve tetrominoes.160. [25 ℄ How many of the 6� 10 pentomino pakings are strongly three-olorable, inthe sense that eah individual piee ould be olored red, white, or blue in suh a waythat no pentominoes of the same olor touh eah other|not even at orner points?
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12 COMBINATORIAL SEARCHING (F5C: 15Apr 2017� 0919) 7.2.2.1 hekerboardAzte diamondsymmetriM�obius stripfaultfreeBenjaminube, wrappedKnuth, JillGaria, HetorKaplanfeneholestatamirossroadsO'Beirneone-sided pentominoes
x 162. [20 ℄ The blak ells of a square n � n hekerboard form an interesting graphalled the Azte diamond of order n=2. For example, the ases n = 11 and 13 are(i) and (ii) ;where (ii) has a \hole" showing the ase n = 3. Thus (i) has 61 ells, and (ii) has 80.a) Find all ways to pak (i) with the twelve pentominoes and one monomino.b) Find all ways to pak (ii) with the 12 + 5 pentominoes and tetrominoes.Speed up the proess by not produing solutions that are symmetri to eah other.x 163. [M26 ℄ Arrange the twelve pentominoes into a M�obius strip of width 4. Thepattern should be \faultfree": Every straight line must interset some piee.164. [40 ℄ (H. D. Benjamin, 1948.) Show that the twelve pentominoes an be wrappedaround a ube of size p10 �p10 �p10. For example, here are front and bak viewsof suh a ube, made from twelve olorful fabris by the author's wife in 1993:

(Photos byHetor Garia)What is the best way to do this, minimizing undesirable distortions at the orners?x 165. [22 ℄ (Craig S. Kaplan.) A polyomino an sometimes be surrounded by non-overlapping opies of itself that form a fene: Every ell that touhes the polyomino|even at a orner| is part of the fene; onversely, every piee of the fene touhes theinner polyomino. Furthermore, the piees must not enlose any unoupied \holes."Find the (a) smallest and (b) largest fenes for eah of the twelve pentominoes.(Some of these patterns are unique, and quite pretty.)166. [22 ℄ Solve exerise 165 for fenes that satisfy the tatami ondition of exerise7.1.4{215: No four edges of the tiles should ome together at any \rossroads."x 167. [27 ℄ Solomon Golomb disovered in 1965 that there's only one plaementof two pentominoes in a 5�5 square that bloks the plaement of all the others.Plae (a) fI; P; U; V g and (b) fF; P; T; Ug into a 7 � 7 square in suh away that none of the other eight will �t in the remaining spaes.168. [21 ℄ (T. H. O'Beirne, 1961.) The one-sided pentominoes are the eighteen distint5-ell piees that an arise if we aren't allowed to ip piees over:Notie that there now are two versions of F, L, P, N, Y, and Z.In how many ways an all eighteen of them be paked into retangles?
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7.2.2.1 DANCING LINKS 13 tetrominoeshekeredone-sidedhekerboard dissetionshexominoesBenjaminKadnerHanssonmagni�ationtripliationastlesSteadpentominoestetrominoesolor ontrolshexominoes
169. [21 ℄ Suppose you want to pak the twelve pentominoes into a 6�10 box, withoutturning any piees over. Then 26 di�erent problems arise, depending on whih sides ofthe one-sided piees are present. Whih of those 64 problems has (a) the fewest (b) themost solutions?170. [21 ℄ When tetrominoes are both hekered and one-sided (see exerises 158 and168), ten possible piees arise. In how many ways an all ten of them �ll a retangle?175. [20 ℄ There are 35 hexominoes, �rst enumerated in 1934by the master puzzlist H. D. Benjamin. At Christmastimethat year, he o�ered ten shillings to the �rst person whoould pak them into a 14�15 retangle|although he wasn'tsure whether or not it ould be done. The prize was won byF. Kadner, who proved that the hexominoes atually an't bepaked into any retangle. Nevertheless, Benjamin ontinuedto play with them, eventually disovering that they �t nielyinto the triangle shown here.Prove Kadner's theorem. Hint: See exerise 158.176. [24 ℄ (Frans Hansson, 1947.) The fat that 35 = 12 + 32 + 52 suggests that wemight be able to pak the hexominoes into three boxes that represent a single hexominoshape at three levels of magni�ation, suh as :For whih hexominoes an this be done?x 177. [30 ℄ Show that the 35 hexominoes an be paked into �ve \astles": :In how many ways an this be done?178. [41 ℄ For whih values of m an the hexominoes be paked into a box like this?m179. [41 ℄ Perhaps the niest hexomino paking uses a 5� 45 retangle with 15 holes;proposed by W. Stead in 1954. In how many ways an the 35 hexominoes �ll it?x 181. [22 ℄ In how many ways an the twelve pentominoes be plaed intoan 8� 10 retangle, leaving holes in the shapes of the �ve tetrominoes?(The holes should not touh the boundary, nor should they touh eahother, even at orners; one example is shown at the right.) Explain howto enode this puzzle as an exat over problem with olor ontrols.182. [46 ℄ If possible, solve the analog of exerise 181 for the ase of 35 hexominoes ina 5� 54 retangle, leaving holes in the shapes of the twelve pentominoes.
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14 COMBINATORIAL SEARCHING (F5C: 15Apr 2017� 0919) 7.2.2.1 parallelogram polyominoparallominoskew Young tableauYoung tableauxskew Ferrers boardFerrers diagramstableauxpartitionstreespath lengthgenerating funtionbase plaementsSomapSoma ubesemidistanedegree sequenesonneted omponentsbiomponentsfatorizationW-wallSoma pieesnonominoesHein

x 198. [HM35 ℄ A parallelogram polyomino, or \parallomino" for short, is a polyominowhose boundary onsists of two paths that eah travel only north and/or east. (Equiv-alently, it is a \skew Young tableau" or a \skew Ferrers board," the di�erene betweenthe diagrams of two tableaux or partitions; see Setions 5.1.4 and 7.2.1.4.) For example,there are �ve parallominoes whose boundary paths have length 4:NNNEENNN ; NNEEENEN ; NNEEEENN ; NENEEENN ; NEEEEEEN :a) Find a one-to-one orrespondene between the set of ordered trees with m leavesand n nodes and the set of parallominoes with width m and height n �m. Thearea of eah parallomino should be the path length of its orresponding tree.b) Study the generating funtion G(w; x; y) =Pparallominoes wareaxwidthyheight.) Prove that the parallominoes whose width-plus-height is n have total area 4n�2.d) Part () suggests that we might be able to pak all of those parallominoes into a2n�2� 2n�2 square, without rotating them or ipping them over. Suh a pakingis learly impossible when n = 3 or n = 4; but is it possible when n = 5 or n = 6?200. [20 ℄ Extend exerise 140 to three dimensions. How many base plaements doeah of the seven Soma piees have?x 202. [22 ℄ The Somap is the graph whose verties are the 240 distint solutions to theSoma ube problem, with u���v if and only if u an be obtained from v by hangingthe positions of at most three piees. (Using the terminology of exerise 15(d), adjaentverties orrespond to solutions of semidistane � 3.) The strong Somap is similar,but it has u���v only when a hange of just two piees gets from one to the other.a) What are the degree sequenes of these graphs?b) How many onneted omponents do they have? How many biomponents?x 204. [M25 ℄ Use fatorization to prove that Fig. 80's W-wall annot be built.205. [24 ℄ Figure 80(a) shows some of the many \low-rise" (2-level) shapes that an bebuilt from the seven Soma piees. Whih of them is hardest (has the fewest solutions)?Whih is easiest? Answer these questions also for the 3-level prism shapes in Fig. 80(b).x 206. [M23 ℄ Generalizing the �rst four examples of Fig. 80, study the set of all shapesobtainable by deleting three ubies from a 3� 5� 2 box. (Twoexamples are shown here.) How many essentially di�erent shapesare possible? Whih shape is easiest? Whih shape is hardest?207. [22 ℄ Similarly, onsider (a) all shapes that onsist of a3 � 4 � 3 box with just three ubies in the top level; (b) all3-level prisms that �t into a 3� 4� 3 box.208. [25 ℄ How many of the 1285 nonominoes de�ne a prism that an be realized bythe Soma piees? Do any of those paking problems have a unique solution?210. [M40 ℄ Make empirial tests of Piet Hein's belief that the number of shapesahievable with seven Soma piees is approximately the number of 27-ubie polyubes.
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7.2.2.1 DANCING LINKS 15(a) 2-level patternsbathtub ouh stepping stones anal bedtower 1 tower 2 tower 3 tower 4shift 0 shift 1 shift 2benh 4� 4 oop 3� 6 orral 4� 5 orralastle �ve-seat benh doorway piggybank lobstergrand piano piano gorilla fae smile(b) 3-level prisms based on nonominoes�sh gold�sh dryer hair steps stiletunnel underpass doorway anal bed lipzigzag wall 1 zigzag wall 2 apartments 1 apartments 2 almost W-wall W-wallFig. 80. Gallery of noteworthy polyubes that ontain 27 ubies. All of them an bebuilt from the seven Soma piees, exept for the W-wall. Many onstrutions are alsostable when tipped on edge and/or when turned upside down. (See exerises 204{214.)
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16 COMBINATORIAL SEARCHING (F5C: 15Apr 2017� 0919) 7.2.2.1 Shwartzself-supportinggravityfa�adesmoviesisometriprojetionthree dimensionsCube DiaboliqueDiabolial CubeWatilliauxL-bert Hallholesdoweltetraubesgravity
212. [20 ℄ (B. L. Shwartz, 1969.) Show that the Soma piees an make shapes thatappear to have more than 27 ubies, beause of holes hidden inside or at the bottom:

stairase penthouse pyramidIn how many ways an these three shapes be onstruted?213. [22 ℄ Show that the seven Soma piees an also make strutures suh as
asserole ot vulture mushroom antilever ,whih are \self-supporting" via gravity. (You may need to plae a small book on top.)x 214. [M32 ℄ Impossible strutures an be built, if we insist only that they look genuinewhen viewed from the front (like fa�ades in Hollywood movies)! Find all solutions toW-wall X-wall ubethat are visually orret. (To solve this exerise, you need to know that the illustrationshere use the non-isometri projetion (x; y; z) 7! (30x � 42y; 14x + 10y + 45z)u fromthree dimensions to two, where u is a sale fator.) All seven Soma piees must be used.215. [30 ℄ The earliest known example of a polyube puzzle is the \Cube Diabolique,"manufatured in late nineteenth entury Frane by Charles Watilliaux; it ontains sixat piees of sizes 2, 3, : : : , 7:a) In how many ways do these piees make a 3� 3� 3 ube?b) Are there six polyubes, of sizes 2, 3, : : : , 7, that make a ube in just one way?216. [21 ℄ (The L-bert Hall.) Take two ubies and drill three holes through eahof them; then glue them together and attah a solid ubie and dowel, as shown.Prove that there's only one way to pak nine suh piees into a 3� 3� 3 box.217. [22 ℄ Show that there are exatly eight di�erent tetraubes |polyubes of size 4.Whih of the following shapes an they make, respeting gravity? How many solutionsare possible?

twin towers double law annon up 3 up 4 up 5
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7.2.2.1 DANCING LINKS 17 otominoespentaubessolid pentominoesat pentaubesmirror imagespentominoes5� 5� 5 ubeDowler's Boxhiralmirror
218. [25 ℄ How many of the 369 otominoes de�ne a 4-level prism that an be realizedby the tetraubes? Do any of those paking problems have a unique solution?220. [30 ℄ There are 29 pentaubes, onveniently identi�ed with one-letter odes:a b  d e fA B C D E Fj k l m no p q r s tu v w x y zPiees o through z are alled, not surprisingly, the solid pentominoes or at pentaubes.a) What are the mirror images of a, b, , d, e, f, A, B, C, D, E, F, j, k, l, : : : , z?b) In how many ways an the solid pentominoes be paked into an a� b�  uboid?) What \natural" set of 25 pentaubes is able to �ll the 5� 5� 5 ube?x 221. [25 ℄ The full set of 29 pentaubes an build an enormous vari-ety of elegant strutures, inluding a partiularly stunning examplealled \Dowler's Box." This 7� 7� 5 ontainer, �rst onsidered byR. W. M. Dowler in 1979, is onstruted from �ve at slabs. Yetonly 12 of the pentaubes lie at; the other 17 must somehow beworked into the edges and orners.Despite these diÆulties, Dowler's Box has so many solutions that we an atuallyimpose many further onditions on its onstrution:a) Build Dowler's Box in suh a way that the hiral piees a, b, , d, e, f and theirimages A, B, C, D, E, F all appear in horizontally mirror-symmetri positions.horizontally symmetri  and C diagonally symmetri  and Cb) Alternatively, build it so that those pairs are diagonally mirror-symmetri.) Alternatively, plae piee x in the enter, and build the remaining struture fromfour ongruent piees that have seven pentaubes eah.222. [25 ℄ The 29 pentaubes an also be used to make the shapeshown here, exploiting the urious fat that 34 + 43 = 29 � 5. ButAlgorithm D will take a long, long time before telling us how toonstrut it, unless we're luky, beause the spae of possibilities ishuge. How an we �nd a solution quikly?
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18 COMBINATORIAL SEARCHING (F5C: 15Apr 2017� 0919) 7.2.2.1 BaxterSquare Dissetionretangles into retanglesMondrianredutionstritly reduedfaultfreetrominoesstraight trominoes: 1� 3Motley dissetionspinwheelsrotations and reetionssymmetri under 180Æ rotation
239. [29 ℄ Nik Baxter devised an innouous-looking but maddeningly diÆult \SquareDissetion" puzzle for the International Puzzle Party in 2014, asking that the nine piees20 172017 20 182018 23 182318 25 182518 23 212321 25 202520 24 222422 25 222522 25 242524be plaed at into a 65�65 square. One quikly heks that 17�20+18�20+� � �+24�25 = 652; yet nothing seems to work! Solve his puzzle with the help of Algorithm D.x 240. [20 ℄ The next group of exerises is devoted to the deomposition ofretangles into retangles, as in the Mondrianesque pattern shown here.The redution of suh a pattern is obtained by distorting it, if neessary,so that it �ts into an m � n grid, with eah of the vertial oordinatesf0; 1; : : : ;mg used in at least one horizontal boundary and eah of the hori-zontal oordinates f0; 1; : : : ; ng used in at least one vertial boundary. Forexample, the illustrated pattern redues to , where m = 3 and n = 5.(Notie that the original retangles needn't have rational width or height.)A pattern is alled redued if it is equal to its own redution. Design an exat overproblem by whih Algorithm M will disover all of the redued deompositions of anm�n retangle, given m and n. How many of them are possible when (m;n) = (3; 5)?241. [M25 ℄ The maximum number of subretangles in a redued m � n pattern isobviously mn. What is the minimum number?242. [10 ℄ A redued pattern is alled stritly redued if eah of its subretangles[a : : b)�[ : : d) has (a; b) 6= (0;m) and (; d) 6= (0; n)| in other words, if no subretangle\uts all the way aross." Modify the onstrution of exerise 240 so that it produesonly stritly redued solutions. How many 3� 5 patterns are stritly redued?243. [20 ℄ A retangle deomposition is alled faultfree if it annot be split into two ormore retangles. For example, is not faultfree, beause it has a fault line betweenrows 2 and 3. (It's easy to see that every redued faultfree pattern is stritly redued,unless m = n = 1.) Modify the onstrution of exerise 240 so that it produes onlyfaultfree solutions. How many redued 3� 5 patterns are faultfree?244. [23 ℄ True or false: Every faultfree paking of anm�n retangle by 1�3 trominoesis redued, exept in the trivial ases (m;n) = (1; 3) or (3; 1).247. [22 ℄ (Motley dissetions.) Many of the most interesting deompositions of anm�n retangle involve stritly redued patterns whose subretangles [ai : : bi)�[i : : di)satisfy the extra ondition(ai; bi) 6= (aj ; bj) and (i; di) 6= (j ; dj) when i < j:Thus no two subretangles are ut o� by the same pair of horizontal or vertial lines.The smallest suh \motley dissetions" are the 3� 3 pinwheels, and ; whih areonsidered to be essentially the same beause they are mirror images of eah other.There are eight essentially distint motley retangles of size 4� n, namely; ; ; ; ; ; ; :The two 4� 4s an eah be drawn in 8 di�erent ways, under rotations and reetions.Similarly, most of the 4 � 5s an be drawn in 4 di�erent ways. But the last two haveonly two forms, beause they're symmetri under 180Æ rotation.
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7.2.2.1 DANCING LINKS 19 symmetryorder180Æ-rotational symmetryomplementpinwheel90Æ-rotational symmetryreetion about both diagonalsbidiagonal symmetryperfetly deomposed retangleinomparable dissetionmotleyredution
Design an exat over problem by whih Algorithm M will disover all of the mot-ley dissetions of an m�n retangle, given m and n. (When m = n = 4 the algorithmshould �nd 8+8 solutions; when m = 4 and n = 5 it should �nd 4+4+4+4+2+2.)x 248. [25 ℄ Improve the onstrution of the previous exerise by taking advantage ofsymmetry to ut the number of solutions in half. (When m = 4 there will now be 4+4solutions when n = 4, and 2+2+2+2+1+1 when n = 5.) Hint: A motley dissetionis never idential to its left-right reetion, so we needn't visit both.249. [20 ℄ The order of a motley dissetion is the number of subretangles it has. Thereare no motley dissetions of order six. Show, however, that there are m �m motleydissetions of order 2m�1 andm�(m+1) motley dissetions of order 2m, for allm > 3.250. [21 ℄ An m� n motley dissetion must have order less than �m+12 �, beause only�m+12 ��1 intervals [ai : : bi) are permitted. What is the maximum order that's atuallyahievable by an m� n motley dissetion, for m = 5, 6, and 7?x 252. [23 ℄ Explain how to generate all of the m�n motley dissetions that have 180Æ-rotational symmetry, as in the last two examples of exerise 247, by modifying theonstrution of exerise 248. (In other words, if [a : : b)� [ : : d) is a subretangle of thedissetion, its omplement [m � b : :m � a) � [n � d : : n � ) must also be one of thesubretangles, possibly the same one.) How many suh dissetions have size 8� 16?253. [24 ℄ Further symmetry is possible when m = n (as in exerise 247's pinwheel).a) Explain how to generate all of the n�nmotley dissetions that have 90Æ-rotationalsymmetry. This means that [a : : b)� [ : : d) implies [ : : d)� [n�b : : n�a).b) Explain how to generate all of the n � n motley dissetions that are symmetriunder reetion about both diagonals. This means that [a : : b) � [ : : d) implies[ : : d)�[a : : b) and [n�d : : n�)�[n�b : : n�a), hene [n�b : : n�a)�[n�d : : n�).) What's the smallest n for whih symmetri solutions of type (b) exist?255. [26 ℄ A \perfetly deomposed retangle" of order t is a dissetion of a retangleinto t subretangles [ai : : bi) � [i : : di) suh that the 2t dimensions b1 � a1, d1 � 1,: : : , bt � at, dt � t are all distint. For example, �ve retangles of sizes 1� 2,3� 7, 4� 6, 5� 10, and 8� 9 an be assembled to make the perfetly deom-posed 13 � 13 square shown here. What are the smallest possible perfetlydeomposed squares of orders 5, 6, 7, 8, 9, and 10, having integer dimensions?256. [M28 ℄ An \inomparable dissetion" of order t is a deomposition of a retangleinto t subretangles, none of whih will �t inside another. In other words, if the widthsand heights of the subretangles are respetively w1�h1, : : : , wt�ht, we have neither(wi � wj and hi � hj) nor (wi � hj and hi � wj) when i 6= j.a) True or false: An inomparable dissetion is perfetly deomposed.b) True or false: The redution of an inomparable dissetion is motley.) True or false: The redution of an inomparable dissetion an't be a pinwheel.d) Prove that every inomparable dissetion of order � 7 redues to the �rst4 � 4 motley dissetion in exerise 247. Furthermore its seven regions an belabeled as shown, with w1 < w2 < � � � < w6 < w7 and h7 < h6 < � � � < h2 < h1. 12 345 67e) Suppose the redution of an inomparable dissetion is m�n, and suppose its re-gions have been labeled f1; : : : ; tg. Then there are numbers x1, : : : , xn, y1, : : : , ymsuh that the widths are sums of the x's and the heights are sums of the y's. (Forexample, in (d) we have w2 = x1, h2 = y1 + y2 + y3, w7 = x2 + x3 + x4, h7 = y1,et.) Prove that suh a dissetion exists with w1 < w2 < � � � < wt if and only if the
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20 COMBINATORIAL SEARCHING (F5C: 15Apr 2017� 0919) 7.2.2.1 linear inequalitiesKimlinear inequalities w1 < w2 < � � � < wt have a positive solution (x1; : : : ; xn) andthe linear inequalities h1 > h2 > � � � > ht have a positive solution (y1; : : : ; ym).257. [M29 ℄ Among all the inomparable dissetions of order (a) seven and (b) eight,restrited to integer sizes, �nd the retangles with smallest possible perimeter. Also�nd the smallest possible squares that have inomparable dissetions in integers. Hint:Show that there are 2t potential ways to mix the w's with the h's, preserving theirorder; and �nd the smallest perimeter for eah of those ases.x 258. [M25 ℄ Find seven di�erent retangles of area 1/7 that an be assembled into asquare of area 1, and prove that the answer is unique.x 260. [18 ℄ There's a natural way to extend the idea of motley dissetion to three dimen-sions, by subdividing an l�m�n uboid into sububoids [ai : : bi)� [i : : di)� [ei : : fi)that have no repeated intervals [ai : : bi) or [i : : di) or [ei : : fi).For example, Sott Kim has disovered a remarkable motley7 � 7 � 7 ube onsisting of 23 individual bloks, 11 of whih areillustrated here. (Two of them are hidden behind the others.) Thefull ube is obtained by suitably plaing a mirror image of thesepiees in front, together with a 1� 1� 1 ubie in the enter.By studying this piture, show that Kim's onstrution anbe de�ned by oordinate intervals [ai : : bi)�[i : : di)�[ei : : fi), with0 � ai; bi; i; di; ei; fi � 7 for 1 � i � 23, in suh a way that the pattern is symmetrialunder the transformation xyz 7! �y�z�x. In other words, if [a : : b)� [ : : d)� [e : :f) is oneof the sububoids, so is [7� d : : 7� )� [7� f : : 7� e)� [7� b : : 7� a).261. [29 ℄ Use exerise 260 to onstrut a perfetly deomposed 108� 108� 108 ube,onsisting of 23 sububoids that have 69 distint integer dimensions. (See exerise 256.)262. [24 ℄ By generalizing exerises 247 and 248, explain how to �nd every dissetionof an l �m� n uboid, using Algorithm M. Note: In three dimensions, the stritnessondition `(ai; bi) 6= (0;m) and (i; di) 6= (0; n)' of exerise 242 should beome[(ai; bi) = (0; l)℄+ [(i; di) = (0; m)℄+ [(ei; fi) = (0; n)℄ � 1:What are the results when l = m = n = 7?263. [M46 ℄ Do motley uboids of size l�m� n exist only when l = m = n = 7?999. [M00 ℄ this is a temporary exerise (for dummies)
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7.2.2.1 ANSWERS TO EXERCISES 21 PellAUBREYseond deathsemidistaneMatsuiMatsuiNP-ompleteDr Pell was wont to say, that in the Resolution of Questiones,the main matter is the well stating them:whih requires a good mother-witt & Logik: as well as Algebra:for let the Question be but well-stated, and it will worke of it selfe:. . . By this way, an man annot intangle his notions, & make a false Steppe.| JOHN AUBREY, An Idea of Eduation of Young Gentlemen (. 1684)SECTION 7.2.2.15. If T has only a root node, let there be one olumn, no rows.Otherwise let T have d � 1 subtrees T1, : : : , Td, and assume thatwe've onstruted problems with rows Rj and olumns Cj for eah Tj .Let C = C1 [ � � � [Cd [ f1; : : : ; dg. The problem for T is obtained byappending d+1 new olumns f0; 1; : : : ; dg and the following new rows:(i) `0 and all olumns of CnCj ', for 1 � j � d; (ii) `all olumns of Cnj',for 1 � j � d. This onstrution works exept when d = 1 and T1 isa leaf; in that ase we an use olumns f0; 1; 2; 3g, rows `0 1 2', `1 3',`2 3'. The matrix for the example tree has 17 olumns and 16 rows.
011111100000000001011111000000000011011110000000000111001100000000001110101000000000011100110000000000000000001111110000000000101111100000000001101111000000000011100110000000000111010100000000001110110000000000011111111111111111000000011111111111111111001111111111111110106. (a) If a solution isn't at the root, its parent must have exatly one hild. (Alter-natively, if dupliate rows are permitted, all siblings of a solution must be solutions.)(b) Use the previous onstrution; a solution node orresponds to olumn 0, row `0'.10. Use PREV and NEXT to ylially link all unovered seondary olumns. Then, whenall primary olumns have been overed, aept a solution only if LEN(ND[℄) = 0 for allolumns  on that list. [This algorithm is alled the \seond death" method, beause itheks that all of the purely seondary rows have been killed o� by primary overing.℄15. (a) No. Otherwise A would have a row that's zero in all primary olumns.(b) Yes, but only if A has two rows that are idential in all primary olumns.() Yes, but only if A has two rows whose sum is also a row, when restrited toprimary olumns.(d) The number of plaes, j, where x = 1 and x0 = 0 must be the same as thenumber where x = 0 and x0 = 1. For if A has exatly k primary 1s in every row,exatly jk primary olumns are being overed in di�erent ways.(e) Again the distanes must be even, beause every solution to A is also a solutionto the uniform problem A j C. (Therefore it makes sense to speak of the semidistaned(x; x0)=2 between solutions of a quasi-uniform exat overing problem. The semidis-tane in a polyform paking problem is the number of piees that are paked di�erently.)19. (Solution by T. Matsui.) Add one new olumn at the left of A, all 0s. Then addtwo rows of length n + 1 at the bottom: 10 : : : 0 and 11 : : : 1. This (m+ 2) � (n + 1)matrix A0 has one solution that hooses only the last row. All other solutions hoosethe seond-to-last row, together with rows that solve A.20. (Solution by T. Matsui.) Assume that all 1s in olumn 1 appear in the �rst t rows,where t > 3. Add two new olumns at the left, and two new rows 1100 : : : 0, 1010 : : : 0of length n + 2 at the bottom. For 1 � k � t, if row k was 1�k, replae it by 010�k ifk � t=2, 011�k if k > t=2. Insert 00 at the left of the remaining rows t+ 1 through m.This onstrution an be repeated (with suitable row and olumn permutations)until no olumn sum exeeds 3. If the original olumn sums were (1; : : : ; n), thenew A0 has 2T more rows and 2T more olumns than A did, where T =Pnj=1(j .� 3).One onsequene is that the exat over problem is NP-omplete even whenrestrited to ases where all row and olumn sums are at most 3.
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22 ANSWERS TO EXERCISES 7.2.2.1 minimum remaining values heuristi2-regular graphsRobertsonMunroisomorphiisomorphiBennettCaltehauthorgroupsquasigroupsemisymmetri quasigroup
Notie, however, that this onstrution is not useful in pratie, beause it disguisesthe struture of A: It essentially destroys the minimum remaining values heuristi,beause all olumns whose sum is 2 look equally good to the solver!21. Take a matrix with olumn sums (1; : : : ; n), all � 3, and extend it with threeolumns of 0s at the right. Then add the following four rows: (x1; : : : ; xn; 0; 1; 1),(y1; : : : ; yn; 1; 0; 1), (z1; : : : ; zn; 1; 1; 0), and (0; : : : ; 0; 1; 1; 1), where xj = [j < 3℄, yj =[j < 2℄, zj = [j < 1℄. The bottom row must be hosen in any solution.24. Consider a set of ubes and olors alled f�; 0; 1; 2; 3; 4; : : : g, where (i) all faes ofube � are olored �; (ii) olors 1, 2, 3, 4 our only on ubes 0, 1, 2, 3, 4; (iii) the op-posite fae-pairs of those �ve ubes are respetively (00; 12; ��), (11; 12; 34), (22; 34; �),(33; 12; �), (44; 34; ), where �, �,  are pairs of olors =2 f1; 2; 3; 4g. Any solution tothe ube problem has disjoint 2-regular graphs X and Y ontaining two faes of eaholor. Sine X and Y both ontain �� from ube �, we an assume that X ontains 00and Y ontains 12 from ube 0. Hene Y an't ontain 11 or 22; it must ontain 12 fromube 1 or ube 3. If X doesn't ontain 11 or 22, it must ontain 12 from ube 1 andube 3. Hene X ontains 11, 22, 33, and 44. We're left with only three possibilitiesfor Y from ubes 1, 2, 3, 4, namely (34; �; 12; 34), (12; 34; �; 34), (34; 34; 12; ).Now let aj1, aj2, aj3 denote the 1s in olumn j of A. We onstrut N = 8n + 1ubes and olors alled �, ajk, bjl, where 1 � j � n, 1 � k � 3, 0 � l � 4. The oppositefae-pairs of � are (��; ��; ��). Those of ajk are (ajkajk; ajkajk; ajkbj00), where j0is the olumn of ajk's yli suessor to the right in its row. Those of bj0, bj1, bj2,bj3, bj4 are respetively (bj0bj0; bj1bj2; ��), (bj1bj1; bj1bj2; bj3bj4), (bj2bj2; bj3bj4; bj0aj1),(bj3bj3; bj1bj2; bj0aj2), (bj4bj4; bj3bj4; bj0aj3). By the previous paragraph, solutions tothe ube problem orrespond to 2-regular graphs X and Y suh that, for eah j, Xor Y ontains all the pairs bjlbjl and the other \selets" one of the three pairs bj0ajk.The fae-pairs of eah seleted ajk ensure that ajk's yli suessor is also seleted.[See E. Robertson and I. Munro, Utilitas Mathematia 13 (1978), 99{116.℄26. (a) (x Æ y) Æ x = (x Æ y) Æ (y Æ (x Æ y)) = y.(b) All �ve are legitimate. (The last two are gropes beause f(t + f(t)) = t for0 � t < 4 in eah ase. They are isomorphi if we interhange any two elements. Thethird is isomorphi to the seond if we interhange 1$ 2. There are 18 grope tables oforder 4, of whih (4, 12, 2) are isomorphi to the �rst, third, and last tables shown here.)() For example, let x Æ y = (�x� y) mod n. (More generally, if G is any groupand if � 2 G satis�es �2 = 1, we an let x Æ y = �x��y��. If G is ommutative and� 2 G is arbitrary, we an let x Æ y = x�y��.)(d) For eah row of type (i) in an exat overing, de�ne x Æ x = x; for eah row oftype (ii), de�ne x Æ x = y, x Æ y = y Æ x = x; for eah row of type (iii), de�ne x Æ y = z,y Æ z = x, z Æ x = y. Conversely, every grope table yields an exat overing in this way.(e) Suh a grope overs n2 olumns with k rows of size 1, all other rows of size 3.[F. E. Bennett proved, in Disrete Mathematis 24 (1978), 139{146, that suh gropesexist for all k with 0 � k � n and k � n2 (modulo 3), exept when k = n = 6.℄Notes: The identity xÆ(yÆx) = y seems to have �rst been onsidered by E. Shr�oderin Math. Annalen 10 (1876), 289{317 [see `(C0)' on page 306℄, but he didn't do muhwith it. In a lass for sophomore mathematis majors at Calteh in 1968, the author de-�ned gropes and asked the students to disover and prove as many theorems about themas they ould, by analogy with the theory of groups. The idea was to \grope for results."The oÆial modern term for a grope is a real jawbreaker: semisymmetri quasigroup.
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7.2.2.1 ANSWERS TO EXERCISES 23 Mendelsohn triplesShr�odertotally symmetri quasigroupsSteinSteiner triple systemsAdlerJahnquadrillesLuasDelannoydimer tilingsheavy-tailed distributionempirial standard deviation
27. (a) Eliminate the n olumns for (x; x); use only the 2�n3� rows of type (iii) for whihy 6= z. (Idempotent gropes are equivalent to \Mendelsohn triples," whih are familiesof n(n � 1)=3 three-yles (xyz) that inlude every ordered pair of distint elements.N. S. Mendelsohn proved [Computers in Number Theory (New York: Aademi Press,1971), 323{338℄ that suh systems exist for all n 6� 2 (modulo 3), exept when n = 6.(b) Use only the �n+12 � olumns (x; y) for 0 � x � y < n; replae rows of type (ii)by f(x; x); (x; y)g and f(x; y); (y; y)g for 0 � x < y < n; replae those of type (iii) byf(x; y); (x; z); (y; z)g for 0 � x < y < z < n. (Suh systems, Shr�oder's `(C1) and (C2)',are alled totally symmetri quasigroups; see S. K. Stein, Trans. Amer. Math. So. 85(1957), 228{256, x8. If idempotent, they're equivalent to Steiner triple systems.)() Omit olumns for whih x = 0 or y = 0. Use only the 2�n�13 � rows of type (iii)for 1 � x < y; z < n and y 6= z. (Indeed, suh systems are equivalent to idempotentgropes on the elements f1; : : : ; n � 1g.)30. In (a), four piees hange; in (b) the solution is unique:(a) 0̂0̂5̂²̂1̂<4>1²̂v1v4v5v³v5<3>5v¶<1>1<5>6<0>04̂4̂4̂<4>5¶̂<2>2v²v³v00̂5̂v¶<1>3<3>6¶̂v¶v²<0>3²̂5̂1̂v1<5>0<4>4v0v³v² ; (b) <3>3¶̂<5>15̂1̂5̂<6>5v¶1̂²̂v³v²v4<2>4³̂v³v³¶̂<2>04̂1̂v¶<1>4v4<6>0v³v0<3>0<1>1<4>4²̂<6>25̂0̂5̂<0>0v²<5>0v5v4v²<1>6 :Notie that the spot patterns2,3, and6 are rotated when a domino is plaed ver-tially; these visual lues, whih would disambiguate (a), don't show up in the matrix.[Dominosa was invented in Germany by O. S. Adler [Reihs Patent #71539 (1893);see his booklet written with F. Jahn, Sperr-Domino und Dominosa (1912), 23{64.Similar problems of \quadrilles" had been studied earlier by E. Luas and H. Delannoy;see Luas's [R�er�eations Math�ematiques 2 (Paris: Gauthier-Villars, 1883), 52{63℄.31. De�ne 28 verties Dxy for 0 � x � y � 6; 28 verties ij for 0 � i < 7, 0 � j < 8,and i + j even; and 28 similar verties ij with i + j odd. The mathing problem has49 triples of the form fDxy; ij; i(j+1)g for 0 � i; j < 7, as well as 48 of the formfDxy; ij; (i+1)jg for 0 � i < 6 and 0 � j < 8, orresponding to potential horizontalor vertial plaements. For example, the triples for exerise 30(a) are fD00; 00; 01g,fD05; 01; 02g, : : : , fD23; 66; 67g; fD01; 00; 10g, fD04; 01; 11g, : : : , fD12; 57; 67g.32. Model (i) has M = 56!=8!7 � 4:10 � 1042 equally likely possibilities; model (ii)has N = 1292697 � 28! � 221 � 8:27 � 1041, beause there are 1292697 ways to pak 28dominoes in a 7 � 8 frame. (Algorithm D will quikly list them all.) The expetednumber of solutions per trial in model (i) is therefore N=M � 0:201.Ten thousand random trials with model (i) gave 216 ases with at least onesolution, inluding 26 where the solution was unique. The total numberPx of solutionswas 2256; and Px2 = 95918 indiated a heavy-tailed distribution whose empirialstandard deviation is � 3:1. The total running time was about 250 M�.Ten thousand random trials with model (ii), using random hoies from a preom-puted list of 1292687 pakings, gave 106 ases with a unique solution; one ase had 2652of them! Here Px = 508506 and Px2 = 144119964 indiated an empirial mean of� 51 solutions per trial, with standard deviation � 109. Total time was about 650 M�.
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24 ANSWERS TO EXERCISES 7.2.2.1 eight queens problemGossetDudeneyfrontiern queensRivinZabihLampingauthortriply linkedbinary searh treebaktraking algorithmasymptotiallytheory vs pratiepratie vs theoryn queen beesregular expressionCUTOFF
39. Eah of the 92 solutions to the eight queens problem (see Fig. 68) oupies eight ofthe 64 ells; so we must �nd eight disjoint solutions. Only 1897 updates of Algorithm Dare needed to show that suh a mission is impossible. [In fat no sevensolutions an be disjoint, beause eah solution touhes at least three of thetwenty ells 13, 14, 15, 16, 22, 27, 31, 38, 41, 48, 51, 58, 61, 68, 72, 77, 83,84, 85, 86. See Thorold Gosset, Messenger of Mathematis 44 (1914), 48.Henry E. Dudeney found the illustrated way to oupy all but two ells, inTit-Bits 32 (11 September 1897), 439; 33 (2 Otober 1897), 3.℄40. This is an exat over problem with 92 + 312 + 396 + � � � + 312 = 3284rows (see exerise 7.2.2{6). Algorithm D needs about 2 million updates to�nd the solution shown, and about 83 billion to �nd all 11,092 of them.

12345678785634124671823523854167842367515167238467481523512784073486521865043775421860268350713407218652183704805642136120734550. Set fm  0 and fk�1  fk j rk for m � k > 1. The bits of uk represent olumnsthat are being hanged for the last time.Let uk = u0 + u00, where u0 = uk & p. If uk 6= 0 at the beginning of step N4,we ompress the database as follows: For N � j � 1, if sj & u0 6= u0, delete (sj ; j);otherwise if sj & u00 6= 0, delete (sj ; j) and insert ((sj & �uk) j u0; j).To delete (sj ; j), set (sj ; j) (sN ; N ) and N  N � 1.When this improved algorithm terminates in step N2, we always have N � 1.Furthermore, if we let pk = r1 j � � � j rk�1, the size of N never exeeds 2�k , where�k = �hpkrkfki is the size of the \frontier" (see exerise 7.1.4{55).[In the speial ase of n queens, represented as the exat over problem in (??), thisalgorithm is due to I. Rivin, R. Zabih, and J. Lamping, Inf. Pro. Letters 41 (1992),253{256. They proved that the frontier for n queens never has more than 3n olumns.℄51. The author has had reasonably good results using a triply linked binary searhtree for the database, with randomized searh keys. (Beware: The swapping algorithmused for deletion was diÆult to get right.) This implementation was, however, limitedto exat over problems whose matrix has at most 64 olumns; hene it ould do nqueens via (??) only when n < 12. When n = 11 its database reahed a maximum sizeof 75,009, and its running time was about 25 megamems. But Algorithm D was a lotbetter: It needed only about 780K updates to �nd all Q(11) = 2680 solutions.In theory, this method will need only about 23n steps as n ! 1, times a smallpolynomial funtion of n. A baktraking algorithm suh as Algorithm D, whih enu-merates eah solution expliitly, will probably run asymptotially slower (see exerise7.2.2{15). But in pratie, a breadth-�rst approah needs too muh spae.On the other hand, this method did beat Algorithm D on the n queen bees problemof exerise 7.2.2{16: When n = 11 its database grew to 364,864 items; it omputedH(11) = 596;483 in just 30M�, while Algorithm D needed 27 mega-updates.52. The set of solutions for sj an be represented as a regular expression �j instead ofby its size, j . Instead of inserting (sj + t; j) in step N3, insert �jk. If inserting (s; �),when (si; �i) is already present with si = s, hange �i  �i [�. [Alternatively, if onlyone solution is desired, we ould attah a single solution to eah sj in the database.℄58. After unovering all other olumns of CURNODE at level 0, let p point to the node atthe right of CURNODE's row. If p � SECOND, over COL(ND[p℄). (This extension appliesalso to Algorithm C, but one should ensure �rst that COLOR(ND[p℄) = 0.)60. Let CUTOFF (initially 1) point to the spaer at the end of the best solution foundso far. We'll essentially remove all nodes > CUTOFF from further onsideration.Whenever a solution is found, let node PP be the spaer at the end of the option forwhih CHOICE[k℄ is maximum. If PP 6= CUTOFF, set CUTOFF PP, and for 0 � k � LEVEL
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7.2.2.1 ANSWERS TO EXERCISES 25 sortedbinary searhminimaxminimaxremove all options > CUTOFF from the list for COL(ND(CHOICE[k℄)). (It's easy to dothis beause the list is sorted.) Minimax solutions follow the last hange to CUTOFF.Begin the subroutine `unover()' by removing all options > CUTOFF from olumn's list. After setting DD DOWN(ND(NN)) in that routine, set DOWN(ND(NN))  DD CCif DD > CUTOFF. Make the same modi�ations also to the subroutine `unpurify(p)'.Subtle point: Suppose we're unovering olumn  and enounter an option ` x : : : 'that should be restored to olumn x; and suppose that the original suessor `x a : : : ' ofthat option in olumn x lies below the uto�. We know that `x a : : : ' ontains at leastone primary olumn, and that every primary olumn was overed before we hangedthe uto�. Hene `x a : : : ' was not restored, and we needn't worry about removing it.We merely need to orret the DOWN link, as stated above.61. Now let CUTOFF be the spaer just before the best solution known. When resettingCUTOFF, baktrak to level k � 1, where k maximizes CHOICE[k℄.64. Use 2n primary olumns ai, dj for the \aross" and \down" words, together withn2 seondary olumns ij for the individual ells. Also use M seondary olumns w,one for eah legal word. The over problem has 2Mn rows, namely `ai i1:1 : : : in:n1 : : : n' and `dj 1j:1 : : : nj:n 1 : : : n' for 1 � i; j � n and eah legal word 1 : : : n.We an avoid having both a solution and its transpose by introduing M furtherseondary olumns w0 and appending 1 : : : 0n at the right of eah option for a1 and d1.Then exerise 58's variant of Algorithm C will never hoose a word for d1 that it hasalready tried for a1. (Think about it.)But this onstrution is not a win for \daning links," beause it auses massiveamounts of data to go in and out of the ative struture. For example, with the �ve-letter words of WORDS(5757), it orretly �nds all 323,264 of the double word squaresbut its running time is 15 teramems! Muh faster is to use the algorithm of exerise7.2.2{28, whih needs only 46 gigamems to disover all of the 1,787,056 unrestritedword squares; the double word squares are easily identi�ed among those solutions.65. One ould do a binary searh, trying varying values of N . But the best way is touse the onstrution of exerise 64 together with the minimax variant of Algorithm C inexerise 60. This works perfetly, when the options for most ommon words ome �rst.Indeed, this method �nds the double square `BLAST|EARTH|ANGER|SCOPE|TENSE'and proves it best in just 64 G�, almost as fast as the speialized method of exerise7.2.2{28. (That square ontains ARGON, the 1720th most ommon �ve-letter word, inits third olumn; the next-best squares use PEERS, whih has rank 1800.)66. The \minimax" method of exerise 65 �nds the �rst �ve squares ofI ST O M A YA G EN O T S H O WN O N EO P E NW E S T S T A R TT H R E ER O O F SA S S E TP E E R S C H E S T SL U S T R EO B T A I NA R E N A SC I R C L EA S S E S S H E R T Z E SO P E R A T EM I M I C A LA C E R A T EG E N E T I CE N D M O S TR E S E N T Sin respetively 200 K�, 15 M�, 450 M�, 25 G�, 25.6 T�. It struggles to �nd the best6�6, beause too few words are ut o� from the searh; and it thrashes miserably withthe 24 thousand 7-letter words, beause those words yield only seven extremely esoterisolutions. For those lengths it's best to ull the 2038753 and 14513 unrestrited wordsquares, whih the method of exerise 7.2.2{28 �nds in respetively 4.6 T� and 8.7 T�.68. An exat over problem with olors, as in answer 64, works niely: There are2p primary olumns ai and di for the �nal words, and pn + M seondary olumns
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26 ANSWERS TO EXERCISES 7.2.2.1 minimaxFlower PowerShortzInroi ConentriiPetal Pusherskernelsindued subgraphin-degreeout-degree
ij and w for the ells and potential words, where 0 � i < p and 1 � j � n. TheMp rows going aross are `ai i1:1 i2:2 : : : in:n 1 : : : n'. The Mp rows going downare `di i1:1 ((i+1) mod p)2:2 : : : ((i+n�1) mod p)n:n 1 : : : n' for left-leaning stairs;`di i1:n ((i+1) mod p)2:n�1 : : : ((i+n�1) mod p)n:1 1 : : : n' for right-leaning stairs.The modi�ation to Algorithm C in exerise 58 saves a fator of 2p; and the minimaxmodi�ation in exerise 50 hones in quikly on optimum solutions.There are no left word stairs for p = 1, sine we need two distint words. Theleft winners for 2 � p � 10 are: `WRITE|WHOLE'; `MAKES|LIVED|WAXES'; `THERE|SHARE|WHOLE|WHOSE'; `STOOD|THANK|SHARE|SHIPS|STORE'; `WHERE|SHEEP|SMALL|STILL|WHOLE|SHARE'; `MAKES|BASED|TIRED|WORKS|LANDS|LIVES|GIVES'; `WATER|MAKES|LOVED|GIVES|LAKES|BASED|NOTES|BONES'; `WHERE|SHEET|STILL|SHALL|WHITE|SHAPE|STARS|WHILE|SHORE'; `THERE|SHOES|SHIRT|STONE|SHOOK|START|WHILE|SHELL|STEEL|SHARP'. Theyall belong to WORDS(500), exept that p = 8 needs WORDS(504) for NOTED.The right winners have a bit more variety: `SPOTS'; `STALL|SPIES'; `STOOD|HOLES|LEAPS'; `MIXED|TEARS|SLEPT|SALAD'; `YEARS|STEAM|SALES|MARKS|DRIED'; `STEPS|SEALS|DRAWS|KNOTS|TRAPS|DROPS'; `TRIED|FEARS|SLIPS|SEAMS|DRAWS|ERECT|TEARS';`YEARS|STOPS|HOOKS|FRIED|TEARS|SLANT|SWORD|SWEEP'; `START|SPEAR|SALES|TESTS|STEER|SPEAK|SKIES|SLEPT|SPORT'; `YEARS|STOCK|HORNS|FUELS|BEETS|SPEED|TEARS|PLANT|SWORD|SWEEP'. They belong to WORDS(1300) exept when p is 2 or 3.[Arrangements equivalent to left word stairs were introdued in Ameria underthe name \Flower Power" by Will Shortz in Classi Crossword Puzzles (Penny Press,February 1976), based on Italian puzzles alled \Inroi Conentrii" in La SettimanaEnigmistia. Shortly thereafter, in GAMES magazine and with p = 16, he alled them\Petal Pushers," usually based on six-letter words but oasionally going to seven. Leftword stairs are muh more ommon than the right-leaning variety, beause the lattermix end-of-word with beginning-of-word letter statistis.℄69. Consider all \kernels" 1 : : : 14 that an appear as il-lustrated, within a right word stair of 5-letter words. Suhkernels arise for a given set of words only if there are lettersx1 : : : x12 suh that x3x4x523, 45678, 9101112x6,1314x7x8x9, x1x2x559, 1261013, 371114x10, and812x7x11x12 are all in the set. Thus it's an easy matter toset up an exat over problem (with olors) that will �ndthe multiset of kernels, after whih we an extrat the set of distint kernels.

x1x2 1x3 x4 x5 2 34 5 6 7 89 10 11 12 x613 14 x7 x8 x9x10 x11x12Construt the digraph whose ars are the kernels, and whose verties are the 9-tuples that arise when kernel 1 : : : 14 is regarded as the transition1234567910 ! 37891011121314:This transition ontributes two words, 45678 and 1261013, to the word stair.Indeed, right word stairs of period p are preisely the p-yles in this digraph for whihthe 2p ontributed words are distint.Now we an solve the problem, if the graph isn't too big. For example, WORDS(1000)leads to a digraph with 180524 ars and 96677 verties. We're interested only in theoriented yles of this (very sparse) digraph; so we an redue it drastially by lookingonly at the largest indued subgraph for whih eah vertex has positive in-degree andpositive out-degree. (See exerise 7.1.4{234, where a similar redution was made.) Andwow: That subgraph has only 30 verties and 34 ars! So it is totally understandable,and we dedue quikly that the longest right word stair belonging to WORDS(1000) has
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7.2.2.1 ANSWERS TO EXERCISES 27 strong omponentsMathewsBrothieOulipo3SATp = 5. That word stair, whih we found diretly in answer 68, orresponds to the yleSEDYEARST ! DRSSTEASA! SAMSALEMA ! MESMARKDR! SKSDRIEYE ! SEDYEARST:A similar approah applies to left word stairs, but the kernel on�gurations arereeted left-to-right; transitions then ontribute the words 87654 and 1261013.The digraph from WORDS(500) turns out to have 136771 ars and 74568 verties; but thistime 6280 verties and 13677 ars remain after redution. Deomposition into strongomponents makes the task simpler, beause very yle belongs to a strong omponent.Still, we're stuk with a giant omponent that has 6150 verties and 12050 ars.The solution is to redue the urrent subgraph repeatedly as follows: Find avertex v of out-degree 1. Baktrak to disover a simple path, from v, that ontributesonly distint words. If there is no suh path (and there usually isn't, and the searhusually terminates quikly), remove v from the graph and redue it again.With this method one an rapidly show that the longest left word stair fromWORDS(500) has period length 36: `SHARE|SPENT|SPEED|WHEAT|THANK|CHILD|SHELL|SHORE|STORE|STOOD|CHART|GLORY|FLOWS|CLASS|NOISE|GAMES|TIMES|MOVES|BONES|WAVES|GASES|FIXED|TIRED|FEELS|FALLS|WORLD|ROOMS|WORDS|DOORS|PARTY|WANTS|WHICH|WHERE|SHOES|STILL|STATE', with 36 other words that go down. Inidentally,GLORY and FLOWS have ranks 496 and 498, so they just barely made it into WORDS(500).Larger values of N are likely to lead to quite long yles from WORDS(N). Theirdisovery won't be easy, but the searh will no doubt be instrutive.70. Use 3p primary olumns ai, bi, di for the �nal words; pn+2M seondary olumnsij, w, w0 for the ells and potential words, with 0 � i < p and 1 � j � n (somewhat asin answer 68). The Mp rows going aross are `ai i1:1 i2:2 : : : in:n 1 : : : n 1 : : : 0n'.The 2Mp rows going down in eah way are `bi i1:1 ((i+1) mod p)2:2 : : : ((i+n�1) modp)n:n 1 : : : n' and `di i1:n ((i+1) mod p)2:n�1 : : : ((i+n�1) mod p)n:1 1 : : : n'.We save a fator of p beause of the items w0 at the right of the ai rows.Use Algorithm C (modi�ed). We an't have p = 1. Then omes `SPEND|SPIES';`WAVES|LINED|LEPER'; `LOOPS|POUTS|TROTS|TOONS'; `SPOOL|STROP|STAID|SNORT|SNOOT'; `DIMES|MULES|RIPER|SIRED|AIDED|FINED'; `MILES|LINTS|CARES|LAMED|PIPED|SANER|LIVER'; `SUPER|ROVED|TILED|LICIT|CODED|ROPED|TIMED|DOMED'; `FORTH|LURES|MIRES|POLLS|SLATS|SPOTS|SOAPS|PLOTS|LOOTS'; `TIMES|FUROR|RUNES|MIMED|CAPED|PACED|LAVER|FINES|LIMED|MIRES'. (Lengthy omputations were needed for p � 8.)71. Now p � 2 is impossible. A onstrution like the previous one allows us again tosave a fator of p. (There's also top/bottom symmetry, but it is somewhat harder toexploit.) Examples are relatively easy to �nd, and the winners are `MILES|GALLS|BULLS'; `FIRES|PONDS|WALKS|LOCKS'; `LIVES|FIRED|DIKES|WAVED|TIRES'; `BIRDS|MARKS|POLES|WAVES|WINES|FONTS'; `LIKED|WARES|MINES|WINDS|MALES|LOVES|FIVES';`WAXES|SITES|MINED|BOXES|CAVES|TALES|WIRED|MALES'; `CENTS|HOLDS|BOILS|BALLS|MALES|WINES|FINDS|LORDS|CARES'; `LOOKS|ROADS|BEATS|BEADS|HOLDS|COOLS|FOLKS|WINES|GASES|BOLTS'. [Suh patterns were introdued by Harry Mathews in 1975, whogave the four-letter example `TINE|SALE|MALE|VINE'. See H. Mathews and A. Brothie,Oulipo Compendium (London: Atlas, 1998), 180{181.℄75. Given a 3SAT problem with lauses (li1 _ li2 _ li3) for 1 � i � m, with eahlij 2 fx1; �x1; : : : ; xn; �xng, onstrut an exat over problem with 3m primary olumnsij (1 � i � m, 1 � j � 3) and n seondary olumns xk (1 � k � n), having thefollowing rows: (i) `li1 li2', `li2 li3', `li3 li1'; (ii) `lij xk:1' if lij = xk, `lij xk:0' if lij = �xk.That problem has a solution if and only if the given lauses are satis�able.
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28 ANSWERS TO EXERCISES 7.2.2.1 disonnetedGibatauthorinterative methodGordonEkler80. There are just �ve solutions; the latter two are awed by being disonneted:N E V E S TT E N . I WH R V I X EG H U E N LI T W O L VE E V I F E N E V E S TT E N . I WH R V I X EG H U E N LI T W O L VE V I F F E N E V E S OE V E N I NV L V R X EE E I G H TL W F . W TE T F O U R N E I G H TN E V E S WF I V E . ES O N E T LI W U E L VX T H R E E N E I G H TN E V E S WF I V E . EX O N E T LI W U E L VS T H R E EHistorial note: Word searh puzzles were invented by Norman E. Gibat in 1968.81. When Algorithm C is generalized to allow non-unit olumn sumsas in Algorithm M, it needs just 24 megamems to prove that there areexatly eight solutions|whih all are rotations of the two shown here. T H R E EH W U N VR U O F IE N F W FE V I F T E V I F TV N F W HI F O U RF W U N ET H R E E82. (a, b) The author's best solutions, thought to be minimal (but there is no proof),are below. In both ases, and in Fig. 71, an interative method was used: After thelongest words were plaed strategially by hand, Algorithm C paked the others niely.. N Y E L N I K C M . . T N V. O . C O O L I D G E . A L A. T . S . R E T R A C R Y O N. N L . J D N A L E V E L C B. I A T F A T O . . V W O N UW L . G R I C A M . . O R I RA C J G A U L K D . B H O L ES . E N . E M L S A . N . H NH . F I H C R A M O M E . O OI R F D A R . A N O N S X F SN U E R Y E D H A R R I S O NG H R A E I Y D E N N E K R HT T S H S P G A R F I E L D OO R O O S E V E L T . . O Y JN A N A H C U B U S H . P . TP I E R C E I S E N H O W E R U H T R A H A R D I N G A R F I E L D N A L E V E L C TO B A M A D I S O N O S L I W A S H I N G T O N O S I R R A H O O V E R E A G A N A FL I N C O L N O S K C A J E F F E R S O N E R U B N A V A D A M S E Y A H S U B F O .K E N N E D Y E L N I K C M O N R O E J O H N S O N O X I N A N A H C U B R E T R A CF I L L M O R E L Y T A Y L O R O O S E V E L T R U M A N O T N I L C O O L I D G E .[Solution (b) applies an idea by whih Leonard Gordon was able to pak the names ofpresidents 1{42 with one less olumn. See A. Ross Ekler, Word Ways 27 (1994), 147;see also page 252, where OBAMA miraulously �ts into Gordon's 15 � 15 solution!℄
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7.2.2.1 ANSWERS TO EXERCISES 29 branh, hoie ofhoie of olumn to overbest olumnHuangSnyder83. To pak w given words, use primary olumns fPij;Ri;Ci;Bi;#k j 1 � i; j � 9;1 � k � w;  2 fA; C; E; M; O; P; R; T; Ugg and seondary olumns fij j 1 � i; j � 9g.There are 729 rows `Pij Ri Cj Bb ij:', where b = 3b(i � 1)=3 + dj=3e, togetherwith a row `#k i1j1:1 : : : iljl:l' for eah plaement of an l-letter word 1 : : : l intoells (i1; j1), : : : , (il; jl). Furthermore, it's important to modify step ?? of the algorithmso that the \best olumn" always has the form #k, unless it has length � 1.A brief run then establishes that COMPUTER and CORPORATE annotboth be paked. But all of the words exept CORPORATE do �t together;the (unique) solution shown is found after only 7.3 megamems, most ofwhih are needed simply to input the problem. [This exerise was inspiredby a puzzle in Sudoku Masterpiees (2010) by Huang and Snyder.℄ P M O T E U R C AT A U C R P O M EE C R O A M U T PU R M A P C E O TA O E U M T P R CC P T R O E A U MO E A M C R T P UR U C P T A M E OM T P E U O C A R85. To pak w given words, use w+m(n� 1) + (m� 1)n primary olumns f#k j 1 �k � wg and fHij;Vij j 1 � i � m; 1 � j � ng, but with Hin and Vmj omitted; Hijrepresents the edge between ells (i; j) and (i; j+1), and Vij is similar. There also are2mn seondary olumns fij; ij0 j 1 � i � m; 1 � j � ng. Eah horizontal plaement ofthe kth word 1 : : : l into ells (i; j + 1), : : : , (i; j + l) generates the option#k ij:. ij0:0 i(j+1):1 i(j+1)0:1 Hi(j+1) i(j+2):2 i(j+2)0:1 Hi(j+2) : : :Hi(j+l�1) i(j+l):l i(j+l)0:1 i(j+l+1):. i(j+l+1)0:0with 3l + 4 items, exept that `ij:. ij0:0' is omitted when j = 0 and `i(j+l+1):.i(j+l+1)0:0' is omitted when j+l = n. Eah vertial plaement is similar. For example,#1 11:Z 110:1 V11 21:E 210:1 V21 31:R 310:1 V31 41:O 410:1 51:. 510:0 (�)is the �rst vertial plaement option for ZERO, if ZERO is word #1. When m = n,however, we save a fator of 2 by omitting all of the vertial plaements of word #1.To enfore the triky ondition (ii), we also introdue 3m(n�1)+3(m�1)n rows:Hij ij0:0 i(j+1)0:1 ij:.Hij ij0:1 i(j+1)0:0 i(j+1):.Hij ij0:0 i(j+1)0:0 ij:. i(j+1):. Vij ij0:0 (i+1)j0:1 ij:.Vij ij0:1 (i+1)j0:0 (i+1)j:.Vij ij0:0 (i+1)j0:0 ij:. (i+1)j:.This onstrution works niely beause eah edge must enounter either a word thatrosses it or a spae that touhes it. (Beware of a slight glith: A valid solution to thepuzzle might have several ompatible hoies for Hij and Vij in \blank" regions.) Im-portant: The hange to step ?? in answer 83, whih branhes only on #k olumns unlessan H or V is fored, should be followed here beause it gives an enormous speedup.The over problem for our 11-word example has 1192 rows, 123 + 128 olumns,and 9127 solutions, found in 29 G�. But only 20 of those solutions are onneted; andthey yield only the three distint word plaements below. A slightly smaller retangle,7 � 9, also has three valid plaements. The smallest retangle that admits a solutionto (i) and (ii) is 5� 11; that plaement is unique, but it has two omponents:F FZ E R O S I XI U VG R T E NH H IT W O R NN E ES E V E N F T W OO N E SU N I N EZ E R O VI F EG S I X NH VT H R E E F I V ET W O IU GZ E R O HN T E NS E V E N II NX T H R E E E TF I V E S I XG N I N EH V FT W O Z E R ON N UT H R E E R F S I X F TO N E E I G H TU V T V R TR E E E E WN I N E Z E R OInstead of generating all solutions to (i) and (ii) and disarding the disonnetedones, there's a muh faster way to guarantee onnetedness throughout the searh; but
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30 ANSWERS TO EXERCISES 7.2.2.1 authorGordonauthorpro�leit requires major modi�ations to Algorithm C. Whenever no H or V is fored, we anlist all ative rows that are onneted to word #1 and not smaller than hoies thatould have been made earlier. Then we branh on them, instead of branhing on aolumn. For example, if (�) above is used to plae ZERO, it will fore H00 and H20 andV30. The next deision will be to plae either EIGHT or ONE, in the plaes where theyoverlap ZERO. (However, we'll be better o� if we order the words by dereasing length,so that for instane #1 is EIGHT and #11 is ONE.) Interested readers are enouraged towork out the instrutive details. This method needs only 630 M� to solve the exampleproblem, as it homes right in on the three onneted solutions.86. The author's best solution is 21 � 21 (but 20 � 20 may well be possible):J H B H O O V E RO B A M A U A W CH R C L I N T O N H I AN F O R D H T A Y L O RS I A C B R S TO W A S H I N G T O N U D O EN O A O R I N RJ N N C L E V E L A N DE I N G JT A F T D AF G A R F I E L D CE I S E N H O W E R I KR A T Y L E R B U S HS K Y H L P OR O O S E V E L T U M A D I S O NN N S R O EP G N N R T R U M A NM O N R O E M C K I N L E Y C DL A D X R E A G A NK N Y O MT L I N C O L N SL. Gordon �t the names of presidents 1{42 into an 18� 22 [Word Ways 27 (1994), 63℄.87. (a) Set up an exat over problem as in answer 85, but with just three words AAA,AAAA, AAAAA; then adjust the multipliities and apply Algorithm M. The two essentiallydistint answers are shown below; one of them is disonneted, hene disquali�ed.(b) Similarly, we �nd four essentially di�erent answers, only two of whih are OK:; ; ; ; ; :Algorithm M handles ase (b) with ease (5 G�). But it does not explore the spae ofpossibilities for ase (a) intelligently, and osts 591 G�.90. (The author designed these puzzles with the aid of exerises ??{??.)D A N C I N GD G C I A . NN A I G . D CG D N A C I .I . A C N G D. N G D I C AA C D . G N IC I . N D A G L I N K SL K S N IN I K S LI S N L KS L I K NK N L I S C O M P U T E RC P T M R E O UU O P R E C T ME C M U O R P TR T U P M O C EO R E T U P M CM U C E P T R OT M R O C U E PP E O C T M U R
A L G O R I T H M
A I L T G H O M RI L T G H O M R AL T G H O M R A IT G H O M R A I LG H O M R A I L TH O M R A I L T GO M R A I L T G HM R A I L T G H OR A I L T G H O M S O L V I N GS V O G L I NN O I S V G LI N L O G S VL I G V N O SV G S N I L OG S V L O N IO L N I S V S S U D O K US K O . D UD U S K . OO . D U S KU D K O . S. S U D K OK O . S D U P U Z Z L EP L E . Z UZ U P L E .E . Z U P LU E L Z . P. P U E L ZL Z . P U E100. (a) To over 2 of 4, we have 3 hoies at the root, then 3 or 2 or 1 at the nextlevel, hene (1, 3, 6) nodes at levels (0, 1, 2). To over 5 of 7, there are (1, 3, 6, 10,15, 21) nodes at levels (0, 1, : : : , 5). Thus the pro�le with olumn 1 �rst is (1, 3, 6,6 � 3, 6 � 6, 6 � 10, 6 � 15, 6 � 21). The other way is better: (1, 3, 6, 10, 15, 21, 21 � 3, 21 � 6).
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7.2.2.1 ANSWERS TO EXERCISES 31 log-onaveauthorUNIXextended hexadeimal digitshexadeimal notation, extendedbase plaementssortedpaked integersstraight trominoseondarybreak symmetryauthorolor ontrolsMererGardnerConwayseondary olumnSott
(b) With olumn 1 �rst the pro�le is (a0, a1, : : : , ap, apa1, : : : , apaq), where aj =�j+dd �. We should branh on olumn 2 �rst beause ap+1 < apa1, ap+2 < apa2, : : : , aq <apaq�p, aqa1 < apaq�p+1, : : : , aqap�1 < apaq�1. (These inequalities follow beausethe sequene haji is strongly log-onave: It satis�es the ondition a2j > aj�1aj+1 forall j � 1. See exerise MPR{125.)140. Let the given shape be spei�ed as a set of integer pairs (x; y). These pairs mightsimply be listed one by one in the input; but it's muh more onvenient to aept amore ompat spei�ation. For example, the utility program with whih the authorprepared the examples of this book was designed to aept UNIX-like spei�ations suhas `[14-7℄2 5[0-3℄' for the seven pairs f(1; 2), (4; 2), (5; 2), (6; 2), (7; 2), (5; 0), (5; 1),(5; 3)g. The range 0 � x; y < 62 has proved to be suÆient in almost all instanes, withsuh integers enoded as single \extended hexadeimal digits" 0, 1, : : : , 9, a, b, : : : , z,A, B, : : : , Z. The spei�ation `[1-3℄[1-k℄' is one way to de�ne a 3� 20 retangle.Similarly, eah of the given polyominoes is spei�ed by stating its piee name anda set T of typial positions that it might oupy. Suh positions (x; y) are spei�ed usingthe same onventions that were used for the shape; they needn't lie within that shape.The program omputes base plaements by rotating and/or reeting the elementsof that set T . The �rst base plaement is the shifted set T0 = T � (xmin; ymin), whoseoordinates are nonnegative and as small as possible. Then it repeatedly applies anelementary transformation, either (x; y) 7! (y; xmax � x) or (x; y) 7! (y; x), to everyexisting base plaement, until no further plaements arise. (That proess beomes easywhen eah base plaement is represented as a sorted list of paked integers (x�16)+y.)For example, the typial positions of the straight tromino might be spei�ed as `1[1-3℄';it will have two base plaements, f(0; 0); (0; 1); (0; 2)g and f(0; 0); (1; 0); (2; 0)g.After digesting the input spei�ations, the program de�nes the olumns of theexat problem, whih are the piee names together with the ells xy of the given shape.Finally, it de�nes the rows: For eah piee p and for eah base plaement T 0 of p,and for eah o�set (Æx; Æy) suh that T 0 + (Æx; Æy) lies fully within the given shape,there's a row that names the olumns fpg [ f(x+ Æx; y + Æy) j (x; y) 2 T 0g.(The output of this program is often edited by hand, to take aount of speialirumstanes. For example, some olumns may hange from primary to seondary;some rows may be eliminated in order to break symmetry. The author's implementationalso allows the spei�ation of seondary olumns with olor ontrols, along with baseplaements that inlude suh ontrols.)148. RUSTY. [Leigh Merer posed a similar question to Martin Gardner in 1960.℄150. As in the 3 � 20 example onsidered in the text, we an set up an exat overproblem with 12 + 60 olumns, and with rows for every potential plaement of eahpiee. This gives respetively (52, 292, 232, 240, 232, 120, 146, 120, 120, 30, 232, 120)rows for piees (O, P, : : : , Z) in Conway's nomenlature, thus 1936 rows in all.To redue symmetry, we an insist that the X ours in the upper left orner; thenit ontributes just 10 rows instead of 30. But some solutions are still ounted twie,when X is entered in the middle row. To prevent this we an add a seondary olumn`s', and append `s' to the �ve rows that orrespond to those entered appearanes; wealso append `s' to the 60 rows that orrespond to plaements where the Z is ipped over.Without those hanges, Algorithm D would use 9.76 G� to �nd 4040 solutions;with them, it needs just 2.86 G� to �nd 1010.This approah to symmetry breaking in pentomino problems is due to Dana Sott[Tehnial Report No. 1 (Prineton University Dept. of Eletrial Engineering, 10 June
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32 ANSWERS TO EXERCISES 7.2.2.1 break symmetryFairbairnPestiauBouwkampHaselgrove, ColinHaselgrove, JeniferPottsGardner1958)℄. Another way to break symmetry would be to allow X anywhere, but to restritthe W to its 30 unrotated plaements. That works almost as well: 2.87 G�.151. There's a unique way to pak P, Q, R, U, X into a 5 � 5 square, and to pakthe other seven into a 5� 7. (See below.) With independent reetions, together withrotation of the square, we obtain 16 of the 1010. There's also a unique way to pakP, R, U into a 5� 3 and the others into a 5� 9 (notied by R. A. Fairbairn in 1967),yielding 8 more. And there's a unique way to pak O, Q, T, W, Y, Z into a 5� 6, plustwo ways to pak the others, yielding another 16. (These paired 5 � 6 patterns wereapparently �rst notied by J. Pestiau; see answer 169.) Finally, the pakings in thenext exerise give us 264 deomposable 5� 12s altogether.[Similarly, C. J. Bouwkamp disovered that S, V, T, Y pak uniquely into a 4�5,while the other eight an be put into an 4� 10 in �ve ways, thus aounting for 40 ofthe 368 distint 4� 15s. See JRM 3 (1970), 125.℄
152. Without symmetry redution, 448 solutions are found in 1.21 G�. But we anrestrit X to the upper left orner, agging its plaements with `s' when entered in themiddle row or middle olumn (but not both). Again the `s' is appended to ipped Z's.Finally, when X is plaed in dead enter, we append another seondary olumn `', andappend `' to the 90 rotated plaements of W. This yields 112 solutions, after 0.34 G�.Or we ould leave X unhindered but urtail W to 1/4 of its plaements. That'seasier to do (although not quite as lever) and it �nds those 112 in 0.42 G�.Inidentally, there aren't atually any solutions with X in dead enter.154. The exat over problem analogous to that in exerise 150 has 12 + 60 olumnsand (56, 304, 248, 256, 248, 128, 1152, 128, 128, 32, 248, 128) rows. It �nds 9356solutions after 15.93 G� of omputation, without symmetry redution. But if we insistthat X be entered in the upper left quarter, by removing all but 8 of its plaements,we get 2339 solutions after just 3.93 G�. (The alternative of restriting W's rotationsis not as e�etive in this ase: 5.43 G�.) These solutions were �rst enumerated byC. B. and Jenifer Haselgrove [Eureka: The Arhimedeans' Journal 23 (1960), 16{18℄.155. (a) Obviously only k = 5 is feasible. All suh pakings an be obtained byomitting all rows of the over problem that straddle the \ut." That leaves 1507 of theoriginal 2032 rows, and yields 16 solutions after 104 M�. (Those 16 boil down to justthe two 5� 6 deompositions that we already saw in answer 151.)(b) Now we remove the 763 rows for plaements that don't touh the boundary,and obtain just the two solutions below, after 100 M�. (This result was �rst notiedby Tony Potts, who posted it to Martin Gardner on 9 February 1960.)() Now there are 1237 plaements/rows; the unique solution is found after 83 M�.(d) There are respetively (0, 9, 3, 47, 16, 8, 3, 1, 30, 22, 5, 11) solutions forpentominoes (O, P, Q, : : : , Z). (The I/O pentomino an be \framed" by the others in11 ways; but all of those pakings also have at least one other interior pentomino.)(e) Despite many ways to over all boundary ells with just seven pentominoes,none of them lead to an overall solution. Thus the minimum is eight; 207 of the 2339solutions attain it. To �nd them we might as well generate and examine all 2339.(f) The question is ambiguous: If we're willing to allow the X to touh unnamedpiees at a orner, but not at an edge, there are 25 solutions (8 of whih happen to
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7.2.2.1 ANSWERS TO EXERCISES 33 seondary olumnsDudeneyparityone-sided pentominoesReidsymmetrytorustorus, generalizedSihermanwallpapertatamiSAT
be answers to part (a)). In eah of these solutions, X also touhes the outer boundary.(The over and frontispiee of Clarke's book show a paking in whih X doesn't touhthe boundary, but it doesn't solve this problem: There's an edge where X meets I, andthere's a point where X meets P.) There also are two pakings in whih the edges of Xtouh only F, N, U, and the boundary, but not V.On the other hand, there are just 6 solutions if we allow only F, N, U, V to touhX's orner points. One of them, shown below, has X touhing the short side and seemsto math the quotation best. These 6 solutions an be found in just 47 M�, by introdu-ing 60 seondary olumns as sort of an \upper level" to the board: All plaements of Xoupy the normal �ve lower-level ells, plus up to 16 upper-level ells that touh them;all plaements of F, N, U, V are unhanged; all plaements of the other seven pieesoupy both the lower and the upper level. This niely forbids them from touhing X.
157. Restrit X to �ve essentially di�erent positions; if X is on the diagonal, also keepZ unipped by using the seond olumn `s' as in answer 152. There are respetively(16146, 24600, 23619, 60608, 25943) solutions, found in (19.8, 35.4, 27.3, 66.6, 34.5) G�.
In eah ase the tetromino an be plaed anywhere that doesn't immediately ut o�a region of one or two squares. [The twelve pentominoes �rst appeared in print whenH. E. Dudeney published The Canterbury Puzzles in 1907. His puzzle #74, \TheBroken Chessboard," presented the �rst solution shown above, with piees hekeredin blak and white. That parity restrition, with the further ondition that no piee isturned over, would redue the number of solutions to only 4, �ndable in 120 M�.℄The 60-element subsets of the hessboard that an't be paked with the pentomi-noes has been haraterized by M. Reid in JRM 26 (1994), 153{154.158. Yes, in seven essentially di�erent ways. To remove symmetry, we an makethe I vertial and put the X in the right half. (The pentominoes will have a totalof 6� 2 + 5� 3 + 4 = 31 blak squares; therefore the tetromino must be .)159. These shapes an't be paked in a retangle. But we an use the \supertile"to make an in�nite strip � � � � � � . We an also tile the plane with asupertile like , or even use a generalized torus suh as (see exerise 7{137).That supertile was used in 2009 by George Siherman to make tetromino wallpaper.160. The 2339 solutions ontain 563 that satisfy the \tatami" ondition: No four pieesmeet at any one point. Eah of those 563 leads to a simple 12-vertex graph oloringproblem; for example, the SAT methods of Setion 7.2.2.2 typially need at most twoor three kilomems to deide eah ase.
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34 ANSWERS TO EXERCISES 7.2.2.1 seondary olumnGardnerHawkinsLindonFuhlendorfsymmetriesthree-olorableIt turns out that exatly 94 are three-olorable, inluding the seond solution toexerise 155(b). Here are the three for whih W, X, Y, Z all have the same olor:
162. Both shapes have 8-fold symmetry, so we an save a fator of nearly 8 by plaingthe X in (say) the north-northwest otant. If X thereby falls on the diagonal, or inthe middle olumn, we an insist that the Z is not ipped, by introduing a seondaryolumn `s' as in answer 152. Furthermore, if X ours in dead enter| this is possibleonly for shape (i)|we use `' as in that answer to prohibit also any rotation of the W.Thus �nd (a) 10 pakings, in 3.5 G�; (b) 7302 pakings, in 353 G�; for instane; ; :It turns out that the monomino must appear in or next to a orner, as shown. [The�rst solution to shape (i) with monomino in the orner was sent to Martin Gardnerby H. Hawkins in 1958. The �rst solution of the other type was published by J. A.Lindon in Rereational Mathematis Magazine #6 (Deember 1961), 22. Shape (ii)was introdued and solved muh earlier, by G. Fuhlendorf in The Problemist: FairyChess Supplement 2, 17 and 18 (April and June, 1936), problem 2410.℄163. (Notie that width 3 would be impossible, beause every faultfree plaement ofthe V needs width 4 or more.) We an set up an exat over problem for a 4 � 19retangle in the usual way; but then we make ell (x; y + 15) idential to (3� x; y) for0 � x < 4 and 0 � y < 5, essentially making a half-twist when the pattern begins towrap around. There are 60 symmetries, and are is needed to remove them properly.The easiest way is to put X into a �xed position, and allow W to rotate at most 90Æ.This exat over problem has 850 solutions, 502 of whih are faultfree. Here'sone of the 29 strongly three-olorable ones, shown before and after its ends are joined:top: bottom:164. It's also possible to wrap two ubes of size p5�p5�p5,as shown by F. Hansson; see Fairy Chess Review 6 (1947{1948), problems 7124 and 7591. A full disussion appears inFGbook, pages 685{689.165. It's easy to set up an exat over problem in whih the ells touhing the poly-omino are primary olumns, while other ells are seondary, and with rows restrited toplaements that ontain at least one primary olumn. Postproessing an then remove
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7.2.2.1 ANSWERS TO EXERCISES 35 olor ontrolsgadgetseond deathGardnerpentominoes, shortest gamesbenhmarksHaselgroveWassermann�Osterg�ard
spurious solutions that ontain holes. Typial answers for (a) arerepresenting respetively (9, 2153, 37, 2, 17, 28, 18, 10, 9, 2, 4, 1) ases. For (b) they're
representing (16, 642, 1, 469, 551, 18, 24, 6, 4, 2, 162, 1). The total number of fenesis respetively (3120, 1015033, 8660380, 284697, 1623023, 486, 150, 2914, 15707, 2,456676, 2074), after weeding out respetively (0, 0, 16387236, 398495, 2503512, 665,600, 11456, 0, 0, 449139, 5379) ases with holes. (See MAA Fous 36, 3 (June/July2016), 26; 36, 4 (August/September 2016), 33.) Of ourse we an also make fenes forone shape by using other shapes; for example, there's a beautiful way to fene a Z with12 Ws, and a unique way to fene one pentomino with only three opies of another.166. The small fenes of answer 165(a) already meet this ondition|exept for theX, whih has no tatami fene. The large fenes for T and U in 165(b) are also good.But the other nine fenes an no longer be as large:

[The tatami ondition an be inorporated into the exat over problem by usingolor ontrols: Introdue a seondary olumn for every potential edge between tiles,with values t and f. Also introdue a primary olumn p for every orner point; p willappear only in four rows `p e:f', one for eah edge e that touhes p. In every row for theplaement of a piee, inlude the olumns `e:f' for every edge internal to that piee,and `e:t' for every edge at the boundary of that piee. Then every point will be nextto a nonedge. However, for this exerise it's best simply to apply the tatami onditiondiretly to eah ordinary solution, before postproessing for hole-removal.℄167. This problem is readily solved with the \seond death" algorithm of ex-erise 10, by letting the four designated piee names be the only primaryolumns. The answers to both (a) and (b) are unique. [See M. Gardner,Sienti� Amerian 213, 4 (Otober 1965), 96{102, for Golomb's onjeturesabout minimum bloking on�gurations on larger boards.℄168. This exerise, with 3 � 30, 5 � 18, 6 � 15, and 9 � 10 retangles, yields fourinreasingly diÆult benhmarks for the exat over problem, having respetively (46,686628, 2562928, 10440433) solutions. Symmetry an be broken as in exerise 152.The 3 � 30 ase was �rst resolved by J. Haselgrove; the 9 � 10 pakings were �rstenumerated by A. Wassermann and P. �Osterg�ard, independently. [See New Sientist
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36 ANSWERS TO EXERCISES 7.2.2.1 Meeus180Æ rotationentral symmetryPatentPestiauGuyhekeringparityparityexat overfatoring
12 (1962), 260{261; J. Meeus, JRM 6 (1973), 215{220; and FGbook pages 455, 468{469.℄ Algorithm D needs (.006, 5.234, 15.576, 63.386) teramems to �nd them. (I planto give statistis for improved versions too; please stay tuned.)169. Two solutions are now equivalent only when related by 180Æ rotation. Thus thereare 2 � 2339=64 = 73:09375 solutions per problem, on average. The minimum (42) andmaximum (136) solution ounts our for the ases(a) ; (b) :[In U.S. Patent 2900190 (1959, �led 1956), J. Pestiau remarked that these 64 problemswould give his pentomino puzzle \unlimited life and utility."℄170. There are no ways to �ll 2� 20; 4� 66 ways to �ll 4� 10;4�84 ways to �ll 5�8. None of the solutions are symmetrial.[See R. K. Guy, Nabla 7 (1960), 99{101.℄175. Most of the hexominoes will have three blak ells and three white ells, in any\hekering" of the board. However, eleven of them (shown as darker gray in theillustration) will have a two-to-four split. Thus the total number of blak ells willalways be an even number between 94 and 116, inlusive. But a 210-ell retanglealways ontains exatly 105 blak ells. [See The Problemist: Fairy Chess Supplement2, 9{10 (1934{1935), 92, 104{105; Fairy Chess Review 3, 4{5 (1937), problem 2622.℄Benjamin's triangular shape, on the other hand, has 1+3+5+� � �+19 = 102 = 100ells of one parity and �202 � � 102 = 110 of the other. It an be paked with the 35hexominoes in a huge number of ways, probably not feasible to ount exatly.176. The parity onsiderations in answer 175 tell us that this is possible only for the\unbalaned" hexominoes, suh as the one shown. And in fat, Algorithm D readily�nds solutions for all eleven of those, too numerous to ount. Here's an example:
[See Fairy Chess Review 6 (April 1947) through 7 (June 1949), problems 7252, 7326,7388, 7460, 7592, 7728, 7794, 7865, 7940, 7995, 8080. See also the similar problem 7092.℄177. Eah astle must ontain an odd number of the eleven unbalaned hexominoes(see answer 175). Thus we an begin by �nding all sets of seven hexominoes that anbe paked into a astle: This amounts to solving �111 �+ �113 � + �115 �+ �117 � = 968 exatover problems, one for eah potential hoie of unbalaned elements. Eah of thoseproblems is fairly easy; the 24 balaned hexominoes provide seondary olumns, whilethe astle ells and the hosen unbalaned elements are primary. In this way we obtain39411 suitable sets of seven hexominoes, with only a moderate amount of omputation.That gives us another exat over problem, having 35 olumns and 39411 rows.This seondary problem turns out to have exatly 1201 solutions (found in just 115 G�),eah of whih leads to at least one of the desired overall pakings. Here's one:
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7.2.2.1 ANSWERS TO EXERCISES 37 HanssonPovahHanssonSihermanstrongly three-olorabledynami programmingIn this example, two of the hexominoes in the rightmost astle an be ipped vertially;and of ourse the entire ontents of eah astle an independently be ipped horizon-tally. Thus we get 64 pakings from this partiular partition of the hexominoes (ormaybe 64 � 5!, by permuting the astles), but only two of them are \really" distint.Taking multipliities into aount, there are 1803 \really" distint pakings altogether.[Frans Hansson found the �rst way to pak the hexominoes into �ve equal shapes,using as the ontainer; see Fairy Chess Review 8 (1952{1953), problem 9442. Hisontainer admits 123189 suitable sets of seven, and 9298602 partitions into �ve suitablesets instead of only 1201. Even more pakings are possible with the ontainer ,whih has 202289 suitable sets and 3767481163 partitions!℄In 1965, M. J. Povah paked all of the hexominoes into ontainers of shape ,using seven sets of �ve; see The Games and Puzzles Journal 2 (1996), 206.178. By exerise 175, mmust be odd, and less than 35. F. Hansson posed this questionin Fairy Chess Review 7 (1950), problem 8556. He gave a solution for m = 19,;and laimed without proof that 19 is optimum. The 13 dark gray hexominoes in thisdiagram annot be plaed in either \arm"; so they must go in the enter. (Medium grayindiates piees that have parity restritions in the arms.) Thus we annot havem � 25.When m = 23, there are 39 ways to plae all of the hard hexominoes, suh as:However, none of these is ompletable with the other 22; hene m � 21.When m = 21, the hard hexominoes an be plaed in 791792 ways, withoutreating a region whose size isn't a multiple of 6 and without reating more than oneregion that mathes a partiular hexomino. Those 791792 ways have 69507 essentiallydistint \footprints" of oupied ells, and the vast majority of those footprints appearto be impossible to �ll. But in 2016, George Siherman found the remarkable paking;whih not only solvesm = 21, it yields solutions for m = 19, 17, 15, 11, 9, 7, 5, and 3 bysimple modi�ations. Siherman also found separate solutions for m = 13 and m = 1.179. Stead's original solution makes a very pleasant three-olored design:[See Fairy Chess Review 9 (1954), 2{4; also FGbook, pages 659{662.℄This problem is best solved via the tehniques of dynami programming (Se-tion 7.7), not with Algorithm D, beause numerous subproblems are equivalent.181. Make rows for the pentominoes in ells xy for 0 � x < 8, 0 � y < 10 as in exerise140, and also for the tetrominoes in ells xy for 1 � x < 7, 1 � y < 9. In the latterrows inlude also olumns xy0:0 for all ells xy in the tetromino, as well as xy0:1 for
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all other ells xy touhing the tetromino, where the olumns xy0 for 0 � x < 8 and0 � y < 10 are seondary. We an also assume that the enter of the X pentomino liesin the upper left orner. There are 168 solutions, found after 1.5 T� of omputation.(Another way to keep the tetrominoes from touhing would be to introdue seondaryolumns for the verties of the grid. Suh olumns are more diÆult to implement,however, beause they behave di�erently under the rotations of answer 140.)[Many problems that involve plaing the tetrominoes and pentominoes togetherin a retangle were explored by H. D. Benjamin and others in the Fairy Chess Review,beginning already with its predeessor The Problemist: Fairy Chess Supplement (1936),problem 2171. But this partiular question seems to have been raised �rst by MihaelKeller in World Game Review 9, (1989), xx.℄182. At present, not a single solution to this puzzle is known, although intuitionsuggests that enormously many of them ought to be possible. P. J. Torbijn and J. Meeus[JRM 32 (2003), 78{79℄ have exhibited solutions for retangles of sizes 6� 45, 9� 30,10 � 27, and 15 � 18.198. (a) Represent the tree as a sequene a0a1 : : : a2n+1 of nested parentheses; thena1 : : : a2n will represent the orresponding root-deleted forest, as in Algorithm 7.2.1.6P.The left boundary of the orresponding parallomino is obtained by mapping eah `('into N or E, aording as it is immediately followed by `(' or `)'. The right boundary,similarly, maps eah `)' into N or E aording as it is immediately preeded by `)' or`('. For example, the parallomino for forest 7.2.1.6{(2) is shown below with part (d).(b) This series wxy + w2(xy2 + x2y) + w3(xy3 + 2x2y2 + x3y) + � � � an bewritten wxyH(w;wx;wy), where H(w; x; y) = 1=(1 � x � y � G(w; x; y)) generatesa sequene of \atoms" orresponding to plaes x, y, G where the juxtaposed boundarypaths have the respetive forms EE, NN, or NEhinneriEN. The area is thereby omputed bydiagonals between orresponding boundary points. (In the example from (a), the area is1+1+1+1+2+2+2+2+2+2+2+2+2+1+1; there's an \outer" G, whoseH is xyxyGy,and an \inner"G, whoseH is xyyxyxxyy.) Thus we an write G as a ontinued fration,G(w; x; y) = wxy/(1�x�y�wxy=(1�wx�wy�w3xy=(1�w2x�w2y�w5xy=( � � � )))):[A ompletely di�erent form is also possible, namely G(w; x; y) = xJ1(w;x;y)J0(w;x;y) , whereJ0(w; x; y) = 1Xn=0 (�1)nynwn(n+1)=2(1�w)(1�w2) : : : (1� wn)(1� xw)(1� xw2) : : : (1� xwn) ;J1(w; x; y) = 1Xn=1 (�1)n�1ynwn(n+1)=2(1�w)(1�w2) : : : (1� wn�1)(1� xw)(1� xw2) : : : (1� xwn) :This form, derived via horizontal slies, disguises the symmetry between x and y.℄() Let G(w; z) = G(w; z; z). We want [zn℄G0(1; z), where di�erentiation is withrespet to the �rst parameter. From the formulas in (b) we know that G(1; z) =z(C(z)� 1), where C(z) = (1�p1�4z)=(2z) generates the Catalan numbers. Partialderivatives �=�w and �=�z then give G0(1; z) = z2=(1�4z) andG0(1; z) = 1=p1�4z�1.(d) This problem has four symmetries, beause we an reet about either diag-onal. When n = 5, Algorithm D �nds 4 � 801 solutions, of whih 4 � 129 satisfy thetatami ondition, and 4�16 are strongly three-olorable. (The tatami ondition is easilyenfored via seondary olumns in this ase, beause we need only stipulate that theupper right orner of one parallomino doesn't math the lower left orner of another.)
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When n = 6 there are oodles and oodles of solutions. All of the trees/parallominoesthereby appear together in an attrative ompat pattern.
2112 5344 85 a63f 78 976a 78 b93f 6a 6a db f3f 3f e ed3f e3f

[Referenes: D. A. Klarner and R. L. Rivest, Disrete Math. 8 (1974), 31{40;E. A. Bender, Disrete Math. 8 (1974), 219{226; I. P. Goulden and D. M. Jakson,Combinatorial Enumeration (New York: Wiley, 1983), exerise 5.5.2; M.-P. Delest andG. Viennot Theoretial Comp. Si. 34 (1984), 169{206; W.-J. Woan, L. Shapiro, andD. G. Rogers, AMM 104 (1997), 926{931; P. Flajolet and R. Sedgewik, AnalytiCombinatoris (Cambridge Univ. Press, 2009), 660{662.℄200. The same ideas apply, but with three oordinates instead of two, and with theelementary transformations (x; y; z) 7! (y; xmax � x; z), (x; y; z) 7! (y; z; x).Piees (1, 2, : : : , 7) have respetively (12, 24, 12, 12, 12, 12, 8) base plaements,leading to 144 + 144 + 72 + 72 + 96 + 96 + 64 rows for the 3� 3� 3 problem.202. It's tempting, but wrong, to try to ompute the Somap by onsidering only the240 solutions that have the tee in a �xed position and the law restrited; the pairwisesemidistanes between these speial solutions will miss many of the atual adjaenies.To deide if u���v, one must ompare u to the 48 solutions equivalent to v.(a) The strong Somap has vertex degrees 7167519431359263145015; so an \average"solution has (1 � 7+7 � 6+ � � �+15 � 0)=240 � 2:57 strong neighbors. (The unique vertexof degree 7 has the level-by-level struture 355335342 166175442 176776422 from bottom to top.)The full Somap has vertex degrees 21218116915131410131612171112101692882672562651641733211101, giving an average degree � 9:14. (Its unique isolated vertexis 344336322 447566562 177117552, and its only pendant vertex is 342332352 744566552 774716116. Two other noteworthy solutions,344336366 447156222 177157552 and 344336366 447156255 177157222, are the only ones that ontain the two-piee substruture .)(b) The Somap has just two omponents, namely the isolated vertex and the239 others. The latter has just three biomponents, namely the pendant vertex, itsneighbor, and the 237 others. Its diameter is 8 (or 21, if we use the edge lengths 2 and 3).The strong Somap has a muh sparser and more intriate struture. Besidesthe 15 isolated verties, there are 25 omponents of sizes f8 � 2; 6 � 3; 4; 3 � 5; 2 � 6;7; 8; 11; 16; 118g. Using the algorithm of Setion 7.4.1, the large omponent breaks downinto nine biomponents (one of size 2, seven of size 1, the other of size 109); the 16-vertex omponent breaks into seven; and so on, totalling 58 biomponents altogether.[The Somap was �rst onstruted by R. K. Guy, J. H. Conway, and M. J. T.Guy, without omputer help. It appears on pages 910{913 of Berlekamp, Conway, andGuy's Winning Ways, where all of the strong links are shown, and where enough otherlinks are given to establish near-onnetedness. Eah vertex in that illustration hasbeen given a ode name; for example, the �ve speial solutions mentioned in part (a)have ode names B5f, R7d, LR7g, YR3a, and R3, respetively.℄204. Let the ubie oordinates be 51z, 41z, 31z, 32z, 33z, 23z, 13z, 14z, 15z, for z 2f1; 2; 3g. Replae matrix A of the exat over problem by a simpli�ed matrix A0 havingonly olumns (1; 2; 3; 4; 5; 6; 7; S), where S is the sum of all olumns xyz of A where xyz is
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odd. Any solution to A yields a solution to A0 with olumn sums (1; 1; 1; 1; 1; 1; 1; 10).But that's impossible, beause the rows of A0 all have the forms `1 [S℄', `2 [S℄ [S℄',`3 [S℄ [S℄', `4 [S℄', `5 [S℄', `6 [S℄', `7 [S℄'. [See the Martin Gardner referene in answer 213.℄205. (a) The solution ounts, ignoring symmetry redution, are: 4 � 5 orral (2),gorilla (2), smile (2), 3 � 6 orral (4), fae (4), lobster (4), astle (6), benh (16),bed (24), doorway (28), piggybank (80), �ve-seat benh (104), piano (128), shift 2(132), 4� 4 oop (266), shift 1 (284), bathtub (316), shift 0 (408), grand piano (526),tower 4 (552), tower 3 (924), anal (1176), tower 2 (1266), ouh (1438), tower 1 (1520),stepping stones (2718). So the 4�5 orral, gorilla, and smile are tied for hardest, whilestepping stones are the easiest. (The bathtub, anal, bed, and doorway eah have foursymmetries; the ouh, stepping stones, tower 4, shift 0, benh, 4 � 4 oop, astle,�ve-seat benh, piggybank, lobster, piano, gorilla, fae, and smile eah have two. Toget the number of essentially distint solutions, divide by the number of symmetries.)(b) Notie that the anal, bed, and doorway appear also in (a), as does the dryer(whih is the same as \stepping stones"). The solution ounts are: W-wall (0), almostW-wall (12), bed (24), apartments 2 (28), doorway (28), lip (40), tunnel (52), zigzagwall 2 (52), zigzag wall 1 (92), underpass (132), hair (260), stile (328), �sh (332),apartments 1 (488), gold�sh (608), anal (1176), steps (2346), dryer (2718); hene\almost W-wall" is the hardest of the possible shapes. Notie that the dryer, hair,steps, and zigzag wall 2 eah have two symmetries, while the others in Fig. 80(b) allhave four. The 3� 3� 3 ube, with its 48 symmetries, probably is the easiest possibleshape to make from the Soma piees.[Piet Hein himself published the tower 1, shift 2, stile, and zigzag wall 1 in hisoriginal patent; he also inluded the bathtub, bed, anal, astle, hair, steps, stile,stepping stones, shift 1, �ve-seat benh, tunnel, W-wall, and both apartments in hisbooklet for Parker Brothers. Parker Brothers distributed four issues of The SOMA RAddit in 1970 and 1971, giving redit for new onstrutions to Noble Carlson (�sh,lobster), Mrs. C. L. Hall (lip, underpass), Gerald Hill (towers 2{4), Craig Kenworthy(gold�sh), John W. M. Morgan (ot, fae, gorilla, smile), Rik Murray (grand piano),and Dan Smiley (doorway, zigzag wall 2). Sivy Farhi published a booklet alledSomaubes in 1977, ontaining the solutions to more than one hundred Soma ubeproblems inluding the benh, the ouh, and the piggybank.℄206. By eliminating symmetries, there are (a) 421 distint ases with ubies omitted onboth layers, and (b) 129 with ubies omitted on only one layer. All are possible, exeptin the one ase where the omitted ubies disonnet a orner ell. The easiest of type (a)omits (111; 112; 311) and has 3599 solutions; the hardest omits (211; 222; 231) and has45�2 solutions. The easiest of type (b) omits (111; 151; 311) and has 3050 solutions; thehardest omits (211; 221; 251) and has 45 � 2 solutions. (The two examples illustratedhave 821� 2 and 68� 4 solutions. Early Soma solvers seem to have overlooked them!)207. (a) The 60 distint ases are all quite easy. The easiest has 3497 solutions and uses(113; 123; 213) on the top level; the hardest has 268 solutions and uses (113; 223; 313).(b) Sixteen of the 60 possibilities are disonneted. Three of the others are alsoimpossible|namely those that omit (12z; 24z; 32z) or (21z; 22z; 23z) or (21z; 22z; 24z).The easiest has 3554 solutions and omits (11z; 12z; 34z); the hardest of the possibleshas only 8 solutions and omits (11z; 23z; 24z).(The two examples illustrated have 132� 2 and 270� 2 solutions.)
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208. All but 216 are realizable. Five ases have unique (1� 2) solutions:
210. Every polyube has a minimum enlosing box for whih it touhes all six faes. Ifthose box dimensions a�b� aren't too large, we an generate suh polyubes uniformlyat random in a simple way: First hoose 27 of the ab possible ubies; try again if thathoie doesn't touh all faes; otherwise try again if that hoie isn't onneted.For example, when a = b =  = 4, about 99.98% of all hoies will touh all faes,and about 0.1% of those will be onneted. This means that about :001�6427� � 8� 1014of the 27-ubie polyubes have a 4� 4� 4 bounding box. Of these, about 5.8% an bebuilt with the seven Soma piees.But most of the relevant polyubes have a larger bounding box; and in suhases the hane of solvability goes down. For example, � 6:2�1018 ases have boundingbox 4� 5� 5; � 3:3� 1018 ases have bounding box 3� 5� 7; � 1:5� 1017 ases havebounding box 2� 7� 7; and only 1% or so of those ases are solvable.Setion 7.2.3 will disuss the enumeration of polyubes by their size.212. Eah interior position of the penthouse and pyramid that might or might notbe oupied an be treated as a seondary olumn in the orresponding exat overproblem. We obtain 10 � 2 solutions for the stairase; (223; 286) � 8 solutions for thepenthouse with hole at the (bottom;middle); and 32 � 2 solutions for the pyramid, ofwhih 2� 2 have all three holes on the diagonal and 3� 2 have no adjaent holes.213. A full simulation of gravity would be quite omplex, beause piees an beprevented from tipping with the help of their neighbors above and/or at their side.If we assume a reasonable oeÆient of frition and an auxiliary weight at the top, itsuÆes to de�ne stability by saying that a piee is stable if and only if at least one ofits ubies is immediately above either the oor or a stable piee.The given shapes an be paked in respetively 202� 2, 21� 2, 270� 2, 223� 8,and 122 � 2 ways, of whih 202 � 2, 8 � 2, 53 � 2, 1 � 8, and 6 � 2 are stable. Goingfrom the bottom level to the top, the layers 4.3... ...7.6 453453766776 5534.1... ... 222211... ... give a deently stable ot; afragile vulture omes from 2.3... ... .7. 233415476776 213215455466; a deliate mushroom omes from ... .7. ... 554776276 5345.4266 333214211; anda deliate antilever from .2. .2. .2. .2. .5. .5. ...557... 661377447 361361344. The author's herished set of Skj�de SkjernSoma piees, made of rosewood and purhased in 1967, inludes a small square basethat niely stabilizes both mushroom and antilever. The vulture needs a book on top.[The asserole and ot are due respetively to W. A. Kustes and J. W. M. Morgan.The mushroom, whih is hollow, is the same as B. L. Shwartz's \penthouse," butturned upside down; John Conway notied that it then has a unique stable solution.See Martin Gardner, Knotted Doughnuts (1986), Chapter 3.℄214. In�nitely many ubies lie behind a wall; but it suÆes to onsider only the hiddenones whose distane is at most 27 � v from the v visible ones. For example, if the W-wall has oordinates as in answer 204, we have v = 25 and the two invisible ubies aref332; 331g. We're allowed to use any of f241; 242; 251; 252; 331; 332; 421; 422; 521; 522gat distane 1, and f341; 342; 351; 352; 431; 432; 531; 532; 621; 622g at distane 2. (Thestated projetion doesn't have left-right symmetry.) The X-wall is similar, but it hasv = 19 and potentially (9, 7, 6, 3, 3, 2, 1) hidden ubies at distanes 1 to 7 (omittingases like 450, whih is invisible at distane 2 but \below ground").
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Using seondary olumns for the optional ubies, we must examine eah solutionto the exat over problem and rejet those that are disonneted or violate the gravityonstraint of exerise 213. Those ground rules yield 282 solutions for the W-wall, 612for the X-wall, and a whopping 1,130,634 for the ube itself. (These solutions �llrespetively 33, 275, and 13842 di�erent sets of ubies.) Here are examples of some ofthe more exoti shapes that are possible, as seen from behind and below:There also are ten surprising ways to make the ube fa�ade if we allow hidden \un-derground" ubies: The remarkable onstrution ... ... ... ..5..5 4724..66. .55... 77247.46. .6. ... 322331311... ... raises the entireube one level above the oor, and is gravitationally stable, by exerise 213's riteria!Unfortunately, though, it falls apart|even with a heavy book on top.[The false-front idea was pioneered by Jean Paul Franillon, whose onstrutionof a fake W-wall was announed in The SOMA R Addit 2, 1 (spring 1971).℄215. (a) Eah of 13 solutions ours in 48 equivalent arrangements. To remove thesymmetry, plae piee 7 horizontally, either (i) at the bottom or (ii) in the middle.In ase (ii), add a seondary `s' olumn as in answer 150, and append `s' also to allplaements of piee 6 that touh the bottom more than the top. Run time: 400 K�.[This puzzle was number 39 in Ho�mann's Puzzles Old and New (1893). Another3 � 3 � 3 polyube dissetion of historial importane, \Mikusinski's Cube," wasdesribed by Hugo Steinhaus in the 2nd edition of his Mathematial Snapshots (1950).That one onsists of the ell and the two twist piees of the Soma ube, plus thepentaubes B, C, and f of exerise 220; it has 24 symmetries and just two solutions.℄(b) Yes: Mihael Reid, ira 1995, found the remarkable setwhih also makes 9 � 3 � 1 uniquely(!). George Siherman arried out an exhaustiveanalysis of all relevant at polyominoes in 2016, �nding exatly 320 sets that are uniquefor 3� 3� 3, of whih 19 are unique also for 9� 3� 1. In fat, one of those 19,� � � � � ;is the long-sought \Holy Grail" of 3 � 3 � 3 ube deompositions: Its piees not onlyhave atness and double uniqueness, they are nested (!!). There's also Yoshiya Shindo's;known as the \Neo Diabolial Cube" (1995); notie that it has 24 symmetries, not 48.216. This piee an be modeled by a polyube with 20 + 20 + 27 + 3 ubies, wherewe want to pak nine of them into a 9� 9� 9 box. Divide that box into 540 primaryells (whih must be �lled) and 189 seondary ells (whih will ontain the 27 ubiesof the simulated dowels). Answer 200 now yields an exat over problem with 1536rows; and Algorithm D needs only 33 M� to disover 24 solutions, all equivalent bysymmetry. (Or we ould modify answer 200 so that all o�sets have multiples of 3 ineah oordinate; then there would be only 192 rows, and the running time would godown to 8 M�.) One paking is 114224233 518664739 588569779, with dowels at 040103000 050728090 060000000.
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One might be tempted to fator this problem, by �rst looking at all ways to paknine solid ell-trominoes into a 3�3�3 box. That problem has 5328 solutions, found inabout 5 M�; and after removing the 48 symmetries we're left with just 111 solutions,into whih we an try to model the holes and dowels. But suh a proedure is ratherompliated, and it doesn't really save muh time, if any.Ronald Kint-Bruynseels, who designed this remarkable puzzle, also found that it'spossible to drill holes in the solid ubies, parallel to the other two, without destroyingthe uniqueness of the solution(!). [Cubism For Fun 75 (2008), 16{19; 77 (2008), 13{18.℄217. The straight tetraube and the square tetraube , together withthe size-4 Soma piees in (30), make a omplete set.We an �x the tee's position in the twin towers, saving a fator of 32; and eahof the resulting 40 solutions has just one twist with the tee. Hene there are �veinequivalent solutions, and 5� 256 altogether.The double law has 63� 6 solutions. But the annon, with 1� 4 solutions, anbe formed in essentially only one way. (Hint: Both twists are in the barrel.)There are no solutions to `up 3'. But `up 4' and `up 5' eah have 218�8 solutions(related by turning them upside down). Gravitationally, four of those 218 are stablefor `up 5'; the stable solution for `up 4' is unique, and unrelated to those four.Referenes: Jean Meeus, JRM 6 (1973), 257{265; Nob Yoshigahara, Puzzle WorldNo. 1 (San Jose: Ishi Press International, 1992), 36{38.218. All but 48 are realizable. The unique \hardest" realizable ase, , has 2 � 2solutions. The \easiest" ase is the 2� 4� 4 uboid, with 11120 = 695� 16 solutions.220. (a) A, B, C, D, E, F, a, b, , d, e, f, j, k, l, : : : , z. (It's a little hard to see whyreetion doesn't hange piee `l'. In fat, S. S. Besley one patented the pentaubesunder the impression that there were 30 di�erent kinds! See U.S. Patent 3065970(1962), where Figs. 22 and 23 illustrate the same piee in slight disguise.)Historial notes: R. J. Frenh, in Fairy Chess Review 4 (1940), problem 3930,was �rst to show that there are 23 di�erent pentaube shapes, if mirror images areonsidered to be idential. The full ount of 29 was established somewhat later byF. Hansson and others [Fairy Chess Review 6 (1948), 141{142℄; Hansson also ountedthe 35 + 77 = 112 mirror-inequivalent hexaubes. Complete ounts of hexaubes (166)and heptaubes (1023) were �rst established soon afterwards by J. Niemann, A. W.Baillie, and R. J. Frenh [Fairy Chess Review 7 (1948), 8, 16, 48℄.(b) The uboids 1�3�20, 1�4�15, 1�5�12, and 1�6�10 have of ourse alreadybeen onsidered. The 2� 3� 10 and 2� 5� 6 uboids an be handled by restriting Xto the bottom upper left, and sometimes also restriting Z, as in answers 150 and 152;we obtain 12 solutions (in 350 M�) and 264 solutions (in 2.5 G�), respetively.The 3 � 4 � 5 uboid is more diÆult. Without symmetry-breaking, we obtain3940 � 8 solutions in about 200 G�. To do better, notie that X an appear in 11essentially di�erent positions: (1+1�)(1+1�) in a 4�5 plane, 2�+2�� in a 3�5 plane,and 2� + 1�� in a 3 � 4 plane, where `�' denotes a ase where symmetry needs to bebroken down further beause X is �xed by some symmetry. With 11 separate runs wean �nd (923+558=2+402=2+376=4)+(1268=2+656=2+420=4+752=4)+(1480=2+720=2 + 352=4) = 3940 solutions, in 4:9 + 3:3 + 3:1 + 2:4 + � � � + 2:1 � 50 G�.[The fat that solid pentominoes will �ll these uboids was �rst demonstrated byD. Nixon and F. Hansson, Fairy Chess Review 6 (1948), problem 7560 and page 142.
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Exat enumeration was �rst performed by C. J. Bouwkamp in 1967; see J. Combina-torial Theory 7 (1969), 278{280, and Indagationes Math. 81 (1978), 177{186.℄() Almost any subset of 25 pentaubes an probably do the job. But a partiu-larly nie one is obtained if we simply omit o, q, s, and y, namely those that don't �t in a3�3�3 box. R. K. Guy proposed this subset in Nabla 7 (1960), 150, although he wasn'table to pak a 5� 5� 5 at that time. The same idea ourred independently to J. E.Dorie, who trademarked the name \Dorian ube" [U.S. Trademark 1,041,392 (1976)℄.An amusing way to form suh a ube is to make 5-level prisms in the shapes of theP, Q, R, U, and X pentominoes, using piees fa; e; j;m;wg, ff; k; l; p; rg, fA; d;D;E; ng,f;C;F; u;vg, fb;B; t; x; zg; then use the paking in answer 151(!). This solution anbe found with six very short runs of Algorithm D, taking only 300 megamems overall.Another nie way, due to Torsten Sillke, is more symmetrial: There are 70,486ways to partition the piees into �ve sets of �ve that allow us to build an X-prism inthe enter (with piee x on top), surrounded by four P-prisms.One an also assemble a Dorian ube from �ve uboids, using one 1� 3� 5, one2�2�5, and three 2�3�5s. Indeed, there are zillions more ways, too many to ount.221. (a) Make an exat over problem in whih a and A, b and B, : : : , f and F arerequired to be in symmetrial position; there are respetively (86; 112; 172; 112; 52; 26)plaements for suh 10-ubie \super-piees." Furthermore, the author deided to forepiee m to be in the middle of the top wall. Solutions were found immediately! So pieex was plaed in the exat enter, as an additional desirable onstraint. Then there wereexatly 20 solutions; the one below has also n, o, and u in mirror-symmetrial loations.(b) The super-piees now have (59; 84; 120; 82; 42; 20) plaements; the author alsooptimistially fored j, k, and m to be symmetrial about the diagonal, with m in thenorthwest orner. A long and apparently fruitless omputation (34.3 teramems) ensued;but|hurrah|two losely related solutions were disovered at the last minute.() This omputation, due to Torsten Sillke [see Cubism For Fun 27(1991), 15℄, goes muh faster: The quarter-of-a-box shown here an be pakedwith seven non-x pentaubes in 55356 ways, found in 1.3 G�. As in answer 177,this yields a new exat over problem, with 33412 di�erent rows. Then 11.8 G�more omputation disovers seven suitable partitions into four sets of seven, one ofwhih is illustrated here.l l l q q q ql o o o o o qf f u u u F FD f u m u F dl l f D D D m m m d d d F q ql f f C C D D m d d   F F rv v v B C C C x    b r r rv w B B B B x x x b b b b r zv w w A A A A x a a a a z z zk k w w E E A n a e e y z j jk k s s s E E n e e y y y y js E n n n e ys s p t t t yk s p p t j yk k p p t j j(a)

m o o o o o sm m x q q q qm x x x b b br n x e e b am m m r r n e e a a a a b q st m r r n n n e a D D D b q st t t r E p p p v C C D D s st w w E E E p p v F C C C s zw w B E A A v v v F F F z z zw l B B A d  f f k k F z j jl l B A A d   f k k k u u jA d d  f f kB B d  u u ul l l y u j ul y y y y j j(b)
v E z z t A AE E z s t t tE z z s t F Ff f s s a F kv E E f B f s w a k k k F t Av E f f B B w w a k k D F F Av v v B B w w x a a D D y A Au u u j j j x x x D D y y y yu p u j m j C x  d o o o o op p e m m m C b  d d n n n lp p e e m C C b   d d n l le C q b b  de e q b r n np e q r r r lp q q r l l l()
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7.2.2.1 ANSWERS TO EXERCISES 45 K�unzellFarhiX pentomino222. As in previous exerises, the key is to redue the searh spae drastially,by asking for solutions of a speial form. (Suh solutions aren't unlikely, beausepentaubes are so versatile.) Here we an break the given shape into four piees:Three modules of size 33+23 to be paked with seven pentaubes, and one of size43�3 �23 to be paked with eight pentaubes. The �rst problem has 13,587,963solutions, found with 2.5 T� of omputation; they involve 737,695 distint setsof seven pentaubes. The larger problem has 15,840 solutions, found with 400 M� andinvolving 2075 sets of eight. Exatly overing those sets yields 1,132,127,589 suitablepartitions; the �rst one found, fa;A; b; ; j; q; t; yg, fB;C; d;D; e; k; og, fE; f; l; n; r; v; xg,fF;m;p; s; u;w; zg, works �ne. (We need only one partition, so we needn't have om-puted more than a thousand or so solutions to the smaller problem.)Pentaubes galore: Sine the early 1970s, Ekkehard K�unzell and Sivy Farhi haveindependently published booklets that ontain hundreds of solved pentaube problems.239. First we realize that every edge of the square must touh at least three piees;hene the piees must in fat form a 3 � 3 arrangement. Consequently any orretplaement would also lead to a plaement for nine piees of sizes (17 � k) � (20 � k),: : : , (24 � k) � (25 � k), into a (65 � 3k) � (65 � 3k) box. Unfortunately, however, ifwe try, say, k = 16, Algorithm D quikly gives a ontradition.But aha|a loser look shows that the piees have rounded orners. Indeed,there's just enough room for piees to get lose enough together so that, if they trulywere retangles, they'd make a 1� 1 overlap at a orner.So we an take k = 13 and make nine piees of sizes 4�7, : : : , 11�12, onsistingof retangles minus their orners. Those piees an be paked into a 26�26 square, as ifthey were polyominoes (see exerise 140), but with the individual ells of the enlosingretangle treated as seondary olumns beause they needn't be overed. (Well, theeight ells adjaent to orners an be primary.) We an save a fator of 8 by insistingthat the 9� 11 piee appear in the upper left quarter, with its long side horizontal.Algorithm D solves that problem in 620 gigamems|but it �nds 43 solutions,most of whih are unusable, beause the missing orners give too muh exibility. Theunique orret solution is easily identi�ed, beause a 1� 1 overlap between retanglesin one plae must be ompensated by a 1�1 empty ell between retangles in another.The resulting ross pattern (like the X pentomino) ours in just one of the 43.240. Let there be mn primary olumns pij for 0 � i < m and 0 � j < n, one for eahell that should be overed exatly one. Also introdue m primary olumns xi for0 � i < m, as well as n primary olumns yj for 0 � j < n. The exat over problemhas �m+12 � � �n+12 � rows, one for eah subretangle [a : : b)� [ : : d) with 0 � a < b � mand 0 �  < d � n. The row for that subretangle ontains 2 + (b� a)(d� ) olumns,namely xa, y, and pij for a � i < b,  � j < d. The solutions orrespond to redueddeompositions when we insist that eah xi be overed [1 : : n℄ times and that eah yjbe overed [1 : :m℄ times. (We an save a little time by omitting x0 and y0.)The 3�5 problem has 20165 solutions, found in 18 M�. They inlude respetively(1071, 3816, 5940, 5266, 2874, 976, 199, 22, 1) ases with (7, 8, : : : , 15) subretangles.241. The minimum is m + n � 1. Proof (by indution): The result is obvious whenm = 1 or n = 1. Otherwise, given a deomposition into t subretangles, k � 1 of themmust be on�ned to the nth olumn. If two of those k are ontiguous, we an ombinethem; the resulting dissetion of order t � 1 redues to either (m � 1) � n or m � n,hene t� 1 � (m� 1) + n� 1. On the other hand if none of them are ontiguous, theredution of the �rst n� 1 olumns is m� (n� 1); hene t � m+ (n� 1)� 1 + k.
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46 ANSWERS TO EXERCISES 7.2.2.1 tatami onditionShererGrahamClose examination of this proof shows that a redued deomposition has minimumorder t if and only if its boundary edges form m� 1 horizontal lines and n� 1 vertiallines that don't ross eah other. (In partiular, the \tatami ondition" is satis�ed; seeexerise 7.1.4{215.)242. Simply remove the o�ending subretangles, so that the over problem has only(�m+12 ��1)(�n+12 ��1) rows. Now there are 13731 3�5 solutions, found in 11 M�, and(410, 1974, 3830, 3968, 2432, 900, 194, 22, 1) ases with (7, 8, : : : , 15) subretangles.243. Introdue additional primary olumns Xi for 0 < i < m, to be overed [1 : : n� 1℄times, as well as Yj for 0 < j < n, to be overed [1 : :m� 1℄ times. Then add olumnsXi for a < i < b and Yj for  < j < d to the onstraint for subretangle [a : : b)� [ : : d).Now the 3 � 5 problem has just 216 solutions, found in 1.9 megamems. Theyinlude (66, 106, 44) instanes with (7, 8, 9) subretangles. Just two of the solutionsare symmetri under left-right reetion, namely and its top-bottom reetion.244. We an delete non-tromino options from the exat over problem, thereby gettingall faultfree tromino tilings that are redued. If we also delete the onstraints on xiand yj |and if we require Xi and Yj to be overed [1 : : n℄ and [1 : :m℄ times instead of[1 : : n� 1℄ and [1 : :m� 1℄|we obtain all of the m� n faultfree tromino tilings.It is known that suh nontrivial tilings exist if and only if m;n � 7 and mn is amultiple of 3. [See K. Sherer, JRM 13 (1980), 4{6; R. L. Graham, The MathematialGardner (1981), 120{126.℄ So we look at the smallest ases in order ofmn: When (m;n) = (7; 9), (8; 9), (9; 9), (7; 12), (9; 10), we get respetively(32; 32), (48; 48), (16; 16), (706; 1026), (1080; 1336) solutions. Hene theassertion is false; a smallest ounterexample is shown.247. Augment the exat over problem of answer 242 by introduing �m+12 �+�n+12 ��2seondary olumns xab and yd, for 0 � a < b � m and 0 �  < d � n, (a; b) 6= (0;m),(; d) 6= (0; n). Inlude olumn xab and yd in the row for subretangle [a : : b)� [ : : d).Furthermore, over xi [1 : : m� i℄ times, not [1 : : n℄; over yj [1 : : n� j℄ times.248. The hint follows beause [a : : b)� [0 : : d) annot oexist motleywise with its left-right reetion [a : : b)� [n�d : : n). Thus we an forbid half of the solutions.Consider, for example, the ase (m;n) = (7; 7). Every solution will inlude x67with some yd. If it's y46, say, left-right reetion would produe an equivalent solutionwith y13; therefore we disallow the option (a; b; ; d) = (6; 7; 4; 6). Similarly, we disallow(a; b; ; d) = (6; 7; ; d) whenever 7� d < .Reetion doesn't hange the bottom-row retangle when +d = 7, so we haven'tbroken all the symmetry. But we an omplete the job by looking also at the top-rowretangle, namely the option where x01 ours with some y0d0 . Let's introdue newseondary olumns t1, t2, t3, and inlude t in the option that has x67 with y(7�).Then we inlude t1, t2, and t3 in the option that has x01 with y0d0 for 0 + d0 > 7. Wealso add t1 to the option with x01 and y25; and we add both t1 and t2 to the option withx01 and y34. This works beautifully, beause no solution an have  = 0 and d = d0.In general, we introdue new seondary olumns t for 1 �  < n=2, and wedisallow all options x(m�1)m yd for whih  + d > n. We put t into the option thatontains x(m�1)m y(n�). We put t1 thru tb(n�1)=2 into the option that ontainsx01 y0d0 when 0 + d0 > n. And we put t1 thru t0�1 into the option that ontainsx01 y0(n�0). (Think about it.)For example, when m = n = 7 there now are 717 options instead of 729,57 seondary olumns instead of 54. We now �nd 352546 solutions after only 13.2
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7.2.2.1 ANSWERS TO EXERCISES 47 faultfreegigamems of omputation, instead of 705092 solutions after 26.4. The searh tree nowhas just 7.8 meganodes instead of 15.7.(It's tempting to believe that the same idea will break top-bottom symmetry too.But that would be fallaious: One we've �xed attention on the bottommost row whilebreaking left-right symmetry, we've lost all symmetry between top and bottom.)249. From any m � n dissetion of order t we get two (m+2) � (n+2) dissetions oforder t + 4, by enlosing it within two 1 �m tiles and two 1 � n tiles. So the laimfollows by indution and the examples in exerise 247, together with a 5 � 6 exampleof order 10|of whih there are 8 symmetrial instanes suh as the one shownhere. (This onstrution is faultfree, and it's also \tight": The order of everym� n dissetion is at least m+ n � 1, by exerise 241.)250. All 214 of the 5�7 motley dissetions have order 11, whih is far short of�62� � 1 = 14; and there are no 5�8s, 5�9s, or 5�10s. Surprisingly, however,424 of the 696 dissetions of size 6�12 do have the optimum order 20, and7�17 dissetions with the optimum order 27 also exist. Examples of theseremarkable patterns are shown. (The ase m = 7 is still not fully exploredexept for small n. For example, the total number of motley 7�17dissetions is unknown, and no 7�18s have yet been found. If werestrit attention to symmetrial dissetions, the maximum ordersfor 5 � m � 8 are 11 (5�7); 19 (6�11); 25 (7�15); 33 (8�21).)252. The basi idea is to ombine omplementary options into a single option wheneverpossible. More preisely: (i) If a+ b = m and + d = n, we retain the option as usual;it is self-omplementary. (ii) Otherwise, if a + b = m or  + d = n, rejet the option;merging would be non-motley. (iii) Otherwise, if a + b > m, rejet the option; we'vealready onsidered its omplement. (iv) Otherwise, if b = 1 and  + d < n, rejetthe option; its omplement is illegal. (v) Otherwise, if b > m=2 and  < n=2 andd > n=2, rejet the option; it intersets its omplement. (vi) Otherwise merge theoption with its omplement. For example, when (m;n) = (4; 5), ase (i) arises when(a; b; ; d) = (1; 3; 2; 3); the option is `x1 y2 p12 p22 x13 y23' as in answer 248. Case(ii) arises when (a; b; ; d) = (1; 3; 0; 1). Case (iii) arises when (a; b) = (2; 3). Case (iv)arises when (a; b; ; d) = (0; 1; 0; 1); the omplement (3; 4; 4; 5) isn't a valid subretanglein answer 248. Case (v) arises when (a; b; ; d) = (1; 3; 1; 3); ells p22 and p23 our alsoin the omplement (1; 3; 2; 4). And ase (vi) arises when (a; b; ; d) = (0; 1; 4; 5); themerged option is the union of `x0 y4 p04 x01 y45 t1 t2' and `x3 y0 p30 x34 y01'. (Well,x0 and y0 are atually omitted, as suggested in answer 240.)Size 8� 16 has (6703, 1984, 10132, 1621, 47) solutions, of orders (26, : : : , 30).253. (a) Again we merge ompatible options, as in answer 252. But now (a; b; ; d)!(; d; n� b; n�a)! (n� b; n� ; n� b; n�a)! (n� b; n�a; ; d), so we typially mustmerge four options instead of two. The rules are: Rejet if a = n � 1 and  + d > n,or  = n� 1 and a+ b < n, or b = 1 and + d < n, or d = 1 and a+ b > n. Also rejetif (a; b; ; d) is lexiographially greater than any of its three suessors. But aept,without merging, if (a; b; ; d) = (; d; n�b; n�a). Otherwise rejet if b >  and b+d > n,or if b > n=2 and  < n=2 and d > n=2, beause of intersetion. Also rejet if a+ b = nor + d = n, beause of the motley ondition. Otherwise merge four options into one.For example, the merged option when n = 4 and (a; b; ; d) = (0; 1; 2; 4) is `x0 y2p02 p03 x01 y24 t1 x2 y3 p23 p33 x24 y34 x3 y0 p30 p31 x34 y24 p00 p10 x02 y01', exeptthat x0 and y0 are omitted. Notie that it's important not to inlude an item xi or yjtwie, when merging in ases that have a =  or b = d or a = n� d or b = n � .
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48 ANSWERS TO EXERCISES 7.2.2.1 pinwheelfatoredbaktrakvan HertogGardnerCutler(b) With bidiretional symmetry it's possible to have (a; b; ; d) = (; d; a; b) but(a; b; ; d) 6= (n� d; n� ; n� b; n� a), or vie versa. Thus we'll sometimes merge twooptions, we'll sometimes merge four, and we'll sometimes aept without merging. Indetail: Rejet if a = n � 1 and  + d > n, or  = n � 1 and a + b > n, or b = 1 and+ d < n, or d = 1 and a+ b < n. Also rejet if (a; b; ; d) is lexiographially greaterthan any of its three suessors. But aept, without merging, if a =  = n�d = n� b.Otherwise rejet if b >  or b > n � d or a+ b = n or + d = n. Otherwise merge twoor four distint options into one.Examples when n = 4 are: `x1 y1 p11 p12 p21 p22 x13 y13'; `x0 y3 p03 x01 y34 t1x3 y0 p30 x34 y01'; `x0 y2 p02 x34 y23 t1 x1 y3 p13 x12 y34 x3 y1 p31 x34 y12 x2 y0 p20x23 y01'; again with x0 and y0 suppressed.() The unique solution for n = 10 is shown. [The total number of suhpatterns for n = (10, 11, : : : , 16) turns out to be (1, 0, 3, 6, 28, 20, 354). All354 of the 16�16 solutions are found in only 560 megamems; they have orders34, 36, and 38{44. Furthermore the number of n � n motley dissetions withsymmetry (a), for n = (3, 4, 5, : : : , 16), turns out to be (1, 0, 2, 2, 8, 18, 66, 220, 1024,4178, 21890, 102351, 598756, 3275503), respetively. Algorithm M needs 3.3 teramemswhen n = 16; those patterns have orders 4k and 4k + 1 for k = 8, 9, : : : , 13.℄255. The redution of a perfetly deomposed retangle is a motley dissetion. Thuswe an �nd all perfetly deomposed retangles by \unreduing" all motley dissetions.For example, the only motley dissetion of order 5 is the 3 � 3 pinwheel. Thusthe perfetly deomposed m� n retangles of order 5 with integer dimensions are thepositive integer solutions to x1+x2+x3 = m, y1+y2+y3 = n suh that the ten valuesx1, x2, x3, x1 + x2, x2 + x3, y1, y2, y3, y1 + y2, y2 + y3 are distint. Those equationsare readily fatored into two easy baktrak problems, one for m and one for n, eahproduing a list of �ve-element sets fx1; x2; x3; x1 + x2; x2 + x3g; then we searh forall pairs of disjoint solutions to the two subproblems. In this way we quikly see thatthe equations have just two essentially di�erent solutions when m = n = 11, namely(x1; x2; x3) = (1; 7; 3) and (y1; y2; y3) = (2; 4; 5) or (5; 4; 2). The smallest perfetlydeomposed squares of order 5 are therefore have size 11�11, and there are two of them(shown below); they were disovered by M. van Hertog, who reported them to MartinGardner in May 1979. (Inidentally, a 12�12 square an also be perfetly deomposed.)There are no solutions of order 6. Those of orders 7, 8, 9, 10 must omerespetively from motley dissetions of sizes 4� 4, 4� 5, 5� 5, and 5� 6. By lookingat them all, we �nd that the smallest n � n squares respetively have n = 18, 21,24, and 28. Eah of the order-t solutions shown here uses retangles of dimensionsf1; 2; : : : ; 2tg, exept in the ase t = 9: There's a unique perfetly deomposed 24� 24square of order 9, and it uses the dimensions f1; 2; : : : ; 17; 19g.
[W. H. Cutler introdued perfetly deomposed retangles in JRM 12 (1979), 104{111.℄256. (a) False (but lose). Let the individual dimensions be z1, : : : , z2t, where z1 �� � � � z2t. Then we have fw1; h1g = fz1; z2tg, fw2; h2g = fz2; z2t�1g, : : : , fwt; htg =fzt; zt+1g; onsequently z1 < � � � < zt � zt+1 < � � � < z2t. But zt = zt+1 is possible.
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7.2.2.1 ANSWERS TO EXERCISES 49 stritNP-hardlinear programming(b) False (but lose). If the redued retangle is m� n, one of its subretanglesmight be 1� n or m� 1; a motley dissetion must be strit.() True. Label the retangles fa; b; ; d; eg as shown. Then there's aontradition: wb > wd () we > w () he < h () hd < hb () wb < wd. ab de(d) The order an't be 6, beause the redution would then have to be apinwheel together with a 1�3 subretangle, and the argument in () would stillapply. Thus the order must be 7, and we must show that the seond dissetionof exerise 247 doesn't work. Labeling its regions fa; : : : ; gg as shown, we have hd > ha;hene wa > wd. Also he > hb; so wb > we. Oops: wf > wg and hf > hg. a bde fgIn the other motley 4� 4 dissetion of exerise 247 we obviously havew4 < w5; w4 < w6; w6 < w7; h4 < h3; h3 < h1; h4 < h2;therefore h4 > h5, h4 > h6, h6 > h7, w4 > w3, w3 > w1, w4 > w2. Now h5 < h6 ()w5 > w6 () w2 > w3 () h2 < h3 () h6+h7 < h5. Hene h5 < h6 implies h5 > h6;we must have h5 > h6, thus also h2 > h3. Finally h2 < h1, beause h7 < h5.(e) The ondition is learly neessary. Conversely, given any suh pair of solutions,the retangles w1 � �h1, : : : , wt � �ht are inomparable for all large enough �.[Many questions remain unanswered: Is it NP-hard to determine whether ornot a given motley dissetion supports an inomparable dissetion? Is there a motleydissetion that supports inomparable dissetions having two di�erent permutationlabels? Can a symmetri motley dissetion ever support an inomparable dissetion?℄257. (a) By exerise 256(d), the widths and heights must satisfyw5 = w2 + w4;h3 = h4 + h5; w6 = w3 + w4;h2 = h4 + h6 + h7; w7 = w1 + w3 + w4;h1 = h4 + h5 + h6:To prove the hint, onsider answer 256(a). Eah zj for 1 � j � t an be either w or h;then z2t+1�j is the opposite. So there are 2t ways to shu�e the w's and h's together.For example, suppose all the h's ome �rst, namely h7< � � �<h1 � w1< � � � < wt:1 � h7; h7 + 1 � h6; h6 + 1 � h5; h5 + 1 � h4; h4 + 1 � h4 + h5;h4 + h5 + 1 � h4 + h6 + h7; h4 + h6 + h7 + 1 � h4 + h5 + h6;h4 + h5 + h6 � w1; w1 + 1 � w2; w2 + 1 � w3; w3 + 1 � w4;w4 + 1 � w2 + w4; w2 + w4 + 1 � w3 +w4; w3 + w4 + 1 � w1 + w3 +w4:The least perimeter in this ase is the smallest value of w1 + w2 + w3 + w4 + h7 +h6+h5+h4, subjet to those inequalities; and one easily sees that the minimum is 68,ahieved when h7 = 2, h6 = 3, h5 = 4, h4 = 5, w1 = 12, w2 = 13, w3 = 14, w4 = 15.Consider also the alternating ase, w1 < h7 < w2 < h6 < w3 < h5 < w4 � h4 <w2+w4 < h4+h5 < w3+w4 < h4+h6+h7 < w1+w3+w4 < h4+h5+h6. This ase turnsout to be infeasible. (Indeed, any ase with h6 < w3 < h5 requires h4 + h5 < w3 +w4,hene it needs h4 < w4.) Only 52 of the 128 ases are atually feasible.Eah of the 128 subproblems is a lassi example of linear programming, and adeent LP solver will resolve it almost instantly. The minimum perimeter with sevensubretangles is 35, obtained uniquely in the ase w1 < w2 < w3 < h7 < h6 < h5 <h4 � w4 < w5 < w6 < w7 < h3 < h2 < h1 (or the same ase with w4 $ h4) by settingw1 = 1, w2 = 2, w3 = 3, h7 = 4, h6 = 5, h5 = 6, h4 = w4 = 7. The next-best ase hasperimeter 43. In one ase the best-ahievable perimeter is 103!To �nd the smallest square, we simply add the onstraint w1+w2+w3+w4 = h7+h6+h5+h4 to eah subproblem. Now only four of the 128 are feasible. The minimumside, 34, ours uniquely when (w1; w2; w3; w4; h7; h6; h5; h4) = (3; 7; 10; 14; 6; 8; 9; 11).
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50 ANSWERS TO EXERCISES 7.2.2.1 integer programmingYaoReingoldSandsJepsenNuij(b) With eight subretangles the redued pattern is 4� 5. We an plae a 4� 1olumn at the right of either the 4 � 4 pattern or its transpose; or we an use one ofthe �rst two 4 � 5's in exerise 247. (The other six patterns an be ruled out, usingarguments similar to those of answer 256.) The labeled diagrams are123 456 78 ; 12 3 4567 8 ; 12 3 45678 ; 1 2 345678 :For eah of these four hoies there are 256 easy subproblems to onsider. The bestperimeters are respetively (44, 44, 44, 56); the best square sizes are respetively|and surprisingly|(27, 36, 35, 35). [With eight subretangles we an disset a sig-ni�antly smaller square than we an with seven! Furthermore, no smaller squarean be inomparably disseted, integerwise, beause nine subretangles would be toomany.℄ One way to ahieve perimeter 44 is with (w1; w2; w3; w4; w5; h8; h7; h6; h4) =(4; 5; 6; 7; 8; 1; 2; 3; 8) in the third diagram. The only way to ahieve a square of side 27is with (w1; w2; w3; w4; w5; h8; h7; h6; h4) = (1; 3; 5; 7; 11; 4; 6; 8; 9) in the �rst diagram.These linear programs usually have integer solutions; but sometimes they don't.For example, the optimum perimeter for the seond diagram in the ase h8 < h7 < w1 <h6 < w2 < w3 < w4 < h5 turns out to be 97/2, ahievable when (w1; w2; w3; w4; w5; h8;h7; h6; h4) = (7; 11; 13; 15; 17; 3; 5; 9; 17)=2. The minimum rises to 52, if we restrit tointeger solutions, ahieved by (w1; w2; w3; w4; w5; h8; h7; h6; h4) = (4; 6; 7; 8; 9; 1; 3; 5; 9).[The theory of inomparable dissetions was developed by A. C. C. Yao, E. M.Reingold, and B. Sands in JRM 8 (1976), 112{119. For generalizations to threedimensions, see C. H. Jepsen, Mathematis Magazine 59 (1986), 283{292.℄258. This is an inomparable dissetion in whih exerise 256(d) applies. Let's try �rstto solve the equations a(x+y+z) = bx = (w+x) = d(w+x+y) = (a+b)w = (b+)y =(b++d)z = 1, by setting b = x = 1. We �nd suessively  = 1=(w+1), a = (1�w)=w,y = (w + 1)=(w + 2), d = (w + 1)=(w(w + 2)), z = (w + 1)(w + 3)=((w + 2)(w + 4)).Therefore x+y+z�1=a = (2w+3)(2w2+6w�5)=((w�1)(w+2)(w+4)), and we musthave 2w2+6w = 5. The positive root of this quadrati is w = (p�3)=2, where p = p19.Having deomposed the retangle (a+b++d)�(w+x+y+z) into seven di�erentretangles of area 1, we normalize it, dividing (a; b; ; d) by a+ b+ + d =715 (p+1) and dividing (w; x; y; z) by w+x+y+z = 56 (p�1). This gives thedesired tiling (shown), with retangles of dimensions 114 (7�p)� 115 (7+p),542 (�1+p)� 115 (1+p), 521� 35 , 121 (8�p)� 115 (8+p), 121 (8+p)� 115 (8�p),542 (1 + p)� 115 (�1 + p), 114 (7 + p)� 115 (7� p).[See W. A. A. Nuij, AMM 81 (1974), 665{666. To get eight di�erent retanglesof area 1/8, we an shrink one dimension by 7=8 and attah a retangle (1=8) � 1.Then to get nine of area 1/9, we an shrink the other dimension by 8=9 and attah a(1=9)� 1 sliver. And so on. The eight-retangle problem also has two other solutions,supported by the third and fourth 4� 5 patterns in exerise 257(b).℄
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7.2.2.1 ANSWERS TO EXERCISES 51 HilbertKIMGardnerpuzzle23 and meauthorauthor260. Let the bak orner in the illustration be the point 777, and write just `abdef 'instead of [a : : b)�[ : : d)�[e : :f). The sububoids are 670517 (270601) 176705 (012706)051767 (060127), 561547 (260312) 475615 (122603) 154756 (031226), 351446 (361324)463514 (243613) 144635 (132436), 575757 (020202), 454545 (232323)|with the 11mirror images in parentheses|plus the entral ubie 343434. Notie that eah of the 28possible intervals is used in eah dimension, exept [0 : :4), [1 : :6), [2 : :5), [3 : :7), [0 : :7).I started from a entral ube and built outwards, all the whilestaring at the 24-ell in Hilbert's Geometry and the Imagination.| SCOTT KIM, letter to Martin Gardner (Deember 1975)261. One solution is obtained by using the 7-tuples (1; 2; 5; 44; 9; 43; 4), (6; 15; 10; 23; 22;19; 13), (14; 12; 16; 11; 18; 17; 20), to \unredue" the 1st, 2nd, 3rd oordinates. Forexample, sububoid 670617 beomes 4�(6+15+10+23+22)�(12+16+11+18+17+20).The resulting dissetion, into bloks of sizes 1�87�88, 2�42�74, 3�21�26, 4�76�94,5�10�16, 6�82�104, 7�33�46, 8�15�62, 9�18�22, 11�23�44, 12�31�101,13 � 71 � 107, 14 � 95 � 105, 17 � 54 � 60, 19 � 56 � 57, 20 � 61 � 102, 25 � 27 � 96,28�49�64, 29�41�51, 32�37�47, 35�48�53, 39�45�52, 43�55�70, makes a�endishly diÆult puzzle.How were those magi 7-tuples disovered? An exhaustive searh suh as that ofexerise 256 was out of the question. The author �rst looked for 7-tuples that wouldnot lead to any dimensions in the \popular" ranges [11 : : 25℄ and [30 : : 42℄; there are1130, of whih the fourth was (1; 2; 5; 44; 9; 43; 4). A subsequent searh found 251127-tuples that don't onit with this one, in the 23 relevant plaes; and those 7-tuplesinluded 26 that don't onit with eah other.(The ube size 108 an probably be dereased, but probably not by muh.)262. The exat over problem of answer 247 is readily extended to 3D: The option forevery admissible sububoid [a : : b)� [ : : d)� [e : :f) has 6+ (b�a)(d� )(f � e) items,namely xa y ze xab yd zef and the ells pijk that are overed.We an do somewhat better, as in exerise 248: Most of the improvement in thatanswer an be ahieved also 3Dwise, if we simply omit ases where a = l� 1 and either+ d > m or e+ f > n. Furthermore, if m = n we an omit ases with (e; f) < (; d).Without those omissions, Algorithm M handles the ase l = m = n = 7 in 98teramems, produing 2432 solutions. With them, the running time is redued to 43teramems, and 397 solutions are found.(The 7� 7� 7 problem an be fatored into subproblems, based on the patternsthat appear on the ube's six visible faes. These patterns redue to 5� 5 pinwheels,and it takes only about 40 M� to disover all 152 possibilities. Furthermore, thosepossibilities redue to only 5 ases, under the 48 symmetries of a ube. Eah of thoseases an then be solved by embedding the 5�5 redued patterns into 7�7 unreduedpatterns, onsidering 153 = 3375 possibilities for the three faes adjaent to vertex 000.Most of those possibilities are immediately ruled out. Hene eah of the �ve ases an besolved by Algorithm C in about 70 G�|making the total running time about 350 G�.However, this 120-fold inrease in speed ost the author two man-days of work.)All three methods showed that, up to isomorphism, exatly 56 distint motleyubes of size 7�7�7 are possible. Eah of those 56 dissetions has exatly 23 uboids.Nine of them are symmetri under the mapping xyz 7! (7� x)(7� y)(7� z); and oneof those nine, namely the one in exerise 260, has six automorphisms.
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52 ANSWERS TO EXERCISES 7.2.2.1 Cutlerauthor[These runs on�rm and slightly extend the work of W. H. Cutler in JRM 12(1979), 104{111. His omputer program found exatly 56 distint possibilities, whenrestriting the searh to solutions that have exatly 23 uboids.℄263. The author has on�rmed this onjeture only for l;m; n � 8 and l+m+n � 22.999. : : :
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PopeHomerWHEATLEYINDEX AND GLOSSARYThere is a urious poetial index to the Iliad in Pope's Homer,referring to all the plaes in whih similes are used.| HENRY B. WHEATLEY, What is an Index? (1878)When an index entry refers to a page ontaining a relevant exerise, see also the answer tothat exerise for further information. An answer page is not indexed here unless it refers to atopi not inluded in the statement of the exerise.Barris, Harry, 1.DIMACS: DIMACS Series in DisreteMathematis and Theoretial ComputerSiene, inaugurated in 1990.Fields, Dorothy, 1.MPR: Mathematial Preliminaries Redux, v.Short, Robert Allen, iii. Nothing else is indexed yet (sorry).Preliminary notes for indexing appear in theupper right orner of most pages.If I've mentioned somebody's name andforgotten to make suh an index note,it's an error (worth $2.56).

53



September 23, 2015
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STERNEInternetPREFACEThese unforeseen stoppages,whih I own I had no oneption of when I �rst set out;| but whih, I am onvined now, will rather inrease than diminish as I advane,| have struk out a hint whih I am resolved to follow;| and that is, | not to be in a hurry;| but to go on leisurely, writing and publishing two volumes of my life every year;| whih, if I am su�ered to go on quietly, and an make a tolerable bargainwith my bookseller, I shall ontinue to do as long as I live.| LAURENCE STERNE, The Life and Opinions ofTristram Shandy, Gentleman (1759)This booklet ontains draft material that I'm irulating to experts in the�eld, in hopes that they an help remove its most egregious errors before toomany other people see it. I am also, however, posting it on the Internet forourageous and/or random readers who don't mind the risk of reading a fewpages that have not yet reahed a very mature state. Beware: This materialhas not yet been proofread as thoroughly as the manusripts of Volumes 1, 2,3, and 4A were at the time of their �rst printings. And those arefully-hekedvolumes, alas, were subsequently found to ontain thousands of mistakes.Given this aveat, I hope that my errors this time will not be so numerousand/or obtrusive that you will be disouraged from reading the material arefully.I did try to make the text both interesting and authoritative, as far as it goes.But the �eld is vast; I annot hope to have surrounded it enough to orral itompletely. So I beg you to let me know about any de�ienies that you disover.To put the material in ontext, this long pre-fasile ontains Setion 7.2.2.2of a long, long hapter on ombinatorial algorithms. Chapter 7 will eventually�ll at least four volumes (namely Volumes 4A, 4B, 4C, and 4D), assuming thatI'm able to remain healthy. It began in Volume 4A with a short review of graphtheory and a longer disussion of \Zeros and Ones" (Setion 7.1); that volumeonluded with Setion 7.2.1, \Generating Basi Combinatorial Patterns," whihwas the �rst part of Setion 7.2, \Generating All Possibilities." Volume 4B willbegin with Setion 7.2.2, about baktraking in general, and Setion 7.2.2.1 willdisuss a family of methods alled \daning links," for updating data strutureswhile baktraking. That sets the sene for the present setion, whih appliesthose ideas to the important problem of Boolean satis�ability.� � �iii
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iv PREFACE Heule� � �After working on this material for more than three years, I've �nally gotten mostof the major topis into plae. Eah time I �nish drafting a small piee of the�nal big piture, I've been testing it by adding it to these pages; hene there noware quite a few sraps of text and exerises, whih I plan to re�ne and polish (ifthe FORCE stays with me).I hope you will see why I've found this topi to be suh a fasinating story;and I hope you'll not get too lost as I move through di�erent parts of the tale.I've tried to explain things in a natural order.� � �My notes on ombinatorial algorithms have been aumulating for more than�fty years, yet I fear that in many respets my knowledge is woefully behind thetimes. Please look, for example, at the exerises that I've lassed as researhproblems (rated with diÆulty level 46 or higher), namely exerises 5, 39, 112,193, 194, 236, 283, 516, : : : ; exerise 223 is also urrently unsolved, althoughI've rated it only `40' beause I one thought of an answer (whih I have sineforgotten!). I've also impliitly mentioned or posed additional unsolved questionsin the answers to exerises 18, 19, 68, 84, 105(,e), 111, 132, 183, 194, 204, 205,316, 335, 351, 360, 365, 372, 397, 409(), 476, 480, 486, 487, 488, 501, 511, 515,: : : . And I still haven't solved exerise 68. Are those problems still open? Pleaseinform me if you know of a solution to any of those intriguing enigmas. And ofourse if no solution is known today but you do make progress on any of themin the future, I hope you'll let me know.I urgently need your help also with respet to some exerises that I madeup as I was preparing this material. I ertainly don't like to reeive redit forthings that have already been published by others, and most of these results arequite natural \fruits" that were just waiting to be \pluked." Therefore pleasetell me if you know who deserves to be redited, with respet to the ideas foundin exerises 18, 19, 20, 21, 22, 24, 29, 38(b), 62, 63, 65(b), 74, 84(,d,e), 101, 108,132, 133, 149, 151, 161, 162, 177, 180, 181, 188, 191, 204(b,,d), 206, 207, 208,220, 228, 229, 232, 239, 242, 252, 259, 270, 272, 273, 279, 280, 282, 300, 305,310, 311, 312, 327, 328, 329, 334, 335, 336(b), 337, 343, 349, 357, 358, 361, 390,396, 399(), 404, 406, 410, 411, 414, 419, 423, 427, 432, 433, 435, 439, 462, 463,464, 465, 470, 472, 473, 475(d,e,f,g), 476, 479, 495, 498, : : : , and/or the answersto exerises : : : . Furthermore I've redited exerise 170 to unpublished work ofHeule. Have any of those results ever appeared in print, to your knowledge?I also wonder if Eq. 7.2.2.2{(169) is \well known."� � �
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PREFACE v BiereBryantBussE�enGentHeuleHoosJansonJeavonsKroeningKullmannLauriaPegdenShortzSinzS�orenssonWermuthWilliamsInternetMPRInternet

Speial thanks are due to Armin Biere, Randy Bryant, Sam Buss, Niklas E�en,Ian Gent, Marijn Heule, Holger Hoos, Svante Janson, Peter Jeavons, DanielKroening, Oliver Kullmann, Massimo Lauria, Wes Pegden, Will Shortz, CarstenSinz, Niklas S�orensson, Udo Wermuth, Ryan Williams, and : : : for their detailedomments on my early attempts at exposition, as well as to numerous other or-respondents who have ontributed ruial orretions. Thanks also to Stanford'sInformation Systems Laboratory for providing extra omputer power when mylaptop mahine was inadequate. � � �Wow|Setion 7.2.2.2 has turned out to be the longest setion, by far, inThe Art of Computer Programming. The SAT problem is evidently a \killerapp," beause it is key to the solution of so many other problems. ConsequentlyI an only hope that my lengthy treatment does not also kill o� my faithfulreaders! As I wrote this material, one topi always seemed to ow naturallyinto another, so there was no neat way to break this setion up into separatesubsetions. (And anyway the format of TAOCP doesn't allow for a Setion7.2.2.2.1.)I've tried to ameliorate the reader's navigation problem by adding subhead-ings at the top of eah right-hand page. Furthermore, as in other setions,the exerises appear in an order that roughly parallels the order in whih orre-sponding topis are taken up in the text. Numerous ross-referenes are providedbetween text, exerises, and illustrations, so that you have a fairly good hane ofkeeping in syn. I've also tried to make the index as omprehensive as possible.I wrote more than three hundred omputer programs while preparing thismaterial, beause I �nd that I don't understand things unless I try to programthem. Most of those programs were quite short, of ourse; but several of themare rather substantial, and possibly of interest to others. Therefore I've made aseletion available by listing some of them on the following webpage:http://www-s-faulty.stanford.edu/~knuth/programs.htmlI happily o�er a \�nder's fee" of $2.56 for eah error in this draft when it is�rst reported to me, whether that error be typographial, tehnial, or historial.The same reward holds for items that I forgot to put in the index. And valuablesuggestions for improvements to the text are worth 32/ eah. (Furthermore, ifyou �nd a better solution to an exerise, I'll atually do my best to give youimmortal glory, by publishing your name in the eventual book:�)Volume 4B will begin with a speial tutorial and review of probabilitytheory, in an unnumbered setion entitled \Mathematial Preliminaries Redux."Referenes to its equations and exerises use the abbreviation `MPR'. (Think ofthe word \improvement.") A preliminary version of that setion an be foundonline, as pre-fasile 5a to Volume 4, if you knew how to �nd this one.Cross referenes to yet-unwritten material sometimes appear as `00'; thisimpossible value is a plaeholder for the atual numbers to be supplied later.
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vi PREFACE notational onventionsKnuthThe notational onventions that I've used in the mathematial formulasof this setion are summarized either in the Index to Notations of Volume 4A(Appendix B on pages 822{827) or under the heading `Notational onventions'in the index below.Happy reading!Stanford, California D. E. K.69 Umbruary 2015
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PREFACE vii Langford pairsexat over problemsymmetry breakingDEFOECrusoeHere's an exerise for Setion 7.2.2.1 that I plan to put eventually into fasile 5:00. [20 ℄ The problem of Langford pairs on f1; 1; : : : ; n; ng an be represented as anexat over problem using olumns fd1; : : : ; dng[fs1; : : : ; s2ng; the rows are di sj sk for1 � i � n and 1 � j < k � 2n and k = i+j+1, meaning \put digit i into slots j and k."However, that onstrution essentially gives us every solution twie, beause theleft-right reversal of any solution is also a solution. Modify it so that we get only halfas many solutions; the others will be the reversals of these.And here's its rypti answer (needed in exerise 7.2.2.2{13):00. Omit the rows with i = n� [n even℄ and j > n=2.(Other solutions are possible. For example, we ould omit the rows with i = 1 andj � n; that would omit n � 1 rows instead of only bn=2. However, the suggested ruleturns out to make the daning links algorithm run about 10% faster.)

Now I saw, tho' too late, the Folly ofbeginning a Work before we ount the Cost,and before we judge rightly of our own Strength to go through with it.| DANIEL DEFOE, Robinson Crusoe (1719)
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September 23, 2015

7.2.2.2 SATISFIABILITY 1 HUMEJAGGERRICHARDSBoolean formulaunsatis�ablesatisfying assignmentonsistent, see satis�ableinonsistent, see unsatis�ableP = NPNP-omplete problemKnuthSAT solversHe reaps no satisfation but from low and sensual objets,or from the indulgene of malignant passions.| DAVID HUME, The Septi (1742)I an't get no . . .| MICK JAGGER and KEITH RICHARDS, Satisfation (1965)7.2.2.2. Satis�ability. We turn now to one of the most fundamental problemsof omputer siene: Given a Boolean formula F (x1; : : : ; xn), expressed in so-alled \onjuntive normal form" as an AND of ORs, an we \satisfy" F byassigning values to its variables in suh a way that F (x1; : : : ; xn) = 1? Forexample, the formulaF (x1; x2; x3) = (x1 _ �x2) ^ (x2 _ x3) ^ (�x1 _ �x3) ^ (�x1 _ �x2 _ x3) (1)is satis�ed when x1x2x3 = 001. But if we rule that solution out, by de�ningG(x1; x2; x3) = F (x1; x2; x3) ^ (x1 _ x2 _ �x3); (2)then G is unsatis�able: It has no satisfying assignment.Setion 7.1.1 disussed the embarrassing fat that nobody has ever beenable to ome up with an eÆient algorithm to solve the general satis�abilityproblem, in the sense that the satis�ability of any given formula of sizeN ould bedeided in NO(1) steps. Indeed, the famous unsolved question \does P = NP?"is equivalent to asking whether suh an algorithm exists. We will see in Setion7.9 that satis�ability is a natural progenitor of every NP-omplete problem.*On the other hand enormous tehnial breakthroughs in reent years haveled to amazingly good ways to approah the satis�ability problem. We nowhave algorithms that are muh more eÆient than anyone had dared to believepossible before the year 2000. These so-alled \SAT solvers" are able to handleindustrial-strength problems, involving millions of variables, with relative ease,and they've had a profound impat on many areas of researh suh as omputer-aided veri�ation. In this setion we shall study the priniples that underliemodern SAT-solving proedures.* At the present time very few people believe that P = NP [see SIGACT News 43, 2 (June2012), 53{77℄. In other words, almost everybody who has studied the subjet thinks thatsatis�ability annot be deided in polynomial time. The author of this book, however, suspetsthat NO(1)-step algorithms do exist, yet that they're unknowable. Almost all polynomial timealgorithms are so ompliated that they lie beyond human omprehension, and ould never beprogrammed for an atual omputer in the real world. Existene is di�erent from embodiment.
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2 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 variablesliteralnotation: jvjpositivenegativedistintstritly distintovering problemexat over problems
To begin, let's de�ne the problem arefully and simplify the notation, sothat our disussion will be as eÆient as the algorithms that we'll be onsidering.Throughout this setion we shall deal with variables, whih are elements of anyonvenient set. Variables are often denoted by x1, x2, x3, : : : , as in (1); but anyother symbols an also be used, like a, b, , or even d00074. We will in fat often usethe numerals 1, 2, 3, : : : to stand for variables; and in many ases we'll �nd itonvenient to write just j instead of xj , beause it takes less time and less spaeif we don't have to write so many x's. Thus `2' and `x2' will mean the samething in many of the disussions below.A literal is either a variable or the omplement of a variable. In other words,if v is a variable, both v and �v are literals. If there are n possible variables insome problem, there are 2n possible literals. If l is the literal �x2, whih is alsowritten �2, then the omplement of l, �l, is x2, whih is also written 2.The variable that orresponds to a literal l is denoted by jlj; thus we havejvj = j�vj = v for every variable v. Sometimes we write �v for a literal that iseither v or �v. We might also denote suh a literal by �v, where � is �1. Theliteral l is alled positive if jlj = l; otherwise jlj = �l, and l is said to be negative.Two literals l and l0 are distint if l 6= l0. They are stritly distint if jlj 6= jl0j.A set of literals fl1; : : : ; lkg is stritly distint if jlij 6= jlj j for 1 � i < j � k.The satis�ability problem, like all good problems, an be understood in manyequivalent ways, and we will �nd it onvenient to swith from one viewpoint toanother as we deal with di�erent aspets of the problem. Example (1) is an ANDof lauses, where every lause is an OR of literals; but we might as well regardevery lause as simply a set of literals, and a formula as a set of lauses. Withthat simpli�ation, and with `xj ' idential to `j', Eq. (1) beomesF = �f1; �2g; f2; 3g; f�1; �3g; f�1; �2; 3g	:And we needn't bother to represent the lauses with braes and ommas either;we an simply write out the literals of eah lause. With that shorthand we'reable to pereive the real essene of (1) and (2):F = f1�2; 23; �1�3; �1�23g; G = F [ f12�3g: (3)Here F is a set of four lauses, and G is a set of �ve.In this guise, the satis�ability problem is equivalent to a overing problem,analogous to the exat over problems that we onsidered in Setion 7.2.2.1: LetTn = �fx1; �x1g; fx2; �x2g; : : : ; fxn; �xng	 = f1�1; 2�2; : : : ; n�ng: (4)\Given a set F = fC1; : : : ; Cmg, where eah Ci is a lause and eah lauseonsists of literals based on the variables fx1; : : : ; xng, �nd a set L of n literalsthat `overs' F [ Tn, in the sense that every lause ontains at least one elementof L." For example, the set F in (3) is overed by L = f�1; �2; 3g, and so is the setT3; hene F is satis�able. The set G is overed by f1; �1; 2g or f1; �1; 3g or � � � orf�2; 3; �3g, but not by any three literals that also over T3; so G is unsatis�able.Similarly, a family F of lauses is satis�able if and only if it an be overedby a set L of stritly distint literals.
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7.2.2.2 SATISFIABILITY 3 trivially SATpolaritiesDe Morgan's lawsTAUToNP-ompleteSATkSAT3SATunit lausesunary lausesBinary lausesternary lausesempty lausenullary lause�multisetstautologial}stritly distint literals
If F 0 is any formula obtained from F by omplementing one or more vari-ables, it's lear that F 0 is satis�able if and only if F is satis�able. For example,if we replae 1 by �1 and 2 by �2 in (3) we obtainF 0 = f�12; �23; 1�3; 123g; G = F [ f�1�2�3g:In this ase F 0 is trivially satis�able, beause eah of its lauses ontains apositive literal: Every suh formula is satis�ed by simply letting L be the set ofpositive literals. Thus the satis�ability problem is the same as the problem ofswithing signs (or \polarities") so that no all-negative lauses remain.Another problem equivalent to satis�ability is obtained by going bak to theBoolean interpretation in (1) and omplementing both sides of the equation. ByDe Morgan's laws 7.1.1{(11) and (12) we haveF (x1; x2; x3) = (�x1 ^ x2) _ (�x2 ^ �x3) _ (x1 ^ x3) _ (x1 ^ x2 ^ �x3); (5)and F is unsatis�able() F = 0() F = 1() F is a tautology. ConsequentlyF is satis�able if and only if F is not a tautology: The tautology problem andthe satis�ability problem are essentially the same.*Sine the satis�ability problem is so important, we simply all it SAT. Andinstanes of the problem suh as (1), in whih there are no lauses of lengthgreater than 3, are alled 3SAT. In general, kSAT is the satis�ability problemrestrited to instanes where no lause has more than k literals.Clauses of length 1 are alled unit lauses, or unary lauses. Binary lauses,similarly, have length 2; then ome ternary lauses, quaternary lauses, and soforth. Going the other way, the empty lause, or nullary lause, has length 0 andis denoted by �; it is always unsatis�able. Short lauses are very important in al-gorithms for SAT, beause they are easier to deal with than long lauses. But longlauses aren't neessarily bad; they're muh easier to satisfy than the short ones.A slight tehniality arises when we onsider lause length: The binarylause (x1 _ �x2) in (1) is equivalent to the ternary lause (x1 _ x1 _ �x2) as wellas to (x1 _ �x2 _ �x2) and to longer lauses suh as (x1 _ x1 _ x1 _ �x2); so we anregard it as a lause of any length � 2. But when we think of lauses as setsof literals rather than ORs of literals, we usually rule out multisets suh as 11�2or 1�2�2 that aren't sets; in that sense a binary lause is not a speial ase of aternary lause. On the other hand, every binary lause (x _ y) is equivalent totwo ternary lauses, (x _ y _ z) ^ (x _ y _ �z), if z is another variable; and everyk-ary lause is equivalent to two (k + 1)-ary lauses. Therefore we an assume,if we like, that kSAT deals only with lauses whose length is exatly k.A lause is tautologial (always satis�ed) if it ontains both v and �v for somevariable v. Tautologial lauses an be denoted by } (see exerise 7.1.4{222).They never a�et a satis�ability problem; so we usually assume that the lausesinput to a SAT-solving algorithm onsist of stritly distint literals.When we disussed the 3SAT problem briey in Setion 7.1.1, we took a lookat formula 7.1.1{(32), \the shortest interesting formula in 3CNF." In our new* Stritly speaking, TAUT is oNP-omplete, while SAT is NP-omplete; see Setion 7.9.
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4 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 Rivestassoiative blok designequally spaed ourrenesarithmeti progressionsbaktrakinglexiographi ordervan der WaerdenW (k0; : : : ; kb�1)waerden+
shorthand, it onsists of the following eight unsatis�able lauses:R = f12�3; 23�4; 341; 4�12; �1�23; �2�34; �3�4�1; �41�2g: (6)This set makes an exellent little test ase, so we will refer to it frequently below.(The letter R reminds us that it is based on R. L. Rivest's assoiative blok design6.5{(13).) The �rst seven lauses of R, namelyR0 = f12�3; 23�4; 341; 4�12; �1�23; �2�34; �3�4�1g; (7)also make nie test data; they are satis�ed only by hoosing the omplements ofthe literals in the omitted lause, namely f4; �1; 2g. More preisely, the literals4, �1, and 2 are neessary and suÆient to over R0; we an also inlude either 3or �3 in the solution. Notie that (6) is symmetri under the yli permutation1 ! 2 ! 3 ! 4 ! �1 ! �2 ! �3 ! �4 ! 1 of literals; thus, omitting any lauseof (6) gives a satis�ability problem equivalent to (7).A simple example. SAT solvers are important beause an enormous varietyof problems an readily be formulated Booleanwise as ANDs of ORs. Let's beginwith a little puzzle that leads to an instrutive family of example problems:Find a binary sequene x1 : : : x8 that has no three equally spaed 0s and nothree equally spaed 1s. For example, the sequene 01001011 almost works; butit doesn't qualify, beause x2, x5, and x8 are equally spaed 1s.If we try to solve this puzzle by baktraking manually through all 8-bitsequenes in lexiographi order, we see that x1x2 = 00 fores x3 = 1. Thenx1x2x3x4x5x6x7 = 0010011 leaves us with no hoie for x8. A minute or two offurther hand alulation reveals that the puzzle has just six solutions, namely00110011; 01011010; 01100110; 10011001; 10100101; 11001100: (8)Furthermore it's easy to see that none of these solutions an be extended to asuitable binary sequene of length 9. We onlude that every binary sequenex1 : : : x9 ontains three equally spaed 0s or three equally spaed 1s.Notie now that the ondition x2x5x8 6= 111 is the same as the Booleanlause (�x2 _ �x5 _ �x8), namely �2�5�8. Similarly x2x5x8 6= 000 is the same as 258.So we have just veri�ed that the following 32 lauses are unsatis�able:123; 234; : : : ; 789; 135; 246; : : : ; 579; 147; 258; 369; 159;�1�2�3; �2�3�4; : : : ; �7�8�9; �1�3�5; �2�4�6; : : : ; �5�7�9; �1�4�7; �2�5�8; �3�6�9; �1�5�9. (9)This result is a speial ase of a general fat that holds for any given positiveintegers j and k: If n is suÆiently large, every binary sequene x1 : : : xn ontainseither j equally spaed 0s or k equally spaed 1s. The smallest suh n is denotedby W (j; k) in honor of B. L. van der Waerden, who proved an even more generalresult (see exerise 2.3.4.3{6): If n is suÆiently large, and if k0, : : : , kb�1 arepositive integers, every b-ary sequene x1 : : : xn ontains ka equally spaed a'sfor some digit a, 0 � a < b. The least suh n is W (k0; : : : ; kb�1).Let us aordingly de�ne the following set of lauses when j; k; n > 0:waerden (j; k;n) = �(xi _ xi+d _ � � � _ xi+(j�1)d) �� 1 � i � n� (j�1)d; d � 1	[ �(�xi _ �xi+d _ � � � _ �xi+(k�1)d) �� 1 � i � n� (k�1)d; d � 1	: (10)
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7.2.2.2 SATISFIABILITY: EXAMPLE APPLICATIONS 5 Chv�atalKourilPaulKourilAhmedKullmannSnevilymonotoni lausesexat over problemsdaning linksLangford pairssymmetry
The 32 lauses in (9) are waerden(3; 3; 9); and in general waerden(j; k;n) is anappealing instane of SAT, satis�able if and only if n < W (j; k).It's obvious that W(1; k) = k andW(2; k) = 2k� [k even℄; but when j and kexeed 2 the numbersW(j; k) are quite mysterious. We've seen thatW (3; 3) = 9,and the following nontrivial values are urrently known:k = 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19W(3; k) = 9 18 22 32 46 58 77 97 114 135 160 186 218 238 279 312 349W(4; k) = 18 35 55 73 109 146 309 ? ? ? ? ? ? ? ? ? ?W(5; k) = 22 55 178 206 260 ? ? ? ? ? ? ? ? ? ? ? ?W(6; k) = 32 73 206 1132 ? ? ? ? ? ? ? ? ? ? ? ? ?V. Chv�atal inaugurated the study ofW(j; k) by omputing the values for j+k � 9as well asW(3; 7) [Combinatorial Strutures and Their Appliations (1970), 31{33℄. Most of the large values in this table have been alulated by state-of-the-artSAT solvers [see M. Kouril and J. L. Paul, Experimental Math. 17 (2008), 53{61; M. Kouril, Integers 12 (2012), A46:1{A46:13℄. The table entries for j = 3suggest that we might have W(3; k) < k2 when k > 4, but that isn't true: SATsolvers have also been used to establish the lower boundsk = 20 21 22 23 24 25 26 27 28 29 30W(3; k) � 389 416 464 516 593 656 727 770 827 868 903(whih might in fat be the true values for this range of k); see T. Ahmed,O. Kullmann, and H. Snevily [Disrete Applied Math. 174 (2014), 27{51℄.Notie that the literals in every lause of waerden (j; k;n) have the samesign: They're either all positive or all negative. Does this \monotoni" propertymake the SAT problem any easier? Unfortunately, no: Exerise 10 proves thatany set of lauses an be onverted to an equivalent set of monotoni lauses.Exat overing. The exat over problems that we solved with \daning links"in Setion 7.2.2.1 an easily be reformulated as instanes of SAT and handed o�to SAT solvers. For example, let's look again at Langford pairs, the task ofplaing two 1s, two 2s, : : : , two n's into 2n slots so that exatly k slots intervenebetween the two appearanes of k, for eah k. The orresponding exat overproblem when n = 3 has nine olumns and eight rows (see 7.2.2.1{(00)):d1 s1 s3; d1 s2 s4; d1 s3 s5; d1 s4 s6; d2 s1 s4; d2 s2 s5; d2 s3 s6; d3 s1 s5: (11)The olumns are di for 1 � i � 3 and sj for 1 � j � 6; the row `di sj sk' meansthat digit i is plaed in slots j and k. Left-right symmetry allows us to omit therow `d3 s2 s6' from this spei�ation.We want to selet rows of (11) so that eah olumn appears just one. Letthe Boolean variable xj mean `selet row j', for 1 � j � 8; the problem is thento satisfy the nine onstraintsS1(x1; x2; x3; x4) ^ S1(x5; x6; x7) ^ S1(x8)^ S1(x1; x5; x8) ^ S1(x2; x6) ^ S1(x1; x3; x7)^ S1(x2; x4; x5) ^ S1(x3; x6; x8) ^ S1(x4; x7); (12)
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6 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 S1(y1; : : : ; yp)symmetri Boolean funtionlangford (n)unary lausebinary lausesternary lauseenodingLangford pairslangford 0(n)oloring a graphexlusion lausesat-most-one
one for eah olumn. (Here, as usual, S1(y1; : : : ; yp) denotes the symmetrifuntion [y1 + � � �+ yp=1℄.) For example, we must have x5 + x6 + x7 = 1,beause olumn d2 appears in rows 5, 6, and 7 of (11).One of the simplest ways to express the symmetri Boolean funtion S1 asan AND of ORs is to use 1 + �p2� lauses:S1(y1; : : : ; yp) = (y1 _ � � � _ yp) ^ ^1�j<k�p(�yj _ �yk): (13)\At least one of the y's is true, but not two." Then (12) beomes, in shorthand,f1234; �1�2; �1�3; �1�4; �2�3; �2�4; �3�4; 567; �5�6; �5�7; �6�7; 8;158; �1�5; �1�8; �5�8; 26; �2�6; 137; �1�3; �1�7; �3�7;245; �2�4; �2�5; �4�5; 368; �3�6; �3�8; �6�8; 47; �4�7g; (14)we shall all these lauses langford (3). (Notie that only 30 of them are atuallydistint, beause �1�3 and �2�4 appear twie.) Exerise 13 de�nes langford (n); weknow from exerise 7{1 that langford (n) is satis�able () nmod 4 = 0 or 3.The unary lause 8 in (14) tells us immediately that x8 = 1. Then from thebinary lauses �1�8, �5�8, �3�8, �6�8 we have x1 = x5 = x3 = x6 = 0. The ternary lause137 then implies x7 = 1; �nally x4 = 0 (from �4�7) and x2 = 1 (from 1234). Rows8, 7, and 2 of (11) now give us the desired Langford pairing 3 1 2 1 3 2.Inidentally, the funtion S1(y1; y2; y3; y4; y5) an also be expressed as(y1 _ y2 _ y3 _ y4 _ y5) ^ (�y1_ �y2) ^ (�y1_ �y3) ^ (�y1_ �t)^ (�y2_ �y3) ^ (�y2_ �t) ^ (�y3_ �t) ^ (t_ �y4) ^ (t_ �y5) ^ (�y4_ �y5);where t is a new variable. In general, if p gets big, it's possible to expressS1(y1; : : : ; yp) with only 3p�5 lauses instead of �p2�+1, by using b(p�3)=2 newvariables as explained in exerise 12. When this alternative enoding is used torepresent Langford pairs of order n, we'll all the resulting lauses langford 0(n).Do SAT solvers do a better job with the lauses langford (n) or langford 0(n)?Stay tuned: We'll �nd out later.Coloring a graph. The lassial problem of oloring a graph with at most dolors is another rih soure of benhmark examples for SAT solvers. If the graphhas n verties V , we an introdue nd variables vj , for v 2 V and 1 � j � d,signifying that v has olor j; the resulting lauses are quite simple:(v1 _ v2 _ � � � _ vd) for v 2 V (\every vertex has at least one olor"); (15)(�uj _ �vj) for u���v, 1 � j � d (\adjaent verties have di�erent olors"): (16)We ould also add n�d2� additional so-alled exlusion lauses(�vi _ �vj) for v 2V , 1� i< j� d (\every vertex has at most one olor"); (17)but they're optional, beause verties with more than one olor are harmless.Indeed, if we �nd a solution with v1 = v2 = 1, we'll be extra happy, beause itgives us two legal ways to olor vertex v. (See exerise 14.)
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7.2.2.2 SATISFIABILITY: EXAMPLE APPLICATIONS 7 Gardnerhessda ViniRipo�April FoolFour Color TheoremMGregorBryantindependentFig. 33. The MGregor graphof order 10. Eah region of this\map" is identi�ed by a two-digit hexadeimal ode. Can youolor the regions with four olors,never using the same olor fortwo adjaent regions?

00 01 02 03 04 05 06 07 08 0911 12 13 14 15 16 17 18 1922 23 24 25 26 27 28 2933 34 35 36 37 38 3944 45 46 47 48 4955 56 57 58 5966 67 68 6977 78 7988 899920 2130 31 3240 41 42 4350 51 52 53 5460 61 62 63 64 6570 71 72 73 74 75 7680 81 82 83 84 85 86 8790 91 92 93 94 95 96 97 98a0 a1 a2 a3 a4 a5 a6 a7 a8 a910Martin Gardner astonished the world in 1975 when he reported [Sienti�Amerian 232, 4 (April 1975), 126{130℄ that a proper oloring of the planarmap in Fig. 33 requires �ve distint olors, thereby disproving the longstandingfour-olor onjeture. (In that same olumn he also ited several other \fats"supposedly disovered in 1974: (i) e�p163 is an integer; (ii) pawn-to-king-rook-4(`h4') is a winning �rst move in hess; (iii) the theory of speial relativity isfatally awed; (iv) Leonardo da Vini invented the ush toilet; and (v) RobertRipo� devised a motor that is powered entirely by psyhi energy. Thousandsof readers failed to notie that they had been April Fooled!)The map in Fig. 33 atually an be 4-olored; you are hereby hallenged todisover a suitable way to do this, before turning to the answer of exerise 18.Indeed, the four-olor onjeture beame the Four Color Theorem in 1976, asmentioned in Setion 7. Fortunately that result was still unknown in April of1975; otherwise this interesting graph would probably never have appeared inprint. MGregor's graph has 110 verties (regions) and 324 edges (adjaeniesbetween regions); hene (15) and (16) yield 110 + 1296 = 1406 lauses on 440variables, whih a modern SAT solver an polish o� quikly.We an also go muh further and solve problems that would be extremelydiÆult by hand. For example, we an add onstraints to limit the number ofregions that reeive a partiular olor. Randal Bryant exploited this idea in 2010to disover that there's a four-oloring of Fig. 33 that uses one of the olors only7 times (see exerise 17). His oloring is, in fat, unique, and it leads to anexpliit way to 4-olor the MGregor graphs of all orders n � 3 (exerise 18).Suh additional onstraints an be generated in many ways. We ould,for instane, append �1108 � lauses, one for every hoie of 8 regions, speifyingthat those 8 regions aren't all olored 1. But no, we'd better srath that idea:�1108 � = 409;705;619;895. Even if we restrited ourselves to the 74,792,876,790sets of 8 regions that are independent, we'd be dealing with far too many lauses.
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8 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 SinzBailleuxBoufkhadomplete binary treeardinality onstraintsS�r(x1; : : : ; xn)symmetri threshold funtionsbinary multipliationmultipliation+
An interesting SAT-oriented way to ensure that x1 + � � �+ xn is at most r,whih works well when n and r are rather large, was found by C. Sinz [LNCS3709 (2005), 827{831℄. His method introdues (n � r)r new variables skj for1 � j � n� r and 1 � k � r. If F is any satis�ability problem and if we add the(n� r � 1)r + (n� r)(r + 1) lauses(�skj _ skj+1); for 1 � j < n� r and 1 � k � r, (18)(�xj+k _ �skj _ sk+1j ); for 1 � j � n� r and 0 � k � r, (19)where �skj is omitted when k = 0 and sk+1j is omitted when k = r, then the new setof lauses is satis�able if and only if F is satis�able with x1+� � �+xn � r. (See ex-erise 26.) With this sheme we an limit the number of red-olored regions ofMGregor's graph to at most 7 by appending 1538 lauses in 721 new variables.Another way to ahieve the same goal, whih turns out to be even better,has been proposed by O. Bailleux and Y. Boufkhad [LNCS 2833 (2003), 108{122℄. Their method is a bit more diÆult to desribe, but still easy to implement:Consider a omplete binary tree that has n�1 internal nodes numbered 1 throughn � 1, and n leaves numbered n through 2n � 1; the hildren of node k, for1 � k < n, are nodes 2k and 2k+1 (see 2.3.4.5{(5)). We form new variables bkj for1 < k < n and 1 � j � tk, where tk is the minimum of r and the number of leavesbelow node k. Then the following lauses, explained in exerise 27, do the job:(�b2ki _ �b2k+1j _ bki+j); for 0� i� t2k, 0� j� t2k+1, 1� i+j� tk+1, 1<k<n; (20)(�b2i _ �b3j ); for 0� i� t2, 0� j� t3, i+ j= r + 1. (21)In these formulas we let tk = 1 and bk1 = xk�n+1 for n � k < 2n; all literals �bk0and bkr+1 are to be omitted. Applying (20) and (21) to MGregor's graph, withn = 110 and r = 7, yields just 1216 new lauses in 399 new variables.The same ideas apply when we want to ensure that x1+ � � �+xn is at least r,beause of the identity S�r(x1; : : : ; xn) = S�n�r(�x1; : : : ; �xn). And exerise 30onsiders the ase of equality, when our goal is to make x1 + � � �+ xn = r. We'lldisuss other enodings of suh ardinality onstraints below.Fatoring integers. Next on our agenda is a family of SAT instanes with quitea di�erent avor. Given an (m + n)-bit binary integer z = (zm+n : : : z2z1)2, dothere exist integers x = (xm : : : x1)2 and y = (yn : : : y1)2 suh that z = x � y?For example, if m = 2 and n = 3, we want to invert the binary multipliationy3 y2 y1� x2x1a3 a2 a1b3 b2 b13 2 1z5 z4 z3 z2 z1 (a3a2a1)2 = (y3y2y1)2 � x1(b3 b2 b1)2 = (y3y2y1)2 � x2 z1 = a1(1z2)2 = a2 + b1(2z3)2 = a3 + b2 + 1(3z4)2 = b3 + 2z5 = 3 (22)when the z bits are given. This problem is satis�able when z = 21 = (10101)2,in the sense that suitable binary values x1, x2, y1, y2, y3, a1, a2, a3, b1, b2, b3, 1,2, 3 do satisfy these equations. But it's unsatis�able when z = 19 = (10011)2.
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7.2.2.2 SATISFIABILITY: EXAMPLE APPLICATIONS 9 Boolean hainfull adderhalf addersunary lausesTseytin enodingonjuntive normal formDAVISPUTNAMNapierDaddabinary number systemhalf adderarry bitfull addernotation habimedian operationternary operations
Arithmetial alulations like (22) are easily expressed in terms of lausesthat an be fed to a SAT solver: We �rst speify the omputation by onstrutinga Boolean hain, then we enode eah step of the hain in terms of a few lauses.One suh hain, if we identify a1 with z1 and 3 with z5, isz1 x1^y1;a2 x1^y2;a3 x1^y3; b1 x2^y1;b2 x2^y2;b3 x2^y3; z2 a2�b1;1 a2^b1; s a3�b2;p a3^b2; z3 s�1;q s^1;2 p_q; z4 b3�2;z5 b3^2;(23)using a \full adder" to ompute 2z3 and \half adders" to ompute 1z2 and 3z4(see 7.1.2{(23) and (24)). And that hain is equivalent to the 49 lauses(x1_�z1)^(y1_�z1)^(�x1_�y1_z1)^� � �^(�b3_�2_�z4)^(b3_�z5)^(2_�z5)^(�b3_�2_z5)obtained by expanding the elementary omputations aording to simple rules:t u ^ v beomes (u _ �t) ^ (v _ �t) ^ (�u _ �v _ t);t u _ v beomes (�u _ t) ^ (�v _ t) ^ (u _ v _ �t);t u� v beomes (�u _ v _ t) ^ (u _ �v _ t) ^ (u _ v _ �t) ^ (�u _ �v _ �t): (24)To omplete the spei�ation of this fatoring problem when, say, z = (10101)2,we simply append the unary lauses (z5) ^ (�z4) ^ (z3) ^ (�z2) ^ (z1).Logiians have known for a long time that omputational steps an readilybe expressed as onjuntions of lauses. Rules suh as (24) are now alled Tseytinenoding, after Gregory Tseytin (1966). Our representation of a small �ve-bitfatorization problem in 49+5 lauses may not seem very eÆient; but we will seeshortly that m-bit by n-bit fatorization orresponds to a satis�ability problemwith fewer than 6mn variables, and fewer than 20mn lauses of length 3 or less.Even if the system has hundreds or thousands of formulas,it an be put into onjuntive normal form \piee by piee,"without any \multiplying out."| MARTIN DAVIS and HILARY PUTNAM (1958)Suppose m � n. The easiest way to set up Boolean hains for multipliationis probably to use a sheme that goes bak to John Napier's Rabdologi� (Edin-burgh, 1617), pages 137{143, as modernized by Luigi Dadda [Alta Frequenza34 (1964), 349{356℄: First we form all mn produts xi ^ yj , putting every suhbit into bin [i + j℄, whih is one of m + n \bins" that hold bits to be addedfor a partiular power of 2 in the binary number system. The bins will ontainrespetively (0, 1, 2, : : : , m, m, : : : , m, : : : , 2, 1) bits at this point, with n�m+1ourrenes of \m" in the middle. Now we look at bin [k℄ for k = 2, 3, : : : . Ifbin [k℄ ontains a single bit b, we simply set zk�1  b. If it ontains two bitsfb; b0g, we use a half adder to ompute zk�1  b� b0,  b^ b0, and we put thearry bit  into bin [k + 1℄. Otherwise bin [k℄ ontains t � 3 bits; we hoose anythree of them, say fb; b0; b00g, and remove them from the bin. With a full adder wethen ompute r  b�b0�b00 and  hbb0b00i, so that b+b0+b00 = r+2; and weput r into bin [k℄,  into bin [k+1℄. This dereases t by 2, so eventually we will haveomputed zk�1. Exerise 41 quanti�es the exat amount of alulation involved.
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10 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 �rst-in-�rst-outFIFO: �rst in �rst outlast-in-�rst-outstakqueuefator �fo (m;n; z)fator lifo (m;n; z)fator rand (m;n; z; s)FermatFault testingATPG: Automati test pattern generation, see Fault testingtest patternsiruitiruit: see also Boolean hainsingle-stuk-at faultfanout
This method of enoding multipliation into lauses is quite exible, sinewe're allowed to hoose any three bits from bin [k℄ whenever four or more bits arepresent. We ould use a �rst-in-�rst-out strategy, always seleting bits from the\rear" and plaing their sum at the \front"; or we ould work last-in-�rst-out,essentially treating bin [k℄ as a stak instead of a queue. We ould also seletthe bits randomly, to see if this makes our SAT solver any happier. Later in thissetion we'll refer to the lauses that represent the fatoring problem by allingthem fator �fo (m;n; z), fator lifo (m;n; z), or fator rand (m;n; z; s), respe-tively, where s is a seed for the random number generator used to generate them.It's somewhat mind-boggling to realize that numbers an be fatored withoutusing any number theory! No greatest ommon divisors, no appliations ofFermat's theorems, et., are anywhere in sight. We're providing no hints tothe solver exept for a bunh of Boolean formulas that operate almost blindlyat the bit level. Yet fators are found.Of ourse we an't expet this method to ompete with the sophistiatedfatorization algorithms of Setion 4.5.4. But the problem of fatoring does dem-onstrate the great versatility of lauses. And its lauses an be ombined withother onstraints that go well beyond any of the problems we've studied before.Fault testing. Lots of things an go wrong when omputer hips are manufa-tured in the \real world," so engineers have long been interested in onstrutingtest patterns to hek the validity of a partiular iruit. For example, supposethat all but one of the logial elements are funtioning properly in some hip; thebad one, however, is stuk: Its output is onstant, always the same regardless ofthe inputs that it is given. Suh a failure is alled a single-stuk-at fault.x1x2y1y2y3

z1z2z3z4z5

z1b1a2b2a3b3 z21sp z3q2z4z5Fig. 34. A iruit thatorresponds to (23).

Figure 34 illustrates a typial digital iruit indetail: It implements the 15 Boolean operationsof (23) as a network that produes �ve output sig-nals z5z4z3z2z1 from the �ve inputs y3y2y1x2x1.In addition to having 15 AND,OR, and XOR gates,eah of whih transforms two inputs into one out-put, it has 15 \fanout" gates (indiated by dotsat juntion points), eah of whih splits one inputinto two outputs. As a result it omprises 50potentially distint logial signals, one for eahinternal \wire." Exerise 47 shows that a iruitwith m outputs, n inputs, and g onventional 2-to-1 gates will have g + m � n fanout gates and3g+2m�n wires. A iruit with w wires has 2wpossible single-stuk-at faults, namely w faults inwhih the signal on a wire is stuk at 0 and wmore on whih it is stuk at 1.Table 1 shows 101 senarios that are possiblewhen the 50 wires of Fig. 34 are ativated by onepartiular sequene of inputs, assuming that at
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7.2.2.2 SATISFIABILITY: EXAMPLE APPLICATIONS 11 defaultbitwiseTable 1SINGLE-STUCK-AT FAULTS IN FIGURE 34 WHEN x2x1 = 11, y3y2y1 = 110OKx1x11x21x31x41x2x12x22x32x42y1y11y21y2y12y22y3y13y23z1a2a12a22a3a13a23b1 b11 b21 b2 b12 b22 b3 b13 b23 z2 1 11 21 s s1 s2 p z3 q 2 12 22 z4z5x1 input 1 00011111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111x11 x1 1 01000111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111x21 x1 1 01110001111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111x31 x11 1 01011100011111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111x41 x11 1 01011111000111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111x2 input 1 11111111110001111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111x12 x2 1 11111111110100011111111111111111111111111111111111111111111111111111111111111111111111111111111111111111x22 x2 1 11111111110111000111111111111111111111111111111111111111111111111111111111111111111111111111111111111111x32 x12 1 11111111110101110001111111111111111111111111111111111111111111111111111111111111111111111111111111111111x42 x12 1 11111111110101111100011111111111111111111111111111111111111111111111111111111111111111111111111111111111y1 input 0 00000000000000000000000111000000000000000000000000000000000000000000000000000000000000000000000000000000y11 y1 0 00000000000000000000010001110000000000000000000000000000000000000000000000000000000000000000000000000000y21 y1 0 00000000000000000000010000011100000000000000000000000000000000000000000000000000000000000000000000000000y2 input 1 11111111111111111111111111000111111111111111111111111111111111111111111111111111111111111111111111111111y12 y2 1 11111111111111111111111111010001111111111111111111111111111111111111111111111111111111111111111111111111y22 y2 1 11111111111111111111111111011100011111111111111111111111111111111111111111111111111111111111111111111111y3 input 1 11111111111111111111111111111111000111111111111111111111111111111111111111111111111111111111111111111111y13 y3 1 11111111111111111111111111111111010001111111111111111111111111111111111111111111111111111111111111111111y23 y3 1 11111111111111111111111111111111011100011111111111111111111111111111111111111111111111111111111111111111z1 x21^y11 0 00000000000000000000010100000000000000000111000000000000000000000000000000000000000000000000000000000000a2 x31^y12 1 01011101111111111111111111010111111111110001111111111111111111111111111111111111111111111111111111111111a12 a2 1 01011101111111111111111111010111111111110100011111111111111111111111111111111111111111111111111111111111a22 a2 1 01011101111111111111111111010111111111110111000111111111111111111111111111111111111111111111111111111111a3 x41^y13 1 01011111011111111111111111111111010111111111110001111111111111111111111111111111111111111111111111111111a13 a3 1 01011111011111111111111111111111010111111111110100011111111111111111111111111111111111111111111111111111a23 a3 1 01011111011111111111111111111111010111111111110111000111111111111111111111111111111111111111111111111111b1 x22^y21 0 00000000000000000000010001000000000000000000000000000001110000000000000000000000000000000000000000000000b11 b1 0 00000000000000000000010001000000000000000000000000000100011100000000000000000000000000000000000000000000b21 b1 0 00000000000000000000010001000000000000000000000000000100000111000000000000000000000000000000000000000000b2 x32^y22 1 11111111110101110111111111011101111111111111111111111111110001111111111111111111111111111111111111111111b12 b2 1 11111111110101110111111111011101111111111111111111111111110100011111111111111111111111111111111111111111b22 b2 1 11111111110101110111111111011101111111111111111111111111110111000111111111111111111111111111111111111111b3 x42^y23 1 11111111110101111101111111111111011101111111111111111111111111110001111111111111111111111111111111111111b13 b3 1 11111111110101111101111111111111011101111111111111111111111111110100011111111111111111111111111111111111b23 b3 1 11111111110101111101111111111111011101111111111111111111111111110111000111111111111111111111111111111111z2 a12�b11 1 010111011111111111111011100101111111111101011111111110101111111111111100011111111111111111111111111111111 a22^b21 0 0000000000000000000001000100000000000000000000000000010001000000000000000001110000000000000000000000000011 1 0 0000000000000000000001000100000000000000000000000000010001000000000000000100011100000000000000000000000021 1 0 00000000000000000000010001000000000000000000000000000100010000000000000001000001110000000000000000000000s a13�b12 0 10100000101010001000000000100010101000000000001010000000001010000000000000000000011100000000000000000000s1 s 0 10100000101010001000000000100010101000000000001010000000001010000000000000000001000111000000000000000000s2 s 0 10100000101010001000000000100010101000000000001010000000001010000000000000000001000001110000000000000000p a23^b22 1 01011111010101110111111111011101010111111111110111011111110111011111111111111111111100011111111111111111z3 s1�11 0 10100000101010001000010001100010101000000000001010000100011010000000000001010001010000000111000000000000q s2̂ 21 0 000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000011100000000002 p_q 1 0101111101010111011111111101110101011111111111011101111111011101111111111111111111110111110001111111111112 2 1 0101111101010111011111111101110101011111111111011101111111011101111111111111111111110111110100011111111122 2 1 01011111010101110111111111011101010111111111110111011111110111011111111111111111111101111101110001111111z4 b13�12 0 10100000100000001010000000100010001010000000001000100000001000101010000000000000000010000010100000011100z5 b23^22 1 01011111010101110101111111011101010101111111110111011111110111010111011111111111111101111101110111000111most one stuk-at fault is present. The olumn headed OK shows the orretbehavior of the Boolean hain (whih niely multiplies x = 3 by y = 6 andobtains z = 18). We an all these the \default" values, beause, well, they haveno faults. The other 100 olumns show what happens if all but one of the 50wires have error-free signals; the two olumns under b12, for example, illustratethe results when the rightmost wire that fans out from gate b2 is stuk at 0or 1. Eah row is obtained bitwise from previous rows or inputs, exept that theboldfae digits are fored. When a boldfae value agrees with the default, itsentire olumn is orret; otherwise errors might propagate. All values above thebold diagonal math the defaults.If we want to test a hip that has n inputs and m outputs, we're allowedto apply test patterns to the inputs and see what outputs are produed. Close
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12 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 Boolean evaluationprodStanford GraphBasemultipliesparallel multiplierfator �fofanout gateswiresrandompi, as soure of random datae, as soure of random databitwise operations
inspetion shows, for instane, that the pattern onsidered in Table 1 doesn'tdetet an error when q is stuk at 1, even though q should be 0, beause all �veoutput bits z5z4z3z2z1 are orret in spite of that error. In fat, the value of1  p _ q is una�eted by a bad q, beause p = 1 in this example. Similarly,the fault \x21 stuk at 0" doesn't propagate into z1  x21 ^ y11 beause y11 = 0.Altogether 44 faults, not 50, are disovered by this partiular test pattern.All of the relevant repeatable faults, whether they're single-stuk-at or wildlyompliated, ould obviously be disovered by testing all 2n possible patterns.But that's out of the question unless n is quite small. Fortunately, testing isn'thopeless, beause satisfatory results are usually obtained in pratie if we dohave enough test patterns to detet all of the detetable single-stuk-at faults.Exerise 49 shows that just �ve patterns suÆe to ertify Fig. 34 by this riterion.The detailed analysis in exerise 49 also shows, surprisingly, that one of thefaults, namely \s2 stuk at 1," annot be deteted! Indeed, an erroneous s2 anpropagate to an erroneous q only if 21 = 1, and that fores x1 = x2 = y1 = y2 = 1;only two possibilities remain, and neither y3 = 0 nor y3 = 1 reveals the fault.Consequently we an simplify the iruit by removing gate q ; the hain (23)beomes shorter, with \q  s ^ 1, 2  p_ q" replaed by \2  p_ 1."Of ourse Fig. 34 is just a tiny little iruit, intended only to introdue theonept of stuk-at faults. Test patterns are needed for the muh larger iruitsthat arise in real omputers; and we will see that SAT solvers an help us to �ndthem. Consider, for example, the generi multiplier iruit prod (m;n), whih ispart of the Stanford GraphBase. It multiplies an m-bit number x by an n-bitnumber y, produing an (m + n)-bit produt z. Furthermore, it's a so-alled\parallel multiplier," with delay time O(log(m+n)); thus it's muh more suitedto hardware design than methods like the fator �fo shemes that we onsideredabove, beause those iruits need 
(m+ n) time for arries to propagate.Let's try to �nd test patterns that will smoke out all of the single-stuk-atfaults in prod (32; 32), whih is a iruit of depth 33 that has 64 inputs, 64 out-puts, 3660 AND gates, 1203 OR gates, 2145 XOR gates, and (therefore) 7008 fan-out gates and 21,088 wires. How an we guard it against 42,176 di�erent faults?Before we onstrut lauses to failitate that task, we should realize thatmost of the single-stuk-at faults are easily deteted by hoosing patterns atrandom, sine faults usually ause big trouble and are hard to miss. Indeed,hoosing x = #3243F6A8 and y = #885A308D more or less at random alreadyeliminates 14,733 ases; and (x; y) = (#2B7E1516; #28AED2A6) eliminates 6,918more. We might as well keep doing this, beause bitwise operations suh as thosein Table 1 are fast. Experiene with the smaller multiplier in Fig. 34 suggeststhat we get more e�etive tests if we bias the inputs, hoosing eah bit to be 1with probability .9 instead of .5 (see exerise 49). A million suh random inputswill then generate, say, 243 patterns that detet all but 140 of the faults.Our remaining job, then, is essentially to �nd 140 needles in a haystak ofsize 264, after having piked 42;176� 140 = 42;036 piees of low-hanging fruit.And that's where a SAT solver is useful. Consider, for example, the analogousbut simpler problem of �nding a test pattern for \q stuk at 0" in Fig. 34.
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7.2.2.2 SATISFIABILITY: EXAMPLE APPLICATIONS 13 tarnishedative pathLarrabeeANDORXORFanout gatesunit lauseSAT solverStanford GraphBaseGB GATES
We an use the 49 lauses F derived from (23) to represent the well-behavediruit; and we an imagine orresponding lauses F 0 that represent the faultyomputation, using \primed" variables z01, a02, : : : , z05. Thus F 0 begins with(x1_ �z01)^(y1_ �z01) and ends with (�b03_�02_z05); it's like F exept that the lausesrepresenting q0  s0^ 01 in (23) are hanged to simply �q0 (meaning that q0 isstuk at 0). Then the lauses of F and F 0, together with a few more lauses tostate that z1 6= z01 or � � � or z5 6= z05, will be satis�able only by variables for whih(y3y2y1)2 � (x2x1)2 is a suitable test pattern for the given fault.This onstrution of F 0 an obviously be simpli�ed, beause z01 is identialto z1; any signal that di�ers from the orret value must be loated \downstream"from the one-and-only fault. Let's say that a wire is tarnished if it is the faultywire or if at least one of its input wires is tarnished. We introdue new variablesg0 only for wires g that are tarnished. Thus, in our example, the only lauses F 0that are needed to extend F to a faulty ompanion iruit are �q0 and the lausesthat orrespond to 02  p _ q0, z04  b3 � 02, z05  b3 ^ 02.Moreover, any fault that is revealed by a test pattern must have an ativepath of wires, leading from the fault to an output; all wires on this path mustarry a faulty signal. Therefore Tray Larrabee [IEEE Trans. CAD-11 (1992),4{15℄ deided to introdue additional \sharped" variables g℄ for eah tarnishedwire, meaning that g lies on the ative path. The two lauses(�g℄ _ g _ g0) ^ (�g℄ _ �g _ �g0) (25)ensure that g 6= g0 whenever g is part of that path. Furthermore we have (�v℄_g℄)whenever g is an AND, OR, or XOR gate with tarnished input v. Fanout gatesare slightly triky in this regard: When wires g1 and g2 fan out from a tarnishedwire g, we need variables g1℄ and g2℄ as well as g℄; and we introdue the lause(�g℄ _ g1℄ _ g2℄) (26)to speify that the ative path takes at least one of the two branhes.Aording to these rules, our example aquires the new variables q℄, ℄2, 1℄2 ,2℄2 , z℄4, z℄5, and the new lauses(�q℄_q_q0)^ (�q℄_ �q_ �q0)^ (�q℄_℄2)^ (�℄2_2_02)^ (�℄2_�2_�02)^ (�℄2_1℄2 _2℄2 )^(�1℄2 _z℄4)^ (�z℄4_z4_z04)^ (�z℄4_ �z4_ �z04)^ (�2℄2 _z℄5)^ (�z℄5_z5_z05) ^ (�z℄5_ �z5_ �z05):The ative path begins at q, so we assert the unit lause (q℄); it ends at atarnished output, so we also assert (z℄4 _ z℄5). The resulting set of lauses will�nd a test pattern for this fault if and only if the fault is detetable. Larrabeefound that suh ative-path variables provide important lues to a SAT solverand signi�antly speed up the solution proess.Returning to the large iruit prod (32; 32), one of the 140 hard-to-test faultsis \W 2621 stuk at 1," where W 2621 denotes the 26th extra wire that fans out fromthe OR gate alled W21 in x75 of the Stanford GraphBase program GB GATES;W 2621 is an input to gate b4040  d1940 ^W 2621 in x80 of that program. Test patternsfor that fault an be haraterized by a set of 23,194 lauses in 7,082 variables
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14 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 KnuthGB GATESnumber theoryAurifeuillianlearning a Boolean funtion{Boolean funtion{DNFdisjuntive normal form(of whih only 4 variables are \primed" and 4 are \sharped"). Fortunatelythe solution (x; y) = (#7F13FEDD; #5FE57FFE) was found rather quikly in theauthor's experiments; and this pattern also killed o� 13 of the other ases, sothe sore was now \14 down and 126 to go"!The next fault sought was \A36;25 stuk at 1," where A36;25 is the seondextra wire to fan out from the AND gate A365 in x72 of GB GATES (an inputto R3611  A36;25 ^ R35;21 ). This fault orresponds to 26,131 lauses on 8,342variables; but the SAT solver took a quik look at those lauses and deidedalmost instantly that they are unsatis�able. Therefore the fault is undetetable,and the iruit prod (32; 32) an be simpli�ed by setting R3611  R35;21 . A loserlook showed, in fat, that lauses orresponding to the Boolean equationsx = y ^ z; y = v ^ w; z = t ^ u; u = v � wwere present (where t = R4413, u = A4558, v = R444 , w = A4514, x = R4623, y = R4513,z = R4519); these lauses fore x = 0. Therefore it was not surprising to �ndthat the list of unresolved faults also inluded R4623, R46;123 and R46;223 stuk at 0.Altogether 26 of the 140 faults undeteted by random inputs turned out to beabsolutely undetetable; and only one of these, namely \Q4626 stuk at 0," requireda nontrivial proof of undetetability.Some of the 126�26 = 100 faults remaining on the to-do list turned out to besigni�ant hallenges for the SAT solver. While waiting, the author therefore hadtime to take a look at a few of the previously found solutions, and notied thatthose patterns themselves were forming a pattern! Sure enough, the extreme por-tions of this large and ompliated iruit atually have a fairly simple struture,stuk-at-fault-wise. Hene number theory ame to the resue: The fatorization#87FBC059 � #F0F87817 = 263 � 1 solved many of the toughest hallenges,some of whih our with probability less than 2�34 when 32-bit numbers aremultiplied; and the \Aurifeuillian" fatorization (231� 216+1)(231+216+1) =262 + 1, whih the author had known for more than forty years (see Eq. 4.5.4{(15)), polished o� most of the others.The bottom line (see exerise 51) is that all 42,150 of the detetable single-stuk-at faults of the parallel multipliation iruit prod (32; 32) an atually bedeteted with at most 196 well-hosen test patterns.Learning a Boolean funtion. Sometimes we're given a \blak box" thatevaluates a Boolean funtion f(x1; : : : ; xN ). We have no way to open the box,but we suspet that the funtion is atually quite simple. By plugging in variousvalues for x = x1 : : : xN , we an observe the box's behavior and possibly learn thehidden rule that lies inside. For example, a seret funtion of N = 20 Booleanvariables might take on the values shown in Table 2, whih lists 16 ases wheref(x) = 1 and 16 ases where f(x) = 0.Suppose we assume that the funtion has a DNF (disjuntive normal form)with only a few terms. We'll see in a moment that it's easy to express suh anassumption as a satis�ability problem. And when the author onstruted lausesorresponding to Table 2 and presented them to a SAT solver, he did in fat learn



September 23, 2015

7.2.2.2 SATISFIABILITY: EXAMPLE APPLICATIONS 15Table 2VALUES TAKEN ON BY AN UNKNOWN FUNCTIONCases where f(x) = 1x1x2x3x4x5x6x7x8x9 : : : x201 1 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 1 0 11 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 10 1 1 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 1 10 1 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 1 1 00 1 1 0 0 0 1 0 1 0 0 0 1 0 1 1 1 0 0 00 0 0 0 1 1 0 1 1 1 0 0 0 0 0 1 1 1 0 01 1 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 00 0 1 0 0 1 0 0 1 1 1 0 0 0 0 0 1 0 0 01 0 0 0 1 0 1 0 0 1 1 0 0 1 1 1 1 1 0 01 1 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 1 00 0 0 0 1 0 1 1 1 0 1 1 1 1 1 0 1 0 1 00 1 1 0 0 0 1 1 1 0 1 1 0 0 0 1 0 0 1 11 0 0 1 1 0 1 1 0 0 1 0 0 0 1 0 0 1 0 10 0 0 1 0 1 0 0 1 0 1 0 0 0 0 0 1 0 0 00 1 1 1 1 0 0 1 1 0 0 0 1 1 1 0 0 0 1 10 1 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 1 0 1

Cases where f(x) = 0x1x2x3x4x5x6x7x8x9 : : : x201 0 1 0 1 1 0 1 1 1 1 1 1 0 0 0 0 1 0 10 1 0 0 0 1 0 1 1 0 0 0 1 0 1 0 0 0 1 01 0 1 1 1 0 1 1 0 1 0 0 1 0 1 0 1 0 0 11 0 1 0 1 0 1 0 1 1 1 1 1 1 0 1 1 1 0 00 1 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 00 1 1 1 0 0 1 1 1 1 0 1 0 0 1 1 1 1 0 01 1 1 1 0 0 0 1 1 1 0 1 1 0 0 0 1 0 1 11 0 0 1 1 1 0 0 0 1 0 1 1 0 0 0 0 0 1 11 1 0 0 1 1 1 0 0 0 1 0 1 1 0 1 0 0 1 10 1 1 0 1 0 0 1 0 1 0 1 1 0 1 0 1 0 0 11 1 1 0 0 0 0 1 0 0 1 1 0 1 1 0 0 1 0 00 0 0 1 0 0 0 1 0 1 0 0 0 1 1 0 0 1 0 00 0 1 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1 0 01 1 0 0 1 0 0 1 0 0 1 1 1 0 0 1 1 1 0 11 1 0 0 1 1 1 0 0 0 1 0 0 1 0 0 1 0 0 11 0 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 0 0 1almost immediately that a very simple formula is onsistent with all of the data:f(x1; : : : ; x20) = �x2�x3�x10 _ �x6�x10�x12 _ x8�x13�x15 _ �x8x10�x12: (27)This formula was disovered by onstruting lauses in 2MN variables pi;jand qi;j for 1 � i � M and 1 � j � N , where M is the maximum number ofterms allowed in the DNF (here M = 4) and wherepi;j = [term i ontains xj ℄; qi;j = [term i ontains �xj ℄: (28)If the funtion is onstrained to equal 1 at P spei�ed points, we also use auxiliaryvariables zi;k for 1 � i �M and 1 � k � P , one for eah term at every suh point.Table 2 says that f(1; 1; 0; 0; : : : ; 1) = 1, and we an apture this spei�ationby onstruting the lause (z1;1 _ z2;1 _ � � � _ zM;1) (29)together with the lauses(�zi;1_ �qi;1) ^ (�zi;1_ �qi;2) ^ (�zi;1_ �pi;3) ^ (�zi;1_ �pi;4) ^ � � � ^ (�zi;1_ �qi;20) (30)for 1 � i �M . Translation: (29) says that at least one of the terms in the DNFmust evaluate to true; and (30) says that, if term i is true at the point 1100 : : :1,it annot ontain �x1 or �x2 or x3 or x4 or � � � or �x20.Table 2 also tells us that f(1; 0; 1; 0; : : : ; 1) = 0. This spei�ation orre-sponds to the lauses (qi;1 _ pi;2 _ qi;3 _ pi;4 _ � � � _ qi;20) (31)for 1 � i � M . (Eah term of the DNF must be zero at the given point; thuseither �x1 or x2 or �x3 or x4 or � � � or �x20 must be present for eah value of i.)In general, every ase where f(x) = 1 yields one lause like (29) of lengthM,plus MN lauses like (30) of length 2. Every ase where f(x) = 0 yields Mlauses like (31) of length N . We use qi;j when xj = 1 at the point in question,
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16 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 KamathKarmarkarRamakrishnanResendefallaioustraining setauthorbounded model heking{veri�ationmodel heking+transition relationdynamial system, disretebug
and pi;j when xj = 0, for both (30) and (31). This onstrution is due toA. P. Kamath, N. K. Karmarkar, K. G. Ramakrishnan, and M. G. C. Resende[Mathematial Programming 57 (1992), 215{238℄, who presented many exam-ples. From Table 2, with M = 4, N = 20, and P = 16, it generates 1360 lausesof total length 3904 in 224 variables; a SAT solver then �nds a solution withp1;1 = q1;1 = p1;2 = 0, q1;2 = 1, : : : , leading to (27).The simpliity of (27) makes it plausible that the SAT solver has indeedpsyhed out the true nature of the hidden funtion f(x). The hane of agreeingwith the orret value 32 times out of 32 is only 1 in 232, so we seem to haveoverwhelming evidene in favor of that equation.But no: Suh reasoning is fallaious. The numbers in Table 2 atually arosein a ompletely di�erent way, and Eq. (27) has essentially no redibility as apreditor of f(x) for any other values of x! (See exerise 53.) The fallay omesfrom the fat that short-DNF Boolean funtions of 20 variables are not at allrare; there are many more than 232 of them.On the other hand, when we do know that the hidden funtion f(x) hasa DNF with at most M terms (although we know nothing else about it), thelauses (29){(31) give us a nie way to disover those terms, provided that wealso have a suÆiently large and unbiased \training set" of observed values.For example, let's assume that (27) atually is the funtion in the box. Ifwe examine f(x) at 32 random points x, we don't have enough data to makeany dedutions. But 100 random training points will almost always home in onthe orret solution (27). This alulation typially involves 3942 lauses in 344variables; yet it goes quikly, needing only about 100 million aesses to memory.One of the author's experiments with a 100-element training set yieldedf̂(x1; : : : ; x20) = �x2�x3�x10 _ x3�x6�x10�x12 _ x8�x13�x15 _ �x8x10�x12; (32)whih is lose to the truth but not quite exat. (Exerise 59 proves that f̂(x)is equal to f(x) more than 97% of the time.) Further study of this exampleshowed that another nine training points were enough to dedue f(x) uniquely,thus obtaining 100% on�dene (see exerise 61).Bounded model heking. Some of the most important appliations of SATsolvers in pratie are related to the veri�ation of hardware or software, beausedesigners generally want some kind of assurane that partiular implementationsorretly meet their spei�ations.A typial design an usually be modeled as a transition relation betweenBoolean vetors X = x1 : : : xn that represent the possible states of a system. Wewrite X ! X 0 if state X at time t an be followed by state X 0 at time t + 1.The task in general is to study sequenes of state transitionsX0 ! X1 ! X2 ! � � � ! Xr; (33)and to deide whether or not there are sequenes that have speial properties.For example, we hope that there's no suh sequene for whih X0 is an \initialstate" and Xr is an \error state"; otherwise there'd be a bug in the design.
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7.2.2.2 SATISFIABILITY: EXAMPLE APPLICATIONS 17 auxiliary variablesTseytin enodingsmodelConwayLifebitmapsellular automatonno-player gameuniversalBerlekampGuyBDD+
! ! !Fig. 35. Conway's rule (35) de�nes these three suessive transitions.Questions like this are readily expressed as satis�ability problems: Eahstate Xt is a vetor of Boolean variables xt1 : : : xtn, and eah transition relationan be represented by a set of m lauses T (Xt; Xt+1) that must be satis�ed.These lauses T (X;X 0) involve 2n variables fx1; : : : ; xn; x01; : : : ; x0ng, togetherwith q auxiliary variables fy1; : : : ; yqg that might be needed to express Booleanformulas in lause form as we did with the Tseytin enodings in (24). Then theexistene of sequene (33) is equivalent to the satis�ability of mr lausesT (X0; X1) ^ T (X1; X2) ^ � � � ^ T (Xr�1; Xr) (34)in the n(r+1)+qr variables fxtj j 0� t�r; 1�j�ng[fytk j 0� t<r; 1�k�qg.We've essentially \unrolled" the sequene (33) into r opies of the transitionrelation, using variables xtj for state Xt and ytk for the auxiliary quantitiesin T (Xt; Xt+1). Additional lauses an now be added to speify onstraints onthe initial state X0 and/or the �nal state Xr, as well as any other onditionsthat we want to impose on the sequene.This general setup is alled \bounded model heking," beause we're usingit to hek properties of a model (a transition relation), and beause we'reonsidering only sequenes that have a bounded number of transitions, r.John Conway's fasinating Game of Life provides a partiularly instrutiveset of examples that illustrate basi priniples of bounded model heking. Thestates X of this game are two-dimensional bitmaps, orresponding to arrays ofsquare ells that are either alive (1) or dead (0). Every bitmap X has a uniquesuessor X 0, determined by the ation of a simple 3 � 3 ellular automaton:Suppose ell x has the eight neighbors fxNW; xN; xNE; xW; xE; xSW; xS; xSEg, andlet � = xNW+xN+xNE+xW+xE+xSW+xS+xSE be the number of neighbors thatare alive at time t. Then x is alive at time t+ 1 if and only if either (a) � = 3,or (b) � = 2 and x is alive at time t. Equivalently, the transition rulex0 = [2<xNW + xN + xNE + xW + 12x+ xE + xSW + xS + xSE< 4℄ (35)holds at every ell x. (See, for example, Fig. 35, where the live ells are blak.)Conway alled Life a \no-player game," beause it involves no strategy:One an initial state X0 has been set up, all subsequent states X1, X2, : : : areompletely determined. Yet, in spite of the simple rules, he also proved that Lifeis inherently ompliated and unpreditable, indeed beyond human omprehen-sion, in the sense that it is universal: Every �nite, disrete, deterministi system,however omplex, an be simulated faithfully by some �nite initial state X0of Life. [See Berlekamp, Conway, and Guy, Winning Ways (2004), Chapter 25.℄In exerises 7.1.4{160 through 162, we've already seen some of the amazingLife histories that are possible, using BDD methods. And many further aspetsof Life an be explored with SAT methods, beause SAT solvers an often deal
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18 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 enodedhessboardgridmobilewith many more variables. For example, Fig. 35 was disovered by using 7�15 =105 variables for eah state X0, X1, X2, X3. The values of X3 were obviouslypredetermined; but the other 105� 3 = 315 variables had to be omputed, andBDDs an't handle that many. Moreover, additional variables were introduedto ensure that the initial state X0 would have as few live ells as possible.Here's the story behind Fig. 35, in more detail: Sine Life is two-dimensional,we use variables xij instead of xj to indiate the states of individual ells, and xtijinstead of xtj to indiate the states of ells at time t. We generally assume thatxtij = 0 for all ells outside of a given �nite region, although the transition rule(35) an allow ells that are arbitrarily far away to beome alive as Life goes on.In Fig. 35 the region was spei�ed to be a 7� 15 retangle at eah unit of time.Furthermore, on�gurations with three onseutive live ells on a boundary edgewere forbidden, so that ells \outside the box" wouldn't be ativated.The transitions T (Xt; Xt+1) an be enoded without introduing additionalvariables, but only if we introdue 190 rather long lauses for eah ell not on theboundary. There's a better way, based on the binary tree approah underlying(20) and (21) above, whih requires only about 63 lauses of size � 3, togetherwith about 14 auxiliary variables per ell. This approah (see exerise 65) takesadvantage of the fat that many intermediate alulations an be shared. Forexample, ells x and xW have four neighbors fxNW; xN; xSW; xSg in ommon; sowe need to ompute xNW + xN + xSW + xS only one, not twie.The lauses that orrespond to a four-step sequene X0 ! X1 ! X2 !X3 ! X4 leading to X4 = turn out to be unsatis�able without goingoutside of the 7 � 15 frame. (Only 10 gigamems of alulation were needed toestablish this fat, using Algorithm C below, even though roughly 34000 lausesin 9000 variables needed to be examined!) So the next step in the preparationof Fig. 35 was to try X3 = ; and this trial sueeded. Additional lauses,whih permitted X0 to have at most 39 live ells, led to the solution shown, at aost of about 17 gigamems; and that solution is optimum, beause a further run(osting 12 gigamems) proved that there's no solution with at most 38.Let's look for a moment at some of the patterns that an our on ahessboard, an 8�8 grid. Human beings will never be able to ontemplate morethan a tiny fration of the 264 states that are possible; so we an be fairly surethat \Lifenthusiasts" haven't already explored every tantalizing on�gurationthat exists, even on suh a small playing �eld.One nie way to look for a sequene of interesting Life transitions is to assertthat no ell stays alive more than four steps in a row. Let us therefore say thata mobile Life path is a sequene of transitions X0 ! X1 ! � � � ! Xr with theadditional property that we have(�xtij _ �x(t+1)ij _ �x(t+2)ij _ �x(t+3)ij _ �x(t+4)ij); for 0 � t � r � 4. (36)To avoid trivial solutions we also insist thatXr is not entirely dead. For example,if we impose rule (36) on a hessboard, with xtij permitted to be alive only if1 � i; j � 8, and with the further ondition that at most �ve ells are alive in eah
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7.2.2.2 SATISFIABILITY: EXAMPLE APPLICATIONS 19 GuygliderpopulationKnuthsymmetryosillatoryli patternsstill lifeMethuselahsGardnerstable
generation, a SAT solver an quikly disover interesting mobile paths suh as! ! ! ! ! ! ! ! ! � � � ; (37)whih last quite awhile before leaving the board. And indeed, the �ve-elledobjet that moves so graefully in this path is R. K. Guy's famous glider (1970),whih is surely the most interesting small reature in Life's universe. The glidermoves diagonally, rereating a shifted opy of itself after every four steps.Interesting mobile paths appear also if we restrit the population at eahtime to f6; 7; 8; 9; 10g instead of f1; 2; 3; 4; 5g. For example, here are some of the�rst suh paths that the author's solver ame up with, having length r = 8:! ! ! ! ! ! ! ! ;! ! ! ! ! ! ! ! ;! ! ! ! ! ! ! ! ;! ! ! ! ! ! ! ! ;! ! ! ! ! ! ! ! :These paths illustrate the fat that symmetry an be gained, but never lost, asLife evolves deterministially. Marvelous designs are spawned in the proess.In eah of these sequenes the next bitmap, X9, would break our ground rules:The population immediately after X8 grows to 12 in the �rst and last examples,but shrinks to 5 in the seond-from-last; and the path beomes immobile in theother two. Indeed, we have X5 = X7 in the seond example, hene X6 = X8and X7 = X9, et. Suh a repeating pattern is alled an osillator of period 2.The third example ends with an osillator of period 1, known as a \still life."What are the ultimate destinations of these paths? The �rst one beomesstill, with X69 = X70; and the fourth beomes very still, with X12 = 0! The�fth is the most fasinating of the group, beause it ontinues to produe evermore elaborate valentine shapes, then proeeds to dane and sparkle, until �nallybeginning to twinkle with period 2 starting at time 177. Thus its members X2through X7 qualify as \Methuselahs," de�ned by Martin Gardner as \Life pat-terns of population less than 10 that do not beome stable within 50 generations."(A preditable pattern, like the glider or an osillator, is alled stable.)SAT solvers are basially useless for the study of Methuselahs, beause thestate spae beomes too large. But they are quite helpful when we want toilluminate many other aspets of Life, and exerises 66{85 disuss some notableinstanes. We will onsider one more instrutive example before moving on,
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20 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 eatersGosperparallel proessesAlie{Bob{\maybe" statenondeterministinamely an appliation to \eaters." Consider a Life path of the formX0 = ! ? ? ? ? ? ? ? ?? ? ? ? ? ? ? ?? ? ? ? ? ? ? ?? ? ? ? ? ? ? ?? ? ? ? ? ? ? ?? ? ? ? ? ? ? ?? ? ? ? ? ? ? ?? ? ? ? ? ? ? ? ! ? ? ? ? ? ? ? ?? ? ? ? ? ? ? ?? ? ? ? ? ? ? ?? ? ? ? ? ? ? ?? ? ? ? ? ? ? ?? ? ? ? ? ? ? ?? ? ? ? ? ? ? ?? ? ? ? ? ? ? ? ! ? ? ? ? ? ? ? ?? ? ? ? ? ? ? ?? ? ? ? ? ? ? ?? ? ? ? ? ? ? ?? ? ? ? ? ? ? ?? ? ? ? ? ? ? ?? ? ? ? ? ? ? ?? ? ? ? ? ? ? ? ! ! = X5; (38)where the gray ells form a still life and the ells of X1, X2, X3 are unknown.Thus X4 = X5 and X0 = X5 + glider. Furthermore we require that the stilllife X5 does not interat with the glider's parent, ; see exerise 77. The ideais that a glider will be gobbled up if it happens to glide into this partiular stilllife, and the still life will rapidly reonstitute itself as if nothing had happened.Algorithm C almost instantaneously (well, after about 100 megamems) �nds! ! ! ! ! ; (39)the four-step eater �rst observed in ation by R. W. Gosper in 1971.Appliations to mutual exlusion. Let's look now at how bounded modelheking an help us to prove that algorithms are orret. (Or inorret.) Someof the most hallenging issues of veri�ation arise when we onsider parallelproesses that need to synhronize their onurrent behavior. To simplify ourdisussion it will be onvenient to tell a little story about Alie and Bob.Alie and Bob are asual friends who share an apartment. One of their jointrooms is speial: When they're in that ritial room, whih has two doors, theydon't want the other person to be present. Furthermore, being busy people, theydon't want to interrupt eah other needlessly. So they agree to ontrol aess tothe room by using an indiator light, whih an be swithed on or o�.The �rst protool they tried an be haraterized by symmetrial algorithms:A0. Maybe go to A1.A1. If l go to A1, else to A2.A2. Set l 1, go to A3.A3. Critial, go to A4.A4. Set l 0, go to A0. B0. Maybe go to B1.B1. If l go to B1, else to B2.B2. Set l 1, go to B3.B3. Critial, go to B4.B4. Set l 0, go to B0. (40)At any instant of time, Alie is in one of �ve states, fA0;A1;A2;A3;A4g, andthe rules of her program show how that state might hange. In state A0 she isn'tinterested in the ritial room; but she goes to A1 when she does wish to use it.She reahes that objetive in state A3. Similar remarks apply to Bob. Whenthe indiator light is on (l = 1), they wait until the other person has exited theroom and swithed the light bak o� (l = 0).Alie and Bob don't neessarily operate at the same speed. But they'reallowed to dawdle only when in the \maybe" state A0 or B0. More preisely, wemodel the situation by onverting every relevant senario into a disrete sequeneof state transitions. At every time t = 0, 1, 2, : : : , either Alie or Bob (but notboth) will perform the ommand assoiated with their urrent state, thereby per-haps hanging to a di�erent state at time t+1. This hoie is nondeterministi.Only four kinds of primitive ommands are permitted in the proedures weshall study, all of whih are illustrated in (40): (1) \Maybe go to s"; (2) \Critial,
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7.2.2.2 SATISFIABILITY: EXAMPLE APPLICATIONS 21 exlusion lausesbumpedinitial stateritial setiongo to s"; (3) \Set v  b, go to s"; and (4) \If v go to s1, else to s0". Here sdenotes a state name, v denotes a shared Boolean variable, and b is 0 or 1.Unfortunately, Alie and Bob soon learned that protool (40) is unreliable:One day she went from A1 to A2 and he went from B1 to B2, before either ofthem had swithed the indiator on. Embarrassment (A3 and B3) followed.They ould have disovered this problem in advane, if they'd onverted thestate transitions of (40) into lauses for bounded model heking, as in (33), thenapplied a SAT solver. In this ase the vetor Xt that orresponds to time t on-sists of Boolean variables that enode eah of their urrent states, as well as theurrent value of l. We an, for example, have eleven variables A0t, A1t, A2t, A3t,A4t, B0t, B1t, B2t, B3t, B4t, lt, together with ten binary exlusion lauses (A0t_A1t), (A0t _ A2t), : : : , (A3t _ A4t) to ensure that Alie is in at most one state,and with ten similar lauses for Bob. There's also a variable �t, whih is true orfalse depending on whether Alie or Bob exeutes their program step at time t.(We say that Alie was \bumped" if �t = 1, and Bob was bumped if �t = 0.)If we start with the initial state X0 de�ned by unit lausesA00 ^ A10 ^ A20 ^ A30 ^ A40 ^ B00 ^ B10 ^ B20 ^ B30 ^ B40 ^ �l0; (41)the following lauses for 0 � t < r (disussed in exerise 87) will emulate the�rst r steps of every legitimate senario de�ned by (40):(�t _ A0t _ A0t+1)(�t _ A1t _ A1t+1)(�t _ A2t _ A2t+1)(�t _ A3t _ A3t+1)(�t _ A4t _ A4t+1)(�t _ B0t _ B0t+1)(�t _ B1t _ B1t+1)(�t _ B2t _ B2t+1)(�t _ B3t _ B3t+1)(�t _ B4t _ B4t+1)
(�t _ A0t _ A0t+1 _ A1t+1)(�t _ A1t _ �lt _ A1t+1)(�t _ A1t _ lt _ A2t+1)(�t _ A2t _ A3t+1)(�t _ A2t _ lt+1)(�t _ A3t _ A4t+1)(�t _ A4t _ A0t+1)(�t _ A4t _ �lt+1)(�t _ lt _ A2t _ A4t _ �lt+1)(�t _ �lt _ A2t _ A4t _ lt+1)

(�t _ B0t _ B0t+1 _ B1t+1)(�t _ B1t _ �lt _ B1t+1)(�t _ B1t _ lt _ B2t+1)(�t _ B2t _ B3t+1)(�t _ B2t _ lt+1)(�t _ B3t _ B4t+1)(�t _ B4t _ B0t+1)(�t _ B4t _ �lt+1)(�t _ lt _ B2t _ B4t _ �lt+1)(�t _ �lt _ B2t _ B4t _ lt+1)(42)If we now add the unit lauses (A3r) and (B3r), the resulting set of 13 + 50rlauses in 11+12r variables is readily satis�able when r = 6, thereby proving thatthe ritial room might indeed be jointly oupied. (Inidentally, standard termi-nology for mutual exlusion protools would say that \two threads onurrentlyexeute a ritial setion"; but we shall ontinue with our roommate metaphor.)Bak at the drawing board, one idea is to modify (40) by letting Alie usethe room only when l = 1, but letting Bob in when l = 0:A0. Maybe go to A1.A1. If l go to A2, else to A1.A2. Critial, go to A3.A3. Set l 0, go to A0. B0. Maybe go to B1.B1. If l go to B1, else to B2.B2. Critial, go to B3.B3. Set l 1, go to B0. (43)Computer tests with r = 100 show that the orresponding lauses are unsatis�-able; thus mutual exlusion is apparently guaranteed by (43).
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22 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 deadlokrebootDijkstrastarvationBut (43) is a nonstarter, beause it imposes an intolerable ost: Alie an'tuse the room k times until Bob has already done so! Srap that.How about installing another light, so that eah person ontrols one of them?A0. Maybe go to A1.A1. If b go to A1, else to A2.A2. Set a 1, go to A3.A3. Critial, go to A4.A4. Set a 0, go to A0. B0. Maybe go to B1.B1. If a go to B1, else to B2.B2. Set b 1, go to B3.B3. Critial, go to B4.B4. Set b 0, go to B0. (44)No; this su�ers from the same defet as (40). But maybe we an leverly swiththe order of steps 1 and 2:A0. Maybe go to A1.A1. Set a 1, go to A2.A2. If b go to A2, else to A3.A3. Critial, go to A4.A4. Set a 0, go to A0. B0. Maybe go to B1.B1. Set b 1, go to B2.B2. If a go to B2, else to B3.B3. Critial, go to B4.B4. Set b 0, go to B0. (45)Yes! Exerise 95 proves easily that this protool does ahieve mutual exlusion.Alas, however, a new problem now arises, namely the problem known as\deadlok" or \livelok." Alie and Bob an get into states A2 and B2, afterwhih they're stuk|eah waiting for the other to go ritial.In suh ases they ould agree to \reboot" somehow. But that would bea op-out; they really seek a better solution. And they aren't alone: Manypeople have struggled with this surprisingly deliate problem over the years, andseveral solutions (both good and bad) appear in the exerises below. EdsgerDijkstra, in some pioneering leture notes entitled Cooperating Sequential Pro-esses [Tehnologial University Eindhoven (September 1965), x2.1℄, thought ofan instrutive way to improve on (45):A0. Maybe go to A1.A1. Set a 1, go to A2.A2. If b go to A3, else to A4.A3. Set a 0, go to A1.A4. Critial, go to A5.A5. Set a 0, go to A0. B0. Maybe go to B1.B1. Set b 1, go to B2.B2. If a go to B3, else to B4.B3. Set b 0, go to B1.B4. Critial, go to B5.B5. Set b 0, go to B0. (46)But he realized that this too is unsatisfatory, beause it permits senarios inwhih Alie, say, might wait forever while Bob repeatedly uses the ritial room.(Indeed, if Alie and Bob are in states A1 and B2, she might go to A2, A3,then A1, thereby letting him run to B4, B5, B0, B1, and B2; they're bak wherethey started, yet she's made no progress.)The existene of this problem, alled starvation, an also be deteted viabounded model heking. The basi idea (see exerise 91) is that starvationours if and only if there is a loop of transitionsX0 ! X1 ! � � � ! Xp ! Xp+1 ! � � � ! Xr = Xp (47)suh that (i) Alie and Bob eah are bumped at least one during the loop; and(ii) at least one of them is never in a \maybe" or \ritial" state during the loop.
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7.2.2.2 SATISFIABILITY: EXAMPLE APPLICATIONS 23 Petersonsimple pathlongest simple pathinvariantsAnd those onditions are easily enoded into lauses, beause we an identifythe variables for time r with the variables for time p, and we an append thelauses (�p _�p+1 _ � � � _�r�1) ^ (�p _�p+1 _ � � � _�r�1) (48)to guarantee (i). Condition (ii) is simply a matter of appending unit lauses; forexample, to test whether Alie an be starved by (46), the relevant lauses areA0p ^ A0p+1 ^ � � � ^ A0r�1 ^ A4p ^ A4p+1 ^ � � � ^ A4r�1.The de�ienies of (43), (45), and (46) an all be viewed as instanes ofstarvation, beause (47) and (48) are satis�able (see exerise 90). Thus wean use bounded model heking to �nd ounterexamples to any unsatisfatoryprotool for mutual exlusion, either by exhibiting a senario in whih Alie andBob are both in the ritial room or by exhibiting a feasible starvation yle (47).Of ourse we'd like to go the other way, too: If a protool has no oun-terexamples for, say, r = 100, we still might not know that it is really reliable;a ounterexample might exist only when r is extremely large. Fortunately thereare ways to obtain deent upper bounds on r, so that bounded model hekingan be used to prove orretness as well as to demonstrate inorretness. Forexample, we an verify the simplest known orret solution to Alie and Bob'sproblem, a protool by G. L. Peterson [Information Pro. Letters 12 (1981), 115{116℄, who notied that a areful ombination of (43) and (45) atually suÆes:A0. Maybe go to A1.A1. Set a 1, go to A2.A2. Set l 0, go to A3.A3. If b go to A4, else to A5.A4. If l go to A5, else to A3.A5. Critial, go to A6.A6. Set a 0, go to A0.
B0. Maybe go to B1.B1. Set b 1, go to B2.B2. Set l 1, go to B3.B3. If a go to B4, else to B5.B4. If l go to B3, else to B5.B5. Critial, go to B6.B6. Set b 0, go to B0. (49)Now there are three signal lights, a, b, and l|one ontrolled by Alie, oneontrolled by Bob, and one swithable by both.To show that states A5 and B5 an't be onurrent, we an observe that theshortest ounterexample will not repeat any state twie; in other words, it will bea simple path of transitions (33). Thus we an assume that r is at most the totalnumber of states. However, (49) has 7�7�2�2�2 = 392 states; that's a �nitebound, not really out of reah for a good SAT solver on this partiular problem,but we an do muh better. For example, it's not hard to devise lauses that aresatis�able if and only if there's a simple path of length � r (see exerise 92), andin this partiular ase the longest simple path turns out to have only 54 steps.We an in fat do better yet by using the important notion of invariants,whih we enountered in Setion 1.2.1 and have seen repeatedly throughout thisseries of books. Invariant assertions are the key to most proofs of orretness,so it's not surprising that they also give a signi�ant boost to bounded modelheking. Formally speaking, if �(X) is a Boolean funtion of the state vetorX ,we say that � is invariant if �(X) implies �(X 0) wheneverX ! X 0. For example,



September 23, 2015

24 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 initial stateindutionahe memorieswrite bu�ersparallel omputationLamportsequential onsistenytomatCheshire atdiagonalXraypixel images
it's not hard to see that the following lauses are invariant with respet to (49):�(X) = (A0_A1_A2_A3_A4_A5_A6) ^ (B0_B1_B2_B3_B4_B5_B6)^ (A0_�a)^(A1_�a)^(A2_a)^(A3_a)^(A4_a)^(A5_a)^(A6_a)^ (B0_�b)^(B1_�b)^(B2_b)^(B3_b)^(B4_b)^(B5_b)^(B6_b): (50)(The lause A0 _ �a says that a = 0 when Alie is in state A0, et.) And we anuse a SAT solver to prove that � is invariant, by showing that the lauses�(X) ^ (X ! X 0) ^ :�(X 0) (51)are unsatis�able. Furthermore �(X0) holds for the initial state X0, beause:�(X0) is unsatis�able. (See exerise 93.) Therefore �(Xt) is true for all t � 0,by indution, and we may add these helpful lauses to all of our formulas.The invariant (50) redues the total number of states by a fator of 4. Andthe real linher is the fat that the lauses(X0 ! X1 ! � � � ! Xr) ^ �(X0) ^ �(X1) ^ � � � ^ �(Xr) ^ A5r ^ B5r; (52)where X0 is not required to be the initial state, turn out to be unsatis�ablewhen r = 3. In other words, there's no way to go bak more than two stepsfrom a bad state, without violating the invariant. We an onlude that mutualexlusion needs to be veri�ed for (49) only by onsidering paths of length 2(!).Furthermore, similar ideas (exerise 98) show that (49) is starvation-free.Caveat: Although (49) is a orret protool for mutual exlusion aording toAlie and Bob's ground rules, it annot be used safely on most modern omputersunless speial are is taken to synhronize ahe memories and write bu�ers. Thereason is that hardware designers use all sorts of trikery to gain speed, and thosetriks might allow one proess to see a = 0 at time t + 1 even though anotherproess has set a  1 at time t. We have developed the algorithms aboveby assuming a model of parallel omputation that Leslie Lamport has alledsequential onsisteny [IEEE Trans. C-28 (1979), 690{691℄.Digital tomography. Another set of appealing questions amenable to SATsolving omes from the study of binary images for whih partial informationis given. Consider, for example, Fig. 36, whih shows the \Cheshire at" ofSetion 7.1.3 in a new light. This image is an m� n array of Boolean variables(xi;j), with m = 25 rows and n = 30 olumns: The upper left orner element,x1;1, is 0, representing white; and x1;24 = 1 orresponds to the lone blak pixelin the top row. We are given the row sums ri = Pnj=1 xi;j for 1 � i � m andthe olumn sums j = Pmi=1 xi;j for 1 � j � n, as well as both sets of sums inthe 45Æ diagonal diretions, namelyad = Xi+j=d+1 xi;j and bd = Xi�j=d�n xi;j for 0 < d < m+ n: (53)To what extent an suh an image be reonstruted from its sums ri, j ,ad, and bd? Small examples are often uniquely determined by these Xray-likeprojetions (see exerise 103). But the disrete nature of pixel images makesthe reonstrution problem onsiderably more diÆult than the orresponding
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7.2.2.2 SATISFIABILITY: EXAMPLE APPLICATIONS 25 8 queens problemqueenshessboardlexiographi order2 2 2 10 8 10 4 6 9 7 5 7 6 8 5 7 4 6 7 6 6 11 5 7 6 8 7 7 2 2
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1 = = 30a1 =a2 = = r1= r2= b1= b2
b54 = = a54Fig. 36. An array of blak and white pixels together with itsrow sums ri, olumn sums j , and diagonal sums ad, bd.ontinuous problem, in whih projetions from many di�erent angles are avail-able. Notie, for example, that the lassial \8 queens problem"|to plae eightnonattaking queens on a hessboard| is equivalent to solving an 8� 8 digitaltomography problem with the onstraints ri = 1, j = 1, ad � 1, and bd � 1.The onstraints of Fig. 36 appear to be quite strit, so we might expet thatmost of the pixels xi;j are determined uniquely by the given sums. For instane,the fat that a1 = � � � = a5 = 0 tells us that xi;j = 0 whenever i + j � 6;and similar dedutions are possible at all four orners of the image. A rude\ballpark estimate" suggests that we're given a few more than 150 sums, mostof whih oupy 5 bits eah; hene we have roughly 150� 5 = 750 bits of data,from whih we wish to reonstrut 25� 30 = 750 pixels xi;j . Atually, however,this problem turns out to have many billions of solutions (see Fig. 37), most ofwhih aren't atlike! Exerise 106 provides a less rude estimate, whih showsthat this abundane of solutions isn't really surprising.

(a) lexiographially �rst; (b) maximally di�erent; () lexiographially last.Fig. 37. Extreme solutions to the onstraints of Fig. 36.
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26 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 ardinality onstraintslinear equationsinteger programmingBailleuxBoufkhadlinear programming relaxationCPLEXIP: Integer programminglexiographi orderruns of 1s
A digital tomography problem suh as Fig. 36 is readily represented as asequene of lauses to be satis�ed, beause eah of the individual requirementsis just a speial ase of the ardinality onstraints that we've already onsideredin the lauses of (18){(21). This problem di�ers from the other instanes of SATthat we've been disussing, primarily beause it onsists entirely of ardinalityonstraints: It is a question of solving 25 + 30 + 54 + 54 = 163 simultaneouslinear equations in 750 variables xi;j , where eah variable must be either 0 or 1.So it's essentially an instane of integer programming (IP), not an instane ofsatis�ability (SAT). On the other hand, Bailleux and Boufkhad devised lauses(20) and (21) preisely beause they wanted to apply SAT solvers, not IP solvers,to digital tomography. In the ase of Fig. 36, their method yields approximately40,000 lauses in 9,000 variables, ontaining about 100,000 literals altogether.Figure 37(b) illustrates a solution that di�ers as muh as possible fromFig. 36. Thus it minimizes the sum x1;24 + x2;5 + x2;6 + � � � + x25;21 of the182 variables that orrespond to blak pixels, over all 0-or-1-valued solutionsto the linear equations. If we use linear programming to minimize that sumover 0 � xi;j � 1, without requiring the variables to be integers, we �nd almostinstantly that the minimum value is � 31:38 under these relaxed onditions;hene every blak-and-white image must have at least 32 blak pixels in ommonwith Fig. 36. Furthermore, Fig. 37(b)|whih an be omputed in a few seondsby widely available IP solvers suh as CPLEX|atually ahieves this minimum.By ontrast, state-of-the-art SAT solvers as of 2013 had great diÆulty �ndingsuh an image, even when told that a 32-in-ommon solution is possible.Parts (a) and () of Fig. 37 are, similarly, quite relevant to the urrent stateof the SAT-solving art: They represent hundreds of individual SAT instanes,where the �rst k variables are set to partiular known values and we try to�nd a solution with the next variable either 0 or 1, respetively. Several of thesubproblems that arose while omputing rows 6 and 7 of Fig. 37() turned out tobe quite hallenging, although resolvable in a few hours; and similar problems,whih orrespond to di�erent kinds of lexiographi order, apparently still liebeyond the reah of ontemporary SAT-oriented methods. Yet IP solvers polishthese problems o� with ease. (See exerises 109 and 111.)If we provide more information about an image, our hanes of being ableto reonstrut it uniquely are naturally enhaned. For example, suppose we alsoompute the numbers r0i, 0j , a0d, and b0d, whih ount the runs of 1s that ourin eah row, olumn, and diagonal. (We have r01 = 1, r02 = 2, r03 = 4, andso on.) Given this additional data, we an show that Fig. 36 is the only solution,beause a suitable set of lauses turns out to be unsatis�able. Exerise 117explains one way by whih (20) and (21) an be modi�ed so that they provideonstraints based on the run ounts. Furthermore, it isn't diÆult to expresseven more detailed onstraints, suh as the assertion that \olumn 4 ontainsruns of respetive lengths (6; 1; 3)," as a sequene of lauses; see exerise 438.SAT examples| summary. We've now seen onvining evidene that simpleBoolean lauses|ANDs of ORs of literals|are enormously versatile. Among
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7.2.2.2 SATISFIABILITY: BACKTRACKING ALGORITHMS 27 baktraking{notation F j lredution of lausesgiven literalsonditioning operationommutativenotation F jLreursive proedureother things, we've used them to enode problems of graph oloring, integerfatorization, hardware fault testing, mahine learning, model heking, andtomography. And indeed, Setion 7.9 will demonstrate that 3SAT is the \posterhild" for NP-omplete problems in general: Any problem in NP|whih isa huge lass, essentially omprising all yes-or-no questions of size N whoseaÆrmative answers are veri�able in NO(1) steps|an be formulated as anequivalent instane of 3SAT, without greatly inreasing the problem size.Baktraking for SAT. We've now seen a dizzying variety of intriguing and im-portant examples of SAT that are begging to be solved. How shall we solve them?Any instane of SAT that involves at least one variable an be solved sys-tematially by hoosing a variable and setting it to 0 or 1. Either of those hoiesgives us a smaller instane of SAT; so we an ontinue until reahing either anempty instane|whih is trivially satis�able, beause no lauses need to besatis�ed|or an instane that ontains an empty lause. In the latter ase wemust bak up and reonsider one of our earlier hoies, proeeding in the samefashion until we either sueed or exhaust all the possibilities.For example, onsider again the formula F in (1). If we set x1 = 0, F reduesto �x2 ^ (x2_x3), beause the �rst lause (x1 _ �x2) loses its x1, while the last twolauses ontain �x1 and are satis�ed. It will be onvenient to have a notation forthis redued problem; so let's writeF j �x1 = �x2 ^ (x2 _x3): (54)Similarly, if we set x1 = 1, we obtain the redued problemF jx1 = (x2 _x3) ^ �x3 ^ (�x2 _ x3): (55)F is satis�able if and only if we an satisfy either (54) or (55).In general if F is any set of lauses and if l is any literal, then F j l (read\F given l" or \F onditioned on l") is the set of lauses obtained from F by� removing every lause that ontains l; and� removing �l from every lause that ontains �l.This onditioning operation is ommutative, in the sense that F j l j l0 = F j l0 j lwhen l0 6= �l. If L = fl1; : : : ; lkg is any set of stritly distint literals, we an alsowrite F jL = F j l1 j � � � j lk. In these terms, F is satis�able if and only if F jL = ;for some suh L, beause the literals of L satisfy every lause of F when F jL = ;.The systemati strategy for SAT that was skethed above an therefore beformulated as the following reursive proedure B(F ), whih returns the speialvalue ? when F is unsatis�able, otherwise it returns a set L that satis�es F :B(F ) =8>>><>>>: If F = ;, return ;. (F is trivially satis�able.)Otherwise if � 2 F , return ?. (F is unsatis�able.)Otherwise let l be a literal in F and set L B(F j l).If L 6= ?, return L [ l. Otherwise set L B(F j�l).If L 6= ?, return L [ �l. Otherwise return ?. (56)Let's try to esh out this abstrat algorithm by onverting it to eÆientode at a lower level. From our previous experiene with baktraking, we know
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28 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 data strutures{exat overellsdoubly linkedhead of the listthat it will be ruial to have data strutures that allow us to go quikly fromF to F j l, then bak again to F if neessary, when F is a set of lauses andl is a literal. In partiular, we'll want a good way to �nd all of the lauses thatontain a given literal.A ombination of sequential and linked strutures suggests itself for thispurpose, based on our experiene with exat over problems: We an representeah lause as a set of ells, where eah ell p ontains a literal l = L(p) togetherwith pointers F(p) and B(p) to other ells that ontain l, in a doubly linked list.We'll also need C(p), the number of the lause to whih p belongs. The ells oflause Ci will be in onseutive loations START(i)+ j, for 0 � j < SIZE(i).We will �nd it onvenient to represent the literals xk and �xk , whih involvevariable xk, by using the integers 2k and 2k + 1. With this onvention we have�l = l � 1 and jlj = xl�1: (57)Our implementation of (56) will assume that the variables are x1, x2, : : : , xn;thus the 2n possible literals will be in the range 2 � l � 2n+ 1.Cells 0 through 2n+1 are reserved for speial purposes: Cell l is the head ofthe list for the ourrenes of l in other ells. Furthermore C(l) will be the lengthof that list, namely the number of urrently ative lauses in whih l appears.For example, the m = 7 ternary lauses R0 of (7) might be representedinternally in 2n+ 2+ 3m = 31 ells as follows, using these onventions:p = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30L(p)= { { { { { { { { { { 9 7 3 8 7 5 6 5 3 8 4 3 8 6 2 9 6 4 7 4 2F(p)= { { 30 21 29 17 26 28 22 25 9 7 3 8 11 5 6 15 12 13 4 18 19 16 2 10 23 20 14 27 24B(p)= { { 24 12 20 15 16 11 13 10 25 14 18 19 28 17 23 5 21 22 27 3 8 26 30 9 6 29 7 4 2C(p)= { { 2 3 3 2 3 3 3 2 7 7 7 6 6 6 5 5 5 4 4 4 3 3 3 2 2 2 1 1 1The literals of eah lause appear in dereasing order here; for example, theliterals L(p) = (8; 4; 3) in ells 19 through 21 represent the lause x4 _ x2 _ �x1,whih appears as the fourth lause, `4�12' in (7). This ordering turns out to bequite useful, beause we'll always hoose the smallest unset variable as the l or �lin (56); then l or �l will always appear at the right of its lauses, and we anremove it or put it bak by simply hanging the relevant SIZE �elds.The lauses in this example have START(i) = 31 � 3i for 1 � i � 7, andSIZE(i) = 3 when omputation begins.Algorithm A (Satis�ability by baktraking). Given nonempty lauses C1^� � �^Cm on n > 0 Boolean variables x1 : : : xn, represented as above, this algorithm�nds a solution if and only if the lauses are satis�able. It reords its urrentprogress in an arraym1 : : :mn of \moves," whose signi�ane is explained below.A1. [Initialize.℄ Set a m and d 1. (Here a represents the number of ativelauses, and d represents the depth-plus-one in an impliit searh tree.)A2. [Choose.℄ Set l  2d. If C(l) � C(l+ 1), set l  l + 1. Then set md  (l & 1) + 4[C(l� 1)=0℄. (See below.) Terminate suessfully if C(l) = a.A3. [Remove �l.℄ Delete �l from all ative lauses; but go to A5 if that would makea lause empty. (We want to ignore �l, beause we're making l true.)
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7.2.2.2 SATISFIABILITY: BACKTRACKING ALGORITHMS 29 move odespure literals0 10 1 0 11 0 0 1 0 1 0 10 1 0 1 0 1 0 1 0 1 0 1
12 23 3 3 34 4 4 4 4 412�3 �1�23341 23�4 341 �41�2 �2�34 �41�2 4�12 23�4 4�12 �3�4�1 �2�34 �3�4�1Fig. 38. The searh tree that is impliitly traversed by Algorithm A, whenthat algorithm is applied to the eight unsatis�able lauses R de�ned in (6).Branh nodes are labeled with the variable being tested; leaf nodes are labeledwith a lause that is found to be ontradited.A4. [Deativate l's lauses.℄ Suppress all lauses that ontain l. (Those lausesare now satis�ed.) Then set a a� C(l), d d+ 1, and return to A2.A5. [Try again.℄ If md < 2, set md  3�md, l  2d+ (md &1), and go to A3.A6. [Baktrak.℄ Terminate unsuessfully if d = 1 (the lauses are unsatis�-able). Otherwise set d d� 1 and l  2d+ (md & 1).A7. [Reativate l's lauses.℄ Set a  a + C(l), and unsuppress all lauses thatontain l. (Those lauses are now unsatis�ed, beause l is no longer true.)A8. [Unremove �l.℄ Reinstate �l in all the ative lauses that ontain it. Then gobak to A5.(See exerise 121 for details of the low-level list proessing operations that areneeded to update the data strutures in steps A3 and A4, and to downdate themin A7 and A8.)The move odesmj of Algorithm A are integers between 0 and 5 that enodethe state of the algorithm's progress as follows:� mj = 0 means we're trying xj = 1 and haven't yet tried xj = 0.� mj = 1 means we're trying xj = 0 and haven't yet tried xj = 1.� mj = 2 means we're trying xj = 1 after xj = 0 has failed.� mj = 3 means we're trying xj = 0 after xj = 1 has failed.� mj = 4 means we're trying xj = 1 when �xj doesn't appear.� mj = 5 means we're trying xj = 0 when xj doesn't appear.Codes 4 and 5 refer to so-alled \pure literals": If no lause ontains the literal �l,we an't go wrong by assuming that l is true.For example, when Algorithm A is presented with the lauses (7), it ruisesdiretly to a solution by setting m1m2m3m4 = 1014; the solution is x1x2x3x4 =0101. But when the unsatis�able lauses (6) are given, the suessive ode stringsm1 : : :md in step A2 are1; 11; 110; 1131; 121; 1211; 1221; 21; 211; 2111; 2121; 221; 2221; (58)before the algorithm gives up. (See Fig. 38.)



September 23, 2015

30 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 lexiographiallylazy data strutures{BrownPurdomwathed literalspartial assignmentonsistentunitbaktrakingeager
It's helpful to display the urrent string m1 : : :md now and then, as aonvenient indiation of progress; this string inreases lexiographially. Indeed,fasinating patterns appear as the 2s and 3s gradually move to the left. (Try it!)When the algorithm terminates suessfully in step A2, a satisfying assign-ment an be read o� from the move table by setting xj  1 � (mj & 1) for1 � j � d. Algorithm A stops after �nding a single solution; see exerise 122 ifyou want them all.Lazy data strutures. Instead of using the elaborate doubly linked mahinerythat underlies Algorithm A, we an atually get by with a muh simpler shemedisovered by Cynthia A. Brown and Paul W. Purdom, Jr. [IEEE Trans. PAMI-4 (1982), 309{316℄, who introdued the notion of wathed literals. They observedthat we don't really need to know all of the lauses that ontain a given literal,beause only one literal per lause is atually relevant at any partiular time.Here's the idea: When we work on lauses F jL, the variables that our in Lhave known values, but the other variables do not. For example, in Algorithm A,variable xj is impliitly known to be either true or false when j � d, but its valueis unknown when j > d. Suh a situation is alled a partial assignment. A partialassignment is onsistent with a set of lauses if no lause onsists entirely offalse literals. Algorithms for SAT usually deal exlusively with onsistent partialassignments; the goal is to onvert them to onsistent total assignments, bygradually eliminating the unknown values.Thus every lause in a onsistent partial assignment has at least one nonfalseliteral; and we an assume that suh a literal appears �rst, when the lause isrepresented in memory. Many nonfalse literals might be present, but only one ofthem is designated as the lause's \wathee." When a wathed literal beomesfalse, we an �nd another nonfalse literal to swap into its plae|unless thelause has been redued to a unit, a lause of size 1.With suh a sheme we need only maintain a relatively short list for everyliteral l, namely a list Wl of all lauses that urrently wath l. This list anbe singly linked. Hene we need only one link per lause; and we have a totalof only 2n +m links altogether, instead of the two links for eah ell that arerequired by Algorithm A.Furthermore|and this is the best part!| no updates need to be madeto the wath lists when baktraking. The baktrak operations never falsifya nonfalse literal, beause they only hange values from known to unknown.Perhaps for this reason, data strutures based on wathed literals are alled lazy,in ontrast with the \eager" data strutures of Algorithm A.Let us therefore redesign Algorithm A and make it more laid-bak. Ournew data struture for eah ell p has only one �eld, L(p); the other �elds F(p),B(p), C(p) are no longer neessary, nor do we need 2n + 2 speial ells. Asbefore we will represent lauses sequentially, with the literals of Cj beginning atSTART(j) for 1 � j � m. The wathed literal will be the one in START(j); and anew �eld, LINK(j), will be the number of another lause with the same wathedliteral (or 0, if Cj is the last suh lause). Moreover, our new algorithm won't
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7.2.2.2 SATISFIABILITY: BACKTRACKING ALGORITHMS 31 move odespure literalsfalse literals preferredunit lausesDavisLogemannneed SIZE(j). Instead, we an assume that the �nal literal of Cj is in loationSTART(j � 1)� 1, provided that we de�ne START(0) appropriately.The resulting proedure is almost unbelievably short and sweet. It's surelythe simplest SAT solver that an laim to be eÆient on problems of modest size:Algorithm B (Satis�ability by wathing). Given nonempty lauses C1^� � �^Cmon n > 0 Boolean variables x1 : : : xn, represented as above, this algorithm �ndsa solution if and only if the lauses are satis�able. It reords its urrent progressin an array m1 : : :mn of \moves," whose signi�ane was explained above.B1. [Initialize.℄ Set d 1.B2. [Rejoie or hoose.℄ If d > n, terminate suessfully. Otherwise set md  [W2d=0 or W2d+1 6=0℄ and l 2d+md.B3. [Remove �l if possible.℄ For all j suh that �l is wathed in Cj , wath anotherliteral of Cj . But go to B5 if that an't be done. (See exerise 124.)B4. [Advane.℄ Set W�l  0, d d+ 1, and return to B2.B5. [Try again.℄ If md < 2, set md  3�md, l  2d+ (md & 1), and go to B3.B6. [Baktrak.℄ Terminate unsuessfully if d = 1 (the lauses are unsatis�-able). Otherwise set d d� 1 and go bak to B5.Readers are strongly enouraged to work exerise 124, whih spells out thelow-level operations that are needed in step B3. Those operations aomplishessentially everything that Algorithm B needs to do.This algorithm doesn't use move odes 4 or 5, beause lazy data struturesdon't have enough information to identify pure literals. Fortunately pure literalsare omparatively unimportant in pratie; problems that are helped by the pureliteral shortut an usually also be solved quikly without it.Notie that steps A2 and B2 use di�erent riteria for deiding whether totry xd = 1 or xd = 0 �rst at eah branh of the searh tree. Algorithm A hoosesthe alternative that satis�es the most lauses; Algorithm B hooses to make ltrue instead of �l if the wath list for �l is empty but the wath list for l is not.(All lauses in whih �l is wathed will have to hange, but those ontaining lare satis�ed and in good shape.) In ase of a tie, both algorithms set md  1,whih orresponds to xd = 0. The reason is that human-designed instanes ofSAT tend to have solutions made up of mostly false literals.Fored moves from unit lauses. The simple logi of Algorithm B workswell on many problems that aren't too large. But its insistene on setting x1�rst, then x2, et., makes it quite ineÆient on many other problems, beauseit fails to take advantage of unit lauses. A unit lause (l) fores l to be true;therefore two-way branhing is unneessary whenever a unit lause is present.Furthermore, unit lauses aren't rare: Far from it. Experiene shows that they'realmost ubiquitous in pratie, so that the atual searh trees often involve onlydozens of branh nodes instead of thousands or millions.The importane of unit lauses was reognized already in the �rst omputerimplementation of a SAT solver, designed by Martin Davis, George Logemann,
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32 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 LovelandDavisPutnampure literalsready listsearh treemagneti tapebaktrakingtape reordsDPLL algorithmBrownPurdomirular listative ringunitswaerden
and Donald Loveland [CACM 5 (1962), 394{397℄ and based on ideas that Davishad developed earlier with Hilary Putnam [JACM 7 (1960), 201{215℄. Theyextended Algorithm A by introduing mehanisms that reognize when the sizeof a lause dereases to 1, or when the number of unsatis�ed lauses ontaininga literal drops to 0. In suh ases, they put variables onto a \ready list," andassigned those variables to �xed values before doing any further two-way branh-ing. The resulting program was fairly omplex; indeed, omputer memory wasso limited in those days, they implemented branhing by writing all the data forthe urrent node of the searh tree onto magneti tape, then baktraking whenneessary by restoring the data from the most reently written tape reords! Thenames of these four authors are now enshrined in the term \DPLL algorithm,"whih refers generally to SAT solving via partial assignment and baktraking.Brown and Purdom, in the paper ited earlier, showed that unit lausesan be deteted more simply by using wathed literals as in Algorithm B. Wean supplement the data strutures of that algorithm by introduing indiesh1 : : : hn so that the variable whose value is being set at depth d is xhd insteadof xd. Furthermore we an arrange the not-yet-set variables whose wath listsaren't empty into a irular list alled the \ative ring"; the idea is to proeedthrough the ative ring, heking to see whether any of its variables are urrentlyin a unit lause. We resort to two-way branhing only if we go all around thering without �nding any suh units.For example, let's onsider the 32 unsatis�able lauses of waerden (3; 3; 9)in (9). The ative ring is initially (1 2 3 4 5 6 7), beause 8, �8, 9, and �9 aren'tbeing wathed anywhere. There are no unit lauses yet. The algorithm below willdeide to try �1 �rst; then it will hange the lauses 123, 135, 147, and 159 to 213,315, 417, and 519, respetively, so that nobody wathes the false literal 1. Theative ring beomes (2 3 4 5 6 7) and the next hoie is �2; so 213, 234, 246, and 258morph respetively into 312, 324, 426, 528. Now, with ative ring (3 4 5 6 7), theunit lause `3' is deteted (beause 1 and 2 are false in `312'). This preipitatesfurther hanges, and the �rst steps of the omputation an be summarized thus:Ative ring x1x2x3x4x5x6x7x8x9 Units Choie Changed lauses(1 2 3 4 5 6 7) - - - - - - - - - �1 213; 315; 417; 519(2 3 4 5 6 7) 0 - - - - - - - - �2 312; 324; 426; 528(3 4 5 6 7) 0 0 - - - - - - - 3 3 �4�3�5; �5�3�4; �6�3�9(4 5 6 7) 0 0 1 - - - - - - �4 624; 714; 546; 648(5 6 7) 0 0 1 0 - - - - - 6 6 �9�3�6; �7�6�8(9 7 5) 0 0 1 0 - 1 - - - �9 �9(7 5) 0 0 1 0 - 1 - - 0 7 7 �8�6�7; �8�7�9(8 5) 0 0 1 0 - 1 1 - 0 �8 �8(5) 0 0 1 0 - 1 1 0 0 5; �5 Baktrak(6 9 7 8 5) 0 0 1 - - - - - - 4 �5�3�4; �5�4�6; �6�4�8(6 9 7 8 5) 0 0 1 1 - - - - - �5 �5 456; 825; 915; 657; 759

(59)
When 6 is found, 7 is also a unit lause; but the algorithm doesn't see it yet,beause variable x6 is tested �rst. The ative ring hanges �rst to (7 5) after 6
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7.2.2.2 SATISFIABILITY: BACKTRACKING ALGORITHMS 33 empty listyli DPLLfalse literals preferred0 10 1 1 00 1 0 1 1 0 1 00 1 0 1 0 1 0 1
12 23 4 3 44 3 4 312�3 �41�2 �1�23 4�12341 23�4 341 �2�34 �2�34 �3�4�1 23�4 �3�4�1Fig. 39. The searh tree that is impliitly traversed by Algorithm D, whenthat algorithm is applied to the eight unsatis�able lauses R de�ned in (6).Branh nodes are labeled with the variable being tested; leaf nodes are labeledwith a lause that is found to be ontradited. When the right hild of abranh node is a leaf, the left branh was fored by a onditional unary lause.is found, beause 5 is ylially after 6; we want to look at 7 before 5, instead ofrevisiting more or less the same lauses. After 6 has been hosen, 9 is inserted atthe left, beause the wath list for �9 beomes nonempty. After baktraking, vari-ables 8, 7, 9, 6 are suessively inserted at the left as they lose their fored values.The following algorithm represents the ative ring by giving a NEXT �eld toeah variable, with xNEXT(k) the suessor of xk . The ring is aessed via \head"and \tail" pointers h and t at the left and right, with h = NEXT(t). If the ringis empty, however, t = 0, and h is unde�ned.Algorithm D (Satis�ability by yli DPLL). Given nonempty lauses C1^� � �^Cm on n > 0 Boolean variables x1 : : : xn, represented with lazy data struturesand an ative ring as explained above, this algorithm �nds a solution if and onlyif the lauses are satis�able. It reords its urrent progress in an array h1 : : : hn ofindies and an arraym0 : : :mn of \moves," whose signi�ane is explained below.D1. [Initialize.℄ Set m0  d h t 0, and do the following for k = n, n�1,: : : , 1: Set xk  �1 (denoting an unset value); if W2k 6= 0 or W2k+1 6= 0,set NEXT(k)  h, h  k, and if t = 0 also set t  k. Finally, if t 6= 0,omplete the ative ring by setting NEXT(t) h.D2. [Suess?℄ Terminate if t = 0 (all lauses are satis�ed). Otherwise set k  t.D3. [Look for unit lauses.℄ Set h  NEXT(k) and use the subroutine in exer-ise 129 to ompute f  [2h is a unit℄ + 2[2h+ 1 is a unit℄. If f = 3, goto D7. If f = 1 or 2, set md+1  f + 3, t k, and go to D5. Otherwise, ifh 6= t, set k  h and repeat this step.D4. [Two-way branh.℄ Set h NEXT(t) and md+1  [W2h=0 or W2h+1 6=0℄.D5. [Move on.℄ Set d d+1, hd  k  h. If t = k, set t 0; otherwise deletevariable k from the ring by setting NEXT(t) h NEXT(k).D6. [Update wathes.℄ Set b (md+1) mod 2, xk  b, and lear the wath listfor �xk (see exerise 130). Return to D2.
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34 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 move odesnodessearh treelangford (n)Langford pairsmemspure literalsD7. [Baktrak.℄ Set t k. While md � 2, set k  hd, xk  �1; if W2k 6= 0 orW2k+1 6= 0, set NEXT(k) h, h k, NEXT(t) h; and set d d� 1.D8. [Failure?℄ If d > 0, set md  3�md, k  hd, and return to D6. Otherwiseterminate the algorithm (beause the lauses aren't satis�able).The move odes of this algorithm are slightly di�erent from the earlier ones:� mj = 0 means we're trying xhj = 1 and haven't yet tried xhj = 0.� mj = 1 means we're trying xhj = 0 and haven't yet tried xhj = 1.� mj = 2 means we're trying xhj = 1 after xhj = 0 has failed.� mj = 3 means we're trying xhj = 0 after xhj = 1 has failed.� mj = 4 means we're trying xhj = 1 beause it's fored by a unit lause.� mj = 5 means we're trying xhj = 0 beause it's fored by a unit lause.As before, the number of two-way branh nodes in the impliit searh tree is thenumber of times that mj is set to 0 or 1.Comparison of the algorithms. OK, we've just seen three rudimentary SATsolvers. How well do they atually do? Detailed performane statistis will begiven later in this setion, after we've studied several more algorithms. But abrief quantitative study of Algorithms A, B, and D now will give us some onretefats with whih we an alibrate our expetations before moving on.Consider, for example, langford (n), the problem of Langford pairs. Thisproblem is typial of SAT instanes where many unit lauses arise during theomputation. For example, when Algorithm D is applied to langford (5), itreahes a stage where the move odes arem1m2 : : :md = 1255555555555555114545545; (60)indiating only four two-way branhes (the 1s and the 2) amongst a sea of foredmoves. We therefore expet Algorithm D to outperform Algorithms A and B,whih don't apitalize on unit lauses.Sure enough, Algorithm D wins (slightly), even on a small example suh aslangford (5), whih has 213 lauses, 480 ells, 28 variables. The detailed stats areAlgorithm A: 5379+ 108952 mems, 10552 bytes, 705 nodes.Algorithm B: 1206 + 30789 mems, 4320 bytes, 771 nodes.Algorithm D: 1417+ 28372 mems, 4589 bytes, 11 nodes.(Here \5379+108952mems" means that 5379 memory aesses were made whileinitializing the data strutures before the algorithm began; then the algorithmitself aessed otabytes of memory 108,952 times.) Notie that Algorithm Bis more than thrie as fast as Algorithm A in this example, although it makes771 two-way branhes instead of 705. Algorithm A needs fewer nodes, beauseit reognizes pure literals; but Algorithm B does muh less work per node.Algorithm D, on the other hand, works very hard at eah node, yet omes outahead beause its deision-making hoies redue the searh to only a few nodes.



September 23, 2015

7.2.2.2 SATISFIABILITY: BACKTRACKING ALGORITHMS 35 benhmark testvariations in performanewaerdenThese di�erenes beome more dramati when we onsider larger problems.For instane, langford (9) has 1722 lauses, 3702 ells, 104 variables, and we �ndAlgorithm A: 332.0 megamems, 77216 bytes, 1,405,230 nodes.Algorithm B: 53.4 megamems, 31104 bytes, 1,654,352 nodes.Algorithm D: 23.4 megamems, 32057 bytes, 6093 nodes.And with langford (13)'s 5875 lauses, 12356 ells, 228 variables, the results areAlgorithm A: 2699.1 gigamems, 253.9 kilobytes, 8.7 giganodes.Algorithm B: 305.2 gigamems, 101.9 kilobytes, 10.6 giganodes.Algorithm D: 71.7 gigamems, 104.0 kilobytes, 14.0 meganodes.Mathematiians will reall that, at the beginning of Chapter 7, we usedelementary reasoning to prove the unsatis�ability of langford (4k + 1) for all k.Evidently SAT solvers have great diÆulty disovering this fat, even when k isfairly small. We are using that problem here as a benhmark test, not beause wereommend replaing mathematis by brute fore! Its unsatis�ability atuallyenhanes its utility as a benhmark, beause algorithms for satis�ability are moreeasily ompared with respet to unsatis�able instanes: Extreme variations inperformane our when lauses are satis�able, beause solutions an be foundpurely by luk. Still, we might as well see what happens when our three algo-rithms are set loose on the satis�able problem langford (16), whih turns out to be\no sweat." Its 11494 lauses, 23948 ells, and 352 variables lead to the statistisAlgorithm A: 11262.6 megamems, 489.2 kilobytes, 28.8 meganodes.Algorithm B: 932.1 megamems, 196.2 kilobytes, 40.9 meganodes.Algorithm D: 4.9 megamems, 199.4 kilobytes, 167 nodes.Algorithm D is ertainly our favorite so far, based on the langford data. Butit is far from a panaea, beause it loses badly to the lightweight Algorithm Bon other problems. For example, the 2779 unsatis�able lauses, 11662 ells, and97 variables of waerden (3; 10; 97) yieldAlgorithm A: 150.9 gigamems, 212.8 kilobytes, 106.7114 meganodes.Algorithm B: 6.2 gigamems, 71.2 kilobytes, 106.7116 meganodes.Algorithm D: 1430.4 gigamems, 72.1 kilobytes, 102.7 meganodes.And waerden (3; 10; 96)'s 2721 satis�able lauses, 11418 ells, 96 variables give usAlgorithm A: 96.9 megamems, 208.3 kilobytes, 72.9 kilonodes.Algorithm B: 12.4 megamems, 69.8 kilobytes, 207.7 kilonodes.Algorithm D: 57962.8 megamems, 70.6 kilobytes, 4447.7 kilonodes.In suh ases unit lauses don't redue the searh tree size by very muh, so wearen't justi�ed in spending so muh time per node.*Speeding up by working harder. Algorithms A, B, and D are OK on smallishproblems, but they annot really ope with the larger instanes of SAT that havearisen in our examples. Signi�ant enhanements are possible if we are willingto do more work and to develop more elaborate algorithms.Mathematiians generally strive for nie, short, elegant proofs of theorems;and omputer sientists generally aim for nie, short, elegant sequenes of steps
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with whih a problem an quikly be solved. But some theorems have no shortproofs, and some problems annot be solved eÆiently with short programs.Let us therefore adopt a new attitude, at least temporarily, by fearlesslydeiding to throw lots of ode at SAT: Let's look at the bottleneks that hinderAlgorithm D on large problems, and let's try to devise new methods that willstreamline the alulations even though the resulting programmight be ten timeslarger. In this subsetion we shall examine an advaned SAT solver, Algorithm L,whih is able to outperform Algorithm D by many orders of magnitude on manyimportant problems. This algorithm annot be desribed in just a few lines;but it does onsist of ooperating proedures that are individually nie, short,elegant, and understandable by themselves.The �rst important ingredient of Algorithm L is an improved mehanismfor unit propagation. Algorithm D needs only a few lines of ode in step D3 todisover whether or not the value of an unknown variable has been fored byprevious assignments; but that mehanism isn't partiularly fast, beause it isbased on indiret inferenes from a lazy data struture. We an do better byusing \eager" data strutures that are spei�ally designed to reognize foredvalues quikly, beause high-speed propagation of the onsequenes of a newlyasserted value turns out to be extremely important in pratie.A literal l is fored true when it appears in a lause C whose other literalshave beome false, namely when the set of urrently assigned literals L has re-dued C to the unit lause C jL = (l). Suh unit lauses arise from the redutionof binary lauses. Algorithm L therefore keeps trak of the binary lauses (u_v)that are relevant to the urrent subproblem F j L. This information is keptin a so-alled \bimp table" BIMP(l) for every literal l, whih is a list of otherliterals l0 whose truth is implied by the truth of l. Indeed, instead of simplyinluding binary lauses within the whole list of given lauses, as Algorithms A,B, and D do, Algorithm L stores the relevant fats about (u _ v) diretly, in aready-to-use way, by listing u in BIMP(�v) and v in BIMP(�u). Eah of the 2ntables BIMP(l) is represented internally as a sequential list of length BSIZE(l),with memory alloated dynamially via the buddy system (see exerise 134).Binary lauses, in turn, are spawned by ternary lauses. For simpliity,Algorithm L assumes that all lauses have length 3 or less, beause every instaneof general SAT an readily be onverted to 3SAT form (see exerise 28). And forspeed, Algorithm L represents the ternary lauses by means of \timp tables,"whih are analogous to the bimp tables: Every literal l has a sequential listTIMP(l) of length TSIZE(l), onsisting of pairs p1 = (u1; v1), p2 = (u2; v2), : : : ,suh that the truth of l implies that eah (ui _ vi) beomes a relevant binarylause. If (u _ v _ w) is a ternary lause, there will be three pairs p = (v; w),p0 = (w; u), and p00 = (u; v), appearing in the respetive lists TIMP(�u), TIMP(�v),and TIMP( �w). Moreover, these three pairs are linked together ylially, withLINK(p) = p0; LINK(p0) = p00; LINK(p00) = p: (61)Memory is alloated for the timp tables one and for all, as the lauses are input,beause Algorithm L does not generate new ternaries during its omputations.
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Individual pairs p are, however, swapped around within these sequential tables,so that the urrently ative ternary lauses ontaining u always appear in the�rst TSIZE(�u) positions that have been alloated to TIMP(�u).For example, let's onsider again the ternary lauses (9) of waerden (3; 3; 9).Initially there are no binary lauses, so all BIMP tables are empty. Eah of theternary lauses appears in three of the TIMP tables. At level 0 of the searhtree we might deide that x5 = 0; then TIMP(�5) tells us that we gain eightbinary lauses, namely f13; 19; 28; 34; 37; 46; 67; 79g. These new binary lausesare represented by sixteen entries in BIMP tables; BIMP(�3), for instane, will nowbe f1; 4; 7g. Furthermore, we'll want all of the TIMP pairs that involve either5 or �5 to beome inative, beause the ternary lauses that ontain 5 are weakerthan the new binary lauses, and the ternary lauses that ontain �5 are nowsatis�ed. (See exerise 136.)As in (57) above, we shall assume that the variables of a given formula arenumbered from 1 to n, and we represent the literals k and �k internally by thenumbers 2k and 2k+1. Algorithm L introdues a new twist, however, by allowingvariables to have many di�erent degrees of truth [see M. Heule, M. Dufour, J. vanZwieten, and H. van Maaren, LNCS 3542 (2005), 345{359℄: We say that xk istrue with degree D if VAL[k℄ = D, and false with degree D if VAL[k℄ = D + 1,where D is any even number.The highest possible degree, typially 232 � 2 inside a omputer, is alledRT for \real truth." The next highest degree, typially 232 � 4, is alled NT for\near truth"; and then omes PT = 232�6, \proto truth." Lower degrees PT�2,PT� 4, : : : , 2 also turn out to be useful. A literal l is said to be �xed in ontextT if and only if VAL[jlj℄ � T ; it is �xed true if we also have VAL[jlj℄&1 = l&1,and it is �xed false if its omplement �l is �xed true.Suppose, for example, that VAL[2℄ = RT+ 1 and VAL[7℄ = PT; hene x2 is\really false" while x7 is \proto true." Then the literal `7', represented internallyby l = 14, is �xed true in ontext PT, but l is not �xed in ontexts NT or RT. Theliteral `�2', represented internally by l = 5, is �xed true in every ontext.Algorithm L uses a sequential stak R0, R1, : : : , to reord the names ofliterals that have reeived values. The urrent stak size, E, satis�es 0 � E � n.With those data strutures we an use a simple breadth-�rst searh proedureto propagate the binary onsequenes of a literal l in ontext T at high speed:Set H  E; take aount of l;while H < E, set l  RH , H  H + 1, andtake aount of l0 for all l0 in BIMP(l). (62)Here \take aount of l" means \if l is �xed true in ontext T , do nothing; if l is�xed false in ontext T , go to step CONFLICT; otherwise set VAL[jlj℄ T+(l&1),RE  l, and E  E + 1." The step alled CONFLICT is hangeable.A literal's BIMP table might grow repeatedly as omputation proeeds. Butwe an undo the onsequenes of bad deisions by simply resetting BSIZE(l)to the value that it had before those deisions were made. A speial variableISTAMP is inreased whenever we begin a new round of deision-making, and eah



September 23, 2015

38 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 stampstampingISTAMPISTACKISTVARINXfree variableDPLL with lookaheadreally truenearly true
literal l has its private stamp IST(l). Whenever BSIZE(l) is about to inrease,we hek if IST(l) = ISTAMP. If not, we setIST(l) ISTAMP; ISTACK[I℄ �l; BSIZE(l)�; I  I + 1: (63)Then the entries on ISTACK make it easy to downdate the BIMP tables when webaktrak. (See step L13 in the algorithm below.)We're ready now to look at the detailed steps of Algorithm L, exept that onemore member of its arsenal of data strutures needs to be introdued: There'san array VAR, whih ontains a permutation of f1; : : : ; ng, with VAR[k℄ = x ifand only if INX[x℄ = k. Furthermore VAR[k℄ is a \free variable"|not �xedin ontext RT|if and only if 0 � k < N . This setup makes it onvenient tokeep trak of the variables that are urrently free: A variable beomes �xed byswapping it to the end of the free list and dereasing N (see exerise 137); thenwe an free it later by simply inreasing N , without swapping.Algorithm L (Satis�ability by DPLL with lookahead). Given nonempty lausesC1 ^ � � � ^ Cm of size � 3, on n > 0 Boolean variables x1 : : : xn, this algorithm�nds a solution if and only if the lauses are satis�able. Its family of ooperatingdata strutures is disussed in the text.L1. [Initialize.℄ Reord all binary lauses in the BIMP array and all ternarylauses in the TIMP array. Let U be the number of distint variables in unitlauses; terminate unsuessfully if two unit lauses ontradit eah other,otherwise reord all distint unit literals in FORCE[k℄ for 0 � k < U . SetVAR[k℄  k + 1 and INX[k + 1℄  k for 0 � k < n; and d  F  I  ISTAMP 0. (Think d = depth, F = �xed variables, I = ISTACK size.)L2. [New node.℄ Set BRANCH[d℄  �1. If U = 0, invoke Algorithm X below(whih looks ahead for simpli�ations and also gathers data about how tomake the next branh). Terminate happily if Algorithm X �nds all lausessatis�ed; go to L15 if Algorithm X disovers a onit; go to L5 if U > 0.L3. [Choose l.℄ Selet a literal l that's desirable for branhing (see exerise168). If l = 0, set d d+ 1 and return to L2. Otherwise set DEC[d℄ l,BACKF[d℄ F , BACKI[d℄ I , and BRANCH[d℄ 0.L4. [Try l.℄ Set U  1, FORCE[0℄ l.L5. [Aept near truths.℄ Set T  NT, G  E  F , ISTAMP  ISTAMP+ 1,and CONFLICT  L11. Perform the binary propagation routine (62) forl  FORCE[0℄, : : : , l FORCE[U � 1℄; then set U  0.L6. [Choose a nearly true L.℄ (At this point the staked literals Rk are \reallytrue" for 0 � k < G, and \nearly true" for G � k < E. We want them allto be really true.) If G = E, go to L10. Otherwise set L RG, G G+1.L7. [Promote L to real truth.℄ Set X  jLj and VAL[X℄ RT+L&1. Removevariable X from the free list and from all TIMP pairs (see exerise 137). Dostep L8 for all pairs (u; v) in TIMP(L), then return to L6.L8. [Consider u _ v.℄ (We have dedued that u or v must be true; �ve asesarise.) If either u or v is �xed true (in ontext T , whih equals NT), do
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7.2.2.2 SATISFIABILITY: BACKTRACKING ALGORITHMS 39 ompensation resolventslangfordwaerdenrand+Algorithm L0nothing. If both u and v are �xed false, go to CONFLICT. If u is �xed falsebut v isn't �xed, perform (62) with l  v. If v is �xed false but u isn't�xed, perform (62) with l  u. If neither u nor v is �xed, do step L9.L9. [Exploit u _ v.℄ If �v 2 BIMP(�u), perform (62) with l  u (beause �uimplies both v and �v). Otherwise if v 2 BIMP(�u), do nothing (beause wealready have the lause u_v). Otherwise if �u 2 BIMP(�v), perform (62) withl  v. Otherwise append v to BIMP(�u) and u to BIMP(�v). (Eah hangeto BIMP means that (63) might be invoked. Exerise 139 explains how toimprove this step by deduing further impliations alled \ompensationresolvents.")L10. [Aept real truths.℄ Set F  E. If BRANCH[d℄ � 0, set d  d+ 1 and goto L2. Otherwise go to L3 if d > 0, to L2 if d = 0.L11. [Un�x near truths.℄ While E > G, set E  E � 1 and VAL[jREj℄ 0.L12. [Un�x real truths.℄ While E > F , do the following: Set E  E � 1 andX  jRE j; reativate the TIMP pairs that involve X and restore X to thefree list (see exerise 137); set VAL[X℄ 0.L13. [Downdate BIMPs.℄ If BRANCH[d℄ � 0, do the following while I > BACKI[d℄:Set I  I � 1 and BSIZE(l) s, where ISTACK[I℄ = (l; s).L14. [Try again?℄ (We've disovered that DEC[d℄ doesn't work.) If BRANCH[d℄ =0, set l  DEC[d℄, DEC[d℄ l �l, BRANCH[d℄ 1, and go bak to L4.L15. [Baktrak.℄ Terminate unsuessfully if d = 0. Otherwise set d  d � 1,E  F , F  BACKF[d℄, and return to L12.Exerise 143 extends this algorithm so that it will handle lauses of arbitrary size.*Speeding up by looking ahead. Algorithm L as it stands is inomplete,beause step L2 relies on an as-yet-unspei�ed \Algorithm X" before hoosing aliteral for branhing. If we use the simplest possible Algorithm X, by branhingon whatever literal happens to be �rst in the urrent list of free variables, thestreamlined methods for propagating fored moves in (62) and (63) will tend tomake Algorithm L run roughly three times as fast as Algorithm D, and that isn'ta negligible improvement. But with a sophistiated Algorithm X we an oftengain another fator of 10 or more in speed, on signi�ant problems.For example, here are some typial empirial statistis:Problem Algorithm D Algorithm L0 Algorithm L+waerden (3; 10; 97) 1430 gigamems, 391 gigamems, 772 megamems,103 meganodes 31 meganodes 4672 nodeslangford (13) 71.7 gigamems, 21.5 gigamems, 45.7 gigamems,14.0 meganodes 10.9 meganodes 944 kilonodesrand (3; 420; 100; 0) 184 megamems, 34 megamems, 626 kilomems,34 kilonodes 7489 nodes 19 nodesHere Algorithm L0 stands for Algorithm L with the simplest Algorithm X, whileAlgorithm L+ uses all of the lookahead heuristis that we are about to disuss.The �rst two problems involve rather large lauses, so they use the extended
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40 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 random ternary lausesHeulemarhheuristi soreAlgorithm L of exerise 143. The third problem onsists of 420 random ternarylauses on 100 variables. (Algorithm B, inidentally, needs 80.1 teramems, anda searh tree of 4.50 teranodes, to show that those lauses are unsatis�able.)The moral of this story is that it's wise to do 100 times as muh omputationat every node of a large searh tree, if we an thereby derease the size of thetree by a fator of 1000.How then an we distinguish a variable that's good for branhing from avariable that isn't? We shall onsider a three-step approah:� Preseleting, to identify free variables that appear to be good andidates;� Nesting, to allow andidate literals to share implied omputations;� Exploring, to examine the immediate onsequenes of hypothetial deisions.While arrying out these steps, Algorithm X might disover a ontradition (inwhih ase Algorithm L will take harge again at step L15); or the lookaheadproess might disover that several of the free literals are fored to be true(in whih ase it plaes them in the �rst U positions of the FORCE array). Theexplorations might even disover a way to satisfy all of the lauses (in whih aseAlgorithm L will terminate and everybody will be happy). Thus, Algorithm Xmight do muh more than simply hoose a good variable on whih to branh.The following reommendations for Algorithm X are based on Marijn Heule'slookahead solver alled marh, one of the world's best, as it existed in 2013.The �rst stage, preseletion, is oneptually simplest, although it also in-volves some \handwaving" beause it depends on neessarily shaky assumptions.Suppose there are N free variables. Experiene has shown that we tend to geta good heuristi sore h(l) for eah literal l, representing the relative amount bywhih asserting l will redue the urrent problem, if these sores approximatelysatisfy the simultaneous nonlinear equationsh(l) = 0:1 + � Xu2BIMP(l)unot �xed ĥ(u) + X(u;v)2TIMP(l) ĥ(u)ĥ(v): (64)Here � is a magi onstant, typially 3.5; and ĥ(l) is a multiple of h(l) hosenso that Pl ĥ(l) = 2N is the total number of free literals. (In other words, the hsores on the right are \normalized" so that their average is 1.)Any given set of sores h(l) an be used to derive a re�ned set h0(l) by lettingh0(l) = 0:1 + � Xu2BIMP(l)u not �xed h(u)have + X(u;v)2TIMP(l)h(u)have h(v)have ; have = 12N Xl h(l): (65)Near the root of the searh tree, when d � 1, we start with h(l) = 1 for all land then re�ne it �ve times (say). At deeper levels we start with the h(l) valuesfrom the parent node and re�ne them one. Exerise 145 ontains an example.We've omputed h(l) for all of the free literals l, but we won't have time toexplore them all. The next step is to selet free variables CAND[j℄ for 0 � j < C,where C isn't too large; we will insist that the number of andidates does notexeed Cmax = max(C0; C1=d); (66)
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using uto� parameters that are typially C0 = 30, C1 = 600. (See exerise 148.)We start by dividing the free variables into \partiipants" and \newbies":A partiipant is a variable suh that either x or �x has played the role of u or v instep L8, at some node above us in the searh tree; a newbie is a nonpartiipant.When d = 0 every variable is a newbie, beause we're at the root of the tree.But usually there is at least one partiipant, and we want to branh only onpartiipants whenever possible, in order to maintain fous while baktraking.If we've got too many potential andidates, even after restriting onsider-ation to partiipants, we an winnow the list down by preferring the variables xthat have the largest ombined sore h(x)h(�x). Step X3 below desribes a fairlyfast way to ome up with the desired seletion of C � Cmax andidates.A simple lookahead algorithm an now proeed to ompute a more aurateheuristi sore H(l), for eah of the 2C literals l = CAND[j℄ or l = :CAND[j℄that we've seleted for further srutiny. The idea is to simulate what wouldhappen if l were used for branhing, by mimiking steps L4{L9 (at least to a�rst approximation): Unit literals are propagated as in the exat algorithm, butwhenever we get to the part of step L9 that hanges the BIMP tables, we don'tatually make suh a hange; we simply note that a branh on l would implyu _ v, and we onsider the value of that potential new lause to be h(u)h(v).The heuristi sore H(l) is then de�ned to be the sum of all suh lause weights:H(l) =X�h(u)h(v) �� asserting l in L4 leads to asserting u _ v in L9	: (67)For example, the problem waerden (3; 3; 9) of (9) has nine andidate variablesf1; 2; : : : ; 9g at the root of the searh tree, and exerise 145 �nds their roughheuristi sores h(l). The more disriminating sores H(l) turn out to beH(1) = h(2)h(3) + h(3)h(5) + h(4)h(7) + h(5)h(9) = 168:6;H(2) = h(1)h(3) + h(3)h(4) + h(4)h(6) + h(5)h(8) = 157:3;H(3) = h(1)h(2) + h(2)h(4) + h(4)h(5) + � � �+ h(6)h(9) = 233:4;H(4) = h(2)h(3) + h(3)h(5) + h(5)h(6) + � � �+ h(1)h(7) = 231:8;H(5) = h(3)h(4) + h(3)h(6) + h(6)h(7) + � � �+ h(1)h(9) = 284:0:This problem is symmetrial, so we also have H(6) = H(�6) = H(4) = H(�4), et.The best literal for branhing, aording to this estimate, is 5 or �5.Suppose we set x5 false and proeed to look ahead at the redued problem,with d = 1. At this point there are eight andidates, f1; 2; 3; 4; 6; 7; 8; 9g; andthey're now related also by binary impliations, beause the original lause `357'has, for instane, been redued to `37'. In fat, the BIMP tables now de�ne thedependeny digraph 12 34 67 89�4�3 �2�1�9�8 �7�6 (68)beause �3 ��! 7, et.; and in general the 2C andidate literals will de�ne adependeny digraph whose struture yields important lues about the urrentsubproblem. We an, for example, use Tarjan's algorithm to �nd the strong
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42 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 subforestTarjanpreorderpostorderlookahead foresttree-based lookahead, see lookahead forestproto truePTomponents of that digraph, as mentioned after Theorem 7.1.1K. If some strongomponent inludes both l and �l, the urrent subproblem is unsatis�able. Other-wise two literals of the same omponent are onstrained to have the same value;so we shall hoose one literal from eah of the S � 2C strong omponents, anduse those hoies as the atual andidates for lookahead.Continuing our example, at this point we an use a nie trik to saveredundant omputation, by extrating a subforest of the dependeny digraph:1 2 3 4 6 7 8 9�4 �3 �2 �1�9�8 �7�6 (69)The relation �8 ��! 2 means that whatever happens after asserting the literal`2' will also happen after asserting `�8'; hene we need not repeat the steps for`2' while studying `�8'. And similarly, eah of the other subordinate literals `�1',: : : , `�9' inherits the assertions of its parent in this hierarhy. Tarjan's algorithmatually produes suh a subforest with omparatively little extra work.The nested struture of a forest also �ts beautifully with \degrees of truth"in our data struture, if we visit the S andidate literals in preorder of thesubforest, and if we suessively assert eah literal l at the truth degree thatorresponds to twie its position in postorder . For instane, (69) beomes thefollowing arrangement, whih we shall all the \lookahead forest":preorder 1 2 �8 3 4 6 �4 7 �3 �6 �9 8 �2 9 �1 �72�postorder 2 6 4 8 10 14 12 22 16 18 20 26 24 32 28 30 (70)A simulation of steps L4{L9 with l 1 and T  2 makes x1 true at degree 2 (wesay that it's \2�xed" or \2true"); it also omputes the sore H(1) h(�2)h(�3)+h(�4)h(�7), but it spawns no other ativity if Algorithm Y below isn't ative.Simulation with l  2 and T  6 then 6�xes 2 and omputesH(2) h(�1)h(�3)+h(�4)h(�6); during this proess the value of x1 isn't seen, beause it is less than T .But things get more interesting when l �8 and T  4: Now we 4�x �8, and we'restill able to see that x2 is true beause 6 > T . So we save a little omputationby inheriting H(2) and setting H(�8) H(2) + h(4)h(6) + h(6)h(7) + h(7)h(9).The real ation begins to break through a few steps later, when we set l  �4and T  12. Then (62) will 12�x not only �4 but also 3, sine �4��! 3; and the12truth of 3 will soon take us to the simulated step L8 with u = �6 and v = �9.Aha: We 12�x �9, beause 6 is 14true. Then we also 12�x the literals 7, 1, : : : , andreah a ontradition. This ontradition shows that branhing on �4 will lead toa onit; hene the literal 4 must be true, if the urrent lauses are satis�able.Whenever the lookahead simulation of Algorithm X learns that some literal lmust be true, as in this example, it plaes l on the FORCE list and makes l prototrue (that is, true in ontext PT). A proto true literal will remain �xed truethroughout this round of lookahead, beause all relevant values of T will beless than PT. Later, Algorithm L will promote proto truth to near truth, andultimately to real truth|unless a ontradition arises. (And in the ase ofwaerden (3; 3; 9), suh a ontradition does in fat arise; see exerise 150.)
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7.2.2.2 SATISFIABILITY: BACKTRACKING ALGORITHMS 43 forestsanestorinvariant relationnestinglookahead forestexplorationbreadth-�rst searhwindfallWhy does the ombination of preorder and postorder work so magiallyin (70)? It's beause of a basi property of forests in general, whih we notedfor example in exerise 2.3.2{20: If u and v are nodes of a forest, u is a properanestor of v if and only if u preedes v in preorder and u follows v in postorder.Moreover, when we look ahead at andidate literals in this way, an importantinvariant relation is maintained on the R stak, namely that truth degrees neverinrease as we move from the bottom to the top:VAL[jRj�1j℄ j 1 � VAL[jRj j℄; for 1 < j < E: (71)Real truths appear at the bottom, then near truths, then proto truth, et. Forexample, the stak at one point in the problem above ontains seven literals,j = 0 1 2 3 4 5 6Rj = �5 6 �4 3 �9 7 1VAL[jRj j℄ = RT+1 14 13 12 13 12 12 :One onsequene is that the urrent visibility of truth values mathes the reur-sive struture by whih false literals are purged from ternary lauses.The seond phase of Algorithm X, after preseletion of andidates, is alled\nesting," beause it onstruts a lookahead forest analogous to (70). Morepreisely, it onstruts a sequene of literals LL[j℄ and orresponding trutho�sets LO[j℄, for 0 � j < S. It also sets up PARENT pointers to indiate the foreststruture more diretly; for example, with (69) we would have PARENT(�8) = 2and PARENT(2) = �.The third phase, \exploration," now does the real work. It uses the looka-head forest to evaluate heuristis H(l) for the andidate literals|and also (ifit's luky) to disover literals whose values are fored.The heart of the exploration phase is a breadth-�rst searh based on steps L5,L6, and L8. This routine propagates truth values of degree T and also omputesw, the weight of new binary lauses that would be spawned by branhing on l:Set l0  l, i w  0, and G E  F ; perform (62);while G < E, set L RG, G G+ 1, andtake aount of (u; v) for all (u; v) in TIMP(L);generate new binary lauses (�l0 _Wk) for 0 � k < i. (72)Here \take aount of (u; v)" means \if either u or v is �xed true (in ontext T ),do nothing; if both u and v are �xed false, go to CONFLICT; if u is �xed false butv isn't �xed, set Wi  v, i  i + 1, and perform (62) with l  v; if v is �xedfalse but u isn't �xed, set Wi  u, i  i + 1, and perform (62) with l  u; ifneither u nor v is �xed, set w  w + h(u)h(v)."Explanation: A ternary lause of the form �L _ u _ v, where L is �xed trueand u is �xed false as a onsequene of l0 being �xed true, is alled a \windfall."Suh lauses are good news, beause they imply that the binary lause �l0 _ vmust be satis�ed in the urrent subproblem. Windfalls are reorded on a stakalled W, and appended to the BIMP database at the end of (72).
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44 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 autarky priniplepure literaltouhespartiipantsThe exploration phase also exploits an important fat alled the autarkypriniple, whih generalizes the notion of \pure literal" that we disussed abovein onnetion with Algorithm A. An \autarky" for a SAT problem F is a setof stritly distint literals A = fa1; : : : ; atg with the property that every lauseof F either ontains at least one literal of A or ontains none of the literals ofA = f�a1; : : : ; �atg. In other words, A satis�es every lause that A or A \touhes."An autarky is a self-suÆient system. Whenever A is an autarky, we anassume without loss of generality that all of its literals are atually true; for if Fis satis�able, the untouhed lauses are satis�able, and A tells us how to satisfythe touhed ones. Step X9 of the following algorithm shows that we an detetertain autarkies easily while we're looking ahead.Algorithm X (Lookahead for Algorithm L). This algorithm, whih is invokedin step L2 of Algorithm L, uses the data strutures of that algorithm togetherwith additional arrays of its own to explore properties of the urrent subproblem.It disovers U � 0 literals whose values are fored, and puts them in the FORCEarray. It terminates either by (i) satisfying all lauses; (ii) �nding a ontradition;or (iii) omputing heuristi sores H(l) that will allow step L3 to hoose a goodliteral for branhing. In ase (iii) it might also disover new binary lauses.X1. [Satis�ed?℄ If F = n, terminate happily (no variables are free).X2. [Compile rough heuristis.℄ Set N = n � F and use (65) to ompute arough sore h(l) for eah free literal l.X3. [Preselet andidates.℄ Let C be the urrent number of free variables thatare \partiipants," and put them into the CAND array. If C = 0, setC  N and put all free variables into CAND; terminate happily, however,if all lauses are satis�ed (see exerise 152). Give eah variable x in CANDthe rating r(x) = h(x)h(�x). Then while C > 2Cmax (see (66)), delete allelements of CAND whose rating exeeds the mean rating; but terminate thisloop if no elements are atually deleted. Finally, if C > Cmax, redue C toCmax by retaining only top-ranked andidates. (See exerise 153.)X4. [Nest the andidates.℄ Construt a lookahead forest, represented in LL[j℄and LO[j℄ for 0 � j < S and by PARENT pointers (see exerise 155).X5. [Prepare to explore.℄ Set U 0  j0  BASE j  0 and CONFLICT X13.X6. [Choose l for lookahead.℄ Set l  LL[j℄ and T  BASE + LO[j℄. SetH(l) H(PARENT(l)), whereH(�) = 0. If l is not �xed in ontext T , go toX8. Otherwise, if l is �xed false but not proto false, do step X12 with l  �l.X7. [Move to next.℄ If U > U 0, set U 0  U and j0  j. Then set j  j +1. Ifj = S, set j  0 and BASE BASE+2S. Terminate normally if j = j0, orif j = 0 and BASE+ 2S � PT. Otherwise return to X6.X8. [Compute sharper heuristi.℄ Perform (72). Then if w > 0, set H(l0)  H(l0) + w and go to X10.X9. [Exploit an autarky.℄ IfH(l0) = 0, do step X12 with l  l0. Otherwise gen-erate the new binary lause l0_:PARENT(l0). (Exerise 166 explains why.)
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7.2.2.2 SATISFIABILITY: BACKTRACKING ALGORITHMS 45 neessary assignmentsfored literalsdouble truthDTDtrueDfalseX10. [Optionally look deeper.℄ Perform Algorithm Y below.X11. [Exploit neessary assignments.℄ Do step X12 for all literals l 2 BIMP(�l0)that are �xed true but not proto true. Then go to X7. (See exerise 167.)X12. [Fore l.℄ Set FORCE[U℄ l, U  U + 1, T 0  T , and perform (72) withT  PT. Then set T  T 0. (This step is a subroutine, used by other steps.)X13. [Reover from onit.℄ If T < PT, do step X12 with l �l0 and go to X7.Otherwise terminate with a ontradition.Notie that, in steps X5{X7, this algorithm proeeds ylially through theforest, ontinuing to look ahead until ompleting a pass in whih no new foredliterals are found. The BASE address of truth values ontinues to grow, ifneessary, but it isn't allowed to beome too lose to PT.*Looking even further ahead. If it's a good idea to look one step ahead,maybe it's a better idea to look two steps ahead. Of ourse that's a somewhatsary proposition, beause our data strutures are already pretty strethed; andbesides, double lookahead might take way too muh time. Nevertheless, there'sa way to pull it o�, and to make Algorithm L run even faster on many problems.Algorithm X looks at the immediate onsequenes of assuming that someliteral l0 is true. Algorithm Y, whih is launhed in step X10, goes further outon that limb, and investigates what would happen if another literal, l̂0, were alsotrue. The goal is to detet branhes that die o� early, allowing us to disovernew impliations of l0 or even to onlude that l0 must be false.For this purpose Algorithm Y stakes out an area of truth spae between theurrent ontext T and a degree of truth alled \double truth" or DT, whih isde�ned in step Y2. The size of this area is determined by a parameter Y, whihis typially less than 10. The same lookahead forest is used to give relative truthdegrees below DT. Double truth is less trustworthy than proto truth, PT; butliterals that are �xed at level DT are known to be onditionally true (\Dtrue")or onditionally false (\Dfalse") under the hypothesis that l0 is true.Going bak to our example of waerden (3; 3; 9), the senario desribed abovewas based on the assumption that double lookahead was not done. Atually,however, further ativity by Algorithm Y will usually take plae after H(1) hasbeen set to h(�2)h(�3) + h(�4)h(�7). The value of DT will be set to 130, assumingthat Y = 8, beause S = 8. Literal 1 will beome Dtrue. Looking then at 2 will6�x 2; and that will 6�x �3 beause of the lause �1�2�3. Then �3 will 6�x 4 and 7,ontraditing �1�4�7 and ausing 2 to beome Dfalse. Other literals also will soonbeome Dtrue or Dfalse, leading to a ontradition; and that ontradition willallow Algorithm Y to make literal 1 proto false before Algorithm X has evenbegun to look ahead at literal 2.The main loop of double lookahead is analogous to (72), but it's simpler,beause we're further removed from reality:Set l̂0  l and G E  F ; perform (62);while G < E, set L RG, G G+ 1, andtake aount of (u; v) for all (u; v) in TIMP(L). (73)
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46 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 Heulevan Maarenfeedbak mehanismadaptive ontroltriggerdamping fatorDFAILpirandom ternary lauses
Now \take aount of (u; v)" means \if either u or v is �xed true (in ontext T ),or if neither u nor v is �xed, do nothing; if both u and v are �xed false, go toCONFLICT; if u is �xed false but v isn't �xed, perform (62) with l  v; if v is�xed false but u isn't �xed, perform (62) with l  u."Sine double-looking is ostly, we want to try it only when there's a fairlygood hane that it will be helpful, namely when H(l0) is large. But how large islarge enough? The proper threshold depends on the problem being solved: Somesets of lauses are handled more quikly by double-looking, while others are im-mune to suh insights. Marijn Heule and Hans van Maaren [LNCS 4501 (2007),258{271℄ have developed an elegant feedbak mehanism that automatiallytunes itself to the harateristis of the problem at hand: Let � be a \trigger,"initially 0. Step Y1 allows double-look only if H(l0) > � ; otherwise � is dereasedto �� , where � is a damping fator (typially 0.999), so that double-lookingwill beome more attrative. On the other hand if double-look doesn't �nd aontradition that makes l0 proto false, the trigger is raised to H(l0) in step Y6.Algorithm Y (Double lookahead for Algorithm X ). This algorithm, invoked instep X10, uses the same data strutures (and a few more) to look ahead moredeeply. Parameters � and Y are explained above. Initially DFAIL(l)= 0 for all l.Y1. [Filter.℄ Terminate if DFAIL(l0) = ISTAMP, or if T + 2S(Y + 1) > PT.Otherwise, if H(l0) � � , set �  �� and terminate.Y2. [Initialize.℄ Set BASE T � 2, LBASE BASE+2S �Y , DT LBASE+LO[j℄,i  |̂0  |̂  0, E  F , and CONFLICT  Y8. Perform (62) with l  l0and T  DT.Y3. [Choose l for double look.℄ Set l  LL[j℄ and T  BASE+LO[j℄. If l is not�xed in ontext T , go to Y5. Otherwise, if l is �xed false but not Dfalse, dostep Y7 with l �l.Y4. [Move to next.℄ Set |̂  |̂ + 1. If |̂ = S, set |̂  0 and BASE BASE+ 2S.Go to Y6 if |̂0 = |̂, or if |̂ = 0 and BASE = LBASE. Otherwise return to Y3.Y5. [Look ahead.℄ Perform (73), and return to Y4 (if no onit arises).Y6. [Finish.℄ Generate new binary lauses (�l0 _Wk) for 0 � k < i. Then setBASE  LBASE, T  DT, �  H(l0), DFAIL(l0)  ISTAMP, CONFLICT  X13, and terminate.Y7. [Make l̂0 false.℄ Set |̂0  |̂, T 0  T , and perform (73) with l  l̂0 andT  DT. Then set T  T 0, Wi  l̂0, i i+1. (This step is a subroutine.)Y8. [Reover from onit.℄ If T < DT, do step Y7 with l  :LL[|̂℄ and goto Y4. Otherwise set CONFLICT X13 and exit to X13.Some quantitative statistis will help to ground these algorithms in reality:When Algorithm L was let loose on rand (3; 2062; 500; 314), a problem with 500variables and 2062 random ternary lauses, it proved unsatis�ability after making684,433,234,661 memory aesses and onstruting a searh tree of 9,530,489nodes. Exerise 173 explains what would have happened if various parts of thealgorithm had been disabled. None of the other SAT solvers we shall disuss areable to handle suh random problems in a reasonable amount of time.
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7.2.2.2 SATISFIABILITY: RANDOM CLAUSES 47 random satis�ability{3SAT{probability of satis�ability{Random satis�ability. There seems to be no easy way to analyze the satis�a-bility problem under random onditions. In fat, the basi question \How manyrandom lauses of 3SAT on n variables do we need to onsider, on the average,before they an't all be satis�ed?" is a famous unsolved researh problem.From a pratial standpoint this question isn't as relevant as the analogousquestions were when we studied algorithms for sorting or searhing, beause real-world instanes of 3SAT tend to have highly nonrandom lauses. Deviations fromrandomness in ombinatorial algorithms often have a dramati e�et on runningtime, while methods of sorting and searhing generally stay reasonably lose totheir expeted behavior. Thus a fous on randomness an be misleading. On theother hand, random SAT lauses do serve as a nie, lean model, so they give usinsights into what goes on in Boolean territory. Furthermore the mathematialissues are of great interest in their own right. And fortunately, muh of the basitheory is in fat elementary and easy to understand. So let's take a look at it.Exerise 180 shows that random satis�ability an be analyzed exatly, whenthere are at most �ve variables. We might as well start there, beause the \tiny"5-variable ase is still large enough to shed some light on the bigger piture.When there are n variables and k literals per lause, the number N of possiblelauses that involve k di�erent variables is learly 2k�nk�: There are �nk� ways tohoose the variables, and 2k ways to either omplement or not. So we have, forexample, N = 23�53� = 80 possible lauses in a 3SAT problem on 5 variables.Let qm be the probability that m of those lauses, distint but otherwiseseleted at random, are satis�able. Thus qm = Qm=�Nm�, whereQm is the numberof ways to hoose m of the N lauses so that at least one Boolean vetor x =x1 : : : xn satis�es them all. Figure 40 illustrates these probabilities when k = 3and n = 5. Suppose we're being given distint random lauses one by one.Aording to Fig. 40, the hanes are better than 77% that we'll still be ableto satisfy them after 20 di�erent lauses have been reeived, beause q20 �0:776. But by the time we've aumulated 30 of the 80 lauses, the hane ofsatis�ability has dropped to q30 � 0:179; and after ten more we reah q40 � 0:016.10 0 10 20 30 40 50 60 70 80Fig. 40. The probability qm that m distint lauses of 3SATon 5 variables are simultaneously satis�able, for 0 � m � 80.The illustration makes it appear as if qm = 1 for m < 15, say, and as ifqm = 0 for m > 55. But q8 is atually less than 1, beause of (6); exerise 179gives the exat value. And q70 is greater than 0, beause Q70 = 32; indeed, everyBoolean vetor x satis�es exatly (2k � 1)�nk� = (1 � 2�k)N of the N possiblek-lauses, so it's no surprise that 70 nonontraditory 3-lauses on 5 variablesan be found. Of ourse those lauses will hardly ever be the �rst 70 reeived, ina random situation. The atual value of q70 is 32=1646492110120� 2� 10�11.
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48 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 solutions, number of+standard deviationuniquely satis�ablestopping timesummation by parts081624
32

0 10 20 30 40 50 60 70 80Fig. 41. The total number Tm of di�erent Boolean vetors x = x1 : : : x5 thatsimultaneously satisfy m distint lauses of 3SAT on 5 variables, for 0 � m � 80.Figure 41 portrays the same proess from another standpoint: It shows inhow many ways a random set of m lauses an be satis�ed. This value, Tm, is arandom variable whose mean is indiated in blak, surrounded by a gray regionthat shows the mean plus-or-minus the standard deviation. For example, T0 isalways 32, and T1 is always 28; but T2 is either 24, 25, or 26, and it takes thesevalues with the respetive probabilities (2200; 480; 480)=3160. Thus the meanfor m = 2 is � 24:5, and the standard deviation is � 0:743.When m = 20, we know from Fig. 40 that T20 is nonzero more than 77%of the time; yet Fig. 41 shows that T20 � 1:47� 1:17. (Here the notation �� �stands for the mean value � with standard deviation �.) It turns out, in fat,that 20 random lauses are uniquely satis�able, with T20 = 1, more than 33% ofthe time; and the probability that T20 > 4 is only 0:013. With 30 lauses, satis-�ability gets diier and diier: T30 � 0:20�0:45; indeed, T30 is less than 2, morethan 98% of the time|although it an be as high as 11 if the lause-provider isbeing nie to us. By the time 40 lauses are reahed, the odds that T40 exeeds 1are less than 1 in 4700. Figure 42 shows the probability that Tm = 1 as m varies..50 0 10 20 30 40 50 60 70 80Fig. 42. Pr(Tm = 1), the probability that m distint lausesof 3SAT on 5 variables are uniquely satis�able, for 0 � m � 80.Let P be the number of lauses that have been reeived when we're �rstunable to satisfy them all. Thus we have P = m with probability pm, wherepm = qm�1� qm is the probability that m� 1 random lauses are satis�able butm are not. These probabilities are illustrated in Fig. 43. Is it surprising thatFigs. 42 and 43 look roughly the same? (See exerise 183.)The expeted \stopping time," EP , is by de�nition equal toPmmpm; andit's not diÆult to see, for example by using the tehnique of summation byparts (exerise 1.2.7{10), that we an ompute it by summing the probabilitiesin Fig. 40: EP = Xm qm: (74)
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7.2.2.2 SATISFIABILITY: RANDOM CLAUSES 49 varianekSAT4SAT2SAT1SATsampling with and without replaementrepeated lausesbirthday paradox
.10 0 10 20 30 40 50 60 70 80Fig. 43. The stopping time probabilities, pm, that m distint lausesof 3SAT on 5 variables have just beome unsatis�able, for 0 � m � 80.The variane of P , namely E(P � EP )2 = (EP 2) � (EP )2, also has a simpleexpression in terms of the q's, beauseEP 2 = Xm (2m+ 1)qm: (75)In Figs. 40 and 43 we have EP � 25:22, with variane � 35:73.So far we've been fousing our attention on 3SAT problems, but the sameideas apply also to kSAT for other lause sizes k. Figure 44 shows exat resultsfor the probabilities when n = 5 and 1 � k � 4. Larger values of k give lausesthat are easier to satisfy, so they inrease the stopping time. With �ve variablesthe typial stopping times for random 1SAT, 2SAT, 3SAT, and 4SAT turn outto be respetively 4:06� 1:19, 11:60� 3:04, 25:22� 5:98, and 43:39 � 7:62. Ingeneral if Pk;n is the stopping time for kSAT on n variables, we letSk;n = EPk;n (76)be its expeted value.10 0 10 20 30 40 50 60 70 801SAT 2SAT 3SAT 4SAT

Fig. 44. Extension of Fig. 40 to lauses of other sizes.Our disussions so far have been limited in another way too: We've beenassuming thatm distint lauses are being presented to a SAT solver for solution.In pratie, however, it's muh easier to generate lauses by allowing repetitions,so that every lause is hosen without any dependene on the past history. Inother words, there's a more natural way to approah random satis�ability, byassuming that Nm possible ordered sequenes of lauses are equally likely afterm steps, not that we have �Nm� equally likely sets of lauses.Let q̂m be the probability thatm random lauses C1^� � �^Cm are satis�able,where eah Cj is randomly hosen from among the N = 2k�nk� possibilities in akSAT problem on n variables. Figure 45 illustrates these probabilities in the asek = 3, n = 5; notie that we always have q̂m � qm. If N is large while m is small,it's lear that q̂m will be very lose to qm, beause repeated lauses are unlikelyin suh a ase. Still, we must keep in mind that qN is always zero, while q̂m isnever zero. Furthermore, the \birthday paradox" disussed in Setion 6.4 warns
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50 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 kSATsampled with replaementrandSelmanMithellLevesquephase transitiondensity of lauses: the number of lauses per variable+rossover point, see thresholdsatis�ability thresholds
10 0 10 20 30 40 50 60 70 80Fig. 45. Random 3SAT on 5 variables when the lauses are sampledwith replaement. The probabilities q̂m are shown with a blak line;the smaller probabilities qm of Fig. 40 are shown in gray.us that repetitions aren't as rare as we might expet. The deviations of q̂m fromqm are partiularly notieable in small ases suh as the senario of Fig. 45.In any event, there's a diret way to ompute q̂m from the probabilities qtand the value of N (see exerise 184):q̂m = NXt=0 nmt o t! qt �Nt �.Nm: (77)And there are surprisingly simple formulas analogous to (74) and (75) for thestopping time bP , where p̂m = q̂m�1 � q̂m, as shown in exerise 186:E bP = N�1Xm=0 NN �m qm ; (78)E bP 2 = N�1Xm=0 NN �m qm �1 + 2� NN � 1 + � � �+ NN �m��: (79)These formulas prove that the expeted behavior of bP is very muh like thatof P , if qm is small whenever m=N isn't small. In the ase k = 3 and n = 5, thetypial stopping times bP = 30:58� 9:56 are signi�antly larger than those of P ;but we are mostly interested in ases where n is large and where q̂m is essentiallyindistinguishable from qm. In order to indiate plainly that the probability q̂mdepends on k and n as well as on m, we shall denote it heneforth by Sk(m;n):Sk(m;n) = Pr(m random lauses of kSAT are satis�able); (80)where the m lauses are \sampled with replaement" (they needn't be distint).Suitable pseudorandom lauses rand (k;m; n; seed) an easily be generated.Exat formulas appear to be out of reah when n > 5, but we an makeempirial tests. For example, extensive experiments on random 3SAT problemsby B. Selman, D. G. Mithell, and H. J. Levesque [Arti�ial Intelligene 81(1996), 17{29℄ showed a dramati drop in the hanes of satis�ability when thenumber of lauses exeeds about 4:27n. This \phase transition" beomes muhsharper as n grows (see Fig. 46).Similar behavior ours for random kSAT, and this phenomenon has spawnedan enormous amount of researh aimed at evaluating the so-alled satis�abilitythresholds �k = limn!1Sk;n=n: (81)
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4:27n n=500n=50 n=5100 2n 4n 6n 8n 10nFig. 46. Empirial probability data shows that random 3SAT problems rapidlybeome unsatis�able when there are more than �3n lauses, if n is large enough.Indeed, we an obtain quite diÆult kSAT problems by generating approximately�kn random k-lauses, using empirially observed estimates of �k. If n is large,the running time for random 3SAT with 4:3n lauses is typially orders of mag-nitude larger than it is when the number of lauses is 4n or 4:6n. (And stilltougher problems arise in rare instanes when we have, say, 3:9n lauses thathappen to be unsatis�able.)Stritly speaking, however, nobody has been able to prove that the so-alledonstants �k atually exist, for all k! The empirial evidene is overwhelming;but rigorous proofs for k = 3 have so far only established the boundslim infn!1 S3;n=n � 3:52; lim supn!1 S3;n=n � 4:49: (82)[See A. C. Kaporis, L. M. Kirousis, and E. G. Lalas, Random Strutures &Algorithms 28 (2006), 444{480; J. D��az, L. Kirousis, D. Mitshe, and X. P�erez-Gim�enez, Theoretial Comp. Si. 410 (2009), 2920{2934.℄ A \sharp threshold"result has been established by E. Friedgut [J. Amer. Math. So. 12 (1999), 1017{1045, 1053{1054℄, who proved the existene for k � 2 of funtions �k(n) withlimn!1Sk�b(�k(n)� �)n; n� = 1; limn!1Sk�b(�k(n) + �)n; n� = 0; (83)when � is any positive number. But those funtions might not approah a limit.They might, for example, utuate periodially, like the \wobble funtion" thatwe enountered in Eq. 5.2.2{(47).The urrent best guess for �3, based on heuristis of the \survey propaga-tion" tehnique to be disussed below, is that �3 = 4:26675�0:00015 [S. Mertens,M. M�ezard, and R. Zehina, Random Strutures & Algorithms 28 (2006), 340{373℄. Similarly, it appears reasonable to believe that �4 � 9:931, �5 � 21:12,�6 � 43:37, �7 � 87:79. The �'s grow as �(2k) (see exerise 195); and theyare known to be onstant when k is suÆiently large [see J. Ding, A. Sly, andN. Sun, STOC 47 (2015), to appear℄.Analysis of random 2SAT. Although nobody knows how to prove that random3SAT problems almost always beome unsatis�able when the number of lausesreahes � 4:27n, the orresponding question for 2SAT does have a nie answer:The satis�ability threshold �2 equals 1. For example, when the author �rst tried1000 random 2SAT problems with a million variables, 999 of them turned out tobe satis�able when there were 960,000 lauses, while all were unsatis�able whenthe number of lauses rose to 1,040,000. Figure 47 shows how this transitionbeomes sharper as n inreases.
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52 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 Chv�atalReedGoerdtFernandez de la Vegaimpliation digraphKarpgiant strong omponentstrong omponentsChv�atalReeds-hainstritly distint literals
Fig. 47. Empirial satisfationprobabilities for 2SAT with ap-proximately n random lauses.(When n = 100, the probabilitydoesn't beome negligible untilmore than roughly 180 lauseshave been generated.) 0:8n 0:9n 1:0n 1:1n 1:2nn=1000000 n=10000 n=100� � � � � �The fat that S2;n � n was disovered in 1991 by V. Chv�atal and B. Reed[FOCS 33 (1992), 620{627℄, and the same result was obtained independentlyat about the same time by A. Goerdt and by W. Fernandez de la Vega [see J.Comp. Syst. Si. 53 (1996), 469{486; Theor. Comp. Si. 265 (2001), 131{146℄.The study of this phenomenon is instrutive, beause it relies on propertiesof the digraph that haraterizes all instanes of 2SAT. Furthermore, the proofbelow provides an exellent illustration of the \�rst and seond moment prini-ples," equations MPR{(21) and MPR{(22). Armed with those priniples, we'reready to derive the 2SAT threshold:Theorem C. Let  be a �xed onstant. Thenlimn!1S2�bn; n� = � 1; if  < 1;0; if  > 1. (84)Proof. Every 2SAT problem orresponds to an impliation digraph on the literals,with ars �l��! l0 and �l 0��! l for eah lause l_ l0. We know from Theorem 7.1.1Kthat a set of 2SAT lauses is satis�able if and only if no strong omponent of itsimpliation digraph ontains both x and �x for some variable x. That digraphhas 2m = 2bn ars and 2n verties. If it were a random digraph, well-knowntheorems of Karp (whih we shall study in Setion 7.4.1) would imply that onlyO(log n) verties are reahable from any given vertex when  < 1, but that thereis a unique \giant strong omponent" of size 
(n) when  > 1.The digraph that arises from random 2SAT isn't truly random, beause itsars ome in pairs, u��!v and �v��! �u. But intuitively we an expet that similarbehavior will apply to digraphs that are just halfway random. For example, whenthe author generated a random 2SAT problem with n = 1000000 and m = :99n,the resulting digraph had only two omplementary pairs of strong omponentswith more than one vertex, and their sizes were only 2, 2 and 7, 7; so the lauseswere easily satis�able. Adding another :01n lauses didn't inrease the number ofnontrivial strong omponents, and the problem remained satis�able. But anotherexperiment with m = n = 1000000 yielded a strong omponent of size 420,ontaining 210 variables and their omplements; that problem was unsatis�able.Based on a similar intuition into the underlying struture, Chv�atal andReed introdued the following \snares and snakes" approah to the proof ofTheorem C: Let's say that an s-hain is any sequene of s stritly distint literals;thus there are 2sns possible s-hains. Every s-hain C orresponds to lauses(�l1 _ l2); (�l2 _ l3); : : : ; (�ls�1 _ ls); (85)
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7.2.2.2 SATISFIABILITY: RANDOM CLAUSES 53 s-snare�rst moment priniplet-snakewhih in turn orrespond to two pathsl1��! l2��! l3��! � � � ��! ls and �ls��! � � � ��!�l3��!�l2��!�l1 (86)in the digraph. An s-snare (C; t; u) onsists of an s-hain C and two indies tand u, where 1 < t � s and 1 � juj < s; it spei�es the lauses (85) together with(lt _ l1) and (�ls _ lu) if u > 0, (�ls _ �l�u) if u < 0; (87)representing �lt ��! l1 and either ls ��! ljuj or ls ��! �ljuj. The number of possibles-snares is 2s+1(s� 1)2ns . Their lauses are rarely all present when m is small.Exerise 200 explains how to use these de�nitions to prove Theorem C inthe ase  < 1. First we show that every unsatis�able 2SAT formula ontains allthe lauses of at least one snare. Then, if we de�ne the binary random variableX(C; t; u) = [all lauses of (C; t; u) are present℄; (88)it isn't diÆult to prove that the snares of every s-hain C are unlikely:EX(C; t; u) � ms+1Æ�2n(n� 1)�s+1: (89)Finally, letting X be the sum of X(C; t; u) over all snares, we obtainEX =XEX(C; t; u) �Xs�0 2s+1s(s�1)ns� m2n(n� 1)�s+1 = 2n� mn� 1�m�3by Eq. 1.2.9{(20). This formula atually establishes a stronger form of (84),beause it shows that EX is only O(n�1=4) when m = n� n3=4 > n. ThusS2�bn� n3=4; n� � Pr(X = 0) = 1� Pr(X > 0) � 1�O(n�1=4) (90)by the �rst moment priniple.The other half of Theorem C an be proved by using the onept of a t-snake, whih is the speial ase (C; t;�t) of a (2t � 1)-snare. In other words,given any hain (l1; : : : ; lt; : : : ; l2t�1), with s = 2t � 1 and ltin the middle, a t-snake generates the lauses (85) togetherwith (lt _ l1) and (�ls _ �lt). When t = 5, for example, and(l1; : : : ; l2t�1) = (x1; : : : ; x9), the 2t = 10 lauses are51; �12; �23; �34; �45; �56; �67; �78; �89; �9�5;and they orrespond to 20 ars that loop around to form astrong omponent as shown here. We will prove that, when  > 1in (84), the digraph almost always ontains suh impediments to satis�ability.�5 1 2 3 4 56789�5 �4 �3 �2 �1 5�9�8�7�6�5
Given a (2t� 1)-hain C, where the parameter t will be hosen later, letXC = [eah lause of (C; t;�t) ours exatly one℄: (91)The expeted value EXC is learly f(2t), wheref(r) = mr�2n(n� 1)� r�m�rÆ�2n(n� 1)�m (92)
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is the probability that r spei� lauses our one eah. Notie thatf(r) = � m2n(n� 1)�r�1 +O�r2m�+O�rmn2 ��; (93)thus the relative error will be O(t2=n) if m = �(n) as n!1.Now let X =PXC , summed over all R = 22t�1n2t�1 possible t-snakes C;thus EX = Rf(2t). We want to show that Pr(X > 0) is very nearly 1, usingthe seond moment priniple; so we want to show that the expetation EX2 =E �PC XC��PDXD� =PCPD EXCXD is small. The key observation is thatEXCXD = f(4t� r) if C and D have exatly r lauses in ommon. (94)Let pr be the probability that a randomly hosen t-snake has exatly r lausesin ommon with the �xed snake (x1; : : : ; x2t�1). ThenEX2(EX)2 = R2P2tr=0 prf(4t� r)R2f(2t)2= 2tXr=0 pr f(4t� r)f(2t)2 = 2tXr=0 pr�2n(n� 1)m �r�1 +O� t2n ��: (95)By studying the interation of snakes (see exerise 201) one an prove that(2n)rpr = O(t4=n) +O(t)[r� t℄ +O(n)[r=2t℄; for 1 � r � 2t. (96)Finally then, as explained in exerise 202, we an hoose t = bn1=5 and m =bn+ n5=6, to dedue a sharper form of (84) when  > 1:S2�bn+ n5=6; n� = O(n�1=30): (97)(Deep breath.) Theorem C is proved.Muh more preise results have been derived by B. Bollob�as, C. Borgs, J. T.Chayes, J. H. Kim, and D. B. Wilson, in Random Strutures & Algorithms 18(2001), 201{256. For example, they showed thatS2�bn�n3=4; n�= exp���(n�1=4)�; S2�bn+n3=4; n�= exp���(n1=4)�: (98)Resolution. The baktraking proess of Algorithms A, B, D, and L is loselyonneted to a logial proof proedure alled resolution. Starting with a family oflauses alled \axioms," there's a simple rule by whih new lauses an be derivedfrom this given set: Whenever both x _A0 and �x _A00 are in our repertoire oflauses, we're allowed to derive the \resolvent" lause A = A0 _A00, denoted by(x _A0) � (�x _A00). (See exerises 218 and 219.)A proof by resolution onsists of a direted ayli graph (dag) whose vertiesare labeled with lauses in the following way: (i) Every soure vertex is labeledwith an axiom. (ii) Every other vertex has in-degree 2. (iii) If the predeessorsof vertex v are v0 and v00, the label of v is C(v) = C(v0) �C(v00).When suh a dag has a sink vertex labeled A, we all it a \resolution proofof A"; and if A is the empty lause, the dag is also alled a \resolution refutation."
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7.2.2.2 SATISFIABILITY: RESOLUTION OF CLAUSES 55 regular resolutiontreelike resolutionRivestunneessary branhlookaheadImpagliazzoPudl�akProver{Delayer gameThe dag of a proof by resolution an be expanded to a binary tree, byrepliating any vertex that has out-degree greater than 1. Suh a tree is saidto be regular if no path from the root to a leaf uses the same variable twie toform a resolvent. For example, Fig. 48 is a regular resolution tree that refutesRivest's unsatis�able axioms (6). All ars in this tree are direted upwards.1 �12 �2 �2 23 �3 4 �4 �3 3 �4 44 �4 3 �3 4 �4 3 �3
�1 �112 1�2 �1�2 �12123 1�24 �1�2�3 �12�412�3 �41�2 �1�23 4�12341 23�4 341 �2�34 �2�34 �3�4�1 23�4 �3�4�1Fig. 48. One way to derive � by resolving the inonsistent lauses (6).Notie that Fig. 48 is essentially idential to Fig. 39 on page 33, the baktraktree by whih Algorithm D disovers that the lauses of (6) are unsatis�able.In fat this similarity is no oinidene: Every baktrak tree that reordsthe behavior of Algorithm D on a set of unsatis�able lauses orresponds to aregular resolution tree that refutes those axioms, unless Algorithm D makes anunneessary branh. (An unneessary branh ours if the algorithm tries x 0and x  1 without using their onsequenes to disover an unsatis�able subsetof axioms.) Conversely, every regular refutation tree orresponds to a sequeneof hoies by whih a baktrak-based SAT solver ould prove unsatis�ability.The reason behind this orrespondene isn't hard to see. Suppose bothvalues of x need to be tried in order to prove unsatis�ability. When we setx  0 in one branh of the baktrak tree, we replae the original lauses Fby F j �x, as in (54). The key point is that we an prove the empty lause byresolution from F j �x if and only if we an prove x by resolution from F withoutresolving on x. (See exerise 224.) Similarly, setting x  1 orresponds tohanging the lauses from F to F jx.Consequently, if F is an inonsistent set of lauses that has no short refuta-tion tree, Algorithm D annot onlude that those lauses are unsatis�able unlessit runs for a long time. Neither an Algorithm L, in spite of enhaned lookahead.R. Impagliazzo and P. Pudl�ak [SODA 11 (2000), 128{136℄ have introduedan appealing Prover{Delayer game, with whih it's relatively easy to demon-strate that ertain sets of unsatis�able lauses require large refutation trees.The Prover names a variable x, and the Delayer responds by saying either x 0or x 1 or x �. In the latter ase the Prover gets to deide the value of x; butthe Delayer sores one point. The game ends when the urrent assignments havefalsi�ed at least one lause. If the Delayer has a strategy that guarantees a soreof at least m points, exerise 226 shows that every refutation tree has at least 2m
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leaves; hene at least 2m�1 resolutions must be done, and every baktrak-basedsolver needs 
(2m) operations to delare the lauses unsatis�able.We an apply their game, for example, to the following interesting lauses:(�xjj ); for 1 � j � m; (99)(�xij _ �xjk _ xik); for 1 � i; j; k � m; (100)(xj1 _ xj2 _ � � � _ xjm); for 1 � j � m. (101)There are m2 variables xjk , for 1 � j; k � m, whih we an regard as the ini-dene matrix for a binary relation `j � k'. With this formulation, (99) says thatthe relation is irreexive, and (100) says that it's transitive; thus, (99) and (100)amount to saying that j � k is a partial ordering. Finally, (101) says that, for ev-ery j, there's a k with j � k. So these lauses state that there's a partial orderingon f1; : : : ;mg in whih no element is maximal; and they an't all be satis�ed.We an, however, always sore m� 1 points if we're playing Delayer in thatgame, by using the following strategy suggested by Massimo Lauria: At everystep we know an ordered set S of elements, regarded as \small"; initially S = ;,and we'll have S = fj1; : : : ; jsg when our sore is s. Suppose the Prover queriesxjk , and s < m�2. If j = k, we naturally reply that xjk  0. Otherwise, if j =2 Sand k =2 S, we respond xjk  �; then s s+1, and js  j or k aording as theProver spei�es xjk  1 or xjk  0. Otherwise, if j 2 S and k =2 S, we respondxjk  1; if j =2 S and k 2 S, we respond xjk  0. Finally, if j = ja 2 S and k =jb 2 S, we respond xjk  [a< b℄. These responses always satisfy (99) and (100).And no lause of (101) beomes false before the Delayer is asked a question withs = m� 2. Then the response xjk  � gains another point. We've provedTheorem R. Every refutation tree for the lauses (99), (100), (101) representsat least 2m�1 � 1 resolution steps.On the other hand, those lauses do have a refutation dag of size O(m3).Let Ij and Tijk stand for the irreexivity and transitivity axioms (99) and (100);and let Mjk = xj1 _ � � � _ xjk , so that (101) is Mjm. Then we haveMim � Timk = Mi(m�1) _ �xmk; for 1 � i; k < m. (102)Calling this new lause M 0imk, we an now deriveMj(m�1) = �� � � � �(Mmm �M 0jm1) �M 0jm2� � � � � � �M 0jm(m�1)� � Im;for 1 � j < m. Hene (m� 1)2 + (m� 1)m resolutions have essentially reduedm to m � 1. Eventually we an therefore derive M11; then M11 � I1 = �. [Thiselegant refutation is due to G. St�almark, Ata Informatia 33 (1996), 277{280.℄The method we've just used to obtain Mj(m�1) from Mmm is, inidentally,a speial ase of a useful general formula alled hyperresolution that is easilyproved by indution on r:� � � � �(C0 _ x1 _ � � � _ xr) � (C1 _ �x1)� � � � � � � (Cr _ �xr)= C0 _ C1 _ � � � _ Cr: (103)
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7.2.2.2 SATISFIABILITY: RESOLUTION OF CLAUSES 57 resolution hainrefutation hainpigeonhole prinipleHakenAPPIER HANZELETBen-SassonWigdersonwidthnotation w(�)notation w(� ` �)notation k� ` Ck
*Lower bounds for general resolution. Let's hange our perspetive slightly:Instead of visualizing a proof by resolution as a direted graph, we an think of itas a \straight line" resolution hain, analogous to the addition hains of Setion4.6.3 and the Boolean hains of Setion 7.1.2. A resolution hain based on maxioms C1, : : : , Cm appends additional lauses Cm+1, : : : , Cm+r, eah of whihis obtained by resolving two previous lauses of the hain. Formally, we haveCi = Cj(i) �Ck(i); for m+ 1 � i � m+ r, (104)where 1 � j(i) < i and 1 � k(i) < i. It's a refutation hain for C1, : : : , Cm ifCm+r = �. The tree in Fig. 48, for example, yields the refutation hain12�3; 23�4; 341; 4�12; �1�23; �2�34; �3�4�1; �41�2; 123; 1�24; �1�2�3; �12�4; 12; 1�2; �1�2; �12; 1; �1; �for the axioms (6); and there are many other ways to refute those axioms, suh as12�3;23�4;341;4�12;�1�23;�2�34;�3�4�1;�41�2;1�2�3;1�3;14;�3�4;24;2�4;2;�13;�34;1�4;�3;1;�1; �. (105)This hain is quite di�erent from Fig. 48, and perhaps nier: It has three moresteps, but after forming `1�2�3' it onstruts only very short lauses.We'll see in a moment that short lauses are ruial if we want short hains.That fat turns out to be important when we try to prove that ertain easilyunderstood families of axioms are inherently more diÆult than (99), (100),and (101), in the sense that they an't be refuted with a hain of polynomial size.Consider, for example, the well known \pigeonhole priniple," whih statesthatm+1 pigeons don't �t inm pigeon-sized holes. If xjk means that pigeon j o-upies hole k, for 0 � j � m and 1 � k � m, the relevant unsatis�able lauses are(xj1 _ xj2 _ � � � _ xjm); for 0 � j � m; (106)(�xik _ �xjk); for 0 � i < j � m and 1 � k � m. (107)(\Every pigeon has a hole, but no hole hosts more than one pigeon.") Theselauses inreased the pigeonhole priniple's fame during the 1980s, when ArminHaken [Theoretial Computer Siene 39 (1985), 297{308℄ proved that they haveno short refutation hain. His result marked the �rst time that any set of lauseshad been shown to be intratable for resolution in general.It is absolutely neessary that two people have equally many hairs.| JEAN APPIER HANZELET, Rereation Mathematique (1624)Haken's original proof was rather ompliated. But simpler approahes wereeventually found, ulminating in a method by E. Ben-Sasson and A. Wigderson[JACM 48 (2001), 149{169℄, whih is based on lause length and applies tomany other sets of axioms. If � is any sequene of lauses, let us say that itswidth, written w(�), is the length of its longest lause or lauses. Furthermore,if �0 = (C1; : : : ; Cm), we write w(�0 ` �) for the minimum of w(�) over allrefutation hains � = (C1; : : : ; Cm+r) for �0, and k�0 ` �k for the minimumlength r of all suh hains. The following lemma is the key to proving lowerbounds with Ben-Sasson and Wigderson's strategy:
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Lemma B. k�0 ` �k � e(w(�0`�)�1)2=(8n)�2, for lauses in n � w(�0)2variables.Thus there's exponential growth if we have w(�0) = O(1) and w(�0 ` �) = 
(n).Proof. Let � = (C1; : : : ; Cm+r) be a refutation of �0 with r = k�0 ` �k. Wewill say that a lause is \fat" if its length is W or more, where W � w(�0) is aparameter to be set later. If � n �0 ontains f fat lauses, those lauses ontainat least Wf literals; hene some literal l appears in at least Wf=(2n) of them.Now � j l, the hain obtained by replaing eah lause Cj by Cj j l, is arefutation of �0 j l that ontains at most b�f fat lauses, where � = 1�W=(2n).(The lause Cj j l will be } if l 2 Cj , thus tautologial and e�etively absent.)Suppose f < ��b for some integer b. We will prove, by indution on b andseondarily on the total length of all lauses, that there's a refutation � of �0suh that w(�) �W + b. This assertion holds when b = 0, sine W � w(�0). Ifb > 0, there's a refutation �0 of �0 j l with w(�0) �W+b�1, when we hoose l asabove, beause �f < �1�b and � j l refutes �0 j l. Then we an form a resolutionhain �1 that derives �l from �0, by inserting �l appropriately into lauses of �0.And there's a simple hain �2 that derives the lauses of �0 j �l from �0 and �l.There's also a refutation �3 of �0 j�l with w(�3) � W + b, by indution, beause� j�l refutes �0 j�l. Thus the ombination � = f�1; �2; �3g refutes �0, withw(�) = max(w(�0)+1; w(�2); w(�3)) � max(W+b; w(�0);W+b) =W+b:Finally, exerise 238 hooses W so that we get the laimed bound.The pigeon axioms are too wide to be inserted diretly into Lemma B. ButBen-Sasson and Wigderson observed that a simpli�ed version of those axioms,involving only lauses of 5SAT, is already intratable.Notie that we an regard the variable xjk as indiating the presene of anedge between aj and bk in a bipartite graph on the verties A = fa0; : : : ; amgand B = fb1; : : : ; bmg. Condition (106) says that eah aj has degree � 1, whileondition (107) says that eah bk has degree � 1. There is, however, a bipartitegraph G0 on those verties for whih eah aj has degree � 5 and suh that thefollowing strong \expansion" ondition is satis�ed:Every subset A0 � A with jA0j � m=3000 has j�A0j � jA0j in G0. (108)Here �A0 denotes the bipartite boundary of A0, namely the set of all bk that haveexatly one neighbor in A0.Given suh a graph G0, whose existene is proved (nononstrutively) inexerise 240, we an formulate a restrited pigeonhole priniple, by whih the pi-geonhole lauses are unsatis�able if we also require �xjk whenever aj /���bk in G0.Let �(G0) denote the resulting lauses, whih are obtained when axioms(106) and (107) are onditioned on all suh literals �xjk . Then w(�(G0)) � 5,and at most 5m + 5 unspei�ed variables xjk remain. Lemma B tells us thatall refutation hains for �(G0) have length exp
(m) if we an prove that theyall have width 
(m). Haken's theorem, whih asserts that all refutation hainsfor (106) and (107) also have length exp
(m), will follow, beause any shortrefutation would yield a short refutation of �(G0) after onditioning on the �xjk .
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7.2.2.2 SATISFIABILITY: RESOLUTION OF CLAUSES 59 notation F ` Cnotation �(C)subadditive law3SATrandom 3SATChv�atalSzemer�edi�rst order logiRobinsonGentzenut rulesequentsRobinsonTseytingraph-based axiomsSlisenko
Thus the following result gives our story a happy ending:Theorem B. The restrited pigeonhole axioms �(G0) have refutation widthw(�(G0) ` �) � m=6000: (109)Proof. We an assign a omplexity measure to every lause C by de�ning�(C) = min�jA0j �� A0 � A and �(A0) ` C	: (110)Here �(A0) is the set of \pigeon axioms" (106) for aj 2 A0, together with allof the \hole axioms" (107); and �(A0) ` C means that lause C an be provedby resolution when starting with only those axioms. If C is one of the pigeonaxioms, this de�nition makes �(C) = 1, beause we an let A0 = fajg. And if Cis a hole axiom, learly �(C) = 0. The subadditive law�(C 0 �C 00) � �(C 0) + �(C 00) (111)also holds, beause a proof of C 0�C 00 needs at most the axioms of �(A0) [ �(A00)if C 0 follows from �(A0) and C 00 follows from �(A00).We an assume that m � 6000. And we must have �(�) > m=3000, beauseof the strong expansion ondition (108). (See exerise 241.) Therefore every refu-tation of �(G0) must ontain a lause C withm=6000 � �(C) < m=3000; indeed,the �rst lause Cj with �(Cj) � m=6000 will satisfy this ondition, by (111).Let A0 be a set of verties with jA0j = �(C) and �(A0) ` C. Also let bk beany element of �A0, with aj its unique neighbor in A0. Sine jA0 n aj j < �(C),there must be an assignment of variables that satis�es all axioms of �(A0 n aj),but falsi�es C and the pigeon axiom for j. That assignment puts no two pigeonsinto the same hole, and it plaes every pigeon of A0 n aj .Now suppose C ontains no literal of the form xj0k or �xj0k, for any aj0 2 A.Then we ould set xj0k  0 for all j0, without falsifying any axiom of �(A0 n aj);and we ould then make the axioms of �(fajg) true by setting xjk  1. Butthat hange to the assignment would leave C false, ontraditing our assumptionthat �(A0) ` C. Thus C ontains some �xj0k for eah bk 2 �A0; and we musthave w(C) � j�A0j � m=6000.A similar proof establishes a linear lower bound on the refutation width,hene an exponential lower bound on the refutation length, of almost all random3SAT instanes with n variables and b�n lauses, for �xed � as n!1 (see exer-ise 243), a theorem of V. Chv�atal and E. Szemer�edi [JACM 35 (1988), 759{768℄.Historial notes: Proofs by resolution, in the more general setting of �rstorder logi, were introdued by J. A. Robinson in JACM 12 (1965), 23{41.[They're also equivalent to G. Gentzen's \ut rule for sequents," MathematisheZeitshrift 39 (1935), 176{210, III.1.2 1.℄ Inspired by Robinson's paper, Greg-ory Tseytin developed the �rst nontrivial tehniques to prove lower bounds onthe length of resolution proofs, based on unsatis�able graph axioms that areonsidered in exerise 245. His letures of 1966 were published in Volume 8of the Steklov Mathematial Institute Seminars in Mathematis (1968); seeA. O. Slisenko's English translation, Studies in Construtive Mathematis andMathematial Logi, part 2 (1970), 115{125.
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60 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 TseytinNANDvariables, introduing newauxiliary variablesmemo aheextended resolutionrandom 3SAT3SATtautologySamsonMuellerexistential quanti�erquanti�erspure literal
Tseytin pointed out that there's a simple way to get around the lower boundshe had proved for his graph-oriented problems, by allowing new kinds of proofsteps: Given any set of axioms F , we an introdue a new variable z that doesn'tappear anywhere in F , and add three new lauses G = fxz; yz; �x�y�zg; here xand y are arbitrary literals of F . It's lear that F is satis�able if and only ifF [ G is satis�able, beause G essentially says that z = NAND(x; y). Addingnew variables in this way is somewhat analogous to using lemmas when provinga theorem, or to introduing a memo ahe in a omputer program.His method, whih is alled extended resolution, an be muh faster thanpure resolution. For example, it allows the pigeonhole lauses (106) and (107) tobe refuted in only O(m4) steps (see exerise 237). It doesn't appear to help muhwith ertain other lasses of problems suh as random 3SAT; but who knows?SAT solving via resolution. The onept of resolution also suggests alternativeways to solve satis�ability problems. In the �rst plae we an use it to eliminatevariables: If F is any set of lauses on n variables, and if x is one of thosevariables, we an onstrut a set F 0 of lauses on the other n � 1 variables insuh a way that F is satis�able if and only if F 0 is satis�able. The idea is simplyto resolve every lause of the form x _A0 with every lause of the form �x _A00,and then to disard those lauses.For example, onsider the following six lauses in four variables:1234; 1�2; �1�2�3; �13; 2�3; 3�4: (112)We an eliminate the variable x4 by forming 1234 � 3�4 = 123. Then we aneliminate x3 by resolving 123 and �13 with �1�2�3 and 2�3:123 � �1�2�3 = }; 123 � 2�3 = 12; �13 � �1�2�3 = �1�2; �13 � 2�3 = �12:Now we're left with f12; 1�2; �12; �1�2g, beause the tautology } goes away. Elimi-nating x2 gives f1; �1g, and eliminating x1 gives f�g; hene (112) is unsatis�able.This method, whih was originally proposed for hand alulation by E. W.Samson and R. K. Mueller in 1955, works beautifully on small problems. Butwhy is it valid? There are (at least) two good ways to understand the reason.First, it's easy to see that F 0 is satis�able whenever F is satis�able, beauseC 0 �C 00 is true whenever C 0 and C 00 are both true. Conversely, if F 0 is satis�edby some setting of the other n� 1 variables, that setting must either satisfy A0for all lauses of the form x _A0, or else it must satisfy A00 for all lauses of theform �x _A00. (Otherwise neither A0 nor A00 would be satis�ed, for some A0 andsome A00, and the lause A0 _A00 in F 0 would be false.) Thus at least one of thesettings x 0 or x 1 will satisfy F .Another good way to understand variable elimination is to notie that itorresponds to the elimination of an existential quanti�er (see exerise 248).Suppose p lauses of F ontain x and q lauses ontain �x. Then the elimina-tion of x will give us at most pq new lauses, in the worst ase; so F 0 will have nomore lauses than F did, whenever pq � p+ q, namely when (p� 1)(q� 1) � 1.This ondition learly holds whenever p = 0 or q = 0; indeed, we alled x a\pure literal" when suh ases arose in Algorithm A. The ondition also holdswhenever p = 1 or q = 1, and even when p = q = 2.
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7.2.2.2 SATISFIABILITY: CLAUSE-LEARNING ALGORITHMS 61 subsumedCookMethod IsubsumedheuristisMethod IARekhowFurthermore we don't always get pq new lauses. Some of the resolventsmight turn out to be tautologous, as above; others might be subsumed by existinglauses. (The lause C is said to subsume another lause C 0 if C � C 0, in thesense that every literal of C appears also in C 0. In suh ases we an safelydisard C 0.) And some of the resolvents might also subsume existing lauses.Therefore repeated elimination of variables doesn't always ause the set oflauses to explode. In the worst ase, however, it an be quite ineÆient.In January of 1972, Stephen Cook showed his students at the University ofToronto a rather di�erent way to employ resolution in SAT-solving. His elegantproedure, whih he alled \Method I," essentially learns new lauses by doingresolution on demand:Algorithm I (Satis�ability by lause learning). Given m nonempty lausesC1^� � �^Cm on n Boolean variables x1 : : : xn, this algorithm either proves themunsatis�able or �nds stritly distint literals l1 : : : ln that satisfy them all. In theproess, new lauses may be generated by resolution (and m will then inrease).I1. [Initialize.℄ Set d 0.I2. [Advane.℄ If d = n, terminate suessfully (the literals fl1; : : : ; ldg satisfyfC1; : : : ; Cmg). Otherwise set d d+1, and let ld be a literal stritly distintfrom l1, : : : , ld�1.I3. [Find falsi�ed Ci.℄ If none of C1, : : : , Cm are falsi�ed by fl1; : : : ; ldg, go bakto I2. Otherwise let Ci be a falsi�ed lause.I4. [Find falsi�ed Cj .℄ (At this point we have �ld 2 Ci � f�l1; : : : ; �ldg, but nolause is ontained in f�l1; : : : ; �ld�1g.) Set ld  �ld. If none of C1, : : : , Cm arefalsi�ed by fl1; : : : ; ldg, go bak to I2. Otherwise let �ld 2 Cj � f�l1; : : : ; �ldg.I5. [Resolve.℄ Set m m+1, Cm  Ci �Cj . Terminate unsuessfully if Cm isempty. Otherwise set d maxft j �lt 2 Cmg, i m, and return to I4.In step I5 the new lause Cm annot be subsumed by any previous lause Ck fork < m, beause Ci � Cj � f�l1; : : : ; �ld�1g. Therefore, in partiular, no lause isgenerated twie, and the algorithm must terminate.This desription is intentionally vague when it uses the word \let" in stepsI2, I3, and I4: Any available literal ld an be seleted in step I2, and any falsi�edlauses Ci and Cj an be seleted in steps I3 and I4, without making the methodfail. Thus Algorithm I really represents a family of algorithms, depending onwhat heuristis are used to make those seletions.For example, Cook proposed the following way (\Method IA") to selet ldin step I2: Choose a literal that ours most frequently in the set of urrentlyunsatis�ed lauses that have the fewest unspei�ed literals. When applied to thesix lauses (112), this rule would set l1  3 and l2  2 and l3  1; then step I3would �nd Ci = �1�2�3 false. So step I4 would set l3  �1 and �nd Cj = 1�2 false,and step I5 would learn C7 = �2�3. (See exerise 249 for the sequel.)Cook's main interest when introduing Algorithm I was to minimize thenumber of resolution steps; he wasn't partiularly onerned with minimizingthe running time. Subsequent experiments by R. A. Rekhow [Ph.D. thesis
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62 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 anti-maximal-element lausesCookConit driven lause learningCDCL solverDPLLtrailreasonunit propagationonitforing lauseasserting lause, see foring lausedeisionsLevel 0
(Univ. Toronto, 1976), 81{84℄ showed that, indeed, relatively short resolutionrefutations are found with this approah. Furthermore, exerise 251 demon-strates that Algorithm I an handle the anti-maximal-element lauses (99){(101)in polynomial time; thus it trounes the exponential behavior exhibited by allbaktrak-based algorithms for this problem (see Theorem R).On the other hand, Algorithm I does tend to �ll memory with a great manynew lauses when it is applied to large problems, and there's no obvious way todeal with those lauses eÆiently. Therefore Cook's method did not appear to beof pratial importane, and it remained unpublished for more than forty years.Conit driven lause learning. Algorithm I demonstrates the fat thatunsuessful hoies of literals an lead us to disover valuable new lauses,thereby inreasing our knowledge about the harateristis of a problem. Whenthat idea was redisovered from another point of view in the 1990s, it proved tobe revolutionary: Signi�ant industrial instanes of SAT with many thousandsor even millions of variables suddenly beame feasible for the �rst time.The name CDCL solver is often given to these new methods, beause they arebased on \onit driven lause learning" rather than on lassial baktraking.A CDCL solver shares many onepts with the DPLL algorithms that we'vealready seen; yet it is suÆiently di�erent that we an understand it best bydeveloping the ideas from srath. Instead of impliitly exploring a searh treesuh as Fig. 39, a CDCL solver is built on the notion of a trail, whih is asequene L0L1 : : : LF�1 of stritly distint literals that do not falsify any lause.We an start with F = 0 (the empty trail). As omputation proeeds, our taskis to extend the urrent trail until F = n, thus solving the problem, or to provethat no solution exists, by essentially learning that the empty lause is true.Suppose there's a lause  of the form l _ �a1 _ � � � _ �ak, where a1 through akare in the trail but l isn't. Literals in the trail are tentatively assumed tobe true, and  must be satis�ed; so we're fored to make l true. In suhases we therefore append l to the urrent trail and say that  is its \reason."(This operation is equivalent to what we alled \unit propagation" in previousalgorithms; those algorithms e�etively removed the literals �a1, : : : , �ak when theybeame false, thereby leaving l as a \unit" all by itself. But our new viewpointkeeps eah lause  intat, and knows all of its literals.) A onit ours if theomplementary literal �l is already in the trail, beause l an't be both true andfalse; but let's assume for now that no onits arise, so that l an legally beappended by setting LF  l and F  F + 1.If no suh foring lause exists, and if F < n, we hoose a new distint literalin some heuristi way, and we append it to the urrent trail with a \reason"of �. Suh literals are alled deisions. They partition the trail into a sequeneof deision levels, whose boundaries an be indiated by a sequene of indieswith 0 = i0 � i1 < i2 < i3 < � � � ; literal Lt belongs to level d if and only ifid � t < id+1. Level 0, at the beginning of the trail, is speial: It ontains literalsthat are fored by lauses of length 1, if suh lauses exist. Any suh literals areunonditionally true. Every other level begins with exatly one deision.
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7.2.2.2 SATISFIABILITY: CLAUSE-LEARNING ALGORITHMS 63 dependene of literalslearningonit lauseResolvingConsider, for example, the problem waerden (3; 3; 9) of (9). The �rst itemsplaed on the trail might bet Lt level reason0 �6 1 � (a deision)1 �9 2 � (a deision)2 3 2 396 (rearrangement of the lause 369)3 �4 3 � (a deision)4 5 3 546 (rearrangement of the lause 456)5 8 3 846 (rearrangement of the lause 468)6 2 3 2467 �7 3 �7�5�3 (rearrangement of the lause �3�5�7)8 �2 3 �2�5�8 (a onit!) (113)
Three deisions were made, and they started levels at i1 = 0, i2 = 1, i3 = 3.Several lauses have been rearranged; we'll soon see why. And propagations haveled to a onit, beause both 2 and �2 have been fored. (We don't atuallyonsider the �nal entry L8 to be part of the trail, beause it ontradits L6.)If the reason for l inludes the literal �l 0, we say \l depends diretly on l0."And if there's a hain of one or more diret dependenies, from l to l1 to � � � tolk = l0, we say simply that \l depends on l0." For example, 5 depends diretlyon �4 and �6 in (113), and �2 depends diretly on 5 and 8; hene �2 depends on �6.Notie that a literal an depend only on literals that preede it in the trail.Furthermore, every literal l that's fored at level d > 0 depends diretly on someother literal on that same level d; otherwise l would already have been fored ata previous level. Consequently l must neessarily depend on the dth deision.The reason for reasons is that we need to deal with onits. We will see thatevery onit allows us to onstrut a new lause  that must be true wheneverthe existing lauses are satis�able, although  itself does not ontain any existinglause. Therefore we an \learn"  by adding it to the existing lauses, and wean try again. This learning proess an't go on forever, beause only �nitelymany lauses are possible. Sooner or later we will therefore either �nd a solutionor learn the empty lause. That will be nie, espeially if it happens sooner.A onit lause  on deision level d has the form �l _ �a1 _ � � � _ �ak, wherel and all the a's belong to the trail; furthermore l and at least one ai belong tolevel d. We an assume that l is rightmost in the trail, of all the literals in .Hene l annot be the dth deision; and it has a reason, say l _ �a01 _ � � � _ �a0k0 .Resolving  with this reason gives the lause 0 = �a1 _ � � � _ �ak _ �a01 _ � � � _ �a0k0 ,whih inludes at least one literal belonging to level d. If more than one suhliteral is present, then 0 is itself a onit lause; we an set   0 and repeatthe proess. Eventually we are bound to obtain a new lause 0 of the form�l 0_�b1_� � �_�br, where l0 is on level d and where b1 through br are on lower levels.Suh a 0 is learnable, as desired, beause it an't ontain any existinglauses. (Every sublause of 0, inluding 0 itself, would otherwise have given ussomething to fore at a lower level.) We an now disard levels > d0 of the trail,where d0 is the maximum level of b1 through br; and|this is the punh line|
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64 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 baktrakbakjumpinglook-bak, see bakjumpingstampwaerdenwe an append �l 0 to the end of level d0, with 0 as its reason. The foring proessnow resumes at level d0, as if the learned lause had been present all along.For example, after the onit in (113), the initial onit lause is  = �2�5�8,our shorthand notation for �x2_�x5_�x8; and its rightmost omplemented literal inthe trail is 2, beause 5 and 8 ame earlier. So we resolve  with 246, the reasonfor 2, and get 0 = 4�56�8. This new lause ontains omplements of three literalsfrom level 3, namely �4, 5, and 8; so it's still a onit lause. We resolve it withthe reason for 8 and get 0 = 4�56. Again 0 is a onit lause. But the resultof resolving this onit with the reason for 5 is 0 = 46, a lause that is falsi�edby the literals urrently on the trail but has only �4 at level 3. Good|we havelearned `46': In every solution to waerden (3; 3; 9), either x4 or x6 must be true.Thus the sequel to (113) ist Lt level reason0 �6 1 � (a deision)1 4 1 46 (the newly learned lause) (114)and the next step will be to begin a new level 2, beause nothing more is fored.Notie that the former level 2 has gone away. We've learned that there wasno need to branh on the deision variable x9, beause �6 already fores 4. Thisimprovement to the usual baktrak regimen is sometimes alled \bakjumping,"beause we've jumped bak to a level that an be regarded as the root ause ofthe onit that was just disovered.Exerise 253 explores a possible ontinuation of (114); dear reader, pleasejump to it now. Inidentally, the lause `46' that we learned in this exampleinvolves the omplements of former deisions �4 and �6; but exerise 255 showsthat newly learned lauses might not ontain any deision variables whatsoever.The proess of onstruting the learned lause from a onit is not asdiÆult as it may seem, beause there's an eÆient way to perform all of theneessary resolution steps. Suppose, as above, that the initial onit lause is�l_�a1_� � �_�ak . Then we \stamp" eah of the literals ai with a unique number s;and we also insert �ai into an auxiliary array, whih will eventually hold theliterals �b1, : : : , �br, whenever ai is a literal that reeived its value on a level d0with 0 < d0 < d. We stamp l too; and we ount how many literals of level dhave thereby been stamped. Then we repeatedly go bak through the trail untiloming to a literal Lt whose stamp equals s. If the ounter is bigger than 1at this point, and if the reason of Lt is Lt _ �a01 _ � � � _ �a0k0 , we look at eah a0i,stamping it and possibly putting it into the b array if it had not already beenstamped with s. Eventually the ount of unresolved literals will derease to 1;the learned lause is then �Lt _ �b1 _ � � � _ �br.These new lauses might turn out to be quite large, even when we're solving aproblem whose lauses were rather small to start with. For example, Table 3 givesa glimpse of typial behavior in a medium-size problem. It shows the beginningof the trail generated when a CDCL solver was applied to the 2779 lauses ofwaerden (3; 10; 97), after about 10,000 lauses had been learned. (Reall thatthis problem tries to �nd a binary vetor x1x2 : : : x97 that has no three equally



September 23, 2015

7.2.2.2 SATISFIABILITY: CLAUSE-LEARNING ALGORITHMS 65 redundantunit propagationlazy data struturesTable 3THE FIRST LEVELS OF A MODERATE-SIZE TRAILt Lt level reason0 53 1 �1 55 2 �2 44 3 �3 54 4 �4 43 5 �5 30 6 �6 34 7 �7 45 8 �8 40 9 �9 27 10 �10 79 10 79 53 2711 01 10 01 27 5312 36 11 �13 18 11 18 36 2714 19 11 19 36 53

t Lt level reason15 70 11 70 36 5316 35 12 �17 39 13 �18 37 14 �19 38 14 38 37 3620 47 14 47 37 2721 17 14 17 37 2722 32 14 32 37 2723 69 14 69 37 5324 21 14 21 37 5325 46 15 �26 28 15 28 46 3727 41 15 41 46 3628 26 15 26 46 3629 56 15 56 46 36

t Lt level reason30 08 15 08 46 2731 65 15 65 46 2732 60 15 60 46 5333 50 15 ��34 64 15 64 50 3635 22 15 22 50 3636 24 15 24 50 3737 42 15 42 50 4638 48 15 48 50 4639 73 15 73 50 2740 04 15 04 50 2741 63 15 63 50 3742 33 16 �43 51 17 �44 57 18 �(Here �� stands for the previously learned lause 50 26 47 35 41 32 38 44 27 45 55 65 60 7030.)spaed 0s and no ten equally spaed 1s.) Level 18 in the table has just beenlaunhed with the deision L44 = 57; and that deision will trigger the settingof many more literals 15, 49, 61, 68, 77, 78, 87, 96, : : : , eventually leading to aonit when trying to set L67. The onit lause turns out to have length 22:53 27 36 70 35 37 69 21 46 28 56 65 60 50 64 24 42 73 63 33 51 57 : (115)(Its literals are shown here in order of the appearane of their omplements inthe trail.) When we see suh a monster lause, we might well question whetherwe really want to \learn" suh an obsure fat!A loser look, however, reveals that many of the literals in (115) are redun-dant. For example, 70 an safely be deleted, beause its reason is `70 36 53'; both36 and 53 already appear in (115), hene (115)� (70 36 53) gets rid of 70. Indeed,more than half of the literals in this example are redundant, and (115) an besimpli�ed to the muh shorter and more memorable lause53 27 36 35 37 46 50 33 51 57 : (116)Exerise 257 explains how to disover suh simpli�ations, whih turn out tobe quite important in pratie. For example, the lauses learned while provingwaerden (3; 10; 97) unsatis�able had an average length of 19.9 before simpli�a-tion, but only 11.2 after; simpli�ation made the algorithm run about 33% faster.Most of the omputation time of a CDCL solver is devoted to unit propa-gation. Thus we need to know when the value of a literal has been fored byprevious assignments, and we hope to know it quikly. The idea of \lazy datastrutures," used above in Algorithm D, works niely for this purpose, in the pres-ene of long lauses, provided that we extend it so that every lause now has two
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66 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 MEMUnit lauseslevel 0reylingwath listBierestampfree literals and free variablestrue literalsfalse literalswathed literal
wathed literals instead of one. If we know that the �rst two literals of a lause arenot false, then we needn't look at this lause until one of them beomes false, eventhough other literals in the lause might be repeatedly veering between transientstates of true, false, and unde�ned. And when a wathee does beome false, we'lltry to swap it with a nonfalse partner that an be wathed instead. Propagationsor onits will arise only when all of the remaining literals are false.Algorithm C below therefore represents lauses with the following datastrutures: A monolithi array alled MEM is assumed to be large enough tohold all of the literals in all of the lauses, interspersed with ontrol information.Eah lause  = l0 _ l1 _ � � � _ lk�1 with k > 1 is represented by its startingposition in MEM, with MEM[+ j℄ = lj for 0 � j < k. Its two wathed literals arel0 and l1, and its size k is stored in MEM[� 1℄. Unit lauses, for whih k = 1,are treated di�erently; they appear in level 0 of the trail, not in MEM.A learned lause  an be distinguished from an initial lause beause it hasa relatively high number, with MINL �  < MAXL. Initially MAXL is set equal toMINL, the smallest ell in MEM that is available for learned lauses; then MAXLgrows as new lauses are added to the repertoire. The set of learned lauses isperiodially ulled, so that the less desirable ones don't lutter up memory andslow things down. Additional information about a learned lause  is kept inMEM[� 4℄ and MEM[� 5℄, to help with this reyling proess (see below).Individual literals xk and �xk , for 1 � k � n, are represented internally bythe numbers 2k and 2k + 1 as in (57) above. And eah of these 2n literals l hasa list pointer Wl, whih begins a linked list of the lauses in whih l is wathed.We have Wl = 0 if there is no suh lause; but if Wl =  > 0, the next link inthis \wath list" is in MEM[� 2℄ if l = l0, in MEM[� 3℄ if l = l1. [See ArminBiere, Journal on Satis�ability, Boolean Modeling and Comp. 4 (2008), 75{97.℄For example, the �rst few ells of MEM might ontain the following data whenwe are representing the lauses (9) of waerden (3; 3; 9):i = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 : : :MEM[i℄ = 9 45 3 2 4 6 15 51 3 4 6 8 21 45 3 6 8 10 : : :(Clause 3 is `123', lause 9 is `234', lause 15 is `345', : : : , lause 45 is `135',lause 51 is `246', : : : ; the wath lists for literals x1, x2, x3, x4 begin respetivelyat W2 = 3, W4 = 3, W6 = 9, W8 = 15.)The other major data strutures of Algorithm C are foused on variables, notlauses. Eah variable xk for 1 � k � n has six urrent attributes S(k), VAL(k),OVAL(k), TLOC(k), HLOC(k), and ACT(k), whih interat as follows: S(k) is the\stamp" that's used during lause formation. If neither xk nor �xk appears inthe urrent trail, then VAL(k) = �1, and we say that xk and its two literals are\free." But if Lt = l is a literal of the trail, belonging to level d, we haveVAL(jlj) = 2d+ (l & 1) and TLOC(jlj) = t; where jlj = l� 1, (117)and we say that l is \true" and �l is \false." Thus a given literal l is false if andonly if VAL(jlj) is nonnegative and VAL(jlj)+ l is odd. In most ases a wathedliteral is not false; but there are exeptions to this rule (see exerise 261).
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7.2.2.2 SATISFIABILITY: CLAUSE-LEARNING ALGORITHMS 67 ativityACT(k)heuristiheapfousMathews, Edwin Lee (41)damping fatorE�enoating point overowresalingFrostDehterAAAI: Amerian Assoiation for Arti�ial Intelligene (founded in 1979); Assoiation for the Advanement of Arti�ial Intelligene (sine 2007)PipatsrisawatDarwihepolaritiesstiking valuesprogress savingphase savingCha�MiniSATE�enS�orensson

The attributes ACT(k) and HLOC(k) tell the algorithm how to selet thenext deision variable. Eah variable xk has an ativity sore ACT(k), whihheuristially estimates its desirability for branhing. All of the free variables,and possibly others, are kept in an array alled HEAP, whih is arranged so thatACT(HEAP[j℄)� ACT(HEAP[(j � 1)� 1℄) for 0 < j < h (118)when it ontains h elements (see Setion 5.2.3). Thus HEAP[0℄ will always be afree variable of maximum ativity, if it is free; so it's the variable that will behosen to govern the deision when the trail starts to aquire a new level.Ativity sores help the algorithm to fous on reent onits. Suppose,for example, that 100 onits have been resolved, hene 100 lauses have beenlearned. Suppose further that xj or �xj was stamped while resolving the onitsnumbered 3, 47, 95, 99, and 100; but xk or �xk was stamped during onits 41,87, 94, 95, 96, and 97. We ould express their reent ativity by omputingACT(j) = �0 + �1 + �5 + �53 + �97; ACT(k) = �3 + �4 + �5 + �6 + �13 + �59;where � is a damping fator (say � = :95), beause 100� 100 = 0, 100� 99 = 1,100� 95 = 5, : : : , 100� 41 = 59. In this partiular ase j would be onsideredto be less ative than k unless � is less than about :8744.In order to update the ativity sores aording to this measure, we wouldhave to do quite a bit of reomputation whenever a new onit ours: The newsores would require us to multiply all n of the old sores by �, then to inreasethe ativity of every newly stamped variable by 1. But there's a muh betterway, namely to ompute ��100 times the sores shown above:ACT(j) = ��3+ ��47+ ��95+ ��99+ ��100; ACT(k) = ��41+ � � �+ ��96+ ��97:These newly saled sores, suggested by Niklas E�en, give us the same informationabout the relative ativity of eah variable; and they're updated easily, beausewe need to do only one addition per stamped variable when resolving onits.The only problem is that the new sores an beome really huge, beause��M an ause oating point overow after the number M of onits beomeslarge. The remedy is to divide them all by 10100, say, whenever any variable getsa sore that exeeds 10100. The HEAP needn't hange, sine (118) still holds.During the algorithm the variable DEL holds the urrent saling fator ��M ,divided by 10100 eah time all of the ativities have been resaled.Finally, the parity of OVAL(k) is used to ontrol the polarity of eah newdeision in step C6. Algorithm C starts by simply making eah OVAL(k) odd,although other initialization shemes are possible. Afterwards it sets OVAL(k) VAL(k) whenever xk leaves the trail and beomes free, as reommended byD. Frost and R. Dehter [AAAI Conf. 12 (1994), 301{306℄ and independentlyby K. Pipatsrisawat and A. Darwihe [LNCS 4501 (2007), 294{299℄, beauseexperiene has shown that the reently fored polarities tend to remain good.This tehnique is alled \stiking" or \progress saving" or \phase saving."Algorithm C is based on the framework of a pioneering CDCL solver alledCha�, and on an early desendant of Cha� alled MiniSAT that was developedby N. E�en and N. S�orensson [LNCS 2919 (2004), 502{518℄.



September 23, 2015

68 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 purgingushingbreadth-�rst searhunit propagationBakjumpAlgorithm C (Satis�ability by CDCL). Given a set of lauses on n Booleanvariables, this algorithm �nds a solution L0L1 : : : Ln�1 if and only if the lausesare satis�able, meanwhile disovering M new ones that are onsequenes of theoriginals. After disoveringMp new lauses, it will purge some of them from itsmemory and resetMp; after disoveringMf of them, it will ush part of its trail,resetMf , and start over. (Details of purging and ushing will be disussed later.)C1. [Initialize.℄ Set VAL(k) OVAL(k) TLOC(k) �1, ACT(k) S(k) 0,R2k R2k+1 �, HLOC(k) pk � 1, and HEAP[pk � 1℄ k, for 1� k�n,where p1 : : : pn is a random permutation of f1; : : : ; ng. Then input thelauses into MEM and the wath lists, as desribed above. Put the distint unitlauses into L0L1 : : : LF�1; but terminate unsuessfully if there are ontra-ditory lauses (l) and (�l). Set MINL and MAXL to the �rst available positionin MEM. (See exerise 260.) Set i0 d s M G 0, h n, DEL 1.C2. [Level omplete?℄ (The trail L0 : : : LF�1 now ontains all of the literals thatare fored by L0 : : : LG�1.) Go to C5 if G = F .C3. [Advane G.℄ Set l LG and G G+ 1. Then do step C4 for all  in thewath list of �l, unless that step detets a onit and jumps to C7. If thereis no onit, return to C2. (See exerise 261.)C4. [Does  fore a unit?℄ Let l0l1 : : : lk�1 be the literals of lause , where l1 = �l.(Swap l0 $ l1 if neessary.) If l0 is true, do nothing. Otherwise look for aliteral lj with 1 < j < k that is not false. If suh a literal is found, move to the wath list of lj . But if l2, : : : , lk�1 are all false, jump to C7 if l0 isalso false. On the other hand if l0 is free, make it true by setting LF  l0,TLOC(jl0j) F , VAL(jl0j) 2d+ (l0 & 1), Rl0  , and F  F + 1.C5. [New level?℄ If F = n, terminate suessfully. Otherwise if M � Mp, pre-pare to purge exess lauses (see below). Otherwise ifM �Mf , ush literalsas explained below and return to C2. Otherwise set d d+1 and id  F .C6. [Make a deision.℄ Set k  HEAP[0℄ and delete k from the heap (see exerises262 and 266). If VAL(k) � 0, repeat this step. Otherwise set l  2k +(OVAL(k) & 1), VAL(k)  2d + (OVAL(k) & 1), LF  l, TLOC(jlj)  F ,Rl  �, and F  F + 1. (At this point F = G+ 1.) Go to C3.C7. [Resolve a onit.℄ Terminate unsuessfully if d = 0. Otherwise use theonit lause  to onstrut a new lause �l 0_�b1_� � �_�br as desribed above.Set ACT(jlj) ACT(jlj)+ DEL for all literals l stamped during this proess;also set d0 to the maximum level oupied by fb1; : : : ; brg in the trail. (Seeexerise 263. Inreasing ACT(jlj) may also hange HEAP.)C8. [Bakjump.℄ While F > id0+1, do the following: Set F  F � 1, l  LF ,k  jlj, OVAL(k)  VAL(k), VAL(k)  �1, Rl  �; and if HLOC(jlj) < 0insert k into HEAP (see exerise 262). Then set G F and d d0.C9. [Learn.℄ If d > 0, set   MAXL, store the new lause in MEM at position ,and advane MAXL to the next available position in MEM. (Exerise 263 givesfull details.) SetM  M+1, LF  l0, TLOC(jl0j) F , Rl0  , F  F+1,DEL DEL=�, and return to C3.
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7.2.2.2 SATISFIABILITY: CLAUSE-LEARNING ALGORITHMS 69 deisionsnodesthree-oloring problemsower snarkssnark graphsfsnarkCerti�ates of unsatis�abilityThe high-level operations on data strutures in this algorithm are spelled outin terms of elementary low-level steps in exerises 260{263. Exerises 266{271disuss simple enhanements that were made in the experiments reported below.Reality hek: Although detailed statistis about the performane of Algo-rithm C on a wide variety of problems will be presented later, a few examples oftypial behavior will help now to larify how the method atually works in pra-tie. Random hoies make the running time of this algorithm more variable thanit was in Algorithms A, B, D, or L; sometimes we're luky, sometimes we're not.In the ase of waerden (3; 10; 97), the modest 97-variable-and-2779-lauseproblem that was onsidered in Table 3, nine test runs of Algorithm C establishedunsatis�ability after making between 250 and 300 million memory aesses; themedian was 272 M�. (This is more than twie as fast as our best previous time,whih was obtained with Algorithm L.) The average number of deisions made|namely the number of times LF  l was done in step C6|was about 63 thou-sand; this ompares to 1701 \nodes" in Algorithm L, step L3, and 100 millionnodes in Algorithms A, B, D. About 53 thousand lauses were learned, havingan average size of 11.5 literals (after averaging about 19.9 before simpli�ation).Fig. 49. It is notpossible to olor theedges of the owersnark graph Jq withthree olors, when qis odd. Algorithm Cis able to prove thiswith amazing speed:Computation times(in megamems) areshown for nine trialsat eah value of q. 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 590 M�100 M�200 M�300 M�400 M�500 M�
Algorithm C often speeds things up muh more dramatially, in fat. Forexample, Fig. 49 shows how it whips through a sequene of three-oloring prob-lems that are based on \ower snarks." Exerise 176 de�nes fsnark (q), aninteresting set of 42q + 3 unsatis�able lauses on 18q variables. The runningtime of Algorithms A, B, D, and L on fsnark (q) is proportional to 2q, so it'sway o� the hart|well over a gigamem already when q = 19. But Algorithm Cpolishes o� the ase q = 99 in that same amount of time (thus winning by 24orders of magnitude)! On the other hand, no satisfatory theoretial explanationfor the apparently linear behavior in Fig. 49 is presently known.Certi�ates of unsatis�ability. When a SAT solver reports that a giveninstane is satis�able, it also produes a set of distint literals from whih we aneasily hek that every lause is satis�ed. But if its report is negative|UNSAT|how on�dent an we be that suh a laim is true? Maybe the implementationontains a subtle error; after all, large and ompliated programs are notoriouslybuggy, and omputer hardware isn't perfet either. A negative answer an there-fore leave both programmers and users unsatis�ed, as well as the problem.
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70 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 resolution refutationlausal proofs, see erti�ates of unsatnotation F `1 �unit propagationunit lausesRivestGoldbergNovikovlearned lauses, sequene ofresolutiononit lause
We've seen that unsatis�ability an be proved rigorously by onstrutinga resolution refutation, namely a hain of resolution steps that ends with theempty lause �, as in Fig. 48. But suh refutations amount to the onstrutionof a huge direted ayli graph.A muh more ompat haraterization of unsatis�ability is possible. Let'ssay that the sequene of lauses (C1; C2; : : : ; Ct) is a erti�ate of unsatis�abilityfor a family of lauses F if Ct = �, and if we haveF ^ C1 ^ � � � ^ Ci�1 ^ Ci `1 � for 1 � i � t: (119)Here the subsript 1 in `G `1 �' means that the lauses G lead to a ontraditionby unit propagation; and if Ci is the lause (a1 _ � � � _ ak), then Ci is anabbreviation for the onjuntion of unit lauses (�a1) ^ � � � ^ (�ak).For example, let F = R be Rivest's lauses (6), whih were proved unsatis-�able in Fig. 48. Then (12; 1; 2; �) is a erti�ate of unsatis�ability, beauseR ^ �1 ^ �2 `1 �3 `1 �4 `1 � (using 12�3, 23�4, and 341);R ^ 12 ^ �1 `1 2 `1 �4 `1 �3 `1 � (using 12, �41�2, �2�34, and 341);R ^ 12 ^ 1 ^ �2 `1 4 `1 3 `1 � (using 4�12, 23�4, and �3�4�1);R ^ 12 ^ 1 ^ 2 `1 3 `1 4 `1 � (using �1�23, �2�34, and �3�4�1).A erti�ate of unsatis�ability gives a onvining proof, sine (119) impliesthat eah Ci must be true whenever F , C1, : : : , Ci�1 are true. And it's easy tohek whether or not G `1 �, for any given set of lauses G, beause everything isfored and no hoies are involved. Unit propagation is analogous to water ow-ing downhill; we an be pretty sure that it has been implemented orretly, evenif we don't trust the CDCL solver that generated the erti�ate being heked.E. Goldberg and Y. Novikov [Proeedings of DATE: Design, Automationand Test in Europe 6,1 (2003), 886{891℄ have pointed out that CDCL solversatually produe suh erti�ates as a natural byprodut of their operation:Theorem G. If Algorithm C terminates unsuessfully, the sequene (C1; C2;: : : ; Ct) of lauses that it has learned is a erti�ate of unsatis�ability.Proof. It suÆes to show that, whenever Algorithm C has learned the lauseC 0 = �l 0_�b1_� � �_�br , unit propagation will dedue � if we append the unit lauses(l0) ^ (b1) ^ � � � ^ (br) to the lauses that the algorithm already knows. The keypoint is that C 0 has essentially been obtained by repeated resolution steps,C 0 = �: : : ((C �Rl1) �Rl2) � � � � � �Rls ; (120)where C is the original onit lause and Rl1 , Rl2 , : : : , Rls are the reasonsfor eah literal that was removed while C 0 was onstruted in step C7. Morepreisely, we have C = A0 and Rli = li_Ai, where all literals of A0[A1[� � �[Asare false (their omplements appear in the trail); and�li 2 A0 [ � � � [Ai�1, for 1 � i � s;A0 [A1 [ � � � [As = f�l0; �l1; : : : ; �ls;�b1; : : : ;�brg. (121)Thus the known lauses, plus b1, : : : , br, and l0, will fore ls using lause Rls .And ls�1 will then be fored, using Rls�1 . And so on.



September 23, 2015

7.2.2.2 SATISFIABILITY: CLAUSE-LEARNING ALGORITHMS 71 reverse unit propagationVan GelderpurgesTseytinextended resolutionautarkiesWetzlerHeuleHuntPurging unhelpful lauses
Sine the unit literals in this proof are propagated in reverse order ls, ls�1,: : : , l1 from the resolution steps in (120), this erti�ate-heking proedure hasbeome known as \reverse unit propagation" [see A. Van Gelder, Pro. Int. Symp.on Arti�ial Intelligene and Math. 10 (2008), 9 pages, online as ISAIM2008℄.Notie that the proof of Theorem G doesn't laim that reverse unit prop-agation will reonstrut the preise reasoning by whih Algorithm C learned alause. Many di�erent downhill paths to �, built from `1 steps, usually exist ina typial situation. We merely have shown that every lause learnable from asingle onit does imply the existene of at least one suh downhill path.Many of the lauses learned during a typial run of Algorithm C will be\shots in the dark," whih turn out to have been aimed in unfruitful diretions.Thus the erti�ates in Theorem G will usually be longer than atually ne-essary to demonstrate unsatis�ability. For example, Algorithm C learns about53,000 lauses when refuting waerden (3; 10; 97), and about 135,000 when refutingfsnark (99); but fewer than 50,000 of the former, and fewer than 47,000 of thelatter, were atually used in subsequent steps. Exerise 284 explains how toshorten a erti�ate of unsatis�ability while heking its validity.An unexpeted diÆulty arises, however: We might spend more time veri-fying a erti�ate than we needed to generate it! For example, a erti�ate forwaerden (3; 10; 97) was found in 272 megamems, but the time needed to hek itwith straightforward unit-propagations was atually 2.2 gigamems. Indeed, thisdisrepany beomes signi�antly worse in larger problems, beause a simpleprogram for heking must keep all of the lauses ative in its memory. If thereare a million ative lauses, there are two million literals being wathed; heneevery hange to a literal will require many updates to the data strutures.The solution to this problem is to provide extra hints to the erti�ateheker. As we are about to see, Algorithm C does not keep all of the learnedlauses in its memory; it systematially purges its olletion, so that the totalnumber stays reasonable. At suh times it an also inform the erti�ate hekerthat the purged lauses will no longer be relevant to the proof.Further improvements also allow annotated erti�ates to aommodatestronger proof rules, suh as Tseytin's extended resolution and tehniques basedon generalized autarkies; see N. Wetzler, M. J. H. Heule, and W. A. Hunt, Jr.,LNCS 8561 (2014), 422{429.Whenever a family of lauses has a erti�ate of unsatis�ability, a variant ofAlgorithm C will atually �nd one that isn't too muh longer. (See exerise 386.)*Purging unhelpful lauses. After thousands of onits have ourred, Algo-rithm C has learned thousands of new lauses. New lauses guide the searhby steering us away from unprodutive paths; but they also slow down thepropagation proess, beause we have to wath them.We've seen that erti�ates an usually be shortened; therefore we knowthat many of the learned lauses will probably never be needed again. For thisreason Algorithm C periodially attempts to weed out the ones that appear tobe more harmful than helpful, by ranking the lauses that have aumulated.
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72 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 HOLMESDoylewaerden (3; 10; 97)authordisardingreasontrailheuristisAudemardSimonliteral blok distanesignatureliteral blok distanegluose, see literal blok distane
I onsider that a man's brain originally is like a little empty atti, andyou have to stok it with suh furniture as you hoose. . . . the skilled workmanis very areful indeed as to what he takes into his brain-atti.. . . It is a mistake to think that that little room has elasti wallsand an distend to any extent. . . . It is of the highest importane, therefore,not to have useless fats elbowing out the useful ones.| SHERLOCK HOLMES, in A Study in Sarlet (1887)Algorithm C initiates a speial lause-re�nement proess as soon as it haslearned M � Mp lauses and arrived at a reasonably stable state (step C5).Let's ontinue our running example, waerden (3; 10; 97), in order to make theissues onrete. If Mp is so huge that no lauses are ever thrown away, a typialrun will learn roughly 48 thousand lauses, and do roughly 800 megamems ofomputation, before proving unsatis�ability. But if Mp = 10000, it will learnroughly 50 thousand lauses, and the omputation time will go down to about500 megamems. In the latter ase the total number of learned lauses in memorywill rarely exeed 10 thousand.Indeed, let's setMp = 10000 and take a lose look at exatly what happenedduring the author's �rst experiments. Algorithm C paused to reonnoiter thesituation after having learned 10002 lauses. At that point only 6252 of those10002 lauses were atually present in memory, however, beause of the lause-disarding mehanism disussed in exerise 271. Some lauses had length 2, whilethe maximum size was 24 and the median was 11; here's a omplete histogram:2 9 49 126 216 371 542 719 882 1094 661 540 414 269 176 111 35 20 10 3 1 1 1:Short lauses tend to be more useful, beause they redue more quikly to units.A learned lause annot be purged if it is the reason for one of the literalson the trail. In our example, 12 of the 6252 fell into this ategory; for instane,30 appeared on level 10 of the trail beause `30 33 39 41 42 45 46 48 54 57' hadbeen learned, and we may need to know that lause in a future resolution step.The purging proess will try to remove at least half of the existing learnedlauses, so that at most 3126 remain. We aren't allowed to touh the 12 reason-bound ones; hene we want to forget 3114 of the other 6240. Whih of themshould we expel?Among many heuristis that have been tried, the most suessful in pratieare based on what Gilles Audemard and Laurent Simon have alled \literal blokdistane" [see Pro. Int. Joint Conferene on Arti�ial Intelligene 21 (2009),399{404℄. They observed that eah level of the trail an be onsidered to be ablok of more-or-less related variables; hene a long lause might turn out to bemore useful than a short lause, if the literals of the long one all lie on just oneor two levels while the literals of the short one belong to three or more.Suppose all the literals of a lause C = l1_ � � �_ lr appear in the trail, eitherpositively as lj or negatively as �lj . We an group them by level so that exatlyp+ q levels are represented, where p of the levels ontain at least one positive ljand the other q ontain nothing but �lj 's. Then (p; q) is the signature of C withrespet to the trail, and p+ q is the literal blok distane. For example, the very
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7.2.2.2 SATISFIABILITY: CLAUSE-LEARNING ALGORITHMS 73 VALGoultiaevaBahusfull run�rst lause learned from waerden (3; 10; 97) in the author's test run was11 16 21 26 36 46 51 61 66 91; (122)later, when it was time to rank lauses for purging, the values and trail levels ofthose literals were spei�ed by VAL(11), VAL(16), : : : , VAL(91), whih were20 21 21 21 20 15 16 8 14 20:Thus 61 was true on level 8� 1 = 4; 46 and 66 were true on level 15� 1 =14� 1 = 7; 51 was false on level 8; the others were a mixture of true and falseon level 10; hene (122) had p = 3 and q = 1 with respet to the urrent trail.If C has signature (p; q) and C 0 has signature (p0; q0), where p � p0 and q � q0and (p; q) 6= (p0; q0), we an expet that C is more likely than C 0 to be useful infuture propagations. The same onlusion is plausible also when p+ q = p0 + q0and p < p0, beause C 0 won't fore anything until literals from at least p + 1di�erent levels hange sign. These intuitive expetations are borne out by thefollowing detailed data obtained from waerden (3; 10; 97):0BBBBBB� 0 4 17 22 30 54 67 99 1717 81 191 395 360 404 438 66 663 232 463 536 521 386 117 6 052 243 291 298 308 112 22 0 018 59 86 77 53 7 0 0 00 8 3 10 0 0 0 0 00 0 1 0 0 0 0 0 0 1CCCCCCA 0BBBBBB� 0 1 9 15 21 16 15 3 07 26 74 107 82 57 16 1 020 74 104 86 61 21 9 0 013 40 37 16 14 4 0 0 06 10 9 4 1 1 0 0 00 1 1 0 0 0 0 0 00 0 0 0 0 0 0 0 0 1CCCCCCAThe matrix on the left shows how many of the 6240 eligible lauses had a givensignature (p; q), for 1 � p � 7 and 0 � q � 8; the matrix on the right shows howmany would have been used to resolve future onits, if none of them had beenremoved. There were, for example, 536 learned lauses with p = q = 3, of whihonly 86 atually turned out to be useful. This data is illustrated graphially inFig. 50, whih shows gray retangles whose areas orrespond to the left matrix,overlaid by blak retangles whose areas orrespond to the right matrix. We an'tpredit the future, but small (p; q) tends to inrease the ratio of blak to gray.0 1 2 3 4 5 6 7 81234567p8>>>>>><>>>>>>:
z }| {q Fig. 50. Learned lauses that havep positive and q all-negative levels.The gray ones will never be usedagain. Unfortunately, there's no easyway to distinguish gray from blakwithout being lairvoyant.An alert reader will be wondering, however, how suh signatures were found,beause we an't ompute them for all lauses until all variables appear in thetrail|and that doesn't happen until all lauses are satis�ed! The answer [seeA. Goultiaeva and F. Bahus, LNCS 7317 (2012), 30{43℄ is that it's quitepossible to arry out a \full run" in whih every variable is assigned a value,by making only a slight hange to the normal behavior of Algorithm C: Instead
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74 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 bakjumpingVALOVALauthortie-breakersliteral blok distaneACT()lause ativityativity sore
of resolving onits immediately and bakjumping, we an arry on after eahonit until all propagations ease, and we an ontinue to build the trail inthe same way until every variable is present on some level. Conits may haveourred on several di�erent levels; but we an safely resolve them later, learningnew lauses at that time. Meanwhile, a full trail allows us to ompute signaturesbased on VAL �elds. And those VAL �elds go into the OVAL �elds after bakjump-ing, so the variables in eah blok will tend to maintain their relationships.The author's implementation of Algorithm C assigns an eight-bit valueRANGE()  min�b16(p+ �q); 255� (123)to eah lause ; here � is a parameter, 0 � � � 1. We also set RANGE()  0if  is the reason for some literal in the trail; RANGE()  256 if  is satis�edat level 0. If there are mj lauses of range j, and if we want to keep at most Tlauses in memory, we �nd the largest j � 256 suh thatmj > 0 and sj = m0 +m1 + � � �+mj�1 � T: (124)Then we retain all lauses for whih RANGE() < j, together with T � sj \tie-breakers" that have RANGE() = j (unless j = 256). When � has the relativelyhigh value 1516 = :9375, this rule essentially preserves as many lauses of smallliteral blok distane as it an; and for onstant p+q it favors those with small p.For example, with � = 1516 and the data from Fig. 50, we save lauses thathave p = (1; 2; 3; 4; 5) when q � (5; 4; 3; 2; 0), respetively. This gives us s95 =12 + 3069 lauses, just 45 shy of our target T = 3126. So we also hoose 45tie-breakers from among the 59 lauses that have RANGE() = 95, (p; q) = (5; 1).Tie-breaking an be done by using a seondary heuristi ACT(), \lauseativity," whih is analogous to the ativity sore of a variable but it is moreeasily maintained. If lause  has been used to resolve the onits numbered 3,47, 95, 99, and 100, say, thenACT() = %�3 + %�47 + %�95 + %�99 + %�100: (125)This damping fator % (normally .999) is independent of the fator � that is usedfor variable ativities. In the ase of Fig. 50, if the 59 lauses with (p; q) = (5; 1)are arranged in order of inreasing ACT sores, the gray-and-blak pattern is:So if we retain the 45 with highest ativity, we pik up 8 of the 10 that turn outto be useful. (Clause ativities are imperfet preditors, but they are usuallysomewhat better than this example implies.)Exerises 287 and 288 present full details of lause purging in aordanewith these ideas. One question remains: After we've ompleted a purge, whenshould we shedule the next one? Suessful results are obtained by having twoparameters, �p and Æp. Initially Mp = �p; then after eah purge, we set �p  �p+Æp andMp  Mp+�p. For example, if �p = 10000 and Æp = 100, purgingwill our after approximately 10000, 20100, 30300, 40600, : : : , k�p + �k2�Æp,
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7.2.2.2 SATISFIABILITY: CLAUSE-LEARNING ALGORITHMS 75 Flushing literals and restartingvan der TakRamosHeuleativity soresACT(k)phase-savingreusing the trail: : : lauses have been learned; and the number of lauses at the beginning of thekth round will be approximately 20000+200k = 2�p+2kÆp. (See exerise 289.)We've based this disussion on waerden (3; 10; 97), whih is quite a simpleproblem. Algorithm C's gain from lause-purging on larger problems is naturallymuh more substantial. For example, waerden (3; 13; 160) is only a bit larger thanwaerden (3; 10; 97). With �p = 10000 and Æp = 100, it �nishes in 132 gigamems,after learning 9.5 million lauses and oupying only 503 thousand MEM ells.Without purging, it proves unsatis�ability after learning only 7.1 million lauses,yet at well over ten times the ost: 4307 gigamems, and 102 million ells of MEM.*Flushing literals and restarting. Algorithm C interrupts itself in step C5 notonly to purge lauses but also to \ush literals" that may not have been the besthoies for deisions in the trail. The task of solving a tough satis�ability problemis a deliate balaning at: We don't want to get bogged down in the wrong partof the searh spae; but we also don't want to lose the fruits of hard work by\throwing out the baby with the bath water." A nie ompromise has been foundby Peter van der Tak, Antonio Ramos, and Marijn Heule [J. Satis�ability, Bool.Modeling and Comp. 7 (2011), 133{138℄, who devised a useful way to rejuvenatethe trail periodially by following trends in the ativity sores ACT(k).Let's go bak to Table 3, to illustrate their method. After learning thelause (116), Algorithm C will update the trail by setting L44  57 on level17; that will fore L45  66, beause 39, 42, : : : , 63 have all beome true; andfurther positive literals 6, 58, 82, 86, 95, 96 will also join the trail in some order.Step C5 might then intervene to suggest that we should ontemplate ushingsome or all of the F = 52 literals whose values are urrently assigned.The deision literals 53, 55, 44, : : : , 51 on levels 1, 2, 3, : : : , 17 eah wereseleted beause they had the greatest urrent ativity sores when their level be-gan. But ativity sores are ontinually being updated, so the old ones might beonsiderably out of touh with present realities. For example, we've just boostedACT(53), ACT(27), ACT(36), ACT(70), : : : , in the proess of learning (116)| see(115). Thus it's quite possible that several of the �rst 17 deisions no longerseem wise, beause those literals haven't partiipated in any reent onits.Let xk be a variable with maximum ACT(k), among all of the variables notin the urrent trail. It's easy to �nd suh a k (see exerise 290). Now onsider,as a thought experiment, what would happen if we were to jump bak all theway to level 0 at this point and start over. Reall that our phase-saving strategyditates that we would set OVAL(j) VAL(j) just before setting VAL(j) �1,as the variables beome unassigned.If we now restart at step C6 with d 1, all variables whose ativity exeedsACT(k) will reeive their former values (although not neessarily in the sameorder), beause the orresponding literals will enter the trail either as deisionsor as fored propagations. History will more or less repeat itself, beause the oldassignments did not ause any onits, and beause phases were saved.We might as well therefore avoid most of this bak-and-forth unsetting andresetting, by reusing the trail and jumping bak only partway, to the �rst level
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76 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 literal ushingativity sorelih�esBiereagilitydamping fatorpolaritywhere the urrent ativity sores signi�antly hange the piture:Set d0  0. While ACT(jLid0+1 j) � ACT(k), set d0  d0 + 1.Then if d0 < d, jump bak to level d0. (126)This is the tehnique alled \literal ushing," beause it removes the literals onlevels d0+1 through d and leaves the others assigned. It e�etively redirets thesearh into new territory, without being as drasti as a full restart.In Table 3, for example, ACT(49) might exeed the ativity sore of everyother unassigned variable; and it might also exeed ACT(46), the ativity ofthe deision literal 46 on level 15. If the previous 14 deision-oriented ativitiesACT(53), ACT(55), : : : , ACT(37) are all � ACT(49), we would ush all the literalsL25, L26, : : : above level d0 = 14, and ommene a new level 15.Notie that some of the ushed literals other than 46 might atually havethe largest ativities of all. In suh ases they will re-insert themselves, before49 ever enters the sene. Eventually, though, the literal 49 will inaugurate a newlevel before a new onit arises. (See exerise 291.)Experiene shows that ushing an indeed be extremely helpful. On theother hand, it an be harmful if it auses us to abandon a fruitful line of attak.When the solver is perking along and learning useful lauses by the dozen, wedon't want to upset the appleart by roking the boat. Armin Biere has thereforeintrodued a useful statisti alled agility, whih tends to be orrelated with thedesirability of ushing at any given moment. His idea [LNCS 4996 (2008), 28{33℄ is beautifully simple: We maintain a 32-bit integer variable alled AGILITY,initially zero. Whenever a literal l is plaed on the trail in steps C4, C6, or C9,we update the agility by settingAGILITY AGILITY�(AGILITY�13)+�((OVAL(jlj)�VAL(jlj))&1)�19�: (127)In other words, the fration AGILITY=232 is essentially multiplied by 1� Æ, theninreased by Æ if the new polarity of l di�ers from its previous polarity, whereÆ = 2�13 � :0001. High agility means that lots of the reent propagations areipping the values of variables and trying new possibilities; low agility meansthat the algorithm is basially in a rut, spinning its wheels and getting nowhere.Table 4TO FLUSH OR NOT TO FLUSH?Let a = AGILITY=232 when setting Mf  M + �f , and let  = 1=6, � = 17=16.If �f is then ush if If �f is then ush if If �f is then ush if1 a �  � :17 32 a � �5 � :23 1024 a � �10 � :312 a � � � :18 64 a � �6 � :24 2048 a � �11 � :324 a � �2 � :19 128 a � �7 � :25 4096 a � �12 � :348 a � �3 � :20 256 a � �8 � :27 8192 a � �13 � :3716 a � �4 � :21 512 a � �9 � :29 16384 a � �14 � :39Armed with the notion of agility, we an �nally state what Algorithm Cdoes when step C5 �nds M � Mf : First Mf is reset to M + �f , where �f is
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7.2.2.2 SATISFIABILITY: MONTE CARLO ALGORITHMS 77 relutant doublingheuristirandomized methodsstohasti loal searhSLS: Stohasti loal searhGuPapadimitrioudebugrandom walks{Papadimitriou
a power of two determined by the \relutant doubling" sequene h1, 1, 2, 1, 1,2, 4, 1, : : : i; that sequene is disussed below and in exerise 293. Then theagility is ompared to a threshold, depending on �f , aording to the shedulein Table 4. (The parameter  in that table an be raised or lowered, if you wantto inrease or derease the amount of ushing.) If the agility is suÆiently small,xk is found and (126) is performed. Nothing hanges if the agility is large or ifd0 = d; otherwise (126) has ushed some literals, using the operations of step C8.Monte Carlo methods. Let's turn now to a ompletely di�erent way toapproah satis�ability problems, based on �nding solutions by totally heuristiand randomized methods, often alled stohasti loal searh. We often use suhmethods in our daily lives, even though there's no guarantee of suess. Thesimplest satis�ability-oriented tehnique of this kind was introdued by Jun Gu[see SIGART Bulletin 3, 1 (January 1992), 8{12℄ and by Christos Papadimitriou[FOCS 32 (1991), 163{169℄ as a byprodut of more general studies:\Start with any truth assignment. While there are unsatis�edlauses, pik any one, and ip a random literal in it."Some programmers are known to debug their ode in a haphazard manner,somewhat like this approah; and we know that suh \blind" hanges are foolishbeause they usually introdue new bugs. Yet this idea does have merit when itis applied to satis�ability, so we shall formulate it as an algorithm:Algorithm P (Satis�ability by random walk). Given m nonempty lausesC1 ^ � � � ^ Cm on n Boolean variables x1 : : : xn, this algorithm either �nds asolution or terminates unsuessfully after making N trials.P1. [Initialize.℄ Assign random Boolean values to x1 : : : xn. Set j  0, s  0,and t 0. (We know that s lauses are satis�ed after having made t ips.)P2. [Suess?℄ If s = m, terminate suessfully with solution x1 : : : xn. Other-wise set j  (j modm)+1. If lause Cj is satis�ed by x1 : : : xn, set s s+1and repeat this step.P3. [Done?℄ If t = N , terminate unsuessfully.P4. [Flip one bit.℄ Let lause Cj be (l1 _ � � � _ lk). Choose a random indexi 2 f1; : : : ; kg, and hange variable jlij so that literal li beomes true. Sets 1, t t+ 1, and return to P2.Suppose, for example, that we're given the seven lauses R0 of (7). Thusm = 7, n = 4; and there are two solutions, 01�1. In this ase every nonsolutionviolates a unique lause; for example, 1100 violates the lause �1�23, so step P4 isequally likely to hange 1100 to 0100, 1000, or 1110, only one of whih is loserto a solution. An exat analysis (see exerise 294) shows that Algorithm P will�nd a solution after making 8.25 ips, on the average. That's no improvementover a brute-fore searh through all 2n = 16 possibilities; but a small examplelike this doesn't tell us muh about what happens when n is large.Papadimitriou observed that Algorithm P is reasonably e�etive when it'sapplied to 2SAT problems, beause eah ip has roughly a 50-50 hane of making
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78 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 Sh�oningballot numberprogress in that ase. Several years later, Uwe Sh�oning [Algorithmia 32 (2002),615{623℄ disovered that the algorithm also does surprisingly well on instanes of3SAT, even though the ips when k > 2 in step P4 tend to go \the wrong way":Theorem U. If the given lauses are satis�able, and if eah lause has atmost three literals, Algorithm P will sueed with probability 
�(3=4)n=n� aftermaking at most n ips.Proof. By omplementing variables, if neessary, we an assume that 0 : : : 0 isa solution; under this assumption, every lause has at least one negative literal.Let Xt = x1 + � � �+ xn be the number of 1s after t ips have been made. Eahip hanges Xt by �1, and we want to show that there's a nontrivial hane thatXt will beome 0. After step P1, the random variable X0 will be equal to q withprobability �nq�=2n.A lause that ontains three negative literals is good news for Algorithm P,beause it is violated only when all three variables are 1; a ip will alwaysderease Xt in suh a ase. Similarly, a violated lause with two negativesand one positive will invoke a ip that makes progress 2/3 of the time. Theworst ase ours only when a problemati lause has only one negative literal.Unfortunately, every lause might belong to this worst ase, for all we know.Instead of studying Xt, whih depends on the pattern of lauses, it's muheasier to study another random variable Yt de�ned as follows: Initially Y0 = X0;but Yt+1 = Yt � 1 only when step P4 ips the negative literal that has thesmallest subsript; otherwise Yt+1 = Yt + 1. For example, after taking are of aviolated lause suh as x3_�x5_�x8, we haveXt+1 = Xt+(+1;�1;�1) but Yt+1 =Yt+(+1;�1;+1) in the three possible ases. Furthermore, if the lause ontainsfewer than three literals, we penalize Yt+1 even more, by allowing it to be Yt� 1only with probability 1/3. (After a lause suh as x4 _ �x6, for instane, we putYt+1 = Yt�1 in only 2/3 of the ases when x6 is ipped; otherwise Yt+1 = Yt+1.)We learly have Xt � Yt for all t. Therefore Pr(Xt = 0) � Pr(Yt = 0),after t ips have been made; and we've de�ned things so that it's quite easy toalulate Pr(Yt = 0), beause Yt doesn't depend on the urrent lause j:Pr(Yt+1 = Yt � 1) = 1=3 and Pr(Yt+1 = Yt + 1) = 2=3 when Yt > 0:Indeed, the theory of random walks developed in Setion 7.2.1.6 tells us how toount the number of senarios that begin with Y0 = q and end with Yt = 0, afterYt has inreased p times and dereased p+ q times while remaining positive for0 � t < 2p+ q. It is the \ballot number" of Eq. 7.2.1.6{(23),Cp;p+q�1 = q2p+ q�2p+ qp �: (128)The probability that Y0 = q and that Yt = 0 for the �rst time when t = 2p+ qis therefore exatlyf(p; q) = 12n�nq � q2p+ q�2p+ qp ��13�p+q�23�p: (129)
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7.2.2.2 SATISFIABILITY: MONTE CARLO ALGORITHMS 79 n-ubeWalkSAT{SelmanKautzCohenbreak ountEvery value of p and q gives a lower bound for the probability that Algorithm Psueeds; and exerise 296 shows that we get the result laimed in Theorem Uby hoosing p = q � n=3.Theorem U might seem pointless, beause it predits suess only withexponentially small probability when N = n. But if at �rst we don't sueed, wean try and try again, by repeating Algorithm P with di�erent random hoies.And if we repeat it Kn(4=3)n times, for large enough K, we're almost ertain to�nd a solution unless the lauses an't all be satis�ed.In fat, even more is true, beause the proof of Theorem U doesn't exploit thefull power of Eq. (129). Exerise 297 arries the analysis further, in a partiularlyinstrutive way, and proves a muh sharper result:Corollary W. When Algorithm P is applied K(4=3)n times with N = 2n to aset of satis�able ternary lauses, its suess probability exeeds 1� e�K=2.If the lauses C1^� � �^Cm are unsatis�able, Algorithm P will never demon-strate that fat onlusively. But if we repeat it 100(4=3)n times and get nosolution, Corollary W tells us that the hanes of satis�ability are inrediblysmall (less than 10�21). So it's a safe bet that no solution exists in suh a ase.Thus Algorithm P has a surprisingly good hane of �nding solutions \withits eyes losed," while walking at random in the giganti spae of all 2n binaryvetors; and we an well imagine that even better results are possible if we deviserandomized walking methods that proeed with eyes wide open. Therefore manypeople have experimented with strategies that try to make intelligent hoiesabout whih diretion to take at eah ip-step. One of the simplest and best ofthese improvements, popularly known as WalkSAT, was devised by B. Selman,H. A. Kautz, and B. Cohen [Nat. Conf. Arti�ial Intelligene 12 (1994), 337{343℄:Algorithm W (WalkSAT ). Given m nonempty lauses C1 ^ � � � ^ Cm on nBoolean variables x1 : : : xn, and a \greed-avoidane" parameter p, this algorithmeither �nds a solution or terminates unsuessfully after making N trials. It usesauxiliary arrays 1 : : : n, f0 : : : fm�1, k1 : : : km, and w1 : : : wm.W1. [Initialize.℄ Assign random Boolean values to x1 : : : xn. Also set r  t 0and 1 : : : n  0 : : : 0. Then, for 1 � j � m, set kj to the number of trueliterals in Cj ; and if kj = 0, set fr  j, wj  r, and r  r + 1; or ifkj = 1 and the only true literal of Cj is xi or �xi, set i  i+1. (Now r isthe number of unsatis�ed lauses, and the f array lists them. The numberi is the \ost" or \break ount" for variable xi, namely the number ofadditional lauses that will beome false if xi is ipped.)W2. [Done?℄ If r = 0, terminate suessfully with solution x1 : : : xn. Otherwise,if t = N , terminate unsuessfully.W3. [Choose j.℄ Set j  fq, where q is uniformly random in f0; 1; : : : ; r � 1g.(In other words, hoose an unsatis�ed lause Cj at random, onsideringevery suh lause to be equally likely; exerise 3.4.1{3 disusses the bestway to ompute q.) Let lause Cj be (l1 _ � � � _ lk).
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80 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 SeitzAlavaOrponen3SAT2SATrelutant doublingLubySinlairZukerman
W4. [Choose l.℄ Let  be the smallest ost among the literals fl1; : : : ; lkg. If = 0, or if  � 1 and U � p where U is uniform in [0 : : 1), hoose l randomlyfrom among the literals of ost . (We all this a \greedy" hoie, beauseipping l will minimize the number of newly false lauses.) Otherwisehoose l randomly in fl1; : : : ; lkg.W5. [Flip l.℄ Change the value of variable jlj, and update r, 1 : : : n, f0 : : : fr�1,k1 : : : km, w1 : : : wm to agree with this new value. (Exerise 302 explainshow to implement steps W4 and W5 eÆiently, with omputer-friendlyhanges to the data strutures.) Set t t+ 1 and return to W2.If, for example, we try to satisfy the seven lauses of (7) with Algorithm W,as we did earlier with Algorithm P, the hoie x1x2x3x4 = 0110 violates �2�34;and 1234 turns out to be 0110 in this situation. So step W4 will hoose toip x4, and we'll have the solution 0111. (See exerise 303.)Notie that step W3 fouses attention on variables that need to hange.Furthermore, a literal that appears in the most unsatis�ed lauses is most likelyto appear in the hosen lause Cj .If no ost-free ip is available, step W4 makes nongreedy hoies with prob-ability p. This poliy keeps the algorithm from getting stuk in an unsatis�ableregion from whih there's no greedy exit. Extensive experiments by S. Seitz,M. Alava, and P. Orponen [J. Statistial Mehanis (June 2005), P06006:1{27℄indiate that the best hoie of p is :57 when large random 3SAT problems arebeing takled. For example, with this setting of p, and with m = 4:2n random3-literal lauses, Algorithm W works fantastially well: It tends to �nd solutionsafter making fewer than 10;000n ips when n = 104, and fewer than 2500n ipswhen 105 � n � 106.What about the parameter N? Should we set it equal to 2n (as reom-mended for 3SAT problems with respet to Algorithm P), or perhaps to n2 (asreommended for 2SAT in exerise 299), or to 2500n (as just mentioned for 3SATin AlgorithmW), or to something else? When we use an algorithm like WalkSAT,whose behavior an vary wildly depending on random hoies and on unknownharateristis of the data, it's often wise to \ut our losses" and to start afreshwith a brand new pattern of random numbers.Exerise 306 proves that suh an algorithm always has an optimum uto�value N = N�, whih minimizes the expeted time to suess when the algorithmis restarted after eah failure. Sometimes N� = 1 is the best hoie, meaningthat we should always keep plowing ahead; in other ases N� is quite small.But N� exists only in theory, and the theory requires perfet knowledge ofthe algorithm's behavior. In pratie we usually have little or no informationabout how N should best be spei�ed. Fortunately there's still an e�etive wayto proeed, by using the notion of relutant doubling introdued by M. Luby,A. Sinlair, and D. Zukerman [Information Pro. Letters 47 (1993), 173{180℄,who de�ned the interesting sequeneS1; S2; : : : = 1; 1; 2; 1; 1; 2; 4; 1; 1; 2; 1; 1; 2; 4; 8; 1; 1; 2; 1; 1; 2; 4; 1; 1; 2; : : : : (130)
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7.2.2.2 SATISFIABILITY: THE LOCAL LEMMA 81 restart sheduleLoal Lemma{probabilisti methodErd}osliquerandom graphRamsey's theoremLov�aszErd}osLov�aszSpener
The elements of this sequene are all powers of 2. Furthermore we have Sn+1 =2Sn if the number Sn has already ourred an even number of times, otherwiseSn+1 = 1. A onvenient way to generate this sequene is to work with twointegers (u; v), and to start with (u1; v1) = (1; 1); then(un+1; vn+1) = �un &�un = vn? (un + 1; 1): (un; 2vn)�: (131)The suessive pairs are (1; 1), (2; 1), (2; 2), (3; 1), (4; 1), (4; 2), (4; 4), (5; 1), : : : ,and we have Sn = vn for all n � 1.The relutant doubling strategy is to run Algorithm W repeatedly withN = S1, S2, S3, : : : , until suess is ahieved, where  is some onstant.Exerise 308 proves that the expeted running time X obtained in this wayexeeds the optimum by at most a fator of O(logX). Other sequenes besideshSni also have this property, and they're sometimes better (see exerise 311).The best poliy is probably to use hSni, where  represents our best guessabout the value of N�; in this way we hedge our bets in ase  is too small.The Loal Lemma. The existene of partiular ombinatorial patterns is oftenestablished by using a nononstrutive proof tehnique alled the \probabilistimethod," pioneered by Paul Erd}os. If we an show that Pr(X) > 0, in someprobability spae, then X must be true in at least one ase. For example [Bull.Amer. Math. So. 53 (1947), 292{294℄, Erd}os famously observed that there is agraph G on n verties suh that neither G nor G ontains a k-lique, whenever�nk� < 2k(k�1)=2�1: (132)For if we onsider a random graph G, eah of whose �n2� edges is present withprobability 1/2, and if U is any partiular subset of k verties in G, the proba-bility that either G jU or G jU is a omplete graph is learly 2=2k(k�1)=2. Henethe probability that this doesn't happen for any of the �nk� subsets U is at least1� �nk�21�k(k�1)=2. This probability is positive; so suh a graph must exist.The proof just given does not provide any expliit onstrution. But it doesshow that we an �nd suh a graph by making at most 1Æ�1� �nk�21�k(k�1)=2�random trials, on the average, provided that n and k are small enough that weare able to test all �nk� subgraphs in a reasonable amount of time.Probability alulations of this kind are often ompliated by dependeniesbetween the random events being onsidered. For example, the presene of alique in one part of a graph a�ets the likelihood of many other liques thatshare some of the same verties. But the interdependenies are often highlyloalized, so that \remote" events are essentially independent of eah other.L�aszl�o Lov�asz introdued an important way to deal with suh situations early inthe 1970s, and his approah has beome known as the \Loal Lemma" beause ithas been used to establish many theorems. First published as a lemma on pages616{617 of a longer paper [Erd}os and Lov�asz, In�nite and Finite Sets, ColloquiaMath. So. J�anos Bolyai 10 (1975), 609{627℄, and subsequently extended to a\lopsided" form [P. Erd}os and J. Spener, Disrete Applied Math. 30 (1991),151{154℄, it an be stated as follows:
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82 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 R(G)lopsidependeny graphdependeny graphLov�aszSpenerShearerMoserTardosLemma L. Let A1, : : : , Am be events in some probability spae. Let G be agraph on verties f1; : : : ;mg, and let (p1; : : : ; pm) be numbers suh thatPr(Ai j Aj1 \ � � � \ Ajk ) � pi whenever k � 0 and i /���j1, : : : , i /���jk. (133)Then Pr(A1\� � �\Am) > 0 whenever (p1; : : : ; pm) lies in a ertain set R(G).In appliations we think of the Aj as \bad" events, whih are undesirableonditions that interfere with whatever we're trying to �nd. The graph G isalled a \lopsidependeny graph" for our appliation; this name was oined asan extension of Lov�asz's original term \dependeny graph," for whih the stritondition `= pi' was assumed in plae of `� pi' in (133).The set R(G) of probability bounds for whih we an guarantee that all badevents an simultaneously be avoided, given (133), will be disussed further be-low. If G is the omplete graphKm, so that (133) simply states that Pr(Ai) � pi,R(G) is learly f(p1; : : : ; pm) j (p1; : : : ; pm) � (0; : : : ; 0) and p1 + � � �+ pm < 1g;this is the smallest possible R(G). At the other extreme, if G is the emptygraphKm, we get f(p1; : : : ; pm) j 0 � pj < 1 for 1 � j � mg, the largest possibleR(G). Adding an edge to G makes R(G) smaller. Notie that, if (p1; : : : ; pm) isin R(G) and 0 � p0j � pj for 1 � j � m, then also (p01; : : : ; p0m) 2 R(G).Lov�asz disovered an elegant loal ondition that suÆes to make Lemma Lwidely appliable [see J. Spener, Disrete Math. 20 (1977), 69{76℄:Theorem L. The probability vetor (p1; : : : ; pm) is in R(G) when there arenumbers 0 � �1; : : : ; �m < 1 suh thatpi = �i Yi��j inG(1� �j): (134)Proof. Exerise 344(e) proves that Pr(A1 \ � � � \Am) � (1� �1) : : : (1� �m).James B. Shearer [Combinatoria 5 (1985), 241{245℄ went on to determinethe exat maximum extent of R(G) for all graphs G, as we'll see later; and healso established the following important speial ase:Theorem J. Suppose every vertex of G has degree � d, where d > 1. Then(p; : : : ; p) 2 R(G) when p � (d� 1)d�1=dd.Proof. See the interesting indutive argument in exerise 317.This ondition on p holds whenever p � 1=(ed) (see exerise 319).Further study led to a big surprise: The Loal Lemma proves only thatdesirable ombinatorial patterns exist, although they might be rare. But RobinMoser and G�abor Tardos disovered [JACM 57 (2010), 11:1{11:15℄ that we aneÆiently ompute a pattern that avoids all of the bad Aj , using an almostunbelievably simple algorithm analogous to WalkSAT!Algorithm M (Loal resampling). Given m events fA1; : : : ; Amg that dependon n Boolean variables fx1; : : : ; xng, this algorithm either �nds a vetor x1 : : : xnfor whih none of the events is true, or loops forever. We assume that Aj is afuntion of the variables fxk j k 2 �jg for some given subset �j � f1; : : : ; ng.
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7.2.2.2 SATISFIABILITY: THE LOCAL LEMMA 83 reliability polynomiallopsidependenytraes{CartierFoataKellerMazurkiewizViennotheaps of pieesommutativity, partialstrings
Whenever the algorithm assigns a value to xk , it sets xk  1 with probability�k and xk  0 with probability 1� �k, where �k is another given parameter.M1. [Initialize.℄ For 1 � k � n, set xk  [U <�k ℄, where U is uniform in [0 : : 1).M2. [Choose j.℄ Set j to the index of any event suh that Aj is true. If no suh jexists, terminate suessfully, having found a solution x1 : : : xn.M3. [Resample for Aj .℄ For eah k 2 �j , set xk  [U <�k ℄, where U is uniformin [0 : :1). Return to M2.(We have stated Algorithm M in terms of binary variables xk purely for onve-niene. The same ideas apply when eah xk has a disrete probability distributionon any set of values, possibly di�erent for eah k.)To tie this algorithm to the Loal Lemma, we assume that event Ai holdswith probability � pi whenever the variables it depends on have the givendistribution. For example, if Ai is the event \x3 6= x5" then pi must be atleast �3(1� �5) + (1� �3)�5.We also assume that there's a graph G on verties f1; : : : ;mg suh thatondition (133) is true, and that i��� j whenever i 6= j and �i \ �j 6= ;. ThenG is a suitable dependeny graph for fA1; : : : ; Amg, beause the events Aj1 ,: : : , Ajk an't possibly inuene Ai when i /��� j1, : : : , i /��� jk. (Those eventsshare no ommon variables with Ai.) We an also sometimes get by with feweredges by making G a lopsidependeny graph; see exerise 351.Algorithm M might sueed with any given events, purely by hane. Butif the onditions of the Loal Lemma are satis�ed, suess an be guaranteed:Theorem M. If (133) holds with probabilities that satisfy ondition (134) ofTheorem L, step M3 is performed for Aj at most �j=(1� �j) times, on average.Proof. Exerise 352 shows that this result is a orollary of the more generalanalysis that is arried out below. The stated upper bound is good news, beause�j is usually quite small.Traes and piees. The best way to understand why AlgorithmM is so eÆientis to view it algebraially in terms of \traes." The theory of traes is a beautifularea of mathematis in whih amazingly simple proofs of profound results havebeen disovered. Its basi ideas were �rst formulated by P. Cartier and D. Foata[Leture Notes in Math. 85 (1969)℄, then independently developed from anotherpoint of view by R. M. Keller [JACM 20 (1973), 514{537, 696{710℄ and A.Mazurkiewiz [\Conurrent program shemes and their interpretations," DAIMIReport PB 78 (Aarhus University, July 1977)℄. Signi�ant advanes were madeby G. X. Viennot [Leture Notes in Math. 1234 (1985), 321{350℄, who presentedmany wide-ranging appliations and explained how the theory ould readily bevisualized in terms of what he alled \heaps of piees."Trae theory is the study of algebrai produts whose variables are notneessarily ommutative. Thus it forms a bridge between the study of strings(in whih, for example, abbaa is quite distint from baaab) and the studyof ordinary ommutative algebra (in whih both of those examples are equal to
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84 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 lashing pairs of lettersequivalene lasspath graphlexiographi orderViennotterritorypiees{territoriesstaking the pieesempilementintersetion graphdiagram of a traeTetris
aaabb = a3b22). Eah adjaent pair of letters fa; bg either ommutes, meaningthat ab = ba, or lashes, meaning that ab is di�erent from ba. If, for instane,we speify that a ommutes with  but that b lashes with both a and , thenabbaa is equal to abbaa, and it has six variants altogether; similarly, thereare ten equally good ways to write baaab.Formally speaking, a trae is an equivalene lass of strings that an beonverted to eah other by repeatedly interhanging pairs of adjaent letters thatdon't lash. But we don't need to fuss about the fat that equivalene lassesare present; we an simply represent a trae by any one of its equivalent strings,just as we don't distinguish between equivalent frations suh as 1/2 and 3/6.Every graph whose verties represent distint letters de�nes a family oftraes on those letters, when we stipulate that two letters lash if and onlyif they are adjaent in the graph. For example, the path graph a ��� b ��� orresponds to the rules stated above. The distint traes for this graph are�; a; b; ; aa; ab; a; ba; bb; b; b; ; aaa; aab; : : : ; b; ; aaaa; : : : (135)if we list them �rst by size and then in lexiographi order. (Notie that ais absent, beause a has already appeared.) The omplete graph Kn de�nestraes that are the same as strings, when nothing ommutes; the empty graphKn de�nes traes that are the same as monomials, when everything ommutes. Ifwe use the path a���b������d���e���f to de�ne lashes, the traes bebafdand efbdba turn out to be the same.Viennot observed that partial ommutativity is atually a familiar onept,if we regard the letters as \piees" that oupy \territory." Piees lash if andonly if their territories overlap; piees ommute if and only if their territories aredisjoint. A trae orresponds to staking the piees on top of one another, fromleft to right, letting eah new piee \fall" until it either rests on the ground or onanother piee. In the latter ase, it must rest on the most reent piee with whihit lashes. He alled this on�guration an empilement|a nie Frenh word.More preisely, eah piee a is assigned a nonempty subset T (a) of someuniverse, and we say that a lashes with b if and only if T (a) \ T (b) 6= ;. Forexample, the onstraints of the graph a���b������d���e���f arise when we letT (a) = f1; 2g; T (b) = f2; 3g; T () = f3; 4g; : : : ; T (f) = f6; 7g;then the traes bebafd and efbdba both haveb  eba fd (136)as their empilement. (Readers who have played the game of TetrisR will imme-diately understand how suh diagrams are formed, although the piees in traetheory di�er from those of Tetris beause they oupy only a single horizontallevel. Furthermore, eah type of piee always falls in exatly the same plae; anda piee's territory T (a) might have \holes"| it needn't be onneted.)
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7.2.2.2 SATISFIABILITY: THE LOCAL LEMMA 85 topologial sortinglength of a traeheight of a traemultipliation of traesdivision of traesright division of traespolynomialsgenerating funtionempty string
Two traes are the same if and only if they have the same empilement. Infat, the diagram impliitly de�nes a partial ordering on the piees that appear;and the number of di�erent strings that represent any given trae is the numberof ways to sort that ordering topologially (see exerise 324).Every trae � has a length, denoted by j�j, whih is the number of letters inany of its equivalent strings. It also has a height, written h(�), whih is the num-ber of levels in its empilement. For example, jbebafd j = 8 and h(bebafd) = 4.Arithmeti on traes. To multiply traes, we simply onatenate them. If,for example, � = bebafd is the trae orresponding to (136), then ��R =bebafddfabeb has the following empilement: d fa b eb �b  eba fd = b  eba fd d fa b eb

(137)The algorithm in exerise 327 formulates this proedure preisely. A moment'sthought shows that j��j = j�j+ j�j, h(��) � h(�)+h(�), and h(��R) = 2h(�).Traes an also be divided, in the sense that � = (��)=� an be determineduniquely when �� and � are given. All we have to do is remove the piees of �from the piees of ��, one by one, working our way down from the top of theempilements. Similarly, the value of � = � n (��) an be omputed from thetraes � and ��. (See exerises 328 and 329.)Notie that we ould rotate diagrams like (136) and (137) by 90 degrees,thereby letting the piees \fall" to the left instead of downwards. (We've used aleft-to-right approah for similar purposes in Setion 5.3.4, Fig. 50.) Or we ouldlet them fall upwards, or to the right. Di�erent orientations are sometimes morenatural, depending on what we're trying to do.We an also add and subtrat traes, thereby obtaining polynomials in vari-ables that are only partially ommutative. Suh polynomials an be multipliedin the normal way; for example, (� + �)( � Æ) = � � �Æ + � � �Æ. Indeed,we an even work with in�nite sums, at least formally: The generating funtionfor all traes that belong to the graph a���b��� is1+a+b++aa+ab+a+ba+bb+b+b++aaa+� � �++aaaa+� � � : (138)(Compare with (135); we now use 1, not �, to stand for the empty string.)The in�nite sum (138) an atually be expressed in losed form: It equals11� a� b� + a = 1 + (a+b+�a) + (a+b+�a)2 + � � � ; (139)
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86 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 CartierFoataM�obius funtion of a traeM�obius funtionM�obius seriesM�obius polynomialmultilinearan identity that is orret not only when the variables are ommutative, but alsoin the algebra of traes, when variables ommute only when they don't lash.In their original monograph of 1969, Cartier and Foata showed that the sumof all traes with respet to any graph an be expressed in a remarkably simpleway that generalizes (139). Let's de�ne the M�obius funtion of a trae � withrespet to a graph G by the rule�G(�) = � 0; if hG(�) > 1;(�1)j�j; otherwise. (140)(The lassial M�obius funtion �(n) for integers, de�ned in exerise 4.5.2{10, isanalogous.) Then the M�obius series for G is de�ned to beMG = X� �G(�)�; (141)where the sum is over all traes. This sum is a polynomial, when G is �nite,beause it ontains exatly one nonzero term for every independent set of vertiesin G; therefore we might all it the M�obius polynomial. For example, when G isthe path a���b���, we haveMG = 1�a� b� +a, the denominator in (139).Cartier and Foata's generalization of (139) has a remarkably simple proof:Theorem F. The generating funtion TG for the sum of all traes, with respetto any graph G, is 1=MG.Proof. We want to show thatMGTG = 1, in the (partially ommutative) algebraof traes. This in�nite produt isP�;� �G(�) =PP�;� �G(�)[=�� ℄. Henewe want to show that the sum of �G(�), over all ways to fatorize  = �� as theprodut of two traes � and �, is zero whenever  is nonempty.But that's easy. We an assume that the letters are ordered in some arbitraryfashion. Let a be the smallest letter in the bottom level of 's empilement. Wean restrit attention to ases where � onsists of independent (ommuting) let-ters (piees), beause �G(�) = 0 otherwise. Now if � = a�0 for some trae �0, let�0 = a�; otherwise we must have � = a�0 for some trae �0, and we let �0 = a�.In both ases �� = �0�0, (�0)0 = �, (�0)0 = �, and �G(�)+�G(�0) = 0. So we'vegrouped all possible fatorizations of  into pairs that anel out in the sum.The M�obius series for any graph an be omputed reursively via the formulaMG = MGna � aMGna� ; a� = fag [ fb j a���bg; (142)where a is any letter (vertex) of G, beause we have a =2 I or a 2 I whenever Iis independent. For example, if G is the path a��� b��� ���d��� e���f , thenG n a� = G j f; d; e; fg is the path ���d���e���f ; repeated use of (142) yieldsMG = 1� a� b� � d� e� f + a+ ad+ ae+ af+ bd+ be+ bf + e+ f + df � ae� af � adf � bdf (143)in this ase. Sine MG is a polynomial, we an indiate its dependene on thevariables by writing MG(a; b; ; d; e; f). Notie that MG is always multilinear(this is, linear in eah variable); and MGna(b; ; d; e; f) =MG(0; b; ; d; e; f).
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7.2.2.2 SATISFIABILITY: THE LOCAL LEMMA 87 maximum independent setNP-hardinterval graphsforestssouressinksonepyramidViennotR(G)Shearer
In appliations we often want to replae eah letter in the polynomial bya single variable, suh as z, and write MG(z). The polynomial in (143) thenbeomesMG(z) = 1�6z+10z2�4z3; and we an onlude from Theorem F thatthe number of traes of length n with respet to G is [zn℄ 1=(1�6z+10z2�4z3) =14 (2 +p2)n+2 + 14 (2�p2)n+2 � 2n+1.Although (142) is a simple reurrene for MG, we an't onlude that MGis easy to ompute when G is a large and ompliated graph. Indeed, the degreeof MG is the size of a maximum independent set in G; and it's NP-hard todetermine that number! On the other hand, there are many lasses of graphs,suh as interval graphs and forests, for whihMG an be omputed in linear time.If � is any trae, the letters that an our �rst in a string that representsit are alled the soures of �; these are the piees on the bottom level of �'sempilement, also alled its minimal piees. Dually, the letters that an ourlast are the sinks of �, its maximal piees. A trae that has only one soure isalled a one; in this ase all piees are ultimately supported by a single pieeat the bottom. A trae that has only one sink is, similarly, alled a pyramid.Viennot proved a nie generalization of Theorem F in his leture notes:MGnA=MG is the sum of all traes whose soures are ontained in A: (144)(See exerise 338; Theorem F is the speial ase where A is the set of all verties.)In partiular, the ones for whih a is the only soure are generated byMGna=MG � 1 = aMGna�=MG: (145)*Traes and the Loal Lemma. Now we're ready to see why the theory oftraes is intimately onneted with the Loal Lemma. If G is any graph onthe verties f1; : : : ;mg, we say that R(G) is the set of all nonnegative vetors(p1; : : : ; pm) suh that MG(p01; : : : ; p0m) > 0 whenever 0 � p0j � pj for 1 � j � m.This de�nition of R(G) is onsistent with the impliit de�nition already givenin Lemma L, beause of the following haraterization found by J. B. Shearer:Theorem S. Under ondition (133) of Lemma L, (p1; : : : ; pm) 2 R(G) impliesPr(A1 \ � � � \ Am) �MG(p1; : : : ; pm) > 0: (146)Conversely, if (p1; : : : ; pm) =2 R(G), there are events B1, : : : , Bm suh thatPr(Bi j Bj1 \ � � � \ Bjk ) = pi whenever k � 0 and i /���j1, : : : , i /���jk, (147)and Pr(B1 \ � � � \ Bm) = 0.Proof. When (p1; : : : ; pm) 2 R(G), exerise 344 proves that there's a uniquedistribution for events B1, : : : , Bm suh that they satisfy (147) and alsoPr�\j2JAj� � Pr�\j2J Bj� = MG�p1[12 J ℄; : : : ; pm[m2 J ℄� (148)for every subset J � f1; : : : ;mg. In this \extreme" worst-possible distribution,Pr(Bi \ Bj) = 0 whenever i���j in G. Exerise 345 proves the onverse.
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88 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 Pringsheimslakonseutive 1sGiven a probability vetor (p1; : : : ; pm), letM�G(z) =MG(p1z; : : : ; pmz): (149)Theorem F tells us that the oeÆient of zn in the power series 1=M�G(z) is thesum of all traes of length n for G. Sine this oeÆient is nonnegative, we knowby Pringsheim's theorem (see exerise 348) that the power series onverges forall z < 1 + Æ, where 1 + Æ is the smallest real root of the polynomial equationM�G(z) = 0; this number Æ is alled the slak of (p1; : : : ; pm) with respet to G.It's easy to see that (p1; : : : ; pm) 2 R(G) if and only if the slak is positive.For if Æ � 0, the probabilities (p01; : : : ; p0m) with p0j = (1 + Æ)pj make MG = 0.But if Æ > 0, the power series onverges when z = 1. And (sine it representsthe sum of all traes) it also onverges to the positive number 1=MG if any pj isdereased; hene (p1; : : : ; pm) lies in R(G) by de�nition. Indeed, this argumentshows that, when (p1; : : : ; pm) 2 R(G), we an atually inrease the probabilitiesto ((1 + �)p1; : : : ; (1 + �)pm), and they will still lie in R(G) whenever � < Æ.Let's return now to Algorithm M. Suppose the suessive bad events Ajthat step M3 tries to quenh are X1, X2, : : : , XN , where N is the total numberof times step M3 is performed (possibly N =1). To prove that Algorithm M iseÆient, we shall show that this random variable N has a small expeted value,in the probability spae of the independent uniform deviates U that appear insteps M1 and M3. The main idea is that X1X2 : : : XN is essentially a trae forthe underlying graph; hene we an onsider it as an empilement of piees.Some simple and onrete examples will help to develop our intuition; weshall onsider two ase studies. In both ases there are m = 6 events A, B, C,D, E, F , and there are n = 7 variables x1 : : : x7. Eah variable is a random bit;thus �1 = � � � = �7 = 1=2 in the algorithm. Event A depends on x1x2, while Bdepends on x2x3, : : : , and F depends on x6x7. Furthermore, eah event ourswith probability 1/4. In Case 1, eah event is true when its substring is `10'; thusall events are false if and only if x1 : : : x7 is sorted|that is, x1 � x2 � � � � � x7.In Case 2, eah event is true when its substring is `11'; thus all events are falseif and only if x1 : : : x7 has no two onseutive 1s.What happens when we apply Algorithm M to those two ases? Onepossible senario is that step M3 is applied N = 8 times, with X1X2 : : :X8 =BCEBAFDC . The atual hanges to the bits x1 : : : x7 might then beCase 11100100 1110010 1101011 1010011 0000011 ; Case 21111111 1111111 1111110 1111010 1001010 : (150)(Read x1 : : : x7 from top to bottom in these diagrams, and san from left to right.Eah module ` ' means \replae the two bad bits at the left by two random bits
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7.2.2.2 SATISFIABILITY: THE LOCAL LEMMA 89 handwavingFKG inequalityBernoulli-distributedextreme distributiongenerating funtionat the right." In examples suh as this, any valid solution x1 : : : x7 an be plaedat the far right; all values to the left of the modules are then fored.)Notie that these diagrams are like the empilement (136), exept that they'vebeen rotated 90Æ. We know from (136) that the same diagram applies to thesenario EFBCDBCA as well as to BCEBAFDC , beause they're the same, astraes. Well : : : , not quite! In truth, EFBCDBCA doesn't give exatly the sameresult as BCEBAFDC in Algorithm M, if we exeute that algorithm as presentlywritten. But the results would be idential if we used separate streams ofindependent random numbers Uk for eah variable xk. Thus we an legitimatelyequate equivalent traes, in the probability spae of our random events.The algorithm runs muh faster in pratie when it's applied to Case 1 thanwhen it's applied to Case 2. How an that be? Both of the diagrams in (150)our with the same probability, namely (1=2)7(1=4)8, as far as the random num-bers are onerned. And every diagram for Case 1 has a orresponding diagramfor Case 2; so we an't distinguish the ases by the number of di�erent diagrams.The real di�erene omes from the fat that, in Case 1, we never have two eventsto hoose from in step M2, unless they are disjoint and an be handled in eitherorder. In Case 2, by ontrast, we are deluged at almost every step with eventsthat need to be snu�ed out. Therefore the senario at the right of (150) is atuallyquite unlikely; why should the algorithm pik B as the �rst event to orret, andthen C, rather than A? Whatever method is used in step M2, we'll �nd thatthe diagrams for Case 2 will our less frequently than ditated by the stritprobabilities, beause of the dereasing likelihood that any partiular event willbe worked on next, in the presene of ompeting hoies. (See also exerise 353.)Worst-ase upper bounds on the running time of Algorithm M thereforeome from situations like Case 1. In general, the empilement BCEBAFDCin (150) will our in a run of Algorithm M with probability at most bebafd,if we write `a' for the probabilisti upper bound for event A that is denoted by`pi' in (133) when A is Ai, and if `b', : : : , f̀ ' are similar for B, : : : , F . Thereason is that bebafd is learly the probability that those events are produedby the independent random variables xk set by the algorithm, if the layers ofthe orresponding empilement are de�ned by dependenies between the variablesets �j . And even if events in the same layer are dependent (by shared variables)yet not lopsidependent (in the sense of exerise 351), suh events are positivelyorrelated; so the FKG inequality of exerise MPR{61, whih holds for theBernoulli-distributed variables of Algorithm M, shows that bebafd is an upperbound. Furthermore the probability that step M2 atually hooses B, C, E, B,A, F , D, and C to work on is at most 1.Therefore, when (p1; : : : ; pm) 2 R(G), Algorithm M's running time is max-imized when it is applied to events B1, : : : , Bm that have the extreme distri-bution (148) of exerise 344. And we an atually write down the generatingfuntion for the running time with respet to those extreme events: We haveXN�0Pr(Algorithm M on B1; : : : ; Bm does N resamplings)zN = M�G(1)M�G(z) ; (151)
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90 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 KolipakaSzegedymessage passing{statistial mehanisbipartite struturesurvey propagation{BraunsteinM�ezardZehina
whereM�G(z) is de�ned in (149), beause the oeÆient of zN in 1=M�G(z) is thesum of the probabilities of all the traes of length N . Theorem F desribes themeaning of 1=M�G(1) as a \formal" power series in the variables pi; we provedit without onsidering whether or not the in�nite sum onverges when thosevariables reeive numerial values. But when (p1; : : : ; pm) 2 R(G), this series isindeed onvergent (it even has a positive \slak").This reasoning leads to the following theorem of K. Kolipaka and M. Szegedy[STOC 43 (2011), 235{243℄:Theorem K. If (p1; : : : ; pm) 2 R(G), Algorithm M resamples �j at mostEj = pjMGnA�j (p1; : : : ; pm)=MG(p1; : : : ; pm) (152)times, on the average. In partiular, the expeted number of iterations of step M3is at most E1 + � � �+Em � m=Æ, where Æ is the slak of (p1; : : : ; pm).Proof. The extreme distribution B1, : : : , Bm maximizes the number of times �jis resampled, and the generating funtion for that number in the extreme ase isMG(p1; : : : ; pj�1; pj ; pj+1; : : : ; pm)MG(p1; : : : ; pj�1; pjz; pj+1; : : : ; pm) : (153)Di�erentiating with respet to z, then setting z  1, gives (152), beause thederivative of the denominator is �pjMGnA�j (p1; : : : ; pm) by (141).The stated upper bound on E1 + � � �+Em is proved in exerise 355.*Message passing. Physiists who study statistial mehanis have developeda signi�antly di�erent way to apply randomization to satis�ability problems,based on their experiene with the behavior of large systems of interatingpartiles. From their perspetive, a set of Boolean variables whose values are0 or 1 is best viewed as an ensemble of partiles that have positive or negative\spin"; these partiles a�et eah other and hange their spins aording to loalattrations and repulsions, analogous to laws of magnetism. A satis�abilityproblem an be formulated as a joint probability distribution on spins for whihthe states of minimum \energy" are ahieved preisely when the spins satisfy asmany lauses as possible.In essene, their approah amounts to onsidering a bipartite struture inwhih eah variable is onneted to one or more lauses, and eah lause isonneted to one or more variables. We an regard both variables and lausesas ative agents, who ontinually tweet to their neighbors in this soial network.A variable might inform its lauses that \I think I should probably be true";but several of those lauses might reply, \I really wish you were false." Byarefully balaning these messages against eah other, suh loal interationsan propagate and build up more and more knowledge of distant onnetions,often onverging to a state where the whole network is reasonably happy.A partiular message-passing strategy alled survey propagation [A. Braun-stein, M. M�ezard, and R. Zehina, Random Strutures & Algorithms 27 (2005),
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7.2.2.2 SATISFIABILITY: MESSAGE-PASSING ALGORITHMS 91 random satis�ability problemsthreshold of unsatis�abilityChavasFurtlehnerM�ezardZehinaBraunsteinfousexibility oeÆients�eld
201{226℄ has proved to be astonishingly good at solving random satis�abilityproblems in the \hard" region just before the threshold of unsatis�ability.Let C be a lause and let l be one of its literals. A \survey message" �C!l isa fration between 0 and 1 that represents how urgently C wants l to be true. If�C!l = 1, the truth of l is desperately needed, lest C be false; but if �C!l = 0,lause C isn't the least bit worried about the value of variable jlj. Initially weset eah �C!l to a ompletely random fration.We shall onsider an extension of the original survey propagation method[see J. Chavas, C. Furtlehner, M. M�ezard, and R. Zehina, J. Statistial Me-hanis (November 2005), P11016:1{25; A. Braunstein and R. Zehina, PhysialReview Letters 96 (27 January 2006), 030201:1{4℄, whih introdues additional\reinforement messages" �l for eah literal l. These new messages, whih areinitially all zero, represent an external fore that ats on l. They help to fousthe network ativity by reinforing deisions that have turned out to be fruitful.Suppose v is a variable that appears in just three lauses: positively in Aand B, negatively in C. This variable will respond to its inoming messages�A!v , �B!v, �C!�v , �v , and ��v by omputing two \exibility oeÆients," �vand ��v , using the following formulas:�v = (1� �v)(1� �A!v)(1� �B!v); ��v = (1� ��v)(1� �C!�v):If, for instane, �v = ��v = 0 while �A!v = �B!v = �C!�v = 2=3, then �v =1=9, ��v = 1=3. The �'s are essentially dual to the �'s, beause high urgenyorresponds to low exibility and vie versa. The general formula for eah literal lis �l = (1� �l) Yl2C (1� �C!l): (154)Survey propagation uses these oeÆients to estimate variable v's tendenyto be either 1 (true), 0 (false), or � (wild), by omputing three numbersp = (1� �v)��v�v + ��v � �v��v ; q = (1� ��v)�v�v + ��v � �v��v ; r = �v��v�v + ��v � �v��v ; (155)then p + q + r = 1, and (p; q; r) is alled the \�eld" of v, representing re-spetively (truth, falsity, wildness). The�eld turns out to be (8=11; 2=11; 1=11)in our example above, indiating that vshould probably be assigned the value 1.But if �A!v and �B!v had been only1/3 instead of 2/3, the �eld would havebeen (5=17; 8=17; 4=17), and we wouldprobably want v = 0 in order to sat-isfy lause C. Figure 51 shows lines ofonstant p � q as a funtion of �v and��v ; the most deisive ases (jp� qj � 1)our at the lower right and upper left. p�q = :8p�q = :5p�q = :2q�p = :2q�p = :5q�p = :8

��v�v0
1

1Fig. 51. Lines of onstantbias in a variable's \�eld."
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92 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 bias messagemonusIf �v = ��v = 0, there's no exibility at all: Variable v is being asked tobe both true and false. The �eld is unde�ned in suh ases, and the surveypropagation method hopes that this doesn't happen.After eah literal l has omputed its exibility, the lauses that involve l or �lan use �l and ��l to re�ne their survey messages. Suppose, for example, that Cis the lause u _ �v _ w. It will replae the former messages �C!u, �C!�v, �C!wby �0C!u = �v!Cw!C ; �0C!�v = u!Cw!C ; �0C!w = u!C�v!C ;where eah l!C is a \bias message" reeived from literal l,l!C = (1� ��l)�l=(1� �C!l)��l + (1� ��l)�l=(1� �C!l) ; (156)reeting l's propensity to be false in lauses other than C. In general we have�0C!l = �Yl02C l0!C�.l!C : (157)(Appropriate onventions must be used to avoid division by zero in formulas(156) and (157); see exerise 359.)New reinforement messages �0l an also be omputed periodially, using theformula �0l = �(��l .� �l)�l + ��l � �l��l (158)for eah literal l; here x .� y denotes max(x � y; 0), and � is a reinforementparameter spei�ed by the algorithm. Notie that �0l > 0 only if �0�l = 0.For example, here are messages that might be passed when we want to satisfythe seven lauses of (7):l1 l2 l3 �C!l1 �C!l2 �C!l3 l1!C l2!C l3!C1 2 �3 0 0 0 3=5 0 0�1 �2 3 1=5 0 0 0 3=5 1=32 3 �4 1=5 0 0 0 1=3 3=5�2 �3 4 0 0 0 3=5 0 01 3 4 0 0 1=5 3=5 1=3 0�1 �3 �4 0 0 0 0 0 3=5�1 2 4 0 0 0 0 0 0
l �l �l1 1 0�1 2=5 1=22 2=5 1=2�2 1 03 1 0�3 2=3 1=34 2=5 1=2�4 1 0 (159)

(Reall that the only solutions to these lauses are �1 2 3 4 and �1 2 �34.) In thisase the reader may verify that the messages of (159) onstitute a \�xed point":The � messages determine the �'s; onversely, we also have �0C!l = �C!l for alllauses C and all literals l, if the reinforement messages �l remain onstant.Exerise 361 proves that every solution to a satis�able set of lauses yields a�xed point of the simultaneous equations (154), (156), (157), with the propertythat �l = [ l is true in the solution℄.
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7.2.2.2 SATISFIABILITY: MESSAGE-PASSING ALGORITHMS 93 WalkSAT+Baldassidamping fatorparameterdefaultsauthor3SATunit propagationExperiments with this message-passing strategy have shown, however, thatthe best results are obtained by using it only for preliminary sreening, with thegoal of disovering variables whose settings are most ritial; we needn't ontinueto transmit messages until every lause is fully satis�ed. One we've assignedsuitable values to the most deliate variables, we're usually left with a residualproblem that an readily be solved by other algorithms suh as WalkSAT.The survey, reinforement, and bias messages an be exhanged using a widevariety of di�erent protools. The following proedure inorporates two ideasfrom an implementation prepared by C. Baldassi in 2012: (1) The reinforementstrength � begins at zero, but approahes 1 exponentially. (2) Variables are rated1, 0, or � after eah reinforement, aording as max(p; q; r) in their urrent �eldis p, q, or r. If every lause then has at least one literal that is true or �, messagepassing will ease even though some surveys might still be utuating.Algorithm S (Survey propagation). Given m nonempty lauses on n variables,this algorithm tries to assign values to most of the variables in suh a way thatthe still-unsatis�ed lauses will be relatively easy to satisfy. It maintains arrays�l and �l of oating-point numbers for eah literal l, as well as �C!l for eahlause C and eah l 2 C. It has a variety of parameters: � (the damping fatorfor reinforement), N0 and N (the minimum and maximum iteration limits),� (the tolerane for onvergene), and  (the on�dene level).S1. [Initialize.℄ Set �l  �l  0 for all literals l, and �C!l  U for all lauses Cand l 2 C, where U is uniformly random in [0 : : 1). Also set i 0, � 1.S2. [Done?℄ Terminate unsuessfully if i � N . If i is even or i < N0, go to S5.S3. [Reinfore.℄ Set �  �� and �  1 � �. Replae �l by �0l for all literals l,using (158); but terminate unsuessfully if �l = ��l = 0.S4. [Test pseudo-satis�ability.℄ Go to S5 if there is at least one lause whoseliterals l all appear to be false, in the sense that ��l < �l and ��l < 12 (seeexerise 358). Otherwise go happily to S8.S5. [Compute the �'s.℄ Compute eah �l, using (154); see also exerise 359.S6. [Update the surveys.℄ Set Æ  0. For all lauses C and literals l 2 C, om-pute �0C!l using (157), and set Æ  max�Æ; j�0C!l � �C!lj�, �C!l  �0C!l.S7. [Loop on i.℄ If Æ � �, set i i+ 1 and return to S2.S8. [Redue the problem.℄ Assign a value to eah variable whose �eld satis�esjp� q j �  . (Exerise 362 has further details.)Computational experiene|otherwise known as trial and error| suggestssuitable parameter values. The defaults � = :995, N0 = 5, N = 1000, � = :01,and  = :50 seem to provide a deent starting point for problems of modestsize. They worked well, for instane, when the author �rst tried a random 3SATproblem with 42,000 lauses and 10,000 variables: These lauses were pseudo-satis�able when i = 143 (although Æ � :43 was still rather large); then step S8�xed the values of 8,282 variables with highly biased �elds, and unit propagationgave values to 57 variables more. This proess needed only about 218 megamemsof alulation. The redued problem had 1526 2-lauses and 196 3-lauses on
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94 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 author1464 variables (beause many other variables were no longer needed); 626 stepsof WalkSAT polished it o� after an additional 42 kilomems. By ontrast, whenWalkSAT was presented with the original problem (using p = :57), it neededmore than 31 million steps to �nd a solution after 3.4 gigamems of omputation.Similarly, the author's �rst experiene applying survey propagation to arandom 3SAT problem on n = 106 variables with m = 4:2n lauses was asmashing suess: More than 800,000 variables were eliminated after only 32.8gigamems of omputation, and WalkSAT solved the residual lauses after 8.5megamems more. By ontrast, pure WalkSAT needed 237 gigamems to perform2.1 billion steps.A million-variable problem with 4,250,000 lauses proved to be more hal-lenging. These additional 50,000 lauses put the problem well beyond WalkSAT'sapability; and Algorithm S failed too, with its default parameters. However,the settings � = :9999 and N0 = 9 slowed the reinforement down satisfatorily,and produed some instrutive behavior. Consider the matrix0BBBBBBBBBBBB�
3988 3651 3071 2339 1741 1338 946 702 508 3295649 5408 4304 3349 2541 2052 1448 1050 666 5108497 7965 6386 4918 3897 3012 2248 1508 1075 71811807 11005 8812 7019 5328 4135 3117 2171 1475 106315814 14789 11726 9134 7188 5425 4121 3024 2039 137220437 19342 15604 12183 9397 7263 5165 3791 2603 178126455 24545 19917 15807 12043 9161 6820 5019 3381 226333203 31153 25052 19644 15587 11802 8865 6309 4417 291939962 38097 31060 24826 18943 14707 10993 7924 5225 363740731 40426 32716 26561 20557 15739 11634 8327 5591 4035

1CCCCCCCCCCCCA ;whih shows the distribution of ��v versus �v (see Fig. 51); for example, `3988' atthe upper left means that 3988 of the million variables had ��v between 0.0 and 0.1and �v between 0.9 and 1.0. This distribution, whih appeared after Æ had beenredued to � 0:0098 by 110 iterations, is terrible|very few variables are biasedin a meaningful way. Therefore another run was made with � redued to .001;but that failed to onverge after 1000 iterations. Finally, with � = :001 andN = 2000, pseudo-satisfation ourred at i = 1373, with the nie distribution0BBBBBBBBBBBB�
406678 1946 1045 979 842 714 687 803 1298 167649338 2 2 3 0 3 1 4 2 1289156 1 0 0 0 1 0 2 1 875118 4 0 0 0 0 0 0 1 74399 0 0 0 0 0 0 1 0 66362 0 0 0 0 0 1 0 3 81041 0 0 0 0 0 0 0 0 101555 0 0 0 1 0 1 1 0 113963 0 0 1 0 0 0 1 2 1949116 61 72 41 61 103 120 162 327 406839

1CCCCCCCCCCCCA(although Æ was now � 1!). The biases were now pronouned, yet not entirelyreliable; the  parameter had to be raised, in order to avoid a ontradition whenpropagating unit literals in the redued problem. Finally, with  = :99, morethan 800,000 variables ould be set suessfully. A solution was obtained after210 gigamems (inluding 21 megamems for WalkSAT to �nish the job, but notinluding the time spent learning how to set the parameters for so many lauses).
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7.2.2.2 SATISFIABILITY: PREPROCESSING OF CLAUSES 95 belief propagationBayesian networksPearlBethePeierlsGallagerM�ezardMontanariPreproessing{simpli�ationsdata struturesrestartinginproessingdownhill transformationserp rule
Suess with Algorithm S isn't guaranteed. But hey, when it works, it'ssometimes the only known way to solve a partiularly tough problem.Survey propagation may be viewed as an extension of the \belief propaga-tion" messages used in the study of Bayesian networks [see J. Pearl, ProbabilistiReasoning in Intelligent Systems (1988), Chapter 4℄; it essentially goes beyondBoolean logi on f0; 1g to a three-valued logi on f0; 1; �g. Analogous message-passing heuristis had atually been onsidered muh earlier by H. A. Betheand R. E. Peierls [Pro. Royal Soiety of London A150 (1935), 552{575℄, andindependently by R. G. Gallager [IRE Transations IT-8 (1962), 21{28℄. Forfurther information see M. M�ezard and A. Montanari, Information, Physis, andComputation (2009), Chapters 14{22.*Preproessing of lauses. A SAT-solving algorithm will often run onsid-erably faster if its input has been transformed into an equivalent but simplerset of lauses. Suh transformations and simpli�ations typially require datastrutures that would be inappropriate for the main work of a solver, so they arebest onsidered separately.Of ourse we an ombine a preproessor and a solver into a single program;and \preproessing" tehniques an be applied again after new lauses havebeen learned, if we reah a stage where we want to lean up and start afresh.In the latter ase the simpli�ations are alled inproessing. But the basi ideasare most easily explained by assuming that we just want to preproess a givenfamily of lauses F . Our goal is to produe nier lauses F 0, whih are satis�ableif and only if F is satis�able.We shall view preproessing as a sequene of elementary transformationsF = F0 ! F1 ! � � � ! Fr = F 0; (160)where eah step Fj ! Fj+1 \ows downhill" in the sense that it either (i) elim-inates a variable without inreasing the number of lauses, or (ii) retains all thevariables but dereases the number of literals in lauses. Many di�erent downhilltransformations are known; and we an try to apply eah of the gimmiks in ourrepertoire, in some order, until none of them lead to any further progress.Sometimes we'll atually solve the given problem, by reahing an F 0 thatis either trivially satis�able (;) or trivially unsatis�able (ontains �). But weprobably won't be so luky unless F was pretty easy to start with, beause we'regoing to onsider only downhill transformations that are quite simple.Before disussing partiular transformations, however, let's think about theendgame: Suppose F has n variables but F 0 has n0 < n. After we've fed thelauses F 0 into a SAT solver and reeived bak a solution, x01 : : : x0n0 , how anwe onvert it to a full solution x1 : : : xn of the original problem F ? Here's how:For every transformation Fj ! Fj+1 that eliminates a variable xk , we shallspeify an erp rule (so-alled beause it reverses the e�et of preproessing). Anerp rule for elimination is simply an assignment `l  E', where l is xk or �xk,and E is a Boolean expression that involves only variables that have not beeneliminated. We undo the e�et of elimination by assigning to xk the value thatmakes l true if and only if E is true.
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96 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 postproessorUnit onditioningBCP (Boolean onstraint propagation), see unit onditioningF j lSubsumptionSelf-subsumptionstrengthening a lausereplaement prinipleRobinsondata struturesDownhill resolutionvariable eliminationelimination of variablesE�enBiere
For example, suppose two transformations remove x and y with the erp rules�x �y _ z; y  1:To reverse these eliminations, right to left, we would set y true, then x �z.As the preproessor disovers how to eliminate variables, it an immediatelywrite the orresponding erp rules to a �le, so that those rules don't onsumememory spae. Afterwards, given a redued solution x01 : : : x0n0 , a postproessoran read that �le in reverse order and provide the unredued solution x1 : : : xn.Transformation 1. Unit onditioning. If a unit lause `(l)' is present, we anreplae F by F j l and use the erp rule l 1. This elementary simpli�ation willbe arried out naturally by most solvers; but it is perhaps even more importantin a preproessor, sine it often enables further transformations that the solverwould not readily see. Conversely, other transformations in the preproessormight enable unit onditionings that will ontinue to ripple down.One onsequene of unit onditioning is that all lauses of F 0 will have lengthtwo or more, unless F 0 is trivially unsatis�able.Transformation 2. Subsumption. If every literal in lause C appears alsoin another lause C 0, we an remove C 0. In partiular, dupliate lauses will bedisarded. No erp rule is needed, beause no variable goes away.Transformation 3. Self-subsumption. If every literal in C exept �x appearsalso in another lause C 0, where C 0 ontains x, we an delete x from C 0 beauseC 0 nx = C �C 0. In other words, the fat that C almost subsumes C 0 allows us atleast to strengthen C 0, without atually removing it. Again there's no erp rule.[Self-subsumption was alled \the replaement priniple" by J. A. Robinson inJACM 12 (1965), 39.℄Exerise 374 disusses data strutures and algorithms by whih subsump-tions and self-subsumptions an be disovered with reasonable eÆieny.Transformation 4. Downhill resolution. Suppose x appears only in lausesC1, : : : , Cp and �x appears only in C 01, : : : , C 0q . We've observed (see (112)) thatvariable x an be eliminated if we replae those p + q lauses by the pq lausesfCi �C 0j j 1 � i � p; 1 � j � qg. The orresponding erp rule (see exerise 367) iseither �x p̂i=1(Ci n x) or x q̂j=1(C 0j n �x). (161)Every variable an be eliminated in this way, but we might be ooded withtoo many lauses. We an prevent this by limiting ourselves to \downhill" ases,in whih the new lauses don't outnumber the old ones. The ondition pq � p+qis equivalent to (p�1)(q�1) � 1, as noted above following (112); the variable isalways removed in suh ases. But the number of new lauses might be small evenwhen pq is large, beause of tautologies or subsumption. Furthermore, N. E�enand A. Biere wrote a fundamental paper on preproessing [LNCS 3569 (2005),61{75℄ that introdued important speial ases in whih many of the pq potentiallauses an be omitted; see exerise 369. Therefore a preproessor typially tries
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7.2.2.2 SATISFIABILITY: ENCODING CONSTRAINTS INTO CLAUSES 97 failed literalsunit propagationlookaheadanti-maximal-element lauseswaerdenlangfordEnoding{at-most-oneHeuleauxiliary variables
to eliminate via resolution whenever min(p; q) � 10, say, and abandons theattempt only when more than p+ q resolvents have been generated.Many other transformations are possible, although the four listed above haveproved to be the most e�etive in pratie. We ould, for instane, look for failedliterals : If unit propagation leads to a ontradition when we assume that someliteral l is true (namely when F ^ (l) `1 �), then we're allowed to assume thatl is false (beause the unit lause (�l) is erti�able). This observation and severalothers related to it were exploited in the lookahead mehanisms of Algorithm Yabove. But Algorithm C generally has no trouble �nding failed literals all byitself, as a natural byprodut of its mehanism for resolving onits. Exerises378{384 disuss other tehniques that have been proposed for preproessing.Sometimes preproessing turns out to be dramatially suessful. For exam-ple, the anti-maximal-element lauses of exerise 228 an be proved unsatis�ablevia transformations 1{4 after only about 400 megamems of work when m = 50.Yet Algorithm C spends 3 gigamems on that untransformed problem when m isonly 14; and it needs 11 G� when m = 15, : : : , failing utterly before m = 20.A more typial example arises in onnetion with Fig. 35 above: The problemof showing that there's no 4-step path to involves 8725 variables, 33769lauses, and 84041 literals, and Algorithm C requires about 6 gigamems todemonstrate that those lauses are unsatis�able. Preproessing needs less than10 megamems to redue that problem to just 3263 variables, 19778 lauses, and56552 literals; then Algorithm C an handle those with 5 G� of further work.On the other hand, preproessing might take too long, or it might produelauses that are more diÆult to deal with than the originals. It's totally uselesson the waerden or langford problems. (Further examples are disussed below.)Enoding onstraints into lauses. Some problems, like waerden (j; k;n), areinherently Boolean, and they're essentially given to us as native-born ANDs ofORs. But in most ases we an represent a ombinatorial problem via lauses inmany di�erent ways, not immediately obvious, and the partiular enoding thatwe hoose an have an enormous e�et on the speed with whih a SAT solver isable to rank out an answer. Thus the art of problem enoding turns out to bejust as important as the art of devising algorithms for satis�ability.Our study of SAT instanes has already introdued us to dozens of interestingenodings; and new appliations often lead to further ideas, beause Booleanalgebra is so versatile. Eah problem may seem at �rst to need its own speialtriks. But we'll see that several general priniples are available for guidane.In the �rst plae, di�erent solvers tend to like di�erent enodings: Anenoding that's good for one algorithm might be bad for another.Consider, for example, the at-most-one onstraint, y1 + � � �+ yp � 1, whiharises in a great many appliations. The obvious way to enfore this onditionis to assert �p2� binary lauses (�yi_ �yj), for 1 � i < j � p, so that yi = yj = 1 isforbidden; but those lauses beome unwieldy when p is large. The alternativeenoding in exerise 12, due to Marijn Heule, does the same job with only3p � 6 binary onstraints when p � 3, by introduing a few auxiliary variables
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98 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 Langford's problemlangford 00(n)unit propagationsbinary representationlog enodingdiret enodingsparse enoding, see diret enodingorder enodingCrawfordBaker
a1, : : : , ab(p�3)=2. When we formulated Langford's problem in terms of lauses,via (12), (13), and (14) above, we therefore onsidered two variants alledlangford (n) and langford 0(n), where the former uses the obvious enoding of at-most-one onstraints and the latter uses Heule's method. Furthermore, exerise7.1.1{55(b) enoded at-most-one onstraints in yet another way, having the samenumber of binary lauses but about twie as many auxiliary variables; let's givethe name langford 00(n) to the lauses that we get from that sheme.We weren't ready to disuss whih of the enodings works better in pratie,when we introdued langford (n) and langford 0(n) above, beause we hadn't yetexamined any SAT-solving algorithms. But now we're ready to reveal the answer;and the answer is: \It depends." Sometimes langford 0(n) wins over langford (n);sometimes it loses. It always seems to beat langford 00(n). Here, for example, aretypial statistis, with runtimes rounded to megamems (M�) or kilomems (K�):variables lauses Algorithm D Algorithm L Algorithm Clangford (9) 104 1722 23M� 16M� 15M� (UNSAT)langford 0(9) 213 801 82M� 16M� 21M� (UNSAT)langford 00(9) 335 801 139M� 20M� 24M� (UNSAT)langford (13) 228 5875 71685M� 45744M� 295571M� (UNSAT)langford 0(13) 502 1857 492992M� 38589M� 677815M� (UNSAT)langford 00(13) 795 1857 950719M� 46398M� 792757M� (UNSAT)langford (16) 352 11494 5M� 52M� 301K� (SAT)langford 0(16) 796 2928 12M� 31M� 418K� (SAT)langford 00(16) 1264 2928 20M� 38M� 510K� (SAT)langford (64) 6016 869650 (huge) (bigger) 35M� (SAT)langford 0(64) 14704 53184 (huger) (big) 73M� (SAT)langford 00(64) 23488 53184 (hugest) (biggest) 304M� (SAT)Algorithm D prefers langford to langford 0, beause it doesn't perform unit prop-agations very eÆiently. Algorithm L, whih exels at unit propagation, likeslangford 0 better. Algorithm C also exels at unit propagation, but it exhibitspeuliar behavior: It prefers langford , and on satis�able instanes it zooms inquikly to �nd a solution; but for some reason it runs very slowly on unsatis�ableinstanes when n � 10.Another general priniple is that short enodings|enodings with few vari-ables and/or few lauses|are not neessarily better than longer enodings.For example, we often need to use Boolean variables to enode the value of avariable x that atually ranges over d > 2 di�erent values, say 0 � x < d. Insuh ases it's natural to use the binary representation x = (xl�1 : : : x0)2, wherel = dlg de, and to onstrut lauses based on the independent bits xj ; but thatrepresentation, known as the log enoding, surprisingly turns out to be a bad ideain many ases unless d is large. A diret enoding with d binary variables x0, x1,: : : , xd�1, where xj = [x= j ℄, is often muh better. And the order enodingwith d � 1 binary variables x1, : : : , xd�1, where xj = [x� j ℄, is often betteryet; this enoding was introdued in 1994 by J. M. Crawford and A. B. Baker[AAAI Conf. 12 (1994), 1092{1097℄. In fat, exerise 408 presents an important
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7.2.2.2 SATISFIABILITY: ENCODING CONSTRAINTS INTO CLAUSES 99 unit propagationGraph oloring problemsat-most-oneexlusion lausesmultivaluedkernel\prelusion" lauses\support" lausesolored queenshessboardqueensmedian
appliation where the order enoding is the method of hoie even when d is 1000or more! The order enoding is exponentially larger than the log enoding, yet itwins in this appliation beause it allows the SAT solver to dedue onsequenesrapidly via unit propagation.Graph oloring problems illustrate this priniple niely. When we tried earlyin this setion to olor a graph with d olors, we enoded the olor of eah vertexwith a diret representation, (15); but we ould have used binary notation forthose olors. And we ould also have used the order enoding, even thoughthe numerial ordering of olors is irrelevant in the problem itself. With a logenoding, exerise 391 exhibits three distint ways to enfore the onstraint thatadjaent verties have di�erent olors. With the order enoding, exerise 395explains that it's easy to handle graph oloring. And there also are four waysto work with the diret enoding, namely (a) to insist on one olor per vertexby inluding the at-most-one exlusion lauses (17); or (b) to allow multivalued(multiolored) verties by omitting those lauses; or () to atually welomemultiolored verties, by omitting (17) and foring eah olor lass to be a kernel,as suggested in answer 14; or (d) to inlude (17) but to replae the \prelusion"lauses (16) by so-alled \support" lauses as explained in exerise 399.These eight options an be ompared empirially by trying to arrange 64olored queens on a hessboard so that no queens of the same olor appear inthe same row, olumn, or diagonal. That task is possible with 9 olors, but notwith 8. By symmetry we an prespeify the olors of all queens in the top row.enoding olors variables lauses Algorithm L Algorithm Cunivalued 8 512 7688 3333M� 9813M� (UNSAT)multivalued 8 512 5896 1330M� 11997M� (UNSAT)kernel 8 512 6408 4196M� 12601M� (UNSAT)support 8 512 13512 16796M� 20990M� (UNSAT)log(a) 8 2376 5120 (immense) 20577M� (UNSAT)log(b) 8 192 5848 (enormous) 15033M� (UNSAT)log() 8 192 5848 (enormous) 15033M� (UNSAT)order 8 448 6215 43615M� 5122M� (UNSAT)univalued 9 576 8928 2907M� 464M� (SAT)multivalued 9 576 6624 104M� 401M� (SAT)kernel 9 576 7200 93M� 87M� (SAT)support 9 576 15480 2103M� 613M� (SAT)log(a) 9 3168 6776 (giganti) 1761M� (SAT)log(b) 9 256 6776 (olossal) 1107M� (SAT)log() 9 256 6584 (mammoth) 555M� (SAT)order 9 512 7008 (monstrous) 213M� (SAT)(Eah running time shown here is the median of nine runs, made with di�erentrandom seeds.) It's lear from this data that the log enodings are ompletelyunsuitable for Algorithm L; and even the order enoding onfuses that algo-rithm's heuristis. But Algorithm L shines over Algorithm C with respet tomost of the diret enodings. On the other hand, Algorithm C loves the orderenoding, espeially in the diÆult unsatis�able ase.
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100 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 TajimaTamuraliquehint lausesunary representationaxiom lausesternary numbersomplementation of unary representationAnd that's not the end of the story. H. Tajima [M.S. thesis, Kobe University(2008)℄ and N. Tamura notied that order enoding has another property, whihtrumps all other enodings with respet to graph oloring: Every k-lique ofverties fv1; : : : ; vkg in a graph allows us to append two additional \hint lauses"(�vd�k+11 _ � � � _ �vd�k+1k ) ^ (vk�11 _ � � � _ vk�1k ) (162)to the lauses for d-oloring|beause some vertex of the lique must have aolor � d�k, and some vertex must have a olor � k�1. With these additionallauses, the running time to prove unsatis�ability of the 8-oloring problem dropsdrastially to just 60M� with Algorithm L, and to only 13M� with Algorithm C.We an even redue it to just 2M�(!) by using that idea twie (see exerise 396).The order enoding has several other nie properties, so it deserves a loserlook. When we represent a value x in the range 0 � x < d by the binary variablesxj = [x� j ℄ for 1 � j < d, we always havex = x1 + x2 + � � �+ xd�1; (163)hene order enoding is often known as unary representation. The axiom lauses(�xj+1 _ xj) for 1 � j < d� 1 (164)are always inluded, representing the fat that x � j+1 implies x � j for eah j;these lauses fore all the 1s to the left and all the 0s to the right. When d = 2the unary representation redues to a one-bit enoding equal to x itself; whend = 3 it's a two-bit enoding with 00, 10, and 11 representing 0, 1, and 2.We might not know all of the bits xj of x's unary enoding while a problemis in the ourse of being solved. But if we do know that, say, x3 = 1 and x7 = 0,then we know that x belongs to the interval [3 : : 7).Suppose we know the unary representation of x. Then no alulation isneessary if we want to know the unary representation of y = x+ a, when a is aonstant, beause yj = xj�a. Similarly, z = a� x is equivalent to zj = �xa+1�j ;and w = bx=a is equivalent to wj = xaj . Out-of-bounds supersripts are easy tohandle in formulas suh as this, beause xi = 1 when i � 0 and xi = 0 when i � d.The speial ase �x = d� 1� x is obtained by left-right reetion of �x1 : : : �xj�1:(d� 1� x)j = (�x)j = xd�j : (165)If we are using the order enoding for two independent variables x and y,with 0 � x; y < d, it's similarly easy to enode the additional relation x � y+ a:x� y � a () x � y + a () min(d�1;d+a)^j=max(0;a+1)��xj _ yj�a�: (166)And there are analogous ways to plae bounds on the sum, x+ y:x+ y � a () x � �y + a+ 1� d () min(d�1;a+1)^j=max(0;a+2�d)��xj _ �ya+1�j�; (167)
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7.2.2.2 SATISFIABILITY: ENCODING CONSTRAINTS INTO CLAUSES 101 2SATlexiographi orderomparisonarriesCNFeliminatediruitTseytin enodinggatex+ y � a () �x � y � a� 1 + d () min(d;a)^j=max(1;a+1�d)�xj _ ya+1�j�: (168)In fat, exerise 405 shows that the general ondition ax+by �  an be enforedwith at most d binary lauses, when a, b, and  are onstant. Any set of suh rela-tions, involving at most two variables per onstraint, is therefore a 2SAT problem.Relations between three or more order-enoded variables an also be handledwithout diÆulty, as long as d isn't too large. For example, onditions suh asx + y � z and x + y � z an be expressed with O(d log d) lauses of length� 3 (see exerise 407). Arbitrary linear inequalities an also be represented,in priniple. But of ourse we shouldn't expet SAT solvers to ompete withalgebrai methods on problems that are inherently numerial.Another onstraint of great importane in the enoding of ombinatorialproblems is the relation of lexiographi order : Given two bit vetors x1 : : : xnand y1 : : : yn, we want to enode the ondition (x1 : : : xn)2 � (y1 : : : yn)2 as aonjuntion of lauses. Fortunately there's a nie way to do this with just 3n�2ternary lauses involving n� 1 auxiliary variables a1, : : : , an�1, namelyn�1̂k=1�(�xk_yk_�ak�1) ^ (�xk_ak_�ak�1) ^ (yk_ak_�ak�1)� ^ (�xn_yn_�an�1); (169)where `�a0' is omitted. For example, the lauses(�x1_y1)^(�x1_a1)^(y1_a1)^(�x2_y2_�a1)^(�x2_a2_�a1)^(y2_a2_�a1)^(�x3_y3_�a2)assert that x1x2x3 � y1y2y3. And the same formula, but with the �nal term(�xn _ yn _ �an�1) replaed by (�xn _ �an�1) ^ (yn _ �an�1), works for the stritomparison x1 : : : xn < y1 : : : yn. These formulas arise by onsidering the arriesthat our when (�x1 : : : �xn)2+(1 or 0) is added to (y1 : : : yn)2. (See exerise 414.)The general problem of enoding a onstraint on the Boolean variablesx1, : : : , xn is the question of �nding a family of lauses F that are satis�ableif and only if f(x1; : : : ; xn) is true, where f is a given Boolean funtion. Weusually introdue auxiliary variables a1, : : : , am into the lauses of F , unless fan be expressed diretly with a short CNF formula; thus the enoding problemis to �nd a \good" family F suh that we havef(x1; : : : ; xn) = 1 () 9a1 : : :9am Ĉ2F C; (170)where eah C is a lause on the variables fa1; : : : ; am; x1; : : : ; xng. The variablesa1, : : : , am an be eliminated by resolution as in (112), at least in priniple, leav-ing us with a CNF for f|although that CNF might be huge. (See exerise 248.)If there's a simple iruit that omputes f , we know from (24) and exerise 42that there's an equally simple \Tseytin enoding" F , with one auxiliary variablefor eah gate in the iruit. For example, suppose we want to enode theondition x1 : : : xn 6= y1 : : : yn. The shortest CNF expression for this funtionf(x1; : : : ; xn; y1; : : : ; yn) has 2n lauses (see exerise 415); but there's a simple
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102 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 Boolean hainPlaistedGreenbaumblokedTseytin enodingBDDbranhing programPi funtioneliminate
iruit (Boolean hain) with just n+ 1 gates:a1  x1 � y1; : : : ; an  xn � yn; f  a1 _ � � � _ an:Using (24) we get the 4n lausesn̂j=1�(�xj _ yj _ aj) ^ (xj _ �yj _ aj) ^ (xj _ yj _ �aj) ^ (�xj _ �yj _ �aj)�; (171)together with (a1 _ � � � _ an), as a representation of `x1 : : : xn 6= y1 : : : yn'.But this is overkill; D. A. Plaisted and S. Greenbaum have pointed out[Journal of Symboli Computation 2 (1986), 293{304℄ that we an often avoidabout half of the lauses in suh situations. Indeed, only 2n of the lauses (171)are neessary (and suÆient), namely the ones involving �aj :n̂j=1�(xj _ yj _ �aj) ^ (�xj _ �yj _ �aj)�: (172)The other lauses are \bloked" (see exerise 378) and unhelpful. Thus it's agood idea to examine whether all of the lauses in a Tseytin enoding are reallyneeded. Exerise 416 illustrates another interesting ase.An eÆient enoding is possible also when f has a small BDD, and in generalwhenever f an be omputed by a short branhing program. Reall the example\Pi funtion" introdued in 7.1.1{(22); we observed in 7.1.2{(6) that it an bewritten �((x2 ^ �x4)� �x3) ^ �x1�� x2. Thus it has a 12-lause Tseytin enoding(x2_�a1)^ (�x4_�a1)^ (�x2_x4_a1)^ (x3_a1_a2)^ (�x3_�a1_a2)^ (�x3_a1_�a2)^ (x3_�a1_�a2)^ (�x1_�a3)^ (a2_�a3)^ (x1_�a2_a3)^ (x2_a3)^ (�x2_�a3):The Pi funtion also has a short branhing program, 7.1.4{(8), namelyI8 = (�1? 7: 6); I7 = (�2? 5: 4); I6 = (�2? 0: 1); I5 = (�3? 1: 0);I4 = (�3? 3: 2); I3 = (�4? 1: 0); I2 = (�4? 0: 1);where the instrution `(�v? l:h)' means \If xv = 0, go to Il, otherwise go to Ih,"exept that I0 and I1 unonditionally produe the values 0 and 1. We anonvert any suh branhing program into a sequene of lauses, by translating`Ij = (�v? l:h)' into (�aj _ xv _ al) ^ (�aj _ �xv _ ah); (173)where a0 is omitted, and where any lauses ontaining a1 are dropped. Wealso omit �at, where It is the �rst instrution; in this example t = 8. (Thesesimpli�ations orrespond to asserting the unit lauses (�a0) ^ (a1) ^ (at).) Thebranhing program above therefore yields ten lauses,(x1_ a7) ^ (�x1_ a6) ^ (�a7_x2_ a5) ^ (�a7_ �x2_ a4) ^ (�a6_x2)^ (�a5_ �x3) ^ (�a4_x3_ a3) ^ (�a4_ �x3_ a2) ^ (�a3_ �x4) ^ (�a2_x4):We an readily eliminate a6, a5, a3, a2, thereby getting a six-lause equivalent(x1_a7) ^ (�x1_x2) ^ (�a7_x2_ �x3) ^ (�a7_ �x2_a4) ^ (�a4_x3_ �x4) ^ (�a4_ �x3_x4);
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7.2.2.2 SATISFIABILITY: UNIT PROPAGATION AND FORCING 103 preproessorUnit propagationforing{CDCL solvernotation `F `1 l'at-most-one onstraintiruitBDDand a preproessor will simplify this to the four-lause CNF(�x1_x2) ^ (x2_ �x3) ^ (x1_ �x2_x3_ �x4) ^ (x1_ �x3_x4); (174)whih appeared in exerise 7.1.1{19.Exerise 417 explains why this translation sheme is valid. The methodapplies to any branhing program whatsoever: The x variables an be tested inany order|that is, the v's need not be dereasing as in a BDD; moreover, avariable may be tested more than one.Unit propagation and foring. The e�etiveness of an enoding dependslargely on how well that enoding avoids bad partial assignments to the vari-ables. If we're trying to enode a Boolean ondition f(x1; x2; : : : ; xn), and if thetentative assignments x1  1 and x2  0 ause f to be false regardless of thevalues of x3 through xn, we'd like the solver to dedue this fat without furtherado, ideally by unit propagation one x1 and �x2 have been asserted. With aCDCL solver like Algorithm C, a quikly reognized onit means a relativelyshort learned lause|and that's a hallmark of progress. Even better would bea situation in whih unit propagation, after asserting x1, would already fore x2to be true; and furthermore if unit propagation after �x2 would also fore �x1.Suh senarios aren't equivalent to eah other. For example, onsider thelauses F = (�x1_x3)^ (�x1_x2_ �x3). Then, using the notation `F `1 l' to signifythat F leads to l via unit propagation, we have F j x1 `1 x2, but F j �x2 6`1 �x1.And with the lauses G = (�x1_ x2_ x3) ^ (�x1_ x2_ �x3) we have G jx1 j �x2 `1 �(see Eq. (119)), but G jx1 6`1 x2 and G j �x2 6`1 �x1.Consider now the simple at-most-one onstraint on just three variables,f(x1; x2; x3) = [x1 + x2 + x3� 1℄. We an try to represent f by proeedingmethodially using the methods suggested above, either by onstruting a iruitfor f or by onstruting f 's BDD. The �rst alternative (see exerise 420) yieldsF = (x1_ �x2_ a1)^ (�x1_x2_ a1)^ (x1_x2_ �a1)^ (�x1_ �x2)^ (�x3_ �a1); (175)the seond approah (see exerise 421) leads to a somewhat di�erent solution,G = (x1_a4)^ (�x1_a3)^ (�a4_ �x2_a2)^ (�a3_x2_a2)^ (�a3_ �x2)^ (�a2_ �x3): (176)But neither of these enodings is atually very good, beause F j x3 6`1 �x1 andG jx3 6`1 �x1. Muh better is the enoding that we get from the general shemeof (18) and (19) in the ase n = 3, r = 1, namelyS = (�a1_ a2)^ (�x1_ a1)^ (�x2_ a2)^ (�x2_ �a1)^ (�x3_ �a2); (177)where a1 and a2 stand for s11 and s12; or the one obtained from (20) and (21),B = (�x3_ a1)^ (�x2_ a1)^ (�x2_ �x3)^ (�a1_ �x1); (178)where a1 stands for b21. With either (177) or (178) we have S j xi `1 �xj andB j xi `1 �xj by unit propagation whenever i 6= j. And of ourse the obviousenoding for this partiular f is best of all, beause n is so small:O = (�x1_ �x2)^ (�x1_ �x3)^ (�x2_ �x3): (179)



September 23, 2015

104 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 auxiliary variablesforing representationprimary variablesardinality onstraintat-most-one onstraintHeulefeedbakrepresentation Fonjuntive prime formprime lauses
Suppose f(x1; : : : ; xn) is a Boolean funtion that's represented by a familyof lauses F , possibly involving auxiliary variables fa1; : : : ; amg, as in (170). Wesay that F is a foring representation if we haveF jL ` l implies F jL `1 l (180)whenever L [ l is a set of stritly distint literals ontained in fx1; : : : ; xn;�x1; : : : ; �xng. In other words, if the partial assignment represented by L logiallyimplies the truth of some other literal l, we insist that unit propagation aloneshould be able to dedue l from F j L. The auxiliary variables fa1; : : : ; amgare exempt from this requirement; only the potential forings between primaryvariables fx1; : : : ; xng are supposed to be reognized easily when they our.(Tehnial point: If F j L ` �, meaning that F j L is unsatis�able, weimpliitly have F j L ` l for all literals l. In suh a ase (180) tells us thatF jL `1 l and F jL `1 �l both hold; hene F jL an then be proved unsatis�ableby unit propagation alone.)We've seen that the lauses S and B in (177) and (178) are foring for theonstraint [x1 + x2 + x3� 1℄, but the lauses F and G in (175) and (176) are not.In fat, the lauses of (18) and (19) that led to (177) are always foring, for thegeneral ardinality onstraint [x1 + � � �+ xn� r℄; and so are the lauses of (20)and (21) that led to (178). (See exerises 429 and 430.) Moreover, the generalat-most-one onstraint [x1 + � � �+ xn� 1℄ an be represented more eÆiently byHeule's 3(n�2) binary lauses and b(n�3)=2 auxiliary variables (exerise 12), orwith about n lgn binary lauses and only dlgne auxiliary variables (exerise 394);both of these representations are foring.In general, we're glad to know as soon as possible when a variable's value hasbeen fored by other values, beause the variables of a large problem typiallypartiipate in many onstraints simultaneously. If we know that x an't be 0 inonstraint f , then we an often onlude that some other variable y an't be 1 insome other onstraint g, if x appears in both f and g. There's lots of feedbak.On the other hand it might be worse to use a large representation F thatis foring than to use a small representation G that isn't, beause additionallauses an make a SAT solver work harder. The tradeo�s are deliate, andthey're diÆult to predit in advane.Every Boolean onstraint f(x1; : : : ; xn) has at least one foring represen-tation that involves no auxiliary variables. Indeed, it's easy to see that theonjuntive prime form F of f|the AND of all f 's prime lauses| is foring.Smaller representations are also often foring, even without auxiliaries. Forexample, the simple onstraint [x1�x2� � � ��xn ℄ has �n2� prime lauses, namely(xj _ �xk) for 1 � j < k � n; but only n � 1 of those lauses, the ases whenk = j + 1 as in (164), are neessary and suÆient for foring. Exerise 424presents another, more-or-less random example.In the worst ase, all foring representations of ertain onstraints are knownto be huge, even when auxiliary variables are introdued (see exerise 428).But exerises 431{441 disuss many examples of useful and instrutive foringrepresentations that require relatively few lauses.
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7.2.2.2 SATISFIABILITY: SYMMETRY BREAKING 105 GwynneKullmannhonest representationSLUR algorithmbaktraknegated auxiliary variablebranhprimary variablesauxiliary variablesJ�arvisaloNiemel�aSymmetry breaking{symmetriespigeonspermutationlexiographially ordered
We've glossed over an interesting tehniality in de�nition (180), however:A sneaky person might atually onstrut a representation F that is absolutelyuseless in pratie, even though it meets all of those riteria for foring. For exam-ple, let G(a1; : : : ; am) be a family of lauses that are satis�able|but only whenthe auxiliary variables aj are set to extremely hard-to-�nd values. Then we mighthave f(x1) = x1 and F = (x1)^G(a1; : : : ; am)(!). This defet in de�nition (180)was �rst pointed out by M. Gwynne and O. Kullmann [arXiv:1406.7398 [s.CC℄(2014), 67 pages℄, who have also traed the history of the subjet.To avoid suh a glith, we impliitly assume that F is an honest represen-tation of f , in the following sense: Whenever L is a set of n literals that fullyharaterizes a solution x1 : : : xn to the onstraint f(x1; : : : ; xn) = 1, the lausesF jL must be easy to satisfy, using the SLUR algorithm of exerise 444. Thatalgorithm is eÆient beause it does not baktrak. All of the examples in exer-ises 439{444 meet this test of honesty; indeed, the test is automatially passedwhenever every lause of F ontains at most one negated auxiliary variable.Some authors have suggested that a SAT solver should branh only onprimary variables xi, rather than on auxiliary variables aj , whenever possible.But an extensive study by M. J�arvisalo and I. Niemel�a [LNCS 4741 (2007),348{363; J. Algorithms 63 (2008), 90{113℄ has shown that suh a restrition isnot advisable with Algorithm C, and it might lead to a severe slowdown.Symmetry breaking. Sometimes we an ahieve enormous speedup by exploit-ing symmetries. Consider, for example, the lauses for plaingm+1 pigeons intom holes, (106){(107). We've seen in Lemma B and Theorem B that Algorithm Cand other resolution-related methods annot demonstrate the unsatis�ability ofthose lauses without performing exponentially many steps asm grows. However,the lauses are symmetrial with respet to pigeons; independently, they're alsosymmetrial with respet to holes: If � is any permutation of f0; 1; : : : ;mg andif � is any permutation of f1; 2; : : : ;mg, the transformation xjk 7! x(j�)(k�) for0 � j � m and 1 � k � m leaves the set of lauses (106){(107) unhanged.Thus the pigeonhole problem has (m+ 1)!m! symmetries.We'll prove below that the symmetries on the holes allow us to assume safelythat the hole-oupany vetors are lexiographially ordered, namely thatx0kx1k : : : xmk � x0(k+1)x1(k+1) : : : xm(k+1); for 1 � k < m. (181)These onstraints preserve satis�ability; and we know from (169) that they arereadily expressed as lauses. Without the help of suh additional lauses therunning time of Algorithm C rises from 19 megamems for m = 7 to 177M� form = 8, and then to 3.5 gigamems and 86G� for m = 9 and 10. But with (181),the same algorithm shows unsatis�ability for m = 10 after only 1 megamem; andfor m = 20 and m = 30 after only 284 M� and 3.6 G�, respetively.Even better results our when we order the pigeon-oupany vetors:xj1xj2 : : : xjm � x(j+1)1x(j+1)2 : : : x(j+1)m; for 0 � j < m. (182)With these onstraints added to (106) and (107), Algorithm C polishes o� thease m = 10 in just 69 kilomems. It an even handle m = 100 in 133 M�. This
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106 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 pointslinesquad-freebinary matrix0{1 matrixsubmatrixZarankiewizavoiding submatriesZ(m;n)Steiner triple systemblok designshessboardardinality onstraints
remarkable improvement was ahieved by adding only m2�m new variables and3m2�2m new lauses to the originalm2+m variables and (m+1)+(m3+m2)=2lauses of (106) and (107). (Moreover, the reasoning that justi�es (182) doesn't\heat" by invoking the mathematial pigeonhole priniple behind the senes.)Atually that's not all. The theory of olumnwise symmetry (see exer-ise 498) also tells us that we're allowed to add the �m2 � simple binary lauses(x(j�1)j _ �x(j�1)k) for 1 � j < k � m (183)to (106) and (107), instead of (182). This priniple is rather weak in general; butit turns out to be ideally suited to pigeons: It redues the running time for m =100 to just 21 megamems, although it needs no auxiliary variables whatsoever!Of ourse the status of (106){(107) has never been in doubt. Those lausesserve merely as training wheels beause of their simpliity; they illustrate thefat that many symmetry-breaking strategies exist. Let's turn now to a moreinteresting problem, whih has essentially the same symmetries, but with theroles of pigeons and holes played by \points" and \lines" instead. Consider a setof m points and n lines, where eah line is a subset of points; we will require thatno two points appear together in more than one line. (Equivalently, no two linesmay interset in more than one point.) Suh a on�guration may be alled quad-free, beause it is equivalent to an m � n binary matrix (xij ) that ontains no\quad," namely no 2�2 submatrix of 1s; element xij means that point i belongsto line j. Quad-free matries are obviously haraterized by �m2 ��n2� lauses,(�xij _ �xij0 _ �xi0j _ �xi0j0); for 1 � i < i0 � m and 1 � j < j0 � n: (184)What is the maximum number of 1s in an m � n quad-free matrix? [Thisquestion, whenm = n, was posed by K. Zarankiewiz, Colloquium Mathemati�2 (1951), 301, who also onsidered how to avoid more general submatries of 1s.℄Let's all that value Z(m;n)� 1; then Z(m;n) is the smallest r suh that everym� n matrix with r nonzero entries ontains a quad.We've atually enountered examples of this problem before, but in a dis-guised form. For example (see exerise 448), a Steiner triple system on v objetsexists if and only if v is odd and there is a quad-free matrix with m = v,n = v(v � 1)=6, and r = v(v � 1)=2. Other ombinatorial blok designs havesimilar haraterizations.Table 5 shows the values of Z(m;n) for small ases. These values were dis-overed by deliate ombinatorial reasoning, without omputer assistane; so it'sinstrutive to see how well a SAT solver an ompete against real intelligene.The �rst interesting ase ours when m = n = 8: One an plae 24markers on a hessboard without forming a quad, but Z(8; 8) = 25 markers is toomany. If we simply add the ardinality onstraintsPmi=1Pnj=1 xij � r to (184),Algorithm C will quikly �nd a solution when m = n = 8 and r = 24. But itbogs down when r = 25, requiring about 10 teramems to show unsatis�ability.Fortunately we an take advantage of m!n! symmetries, whih permute rowsand olumns without a�eting quads. Exerise 495 shows that those symmetries
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7.2.2.2 SATISFIABILITY: SATISFIABILITY-PRESERVING MAPS 107 GuyErdosKatonaNowakowskiSatis�ability-preserving transformations{Symmetryonditional symmetry, see endomorphismendomorphismTable 5Z(m;n), THE MINIMUM NUMBER OF 1S WITH (184) UNSATISFIABLEn = 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27m = 2: 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29m = 3: 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31m = 4: 6 8 10 11 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34m = 5: 7 9 11 13 15 16 18 19 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38m = 6: 8 10 13 15 17 19 20 22 23 25 26 28 29 31 32 33 34 35 36 37 38 39 40 41 42 43m = 7: 9 11 14 16 19 22 23 25 26 28 29 31 32 34 35 37 38 40 41 43 44 45 46 47 48 49m = 8: 10 12 15 18 20 23 25 27 29 31 33 34 36 37 39 40 42 43 45 46 48 49 51 52 54 55m = 9: 11 13 16 19 22 25 27 30 32 34 37 38 40 41 43 44 46 47 49 50 52 53 55 56 58 59m = 10: 12 14 17 21 23 26 29 32 35 37 40 41 43 45 47 48 50 52 53 55 56 58 59 61 62 64m = 11: 13 15 18 22 25 28 31 34 37 40 43 45 46 48 51 52 54 56 58 60 61 63 64 66 67 69m = 12: 14 16 19 23 26 29 33 37 40 43 46 49 50 52 54 56 58 61 62 64 66 67 69 71 73 74m = 13: 15 17 20 24 28 31 34 38 41 45 49 53 54 56 58 60 62 65 67 68 80 72 74 76 79 80m = 14: 16 18 21 25 29 32 36 40 43 46 50 54 57 59 61 64 66 69 71 73 74 76 79 81 83 85m = 15: 17 19 22 26 31 34 37 41 45 48 52 56 59 62 65 68 70 73 76 78 79 81 83 86 87 89m = 16: 18 20 23 27 32 35 39 43 47 51 54 58 61 65 68 71 74 77 81 82 84 86 88 91 92 94[Referenes: R. K. Guy, in Theory of Graphs, Tihany 1966, edited by Erd}os and Katona (Aa-demi Press, 1968), 119{150; R. J. Nowakowski, Ph.D. thesis (Univ. of Calgary, 1978), 202.℄allow us to add the lexiographi onstraintsxi1xi2 : : : xin � x(i+1)1x(i+1)2 : : : x(i+1)n; for 1 � i < m; (185)x1jx2j : : : xmj � x1(j+1)x2(j+1) : : : xm(j+1); for 1 � j < n: (186)(Inreasing order, with `�' in plae of `�', ould also have been used, butdereasing order turns out to be better; see exerise 497.) The running time toprove unsatis�ability when r = 25 now dereases dramatially, to only about 50megamems. And it falls to 48 M� if the lexiographi onstraints are shortenedto onsider only the leading 4 elements of a row or olumn, instead of testing all 8.The onstraints of (185) and (186) are useful in satis�able problems too|not in the easy ase m = n = 8, when they aren't neessary, but for example inthe ase m = n = 13 when r = 52: Then they lead Algorithm C to a solutionafter about 200 gigamems, while it needs more than 18 teramems to �nd asolution without suh help. (See exerise 449.)Satis�ability-preserving maps. Let's proeed now to the promised theory ofsymmetry breaking. In fat, we will do more: Symmetry is about permutationsthat preserve strutural properties, but we will onsider arbitrary mappingsinstead. Mappings are more general than permutations, beause they needn't beinvertible. If x = x1 : : : xn is any potential solution to a satis�ability problem,our theory is based on transformations � that map x 7! x� = x01 : : : x0n, wherex� is required to be a solution whenever x is a solution.In other words, if F is a family of lauses on n variables and if f(x) =[x satis�es F ℄, then we are interested in all mappings � for whih f(x) � f(x�).Suh a mapping is onventionally alled an endomorphism of the solutions.* If an* This word is a bit of a mouthful. But it's easier to say \endomorphism" than to say\satis�ability-preserving transformation," and you an use it to impress your friends. Theterm \onditional symmetry" has also been used by several authors in speial ases.
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108 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 automorphismpi as soure of \random"ylesoriented treedigraphsink omponentsstrongly onneted omponentsorbitssweeptraesubmatrix
endomorphism � is atually a permutation, it's alled an automorphism. Thus,if there are K solutions to the problem, out of N = 2n possibilities, the totalnumber of mappings is NN ; the total number of endomorphisms is KKNN�K ;and the total number of automorphisms is K! (N �K)!.Notie that we don't require f(x) to be exatly equal to f(x�). An endomor-phism is allowed to map a nonsolution into a solution, and onlyKK(N�K)N�Kmappings satisfy that stronger property. On the other hand, automorphismsalways do satisfy f(x) = f(x�); see exerise 454.Here, for instane, is a more-or-less random mapping when n = 4:00000001 0010 00110100 0101 0110 0111 100010011010101111001101 11101111 (187)Exerises 455 and 456 disuss potential endomorphisms of this mapping.In general there will be one or more yles, and every element of a yle isthe root of an oriented tree that leads to it. For example, the yles of (187) are(0011), (1010 0101 0110), and (1000).Several di�erent endomorphisms �1, �2, : : : , �p are often known. In suhases it's helpful to imagine the digraph with 2n verties that has ars from eahvertex x to its suessors x�1, x�2, : : : , x�p. This digraph will have one or moresink omponents, whih are strongly onneted omponents Y from whih thereis no esape: If x 2 Y then x�k 2 Y for 1 � k � p. (In the speial ase where eah�k is an automorphism, the sink omponents are traditionally alled orbits of theautomorphism group.) When p = 1, a sink omponent is the same as a yle.The lauses F are satis�able if and only if f(x) = 1 for at least one x. Suhan x will lead to at least one sink omponent Y, all of whose elements will satisfyf(y) = 1. Thus it suÆes to test satis�ability by heking just one element y inevery sink omponent Y, to see if f(y) = 1.Let's onsider a simple problem based on the \sweep" of anm�nmatrixX =(xij), whih is the largest diagonal sum of any t� t submatrix:sweep(X) = max1�i1<i2<���<it�m1�j1<j2<���<jt�n (xi1j1 + xi2j2 + � � �+ xitjt): (188)WhenX is binary, sweep(X) is the length of the longest downward-and-rightwardpath that passes through its 1s. We an use satis�ability to deide whether suha matrix exists having sweep(X) � k and Pmi=1Pnj=1 xij � r, givenm, n, k, and r; suitable lauses are exhibited in exerise 460. Asolution with m = n = 10, k = 3, and r = 51 appears at the right: Ithas 51 1s, but no four of them lie in a monotoni southeasterly path. 0000111111000010001100001001110001101101011111100111111000011010000011101000001011101111101111100000This problem has 2mn andidate matries X , and experimentswith small m and n suggest several endomorphisms that an beapplied to suh andidates without inreasing the sweep.� �1: If xij = 1 and xi(j+1) = 0, and if xi0j = 0 for 1 � i0 < i, we an setxij  0 and xi(j+1)  1.� �2: If xij = 1 and x(i+1)j = 0, and if xij0 = 0 for 1 � j0 < j, we an setxij  0 and x(i+1)j  1.
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7.2.2.2 SATISFIABILITY: SATISFIABILITY-PRESERVING MAPS 109 auxiliary variableslexiographiallyswoopTheory and pratieperfet mathingexat over by pairs+4-yle� �3: If the 2� 2 submatrix in rows fi; i+1g and olumns fj; j +1g is 1110, wean hange it to 0111.These transformations are justi�ed in exerise 462. They're sometimes appliablefor several di�erent i and j; for instane, �3 ould be used to hange any of eightdi�erent 2�2 submatries in the example solution. In suh ases we make an ar-bitrary deision, by hoosing (say) the lexiographially smallest possible i and j.The lauses that enode this problem have auxiliary variables besides xij ;but we an ignore the auxiliary variables when reasoning about endomorphisms.Eah of these endomorphisms either leaves X unhanged or replaes it by alexiographially smaller matrix. Therefore the sink omponents of f�1; �2; �3gonsist of the matriesX that are �xed points of all three transformations. Henewe're allowed to append additional lauses, stating that neither �1 nor �2 nor �3is appliable. For instane, transformation �3 is ruled out by the lausesm�1̂i=1 n�1̂j=1(�xij _ �xi(j+1) _ �x(i+1)j _ x(i+1)(j+1)); (189)whih state that the submatrix 1110 doesn't appear. The lauses for �1 and �2 areonly a bit more ompliated (see exerise 461).These additional lauses give interesting answers in satis�able instanes,although they aren't really helpful running-time-wise. On the other hand, they'respetaularly suessful when the problem is unsatis�able.For example, we an show, without endomorphisms, that the ase m = n =10, k = 3, r = 52 is impossible, and hene that any solution for r = 51 isoptimum; Algorithm C proves this after about 16 gigamems of work. Addingthe lauses for �1 and �2, but not �3, inreases the running time to 23G�; onthe other hand the lauses for �3 without �1 or �2 redue it to 6G�. When weuse all three endomorphisms simultaneously, however, the running time to proveunsatis�ability goes down to just 3.5 megamems, a speedup of more than 4500.Even better is the fat that the �xed points of f�1; �2; �3g atually have anextremely simple form|see exerise 463| from whih we an readily determinethe answer by hand, without running the mahine at all! Computer experimentshave helped us to guess this result; but one we've proved it, we've solvedin�nitely many ases in one fell swoop. Theory and pratie are synergisti.Another interesting example arises when we want to test whether or nota given graph has a perfet mathing, whih is a set of nonoverlapping edgesthat exatly touh eah vertex. We'll disuss beautiful, eÆient algorithms forthis problem in Setions 7.5.1 and 7.5.5; but it's interesting to see how well asimple-minded SAT solver an ompete with those methods.Perfet mathing is readily expressible as a SAT problem whose variables arealled `uv', one for eah edge u���v. Variables `uv' and `vu' are idential. When-ever the graph ontains a 4-yle v0���v1���v2��� v3��� v0, we might inludetwo of its edges fv0v1; v2v3g in the mathing; but we ould equally well have in-luded fv1v2; v3v0g instead. Thus there's an endomorphism that says, \If v0v1 =v2v3 = 1 (hene v1v2 = v3v0 = 0), set v0v1  v2v3  0 and v1v2  v3v0  1."
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110 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 dominoesgrid graphmutilated hessboardDanthevRiisresolution refutationAnd we an arry this idea further: Let the edges be totally ordered in somearbitrary fashion, and for eah edge uv onsider all 4-yles in whih uv is thelargest edge. In other words, we onsider all yles of the form u���v���u0���v0���u in whih vu0, u0v0, v0u all preede uv in the ordering. If any suh ylesexist, hoose one of them arbitrarily, and let �uv be one of two endomorphisms:��uv : \If uv = u0v0 = 1, set uv  u0v0  0 and vu0  v0u 1."�+uv : \If vu0 = v0u = 1, set uv  u0v0  1 and vu0  v0u 0."Either ��uv or �+uv is stipulated, for eah uv. Exerise 465 proves that a perfetmathing is in the sink omponent of any suh family of endomorphisms if andonly if it is �xed by all of them. Therefore we need only searh for �xed points.For example, onsider the problem of overing anm�n board with dominoes.This is the problem of �nding a perfet mathing on the grid graph Pm Pn. Thegraph has mn verties (i; j), with m(n� 1) \horizontal" edges hij from (i; j) to(i; j+1) and (m� 1)n \vertial" edges vij from (i; j) to (i+1; j). It has exatly(m � 1)(n � 1) 4-yles; and if we number the edges from left to right, no two4-yles have the same largest edge. Therefore we an onstrut (m� 1)(n� 1)endomorphisms, in eah of whih we're free to deide whether to allow a parti-ular yle to be �lled by two horizontal dominoes or by two vertial ones.Let's stipulate that hij and h(i+1)j are allowed together only when i + jis odd; vij and vi(j+1) are allowed together only when i + j is even. The nineendomorphisms when m = n = 4 are then7! 7! 7! 7! 7! 7! 7! 7! 7! . (190)And it's not diÆult to see that only one 4� 4 domino overing is �xed by allnine. Indeed (exerise 466), the solution turns out to be unique for all m and n.The famous problem of the \mutilated hessboard" asks for a domino ov-ering when two opposite orner ells have been removed. This problem isunsatis�able when m and n are both even, by exerise 7.1.4{213. But a SATsolver an't disover this fat quikly from the lauses alone, beause there aremany ways to get quite lose to a solution; see the disussion following 7.1.4{(130). [S. Danthev and S. Riis, in FOCS 42 (2001), 220{229, have proved in fatthat every resolution refutation of these lauses requires 2
(n) steps.℄When Algorithm C is presented with mutilated boards of sizes 6� 6, 8� 8,10� 10, : : : , 16� 16, it needs respetively about 55K�, 1:4M�, 31M�, 668M�,16:5G�, and :91T� (that's teramems) to prove unsatis�ability. The even-oddendomorphisms typi�ed by (190) ome to our resue, however: They narrow thesearh spae spetaularly, reduing the respetive running times to only 15K�,60K�, 135K�, 250K�, 470K�, 690K� (that's kilomems). They even an verifythe unsatis�ability of a mutilated 256�256 domino over after fewer than 4:2G�of alulation, exhibiting a growth rate of roughly O(n3).
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7.2.2.2 SATISFIABILITY: SATISFIABILITY-PRESERVING MAPS 111 lexiographiallylex-leadersigned permutationspermuting variables and/or omplementing themliteralsorder rEndomorphisms an also speed up SAT solving in another important way:Theorem E. Let p1p2 : : : pn be any permutation of f1; 2; : : : ; ng. If the Bool-ean funtion f(x1; x2; : : : ; xn) is satis�able, then it has a solution suh thatxp1xp2 : : : xpn is lexiographially less than or equal to x0p1x0p2 : : : x0pn for everyendomorphism of f that takes x1x2 : : : xn 7! x01x02 : : : x0n.Proof. The lexiographially smallest solution of f has this property.Maybe we shouldn't all this a \theorem"; it's an obvious onsequene of thefat that endomorphisms always map solutions into solutions. But it deserves tobe remembered and plaed on some sort of pedestal, beause we will see that ithas many useful appliations.Theorem E is extremely good news, at least potentially, beause everyBoolean funtion has a huge number of endomorphisms. (See exerise 457.)On the other hand, there's a ath: We almost never know any of those endo-morphisms until after we've solved the problem! Still, whenever we do happento know one of the zillions of nontrivial endomorphisms that exist, we're allowedto add lauses that narrow the searh. There's always a \lex-leader" solutionthat satis�es x1x2 : : : xn � x01x02 : : : x0n, if there's any solution at all.A seond diÆulty that takes some of the shine away from Theorem E isthe fat that most endomorphisms are too ompliated to express neatly aslauses. What we really want is an endomorphism that's nie and simple, sothat lexiographi ordering is equally simple.Fortunately, suh endomorphisms are often available; in fat, they're usuallyautomorphisms|symmetries of the problem|de�ned by signed permutationsof the variables. A signed permutation represents the operation of permutingvariables and/or omplementing them; for example, the signed permutation`�413�2' stands for the mapping (x1; x2; x3; x4) 7! (x�4; x1; x3; x�2) = (�x4; x1; x3; �x2).This operation transforms the states in a muh more regular way than (187):0000 0001 0010 0011 01000101 01100111 10001001 10101011 11001101 11101111 (191)If � takes the literal u into v, we write u� = v; and in suh ases � also takes �uinto �v. Thus we always have �u� = u�. We also write x� for the result of applying� to a sequene x of literals; for example, (x1; x2; x3; x4)� = (�x4; x1; x3; �x2). Thismapping is a symmetry or automorphism of f(x) if and only if f(x) = f(x�)for all x. Exerises 474 and 475 disuss basi properties of suh symmetries; seealso exerise 7.2.1.2{20.Notie that a signed permutation an be regarded as an unsigned permuta-tion of the 2n literals fx1; : : : ; xn; �x1; : : : ; �xng, and as suh it an be written asa produt of yles. For instane, the symmetry �413�2 orresponds to the yles(1�42)(�14�2)(3)(�3). We an multiply signed permutations by multiplying theseyles in the normal way, just as in Setion 1.3.3.The produt �� of two symmetries � and � is always a symmetry. Thus inpartiular, if � is any symmetry, so are its powers �2, �3, et. We say that � hasorder r if �, �2, : : : , �r are distint and �r is the identity. A signed permutation
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112 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 signed involutioninversewaerdenreetionlexiographiAloulRamaniMarkovSakallah
of order 1 or 2 is alled a signed involution; this important speial ase arises ifand only if � is its own inverse (�2 = 1).It's learly easier to work with permutations of 2n literals than to workwith permutations of 2n states x1 : : : xn. The main advantage of a signedpermutation � is that we an test whether or not � preserves the family Fof lauses in a satis�ability problem. If it does, we an be sure that � also is anautomorphism when it ats on all 2n states. (See exerise 492.)Let's go bak to the example waerden (3; 10; 97) that we've often disussedabove. These lauses have an obvious symmetry, whih takes x1x2 : : : x97 7!x97x96 : : : x1. If we don't break this symmetry, Algorithm C typially veri�esunsatis�ability after about 530 M� of omputation. Now Theorem E tells usthat we an also assert that x1x2x3 � x97x96x95, say; but that symmetry-breakerdoesn't really help at all, beause x1 has very little inuene on x97. Fortunately,however, Theorem E allows us to hoose any permutation p1p2 : : : pn on whih tobase lexiographi omparisons. For example, we an assert that x48x47x46 : : : �x50x51x52 : : : |provided that we don't also require x1x2x3 : : : � x97x96x95 : : : .(One �xed global ordering must be used, but the endomorphs an be arbitrary.)Even the simple assertion that x48 � x50, whih is the lause `48 50', utsthe running time down to about 410M�, beause this new lause ombines nielywith the existing lauses 46 48 50, 48 49 50, 48 50 52 to yield the helpful binarylauses 46 50, 49 50, 50 52. If we go further and assert that x48x47 � x50x51, therunning time improves to 345M�. And the next steps x48x47x46 � x50x51x52,: : : , x48x47x46x45x44x43 � x50x51x52x53x54x55 take us down to 290M�, then260M�, 235M�, 220M�; we've saved more than half of the running time by ex-ploiting a single reetion symmetry! Only 16 simple additional lauses, namely48 50; 48a1; 50 a1; 4751 �a1; 47a2 �a1; 51 a2 �a1; 46 52 �a2; : : : ; 4355 �a5are needed to get this speedup, using the eÆient enoding of lex order in (169).Of ourse all good things ome to an end, and we've now reahed the point ofdiminishing returns: Further lauses to assert that x48x47 : : : x42 � x50x51 : : : x56in the waerden (3; 10; 97) problem turn out to be ounterprodutive.A wonderful simpli�ation ours when a symmetry � is a signed involu-tion that has omparatively few 2-yles. Suppose, for example, that � =5�3�241�6�9�8�7; in yle form this is (15)(�1�5)(2�3)(�23)(4)(�4)(6�6)(7�9)(�79)(8�8). Then thelexiographi relation x = x1 : : : x9 � x01 : : : x09 = x� holds if and only if x1x2x6 �x5�x3�x6. The reason is lear, one we look loser (see F. A. Aloul, A. Ramani, I. L.Markov, and K. A. Sakallah, IEEE Trans. CAD-22 (2003), 1117{1137, xIII.C):The relation x1 : : : x9 � x01 : : : x09 means, in this ase, \x1 � x5; if x1 = x5 thenx2 � �x3; if x1 = x5 and x2 = �x3 then x3 � �x2; if x1 = x5, x2 = �x3, and x3 = �x2then x4 � x4; if x1 = x5, x2 = �x3, x3 = �x2, and x4 = x4 then x5 � x1; ifx1 = x5, x2 = �x3, x3 = �x2, x4 = x4, and x5 = x1 then x6 � �x6; if x1 = x5,x2 = �x3, x3 = �x2, x4 = x4, x5 = x1, and x6 = �x6 then we're done for." Withthis expanded desription the simpli�ations are obvious.In general this reasoning allows us to improve Theorem E as follows:
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7.2.2.2 SATISFIABILITY: ONE HUNDRED TEST CASES 113 PugetCrawfordGinsbergLuksRoyZarankiewiz problemquad-freeardinality lausesmonkey wrenh priniplepigeonhole lausestest ases{
Corollary E. Let p1p2 : : : pn be any permutation of f1; 2; : : : ; ng. For everysigned involution � that is a symmetry of lauses F , we an write � in yleform (pi1 �pj1)(�pi1 �pj1)(pi2 �pj2)(�pi2 �pj2) : : : (pit �pjt)(�pit �pjt) (192)with i1 < j1, i2 < j2, : : : , it < jt, i1 < i2 < � � � < it, and with (�pik �pjk )omitted when ik = jk; and we're allowed to append lauses to F that assert thelexiographi relation xpi1xpi2 : : : xpiq � x�pj1x�pj2 : : : x�pjq , where q = t or q isthe smallest k with ik = jk.In the ommon ase when � is an ordinary signless involution, all of the signsan be eliminated here; we simply assert that xpi1 : : : xpit � xpj1 : : : xpjt.This involution priniple justi�es all of the symmetry-breaking tehniquesthat we used above in the pigeonhole and quad-free matrix problems. See, forexample, the details disussed in exerise 495.The idea of breaking symmetry by appending lauses was pioneered by J.-F.Puget [LNCS 689 (1993), 350{361℄, then by J. Crawford, M. Ginsberg, E. Luks,and A. Roy [Int. Conf. Knowledge Representation and Reasoning 5 (1998), 148{159℄, who onsidered unsigned permutations only. They also attempted to dis-over symmetries algorithmially from the lauses that were given as input. Ex-periene has shown, however, that useful symmetries an almost always be bettersupplied by a person who understands the struture of the underlying problem.Indeed, symmetries are often \semanti" rather than \syntati." That is,they are symmetries of the underlying Boolean funtion, but not of the lausesthemselves. In the Zarankiewiz problem about quad-free matries, for example,we appended eÆient ardinality lauses to ensure thatPxij � r; that onditionis symmetri under row and olumn swaps, but the lauses are not.In this onnetion it may also be helpful to mention the monkey wrenh prin-iple: All of the tehniques by whih we've proved quikly that the pigeonholelauses are unsatis�able would have been useless if there had been one morelause suh as (x01 _x11 _ �x22); that lause would have destroyed the symmetry!We onlude that we're allowed to remove lauses from F until reahing asubset of lauses F0 for whih symmetry-breakers S an be added. If F = F0[F1,and if F0 is satis�able () F0 [ S is satis�able, then F0 [ S ` � =) F ` �.One hundred test ases. And now|ta da!| let's get to the limax of thislong story, by looking at how our SAT solvers perform when presented with 100moderately hallenging instanes of the satis�ability problem. The 100 sets oflauses summarized on the next two pages ome from a wide variety of di�erentappliations, many of whih were disussed near the beginning of this setion,while others appear in the exerises below.Every test ase has a ode name, onsisting of a letter and a digit. Table 6haraterizes eah problem and also shows exatly how many variables, lauses,and total literals are involved. For example, the desription of problem A1ends with `2043j24772j55195jU'; this means that A1 onsists of 24772 lauses on 2043variables, having 55195 literals altogether, and those lauses are unsatis�able.Furthermore, sine `24772' is underlined, all of A1's lauses have length 3 or less.
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114 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 test ases, apsule summaries+many items are indexed herebut they don't show in margin!Table 6CAPSULE SUMMARIES OF THE HUNDRED TEST CASESA1. Find x = x1x2 : : : x99 with �x = 27 andno three equally spaed 1s. (See exerise 31.)2043j24772j55195jUA2. Like A1, but x1x2 : : : x100.2071j25197j56147jSB1. Cover a mutilated 10 � 10 board with49 dominoes, without using extra lausesto break symmetry. 176j572j1300jUB2. Like B1, but a 12 � 12 board with71 dominoes. 260j856j1948jUC1. Find an 8-step Boolean hain thatomputes (z2z1z0)2 = x1 + x2 + x3 + x4.(See exerise 479(a).) 384j16944j66336jUC2. Find a 7-step Boolean hain thatomputes the modi�ed full adder funtionsz1, z2, z3 in exerise 481(b). 469j26637j100063jUC3. Like C2, but with 8 steps.572j33675j134868jSC4. Find a 9-step Boolean hain thatomputes zl and zr in the mod-3 additionproblem of exerise 480(b). 678j45098j183834jSC5. Connet A to A, : : : , J to J in Dudeney'spuzzle of exerise 392, (iv). 1980j22518j70356jSC6. Like C5, but move the J in row 8 fromolumn 4 to olumn 5. 1980j22518j70356jUC7. Given binary strings s1, : : : , s50 oflength 200, randomly generated at distanes� rj from some string x, �nd x (seeexerise 502). 65719j577368j1659623jSC8. Given binary strings s1, : : : , s40 oflength 500, inspired by biologial data, �nda string at distane � 42 from eah of them.123540j909120j2569360jUC9. Like C8, but at distane � 43.124100j926200j2620160jSD1. Satisfy fator �fo (18; 19; 111111111111).(See exerise 41.) 1940j6374j16498jUD2. Like D1, but fator lifo . 1940j6374j16498jUD3. Like D1, but (19; 19; 111111111111).2052j6745j17461jSD4. Like D2, but (19; 19; 111111111111).2052j6745j17461jSD5. Solve (x1 : : : x9)2 � (y1 : : : y9)2 6=(x1 : : : x9)2 �0 (y1 : : : y9)2, with two opiesof the same Dadda multipliation iruit.864j2791j7236jUE0. Find an Erd}os disrepany patternx1 : : : x500 (see exerise 482). 1603j9157j27469jSE1. Like E0, but x1 : : : x750. 2556j14949j44845jSE2. Like E0, but x1 : : : x1000.3546j21035j63103jSF1. Satisfy fsnark (99). (See exerise 176.)1782j4161j8913jU

F2. Like F1, but without the lauses(�e1;3_ �f99;3) ^ ( �f1;1_ �e2;1). 1782j4159j8909jSG1. Win Late Binding Solitaire with the\most diÆult winnable deal" in answer 486.1242j22617j65593jSG2. Like G1, but with the most diÆultunwinnable deal. 1242j22612j65588jUG3. Find a test pattern for the fault \B4343stuk at 0" in prod (16; 32). 3498j11337j29097jSG4. Like G3, but for the fault \D13;934 stukat 0." 3502j11349j29127jSG5. Find a 7 � 15 array X0 leading toX3 = as in Fig. 35, having at most 38live ells. 7150j28508j71873jUG6. Like G5, but at most 39 live ells.7152j28536j71956jSG7. Like G5, but X4 = and X0 anbe arbitrary. 8725j33769j84041jUG8. Find a on�guration in the Gameof Life that proves f�(7; 7) = 28 (seeexerise 83). 97909j401836j1020174jSK0. Color the 8 � 8 queen graph with 8olors, using the diret enoding (15) and(16), also foring the olors of all vertiesin the top row. 512j5896j12168jUK1. Like K0, but with the exlusion lauses(17) also. 512j7688j15752jUK2. Like K1, but with kernel lauses insteadof (17) (see answer 14). 512j6408j24328jUK3. Like K1, but with support lausesinstead of (16) (see exerise 399).512j13512j97288jUK4. Like K1, but using the order enodingfor olors. 448j6215j21159jUK5. Like K4, but with the hint lauses(162) appended. 448j6299j21663jUK6. Like K5, but with double lique hints(exerise 396). 896j8559j27927jUK7. Like K1, but with the log enodingof exerise 391(a). 2376j5120j15312jUK8. Like K1, but with the log enodingof exerise 391(b). 192j5848j34968jUL1. Satisfy langford (10). 130j2437j5204jUL2. Satisfy langford 0(10). 273j1020j2370jUL3. Satisfy langford (13). 228j5875j12356jUL4. Satisfy langford 0(13). 502j1857j4320jUL5. Satisfy langford (32). 1472j102922j210068jSL6. Satisfy langford 0(32). 3512j12768j29760jSL7. Satisfy langford (64). 6016j869650j1756964jSL8. Satisfy langford 0(64). 14704j53184j124032jSM1. Color the MGregor graph of order10 (Fig. 33) with 4 olors, using one olor atmost 6 times, via the ardinality onstraints(18) and (19). 1064j2752j6244jU
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7.2.2.2 SATISFIABILITY: ONE HUNDRED TEST CASES 115M2. Like M1, but via (20) and (21).814j2502j5744jUM3. Like M1, but at most 7 times.1161j2944j6726jSM4. Like M2, but at most 7 times.864j2647j6226jSM5. Like M4, but order 16 and at most11 times. 2256j7801j18756jUM6. Like M5, but at most 12 times.2288j8080j19564jSM7. Color the MGregor graph of order 9with 4 olors, and with at least 18 regionsdoubly olored (see exerise 19).952j4539j13875jSM8. Like M7, but with at least 19 regions.952j4540j13877jUN1. Plae 100 nonattaking queens ona 100 � 100 board. 10000j1151800j2313400jSO1. Solve a random open shop shedulingproblem with 8 mahines and 8 jobs, in1058 units of time. 50846j557823j1621693jUO2. Like O1, but in 1059 units.50901j558534j1623771jSP0. Satisfy (99), (100), and (101) form = 20, thereby exhibiting a poset of size20 with no maximal element. 400j7260j22080jUP1. Like P0, but with m = 14 and usingonly the lauses of exerise 228. 196j847j2667jUP2. Like P0, but with m = 12 and usingonly the lauses of exerise 229. 144j530j1674jUP3. Like P2, but omitting the lause(�x31_ �x16_ x36). 144j529j1671jSP4. Like P3, but with m = 20. 400j2509j7827jSQ0. Like K0, but with 9 olors.576j6624j13688jSQ1. Like K1, but with 9 olors.576j8928j18296jSQ2. Like K2, but with 9 olors.576j7200j27368jSQ3. Like K3, but with 9 olors.576j15480j123128jSQ4. Like K4, but with 9 olors.512j7008j24200jSQ5. Like K5, but with 9 olors.512j7092j24704jSQ6. Like K6, but with 9 olors.1024j9672j31864jSQ7. Like K7, but with 9 olors.3168j6776j20800jSQ8. Like K8, but with 9 olors.256j6776j52832jSQ9. Like Q8, but with the log enodingof exerise 391(). 256j6584j42256jSR1. Satisfy rand (3; 1061; 250; 314159).250j1061j3183jSR2. Satisfy rand (3; 1062; 250; 314159).250j1062j3186jU

S1. Find a 4-term disjuntive normal formon fx1; : : : ; x20g that di�ers from (27) butagrees with it at 108 random training points.356j4229j16596jSS2. Like S1, but at 109 points. 360j4310j16760jUS3. Find a sorting network on nineelements that begins with the omparators[1:6℄[2:7℄[3:8℄[4:9℄ and �nishes in �ve moreparallel rounds. (See exerise 64.)5175j85768j255421jUS4. Like S3, but in six more rounds.6444j107800j326164jST1. Find a 24� 100 tatami tiling that spells`TATAMI' as in exerise 118. 2874j10527j26112jST2. Like T1, but 24� 106 and the `I' shouldhave serifs. 3048j11177j27724jUT3. Solve the TAOCP problem of exerise389 with only 4 knight moves.3752j12069j27548jUT4. Like T3, but with 5 knight moves.3756j12086j27598jST5. Find the pixel in row 5, olumn18 of Fig. 37(), the lexiographially lastsolution to the Cheshire Tom problem.8837j39954j100314jST6. Like T5, but olumn 19.8837j39955j100315jUT7. Solve the run-ount extension of theCheshire Tom problem (see exerise 117).25734j65670j167263jST8. Like T7, but �nd a solution that di�ersfrom Fig. 36. 25734j65671j167749jUW1. Satisfy waerden (3; 10; 97). 97j2779j11662jUW2. Satisfy waerden (3; 13; 159).159j7216j31398jSW3. Satisfy waerden (5; 5; 177).177j7656j38280jSW4. Satisfy waerden (5; 5; 178).178j7744j38720jUX1. Prove that the \taking turns"protool (43) gives mutual exlusion forat least 100 steps. 1010j3612j10614jUX2. Prove that assertions � for the four-bitprotool of exerise 101, analogous to (50),are invariant. 129j354j926jUX3. Prove that Bob won't starve in 36 steps,assuming the � of X2. 1652j10552j28971jUX4. Prove that there's a simple 36-steppath with the four-bit protool, assumingthe � of X2. 22199j50264j130404jSX5. Like X4, but 37 steps. 23388j52822j137034jUX6. Like X1, but with Peterson's proto-ol (49) instead of (43). 2218j8020j23222jUX7. Prove that there's a simple 54-steppath with protool (49). 26450j56312j147572jSX8. Like X7, but 55 steps. 27407j58317j152807jU
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Fig. 52. The lauses ofthese test ases bindthe variables togetherin signi�antly di�erentways. (Illustrations byCarsten Sinz.)
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118 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 SinzSATexamples.tgzKnuthwebsiteKnuthlookahead algorithmlause-learning algorithmOf ourse we an't distinguish hard problems from easy ones by simplyounting variables, lauses, and literals. The great versatility with whih lausesan apture logial relationships means that di�erent sets of lauses an lead towildly di�erent phenomena. Some of this immense variety is indiated in Fig. 52,whih depits ten instrutive \variable interation graphs." Eah variable isrepresented by a ball, and two variables are linked when they appear togetherin at least one lause. (Some edges are darker than others; see exerise 506. Forfurther examples of suh 3D visualizations, presented also in olor, see CarstenSinz, Journal of Automated Reasoning 39 (2007), 219{243.)A single SAT solver annot be expeted to exel on all of the many speies ofproblems. Furthermore, nearly all of the 100 instanes in Table 6 are well beyondthe apabilities of the simple algorithms that we began with: Algorithms A, B,and D are unable to rak any of those test ases without needing more than�fty gigamems of omputation, exept for the simplest examples|L1, L2, L5,P3, P4, and X2. Algorithm L, the souped-up re�nement of Algorithm D, alsohas a lot of diÆulty with most of them. On the other hand, Algorithm C doesremarkably well. It polishes o� 79 of the given problems in fewer than ten G�.Thus the test ases of Table 6 are tough, yet they're within reah. Almost allof them an be solved in say two minutes, at most, with methods known today.Complete details an be found in the �le SATexamples.tgz on the author'swebsite, together with many related problems both large and small.Exatly 50 of these 100 ases are satis�able. So we're naturally led to wonderwhether Algorithm W (\WalkSAT") will handle suh ases well. The answer isthat Algorithm W sometimes sueeds brilliantly|espeially on problems C7,C9, L5, L7, M3, M4, M6, P3, P4, Q0, Q1, R1, S1, where it typially outperformsall the other methods we've disussed. In partiular it solved S1 in just 1M�, inthe author's tests, ompared to 25M� by the next best method, Algorithm C; itwon by 15M� versus Algorithm C's 83M� on M3, by 83M� versus Algorithm L's104M� on Q0, by 95M� versus Algorithm C's 464M� on Q1, and by a whopping104M� versus Algorithm C's 7036M� on C7. That was a surprise. WalkSATalso was reasonably ompetitive on problem N1. But in all other ases it wasnowhere near the method of hoie. Therefore we'll onsider only Algorithms Land C in the remainder of this disussion.*When does a lookahead algorithm like Algorithm L outperform a lause-learning algorithm like Algorithm C? Figure 53 shows how they ompare toeah other on our 100 test ases: Eah problem is plotted with Algorithm C'srunning time on the vertial axis and Algorithm L's on the horizontal axis.Thus Algorithm L is the winner for problems that appear above the dotted line.(This dotted line is \wavy" beause times aren't drawn to sale: The kth fastestrunning time is shown as k units from the left of the page or from the bottom.)* There atually are two variants of Algorithm L, beause the alternative heuristis ofexerise 143 must be used for looking ahead when lauses of length 4 or more are present. Weould use exerise 143 even when given all-ternary lauses; but experiene shows that we'd tendto lose a fator of 2 or more by doing so. Our referenes to Algorithm L therefore impliitlyassume that exerise 143 is being applied only when neessary.
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Fig. 53. Comparison ofAlgorithms C and L on100 moderately diÆultsatis�ability problems.



September 23, 2015

120 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 deterministimedianmean running timeaveragetimeoutsinput/outputenodingsqueen graphorder enodingat-most-one
All of these experiments were aborted after 50G�, if neessary, sine manyof these problems ould potentially take enturies before running to ompletion.Thus the test ases for whih Algorithm L timed out appear at the right edge ofFig. 53, and the tough ases for Algorithm C appear at the top. Only E2 and X8were too hard for both algorithms to handle within the spei�ed uto� time.Algorithm L is deterministi: It uses no random variables. However, a slighthange (see exerise 505) will randomize it, beause the inputs an be shu�edas they are in Algorithm C; and we might as well assume that this hange hasbeen made. Then both Algorithms L and C have variable running times. Theywill �nd solutions or prove unsatis�ability more quikly on some runs than onothers, as we've already seen for Algorithm C in Fig. 49.To ompensate for this variability, eah of the runtimes reported in Fig. 53 isthemedian of nine independent trials. Figure 54 shows all 9�100 of the empirialrunning times obtained with Algorithm C, sorted by their median values. Wean see that many of the problems have near-onstant behavior; indeed, the ratiomax/min was less than 2 in 38 of the ases. But 10 ases turned out to be highlyerrati in these experiments, with max=min > 100; problem P4 was atuallysolved one after only 323 kilomems, while another run lasted 339 gigamems!One might expet satis�able problems, suh as P4, to bene�t more fromluky guesses than unsatis�able problems do; and these experiments stronglysupport that hypothesis: Of the 21 problems with max=min > 30, all but P0are satis�able, and all 32 of the problems with max=min < 1:7 are unsatis�able.One might also expet the mean running time (the arithmeti average) to exeedthe median running time, in problems like this|beause bad luk an be signi�-antly bad, though hopefully rare. Yet the mean is atually smaller than the me-dian in 30 ases, about equally distributed between satis�able and unsatis�able.The median is a nie measure beause it is meaningful even in the preseneof oasional timeouts. It's also fair, beause we are able to ahieve the mediantime, or better, more often than not.We should point out that input/output has been exluded from these timeomparisons. Eah satis�ability problem is supposed to appear within a om-puter's memory as a simple list of lauses, after whih the ounting of memsatually begins. We inlude the ost of initializing the data strutures and solvingthe problem, but then we stop ounting before atually outputting a solution.Some of the test ases in Table 6 and Fig. 53 represent di�erent enodingsof the same problem. For example, problems K0{K8 all demonstrate that the8� 8 queen graph an't be olored with 8 olors. Similarly, problems Q0{Q9 allshow that 9 olors will suÆe. We've already disussed these examples abovewhen onsidering alternative enodings; and we noted that the best solutions,K6 and Q5, are obtained with an extended order enoding and with Algorithm C.Therefore the fat that Algorithm L beats Algorithm C on problems K0, K1,K2, and K3 is somewhat irrelevant; those problems won't our in pratie.Problems L5 and L6 ompare di�erent ways to handle the at-most-oneonstraint. L6 is slightly better for Algorithm L, but Algorithm C prefers L5.Similarly, M1 and M2 ompare di�erent ways to deal with a more general
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7.2.2.2 SATISFIABILITY: ONE HUNDRED TEST CASES 121 ardinality onstraintwaerdenLangfordCDCL solverTreengelingdaning linksparallel omputationCPU: Central Proessing Unit (one omputer thread)mitergates
X2K6L5P3T1T2L6P0K5X1M4S1G4N1B1M2L7E0S4L8M3Q2X6F2X4X5M1Q5L1S2S3Q4L2X3G3Q0Q1T4Q9Q3W1Q6M6B2T6D4M5R1F1O2Q8C5D2C3D1T5Q7D3R2O1W3P2C6E1P1G6C9C2K4C1G7C8T7C7T8W2G5G1K1X7K0K2A2K8P4A1T3K7K3W4M8G2D5M7C4G8E2X8L3L4

1 T�:5 T�:2 T�:1 T�50 G�20 G�10 G�5 G�2 G�1 G�:5 G�:2 G�:1 G�50 M�20 M�10 M�5 M�2 M�1 M�Fig. 54. Nine random running times of Algorithm C, sorted by their medians.(Unsatis�able ases have solid dots or squares; satis�able ases are hollow.)ardinality onstraint. Here M2 turns out to be better, although both are quiteeasy for Algorithm C and diÆult for Algorithm L.We've already noted that Algorithm L shines with respet to random prob-lems suh as R1 and R2, and it dominates all ompetitors even more whenunsatis�able random 3SAT problems get even bigger. Lookahead methods arealso suessful in waerden problems like W1{W4.Unsatis�able Langford problems suh as L3 and L4 are de�nitely bêtes noiresfor Algorithm C, although not so bad for Algorithm L. Even the world's fastestCDCL solver, \Treengeling," was unable to refute the lauses of langford (17)in 2013 until it had learned 26.7 billion lauses; this proess took more than aweek, using a luster of 24 omputers working together. By ontrast, the daninglinks method of Setion 7.2.2.1 was able to prove unsatis�ability after fewer than7:2T� of omputation|that's about 90 minutes on a single vintage-2013 CPU.We've now disussed every ase where Algorithm L trumps Algorithm C,exept for D5; and D5 is atually somewhat sandalous! It's an inherently simpleproblem that hardware designers all a \miter": Imagine two idential iruitsthat ompute some funtion f(x1; : : : ; xn), one with gates g1, : : : , gm and anotherwith orresponding gates g01, : : : , g0m, all represented as in (24). The problem isto �nd x1 : : : xn for whih the �nal results gm and g0m aren't equal. It's obviouslyunsatis�able. Furthermore, there's an obvious way to refute it, by suessivelylearning the lauses (�g1_g01), (�g01_g1), (�g2_g02), (�g02_g2), et. In theory, therefore,Algorithm C will almost surely �nish in polynomial time (see exerise 386).But in pratie, the algorithm won't disover those lauses without quite a lotof ailing around, unless speial-purpose tehniques are introdued to help itdisover isomorphi gates.
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122 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 empirial performane measurements++Thus Algorithm C does have an Ahilles heel or two. On the other hand, itis the lear method of hoie in the vast majority of our test ases, and we anexpet it to be the major workhorse for most of the satis�ability problems thatwe enounter in daily work. Therefore it behooves us to understand its behaviorin some detail, not just to look at its total ost as measured in mems.Table 7ALGORITHM C'S EMPIRICAL BEHAVIOR ON THE HUNDRED TEST CASESname runtime bytes ells nodes learned of size triv dis sub ushes sat?X2 0+2 M� 57 K 9 K 2 K 1 K 32:0! 12:0 50% 6% 1% 30 UK6 0+2 M� 314 K 46 K 1 K 0 K 15:8! 11:8 22% 4% 3% 6 UL5 1+1 M� 1841 K 210 K 0 K 0 K 146:1! 38:4 51% 23% 0% 0 SP3 0+2 M� 96 K 19 K 2 K 1 K 18:4! 12:6 4% 11% 1% 45 ST1 0+6 M� 541 K 35 K 3 K 1 K 7:4! 6:8 3% 2% 6% 9 ST2 0+7 M� 574 K 37 K 4 K 1 K 7:2! 6:8 1% 2% 4% 6 UL6 0+8 M� 672 K 39 K 1 K 0 K 195:9! 67:8 86% 0% 0% 0 SP0 0+11 M� 376 K 81 K 8 K 4 K 17:8! 14:7 3% 10% 10% 28 UK5 0+13 M� 294 K 55 K 3 K 2 K 18:6! 12:4 33% 1% 1% 14 UX1 0+13 M� 284 K 38 K 29 K 4 K 6:3! 5:8 0% 3% 8% 53 UM4 0+24 M� 308 K 47 K 6 K 4 K 20:5! 16:3 14% 2% 1% 3 SS1 0+25 M� 366 K 72 K 9 K 4 K 34:0! 26:7 22% 4% 1% 14 SG4 0+29 M� 759 K 76 K 3 K 2 K 37:1! 24:2 26% 0% 0% 1 SN1 16+14 M� 19644 K 2314 K 41 K 0 K 629:3! 291:7 44% 6% 0% 15 SB1 0+31 M� 251 K 55 K 10 K 7 K 13:5! 11:3 3% 5% 4% 14 UM2 0+32 M� 326 K 53 K 7 K 5 K 18:2! 12:8 20% 1% 1% 6 UL7 12+23 M� 14695 K 1758 K 2 K 1 K 411:2! 107:6 66% 4% 0% 0 SE0 0+40 M� 571 K 95 K 5 K 3 K 30:2! 19:3 14% 11% 0% 6 SS4 1+69 M� 3291 K 600 K 6 K 2 K 17:2! 12:6 19% 1% 1% 8 SL8 1+72 M� 3047 K 224 K 3 K 2 K 547:9! 169:1 87% 0% 0% 0 SM3 0+83 M� 493 K 84 K 13 K 9 K 28:4! 19:2 31% 0% 1% 1 SQ2 0+87 M� 885 K 190 K 11 K 8 K 61:7! 45:8 36% 0% 0% 11 SX6 0+93 M� 775 K 122 K 86 K 17 K 13:5! 11:4 0% 3% 3% 32 UF2 0+95 M� 714 K 118 K 42 K 22 K 14:3! 13:1 0% 2% 4% 5 SX4 1+98 M� 3560 K 158 K 24 K 3 K 16:2! 11:4 9% 2% 3% 623 SX5 1+106 M� 3747 K 166 K 23 K 3 K 16:5! 11:0 11% 3% 3% 726 UM1 0+131 M� 483 K 84 K 16 K 12 K 23:2! 13:4 33% 1% 0% 1 UQ5 0+143 M� 708 K 157 K 13 K 11 K 28:8! 23:6 21% 2% 2% 6 SL1 0+157 M� 597 K 139 K 21 K 18 K 36:7! 19:0 60% 3% 0% 30 US2 0+176 M� 722 K 161 K 29 K 17 K 37:5! 27:5 33% 3% 1% 8 US3 1+201 M� 2624 K 471 K 12 K 6 K 14:5! 9:8 21% 1% 2% 1 UQ4 0+213 M� 781 K 175 K 19 K 16 K 29:2! 23:3 25% 3% 1% 6 SL2 0+216 M� 588 K 136 K 23 K 20 K 36:2! 17:4 75% 1% 0% 6 UX3 0+235 M� 1000 K 191 K 61 K 25 K 37:7! 19:3 34% 1% 2% 14 UG3 0+251 M� 1035 K 145 K 12 K 9 K 57:9! 28:1 42% 1% 0% 0 SQ0 0+401 M� 1493 K 342 K 37 K 28 K 63:3! 40:0 50% 0% 0% 14 SQ1 0+464 M� 1516 K 343 K 41 K 33 K 63:0! 41:0 45% 0% 0% 14 ST4 0+546 M� 2716 K 544 K 202 K 18 K 218:3! 61:5 83% 1% 0% 3018 SQ9 0+555 M� 1409 K 343 K 152 K 71 K 26:7! 20:6 3% 5% 2% 99 SQ3 0+613 M� 1883 K 448 K 27 K 22 K 60:1! 40:3 41% 1% 1% 7 SW1 0+626 M� 848 K 208 K 71 K 63 K 20:8! 13:4 5% 14% 1% 28 UQ6 0+646 M� 1211 K 266 K 40 K 35 K 30:4! 23:2 30% 1% 1% 2 SM6 0+660 M� 1378 K 266 K 80 K 52 K 34:0! 22:2 33% 1% 1% 59 SB2 0+668 M� 906 K 216 K 96 K 75 K 17:1! 13:2 4% 5% 2% 16 UT6 1+668 M� 2355 K 291 K 34 K 25 K 41:4! 19:1 57% 0% 1% 11 UD4 0+669 M� 1009 K 186 K 35 K 28 K 55:7! 15:9 70% 0% 0% 2 SM5 0+677 M� 1183 K 219 K 73 K 48 K 32:6! 20:2 37% 1% 1% 139 UR1 0+756 M� 913 K 220 K 87 K 74 K 17:3! 12:4 3% 8% 0% 9 SF1 0+859 M� 1485 K 311 K 218 K 135 K 17:6! 15:1 1% 3% 3% 6 UO2 7+1069 M� 18951 K 3144 K 3 K 2 K 17:0! 9:5 35% 0% 0% 1 SQ8 0+1107 M� 1786 K 437 K 184 K 109 K 29:4! 20:2 6% 6% 1% 109 S
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7.2.2.2 SATISFIABILITY: ONE HUNDRED TEST CASES 123C5 0+1127 M� 1987 K 419 K 159 K 104 K 24:4! 16:5 12% 2% 1% 776 SD2 0+1159 M� 962 K 177 K 54 K 45 K 51:8! 11:5 73% 0% 0% 2 UC3 0+1578 M� 2375 K 571 K 190 K 96 K 49:7! 23:4 39% 3% 2% 11 SD1 0+1707 M� 1172 K 230 K 76 K 62 K 45:1! 11:6 73% 0% 0% 2 UT5 1+1735 M� 3658 K 617 K 80 K 59 K 72:5! 40:9 50% 0% 0% 43 SQ7 0+1761 M� 2055 K 419 K 515 K 118 K 33:9! 20:3 9% 7% 0% 12 SD3 0+1807 M� 1283 K 254 K 77 K 64 K 57:3! 14:0 80% 0% 0% 1 SR2 0+1886 M� 1220 K 296 K 173 K 149 K 17:0! 11:8 3% 9% 0% 14 UO1 7+2212 M� 18928 K 3140 K 5 K 3 K 17:3! 8:9 39% 0% 0% 4 UW3 0+2422 M� 1819 K 448 K 191 K 174 K 19:3! 15:5 2% 12% 1% 18 SP2 0+2435 M� 2039 K 504 K 378 K 301 K 20:9! 13:7 3% 11% 1% 45 UC6 0+2792 M� 2551 K 560 K 305 K 217 K 27:0! 17:0 20% 2% 1% 492 UE1 0+2902 M� 2116 K 453 K 180 K 144 K 38:0! 20:5 21% 18% 0% 2 SP1 0+3280 M� 2726 K 674 K 819 K 549 K 18:2! 14:4 0% 9% 3% 45 UG6 1+3941 M� 3523 K 647 K 380 K 253 K 31:0! 17:8 31% 0% 0% 0 SC9 13+4220 M� 35486 K 4923 K 116 K 32 K 11:8! 9:9 5% 1% 1% 4986 SC2 0+4625 M� 2942 K 712 K 442 K 255 K 46:1! 18:8 42% 4% 1% 15 UK4 0+5122 M� 1858 K 446 K 267 K 241 K 19:6! 13:7 19% 2% 1% 5 UC1 0+5178 M� 2532 K 613 K 510 K 311 K 48:9! 17:0 48% 6% 1% 20 UG7 1+6070 M� 4227 K 771 K 546 K 369 K 32:5! 17:6 35% 0% 0% 0 UC8 13+6081 M� 35014 K 4823 K 151 K 58 K 15:3! 10:7 15% 1% 1% 8067 UT7 1+6467 M� 5428 K 544 K 333 K 108 K 26:8! 15:3 32% 1% 1% 14565 SC7 8+7029 M� 20971 K 3174 K 908 K 32 K 9:5! 8:4 0% 3% 0% 4965 ST8 1+7046 M� 5322 K 517 K 356 K 117 K 26:9! 15:0 33% 0% 1% 15026 UW2 0+7785 M� 3561 K 884 K 501 K 432 K 34:7! 21:3 13% 17% 1% 28 SG5 1+7799 M� 4312 K 844 K 642 K 446 K 33:4! 17:4 39% 0% 0% 0 UG1 0+8681 M� 5052 K 1221 K 631 K 350 K 61:1! 34:1 38% 1% 2% 55 SK1 0+9813 M� 2864 K 685 K 405 K 360 K 36:2! 18:4 53% 2% 0% 13 UX7 1+11857 M� 6235 K 697 K 1955 K 224 K 40:6! 23:7 35% 0% 1% 31174 SK0 0+11997 M� 3034 K 731 K 493 K 421 K 35:6! 19:4 45% 2% 0% 14 UK2 0+12601 M� 3028 K 729 K 500 K 427 K 34:8! 18:0 46% 2% 0% 12 UA2 0+13947 M� 3766 K 843 K 645 K 585 K 34:4! 15:9 32% 1% 0% 0 SK8 0+15033 M� 2748 K 680 K 821 K 699 K 21:2! 13:1 8% 15% 1% 93 UP4 0+16907 M� 6936 K 1721 K 1676 K 1314 K 36:5! 24:0 5% 11% 1% 33 SA1 0+17073 M� 3647 K 815 K 763 K 701 K 30:7! 14:7 29% 2% 0% 0 UT3 0+19266 M� 10034 K 2373 K 2663 K 323 K 291:8! 72:9 86% 1% 0% 34265 UK7 0+20577 M� 3168 K 721 K 1286 K 828 K 23:3! 13:5 9% 15% 0% 9 UK3 0+20990 M� 3593 K 878 K 453 K 407 K 36:7! 19:0 55% 2% 0% 6 UW4 0+21295 M� 3362 K 834 K 977 K 899 K 19:0! 14:1 4% 15% 0% 21 UM8 0+22281 M� 4105 K 994 K 992 K 785 K 37:3! 20:5 43% 1% 1% 6 UG2 0+23424 M� 6910 K 1685 K 1198 K 701 K 68:8! 34:3 47% 1% 1% 120 UD5 0+24141 M� 3232 K 779 K 787 K 654 K 63:5! 13:4 78% 0% 0% 2 UM7 0+24435 M� 4438 K 1077 K 1047 K 819 K 40:6! 23:3 42% 1% 1% 6 SC4 1+31898 M� 8541 K 2108 K 1883 K 1148 K 60:6! 25:7 42% 4% 1% 12 SG8 7+35174 M� 24854 K 2992 K 4350 K 1101 K 48:0! 34:7 9% 0% 0% 1523 SE2 0+53739 M� 5454 K 1258 K 2020 K 1658 K 41:5! 20:8 25% 21% 0% 3 SX8 2+248789 M� 12814 K 2311 K 17005 K 3145 K 56:4! 22:5 63% 0% 0% 330557 UL3 0+295571 M� 19653 K 4894 K 7402 K 6886 K 70:7! 31:0 63% 8% 0% 30 UL4 0+677815 M� 22733 K 5664 K 8545 K 7931 K 78:6! 35:4 86% 0% 0% 5 Uname runtime bytes ells nodes learned of size triv dis sub ushes sat?Table 7 summarizes the salient statistis, again listing all ases in order oftheir median running time (exlusive of input and output). Eah running timeis atually broken into two parts, `x+y', where x is the time to initialize thedata strutures in step C1 and y is the time for the other steps, both roundedto megamems. For example, the exat median proessing time for ase L5was 1,484,489� to initialize, then 655,728� to �nd a solution; this is shownas `1+1M�' in the third line of the table. The time for initialization is usuallynegligible exept when there are many lauses, as in problem N1.
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124 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 MEMbinary lausesBIMPsearh treedeision tree, see searh treenodesdeisionslearned lausesonitslevelstrivialsubsumed on the yon-the-y subsumptionrestartushingtrailagility levelpurgesreyling phasestuning of parameters{parameters, tuning of{

The median run of problem L5 also alloated 1,841,372 bytes of memory fordata; this total inludes the spae needed for 210,361 ells in the MEM array, at4 bytes per ell, together with other arrays suh as VAL, OVAL, HEAP, et. Theimplementation onsidered here keeps unlearned binary lauses in a separateBIMP table, as explained in the answer to exerise 267.This run of L5 found a solution after impliitly traversing a searh tree with138 \nodes." The number of nodes, or \deisions," is the number of times step C6of the algorithm goes to step C3. It is shown as `0K' in Table 7, beause thenode ounts, byte ounts, and ell ounts are rounded to the nearest thousand.The number of nodes always exeeds or equals the number of learned lauses,whih is the number of onits deteted at levels d > 0. (See step C7.) In thease of problem L5, only 84 lauses were learned; so again the table reports `0K'.These 84 lauses had average length r+1 = 146:1; then the simpli�ation proessof exerise 257 redued this average to just 38.4. Nevertheless, the resultingsimpli�ed lauses were still suÆiently long that the \trivial" lauses disussedin exerise 269 were sometimes used instead; this substitution happened 43times (51%). Furthermore 19 of the learned lauses (23%) were immediatelydisarded, using the method of exerise 271. These perentages show up in the`triv' and `dis' olumns of the table.Sometimes, as in problems D1{D5, a large majority of the learned lauseswere replaed by trivial ones; on the other hand, 27 of the 100 ases turned outto be less than 10% trivial in this sense. Table 7 also shows that the disardrate was 5% or more in 26 ases. The `sub' olumn refers to learned lauses thatwere \subsumed on the y" by the tehnique of exerise 270; this optimizationis less ommon, yet it ours often enough to be worthwhile.The great variety in our examples is reeted in the variety of behaviors ex-hibited in Table 7, although several interesting trends an also be pereived. Forexample, the number of nodes is naturally orrelated with the number of learnedlauses, and both statistis tend to grow as the total running time inreases. Butthere are signi�ant exeptions: Two outliers, O1 and O2, have a remarkablyhigh ratio of mems per learned lause, beause of their voluminous data.The penultimate olumn of Table 7 ounts how often Algorithm C deidedto restart itself after ushing unprodutive literals from its urrent trail. Thisquantity does not simply represent the number of times step C5 disovers thatM � Mf ; it depends also on the urrent agility level (see (127)) and on theparameter  in Table 4. Some problems, like A1 and A2, had suh high agilitythat they were solved satisfatorily with no restarts whatsoever; but anotherone, T4, �nished in about 500 megamems after restarting more than 3000 times.The number of \purges" (reyling phases) is not shown, but it an beestimated from the number of learned lauses (see exerise 508). An aggressivepurging poliy has kept the total number of memory ells omfortably small.Tuning up the parameters. Table 7 shows that the hardest problem of all forAlgorithm C in these experiments, L4, found itself substituting trivial lauses86% of the time but making only 5 restarts. That test ase would probably have
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7.2.2.2 SATISFIABILITY: TUNING THE PARAMETERS 125 Langford problemRANGE sorestradeo�sdamping fatorsACT soresativity sorespurging thresholdtrivial lauseswarmup runsrestartsrandom deision variablesinitial guess for literalsOVALagility thresholddefaultsauthorHutterHoosLeyton-BrownSt�utzleParamILSILSiterated loal searhtraining setrandom walksWalkSAT

been solved muh more quikly if the algorithm's parameters had been speiallyadjusted for instanes of the Langford problem.Algorithm C, as implemented in the experiments above, has ten majorparameters that an be modi�ed by the user on eah run:�; tradeo� between p and q in lause RANGE sores (see Eq. (123));�; damping fator in variable ACT sores (see after (118));%; damping fator in lause ACT sores (see Eq. (125));�p; initial value of the purging threshold Mp (see after (125));Æp; amount of gradual inrease in Mp (see after (125));�; threshold used to prefer trivial lauses (see answer to exerise 269);w; full \warmup" runs done after a restart (see answer to exerise 287);p; probability of hoosing a deision variable at random (see exerise 266);P; probability that OVAL(k) is initially even; ; agility threshold for ushing (see Table 4).The values for these parameters initially ame from seat-of-the-pants guesses� = 0:2; � = 0:95; % = 0:999; �p = 20000; Æp = 500;� = 1; w = 0; p = 0:02; P = 0;  = 0:166667; (193)and these defaults gave reasonably good results, so they were used happily formany months (although there was no good reason to believe that they ouldn't beimproved). Then �nally, after the author had assembled the set of 100 test asesin Table 6, it was time to deide whether to reommend the default values (193)or to ome up with a better set of numbers.Parameter optimization for general broad-spetrum use is a daunting task,not only beause of signi�ant di�erenes between speies of SAT instanes butalso beause of the variability due to random hoies when solving any spei�instane. It's hard to know whether a hange of parameter will be bene�ial orharmful, when running times are so highly errati. Ouh|Fig. 54 illustratesdramati variations even when all ten parameters are held �xed, and only theseed for random numbers is hanged! Furthermore the ten parameters are notat all independent: An inrease in �, say, might be a good thing, but only if theother nine parameters are also modi�ed appropriately. How then ould any setof defaults be reommended, without an enormous expense of time and money?Fortunately there's a way out of this dilemma, thanks to advanes in thetheory of learning. F. Hutter, H. H. Hoos, K. Leyton-Brown, and T. St�utzle havedeveloped a tool alled ParamILS intended spei�ally for making suh tuneups[J. Arti�ial Intelligene Researh 36 (2009), 267{306℄; the `ILS' in this namestands for \iterated loal searh." The basi idea is to start with a representativetraining set of not-too-hard problems, and to arry out random walks in the 10-dimensional parameter spae using sophistiated re�nements of WalkSAT-likepriniples. The best parameters disovered during this training session are thenevaluated on more diÆult problems outside the training set.
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126 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 Hoosauthortraining setSGBbook graphsforty-two...defaultstradeo�sdamping fatorsheuristi soresadaptive ontroltriggerdouble-looking aheadATPGtest pattern generation
In Marh 2015, Holger Hoos helped the author to tune Algorithm C usingParamILS. The resulting parameters then yielded Fig. 54, and Table 7, and manyother runtime values disussed above and below. Our training set onsistedof 17 problems that usually ost less than 200M� with the original parame-ters (193), namely fK5;K6;M2;M4;N1; S1; S4;X4;X6g together with stripped-down versions of fA1;C2;C3;D1;D2;D3;D4;K0g. For example, instead of thevetor x1 : : : x100 required by problem A1, we looked only for a shorter vetorx = x1 : : : x62, now with �x = 20; instead of D1 and D2 we sought 13-bit fatorsof 31415926; instead of K0 we tried to 9-olor the SGB graph jean.Ten independent training runs with ParamILS gave ten potential parametersettings (�i; �i; : : : ;  i). We evaluated them on our original 17 benhmarks,together with 25 others that were a bit more diÆult: fF1;F2; S2; S3;T4;X5g,plus less-stripped-down variants of fA1;A2;A2;C7;C7;D3;D4;F1;F2;G1;G1;G2;G2;G8;K0;O1;O2;Q0;Q2g. For eah of the ten shortlisted parameter set-tings, we ran eah of these 17 + 25 problems with eah of the random seedsf1; 2; : : : ; 25g. Finally, hurray, we had a winner: The parameters (�i; �i; : : : ;  i)with minimum total running time in this experiment were� = 0:4; � = 0:9; % = 0:9995; �p = 1000; Æp = 500;� = 10; w = 0; p = 0:02; P = 0:5;  = 0:05: (194)And these are now the reommended defaults for general-purpose use.How muh have we thereby gained? Figure 55 ompares the running times ofour 100 examples, before and after tuning. It shows that the vast majority|77of them|now run faster; these are the ases to the right of the dotted line from(1M�; 1M�) to (1T�; 1T�). Half of the ases experiene a speedup exeeding1.455; 27 of them now run more than twie as fast as they previously did.Of ourse every rule has exeptions. The behavior of ase P4 has gottenspetaularly worse, almost three orders of magnitude slower! Indeed, we sawearlier in Fig. 54 that this ase has an amazingly unstable running time; furtherpeuliarities of P4 are disussed in exerise 511.Our other major SAT solver, Algorithm L, also has parameters, notably�; magi tradeo� oeÆient in heuristi sores (see Eq. (64));�; damping fator for double-look triggering (see step Y1);; lause weight per literal in heuristi sores (see exerise 175);"; o�set in heuristi sores (see answer to exerise 146);�; maximum heuristi sore threshold (see answer to exerise 145);Y; maximum depth of double-lookahead (see step Y1).ParamILS suggests the following default values, whih have been used in Fig. 53:� = 3:5; � = 0:9998;  = 0:2; " = 0:001; � = 20:0; Y = 1: (195)Returning to Fig. 55, notie that the hange from (193) to (194) has substan-tially hindered ases G3 and G4, whih are examples of test pattern generation.Evidently suh lauses have speial harateristis that make them prefer speial
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Fig. 55. Median running timesof Algorithm C, before and afterits parameters were tuned.

settings of the parameters. Our main reason for introduing parameters in the�rst plae was, of ourse, to allow tweaking for di�erent families of lauses.Instead of �nding values of (�; �; : : : ;  ) that give good results in a broadspetrum of appliations, we an learly use a system like ParamILS to �ndvalues that are spei�ally tailored to a partiular lass of problems. In fat,this task is easier. For example, Hoos and the author asked for settings of theten parameters that will tend to make Algorithm C do its best on problems ofthe form waerden (3; k;n). A pair of ParamILS runs, based solely on the easytraining ases waerden (3; 9; 77) and waerden (3; 10; 95), suggested the parameters� = 0:5; � = 0:9995; % = 0:99; �p = 100; Æp = 10;� = 10; w = 8; p = 0:01; P = 0:5;  = 0:15; (196)and this set indeed works very well. Figure 56 shows typial details, with 7 �k � 14 and with nine independent sample runs for every hoie of k and n.Eah unsatis�able instane has n =W (3; k), as given in the table following (10)above; eah satis�able instane has n =W (3; k)�1. The fastest run using default
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Fig. 56. Running times of Algo-rithm C on lauses waerden (3; k;n),with and without speial tuning.SAT UNSAT

parameters (194) has been paired in Fig. 56 with the fastest run using waerden -tuned parameters (196); similarly, the seond-fastest, : : : , seond-slowest, andslowest runs have also been paired. Notie that satis�able instanes tend to takean unpreditable amount of time, as in Fig. 54. In spite of the fat that the newparameters (196) were found by a areful study of just two simple instanes, theylearly yield substantial savings when applied to muh, muh harder problemsof a similar nature. (See exerise 512 for another instrutive example.)Exploiting parallelism. Our fous in the present book is almost entirely onsequential algorithms, but we should be aware that the really tough instanes ofSAT are best solved by parallel methods.Problems that are amenable to baktraking an readily be deomposed intosubproblems that partition the spae of solutions. For example, if we have 16proessors available, we an start them o� on independent SAT instanes in whihvariables x1x2x3x4 have been fored to equal 0000, 0001, : : : , 1111.A na��ve deomposition of that kind is rarely the best strategy, however.Perhaps only one of those sixteen ases is really hallenging. Perhaps some of
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7.2.2.2 SATISFIABILITY: HISTORY 129 PSATOZhangBonainaHsiangrandom numbersube and onqueronit-driven lause learninglookaheadHeuleKullmannWieringaBierewaerdenDODGSONtautologoustruth tableQUINEsyllogismSoratesresolutionBooleDodgsonCarrolleliminate variablesDodgsonBartleyMethod of TreesCarrollbaktraking

the proessors are slower than others. Perhaps several proessors will learn newlauses that the other proessors ought to know. Furthermore, the splitting intosubproblems need not our only at the root of the searh tree. Careful load-balaning and sharing of information will do muh better. These hallenges wereaddressed by a pioneering system alled PSATO [H. Zhang, M. P. Bonaina, andJ. Hsiang, Journal of Symboli Computation 21 (1996), 543{560℄.A muh simpler approah should also be mentioned: We an start up manydi�erent solvers, or many opies of the same solver, with di�erent soures ofrandom numbers. As soon as one has �nished, we an then terminate the others.The best parallelized SAT solvers urrently available are based on the \ubeand onquer" paradigm, whih ombines onit-driven lause learning withlookahead tehniques that hoose branh variables for partitioning; see M. J. H.Heule, O. Kullmann, S. Wieringa, and A. Biere, LNCS 7261 (2012), 50{65. Inpartiular, this approah is exellent for the waerden problems.Today has proved to be an epoh in my Logial work.. . . I think of alling it the `Genealogial Method.'| CHARLES L. DODGSON, Diary (16 July 1894)The method of showing a statement to be tautologousonsists merely of onstruting a table under it in the usual wayand observing that the olumn under the main onnetiveis omposed entirely of `T's.| W. V. O. QUINE, Mathematial Logi (1940)A brief history. The lassi syllogism \All men are mortal; Sorates is a man;hene Sorates is mortal" shows that the notion of resolution is quite anient::Man _ Mortal; :Sorates _ Man; ::: :Sorates _ Mortal:Of ourse, algebrai demonstrations that (:x_y)^(:z_x) implies (:z_y), whenx, y, and z are arbitrary Boolean expressions, had to wait until Boole and his19th-entury followers brought mathematis to bear on the subjet. The mostnotable ontributor, resolutionwise, was perhaps C. L. Dodgson, who spent thelast years of his life working out theories of inferene by whih omplex hains ofreasoning ould be analyzed by hand. He published Symboli Logi, Part I, in1896, addressing it to hildren and to the young-in-heart by using his famous penname Lewis Carroll. Setion VII.II.x3 of that book explains and illustrates howto eliminate variables by resolution, whih he alled the Method of Undersoring.When Dodgson died unexpetedly at the beginning of 1898, his nearly om-plete manusript for Symboli Logi, Part II, vanished until W. W. Bartley IIIwas able to resurret it in 1977. Part II was found to ontain surprisingly novelideas|espeially its Method of Trees, whih would have ompletely hangedthe history of mehanial theorem proving if it had ome to light earlier. In thismethod, whih Carroll doumented at length in a remarkably lear and enter-taining way, he onstruted searh trees essentially like Fig. 39, then onvertedthem into proofs by resolution. Instead of baktraking as in Algorithm D,
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whih is a reursive depth-�rst method, he worked breadth-�rst: Starting at theroot, he exploited unit lauses when possible, and branhed on binary (or eventernary) lauses when neessary, suessively �lling out all un�nished branheslevel-by-level in hopes of being able to reuse omputations.Logiians of the 20th entury took a di�erent tak. They basially dealt withthe satis�ability problem in its equivalent dual form as the tautology problem,namely to deide when a Boolean formula is always true. But they dismissedtautology-heking as a triviality, beause it ould always be solved in a �nitenumber of steps by just looking at the truth table. Logiians were far moreinterested in problems that were provably unsolvable in �nite time, suh asthe halting problem|the question of whether or not an algorithm terminates.Nobody was bothered by the fat that an n-variable funtion has a truth tableof length 2n, whih exeeds the size of the universe even when n is rather small.Pratial omputations with disjuntive normal forms were pioneered byArhie Blake in 1937, who introdued the \onsensus" of two impliants, whihis dual to the resolvent of two lauses. Blake's work was, however, soon forgotten;E. W. Samson, B. E. Mills, and (independently) W. V. O. Quine redisoveredthe onsensus operation in the 1950s, as disussed in exerise 7.1.1{31.The next important step was taken by E. W. Samson and R. K. Mueller[Report AFCRC-TR-55-118 (Cambridge, Mass.: Air Fore Cambridge ResearhCenter, 1955), 16 pages℄, who presented an algorithm for the tautology problemthat uses onsensus to eliminate variables one by one. Their algorithm thereforewas equivalent to SAT solving by suessively eliminating variables via resolu-tion. Samson and Mueller demonstrated their algorithm by applying it to theunsatis�able lauses that we onsidered in (112) above.Independently, Martin Davis and Hilary Putnam had begun to work on thesatis�ability problem, motivated by the searh for algorithms to dedue formulasin �rst order logi|unlike Samson, Mills, and Mueller, who were hiey inter-ested in synthesizing eÆient iruits. Davis and Putnam wrote an unpublished62-page report \Feasible omputational methods in the propositional alulus"(Rensselaer Polytehni Institute, Otober 1958) in whih a variety of di�erentapproahes were onsidered, suh as the removal of unit lauses and pure literals,as well as \ase analysis," that is, baktraking with respet to the subproblemsF jx and F j �x. As an alternative to ase analysis, they also disussed eliminatingthe variable x by resolution. The aount of this work that was eventually pub-lished [JACM 7 (1960), 201{215℄ onentrated on hand alulation, and omittedase analysis in favor of resolution; but when the proess was later implementedon a omputer, jointly with George Logemann and Donald Loveland [CACM 5(1962), 394{397℄, the method of baktraking through di�erent ases was foundto work better with respet to memory requirements. (See Davis's aount ofthese developments in Handbook of Automated Reasoning (2001), 3{15.)This early work didn't atually ause the satis�ability problem to appearon many people's mental radar sreens, however. Far from it; ten years wentby before SAT beame an important buzzword. The piture hanged in 1971,when Stephen A. Cook showed that satis�ability is the key to solving NP-
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omplete problems: He proved that any algorithm to solve a deision problem innondeterministi polynomial time an be represented eÆiently as a onjuntionof ternary lauses to be satis�ed. (See STOC 3 (1971), 151{158. We'll study NP-ompleteness in Setion 7.9.) Thus, a great multitude of hugely important prob-lems ould all be solved rather quikly, if we ould only devise a deent algorithmfor a single problem, 3SAT; and 3SAT seemed almost absurdly simple to solve.A year of heady optimism following the publiation of Cook's paper soongave way to the realization that, alas, 3SAT might not be so easy after all.Ideas that looked promising in small ases didn't sale well, as the problemsize was inreased. Hene the entral fous of work on satis�ability largelyretreated into theoretial realms, unrelated to programming pratie, exeptfor oasional studies that used SAT as a simple model for the behavior ofbaktraking algorithms in general. Examples of suh investigations, pioneeredby A. T. Goldberg, P. W. Purdom, Jr., C. A. Brown, J. V. Frano, and others,appear in exerises 213{216. See P. W. Purdom, Jr., and G. N. Haven, SICOMP26 (1997), 456{483, for a survey of subsequent progress on questions of that kind.The state of SAT art in the early 90s was well represented by an internationalprogramming ompetition held in 1992 [see M. Buro and H. Kleine B�uning,Bulletin EATCS 49 (February 1993), 143{151℄. The winning programs in thatontest an be regarded as the �rst suessful lookahead solvers on the path fromAlgorithm A to Algorithm L. Max B�ohm \took the gold" by hoosing the nextbranh variable based on lexiographially maximal (H1(x); : : : ; Hn(x)), whereHk(x) = hk(x)+hk(�x)+min�hk(x);hk(�x)�; hk(x) = ��fC 2 F j x 2 C; jCj = kg��:[See M. B�ohm and E. Spekenmeyer, Ann. Math. Artif. Intelligene 17 (1996),381{400. A. Rauzy had independently proposed a somewhat similar branhingriterion in 1988; see Revue d'intelligene arti�ielle 2 (1988), 41{60.℄ The silvermedal went to Hermann Stamm, who used strong omponents of the dependenydigraph to narrow the searh at eah branh node.Advanes in pratial algorithms for satis�ability now began to take o�.The benhmark programs of 1992 had been hosen at random, but the DIMACSImplementation Challenge of 1993 featured also a large number of strutured in-stanes of SAT. The main purpose of this \hallenge" was not to rown a winner,but to bring more than 100 researhers together for a three-day workshop, atwhih they ould ompare and share results. In retrospet, the best overallperformane at that time was arguably ahieved by an elaborate lookaheadsolver alled C-SAT, whih introdued tehniques for detailed exploration of the�rst-order e�ets of andidate literals [see O. Dubois, P. Andre, Y. Boufkhad,and J. Carlier, DIMACS 26 (1996), 415{436℄. Further re�nements leadingtowards the ideas in Algorithm L appeared in a Ph.D. thesis by Jon W. Freeman(Univ. of Pennsylvania, 1995), and in the work of Chu Min Li, who introdueddouble lookahead [see Information Proessing Letters 71 (1999), 75{80℄. Theweighted binary heuristi (67) was proposed by O. Dubois and G. Dequen, Pro.International Joint Conferene on Arti�ial Intelligene 17 (2001), 248{253.
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Meanwhile the ideas underlying Algorithm C began to emerge. Jo~ao P.Marques-Silva, in his 1995 thesis direted by Karem A. Sakallah, disovered howto turn unit-propagation onits into one or more lauses learned at \uniqueimpliation points," after whih it was often possible to bakjump past deisionsthat didn't a�et the onit. [See IEEE Trans. C48 (1999), 506{521.℄ Similarmethods were developed independently by R. J. Bayardo, Jr., and R. C. Shrag[AAAI Conf. 14 (1997), 203{208℄, who onsidered only the speial ase of lausesthat inlude the urrent deision literal, but introdued tehniques for purginga learned lause when one of its literals was fored to ip its value. Both groupslimited the size of learned lauses, and notied that their new methods gavesigni�ant speedups on benhmark problems related to industrial appliations.The existene of fast SAT solvers, oupled with Gunnar St�almark's newideas about applying logi to omputer design [see Swedish patent 467076 (1992)℄,led to the introdution of bounded model heking tehniques by Armin Biere,Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu [LNCS 1579 (1999),193{207℄. Satis�ability tehniques had also been introdued to solve lassialplanning problems in arti�ial intelligene [Henry Kautz and Bart Selman, Pro.European Conf. Arti�ial Intelligene 10 (1992), 359{363℄. Designers ould nowverify muh larger models than had been possible with BDD methods.The major breakthroughs appeared in a solver alled Cha� [M. W. Moske-wiz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik, ACM/IEEE DesignAutomation Conf. 38 (2001), 530{535℄, whih had two espeially noteworthy in-novations: (i) \VSIDS" (the Variable State Independent Dereasing Sum heuris-ti), a surprisingly e�etive way to selet deision literals, whih also worked wellwith restarts, and whih suggested the even better ACT heuristi of Algorithm Cthat soon replaed it; also (ii) lazy data strutures with two wathed literalsper lause, whih made unit propagation muh faster with respet to largelearned lauses. (A somewhat similar wathing sheme, introdued earlier byH. Zhang and M. Stikel [J. Automated Reasoning 24 (2000), 277{296℄, had thedisadvantage that it needed to be downdated while baktraking.)These exiting developments sparked a revival of international SAT ompe-titions, whih have been held annually sine 2002. The winner in 2002, BerkMinby E. Goldberg and Y. Novikov, has been desribed well in Disrete AppliedMathematis 155 (2007), 1549{1561. And year after year, these hallenging on-tests have ontinued to spawn further progress. By 2010, more than twie asmany benhmarks ould be solved in a given period of time as in 2002, usingthe programs of 2002 and 2010 on the omputers of 2010 [see M. J�arvisalo,D. Le Berre, O. Roussel, and L. Simon, AI Magazine 33,1 (Spring 2012), 89{94℄.The overall hampion in 2007 was SATzilla, whih was atually not aseparate SAT solver but rather a program that knew how to hoose intelligentlybetween other solvers on any given instane. SATzillawould �rst take a few se-onds to ompute basi features of a problem: the distribution of literals per lauseand lauses per literal, the balane between positive and negative ourrenes ofvariables, the proximity to Horn lauses, et. Samples ould quikly be taken toestimate how many unit propagations our at levels 1, 4, 16, 64, 256, and how
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many deisions are needed before reahing a onit. Based on these numbers,and experiene with the performane of the other solvers on the previous year'sbenhmarks, SATzilla was trained to selet the algorithm that appeared mostlikely to sueed. This \portfolio" approah, whih tunes itself niely to theharateristis of vastly di�erent sets of lauses, has ontinued to dominate theinternational ompetitions ever sine. Of ourse portfolio solvers rely on theexistene of \real" solvers, invented independently and bug-free, whih shine withrespet to partiular lasses of problems. And of ourse the winner of ompeti-tions may not be the best atual system for pratial use. [See L. Xu, F. Hutter,H. H. Hoos, and K. Leyton-Brown, J. Arti�ial Intelligene Researh 32 (2008),565{606; LNCS 7317 (2012), 228{241; CACM 57, 5 (May 2014), 98{107.℄Historial notes about details of the algorithms, and about important relatedtehniques suh as preproessing and enoding, have already been disussedabove as the algorithms and tehniques were desribed.One reurring theme appears to be that the behavior of SAT solvers is full ofsurprises: Some of the most important improvements have been introdued forwhat has turned out to be the wrong reasons, and a theoretial understandingis still far from adequate.[In future, the next breakthrough might ome from \variable learning,"as suggested by Tseytin's idea of extended resolution: Just as lause learninginreases the number of lauses, m, we might �nd good ways to inrease thenumber of variables, n. The subjet seems to be far from fully explored.℄EXERCISES1. [10 ℄ What are the shortest (a) satis�able (b) unsatis�able sets of lauses?2. [20 ℄ Travelers to the remote planet Pinus have reported that all the healthynatives like to dane, unless they're lazy. The lazy nondaners are happy, and so arethe healthy daners. The happy nondaners are healthy; but natives who are lazy andhealthy aren't happy. Although the unhappy, unhealthy ones are always lazy, the lazydaners are healthy. What an we onlude about Pinusians, based on these reports?3. [M21 ℄ Exatly how many lauses are in waerden (j; k;n)?4. [22 ℄ Show that the 32 onstraints of waerden (3; 3; 9) in (9) remain unsatis�ableeven if up to four of them are removed.5. [M46 ℄ Is W (3; k) = �(k2)?x 6. [HM37 ℄ Use the Loal Lemma to show that W (3; k) = 
(k2=(log k)3).7. [21 ℄ Can one satisfy the lauses f(xi_xi+2d_xi+2d+1 ) j 1 � i � n�2d+1; d � 0g[f(�xi _ �xi+2d _ �xi+2d+1) j 1 � i � n� 2d+1; d � 0g?x 8. [20 ℄ De�ne lauses waerden (k0; k1; : : : ; kb�1;n) that are satis�able if and only ifn < W (k0; k1; : : : ; kb�1).9. [24 ℄ Determine the value of W (2; 2; k) for all k � 0. Hint: Consider k mod 6.x 10. [21 ℄ Show that every satis�ability problem with m lauses and n variables an betransformed into an equivalent monotoni problem withm+n lauses and 2n variables,in whih the �rstm lauses have only negative literals, and the last n lauses are binarywith two positive literals.
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11. [27 ℄ (M. Tsimelzon, 1994.) Show that a general 3SAT problem with lausesfC1; : : : ; Cmg and variables f1; : : : ; ng an be redued to a 3D MATCHING problemof size 10m that involves the following leverly designed triples:Eah lause Cj orresponds to 3�10 verties, namely lj, �lj, jljj0, and jljj00 for eahl 2 Cj , together with wj, xj, yj, and zj, and also j0k and j00k for 1 � k � 7. If i or �{ o-urs in t lauses Cj1 , : : : , Cjt , there are t \true" triples fijk; ij0k; ij00k g and t \false" triplesf�{jk; ij0k; ij001+(k mod t)g, for 1 � k � t. Eah lause Cj = (l1 _ l2 _ l3) also spawns three\satis�ability" triples f�l1j; j01; j001g, f�l2j; j01; j002g, f�l3j; j01; j003g; six \�ller" triplesfl1j; j02; j001g, f�l1j; j03; j001g, fl2j; j04; j002g, f�l2j; j05; j002g, fl3j; j06; j003g, f�l3j; j07; j003g;and twelve \gadget" triples fwj; j02; j004g, fwj; j04; j004g, fwj; j06; j004g, fxj; j02; j005g,fxj; j05; j005g, fxj; j07; j005g, fyj; j03; j006g, fyj; j04; j006g, fyj; j07; j006g, fzj; j03; j007g,fzj; j05; j007g, fzj; j06; j007g. Thus there are 27m triples altogether.For example, Rivest's satis�ability problem (6) leads to a 3D mathing prob-lem with 216 triples on 240 verties; the triples that involve verties 18 and �18 aref18; 180; 1800g, f�18; 180; 1100g, f�18; 801; 8002g, f18; 804; 8002g, f�18; 805; 8002g.12. [21 ℄ (M. J. H. Heule.) Simplify (13) by exploiting the identityS�1(y1; : : : ; yp) = 9t (S�1(y1; : : : ; yj ; t) ^ S�1(�t; yj+1; : : : ; yp)):13. [24 ℄ Exerise 7.2.2.1{00 de�nes an exat over problem that orresponds to Lang-ford pairs of order n. (See page vii.)a) What are the onstraints analogous to (12) when n = 4?b) Show that there's a simple way to avoid dupliate binary lauses suh as thosein (14), whenever an exat over problem is onverted to lauses using (13).) Desribe the orresponding lauses langford (4) and langford 0(4).14. [22 ℄ Explain why the lauses (17) might help a SAT solver to olor a graph.15. [24 ℄ By omparing the MGregor graph of order 10 in Fig. 33with the MGregor graph of order 3 shown here, give a preisede�nition of the verties and edges of the MGregor graph thathas an arbitrary order n � 3. Exatly how many verties andedges are present in this graph, as a funtion of n? 00 01 0211 122220 2130 31 321016. [21 ℄ Do MGregor graphs have liques of size 4?17. [26 ℄ Let f(n) and g(n) be the smallest and largest values of r suh that M-Gregor's graph of order n an be 4-olored, and suh that some olor appears exatlyr times. Use a SAT solver to �nd as many values of f(n) and g(n) as you an.x 18. [28 ℄ By examining the olorings found in exerise 17, de�ne an expliit way to4-olor a MGregor graph of arbitrary order n, in suh a way that one of the olors isused at most 56n times. Hint: The onstrution depends on the value of nmod 6.x 19. [29 ℄ Continuing exerise 17, let h(n) be the largest number of regions that an begiven two olors simultaneously (without using the lauses (17)). Investigate h(n).20. [40 ℄ In exatly how many ways an MGregor's map (Fig. 33) be four-olored?21. [22 ℄ Use a SAT solver to �nd a minimum-size kernel in the graph of Fig. 33.22. [20 ℄ Color the graph C5�C5 with the fewest olors. (Two verties of this graphan reeive the same olor if and only if they are a king move apart in a 5� 5 torus.)23. [20 ℄ Compare the lauses (18) and (19) to (20) and (21) in the ase n = 7, r = 4.
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x 24. [M32 ℄ The lauses obtained from (20) and (21) in the previous exerise an besimpli�ed, beause we an remove the two that ontain the pure literal b21.a) Prove that the literal b21 is always pure in (20) and (21), when r > n=2.b) Show that b21 might also be pure in some ases when r < n=2.) The lauses obtained from (20) and (21) have many pure literals bkj when r has itsmaximum value n� 1. Furthermore, their removal makes other literals pure. Howmany lauses will remain in this ase after all pure literals have been eliminated?d) Show that the omplete binary tree with n � 2 leaves is obtained from ompletebinary trees with n0 and n00 = n� n0 leaves, where either n0 or n00 is a power of 2.e) Let a(n; r) and (n; r) be respetively the number of auxiliary variables bkj andthe total number of lauses that remain after all of the pure auxiliary literals havebeen removed from (20) and (21). What are a(2k; 2k�1) and (2k; 2k�1)?f) Prove that a(n; r) = a(n; n00) = a(n; n0) for n00 � r � n0, and this ommon value ismax1�r<n a(n; r). Also a(n; r) = a(n; n � r); and (n; r) � (n; n � r) if r � n=2.25. [21 ℄ Show that (18){(19) and (20){(21) are equally e�etive when r = 2.26. [22 ℄ Prove that Sinz's lauses (18) and (19) enfore the ardinality onstraintx1+ � � �+xn � r. Hint: Show that they imply skj = 1 whenever x1+ � � �+xj+k�1 � k.27. [20 ℄ Similarly, prove the orretness of Bailleux and Boufkhad's (20) and (21).Hint: They imply bkj = 1 whenever the leaves below node k ontain j or more 1s.x 28. [20 ℄ What lauses result from (18) and (19) when we want to ensure that x1 +� � � + xn � 1? (This speial ase onverts arbitrary lauses into 3SAT lauses.)x 29. [20 ℄ Instead of the single onstraint x1+ � � �+xn � r, suppose we wish to imposea sequene of onstraints x1+ � � �+xi � ri for 1 � i � n. Can this be done niely withadditional lauses and auxiliary variables?x 30. [22 ℄ If auxiliary variables skj are used as in (18) and (19) to make x1+� � �+xn � r,while s0kj are used to make �x1 + � � � + �xn � n � r, show that we may unify them bytaking s0jk = skj , for 1 � j � n� r, 1 � k � r. Can (20) and (21) be similarly uni�ed?x 31. [28 ℄ Let Ft(r) be the smallest n for whih there is a bit vetor x1 : : : xn withx1 + � � � + xn = r and with no t equally spaed 1s. For example, F3(12) = 30 beauseof the unique solution 101100011010000000010110001101. Disuss how Ft(n) might beomputed eÆiently with the help of a SAT solver.32. [15 ℄ A list oloring is a graph oloring in whih v's olor belongs to a givenset L(v), for eah vertex v. Represent list oloring as a SAT problem.33. [21 ℄ A double oloring of a graph is an assignment of two distint olors to everyvertex in suh a way that neighboring verties share no ommon olors. Similarly, a q-tuple oloring assigns q distint olors to eah vertex. Find double and triple oloringsof the yle graphs C5, C7, C9, : : : , using as few olors as possible.34. [HM26 ℄ The frational oloring number ��(G) of a graph G is de�ned to be theminimum ratio p=q for whih G has a q-tuple oloring that uses p olors.a) Prove that ��(G) � �(G), and show that equality holds in MGregor's graphs.b) Let S1, : : : , SN be all the independent subsets of G's verties. Show that��(G) = min�1;:::;�N�0f�1 + � � �+ �N jPNj=1 �j [v 2Sj ℄ = 1 for all verties vg:(This is a frational exat over problem.)) What is the frational oloring number ��(Cn) of the yle graph Cn?
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d) Consider the following greedy algorithm for oloring G: Set k  0 and G0  G;while Gk is nonempty, set k  k+1 and Gk  Gk�1nCk, where Ck is a maximumindependent set of Gk�1. Prove that k � H�(G)��(G), where �(G) is the size of G'slargest independent set; hene �(G)=��(G) � H�(G) = O(log n). Hint: Let tv =1=jCij if v 2 Ci, and show thatPv2S tv � HjSj whenever S is an independent set.35. [22 ℄ Determine ��(G) when G is (a) the graph of the ontiguous United States(see 7{(17) and exerise 7{45); (b) the graph of exerise 22.x 36. [22 ℄ A radio oloring of a graph, also known as an L(2; 1) labeling, is an assign-ment of integer olors to verties so that the olors of u and v di�er by at least 2when u���v, and by at least 1 when u and v have a ommon neighbor. (This notion,introdued by Fred Roberts in 1988, was motivated by the problem of assigning hannelsto radio transmitters, without interferene from \lose" transmitters and without stronginterferene from \very lose" transmitters.) Find a radio oloring of Fig. 33 that usesonly 16 onseutive olors.37. [20 ℄ Find an optimum radio oloring of the ontiguous USA graph (see 7{(17)).38. [M25 ℄ How many onseutive olors are needed for a radio oloring of (a) then�n square grid Pn Pn? (b) the verties f(x; y; z) j x; y; z � 0, x+ y+ z = ng, whihform a triangular grid with n + 1 verties on eah side.39. [M46 ℄ Find an optimum radio oloring of the n-ube, for some value of n > 6.40. [01 ℄ Is the fatorization problem (22) unsatis�able whenever z is a prime number?41. [M21 ℄ Determine the number of Boolean operations ^, _, � needed to multiplym-bit numbers by n-bit numbers with Dadda's sheme, when 2 � m � n.42. [21 ℄ Tseytin enoding analogous to (24) an be devised also for ternary opera-tions, without introduing any additional variables besides those of the funtion beingenoded. Illustrate this priniple by enoding the basi operations x t� u � v andy  htuvi of a full adder diretly, instead of omposing them from �, ^, and _.x 43. [21 ℄ For whih integers n � 2 do there exist odd palindromi binary numbersx = (xn : : : x1)2 = (x1 : : : xn)2 and y = (yn : : : y1)2 = (y1 : : : yn)2 suh that theirprodut xy = (zm+n : : : z1)2 = (z1 : : : zm+n)2 is also palindromi?x 44. [30 ℄ (Maximum ones.) Find the largest possible value of �x+ �y+ �(xy), namelythe greatest total number of 1 bits, over all multipliations of 32-bit binary x and y.45. [20 ℄ Speify lauses that onstrain (zt : : : z1)2 to be a perfet square.46. [30 ℄ Find the largest perfet square less than 2100 that is a binary palindrome.x 47. [20 ℄ Suppose a iruit suh as Fig. 34 has m outputs and n inputs, with g gatesthat transform two signals into one and h gates that transform one signal into two.Find a relation between g and h, by expressing the total number of wires in two ways.48. [20 ℄ The small iruit shown here has three inputs, three XOR gates,one fanout gate, eight wires, and one output. Whih single-stuk-at faults aredeteted by eah of the eight test patterns pqr? p q rx yzz49. [24 ℄ Write a program that determines exatly whih of the 100 single-stuk-at faults of the iruit in Fig. 34 are deteted by eah of the 32 possibleinput patterns. Also �nd all the minimum sets of test patterns that willdisover every suh fault (unless it's not detetable).
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50. [24 ℄ Demonstrate Larrabee's method of representing stuk-at faults by desribingthe lauses that haraterize test patterns for the fault \x12 stuk at 1" in Fig. 34. (Thisis the wire that splits o� of x2 and feeds into x32 and x42, then to b2 and b3; see Table 1.)51. [40 ℄ Study the behavior of SAT solvers on the problem of �nding a small number oftest patterns for all of the detetable single-stuk-at faults of the iruit prod (32; 32).Can a omplete set of patterns for this large iruit be disovered \automatially"(without relying on number theory)?52. [15 ℄ What lauses orrespond to (29) and (30) when the seond ase on the leftof Table 2, f(1; 0; 1; 0; : : : ; 1) = 1, is taken into aount?x 53. [M20 ℄ The numbers in Table 2 are de�nitely nonrandom. Can you see why?x 54. [23 ℄ Extend Table 2 using the rule in the previous exerise. How many rows areneeded before f(x) has no M -term representation in DNF, when M = 3, 4, and 5?55. [21 ℄ Find an equation analogous to (27) that is onsistent with Table 2 and hasevery variable omplemented. (Thus the resulting funtion is monotone dereasing.)x 56. [22 ℄ Equation (27) exhibits a funtion mathing Table 2 that depends on only 8of the 20 variables. Use a SAT solver to show that we an atually �nd a suitable fthat depends on only �ve of the xj .x 57. [29 ℄ Combining the previous exerise with the methods of Setion 7.1.2, exhibita funtion f for Table 2 that an be evaluated with only six Boolean operations(!).x 58. [20 ℄ Disuss adding the lauses �pi;j _ �qi;j to (29), (30), and (31).59. [M20 ℄ Compute the exat probability that f̂(x) in (32) di�ers from f(x) in (27).60. [24 ℄ Experiment with the problem of learning f(x) in (27) from training sets ofsizes 32 and 64. Use a SAT solver to �nd a onjetured funtion, f̂(x); then use BDDmethods to determine the probability that this f̂(x) di�ers from f(x) for random x.61. [20 ℄ Explain how to test when a set of lauses generated from a training set via(29){(31) is satis�able only by the funtion f(x) in (27).62. [23 ℄ Try to learn a seret small-DNF funtion with N -bit training sets x(0), x(1),x(2), : : : , where x(0) is random but eah bit of x(k) � x(k�1) for k > 0 is 1 withprobability p. (Thus, if p is small, suessive data points will tend to be near eahother.) Do suh sets turn out to be more eÆient in pratie than the purely randomones that arise for p = 1=2?x 63. [20 ℄ Given an n-network � = [i1 : j1℄[i2 : j2℄ : : : [ir : jr℄, as de�ned in the exerisesfor Setion 5.3.4, explain how to use a SAT solver to test whether or not � is a sortingnetwork. Hint: Use Theorem 5.3.4Z.64. [26 ℄ The exat minimum time T̂ (n) of a sorting network for n elements is a famousunsolved problem, and the fat that T̂ (9) = 7 was �rst established in 1987 by running ahighly optimized program for many hours on a Cray 2 superomputer.Show that this result an now be proved with a SAT solver in less than a seond(!).x 65. [28 ℄ Desribe enodings of the Life transition funtion (35) into lauses.a) Use only the variables x0ij and xij .b) Use auxiliary variables as in the Bailleux and Boufkhad enoding (20){(21), shar-ing intermediate results between neighboring ells as disussed in the text.66. [24 ℄ Use a SAT solver to �nd short ounterparts to Fig. 35 in whih (a) X1 = ;(b) X2 = . In eah ase X0 should have the smallest possible number of live ells.
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67. [24 ℄ Find a mobile hessboard pathX0 ! X1 ! : : :! X21 with no more than �veells alive in eah Xt. (The glider in (37) leaves the board after X20.) How about X22?68. [39 ℄ Find a maximum-length mobile path in whih 6 to 10 ells are always alive.69. [23 ℄ Find all (a) still lifes and (b) osillators of period > 1 that live in a 4�4 board.70. [21 ℄ The live ells of an osillator are divided into a rotor (those that hange) anda stator (those that stay alive).a) Show that the rotor annot be just a single ell.b) Find the smallest example of an osillator whose rotor is $ .) Similarly, �nd the smallest osillators of period 3 whose rotors have the followingforms: ! ! ! ; ! ! ! ; ! ! ! .x 71. [22 ℄ When looking for sequenes of Life transition on a square grid, an asymmet-rial solution will appear in eight di�erent forms, beause the grid has eight di�erentsymmetries. Furthermore, an asymmetrial periodi solution will appear in 8r di�erentforms, if r is the length of the period.Explain how to add further lauses so that essentially equivalent solutions willour only one: Only \anonial forms" will satisfy the onditions.72. [28 ℄ Osillators of period 3 are partiularly intriguing, beause Life seems soinherently binary.a) What are the smallest suh osillators (in terms of bounding box)?b) Find period-3 osillators of sizes 9�n and 10�n, with n odd, that have \fourfoldsymmetry": The patterns are unhanged after left-right and/or up-down reetion.(Suh patterns are not only pleasant to look at, they also are muh easier to �nd,beause we need only onsider about one-fourth as many variables.)) What period-3 osillators with fourfold symmetry have the most possible live ells,on grids of sizes 15 � 15, 15 � 16, and 16 � 16?d) The period-3 osillator shown here has another kind of four-way sym-metry, beause it's unhanged after 90Æ rotation. (It was disovered in1972 by Robert Wainwright, who alled it \snake dane" beause itsstator involves four snakes.) What period-3 osillators with 90Æ symmetry havethe most possible live ells, on grids of sizes 15 � 15 and 16 � 16?x 73. [21 ℄ (Mobile ipops.) An osillator of period 2 is alled a ipop, and the Lifepatterns of mobile ipops are partiularly appealing: Eah ell is either blank (deadat every time t) or type A (alive when t is even) or type B (alive when t is odd). Everynonblank ell (i) has exatly three neighbors of the other type, and (ii) doesn't haveexatly two or three neighbors of the same type.a) The blank ells of a mobile ipop also satisfy a speial ondition. What is it?b) Find a mobile ipop on an 8� 8 grid, with top row BAABAB .) Find patterns that are mobile ipops on m � n toruses for various m and n.(Thus, if repliated inde�nitely, eah one will tile the plane with an in�nite mobileipop.) Hint: One solution has no blank ells whatsoever; another has blankells like a hekerboard.74. [M28 ℄ Continuing the previous exerise, prove that no nonblank ell of a �nitemobile ipop has more than one neighbor of its own type. (This fat greatly speedsup the searh for �nite mobile ipops.) Can two type A ells be diagonally adjaent?75. [M22 ℄ (Stephen Silver, 2000.) Show that a �nite, mobile osillator of period p � 3must have some ell that is alive more than one during the yle.
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76. [41 ℄ Construt a mobile Life osillator of period 3.77. [20 ℄ \StepX�1," whih preedesX0 in (38), has the glider on�guration insteadof . What onditions on the still life X5 will ensure that state X0 is indeed reahed?(We don't want digestion to begin prematurely.)78. [21 ℄ Find a solution to the four-step eater problem in (38) that works on a 7� ngrid, for some n, instead of 8� 8.79. [23 ℄ What happens if the glider meets the eater of (39) in its opposite phase(namely instead of )?80. [21 ℄ To ounterat the problem in the previous exerise, �nd an eater that issymmetrial when reeted about a diagonal, so that it eats both and . (You'llhave to go larger than 8� 8, and you'll have to wait longer for digestion.)81. [21 ℄ Conway disovered a remarkable \spaeship," where X4 is X0 shifted up 2:X0 = ! ! ! ! = X4 :Is there a left-right symmetrial still life that will eat suh spaeships?x 82. [22 ℄ (Light speed.) Imagine Life on an in�nite plane, with all ells dead at time 0exept in the lower left quadrant. More preisely, suppose Xt = (xtij) is de�ned for allt � 0 and all integers �1 < i; j < +1, and that x0ij = 0 whenever i > 0 or j > 0.a) Prove that xtij = 0 whenever 0 � t < max(i; j).b) Furthermore xtij = 0 when 0 � �i � j and 0 � t < i+ 2j.) And xtij = 0 for 0 � t < 2i + 2j, if i � 0 and j � 0. Hint: If xtij = 0 wheneveri � �j, prove that xtij = 0 whenever i > �j.83. [21 ℄ Aording to the previous exerise, the earliest possible time that ell (i; j)an beome alive, if all initial life is on�ned to the lower left quadrant of the plane, isat leastf(i; j) = i[i� 0℄ + j [j � 0℄ + (i+ j)[i + j � 0℄:For example, when jij � 5 and jjj � 5 the values of f(i; j)are shown at the right.Let f�(i; j) be the atual minimum time at whih ell(i; j) an be alive, for some suh initial state. Devise a setof lauses by whih a SAT solver an test whether or notf�(i0; j0) = f(i0; j0), given i0 and j0. (Suh lauses makeinteresting benhmark tests.)

5 6 7 8 9 10 12 14 16 18 204 4 5 6 7 8 10 12 14 16 183 3 3 4 5 6 8 10 12 14 162 2 2 2 3 4 6 8 10 12 141 1 1 1 1 2 4 6 8 10 120 0 0 0 0 0 2 4 6 8 100 0 0 0 0 0 1 3 5 7 90 0 0 0 0 0 1 2 4 6 80 0 0 0 0 0 1 2 3 5 70 0 0 0 0 0 1 2 3 4 60 0 0 0 0 0 1 2 3 4 584. [33 ℄ Prove that f�(i; j) = f(i; j) in the following ases when j > 0: (a) i = j,i = j + 1, and i = j � 1. (b) i = 0 and i = �1. () i = 1� j. (d) i = j � 2. (e) i = �2.x 85. [39 ℄ A Garden of Eden is a state of Life that has no predeessor.a) If the pattern of 92 ells illustrated here ours anywhere within abitmap X, verify that X is a Garden of Eden. (The gray ells an beeither dead or alive.)b) This \orphan" pattern, found with a SAT solver's help, is the smallestthat is urrently known. Can you imagine how it was disovered?86. [M23 ℄ How many Life predeessors does a random10�10 bitmap have, on average?87. [21 ℄ Explain why the lauses (42) represent Alie and Bob's programs (40), andgive a general reipe for onverting suh programs into equivalent sets of lauses.
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88. [18 ℄ Satisfy (41) and (42) for 0 � t < 6, and the 20� 6 additional binary lausesthat exlude multiple states, along with the \embarrassing" unit lauses (A36)^ (B36).89. [21 ℄ Here's a mutual-exlusion protool one reommended in 1966. Does it work?A0. Maybe go to A1.A1. Set a 1, go to A2.A2. If l go to A3, else to A5.A3. If b go to A3, else to A4.A4. Set l 0, go to A2.A5. Critial, go to A6.A6. Set a 0, go to A0. B0. Maybe go to B1.B1. Set b 1, go to B2.B2. If l go to B5, else to B3.B3. If a go to B3, else to B4.B4. Set l 1, go to B2.B5. Critial, go to B6.B6. Set b 0, go to B0.90. [20 ℄ Show that (43), (45), and (46) permit starvation, by satisfying (47) and (48).91. [M21 ℄ Formally speaking, Alie is said to \starve" if there is (i) an in�nite se-quene of transitions X0 ! X1 ! � � � starting from the initial state X0, and (ii) an in-�nite sequene �0, �1, : : : of Boolean \bumps" that hanges in�nitely often, suh that(iii) Alie is in a \maybe" or \ritial" state only a �nite number of times. Prove thatthis an happen if and only if there is a starvation yle (47) as disussed in the text.92. [20 ℄ Suggest O(r2) lauses with whih we an determine whether or not a mutualexlusion protool permits a path X0 ! X1 ! � � � ! Xr of distint states.93. [20 ℄ What lauses orrespond to the term :�(X 0) in (51)?x 94. [21 ℄ Suppose we know that (X0 ! X1 ! � � � ! Xr)^:�(Xr) is unsatis�able for0 � r � k. What lauses will guarantee that � is invariant? (The ase k = 1 is (51).)95. [20 ℄ Using invariants like (50), prove that (45) and (46) provide mutual exlusion.96. [22 ℄ Find all solutions to (52) when r = 2. Also illustrate the fat that invariantsare extremely helpful, by �nding a solution with distint states X0, X1, : : : , Xr andwith r substantially greater than 2, if the lauses involving � are removed.97. [20 ℄ Can states A6 and B6 our simultaneously in Peterson's protool (49)?x 98. [M23 ℄ This exerise is about proving the nonexistene of starvation yles (47).a) A yle of states is alled \pure" if one of the players is never bumped, and \simple"if no state is repeated. Prove that the shortest impure yle, if any, is either simpleor onsists of two simple pure yles that share a ommon state.b) If Alie is starved by some yle with protool (49), we know that she is never instates A0 or A5 within the yle. Show that she an't be in A1, A2, or A6 either.) Construt lauses to test whether there exist states X0 ! X1 ! � � � ! Xr, withX0 arbitrary, suh that (X0X1 : : : Xk�1) is a starvation yle for some k � r.d) Therefore we an onlude that (49) is starvation-free without muh extra work.99. [25 ℄ Th.Dekker devised the �rst orret mutual-exlusion protool in 1965:A0. Maybe go to A1.A1. Set a 1, go to A2.A2. If b go to A3, else to A6.A3. If l go to A4, else to A2.A4. Set a 0, go to A5.A5. If l go to A5, else to A1.A6. Critial, go to A7.A7. Set l 1, go to A8.A8. Set a 0, go to A0.

B0. Maybe go to B1.B1. Set b 1, go to B2.B2. If a go to B3, else to B6.B3. If l go to B2, else to B4.B4. Set b 0, go to B5.B5. If l go to B1, else to B5.B6. Critial, go to B7.B7. Set l 0, go to B8.B8. Set b 0, go to B0.Use bounded model heking to verify its orretness.
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100. [22 ℄ Show that the following protool an starve one player but not the other:A0. Maybe go to A1.A1. Set a 1, go to A2.A2. If b go to A2, else to A3.A3. Critial, go to A4.A4. Set a 0, go to A0. B0. Maybe go to B1.B1. Set b 1, go to B2.B2. If a go to B3, else to B5.B3. Set b 0, go to B4.B4. If a go to B4, else to B1.B5. Critial, go to B6.B6. Set b 0, go to B0.x 101. [31 ℄ Protool (49) has the potential defet that Alie and Bob might both betrying to set the value of l at the same time. Design a mutual-exlusion protool inwhih eah of them ontrols two binary signals, visible to the other. Hint: The methodof the previous exerise an be enlosed in another protool.102. [22 ℄ If Alie is setting a variable at the same time that Bob is trying to readit, we might want to onsider a more stringent model under whih he sees either 0or 1, nondeterministially. (And if he looks k times before she moves to the nextstep, he might see 2k possible sequenes of bits.) Explain how to handle this model of\ikering" variables by modifying the lauses of exerise 87.103. [18 ℄ (Do this exerise by hand, it's fun!) Find the 7�21 image whose tomographisums are (r1; : : : ; r7) = (1; 0; 13; 6; 12; 7; 19); (1; : : : ; 21) = (4; 3; 3; 4; 1; 6; 1; 3; 3; 3; 5; 1;1; 5; 1; 5; 1; 5; 1; 1; 1); (a1; : : : ; a27) = (0; 0; 1; 2; 2; 3; 2; 3; 3; 2; 3; 3; 4; 3; 2; 3; 3; 3; 4; 3; 2; 2; 1;1; 1; 1; 1); (b1; : : : ; b27) = (0; 0; 0; 0; 0; 1; 3; 3; 4; 3; 2; 2; 2; 3; 3; 4; 2; 3; 3; 3; 3; 3; 4; 3; 2; 1; 1).104. [M21 ℄ For whihm and n is it possible to satisfy the digital tomography problemwith ad = bd = 1 for 0 < d < m+ n? (Equivalently, when an m+ n� 1 nonattakingbishops be plaed on an m� n board?)x 105. [M28 ℄ A matrix whose entries are f�1; 0;+1g is tomographially balaned if itsrow, olumn, and diagonal sums are all zero. Two binary images X = (xij) andX 0 = (x0ij) learly have the same row, olumn, and diagonal sums if and only if X�X 0is tomographially balaned.a) Suppose Y is tomographially balaned and has m rows, n olumns, and t our-renes of +1. How many m� n binary matries X and X 0 satisfy X �X 0 = Y ?b) Express the ondition \Y is tomographially balaned" in terms of lauses, withthe values f�1; 0;+1g represented respetively by the 2-bit odes f10; 00; 01g.) Count the number T (m;n) of tomographially balaned matries, for m;n � 8.d) How many suh matries have exatly four ourrenes of +1?e) At most how many +1s an a 2n � 2n tomographially balaned matrix have?f) True or false: The positions of the +1s determine the positions of the �1s.106. [M20 ℄ Determine a generous upper bound on the possible number of di�erentsets of input data fri; j ; ad; bdg that might be given to a 25 � 30 digital tomographyproblem, by assuming that eah of those sums independently has any of its possiblevalues. How does this bound ompare to 2750?x 107. [22 ℄ Basket weavers from the Tonga ulture of Inhambane, Mozambique, havedeveloped appealing periodi designs alled \gipatsi patterns" suh as this:� � � � � �(Notie that an ordinary pixel grid has been rotated by 45Æ.) Formally speaking, agipatsi pattern of period p and width n is a p�n binary matrix (xi;j) in whih we have
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xi;1 = xi;n = 1 for 1 � i � p. Row i of the matrix is to be shifted right by i� 1 plaesin the atual pattern. The example above has p = 6, n = 13, and the �rst row of itsmatrix is 1111101111101. Suh a pattern has row sums ri =Pnj=1 xi;j for 1 � i � p andolumn sums j =Ppi=1 xi;j for 1 � j � n, as usual. By analogy with (53), it also hasad = Xi+j�d (modulo p)xi;j ; 1 � d � p; bd = X2i+j�d (modulo 2p) xi;j ; 1 � d � 2p:a) What are the tomographi parameters ri, j , ad, and bd in the example pattern?b) Do any other gipatsi patterns have the same parameters?108. [23 ℄ The olumn sums j in the previous exerise are somewhat arti�ial, beausethey ount blak pixels in only a small part of an in�nite line. If we rotate the grid ata di�erent angle, however, we an obtain in�nite periodi patterns for whih eah ofFig. 36's four diretions enounters only a �nite number of pixels.Design a pattern of period 6 in whih parallel lines always have equal tomographiprojetions, by hanging eah of the gray pixels in the following diagram to either whiteor blak: � � � 6 6 6 6 6 6 444444444 12 12 12121212 � � �x 109. [20 ℄ Explain how to �nd the lexiographially smallest solution x1 : : : xn to asatis�ability problem, using a SAT solver repeatedly. (See Fig. 37(a).)110. [19 ℄ What are the lexiographially (�rst, last) solutions to waerden (3; 10; 96)?111. [40 ℄ The lexiographially �rst and last solutions to the \Cheshire Tom" problemin Fig. 37 are based on the top-to-bottom-and-left-to-right ordering of pixels. Experi-ment with other pixel orderings| for example, try bottom-to-top-and-right-to-left.112. [46 ℄ Exatly how many solutions does the tomography problem of Fig. 36 have?x 113. [30 ℄ Prove that the digital tomography problem is NP-omplete, even if themarginal sums r, , a, b are binary: Show that an eÆient algorithm to deide whetheror not an n � n pixel image (xij) exists, having given 0{1 values of ri = Pj xij ,j = Pi xij , ad = Pi+j=d+1 xij , and bd = Pi�j=d�n xij , ould be used to solve thebinary tensor ontingeny problem of exerise 212(a).114. [27 ℄ Eah ell (i; j) of a given retangular grid either ontains a land mine(xi;j= 1) or is safe (xi;j= 0). In the game of Minesweeper, you are supposed to identifyall of the hidden mines, by probing loations that you hope are safe: If you deide toprobe a ell with xi;j = 1, the mine explodes and you die (at least virtually). But ifxi;j= 0 you're told the number ni;j of neighboring ells that ontain mines, 0 � ni;j� 8,and you live to make another probe. By arefully onsidering these numeri lues, youan often ontinue with ompletely safe probes, eventually touhing every mine-free ell.For example, suppose the hidden mines happen to math the 25 � 30 pattern ofthe Cheshire at (Fig. 36), and you start by probing the upper right orner. That ellturns out to be safe, and you learn that n1;30 = 0; hene it's safe to probe all threeneighbors of (1; 30). Continuing in this vein soon leads to illustration (�) below, whihdepits information about ells (i; j) for 1 � i � 9 and 21 � j � 30; unprobed ells are
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shown in gray, otherwise the value of ni;j appears. From this data it's easy to deduethat x1;24 = x2;24 = x3;25 = x4;25 = � � � = x9;26 = 1; you'll never want to probe in thoseplaes, so you an mark suh ells with X, arriving at state (�) sine n3;24 = n5;25 = 4.Further progress downward to row 17, then leftward and up, leads without diÆulty tostate (). (Notie that this proess is analogous to digital tomography, beause you'retrying to reonstrut a binary array from information about partial sums.)(�) = 200000310000200003100020003000300030003100 ; (�) = X200000X3100004X20000X310004X2000X3000X3000X3000X3100 ; () = 01 X20000012 X3100002X 4X200005X X31000XX 4X20005X X30003X X30002X424X300012X23X3100 :a) Now �nd safe probes for all thirteen of the ells that remain gray in ().b) Exatly how muh of the Cheshire at an be revealed without making any unsafeguesses, if you're told in advane that (i) x1;1 = 0? (ii) x1;30 = 0? (iii) x25;1 = 0?(iv) x25;30 = 0? (v) all four orners are safe? Hint: A SAT solver an help.115. [25 ℄ Empirially estimate the probability that a 9�9 game of Minesweeper, with10 randomly plaed mines, an be won with entirely safe probes after the �rst guess.116. [22 ℄ Find examples of Life ipops for whih X and X 0 are tomographiallyequal.117. [23 ℄ Given a sequene x = x1 : : : xn, let �(2)x = x1x2 + x2x3 + � � � + xn�1xn.(A similar sum appears in the serial orrelation oeÆient, 3.3.2{(23).)a) Show that, when x is a binary sequene, the number of runs of 1s in x an beexpressed in terms of �x and �(2)x.b) Explain how to enode the ondition �(2)x � r as a set of lauses, by modifyingthe ardinality onstraints (20){(21) of Bailleux and Boufkhad.) Similarly, enode the ondition �(2)x � r.118. [20 ℄ A tatami tiling is a overing by dominoes in whih no three share a orner:
(Notie that is disallowed, but would be �ne.) Explain how to use a SAT solverto �nd a tatami tiling that overs a given set of pixels, unless no suh tiling exists.119. [18 ℄ Let F = waerden (3; 3; 9) be the 32 lauses in (9). For whih literal l is theredued formula F j l smallest? Exhibit the resulting lauses.120. [M20 ℄ True or false: F jL = fC n L j C 2 F and C \ L = ;g, if L = f�l j l 2 Lg.121. [21 ℄ Spell out the hanges to the link �elds in the data strutures, by expandingthe higher-level desriptions that appear in steps A3, A4, A7, and A8 of Algorithm A.x 122. [21 ℄ Modify Algorithm A so that it �nds all satisfying assignments of the lauses.123. [17 ℄ Show the ontents of the internal data strutures L, START, and LINK whenAlgorithm B or Algorithm D begins to proess the seven lauses R0 of (7).
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144 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 satisfying assignmentsRivestwathedunit lauseswath listbranhing heuristis2SATexponential timebaktrak tree, optimumBIMP tablessequential listsdynami storage alloationbuddy systemimpliation digraphCompensation resolventsresolve
x 124. [21 ℄ Spell out the low-level link �eld operations that are skethed in step B3.x 125. [20 ℄ Modify Algorithm B so that it �nds all satisfying assignments of the lauses.126. [20 ℄ Extend the omputation in (59) by one more step.127. [17 ℄ What move odesm1 : : : md orrespond to the omputation skethed in (59),just before and after baktraking ours?128. [19 ℄ Desribe the entire omputation by whih Algorithm D proves that Rivest'slauses (6) are unsatis�able, using a format like (59). (See Fig. 39.)129. [20 ℄ In the ontext of Algorithm D, design a subroutine that, given a literal l,returns 1 or 0 aording as l is or is not being wathed in some lause whose otherliterals are entirely false.130. [22 ℄ What low-level list proessing operations are needed to \lear the wath listfor �xk" in step D6?x 131. [30 ℄ After Algorithm D exits step D3 without �nding any unit lauses, it hasexamined the wath lists of every free variable. Therefore it ould have omputed thelengths of those wath lists, with little additional ost; and information about thoselengths ould be used to make a more informed deision about the variable that's hosenfor branhing in step D4. Experiment with di�erent branhing heuristis of this kind.x 132. [22 ℄ Theorem 7.1.1K tells us that every 2SAT problem an be solved in lineartime. Is there a sequene of 2SAT lauses for whih Algorithm D takes exponential time?x 133. [25 ℄ The size of a baktrak tree suh as Fig. 39 an depend greatly on the hoieof branhing variable that is made at every node.a) Find a baktrak tree for waerden (3; 3; 9) that has the fewest possible nodes.b) What's the largest baktrak tree for that problem?134. [22 ℄ The BIMP tables used by Algorithm L are sequential lists of dynamiallyvarying size. One attrative way to implement them is to begin with every list havingapaity 4 (say); then when a list needs to beome larger, its apaity an be doubled.Adapt the buddy system (Algorithm 2.5R) to this situation. (Lists that shrinkwhen baktraking needn't free their memory, sine they're likely to grow again later.)x 135. [16 ℄ The literals l0 in BIMP(l) are those for whih l ��! l0 in the \impliationdigraph" of a given satis�ability problem. How an we easily �nd all of the literals l00suh that l00��! l, given l?136. [15 ℄ What pairs will be in TIMP(�3), before and after x5 is set to zero with respetto the lauses (9) of waerden (3; 3; 9), assuming that we are on deision level d = 0?137. [24 ℄ Spell out in detail the proesses of (a) removing a variable X from the freelist and from all pairs in TIMP lists (step L7 of Algorithm L), and of (b) restoring itagain later (step L12). Exatly how do the data strutures hange?x 138. [20 ℄ Disuss what happens in step L9 of Algorithm L if we happen to have both�v 2 BIMP(�u) and �u 2 BIMP(�v).139. [25 ℄ (Compensation resolvents.) If w 2 BIMP(v), the binary lause u _ v impliesthe binary lause u _ w, beause we an resolve u _ v with �v _ w. Thus step L9 ouldexploit eah new binary lause further, by appending w as well as v to BIMP(�u), for allsuh w. Disuss how to do this eÆiently.
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7.2.2.2 SATISFIABILITY: EXERCISES 145 ISTAMPstampingmove odesbig lauseheuristi soresuto�spartiipantpartiipants140. [21 ℄ The FORCE, BRANCH, BACKF, and BACKI arrays in Algorithm L will obviouslynever ontain more than n items eah. Is there a fairly small upper bound on themaximum possible size of ISTACK?141. [18 ℄ Algorithm L might inrease ISTAMP so often that it overows the size of theIST(l) �elds. How an the mehanism of (63) avoid bugs in suh a ase?142. [24 ℄ Algorithms A, B, and D an display their urrent progress by exhibitinga sequene of move odes m1 : : :md suh as (58) and (60); but Algorithm L has nosuh odes. Show that an analogous sequene m1 : : :mF ould be printed in step L2,if desired. Use the odes of Algorithm D; but extend them to show mj = 6 (or 7) ifRj�1 is a true (or false) literal whose value was found to be fored by Algorithm X, orfored by being a unit lause in the input.x 143. [30 ℄ Modify Algorithm L so that it will apply to nonempty lauses of any size.Call a lause big if its size is greater than 2. Instead of TIMP tables, represent every biglause by `KINX' and `CINX' tables: Every literal l has a sequential list KINX(l) of biglause numbers; every big lause  has a sequential list CINX() of literals;  is in KINX(l)if and only if l is in CINX(). The urrent number of ative lauses ontaining l is indi-ated by KSIZE(l); the urrent number of ative literals in  is indiated by CSIZE().144. [15 ℄ True or false: If l doesn't appear in any lause, h0(l) = 0:1 in (65).145. [23 ℄ Starting with h(l) = 1 for eah of the 18 literals l in waerden (3; 3; 9), �ndsuessively re�ned estimates h0(l), h00(l), : : : , using (65) with respet to the 32 ternarylauses (9). Then, assuming that x5 has been set false as in exerise 136, and that theresulting binary lauses 13, 19, 28, 34, 37, 46, 67, 79 have been inluded in the BIMPtables, do the same for the 16 literals that remain at depth d = 1.146. [25 ℄ Suggest an alternative to (64) and (65) for use when Algorithm L has beenextended to nonternary lauses as in exerise 143. (Strive for simpliity.)147. [05 ℄ Evaluate Cmax in (66) for d = 0, 1, 10, 20, 30, using the default C0 and C1.148. [21 ℄ Equation (66) bounds the maximum number of andidates using a formulathat depends on the urrent depth d, but not on the total number of free variables.The same uto�s are used in problems with any number of variables. Why is that areasonable strategy?x 149. [26 ℄ Devise a data struture that makes it onvenient to tell whether a givenvariable x is a \partiipant" in Algorithm L.150. [21 ℄ Continue the text's story of lookahead in waerden (3; 3; 9): What happens atdepth d = 1 when l 7 and T  22 (see (70)), after literal 4 has beome proto true?(Assume that no double-lookahead is done.)x 151. [26 ℄ The dependeny digraph (68) has 16 ars, only 8 of whih are aptured in thesubforest (69). Show that, instead of (70), we ould atually list the literals l and givethem o�sets o(l) in suh a way that u appears before v in the list and has o(u) > o(v) ifand only if v��!u in (68). Thus we ould apture all 16 dependenies via levels of truth.152. [22 ℄ Give an instane of 3SAT for whih no free \partiipants" are found instep X3, yet all lauses are satis�ed. Also desribe an eÆient way to verify satisfation.153. [17 ℄ What's a good way to weed out unwanted andidates in step X3, if C>Cmax?154. [20 ℄ Suppose we're looking ahead with just four andidate variables, fa; b; ; dg,and that they're related by three binary lauses (a_�b)^(a_�)^(_ �d). Find a subforestand a sequene of truth levels to failitate lookaheads, analogous to (69) and (70).
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146 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 lookahead forestpure literalautarkyBlak and white prinipleBlak and blue priniplebloked binary lausekSAT3SATanalysis of algskSATpositive autarkypositive literalsautarkyneessary assignments
155. [32 ℄ Sketh an eÆient way to onstrut the lookahead forest in step X4.156. [05 ℄ Why is a pure literal a speial ase of an autarky?157. [10 ℄ Give an example of an autarky that is not a pure literal.158. [15 ℄ If l is a pure literal, will Algorithm X disover it?159. [M17 ℄ True or false: (a) A is an autarky for F if and only if F jA � F . (b) IfA is an autarky for F and A0 � A, then A nA0 is an autarky for F jA0.160. [18 ℄ (Blak and white priniple.) Consider any rule by whih literals have beenolored white, blak, or gray in suh a way that l is white if and only if �l is blak. (Forexample, we might say that l is white if it appears in fewer lauses than �l.)a) Suppose every lause of F that ontains a white literal also ontains a blakliteral. Prove that F is satis�able if and only if its all-gray lauses are satis�able.b) Explain why this metaphor is another way to desribe the notion of an autarky.x 161. [21 ℄ (Blak and blue priniple.) Now onsider oloring literals either white, blak,orange, blue, or gray, in suh a way that l is white if and only if �l is blak, and l isorange if and only if �l is blue. (Hene l is gray if and only if �l is gray.) Suppose furtherthat F is a set of lauses in whih every lause ontaining a white literal also ontainseither a blak literal or a blue literal (or both). Let A = fa1; : : : ; apg be the blakliterals and let L = fl1; : : : ; lqg be the blue literals. Also let F 0 be the set of lausesobtained by adding p additional lauses (�l1 _ � � � _ �lq _ aj) to F , for 1 � j � p.a) Prove that F is satis�able if and only if F 0 is satis�able.b) Restate and simplify that result in the ase that p = 1.) Restate and simplify that result in the ase that q = 1.d) Restate and simplify that result in the ase that p = q = 1. (In this speial ase,(�l _ a) is alled a bloked binary lause.)162. [21 ℄ Devise an eÆient way to disover all of the (a) bloked binary lauses (�l_a)and (b) size-two autarkies A = fa; a0g of a given kSAT problem F .x 163. [M25 ℄ Prove that the following reursive proedureR(F ) will solve any n-variable3SAT problem F with at most O(�n) exeutions of steps R1, R2, or R3:R1. [Chek easy ases.℄ If F = ;, return true. If ; 2 F , return false. Otherwise letfl1; : : : ; lsg 2 F be a lause of minimum size s.R2. [Chek autarkies.℄ If s = 1 or if flsg is an autarky, set F  F j ls and return to R1.Otherwise if f�ls; ls�1g is an autarky, set F  F j�ls; ls�1 and return to R1.R3. [Reurse.℄ If R(F j ls) is true, return true. Otherwise set F  F j �ls, s  s � 1,and go bak to R2.164. [M30 ℄ Continuing exerise 163, bound the running time when F is kSAT.x 165. [26 ℄ Design an algorithm to �nd the largest positive autarky A for a given F ,namely an autarky that ontains only positive literals. Hint: Warm up by �nding thelargest positive autarky for the lauses f12�3; 12�5; �1�3�4; 13�6; 1�45; 156; �235; 2�46; 345; �356g.166. [30 ℄ Justify the operations of step X9. Hint: Prove that an autarky an be on-struted, if w = 0 after (72) has been performed.x 167. [21 ℄ Justify step X11 and the similar use of X12 in step X6.168. [26 ℄ Suggest a way to hoose the branh literal l in step L3, based on the heuristisores H(l) that were ompiled by Algorithm X in step L2. Hint: Experiene showsthat it's good to have both H(l) and H(�l) large.
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x 169. [HM30 ℄ (T. Ahmed, O. Kullmann.) Exellent results have been obtained insome problems when the branh variable in step L3 is hosen to minimize the quantity�(H(l);H(�l)), where � (a; b) is the positive solution to ��a + ��b = 1. (For example,� (1; 2) = � � 1:62 and � (p2;p2) = 21=p2 � 1:63, so we prefer (1; 2) to (p2;p2).)Given a list of pairs of positive numbers (a1; b1), : : : , (as; bs), what's an eÆient wayto determine an index j that minimizes � (aj; bj), without omputing logarithms?170. [25 ℄ (Marijn Heule, 2013.) Show that Algorithm L solves 2SAT in linear time.171. [20 ℄ What is the purpose of DFAIL in Algorithm Y?172. [21 ℄ Explain why `+LO[j℄' appears in step Y2's formula for DT.173. [40 ℄ Use an implementation of Algorithm L to experiment with random 3SATproblems suh as rand (3; 2062; 500; 314). Examine the e�ets of suh things as (i) dis-abling double lookahead; (ii) disabling \wraparound," by hanging the ases j = S and|̂ = S in X7 and Y4 so that they simply go to X6 and Y3; (iii) disabling the lookaheadforest, by letting all andidate literals have null PARENT; (iv) disabling ompensationresolvents in step L9; (v) disabling \windfalls" in (72); (vi) branhing on a random freeandidate l in L3, instead of using the H sores as in exerise 168; or (vii) disabling alllookahead entirely as in \Algorithm L0."174. [15 ℄ What's an easy way to aomplish (i) in the previous exerise?175. [32 ℄ When Algorithm L is extended to nonternary lauses as in exerise 143, howshould Algorithms X and Y also hange? (Instead of using (64) and (65) to ompute aheuristi for preseletion, use the muh simpler formula in answer 146. And instead ofusing h(u)h(v) in (67) to estimate the weight of a ternary lause that will be reduedto binary, onsider a simulated redued lause of size s � 2 to have weight Ks � s�2,where  is a onstant (typially 0.2).)176. [M25 ℄ The \ower snark" Jq is a ubi graph with 4q verties tj , uj , vj , wj , and6q edges tj���tj+1, tj���uj , uj���vj , uj���wj , vj���wj+1, wj���vj+1, for 1 � j � q,with subsripts treated modulo q. Here, for example, are J5 and its line graph L(J5):J5 = ; L(J5) = :a) Give labels aj , bj , j , dj , ej , and fj to the edges of Jq, for 1 � j � q. (Thus ajdenotes tj���tj+1 and bj denotes tj���uj , et.) What are the edges of L(Jq)?b) Show that �(Jq) = 2 and �(L(Jq)) = 3 when q is even.) Show that �(Jq) = 3 and �(L(Jq)) = 4 when q is odd. Note: Let fsnark (q) denotethe lauses (15) and (16) that orrespond to 3-oloring L(Jq), together with b1;1^1;2^d1;3 to set the olors of (b1; 1; d1) to (1; 2; 3). Also let fsnark 0(q) be fsnark (q)augmented by (17). These lauses make exellent benhmark tests for SAT solvers.177. [HM26 ℄ Let Iq be the number of independent sets of the ower snark line graphL(Jq). Compute Iq for 1 � q � 8, and determine the asymptoti growth rate.x 178. [M23 ℄ When Algorithm B is presented with the unsatis�able lauses fsnark (q)of exerise 176, with q odd, its speed depends ritially on the ordering of the variables.
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148 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 sububesn-ubeBDD1SATBDD3SAT{3CNFauxiliary variablesrandom satis�abilitystopping timeFranoPaullkSAT�rst moment priniple
Show that the running time is �(2q) when the variables are onsidered in the ordera1;1a1;2a1;3b1;1b1;2b1;31;11;21;3d1;1d1;2d1;3e1;1e1;2e1;3f1;1f1;2f1;3a2;1a2;2a2;3 : : : ;but muh, muh more time is needed when the order isa1;1b1;11;1d1;1e1;1f1;1a2;1b2;12;1d2;1e2;1f2;1 : : : aq;1bq;1q;1dq;1eq;1fq;1a1;2b1;21;2 : : : :179. [25 ℄ Show that there are exatly 4380 ways to �ll the 32 ells of the 5-ube witheight 4-element sububes. For example, one suh way is to use the sububes 000��,001��, : : : , 111��, in the notation of 7.1.1{(29); a more interesting way is to use0�0�0; 1�0�0; ��001; ��110; �010�; �110�; 0��11; 1��11:What does this fat tell you about the value of q8 in Fig. 40?x 180. [25 ℄ Explain how to use BDDs to ompute the numbersQm that underlie Fig. 40.What is max0�m�80Qm?x 181. [25 ℄ Extend the idea of the previous exerise so that it is possible to determinethe probability distributions Tm of Fig. 41.182. [M16 ℄ For whih values of m in Fig. 41 does Tm have a onstant value?183. [M30 ℄ Disuss the relation between Figs. 42 and 43.184. [M20 ℄ Why does (77) haraterize the relation between q̂m and qm?185. [M20 ℄ Use (77) to prove the intuitively obvious fat that q̂m � qm.186. [M21 ℄ Use (77) to redue Pm q̂m and Pm(2m+ 1)q̂m to (78) and (79).187. [M20 ℄ Analyze random satis�ability in the ase k = n: What are Sn;n and bSn;n?x 188. [HM25 ℄ Analyze random 1SAT, the ase k = 1: What are S1;n and bS1;n?189. [27 ℄ Apply BDD methods to random 3SAT problems on 50 variables. What is theapproximate BDD size after m distint lauses have been ANDed together, as m grows?190. [M20 ℄ Exhibit a Boolean funtion of 4 variables that an't be expressed in 3CNF.(No auxiliary variables are allowed: Only x1, x2, x3, and x4 may appear.)191. [M25 ℄ How many Boolean funtions of 4 variables an be expressed in 3CNF?x 192. [HM21 ℄ Another way to model satis�ability when there are N equally likelylauses is to study S(p), the probability of satis�ability when eah lause is indepen-dently present with probability p.a) Express S(p) in terms of the numbers Qm = �Nm�qm.b) Assign uniform random numbers in [0 : : 1) to eah lause; then at time t, for0 � t � N , onsider all lauses that have been assigned a number less than t=N .(Approximately t lauses will therefore be seleted, when N is large.) Show thatSk;n = R N0 Sk;n(t=N) dt, the expeted amount of time during whih the hosenlauses remain satis�able, is very similar to the satis�ability threshold Sk;n of (76).193. [HM48 ℄ Determine the satis�ability threshold (81) of random 3SAT. Is it truethat lim infn!1 S3;n=n = lim supn!1 S3;n=n? If so, is the limit � 4:2667?194. [HM49 ℄ If � < lim infn!1 S3;n=n, is there a polynomial-time algorithm that isable to satisfy b�n random 3SAT lauses with probability � Æ, for some Æ > 0?195. [HM21 ℄ (J. Frano and M. Paull, 1983.) Use the �rst moment priniple MPR{(21)to prove that b(2k ln 2)n random kSAT lauses are almost always unsatis�able. Hint:Let X =Px [x satis�es all lauses℄, summed over all 2n binary vetors x = x1 : : : xn.
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x 196. [HM25 ℄ (D. B. Wilson.) A lause of a satis�ability problem is \easy" if itontains one or more variables that don't appear in any other lauses. Prove that,with probability 1 � O(n�2�), a kSAT problem that has m = b�n random lausesontains (1� (1� e�k�)k)m+O(n1=2+�) easy ones. (For example, about 0:000035n ofthe 4:27n lauses in a random 3SAT problem near the threshold will be easy.)197. [HM21 ℄ Prove that the quotient q(a; b; A;B; n) = �(a+b)nan ��(A+B)nAn �/�(a+b+A+B)n(a+A)n �is O(n�1=2) as n!1, if a; b; A;B > 0.x 198. [HM30 ℄ Use exerises 196 and 197 to show that the phase transition in Fig. 46 isnot extremely abrupt: If S3(m;n) > 23 and S3(m0; n) < 13 , prove thatm0 = m+
(pn).199. [M21 ℄ Let p(t;m;N) be the probability that t spei�ed letters eah our at leastone within a random m-letter word on an N -letter alphabet.a) Prove that p(t;m;N) � mt=N t.b) Derive the exat formula p(t;m;N) =Pk �tk�(�1)k(N � k)m=Nm.) And p(t;m;N)=t! = �tt	�mt �=N t � �t+1t 	� mt+1�=N t+1 + �t+2t 	� mt+2�=N t+2 � � � � .x 200. [M21 ℄ Complete the text's proof of (84) when  < 1:a) Show that every unsatis�able 2SAT formula ontains lauses of a snare.b) Conversely, are the lauses of a snare always unsatis�able?) Verify the inequality (89). Hint: See exerise 199.201. [HM29 ℄ The t-snake lauses spei�ed by a hain (l1; : : : ; l2t�1) an be written(�li _ li+1) for 0 � i < 2t, where l0 = �lt and subsripts are treated mod 2t.a) Desribe all ways to set two of the l's so that (�x1 _ x2) is one of those 2t lauses.b) Similarly, set three l's in order to obtain (�x1 _ x2) and (�x2 _ x3).) Also set three to obtain both (�x0 _ x1) and (�xt�1 _ xt); here �x0 � xt and t > 2.d) How an the lauses (�xi_xi+1) for 0 � i < t all be obtained by setting t of the l's?e) In general, let N(q; r) be the number of ways to hoose r of the standard lauses(�xi _ xi+1), whih involve exatly q of the variables fx1; : : : ; x2t�1g, and to set qvalues of fl1; : : : ; l2t�1g in order to obtain the r hosen lauses. Evaluate N(2; 1).f) Similarly, evaluate N(3; 2), N(t; t), and N(2t� 1; 2t).g) Show that the probability pr in (95) is �Pq N(q; r)=(2qnq ).h) Therefore the upper bound (96) is valid.202. [HM21 ℄ This exerise ampli�es the text's proof of Theorem C when  > 1.a) Explain the right-hand side of Eq. (93).b) Why does (97) follow from (95), (96), and the stated hoies of t and m?x 203. [HM33 ℄ (K. Xu and W. Li, 2000.) Beginning with the n graph-oloring lauses(15), and optionally the n�d2� exlusion lauses (17), onsider using randomly generatedbinary lauses instead of (16). There are mq random binary lauses, obtained as mindependent sets of q lauses eah, where every suh set is seleted by hoosing distintverties u and v, then hoosing q distint binary lauses (�ui _ �vj) for 1 � i; j � d.(The number of di�erent possible sequenes of random lauses is therefore exatly(�n2��d2q �)m and eah sequene is equally likely.) This method of lause generation isknown as \Model RB"; it generalizes random 2SAT, whih is the ase d = 2 and q = 1.Suppose d = n� and q = pd2, where we require 12 < � < 1 and 0 � p � 12 .Also let m = rn ln d. For this range of the parameters, we will prove that there isa sharp threshold of satis�ability: The lauses are unsatis�able q.s., as n ! 1, ifr ln(1� p) + 1 < 0; but they are satis�able a.s. if r ln(1� p) + 1 > 0.
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150 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 �rst moment prinipleonditional expetation inequality4SATminimally unsatis�ablelauses per literalToveybipartite mathingmathingLet X(j1; : : : ; jn) = [all lauses are satis�ed when eah ith variable v has vji = 1℄;here 1 � j1; : : : ; jn � d. Also let X =P1�j1 ;:::;jn�dX(j1; : : : ; jn). Then X = 0 if andonly if the lauses are unsatis�able.a) Use the �rst moment priniple to prove that X = 0 q.s. when r ln(1� p)+ 1 < 0.b) Find a formula for ps = Pr(X(j1; : : : ; jn) = 1 j X(1; : : : ; 1) = 1), given thatexatly s of the olors fj1; : : : ; jng are equal to 1.) Use (b) and the onditional expetation inequality MPR{(24) to prove thatX > 0a.s. if nXs=0�ns��1d�s�1� 1d�n�s�1 + p1� p s2n2�m ! 1 as n!1:d) Letting ts denote the term for s in that sum, prove that P3n=ds=0 ts � 1.e) Suppose r ln(1 � p) + 1 = � > 0, where � is small. Show that the terms ts �rstinrease, then derease, then inrease, then derease again, as s grows from 0to n. Hint: Consider the ratio xs = ts+1=ts.f) Finally, prove that ts is exponentially small for 3n=d � s � n.x 204. [28 ℄ Figure 46 might suggest that 3SAT problems on n variables are always easywhen there are fewer than 2n lauses. We shall prove, however, that any set of mternary lauses on n variables an be transformed mehanially into another set ofternary lauses on N = O(m) variables in whih no variable ours more than fourtimes. The transformed problem is satis�able if and only if the original problem was;thus it isn't any simpler, although (with at most 4N literals) it has at most 43N lauses.a) First replae the originalm lauses bym new lauses (X1_X2_X3), : : : , (X3m�2_X3m�1 _X3m), on 3m new variables, and show how to add 3m lauses of size 2so that the resulting 4m lauses have exatly as many solutions as the original.b) Construt 16 unsatis�able ternary lauses on 15 variables, where eah variableours at most four times. Hint: If F and F 0 are sets of lauses, let F tF 0 standfor any other set obtained from F [F 0 by replaing one or more lauses C of F byx[C and one or more lauses C0 of F 0 by �x[C0, where x is a new variable; thenF tF 0 is unsatis�able whenever F and F 0 are both unsatis�able. For example, ifF = f�g and F 0 = f1; �1g, then F tF 0 is either f2; 1�2; �1�2g or f2; 1; �1�2g or f2; 1�2; �1g.) Remove one of the lauses from solution (b) and �nd all solutions of the 15 lausesthat remain. (At least three of the variables will have fored values.)d) Use (a), (b), and () to prove the N -variable result laimed above.205. [26 ℄ Construt an unsatis�able 4SAT problem in whih every variable ours atmost 5 times. Hint: Use the t operation as in the previous exerise.206. [M22 ℄ A set of lauses is minimally unsatis�able if it is unsatis�able, yet beomessatis�able if any lause is deleted. Show that, if F and F 0 have no variables in ommon,then FtF 0 is minimally unsatis�able if and only if F and F 0 are minimally unsatis�able.207. [25 ℄ Eah of the literals f1; �1; 2; �2; 3; �3; 4; �4g ours exatly thrie in the eightunsatis�able lauses (6). Construt an unsatis�able 3SAT problem with 15 variables inwhih eah of the 30 literals ours exatly twie. Hint: Consider f�12; �23; �31; 123; �1�2�3g.208. [25 ℄ Via exerises 204(a) and 207, show that any 3SAT problem an be trans-formed into an equivalent set of ternary lauses where every literal ours just twie.209. [25 ℄ (C. A. Tovey.) Prove that every kSAT formula in whih no variable oursmore than k times is satis�able. (Thus the limits on ourrenes in exerises 204{208annot be lowered, when k = 3 and k = 4.) Hint: Use the theory of bipartite mathing.
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210. [M36 ℄ But the result in the previous exerise an be improved when k is large.Use the Loal Lemma to show that every 7SAT problem with at most 13 ourrenesof eah variable is satis�able.211. [30 ℄ (R. W. Irving and M. Jerrum, 1994.) Use exerise 208 to redue 3SAT to theproblem of list oloring a grid graph of the form KN K3. (Hene the latter problem,whih is also alled latin retangle onstrution, is NP-omplete.)212. [32 ℄ Continuing the previous exerise, we shall redue grid list oloring to anotherinteresting problem alled partial latin square onstrution. Given three n � n binarymatries (rik), (jk), (pij), the task is to onstrut an n� n array (Xij) suh that Xijis blank when pij = 0, otherwise Xij = k for some k with rik = jk = 1; furthermorethe nonblank entries must be distint in eah row and olumn.a) Show that this problem is symmetrial in all three oordinates: It's equivalent toonstruting a binary n � n � n tensor (xijk) suh that x�jk = jk, xi�k = rik,and xij� = pij , for 1 � i; j; k � n, where `�' denotes summing an index from 1to n. (Therefore it is also known as the binary n � n � n ontingeny problem,given n2 row sums, n2 olumn sums, and n2 pile sums.)b) A neessary ondition for solution is that �k = r�k, j� = p�j , and ri� = pi�.Exhibit a small example where this ondition is not suÆient.) IfM < N , redue KM KN list oloring to the problem of KN KN list oloring.d) Finally, explain how to redueKN KN list oloring to the problem of onstrutingan n � n partial latin square, where n = N +PI;J jL(I; J)j. Hint: Instead ofonsidering integers 1 � i; j; k � n, let i, j, k range over a set of n elements.De�ne pij = 0 for most values of i and j; also make rik = ik for all i and k.x 213. [M20 ℄ Experiene with the analyses of sorting algorithms in Chapter 5 suggeststhat random satis�ability problems might be modeled niely if we assume that, in eahof m independent lauses, the literals xj and �xj our with respetive probabilities pand q, independently for 1 � j � n, where p + q � 1. Why is this not an interestingmodel as n ! 1, when p and q are onstant? Hint: What is the probability thatx1 : : : xn = b1 : : : bn satis�es all of the lauses, when b1 : : : bn is a given binary vetor?214. [HM38 ℄ Although the random model in the preeding exerise doesn't teah ushow to solve SAT problems, it does lead to interesting mathematis: Let 0 < p < 1 andonsider the reurreneT0 = 0; Tn = n+ 2 n�1Xk=0�nk�pk(1� p)n�kTk; for n > 0.a) Find a funtional relation satis�ed by T (z) =P1n=0 Tnzn=n!.b) Dedue that we have T (z) = zezP1m=0(2p)mQm�1k=0 (1� e�pk(1�p)z).) Hene, if p 6= 1=2, we an use Mellin transforms (as in the derivation of 5.2.2{(50))to show that Tn = Cpn�(1 + Æ(n) +O(1=n))+ n=(1� 2p), where � = 1=lg(1=p),Cp is a onstant, and Æ is a small \wobble" with Æ(n) = Æ(pn).x 215. [HM23 ℄ What is the expeted pro�le of the searh tree when a simple baktrakproedure is used to �nd all solutions to a random 3SAT problem with m independentlauses on n variables? (There is a node on level l for every partial solution x1 : : : xlthat doesn't ontradit any of the lauses.) Compute these values when m = 200 andn = 50. Also estimate the total tree size when m = �n, for �xed � as n!1.216. [HM38 ℄ (P. W. Purdom, Jr., and C. A. Brown.) Extend the previous exerise toa more sophistiated kind of baktraking, where all hoies fored by unit lauses are
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pursued before two-way branhing is done. (The \pure literal rule" is not exploited,however, beause it doesn't �nd all solutions.) Prove that the expeted tree size isgreatly redued when m = 200 and n = 50. (An upper bound is suÆient.)217. [20 ℄ True or false: If A and B are arbitrary lauses that are simultaneouslysatis�able, and if l is any literal, then the lause C = (A[B) n fl; �lg is also satis�able.(We're thinking here of A, B, and C as sets of literals, not as disjuntions of literals.)218. [20 ℄ Express the formula (x_A)^(�x_B) in terms of the ternary operator u? v:w.x 219. [M20 ℄ Formulate a general de�nition of the resolution operator C = C0�C00 that(i) agrees with the text's de�nition when C0 = x _A0 and C00 = �x _A00; (ii) applies toarbitrary lauses C0 and C00; (iii) has the property that C0 ^ C00 implies C0 � C00.220. [M24 ℄ We say that lause C subsumes lause C0, written C � C0, if C0 = } or ifC0 6= } and every literal of C appears in C0.a) True or false: C � C0 and C0 � C00 implies C � C00.b) True or false: (C _ �) � (C0 _ �0) � (C � C0) _ � _ �0, with � as in exerise 219.) True or false: C0 � C00 implies C �C0 � C � C00.d) The notation C1; : : : ; Cm ` C means that a resolution hain C1; : : : ; Cm+r existswith Cm+r � C, for some r � 0. Show that we might have C1; : : : ; Cm ` C eventhough C annot be obtained from fC1; : : : ; Cmg by suessive resolutions (104).e) Prove that if C1 � C01, : : : , Cm � C0m, and C01; : : : ; C0m ` C, then C1; : : : ; Cm ` C.f) Furthermore C1; : : : ; Cm ` C implies C1_ �1; : : : ; Cm_ �m ` C _ �1 _ � � � _ �m.221. [16 ℄ Draw the searh tree analogous to Fig. 38 that is impliitly traversed whenAlgorithm A is applied to the unsatis�able lauses f12; 2; �2g. Explain why it does notorrespond to a resolution refutation that is analogous to Fig. 48.222. [M30 ℄ (Oliver Kullmann, 2000.) Prove that, for every lause C in a satis�abilityproblem F , there is an autarky satisfying C if and only if C annot be used as the labelof a soure vertex in any resolution refutation of F .223. [HM40 ℄ Step X9 dedues a binary lause that annot be derived by resolution(see exerise 166). Prove that, nevertheless, the running time of Algorithm L on un-satis�able input will never be less than the length of a shortest treelike refutation.224. [M20 ℄ Given a resolution tree that refutes the axioms F j �x, show how to onstruta resolution tree of the same size that either refutes the axioms F or derives the lausefxg from F without resolving on the variable x.x 225. [M31 ℄ (G. S. Tseytin, 1966.) If T is any resolution tree that refutes a set ofaxioms F , show how to onvert it to a regular resolution tree Tr that refutes F , whereTr is no larger than T .226. [M20 ℄ If � is a node in a refutation tree, let C(�) be its label, and let k�k denotethe number of leaves in its subtree. Show that, given a refutation tree with N leaves,the Prover an �nd a node with k�k � N=2s for whih the urrent assignment falsi�esC(�), whenever the Delayer has sored s points in the Prover{Delayer game.227. [M27 ℄ Given an extended binary tree, exerise 7.2.1.6{124 explains how to labeleah node with its Horton{Strahler number. For example, the nodes at depth 2 inFig. 48 are labeled 1, beause their hildren have the labels 1 and 0; the root is labeled 3.Prove that the maximum sore that the Delayer an guarantee, when playingthe Prover{Delayer game for a set of unsatis�able lauses F , is equal to the minimumpossible Horton{Strahler root label in a tree refutation of F .



September 23, 2015

7.2.2.2 SATISFIABILITY: EXERCISES 153 St�almarkanti-maximal-element lausesminimal unsatis�able setBussfsnarktreelike resolutionower snarkDelayerpigeonholepigeonholeoloromplete graphexlusion lausesBen-SassonWigdersonrandom 3SAT3SATnotation: �(C)notation F ` Ca.s.: almost surelyq.s.: quite surely

x 228. [M21 ℄ St�almark's refutation of (99){(101) atually obtains � without using all ofthe axioms! Show that only about 1/3 of those lauses are suÆient for unsatis�ability.x 229. [M21 ℄ Continuing exerise 228, prove also that the set of lauses (99), (1000),(101) is unsatis�able, where (1000) denotes (100) restrited to the ases i � k and j < k.230. [M22 ℄ Show that the lauses with i 6= j in the previous exerise form a minimalunsatis�able set: Removing any one of them leaves a satis�able remainder.231. [M30 ℄ (Sam Buss.) Refute the lauses of exerise 229 with a resolution hain oflength O(m3). Hint: Derive the lauses Gij = (xij_xi(j+1)_� � �_xim) for 1 � i � j � m.x 232. [M28 ℄ Prove that the lauses fsnark (q) of exerise 176 an be refuted by treelikeresolution in O(q6) steps.233. [16 ℄ Explain why (105) satis�es (104), by exhibiting j(i) and k(i) for 9 � i � 22.234. [20 ℄ Show that the Delayer an sore at least m points against any Prover whotries to refute the pigeonhole lauses (106) and (107).x 235. [30 ℄ Refute those pigeonhole lauses with a hain of length m(m+3)2m�2.236. [48 ℄ Is the hain in the previous exerise as short as possible?x 237. [28 ℄ Show that a polynomial number of steps suÆe to refute the pigeonholelauses (106), (107), if the extended resolution trik is used to append new lauses.238. [HM21 ℄ Complete the proof of Lemma B. Hint: Make r � ��b when W = b.x 239. [M21 ℄ What lauses �0 on n variables make k�0 ` �k as large as possible?x 240. [HM23 ℄ Choose integers fij 2 f1; : : : ;mg uniformly at random, for 1 � i � 5and 0 � j � m, and let G0 be the bipartite graph with edges aj���bk if and only if k 2ff1j ; : : : ; f5jg. Show that Pr(G0 satis�es the strong expansion ondition (108)) � 1=2.241. [20 ℄ Prove that any set of at most m=3000 pigeons an be mathed to distintholes, under the restrited pigeonhole onstraints G0 of Theorem B.242. [M20 ℄ The pigeonhole axioms (106) and (107) are equivalent to the lauses (15)and (16) that arise if we try to olor the omplete graph Km+1 with m olors.Suppose we inlude further axioms orresponding to (17), namely(�xjk _ �xjk0); for 0 � j � m and 1 � k < k0 � m.Does Theorem B still hold, or do these additional axioms derease the refutation width?243. [HM31 ℄ (E. Ben-Sasson and A. Wigderson.) Let F be a set of b�n random3SAT lauses on n variables, where � > 1=e is a given onstant. For any lause C onthose variables, de�ne �(C) = minf jF 0j j F 0 � F and F 0 ` Cg. Also let V (F 0) denotethe variables that our in a given family of lauses F 0.a) Prove that jV (F 0)j � jF 0j a.s., when F 0 � F and jF 0j � n=(2�e2).b) Therefore either F is satis�able or �(�) > n=(2�e2), a.s.) Let n0 = n=(1000000�4), and assume that n0 � 2. Prove that 2jV (F 0)j � 3jF 0j �n0=4 q.s., when F 0 � F and n0=2 � jF 0j < n0.d) Consequently either F is satis�able or w(F ` �) � n0=4, a.s.244. [M20 ℄ If A is a set of variables, let [A℄0 or [A℄1 stand for the set of all lausesthat an be formed from A with an even or odd number of negative literals, respe-tively; eah lause should involve all of the variables. (For example, [f1; 2; 3g℄1 =f12�3; 1�23; �123; �1�2�3g.) If A and B are disjoint, express [A [ B ℄0 in terms of the sets[A℄0, [A℄1, [B ℄0, [B ℄1.
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x 245. [M27 ℄ Let G be a onneted graph whose verties v 2 V have eah been labeled0 or 1, where the sum of all labels is odd. We will onstrut lauses on the set ofvariables euv, one for eah edge u��� v in G. The axioms are �(v) = [E(v)℄l(v)�1 foreah v 2 V (see exerise 244), where E(v) = feuv j u���vg and l(v) is the label of v.For example, vertex 1 of the graph below is shown as a blak dot in order toindiate that l(1) = 1, while the other verties appear as white dots and are labeledl(2) = � � � = l(6) = 0. The graph and its axioms areG = 1 2 3 456a b def g h ; �(1) = faf; �a�fg;�(2) = fab�g; a�bg; �abg; �a�b�gg;�(3) = fb�h; b�h;�bh;�b��hg; �(4) = f �d; �dg;�(5) = fde�h; d�eh; �deh; �d�e�hg;�(6) = fef�g; e�fg; �efg; �e�f�gg:Notie that, when v has d > 0 neighbors in G, the set �(v) onsists of 2d�1 lauses ofsize d. Furthermore, the axioms of �(v) are all satis�ed if and only ifMeuv2E(v) euv = `(v):If we sum this equation over all verties v, mod 2, we get 0 on the left, beause eahedge euv ours exatly twie (one in E(u) and one in E(v)). But we get 1 on theright. Therefore the lauses �(G) = Sv �(v) are unsatis�able.a) The axioms �(G) jb and �(G) j�b in this example turn out to be �(G0) and �(G00),where G0 = and G00 = . Explain what happens in general.b) Let �(C) = minf jV 0j j V 0 � V and Sv2V 0 �(v) ` Cg, for every lause C involv-ing the variables euv. Show that �(C)=1 for every axiom C2�(G). What is �(�)?) If V 0 � V , let �V 0 = f euv j u 2 V 0 and v =2 V 0g. Prove that, if jV 0j = �(C),every variable of �V 0 appears in C.d) A nonbipartite ubi Ramanujan graphG onm verties V has three edges v���v�,v���v�, v���v� touhing eah vertex, where �, �, and � are permutations withthe following properties: (i) � = �� and � = ��; (ii) G is onneted; (iii) If V 0 isany subset of s verties, and if there are t edges between V 0 and V n V 0, then wehave s=(s+ t) � (s=n+ 8)=9. Prove that w(�(G) ` �) > m=78.x 246. [M28 ℄ (G. S. Tseytin.) Given a labeled graph G with m edges, n verties, andN unsatis�able lauses �(G) as in the previous exerise, explain how to refute thoselauses with O(mn+N) steps of extended resolution.247. [18 ℄ Apply variable elimination to just �ve of the six lauses (112), omitting `1�2'.248. [M20 ℄ Formally speaking, SAT is the problem of evaluating the quanti�ed for-mula 9x1 : : : 9xn�1 9xn F (x1; : : : ; xn�1; xn);where F is a Boolean funtion given in CNF as a onjuntion of lauses. Explain howto transform the CNF for F into the CNF for F 0 in the redued problem9x1 : : : 9xn�1F 0(x1; : : : ; xn�1); F 0(x1; : : : ; xn�1) = F (x1; : : : ; xn�1; 0)_F (x1; : : : ; xn�1; 1):249. [18 ℄ Apply Algorithm I to (112) using Cook's Method IA.250. [25 ℄ Sine the lauses R0 in (7) are satis�able, Algorithm I might disover asolution without ever reahing step I4. Try, however, to make the hoies in steps I2,I3, and I4 so that the algorithm takes as long as possible to disover a solution.
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x 251. [30 ℄ Show that Algorithm I an prove the unsatis�ability of the anti-maximal-element lauses (99){(101) by making O(m3) resolutions, if suitably lairvoyant hoiesare made in steps I2, I3, and I4.252. [M26 ℄ Can the unsatis�ability of (99){(101) be proved in polynomial time byrepeatedly performing variable elimination and subsumption?x 253. [18 ℄ What are the next two lauses learned if deision `5' follows next after (114)?254. [16 ℄ Given the binary lauses f12; �13; 2�3; �2�4; �34g, what lause will a CDCL solverlearn �rst if it begins by deiding that 1 is true?x 255. [20 ℄ Construt a satis�ability problem with ternary lauses, for whih a CDCLsolver that is started with deision literals `1', `2', `3' on levels 1, 2, and 3 will learnthe lause `45' after a onit on level 3.256. [20 ℄ How might the lause `��' in Table 3 have been easily learned?x 257. [30 ℄ (Niklas S�orensson.) A literal �l is said to be redundant, with respet to a givenlause  and the urrent trail, if l is in the trail and either (i) l is de�ned at level 0, or (ii) lis not a deision literal and every false literal in l's reason is either in  or (reursively)redundant. (This de�nition is stronger than the speial ases by whih (115) reduesto (116), beause �l itself needn't belong to .) If, for example,  = (�l 0_�b1_�b2_�b3_�b4),let the reason for b4 be (b4 _ �b1 _ �a1), where the reason for a1 is (a1 _ �b2 _ �a2) and thereason for a2 is (a2 _�b1 _�b3). Then �b4 is redundant, beause �a2 and �a1 are redundant.a) Suppose  = (�l 0 _ �b1 _ � � � _ �br) is a newly learned lause. Prove that if �bj 2  isredundant, some other �bi 2  beame false on the same level of the trail as �bj did.b) Devise an eÆient algorithm that disovers all of the redundant literals �bi in agiven newly learned lause  = (�l 0 _ �b1 _ � � � _ �br). Hint: Use stamps.258. [21 ℄ A non-deision literal l in Algorithm C's trail always has a reason Rl =(l0 _ l1 _ � � � _ lk�1), where l0 = l and �l1, : : : , �lk�1 preede l in the trail. Furthermore,the algorithm disovered this lause while looking at the wath list of l1. True or false:�l2, : : : , �lk�1 preede �l1 in the trail. Hint: Consider Table 3 and its sequel.259. [M20 ℄ Can ACT(j) exeed ACT(k) for values of � near 0 or 1, but not for all �?260. [18 ℄ Desribe in detail step C1's setting-up of MEM, the wath lists, and the trail.261. [21 ℄ The main loop of Algorithm C is the unit-propagation proess of steps C3and C4. Desribe the low-level details of link adjustment, et., to be done in those steps.262. [20 ℄ What low-level operations underlie hanges to the heap in steps C6{C8?263. [21 ℄ Write out the gory details by whih step C7 onstruts a new lause andstep C9 puts it into the data strutures of Algorithm C.264. [20 ℄ Suggest a way by whih Algorithm C ould indiate progress by displaying\move odes" analogous to those of Algorithms A, B, D, and L. (See exerise 142.)265. [21 ℄ Desribe several irumstanes in whih the wathed literals l0 and/or l1 ofa lause  atually beome false during the exeution of Algorithm C.266. [20 ℄ In order to keep from getting into a rut, CDCL solvers are often designed tomake deisions at random, with a small probability p (say p = :02), instead of alwayshoosing a variable of maximum ativity. How would this poliy hange step C6?x 267. [25 ℄ Instanes of SAT often ontain numerous binary lauses, whih are handledeÆiently by the unit-propagation loop (62) of Algorithm L but not by the orrespond-ing loop in step C3 of Algorithm C. (The tehnique of wathed literals is great for long
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lauses, but it is omparatively umbersome for short ones.) What additional datastrutures will speed up Algorithm C's inner loop, when binary lauses are abundant?268. [21 ℄ When Algorithm C makes a literal false at level 0 of the trail, we an removeit from all of the lauses. Suh updating might take a long time, if we did it \eagerly";but there's a lazy way out: We an delete a permanently false literal if we happen toenounter it in step C3 while looking for a new literal to wath (see exerise 261).Explain how to adapt the MEM data struture onventions so that suh deletionsan be done in situ, without opying lauses from one loation into another.269. [23 ℄ Suppose Algorithm C reahes a onit at level d of the trail, after havinghosen the deision literals u1, u2, : : : , ud. Then the \trivial lause" (�l 0_ �u1 _ � � �_ �ud0 )must be true if the given lauses are satis�able, where l0 and d0 are de�ned in step C7.a) Show that, if we start with the lause (�l0 _ �b1 _ � � � _ �br) that is obtained instep C7 and then resolve it somehow with zero or more known lauses, we analways reah a lause that subsumes the trivial lause.b) Sometimes, as in (115), the lause that is slated to be learned in step C9 is muhlonger than the trivial lause. Construt an example in whih d = 3, d0 = 1, andr = 10, yet none of �b1, : : : , �br are redundant in the sense of exerise 257.) Suggest a way to improve Algorithm C aordingly.270. [25 ℄ (On-the-y subsumption.) The intermediate lauses that arise in step C7,immediately after resolving with a reason Rl, oasionally turn out to be equal to theshorter lause Rl n l. In suh ases we have an opportunity to strengthen that lauseby deleting l from it, thus making it potentially more useful in the future.a) Construt an example where two lauses an eah be subsumed in this way whileresolving a single onit. The subsumed lauses should both ontain two literalsassigned at the urrent level in the trail, as well as one literal from a lower level.b) Show that it's easy to reognize suh opportunities, and to strengthen suh lauseseÆiently, by modifying the steps of answer 263.x 271. [25 ℄ The sequene of learned lauses C1, C2, : : : often inludes ases where Cisubsumes its immediate predeessor, Ci�1. In suh ases we might as well disardCi�1, whih appears at the very end of MEM, and store Ci in its plae, unless Ci�1 isstill in use as a reason for some literal on the trail. (For example, more than 8,600of the 52,000 lauses typially learned from waerden (3; 10; 97) by Algorithm C an bedisarded in this way. Suh disards are di�erent from the on-the-y subsumptionsonsidered in exerise 270, beause the subsumed Ci�1 inludes only one literal fromits original onit level; furthermore, learned lauses have usually been signi�antlysimpli�ed by the proedure of exerise 257, unless they're trivial.)Design an eÆient way to disover when Ci�1 an be safely disarded.272. [30 ℄ Experiment with the following idea: The lauses of waerden (j; k;n) aresymmetrial under reetion, in the sense that they remain unhanged overall if wereplae xk by xRk = xn+1�k for 1 � k � n. Therefore, whenever Algorithm C learnsa lause C = (�l0 _ �b1 _ � � � _ �br), it is also entitled to learn the reeted lause CR =(�l0R _ �bR1 _ � � � _ �bRr ).273. [27 ℄ A lause C that is learned from waerden (j; k;n) is valid also with respetto waerden (j; k;n0) when n0 > n; and so are the lauses C + i that are obtained byadding i to eah literal of C, for 1 � i � n0 �n. For example, the fat that `35' followsfrom waerden (3; 3; 7) allows us to add the lauses 35, 46, 57 to waerden (3; 3; 9).a) Exploit this idea to speed up the alulation of van der Waerden numbers.
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b) Explain how to apply it also to bounded model heking.274. [35 ℄ Algorithm C sets the \reason" for a literal l as soon as it noties a lausethat fores l to be true. Later on, other lauses that fore l are often enountered, inpratie; but Algorithm C ignores them, even though one of them might be a \betterreason." (For example, another foring lause might be signi�antly shorter.) Explorea modi�ation of Algorithm C that tries to improve the reasons of non-deision literals.x 275. [22 ℄ Adapt Algorithm C to the problem of �nding the lexiographially smallestsolution to a satis�ability problem, by inorporating the ideas of exerise 109.276. [M15 ℄ True or false: If F is a family of lauses and L is a set of stritly distintliterals, then F ^ L `1 � if and only if (F jL) `1 �.277. [M18 ℄ If (C1; : : : ; Ct) is a erti�ate of unsatis�ability for F , and if all lausesof F have length � 2, prove that some Ci is a unit lause.278. [22 ℄ Find a six-step erti�ate of unsatis�ability for waerden (3; 3; 9).279. [M20 ℄ True or false: Every unsatis�able 2SAT problem has a erti�ate `(l; �)'.x 280. [M26 ℄ The problem ook (j; k) onsists of all �nj� positive j-lauses and all �nk�negative k-lauses on f1; : : : ; ng, where n = j + k � 1. For example, ook (2; 3) isf12; 13; 14; 23; 24; 34; �1�2�3; �1�2�4; �1�3�4; �2�3�4g:a) Why are these lauses obviously unsatis�able?b) Find a totally positive erti�ate for ook (j; k), of length �n�1j�1�.) Prove in fat that Algorithm C always learns exatly �n�1j�1� lauses when it provesthe unsatis�ability of ook (j; k), if Mp =Mf =1 (no purging or ushing).281. [21 ℄ Construt a erti�ate of unsatis�ability that refutes (99), (100), (101).x 282. [M33 ℄ Construt a erti�ate of unsatis�ability for the lauses fsnark (q) of exer-ise 176 when q � 3 is odd, using O(q) lauses, all having length � 4. Hint: Inlude thelauses (�aj;p_�ej;p), (�aj;p_ �fj;p), (�ej;p_ �fj;p), and (aj;p_ej;p_fj;p) for 1 � j � q, 1 � p � 3.283. [HM46 ℄ Does Algorithm C solve the ower snark problem in linear time? Morepreisely, let pq(M) be the probability that the algorithm refutes fsnark (q) while mak-ing at mostM referenes to MEM. Is there a onstant N suh that pq(Nq) > 12 for all q?284. [23 ℄ Given F and (C1; : : : ; Ct), a erti�ate-heking program tests ondition(119) by verifying that F and lauses C1, : : : , Ci�1 will fore a onit when theyare augmented by the unit literals of Ci. While doing this, it an mark eah lauseof F [ fC1; : : : ; Ci�1g that was redued to a unit during the foring proess; then thetruth of Ci does not depend on the truth of any unmarked lause.In pratie, many lauses of F are never marked at all, hene F will remainunsatis�able even if we leave them out. Furthermore, many lauses Ci are not markedduring the veri�ation of any of their suessors, fCi+1; : : : ; Ctg; suh lauses Ci needn'tbe veri�ed, nor need we mark any of the lauses on whih they depend.Therefore we an save work by heking the erti�ate bakwards: Start bymarking the �nal lause Ct, whih is � and always needs to be veri�ed. Then, fori = t, t� 1, : : : , hek Ci only if it has been marked.The unit propagations an all be done without reording the \reason" Rl thathas aused any literal l to be fored. In pratie, however, many of the fored literalsdon't atually ontribute to the onits that arise, and we don't want to mark anylauses that aren't really involved.Explain how to use reasons, as in Algorithm C, so that lauses are marked by theveri�er only if they atually partiipate in the proof of a marked lause Ci.
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285. [19 ℄ Using the data in Fig. 50, the text observes that Eq. (124) gives j = 95,sj = 3081, and mj = 59 when � = 1516 . What are j, sj , and mj when (a) � = 916 ?(b) � = 12? () � = 716 ? Also ompare the e�etiveness of di�erent �'s by omputing thenumber bj of \blak" lauses (those with 0 < RANGE() < j that proved to be useful).286. [M24 ℄ What hoie of signatures-to-keep in Fig. 50 is optimum, in the sense thatit maximizes P bpqxpq subjet to the onditions Papqxpq � 3114, xpq 2 f0; 1g, andxpq � xp0q0 for 1 � p � p0 � 7, 0 � q � q0 � 8? Here apq and bpq are the areas of thegray and blak lauses that have signature (p; q), as given by the matries in the text.[This is a speial ase of the \knapsak problem with a partial ordering."℄287. [25 ℄ What hanges to Algorithm C are neessary to make it do a \full run," andlater to learn from all of the onits that arose during that run?288. [28 ℄ Spell out the details of omputing RANGE sores and then ompressing thedatabase of learned lauses, during a round of purging.289. [M20 ℄ Assume that the kth round of purging begins with yk lauses in memoryafter k� + �k2�Æ lauses have been learned, and that purging removes 12yk of thoselauses. Find a losed formula for yk as a funtion of k.290. [17 ℄ Explain how to �nd xk, the unassigned variable of maximum ativity thatis used for ushing literals. Hint: It's in the HEAP array.291. [20 ℄ In the text's hypothetial senario about ushing Table 3 bak to level 15,why will 49 soon appear on the trail, instead of 49?292. [M21 ℄ How large an AGILITY get after repeatedly exeuting (127)?293. [21 ℄ Spell out the details of updatingMf toM+�f when deiding whether or notto ush. Also ompute the agility threshold that's spei�ed in Table 4. Hint: See (131).294. [HM21 ℄ For eah binary vetor � = x1x2x3x4, �nd the generating funtiong�(z) = P1j=0 p�;jzj, where p�;j is the probability that Algorithm P will solve theseven lauses of (7) after making exatly j ips, given the initial values � in step P1.Dedue the mean and variane of the number of steps needed to �nd a solution.295. [M23 ℄ Algorithm P often �nds solutions muh more quikly than predited byCorollary W. But show that some 3SAT lauses will indeed require 
((4=3)n) trials.296. [HM20 ℄ Complete the proof of Theorem U by (approximately) maximizing thequantity f(p; q) in (129). Hint: Consider f(p+ 1; q)=f(p; q).x 297. [HM26 ℄ (Emo Welzl.) Let Gq(z) =Pp Cp;p+q�1(z=3)p+q(2z=3)p be the generat-ing funtion for stopping time t = 2p+ q when Y0 = q in the proof of Theorem U.a) Find a losed form for Gq(z), using formulas from Setion 7.2.1.6.b) Explain why Gq(1) is less than 1.) Evaluate and interpret the quantity G0q(1)=Gq(1).d) Use Markov's inequality to bound the probability that Yt = 0 for some t � N .e) Show that Corollary W follows from this analysis.298. [HM22 ℄ Generalize Theorem U and Corollary W to the ase where eah lausehas at most k literals, where k � 3.299. [HM23 ℄ Continuing the previous exerise, investigate the ase k = 2.x 300. [25 ℄ Modify Algorithm P so that it an be implemented with bitwise operations,thereby running (say) 64 independent trials simultaneously.x 301. [25 ℄ Disuss implementing the algorithm of exerise 300 eÆiently on MMIX.
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302. [26 ℄ Expand the text's high-level desription of steps W4 and W5, by providinglow-level details about exatly what the omputer should do.303. [HM20 ℄ Solve exerise 294 with Algorithm W in plae of Algorithm P.304. [HM34 ℄ Consider the 2SAT problem with n(n� 1) lauses (�xj _xk) for all j 6= k.Find the generating funtions for the number of ips taken by Algorithms P and W.Hint: Exerises 1.2.6{68 and MPR{105 are helpful for �nding the exat formulas.x 305. [M25 ℄ Add one more lause, (�x1 _ �x2), to the previous exerise and �nd theresulting generating funtions when n = 4. What happens when p = 0 in AlgorithmW?x 306. [HM32 ℄ (Luby, Sinlair, and Zukerman, 1993.) Consider a \Las Vegas algo-rithm" that sueeds or fails; it sueeds at step t with probability pt, and fails withprobability p1 < 1. Let qt = p1 + p2 + � � �+ pt and Et = p1 + 2p2 + � � �+ tpt; also letE1 =1 if p1 > 0, otherwise E1 =Pttpt. (The latter sum might be 1.)a) Suppose we abort the algorithm and restart it again, whenever the �rst N stepshave not sueeded. Show that if qN > 0, this strategy will sueed after per-forming an average of l(N) <1 steps. What is l(N)?b) Compute l(N) when pm = mn , p1 = n�mn , otherwise pt = 0, where 1 � m � n.) Given the uniform distribution, pt = 1n for 1 � t � n, what is l(N)?d) Find all probability distributions suh that l(N) = l(1) for all N � 1.e) Find all probability distributions suh that l(N) = l(n) for all N � n.f) Find all probability distributions suh that qn+1 = 1 and l(n) � l(n + 1).g) Find all probability distributions suh that q3 = 1 and l(1) < l(3) < l(2).h) Let l = infN�1 l(N), and let N� be the least positive integer suh that l(N�) = l,or 1 if no suh integer exists. Prove that N� =1 implies l = E1 <1.i) Find N� for the probability distribution pt=[t>n℄=((t�n)(t+1�n)), given n�0.j) Exhibit a simple example of a probability distribution for whih N� =1.k) Let L = mint�1 t=qt. Prove that l � L � 2l � 1.307. [HM28 ℄ Continuing exerise 306, onsider a more general strategy de�ned by anin�nite sequene of positive integers (N1; N2; : : : ): \Set j  0; then, while suess hasnot yet been ahieved, set j  j+1 and run the algorithm with uto� parameter Nj ."a) Explain how to ompute EX, where X is the number of steps taken before thisstrategy sueeds.b) Let Tj = N1 + � � � + Nj . Prove that EX = P1j=1Pr(Tj�1<X�Tj) l(Nj), if wehave qNj > 0 for all j.) Consequently the steady strategy (N�; N�; : : : ) is best: EX � l(N�) = l.d) Given n, exerise 306(b) de�nes n simple probability distributions p(m) that havel(N�) = n, but the value of N� = m is di�erent in eah ase. Prove that anysequene (N1; N2; : : : ) must have EX > 14nHn � 12n = 14 lHl � 12 l on at least oneof those p(m). Hint: Consider the smallest r suh that, for eahm, the probabilityis � 12 that r trial runs suÆe; show that � n=(2m) of fN1; : : : ; Nrg are � m.308. [M29 ℄ This exerise explores the \relutant doubling" sequene (130).a) What is the smallest n suh that Sn = 2a, given a � 0?b) Show that fn j Sn = 1g = f2k + 1� �k j k � 0g; hene the generating funtionPnzn[Sn=1℄ is the in�nite produt z(1 + z)(1 + z3)(1 + z7)(1 + z15) : : : .) Find similar expressions for fn j Sn = 2ag and Pnzn[Sn=2a ℄.d) Let �(a; b; k) =Pr(a;b;k)n=1 Sn, where Sr(a;b;k) is the 2bkth ourrene of 2a in hSni.For example, �(1; 0; 3) = S1 + � � �+ S10 = 16. Evaluate �(a; b; 1) in losed form.e) Show that �(a; b; k+1)� �(a; b; k) � (a+ b+ 2k � 1)2a+b, for all k � 1.
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f) Given any probability distribution as in exerise 306(k), let a = dlg te and b =dlg 1=qte, where t=qt = L; thus L � 2a+b < 4L. Prove that if the strategy ofexerise 307 is used with Nj = Sj , we haveEX � �(a; b; 1) +Xk�1Qk(�(a; b; k+1)� �(a; b; k)); where Q = (1� q2a)2b.g) Therefore hSni gives EX < 13l lg l + 49l, for every probability distribution.309. [20 ℄ Exerise 293 explains how to use the relutant doubling sequene withAlgorithm C. Is Algorithm C a Las Vegas algorithm?310. [M25 ℄ Explain how to ompute the \relutant Fibonai sequene"1; 1; 2; 1; 2; 3; 1; 1; 2; 3; 5; 1; 1; 2; 1; 2; 3; 5; 8; 1; 1; 2; 1; 2; 3; 1; 1; 2; 3; 5; 8; 13; 1; : : : ;whih is somewhat like (130) and useful as in exerise 308, but its elements are Fibonainumbers instead of powers of 2.311. [21 ℄ Compute approximate values of EX for the 100 probability distributions ofexerise 306(b) when n = l = 100, using the method of exerise 307 with the sequeneshSni of exerise 308 and hS0ni of exerise 310. Also onsider the more easily generated\ruler doubling" sequene hRni, where Rn = n&�n = 2�n. Whih sequene is best?312. [HM24 ℄ Let T (m;n) = EX when the relutant doubling method is applied tothe probability distribution de�ned in exerise 306(b). Express T (m;n) in terms of thegenerating funtions in exerise 308().x 313. [22 ℄ Algorithm W always ips a ost-free literal if one is present in Cj , withoutonsidering its parameter p. Show that suh a ip always dereases the number ofunsatis�ed lauses, r; but it might inrease the distane from x to the nearest solution.x 314. [36 ℄ (H. H. Hoos, 1998.) If the given lauses are satis�able, and if p > 0, anthere be an initial x for whih Algorithm W always loops forever?315. [M18 ℄ What value of p is appropriate in Theorem J when d = 1?316. [HM20 ℄ Is Theorem J a onsequene of Theorem L?x 317. [M26 ℄ Let �(G) = Pr(A1 \ � � � \Am) under the assumptions of (133), when pi =p = (d�1)d�1=dd for 1 � i � m and every vertex of G has degree at most d > 1. Prove,by indution onm, that �(G) > 0 and that �(G) > d�1d �(Gnv) when v has degree < d.318. [HM27 ℄ (J. B. Shearer.) Prove that Theorem J is the best possible result of itskind: If p > (d � 1)d�1=dd and d > 1, there is a graph G of maximum degree d forwhih (p; : : : ; p) =2 R(G). Hint: Consider omplete t-ary trees, where t = d� 1.319. [HM20 ℄ Show that pde < 1 implies p � (d� 1)d�1=dd.320. [M24 ℄ Given a lopsidependeny graph G, the ourrene threshold �(G) is thesmallest value p suh that it's sometimes impossible to avoid all events when eahevent ours with probability p. For example, the M�obius polynomial for the path P3 is1�p1�p2�p3+p1p3; so the ourrene threshold is ��2, the least p with 1�3p+p2 � 0.a) Prove that the ourrene threshold for Pm is 1=(4 os2 �m+2 ).b) What is the ourrene threshold for the yle graph Cm?321. [M24 ℄ Suppose eah of four random events A, B, C, D ours with probability p,where fA;Cg and fB;Dg are independent. Aording to exerise 320(b) with m = 4,there's a joint distribution of (A;B;C;D) suh that at least one of the events alwaysours, whenever p � (2�p2)=2 � 0:293. Exhibit suh a distribution when p = 3=10.
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x 322. [HM35 ℄ (K. Kolipaka and M. Szegedy, 2011.) Surprisingly, the previous exeriseannot be solved in the setting of Algorithm M! Suppose we have independent randomvariables (W;X; Y; Z) suh that A depends on W and X, B depends on X and Y,C depends on Y and Z, D depends on Z and W. Here W equals j with probability wjfor all integers j; X, Y, and Z are similar. This exerise will prove that the onstraintA \B \ C \D is always satis�able, even when p is as large as 0.333.a) Express the probability Pr(A \B \ C \D) in a onvenient way.b) Suppose there's a distribution of W, X, Y, Z with Pr(A) = Pr(B) = Pr(C) =Pr(D) = p and Pr(A\B \C \D) = 0. Show that there are ten values suh that0 � a; b; ; d; a0; b0; 0; d0 � 1; 0 < �; � < 1;�a+ (1� �)a0 � p; �b+ (1� �)b0 � p;�+ (1� �)0 � p; �d+ (1� �)d0 � p;a+ d � 1 or b+  � 1, a+ d0 � 1 or b+ 0 � 1;a0 + d � 1 or b0 +  � 1, a0 + d0 � 1 or b0 + 0 � 1.) Find all solutions to those onstraints when p = 1=3.d) Convert those solutions to distributions that have Pr(A \ B \ C \D) = 0.323. [10 ℄ What trae preedes b in the list (135)?x 324. [22 ℄ Given a trae � = x1x2 : : : xn for a graph G, explain how to �nd all strings �that are equivalent to �, using Algorithm 7.2.1.2V. How many strings yield (136)?x 325. [20 ℄ An ayli orientation of a graph G is an assignment of diretions to eah ofits edges so that the resulting digraph has no oriented yles. Show that the number oftraes for G that are permutations of the verties (with eah vertex appearing exatlyone in the trae) is the number of ayli orientations of G.326. [20 ℄ True or false: If � and � are traes with � = �, then �R = �R. (See (137).)x 327. [22 ℄ Design an algorithm to multiply two traes � and �, when lashing is de�nedby territory sets T (a) in some universe U . Assume that U is small (say jU j � 64), sothat bitwise operations an be used to represent the territories.328. [20 ℄ Continuing exerise 327, design an algorithm that omputes �=�. Morepreisely, if � is a right fator of �, in the sense that � = � for some trae , youralgorithm should ompute ; otherwise it should report that � is not a right fator.329. [21 ℄ Similarly, design an algorithm that either omputes � n � or reports that� isn't a left fator of �.x 330. [21 ℄ Given any graphG, explain how to de�ne territory sets T (a) for its verties ain suh a way that we have a = b or a���b if and only if T (a)\T (b) 6= ;. (Thus traesan always be modeled by empilements of piees.) Under what irumstanes is itpossible to do this with jT (a)j = 2 for all a, as in the text's example (136)?331. [M20 ℄ What happens if the right-hand side of (139) is expanded without allowingany of the variables to ommute with eah other?332. [20 ℄ When a trae is represented by its lexiographially smallest string, no letterin that representative string is followed by a smaller letter with whih it ommutes.(For example, no  is followed by a in (135), beause we ould get an equivalent smallerstring by hanging a to a.)Conversely, given any ordered set of letters, some of whih ommute, onsider allstrings having no letter followed by a smaller letter with whih it ommutes. Is everysuh string the lexiographially smallest of its trae?
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x 333. [M20 ℄ (Carlitz, Soville, and Vaughan, 1976.) Let D be a digraph on f1; : : : ;mg,and let A be the set of all strings aj1 : : : ajn suh that ji��! ji+1 in D for 1 � i < n.Similarly let B be the set of all strings aj1 : : : ajn suh that ji 6��! ji+1 for 1 � i < n.Prove that X�2A� = 1.X�2B(�1)j�j� = Xk�0�1�X�2B(�1)j�j��kis an identity in the nonommutative variables fa1; : : : ; amg. (For example, we have1 + a+ b+ ab+ ba+ aba+ bab+ � � � =Xk�0(a+ b� aa� bb+ aaa+ bbb� � � � )kin the ase m = 2, 1 6��!1, 1��!2, 2��!1, 2 6��!2.)x 334. [25 ℄ Design an algorithm to generate all traes of length n that orrespond to agiven graph on the alphabet f1; : : : ;mg, representing eah trae by its lexiographiallysmallest string.335. [HM26 ℄ If the verties of G an be ordered in suh a way that x < y < z andx /���y and y /���z implies x /���z, show that the M�obius series MG an be expressed asa determinant. For example,if G = a b de f then MG = det0BBBBB� 1� a �b � 0 0 0�a 1� b 0 �d 0 0�a �b 1�  �d �e 0�a �b � 1� d 0 �f�a �b � �d 1� e �f�a �b � �d �e 1� f 1CCCCCA :x 336. [M20 ℄ If graphsG andH on distint verties have the M�obius seriesMG andMH ,what are the M�obius series for (a) G�H and (b) G���H?337. [M20 ℄ Suppose we obtain the graph G0 from G by substituting a lique of vertiesfa1; : : : ; akg for some vertex a, then inluding edges from aj to eah neighbor of a for1 � j � k. Desribe the relation between MG0 and MG.338. [M21 ℄ Prove Viennot's general identity (144) for soure-onstrained traes.x 339. [HM26 ℄ (G. Viennot.) This exerise explores fatorization of traes into pyramids.a) Eah letter xj of a given trae � = x1 : : : xn lies at the top of a unique pyramid �jsuh that �j is a left fator of �. For example, in the trae bebafd of (136), thepyramids �1, : : : , �8 are respetively b, b, e, bb, bba, ef, bed, and bebd.Explain intuitively how to �nd these pyramidal left fators from �'s empilement.b) A labeled trae is an assignment of distint numbers to the letters of a trae; forexample, aba might beome a4b76a3. A labeled pyramid is the speial ase whenthe pyramid's top element is required to have the smallest label. Prove that everylabeled trae is uniquely fatorizable into labeled pyramids whose topmost labelsare in asending order. (For example, b62e4b7a8f5d13 = b62e4d1 � b7a83 � f5.)) Suppose there are tn traes of length n, and pn pyramids. Then there are Tn =n! tn labeled traes and Pn = (n � 1)! pn labeled pyramids (beause only therelative order of the labels is signi�ant). Letting T (z) = Pn�0 Tnzn=n! andP (z) =Pn�1 Pnzn=n!, prove that the number of labeled traes of length n whosefatorization in part (b) has exatly l pyramids is n! [zn℄P (z)l=l!.d) Consequently T (z) = eP (z).e) Therefore (and this is the punh line!) lnMG(z) = �Pn�1 pnzn=n.
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7.2.2.2 SATISFIABILITY: EXERCISES 163 yli permutationweighted permutationspermutations, weightedpermutation polynomialdeterminantinvolution polynomialreal roots of polynomialsinterlaed rootsCartierFoataharateristi polynomialographextreme distributionmonotonihordalterritory setsinterval graphsforests
x 340. [M20 ℄ If we assign a weight w(�) to every yli permutation �, then every per-mutation � has a weight w(�) that is the produt of the weights of its yles. Forexample, if � = �1 2 3 4 5 6 73 1 4 2 7 6 5� = (1 3 4 2)(5 7)(6) then w(�) = w((1 3 4 2))w((5 7))w((6)).The permutation polynomial of a set S is the sum of w(�) over all permutationsof S. Given any n � n matrix A = (aij), show that it's possible to de�ne appropriateyle weights so that the permutation polynomial of f1; : : : ; ng is the determinant of A.341. [M25 ℄ The involution polynomial of a set S is the speial ase of the permuta-tion polynomial when the yle weights have the form wjjx for the 1-yle (j) and�wij for the 2-yle (i j), otherwise w(�) = 0. For example, the involution polyno-mial of f1; 2; 3; 4g is w11w22w33w44x4�w11w22w34x2�w11w23w44x2�w11w24w33x2�w12w33w44x2 � w13w22w44x2 �w14w22w33x2 + w12w34 + w13w24 + w14w23.Prove that, if wij > 0 for 1 � i � j � n, the involution polynomial of f1; : : : ; nghas n distint real roots. Hint: Show also that, if the roots for f1; : : : ; n � 1g areq1 < � � � < qn�1, then the roots rk for f1; : : : ; ng satisfy r1 < q1 < r2 < � � � < qn�1 < rn.342. [HM25 ℄ (Cartier and Foata, 1969.) Let Gn be the graph whose verties are thePnk=1 �nk�(k� 1)! yli permutations of subsets of f1; : : : ; ng, with ����� when � and� interset. For example, the verties of G3 are (1), (2), (3), (12), (13), (23), (123),(132); and they're mutually adjaent exept that (1) /��� (2), (1) /��� (3), (1) /��� (23),(2) /��� (3), (2) /��� (13), (12) /��� (3). Find a beautiful relation between MGn and theharateristi polynomial of an n � n matrix.x 343. [M25 ℄ If G is any ograph, show that (p1; : : : ; pm) 2 R(G) if and only if we haveMG(p1; : : : ; pm) > 0. Exhibit a non-ograph for whih the latter statement is not true.344. [M33 ℄ Given a graph G as in Theorem S, let B1, : : : , Bm have the joint probabil-ity distribution of exerise MPR{31, with �I = 0 whenever I ontains distint vertiesfi; jg with i���j, otherwise �I =Qi2I pi.a) Show that this distribution is legal (see exerise MPR{32) if (p1; : : : ; pm) 2 R(G).b) Show that this \extreme distribution" also satis�es ondition (147).) Let �(G) = Pr(B1\� � �\Bm). If J � f1; : : : ;mg, express �(GjJ) in terms ofMG.d) De�ning �(G) as in exerise 317, with events Aj satisfying (133) and probabilities(p1; : : : ; pm) 2 R(G), show that �(G j J) � �(G j J) for all J � f1; : : : ;mg.e) If pi satis�es (134), show that �(GjJ) �Qj2J (1� �j).345. [M30 ℄ Construt unavoidable events that satisfy (147) when (p1; : : : ; pm) =2 R(G).x 346. [HM28 ℄ Write (142) as MG =MGna(1� aKa;G) where Ka;G =MGna�=MGna.a) If (p1; : : : ; pm) 2 R(G), prove that Ka;G is monotoni in all of its parameters: Itdoes not inrease if any of p1, : : : , pm are dereased.b) Exploit this fat to design an algorithm that omputes MG(p1; : : : ; pm) anddeides whether or not (p1; : : : ; pm) 2 R(G), given a graph G and probabilities(p1; : : : ; pm). Illustrate your algorithm on the graph G = P3 P2 of exerise 335.x 347. [M28 ℄ A graph is alled hordal when it has no indued yle Ck for k > 3.Equivalently (see Setion 7.4.2), a graph is hordal if and only if its edges an bede�ned by territory sets T (a) that indue onneted subgraphs of some tree. Forexample, interval graphs and forests are hordal.a) Say that a graph is tree-ordered if its verties an be arranged as nodes of a forestin suh a way that a���b implies a � b or b � a;a � b �  and a��� implies a���b. (�)
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164 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 proper anestortree-ordered graphPringsheimnonnegative oeÆientsanalysis of algorithmsvarianePegdenasymptotiLoal Lemmadependeny graphresolvablelopsidependeny graph
(Here `a � b' means that a is a proper anestor of b in the forest.) Prove thatevery tree-ordered graph is hordal.b) Conversely, show that every hordal graph an be tree-ordered.) Show that the algorithm in the previous exerise beomes quite simple when itis applied to a tree-ordered graph, if a is eliminated before b whenever a � b.d) Consequently Theorem L an be substantially strengthened when G is a hordalgraph: When G is tree-ordered by �, the probability vetor (p1; : : : ; pm) is inR(G) if and only if there are numbers 0 � �1; : : : ; �m < 1 suh thatpi = �i Yi��j inG; i�j(1� �j):348. [HM26 ℄ (A. Pringsheim, 1894.) Show that any power series f(z) = P1n=0 anznwith an � 0 and radius of onvergene �, where 0 < � <1, has a singularity at z = �.x 349. [M24 ℄ Analyze Algorithm M exatly in the two examples onsidered in the text(see (150)): For eah binary vetor x = x1 : : : x7, ompute the generating funtiongx(z) =Pt px;tzt, where px;t is the probability that step M3 will be exeuted exatlyt times after step M1 produes x. Assume that step M2 always hooses the smallestpossible value of j. (Thus the `Case 2' senario in (150) will never our.)What are the mean and variane of the running times, in (i) Case 1? (ii) Case 2?x 350. [HM26 ℄ (W. Pegden.) Suppose Algorithm M is applied to the m = n+ 1 eventsAj = xj for 1 � j � n; Am = x1 _ � � � _ xn:Thus Am is true whenever any of the other Aj is true; so we ould implement step M2by never setting j  m. Alternatively, we ould deide to set j  m whenever possible.Let (Ni; Nii; Niii; Niv; Nv) be the number of resamplings performed when parameter �kof the algorithm is (i) 1/2; (ii) 1=(2n); (iii) 1=2n; (iv) 1=(n + k); (v) 1=(n + k)2.a) Find the asymptoti mean and variane of eah N , if j is never equal to m.b) Find the asymptoti mean and variane of eah N , if j is never less than m.) Let G be the graph on f1; : : : ; n+ 1g with edges j���(n+ 1) for 1 � j � n, andlet pj = Pr(Aj). For whih of the �ve hoies of �k is (p1; : : : ; pn+1) 2 R(G)?x 351. [25 ℄ The Loal Lemma an be applied to the satis�ability problem for m lauseson n variables if we let Aj be the event \Cj is not satis�ed." The dependeny graph Gthen has i��� j whenever two lauses Ci and Cj share at least one ommon variable.If, say, Ci is (x3_ �x5_x6), then (133) holds whenever pi � (1� �3)�5(1� �6), assumingthat eah xk is true with probability �k, independent of the other x's.But if, say, Cj is (�x2 _ x3 _ x7), ondition (133) remains true even if we don'tstipulate that i ��� j. Variable x3 appears in both lauses, yet the ases when Cj issatis�ed are never bad news for Ci. We need to require that i��� j in ondition (133)only when Ci and Cj are \resolvable" lauses, namely when some variable ourspositively in one and negatively in the other.Extend this reasoning to the general setting of Algorithm M, where we havearbitrary events Aj that depend on variables �j : De�ne a lopsidependeny graph G forwhih (133) holds even though we might have i /���j in some ases when �i \ �j 6= ;.352. [M21 ℄ Show that Ej � �j=(1� �j) in (152), when (134) holds.353. [M21 ℄ Consider Case 1 and Case 2 of Algorithm M as illustrated in (150).a) How many solutions x1 : : : xn are possible? (Generalize from n = 7 to any n.)b) How many solutions are predited by Theorem S?
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7.2.2.2 SATISFIABILITY: EXERCISES 165 lopsidependeny graphdependeny graphClique Loal Lemmalique over�eldLatties of partial assignmentspartial assignmentstablevalid partial assignmentonsistentunit propagationonstrainedreasonstritly distint literals
) Show that in Case 2 the lopsidependeny graph is muh smaller than the depend-eny graph. How many solutions are predited when the smaller graph is used?354. [HM20 ℄ Show that the expeted number EN of resampling steps in Algorithm Mis at most �M�0G (1)=M�G(1).355. [HM21 ℄ In (152), prove that Ej � 1=Æ when (p1; : : : ; pm) has positive slak Æ.Hint: Consider replaing pj by pj + Æpj .x 356. [M33 ℄ (The Clique Loal Lemma.) Let G be a graph on f1; : : : ;mg, and letG j U1, : : : , G j Ut be liques that over all the edges of G. Assign numbers �ij � 0 tothe verties of eah Uj , suh that �j =Pi2Uj �ij < 1. Assume thatPr(Ai) = pi � �ij Yk 6=j; i2Uk(1 + �ik ��k) whenever 1 � i � m and i 2 Uj :a) Prove that (p1; : : : ; pm) 2 R(G). Hint: Letting AS denote Ti2S Ai, show thatPr(Ai j AS) � �ij whenever 1 � i � m and i 2 Uj and S \ Uj = ;:b) Also Ei in (152) is at most mini���j inG �ij=(1��j). (See Theorems M and K.)) Improve Theorem L by showing that, if 0��j< 12 , then (p1; : : : ; pm)2R(G) whenpi = �i � Yi���j inG(1� �j)�. maxi���j inG(1� �j):x 357. [M20 ℄ Let x = ��v and y = �v in (155), and suppose the �eld of variable v is(p; q; r). Express x and y as funtions of p, q, and r.358. [M20 ℄ Continuing exerise 357, prove that r = max(p; q; r) if and only if x; y � 12 .359. [20 ℄ Equations (156) and (157) should atually have been writtenl!C = (1� ��l )(1� �l)Ql2C0 6=C(1� �C!l)��l + (1� ��l )(1� �l)Ql2C0 6=C(1� �C!l) and �0C!l = YC3l0 6=l l0!C ;to avoid division by zero. Suggest an eÆient way to implement these alulations.360. [M23 ℄ Find all �xed points of the seven-lause system illustrated in (159), giventhat �1 = ��2 = ��4 = 1. Assume also that �l��l = 0 for all l.x 361. [M22 ℄ Desribe all �xed points �C!l = �0C!l of the equations (154), (156), (157),for whih eah �C!l and eah �l is either 0 or 1.362. [20 ℄ Spell out the omputations needed to �nish Algorithm S in step S8.x 363. [M30 ℄ (Latties of partial assignments.) A partial assignment to the variablesof a satis�ability problem is alled stable (or \valid") if it is onsistent and annot beextended by unit propagation. In other words, it's stable if and only if no lause isentirely false, or entirely false exept for at most one unassigned literal. Variable xk ofa partial assignment is alled onstrained if it appears in a lause where �xk is truebut all the other literals are false (thus its value has a \reason").The 3n partial assignments of an n-variable problem an be represented either asstrings x = x1 : : : xn on the alphabet f0; 1; �g or as sets L of stritly distint literals. Forexample, the string x = �1�01� orresponds to the set L = f2; �4; 5g. We write x � x0if x0 is equal to x exept that xk = � and x0k 2 f0; 1g; equivalently L � L0 if L0 = L[ kor L0 = L [ �k. Also x v x0 if there are t � 0 stable partial assignments x(j) withx = x(0) � x(1) � � � � � x(t) = x0:
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Let p1, : : : , pn, q1, : : : , qn be probabilities, with pk+qk = 1 for 1 � k � n. De�nethe weight W (x) of a partial assignment to be 0 if x is unstable, otherwiseW (x) =Yfpk j xk = �g �Yfqk j xk 6= � and xk is unonstrainedg:[E. Maneva, E. Mossel, and M. J. Wainwright, in JACM 54 (2007), 17:1{17:41, studiedgeneral message-passing algorithms on partial assignments that are distributed withprobability proportional to their weights, in the ase p1 = � � � = pn = p, showing thatsurvey propagation (Algorithm S) orresponds to the limit as p! 1.℄a) True or false: The partial assignment spei�ed by the literals urrently on thetrail in step C5 of Algorithm C is stable.b) What weights W (x) orrespond to the lauses F in (1)?) Let x be a stable partial assignment with xk = 1, and let x0 and x00 be obtainedfrom x by setting x0k  0, x00k  �. True or false: xk is unonstrained in x if andonly if (i) x0 is onsistent; (ii) x0 is stable; (iii) x00 is stable.d) If the only lause is 123 = (x1 _ x2 _ x3), �nd all sets L suh that L v f1; �2; �3g.e) What are the weights when there's only a single lause 123 = (x1 _ x2 _ x3)?f) Find lauses suh that the sets L with L v f1; 2; 3; 4; 5g are ;, f4g, f5g, f1; 4g,f2; 5g, f4; 5g, f1; 4; 5g, f2; 4; 5g, f3; 4; 5g, f1; 3; 4; 5g, f2; 3; 4; 5g, f1; 2; 3; 4; 5g.g) Let L be a family of sets � f1; : : : ; ng, losed under intersetion, with the propertythat L 2 L implies L = L(0) � L(1) � � � � � L(t) = f1; : : : ; ng for some L(j) 2 L.(The sets in (d) form one suh family, with n = 5.) Construt strit Horn lauseswith the property that L 2 L if and only if L v f1; : : : ; ng.h) True or false: If L, L0, L00 are stable and L0 � L, L00 � L, then L0 \L00 is stable.i) If L0 v L and L00 v L, prove that L0 \ L00 v L.j) Prove that Px0vxW (x0) =Qfpk j xk = �g whenever x is stable.x 364. [M21 ℄ A overing assignment is a stable partial assignment in whih every as-signed variable is onstrained. A ore assignment is a overing assignment L thatsatis�es L v L0 for some total assignment L0.a) True or false: The empty partial assignment L = ; is always overing.b) Find all the overing and ore assignments of the lauses F in (1).) Find all the overing and ore assignments of the lauses R0 in (7).d) Show that every satisfying assignment L0 has a unique ore.e) The satisfying assignments form a graph, if two of them are adjaent when theydi�er by omplementing just one literal. The onneted omponents of this graphare alled lusters. Prove that the elements of eah luster have the same ore.f) If L0 and L00 have the same ore, do they belong to the same luster?365. [M27 ℄ Prove that the lauses waerden (3; 3;n) have a nontrivial (i.e., nonempty)overing assignment for all suÆiently large n (although they're unsatis�able).x 366. [18 ℄ Preproess the lauses R0 of (7). What erp rules are generated?x 367. [20 ℄ Justify the erp rule (161) for elimination by resolution.368. [16 ℄ Show that subsumption and downhill resolution imply unit onditioning:Any preproessor that does transformations 2 and 4 will also do transformation 1.x 369. [21 ℄ (N. E�en and A. Biere.) Suppose l appears only in lauses C1, : : : , Cp and �lappears only in lauses C01, : : : , C0q, where we have C1 = (l_l1_� � �_lr) and C0j = (�l_�lj)for 1 � j � r. Prove that we an eliminate jlj by using the erp rule �l  (l1 _ � � � _ lr)and replaing those p+ q lauses by only (p� 2)r + q others, namelyfC1 �C0j j r < j � qg [ fCi �C0j j 1 < i � p; 1 � j � rg:
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(The ase r = 1 is espeially important. In many appliations| for example in theexamples of fault testing, tomography, and the \Life in 4" problem about extendingFig. 35|more than half of all variable eliminations admit this simpli�ation.)370. [20 ℄ The lauses obtained by resolution might be needlessly omplex even whenexerise 369 doesn't apply. For example, suppose that variable x appears only in thelauses (x_ a)^ (x_ �a_ )^ (�x_ b)^ (�x_�b_ �). Resolution replaes those four lausesby three others: (a_ b)^ (a_�b_ �)^ (�a_ b_ ). Show, however, that only two lauses,both binary, would atually suÆe in this partiular ase.371. [24 ℄ By preproessing repeatedly with transformations 1{4, and using exerise369, prove that the 32 lauses (9) of waerden (3; 3; 9) are unsatis�able.372. [25 ℄ Find a \small" set of lauses that annot by solved entirely via transforma-tions 1{4 and the use of exerise 369.373. [25 ℄ The answer to exerise 228 de�nes 2m + Pmj=1(j � 1)2 � m3=3 lausesin m2 variables that suÆe to refute the anti-maximal-element axioms of (99){(101).Algorithm L needs exponential time to handle these lauses, aording to Theorem R;and experiments show that they are bad news for Algorithm C too. Show, however,that preproessing with transformations 1{4 will rapidly prove them unsatis�able.x 374. [32 ℄ Design data strutures for the eÆient representation of lauses within a SATpreproessor. Also design algorithms that (a) resolve lauses C and C0 with respet toa variable x; (b) �nd all lauses C0 that are subsumed by a given lause C; () �nd alllauses C0 that are self-subsumed by a given lause C and a literal l 2 C.375. [21 ℄ Given jlj, how an one test eÆiently whether or not the speial situation inexerise 369 applies, using (and slightly extending) the data strutures of exerise 374?x 376. [32 ℄ After a preproessor has found a transformation that redues the urrent setof lauses, it is supposed to try again and look for further simpli�ations. (See (160).)Suggest methods that will avoid unneessary repetition of previous work, by using (andslightly extending) the data strutures of exerise 374.377. [22 ℄ (V. Vassilevska Williams.) If G is a graph with n verties and m edges,onstrut a 2SAT problem F with 3n variables and 6m lauses, suh that G ontains atriangle (a 3-lique) if and only if F has a failed literal.378. [20 ℄ (Bloked lause elimination.) Clause C = (l _ l1 _ � � � _ lq) is said to bebloked by the literal l if every lause that ontains �l also ontains either �l1 or � � � or �lq.Exerise 161(b) proves that lause C an be removed without making an unsatis�ableproblem satis�able. Show that this transformation requires an erp rule, even though itdoesn't eliminate any of the variables. What erp rule works?x 379. [20 ℄ (Bloked self-subsumption.) Consider the lause (a_ b_ _ d), and supposethat every lause ontaining �a but not �b nor � also ontains d. Show that we an thenshorten the lause to (b _  _ d) without a�eting satis�ability. Is an erp rule needed?380. [21 ℄ Sometimes we an use self-subsumption bakwards, for example by weaken-ing the lause (l1_l2_l3) to (l1_� � �_lk) if eah intermediate replaement of (l1_� � �_lj)by (l1_� � �_lj�1) is justi�able for 3 < j � k. Then, if we're luky, the lause (l1_� � �_lk)is weak enough to be eliminated; in suh ases we are allowed to eliminate (l1 _ l2 _ l3).a) Show that (a _ b _ ) an be eliminated if it is aompanied by the additionallauses (a _ b _ �d), (a _ d _ e), (b _ d _ �e).b) Show that (a _ b _ ) an also be eliminated when aompanied by (a _ b _ �d),(a _ � _ �d), (b _ d _ �e), (b _ � _ �e), provided that no other lauses ontain �.
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) What erp rules, if any, are needed for those eliminations?381. [22 ℄ Combining exerises 379 and 380, show that any one of the lauses in(�x1 _ x2) ^ (�x2 _ x3) ^ � � � ^ (�xn�1 _ xn) ^ (�xn _ x1)an be removed if there are no other lauses with negative literals. State the erp rules.382. [30 ℄ Although the tehniques in the preeding exerises are omputationallydiÆult to apply, show that a lookahead forest based on the dependeny digraph anbe used to disover some of those simpli�ations eÆiently.x 383. [23 ℄ (Inproessing.) A SAT solver an partition its database of urrent lausesinto two parts, the \hard" lauses � and the \soft" lauses 	. Initially 	 is empty, while� is F , the set of all input lauses. Four kinds of hanges are subsequently allowed:� Learning. We an append a new soft lause C, provided that � [ 	 [ C issatis�able whenever � [	 is satis�able.� Forgetting. We an disard (purge) any soft lause.� Hardening. We an relassify any soft lause and all it hard.� Softening. We an relassify any hard lause C and all it soft, provided that� is satis�able whenever � n C is satis�able. In this ase we also should output anyneessary erp rules, whih hange the settings of variables in suh a way that anysolution to � n C beomes a solution to �.a) Prove that, throughout any suh proedure, F is satis�able () � is satis�able() � [	 is satis�able.b) Furthermore, given any solution to �, we obtain a solution to F by applying theerp rules in reverse order.) What is wrong with the following senario? Start with one hard lause, (x), andno soft lauses. Relassify (x) as soft, using the erp rule x 1. Then append anew soft lause (�x).d) If C is erti�able for � (see exerise 385), an we safely learn C?e) If C is erti�able for � n C, an we safely forget C?f) In what ases is it legitimate to disard a lause, hard or soft, that is subsumedby another lause, hard or soft?g) In what ases is self-subsumption permissible?h) Explain how to eliminate all lauses that involve a partiular variable x.i) Show that, if z is a new variable, we an safely learn the three new soft lauses(x _ z), (y _ z), (�x _ �y _ �z) in Tseytin's onept of extended resolution.384. [25 ℄ Continuing the previous exerise, show that we an always safely forget anylause C that ontains a literal l for whih C � C0 is erti�able for � n C wheneverC0 2 � ontains �l. What erp rule is appropriate?385. [22 ℄ Clause C is alled erti�able for a set of lauses F if F ^C `1 �, as in (119).It is said to be absorbed by F if it is nonempty and F ^C n l `1 l for every l 2 C, or ifit is empty and F `1 �. (Every lause of F is obviously absorbed by F .)a) True or false: If C is absorbed by F , it is erti�able for F .b) Whih of f�1; �12; �123g are implied by, erti�able for, or absorbed by R0 in (7)?) If C is erti�able for F and if all lauses of F are absorbed by F 0, prove that Cis erti�able for F 0.d) If C is absorbed by F and if all lauses of F are absorbed by F 0, prove that C isabsorbed by F 0.
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x 386. [M25 ℄ Let Algorithm C0 be a variant of Algorithm C that (i) makes all deisionsat random; (ii) never forgets a learned lause; and (iii) restarts whenever a new lausehas been learned. (Thus, step C5 ignores Mp and Mf ; step C6 hooses l uniformly atrandom from among the 2(n�F ) urrently unassigned literals; step C8 bakjumps whileF > i1, instead of while F > id0+1; and after step C9 has stored a new lause, withd > 0, it simply sets d 0 and returns to C2. The data strutures HEAP, OVAL, and ACTare no longer used.) We will prove that Algorithm C0 is, nevertheless, quite powerful.In the remainder of this exerise, F denotes the set of lauses known by Algo-rithm C0, both original and learned; in partiular, the unit lauses of F will be the�rst literals L0, L1, : : : , Li1�1 on the trail. If C is any lause and if l 2 C, we de�nesore(F;C; l) = (1; if F ^ C n l `1 l;jfl0 j F ^ C n l `1 l0gj; otherwise.Thus sore(F;C; l) represents the total number of literals on the trail after making allthe unfored deisions of C n�l, if no onit arises. We say that Algorithm C0 performsa \helpful round" for C and l if (i) every deision literal belongs to C; and (ii) �l ishosen as a deision literal only if the other elements of C are already in the trail.a) Let C be erti�able for F , and suppose that sore(F;C; l) < 1 for some l 2 C.Prove that if F 0 denotes F together with a lause learned on a helpful round,then sore(F 0; C; l) > sore(F;C; l).b) Furthermore sore(F 0; C; l) � sore(F;C; l) after an unhelpful round.) Therefore C will be absorbed by the set F 0 of known lauses after at most jCjnhelpful rounds have ourred.d) If jCj = k, show that Pr(helpful round) � (k � 1)!=(2n)k � 1=(4nk).e) Consequently, by exerise 385(), if there exists a erti�ate of unsatis�ability(C1; : : : ; Ct) for a family of lauses F with n variables, Algorithm C0 will proveF unsatis�able after learning an average of � � 4Pti=1 jCijn1+jCij lauses. (Andit will q.s. need to learn at most � lnn ln lnn lauses, by exerise MPR{102.)x 387. [21 ℄ Graph G is said to be embedded in graph G0 if every vertex v of G orre-sponds to a distint vertex v0 of G0, where u0���v0 in G0 whenever u���v in G. Explainhow to onstrut lauses that are satis�able if and only if G an be embedded in G0.388. [20 ℄ Show that the problems of deiding whether or not a given graph G (a) on-tains a k-lique, (b) an be k-olored, or () has a Hamiltonian yle an all be regardedas graph embedding problems.x 389. [22 ℄ In this 4 � 4 diagram, it's possible to trae out the phrase`THE ART OF COMPUTER PROGRAMMING ' by making only king moves andknight moves, exept for the �nal step from N to G.Rearrange the letters so that the entire phrase an be traed. N T E FH I R  U P O AM M C Gx 390. [23 ℄ Let G be a graph with verties V, edges E, jEj = m, jV j = n, and s; t 2 V .a) Construt O(kn) lauses that are satis�able if and only if there's a path of lengthk or less from s to t, given k.b) Construt O(m) lauses that are satis�able if and only if there's at least one pathfrom s to t.) Construt O(n2) lauses that are satis�able if and only if G is onneted.d) Construt O(km) lauses that are unsatis�able if and only if there's a path oflength k or less from s to t, given k.
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170 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 onnetedenoderookwise onnetedmultiommodity owrouting, disjointonnetion puzzleskingwise onnetednessDawsonhess diagramnoninterseting pathsat-most-oneauxiliary variablesbroadastLangford's problemorder enoding
e) Construt O(m) lauses that are unsatis�able if and only if there's at least onepath from s to t.f) Construt O(m) lauses that are unsatis�able if and only if G is onneted. (Thisonstrution is muh better than (), in a sparse graph.)391. [M25 ℄ The values of two integer variables satisfy 0 � x; y < d, and they are tobe represented as l-bit quantities xl�1 : : : x0, yl�1 : : : y0, where l = dlg de. Speify threedi�erent ways to enode the relation x 6= y:a) Let x = (xl�1 : : : x0)2 and y = (yl�1 : : : y0)2; and let the enoding enfore theonditions (xl�1 : : : x0)2 < d, and (yl�1 : : : y0)2 < d, as well as ensuring thatx 6= y by introduing 2l + 1 additional lauses in l auxiliary variables.b) Like (a), but there are d additional lauses (not 2l + 1), and no auxiliaries.) All bit patterns xl�1 : : : x0 and yl�1 : : : y0 are valid, but some values might havetwo di�erent patterns. The enoding has d lauses and no auxiliary variables.392. [22 ℄ The blank spaes in the following diagrams an be �lled with letters in suha way that all ourrenes of the same letter are rookwise onneted:AB BC CA AD EC DB BEC A

A B BC CA BD C EF D EAD BF F E
H AB C D CE EG GF J FJI H I AB D

AB CD EF A E DC B F(i) (ii) (iii) (iv) (v)a) Demonstrate how to do it. (Puzzle (i) is easy; the others less so.)b) Similarly, solve the following puzzles|but use kingwise onnetedness instead.A HB GC FD EE DF CG BH A
AB GC FD EE DF CG BA

A B C D AD BCCB DA D C B A(vi) (vii) (viii)) Construt lauses with whih a SAT solver an solve general puzzles of this kind:Given a graph G and disjoint sets of verties T1, T2, : : : , Tt, a solution should ex-hibit disjoint onneted sets of verties S1, S2, : : : , St, with Tj � Sj for 1 � j � t.393. [25 ℄ (T. R. Dawson, 1911.) Show that it's possible for eah whitepiee in the aompanying hess diagram to apture the orrespondingblak piee, via a path that doesn't interset any of the other paths. Howan SAT help to solve this problem? bZ0Z0Z0ZZ0Z0Z0a00Z0Z0Z0lZ0m0Z0Z00Z0Z0Z0sZ0L0ZNZ00Z0Z0Z0SZ0Z0A0ZB394. [25 ℄ One way to enode the at-most-one onstraint S�1(y1; : : : ; yp)is to introdue l = dlg pe auxiliary variables together with the following nl + n � 2llauses, whih essentially \broadast" the value of j when yj beomes true:(�yj _ (�1)btat) for 1 � j � p, 1 � t � q = blg(2p� j), where 2p� j = (1b1 : : : bq)2.For example, the lauses when p = 3 are (�y1_a1)^(�y1_�a2)^(�y2_a1)^(�y2_a2)^(�y3_�a1).Experiment with this enoding by applying it to Langford's problem, using it inplae of (13) whenever p � 7.395. [20 ℄ What lauses should replae (15), (16), and (17) if we want to use the orderenoding for a graph oloring problem?
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x 396. [23 ℄ (Double lique hints.) If x has one of the d values f0; 1; : : : ; d � 1g, we anrepresent it binarywise with respet to two di�erent orderings by letting xj = [x� j ℄and x̂j = [x�� j ℄ for 1 � j < d, where � is any given permutation. For example, ifd = 4 and (0�; 1�; 2�; 3�) = (2; 3; 0; 1), the representations x1x2x3:x̂1x̂2x̂3 of 0, 1, 2,and 3 are respetively 000:110, 100:111, 110:000, and 111:100. This double orderingallows us to enode graph oloring problems by inluding not only the hints (162) butalso (v̂d�k+11 _ � � � _ v̂d�k+1k ) ^ (v̂k�11 _ � � � _ v̂k�1k );whenever the verties fv1; : : : ; vkg form a k-lique.Explain how to onstrut lauses for this enoding, and experiment with oloringthe n � n queens graph when (0�; 1�; 2�; 3�; 4�; : : : ) = (0; d�1; 1; d�2; 2; : : : ) is theinverse of the organ-pipe permutation.x 397. [22 ℄ (N. Tamura, 2014.) Suppose x0, x1, : : : , xp�1 are integer variables with therange 0 � xi < d, represented in order enoding by Boolean variables xji = [xi� j ℄for 0 � i < p and 1 � j < d. Show that the all-di�erent onstraint, \xi 6= xj for0 � i < j < p," an be niely enoded by introduing auxiliary integer variables y0,y1, : : : , yd�1 with the range 0 � yj < p, represented in order enoding by Booleanvariables yij = [yj � i℄ for 1 � i < p and 0 � j < d, and by devising lauses to enforethe ondition xi = j =) yj = i. Furthermore, hints analogous to (162) an be given.398. [18 ℄ Continuing exerise 397, what's an appropriate way to enfore the all-di�erent onstraint when x0, : : : , xp�1 are represented in the diret enoding?x 399. [23 ℄ If the variables u and v range over d values f1; : : : ; dg, it's natural to enodethem diretly as sequenes u1 : : : ud and v1 : : : vd, where ui = [u= i℄ and vj = [v= j ℄,using the at-least-one lauses (15) and the at-most-one lauses (17). A binary onstrainttells us whih pairs (i; j) are legal; for example, the graph-oloring onstraint says thati 6= j when i and j are the olors of adjaent verties in some graph.One way to speify suh a onstraint is to assert the prelusion lauses (�ui _ �vj)for all illegal pairs (i; j), as we did for graph oloring in (16). But there's also anothergeneral way: We an assert the support lausesd̂i=1��ui _Wfvj j (i; j) is legalg� ^ d̂j=1��vj _Wfui j (i; j) is legalg�instead. Graph oloring with d olors would then be represented by lauses suh as(�u3 _ v1 _ v2 _ v4 _ � � � _ vd), when u and v are adjaent.a) Suppose t of the d2 pairs (i; j) are legal. How many prelusion lauses are needed?How many support lauses?b) Prove that the support lauses are always at least as strong as the prelusionlauses, in the sense that all onsequenes of the prelusion lauses under unitpropagation are also onsequenes of the support lauses under unit propagation,given any partial assignment to the binary variables fu1; : : : ; ud; v1; : : : ; vdg.) Conversely, in the ase of the graph-oloring onstraint, the prelusion lausesare also at least as strong as the support lauses (hene equally strong).d) However, exhibit a binary onstraint for whih the support lauses are stritlystronger than the prelusion lauses.400. [25 ℄ Experiment with prelusion lauses versus support lauses by applying themto the n queens problem. Use Algorithms L, C, and W for omparison.401. [16 ℄ If x has the unary representation x1x2 : : : xd�1, what is the unary represen-tation of (a) y = dx=2e? (b) z = b(x+ 1)=3?
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172 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 auxiliary variableslinear inequalitiesreursivelyOpen shop shedulingjob shop problemsmakespan\greedy" algorithm402. [18 ℄ If x has the unary representation x1x2 : : : xd�1, enode the further onditionthat x is (a) even; (b) odd.403. [20 ℄ Suppose x, y, z have the order enoding, with 0 � x; y; z < d. What lausesenfore (a) min(x; y) � z? (b) max(x; y) � z? () min(x; y) � z? (d) max(x; y) � z?x 404. [21 ℄ Continuing exerise 403, enode the ondition jx � yj � a, for a givenonstant a � 1, using either (a) d lauses of length � 4 and no auxiliary variables;or (b) 2d�O(a) lauses of length � 3, and one auxiliary variable.x 405. [M23 ℄ The purpose of this exerise is to enode the onstraint ax+ by � , whena, b,  are integer onstants, assuming that x, y are order-enoded with range [0 : : d).a) Prove that it suÆes to onsider ases where a; b;  > 0.b) Exhibit a suitable enoding for the speial ase 13x� 8y � 7, d = 8.) Exhibit a suitable enoding for the speial ase 13x� 8y � 1, d = 8.d) Speify an enoding that works for general a, b, , d.406. [M24 ℄ Order-enode (a) xy � a and (b) xy � a, when a is an integer onstant.x 407. [M22 ℄ If x, y, z are order-enoded, with 0�x; y<d and 0�z<2d�1, the lauses2d�2k̂=1 k̂j=max(0;k+1�d)(�xj _ �yk�j _ zk)are satis�able if and only if x+y � z; this is the basi idea underlying (20). Another wayto enode the same relation is to introdue new order-enoded variables u and v, and toonstrut lauses for the relations bx=2+by=2 � u and dx=2e+dy=2e � v, reursivelyusing methods for numbers less than dd=2e and bd=2+ 1. Then we an �nish the jobby letting z1 = v1, z2d�2 = vd (d even) or ud�1 (d odd), and appending the lauses(�uj _ z2j) ^ (�vj+1 _ z2j) ^ (�uj _ �vj+1 _ z2j+1); for 1 � j � d� 2:a) Explain why the alternative method is valid.b) For what values of d does that method produe fewer lauses?) Consider analogous methods for the relation x+ y � z.x 408. [25 ℄ (Open shop sheduling.) Consider a system of m mahines and n jobs,together with an m�n matrix of nonnegative integer weights W = (wij) that representthe amount of uninterrupted time on mahine i that is needed by job j.The open shop sheduling problem seeks a way to get all the work done in t unitsof time, without assigning two jobs simultaneously to the same mahine and withouthaving two mahines simultaneously assigned to the same job. We want to minimize t,whih is alled the \makespan" of the shedule.For example, suppose m = n = 3 and W = �703172235�. A \greedy" algorithm, whihrepeatedly �lls the lexiographially smallest time slot (t; i; j) suh that wij > 0 butneither mahine i nor job j have yet been sheduled at time t, ahieves a makespanof 12 with the following shedule:M1:M2:M3: J1 J3J2 J1 J3J3 J2 J1a) Is 12 the optimum makespan for this W ?
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b) Prove that the greedy algorithm always produes a shedule whose makespan isless than (maxmi=1Pnj=1 wij)+ (maxnj=1Pmi=1 wij), unless W is entirely zero.) Suppose mahine i begins to work on job j at time sij , when wij > 0. Whatonditions should these starting times satisfy, in order to ahieve the makespan t?d) Show that the order enoding of these variables sij yields SAT lauses that nielyrepresent any open shop sheduling problem.e) Let bW=k be the matrix obtained by replaing eah element wij ofW by bwij=k.Prove that if the open shop sheduling problem for bW=k and t is unsatis�able,so is the problem for W and kt.x 409. [M26 ℄ Continuing exerise 408, �nd the best makespans in the following ases:a) m = 3, n = 3r + 1; w1j = w2(r+j) = w3(2r+j) = aj for 1 � j � r; w1n = w2n =w3n = b(a1+ � � �+ar)=2; otherwise wij = 0. (The positive integers aj are given.)b) m = 4, n = r + 2; w1j = (r + 1)aj and w2j = 1 for 1 � j � r; w2(n�1) = w2n =(r + 1)b(a1 + � � �+ ar)=2; w3(n�1) = w4n = w2n + r; otherwise wij = 0.) m = n; wjj = n� 2, wjn = wnj = 1 for 1 � j < n; otherwise wij = 0.d) m = 2; w1j = aj and w2j = bj for 1 � j � n, where a1+� � �+an = b1+� � �+bn = sand aj + bj � s for 1 � j � n.410. [24 ℄ Exhibit lauses for the onstraint 13x�8y � 7 when x and y are log-enodedas 3-bit integers x = (x2x1x0)2 and y = (y2y1y0)2. (Compare with exerise 405(b).)x 411. [25 ℄ If x = (xm : : : x1)2, y = (yn : : : y1)2, and z = (zm+n : : : z1)2 stand forbinary numbers, the text explains how to enode the relation xy = z with fewer than20mn lauses, using Napier{Dadda multipliation. Explain how to enode the relationsxy � z and xy � z with fewer than 9mn and 11mn lauses, respetively.412. [40 ℄ Experiment with the enoding of somewhat large numbers by using a radix-drepresentation in whih eah digit has the order enoding.413. [M20 ℄ How many lauses will remain after the auxiliary variables a1, : : : , an�1of (169) have been eliminated by resolution?x 414. [M22 ℄ Generalize (169) to an enoding of lexiographi order on d-ary vetors,(x1 : : : xn)d � (y1 : : : yn)d, where eah xk = x1k + � � � + xd�1k and yk = y1k + � � � + yd�1khas the order enoding. What modi�ations to your onstrution will enode the stritrelation x1 : : : xn < y1 : : : yn?415. [M22 ℄ Find all CNF formulas for the funtion (x1 � y1) _ � � � _ (xn � yn).416. [20 ℄ Enode the ondition `if x1 : : : xn = y1 : : : yn then u1 : : : um = v1 : : : vm', us-ing 2m+2n+1 lauses and n+1 auxiliary variables. Hint: 2n of the lauses are in (172).417. [21 ℄ Continuing exerise 42, what is the Tseytin enoding of the ternary mux op-eration `s t?u: v' ? Use it to justify the translation of branhing programs via (174).418. [23 ℄ Use a branhing program to onstrut lauses that are satis�able if andonly if (xij) is an m � n Boolean matrix whose rows satisfy the hidden weighted bitfuntion hn and whose olumns satisfy the omplementary funtion �hm. In other words,ri = nXj=1 xij ; j = mXi=1 xij ; and xiri = 1; xjj = 0; assuming that xi0 = x0j = 0:419. [M21 ℄ If m;n � 3, �nd (by hand) all solutions to the problem of exerise 418suh that (a)Pxij = m+1 (the minimum); (b)Pxij = mn� n� 1 (the maximum).420. [18 ℄ Derive (175) mehanially (that is, \without thinking") from the Booleanhain s x1 � x2,  x1 ^ x2, t s� x3, 0  s ^ x3, requiring  = 0 = 0.



September 23, 2015

174 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 branhing programweakly foringBDDdualPi funtionprime lausesforing representationde�nite Horn lauseHorn oreeliminatedauxiliary variablesgeneri graphforingAlonBoppanaBailleuxBoufkhadforingunit propagationSinzequal sumsregular expression

421. [18 ℄ Derive (176) mehanially from the branhing program I5 = (�1? 4: 3), I4 =(�2? 1: 2), I3 = (�2? 2: 0), I2 = (�3? 1: 0), beginning at I5.422. [11 ℄ What does unit propagation dedue when the additional lause (x1) or (x2)is appended to (a) F in (175)? (b) G in (176)?423. [22 ℄ A representation F that satis�es a ondition like (180) but with l replaedby � an be alled \weakly foring." Exerise 422 shows that (175) and (176) are weaklyforing. Does the BDD of every funtion de�ne a weakly foring enoding, via (173)?x 424. [20 ℄ The dual of the Pi funtion has the prime lauses f�1�2�3; �1�3�4; 2�3�4; 234; 12g(see 7.1.1{(30)). Can any of them be omitted from a foring representation?425. [18 ℄ A lause with exatly one positive literal is alled a de�nite Horn lause,and Algorithm 7.1.1C omputes the \ore" of suh lauses. If F onsists of de�niteHorn lauses, prove that x is in the ore if and only if F `1 x, if and only if F ^(�x) `1 �.x 426. [M20 ℄ Suppose F is a set of lauses that represent f(x1; : : : ; xn) using auxiliaryvariables fa1; : : : ; amg as in (170), where m > 0. Let G be the lauses that result aftervariable am has been eliminated as in (112).a) True or false: If F is foring then G is foring.b) True or false: If F is not foring then G is not foring.427. [M30 ℄ Exhibit a funtion f(x1; : : : ; xn) for whih every set of foring lauses thatuses no auxiliary variables has size 
(3n=n2), although f an atually be representedby a polynomial number of foring lauses when auxiliary variables are introdued.Hint: See exerise 7.1.1{116.428. [M27 ℄ A generi graph G on verties f1; : : : ; ng an be haraterized by �n2�Boolean variables X = fxij j 1 � i < j � ng, where xij = [i���j in G℄. Propertiesof G an therefore be regarded as Boolean funtions, f(X).a) Let fnd(X) = [�(G)�d℄; that is, fnd is true if and only if G has a d-oloring.Construt lauses Fnd that represent the funtion fnd(X) _ y, using auxiliaryvariables Z = fzjk j 1 � j � n; 1 � k � dg that mean \vertex j has olor k."b) Let Gnd be a foring representation of the Boolean funtion Fnd(X; y; Z), andsuppose that Gnd has M lauses in N variables. (These N variables shouldinlude the �n2� + 1 + nd variables of Fnd, along with an arbitrary number ofadditional auxiliaries.) Explain how to onstrut a monotone Boolean hain ofost O(MN2) for the funtion �fnd (see exerise 7.1.2{84), given the lauses of Gnd.Note: Noga Alon and Ravi B. Boppana, Combinatoria 7 (1987), 1{22, proved thatevery monotone hain for this funtion has length exp
((n= log n)1=3) when d + 1 =b(n= lg n)2=3=4. Hene M and N annot be of polynomial size.429. [22 ℄ Prove that Bailleux and Boufkhad's lauses (20), (21) are foring: If any rof the x's have been set to 1, then unit propagation will fore all the others to 0.430. [25 ℄ Similarly, Sinz's lauses (18) and (19) are foring.x 431. [20 ℄ Construt eÆient, foring lauses for the relation x1+� � �+xm�y1+� � �+yn.432. [24 ℄ Exerise 404 gives lauses for the relation jx� yj � a. Are they foring?433. [25 ℄ Are the lexiographi-onstraint lauses in (169) foring?434. [21 ℄ Let Ll be the language de�ned by the regular expression 0�1l0�; in otherwords, the binary string x1 : : : xn is in Ll if and only if it onsists of zero or more 0sfollowed by exatly l 1s followed by zero or more 0s.a) Explain why the following lauses are satis�able if and only if x1 : : : xn 2 Ll:(i) (�pk_�xk), (�pk_pk�1), and (�pk�1_xk_pk) for 1 � k � n, also (p0); (ii) (�qk_�xk),
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(�qk _ qk+1), and (�qk+1 _ xk _ qk) for 1 � k � n, also (qn+1); (iii) (�rk _ pk�1) ^V0�d<l(�rk _ xk+d) ^ (�rk _ qk+l) for 1 � k � n + 1� l, also (r1 _ � � � _ rn+1�l).b) Show that those lauses are foring when l = 1 but not when l = 2.x 435. [28 ℄ Given l � 2, onstrut a set of O(n log l) lauses that haraterize thelanguage Ll of exerise 434 and are foring.436. [M32 ℄ (Nondeterministi �nite-state automata.) A regular language L on thealphabet A an be de�ned in the following well-known way: Let Q be a �nite set of\states," and let I � Q and O � Q be designated \input states" and \output states."Also let T � Q�A�Q be a set of \transition rules." Then the string x1 : : : xn is in L ifand only if there's a sequene of states q0, q1, : : : , qn suh that q0 2 I, (qk�1; xk; qk) 2 Tfor 1 � k � n, and qn 2 O.Given suh a de�nition, where A = f0; 1g, use auxiliary variables to onstrutlauses that are satis�able if and only if x1 : : : xn 2 L. The lauses should be foring,and there should be at most O(njT j) of them.As an example, write out the lauses for the language L2 = 0�120� of exerise 434.437. [M21 ℄ Extend exerise 436 to the general ase where A has more than two letters.438. [21 ℄ Construt a set of foring lauses that are satis�able if and only if a givenbinary string x1 : : : xn ontains exatly t runs of 1s, having lengths (l1; l2; : : : ; lt) fromleft to right. (Equivalently, the string x1 : : : xn should belong to the language de�nedby the regular expression 0�1l10+1l20+: : : 0+1lt0�.)x 439. [30 ℄ Find eÆient foring lauses for the onstraint that x1 + � � � + xn = t andthat there are no two onseutive 1s. (This is the speial ase l1 = � � � = lt = 1 of theprevious exerise, but a muh simpler onstrution is possible.)440. [M33 ℄ Extend exerise 436 to ontext free languages, whih an be de�ned bya set S � N and by prodution rules U and W of the following well-known forms:U � fP ! a j P 2 N; a 2 Ag and W � fP ! QR j P;Q;R 2 Ng, where N is a set of\nonterminal symbols." A string x1 : : : xn with eah xj 2 A belongs to the language ifand only if it an be produed from a nonterminal symbol P 2 S.441. [M35 ℄ Show that any threshold funtion f(x1; : : : ; xn) = [w1x1 + � � �+ wnxn� t℄has a foring representation whose size is polynomial in log jw1j+ � � � + log jwnj.x 442. [M27 ℄ The unit propagation relation `1 an be generalized to kth order propa-gation `k as follows: Let F be a family of lauses and let l be a literal. If (l1; l2; : : : ; lp)is a sequene of literals, we write L�q = fl1; : : : ; lq�1; �lqg for 1 � q � p. ThenF `0 l () � 2 F ;F `k+1 l () F jL�1 `k �, F jL�2 `k �, : : : , and F jL�p `k �for some stritly distint literals l1, l2, : : : , lp with lp = l;F `k � () F `k l and F `k �l for some literal l:a) Verify that `1 orresponds to unit propagation aording to this de�nition.b) Desribe `2 informally, using the onept of \failed literals.") Prove that F `k � or F `k �l implies F j l `k � for all literals l, and furthermorethat F `k � implies F `k+1 �, for all k � 0.d) True or false: F `k l implies F `k+1 l.e) Let Lk(F ) = fl j F `k lg. What is Lk(R0), where R0 appears in (7) and k � 0?f) Given k � 1, explain how to ompute Lk(F ) and F jLk(F ) in O(n2k�1m) steps,when F has m lauses in n variables.
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443. [M24 ℄ (A hierarhy of hardness.) Continuing the previous exerise, a family oflauses F is said to belong to lass UCk if it has the property thatF jL ` � implies F jL `k � for all sets of stritly distint literals L.(\Whenever a partial assignment yields unsatis�able lauses, the inonsisteny an bedeteted by kth order propagation.") And F is said to belong to lass PCk ifF jL ` l implies F jL `k l for all sets of stritly distint literals L [ l.a) Prove that PC0 � UC0 � PC1 � UC1 � PC2 � UC2 � � � � , where the setinlusions are strit (eah lass is ontained in but unequal to its suessor).b) Desribe all families F that belong to the smallest lass, PC0.) Give interesting examples of families in the next smallest lass, UC0.d) True or false: If F ontains n variables, F 2 PCn.e) True or false: If F ontains n variables, F 2 UCn�1.f) Where do the lauses R0 of (7) fall in the hierarhy?444. [M26 ℄ The following single lookahead unit resolution algorithm, alled SLUR,returns either `sat', `unsat', or `maybe', depending on whether a given set F of lausesis satis�able, unsatis�able, or beyond its ability to deide via easy propagations:E1. [Propagate.℄ If F `1 �, terminate (`unsat'). Otherwise set F  F j fl j F `1 lg.E2. [Satis�ed?℄ If F = ;, terminate (`sat'). Otherwise set l to any literal within F .E3. [Lookahead and propagate.℄ If F j l 6`1 �, set F  F j l j fl0 j F j l `1 l0g andreturn to E2. Otherwise if F j�l 6`1 �, F  F j�l j fl0 j F j�l `1 l0g and return to E2.Otherwise terminate (`maybe').Notie that this algorithm doesn't baktrak after ommitting itself in E2 to either l or �l.a) If F onsists of Horn lauses, possibly renamed (see exerise 7.1.1{55), prove thatSLUR will never return `maybe', regardless of how it hooses l in step E2.b) Find four lauses F on three variables suh that SLUR always returns `sat',although F is not a set of possibly renamed Horn lauses.) Prove that SLUR never returns `maybe' if and only if F 2 UC1 (see exerise 443).d) Explain how to implement SLUR in linear time with respet to total lause length.x 445. [22 ℄ Find short erti�ates of unsatis�ability for the pigeonhole lauses (106){(107), when they are supplemented by (a) (181); (b) (182); () (183).446. [M10 ℄ What's the maximum number of edges in a subgraph of Km;n that hasgirth � 6? (Express your answer in terms of Z(m;n).)x 447. [22 ℄ Determine the maximum number of edges in a girth-8 subgraph of K8;8.448. [M25 ℄ What is Z(m;n) whenm is odd and n = m(m�1)=6? Hint: See 6.5{(16).449. [21 ℄ Exhibit n � n quad-free matries that ontain the maximum number of 1sand obey the lexiographi onstraints (185), (186), for 8 � n � 16.450. [25 ℄ Prove that there is essentially only one 10 � 10 quad-free system of pointsand lines with 34 inidenes. Hint: First show that every line must ontain either 3points or 4 points; hene every point must belong to either 3 lines or 4 lines.x 451. [28 ℄ Find a way to olor the squares of a 10�10 board with three olors, so thatno retangle has four orners of the same olor. Prove furthermore that every suh\nonhromati retangle" board has the olor distribution f34; 34; 32g, not f34; 33; 33g.But show that if any square of the board is removed, a nonhromati retangle ispossible with 33 squares of eah olor.
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452. [34 ℄ Find a nonhromati retangle with four olors on an 18 � 18 board.453. [M23 ℄ Anm�n matrix X = (xij) is said to be deomposable if it has row indiesR � f1; : : : ; mg and olumn indies C � f1; : : : ; ng suh that 0 < jRj + jCj < m+ n,with xij = 0 whenever (i 2 R and j =2 C) or (i =2 R and j 2 C). It represents abipartite graph on the verties fu1; : : : ; umg and fv1; : : : ; vng, if [ui���vj ℄ = [xij 6=0℄.a) Prove that X is indeomposable if and only if its bipartite graph is onneted.b) The diret sum X 0 �X 00 of matries X 0 and X 00, where X 0 is m0 � n0 and X 00 ism00 � n00, is the (m0 +m00) � (n0 + n00) \blok diagonal" matrix X that has X 0in its upper left orner, X 00 in the lower right orner, and zeros elsewhere (see7{(40)). True or false: If the rows and olumns of X 0 and X 00 are nonnegative andlexiographially ordered as in (185) and (186), so are the rows and olumns of X.) Let X be any nonnegative matrix whose rows and olumns are lexiographiallynoninreasing, as in (185) and (186). True or false: X is deomposable if andonly if X is a diret sum of smaller matries X 0 and X 00.454. [15 ℄ If � is an endomorphism for the solutions of f , show that f(x) = f(x�) forevery yli element x (every element that's in a yle of � ).455. [M20 ℄ Suppose we know that (187) is an endomorphism of some given lauses Fon the variables fx1; x2; x3; x4g. Can we be sure that F is satis�able if and only if F ^Cis satis�able, when (a) C = �12�4, i.e., C = (�x1_ x2_ �x4)? (b) C = 2�3�4? () C = 123?(d) C = 1�34?456. [M21 ℄ For how many funtions f(x1; x2; x3; x4) is (187) an endomorphism?457. [HM19 ℄ Show that every Boolean f(x1; x2; x3; x4) has more than 51 quadrillionendomorphisms, and an n-variable funtion has more than 22n(n�1).458. [20 ℄ The simpli�ation of lauses by removing an autarky an be regarded as theexploitation of an endomorphism. Explain why.x 459. [20 ℄ Let Xij denote the submatrix of X onsisting of the �rst i rows and the�rst j olumns. Show that the numbers sweep(Xij) satisfy a simple reurrene, fromwhih it's easy to ompute sweep(X) = sweep(Xmn).460. [21 ℄ Given m, n, k, and r, onstrut lauses that are satis�ed by an m�n binarymatrix X = (xij) if and only if sweep(X) � k and Pi;j xij � r.461. [20 ℄ What additional lauses will rule out non-�xed points of �1 and �2?462. [M22 ℄ Explain why �1, �2, and �3 preserve satis�ability in the sweep problem.x 463. [M21 ℄ Show that X is a �xed point of �1, �2, and �3 if and only if its rows andolumns are nondereasing. Therefore the maximum of �X =Pi;j xij over all binarymatries of sweep k is a simple funtion of m, n, and k.x 464. [M25 ℄ Transformations �1 and �2 don't hange the text's example 10�10 matrix.Prove that they will never hange any 10 � 10 matrix of sweep 3 that has �X = 51.465. [M21 ℄ Justify the text's rule for simultaneous endomorphisms in the perfetmathing problem: Any perfet mathing must lead to one that's �xed by every �uv.466. [M23 ℄ Prove that when mn is even, the text's even-odd rule (190) for endomor-phisms of m� n domino overings has exatly one �xed point.467. [20 ℄ Mutilate the 7�8 and 8�7 boards by removing the upper right and lower leftells. What domino overings are �xed by all the even-odd endomorphisms like (190)?
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468. [20 ℄ Experiment with the mutilated hessboard problem when the even-oddendomorphisms are modi�ed so that (a) they use the same rule for all i and j; or(b) they eah make an independent random hoie between horizontal and vertial.x 469. [M25 ℄ Find a erti�ate of unsatis�ability (C1; C2; : : : ; Ct) for the fat that an8�8 hessboard minus ells (1; 8) and (8; 1) annot be exatly overed by dominoes hijand vij that are �xed under all of the even-odd endomorphisms. Eah Ck for 1 � k < tshould be a single positive literal. (Therefore the lauses for this problem belong tothe relatively simple lass PC2 in the hierarhy of exerise 443.)x 470. [M22 ℄ Another lass of endomorphisms, one for every 4-yle, an also be used inperfet mathing problems: Let the verties (instead of the edges) be totally orderedin some fashion. Every 4-yle an be written v0 ��� v1 ��� v2 ��� v3 ��� v0, withv0 > v1 > v3 and v0 > v2; the orresponding endomorphism hanges any solution forwhih v0v1 = v2v3 = 1 by setting v0v1  v2v3  0 and v1v2  v3v0  1. Prove thatevery perfet mathing leads to a �xed point of all these transformations.471. [16 ℄ Find all �xed points of the mappings in exerise 470 when the graph is K2n.472. [M25 ℄ Prove that even-odd endomorphisms suh as (190) in the domino overingproblem an be regarded as instanes of the endomorphisms in exerise 470.x 473. [M23 ℄ Generalize exerise 470 to endomorphisms for the unsatis�able lauses ofTseytin's graph parity problems in exerise 245.474. [M20 ℄ A signed permutation is a symmetry of f(x) if and only if f(x) = f(x�)for all x, and it is an antisymmetry if and only if we have f(x) = �f(x�) for all x.a) How many signed permutations of n elements are possible?b) Write 75�1�4�26�3 in yle form, as an unsigned permutation of f1; : : : ; 7; �1; : : : ; �7g.) For how many funtions f of four variables is �413�2 a symmetry?d) For how many funtions f of four variables is �413�2 an antisymmetry?e) For how many f(x1; : : : ; x7) is 75�1�4�26�3 a symmetry or antisymmetry?475. [M22 ℄ Continuing exerise 474, a Boolean funtion is alled asymmetri if theidentity is its only symmetry; it is totally asymmetri if it is asymmetri and has noantisymmetries.a) If f is totally asymmetri, how many funtions are equivalent to f under the op-erations of permuting variables, omplementing variables, and/or omplementingthe funtion?b) Aording to (a) and 7.1.1{(95), the funtion (x _ y) ^ (x � z) is not totallyasymmetri. What is its nontrivial symmetry?) Prove that if f is not asymmetri, it has an automorphism of prime order p.d) Show that if (uvw)(�u�v �w) is a symmetry of f , so is (uv)(�u�v).e) Make a similar statement if f has a symmetry of the form (uvwxy)(�u�v �w�x�y).f) Conlude that, if n � 5, the Boolean funtion f(x1; : : : ; xn) is totally asymmetriif and only if no signed involution is a symmetry or antisymmetry of f .g) However, exhibit a ounterexample to that statement when n = 6.476. [M23 ℄ For n � 5, �nd Boolean funtions of n variables that are (a) asymmetribut not totally asymmetri; (b) totally asymmetri. Furthermore, your funtions shouldbe the easiest to evaluate (in the sense of having a smallest possible Boolean hain),among all funtions that qualify. Hint: Combine exerises 475 and 477.x 477. [23 ℄ (Optimum Boolean evaluation.) Construt lauses that are satis�able if andonly if there is an r-step normal Boolean hain that omputes m given funtions g1,
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: : : , gm on n variables. (For example, if n = 3 and g1 = hx1x2x3i, g2 = x1 � x2 � x3,suh lauses with r = 4 and 5 enable a SAT solver to disover a \full adder" of minimumost; see 7.1.2{(1) and 7.1.2{(22).) Hint: Represent eah bit of the truth tables.x 478. [23 ℄ Suggest ways to break symmetry in the lauses of exerise 477.x 479. [25 ℄ Use SAT tehnology to �nd optimum iruits for the following problems:a) Compute z2, z1, and z0, when x1 + x2 + x3 + x4 = (z2z1z0)2 (see 7.1.2{(27)).b) Compute z2, z1, and z0, when x1 + x2 + x3 + x4 + x5 = (z2z1z0)2.) Compute all four symmetri funtions S0, S1, S2, S3 of fx1; x2; x3g.d) Compute all �ve symmetri funtions S0, S1, S2, S3, S4 of fx1; x2; x3; x4g.e) Compute the symmetri funtion S3(x1; x2; x3; x4; x5; x6).f) Compute the symmetri funtion S0;4(x1; : : : ; x6) = [(x1 + � � �+ x6) mod 4 = 0℄.g) Compute all eight minterms of fx1; x2; x3g (see 7.1.2{(30)).480. [25 ℄ Suppose the values 0, 1, 2 are enoded by the two-bit odes xlxr = 00, 01,and 1�, respetively, where 10 and 11 both represent 2. (See Eq. 7.1.3{(120).)a) Find an optimum iruit for mod 3 addition: zlzr = (xlxr + ylyr) mod 3.b) Find an optimum iruit that omputes zlzr = (x1 + x2 + x3 + ylyr) mod 3.) Conlude that [x1 + � � �+ xn � a (modulo 3)℄ an be omputed in < 3n steps.x 481. [28 ℄ An ordered bit pair xy an be enoded by another ordered bit pair [[xy℄℄ =(x�y)y without loss of information, beause [[xy℄℄ = uv implies [[uv℄℄ = xy.a) Find an optimum iruit that omputes ([[zz0℄℄)2 = x1 + x2 + x3.b) Let �[[uv℄℄ = (u � v) + v, and note that �[[00℄℄ = 0, �[[01℄℄ = 2, �[[1�℄℄ = 1. Findan optimum iruit that, given x1 : : : x5, omputes z1z2z3 suh that we have�[[x1x2℄℄ + �[[x3x4℄℄ + x5 = 2�[[z1z2℄℄ + z3.) Use that iruit to prove by indution that the \sideways sum" (zblgn : : : z1z0)2 =x1 + x2 + � � �+ xn an always be omputed with fewer than 4:5n gates.x 482. [26 ℄ (Erd}os disrepany patterns.) The binary sequene y1 : : : yt is alled stronglybalaned if we have jPkj=1(2yj � 1)j � 2 for 1 � k � t.a) Show that this balane ondition needs to be heked only for odd k � 3.b) Desribe lauses that eÆiently haraterize a strongly balaned sequene.) Construt lauses that are satis�ed by x1x2 : : : xn if and only if xdx2d : : : xbn=ddis strongly balaned for 1 � d � n.483. [21 ℄ Symmetry between olors was broken in the oloring problems of Table 6by assigning �xed olors to a large lique in eah graph. But many graphs have nolarge lique, so a di�erent strategy is neessary. Explain how to enode the \restritedgrowth string" priniple (see Setion 7.2.1.5) with appropriate lauses, given an orderingv1v2 : : : vn of the verties: The olor of vj must be at most one greater than the largestolor assigned to fv1; : : : ; vj�1g. (In partiular, v1 always has olor 1.)Experiment with this sheme by applying it to the book graphs anna, david,homer, huk, and jean of the Stanford GraphBase.484. [22 ℄ (Graph quenhing.) A graph with verties (v1; : : : ; vn) is alled \quenhable"if either (i) n = 1; or (ii) there's a k suh that vk ��� vk+1 and the graph on(v1; : : : ; vk�1; vk+1; : : : ; vn) an be quenhed; or (iii) there's an l suh that vl ��� vl+3and the graph on (v1; : : : ; vl�1; vl+3; vl+1; vl+2; vl+4; : : : ; vn) an be quenhed.a) Find a 4-element graph that is quenhable although v3 /���v4.b) Construt lauses that are satis�able if and only if a given graph is quenhable.Hint: Use the following three kinds of variables for this model-heking problem:



September 23, 2015

180 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 ommutativebreak symmetryLate Binding solitairesolitairepatieneplaying ardsIdle YearDikqueenshessboardTurtonBallboundary setsqueen grapharmies of queensqueenssymmetry breakingoexisting armies of queenssigned involutionssignedautomorphismsigned mappingtautology

xt;i;j = [vi���vj at time t℄, for 1 � i < j � n�t; qt;k = [a quenhing move of type(ii) leads to time t+1℄; st;l = [a quenhing move of type (iii) leads to time t+1℄.x 485. [23 ℄ Sometimes suessive transitions in the previous exerise are ommutative:For example, the e�et of qt;k and qt+1;k+1 is the same as qt;k+2 and qt+1;k. Explainhow to break symmetry in suh ases, by allowing only one of the two possibilities.486. [21 ℄ (Late Binding solitaire.) Shu�e a dek and deal out 18 ards; then try toredue these 18 piles to a single pile, using a sequene of \aptures" in whih one pile isplaed on top of another pile. A pile an apture only the pile to its immediate left, orthe pile found by skipping left over two other piles. Furthermore a apture is permittedonly if the top ard in the apturing pile has the same suit or the same rank as the topard in the aptured pile. For example, onsider the following deal:J~ 5~10| 8} J| A| K� A~ 4| 8� 5� 5} 2} 10� A� 6~ 3~10}Ten aptures are initially possible, inluding 5~�J~, A|��10|, and 5}�5�. Someaptures then make others possible, as in 8��� K��� 8}.If aptures must be made \greedily" from left to right as soon as possible, thisgame is the same as the �rst 18 steps of a lassi one-player game alled \Idle Year,"and we wind up with �ve piles [see Dik's Games of Patiene (1883), 50{52℄. But if weleverly hold bak until all 18 ards have been dealt, we an do muh better.Show that one an win from this position, but not if the �rst move is A|� J|.x 487. [27 ℄ There are �648 � = 4426165368 ways to plae eight queens on a hessboard.Long ago, W. H. Turton asked whih of them auses the maximum number of vaantsquares to remain unattaked. [See W. W. Rouse Ball, Mathematial Rereations andProblems, third edition (London: Mamillan, 1896), 109{110.℄Every subset S of the verties of a graph has three boundary sets de�ned thus:�S = the set of all edges with exatly one endpoint 2 S;�outS = the set of all verties =2 S with at least one neighbor 2 S;�inS = the set of all verties 2 S with at least one neighbor =2 S:Find the minimum and maximum sizes of �S, �outS, and �inS, over all 8-element sets Sin the queen graph Q8 (exerise 7.1.4{241). Whih set answers Turton's question?x 488. [24 ℄ (Peaeable armies of queens.) Prove that armies of nine white queens andnine blak queens an oexist on a hessboard without attaking eah other, but armiesof size 10 annot, by devising appropriate sets of lauses and applying Algorithm C.Also examine the e�ets of symmetry breaking. (This problem has sixteen symmetries,beause we an swap olors and/or rotate and/or reet the board.) How large anoexisting armies of queens be on n � n boards, for n � 11?489. [M21 ℄ Find a reurrene for Tn, the number of signed involutions on n elements.x 490. [15 ℄ Does Theorem E hold also when p1p2 : : : pn is any signed permutation?x 491. [22 ℄ The unsatis�able lauses R in (6) have the signed permutation 234�1 as anautomorphism. How an this fat help us to verify their unsatis�ability?492. [M20 ℄ Let � be a signed mapping of the variables fx1; : : : ; xng; for example,the signed mapping `�413�3' stands for the operation (x1; x2; x3; x4) 7! (x�4; x1; x3; x�3) =(�x4; x1; x3; �x3). When a signed mapping is applied to a lause, some of the resulting lit-erals might oinide; or two literals might beome omplementary, making a tautology.When � = �413�3, for instane, we have (123)� = �413, (13�4)� = �43, (1�3�4)� = }.
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A family F of lauses is said to be \losed" under a signed mapping � if C� issubsumed by some lause of F whenever C 2 F . Prove that � is an endomorphismof F in suh a ase.493. [20 ℄ The problem waerden (3; 3; 9) has four symmetries, beause we an reetand/or omplement all the variables. How an we speed up the proof of unsatis�abilityby adding lauses to break those symmetries?494. [21 ℄ Show that if (uvw)(�u�v �w) is a symmetry of some lauses F , we're allowed tobreak symmetries as if (uv)(�u�v), (uw)(�u �w), and (vw)(�v �w) were also symmetries. Forexample, if i < j < k and if (ijk)(�i�j�k) is a symmetry, we an assert (�xi_xj)^ (�xj _xk)with respet to the global ordering p1 : : : pn = 1 : : : n. What are the orrespondingbinary lauses when the symmetry is (i) (ij�k)(�i�jk)? (ii) (i�jk)(�ij�k)? (iii) (i�j�k)(�i�jk)?495. [M22 ℄ Spell out the details of how we an justify appending lauses to assert (185)and (186), using Corollary E, whenever we have an m�n problem whose variables xijpossess both row and olumn symmetry. (In other words we assume that xij 7! x(i�)(j�)is an automorphism for all permutations � of f1; : : : ;mg and � of f1; : : : ; ng.)x 496. [M20 ℄ B. C. Dull reasoned as follows: \The pigeonhole lauses have row and ol-umn symmetry. Therefore we an assume that the rows are lexiographially inreasingfrom top to bottom, and the olumns are lexiographially inreasing from right to left.Consequently the problem is easily seen to be unsatis�able." Was he orret?497. [22 ℄ Use BDD methods to determine the number of 8 � 8 binary matries thathave both rows and olumns in nondereasing lexiographi order. How many of themhave exatly r 1s, for r = 24, r = 25, r = 64 � 25 = 39, and r = 64 � 24 = 40?498. [22 ℄ Justify adding the symmetry-breakers (183) to the pigeonhole lauses.499. [21 ℄ In the pigeonhole problem, is it legitimate to inlude the lauses (183)together with lauses that enfore lexiographi row and olumn order?500. [16 ℄ The preoious student J. H. Quik deided to extend the monkey wrenhpriniple, arguing that if F0 [S ` l then the original lauses F an be replaed by F j l.But he soon realized his mistake. What was it?501. [22 ℄ Martin Gardner introdued an interesting queen plaement problem in Si-enti� Amerian 235, 4 (Otober 1976), 134{137: \Plae r queens on an m� n hess-board so that (i) no three are in the same row, olumn, or diagonal; (ii) no empty squarean be oupied without breaking rule (i); and (iii) r is as small as possible." Construtlauses that are satis�able if and only if there's a solution to onditions (i) and (ii) withat most r queens. (A similar problem was onsidered in exerise 7.1.4{242.)502. [16 ℄ (Closest strings.) Given binary strings s1, : : : , sm of length n, and thresholdparameters r1, : : : , rm, onstrut lauses that are satis�able by x = x1 : : : xn if andonly if x di�ers from sj in at most rj positions, for 1 � j � m.503. [M20 ℄ (Covering strings.) Given sj and rj as in exerise 502, show that everystring of length n is within rj bits of some sj if and only if the losest string problemhas no solution with parameters r0j = n � 1� rj .x 504. [M21 ℄ The problem in exerise 502 an be proved NP-omplete as follows:a) Let wj be the string of length 2n that is entirely 0 exept for 1s in positions 2j�1and 2j, and let wn+j = �wj , for 1 � j � n. Desribe all binary strings of length 2nthat di�er from eah of w1, : : : , w2n in at most n bit positions.b) Given a lause (l1_ l2_ l3) with stritly distint literals l1; l2; l3 2 fx1; : : : ; xn;�x1; : : : ; �xng, let y be the string of length 2n that is entirely zero exept that it has
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182 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 3SATlosest stringRivest's lausesnondeterministirandomizingvariable interation graphHeulewindfallsmiter problemspurgingtraining settuningover�ttingpreproessinglookahead solver versus onit drivenWalkSATErd}os disrepany patterndisrepanyrandWalkSAT

1 in position 2k � 1 when some li is �xk, and 1 in position 2k when some li is xk.In how many bit positions does a string that satis�es (a) di�er from y?) Given a 3SAT problem F with m lauses and n variables, use (a) and (b) toonstrut strings s1, : : : , sm+2n of length 2n suh that F is satis�able if and onlyif the losest string problem is satis�able with rj = n + [j > 2n℄.d) Illustrate your onstrution in () by exhibiting the losest string problems thatorrespond to the simple 3SAT problems R and R0 in (6) and (7).505. [21 ℄ Experiment with making Algorithm L nondeterministi, by randomizing theinitial order of VAR in step L1 just as HEAP is initialized randomly in step C1. How doesthe modi�ed algorithm perform on, say, problems D3, K0, and W2 of Table 6?506. [22 ℄ The weighted variable interation graph of a family of lauses has one vertexfor eah variable and the weight P 2=(jj(jj � 1)) between verties u and v, where thesum is over all lauses  that ontain both �u and�v. Figure 52 indiates these weightsindiretly, by making the heavier edges darker.a) True or false: The sum of all edge weights is the total number of lauses.b) Explain why the graph for test ase B2 has exatly 6 edges of weight 2. Whatare the weights of the other edges in that graph?x 507. [21 ℄ (Marijn Heule.) Explain why \windfalls" (see (72)) help Algorithm L todeal with miter problems suh as D5.508. [M20 ℄ Aording to Table 7, Algorithm C proved problem T3 to be unsatis�ableafter learning about 323 thousand lauses. About how many times did it enter a purgingphase in step C7?509. [20 ℄ Several of the \training set" tasks used when tuning Algorithm C's param-eters were taken from the 100 test ases of Table 6. Why didn't this lead to a problemof \over�tting" (namely, of hoosing parameters that are too losely assoiated withthe trainees)?510. [18 ℄ When the data points A1, A2, : : : , X8 were plotted in Fig. 55, one by one,they sometimes overed parts of previously plotted points, beause of overlaps. Whattest ases are partially hidden by (a) T2? (b) X6? () X7?511. [22 ℄ Problem P4 in Table 6 is a strange set of lauses that lead to extreme behav-ior of Algorithm C in Figs. 54 and 55; and it auses Algorithm L to \time out" in Fig. 53.a) The preproessing algorithm of the text needs about 1.5 megamems to onvertthose 2509 lauses in 400 variables into just 2414 lauses in 339 variables. Showempirially that Algorithm L makes short work of the resulting 2414 lauses.b) How eÆient is Algorithm C on those preproessed lauses?) What is the behavior of WalkSAT on P4, with and without preproessing?512. [29 ℄ Find parameters for Algorithm C that will �nd an Erd}os disrepany patternx1x2 : : : xn rapidly when n = 500. (This is problem E0 in Table 6.) Then omparethe running times of nine random runs with your parameters versus nine random runswith (194), when n = 400, 500, 600, : : : , 1100, 1160, and 1161.513. [24 ℄ Find parameters for Algorithm L that tune it for rand (3; m; n; seed ).514. [24 ℄ The timings quoted in the text for Algorithm W, for problems in Table 6,are based on the median of nine runs using the parameters p = :4 and N = 50n,restarting from srath if neessary until a solution is found. Those parameters worked�ne in most ases, unless Algorithm W was unsuited to the task. But problem C9 wassolved more quikly with p = :6 and N = 2500n (943M� versus 9:1G�).Find values of p and N=n that give near-optimum performane for problem C9.
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7.2.2.2 SATISFIABILITY: EXERCISES 183 Hard sudokusudokuexat over problemstrong exponential time hypothesiskSATone-per-lauseNP-omplete3SATone-in-threeternarypermanentgadget
x 515. [23 ℄ (Hard sudoku.) Speify SAT lauses with whih a designer of sudoku puzzlesan meet the following spei�ations: (i) If ell (i; j) of the puzzle is blank, so isell (10�i; 10�j), for 1 � i; j � 9. (ii) Every row, every olumn, and every box ontainsat least one blank. (Here \box" means one of sudoku's nine speial 3 � 3 subarrays.)(iii) No box ontains an all-blank row or an all-blank olumn. (iv) There are at leasttwo ways to �ll every blank ell, without oniting with nonblank entries in the samerow, olumn, or box. (v) If a row, olumn, or box doesn't already ontain k, there areat least two plaes to put k into that row, olumn, or box, without onit. (vi) If thesolution has a 2� 2 subarray of the form k ll k , those four ells must not all be blank.(Condition (i) is a feature of \lassi" sudoku puzzles. Conditions (iv) and (v)ensure that the orresponding exat over problem has no fored moves; see Setion7.2.2.1. Condition (vi) rules out ommon ases with non-unique solutions.)516. [M49 ℄ Prove or disprove the strong exponential time hypothesis: \If � < 2, thereis an integer k suh that no randomized algorithm an solve every kSAT problem infewer than �n steps, where n is the number of variables."517. [25 ℄ Given lauses C1, : : : , Cm, the one-per-lause satis�ability problem asks ifthere is a Boolean assignment x1 : : : xn suh that every lause is satis�ed by a uniqueliteral. In other words, we want to solve the simultaneous equations �Cj = 1 for1 � j � m, where �C is the sum of the literals of lause C.a) Prove that this problem is NP-omplete, by reduing 3SAT to it.b) Prove that this problem, in turn, an be redued to its speial ase \one-in-threesatis�ability," where every given lause is required to be ternary.518. [M32 ℄ Given a 3SAT problem with m lauses andn variables, we shall onstrut a (6m + n) � (6m + n)matrix M of integers suh that the permanent, perM ,is zero if and only if the lauses are unsatis�able. Forexample, the solvable problem (7) orresponds to the46 � 46 matrix indiated here; eah shaded box standsfor a �xed 6� 6 matrix A that orresponds to a lause.Eah A has three \inputs" in olumns 1, 3, 5 andthree \outputs" in rows 2, 4, 6. The �rst n rows and thelast n olumns orrespond to variables. Outside of theAs, all entries are either 0 or 2; and the 2s link variablesto lauses, aording to a sheme muh like the datastrutures in several of the algorithms in this setion:Let Iij andOij denote the jth input and output of lause i, for 1 � i � m and 1 � j � 3.Then, if literal l appears in t � 0 lauses i1 < � � � < it, as element j1, : : : , jt, we put `2'in olumn Iik+1jk+1 of row Oikjk for 0 � k � t (Oi0j is row jlj, Iit+1j is olumn 6m+jlj).


12�3 23�4 341 4�12 �1�23 �2�34 �3�4�1a) Find a 6� 6 matrix A = (aij), whose elements are either 0, 1, or �1, suh thatper0BBBBB� a11 a12 a13 a14 a15 a16a21+2r a22 a23+2s a24 a25+2t a26a31 a32 a33 a34 a35 a36a41+2u a42 a43+2v a44 a45+2w a46a51 a52 a53 a54 a55 a56a61+2x a62 a63+2y a64 a65+2z a661CCCCCA = 16 per0� r+1 s tu v+1 wx y z+11A � 1!:Hint: There's a solution with lots of symmetry.b) In whih of the rows and olumns of M does `2' our twie? one? not at all?) Conlude that perM = 24m+ns, when the 3SAT problem has exatly s solutions.
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184 COMBINATORIAL ALGORITHMS (F6A: 23 Sep 2015 � 1959) 7.2.2.2 fator �fofator lifofator randinteger programminglinear inequalitiesIP solversutting planes100 sets of lausespurgingLoopless shadowsshadowsprojetedHamiltonian pathsdiÆult3SATJohnsonMAXSAT lower bound
519. [20 ℄ Table 7 shows inonlusive results in a rae for fatoring between fator �foand fator lifo . What is the omparable performane of fator rand (m;n; z; 314159)?x 520. [24 ℄ Every instane of SAT orresponds in a natural way to an integer program-ming feasility problem: To �nd, if possible, integers x1, : : : , xn that satisfy the linearinequalities 0 � xj � 1 for 1 � j � n andl1 + l2 + � � �+ lk � 1 for eah lause C = (l1 _ l2 _ � � � _ lk).For example, the inequality that orresponds to the lause (x1 _ �x3 _ �x4 _ x7) isx1 + (1�x3) + (1�x4) + x7 � 1; i.e., x1 � x3 � x4 + x7 � �1.Sophistiated \IP solvers" have been developed by numerous researhers for solv-ing general systems of integer linear inequalities, based on tehniques of \uttingplanes" in high-dimensional geometry. Thus we an solve any satis�ability problemby using suh general-purpose software, as an alternative to trying a SAT solver.Study the performane of the best available IP solvers, with respet to the 100sets of lauses in Table 6, and ompare it to the performane of Algorithm C in Table 7.521. [30 ℄ Experiment with the following idea, whih is muh simpler than the lause-purging method desribed in the text: \Forget a learned lause of length k withprobability pk," where p1 � p2 � p3 � � � � is a tunable sequene of probabilities.x 522. [26 ℄ (Loopless shadows.) A yli path within theube P3 P3 P3 is shown here, together with the three\shadows" that appear when it is projeted onto eah o-ordinate plane. Notie that the shadow at the bottomontains a loop, but the other two shadows do not. Doesthis ube ontain a yle whose three shadows are entirelywithout loops? Use SAT tehnology to �nd out.523. [30 ℄ Prove that, for any m or n, no yle ofthe graph Pm Pn P2 has loopless shadows.x 524. [22 ℄ Find all Hamiltonian paths of the ubeP3 P3 P3 that have loopless shadows.x 525. [40 ℄ Find the most diÆult 3SAT problem you an that has at most 100 variables.526. [M25 ℄ (David S. Johnson, 1974.) If F has m lauses, all of size � k, prove thatsome assignment leaves at most m=2k lauses unsatis�ed.999. [M00 ℄ this is a temporary exerise (for dummies)
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7.2.2.2 ANSWERS TO EXERCISES 185 ;empty lausenullary lauseempty setsunsatis�able oreGrahamBloomlopsidependeny graphBrownLandmanRobertsonChv�atalKourilLandmanRobertsonCulverresolvingnot-all-equal SAThypergraph 2-olorability2-olorability of hypergraphsLov�aszKleine B�uningLettmann

SECTION 7.2.2.21. (a) ; (no lauses). (b) f�g (one lause, whih is empty).2. Letting 1 $ lazy, 2 $ happy, 3 $ unhealthy, 4 $ daner, we're given therespetive lauses f314; �142; 3�42; �24�3; �13�2; 2�31; �1�4�3g, mathing R0 in (7). So all knownPinusians dane happily, and none are lazy. But we know nothing about their health.[And we might wonder why travelers have bothered to desribe so many empty sets.℄3. f(j � 1; n) + f(k � 1; n), where f(p; n) = Pqd=1(n � pd) = p�q2� + q(nmod p) �n2=(2p), if we set q = bn=p.4. Those onstraints are unsatis�able if and only if we remove a subset of eitherf357; 456; �3�5�7; �4�5�6g, f246; 468; �2�4�6; �4�6�8g, f246; 357; 468; �4�5�6g, or f456; �2�4�6; �3�5�7; �4�6�8g.5. No polynomial upper bound for W (3; k) is urrently known. Clearly W (3; k) isless than W (3; k), the minimum n that guarantees either three equally spaed 0s or konseutive 1s. An analysis by R. L. Graham in Integers 6 (2006), A29:1{A29:5, beefedup by a subsequent theorem of T. H. Bloom in arXiv:1405.5800 [math.NT℄ (2014),22 pages, shows that W (3; k) = expO(k(log k)4).6. Let eah xi be 0 with probability p = (2 lnk)=k, and let n be at most k2=(ln k)3.There are two kinds of \bad events": Ai, a set of three equally spaed 0s, ourswith probability P = p3; and A0j , a set of k equally spaed 1s, ours with probabilityP 0 = (1 � p)k � exp(�kp) = 1=k2. In the lopsidependeny graph, whih is bipartite,eah Ai is adjaent to at most D = 3k3=((k � 1)(ln k)3) nodes A0j ; eah A0j is adjaentto at most d = 32k3=(ln k)3 nodes Ai. By Theorem J, we want to show that, for allsuÆiently large values of k, P � y(1� x)D and P 0 � x(1� y)d, for some x and y.Choose x and y so that (1�x)D = 1=2 and y = 2P . Then x = �((log k)3=k2) andy = �((log k)3=k3); hene (1�y)d = exp(�yd+O(y2d)) = O(1). [See T. Brown, B. M.Landman, and A. Robertson, J. Combinatorial Theory A115 (2008), 1304{1309.℄7. Yes, for all n, when x1x2x3 : : : = 001001001 : : : .8. For example, let xi;a signify that xi = a, for 1 � i � n and 0 � a < b. The relevantlauses are then xi;0 _ � � � _ xi;b�1 for 1 � i � n; and �xi;a _ �xi+d;a _ � � � _ �xi+(ka�1)d;a,for 1 � i � n � (ka � 1)d and d � 1. Optionally inlude the lauses �xi;a _ �xi;a0 for0 � a < a0 < b. (Whenever the relevant lauses are satis�able, we an also satisfy theoptional ones by falsifying some variables if neessary.)[V. Chv�atal found W (3; 3; 3) = 27. Kouril's paper shows that W (2; 4; 8) = 157,W (2; 3; 14) = 202, W (2; 5; 6) = 246, W (4; 4; 4) = 293, and lists many smaller values.℄9. W (2; 2; k) = 3k � (2; 0; 2; 2; 1; 0) when k mod 6 = (0; 1; 2; 3; 4; 5). The sequene2k�102k�112k�1 is maximal when k ? 6; also 2k�102k�112k�3 when kmod 6 = 3;also 2k�102k�212k�1 when k mod 6 = 4; otherwise 2k�102k�212k�2. [See B. Landman,A. Robertson, and C. Culver, Integers 5 (2005), A10:1{A10:11, where many othervalues of W (2; : : : ; 2; k) are also established.℄10. If the original variables are f1; : : : ; ng, let the new ones be f1; : : : ; ng[f10; : : : ; n0g.The new problem has positive lauses f110; : : : ; nn0g. Its negative lauses are, forexample, �20�6�7�90 if 2�6�79 was an original lause. The original problem is equivalentbeause it an be obtained from the new one by resolving away the primed variables.[One an in fat onstrut an equivalent monotoni problem of size O(m + n) inwhih (x1 _ � � � _ xk) is a positive lause if and only if (�x1 _ � � � _ �xk) is a negativelause. Suh a problem, \not-all-equal SAT," is equivalent to 2-olorability of hyper-graphs. See L. Lov�asz, Congressus Numerantium 8 (1973), 3{12; H. Kleine B�uning andT. Lettmann, Propositional Logi (Cambridge Univ. Press, 1999), x3.2, Problems 4{8.℄
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186 ANSWERS TO EXERCISES 7.2.2.2 auxiliary variablesLangford's problemexat over problemnonprimary olumnsHeuleomplete graphpigeonskernelmaximal planar graph
11. For eah variable i, the only way to math verties of the forms ij0 and ij00 is tohoose all of its true triples or all of its false triples.For eah lause j, the vertex pairs fj02; j03g, fj04; j05g, fj06; j07g de�ne three\slots"; hene two of the verties fwj; xj; yj; zjg must be mathed into the same slot.Furthermore we an't have two in one slot and two in another, beause the remainingslot would then be unmathed. Thus two of the �lj verties are mathed in their slot,while the other is mathed with j01, whenever we have a perfet mathing.Conversely, if all lauses are satis�ed, with lk true in lause j, there always areexatly two ways to math �lkj with j01 while mathing wj, xj, yj, zj, and the othertwo �lj verties with j02, : : : , j07. (It's a beautiful onstrution! Notie that no vertexappears in more than three triples.)12. Equation (13) says S1(y1; : : : ; yp) = S�1(y1; : : : ; yp) ^ S�1(y1; : : : ; yp). If p � 4,use V1�j<k�p(�yj _ �yk) for S�1(y1; : : : ; yp); otherwise S�1(y1; : : : ; yp) an be enodedreursively via the lauses S�1(y1; y2; y3; t)^S�1(�t; y4; : : : ; yp), where t is a new variable.[This method saves half of the auxiliary variables in the answer to exerise 7.1.1{55(b).℄Note: Langford's problem involves primary olumns only; in an exat over prob-lem with nonprimary olumns, suh olumns only need the onstraint S�1(y1; : : : ; yp).13. (a) S1(x1; x2; x3; x4; x5; x6) ^ S1(x7; x8; x9; x10; x11) ^ S1(x12; x13) ^ S1(x14; x15;x16)^S1(x1; x7; x12; x14)^S1(x2; x8; x13; x15)^S1(x1; x3; x9; x16)^S1(x2; x4; x7; x10)^S1(x3; x5; x8; x11; x12) ^ S1(x4; x6; x9; x13; x14) ^ S1(x5; x10; x15) ^ S1(x6; x11; x16).(b) Dupliate lauses our when rows interset more than one. We avoid themif we simply generate lauses �xi _ �xj for every pair (i; j) of interseting rows.() When langford (4) is generated in this way, it has 85 distint lauses in 16 vari-ables, namely (x1_x2_x3_x4_x5_x6)^(x7_x8_x9_x10_x11)^� � �^(x6_x11_x16)^(�x1_�x2) ^ (�x1_�x3) ^ � � � ^ (�x15_�x16).But langford 0(4) annot use the trik of (b). It has 85 (nondistint) lauses in 20variables, beginning with 123456, �1�2, �1�3, �1�10, �2�3, �2�10, �3�10, 10�4, 10�5, 10�6, �4�5, �4�6, �5�6, : : : ,if we denote the auxiliary variables by 10, 20, : : : . Two of those lauses (�1�3 and �4�6) arerepeated. (Inidentally, langford 0(12) has 1548 lauses, 417 variables, 3600 ells.)14. (Answer by M. Heule.) Those lauses sometimes help to fous the searh. Forexample, if we're trying to olor the omplete graph Kn with n olors (or pigeons), wedon't want to waste time trying v2 = 1 when v1 is already 1.On the other hand, other instanes of SAT often run slower when redundant lausesare present, beause more updates to the data strutures are needed.We might also take an opposite approah, and replae (17) by nd lauses thatfore every olor lass to be a kernel. (See exerise 21.) Suh lauses sometimes speedup a proof of unolorability.15. There are N = n(n+1) verties (j; k) for 0 � j � n and 0 � k < n. If (j; k) = (1; 0)we de�ne (j; k) ��� (n; i) for x � i < n, where x = bn=2. Otherwise we de�ne thefollowing edges: (j; k)��� (j + 1; k + 1) if j < n and k < n � 1; (j; k)��� (j + 1; k) ifj < n and j 6= k; (j; k)��� (j; k + 1) if k < n � 1 and j 6= k + 1; (j; k)��� (n; n � 1) ifj = 0; (j; k)��� (n � j; 0) if k < n � 1 and j = k; (j; k)��� (n + 1 � j; 0) if j > 0 andj = k; (j; k)���(n� j; n� j � 1) if k = n� 1 and 0 < j < k; (j; k)���(n+ 1� j; n� j)if k = n � 1 and 0 < j < n. Finally, (0; 0)��� (1; 0), and (0; 0)��� (n; i) for 1 � i � x.That makes a grand total of 3N � 6 edges (as it should in a maximal planar graph,aording to exerise 7{46).16. There's a unique 4-lique when n � 5, namely f(0; n � 2); (0; n � 1); (1; n � 1);(n; n � 1)g. All other verties, exept (0; 0) and (1; 0), are surrounded by neighbors
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7.2.2.2 ANSWERS TO EXERCISES 187 Lauriermgregor (n)symmetri threshold funtionssymmetry breakingBinary searhmaximum independent setBryantmaximum independent setthat form an indued yle of length 4 or more (usually 6). [See J.-L. Laurier, Arti�ialIntelligene 14 (1978), 117.℄17. Let mgregor (n) be the lauses (15) and (16) for the graph. Add lauses (19), forsymmetri threshold funtions to bound the number of variables v1 for olor 1; the kthvertex xk an be spei�ed by the ordering in answer 20. Then if, for instane, we an sat-isfy those lauses together with the unit lause sNr , where N = n(n+1), we have provedthat f(n) < r. Similarly, if we an satisfy them together with �sNr , we have proved thatg(n) � r. Additional unit lauses that speify the olors of the four lique verties willspeed up the omputation: Four ases should be run, one with eah lique vertex reeiv-ing olor 1. If all four ases are unsatis�able, we've proved that f(n) � r or g(n) < r,respetively. Binary searh with di�erent values of r will identify the optimum.For speedier g(n), �rst �nd a maximum independent set instead of a omplete4-oloring; then notie that the olorings for f(n) already ahieve this maximum.The results turn out to be f(n) = (2, 2, 3, 4, 5, 7, 7, 7, 8, 9, 10, 12, 12, 12) forn = (3; 4; : : : ; 16), and g(n) = (4, 6, 10, 13, 17, 23, 28, 35, 42, 50, 58, 68, 77, 88).18. Assuming that n � 4, �rst assign to vertex (j; k) the following \default olor":1 + (j + k) mod 3 if j � k; 1 + (j + k + 1 � n) mod 3 if k < j=2; otherwise 1 + (j +k + 2 � n) mod 3. Then make the following hanges to exeptional verties: Vertex(1; 0) is olored 2 if nmod 6 = 0 or 5, otherwise 3. Vertex (n; n � 1) is olored 4. Fork  0 up to n � 2, hange the olor of vertex (n; k) to 4, if its default olor mathesvertex (0; 0) when k � n=2 or vertex (1; 0) when k > n=2. And make �nal touhupsfor 1 � j < n=2, depending again on nmod 6:Case 0: Give olor 4 to vertex (2j; j � 1) and olor 1 to vertex (2j + 1; j).Case 1: Give olor 4 to vertex (2j; j) and olor 2 to vertex (2j + 1; j).Case 2: Give olor 4 to vertex (2j; j) and olor 1 to vertex (2j + 1; j). Also give(n; n � 2) the olor 1 and (n� 1; n � 3) the olor 4.Cases 3, 4, 5: Give olor 4 to vertex (2j + 1; j).For example, the oloring for the ase n = 10 (found by Bryant) is shown in Fig. A{5(a).
(a) (b) ()Fig. A{5. Colorings and kernels of MGregor's graph.The olor distribution is (bn2=3; bn2=3; bn2=3; 5k) + ((0; 1; k;�1), (1; k; 1; 0),(�1; k+1; 1; 2), (0; k; 1; 2), (1; k+1; 1; 2), (0; 2; k+1; 3)), for nmod 6 = (0; 1; 2; 3; 4; 5),k = bn=6. Sine this onstrution ahieves all of the optimum values for f(n) and g(n),when n � 16, it probably is optimum for all n. Moreover, the value of g(n) agrees withthe size of the maximum independent set in all known ases. A further onjeture isthat the maximum independent set is unique, whenever nmod 6 = 0 and n > 6.
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188 ANSWERS TO EXERCISES 7.2.2.2 symmetry breakingkernelMGregorBiereBernhartGardnerfrontiergigamemsBDDQDDsymmetri threshold funtionBDDgenerating funtion
19. Use the lauses of mgregor (n), together with (v1_v2_v3_�vx)^(v1_v2_v4_�vx)^(v1 _ v3 _ v4 _ �vx)^ (v2 _ v3 _ v4 _ �vx) for eah vertex, together with lauses from (20)and (21) that require at least r of the verties vx to be true. Also assign unique olorsto the four lique verties. (One assignment, not four, is suÆient to break symmetryhere, beause h(n) is a more symmetrial property than f(n) or g(n).) These lausesare satis�able if and only if h(n) � r. The SAT omputation goes faster if we alsoprovide lauses that require eah olor lass to be a kernel (see exerise 21).The values h(n) = (1, 3, 4, 8, 9, 13) for n = (3; 4; : : : ; 8)are readily obtained in this way. Furthermore, if we extendolor lass 4 in the onstrution of answer 18 to a suitable ker-nel, we �nd h(9) � 17 and h(10) � 23. The resulting diagramfor n=10, illustrated in Fig. A{5(b), niely exhibits 223 so-lutions to MGregor's original oloring problem, all at one.A good SAT solver also shows that h(9) � 18 and h(10) �23, thus proving that h(10) = 23. And Armin Biere's solverproved in 2013 that h(9) = 18, by disovering the surprisingsolution shown here. (This exerise was inspired by Frank Bernhart, who sent a diagramlike Fig. A{5(b) to Martin Gardner in 1975; his diagram ahieved 221 solutions.)20. Arrange the verties (j; k) of answer 15 in the following order v0, v1, : : : : (n; n�1);(0; n � 1), (0; n � 2), : : : , (0; 0); (1; n � 1), (1; n � 2), : : : , (1; 1); : : : ; (n � 2; n � 1),(n� 2; n� 2); (n� 1; n� 2), (n� 2; n� 3), : : : , (2; 1); (n� 1; n� 1); (2; 0), (3; 1), : : : ,(n; n�2); (3; 0), (4; 1), : : : , (n; n�3); (1; 0); (4; 0), : : : , (n; n�4); : : : ; (n�1; 0), (n; 1);(n; 0). Then if Vt = fv0; : : : ; vt�1g, let the \frontier" Ft onsist of all verties 2 Vt thathave at least one neighbor =2 Vt. We an assume that (v0; v1; v2) are olored (0; 1; 2),beause they are part of the 4-lique.All 4-olorings of Vt that have a given sequene of olors on Ft an be enumeratedif we know the orresponding ounts for Ft�1. The stated ordering ensures that Ftnever will ontain more than 2n�1 elements; in fat, at most 32n�2 sequenes of olorsare feasible, for any given t. Sine 318 is less than 400 million, it's quite feasible to dothese inremental alulations. The total (obtained with about 6 gigabytes of memoryand after about 500 gigamems of omputation) turns out to be 898,431,907,970,211.This problem is too large to be handled eÆiently by BDD methods when n = 10,but BDD alulations for n � 8 an be used to hek the algorithm. The frontiers essen-tially represent level-by-level slies of a QDD for this problem. The 4-oloring ountsfor 3 � n � 9 are respetively 6, 99, 1814, 107907, 9351764, 2035931737, 847019915170.21. With one Boolean variable v for every vertex of a graph G, the kernels areharaterized by the lauses (i) �u _ �v whenever u ��� v; (ii) v _ Wu��v u for all v.Adding to these the lauses for the symmetri threshold funtion S�r(x1; : : : ; xN ), wean �nd the least r for whih all lauses are satis�able. The graph of Fig. 33 yieldssatis�ability for r = 17; and one of its 46 kernels of size 17 is shown in Fig. A{5().[BDD methods are slower for this problem; but they enumerate all 520,428,275,749of the kernels, as well as the generating funtion 46z17+47180z18+ � � �+317z34+2z35.℄22. Eight olors are needed. The oloring 1277122788336683465514451 is \balaned," with eah olor usedat least thrie.23. Writing k for xk and kj for skj , the lauses from (18){(19) are �11 12 , �12 13 , �21 22 , �22 23 , �31 32 ,�32 33 , �41 42 , �42 43 ; �1 11 , �2 12 , �3 13 , �2 �11 21 , �3 �12 22 , �4 �13 23 , �3 �21 31 , �4 �22 32 , �5 �23 33 , �4 �31 41 , �5 �32 42 , �6 �33 43 , �5 �41 , �6 �42 , �7 �43 .Similarly, (20) and (21) de�ne the lauses �7 61 , �6 61 , �6�7 62 ; �5 51 , �4 51 , �4�5 52 ; �3 41 , �2 41 , �2�3 42 ;�1 31 , �61 31 , �61�1 32 , �62 32 , �62�1 33 ; �51 21 , �41 21 , �52 22 , �42 22 , �41 �51 22 , �41 �52 23 , �42 �51 23 , �42 �52 24 ; �24 �31 , �23 �32 , �22 �33 . So
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7.2.2.2 ANSWERS TO EXERCISES 189 binary reurrene relationsreurrene relationsSinzthis tree-based method apparently needs one more variable and two more lauses when(n; r) = (7; 4). But the next exerise shows that (18) and (19) don't really win!24. (a) The lause (�b21 _ �b3r) appears only if t3 = r; and t3 � n=2.(b) For example, t3 = min(r; 4) < r when n = 11 and r = 5.() In this ase tk is the number of leaves below node k, and the only auxiliaryvariables that survive pure literal elimination are bktk . We're left with just n�1 survivinglauses, namely (�b2kt2k _ �b2k+1t2k+1 _ bktk ) for 1 < k < n, plus (�b2t2 _ �b3t3).(d) If 2k � n � 2k + 2k�1 we have (n0; n00) = (n� 2k�1; 2k�1); on the other handif 2k + 2k�1 � n � 2k+1 we have (n0; n00) = (2k; n � 2k). (Notie that n00 � n0 � 2n00.)(e) No pure literals are removed in this ompletely balaned ase (whih is theeasiest to analyze). We �nd a(2k; 2k�1) = (k�1)2k and (2k; 2k�1) = (2k�2+k�1)2k.(f) One an show that a(n; r) = (r � n00? b(n0; r) + b(n00; r): r � n0? b(n0; n00) +b(n00; n00): b(n0; n�r)+b(n00; n�r)), where b(1; 1) = 0 and b(n; r) = r+b(n0;min(r; n0))+b(n00;min(r; n00)) for n � 2. Similarly, (n; r) = (r � n00? r + f(n0; 0; r) + f(n00; 0; r):r � n0? n00+ f(n0; r�n00; r)+ f(n00; 0; n00): n� r+ f(n0; r�n00; n0)+ f(n00; r�n0; n00)),where f(n; l; r)=Prk=l+1min(k+1; n00+1; n+1�k)+(r � n00? r+f(n0; 0; r)+f(n00; 0; r):r � n0? n00 + f(n0; 0; r) + f(n00; 0; n00): r < n? n � r + f(n0; 0; n0) + f(n00; 0; n00):r� l < n00? f(n0; n0� r+ l; n0) + f(n00; n00 � r+ l; n00): r� l < n0? f(n0; n0 � r+ l; n0) +f(n00; 0; n00): f(n0; 0; n0)+f(n00; 0; n00)) for n � 2 and f(1; 0; 1) = 0. The desired resultsfollow by indution from these reurrene relations.Inidentally, ternary branhing an give further savings. We an, for example,handle the ase n = 6, r = 3 with 17 lauses in the 6 variables b21, b22, b23, b31, b32, b33.25. From (18) and (19) we obtain 5n � 12 lauses in 2n � 4 variables, with a simplelattie-like struture. But (20) and (21) produe a more omplex tree-like pattern, with2n� 4 variables and with bn=2 nodes overing just two leaves. So we get bn=2 nodeswith 3 lauses, nmod 2 nodes with 5 lauses, dn=2e nodes with 7 lauses, and 2 lausesfrom (21), totalling 5n � 12 as before (assuming that n > 3). In fat, all but n � 2 ofthe lauses are binary in both ases.26. Imagine the boundary onditions s0j = 1, sr+1j = 0, sk0 = 0, for 1 � j � n� r and1 � k � r. The lauses say that sk1 � � � � � skn�r and that xj+kskj � sk+1j ; so the hintfollows by indution on j and k.Setting j = n�r and k = r+1 shows that we annot satisfy the new lauses whenx1 + � � � + xn � r + 1. Conversely, if we an satisfy F with x1 + � � � + xn � r then wean satisfy (18) and (19) by setting skj  [x1 + � � � + xj+k�1� k℄.27. Argue as in the previous answer, but imagine that bk0 = 1, b1r+1 = 0; prove thehint by indution on j and n�k (beginning with k = n�1, then k = n�2, and so on).28. For example, the lauses for �x1 + � � � + �xn � n � 1 when n = 5 are (x1 _ s11),(x2 _ �s11 _ s21), (x3 _ �s21 _ s31), (x4 _ �s31 _ s41), (x5 _ �s41). We may assume that n � 4;then the �rst two lauses an be replaed by (x1 _ x2 _ s21), and the last two by(xn�1 _ xn _ �sn�21 ), yielding n � 2 lauses of length 3 in n � 3 auxiliary variables.29. We an assume that 1 � r1 � � � � � rn = r < n. Sinz's lauses (18) and (19) atu-ally do the job niely if we also assert that skj is false whenever k = ri+1 and j = i�ri.30. The lauses now are (�skj _ skj+1), (�xj+k _ �skj _ sk+1j ), (skj _ �sk+1j ), (xj+k _ skj _ �skj+1),hene they de�ne the quantities skj = [x1 + � � �+ xj+k�1� k℄; impliitly sk0 = sr+1j = 0and s0j = skn�r+1 = 1. The new lauses in answer 23 are 11 �21 , 21 �31 , 31 �41 , 12 �22 , 22 �32 , 32 �42 , 13 �23 ,23 �33 , 33 �43 ; 1 �11 , 2 �21 , 3 �31 , 4 �41 , 2 11 �12 , 3 21 �22 , 4 31 �32 , 5 41 �42 , 3 12 �13 , 4 22 �23 , 5 32 �33 , 6 42 �43 , 4 13 , 5 23 , 6 33 , 7 43 .
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190 ANSWERS TO EXERCISES 7.2.2.2 unary enodingardinality onstraints, intervalssubinterval onstraintsardinality onstraints, subintervalssymmetrybenhmarkbaktrakTheobaldNiborskiErd�osTur�anWagsta�lique
With (20) and (21) we an identify b0kj with �bklk+1�j , when lk > 1 leaves are belownode k. Then bkj is true if and only if the leaves below k have j or more 1s. Forexample, answer 23 gets the new lauses 7 �62 , 6 �62 , 67 �61 ; 5 �52 , 4 �52 , 45 �51 ; 3 �42 , 2 �42 , 23 �41 ; 1 �33 ,62 �33 , 1 62 �32 , 61 �32 , 1 61 �31 ; 42 �24 , 52 �24 , 41 �23 , 42 52 �23 , 51 �23 , 41 52 �22 , 42 51 �22 , 41 51 ; 24 31 , 23 32 , 22 33 .Furthermore, (20) and (21) an be uni�ed in the same way with the weakeronstraints r0 � x1+ � � �+xn � r. If we want, say, 2 � x1+ � � �+x7 � 4, we an simplyreplae the �nal four lauses of the previous paragraph by 41 51 �21 , 22 31 , 21 32 . Under the on-ventions of (18) and (19), by ontrast, these weaker onstraints would generate a ompa-rable number of new lauses, namely 11 �21 , 12 �22 , 13 �23 , 14 �24 , 15 �25 and 1 �11 , 2 �21 , 3 21 �22 , 3 12 �13 , 4 22 �23 ,4 13 �14 , 5 23 �24 , 5 14 �15 , 6 24 �25 , 6 15 , 7 25 ; but those lauses involve the new variables 14 , 15 , 24 , 25 .31. We an use the onstraints on the seond line of (10), together with the onstraintsof exerise 30 that fore x1 + � � �+ xn = r. Then we seek n for whih this problem issatis�able, while the same problem with xn = 0 is not. The following small values anbe used to hek the alulations:r = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27F3(r) = 1 2 4 5 9 11 13 14 20 24 26 30 32 36 40 41 51 54 58 63 71 74 82 84 92 95100F4(r) = 1 2 3 5 6 8 9 10 13 15 17 19 21 23 25 27 28 30 33 34 37 40 43 45 48 50 53F5(r) = 1 2 3 4 6 7 8 9 11 12 13 14 16 17 18 19 24 25 27 28 29 31 33 34 36 37 38F6(r) = 1 2 3 4 5 7 8 9 10 12 13 14 15 17 18 19 20 22 23 24 25 26 29 32 33 35 36Furthermore, signi�ant speedup is possible if we also make use of previouslyomputed values Ft(1), : : : , Ft(r�1). For example, when t = 3 and r � 5 we must havexa+1+� � �+xa+8 � 4 for 0 � a � n�8, beause F3(5) = 9. These additional subintervalonstraints blend beautifully with those of exerise 30, beause xa+1 + � � � + xa+p � qfor 0 � a � n � p implies �skb+p�q _ sk�qb for 0 � b � n+ 1� p+ q � r and q < k � r.We an also take advantage of left-right symmetry by appending the unit lause�sdr=2ed(n�r)=2e when r is odd; sr=2n=2�r=2+1 when n and r are both even.Suitable benhmark examples arise when omputing, say, F3(27) or F4(36). But forlarge ases, general SAT-based methods do not seem to ompete with the best speial-purpose baktrak routines. For example, Gavin Theobald and Rodolfo Niborski haveobtained the value F3(41) = 194, whih seems well beyond the reah of these ideas.[See P. Erd�os and P. Tur�an, J. London Math. So. (2) 11 (1936), 261{264; errata,34 (1959), 480; S. S. Wagsta�, Jr., Math. Comp. 26 (1972), 767{771.℄32. Use (15) and (16), and optionally (17), but omit variable vj unless j 2 L(v).33. To double-olor a graph with k olors, hange (15) to the set of k lauses v1 _� � �_vj�1 _ vj+1 _ vk, for 1 � j � k; similarly, �k2� lauses of length k � 2 will yield a tripleoloring. Small examples reveal that C2l+1 for l � 2 an be double-olored with �veolors: f1; 2g(f3; 4gf5; 1g)l�1f2; 3gf4; 5g; furthermore, seven olors suÆe for tripleoloring when l � 3: f1; 2; 3g(f4; 5; 6gf7; 1; 2g)l�2f3; 4; 5gf6; 7; 1gf2; 3; 4gf5; 6; 7g. Thefollowing exerise proves that those olorings are in fat optimum.34. (a) We an obviously �nd a q-tuple oloring with q�(G) olors. And MGregor'sgraph has a four-lique, hene ��(G) � 4.(b) Any q-tuple oloring with p olors yields a solution to the frational exat overproblem, if we let �j = Ppi=1[Sj is the set of verties olored i℄=q. Conversely, thetheory of linear equalities tells us that there is always an optimum solution with rationalf�1; : : : ; �Ng; suh a solution yields a q-tuple oloring when eah q�j is an integer.
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7.2.2.2 ANSWERS TO EXERCISES 191 JohnsonLov�aszHiltonRadoSottwheeldegreeWalkSATsymmetry
() ��(Cn) = �(Cn) = 2 when n is even; and ��(C2l+1) � 2 + 1=l = n=�(C2l+1),beause there's an l-tuple oloring with n olors as in the previous exerise. Also��(G) � n=�(G) in general: n =PvPj �j [v 2Sj ℄ =Pj �j jSj j � �(G)Pj �j .(d) For the hint, let S = fv1; : : : ; vlg where verties are sorted by their olors.Sine vertex vj belongs to Ci with jCij � jfvj ; : : : ; vlgj, we have tvj � 1=(l + 1� j).So �(G) � k =Pv tv =Pv tvPj�j [v 2Sj ℄ =Pj�jPv tv[v 2Sj ℄ �Pj�jH�(G).[See David S. Johnson, J. Computer and System Si. 9 (1974), 264{269; L. Lov�asz,Disrete Math. 13 (1975), 383{390. The onept of frational overing is due to A. J. W.Hilton, R. Rado, and S. H. Sott, Bull. London Math. So. 5 (1973), 302{306.℄35. (a) The double oloring below proves that ��(G) � 7=2; and it is optimum beauseNV and its neighbors indue the wheel W6. (Notie that ��(Wn) = 1 + ��(Cn�1).)(b) By part () of the previous exerise, ��(G) � 25=4. Furthermore there is aquadruple oloring with 25 olors:AEUY ABUV BCVW CDWX DEXYAEFJ ABFG BCGH CDHI DEIJFJKO FGKL GHLM HIMN IJNOKOPT KLPQ LMQR MNRS NOSTPTUY PQUV QRVW RSWX STXY 454635 4726 16 6726
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[Is C5�C5 the smallest graph for whih ��(G) < �(G)� 1?℄36. A few more binary olor onstraints analogous to (16) yield the orresponding SATproblem. We an also assume that the upper right orner is olored 0, beause thatregion touhes n + 4 = 14 others; at least n + 6 olors are needed. The onstraintselsewhere aren't very tight (see exerise 38(b)); thus we readily obtain an optimumradio oloring with n + 6 olors for the MGregor graphs of all orders n > 4, suh asthe one below. An (n + 7)th olor is neessary and suÆient when n = 3 or 4.f 3 8 4 9 d b 6 e 2d a e 1 f 5 8 4 6  5 b 3 1 f 71 7 0 8 d 9 0d 3 f 4 2 8 1 6 0 f 9 d 70 4 a8 2d1 93 5 07 b 8 e2 4 d 3 95 e 6 f 5 19 7 0 a 2 d a4 b 3 5 e 4 6 e0 8 e 1 9 0 f 2 59 5 2 a 4 b 3 d a 07 218 25 9 4386
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37. The 10-oloring shown here is optimum, beause Missouri (MO) has degree 8.38. By looking at solutions for n = 10, say, whih an be obtained quikly via Algo-rithm W (WalkSAT), it's easy to disover patterns that work in general: (a) Let (x; y)have olor (2x + 4y) mod 7. (Seven olors are learly neessary when n � 3.) (b) Let(x; y; z) have olor (2x+ 6y) mod 9. (Nine olors are learly neessary when n � 4.)39. Let f(n) denote the fewest onseutive olors. SAT solvers readily verify thatf(n) = (1; 3; 5; 7; 8; 9) for n = (0; 1; 2; 3; 4; 5). Furthermore we an exploit symmetry toshow that f(6) > 10: One an assume that 000000 is olored 0, and that the olors of000001, : : : , 100000 are inreasing; that leaves only three possibilities for eah of the
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192 ANSWERS TO EXERCISES 7.2.2.2 GriggsYehWhittleseyGeorgesMauroarriesfull addershalf adderTseytin enoding, halfKnuthSymmetry was brokenfatorizationunit lauseSAT solversnumber theorySimmonsShoen�eld
latter. Finally, we an verify that f(6) = 11 by �nding a solution that uses only theolors f0; 1; 3; 4; 6; 7; 9; 10g.But f(7) is known only to be � 11 and � 15.[L(2; 1) labelings were named by J. R. Griggs and R. K. Yeh, who initiated thetheory in SIAM J. Disrete Math. 5 (1992), 586{595. The best known upper bounds,inluding the fat that f(2k � k � 1) � 2k, were obtained by M. A. Whittlesey, J. P.Georges, and D. W. Mauro, who also solved exerise 38(a); see SIAM J. Disrete Math.8 (1995), 499{506.℄40. No; the satis�able ases are z = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 21. [Thestatement would have been true if we'd also required (xm_ � � � _x2) ^ (yn_ � � � _y2).℄41. First there are mn ANDs to form xiyj . A bin that ontains t bits initially willgenerate bt=2 arries for the next bin, using (t� 1)=2 adders. (For example, t = 6 willinvoke 2 full adders and one half adder.) The respetive values of t for bin [2℄, bin [3℄,: : : , bin [m+ n + 1℄ are (1, 2, 4, 6, : : : , 2m� 2, 2m� 1, : : : , 2m� 1, 2m� 2, 2m� 3,: : : , 5, 3, 1), with n �m ourrenes of 2m� 1. That makes a total mn�m� n fulladders and m half adders; altogether we get mn + 2(mn �m � n) +m instanes ofAND, mn�m� n instanes of OR, and 2(mn�m� n) +m instanes of XOR.42. Ternary XOR requires quaternary lauses, but ternary lauses suÆe for median:(t _ u _ v _ �x)(t _ �u _ �v _ �x)(�t _ u _ �v _ �x)(�t _ �u _ v _ �x) (t _ u _ �v _ x)(t _ �u _ v _ x)(�t _ u _ v _ x)(�t _ �u _ �v _ x) (t _ u _ �y)(t _ v _ �y)(u _ v _ �y) (�t _ �u _ y)(�t _ �v _ y)(�u _ �v _ y)These lauses speify respetively that x � t�u�v, x � t�u�v, y � htuvi, y � htuvi.43. x = y = 3 works when n = 2, but the ases 3 � n � 7 are unsatis�able. We anuse x = 3(2n�2 + 1), y = 7(2n�3 + 1) for all n � 8. (Suh solutions seem to be quiterare. Another is x = 3227518467, y = 3758194695 when n = 32.)44. First sout the territory quikly by looking at all �N+12 � � 660 billion ases with atmost six zeros in x or y; here N = �3226�+�3227�+ � � �+�3232�. This unovers the remarkablepair x = 232�226�222�211�28�24�1, y = 232�211+28�24+1, whose produt is264 � 258 � 254 � 244 � 233 � 28 � 1. Now a SAT solver �nishes the job by showing thatthe lauses for 32�32 bit multipliation are unsatis�able in the presene of the furtheronstraint �x1+ � � �+ �x32+ �y1+ � � �+ �y32+ �z1+ � � �+ �z64 � 15. (The LIFO version of thelauses worked muh faster than FIFO in the author's experiments with Algorithm L.Symmetry was broken by separate runs with xk : : : x1 = 01k�1, yk : : : y1 = 1k.)45. Use the lauses for xy = z in the fatorization problem, withm = bt=2, n = dt=2e,and xj = yj for 1 � j � m; append the unit lause (�yn) if m < n.46. The two largest, 2850002886173752 and 3014295893299492 , have 97 bits; the nextsquare binary palindrome, 11784487448816572 , has 101. [This problem is not easy forSAT solvers; number theory does muh better. Indeed, there's a nie way to �nd alln-bit examples by onsidering approximately 2n=3 ases, beause the rightmost n=3bits of an n=2-bit number x fore the other n=6 bits, if x2 is palindromi. The �rsteight square binary palindromes were found by G. J. Simmons, J. Rereational Math.5 (1972), 11{19; all 31 solutions up to 295 were found by J. Shoen�eld in 2009.℄47. Eah wire has a \top" and a \bottom." There are n + g + 2h tops of wires, andm+2g+h bottoms of wires. Hene the total number of wires is n+g+2h = m+2g+h,and we must have n+ h = m+ g.



September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 193 CNFminimum oversBDDardinality onstraintstarnished wiresKnutharriespi, as souree, as souremagi
48. The wires ompute q1  q, q2  q, x  p � q1, y  q2 � r, z  x � y. Let pdenote \p stuk at 1" while �p denotes \p stuk at 0". The pattern pqr = 000 detetsp, q1, q2, r, x, y, z; 001 detets p, q1, q2, �r, x, �y, �z; 010 detets p, �q1, �q2, r, �x, �y, z; 011detets p, �q1, �q2, �r, �x, y, �z; 100 detets �p, q1, q2, r, �x, y, �z; 101 detets �p, q1, q2, �r, �x,�y, z; 110 detets �p, �q1, �q2, r, x, �y, �z; 111 detets �p, �q1, �q2, �r, x, y, z. Notie that thestuk-at faults for q aren't detetable (beause z = (p� q) � (q � r) = p� r); but wean detet faults on its lones q1, q2. (In Fig. 34 the opposite happens.)Three patterns suh as f100; 010; 001g suÆe for all of the detetable faults.49. One �nds, for example, that the faults b23, �21, �s2, and �q are deteted only by thepattern y3y2y1x2x1 = 01111; �a22, �a23, �b23, �p, �22, �z5 are deteted only by 11011 or 11111.All overing sets an be found by setting up a CNF with 99 positive lauses, onefor eah detetable fault; for example, the lause for �z5 is x27 _ x31, while the lausefor x22 is x4 _ x5 _ x12 _ x13 _ x20 _ x21 _ x28 _ x29. We an �nd minimum overs froma BDD for these lauses, or by using a SAT solver with additional lauses suh as (20)and (21) to limit the number of positive literals. Exatly fourteen sets of �ve patternssuÆe, the most memorable being f01111; 10111; 11011; 11101; 11110g. (Indeed, everyminimum set inludes at least three of these �ve patterns.)50. Primed variables for tarnished wires are x02, b02, b03, s0, p0, q0, z03, 02, z04, z05. Thosewires also have sharped variables x℄2, b℄2, : : : , z℄5; and we need sharped variables x1℄2 , x3℄2 ,x4℄2 , b1℄2 , b2℄2 , b1℄3 , b2℄3 , s1℄, s2℄, 1℄2 , 2℄2 for fanout wires. The primed variables are de�nedby lauses suh as (�p0_a3)^ (�p0_ b02)^ (p0_ �a3_�b02), whih orresponds to p0  a3^ b02.Those lauses are appended to the 49 lauses listed after (23) in the text. Then thereare two lauses (25) for nine of the ten primed-and-sharped variables; however, in thease of x2 we use the unit lauses (x02) ^ (�x2) instead, beause the variable x℄2 doesn'texist. There are �ve fanout lauses (26), namely (�x1℄2 _x3℄2 _x4℄2 )^ (�b℄2_ b1℄2 _ b2℄2 )^� � �^(�℄2_1℄2 _2℄2 ). There are eleven lauses (�x3℄2 _b℄2)^(�x4℄2 _b℄3)^(�b1℄2 _s℄)^� � �^(�b2℄3 _z℄5)^(�2℄2 _ z℄5) for tarnished inputs to gates. And �nally there's (x1℄2 ) ^ (z℄3 _ z℄4 _ z5).51. (The omplete set of 196 patterns found by the author in 2013 inluded the inputs(x; y) = (232 � 1; 231 + 1) and (d263=2e; d263=2e) as well as the two number-theoretipatterns mentioned in the text. Long runs of arries are needed in the produts.)52. (z1;2_z2;2_ � � � _zM;2) ^ (�zi;2_ �qi;1) ^ (�zi;2_ �pi;2) ^ (�zi;2_ �qi;3) ^ (�zi;2_ �pi;4) ^ � � � ^(�zi;2_ �qi;20), for 1 � i �M . The seond subsript of z is k in the kth ase, 1 � k � P .53. On the left is the binary expansion of �, and on the right is the binary expansionof e, 20 bits at a time (see Appendix A).One way to de�ne f(x) for all 20-bit x is to write �=4 = P1k=1 uk=220k ande=4 =P1l=1 vl=220l, where eah uk and vl is a 20-bit number. Let k and l be smallestsuh that x = uk and x = vl. Then f(x) = [k� l℄.Equation (27) has atually been ontrived to sustain an illusion of magi: Manysimple Boolean funtions are onsistent with the data in Table 2, even if we require four-term DNFs of three literals eah. But only two of them, like (27), have the additionalproperty that they atually agree with the de�nition of f(x) in the previous paragraphfor ten more ases, using uk up to k = 22 and vl up to l = 20! One might almost beginto suspet that a SAT solver has disovered a deep new onnetion between � and e.54. (a) The funtion �x1x9x11�x18 _ �x6�x10�x12 _ �x4x10�x12 mathes all 16 rows of Table 2;but adding the 17th row makes a 3-term DNF impossible.(b) 21 rows are impossible, but (27) satis�es 20 rows.
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194 ANSWERS TO EXERCISES 7.2.2.2 ardinality onstrovering problemBDDgenerating funtiondon't-aresevaluation of Boolean funtionstruth tables() �x1�x5�x12x17_ �x4x8�x13�x15_ �x6�x9�x12x16_ �x6�x13�x16x20_x13x14�x16 does 28, whihis max. (Inidentally, this problem makes no sense for suÆiently large M , beause theequation f(x) = 1 probably does not have exatly 219 solutions.)55. Using (28){(31) with pi;j = 0 for all i and j, and also introduing lauses like (20)and (21) to ensure that qi;1 + � � �+ qi;20 � 3, leads to solutions suh asf(x1; : : : ; x20) = �x1�x7�x8 _ �x2�x3�x4 _ �x4�x13�x14 _ �x6�x10�x12:(There are no monotone inreasing solutions with � 4 terms of any length.)56. We an de�ne f onsistently from only a subset of the variables if and only if noentry on the left agrees with any entry on the right, when restrited to those oordinatepositions. For example, the �rst 10 oordinates do not suÆe, beause the top entry onthe left begins with the same 10 bits as the 14th entry on the right. The �rst 11 oordi-nates do suÆe (although two entries on the right atually agree in their �rst 12 bits).Let the vetors on the left be uk and vl as in answer 53, and form the 256 � 20matrix whose rows are uk � vl for 1 � k; l � 16. We an solve the stated problem ifand only if we an �nd �ve olumns for whih that matrix isn't 00000 in any row. Thisis the lassial overing problem (but with rows and olumns interhanged): We wantto �nd �ve olumns that over every row.In general, suh an m � n overing problem orresponds to an instane of SATwith m lauses and n variables xj , where xj means \selet olumn j." The lause fora partiular row is the OR of the xj for eah olumn j in whih that row ontains 1.For example, in Table 2 we have u1 � v1 = 01100100111101111000, so the �rst lauseis x2 _ x3 _ x6 _ � � � _ x17. To over with at most �ve olumns, we add suitable lausesaording to (20) and (21); this gives 396 lauses of total length 2894, in 75 variables.(Of ourse �205 � is only 15504; we don't need a SAT solver for this simple task!Yet Algorithm D needs only 578 kilomems, and Algorithm C �nds an answer in 353 K�.)There are 12 solutions: We an restrit to oordinates xj for j in f1; 4; 15; 17; 20g,f1; 10; 15; 17; 20g, f1; 15; 17; 18; 20g, f4; 6; 7; 10; 12g, f4; 6; 9; 10; 12g, f4; 6; 10; 12; 19g,f4; 10; 12; 15; 19g, f5; 7; 11; 12; 15g, f6; 7; 8; 10; 12g, f6; 8; 9; 10; 12g, f7; 10; 12; 15; 20g, orf8; 15; 17; 18; 20g. (Inidentally, BDD methods show that the number of solutions to theovering problem has the generating funtion 12z5+994z6+13503z7+ � � �+20z19+z20,ounting by the size of the overing set.)57. Table 2 spei�es a partially de�ned funtion of 20 Boolean variables, having 220�32\don't-ares." Exerise 56 shows how to embed it in a partially de�ned funtion of only5 Boolean variables, in twelve di�erent ways. So we have twelve di�erent truth tables:11110110 0�1�010� 10000111 10�0�1�0011�011� 1�110100 10�001�1 1000��10011�1�11 010�100� 10�0�000 �101�01110101110 0�100�1� 1�001�00 1��00���10101110 0�1�0�10 1�0�1�00 0��01���1�01110� 00��110� 11��0�00 10�����0 00100101 11110�0� 1011���� ��0��00�100�1��0 11�00010 1100��0� �0��0101��1�1000 1�101100 1�100�10 0�����1�1�1�1�10 10001100 0�101�1� ��1�0�101�01�00� 1101�0�0 0011�11� 1�100�0�001�1001 �1��1�1� 11�0�010 01011001And the tenth of these yields f(x) = ((x8 � (x9 _ x10)) _ ((x6 _ x12)� �x10))� x12.58. These lauses are satis�able whenever the other lauses are satis�able (exept inthe trivial ase when f(x) = 0 for all x), beause we don't need to inlude both xj and�xj in the same term. Furthermore they redue the spae of possibilities by a fator of(3=4)N . So they seem worthwhile. (On the other hand, their e�et on the running timeappears to be negligible, at least with respet to Algorithm C in small-sale trials.)
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7.2.2.2 ANSWERS TO EXERCISES 195 DNFTseytin enodingauthorTseytin enodingsideways sum59. f(x)� f̂(x) = x2�x3�x6�x10�x12(�x8_x8(x13_x15)) is a funtion of eight variables thathas 7 solutions. Thus the probability is 7=256 = :02734375.60. A typial example with 32 given values of f(x), hosen randomly, yieldedf̂(x1; : : : ; x20) = x4�x7�x12 _ �x6x8�x11x14x20 _ �x9�x12x18�x19 _ �x13�x16�x17x19;whih of ourse is way o�; it di�ers from f(x) with probability 102752=218 � :39. With64 training values, however,f̂(x1; : : : ; x20) = x2�x13�x15x19 _ �x3�x9�x19�x20 _ �x6�x10�x12 _ �x8x10�x12omes loser, disagreeing only with probability 404=211 � :197.61. We an add 24 lauses (pa;1 _ qa;1 _ pa;2 _ �qa;2 _ pa;3 _ �qa;3 _ � � � _ pb;1 _ qb;1 _ � � � _p;1_q;1_� � �_pd;1_qd;1_� � �_ �pd;10_qd;10_� � �_pd;20_qd;20), one for eah permutationabd of f1; 2; 3; 4g; the resulting lauses are satis�able only by other funtions f(x).But the situation is more ompliated in larger examples, beause a funtion anhave many equivalent representations as a short DNF. A general sheme, to deidewhether the funtion desribed by a partiular setting p0i;j and q0i;j of the ps and qs isunique, would be to add more ompliated lauses, whih state that pi;j and qi;j givea di�erent solution. Those lauses an be generated by the Tseytin enoding ofM_i=1 N̂j=1((�pi;j^�xj) _ (�qi;j^xj)) � M_i=1 N̂j=1((�p0i;j^�xj) _ (�q0i;j^xj)):62. Preliminary experiments by the author, with N = 20 and p = 1=8, seem toindiate that more data points are needed to get onvergene by this method, but theSAT solver tends to run about 10 times faster. Thus, loally biased data points appearto be preferable unless the ost of observing the hidden funtion is relatively large.Inidentally, the hane that x(k) = x(k�1) was relatively high in these experiments((7=8)20 � :069); so ases with y(k) = 0 were bypassed.63. With Tseytin enoding (24), it's easy to onstrut 6r+2n�1 lauses in 2r+2n�1variables that are satis�able if and only if � fails to sort the binary sequene x1 : : : xn.For example, the lauses when � = [1:2℄[3 :4℄[1 :3℄[2 :4℄[2 :3℄ are (x1_�l1) ^ (x2_�l1) ^(�x1_�x2_l1)^ (�x1_h1)^ (�x2_h1)^ (x1_x2_�h1)^ � � �^ (l4_�l5)^ (h3_�l5)^ (�l4_�h3_l5)^(�l4_h5)^ (�h3_h5)^ (l4_h3_�h5)^ (g1_g2_g3)^ (�g1_l3)^ (�g1_�l5)^ (�g2_l5)^ (�g2_�h5)^(�g3_h5) ^ (�g3_�h4). They're unsatis�able, so � always sorts properly.64. Here we reverse the poliy of the previous answer, and onstrut lauses that aresatis�able when they desribe a sorting network: Let the variable Cti;j stand for theexistene of omparator [i :j℄ at time t, for 1 � i < j � n and 1 � t � T . Also, adapting(20) and (21), let variables Btj;k be de�ned for 1 � j � n�2 and 1 � k � n, with lauses(Bt2j;k_Bt2j+1;k) ^ (Bt2j;k_Btj;k) ^ (Bt2j+1;k_Btj;k) ^ (Bt2j;k_Bt2j+1;k_Btj;k); (�)in this formula we substitute fCt1;k; : : : ; Ctk�1;k; Ctk;k+1; : : : ; Ctk;ng for the n � 1 \leafnodes" fBtn�1;k ; : : : ; Bt2n�3;kg. These lauses prohibit omparators from lashing attime t, and they make Bt1;k false if and only if line k remains unused.If x = x1 : : : xn is any binary vetor, let y1 : : : yn be the result of sorting x (so that(y1 : : : yn)2 = 2�x�1). The following lauses F (x) enode the fat that omparators Cti;jtransform x 7! y: (C ti;j_V tx;i_V t�1x;i ) ^ (C ti;j_V tx;i_V t�1x;j ) ^ (C ti;j_V tx;i_V t�1x;i _V t�1x;j ) ^(C ti;j_V tx;j_V t�1x;i _V t�1x;j )^(C ti;j_V tx;j_V t�1x;i )^(C ti;j_V tx;j_V t�1x;j )^(Bt1;i_V tx;i_V t�1x;i )^
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196 ANSWERS TO EXERCISES 7.2.2.2 BundalaZ�avodn�yEhlersM�ullerCNFardinality onstraintselegant(Bt1;i_V tx;i_V t�1x;i ), for 1 � i < j � n and 1 � t � T ; here we substitute xj for V 0x;j andalso substitute yj for V Tx;j , thereby simplifying the boundary onditions.Furthermore, we an remove all variables V tx;i when x has i leading 0s and V tx;jwhen x has j trailing 1s, replaing them by 0 and 1 respetively and simplifying further.Finally, given any sequene � = [i1 :j1℄ : : : [ir :jr℄ of initial omparators, T furtherparallel stages will yield a sorting network if and only if the lauses (�), together withVx F (x) over all x produible by �, are simultaneously satis�able.Setting n = 9, � = [1:6℄[2 :7℄[3 :8℄[4 :9℄, and T = 5, we obtain 85768 lausesin 5175 variables, if we leave out the ten vetors x that are already sorted. Al-gorithm C �nds them unsatis�able after spendingroughly 200 megamems; therefore T̂ (9) > 6. (Algo-rithm L fails spetaularly on these lauses, how-ever.) Setting T  6 quikly yields T̂ (9) � 7.D. Bundala and J. Z�avodn�y [LNCS 8370 (2014),236{247℄ used this approah to prove in fat thatT̂ (11) = 8 and T̂ (13) = 9. Then T. Ehlers andM. M�uller extended it [arXiv:1410.2736 [s.DS℄(2014), 10 pages℄, to prove that T̂ (17) = 10, withthe surprising optimum network shown here.65. (a) The goal is to express the transition equation in CNF. There are �84� lauses like(�x0_ �xa_ �xb_ �x_ �xd), one for eah hoie of four neighbors fa; b; ; dg � fNW;N; :::; SEg.Also �87� lauses like (�x0 _ xa _ � � � _ xg), one for eah hoie of seven. Also �86� like(�x0_x_xa_� � �_xf ), for eah hoie of six. Also �83� like (x0_�xa_�xb_�x_xd_� � �_xh),omplementing just three. And �nally �82� like (x0 _ �x _ �xa _ �xb _ x _ � � � _ xg),omplementing just two and omitting any one of the others. Altogether 70 + 8 + 28 +56+28 = 190 lauses of average length (70 � 5+8 � 8+28 � 8+56 � 9+28 � 9)=190 � 7:34.(b) Here we let x = xij , xNW = x(i�1)(j�1), : : : , xSE = x(i+1)(j+1), x0 = x0ij . Thereare seven lasses of auxiliary variables aijk , : : : , gijk , eah of whih has two hildren;the meaning is that the sum of the desendants is � k. We have k 2 f2; 3; 4g for thea variables, k 2 f1; 2; 3; 4g for the b and  variables, and k 2 f1; 2g for d, e, f, g.The hildren of aij are b(ij1)j and ij . The hildren of bij are di(j�(j&2)) andei(j+(j&2)). The hildren of ij are f i0j0 and gij , where i0 = i+2 and j0 = (j�1) j 1 if i isodd, otherwise i0 = i and j0 = j�(j&1). The hildren of dij are x(i�1)(j+1) and xi(j+1).The hildren of eij are x(i�1)(j�1) and xi(j�1). The hildren of f ij are x(i�1)j andx(i�1)(j+1). Finally, the hildren of gij are xi0j and xi00j00 , where i0 = i+1�((i&1)�1);and (i00; j00) = (i+1; j � 1) if i is odd, otherwise (i00; j00) = (i� 1; j � 1+ ((j&1)� 1)).(OK|this isn't elegant. But hey, it works!)If the hildren of p are q and r, the lauses that de�ne pk are (pk _ �qk0 _ �rk00) fork0 + k00 = k and (�pk _ qk0 _ rk00) for k0 + k00 = k + 1. In these lauses we omit �q0 or �r0;we also omit qm or rm when q or r has fewer than m desendants.For example, these rules de�ne d351 and d352 by the following six lauses:(d351 _ �x26); (d351 _ �x36); (d352 _ �x26 _ �x36); ( �d351 _ x26 _ x36); ( �d352 _ x26); ( �d352 _x36):The variables bijk are de�ned only when i is odd; dijk and eijk only when i is odd andj mod 4 < 2; f ijk only when i+ j is even. Thus the total number of auxiliary variablesper ell (i; j), ignoring small orretions at boundary points, is 3+4=2+4+2=4+2=4+2=2+2 = 13 of types a through g, not 19, beause of the sharing; and the total numberof lauses per ell to de�ne them is 21 + 16=2 + 16 + 6=4 + 6=4 + 6=2 + 6 = 57, not 77.
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7.2.2.2 ANSWERS TO EXERCISES 197 BDDauthorstableShroeppelBukinghamWainwrightautomorphismsFinally we de�ne x0ij from aij2 , aij3 , aij4 , by means of six lauses(�x0ij_�aij4 ); (�x0ij_aij2 ); (�x0ij_xij_aij3 ); (x0ij_aij4 _�aij3 ); (x0ij_�xij_�yij); (yij_aij4 _�aij2 );where yij is another auxiliary variable (introdued only to avoid lauses of size 4).66. All solutions to (a) an be haraterized by a BDD of 8852 nodes, from whih wean obtain the generating funtion 38z28+550z29+ � � �+150z41 that enumerates them(with a total omputation time of only 150 megamems or so). Part (b), however, isbest suited to SAT, and X0 must have at least 38 live ells. Typial answers are!   :67. Either or at lower left will produe the X0 of (37) at time 1. But length 22is impossible: With r = 4 we an verify that all the live ells in X4 lie in some 3 � 3subarray. Then with r = 22 we need to rule out only (�93� + �94� + �95�) � 6 = 2016possibilities, one for eah viable X4 within eah essentially di�erent 3� 3 subarray.68. The author believes that r = 12 is impossible, but his SAT solvers have not yetbeen able to verify this onjeture. Certainly r = 11 is ahievable, beause we anontinue with the text's �fth example after prepending! ! ! :69. Sine only 8548 essentially di�erent 4� 4 bitmaps are possible (see Setion 7.2.3),an exhaustive enumeration is no sweat. The small stable patterns arise frequently, sothey've all been named:(a) blok tub boat ship snake bee-hive arrier barge loaf eater longboat longship pond(b) blinker lok toad beaon$ $ $ $(A glider is also onsidered to be stable, although it's not an osillator.)70. (a) A ell with three live neighbors in the stator will stay alive.(b) A 4� n board doesn't work; Fig. A{6 shows the 5� 8 examples.() Again, the smallest-weight solutions with smallest retangles are shown inFig. A{6. Osillators with these rotors are plentiful on larger boards; the �rst examplesof eah kind were found respetively by Rihard Shroeppel (1970), David Bukingham(1972), Robert Wainwright (1985).71. Let the variables Xt = xijt haraterize the on�guration at time t, and supposewe require Xr = X0. There are q = 8r automorphisms � that take Xt 7! X(t+p) mod r� ,where 0 � p < r and � is one of the eight symmetries of a square grid.Any global permutation of the N = n2r variables leads via Theorem E to aanonial form, where we require the solution to be lexiographially less than or equalto the q � 1 solutions that are equivalent to it under automorphisms.Suh lexiographi tests an be enfored by introduing (q�1)(3N�2) new lausesof length � 3, as in (169)|and often greatly simpli�ed using Corollary E.These additional lauses an signi�antly speed up a proof of unsatis�ability. Onthe other hand they an also slow down the searh, if a problem has abundant solutions.
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198 ANSWERS TO EXERCISES 7.2.2.2 WainwrightFlammenkampeightfold symmetryenodingGosperphoenixquilt patternsIn pratie it's usually better to insist only on solutions that are partially anonial,by using only some of the automorphisms and by requiring lexiographi order only onsome of the variables.72. (a) The two 7� 7s, shown in Fig. A{6, were found by R. Wainwright (trie tongs,1972) and A. Flammenkamp (jam, 1988).Omega Van deGraa� J3 genie opter trietongs jam spinners in�nityFig. A{6. Noteworthy minimal osillators of periods 2 and 3.(b) Here the smallest examples are 9�13 and 10�15; the former has four L-rotorssurrounding long stable lines. Readers will also enjoy disovering 10 � 10 and 13 � 13instanes that have full eightfold symmetry. (When enoding suh symmetrial prob-lems by using exerise 65(b), we need only ompute the transitions between variablesxtij for 1 � i � dm=2e and 1 � j � dn=2e; every other variable is idential to one ofthese. However, the auxiliary variables aij , : : : , gij shouldn't be oalesed in this way.)(,d) Champion heavyweights have small rotors. What a ool four-way snake dane!
120=225 � :53 130=240 � :54 132=256 � :52 120=225 � :53 136=256 � :5373. (a) They don't have three A neighbors; and they don't have three B neighbors.(b) Two examples appear in Fig. A{7, where they are paked as snugly as possibleinto a 12 � 15 box. This pattern, found by R. W. Gosper about 1971, is alled thephoenix, sine its living ells repeatedly die and rise again. It is the smallest mobileipop; the same idea yields the next smallest (also seen in Fig. A{7), whih is 10�12.() The nonblank one omes from a 1� 4 torus; the hekerboard from an 8� 8.Here are some amazing m� n ways to satisfy the onstraints for small m and n:AABBAABBAABBAABBAABBAABBAABBAABBAABBAABBAABBAABBAABBAABBAABBAABBAABBAABBAABBAABBAABBAABBAABBAABB A BA BBA BAAB ABB AB AA BA BBA BAAB ABB AB AA BA BBA BAAB ABB AB A BAB BABA AA AB BB BA AA ABA BABAB BABA AA AB BB BA AA ABA BA AA AAB BB BA A A AB B B BAA AAB B B BAA AAB BB BA A A AB B B BAA AAB B B B AA AABB BBAA AABB BBAA AAB BB BAA AABB BBAA AABB BBAA AAB BB B ABA ABABAB BABA ABB BBAA AAB BABA ABABAB BABA ABB BBAA AAB B B A B AA AB BA AB BB A B AA B A BB BA AB BA AA B A BB A B AA AB BA AB BB A B AA B A BB BA AB BA AA B A B BA AB BA ABA B AA B AB A BB A BAB BA AB BAB A BB A BA B AA B ABA AB BA ABBA AB BA ABA B AA B AB A BB A BAB BA AB BAB A BB A BA B AA B ABA AB BA ABA A B B A A B BB B A A B B A AB A A B B A A BA B B A A B B AB B A A B B A AA A B B A A B BA B B A A B B AB A A B B A A BA A B B A A B BB B A A B B A AB A A B B A A BA B B A A B B AB B A A B B A AA A B B A A B BA B B A A B B AB A A B B A A B B BABAB B BABABA BA A BAB BA A A AAB B BABAB B BABA AB A ABB BA A A AB BABAB B BABABA BA A BAB BA A A AAB B BABAB B BABA AB A ABB BA A A A AA A AA AB B B BA A A A A AB B B B B B B BA A A A A AB B B BA AA A AABB BB BB BBAA A AA AB B B BA A A A A AB B B B B B B BA A A A A AB B B BA AA A AABB BB BB BB BABA BABAA B A BBABA BABAA B A BBABA BABAB A B ABA BABA BAB A B ABABA BABAA B A BBABA BABAA B A BBABA BABAB A B ABA BABA BAB A B A AA BBB B A AAA BBB B A AAA BBA B B AB AA BA B B ABB AAA A B BBB AAA A B BBB AAB A A BA BB AB A A B AA AABB BBAA AABB BBA AA ABB BBA AA ABB BBAA AABB BBAA AAB BB BAA AAB BB B B A BABAB BABABA ABAB BABABA ABABA B AB A BABAB BABABA ABAB BABABA ABABA B ANotie that in�nite one-dimensional examples are implied by several of these motifs;the hekerboard, in fat, an be fabriated by plaing A AB BA AB B diagonals together.
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7.2.2.2 ANSWERS TO EXERCISES 199ABBA BA BABAABAB ABAB A BBAB A B A BB AAABA BB AA BB AA BBB AA AB BA BB AA AB AB BA AAB AA B BABA ABAB A B BABA BAB BAB BABAB BABA BB ABA A B B A BABA A BABA AA A ABABABA ABA B A BAB BB AA AA BB AB BB AB BB BB BABA B BAB AA BABA AA BB BB AA AA A AA AABAB AA BB AB B A A B BA AB B BAB BA BBA B B A ABABAB BABA ABAB BABA ABA AB BAB ABB AA BAB AB B AB A AB AB B AA B BAB AA A BAA B B ABA BABA A A B B BABA AA BB AA ABA BA BB BB AAB AA BAB A B B B A A A B BB A BB BAB ABAB A AA BBA B B ABA BA BB A A AB B B AA BA ABAB A AB AB B ABB AA B ABAB AA BB B A AA BB ABA AB A AB BABABA A BAA B B AA B ABA B AA A B BB A B BB B B BAB A B BB AAB AA BB AA BAB ABA B B BA A A BAB AA AA A A A A BA BA AA BBAB B A BB B A BABA A A B B BABA BB B B B B BB ABAB AB B ABA A BA A AA BB B B A A A A A A AA AA B ABAB A A BABA BB AB B BB AA A BA B BAB B B BB B AA BA BB BB AABAB A ABAB AA A B BABABA BA A BA ABA BB A AA AA A BBA B BA BB ABA A B A BABA AB A BB B B B BB ABB AA A BAB BB AA BB A BB B AA A A A AA BAA BB BABA AA BB AA BB AA AA B BB BB B AAB A AB B A B AA B BB AB AA AA BBABAB ABAB ABAB BABA A BABA B B ABA BA BA AB BABA BABA ABABAB AB BAFig. A{7. Mobile ipops: An ideal way to tile the oor of a workspae for hakers.74. Call a ell tainted if it is A with more than one A neighbor or B with more thanone B neighbor. Consider the topmost row with a tainted ell, and the leftmost taintedell in that row. We an assume that this ell is an A, and that its neighbors are S, T,U, V, W, X, Y, Z in the pattern STUVAWXYZ . Three of those eight neighbors are type B, andat least four are type A; several ases need to be onsidered.Case 1: W = X = Y = Z = A. Then we must have S = U = V = B and T = 0(blank), beause S, T, U, V aren't tainted. The three left neighbors of V an't betype A, sine V already has three A neighbors; nor an they be type B, sine V isn'ttainted. Hene the tainted X, whih must have two B neighbors in the three ells belowit, annot also have two or more A neighbors there.Case 2: T = A or V = A. If, say, T = A then X = Y = Z = A, and neither Vnor W an be type B.Case 3: S 6= A, U = A. Then W an't be type B, and S must be tainted.Case 4: S = A, U 6= A. At least one of W, X, Y, Z is B; at least three are A; soexatly three are A. The B an't be Y, whih has four A neighbors. Nor an it be Wor Z: That would fore V to be blank, hene T = U = B; onsequently W = A, Z = B.Sine W is tainted, at least two of its right neighbors must be A, ontraditing Z = B.Thus X = B in Case 4. Either T or V is also B, while the other is blank; sayT is blank. The three left neighbors of V annot be A. So they must either all be B(tainting the ell left of S) or all blank. In the latter ase the upper neighbors of T mustbe BBA in that order, sine T is blank. But that taints the B above T. A symmetriargument applies if V is blank.Case 5: S = U = A. Then W 6= A, and at least two of fX;Y;Zg are A. NowY = Z = A fores T = V = X = B and W blank, tarnishing V.Similarly, X = Y = A fores T = W = Z = B and V blank; this ase is morediÆult. The three lower neighbors of Y must be AAB, in that order, lest a B besurrounded by four A's. But then the left neighbors of X are BBB; hene so are theleft neighbors of V, tarnishing the middle one.Finally, therefore, Case 5 implies that X = Z = A. Either T, V, W, or Y is blank;the other three are B. The blank an't be T, sine T's upper three neighbors an'tbe A. It an't be W or Y, sine V and T aren't tainted. So T = W = Y = B and V isblank. The left neighbors of S annot be A, beause S isn't tainted. So the ell left of Xmust be A. Therefore X must have at least four A neighbors; but that's impossible,beause Y already has three.
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200 ANSWERS TO EXERCISES 7.2.2.2 SummerstorusRokikistill lifesymeaterbloksarriersBukinghamSilverpixelsglider's symmetry
Diagonally adjaent A's are rare. (In fat, they annot our in retangular gridsof size less than 16 � 18.) But diligent readers will be able to spot them in Fig. A{7,whih exhibits an astonishing variety of di�erent motifs that are possible in large grids.75. Let the ells alive at times p� 2, p� 1, p be of types X, Y, Z, and onsider thetopmost row in whih a live ell ever appears. Without loss of generality, the leftmostell in that row is type Z. The ell below that Z an't be of type Y, beause that Ywould have three X neighbors and four Y neighbors besides Z and the blank to its left.Thus the piture must look like ZYXYXYX , where the three predeessors of Z and thetopmost Y are �lled in. But there's no room for the three predeessors of the topmost X.76. The smallest known example, a 28�33 pattern foundby Jason Summers in 2012, is illustrated here using theletters fF;A;Bg, fB;C;Dg, fD;E;Fg for ells that arealive when tmod 3 = 0, 1, 2. His ingenious onstrutionleads in partiular to an in�nite solution based on a 7�24torus. An amazing in�nite 7 � 7 toroidal pattern alsoexists, but little else is yet known.A ACDDCCDDCA ACA ACDDACDDCADCA ACDACDDCADDCA AC F F F FDBD FE EF DBD DBD FE EF DBDCB CDDDF FDDDC BC CB CDDDF FDDDC BCDB FA AF BD DB FA AF BD DB FA AF BD DB FA AF BDFDDDC BC CB CDDDF FDDDC BC CB CDDDFEF DBD DBD FE EF DBD DBD FEF F F F

F A F F A FBDDEF DBD DBD FEDDBFEDDC BC CB CDDEFFA AF BD DB FA AFC CDDDF FDDDC CCF FE EF FCFDF FDFD DDBE DBEBB BBDBE DBEFC F FC FB C BEDC B C BEDCDFFAB AFEFAB DFFAB AFEFABBAFEFA BAFFD BAFEFA BAFFDCDEB C B CDEB C BF CF F CFEBD EBDBB BBEBD EBDD DFDF FDFCF FE EF FCC CDDDF FDDDC CFA AF BD DB FA AFFEDDC BC CB CDDEFBDDEF DBD DBD FEDDBF A F F A F77. If the �rst four ells in row 4 of X0 (and of X5) ontain a, b, , d, we need a+b 6= 1,a+ b+  6= 1, b+ +d 6= 2. In lause form this beomes �a_ b, a_�b, b_ �, �_d, �b_ _ �d.Similarly, let the last four elements of olumn 5 be (f; g; h; i); then we want f +g+h 6= 2, g+h+ i 6= 2, h+ i 6= 2. These onditions simplify to �f _ �g, �f _ �h, �g_�{, �h_�{.78. The \92 phage" in Fig. A{8 is a minimal example.79. (Solution by T. G. Rokiki.) A tremendous battle ares up, raging wildly on allfronts. When the dust �nally settles at time 1900, 11 gliders are esaping the sene(1 going in the original NE diretion, 3 going NW, 5 going SW, and 2 going SE), leavingbehind 16 bloks, 1 tub, 2 loaves, 3 boats, 4 ships, 8 beehives, 1 pond, 15 blinkers, and1 toad. (One should really wath this with a suitable applet.)80. Paydirt is hit on 10 � 10 and 11 � 11 boards, with X8 = X9; see Fig. A{8. Theminimal example, \symeater19," has a lose relative, \symeater20," whih onsistssimply of two bloks and two arriers, strategially plaed. (The �rst of these, alsoalled \eater 2," was disovered by D. Bukingham in the early 1970s; the other byS. Silver in 1998.) They both have the additional ability to eat the glider if it is movedone or two ells to the right of the position shown, or one ell to the left.It is important to realize that the diagonal trak of a glider does not pass throughthe orners of pixels, biseting them; the axis of a glider's symmetry atually passesthrough the midpoints of pixel edges, thereby utting o� small triangles whose area is1/8 of a full pixel. Consequently, any eater that is symmetri about a diagonal willeat gliders in two adjaent traks. The two in Fig. A{8 are exeptional beause they'requadruply e�etive. Furthermore symeater20 will eat from the opposite diretion; andeither of its arriers an be swapped to another position next to the bloks.81. Two eaters make \ssymeater14" (Fig. A{8); and \ssymeater22" is narrower.82. (a) If X ! X 0, then x0ij = 1 only if we have Pi+1i0=i�1Pj+1j0=j�1 xi0j0 � 3.(b) Use the same inequality, and indution on j.
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Fig. A{8. Various examples of minimal still lifes that eat gliders and spaeships.() (Proof of the hint by John Conway, 1970.) In the transitionsX = ?? ?? ? ? ! ?? ?? ? ?? ? ? ? ! ?? ?? ?? ? ? ?? ? ? ? ? = X 00;we must have in the enter of X 0; hene we must have ? at the lower left of X.But then the enter of X 0 is .83. Work with (2r + 1 � 2t) � (2r + 1 � 2t) grids xtij entered at ell (i0; j0), for0 � t � r = f(i0; j0); and assume that xtij = 0 whenever f(i; j) > t. For example,if (i0; j0) = (1; 2), only 14 of the x3ij an be alive, namely when (i; j) = (�2 : :�1; 2),(�2 : : 0; 1), (�2 : : 1; 0), (�2 : : 2;�1). The ase (i0; j0) = (1; 2) leads to 5031 readilysatis�able lauses on 1316 variables, inluding the unit lause x612, when the statetransitions are enoded as in answer 65; all but 106 of those variables are auxiliary.84. (a) Use a glider, positioned properly with its tip at (0; 0).(b) Similarly, a spaeship reahes these ells in the minimum possible time.() Consider patterns An = and Bn = of width 2n + 1, illustratedhere for n = 3. Then Bj works when j mod 4 2 f1; 2g; Aj and Bj�1 work whenj mod 4 2 f2; 3g; Aj�1 works when j mod 4 2 f0; 3g.(d) The pattern assembles a suitable glider at time 3.(e) A SAT solver found the pattern shown here, whih launhes an appro-priate spaeship (plus some onstrution debris that vanishes at t = 5).[It appears likely that f�(i; j) = f(i; j) for all i and j. But the best generalresult at present, based on spae-�lling onstrutions suh as Tim Coe's \Max," is thatf�(i; j) = f(i; j) + O(1). There's no known way to prove even the speial ases that,say, f�(j; 2j) = 6j or that f�(�j; 2j) = 3j for all j � 0.℄85. (a) Let X be a 12 � 12 bitmap. We must show that the lauses T (X;X 0) ofexerise 65, together with 92 unary lauses x023, �x024, x025, : : : from the given pattern, areunsatis�able. (The pattern is symmetrial; but Life's rules often produe symmetrialstates from unsymmetrial ones.) Thus 2144�8 di�erent oneivable predeessor statesneed to be ruled out. Fortunately Algorithm C needs fewer than 100 M� to do that.(b) Most states have thousands of predeessors (see the following exerise); soAlgorithm C an almost always �nd one in, say, 500 K�. Therefore one an prove, forexample, that no 6�6 Gardens of Eden exist, by rapidly �nding a predeessor for eahof the 236 patterns. (Only about 236=8 patterns atually need to be tried, by symmetry.)Furthermore, if we run through those patterns in Gray ode order, hanging the polarityof just one assumed unary lause �x0ij at eah step, the mehanism of Algorithm Cgoes even faster, beause it tends to �nd nearby solutions to nearby problems. Thusthousands of patterns an be satis�ed per seond, and the task is feasible.
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Suh an approah is out of the question for 10� 10 bitmaps, beause 2100 � 236.But we an �nd all 10�10 Gardens of Eden for whih there is 90Æ-rotational symmetry,by trying only about 225=2 patterns, again using Gray ode. Aha: Eight suh patternshave no predeessor, and four of them orrespond to the given orphan.[See C. Hartman, M. J. H. Heule, K. Kwekkeboom, and A. Noels, Eletroni J.Combinatoris 20, 3 (August 2013), #P16. The existene of Gardens of Eden withrespet to many kinds of ellular automata was �rst proved nononstrutively by E. F.Moore, Pro. Symp. Applied Math. 14 (1962), 17{33.℄86. The 80 ells outside the inner 8� 8 an be hosen in N = 11,984,516,506,952,898ways. (A BDD of size 53464 proves this.) So the answer is N=2100�64 � 174;398.87. Instead of using subsripts t and t + 1, we an write the transition lauses forX ! X 0 in the form (� _ A0 _ A00), et. Let Alie's states be f�1; : : : ; �pg and letBob's be f�1; : : : ; �qg. The lauses (� _ ��i _ �0i) and (� _ ��i _ �0i) say that your statedoesn't hange unless you are bumped. If state � orresponds to the ommand `Maybego to s', the lause (�_ ��_�0_ s0) de�nes the next possible states after bumping. Theanalogous lause for `Critial, go to s' or `Set v  b, go to s' is simply (� _ �� _ s0);and the latter also generates the lause (�_ ��_ v0) if b = 1, (�_ ��_ �v0) if b = 0. Theommand `If v go to s1, else to s0' generates (� _ �� _ �v _ s01) ^ (� _ �� _ v _ s00). Andfor eah variable v, if the states whose ommands set v are �i1 , : : : , �ih , the lauses(� _ v _ �i1 _ � � � _ �ih _ �v0) ^ (� _ �v _ �i1 _ � � � _ �ih _ v0)enode the fat that v isn't hanged by other ommands.Bob's program generates similar lauses|but they use �, not �, and �, not �.Inidentally, when other protools are onsidered in plae of (40), the initialstate X0 analogous to (41) is onstruted by putting Alie and Bob into their smallestpossible states, and by setting all shared variables to 0.88. For example, let all variables be false exept A00, B00, �0, A11, B01, A12, B12,A13, B23, �3, A24, B24, �4, A35, B25, l5, A36, B36, l6.89. No; we an �nd a ounterexample to the orresponding lauses as in the previousexerise: A00, B00, A01, B11, A02, B22, b2, �2, A13, B23, b3, A14, B34, b4, A15, B45,b5, �5, A26, B46, a6, b6, �6, A57, B47, a7, b7, A58, B28, a8, b8, l8, A59, B59, a9, b9, l9.(This protool was the author's original introdution to the fasinating problem ofmutual exlusion [see CACM 9 (1966), 321{322, 878℄, about whih Dijkstra had said\Quite a olletion of trial solutions have been shown to be inorret.")90. Alie starves in (43) with p = 1 and r = 3 in (47), if she moves to A1 and thenBob remains in B0 whenever he is bumped. The A2 ^ B2 deadlok mentioned in thetext for (45) orresponds to (47) with p = 4 and r = 6. And in (46), suessive movesto B1, (B2, A1, A2, B3, B1, A4, A5, A0)1 will starve poor Bob.91. A yle (47) with no maybe/ritial states for Alie an ertainly starve her.Conversely, given (i), (ii), (iii), suppose Alie is in no maybe/ritial state when t � t0;and let t0 < t1 < t2 < � � � be times with �ti = 1 but with �t = 0 for at least one tbetween ti and ti+1. Then we must have Xti = Xtj for some i < j, beause the numberof states is �nite. Hene there's a starvation yle with p = ti and r = tj .92. For 0 � i < j � r we want lauses that enode the ondition Xi 6= Xj . Introduenew variables �ij for eah state � of Alie or Bob, and vij for eah shared variable v.Assert that at least one of these new variables is true. (For the protool (40) this lause
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would be (A0ij _� � �_A4ij _B0ij _� � �_B4ij _ lij).) Also assert the binary lauses (��ij _�i)^(��ij_��j) for eah �, and the ternary lauses (�vij_vi_vj)^(�vij_�vi_�vj) for eah v.The transition lauses an also be streamlined, beause we needn't allow aseswhere Xt+1 = Xt. Thus, for example, we an omit B0t+1 from the lause (�t _ B0t _B0t+1 _ B1t+1) of (42); and we an omit the lause (�t _ B1t _ �lt _ B1t+1) entirely.[If r is large, enodings with O(r(log r)2) lauses are possible via sorting networks,as suggested by D. Kroening and O. Strihman, LNCS 2575 (2003), 298{309. Themost pratial sheme, however, seems to be to add the ij onstraints one by oneas needed; see N. E�en and N. S�orensson, Eletroni Notes in Theoretial ComputerSiene 89 (2003), 543{560.℄93. For the � in (50), for example, we an use (x1 _ x2 _ � � � _ x16)^ (�x1 _A00)^ � � � ^(�x1_A60)^(�x2_B00)^� � �^(�x2_B60)^(�x3_A00)^(�x3_a0)^� � �^(�x16_B60)^(�x16_�b0).94. (X ! X 0 ! � � � ! X(r)) ^ �(X) ^ �(X 0) ^ � � � ^ �(X(r�1)) ^ :�(X(r)). [Thisimportant tehnique is alled \k-indution"; see Mary Sheeran, Satnam Singh, andGunnar St�almark, LNCS 1954 (2000), 108{125. One an, for example, add the lause(A5 _ B5) to (50) and prove the resulting formula � by 3-indution.℄95. The ritial steps have a = b = 1, by the invariants, so they have no predeessor.96. The only predeessor of A52 ^B52 ^ a2 ^ b2 ^ �l2 is A51 ^B41 ^ a1 ^ b1 ^ �l1; and theonly predeessor of that is A50 ^ B30 ^ a0 ^ b0 ^ �l0. The ase l2 is similar.But without the invariants, we ould �nd arbitrarily long paths to A5r ^ B5r. Infat the longest suh simple path has r = 33: Starting with A20 ^B20 ^ �a0 ^�b0 ^ l0, weould suessively bump Alie and Bob into states A3, A5, A6, A0, A1, A2, A3, B3,B4, A5, B3, A6, B4, A0, B3, A1, A2, A3, A5, A6, A0, A1, A2, B4, A3, A5, A6, A0,B5, A1, A2, A3, A5, never repeating a previous state. (Of ourse all of these states areunreahable from the real X0, beause none of them satisfy �.)97. No. Removing eah person's �nal step in a path to A6^B6 gives a path to A5^B5.98. (a) Suppose X0 ! � � � ! Xr = X0 is impure and Xi = Xj for some 0 � i < j < r.We may assume that i = 0. If either of the two yles X0 ! � � � ! Xj = X0 orXj ! � � � ! Xr = Xj is impure, it is shorter.(b) In those states she would have had to be previously in A0 or A5.() Generate lauses (�g0), (�gt _ gt�1 _ �t�1), (�h0), (�ht _ ht�1 _ �t�1), ( �ft _ gt),( �ft _ ht), ( �ft _ �0 _ ��t), ( �ft _ ��0 _ �t), ( �ft _ v0 _ �vt), ( �ft _ �v0 _ vt), for 1 � t � r; and(f1 _ f2 _ � � � _ fr). Here v runs through all shared variables, and � runs through allstates that an our in a starvation yle. (For example, Alie's states with respetto protool (49) would be restrited to A3 and A4, but Bob's are unrestrited.)(d) With exerise 92 we an determine that the longest simple path, using onlystates that an our in a starvation yle for (49), is 15. And the lauses of () areunsatis�able when r = 15 and invariant (50) is used. Thus the only possible starvationyle is made from two simple pure yles; and those are easy to rule out.99. Invariant assertions de�ne the values of a and b at eah state. Hene mutualexlusion follows as in exerise 95. For starvation-freedom, we an exlude states A0,A6, A7, A8 from any yle that starves Alie. But we need also to show that the stateA5t ^ B0t ^ lt is impossible; otherwise she ould starve while Bob is maybe-ing. Forthat purpose we an add :((A6_A7_A8)^ (B6_B7_B8)) ^ :(A8^ �l) ^ :(B8^ l) ^:((A3 _ A4 _ A5) ^ B0 ^ l) ^ :(A0 ^ (B3 _ B4 _ B5) ^ �l) to the invariant �(X). Thelongest simple path through allowable states has length 42; and the lauses of exerise
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204 ANSWERS TO EXERCISES 7.2.2.2 DijkstraBurnsLamportPetersonSIAMBerghammerardinality onstraintsbaktraking98() are unsatis�able when r = 42. Notie that Alie and Bob never ompete whensetting the ommon variable l, beause states A7 and B7 annot our together.(See Dijkstra's Cooperating Sequential Proesses, ited in the text.)100. Bob is starved by the moves B1, (A1, A2, A3, B2, A4, B3, A0, B4, B1)1. Butan argument similar to the previous answer shows that Alie annot be.[The protool obviously provides mutual exlusion as in exerise 95. It was devisedindependently in the late 1970s by J. E. Burns and L. Lamport, as a speial ase of anN -player protool using only N shared bits; see JACM 33 (1986), 337{339.℄101. The following solution is based on G. L. Peterson's elegant protool for N pro-esses in ACM Transations on Programming Languages and Systems 5 (1983), 56{65:A0. Maybe go to A1.A1. Set a1  1, go to A2.A2. If b2 go to A2, else to A3.A3. Set a2  1, go to A4.A4. Set a1  0, go to A5.A5. If b1 go to A5, else to A6.A6. Set a1  1, go to A7.A7. If b1 go to A8, else to A9.A8. If b2 go to A7, else to A9.A9. Critial, go to A10.A10. Set a1  0, go to A11.A11. Set a2  0, go to A0.(Alie and Bob might need anapp to help them deal with this.)
B0. Maybe go to B1.B1. Set b1  1, go to B2.B2. If a1 go to B2, else to B3.B3. Set b2  1, go to B4.B4. Set b1  0, go to B5.B5. If a2 go to B5, else to B6.B6. Set b1  1, go to B7.B7. If a1 go to B8, else to B12.B8. If a2 go to B9, else to B12.B9. Set b1  0, go to B10.B10. If a1 go to B11, else to B6.B11. If a2 go to B10, else to B6.B12. Critial, go to B13.B13. Set b1  0, go to B14.B14. Set b2  0, go to B0.102. The lauses for, say, `B5. If a go to B6, else to B7.' should be (�_B5_ �a_�1 _� � � _ �p _ B60) ^ (� _ B5 _ a _ �1 _ � � � _ �p _ B70) ^ (� _ B5 _ B60 _ B70), where �1,: : : , �p are the states in whih Alie sets a.103. See, for example, any front over of SICOMP, or of SIAM Review sine 1970.104. Assume that m � n. The ase m = n is learly impossible, beause all fourorners must be oupied. When m is odd and n = m+ k + 1, put m bishops in the�rst and last olumns, then k in the middle olumns of the middle row. Whenm is evenand n = m+ 2k + 1, put m in the �rst and last olumns, and two in the middle rowsof olumns m=2 + 2j for 1 � j � k. There's no solution when m and n are both even,beause the maximum number of independent bishops of eah olor is (m+ n � 2)=2.[R. Berghammer, LNCS 6663 (2011), 103{106.℄105. (a) We must have (xij ; x0ij) = (1; 0) for t pairs ij, and (0; 1) for t other pairs;otherwise xij = x0ij . Hene there are 2mn�2t solutions.(b) Use 2mn variables yij ; y0ij for 1 � i � m and 1 � j � n, with binary lauses(�yij _ �y0ij), together with m+ n + 2(m+ n � 1) sets of ardinality onstraints suh as(20) and (21) to enfore the balane onditionPfyij+ �y0ij j ij 2 Lg = jLj for eah row,olumn, and diagonal line L.() T (m;n) = 1 when min(m;n) < 4,beause only the zero matrix quali�es insuh ases. Other values an be enumeratedby baktraking, if they are small enough.(The asymptoti behavior is unknown.) n = 4 5 6 7 8T (4; n) = 3 7 17 35 77T (5; n) = 7 31 109 365 1367T (6; n) = 17 109 877 6315 47607T (7; n) = 35 365 6315 107637 1703883T (8; n) = 77 1367 47607 1703883 66291089(d) Supposem � n. Any solution withnonzero top row, bottom row, left olumn, and right olumn has all entries zero exept
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7.2.2.2 ANSWERS TO EXERCISES 205 Gerdesunit lausesthat y1t = �yt1 = y(m+1�t)1 = �ymt = ym(n+1�t) = �y(m+1�t)n = ytn = �y1(n+1�t),for some t with 1 < t � m=2. So the answer is 2Pmk=3b(k�1)=2(m�k)(n�k), whihsimpli�es to q(q�1)(4q(n�q)�5n+2q+3+(mmod 2)(6n�8q�5))=3 when q = bm=2.[The answer in the ase (m;n) = (25; 30) is 36080; hene a random 25�30 imagewill have an average of 36080=256 � 140:9 tomographially equivalent \neighbors" thatdi�er from it in exatly eight pixel positions. Figure 36 has �ve suh neighbors, one ofwhih is shown in answer 111 below.℄(e) We an make all entries nonzero exept on the main diagonals (see below).This is optimum, beause the diagonal lines for a1, a3, : : : , a4n�1, b1, b3, : : : , b4n�1must eah ontain a di�erent 0. So the answer is 2n(n � 1). (But the maximum forodd sized boards is unknown; for n = (5; 7; 9) it turns out to be (6; 18; 33).)0+++���0�0++��0+��0+�0++���00++++++00���++0�+0��+0��++0�0���+++0 0+++0���0����+++0+0�+�+��++++�++0����+�+��0+++0�0+0+����+��+++0++++�0���0�0��+++0 0++��00��++0000+��00+�00+0�++0�0+0�+0+0�0�0��0++0 0++��00��++0000+�0�0+�0�+00++000+��+0+�00�0��0++0(f) The smallest ounterexamples are 7� 7 (see above).106. In an m � n problem we must have 0 � ri � n, 0 � j � m, and 0 � ad; bd �minfd;m; n;m+n�dg. So the total number B of possibilities, assuming thatm � n, is(n+1)m(m+1)n((m+1)! (m+1)n�mm!)2, whih is � 3 �10197 when (m;n) = (25; 30).Sine 2750=B � 2 � 1028, we onlude that a \random" 25 � 30 digital tomographyproblem usually has more than 1028 solutions. (Of ourse there are other onstraintstoo; for example, the fat that P ri = P j = P ad = P bd redues B by at least afator of (n + 1)(m+ 1)2.)107. (a) (r1; : : : ; r6) = (11;11;11;9;9;10); (1; : : : ; 13) = (6;5;6;2;4;4;6;5;4;2;6;5;6);(a1; : : : ; a6) = (11;10;9;9;11;11); (b1; : : : ; b12) = (6;1;6;5;7;5;6;2;6;5;7;5).(b) There are two others, namely the following one and its left-right reversal:� � � � � �[Referene: P. Gerdes, Sipatsi (Maputo: U. Pedag�ogia, 2009), page 62, pattern #122.℄108. Here are four of the many possibilities:109. F1. [Initialize.℄ Find one solution y1 : : : yn, or terminate if the problem is unsat-is�able. Then set yn+1  1 and d 0.F2. [Advane d.℄ Set d to the smallest j > d suh that yj = 1.F3. [Done?℄ If d > n, terminate with y1 : : : yn as the answer.F4. [Try for smaller.℄ Try to �nd a solution with additional unit lauses to forexj = yj for 1 � j < d and xd = 0. If suessful, set y1 : : : yn  x1 : : : xn.Return to F2.Even better is to inorporate a similar proedure into the solver itself; see exerise 275.
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206 ANSWERS TO EXERCISES 7.2.2.2 benhmark testsrook pathspiralutting planeBalasFishettiZanetteBrunettiDel LungoGritzmannde Vries
110. Algorithm B atually gives these diretly:001111111011101111100101111101111011111110111011011111111100101111101111011111100111011111110111111111111011111111001100111111001111011111111010111111110111101111111001100111110110111101111111111. This family of problems appears to provide an exellent (though sometimes formi-dable) series of benhmark tests for SAT solvers. The suggested example has solutions
(a) olexiographially �rst; (b) minimally di�erent; () olexiographially last;and several of the entries in (a) were by no means easy. An even more diÆult asearises if we base lexiographi order on a rook path that spirals out from the enter(thus favoring solutions that are mostly 0 or mostly 1 in the middle):

(a) spiral rook path; (b) \spirographially" �rst; () \spirographially" last.Here many of the entries have never yet been solved by a SAT solver, as of 2013, althoughagain IP solvers have no great diÆulty. In fat, the \lexiographi pure utting plane"proedure of E. Balas, M. Fishetti, and A. Zanette [Math. Programming A130 (2011),153{176; A135 (2012), 509{514℄ turns out to be partiularly e�etive on suh problems.112. Reasonably tight upper and lower bounds would also be interesting.113. Given an N �N �N ontingeny problem with binary onstraints CJK = X�JK ,RIK = XI�K , PIJ = XIJ�, we an onstrut an equivalent n � n digital tomographyproblem with n = N2 +N3 +N4 as follows: First onstrut a four-dimensional tensorYIJKL = X(I�L)JK , where I � L = 1 + (I + L � 1) modN , and notie that Y�JKL =YIJK� = X�JK , YI�KL = X(I�L)�K , YIJ�L = X(I�L)J�. Then de�ne xij for 1 �i; j � n by the rule xij = YIJKL when i = I �N2K +N3L, j = NJ +N2K + N3L,otherwise xij = 0. This rule makes sense; for if 1 � I; I 0; J; J 0; K;K0; L; L0 � N andI �N2K +N3L = I 0 �N2K0 +N3L0 and NJ +N2K +N3L = NJ 0 +N2K0 +N3L0,we have I � I 0 (modulo N); hene I = I 0 and K � K0; hene K = K0, L = L0, J = J 0.Under this orrespondene the marginal sums are ri = YI�KL when i = I�N2K+N3L, j = Y�JKL when j = NJ+N2K+N3L, ad = YIJ�L when d+1 = I+NJ+2N3L,bd = YIJK� when d � n = I � NJ � 2N2K, otherwise zero. [See S. Brunetti, A. DelLungo, P. Gritzmann, and S. de Vries, Theoretial Comp. Si. 406 (2008), 63{71.℄
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7.2.2.2 ANSWERS TO EXERCISES 207 symmetri funtionpolaritiessmileNP-ompleteoNP-ompleteKayeSottStegevan Rooijphoenix
114. (a) From x7;23 + x7;24 = x7;23 + x7;24 + x7;25 = x7;24 + x7;25 = 1 we deduex7;23 = x7;25 = 0 and x7;24 = 1, revealing n7;23 = n7;25 = 5. Now x6;23 + x6;24 =x6;24 + x6;25 = x4;24 + x5;24 + x6;24 + x6;25 = 1; hene x4;24 = x5;24 = 0, revealingn4;24 = n5;24 = 2. So x6;23 = x6;25 = 0, and the rest is easy.(b) Let yi;j mean \ell (i; j) has been probed safely, revealing ni;j ." Considerthe lauses C obtained by appending �yi;j to eah lause of the symmetri funtion[Pi+1i0=i�1Pj+1j0=j�1 xi0;j0=ni;j ℄, for all i; j with xi;j = 0. Also inlude (�xi;j_ �yi;j), as wellas lauses for the symmetri funtion SN (x) if we're told the total number N of mines.Given any subset F of mine-free ells, the lauses CF = C ^Vfyi;j j (i; j) 2 Fgare satis�able preisely by the on�gurations of mines that are onsistent with the datafni;j j (i; j) 2 Fg. Therefore ell (i; j) is safe if and only if CF ^ xi;j is unsatis�able.A simple modi�ation of Algorithm C an be used to \grow" F until no furthersafe ells an be added: Given a solution to CF for whih neither xi;j nor �xi;j wasobtained at root level (level 0), we an try to �nd a \ipped" solution by using theomplemented value as the deision at level 1. Suh a solution will be found if and onlyif the ipped value is onsistent; otherwise the unipped value will have been fored atlevel 0. By hanging default polarities we an favor solutions that ip many variablesat one. Whenever a literal �xi;j is newly dedued at root level, we an fore yi;j to betrue, thus adding (i; j) to F . We reah an impasse when a set of solutions has beenobtained for CF that overs both settings of every unfored xi;j .For problem (i) we start with F = f(1; 1)g, et. Case (iv) by itself unovers only56 ells in the lower right orner. The other results, eah obtained in < 6 G�, are:(i); (ii

(iii

(votie that the Cheshire at's famous smile de�es logi and requires muh guesswork![For aspets of Minesweeper that are NP-omplete and oNP-omplete, see Kaye,Sott, Stege, and van Rooij, Math. Intelligener 22, 2 (2000), 9{15; 33, 4 (2011), 5{17.℄115. Several thousand runs of the algorithm in the previous exerise, given that thetotal number of mines is 10, indiate suess probabilities :490 � :007, :414 � :004,:279� :003, when the �rst guess is respetively in a orner, in the enter of an edge, orin the enter.116. The smallest is the \lok" in answer 69(b). Other noteworthy possibilities are$$ $as well as the \phoenix" in Fig. A{7.



September 23, 2015

208 ANSWERS TO EXERCISES 7.2.2.2 partial baktrakinglinks danePure literals117. (a) Set x0 = xn+1 = 0, and let (a; b; ) be respetively the number of ourrenesof (01; 10; 11) as a substring of x0x1 : : : xn+1. Then a+  = b+  = �x and  = �(2)x;hene a = b = �x� �(2)x is the number of runs.(b) In this ase the omplete binary tree will have only n�1 leaves, orrespondingto fx1x2; : : : ; xn�1xng; therefore we want to replae n by n � 1 in (20) and (21).The lauses of (20) remain unhanged unless tk � 3. When tk = 2 they beome(�x2k�n+1_�x2k�n+2_bk1)^(�x2k�n+2_�x2k�n+3_bk1)^(�x2k�n+1_�x2k�n+2_�x2k�n+3_bk2).When tk = 3 we have 2k = n�1, and they beome (�b2k1 _bk1)^(�x1_�x2_bk1)^(�b2k2 _bk2)^(�b2k1 _ �x1 _ �x2 _ bk2) ^ (�b2k2 _ �x1 _ �x2 _ bk3).The lauses of (21) remain unhanged exept in simple ases when n � 3.() Now the leaves represent xixi+1 = �xi_ �xi+1. So we hange (20), when tk = 2,to (x2k�n+1 _ bk1) ^ (x2k�n+2 _ bk1) ^ (x2k�n+3 _ bk1) ^ (x2k�n+2 _ bk2) ^ (x2k�n+1 _x2k�n+3 _ bk2). And there are eight lauses when tk = 3: (�b2k1 _ bk1) ^ (x1 _ bk1) ^ (x2 _bk1) ^ (�b2k2 _ bk2) ^ (�b2k1 _ x1 _ bk2) ^ (�b2k1 _ x2 _ bk2) ^ (�b2k2 _ x1 _ bk3) ^ (�b2k2 _ x2 _ bk3).118. Let pi;j = [the pixel in row i and olumn j should be overed℄, and introduevariables hi;j when pi;j = pi;j+1 = 1, vi;j when pi;j = pi+1;j = 1. The lauses are(i) (hi;j _ hi;j�1 _ vi;j _ vi�1;j), whenever pi;j = 1, omitting variables that don't exist;(ii) (�hi;j_�hi;j�1), (�hi;j_�vi;j), (�hi;j_�vi�1;j), (�hi;j�1_�vi;j), (�hi;j�1_�vi�1;j), (�vi;j_�vi�1;j),whenever pi;j = 1, omitting lauses whose variables don't both exist; and (iii) (hi;j _hi+1;j_vi;j_vi;j+1), whenever pi;j+pi;j+1+pi+1;j+pi+1;j+1 � 3, omitting variables thatdon't exist. (The example has 10527 lauses in 2874 variables, but it's quikly solved.)119. There's symmetry between l and �l, also between l and 10� l; so we need onsideronly l = (1; 2; 3; 4; 5), with respetively (4; 4; 6; 6; 8) ourrenes. The smallest result isF j5 = f123, 234, 678, 789, 246, 468, 147, 369, �1�2�3, �2�3�4, �3�4, �4�6, �6�7, �6�7�8, �7�8�9, �1�3, �2�4�6,�3�7, �4�6�8, �7�9, �1�4�7, �2�8, �3�6�9, �1�9g.120. True.121. The main point of interest is that an empty lause is typially disovered in themidst of step A3; partial baktraking must be done when taking bak the hangesthat were made before this interruption.A3. [Remove �l.℄ Set p  F(�l) (whih is F(l � 1), see (57)). While p � 2n + 2,set j  C(p), i SIZE(j), and if i > 1 set SIZE(j) i� 1, p F(p). Butif i = 1, interrupt that loop and set p  B(p); then while p � 2n + 2, setj  C(p), i SIZE(j), SIZE(j) i+ 1, p B(p); and �nally go to A5.A4. [Deativate l's lauses.℄ Set p  F(l). While p � 2n + 2, set j  C(p),i  START(j), p  F(p), and for i � s < i + SIZE(j) � 1 set q  F(s),r  B(s), B(q)  r, F(r)  q, and C(L(s))  C(L(s)) � 1. Then seta a� C(l), d d+ 1, and return to A2.A7. [Reativate l's lauses.℄ Set a a + C(l) and p B(l). While p � 2n + 2,set j  C(p), i START(j), p B(p), and for i � s < i + SIZE(j) � 1 setq  F(s), r  B(s), B(q)  F(r)  s, and C(L(s))  C(L(s)) + 1. (Thelinks dane a little here.)A8. [Unremove �l.℄ Set p F(�l). While p � 2n + 2, set j  C(p), i SIZE(j),SIZE(j) i+ 1, p F(p). Then go to A5.122. Pure literals are problemati when we want all solutions, so we don't take advan-tage of them here. Indeed, things get simpler; only the move odes 1 and 2 are needed.A1�. [Initialize.℄ Set d 1.
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7.2.2.2 ANSWERS TO EXERCISES 209A2�. [Visit or hoose.℄ If d > n, visit the solution de�ned by m1 : : :mn and go toA6�. Otherwise set l 2d+ 1 and md  1.A3�. [Remove �l.℄ Delete �l from all ative lauses; but go to A5� if that wouldmake a lause empty.A4�. [Deativate l's lauses.℄ Suppress all lauses that ontain l. Then set d  d+ 1 and return to A2�.A5�. [Try again.℄ If md = 1, set md  2, l 2d, and go to A3�.A6�. [Baktrak.℄ Terminate if d = 1. Otherwise set d  d � 1 and l  2d +(md & 1).A7�. [Reativate l's lauses.℄ Unsuppress all lauses that ontain l.A8�. [Unremove �l.℄ Reinstate �l in all the ative lauses that ontain it. Then gobak to A5�.It's no longer neessary to update the values C(k) for k < 2n+2 in steps A4� and A7�.123. For example, we might havep = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20L(p) = 3 9 7 8 7 5 6 5 3 4 3 8 2 8 6 9 6 4 7 4 2and START(j) = 21 � 3j for 0 � j � 7; W2 = 3, W3 = 7, W4 = 4, W5 = 0, W6 = 5,W7 = 1, W8 = 6, W9 = 2. Also LINK(j) = 0 for 1 � j � 7 in this ase.124. Set j  W�l. While j 6= 0, a literal other than �l should be wathed in lause j, sowe do the following: Set i  START(j), i0  START(j � 1), j0  LINK(j), k  i + 1.While k < i0, set l0  L(k); if l0 isn't false (that is, if jl0j > d or l0 + mjl0j is even,see (57)), set L(i) l0, L(k) �l, LINK(j)  Wl0 , Wl0  j, j  j0, and exit the loopon k; otherwise set k  k + 1 and ontinue that loop. If k reahes i0, however, weannot stop wathing �l; so we set W�l  j, exit the loop on j, and go on to step B5.125. Change steps B2 and B4 to be like A2� and A4� in answer 122.126. Starting with ative ring (6 9 7 8), the unit lause 9 will be found (beause 9appears before 8); the lause �9�3�6 will beome �6�3�9; the ative ring will beome (7 8 6).127. Before: 11414545; after: 1142. (And then 11425, et.)128. Ative ring x1x2x3x4 Units Choie Changed lauses(1 2 3 4) - - - - �1 413(2 3 4) 0 - - - �2 �124(3 4) 0 0 - - �3 �3(4) 0 0 0 - 4; �4 Baktrak(3 4) 0 - - - 2 3�2�1; �4�21(3 4) 0 1 - - �4 �4 314; �342(3) 0 1 - 0 3; �3 Baktrak(4 3) - - - - 1 2�14; �4�1�3(2 4 3) 1 - - - 2(4 3) 1 1 - - 3 3 4�3�2; 2�31(4) 1 1 1 - 4; �4 Baktrak(3 4) 1 - - - �2 �321; 4�12(3 4) 1 0 - - 4 4 �3�1�4; 1�2�4; 3�42(3) 1 0 - 1 3; �3 Baktrak
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210 ANSWERS TO EXERCISES 7.2.2.2 empty listKnuthmove odesrandomlyasymptotisunit lauseResizing129. Set j  Wl, then do the following steps while j 6= 0: (i) Set p  START(j) + 1;(ii) if p = START(j � 1), return 1; (iii) if L(p) is false (that is, if xjL(p)j = L(p) & 1),set p p+ 1 and repeat (ii); (iv) set j  LINK(j). If j beomes zero, return 0.130. Set l 2k + b, j  Wl, Wl  0, and do the following steps while j 6= 0: (i) Setj0  LINK(j), i  START(j), p  i + 1; (ii) while L(p) is false, set p  p + 1 (seeanswer 129; this loop will end before p = START(j � 1)); (iii) set l0  L(p), L(p) l,L(i)  l0; (iv) set p Wl0 and q  W�l0 , and go to (vi) if p 6= 0 or q 6= 0 or xjl0j � 0;(v) if t = 0, set t h  jl0j and NEXT(t)  h, otherwise set NEXT(jl0j)  h, h jl0j,NEXT(t)  h (thus inserting jl0j = l0 � 1 into the ring as its new head); (vi) setLINK(j) p, Wl0  j (thus inserting j into the wath list of l0); (vii) set j  j0.[The triky part here is to remember that t an be zero in step (v).℄131. For example, the author tried seleting a variable xk for whih s2k � s2k+1 ismaximum, where sl is the length of l's wath list plus ", and the parameter " was 0.1.This redued the runtime for waerden (3; 10; 97) to 139.8 gigamems, with 8.6 mega-nodes. Less dramati e�ets ourred with langford (13): 56.2 gigamems, with 10.8meganodes, versus 99.0 gigamems if the minimum s2k � s2k+1 was hosen instead.132. The unsatis�able lauses (�x1_x2), (x1_�x2), (�x3_x4), (x3_�x4), : : : , (�x2n�1_x2n),(x2n�1 _ �x2n), (�x2n�1 _ �x2n), (x2n�1 _ x2n) ause it to investigate all 2n settings of x1,x3, : : : , x2n�1 before enountering a ontradition and repeatedly baktraking.(Inidentally, the suessive move odes make a pretty pattern. If the statedlauses are ordered randomly, the algorithm runs signi�antly faster, but it still appar-ently needs nonpolynomial time. What is the growth rate?)133. (a) Optimum baktrak trees for n-variable SAT problems an be alulated with�(n3n) time and �(3n) spae by onsidering all 3n partial assignments, \bottom up."In this 9-variable problem we obtain a tree with 67 nodes (the minimum) if we branh�rst on x3 and x5, then on x6 if x3 6= x5; unit lauses arise at all other nodes.(b) Similarly, the worst tree turns out to have 471 nodes. But if we require thealgorithm to branh on a unit lause whenever possible, the worst size is 187. (Branh�rst on x1, then x4, then x7; avoid opportunities for unit lauses.)134. Let eah BIMP list be aessed by ADDR, BSIZE, CAP, and K �elds, where ADDR is thestarting address in MEM of a blok that's able to store CAP items, and CAP = 2K; ADDR isa multiple of CAP, and BSIZE is the number of items urrently in use. Initially CAP = 4,K = 2, BSIZE = 0, and ADDR is a onvenient multiple of 4. The 2n BIMP tables thereforeoupy 8n slots initially. If MEM has room for 2M items, those tables an be alloatedso that the doubly linked lists AVAIL[k℄ initially ontain ak = (0 or 1) available bloksof size 2k for eah k, where 2M � 8n = (aM�1 : : : a1a0)2.Resizing is neessary when BSIZE = CAP and we need to inrease BSIZE. Seta ADDR, k  K, CAP 2k+1, and let b a � 2k be the address of a's buddy. If b isa free blok of size 2k, we're in luk: We remove b from AVAIL[k℄; then if a & 2k= 0,nothing needs to be done, otherwise we opy BSIZE items from a to b and set ADDR b.In the unluky ase when b is either reserved or free of size < 2k, we set p to theaddress of the �rst blok in AVAIL[k0℄, where AVAIL[t℄ is empty for k < t < k0 (orwe pani if MEM's apaity is exeeded). After removing p from AVAIL[k0℄, we split o�new free bloks of sizes 2k+1, : : : , 2k0�1 if k0 > k + 1. Finally we opy BSIZE itemsfrom blok a to blok p, set ADDR  p, and put a into AVAIL[k℄. (We needn't try to\ollapse" a with its buddy, sine the buddy isn't free.)135. They're the omplements of the literals in BIMP(�l).
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7.2.2.2 ANSWERS TO EXERCISES 211 swapvirtual unswappingBSTAMPBST(l)stamping136. Before, f(1; 2); (4; 2); (4; 5); (5; 1); (5; 7); (6; 9)g; after, f(1; 2); (4; 2); (6; 9)g.137. If p in a TIMP list points to the pair (u; v), let's write u = U(p) and v = V(p).(a) Set N  n � G, x  VAR[N℄, j  INX[X℄, VAR[j℄  x, INX[x℄  j,VAR[N℄  X, INX[X℄  N . Then do the following for l = 2X and l = 2X + 1,and for all p in TIMP(l): u  U(p), v  V(p), p0  LINK(p), p00  LINK(p0);s TSIZE(�u)�1, TSIZE(�u) s, t pair s of TIMP(�u); if p0 6= t, swap pairs by settingu0  U(t), v0  V(t), q  LINK(t), q0  LINK(q), LINK(q0)  p0, LINK(p)  t,U(p0)  u0, V(p0)  v0, LINK(p0)  q, U(t)  v, V(t)  �l, LINK(t)  p00. Then sets TSIZE(�v)�1, TSIZE(�v) s, t pair s of TIMP(�v); if p00 6= t, swap pairs by settingu0  U(t), v0  V(t), q  LINK(t), q0  LINK(q), LINK(q0)  p00, LINK(p0)  t,U(p00) u0, V(p00) v0, LINK(p00) q, U(t) �l, V(t) u, LINK(t) p.Notie that we do not make the urrent pairs of TIMP(l) inative. They won't beaessed by the algorithm until it needs to undo the swaps just made.(b) In VAR and in eah TIMP list, the ative entries appear �rst. The inative entriesfollow, in the same order as they were swapped out, beause inative entries neverpartiipate in swaps. Therefore we an reativate the most-reently-swapped-out entryby simply inreasing the ount of ative entries. We must, however, be areful to do this\virtual unswapping" in preisely the reverse order from whih we did the swapping.Thus, for l = 2X + 1 and l = 2X, and for all p in TIMP(l), proeeding in thereverse order from (a), we set u  U(p), v  V(p), TSIZE(�v)  TSIZE(�v) + 1, andTSIZE(�u) TSIZE(�u)+ 1.(The number N of free variables inreases impliitly, beause N + E = n instep L12. Thus nothing needs to be done to VAR or INX.)138. Beause �v 2 BIMP(�u), (62) will be used to make u nearly true. That loop willalso make v nearly true, beause v 2 BIMP(u) is equivalent to �u 2 BIMP(�v).139. Introdue a new variable BSTAMP analogous to ISTAMP, and a new �eld BST(l)analogous to IST(l) in the data for eah literal l. At the beginning of step L9, setBSTAMP  BSTAMP + 1, then set BST(l)  BSTAMP for l = �u and all l 2 BIMP(�u). Now,if BST(�v) 6= BSTAMP and BST(v) 6= BSTAMP, do the following for all w 2 BIMP(v): If wis �xed in ontext NT (it must be �xed true, sine �w implies �v), do nothing. Otherwiseif BST( �w) = BSTAMP, perform (62) with l  u and exit the loop on w (beause �uimplies both w and �w). Otherwise, if BST(w) 6= BSTAMP, append w to BIMP(�u) and uto BIMP( �w). (Of ourse (63) must be invoked when needed.)Then inrease BSTAMP again, and do the same thing with u and v reversed.140. Unfortunately, no: We might have 
(n) hanges to BSIZE on eah of 
(n) levelsof the searh tree. However, the ISTACK will never have more entries than the totalnumber of ells in all BIMP tables (namely 2M in answer 134).141. Suppose ISTAMP  (ISTAMP + 1) mod 2e in step L5. If ISTAMP = 0 after thatoperation, we an safely set ISTAMP 1 and IST(l) 0 for 2 � l � 2n+1. (A similarremark applies to BSTAMP and BST(l) in answer 139.)142. (The following operations, performed after BRANCH[d℄ is set in step L2, will alsooutput `j' to mark levels of the searh where no deision was made.) Set BACKL[d℄ F ,r k  0, and do the following while k < d: While r < BACKF[k℄, output `6+(Rr&1)'and set r r+1. If BRANCH[k℄ < 0, output `j'; otherwise output `2BRANCH[k℄+(Rr&1)'and set r  r + 1. While r < BACKL[k + 1℄, output `4 + (Rr & 1)' and set r  r + 1.Then set k  k + 1.
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212 ANSWERS TO EXERCISES 7.2.2.2 Knuthundoing143. The following solution treats KINX and KSIZE as the unmodi�ed algorithm treatsTIMP and TSIZE. It deals in a somewhat more subtle way with CINX and CSIZE: Iflause  originally had size k, and if j of its literals have beome false while none haveyet beome true, CSIZE() will be k � j, but the nonfalse literals will not neessarilyappear at the beginning of list CINX(). As soon as j reahes k�2, or one of the literalsbeomes true, lause  beomes inative and it disappears from the KINX tables of allfree literals. The algorithm won't look at CINX() or CSIZE() again until it un�xes theliteral that deativated . Thus a big lause is inative if and only if it has been satis�ed(ontains a true literal) or has beome binary (has at most two nonfalse literals).We need to modify only the three steps that involve TIMP. The modi�ed step L1,all it L10, inputs the big lauses in a straightforward way.Step L70 removes the formerly free variable X from the data strutures by �rstdeativating all of the ative big lauses that ontain L: For eah of the KSIZE(L)numbers  in KINX(L), and for eah of the CSIZE() free literals u in CINX(), we swap out of u's lause list as follows: Set s KSIZE(u)�1, KSIZE(u) s; �nd t � s withKINX(u)[t℄ = ; if t 6= s set KINX(u)[t℄  KINX(u)[s℄ and KINX(u)[s℄  . [Heuristi:If the number of free literals remaining in  is small ompared to 's original size,for example if say 15 or 20 original literals have beome false, the remaining nonfalseliterals an usefully be swapped into the �rst CSIZE() positions of CINX() when  isbeing deativated. The author's experimental implementation does this when CSIZE()is at most � times the original size, where the parameter � is normally 25/64.℄Then step L70 updates lauses for whih L has beome false: For eah of theKSIZE(L) numbers  in KINX(L), set s  CSIZE() � 1 and CSIZE()  s; if s = 2,�nd the two free literals (u; v) in CINX(), swap them into the �rst positions of that list,put them on a temporary stak, and swap  out of the lause lists of u and v as above.Finally, step L70 does step L80 = L8 for all (u; v) on the temporary stak. [Themaximum size of that stak will be the maximum of KSIZE(l) over all l, after step L10;so we alloate memory for that stak as part of step L10.℄In step L120 we set L RE , X  jLj, and reativate the lauses that involve Xas follows: For eah of the KSIZE(L) numbers  in KINX(L), proeeding in reverse orderfrom the order used in L70, set s CSIZE(), CSIZE() s+ 1; if s = 2, swap  bakinto the lause lists of v and u, where u = CINX()[0℄ and v = CINX()[1℄. For eahof the KSIZE(L) numbers  in KINX(L), and for eah of the CSIZE() free literals uin CINX(), again proeeding in reverse order from the order used in L70, swap  bakinto the lause list of u. The latter operation simply inreases KSIZE(u) by 1.144. False; h0(l) = 0:1 if and only if the omplement, �l, doesn't appear in any lause.145. By symmetry we know that h(l) = h(�l) = h(10 � l) for 1 � l � 9 at depth 0,and the BIMP tables are empty. The �rst �ve rounds of re�nement respetively give(h(1); : : : ; h(5)) = (4:10; 4:10; 6:10; 6:10; 8:10), (5:01; 4:59; 6:84; 6:84; 7:98), (4:80; 4:58;6:57; 6:57; 8:32), (4:88; 4:54; 6:72; 6:67; 8:06), and (4:85; 4:56; 6:63; 6:62; 8:23), slowly on-verging to the limiting values(4:85810213; 4:55160111; 6:66761920; 6:63699698; 8:16778057):When d = 1, however, the suessively re�ned values of (h(1); h(�1); : : : ; h(4); h(�4)) areerrati and divergent: (2.10, 8.70, 3.10, 6.40, 3.10, 13.00, 3.10, 10.70), (5.53, 3.33, 9.05,2.58, 5.40, 5.57, 8.24, 4.83), (1.43, 9.60, 2.32, 10.06, 1.30, 16.96, 1.97, 15.54), (8.04, 1.42,12.31, 1.29, 7.45, 2.39, 11.91, 1.81), (0.32, 14.19, 0.42, 15.63, 0.30, 25.67, 0.43, 24.17).
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7.2.2.2 ANSWERS TO EXERCISES 213 survey propagationMijndersde WildeHeulethreshold parameterpartial orderings of dimension � 2permutation posetsinversionspartially ordered sets
They eventually osillate between limits that favor either positive or negative literals:(0:1012; 17:4178; 0:1019; 19:7351; 0:1015; 31:6345; 0:1021; 30:4902) and(10:3331; 0:1538; 15:8485; 0:1272; 9:6098; 0:1809; 15:4207; 0:1542):[Equations (64) and (65), whih were inspired by survey propagation, �rst appearedin unpublished work of S. Mijnders, B. de Wilde, and M. J. H. Heule in 2010. Thealulations above indiate that we needn't take h(l) too seriously, although it does seemto yield good results in pratie. The author's implementation also sets h0(l)  � ifthe right-hand side of (65) exeeds a threshold parameter �, whih is 20.0 by default.℄146. Good results have been obtained with the simple formula h(l) = "+ KSIZE(�l)+Pu2BIMP(l); u free KSIZE(�u), whih estimates the potential number of big-lause redu-tions that our when l beomes true. The parameter " is typially set to 0.001.147. 1, 600, 60, 30, 30.148. If a problem is easy, we don't are if we solve it in 2 seonds or in .000002 seonds.On the other hand if a problem is so diÆult that it an be solved only by looking aheadmore than we an aomplish in a reasonable time, we might as well fae the fat thatwe won't solve it anyway. There's no point in looking ahead at 60 variables whend = 60, beause we won't be able to deal with more than 250 or so nodes in anyreasonable searh tree.149. The idea is to maintain a binary string SIG(x) for eah variable x, representing thehighest node of the searh tree in whih x has partiipated. Let bj = [BRANCH[j℄=1℄,and set �  b0 : : : bd�1 at the beginning of step L2, �  b0 : : : bd at the beginning ofstep L4. Then x will be a partiipant in step X3 if and only if SIG(x) is a pre�x of �.We update SIG(x) when x = juj or x = jvj in step L9, by setting SIG(x)  �unless SIG(x) is a pre�x of �. The initial value of SIG(x) is hosen so that it is nevera pre�x of any possible �.(Notie that SIG(x) needn't hange when baktraking. In pratie we an safelymaintain only the �rst 32 bits of � and of eah string SIG(x), together with their exatlengths, beause lookahead omputations need not be preise. In answer 143, updatesour not in step L9 but in step L70; they are done for all literals u 6= L that appear inany big lause ontaining L that is being shortened for the �rst time.)150. Asserting 7 at level 22 will also 22�x �1, beause of the lause 147. Then �1 will22�x 3 and 9, whih will 22�x �2 and �6, then �8; and lause 258 beomes false. Therefore�7 beomes proto true; and (62) makes 3, 6, 9 all proto true, ontraditing 369.151. For example, one suh arrangement isl: 2 �8 9 3 �1 6 �7 �4 4 7 �6 1 �3 �9 8 �2o(l): 4 2 10 14 6 16 8 12 22 26 18 28 20 24 32 30 :[Digraphs that are obtainable in this way are alled \partial orderings of dimension� 2," or permutation posets. We've atually seen them in exerise 5.1.1{11, where theset of ars was represented as a set of inversions. Permutation posets have many nieproperties, whih we shall study in Setion 7.4.2. For example, if we reverse the orderof the list and omplement the o�sets, we reverse the diretions on the arrows. All buttwo of the 238 onneted partially ordered sets on six elements are permutation posets.Unfortunately, however, permutation posets don't work well with lookahead when theyaren't also forests. For example, after 10�xing `9' and its onsequenes, we would wantto remove those literals from the R stak when 14�xing `3'; see (71). But then we'dwant them bak when 6�xing `�1'.℄
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214 ANSWERS TO EXERCISES 7.2.2.2 autarky testautarkyheapheuristisTarjanSGBheightsinksink: a vertex with no suessordouble orderpreorderpostordersatisfying assignmentandidatesmultiset
152. A single lause suh as `12' or `123' would be an example, exept that the autarkytest in step X9 would solve the problem before we ever get to step X3. The lausesf12�3; 1�23; �12�3; �1�23; 245; 3�4�5g do, however, work: Level 0 branhes on x1, and level 1disovers an autarky with b and  both true but returns l = 0. Then level 2 �nds alllauses satis�ed, although both of the free variables x4 and x5 are newbies.[Indeed, the absene of free partiipants means that the �xed-true literals forman autarky. If TSIZE(l) is nonzero for any free literal l, some lause is unsatis�ed.Otherwise all lauses are satis�ed unless some free l has an un�xed literal l0 2 BIMP(l).℄153. Make the CAND array into a heap, with an element x of least rating r(x) at the top(see Setion 5.2.3). Then, while C > Cmax, delete the top of the heap (namely CAND[0℄).154. The hild��!parent relations in the subforest will be d��!��!a, b��!a, ���! �d,and either �a��!�b or �a��!�. Here's one suitable sequene, using the latter:preorder �b a b  d �d � �a2�postorder 2 10 4 8 6 16 14 12155. First onstrut the dependeny graph on the 2C andidate literals, by extratinga subset of ars from the BIMP tables. (This omputation needn't be exat, beausewe're only alulating heuristis; an upper bound an be plaed on the number of arsonsidered, so that we don't spend too muh time here. However, it is important tohave the ar u��!v if and only if �v��! �u is also present.)Then apply Tarjan's algorithm [see Setion 7.4.1, or SGB pages 512{519℄. If astrong omponent ontains both l and �l for some l, terminate with a ontradition.Otherwise, if a strong omponent ontains more than one literal, hoose a representa-tive l with maximum h(l); the other literals of that omponent regard l as their parent.Be areful to ensure that l is a representative if and only if �l is also a representative.The result will be a sequene of andidate literals l1l2 : : : lS in topologial order,with li��! lj only if i > j. Compute the \height" of eah lj , namely the length of thelongest path from lj to a sink. Then every literal of height h > 0 has a predeessorof height h� 1, and we let one suh predeessor be its parent in the subforest. Everyliteral of height 0 (a sink) has a null parent. Traversal of this subforest in double order(exerise 2.3.1{18) now makes it easy to build the LL table in preorder while �lling theLO table in postorder.156. If �l doesn't appear in any lause of F , then A = flg is learly an autarky.157. Well, any satisfying assignment is an autarky. But more to the point is theautarky f1; 2g for F = f1�23; �124; �3�4g.158. BIMP(l) and TIMP(l) will be empty, so w will be zero when Algorithm X looksahead on l. Thus l will be fored true, at depth d = 0. (But pure literals that arisein subproblems for d > 0 won't be deteted unless they're among the preseletedandidates.)159. (a) False (onsider A = f1g, F = f1; 2; �12g); but true if we assume that F jA isomputed as a multiset (so that F jA would be f2; 2g 6� F in that example).(b) True: Suppose A = A0 [ A00, A0 \ A00 = ;, and A00 or A00 touhes C 2 F jA0.Then C \A0 = ; and C [ C0 2 F , where C0 � A0. Sine A or A touhes C [ C0, somea 2 C [ C0 is in A; hene a 2 A00.160. (a) If the gray lauses are satis�able, let all blak literals be true. [Notie,inidentally, that the suggested example oloring works like a harm in (7).℄
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7.2.2.2 ANSWERS TO EXERCISES 215 Hirshonditional autarkylookahead autarky lauses, see blak and blueTseytinextended resolutionJeanniotOxuso�RauzyKullmannbloked lausestautologiesresolvedbloking digraphpure literaldependeny digraphstrong omponentreurrene relationsFibonai numbersMonienSpekenmeyerautarkyBulnes

(b) Given any set A of stritly distint literals, olor l blak if l 2 A, white if�l 2 A, otherwise gray. Then A is an autarky if and only if ondition (a) holds.[E. A. Hirsh, Journal of Automated Reasoning 24 (2000), 397{420.℄161. (a) If F 0 is satis�able, so is F . If F is satis�able with at least one blue literal false,so is F 0. If F is satis�able with all the blue literals true, make all the blak literals true(but keep gray literals unhanged). Then F 0 is satis�ed, beause every lause of F 0 thatontains a blak or blue literal is true, hene every lause that ontains a white literalis true; the remaining lauses, whose literals are only orange and gray, eah ontain atleast one true gray literal. [The blak-and-blue ondition is equivalent to saying thatA is a onditional autarky, namely an autarky of F jL. Tseytin's notion of \extendedresolution" is a speial ase, beause the literals of A and L need not appear in F . SeeS. Jeanniot, L. Oxuso�, and A. Rauzy, Revue d'intelligene arti�ielle 2 (1988), 41{60,Setion 6; O. Kullmann, Theoretial Comp. Si. 223 (1999), 1{72, Setions 3, 4, and 14.℄(b) Without a�eting satis�ability, we are allowed to add or delete any lauseC = (a _ �l1 _ � � � _ �lq) for whih all lauses ontaining �a also ontain l1 or � � � or lq.(Suh a lause is said to be \bloked" with respet to a, beause C produes nothingbut tautologies when it is resolved with lauses that ontain �a.)() Without a�eting satis�ability, we are allowed to add or delete any or all ofthe lauses (�l_a1), : : : , (�l_ap), if A is an autarky of F j l; that is, we an do this if A isalmost an autarky, in the sense that every lause that touhes A but not A ontains l.(d) Without a�eting satis�ability, we are allowed to add or delete the lause(�l _ a) whenever every lause that ontains �a also ontains l.162. Construt a \bloking digraph" with l0 ,! l when every lause that ontainsliteral �l also ontains l0. (If l is a pure literal, we'll have l0 ,! l for all l0; this ase anbe handled separately. Otherwise all in-degrees will be less than k in a kSAT problem,and the bloking digraph an be onstruted in O(k2m) steps if there are m lauses.)(a) Then (l _ l0) is a bloked binary lause if and only if �l ,! l0 or �l0 ,! l. (Henewe're allowed in suh ases to add both �l��! l0 and �l 0��! l to the dependeny digraph.)(b) Also A = fa; a0g is an autarky if and only if a ,! a0 ,! a. (Moreover, anystrong omponent fa1; : : : ; atg with t > 1 is an autarky of size t.)163. Consider the reurrene relations Tn = 1 + max(Tn�1; Tn�2; 2Un�1), Un = 1 +max(Tn�1; Tn�2; Un�1+Vn�1), Vn = 1+Un�1 for n > 0, with T�1 = T0 = U0 = V0 = 0.We an prove that Tn, Un, Vn are upper bounds on the step ounts, where Un refers toases where F is known to have a nonternary lause, and Vn refers to ases when s = 1and R2 was entered from R3: The terms Tn�1 and Tn�2 represent autarky redutionsin step R2; otherwise the reursive all in R3 osts Un�1, not Tn�1, beause at least onelause ontains �ls. We also have Vn = 1 + Un�1, not 1 + Tn�1, beause the preedingstep R3 either had a lause ontaining l2 not l1 or a lause ontaining �l1 not �l2.Fibonai numbers provide the solution: Tn = 2Fn+2�3+[n=0℄, Un = Fn+3�2,Vn = Fn+2�1. [Algorithm R is a simpli�ation of a proedure devised by B. Monien andE. Spekenmeyer, Disrete Applied Mathematis 10 (1985), 287{295, who introduedthe term \autarky" in that paper. A Stanford student, Juan Bulnes, had disovereda Fibonai-bounded algorithm for 3SAT already in 1976; his method was, however,unattrative, beause it also required 
(�n) spae.℄164. If k < 3, Tn = n is an upper bound; so we may assume that k � 3. LetUn = 1 + max(Tn�1; Tn�2; Un�1 + Vn�1;1; : : : ; Un�1 + Vn�1;k�2), Vn;1 = 1 + Un�1,and Vn;s = 1 + max(Un�1; Tn�2; Un�1 + Vn�1;s�1) for s > 1, where Vn;s refers to anentry at R2 from R3. The use of Un�1 in the formula for Vn;s is justi�ed, beause the
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previous R3 either had a lause ontaining ls+1 not ls or one ontaining �ls not �ls+1. Onean show by indution that Vn;s = s+Un�1+ � � �+Un�s, Un = Vn;k�1; and Tn = Un+Un�k+1 = 2Un�1+1 if n � k. For example, the running time when k = 4 is bounded byTribonai numbers, whose growth rate 1:83929n omes from the root of x3 = x2+x+1.165. Clause �1�3�4 in the example tells us that 1; 3; 4 =2 A. Then 13�6 implies 6 =2 A. ButA = f2; 5g works, so it is maximum. There always is a maximum (not just maximal)positive autarky, beause the union of positive autarkies is a positive autarky.Eah lause (v1 _ � � � _ vs _ �vs+1 _ � � � _ �vs+t) of F , where the v's are positive, tellsus that v1 =2 A and � � � and vs =2 A implies vs+j =2 A, for 1 � j � t. Thus it essentiallygenerates t Horn lauses, whose ore is the set of all positive literals not in any positiveautarky. A simple variant of Algorithm 7.1.1C will �nd this ore in linear time; namely,we an modify steps C1 and C5 in order to get t Horn lauses from a single lause of F .[By omplementing a subset of variables, and prohibiting another subset, we an�nd the largest autarky A ontained in any given set of stritly distint literals. This ex-erise is due to unpublished work of O. Kullmann, V. W. Marek, and M. Truszzy�nski.℄166. Assume �rst that PARENT(l0) = �, so that H(l0) = 0 at the beginning of X9(see X6). Sine l0 = LL[j℄ is not �xed in ontext T , we have RF = l0 by (62).And A = fRF ; RF+1; : : : ; RE�1g is an autarky, beause no lause touhed by A or Ais entirely false or ontains two un�xed literals. Thus we're allowed to fore l0 true(whih is what \do step X12 with l l0" means).On the other hand if w = 0 and PARENT(l0) = p, so that H(l0) = H(p) > 0 in X6,the set A = fRF ; : : : ; RE�1g is an autarky with respet to the lauses of F jp. Henethe additional lause (l0 _ �p) doesn't make the lauses any less satis�able, by the blakand blue priniple. (Notie that (�l0 _ p) is already a known lause; so in this ase l0 isessentially being made equal to its parent.)[The author's implementation therefore goes further and inludes the stepVAL[jl0j℄  VAL[jpj℄ � ((l0 � p) & 1); (�)whih promotes the truth degree of l0 to that of p. This step violates the invariantrelation (71), but Algorithm X doesn't rely on (71).℄167. If a literal l is �xed in ontext T during the lookahead, it is implied by l0. Instep X11 we have a ase where l is also implied by �l0; hene we're allowed to fore itstruth, if l isn't already proto true. In step X6, �l0 is implied by l0, so l0 must be false.168. The following method works well in marh: Terminate happily if F = n. (Atthis point in Algorithm L, F is the number of �xed variables, all of whih are reallytrue or really false.) Otherwise �nd l 2 fLL[0℄; : : : ; LL[S � 1℄g with lmod 2 = 0and maximum (H(l) + :1)(H(l+1) + :1). If l is �xed, set l  0. (In that ase,Algorithm X found at least one fored literal, although U is now zero; we want to doanother lookahead before branhing again.) Otherwise, if H(l) > H(l+1), set l l+1.(A subproblem that is less redued will tend to be more satis�able.)169. When a and b are positive, the funtion f(x) = e�ax + e�bx � 1 is onvex anddereasing, and it has the unique root ln � (a; b). Newton's method for solving thisequation re�nes an approximation x by omputing x0 = x + f(x)=(ae�ax + be�bx).Notie that x is less than the root if and only if f(x) > 0; furthermore f(x) > 0 impliesf(x0) > 0, beause f(x0) > f(x)+(x0�x)f 0(x) when f is onvex. In partiular we havef(1=(a + b)) > 0, beause f(0) = 1 and 00 = 1=(a + b), and we an proeed as follows:K1. [Initialize.℄ Set j  k 1, x 1=(a1 + b1).
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7.2.2.2 ANSWERS TO EXERCISES 217 oating pointTarjanautarkiesinvariantwindfallundoneK2. [Done?℄ (At this point (aj ; bj) is the best of (a1; b1), : : : , (ak; bk), and e�ajx+e�bjx � 1.) Terminate if k = s. Otherwise set k k + 1, x0  1=(ak + bk).K3. [Find �, �.℄ If x0 < x, swap j $ k and x $ x0. Then set �  e�ajx0 and�  e�bjx0 . Go to K2 if �+ � � 1.K4. [Newtonize.℄ Set x x0+(�+��1)=(aj�+bj�), �0  e�akx0 , �0  e�bkx0 ,x0  x0 + (�0 + �0 � 1)=(ak�0 + bk�0), and return to K3.(The oating point alulations should satisfy eu � ev and u+w � v+w when u < v.)170. If the problem is unsatis�able, Tarjan's algorithm disovers l and �l in the samestrong omponent. If it's satis�able, Algorithm X �nds autarkies (beause w is alwayszero), thus foring the value of all literals at depth 0.171. It prevents double-looking on the same literal twie at the same searh tree node.172. When Algorithm Y onludes normally, we'll have T = BASE+LO[j℄, even thoughBASE has hanged. This relation is assumed to be invariant in Algorithm X.173. The run reported in the text, using nonoptimized parameters (see exerise 513),did 29,194,670 double-looks (that is, exeutions of step Y2), and exited 23,245,231times to X13 in step Y8 (thus suessfully foring l0 false in about 80% of those ases).Disabling Algorithm Y (i) inreased the running time from 0.68 teramems to 1.13teramems, with 24.3 million nodes. Disabling wraparound (ii) inreased the time to 0.85teramems, with 13.3 million nodes. Setting Y = 1, whih disabled wraparound only inAlgorithm Y, yielded 0.72 teramems, 11.3 meganodes. (Inidentally, the loops of Algo-rithm X wrapped around 40% of the time in the regular run, with a mean of 0.62 andmaximum of 12; those of Algorithm Y had 20% wraparound, with a mean of 0.25; themaximum Y = 8 was reahed only 28 times.) Disabling the lookahead forest (iii) gavesurprisingly good results: 0.70 teramems, 8.5 meganodes; there were fewer nodes [henea more disriminating lookahead℄, but more time spent per node beause of dupliatede�ort, although strong omponents were not omputed. (Strutured problems thathave numerous binary lauses tend to generate more helpful forests than random 3SATproblems do.) Disabling ompensation resolvents (iv) made very little di�erene: 0.70teramems, 9.9 meganodes. But disabling windfalls (v) raised the ost to 0.89 teramemsand 13.5 meganodes. And branhing on a random l 2 LL (vi) made the runningtime soar to 40.20 teramems, with 594.7 meganodes. Finally, disabling Algorithm Xaltogether (vii) was a disaster, leading to an estimated run time of well over 1020 mems.The weaker heuristis of exerise 175 yield 3.09 teramems and 35.9 meganodes.174. Setting Y to a huge value suh as PT will never get to step Y2. (But for (ii), (iii),: : : , (vii) one must hange the programs, not the parameters as they stand.)175. Preompute the weights, by setting K2 = 1 and Ks  Ks�1+ :01, for s between3 and the maximum lause size. (The extra .01 keeps this from being zero.) The thirdline of (72) must hange to \take aount of  for all  in KINX(L)," where that means\set s  CSIZE() � 1; if s � 2, set CSIZE()  s and w  w +Ks; otherwise if allliterals of  are �xed false, set a ag; otherwise if some literal u of  isn't �xed (therewill be just one), put it on a temporary stak." Before performing the last line of (72),go to CONFLICT if the ag is set; otherwise, for eah un�xed u on the temporary stak,setWi  u and i i+1 and perform (62) with l u; go to CONFLICT if some u on thetemporary stak is �xed false. (A \windfall" in this more general setting is a lause forwhih all but one literal has been �xed false as a onsequene of l0 being �xed true.)Of ourse those hanges to CSIZE need to be undone; a simulated false literal thathas been \virtually" removed from a lause must be virtually put bak. Fortunately,
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218 ANSWERS TO EXERCISES 7.2.2.2 Kullmannodd permutationIsaasGrinbergtransition matrixtrae of a matrix: The sum of its diagonal elementskernelskernelsomparison of SAT solvers
the invariant relation (71) makes this task fairly easy: We set G F in step X5, andinsert the following restoration loop at the very beginning of (72): \While G > F , setu  RG�1; stop if u is �xed in ontext T ; otherwise set G  G � 1, and inreaseCSIZE() by 1 for all  2 KINX(�u)." The restoration loop should also be performed,with T  NT, just before terminating Algorithm X in steps X7 or X13.[The additional step (�) in answer 166 an't be used, beause (71) is now ruial.℄Algorithm Y should hange in essentially the same way as Algorithm X.[See O. Kullmann, Report CSR 23-2002 (Swansea: Univ. of Wales, 2002), x4.2.℄176. (a) aj ��� aj+1, aj ��� bj , aj ��� bj+1, bj ��� j , bj ��� dj , j ��� dj , j ��� ej ,dj���fj , ej���dj+1, ej���fj+1, fj���j+1, fj���ej+1.(b) Let (tj ; uj ; vj ; wj ; aj ; bj ; j ; dj ; ej ; fj) have olors (1; 2; 1; 1; 1; 2; 1; 3; 3; 2) whenj is even, (2; 1; 2; 2; 3; 2; 3; 1; 1; 2) when j is odd. The lower bounds are obvious.() Verties aj , ej , fj an't all have the same olor, beause bj , j , dj have distintolors. Let �j denote the olors of ajejfj . Then �j = 112 implies �j+1 = 332 or 233;�j = 121 implies �j+1 = 233 or 323; �j = 211 implies �j+1 = 323 or 332; �j = 123implies �j+1 = 213 or 321. Sine �1 = �q+1, the olors of �1 must be distint, and wean assume that �1 = 123. But then �j will be an odd permutation whenever j is even.[See Rufus Isaas, AMM 82 (1975), 233{234. Unpublished notes of E. Grinbergshow that he had independently investigated the graph J5 in 1972.℄177. There are 20 independent subsets of Vj = faj ; bj ; j ; dj ; ej ; fjg when q > 1; eightof them ontain none of fbj ; j ; djg while four ontain bj . Let A be a 20� 20 transitionmatrix, whih indiates when R[C is independent for eah independent subset R � Vjand C � Vj+1. Then Iq is trae(Aq); and the �rst eight values are 8, 126, 1052,11170, 112828, 1159416, 11869768, 121668290. The harateristi polynomial of A,x12(x2 � 2x� 1)(x2 + 2x� 1)(x4 � 8x3 � 25x2 + 20x+ 1), has nonzero roots �1�p2and � �2:91, �0:05, +0:71, +10:25; hene Iq = �(rq), where r � 10:24811166 is thedominant root. Note: The number of kernels of L(Jq) is respetively 2, 32, 140, 536,2957, 14336, 70093, 348872, for 1 � q � 8, and its growth rate is � 4:93q .178. With the �rst ordering, the top 18k levels of the searh tree essentially representall of the ways to 3-olor the subgraph faj ; bj ; j ; dj ; ej ; fj j 1 � j � kg; and there are�(2k) ways to do that, by answer 176. But with the seond ordering, the top 6kq levelsessentially represent all of the independent sets of the graph; and there are 
(10:2k) ofthose, by answer 177.Empirially, Algorithm B needs respetively 1.54 megamems, 1.57 gigamems, and1.61 teramems to prove unsatis�ability when q = 9, 19, and 29, using the �rst ordering;but it needs 158 gigamems already for q = 5 with the seond! Additional lauses, whihrequire olor lasses to be kernels (see answer 14), redue that time to 492 megamems.Algorithm D does badly on this sequene of problems: When q = 19, it onsumes37.6 gigamems, even with the \good" ordering. And when q = 29, its yli methodof working somehow transforms the good ordering into a bad ordering on many of thevariables at depths 200 or more. It shows no sign of being anywhere near ompletioneven after spending a petamem on that problem!Algorithm L, whih is insensitive to the ordering, needs 2.42 megamems, 2.01gigamems, and 1.73 teramems when q = 9, 19, and 29. Thus it appears to take �(2q)steps, and to be slightly slower than Algorithm B as q grows, although exerise 232shows that a lairvoyant lookahead proedure ould theoretially do muh better.Algorithm C triumphs here, as shown in Fig. 49.
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7.2.2.2 ANSWERS TO EXERCISES 219 exat oversiftingbaktrakinggenerating funtionBDD basesymmetri Boolean funtionsmuxif-then-else, see muxuniquelyAldous
179. This is a straightforward exat over problem. If we lassify the solutions aord-ing to how many asterisks our in eah oordinate, it turns out that exatly (10, 240,180, 360, 720, 480, 1440, 270, 200, 480) of them are respetively of type (00088, 00268,00448, 00466, 02248, 02266, 02446, 04444, 22228, 22246).By omplementation, we see that 4380 hoies of 8 lauses are unsatis�able; heneq8 = 1� 4380=�808 � = 1� 4380=28987537150 � 0:9999998.180. With N variables yj , one for eah possible lause Cj , the funtion f(y1; : : : ; yN ) =[VfCj j yj = 1g is satis�able℄ is Wx fx(y), where fx(y) = [x satis�es VfCj j yj = 1g℄is simply Vf�yj j x makes Cj falseg. For instane if k = 2 and n = 3, and if C1, C7, C11are the lauses (x1 _ x2), (x1 _ �x3), (x2 _ �x3), then f001(y1; : : : ; y12) = �y1 ^ �y7 ^ �y11.Eah funtion fx has a very simple BDD, but of ourse the OR of 2n of them willnot be simple. This problem is an exellent example where no natural ordering of thelause variables is evident, but the method of sifting is able to redue the BDD sizesubstantially. In fat, the lauses for k = 3 and n = 4 an be ordered leverly so thatthe orresponding 32-variable BDD for satis�ability has only 1362 nodes! The author'sbest result for k = 3 and n = 5, however, was a BDD of size 2,155,458. The oeÆientsof its generating funtion (exerise 7.1.4{25) are the desired numbers Qm.The largest suh ount, Q35 = 3,449,494,339,791,376,514,416, is so enormous thatwe ould not hope to enumerate the relevant sets of 35 lauses by baktraking.181. The previous exerise essentially omputed the generating funtion PmQmzm;now we want the double generating funtionPl;m Tl;mwlzm, where Tl;m is the numberof ways to hoose m di�erent k-lauses in suh a way that these lauses are satis�ed byexatly l vetors x1 : : : xn. To do this, instead of taking the OR of the simple funtionsfx, we ompute the BDD base that ontains all of the symmetri Boolean funtionsSl(f0:::0; : : : ; f1:::1) for 0 � l � 2n, as follows (see exerise 7.1.4{49): Consider thesubsript x to be a binary integer, so that the funtions are fx for 0 � x < 2n. Startwith Sl = 0 for �1 � l � 2n, exept that S0 = 1. Then do the following for x = 0, : : : ,2n � 1 (in that order): Set Sl = fx?Sl�1:Sl for l = x+ 1, : : : , 0 (in that order).After this omputation, the generating funtion for Sl will be Pm Tl;mzm. Inthe author's experiments, the sifting algorithm found an ordering of the 80 lauses fork = 3 and n = 5 so that only about 6 million nodes were needed when x had reahed24; afterwards, however, sifting took too long, so it was turned o�. The �nal BDD basehad approximately 87 million nodes, with many nodes shared between the individualfuntions Sl. The total running time was about 22 gigamems.182. T0 = 32 and T1 = 28 and Tm = 0 for 71 � m � 80. Otherwise minTm < maxTm.183. Let tm = Pr(Tm = 1), and suppose that we obtain lauses one by one untilreahing an unsatis�able set. The fat that tm gets reasonably large suggests that weprobably have aumulated a uniquely satis�able set just before stopping. (That proba-bility is 2�kNPm tm=(N�m), whih turns out to be � 0:8853 when k = 3 and n = 5.)However, exept for the fat that both Figs. 42 and 43 are bell-shaped urves withroughly the same tendeny to be relatively large or small at partiular values of m,there is apparently no strong mathematial onnetion. The probabilities in Fig. 43sum to 1; but the sum of probabilities in Fig. 42 has no obvious signi�ane.When n is large, uniquely satis�able sets are enountered only rarely. The �nalset before stopping a.s. has at most f(n) solutions, for ertain funtions f ; but howfast does the smallest suh f grow? [See D. J. Aldous, J. Theoretial Probability 4(1991), 197{211, for related ideas.℄



September 23, 2015

220 ANSWERS TO EXERCISES 7.2.2.2 set partitionsStirling subset numbersoupon olletor's testautosiftingsiftingsymmetri Boolean funtionssymmetri threshold funtionstruth tableBoolean funtions in kCNFBDDBollob�as
184. The probability q̂m is bQm=Nm, where bQm ounts the hoies (C1; : : : ; Cm) forwhih C1 ^ � � � ^ Cm is satis�able. The number of suh hoies that involve t distintlauses is t!�mt 	 times Qt, beause �mt 	 enumerates set partitions; see Eq. 3.3.2{(5).185. q̂m =PNt=0 �mt 	t! qt�Nt �=Nm � qmPNt=0 �mt 	t!�Nt �=Nm = qm.186. PmPt �mt 	t! qt�Nt �N�m an be summed onm, sinePm �mt 	N�m = 1=(N�1)tby Eq. 1.2.9{(28). Similarly, the derivative of 1.2.9{(28) shows thatPmm�mt 	N�m =(N=(N � 1) + � � �+N=(N � t))=(N � 1)t .187. In this speial ase, qm = [0�m<N ℄ and pm = [m=N ℄; hene Sn;n = N = 2n(and the variane is zero). By (78), we also have bSn;n = NHN ; indeed, the ouponolletor's test (exerise 3.3.2{8) is an equivalent way to view this situation.188. Now qm = 2mnm=(2n)m. It follows by (78) that bS1;n =Pnm=0 2mnm=(2n� 1)m,beause N = 2n. The identity 2mnm=(2n�1)m = 2qm�qm+1 yields the surprising fatthat bS1;n = (2q0�q1)+(2q1�q2)+� � � = 1+S1;n; and we also have bS1;n�1 = 2n2n�1S1;n�1.Hene, by indution, we obtain the (even more surprising) losed formsS1;n = 4n. �2nn �; bS1;n = 4n. �2nn �+ 1:So random 1SAT problems beome unsatis�able after p�n+O(1) lauses, on average.189. With the autosifting method in the author's experimental BDD implementation,the number of BDD nodes, given a sequene of m distint lauses when k = 3 andn = 50, inreased past 1000 when m inreased from 1 to about 30, and it tended topeak at about 500,000 when m was slightly more than 100. Then the typial BDD sizefell to about 50,000 when m = 150, and to only about 500 when m = 200.BDD methods break down when n is too large, but when they apply we an ountthe total number of solutions remaining after m steps. In the author's tests with k = 3,n = 50, and m = 200, this number varied from about 25 to about 2000.190. For example, S1(x1; : : : ; xn) an't be expressed in (n � 1)CNF: All lauses oflength n� 1 that are implied by S1(x1; : : : ; xn) are also implied by S�1(x1; : : : ; xn).191. Let f(x0; : : : ; x2n�1) = 1 if and only if x0 : : : x2n�1 is the truth table of a Booleanfuntion of n variables that is expressible in kCNF. This funtion f is the onjuntionof 2n onstraints (t), for 0 � t = (t0 : : : t2n�1)2 < 2n, where (t) is the followingondition: If xt = 0, then Wfxy j 0 � y < 2n; (y � t) &m = 0g is 0 for some n-bitpattern m that has �m = k. By ombining these onstraints we an ompute the BDDfor f when n = 4 and k = 3; it has 880 nodes, and 43,146 solutions.Similarly we have the following results, analogous to those in Setion 7.1.1:n=0 n=1 n=2 n=3 n=4 n=5 n=61CNF 2 4 10 28 82 244 7302CNF 2 4 16 166 4,170 224,716 24,445,3683CNF 2 4 16 256 43,146 120,510,132 4,977,694,100,656And if we onsider equivalene under omplementation and permutation, the ounts are:1CNF 2 3 4 5 6 7 82CNF 2 3 6 14 45 196 1,3603CNF 2 3 6 22 253 37,098 109,873,815192. (a) S(p) =PNm=0 pm(1� p)N�mQm. (b) We have R N0 (t=N)m(1� t=N)N�m dt =NB(m + 1; N � m + 1) = NN+1/�Nm�, by exerises 1.2.6{40 and 41; hene Sk;n =NN+1PNm=0 qm = NN+1Sk;n. [See B. Bollob�as, Random Graphs (1985), Theorem II.4.℄
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7.2.2.2 ANSWERS TO EXERCISES 221 AhlioptasPeresseond moment prinipleovering assignmentsCoja-OghlanPanagiotouinlusion and exlusionChebyshev's inequalityStirling's approximationballs and urnsurns and ballsWilsonthreshold phenomena
194. A similar question, about proofs of unsatis�ability when � > lim supn!1 S3;n=n,is also wide open.195. EX = 2n Pr(0 : : : 0 satis�es all) = 2n(1� 2�k)m = exp(n ln 2 +m ln(1� 2�k)) <2 exp(�2�k�1n ln 2). Thus Sk(b(2k ln 2)n; n) = Pr(X > 0) � exp(�
(n)). [DisreteApplied Math. 5 (1983), 77{87. Conversely, in J. Amer. Math. So. 17 (2004), 947{973,D. Ahlioptas and Y. Peres use the seond moment priniple to show that (2k ln 2 �O(k))n random kSAT lauses are almost always satis�able by vetors x with �x � n=2.Careful study of \overing assignments" (see exerise 364) leads to the sharp bounds2k ln 2� 1+ ln 22 �O(2� k3 ) � lim infn!1 �k(n) � lim supn!1 �k(n) � 2k ln 2� 1+ ln 22 +O(2� k3 );see A. Coja-Oghlan and K. Panagiotou, arXiv:1310.2728 [math.CO℄ (2013), 48 pages.℄196. The probability is ((n � t)k=nk )�n+O(1) = e�kt�(1 + O(1=n)) that �n + O(1)random kSAT lauses omit t given letters. Let p = 1� (1� e�k�)k. By inlusion andexlusion, the �rst lause will be easy with probability p(1+O(1=n)), and the �rst twowill both be easy with probability p2(1+O(1=n)). Thus if X =Pmj=1[lause j is easy℄,we have EX = pm+O(1) and EX2 = p2m2+O(m). Hene, by Chebyshev's inequality,Pr(jX � pmj � rpm) = O(1=r2).197. By Stirling's approximation, ln q(a; b; A;B; n) = nf(a; b; A;B) + g(a; b; A;B) �12 ln 2�n � (Æan � Æ(a+b)n) � (Æbn � Æ(b+B)n) � (ÆAn � Æ(a+A)n) � (ÆBn � Æ(A+B)n) �Æ(a+b+A+B)n, where Æn is positive and dereasing. And we must have f(a; b; A;B) � 0,sine q(a; b; A;B; n) � 1. The O estimate is uniform when 0 < Æ � a; b; A;B �M .198. Consider one of the NM possible sequenes of M 3SAT lauses, where N = 8�n3�and M = 5n. By exerise 196 it ontains g = 5(1 � (1 � e�15)3)n + O(n3=4) easylauses, exept with probability O(n�1=2). Those lauses, though rare, don't a�et thesatis�ability; and all �Mg � of the ways to insert them among the r = M � g others areequally likely, so they tend to dampen the transition.Let l � r be maximum so that the �rst l noneasy lauses are satis�able, and letp(l; r; g;m) be the probability that, when drawing m balls from an urn that ontains ggreen balls and r red balls, at most l balls are red. Then S3(m;n) =P p(l; r; g;m)=NMand S3(m0; n) =P p(l; r; g;m0)=NM , summed over all NM sequenes.To omplete the proof we shall show thatp(l; r; g;m+ 1) = p(l; r; g;m)�O(n�1=2) when 3:5n < m < 4:5n;hene S3(m+1; n) = S3(m;n)�O(n�1=2), S3(m;n)�S3(m0; n) = O((m0�m)n�1=2).Notie that p(l; r; g;m) = p(l; r; g;m+1) when m < l or m > l+g ; thus we may assumethat l lies between 3:4n and 4:6n. Furthermore the di�erenedm = p(l; r; g;m)� p(l; r; g;m+ 1) = �ml ��r+g�m�1r�l�1 ��r+gr � = �ml ��r+g�mr�l ��r+gr � r � lr + g �mhas a dereasing ratio dm=dm�1 = (m=(m� l))((l+ g + 1�m)=(r + g �m)) when minreases from l to l+ g. So maxdm ours at m � l(r+ g)=r, where this ratio is � 1.Now exerise 197 applies with a = l=n, b = �g=n, A = (r�l)=n, B = (1��)g=n, � = l=r.[D. B. Wilson, in Random Strutures & Algorithms 21 (2002), 182{195, showedthat similar methods apply to many other threshold phenomena.℄
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222 ANSWERS TO EXERCISES 7.2.2.2 inlusion and exlusionseond moment priniple199. (a) Given the required letters fa1; : : : ; atg, there are m ways to plae the left-most a1, then m� 1 ways to plae the leftmost a2, and so on; then there are at mostN ways to �ll in eah of the remaining m� t slots.(b) By inlusion and exlusion: There are (N�k)mwords that omit k of the letters.() N�mPk �tk�(�1)kPj �mj �Nm�j(�k)j =Pj �mj �(�1)j+tN�jAj , where Aj =Pk �tk�(�1)t�kkj = �jt	t! by Eq. 1.2.6{(53).200. (a) The unsatis�able digraph must ontain a strong omponent with a path�lt��! l1��! � � � ��! lt��! lt+1��! � � � ��! ll = �lt;where l1, : : : , lt are stritly distint. This path yields an s-snare (C; t; u) if we set s tothe smallest index suh that jls+1j = jluj for some u with 1 � u < s.(b) No: (x_y)^ (�y_x)^ (�x_y) and (x_y)^ (�y_x)^ (�x_ �y) are both satis�able.() Apply exerise 199(a) with t = s+1, N = 2n(n�1); note that ms+1 � ms+1.201. (a) Set (li; li+1) (x1; x2) or (�x2; �x1), where 0 � i < 2t (thus 4t ways).(b) Set (li; li+1; li+2)  (x1; x2; x3) or (�x3; �x2; �x1), where 0 � i < 2t; also(�l1; lt; lt+1) or (lt�1; lt; �l2t�1) (x1; x2; x3) or (�x3; �x2; �x1) (total 4t+ 4 ways, if t>2).() (l1; lt�1; lt) or (�l2t�1; �lt+1; �lt) (x1; xt�1; xt) or (�xt�1; �x1; xt) (4 ways).(d) li or �l2t�i xi or �xt�i, for 1� i� t (4 ways, if you understand this notation).(e) By part (a), it is 2t� 4t = 8t2.(f) Parts (b) and () ombine to give N(3; 2) = (2t + 2) � (4t + 4) + 2 � 4 =8(t2 + 2t + 2) when t > 2. From part (d), N(t; t) = 8. Also N(2t � 1; 2t) = 8; this isthe number of snakes that speify the same 2t lauses. (Inidentally, when t = 5 thegenerating funtionPq;rN(q; r)wqzr is 1+200w2z1+(296w3+7688w4)z2+(440w4+12800w5 +55488w6)z3+(640w5+12592w6+66560w7+31104w8)z4+(8w5+736w6+8960w7 + 32064w8 + 6528w9)z5 + (32w6 + 704w7 + 4904w8 + 4512w9)z6 + (48w7 +704w8 + 1232w9)z7 + (64w8 + 376w9)z8 + 80w9z9 + 8w9z10.)(g) The other l's an be set in at most 22t�1�q(n� q)2t�1�q = R=(2qnq ) ways.(h) We may assume that r < 2t. The r hosen lauses divide into onnetedomponents, whih are either paths or a \entral" omponent that ontains either(�x0 _ x1) and (�xt�1 _ xt) or (�xt _ xt+1) and (�x2t�1 _ x0). Thus q equals r plus thenumber of omponents, minus 1 if the entral omponent inludes a yle. If theentral omponent is present, we must set lt  xt or �xt, and there are at most 8 waysto omplete the mapping of that omponent. And N(r; r) = 16(r+1�t) for t < r < 2t.Cases with k > 0 paths an be hosen in at most �2t+22k � ways, beause we hoosethe starting and ending points, and they an be mapped in at most 2kk!�2t+22k � ways;so they ontribute Pk>0 O(t4kk=(k!3nk)) = O(t4=n) to (2n)rpr. The nonyli entralomponents, whih an be hosen in �(t4) ways, also ontribute O(t4=n).202. (a)m(m�1) : : : (m�r+1)=mr � (1��r2�=m); (2n(n�1)�r)m�r=(2n(n�1))m�r �1� (m� r)r=(2n(n � 1)) when r � m < 2n(n � 1); and both fators are � 1.(b) The term of (95) for r = 0 is 1 plus a negligible error. The ontribution ofO(t4=n) for r > 0 is O(n4=5+1=6�1), beause Pr�0 (1 + n�1=6)�r = n1=6 + 1. Andthe ontributions of (96) to (95) for r � t are exponentially small, beause in thatrange we have (1+n�1=6)�t = exp(�t ln(1+n�1=6)) = exp(�
(n1=30)). Finally, then,by the seond moment priniple MPR{(22), S2(bn + n5=6; n) � 1 � Pr(X > 0) �1� (EX)2=(EX2) = 1� 1=((EX2)=(EX)2) = 1� 1=(1 +O(n�1=30)) = O(n�1=30).203. (a) EX = dn EX(1; : : : ; 1), by symmetry; and EX(1; : : : ; 1) = (1� p)m, beauseeah set of q lauses is falsi�ed with probability p. So EX = exp((r ln(1�p)+1)n ln d)is exponentially small when r ln(1� p) + 1 < 0; and we know that Pr(X > 0) � EX.
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7.2.2.2 ANSWERS TO EXERCISES 223 Tovey(b) Let �s = �s2�/�n2� = s(s�1)n(n�1) , and onsider a random onstraint set, giventhat X(1; : : : ; 1) = 1. With probability �s, both u and v have olor 1 and theonstraint is known to be satis�ed. But with probability 1��s, it holds with probability�d2�2q �/�d2�1q �. Thus ps = (�s + (1� �s)(d2 � pd2 � 1)=(d2 � 1))m.() We have Pr(X > 0) � dn(1�p)m=E(X jX(1; : : : ; 1) = 1), from the inequalityand symmetry; and the denominator is Pns=0 �ns�(d � 1)n�sps. We an replae ps bythe simpler value p0s = (1 � p + ps2=n2)m, beause ps < (�s + (1 � �s)(1 � p))m =(1� p+ �sp)m < p0s. And we an divide the simpli�ed sum by dn(1� p)m.(d) We have P3n=ds=0 ts = eO(m=d2)P3n=ds=0 �ns�( 1d )s(1 � 1d )n�s, beause s2=n2 =O(1=d2) when s � 3n=d. This sum is � 1 � (e2=27)n=d by exerise 1.2.10{22; and theruial assumption that � > 12 makes m=d2 ! 0.(e) Transition between inrease and derease ours when xs � 1; and we havexs = n� ss+ 1 1d� 1 �1 + (2s+ 1)p(1� p)n2 + ps2�m � exp�ln 1� �� + � 2pr�1� p+ p�2 � 1� ln d�when s = �n. Let f(�) = 2pr�=(1 � p + p�2) � 1, and notie that f 0(�) > 0 for0 � � < 1 beause p � 12 . Furthermore our hoie of r makes f( 12 ) < 0 < f(1).Setting g(�) = f(�)= ln �1�� , we seek values of � with g(�) = 1= ln d. There are threesuh roots, beause g(1=N) � �f(0)= lnN � 1= lnN ; g( 12 � 1=N) � �f( 12 )N=4; andg(1� 1=N) � f(1)= lnN .(f) At the seond peak, where s = n� n=df(1), we have (see exerise 1.2.6{67)ts < � nedn� s�n�s�1d�n�1 + p1� p�m = exp((��+O(1=df(1)))n ln d);whih is exponentially small. And when s = 3n=d, ts < (nesd )seO(m=d2) = O((e=3)3n=d)is also exponentially small. Consequently Pns=3n=d ts is exponentially small.[This derivation holds also when the random onstraints are k-ary instead ofbinary, with q = pdk and � > 1=k. See J. Arti�ial Intelligene Res. 12 (2000), 93{103.℄204. (a) If the original literals �xj that involve variable xj orrespond to �1Xi(1), : : : ,�pXi(p), with signs �h, add the lauses (��hXi(h)_�h+Xi(h+)) for 1 � h � p to enforeonsisteny, where h+ = 1+(hmod p). (This transformation, due to C. A. Tovey, workseven in degenerate ases. For example, if m = 1 and if the given lause is (x1_x1_ �x2),the transformed lauses are (X1 _X2 _X3), ( �X1 _X2), ( �X2 _X1), (X3 _ �X3).)(b) After F0 = f�g, F1 = F0 t F0, F2 = F0 t F1, F3 = F0 t F2, F4 = F3 t F 03,F5 = F4 t F 004 , always putting the new variable into the four shortest possible lauses,we get F5 = f345, 2�34, 1�2�3, �1�2�3, 30�45, 20�30�4, 10�20�30, �10�20�30, 300400�5, 200�300400, 100�200�300,�100�200�300, 3000�400�5, 2000�3000�400, 1000�2000�3000, �1000�2000�3000g.() If we delete �1�2�3 from F5 there are 288 solutions, namely 1^ 2^ 3^ �4 ^ �5^ 0 ^(400? 00 ^ �3000: 000 ^ �300), where  = �2 _ �3.(d) Add dm=2e disjoint lones of the 15 lauses of () to the 4m lauses of (a),giving m + 15dm=2e 3-lauses and 3m 2-lauses that are satis�able only if all literalsloned from �1, �2, or �3 are false. Eah lone provides six suh false literals f�1; �1; �1; �2; �2; �3gwithout using any variable �ve times. So we an stik those literals into the 2-lauses,obtaining � 11:5m 3-lauses in N � 10:5m variables. (The new lauses have 288dm=2etimes as many solutions as the original ones. Can the ratio N=m � 10:5 be lowered?)205. Let F0 = f�g, F1 = F0 t F0, F2 = F0 t F1, F3 = F0 t F2, F4 = F0 t F3,F5 = F1 t F4, F6 = F0 t F5, F7 = F0 t F6, F8 = F4 t F 07, F9 = F0 t F8, F10 = F7 t F 09,
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224 ANSWERS TO EXERCISES 7.2.2.2 St�r��brn�aHoorySzeider5SATresolutionIwamaTakakimarriage theoremBermanKarpinskiSottlopsidependeny graphGebauerSzab�oTardos
F11 = F7 t F 010, F12 = F0 t F11, F13 = F9 t F 0012, F14 = F10 t F (3)12 , F15 = F12 t F (4)14 ,F16 = F13 t F (6)14 , F17 = F14 t F (7)15 , F18 = F16 t F (13)17 . (Here `x(3)' stands for `x000',et.) Then F18 onsists of 257 unsatis�able 4-lauses in 234 variables.(Is there a shorter solution? This problem was �rst solved by J. St�r��brn�a in herM.S. thesis (Prague: Charles University, 1994), with 449 lauses. The t method wasintrodued by S. Hoory and S. Szeider, Theoretial Computer Siene 337 (2005), 347{359, who presented an unsatis�able 5SAT problem that uses eah variable at most 7times. It's not known whether 7 an be dereased to 6 when every lause has size 5.)206. Suppose F and F 0 are minimally unsatis�able, and delete a lause of F tF 0 thatarose from F 0; then we an satisfy F t F 0 with x true.Conversely, if FtF 0 is minimally unsatis�able, F and F 0 an't both be satis�able.Suppose F is unsatis�able but F 0 is satis�ed by L0. Removing a lause of F t F 0that arose from F 0 is satis�able only with x true; but then we an use L0 to satisfyF t F 0. Hene F and F 0 are both unsatis�able. Finally, if F n C is unsatis�able, so is(F t F 0) n (C j �x), beause any solution would satisfy either F n C or F 0.207. The �ve lauses of C(x; y; z; a; b; ) = fx�ab; y�b; z�a; ab; �a�b�g resolve to the singlelause xyz. Thus C(x; y; y; 1; 2; 3)[C(x; �y; �y; 4; 5; 6)[C(�x; z; z; 7; 8; 9)[C(�x; �z; �z; a; b; )is a solution. [K. Iwama and K. Takaki, DIMACS 35 (1997), 315{333, noted that the16 lauses f�x�y�zg [ C(x; x; x; 1; 2; 3) [ C(y; y; y; 4; 5; 6) [ C(z; z; z; 7; 8; 9) involve eahvariable exatly four times, and proved that no set of twelve lauses does so.℄208. Makem lones of all but one of the 20 lauses in answer 207, and put the other 3mloned literals into the 3m binary lauses of answer 204(a). This gives 23m 3-lausesin whih every literal ours twie, exept that the 3m literals �Xi our only one.To omplete the solution, we \pad" them with additional lauses that are alwayssatis�able. For example, we ould introdue 3m more variables ui, with new lauses�Xiui�ui+1 for 1 � i � 3m and fu03ju03j+1u03j+2; �u03j �u03j+1�u03j+2g for 1 � j � m (treatingsubsripts mod 3m), where u0i denotes (i even? ui: �ui).209. Sine the multiset of kt literals in any t lauses ontains at least t di�erent vari-ables, the \marriage theorem" (Theorem 7.5.1M) implies that we an hoose a di�erentvariable in eah lause, easily satisfying it. [Disr. Applied Math. 8 (1984), 85{89.℄210. [P. Berman, M. Karpinski, A. D. Sott, Eletroni Colloquium on ComputationalComplexity (2003), TR22.℄ This answer uses the magi number " = Æ7 � 1=58, whereÆ is the smallest root of Æ((1� Æ7)6 + (1� Æ7)7) = 1. We will assign random values toeah variable so that Pr[all lauses are satis�ed℄ > 0.Let �j = (1 � ")j=((1 � ")j + (1 � ")13�j), and observe that �j � Æ(1 � ")j for0 � j � 13. If variable x ours d+ times and �x ours d� times, let x be true withprobability �d� , false with probability 1� �d� = �13�d� � Æ(1� ")13�d� � Æ(1� ")d+.Let bad(C) = [lause C is falsi�ed by the random assignment℄, and onstrutthe lopsidependeny graph for these events as in exerise 351. Then, if the literalsof C = (l1 _ � � � _ l7) have ontrary appearanes in d1, : : : , d7 other lauses, we havePr(bad(C)) � (Æ(1�")d1) : : : (Æ(1�")d7) = "(1�")d1+���+d7 � "(1�")degree(C);beause C has at most d1 + � � �+ d7 neighbors. Theorem L, with parameter �i = " foreah event bad(C), now tells us that Pr[all m lauses are satis�ed℄ � (1� ")m.[See H. Gebauer, T. Szab�o, and G. Tardos, SODA 22 (2011), 664{674, forasymptoti results that apply to kSAT as k!1.℄
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7.2.2.2 ANSWERS TO EXERCISES 225 4-ylesexat over3D mathingsudokuheadersPoisson probabilityFranoJaquetKnesslSzpankowskiGoldberg
211. If m lauses in n variables are given, so that 3m = 4n, let N = 8n. Consider N\olors" named jk or jk, where 1 � j � n and k is one of the four lauses that ontains�xj . Let � be a permutation on the olors, onsisting of 4-yles that involve the samevariable, with the properties that (i) (jk)� = jk0 for some k0 and (ii) (jk)� = (jk)�.There are 4n verties of KN named jk, having the respetive olor listsL(jk; 1) = fjk; jkg; L(jk; 2) = fjk; (jk)�g; L(jk; 3) = fjk; (jk)�g:The other 3m verties of KN are named ak, bk, k for eah lause k. If that lause is,say, x2 _ �x5 _ x6, the olor lists areL(ak; 1) = f2k; 5k; 6kg; L(bk; 1) = L(k; 1) = f2k; 2k; 5k; 5k; 6k; 6kg;L(ak; 2) = f(2k)�g; L(bk; 2) = f(5k)�g; L(k; 2) = f(6k)�g;L(ak; 3) = f(2k)�2; (2k)�g; L(bk; 3) = f(5k)�2; (5k)�g; L(k; 3) = f(6k)�2; (6k)�g:Then KN K3 is list-olorable if and only if the lauses are satis�able. (For example,(jk; 1) is olored jk () ((jk)�; 1) is olored (jk)� () (ak; 1) is not olored jk.)212. (a) Let xijk = 1 if and only if Xij = k. [Note: Another equivalent problem is to�nd an exat over of the rows f fPij;Rik;Cjkg j pij = rik = jk = 1g. This is a speialase of 3D mathing; see the disussion of sudoku in Setion 7.2.2.1. Inidentally, the3D mathing problem an be formulated as the problem of �nding a binary tensor (xijk)suh that xijk � yijk and xi�� = x�j� = x��k = 1, given (yijk).℄(b) 31 = 32 = r13 = r14 =0 fores x13�=0 6= p13 when r= =�1100011000111001�, p=�1010110001010011�.() Make L(I; J) = f1; : : : ; Ng for M < I � N , 1 � J � N . It is well known(Theorem 7.5.1L) that a latin retangle an always be extended to a latin square.(d) Index everything by the set f1; : : : ; Ng [SI;Jf(I; J;K) j K 2 L(I; J)g. Theelements (I; J;K) where K = minL(I; J) are alled headers. Set pij = 1 if and onlyif (i) i = j = (I; J;K) is not a header; or (ii) i = (I; J;K) is a header, and j = J orj = (I; J; K0) is not a header; or (iii) j = (I; J;K) is a header, and i = I or i = (I; J;K0)is not a header. Set rik = ik = 1 if and only if (i) 1 � i; k � N ; or (ii) i = (I; J;K)and k = (I; J;K0), and if i is not a header then (K0 = K or K0 is the largest element< K in L(I; J)). [Referene: SICOMP 23 (1994), 170{184.℄213. The hinted probability is (1� (1� p)n0(1� q)n�n0)m, where n0 = b1 + � � � + bn.Thus if p � q, every x has probability at least (1 � (1 � p)n)m of satisfying everylause. This is huge, unless n is small or m is large: If m is less than �n, where� is any onstant less than 1=(1 � p), then when n > �1= lg(1 � p) the probability(1� (1� p)n)m > exp(�n ln(1� (1� p)n)) > exp(�2(�(1� p))n) > 1� 2(�(1� p))n isexponentially lose to 1. Nobody needs a SAT solver for suh an easy problem.Even if, say, p = q = k=(2n), so that the average lause size is k, a lause isempty|hene unsatis�able|with probability e�k+O(n�1); and indeed a lause hasexatly r elements with the Poisson probability e�kkr=r! +O(n�1) for �xed r. So themodel isn't very relevant. [See J. Frano, Information Pro. Letters 23 (1986), 103{106.℄214. (a) T (z) = zez + 2T (pz)(e(1�p)z � 1).(b) If f(z) = Q1m=1(1 � e(p�1)z=pm) and � (z) = f(z)T (z)e�z, we have � (z) =zf(z) + 2� (pz) = zf(z) + 2pzf(pz) + 4p2zf(p2z) + � � � .() See P. Jaquet, C. Knessl, and W. Szpankowski, Combinatoris, Probability,and Computing 23 (2014), 829{841. [The sequene hTni was �rst studied by A. T.Goldberg, Courant Computer Siene Report 16 (1979), 48{49.℄
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226 ANSWERS TO EXERCISES 7.2.2.2 BrownPurdomBugraraStirling subset numbersasymptotisaddle point methodM�ejeanMorelReynaudtautologialgeneralization of resolution
215. Sine any given x1 : : : xl is a partial solution in (8�n3� � �l3�)m of the (8�n3�)mpossible ases, level l ontains Pl = 2l(1� 18 l3=n3)m nodes on the average. When m =4n and n = 50, the largest levels are (P31; P32; : : : ; P36) � (6:4; 6:9; 7:2; 7:2; 6:8; 6:2) �106, and the mean total tree size P0 + � � �+ P50 is about 85.6 million.If l = 2tn andm = �n we have Pl = 2f(t)n, where f(t) = 2t+� lg(1�t3)+O(1=n)for 0 � t � 1=2. The maximum f(t) ours when ln 4 = 3�t2=(1 � t3), at whih pointt = t� = �� 12�4+ 58�7+O(�10), where � =p ln 4=(3�); for example, t4 � 0:334. NowPL+k = 2E ; E = (2t�+� lg(1�t3�))n+1�2t��k2n +O�1n�+O�k3n2�;  = �+t� ln 22�t� ;when L = 2t�n; hene the expeted total tree size is p�n=PL(1 +O(1=pn)).[This question was �rst studied by C. A. Brown and P. W. Purdom, Jr., SICOMP10 (1981), 583{593; K. M. Bugrara and C. A. Brown, Inf. Sienes 40 (1986), 21{37.℄216. If the searh tree has q two-way branhes, it has fewer than 2nq nodes; we shall�nd an upper bound on E q. Consider suh branhes after values have been assignedto the �rst l variables x1, : : : , xl, and also to s additional variables y1, : : : , ys beauseof unit-lause foring; the branh therefore ours on level t = l+ s. The values an beassigned in 2t ways, and the y's an be hosen in �n�1�ls � ways. For 1 � i � s the mgiven lauses must ontain ji � 1 lauses hosen (with replaement) from the F = �t�12 �that fore the value of yi from other known values. The other m� j1 � � � � � js mustbe hosen from the R = 8�n3� � sF � �t3� � 2�t2�(n � t) remaining lauses that aren'tentirely false and don't fore anything further. Thus the expeted number of two-waybranhes is at mostPlt = 2t�n�l�1s � Xj1;:::;js�1� mj1; : : : ; js;m�j�F jRm�jNm ; j = j1 + � � � + js; N = 8�n3 �;summed over 0 � l � t < n. Let b = F=N and  = R=N ; the sum on j1, : : : , js ism! [zm℄ (ebz � 1)sez =Xr �sr�(�1)s�r(+ rb)m = s! mXq �mq �n qso� b�q:These values Plt are almost all quite small when m = 200 and n = 50, rising above 100only when l � 45 and t = 49; PPlt � 4404:7.If l = xn and t = yn, we have b � 38y2=n and  � 1� 18 (3(y�x)y2+y3+6y2(1�y)).The asymptoti value of [z�n℄ (e�z=n�1)Ænez an be found by the saddle point method:Let � satisfy �Æe�=(e� � 1) +  = ��=�, and let �2 = �=�2 � Æe�=(e� � 1)2. Then theanswer is approximately (e� � 1)Æne�n=�pn=(p2���(�n=�)�n+1).[For exat formulas and lower bounds, see SICOMP 12 (1983), 717{733. The totaltime to �nd all solutions grows approximately as (2( 78 )�)n when � < 4:5, aording toH.-M. M�ejean, H. Morel, and G. Reynaud, SICOMP 24 (1995), 621{649.℄217. True, unless both l and �l belong to A or to B (making A or B tautologial). Forif L is a set of stritly distint literals that overs both A and B, we know that neitherA nor B nor L ontains both l and �l; hene Lnfl; �lg overs (Anfl; �lg)[ (B nfl; �lg) = C.(This generalization of resolution is, however, useless if C � A or C � B, beausea large lause is easier to over than any of its subsets. Thus we generally assume thatl 2 A and �l 2 B, and that C isn't tautologial, as in the text.)218. x? B: A. [Hene (x _A) ^ (�x _B) always implies A _ B.℄
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7.2.2.2 ANSWERS TO EXERCISES 227 tautologialommutativeassoiativeMCollrefutation hainpure literalunneessary branhKnuthRobinsonawkward
219. If C0 or C00 is tautologial (}), we de�ne }�C = C �} = C. Otherwise, if there'sa unique literal l suh that C0 has the form l_A0 and C00 has the form �l_A00, we de�neC0�C00 = A0_A00 as in the text. If there are two or more suh literals, stritly distint,we de�ne C0 � C00 = }. And if there are no suh literals, we de�ne C0 �C00 = C0 _C00.[This operation is obviously ommutative but not assoiative. For example, wehave (�x � �y) � (x _ y) = } while �x � (�y � (x _ y)) = �.℄220. (a) True: If C � C0 and C0 � C00 and C00 6= } then C0 6= }; hene every literalof C appears in C0 and in C00. [The notion of subsumption goes bak to a paper byHugh MColl, Pro. London Math. So. 10 (1878), 16{28.℄(b) True: Otherwise we'd neessarily have (C �C0) _ � _ �0 6= } and C 6= } andC0 6= } and C � C0 6= C _ C0; hene there's a literal l with C = l _A, C0 = �l _A0,and the literals of A _ A0 _ � _ �0 are stritly distint. So the result is easily heked,whether or not � or �0 ontains l or �l. (Notie that we always have C � C0 � C _ C0.)() False: �xy � } but x� �xy = y 6� x = x�}. Also � � �x but x� � = x 6� � = x� �x.(d) Suh examples are possible if C 6= �: We have x; �x ` y (and also x; �x ` }),although the only lauses obtainable from x and �x by resolution are x, �x, and �. (Onthe other hand we do have F ` � if and only if there's a refutation hain (104) for F .)(e) Given a resolution hain C01, : : : , C0m+r, we an onstrut another hainC1, : : : , Cm+r in whih Ci � C0i for 1 � i � m+ r. Indeed, if i > m and C0i = C0j �C0k,it's easy to see that either Cj � Cj or Ck � Ck or Cj �Ck will subsume C0i.(f) It suÆes by (e) to prove this when �1 = � � � = �m = �; and by indutionwe may assume that � = l is a single literal. Given a resolution hain C1, : : : , Cm+rwe an onstrut another one C01, : : : , C0m+r suh that C0i = Ci _ l for 1 � i � m andC0i � Ci_l for m+1 � i � m+r, with C0i = C0j or C0k or C0j �C0k whenever Ci = Cj �Ck.221. Algorithm A reognizes `1' as a pure literal, but then �nds aontradition beause the other two lauses are unsatis�able. Theresolution refutation uses only the other two lauses. (This is anexample of an unneessary branh. Indeed, a pure literal never appearsin a refutation tree, beause it an't be aneled; see the next exerise.) 122 �210 1222. If A is an autarky that satis�es C, it also satis�es every lause on the path to �from a soure vertex labeled C, beause all of the satis�ed literals annot simultaneouslyvanish. For the onverse, see Disrete Appl. Math. 107 (2000), 99{137, Theorem 3.16.223. (The author has onvined himself of this statement, but he has not been able toonstrut a formal proof.)224. At every leaf labeled by an axiom A of F j �x that is not an axiom of F , hangethe label to A [ x; also inlude x in the labels of all this leaf's anestors. We obtain aresolution tree in whih the leaves are labeled by axioms of F . The root is labeled x,if any labels have hanged; otherwise it is still labeled �.[See J. A. Robinson, Mahine Intelligene 3 (1968), 77{94.℄225. Let's say that a regular resolution tree for lause A is awkward if at least one ofits nodes resolves on one of the variables in A. An awkward tree T for A an always betransformed into a regular non-awkward tree T 0 for some lause A0 � A, where T 0 issmaller than T . Proof: Suppose T is awkward, but none of its subtrees are. Withoutloss of generality we an �nd a sequene of subtrees T0, : : : , Tp, T 01, : : : , T 0p, whereT0 = T and Tj�1 for 1 � j � p is obtained from Tj and T 0j by resolving on the variablexj ; furthermore xp 2 A. We an assume that the labels of Tj and T 0j are Aj and A0j ,where Aj = xj [ Rj and A0j = �xj [ R0j ; hene Aj�1 = Rj [ R0j . Let Bp = Ap; and for



September 23, 2015

228 ANSWERS TO EXERCISES 7.2.2.2 Kullmanntautologialtransitive lawhyperresolutionj = p� 1, p� 2, : : : , 1, let Bj = Bj+1 if xj =2 Bj+1, otherwise obtain Bj by resolvingBj+1 with A0j . It follows by indution that Bj � xp [ Aj�1. Thus B1 � xp [ A0 = A,and we've derived B1 with a non-awkward tree smaller than T .Now we an prove more than was asked: If T is any resolution tree that deriveslause A, and if A [ B is any lause that ontains A, there's a non-awkward regularresolution tree Tr no larger than T that derives some lause C � A [ B. The proofis by indution on the size of T : Suppose A = A0 [ A00 is obtained at the root of Tby resolving the lauses x [ A0 with �x [ A00 that label the subtrees T 0 and T 00. Findnon-awkward regular trees T 0r and T 00r that derive C0 and C00, where C0 � x[A0[B andC00 � �x [A00 [B. If x 2 C0 and �x 2 C00, we obtain the desired Tr by resolving T 0r andT 00r on x. Otherwise we an either let C = C0 and Tr = T 0r, or C = C00 and Tr = T 00r .[It's interesting to apply this onstrution to the highly irregular resolutions in (105).℄226. Initially � is the root, C(�) = �, k�k = N , and s = 0. If � isn't a leaf, wehave C(�) = C(�0) � C(�00) where x 2 C(�0) and �x 2 C(�00) for some variable x. TheProver names x, and hanges �  �0 or �  �00 if the Delayer sets x  0 or x  1,respetively. Otherwise min(k�0k; k�00k) � k�k=2, and the Prover an keep going.227. The proof is by indution on the number of variables, n: If F ontains the emptylause, the game is over, the Delayer has sored 0, and the root is labeled 0. Otherwisethe Prover names x, and the Delayer onsiders the smallest possible labels (m;m0) onthe roots of refutations for F j x and F j �x. If m > m0, the reply x  0 guaranteesm points; and the reply x  � is no better, beause m0 + 1 � m. If m < m0, thereply x  1 guarantees m0; and if m = m0, the reply x  � guarantees m+ 1. Thusan optimum Delayer an always sore at least as many points as the root label of anybranh of a refutation tree onstruted by the Prover. Conversely, if the Prover alwaysnames an optimal x, the Delayer an't do better.(This exerise was suggested by O. Kullmann. One an ompute the optimumsore \bottom up" by onsidering all 3n possible partial assignments as in answer 133.)228. We need only assume the transitivity lauses Tijk of (100) when i < j and k < j.[Notie further that Tijk is tautologial when i = j or k = j, thus useless for resolution.℄229. Using the binary-relation interpretation, these lauses say that j 6� j, that thetransitive law \i � j and j � k implies i � k" holds whenever i � k and j < k, andthat every j has a suessor suh that j � k. The latter axiom ombines with the�niteness of m to imply that there must be a yle j0 � j1 � � � � � jp�1 � jp = j0.Consider the shortest suh yle, and renumber the subsripts so that jp =maxfj0; : : : ; jpg. We annot have p � 2, beause (1000) implies jp�2 � jp, yieldinga shorter yle. Hene p = 1; but that ontradits (99).230. Call the axioms Ij , Tijk, andMjm as in the text. If Ij0 is omitted, let xij = [j = j0 ℄for all i and j. If Ti0j0k0 is omitted, let xij = [j 2A℄ for all i =2 A = fi0; j0; k0g; alsolet xi0j = [j = j0 ℄, xj0j = [j = k0 ℄, and (if i0 6= k0) xk0j = [j = i0 ℄. Finally, if Mj0mis omitted, let xij = [pi<pj ℄, where p1 : : : pm = 1 : : : (j0�1)(j0+1) : : : mj0. (The sameonstrution shows that the lauses of answer 228 are minimally unsatis�able.)231. Sine G11 =M1m, we an assume that j > 1. Then G(j�1)j = G(j�1)(j�1) � Ij�1.And if 1 � i < j� 1 we have Gij = (� � � ((G(j�1)j �Aijj) �Aij(j+1)) � � � � ) �Aijm, whereAijk = Gi(j�1) � Ti(j�1)k = Gij _ �x(j�1)k. These lauses make it possible to deriveBij = (� � � ((Gij �Tjij) �Tji(j+1)) � � � � ) �Tjim = Gjj _ �xji for 1 � i < j, from whih weobtain Gjj = (� � � ((Mjm �B1j) �B2j) � � � � ) �B(j�1)j . Finally Gmm � Imm = �.
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7.2.2.2 ANSWERS TO EXERCISES 229 CookCook232. It suÆes to exhibit a baktrak tree of depth 6 lg q +O(1). By branhing on atmost 6 variables we an �nd the olor-triplet �1 in answer 176().Suppose we know that �j = � and �j+p = �0, where �0 annot be obtainedfrom � in p steps; this is initially true with j = 1, � = �0 = �1, and p = q. Ifp = 1, a few more branhes will �nd a ontradition. Otherwise at most 6 branheswill determine �l, where l = j + bp=2; and either �l will be unreahable from � inbp=2 steps, or �0 will be unreahable from �l in dp=2e steps, or both. Reurse.233. C9 = C4 � C8, C10 = C1 � C9, C11 = C5 � C10, C12 = C6 � C10, C13 = C7 � C11,C14 = C3 � C12, C15 = C13 � C14, C16 = C2 � C15, C17 = C4 � C15, C18 = C8 � C15,C19 = C12 � C17, C20 = C11 �C18, C21 = C16 �C19, C22 = C20 � C21.234. Reply xjk  � to any query that doesn't allow the Prover to violate (107). Thenthe Prover an violate (106) only after every hole has been queried.235. Let C(k;A) = (Wkj=0Wa2A xja), so that C(0; f1; : : : ;mg) = (x01 _ � � � _x0m) andC(m; ;) = �. The hain onsists of k stages for k = 1, : : : , m, where stage k begins byderiving the lauses �xka _ C(k � 1; A) from the lauses of stage k � 1, for all (m� k)-element subsets A of f1; : : : ;mgna; every suh lause requires k resolutions with (107).Stage k onludes by deriving C(k;A) for all (m� k)-element subsets A of f1; : : : ;mg,eah using one resolution from (106) and k � 1 resolutions from the beginning of thestage. (See (103).) Thus stage k involves a total of � mm�k�(k2 + k) resolutions.For example, the resolutions when m = 3 suessively yield 11 02 03, 12 01 03,13 01 02; 01 02 11 12, 01 03 11 13, 02 03 12 13 (stage 1); 21 02 11 12, 21 02 12, 21 03 11 13,21 03 13, 22 01 12 11, 22 01 11, 22 03 12 13, 22 03 13, 23 01 13 11, 23 01 11, 23 02 13 12,23 02 12; 01 11 21 22, 01 11 21, 02 12 22 23, 02 12 22, 03 13 23 22, 03 13 23 (stage 2); and31 11 21, 31 21, 31, 32 12 22, 32 22, 32, 33 13 23, 33 23, 33; 32 33, 33, � (stage 3).[Stephen A. Cook onstruted suh hains in 1972 (unpublished).℄236. The symmetry of the axioms should allow exhaustive veri�ation by omputerfor m = 2, possibly also for m = 3. The onstrution ertainly seems hard to beat.Cook onjetured in 1972 that any minimum-length resolution proof would inlude, forevery subset S of f1; : : : ;mg, at least one lause C suh that S�xjk2Cfkg = S.237. The idea is to de�ne yjk = xjk _ (xjm ^xmk) for 0 � j < m and 1 � k < m, thusreduing from m pigeons to m� 1. First we append 6(m� 1)(m� 2) new lauses(xjm_zjk) ^ (xmk_zjk) ^ (�xjm_�xmk_�zjk) ^ (�xjk_yjk) ^ (yjk_zjk) ^ (xjk_�yjk_�zjk);involving 2(m� 1)(m� 2) new variables yjk and zjk. Call these lauses Ajk, : : : , Fjk.Now if Pj stands for (106) and Hijk for (107), we want to use resolution to deriveP 0j = (yj1 _ � � � _ yj(m�1)) and H 0ijk = (�yik _ �yjk). First, Pj an be resolved with Dj1,: : : , Dj(m�1) to get P 0j _ xjm. Next, Pm �Hjmm = xm1 _ � � � _ xm(m�1) _ �xjm an beresolved with Gjk = Cjk �Ejk = �xjm _ �xmk _ yjk for 1 � k < m to get P 0j _ �xjm. Onemore step yields P 0j . (The intuitive \meaning" guides these maneuvers.)From Bjk � Fjk = xjk _ xmk _ �yjk, we obtain Qijk = �xik _ �yjk after resolvingwith Hijk and Himk. Then (Qijk � Fik) � Aik = xim _ �yik _ �yjk = Rijk, say. Finally,(Rjik �Hijm) �Rijk = H 0ijk as desired. (When forming Rjik we need Qjik with j > i.)We've done 5m3 � 6m2 + 3m resolutions to redue m to m� 1. Repeating untilm = 0, with fresh y and z variables eah time, yields � after about 54m4 steps.[See Stephen A. Cook, SIGACT News 8, 4 (Otober 1976), 28{32.℄238. The funtion (1 � x)�x = exp(x2 + 2x3=2 + � � � ) is inreasing and > ex2 .Setting  = 12n , W = p2n ln r, and b = dW e makes f � r < ��b. Also W � w(�0)
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230 ANSWERS TO EXERCISES 7.2.2.2 asymptoti methodsgenerating funtionstree funtionomplete binary treemathingboundarywhen n � w(�0)2 and r � 2; hene w(�0 ` �) �W + b � p8n ln r + 1 as desired. The`�2' in the lemma handles the trivial ases that arise when r < 2.(It is important to realize that we don't hange n or W in the indution proof.Inidentally, the exat minimum of W + b, subjet to r = (1�W=(2n))�b, ours whenW = 2n(1� e�2T (z)) = 4nz + 2nz33 + � � � ; b = ln r2T (z) = (ln r)� 12z � 12 � z4 � � � ��;where z2 = (ln r)=(8n) and T (z) is the tree funtion. Thus it appears likely that theproof of Lemma B supports the stronger result w(�0 ` �) < p8n ln r � 12 ln r + 1.)239. Let �0 onsist of all 2n nontautologial lauses of length n. The shortest refutationis the omplete binary tree with these leaves, beause every nontautologial lause mustappear. Algorithm A shows that 2n � 1 resolutions suÆe to refute any lauses in nvariables; hene k�0 ` �k = 2n � 1, and this is the worst ase.240. If A0 has t elements and �A0 has fewer than t, the sequene of 5t integers fijfor its neighbors must inlude at least 2t repeats of values seen earlier. (In fat thereare at least 2t+ 1 repeats, beause 2t would leave at least t in the boundary; but thealulations are simpler with 2t, and we need only a rather rude bound.)The probability pt that some suh A0 exists is therefore less than �m+1t ��5t2t�(3tm)2t,beause there are �m+1t � ways to selet A0, �5t2t� to selet the repeating slots, and at most(3t)2t out ofm2t ways to �ll those slots. Also �m+1t � = �mt �+� mt�1� < 2�mt � when t � 12m.By exerise 1.2.6{67 we have pt � 2(met )t(5te2t )2t(3tm)2t = 2(t=m)t, where  =225e3=4 � 1130. Also p0 = p1 = 0. Thus the sum of pt for t � m=3000 is less than2P1t=2(=3000)t � :455; and the probability of strong expansion exeeds .544.241. If 0 < jA0j � m=3000, we an put one of its elements into a hole bk 2 �A0. Thenwe an plae the other elements in the same way, sine bk isn't their neighbor.242. The proof of Theorem B remains valid when these new axioms are added.243. (a) The probability that F 0 has t elements and V (F 0) has fewer than t is at most��nt ��nt�( tn)3t � (�e2tn )t. The sum of this quantity for 1 � t � lg n is O(n�1), and so isthe sum for lg n � t � n=(2�e2).(b) If the ondition in (a) holds, there's a mathing from F 0 into V (F 0), byTheorem 7.5.1M; hene we an satisfy F 0 by assigning to its variables, one by one. IfF is unsatis�able we'll therefore need to invoke more than n=(2�e2) of its axioms.() The probability pt that F 0 has t elements and 2jV (F 0)j � 3jF 0j < 12 jF 0j is atmost ��nt ��n�t�(�tn )3t� (�e1+��3��(t=n)1=4)t, where � = 74 . We have (e1+��3��)4<106;so pt < t when t � n0, where  < 1, and Pn0t=n0=2 pt is exponentially small.(d) Sine n0 < n=(2�e2), every refutation a.s. ontains a lause C with n0=2 ��(C) < n0. The minimal axioms F 0 on whih C depends have jF 0j = �(C). Let kbe the number of \boundary" variables that our in just one axiom of F 0. If v issuh a variable, we an falsify C and the axiom ontaining v, while the other axiomsof F 0 are true; hene V must ontain v or �v. We have jV (F 0)j = k + jnonboundaryj �k + 12 (3jF 0j � k), beause eah nonboundary variable ours at least twie. Thereforek � 2jV (F 0)j � 3jF 0j � n0=4, q.s. (Notie the similarities to the proof of Theorem B.)244. We have [A [ B ℄0 = [A℄0[B ℄0 [ [A℄1[B ℄1 and [A [ B ℄1 = [A℄0[B ℄1 [ [A℄1[B ℄0,where onatenation of sets has the obvious meaning. These relations hold also whenA = ; or B = ;, beause [;℄0 = f�g and [;℄1 = ;.
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7.2.2.2 ANSWERS TO EXERCISES 231 3SATubiTseytinregular resolutionUrquhartBen-SassonWigdersonlinear equationsbaktrakingStanford GraphBaseramanmultigraphsexpander graphsmerge
245. (a) When onditioning on euv, simply delete the edge u ��� v from G. Whenonditioning on �euv, also omplement l(u) and l(v). The graph might beome dison-neted; in that ase, there will be exatly two omponents, one even and one odd, withrespet to the sums of their labels. The axioms for the even omponent are satis�ableand may be disarded.For example, �(G) j f�b; eg orresponds to while �(G) j f�b; �eg orrespondsto . We toss out the left omponent in the �rst ase, the right one in the other.(b) If C 2 �(v) we may take V 0 = fvg. And we have �(�) = jV j, beause theaxioms Sv2V nu �(v) are satis�able for all u 2 V .() If u 2 V 0 and v =2 V 0, there's an assignment that falsi�es C and some axiomof �(u) while satisfying all �(w) for w 2 V 0 n u, beause jV 0j is minimum. Settingeuv  �euv will satisfy �(u) without a�eting the axioms �(w) (whih don't ontain euv).(d) By (b), every refutation of �(G) must ontain a lause C with 13m � �(C) <23m. The orresponding V 0 has jV 0j=(jV 0j + j�V 0j) < ( 23 + 8)=9, hene j�V 0j > 126 jV 0j.[Property (i) is interesting but irrelevant for this proof. Notie that �(G) hasexatly 83n � 2:67n 3SAT lauses in n = 3m=2 variables when G is ubi; everyliteral ours four times. G. Tseytin proved lower bounds for refutations of �(G) byregular resolution in 1966, before graphs with property (iii) were known; A. Urquhartobtained them for general resolution in JACM 34 (1987), 209{219, and the simpli�edargument given here is due to Ben-Sasson and Wigderson. The fat that �(G) requiresexponentially long refutation hains, although the same axioms an be refuted easilyby working with linear equations mod 2, amounts to a proof that baktraking is a poorway to deal with linear equations! Suitable Ramanujan graphs raman (2; q; 3; 0) are partof the Stanford GraphBase for in�nitely many prime numbers q. We an also obtainthe same lower bounds with the multigraphs raman (2; q; 1; 0) and raman (2; q; 2; 0).Setion 7.4.3 will explore expander graphs in detail.℄246. Let's write [a1 : : : ak℄` for what exerise 244 alls [fa1; : : : ; akg℄`. With newvariables x, y, z we an introdue fxa; x�b; �x�ab; y�a; yb; �ya�b; zx; zy; �z�x�yg and resolve thoselauses to [zab℄1, whih means z = a � b. So we an assume that `z  a � b' is alegal primitive operation of \extended resolution hardware," when z is a new variable.Furthermore we an ompute a1 � � � � � ak in O(k) steps, using z0  0 (whih is thelause [z0℄1, namely �z0) and zk  zk�1 � ak when k � 1.Let the edge variables E(v) be a1, : : : , ad, where d is the degree of v. We omputesv  a1 � � � � � ad by setting sv;0  0, sv;k  sv;k�1 � ak, and sv  sv;d. We anresolve sv with the axioms �(v) in O(2d) steps, to get the singleton lause [sv℄`(v)�1,meaning sv = `(v). Summing over v, these operations therefore take O(N) steps.On the other hand, we an also ompute zn  Lv sv and get zero (namely `�zn').Doing this leverly, by omnisiently knowing G, we an in fat ompute it in O(mn)steps: Start with any vertex v and set z1  sv (more preisely, set z1;k  sv;k for0 � v � d). Given zj for 1 � j < n, with all its subvariables zj;k, we then omputezj+1  zj�su, where u is the unused vertex with su;1 = zj;1. We an arrange the edgesinto an order so that if zj has p edge variables in ommon with su, then zj;k = su;k for1 � k � p. Suppose the other variables of zj and su are respetively a1, : : : , aq andb1, : : : , br; we want to merge them into the sequene 1, : : : , q+r that will be neededlater when zj+1 is used. So we set zj+1;0  0, zj+1;k  zj+1;k�1� k, zj+1  zj+1;q+r.From the lauses onstruted in the previous paragraph, resolution an dedue[zj;ksu;k℄1 for 1 � k � p, and hene [zj+1;0zj;psu;p℄1 (namely that zj+1;0 = zj;p � su;p).Furthermore, if k = ai, and if we know that zj+1;k�1 = zj;s � su;t where s = p+ i� 1
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232 ANSWERS TO EXERCISES 7.2.2.2 St�almarkredundantand t = p+ k � i, resolution an dedue that zj+1;k = zj;s+1 � su;t; a similar formulaapplies when k = bi. Thus resolution yields zj+1  zj � su as desired. Ultimately wededue both zn and �zn from the singleton lauses sv = `(v).247. Eliminating x2 from f12; �12; �1�2g gives f�1g; eliminating x1 then gives ;. So those�ve lauses are satis�able.248. We have F (x1; : : : ; xn) = (xn_A01)^� � �^ (xn_A0p)^ (�xn_A001 )^� � �^ (�xn_A00q )^A0001 ^� � �^A000r = (xn_G0)^(�xn_G00)^G000, where G0 = A01^� � �^A0p, G00 = A001^� � �^A00q ,and G000 = A0001 ^ � � � ^A000r depend only on fx1; : : : ; xn�1g. Hene F 0 = (G0 _G00)^G000;and the lauses of G0 _G00 = Vpi=1Vqj=1(A0i _A00j ) are the resolvents eliminating xn.249. After learning C7 = �2�3 as in the text, we set d  2, l2  �2, Cj = 2�3, learnC8 = �3, and set d 1, l1  �3. Then l2  �4 (say); and l3  �1, l4  �2. Now Ci = 1234has been falsi�ed; after l4  2 and Cj = 1�2 we learn C9 = 134, set l3  1, and learnC10 = 134 � �13 = 34. Finally l2  4, we learn C11 = 3; l1  3, and we learn C12 = �.250. l1  1, l2  3, l3  �2, l4  4; learn �12�3; l3  2, l4  4; learn �1�2�3 and �1�3;l2  �3, l3  �2, l4  4; learn �123; l3  2, l4  4; learn �1�23, �13, �1; l1  �1, l2  3,l3  �4, l4  2; learn 1�34; l3  4, l4  �2, l4  2.251. Algorithm I has the property that �li1 , : : : , �lik�1 , lik are on the stak wheneverthe new lause li1 _ � � � _ lik has been learned, if i1 < � � � < ik = d and step I4 returnsto I2. These literals limit our ability to exploit the new lause; so it appears to beimpossible to solve this problem without doing more resolutions than St�almark did.However, we an proeed as follows. LetM 00imk be the lause xm1_� � �_xm(k�1)_xik _ � � � _ xi(m�1) _ �xim, for 1 � i; k < m. Using ij to stand for xij , the proess form = 3 begins by putting 11, 12, 13, 21, 22, 23, 31, 32, 33 on the stak. Then step I3has Ci = I3, step I4 has Cj = M33; so step I5 learns I3 �M33 = M32. Step I4 nowhanges 32 to 32 and hooses Cj = T232; so I5 learns M32 � T232 = M 00232. Step I4hanges 31 to 31 and hooses Cj = T231; now we learn M 00232 � T231 = M 00231. Next, welearn M 00231 �M23 =M22; and after hanging 22 to 22 we also learn M21.The stak now ontains 11, 12, 13, 21. We add 31, 32, and proeed to learnM32 � T132 = M 00132, M 00132 � T131 = M 00131, M 00131 �M13 = M12. The stak now ontains11, 12, and we've essentially redued m from 3 to 2.In a similar way, O(m2) resolutions will learn Mi(m�1) for i = m� 1, : : : , 1; andthey'll leave �x11, : : : , �x1(m�2), x1(m�1) on the stak so that the proess an ontinue.252. No; large numbers of lauses suh as �x12 _ �x23 _ � � � _ �x89 _ x19 are generated bythe elimination proess. Although these lauses are valid, they're not really helpful.Exerise 373 proves, however, that the proof is ompleted in polynomial time ifwe restrit onsideration to the transitivity lauses of exerise 228(!).253. A onit arises when we follow a hain of fored moves:t Lt level reason0 �6 1 �1 4 1 462 5 2 �3 �3 2 �3�4�54 9 2 369 t Lt level reason5 �7 2 �5�7�96 �1 2 �1�5�97 8 2 6788 2 2 1239 �2 2 �2�5�8Now �2�5�8! �2�5�8 � 123 = 13�5�8! 13�567! 3�567�9! 3�56�9! 3�56! �4�56; so we learn �4�56(whih an be simpli�ed to �56, beause �4 is \redundant" as explained in exerise 257).
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7.2.2.2 ANSWERS TO EXERCISES 233 level 0reasonsunique impliation pointUIPbakjumpingmemo ahememoization tehniquelevreursive proedureVan Gelderwathed literalsrandom permutation
Setting L2  �5, with reason �4�56 or �56, now fores 7, �1, 3, 9, �2, �8, 8, all at level 1;this onit soon allows us to learn the unit lause 6. (Next we'll inaugurate level 0,setting L0  6. No \reasons" need to be given at level 0.)254. Deduing 3, 2, 4, �4 at level 1, it will �nd �2�4 � 4�3 = �2�3 and �2�3 � 2�3 = �3, learning �3.(Or it might learn �3 after deduing �2.) Then it will dedue �3, �1, 2, �4 at level 0.255. For example, f�1�2�4; �2�3�5; 456; 45�6g. [Sine the lause 0 that is learned by theproedure desribed in the text ontains just one literal l from the onit level d,the trail position for �l has been alled a \unique impliation point" (UIP). If l isn'tthe deision literal for its level, we ould resolve 0 with l's reason and �nd anotherUIP; but eah new resolution potentially inreases the b array and limits the amountof bakjumping. Therefore we stop at the �rst UIP.℄256. If it is false, literals 50, 26, : : : , 30 are true; hene also 25, 23, and 29, a onit.Consequently we an obtain `��' by starting with 23 26 : : : 50 and resolving with 23 25 27,25 27 29, and 25 30 : : : 70. [Similarly, and more simply, one an learn (122) by resolving11 16 : : : 56 with 31 61 91, 41 66 91, and 56 61 66.℄257. (a) Suppose �l 0 on level d0 > 0 is redundant. Then some l00 in the reason for l0 isalso on level d0; and l00 is either in  or redundant. Use indution on trail position.(b) We an assume that the stamp value s used when resolving onits is amultiple of 3, and that all stamps are � s. Then we an stamp literal l with S(jlj)  s+ 1 if �l is known to be redundant, or s+ 2 if �l is known to be nonredundant and notin . (These stamps serve as a \memo ahe" to avoid repeated work.) While building we an also stamp levels as well as literals, setting LS[d0℄ s if level d0 has exatlyone of the bi, or s+ 1 if it has more than one.Then for 1 � j � r, �bj is redundant if and only if LS[lev (bj)℄ = s + 1 andred (�bj) is true, where lev (l) = VAL(jlj)� 1 and where red (l) is the following reursiveproedure: \If l is a deision literal, return false. Otherwise let (l_ �a1 _ � � � _ �ak) be l'sreason. For 1 � i � k with lev (ai) > 0, if S(jaij) = s + 2 return false; if S(jaij) < sand either LS[lev (ai)℄ < s or red (�ai) is false, set S(jaij) s+2 and return false. Butif none of these onditions hold, set S(jlj) s+ 1 and return true."[See Allen Van Gelder, LNCS 5584 (2009), 141{146.℄258. That statement is true in Table 3, but false in general. Indeed, onsider thesequel to Table 3: The deision L44 = 57 auses the wath list of 57 to be examined,thus foring 15, 78, and 87 (among other literals) in some order beause of the lauses15 57 36, 78 57 36, 87 57 27. Then 96 will be fored by the lause 96 87 : : : 15; and theseond literal of that lause at the time of foring will be 15, regardless of trail order,if the wathed literals of that lause were 96 and 15 (making it invisible to 78 and 87).259. 1 + �6 + �7 < �+ �2 when :7245 < � < :7548. (There an in fat be any numberof rossover points: Consider the polynomial (1� �� �2)(1� �3 � �6)(1� �9 � �18).)260. First, to get a random permutation in the heap we an use a variant of Algo-rithm 3.4.2P: For k  1, 2, : : : , n, let j be a random integer in [0 : : k � 1℄ and setHEAP[k � 1℄ HEAP[j℄, HEAP[j℄  k. Then set HLOC(HEAP[j℄)  j for 0 � j < n.Next, set F  0 and Wl  0 for 2 � l � 2n + 1 and   3. Do the followingfor eah input lause l0l1 : : : lk�1: Terminate unsuessfully if k = 0, or if k = 1 and0 � VAL(jl0j) 6= l0 &1. If k = 1 and VAL(jl0j) < 0, set VAL(jl0j) l0&1, TLOC(jl0j) F , F  F + 1. If k > 1, set MEM[+ j℄  lj for 0 � j < k; also MEM[� 1℄  k,MEM[� 2℄ Wl0 , Wl0  , MEM[� 3℄ Wl1 , Wl1  ,  + k + 3.
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Finally, set MINL MAXL +2 (allowing two ells for extra data in the preambleof the �rst learned lause). Of ourse we must also ensure that MEM is large enough.261. (Throughout this answer, lj is an abbreviation for MEM[+ j℄.) Set q  0 and  W�l. While  6= 0, do the following: Set l0  l0. If l0 6= �l (hene l1 = �l), set0  l�3; otherwise set l0  l1, l0  l0, l1  �l, 0  l�2, l�2  l�3, and l�3  0. IfVAL(jl0j) � 0 and VAL(jl0j)+ l0 is even (that is, if l0 is true), perform the stepsif q 6= 0, set MEM[q � 3℄ , else set W�l  ; then set q  . (�)Otherwise set j  2; while j < l�1 and VAL(jlj j) � 0 and VAL(jlj j) + lj is odd, setj  j+1. If now j < l�1, set l1  lj , lj  �l, l�3  Wl1 ,Wl1  . But if j = l�1, do (�)above; jump to C7 if VAL(jl0j) � 0; otherwise set LF  l0, et. (see step C4) and  0.Finally, when  = 0, do (�) above to terminate �l's new wath list.262. To delete k = HEAP[0℄ in C6: Set h h� 1 and HLOC(k)  �1. Stop if h = 0.Otherwise set i  HEAP[h℄, �  ACT(i), j  0, j0  1, and do the following whilej0 < h: Set �0  ACT(HEAP[j0℄); if j0 + 1 < h and ACT(HEAP[j0 + 1℄) > �0, set j0  j0+1 and �0  ACT(HEAP[j0℄); if � � �0, set j0  h, otherwise set HEAP[j℄ HEAP[j0℄,HLOC(HEAP[j0℄) j, j  j0, and j0  2j+1. Then set HEAP[j℄ i and HLOC(i) j.In C7, set k  jlj, �  ACT(k), ACT(k)  � + DEL, j  HLOC(k), and ifj > 0 perform the \siftup" operation: \Looping repeatedly, set j0  (j � 1)� 1 andi  HEAP[j0℄, exit if ACT(i) � �, else set HEAP[j℄  i, HLOC(i)  j, j  j0, and exitif j = 0. Then set HEAP[j℄ k and HLOC(k) j."To insert k in C8, set � ACT(k), j  h, h  h+ 1; if j = 0 set HEAP[0℄  kand HLOC(k) 0; otherwise perform the siftup operation.263. (This answer also sets the level stamps LS[d℄ needed in answer 257, assumingthat the LS array is initially zero.) Let \bump l" mean \inrease ACT(jlj) by DEL" asin answer 262. Also let blit (l) be the following subroutine: \If S(jlj) = s, do nothing.Otherwise set S(jlj) s, p lev (l). If p > 0, bump l; then if p = d, set q  q+1; elseset r r + 1, br  �l, d0  max(d0; p), and if LS[p℄ � s set LS[p℄ s+ [LS[p℄= s℄."When step C7 is entered from C4, assuming that d > 0, set d0  q  r  0,s  s + 3, S(jl0j)  s, bump l0, and do blit (lj) for 1 � j < k. Also set t  max(TLOC(jl1j); : : : ; TLOC(jlk�1j)). Then, while q > 0, set l  Lt, t  t � 1; ifS(jlj) = s then set q  q� 1, and if Rl 6= � let lause Rl be l0l1 : : : lk�1 and do blit (lj)for 1 � j < k. Finally set l0  Lt, and while S(jl0j) 6= s set t t� 1 and l0  Lt.The new lause an now be heked for redundanies as in answer 257. To installit during step C9, there's a subtle point: We must wath a literal that was de�nedon level d0. Thus we set   MAXL, MEM[℄  �l 0, k  0, j0  1; and for 1 �j � r if S(jbj j) = s set k  k + 1 and do this: If j0 = 0 or lev (jbj j) < d0, setMEM[+ k + j0℄  �bj , otherwise set MEM[+ 1℄  �bj , j0  0, MEM[� 2℄  W�l0 ,W�l0  , MEM[�3℄ W�bj , W�bj  . Finally set MEM[�1℄ k+1, MAXL +k+6.264. We an maintain a \history ode" array, setting HF to 0, 2, 4, or 6 when LFis set, and then using Ht + (Lt & 1) as the move ode that represents trail loation tfor 0 � t < F . History odes 6, 4, and 0 are appropriate in steps C1, C4, and C6,respetively; in C9, use ode 2 if l0 was a deision literal, otherwise use ode 6.[These move odes do not inrease lexiographially when the trail is ushed andrestarted; hene they don't reveal progress as niely as they do in the other algorithms.℄265. (1) A literal Lt on the trail with G � t < F has beome true, but the wath listof Lt has not yet been examined. (2) If l0 is true, so that  is satis�ed, step C4 doesn't
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7.2.2.2 ANSWERS TO EXERCISES 235 full runBIMP(l)Knuthbuddy-systembreadth-�rstagpurgingwathed literalsremove  from the wath list of l1 when l1 beomes false. (This behavior is justi�ed,beause  won't be examined again until l1 has beome free during the baktrakingstep C8.) (3) A lause that beomes a reason for l0 remains on the wath list of itsfalse l1. (4) During a full run, a lause that triggers a onit is allowed to keep bothof its wathed literals false.In general, a false wathed literal must be de�ned at the highest trail level of allliterals in its lause.266. If U < p, where U is a uniform deviate between 0 and 1, do this: Set j to arandom integer with 0 � j < h, and k  HEAP[j℄. If j = 0, or if VAL(k) � 0, use thenormal C6. Otherwise branh on k (and don't bother to remove k from the heap).267. As in Algorithm L, let there be a sequential table BIMP(l) for eah literal l,ontaining all literals l0 suh that �l _ l0 is a binary lause. Furthermore, when thepropagation algorithm sets LF  l0 beause l0 2 BIMP(l), we may set Rl0  �l,instead of using a positive lause number as the \reason." (Notie that a binary lausetherefore need not be represented expliitly in MEM, if it is represented impliitly inthe BIMP tables. The author's implementation of Algorithm C uses BIMP tables onlyto expedite binary lauses that appear in the original input. This has the advantageof simpliity, sine the exat amount of neessary spae an be alloated permanentlyfor eah table. Learned binary lauses are omparatively rare in pratie; thus theyan usually be handled satisfatorily with wathed literals, instead of by providing theelaborate buddy-system sheme that was important in Algorithm L.)Here, more preisely, is how the inner loop goes faster with BIMPs. We want toarry out binary propagations as soon as possible, beause of their speed; hene weintrodue a breadth-�rst exploration proess analogous to (62):Set H  F ; take aount of l0 for all l0 2 BIMP(l0);while H < F , set l0  RH , H  H + 1, andtake aount of l0 for all l0 2 BIMP(l0). (��)Now \take aount of l0" means \if l0 is true, do nothing; if l0 is false, go to C7with onit lause �l _ l0; otherwise set LF  l0, TLOC(jl0j)  F , VAL(jl0j)  2d +(l0 & 1), Rl0  �l, F  F + 1." We do (��) just before setting  0 in answer 261.Furthermore, we set E  F just after G 0 in step C1 and just after F  F + 1 insteps C6 and C9; and if G � E after G G+ 1 in step C4, we do (��) with l0  �l.Answer 263 is modi�ed in straightforward ways so that \lause Rl" is treated asif it were the binary lause (l _ �l0) when Rl has the negative value �l0 .268. If MEM[� 1℄ = k � 3 is the size of lause , and if 1 < j < k, we an deletethe literal l in MEM[+ j℄ by setting k  k � 1, MEM[� 1℄  k, l0  MEM[ + k℄,MEM[+ j℄  l0, and MEM[+ k℄  l + f , where f is a ag (typially 231) thatdistinguishes a deleted literal from a normal one. (This operation does not need tobe done when the urrent level d is zero; hene we an assume that k � 3 and j > 1before deletion. The ag is neessary so that global operations on the entire set oflauses, suh as the purging algorithm, an pass safely over deleted literals. The �nallause in MEM should be followed by 0, an element that's known to be unagged.)269. (a) If the urrent lause ontains a literal l = �Lt that is not in the trivial lause,where t is maximum, resolve the urrent lause with R�l and repeat.(b) (�u1_ bj) ^ (lj_ �lj�1_ �bj) for 1 � j � 9, (l0 _ �u2 _ �u3) ^ (�l9 _ �l8 _ �b10); l0 = l0.() If r � d0 + � , where � is a positive parameter, learn the trivial lause insteadof (�l 0 _ �b1 _ � � � _ �br). (The wathed literals should be �l0 and �ud0 .)
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236 ANSWERS TO EXERCISES 7.2.2.2 baktrakbakjumpingblitwathed literalHanSomenziHamadiJabbourSa��strivialstamptrailunit propagationauthorbakjumplangford (n)automorphism
Notie that this proedure will learn more than simple baktrak �a la Algorithm Ddoes, even when the trivial lause is always substituted (that is, even when � = �1),beause it provides for bakjumping when d0 < d+ 1.270. (a) Consider the lauses 3�2, 4�3�2, 5�4�3�1, 6�5�4�1, �6�5�4, with initial deisions L1  1,L2  2. Then L3  3 with reason R3  3�2; similarly L4  4, L5  5. If L6  6, theonit lause �6�5�4 allows us to strengthen R6 to �5�4�1; but if L6  �6, with R�6  �6�5�4, wedon't notie that 6�5�4�1 an be strengthened. In either ase we an, however, strengthenR5 to �4�3�1, before learning the lause �2�1.(b) After doing blit (lj) to the literals of Rl, we know that Rl n l is ontainedin f�b1; : : : ;�brg together with q + 1 unresolved false literals that have been stamped atlevel d. (Exerise 268 ensures that p 6= 0 within eah blit .) Thus we an subsumelause Rl on the y if q + r + 1 < k and q > 0.In suh ases the proedure of answer 268 an be used to delete l from  = Rl. Butthere's a ompliation, beause l = l0 is a wathed literal (j = 0 in that answer), and allother literals are false. After l is deleted, it will be essential to wath a false literal l0 thatis de�ned at trail level d. So we �nd the largest j0 � k suh that VAL(MEM[ + j0℄) � 2d,and we set l0  MEM[ + j0℄. If j0 6= k, we also set MEM[+ j0℄  MEM[ + k℄; we anassume that j0 > 1. Finally, after setting MEM[℄  l0 and MEM[ + k℄  l + f as inanswer 268, we also delete  from the wath list Wl, and insert it into Wl0 .[This enhanement typially saves 1%{10% of the running time, but sometimesit saves a lot more. It was disovered in 2009, independently by two di�erent groupsof researhers: See H. Han and F. Somenzi, LNCS 5584 (2009), 209{222; Y. Hamadi,S. Jabbour, and L. Sa��s, Int. Conf. Tools with Artif. Int. (ICTAI) 21 (2009), 328{335.℄271. We shall hek for disards only if the urrent lause Ci is not trivial (see exerise269), and if the �rst literal of Ci�1 does not appear in the trail. (Indeed, experieneshows that almost every permissible disard falls into this ategory.) Thus, let Ci�1 bel0l1 : : : lk�1 where VAL(jl0j) < 0; we want to deide if f�l 0;�b1; : : : ;�brg � fl1; : : : ; lk�1g.The seret is to use the stamp �elds that have already been set up. Set j  k�1,q  r+1, and do the following while q > 0 and j � q: If lj = �l 0, or if VAL(jlj j) � 2d0+1and S(jlj j) = s, set q  q � 1; in any ase set j  j � 1. Then disard if q = 0.272. Reetion isn't as easy to implement as it may seem, unless C is a unit lause,beause CR must be plaed arefully in MEM and it must be onsistent with the trail.Furthermore, experiene shows that it's best not to learn the reetion of every learnedlause, beause exess lauses make unit propagation slower. The author has obtainedenouraging results, however, by doing the following operations just before returningto C3 in step C9, whenever the length of C doesn't exeed a given parameter R:Assign ranks to the literals of CR by letting rank(l) = 1 if l is on the trail,rank(l) = d00 if �l is on the trail at level d00 < d0, rank(l) = d otherwise. Let u and vbe two of the highest ranking literals, with rank(u) � rank(v). Put them into the �rsttwo positions of CR, so that they will be wathed. Do nothing further if rank(v) > d0.Otherwise, if rank(v) < d0, bakjump to level rank(v) and set d0 rank(v). Then ifrank(u) = rank(v) = d0, treat CR as a onit lause by going to step C7 with  CR.(That is a rare event, but it an happen.) Otherwise, if u doesn't appear in the urrenttrail, set LF  u, TLOC(juj)  F , Ru  CR, F  F + 1. (Possibly F = E + 2 now.)(For example, this method with R  6 roughly halved the running time ofwaerden (3; 10; 97) and waerden (3; 13; 160) with parameters (193) exept for � :995.)A similar idea works with the lauses langford (n), and in general whenever theinput lauses have an automorphism of order 2.
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7.2.2.2 ANSWERS TO EXERCISES 237 OVALpolaritiesauthorKnuthVan Gelderdependeny digraphCook273. (a) We an onvert Algorithm C into a \lause learning mahine" by keeping theproess going after F reahes n in step C5: Instead of terminating, start over again byessentially going bak to step C1, exept that the urrent olletion of lauses shouldbe retained, and the OVAL polarities should be reset to random bits. Learned lauses ofsize K or less, where K is a parameter, should be written to a �le. Stop when you'vefound a given number of short lauses, or when you've exeeded a given time limit.For example, here's what happened when the author �rst tried to �nd W (3; 13):Applying this algorithm to waerden (3; 13; 158) with K = 3, and with a timeout limit of30 G� (gigamems), yielded the �ve lauses 65 68 70, 68 78 81, 78 81 90, 78 79 81, 79 81 82.So �fteen lauses 65 68 70, 66 69 71, : : : , 81 83 84 ould be added to waerden (3; 13; 160),as well as their �fteen reetions 96 93 91, 95 92 90, : : : , 80 78 77. Then the algorithm\CR"of exerise 272 proved this augmented set unsatis�able after an additional 107 G�.In a seond experiment, using K = 2 with waerden (3; 13; 159) led to three binarylauses 76 84, 81 86, and 84 88. Shifting and reeting gave twelve binary lauses, whihin ompany with waerden (3; 13; 160) were refuted by CR in another 80 G�. (For om-parison, Algorithm CR refuted waerden (3; 13; 160) unaided in about 120 G�, omparedto about 270 G� for both Algorithm C and Algorithm L.) Optimum strategies for learn-ing useful lauses from satis�able subproblems are far from lear, espeially beauserunning times are highly variable. But this method does show promise, espeially onmore diÆult problems|when more time an be devoted to the preliminary learning.(b) Short lauses that an be learned from satis�able instanes of, say, X0 !X1 ! � � � ! Xr�1, when X0 is not required to be an initial state, an be shifted andused to help refute X0 ! X1 ! � � � ! Xr.274. With are, irular reasoning an (and must) be avoided. But the author'selaborate experiments with suh ideas (and with the related notion of \better on-its") were disappointing; they didn't beat the running time of the simpler algorithm.However, an intriguing idea by Allen Van Gelder [Journal on Satis�ability, BooleanModeling and Computation 8 (2012), 117{122℄ shows promise.275. When a solution has been found, let k be minimum suh that xk = 1 and thevalue of xk has not been assigned at level 0. If no suh k exists, we stop. Otherwisewe are entitled to fore variables x1 through xk�1 all to have their urrent values, atlevel 0, beause we know that this doesn't produe an unsatis�able problem. So we �xthose values, and we restart the solution proess at level 1 with the tentative deision`xk = 0'. If a onit ours, we'll know that xk = 1 at level 0; if not, we'll have asolution with xk = 0. In either ase we an inrease k. (This method is onsiderablybetter than that of answer 109, beause every learned lause remains valid.)276. True. Unit propagation essentially transforms F ^ L into F jL.277. Otherwise F ^ C1 ^ � � � ^ Ct�1 `1 � fails (unit propagation wouldn't start).278. For example, (46; �56; �54; 6; 4; �). (Six steps are neessary.)279. True, beause the dependeny digraph ontains a literal l with l��!� �l��!� l.280. (a) They're satis�ed if and only if x1 : : : xn has at least j 0s and at least k 1s.[The problem ook (k; k) was introdued by Stephen A. Cook (unpublished) in 1971.℄(b) Take all positive (j � t)-lauses on f1; : : : ; n� 1� tg for t = 1, 2, : : : , j.() Suppose the very �rst deision is L0  xn. The algorithm will proeed to atas if the input were ook (j; k) j xn = ook (j; k � 1). Furthermore, with these lauses,every lause that it learns initially will inlude �xn. Therefore, by indution, the unitlause (�xn) will be learned lause number �n�2j�1�. All previously learned lauses are
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238 ANSWERS TO EXERCISES 7.2.2.2 St�almarkexlusion lausesat-most-onesymmetry-breakingunit lausedata struturessubsumed by this one, hene they're no longer relevant. The remaining problem isook (j; k) j �xn = ook (j � 1; k); so the algorithm will �nish after learning �n�2j�2� more.Similarly, if the �rst deision is L0  �xn, the �n�2j�2�th learned lause will be (xn).281. St�almark's refutation orresponds to the sequene (M 0jk1, M 0jk2, : : : , M 0jk(k�1),Mj(k�1)) for j = 1, : : : , k � 1, for k = m, m� 1, : : : , 1. (M 0jk(k�1) an be omitted.)282. First learn the exlusion lauses (17). In the next lauses we shall write aj , bj , : : : ,as shorthand for aj;p, bj;p, : : : , where p is a partiular olor, 1 � p � 3. Notie thatthe 12q edges appear in 4q triangles, namely fbj ; j ; djg, faj ; aj0 ; bj0g, ffj ; ej0 ; j0g,fej ; fj0 ; dj0g, for 1 � j � q, where j0 is j + 1 (modulo q). For every suh trianglefu; v; wg, learn (�up0 _ vp _ wp) and then (up _ vp _ wp), where p0 is p+ 1 (modulo 3).Now for j = 1, 2, : : : , q, learn (aj_fj_aj0_ej0 ), (aj_ej_aj0_fj0 ), (ej_fj_ej0_fj0 ),(�aj _ �ej _ �ej0 ), (�aj _ �fj _ �fj0), (�ej _ �fj _ �aj0), as well as eighteen more:(�u1 _ �v1 _ u0j _ v0j); (�u2 _ �v2 _ u0j0 _ v0j0 ); if j � 3 is odd;(�u1 _ �v1 _ �u0j); (�u2 _ �v2 _ �u0j0); if j � 3 is even;here u; v 2 fa; e; fg and u0; v0 2 fa; e; fg yield 3� 3 hoies of (u; v; u0; v0). Then we'reready to learn (�aj _ �ej), (�aj _ �fj), (�ej _ �fj) for j 2 f1; 2g and (aj _ ej _ fj _ aj0 ),(aj _ ej _ fj) for j 2 f1; qg. All of these lauses are to be learned for 1 � p � 3.Next, for j = q, q � 1, : : : , 2, learn (�aj _ �ej), (�aj _ �fj), (�ej _ �fj) for 1 � p � 3and then (aj�1 _ ej�1 _ fj�1 _ aj), (aj�1 _ ej�1 _ fj�1) for 1 � p � 3. We have nowestablished all lauses in the hint.The endgame onsists of the following for 1 � p � 3: For all hoies of p0 and p00with fp; p0; p00g = f1; 2; 3g (thus two hoies), and for j = 2, 3, : : : , q, learn three lauses(�a1;p _ �e1;p0 _ �aj;p _ ej;p00); (�a1;p _ �e1;p0 _ �aj;p0 _ ej;p); (�a1;p _ �e1;p0 _ �aj;p00 _ ej;p0); j even;(�a1;p _ �e1;p0 _ �aj;p _ ej;p0); (�a1;p _ �e1;p0 _ �aj;p0 _ ej;p00); (�a1;p _ �e1;p0 _ �aj;p00 _ ej;p); j odd;then learn (�a1;p _ �e1;p0). Finally learn �a1;p.[Not all of these lauses are atually neessary. For example, the exlusion lausesfor b's, 's, and d's aren't used. This erti�ate doesn't assume that the symmetry-breaking unit lauses b1;1 ^ 1;2 ^ d1;3 of fsnark (q) are present; indeed, those lausesdon't help it muh. The atual lauses learned by Algorithm C are onsiderably longerand somewhat haoti (indeed mysterious); it's hard to see just where an \aha" ours!℄283. A related question is to ask whether the expeted length of learned lauses isO(1) as q !1.284. It's onvenient to represent eah unit lause (l) in F [C1[� � �[Ct as if it were thebinary lause (l_ �x0), where x0 is a new variable that is always true. We borrow someof the data strutures of Algorithm C, namely the trail array L, the reason array R,and the �elds TLOC, S, VAL assoiated with eah variable. We set VAL(k) = 0, 1, or �1when xk has been fored true, fored false, or not fored, respetively.To verify the lause Ci = (a1_� � �_ak), we begin with VAL(j) 0 for 0 � j � n,L0  0, L1  �a1, : : : , Lk  �ak, E  F  k + 1, G 0, and VAL(jLpj) Lp & 1 for0 � p < F ; then we arry out unit propagation as in Algorithm C, expeting to reaha onit before G = F . (Otherwise veri�ation fails.)A onit arises when a lause  = l0 : : : lk�1 fores l0 at a time when �l0 has alreadybeen fored. Now we mimi step C7 (see exerise 263), but the operations are muhsimpler: Mark , stamp S(jlj j)  i for 0 � j < k, and set p  max(TLOC(jl1j); : : : ;
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7.2.2.2 ANSWERS TO EXERCISES 239 WetzlerHeuleHuntworst asetie-breakerslause ativitytrivialbakjumpoating point
TLOC(jlk�1j)). Now, while p � E, we set l  Lp, p p� 1, and if S(jlj) = i we also\resolve with the reason of l" as follows: Let lause Rl be l0l1 : : : lk�1, mark Rl, andset S(jlj j) i for 1 � j < k.[Wetzler, Heule, and Hunt have suggested an interesting improvement, whih willoften mark signi�antly fewer lauses at the expense of a more ompliated algorithm:Give preferene to already-marked lauses when doing the unit propagations, just asAlgorithm L prefers binary impliations to the impliations of longer lauses (see (62)).℄285. (a) j = 77, s77 = 12 + 2827, m77 = 59, b77 = 710.(b) j = 72, s72 = 12 + 2048, m72 = 99 + 243 + 404 + 536 = 1282, b72 =3 + 40 + 57 + 86 = 186. (The RANGE statisti is rather oarse when � = 12 , beausemany di�erent signatures yield the same value.)() j = 71, s71 = 12 + 3087, m71 = 243, b71 = 40.286. The maximum, 738, is ahieved uniquely by the RANGE-oriented solution with� = 1516 , exept that we an optionally inlude also the signatures (6; 0) and (7; 0) forwhih apq = 0. [This solution optimizes the worst ase of lause seletion, beause thestated problem impliitly assumes that the seondary heuristi is bad. If we assume,however, that the hoie of tie-breakers based on lause ativity is at least as good asa random hoie, then the expeted number 738 + 45 � 1059 � 745:6 from � = 1516 is notas good as the expeted number 710 + 287 � 57404 � 750:5 from � = 916 .℄287. When a onit is deteted in step C7 (with d > 0), keep going as in step C3;but remember the �rst lause Cd that deteted a onit at eah level d.Eventually step C5 will �nd F = n. That's when lauses get their RANGE sores,if we're doing a full run beause we want to purge some of them. (Sometimes, however,it's also useful to do a few full runs at the very beginning, or just after a restart, beausesome valuable lauses might be learned.)New lauses an be learned in the usual way from the remembered lauses Cd, indereasing order of d, exept that \trivial" lauses (exerise 269) are onsidered only atthe lowest suh level. We must keep trak of the minimum bakjump level d0, among allof these onits. And if several new lauses have the same d0, we must remember allof the literals that will be plaed at the end of the trail after we eventually jump bak.288. Step C5 initiates a full run, then eventually �nds F = n. At this point we'redone, in the unlikely event that no onits have arisen. Otherwise we set LS[d℄  0for 0 � d < n and mj  0 for 1 � j < 256. The ativity ACT() of eah learnedlause  has been maintained in MEM[� 5℄, as a 32-bit oating point number. Thefollowing steps ompute RANGE(), whih will be stored in MEM[� 4℄ as an integer, forall learned  in inreasing order, assuming that 's literals are l0l1 : : : ls�1:If Rl0 = , set RANGE()  0. Otherwise set p  r  0, and do the followingfor 0 � k < s: If v < 2 and v + lk is even, set RANGE()  256 and exit the loop on k(beause  is permanently satis�ed, hene useless). If v � 2 and LS[lev (lk)℄ < , setLS[lev (lk)℄  and r r+1. Then if v � 2 and LS[lev (lk)℄ =  and lk+v is even, setLS[lev (lk)℄ + 1 and p p+ 1. After k reahes s, set r min(b16(p+�(r� p));255), RANGE()  r, and mr  mr + 1.Now resolve onits (see answer 287), giving ACT()  0 and RANGE()  0 toall newly learned lauses , and jump bak to trail level 0. (A round of purging is amajor event, something like spring leaning. It is possible that d0 = 0, in whih aseone or more literals have been appended to trail level 0 and their onsequenes have notyet been explored.) Find the median range j as de�ned in (124), where T is half thetotal urrent number of learned lauses. If j < 256 and T > sj , �nd h = T � sj lauses
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240 ANSWERS TO EXERCISES 7.2.2.2 heapOVALoverowbugauthorstandard deviationPapadimitriouvarianewith RANGE() = j and ACT() as small as possible, and bump their range up to j + 1.(This an be done by putting the �rst mj � h of them into a heap, then repeatedlybumping the least ative as the remaining h are enountered; see exerise 6.1{22.)Finally, go again through all the learned lauses , in order of inreasing , ignor-ing  if RANGE() > j, otherwise opying it into a new loation 0 � . (Permanentlyfalse literals, whih are urrently de�ned at level 0, an also be removed at this time;thus the lause's size in MEM[0 � 1℄ might be less than MEM[� 1℄. It is possible, butunlikely, that a learned lause beomes redued to a unit in this way, or even that itbeomes empty.) The ativity sore in MEM[� 5℄ should be opied into MEM[0 � 5℄;but RANGE() and the wath links in MEM[� 2℄ and MEM[� 3℄ needn't be opied.When opying is omplete, all the wath lists should be reomputed from srath,as in answer 260, inluding original lauses as well as the learned lauses that remain.289. By indution, yk = (2� 21�k)� + (2(k � 2) + 22�k)Æ for all k � 0.290. Set k  HEAP[0℄; then if VAL(k) � 0, delete k from the heap as in answer 262,and repeat this loop.291. OVAL(49) will be the even number 36, beause of the propagations on level 18that led to (115).292. If AGILITY � 232 � 213, then (127) either subtrats 219 � 1 or adds 1. Henethere's a minusule hane that AGILITY will overow by passing from 232 � 1 to 232(zero). (But overow won't be a alamity even if|unbelievably| it happens. So thisis one \bug" in the author's program that he will not try to �x.)293. Maintain integers uf , vf , and �f , where �f has 64 bits. Initially uf = vf =Mf = 1.WhenM �Mf is deteted in step C5, do this: If uf&�uf = vf , set uf  uf+1, vf  1,�f  232 ; otherwise set vf  2vf and �f  �f + (�f � 4). Flush if AGILITY � �f .294. We have, for example, g1100 = z3 (g0100+g1000+g1110), and g01�1 = 1. The solutionis g00�1 = g01�0 = g11�1 = A=D, g00�0 = g10�1 = g11�0 = B=D, g10�0 = C=D, whereA = 3z� z2� z3, B = z2, C = z3, D = 9� 6z� 3z2 + z3. Hene the overall generatingfuntion is g = (6A+ 6B + 2C + 2D)=(16D); and we �nd g0(1) = 33=4, g00(1) = 147.Thus mean(g) = 8:25, var(g) = 87:1875, and the standard deviation is � 9:3.295. Consider all 3�n3� lauses �xi _ xj _ xk for distint fi; j; kg, plus two additionallauses (�x1 _ �x2 _ �x3)^ (�x4 _ �x5 _ �x6) to make the solution 0 : : : 0 unique. Only the twolatter lauses ause the variables Xt and Yt in the proof of Theorem U to deviate fromeah other. [C. Papadimitriou, Computational Complexity (1994), Problem 11.5.6.These lauses spell trouble for a lot of other SAT algorithms too.℄296. The hinted ratio 2(2p+q+1)(2p+q)=(9(p+1)(p+q+1)) is � 1 when p � q (morepreisely when p = q � 7 + O(1=q)). And f(q + 1; q + 1)=f(q; q) = 2(n � q)(3q + 3)3=(27(q+1)2(2q+2)2) is � 1 when q � n=3. Finally, f(n=3; n=3) = 34�n (3=4)n(1+O(1=n))by Stirling's approximation, when n = 3q.297. (a) Gq(z) = (z=3)qC(2z2=9)q = G(z)q where G(z) = (3 � p9� 8z2)=(4z), byEqs. 7.2.1.6{(18) and (24). [See Algorithmia 32 (2002), 620{622.℄(b) Gq(1) = 2�q is the probability that Yt atually reahes 0, for some �nite t.() If the Y proess does stop, Gq(z)=Gq(1) = (2G(z))q desribes the distributionof stopping times. HeneG0q(1)=Gq(1) = 2qG0(1) = 3q is the mean length of the randomwalk, given that it terminates. (The variane, inidentally, is 24q. A random Y -walkerwho doesn't �nish quikly is probably doomed to wander forever.)(d) The generating funtion for T , the stopping time of the Y proess, is T (z) =Pq �nq�2�nGq(z); and T is �nite with probability T (1) = ( 34 )n by (b). If we restrit
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7.2.2.2 ANSWERS TO EXERCISES 241 Markov's inequalityPapadimitriourandom number generatorbiased random bitsrandom bits, biasedonsideration to suh senarios, the mean T 0(1)=T (1) is n; and Markov's inequalitytells us that Pr(T � N) � n=N .(e) The algorithm sueeds with probability p > Pr(T < N) � (1� n=N)(3=4)n,when it is given satis�able lauses. So it fails after K(4=3)n trials with probability lessthan exp(K(4=3)n ln(1� p)) < exp(�K(4=3)np) < exp(�K=2) when N = 2n.298. Change 1/3 and 2/3 in (129) to 1=k and (k � 1)=k. The e�et is to hange G(z)to (z=k)C((k � 1)z2=k2), with G(1) = 1=(k � 1) and G0(1) = k=((k � 1)(k � 2)). Asbefore, T (1) = 2�n(1 + G(1))n and T 0(1)=T (1) = nG0(1)=(1 + G(1)). So the general-ized Corollary W gives suess probability > 1 � e�K=2 when we apply Algorithm PK(2� 2=k)n times with N = b2n=(k � 2).299. In this ase G(z) = (1�p1� z2)=z; thus G(1) = T (1) = 1. But G0(1) =1, sowe must use a di�erent method. The probability of failure if N = n2 is12n Xp;q �nq � q2p+ q�2p+ qp � [2p+ q >n2 ℄22p+q = Xt>n2 2�n�tt Xp � nt� 2p�� tp�(t� 2p)� Xt>n2 2�n�tt � tbt=2�Xp � nt� 2p�(t� 2p) = n4 Xt>n2 2�tt � tbt=2�< n4 Xt>n2r 2�t3 = np8� Z 1n2 dxdx3=2e < np8� Z 1n2 dxx3=2 = 1p2� :[See C. Papadimitriou, Computational Complexity (1994), Theorem 11.1.℄300. In this algorithm, variables named with upperase letters (exept C and N) de-note bit vetors of some �xed size (say 64); eah bit position represents a separate trial.The notation Ur stands for a vetor of random bits, eah of whih is 1 with probability1=r, independently of all other bits and all previous U 's. The maximum number ofips per bit position in this variant of Algorithm P is only approximately equal to N .P10. [Initialize.℄ Set Xi  U2 for 1 � i � n. Also set t 0.P20. [Begin pass.℄ Set Z 0 and j 0. (Flipped positions are remembered in Z.)P30. [Move to next lause.℄ If j = m, go to P50. Otherwise set j  j + 1.P40. [Flip.℄ Let Cj be the lause (l1 _ � � � _ lk). Set Y  �L1 & � � � & �Lk, whereLi denotes Xh if li = xh and Li denotes �Xh if li = �xh. (Thus Y has 1s inpositions that violate lause Cj .) Set Z  Z j Y and t t+ (Y &1). Thenfor r = k, k � 1, : : : , 2 set Y 0  Y & Ur, Lr  Lr � Y 0, Y  Y � Y 0.Finally set L1  L1 � Y and return to P30.P50. [Done?℄ If Z 6= �1, terminate suessfully: One solution is given by thebits (X1 & B) : : : (Xn & B), where B = �Z & (Z + 1). Otherwise, if t > N ,terminate unsuessfully. Otherwise return to P20.The shenanigans in step P40 have the e�et of ipping the o�ending bits of eah literalwith probability 1=k, thus distributing the 1s of Y in an unbiased fashion.301. In pratie we an assume that all lauses have limited size, so that (say) k � 4in step P40. The lauses an also be sorted by size.A traditional random number generator produes bits U2; and one an use U2&U2to get U4. The method of exerise 3.4.1{25 an be used for other ases; for example,U2 & (U2 j (U2 & (U2 j (U2 & (U2 j (U2 & (U2 j (U2 & U2))))))))
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242 ANSWERS TO EXERCISES 7.2.2.2 branhless omputationZSEVmoneswapping to the frontKnuthis a suÆiently lose approximation to U3. The random numbers needed in step P10must be of top quality; but those used in step P40 don't have to be espeially aurate,beause most of their bits are irrelevant. We an preompute the latter, making tablesof 2d values for eah of U2, U3, U4, and running through them ylially by means oftable indies U2P, U3P, U4P as in the ode below, where UMASK = 2d+3�1. The values ofU2P, U3P, and U4P should be initialized to (truly) random bits whenever step P20 startsa new pass over the lauses.Here is sample ode for the inner loop, step P40, for lauses with k = 3. Theotabyte in memory loation L+ 8(i�1) is the address in memory where Xh is stored,plus 1 if it should be omplemented; for example, if l2 is �x3, the address X+3�8+1 willbe in loation L+ 8, where L is a global register. Register mone holds the onstant �1.LDOU $1,L,0 addr(L1)LDOU $4,$1,0 jL1jLDOU $2,L,8 addr(L2)LDOU $5,$2,0 jL2jLDOU $3,L,16 addr(L3)LDOU $6,$3,0 jL3jZSEV $0,$1,moneXOR $7,$4,$0 �L1ZSEV $0,$2,moneXOR $8,$5,$0 �L2ZSEV $0,$3,mone
XOR $9,$6,$0 �L3AND $7,$7,$8AND $7,$7,$9 YOR Z,Z,$7 Z j YAND $0,$7,1 Y & 1ADD T,T,$0 new tLDOU $0,U3,U3PADD U3P,U3P,8AND U3P,U3P,UMASKAND $0,$0,$7 U3 & YXOR $6,$6,$0

STOU $6,$3,0 jL3j � Y 0SUBU $7,$7,$0LDOU $0,U2,U2PADD U2P,U2P,8AND U2P,U2P,UMASKAND $0,$0,$7 U2 & YXOR $5,$5,$0STOU $5,$2,0 jL2j � Y 0SUBU $7,$7,$0XOR $4,$4,$7STOU $4,$1,0 jL1j � Y302. Assume that literals are represented internally as in Algorithm A, and that alllauses have stritly distint literals. An eÆient implementation atually requires morearrays than are stated in the text: We need to know exatly whih lauses ontain anygiven literal, just as we need to know the literals of any given lause. And we also needa (small) array b0 : : : bk�1 to list the best andidate literals in step W4:W4. [Choose l.℄ Set  1, j  0, and do the following while j < k: Set j  j+1, l lj ; and if jlj < , set  jlj, b0  l, s 1; or if jlj = , set bs  l,s  s + 1. Then if  = 0, or if  � 1 and U � p, set l  bbsU; otherwiseset l lbkU+1. (Eah random fration U is independent of the others.)W5. [Flip l.℄ Set s 0. For eah j suh that Cj ontains l, make lause Cj hap-pier as follows: Set q  kj , kj  q+1; and if q = 0, set s s+1 and deleteCj from the f array (see below); or if q = 1, derease the ost of Cj 's ritialvariable (see below). Then set jlj  s and xjlj  �xjlj. For eah j suh thatCj ontains �l, make lause Cj sadder as follows: Set q  kj�1, kj  q; andif q = 0, insert Cj into the f array (see below); or if q = 1, inrease the ostof Cj 's ritial variable (see below). Set t t+ 1 and return to W2.To insert Cj into f , we set fr  j, wj  r, and r  r + 1 (as in step W1). Todelete it, we set h wj , r r � 1, fh  fr, wfr  h.Whenever we want to update the ost of Cj 's ritial variable in step W5, we knowthat Cj has exatly one true literal. Thus, if the literals of Cj appear sequentiallyin a master array M, it's easy to loate the ritial variable xjMij: We simply seti START(j); then while Mi is false (namely while xjMij =Mi & 1), set i i + 1.A slight re�nement is advantageous when we will be inreasing jMij: If i 6=START(j), swap MSTART(j) $ Mi. This hange signi�antly shortens the searh whenjMij is subsequently dereased. (In fat, it redued the total running time by morethan 5% in the author's experiments with random 3SAT problems.)
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7.2.2.2 ANSWERS TO EXERCISES 243 random walk303. In this ase D = 3 � z � z2 = A=z, and we have g0(1) = 3, g00(1) = 73=4. Thusmean(g) = 3 and var(g) = 12:25 = 3:52.304. If �x = x1 + � � �+ xn = a, there are a(n� a) unsatis�ed lauses; hene there aretwo solutions, 0 : : : 0 and 1 : : : 1. If x1 : : : xn isn't a solution, Algorithm P will hangea to a � 1, eah with probability 12 . Thus the probability generating funtion ga forfuture ips is 1 when a = 0 or a = n, otherwise it is z(ga�1+ ga+1)=2. And the overallgenerating funtion is g =Pa �na�ga=2n. Clearly ga = gn�a.Exerise MPR{105 determines ga and proves that the mean number of ips, g0a(1),is a(n� a) for 0 � a � n. Thus g0(1) = 2�nPna=0 �na�g0a(1) = 12�n2�.Turning now to Algorithm W, again with x1 + � � � + xn = a, the ost of xi isa � 1 when xi = 1, n � a � 1 when xi = 0. Therefore g1 = gn�1 = z in this ase.And for 2 � a � n � 2, we will move loser to a solution with probability q andfarther from a solution with probability p, where p + q = 1 and p = p0=2 � 1=2; herep0 is the greed-avoidane parameter of Algorithm W. Thus for 2 � a � n=2 we havega = gn�a = z(qga�1 + pga+1).If p0 = 0, so that the walk is 100% greedy, Algorithm W zooms in on the solution,with ga = za. Exerise 1.2.6{68 with p = 1=2 tells us that g0(1) = n=2 �m�nm�=2n =n=2 �pn=2� + O(1) in that ase. On the other hand if p0 = 1, so that the walk isgreedy only when a = 1 or a = n� 1, we're almost in the situation of Algorithm P butwith n dereased by 2. Then g0(1) = 2�nPn�1a=1 �na�(1 + (a � 1)(n � 2) � (a � 1)2) =n(n � 5)=4 + 2 + (2n� 4)=2n; greed triumphs.What happens as p0 rises from 0 to 1? Let's derease n by 2 and use the rule ga =z(qga�1 + pga+1) for 1 � a � n=2, so that the alulations are similar to those we didfor Algorithm P but with p now � 1=2 instead of p = 1=2. Funtions tm and um an bede�ned as above; but ga = (qz)atm�a=tm, the new reurrene is tm+1 = tm�pqz2tm�1,and t0 = 1=q, u0 = 1=(qz). These funtions are polynomials in p, q, and z, whose oeÆ-ients are binomial oeÆients: In the notation of exerise 1.2.9{15, for m > 0 we havetm = Gm�1(�pqz2)�pz2Gm�2(�pqz2) and um = Gm�1(�pqz2)�pzGm�2(�pqz2), soT (w) = 1� pwq(1� w + pqz2w2) ; U(w) = 1� (1� qz)wqz(1�w + pqz2w2) :Consequently t0m(1)=tm(1) = 2pq(1�(p=q)m)=(q�p)2�2pm=(q�p) and u0m(1)=um(1) =(2p�(p=q)mq)=(q�p)2�2p(m� 12 )=(q�p); g0a(1) = a=(q�p)�2pq((q=p)a�1)=(q�p)2for 0 � a � n=2 when n is even, a=(q� p)� q((q=p)a� 1)=(q� p)2 when n is odd. Theoverall totals when n = 1000 and p0 = (:001; :01; :1; :5; :9; :99; :999) are respetively� (487:9; 492:3; 541:4; 973:7; 4853:4; 44688:2; 183063:4).305. That little additional lause reverses the piture! Now there's only one solution,and greediness fails badly when �x > n=2 beause it keeps trying to move x awayfrom the solution. To analyze the new situation in detail, we need 3(n� 1) generatingfuntions gab, where a = x1 + x2 and b = x3 + � � �+ xn. The expeted number of ipswill be g0(1), where g = 2�nP2a=0Pn�2b=0 �2a��n�2b �gab.The behavior of Algorithm P is ambiguous, beause the unsatis�ed lause foundin step P2 depends on the lause ordering. The most favorable ase arises when a = 2,beause we an derease a to 1 by working on the speial lause �x1_�x2. Any other lauseis equally likely to inrease or derease a + b. So the best-ase generating funtionsmaximize the hane of reahing a = 2: g00 = 1, g01 = z2 (g00+g11), g02 = z2 (g01+g12),g10 = z2 (g00+g20), g11 = z2 (g10+g21), g12 = z2 (g11+g22), and g2b = zg1b. The solutionhas g1b = (z=(2� z2))b+1; and we �nd mean(g) = 183=32 = 5:71875.
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244 ANSWERS TO EXERCISES 7.2.2.2 in�nite loopgeometri distributionmemorylessThe worst ase arises whenever g20 6= zg10 and g21 6= zg11; for example we antake g20 = z2 (g10+g21), g21 = z2 (g20+g22), together with the other seven equations fromthe best ase. Then g01 = g10 = z(4�3z2)=d, g02 = g11 = g20 = z2(2�z2)=d, and g12 =g21 = z3=d, where d = 8�8z2+z4. Overall, g = (1+z)2(2�z2)=(4d) and mean(g) = 11.(This analysis an be extended to larger n: The worst ase turns out to have gab =ga+b = (z=2)a+btn�a�b=tn, in the notation of the previous exerise, giving n(3n� 1)=4ips on average. The best ase has g1b as before; hene g00b = 3b+2�21�b , g01b = 3b+3,and g02b = 3b+ 4 when z = 1. The best average number of ips therefore turns out tobe linear , with mean(g) = 32n� 89 (3=4)n.)The analysis beomes more exiting, but trikier, when we use Algorithm W. Letp = p0=2 and q = 1 � p as in the previous answer. Clearly g00 = 1, g01 = g10 = zg00,g02 = z2 (g01+g12), and g22 = zg12; but the other four ases need some thought. We haveg11 = z4 (( 12 + q)(g01 + g10) + g12 + 2pg21);sine the osts for x1x2x3x4 = 1010 are 1211 and the unsatis�ed lauses are (�x1_ x4),(�x3_x4), (�x1_x2), (�x3_x2); in the former two lauses we ip eah literal equally often,but in the latter two we ip x2 with probability p and the other with probability q.A similar but simpler analysis shows that g21 = z4 (g11+3g22) and g20 = z5 (3g10+2g21).The most interesting ase is g12 = z3 (pg02 + 2pg11 + 3qg22), where the osts are2122 and the problemati lauses are (�x1_x2), (�x3_x2), (�x4_x2). If p = 0, AlgorithmWwill always deide to ip x2; but then we'll be bak in state 12 after the next ip.Indeed, setting p = 0 yields g00 = 1, g01 = g10 = z, g02 = 12z2, g11 = 34z2,g20 = 35z2+ 340 z4, g21 = 316 z3, and g12 = g22 = 0. The weighted total therefore turns outto be g = (40 + 160z + 164z2 + 15z3 + 3z4)=640. Notie that the greedy random walknever sueeds after making more than 4 ips, in this ase; so we should set N = 4 andrestart after eah failure. The probability of suess is g(1) = 191=320. (This strategyis atually quite good: It sueeds after making an average of 1577=382 � 4:13 ipsand hoosing random starting values x1x2x3x4 about 320/191 times.)If p is positive, no matter how tiny, the suess probability for N =1 is g(1) = 1.But the denominator of g is 48 � 48z2 + 26pz2 + 6pz4 � 17p2z4, and we �nd thatmean(g) = (1548+2399p�255p2)=(1280p�680p2) = (6192+4798p0�255p02)=(2560p0�680p02). Taking p0 = (:001; :01; :1; :5; :9; :99; :999) in this formula gives, respetively,the approximate values (2421:3; 244:4; 26:8; 7:7; 5:9; 5:7; 5:7).(Calulations for n = 12 show that g is a polynomial of degree 8 when p = 0,with g(1) � :51 and g0(1) � 2:40. Thus, setting N = 8 yields suess after about16.1 ips and 1.95 initializations. When p > 0 we have g0(1) � 1:635p�5 + O(p�4) asp! 0, and the seven values of p0 onsidered above yield respetively (5�1016; 5�1011;5� 106; 1034:3; 91:1; 83:89; 83:95) ips|surprisingly not monotone dereasing in p0.These WalkSAT statistis an be ompared with 17.97 to 105 ips for Algorithm P.)306. (a) Sine l(N) = EN +(1� qN )(N + l(N)), we have qN l(N) = EN +N �NqN =p1 + 2p2 + � � �+NpN +NpN+1 + � � �+Np1 = N � (q1 + � � � + qN�1).(b) If N = m+ k and k � 0 we have EN = m2=n, q1 + � � � + qN�1 = km=n, andqN = m=n; hene l(N) = n+ k(n�m)=m.() If N�n, l(N) = (N��N2 �=n)=(N=n) = n� N�12 ; otherwise l(N)= l(n)= n+12 .(d) From qN = p1(N � q1 � � � � � qN�1) and qN+1 = p1(N + 1 � q1 � � � � � qN )we dedue pN+1 = p1(1� qN ), hene 1� qN+1 = (1� p1)(1� qN ). So it's a geometridistribution, with pt = p(1� p)t�1 for t � 1. (The fat that l(1) = l(2) = � � � is alledthe \memoryless property" of the geometri distribution.)
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7.2.2.2 ANSWERS TO EXERCISES 245(e) Choose p1, : : : , pn arbitrarily, with qn = p1 + � � � + pn � 1. Then, arguing asin (d), pn+1, pn+2, : : : are de�ned by 1� qN = (1� 1=l(n))N�n(1� qn) for N � n.(f) Sine l(n+1)� l(n) = (n�(q1+ � � �+qn))(1�1=qn) � 0, we must have qn = 1and l(n) = l(n+ 1). (The ase l(n) < l(n+ 1) is impossible.)(g) Let x = p1 and y = p2. By part (f), the onditions are equivalent to0 < x � x+y < 1 and x(3�2x�y) > 1. Hene 0 < (2x�1)(1�x)�xy � (2x�1)(1�x);we get the general solution by �rst hoosing 12 < x < 1, then 0 � y < (2x�1)(1�x)=x.(h) If N� =1 and l(n) <1, we an �nd n0 with qn0 l(n0) = p1+2p2+� � �+n0pn0+n0pn0+1 + � � � + n0p1 > l(n). Hene l(N) � qN l(N) � qn0 l(n0) > l(n) for all N � n0.(i) We have qn+k = k=(k + 1) for k � 0; hene l(n + k) = (k + 1)(n + Hk)=k.The minimum ours when l(n + k) � l(n + k � 1), namely when n � k � Hk; thusk = n + lnn+O(1). For example, the optimum uto� value when n = 10 is N� = 23.(Notie that E1 =1, yet l = l(N�) � 14:194 in this ase.)(j) Let pt = [t> 1℄=2t�1. Then l(N) = (3� 22�N )=(1� 21�N ) dereases to 3.(k) Clearly l � L. For N � L we have l(N) = (N � (q1 + � � � + qN�1))=qN �(N�(1+ � � �+(N�1))=L)=(N=L) = L�(N�1)=2 � (L+1)=2. And for N = bL+k+1,similarly, l(N) � N � (1+ � � �+bL+ kL)=L = bL+ 1(1� bL=(2L)) � (L+ 1)=2.307. (a) EX = EN1 + (1� qN1)(N1 + EX 0), where X 0 is the number of steps for thesequene (N2; N3; : : : ). For numerial results, start with j  0, s  0, �  1; then,while � > �, set j  j + 1, � (1� qNj )�, and s s+ENj + �Nj . (Here � is tiny.)(b) Let Pj = (1 � qN1 ) : : : (1 � qNj�1 ) = Pr(X > Tj), and note that Pj �(1� pn)j�1 where n = minft j pt > 0g. Sine qN l(N) = EN + (1� qN )N , we haveEX = qN1 l(N1) + (1� qN1)(qN2 l(N2) + (1� qN2 )(qN3 l(N3) + � � � ))= 1Xj=1 PjqNj l(Nj) = 1Xj=1(Pj � Pj+1) l(Nj):() EX �P1j=1(Pj � Pj+1)l(N�) = l.(d) We an assume that Nj � n for all j; otherwise the strategy would do evenworse. For the hint, let fN1; : : : ; Nrg ontain rm ourrenes of m, for 1 � m � n,and suppose tm = rm + � � � + rn. If tm < n=(2m), the probability of failure wouldbe (1 � m=n)tm � 1 � tmm=n > 1=2. Hene we have tm � n=(2m) for all m, andN1 + � � � +Nr = t1 + � � �+ tn � nHn=2.Now there's some m suh that the �rst r � 1 trials fail on p(m) with probability> 12 . For this m we have EX > 12 (N1 + � � �+Nr�1) � 12 (N1 + � � � +Nr � n).308. (a) 2a+1 � 1; and we also have S2a+b = Sb+1 for 0 � b < 2a � 1 (by indution).(b) The sequene (un; vn) in (131) has 1 + �k entries with un = k; and �1 +� � � + �n = n � �n by Eq. 7.1.3{(61). From the double generating funtion g(w; z) =Pn�0 w�nzn = (1+wz)(1+wz2)(1+wz4)(1+wz8) : : : we dedue thatPk�0 z2k+1��k =zg(z�1; z2).() fn j Sn = 2ag = f2a+1k + 2a+1 � 1� �k j k � 0g; hene Pn�0 zn[Sn=2a ℄ =z2a+1�1g(z�1; z2a+1) = z2a+1�1(1 + z2a+1�1)(1 + z2a+2�1)(1 + z2a+3�1) : : : .(d) When 2a ours for the 2bth time, we've had 2a+b� � [ >a℄ ourrenesof 2, for 0 �  � a+ b. Consequently �(a; b; 1) = (a+ b� 1)2a+b + 2a+1.(e) The exat value is Pa+b=0 2a+b�2 +P�k=1 2a+b+; and �k � �k = blg k.(f) The stated formula is Eminkf�(a; b; k) j �(a; b; k) � Xg, if we penalize thealgorithm so that it never sueeds unless it is run with the partiular uto� N = 2a.
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246 ANSWERS TO EXERCISES 7.2.2.2 ushFibonai ruler funtionruler of FibonaisCohen(g) We have Q � (1� qt)2b � (1� qt)1=qt < e�1; hene EX < (a+ b� 1)2a+b +2a+1+P1k=1(a+ b+2k�1)2a+be�k = 2a+b((a+ b)e=(e�1)+e(3�e)=(e�1)2+21�b).Furthermore we have 2a+b < 8l � 4l[b=0℄, by exerise 306(k).309. No|far from it. If Algorithm C were to satisfy the hypotheses of exerise 306, itwould have to do omplete restarts: It would not only have to ush every literal fromthe trail, it would also have to forget all the lauses that it has learned, and reinitializethe random heap. [But relutant doubling appears to work well also outside of Vegas.℄310. A method analogous to (131) an be used: Let (u01; v01) = (1; 0); then de�ne(u0n+1; v0n+1) = (u0n & �u0n = 1� v0n? (su(u0n); 0): (u0n; v0n + 1)). Here `su' is theFibonai-ode suessor funtion that is de�ned by six bitwise operations in answer7.1.3{158. Finally, let S0n = Fv0n+2 for n � 1. (This sequene hS0ni, like hSni, is \nielybalaned"; hene it is universal as in exerise 308. For example, when Fa appearsfor the �rst time, there have been exatly Fa+2� ourrenes of F, for 2 �  � a.)311. Beause hRni does surprisingly well in these tests, it seems desirable to onsideralso its Fibonai analog: If fn = su(fn�1) is the binary Fibonai ode for n, wean all h�0ni = h�fni = (0; 1; 2; 0; 3; 0; 1; 4; 0; : : : ) the \Fibonai ruler funtion," andlet hR0ni = (1; 2; 3; 1; 5; 1; 2; 8; 1; : : : ) be the \ruler of Fibonais," where R0n = F2+�0n.The results (ES; ES0 ; ER; ER0) form = 1 andm = 2 are respetively (315:1; 357:8;405:8; 502:5) and (322:8; 284:1; 404:9; 390:0); thus S beats S0 beats R beats R0 whenm = 1, while S0 beats S beats R0 beats R when m = 2. The situation is, however,reversed for larger values of m: R beats R0 beats S beats S0 when m = 90, while R0beats R beats S0 beats S when m = 89.In general, the relutant methods shine for small m, while the more \aggressive"ruler methods forge ahead as m grows: When n = 100, S beats R if and only if m � 13,and S0 beats R0 if and only ifm � 12. The doubling methods are best whenm is a powerof 2 or slightly less; the Fibonai methods are best when m is a Fibonai number orslightly less. The worst ases our at m = 65 = 26 + 1 for S and R (namely 1402.2and 845.0); they our at m = 90 = F11 + 1 for S0 and R0 (namely 1884.8 and 805.9).312. T (m;n) = m + b2bh0(�)=� + 2bg(�), where b = dlgme, � = 1 �m=n, ha(z) =Pn zn[Sn=2a ℄, and g(z) =Pn�1 Snzn =Pa�0 2aha(z).313. If l is ipped, the number of unsatis�ed lauses inreases by the ost of jlj anddereases by the number of unsatis�ed lauses that ontain l; and the latter is at least 1.Consider the following interesting lauses, whih have the unique solution 0000:x1 _ �x2; �x1 _ x2; x2 _ �x3; �x2 _ x3; x3 _ �x4; �x3 _ x4; �x1 _ �x4:\Uphill" moves 1011 7! 1111 and 1101 7! 1111 are fored; also 0110 7! 1110 or 0111.314. (Solution by Bram Cohen, 2012.) Consider the 10 lauses �1�234�567, �12�34�567,123�45, 123�46, 123�47, �1�2�3�4, �1�2�3�5, �1�2�3�6, �1�2�4�5, �1�2�4�6, and 60 more obtained by the ylipermutation (1234567). All binary x = x1 : : : x7 with weight �x = 2 have ost-free ipsleading to weight 3, but no suh ips to weight 1. Sine the only solution has weight 0,Algorithm W loops forever whenever �x > 1. (Is there a smaller example?)315. Any value with 0 � p < 1=2 works, sine eah graph omponent is eitherK1 orK2.316. No; max �(1 � �)d for 0 � � < 1 is dd=(d + 1)d+1, when � = 1=(d + 1). [ButTheorem J for d > 2 is a onsequene of the improved Theorem L in exerise 356().℄317. Number the verties so that the neighbors of vertex 1 are 2, : : : , d0, and letGj = G n f1; : : : ; jg. Then �(G) = �(G1) � Pr(A1 \ A2 \ � � � \ Am), and the latterprobability is � Pr(A1\Ad0+1\� � �\Am) = Pr(A1 j Ad0+1\� � �\Am)�(Gd0 ) � p�(Gd0).
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7.2.2.2 ANSWERS TO EXERCISES 247 M�obius polynomialChebyshev polynomialsonvex hullLet � = (d � 1)=d. By indution we have �(Gj) > ��(Gj+1) for 1 � j < d0,beause vertex j + 1 has degree < d in Gj . If d0 = 1 then �(G) � �(G1) � p�(G1) >��(G1) > 0. Otherwise if d0 � d, �(G) � �(G1) � p�(Gd0) > �(G1) � p�1�d0�(G1) ��(G1)� p�1�d�(G1) = ��(G1) > 0. Otherwise we must have d0 = d+ 1, with vertex 1of degree d, and �(G) > �(G1)� p��d�(G1) = d�2d�1�(G1) � 0.318. Let fn = MG(p) where G is the graph of a omplete t-ary tree with tn leaves;thus G has tk verties at distane k from the root, for 0 � k � n. Thenf0 = 1� p; f1 = (1� p)t � p; and fn+1 = f tn � pf t2n�1 for n > 1:By Theorem S, it suÆes to show that fn � 0 for some n.The key idea is to let g0 = 1� p and gn+1 = fn+1=f tn = 1� p=gtn. Assuming thatgn > 0 for all n, we have g1 < g0 and gn � gn+1 = p=gtn � p=gtn+1 > 0 when gn+1 < gn.Hene limn!1 gn = � exists, with 0 < � < 1. Furthermore � = 1 � p=�t, so thatp = �t(1� �). But then p � tt=(t+ 1)t+1 (see answer 316 with � = 1� �).[One must admit, however, that the limit is not often reahed until n is extremelylarge. For example, even if t = 2 and p = :149, we don't have fn < 0 until n = 45.Thus G must have at least 245 verties before this value of p is too large for Lemma L.℄319. Let x = 1=(d � 1). Sine ex > 1 + x = d=(d� 1), we have e > (d=(d� 1))d�1.320. (a) Let fm(p) be the M�obius polynomial when p1 = � � � = pm = p. Then we havefm(p) = fm�1(p) � pfm�2(p), and one an show by indution that fm(1=(4 os2 �)) =sin((m+ 2)�)=((2 os �)m+1 sin �). The threshold dereases to 1=4 as m!1.(b) 1=(4 os2 �2m ); the M�obius polynomial gm(p) = fm�1(p) � pfm�3(p) satis�esthe same reurrene as fm(p), and equals 2 osm�=(2 os �)m when p = 1=(4 os2 �).[In terms of the lassial Chebyshev polynomials, gm(p) = 2pm=2Tm(1=(2pp))and fm(p) = p(m+1)=2Um+1(1=(2pp)).℄321. Let � = (2 � p2)=2, �0 = �(1 � �) = (p2 � 1)=2, and  = (p � �)=(1 � �).The method of answer 345 gives (Pr(ABCD), Pr(ABCD), Pr(ABCD), Pr(ABCD),Pr(ABCD), Pr(ABCD)) = (0, �0(1�)3, 2�0(1�)2, �2(1�)2+2�0(1�)3, �2(1�)+3�0(1� )2, �22+4�03). Other ases are symmetri to these six. When p = 3=10 thesix probabilities are � (0; :20092; :00408; :08815; :00092; :00002).322. (a) Let aj = Pi wi[ij 2A℄, bj = Pk yk[jk 2B ℄, l = Pk yk[kl2C ℄, and dl =Pi wi[li2D ℄. Then when X = j and Z = l, the best way to alloate the events is
AB ABABABY W
z }| {�aj z }| {aj z}|{ bjz}|{ �bj CD CDCDCDY W

z }| {l z }| {�l z}|{ �dlz}|{ dlwithinW and Y. Hene Pr(A\B\C\D) =Pj;l xjzl((�aj+ �dl) .�1)((�bj+�l) .�1), whihis zero if and only if we have aj + dl � 1 or bj + l � 1 for all j and l with xjzl > 0.(b) Sine Pj xj(aj ; bj) = (p; p), the point (p; p) lies in the onvex hull of thepoints (aj ; bj). So there must be points (a; b) = (aj ; bj) and (a0; b0) = (aj0 ; bj0) suhthat the line from (a; b) to (a0; b0) intersets the region f(x; y) j 0 � x; y � pg; in otherwords �a+ (1� �)a0 � p and �b+ (1� �)b0 � p. Similarly we an �nd , d, 0, d0, �.
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248 ANSWERS TO EXERCISES 7.2.2.2 adjaent pairs of letters, avoidingdependene graphpartial orderingtopologial sortingsempilementlinear extensions, see Topologial sortingGesselanonial string() Fat: If a � 23 and b0 � 23 , then � = 12 ; hene a = b0 = 23 and a0 = b = 0.Notie also that there are 16 symmetries, generated by (i) a $ b,  $ d; (ii) a $ a0,b$ b0, �$ 1� �; (iii) $ 0, d$ d0, � $ 1� �; (iv) a$ d, b$ , �$ �.If  � 0 and d � d0, or if  � 13 and d � 13 , we an assume (by symmetry) thatthe Fat applies; this gives a solution to all the onstraints, with  = d = 0 = d0 = 13 .For the remaining solutions we may assume that a; b0 > 13 > a0; b. Suppose the linefrom (a; b) to (a0; b0) intersets the line from (0; 0) to (1; 1) at the point (�; �); dividinga, b, a0, b0 by 3� gives a solution in whih �a+(1��)a0 = �b+(1��)b0 = 13 . Similarly,we an assume that d; 0 > 13 > d0;  and that � + (1 � �)0 = �d + (1 � �)d0 = 13 .Consequently a + d � 1 and b0 + 0 � 1. Symmetry also allows us to assume thata+d0 � 1. In partiular, a > 23 ; and, by the Fat, b0 < 23 . So a0+d � 1, d > 23 , 0 < 23 .Now extend the lines that onnet (a; b) to (a0; b0) and (; d) to (0; d0), by inreas-ing a, b0, 0, d while dereasing a0, b, , d0, until a0 = 1 � d and a = 1 � d0, and untileither a = 1 or b = 0, and either d = 1 or  = 0. The only solution of this kind withb0 + 0 � 1 ours when a = d = 1, a0 = b =  = d0 = 0, b0 = 0 = 1=2, � = 13 , � = 23 .(d) For the �rst solution, we an let W , X, Y, Z be uniform on f0; 1; 2g, f0; 1g,f0; 1; 2g, and f0g, respetively; and let A = f10; 20g, B = f11; 12g, C = f00g,D = f00g. (For example, WXY Z = 1110 gives event B.) The seond solution turnsout to be the same, but with (X;Y; Z;W ) in plae of (W;X; Y; Z). Notie that thesolution applies also to P4, where the threshold is 13 . [See STOC 43 (2011), 242.℄323. b. In this simple ase, we just eliminate all strings in whih  is followed by a.324. For 1 � j � n, and for eah v suh that v = xj or v���xj , let i � j for eah i < jsuh that v = xi. (If several values of i qualify, it suÆes to onsider only the largestone. Several authors have used the term \dependene graph" for this partial ordering.)The traes equivalent to � orrespond to the topologial sortings with respet to �,beause those arrangements of the letters are preisely the permutations that preservethe empilement.In (136), for example, with x1 : : : xn = bebafd, we have 1 � 2, 1 � 4, 2 � 4,4 � 5, 3 � 6, 2 � 7, 3 � 7, 2 � 8, 4 � 8, and 7 � 8. Algorithm 7.2.1.2V produes 105solutions, 12345678 (bebafd) through 36127485 (efbdba).325. Every suh trae � yields an ayli orientation, if we let u��!v when u appearsat a lower level in �'s empilement. Conversely, the topologial sortings of any ayliorientation are all equivalent traes; so this orrespondene is one-to-one. [See Ira M.Gessel, Disrete Mathematis 232 (2001), 119{130.℄326. True: x ommutes with y if and only if y ommutes with x.327. Eah trae � is represented by its height h = h(�) � 0, and by h linked listsLj = Lj(�) for 0 � j < h. The elements of Lj are the letters on level j of �'sempilement; these letters have disjoint territories, and we keep eah list in alphabetiorder so that the representation is unique. The anonial string representing � isthen L0L1 : : : Lh�1. (For example, in (136) we have L0 = be, L1 = f , L2 = bd ,L3 = a, and the anonial representation is befbda.) We also maintain the setsUj = SfT (a) j a 2 Ljg as bit vetors; in (136), for example, they are U0 = #36,U1 = #1b, U2 = #3, U3 = #78.To multiply � by �, do the following for k = 0, 1, : : : , h(�) � 1 (in that order),and for eah letter b 2 Lk(�) (in any order): Set j  h(�); then while j > 0 andT (b) & Uj�1(�) = 0, set j  j � 1. If j = h(�), set Lj(�) empty, Uj(�)  0, andh(�) h(�) + 1. Insert b into Lj(�), and set Uj(�) Uj(�) + T (b).
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7.2.2.2 ANSWERS TO EXERCISES 249 Viennotstar�shline graphlawmathingsM�obius polynomialmathing polynomialreal roots of polynomialsoomparability graphAnisimovKnuth
328. Do the following for k = h(�) � 1, : : : , 1, 0 (in that order), and for eah letterb 2 Lk(�) (in any order): Set j  h(�) � 1; while j > 0 and T (b) & Uj(�) = 0, setj  j � 1. Report failure if b isn't in Lj(�). Otherwise remove b from that list and setUj(�) Uj(�)� T (b); if Uj(�) is now zero, set h(�) h(�)� 1.If there was no failure, the resulting � is the answer.329. Do the following for k = 0, 1, : : : , h(�) � 1 (in that order), and for eah lettera 2 Lk(�) (in any order): Report failure if a isn't in L0(�). Otherwise remove a fromthat list, set U0(�) U0(�)� T (a), and renormalize the representation of �.Renormalization involves the following steps: Set j   1. While Uj�1(�) 6= 0and  6= 0, terminate if j = h(�); otherwise set  0, j  j+1, and then, for eah letterb in Lj�1(�) suh that T (b) & Uj�2(�) = 0, move b from Lj�1(�) to Lj�2(�) and setUj�2(�) Uj�2(�)+T (b), Uj�1(�) Uj�1(�)�T (b),  1. Finally, if Uj�1(�) = 0,set Ui�1(�) Ui(�) and Li�1(�) Li(�) for j � i < h(�), then set h(�) h(�)� 1.If there was no failure, the resulting � is the answer.330. Let the territorial universe be V [E, the verties plus edges of G, and let T (a) =fag [ ffa; bg j a ��� bg. [G. X. Viennot, in 1985, alled this subgraph a star�sh.℄Alternatively, we an get by with just two elements in eah set T (a) if and only ifG = L(H) is the line graph of some other multigraph H. Then eah vertex a of Gorresponds to an edge u���v in H, and we an let T (a) = fu; vg.[Notes: The smallest graph G that isn't a line graph is the \law" K1;3. Sinesets of independent verties in the line graph G are sets of disjoint edges in H, alsoalled mathings of H, the M�obius polynomial of G is also known as the \mathingpolynomial" ofH. Suh polynomials are important in theoretial hemistry and physis.When all territories have jT (a)j � 2, all roots of the polynomial M�G(z) in (149) arereal and positive, by exerise 341. ButMlaw(z; z; z; z) = 1�4z+3z2�z3 has omplexroots � 0:317672 and 1:34116 � 1:16154i.℄331. If � is a string with k > 0 ourrenes of the substring a, there are 2k waysto deompose � into fators fa; b; ; ag, and the expansion inludes +� and �� eahexatly 2k�1 times. Thus we're left with the sum of all strings that don't ontain `a'.332. No: If b ommutes with a and , but a 6= a, we're dealing with strings thatontain no adjaent pairs ba or b; hene ab quali�es, but it's equivalent to the smallerstring ba. [Certain graphs do de�ne traes with the stated property, as we've seen in(135) and (136). Using the next exerise we an onlude that the property holds ifand only if no three letters a < b <  have a /��� b, b /��� , and a���  in the graph Gof lashes. Thus the letters an be arranged into a suitable linear order if and only ifG is a oomparability graph; see Setion 7.4.2.℄333. To show thatP�2A;�2B(�1)j�j�� = 1, let  = a1 : : : an be any nonempty string.If  annot be fatored so that a1 : : : ak 2 A and ak+1 : : : an 2 B, then  doesn't appear.Otherwise  has exatly two suh fatorizations, one in whih k has its smallest possiblevalue and the other in whih k is one greater; these fatorizations anel eah other inthe sum. [Manusripta Math. 19 (1976), 239{241.℄334. Equivalently we want to generate all strings of length n on the alphabet f1; : : : ;mgthat satisfy the following riterion, whih strengthens the adjaent-letter test of exer-ise 332: If 1 � i < j � n, xi /���xj , xi+1 /���xj , : : : , xj�1 /���xj , then xi � xj . [SeeA. V. Anisimov and D. E. Knuth, Int. J. Comput. Inf. Si. 8 (1979), 255{260.℄T1. [Initialize.℄ Set x0  0 and xk  1 for 1 � k � n.T2. [Visit.℄ Visit the trae x1 : : : xn.
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250 ANSWERS TO EXERCISES 7.2.2.2 MaMahon's Master Theoremlexiographially smallest traesmultiset permutationsoomparability graphographomplete bipartiteomplete k-partite graphsonvolution priniplebinomial onvolutionBenderGoldman
T3. [Find k.℄ Set k  n. While xk = m set k k � 1. Terminate if k = 0.T4. [Advane xk.℄ Set xk xk + 1 and j  k � 1.T5. [Is xk valid?℄ If xj > xk and xj /���xk, return to T4. If j > 0 and xj < xkand xj /���xk, set j  j � 1 and repeat this step.T6. [Reset xk+1 : : : xn.℄ While k < n do the following: Set k  k + 1, xk  1;while xk�1 > xk and xk�1 /���xk, set xk  xk + 1. Then go bak to T2.335. Given suh an ordering, we have MG = det(I�A), where the entry in row u andolumn v of A is v [u� v or u���v ℄. The determinant in the given example isdet0BBBBB� 1 �b � 0 0 00 1�b 0 �d 0 00 �b 1� �d �e 00 �b � 1�d 0 �f0 �b � �d 1�e �f0 �b � �d �e 1�f 1CCCCCA+ det0BBBBB��a �b � 0 0 00 1  �d 0 00 0 1 �d �e 00 0 0 1�d 0 �f0 0 0 �d 1�e �f0 0 0 �d �e 1�f 1CCCCCA ;after expanding the �rst olumn, then subtrating the �rst row from all other rows inthe right-hand determinant. Therefore this rule satis�es reurrene (142).[The result also follows from MaMahon's Master Theorem, exerise 5.1.2{20,using the haraterization of lexiographially smallest traes in answer 334. Aord-ing to Theorem 5.1.2B, suh traes are in one-to-one orrespondene with multisetpermutations whose two-line representation does not ontain vu when v > u and v /���u.Is there a similar determinantal expression when G is not a oomparability graph?℄336. (a) If � is a trae for G and � is a trae for H, we have �G�H(��) = �G(�)�H(�).HeneMG�H =MGMH . (b) In this ase �G���H(��) = �G(�) if � = �, �H(�) if � = �;otherwise it's zero. Therefore MG���H =MG +MH � 1.[These rules determine MG reursively whenever G is a ograph (see exerise 7{90). In partiular, omplete bipartite and k-partite graphs have simple M�obius series,exempli�ed byMG = (1�a)(1�b)(1�)+(1�d)(1�e)+(1�f)�2 when G = K3;2;1.℄337. Substituting a1 + � � �+ ak for a in MG gives MG0 . (Eah trae for G0 is obtainedby putting subsripts on the a's of the traes for G.)338. The proof of Theorem F needs only minor hanges: We limit � to traes thatontain no elements of A, and we de�ne �0 and �0 by letting a be the smallest letter =2 Ain the bottom level of 's empilement. If  has no suh letter, there's only one fator-ization, with � = �. Otherwise we pair up anelling fatorizations. [Inidentally, thesum of all traes whose sinks are in A must be written in the other order: M�1G MGnA.℄339. (a) \Push down" on piee xj and fator out what omes through the oor.(b) Fator out the pyramid for the smallest label, and repeat on what's left.() This is a general onvolution priniple for labeled objets [see E. A. Benderand J. R. Goldman, Indiana Univ. Math. J. 20 (1971), 753{765℄. For example, whenl = 3 the number of ways to get a labeled trae of length n from three labeled pyramidsisPi;j;k � ni;j;k�PiPjPk=3! = n!Pi;j;k(Pi=i!)(Pj=j!)(Pk=k!)=3!, with i+j+k = n in bothof these sums. We divide by 3! so that the topmost pyramid labels will be inreasing.(d) Sum the identity in () for l = 0, 1, 2, : : : .(e) T (z) = Pn�0 tnzn = 1=MG(z) by Theorem F, and P (z) = Pn�1 pnzn=n.Note: If we retain the letter names, writing for exampleMG(z) = 1�(a+b+)z+az2instead ofMG(z) = 1�3z+z2, the formal power series � lnMG(z) exhibits the pyramidsof length n in the oeÆient of zn, but only in the sense of ommutative algebra (not
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7.2.2.2 ANSWERS TO EXERCISES 251 permanentHeilmannLiebdeterminantMaMahon's Master TheoremSottSokalslaktrae algebra). For example, the oeÆient of z3 obtained from Pk�1(1�MG(z))k=kwith trae algebra inludes the nonpyramidal term ba=6.340. Let w((i1 : : : ik)) = (�1)k�1ai1i2ai2i3 : : : aiki1 ; thus w(�) = (�a13a34a42a21)(�a57a75)(a66) in the given example. The permutation polynomial is then detA, byde�nition of the determinant. (And we get the permanent, if we omit the (�1)k�1.)341. The hint is true when n = 2, sine the �rst involution polynomials are w11x andw11w22x2�w12. And there's a reurrene: W (S) = wiixW (S n i)�Pj 6=iW (S nfi; jg).So we an prove the existene of n+1 roots s1 < r1 < � � � < rn < sn+1 by indu-tion: LetWn(x) be the polynomial for f1; : : : ; ng. ThenWn+1(x) is w(n+1)(n+1)xWn(x)minus n polynomials w(n+1)jW (f1; : : : ; ng n j), eah with roots q(j)k that are nielysandwihed between the roots of Wn. Furthermore q(j)n�k = �q(j)k and rn+1�k = �rk,for 1 � k � n=2. It follows that Wn+1(rn) < 0, Wn+1(rn�1) > 0, and so on, with(�1)kWn+1(rn+1�k) > 0 for 1 � k � n=2. Moreover, Wn+1(0) = 0 when n is even;(�1)kWn+1(0) > 0 when n = 2k � 1; and Wn+1(x) > 0 for all large x. Hene thedesired sk exist. [See Heilmann and Lieb, Physial Review Letters 24 (1970), 1412.℄342. If we replae (i1 : : : ik) by ai1i2ai2i3 : : : aiki1 (as in answer 340, but without the(�1)k�1), thenMGn beomes det(I�A). Replaing aij by aijxj gives the determinantin MaMahon's Master Theorem. And if x1 = � � � = xn = x, we get the polynomialdet(I�xA), whose roots are the reiproals of the roots of A's harateristi polynomial.343. The formulas in answer 336 show that MG(p1; : : : ; pm) inreases whenever anypj dereases, with respet to a ograph G. The only graph on � 4 verties that isn'ta ograph is P4 (see exerise 7{90); then MG(p1; p2; p3; p4) = 1 � p1 � p2 � p3 � p4 +p1p3 + p1p4 + p2p4 = (1 � p1)(1 � p3 � p4) � p2(1 � p4). In this ase also we anonlude that MG(p1; : : : ; p4) > 0 implies (p1; : : : ; p4) 2 R(G). But when G = P5, we�nd MG(1� �; 1� �; �; 1� �; 1� �) > 0 for 0 � � < ��2; yet (1� �; 1� �; �; 1� �; 1� �)is never in R(G) beause MG(0; 0; �; 1� �; 1� �) = �(1� �)2.344. (a) If some minterm, say B1B2B3B4, has negative \probability," then p1p4 �(1� �2 � �3 + �23) < 0; hene MG(0; p2; p3; 0) < 0 violates the de�nition of R(G).(b) In fat, more is true: �I[J = �I�J when i /���j for i 2 I, j 2 J, and I\J = ;.() It's MG(p1[12 J ℄; : : : ; pm[m2 J ℄), by (140) and (141). This important fat,already impliit in the solution to part (a), implies that �(G j J) > 0 for all J .(d) Writing just `J ' for `GjJ ', we shall prove that �(i[ J)=�(i[ J) � �(J)=�(J)for i =2 J , by indution on jJ j. Let J 0 = fj 2 J j i /���jg. Then we have�(i [ J) = �(J)� Pr�Ai \ \j2JAj� � �(J)� Pr�Ai \ \j2J0Aj� � �(J) � pi�(J 0);beause of (133). Also �(i[J) = �(J)�pi�(J 0). Hene �(i[J)�(J)��(J)�(i[J) �(�(J) � pi�(J 0))�(J) � �(J)(�(J) � pi�(J 0)) = pi(�(J)�(J 0) � �(J 0)�(J)), whih is� 0 by indution sine J 0 � J .[This argument proves that Lemma L holds whenever (p1; : : : ; pm) leads to a le-gitimate probability distribution with �(G) > 0; hene suh probabilities are in R(G).℄(e) By indution, we have �(i [ J) = �(J) � �i�(J 0)Qi���j(1 � �j) � �(J) ��i�(J 0)Qj2JnJ0(1� �j) � (1� �i)�(J), beause �(J)=�(J 0) �Qj2JnJ0(1� �j).345. (Solution by A. D. Sott and A. D. Sokal.) Set p0j = (1 + Æ)pj where Æ � 0 isthe slak of (p1; : : : ; pm). Then MG(p01; : : : ; p0m) = 0, but it beomes positive if anyp0j is dereased. De�ne events B01, : : : , B0m by the onstrution in exerise 344. LetC1, : : : , Cm be independent binary random variables suh that Pr(Cj = 1) = qj ,
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252 ANSWERS TO EXERCISES 7.2.2.2 traessourestop-down algsbottom-up algsSottSokalwhere (1 � p0j)(1 � qj) = 1 � pj . Then the events Bj = B0j _ Cj satisfy the desiredonditions: Pr(Bi j Bj1 \ � � � \ Bjk ) = Pr(Bi j B 0j1 \ � � � \ B 0jk ) = Pr(Bi) = pi; andPr(B1 _ � � � _Bm) � Pr(B01 _ � � � _B0m) = 1.346. (a) By (144), Ka;G is the sum of all traes on the probabilities of G n a whosesoures are neighbors of a. Dereasing pj doesn't derease any trae.(b) Suppose vertex a = 1 has neighbors 2, : : : , j. If we've reursively omputedMGna� and MGna, �nding that (pj+1; : : : ; pm) 2 R(Gna�) and (p2; : : : ; pm) 2 R(Gna),then we know Ka;G; and the monotoniity property in (a) implies that (p1; : : : ; pm) 2R(G) if and only if aKa;G < 1.The graph G = a b de f in exerise 335 an, for example, be proessed as follows:Mabdef =Mbdef�1�a MdefMbdef � = (1�a0)(1�b0) : : : (1�f 0); a0 = a(1�b0)(1�0) ;Mbdef =Mdef�1�b MefMdef � = (1�b0)(1�0) : : : (1�f 0); b0 = b(1�00)(1�0)(1�d0) ;Mdef =Mdef�1� MfMdef � = (1�0)(1�d0)(1�e0)(1�f 0); 0 = (1�d0)(1�e0) ;Mef =Mef�1� MfMef � = (1�00)(1�e0)(1�f 0); 00 = (1�e0) ;Mdef =Mef�1�d MeMef � = (1�d0)(1�e0)(1�f 0); d0 = d(1�e00)(1�e0)(1�f 0) ;Mef =Mf�1�eM�Mf � = (1�e0)(1�f 0); e0 = e(1�f 0) ;Me =M��1�eM�M�� = (1�e00); e00 = e;Mf =M��1�f M�M�� = (1�f 0); f 0 = f;with M� = 1. (The equations on the left are derived top-down, then the equations onthe right are evaluated bottom-up. We have (a; b; : : : ; f) 2 R(G) if and only if f 0 < 1,e00 < 1, e0 < 1, : : : , a0 < 1.) Even better is to traverse this graph in another order,using the rule MG�H =MGMH (exerise 336) when subgraphs aren't onneted:Mdabef =Mdabef�1�MbMfMdabef � = (1�0)(1�d0) : : : (1�f 0); 0 = (1�a0)(1�d0)(1�e0) ;Mdabef =MabMef�1�d MaMeMabMef � = (1�d0)(1�a0)(1�b0)(1�e0)(1�f 0); (see below)Mab =Mb�1�aM�Mb� = (1�a0)(1�b0); a0 = a(1�b0) ;Ma =M��1�aM�M�� = (1�a00); a00 = a;Mb =M��1�bM�M�� = (1�b0); b0 = b;where d0 = dMaM�=(MabMef ) = d(1�a00)(1�e00)=((1�a0)(1�b0)(1�e0)(1�f 0)), andMef , Me, Mf , M� are as before. In this way we an often solve the problem in lineartime. [See A. D. Sott and A. D. Sokal, J. Stat. Phys. 118 (2005), 1151{1261, x3.4.℄
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7.2.2.2 ANSWERS TO EXERCISES 253 least ommon anestorPegden347. (a) Suppose v1���v2���� � ����vk���v1 is an indued yle. We an assume thatv1 � v2. Then, by indution on j, we must have v1 � � � � � vj for 1 < j � k; for ifvj+1 � vj we would have vj+1���vj�1 by (�). But now vk���v1 implies that k = 3.(b) Let the verties be f1; : : : ;mg, with territory sets T (a) � U for 1 � a � m;and let U be a tree suh that eah U j T (a) is onneted. Let Ua be the least ommonanestor of T (a) in U . (Thus the nodes of T (a) appear at the top of the subtree rootedat Ua.) Sine Ua 2 T (a), we have a���b when Ua = Ub.Writing s �U t for the anestor relation in U, we now de�ne a � b if Ua �U Ubor if Ua = Ub and a < b. Then (�) is satis�ed: If t 2 T (a)\ T (b), we have Ua �U t andUb �U t, hene Ua �U Ub or Ub �U Ua, hene a � b or b � a. And if a � b �  andt 2 T (a)\ T (), we have Ua �U Ub �U U; onsequently Ub 2 T (a)\ T (b), beause Ublies on the unique path between t and Ua in U and T (a) is onneted.() Proessing the nodes in any order suh that a is eliminated before b wheneverUa is a proper anestor of Ub will then lead only to subproblems in whih the algorithmneeds no \double-primed" variables.For example, using (a; b; : : : ; g) instead of (1; 2; : : : ; 7) in order to math thenotation in exerise 346, suppose U is the tree rooted at p having the edges p��� q,p ��� r, r ��� s, r ��� t, and let T (a) = fp; q; r; tg, T (b) = fp; r; sg, T () = fp; qg,T (d) = fqg, T (e) = fr; sg, T (f) = fsg, T (g) = ftg. Then a � b �  � d,  � e � f ,e � g. The algorithm omputes Mabdefg = (1 � a0)Mbdefg , Mbdefg = (1 � b0)Mdefg ,et., where a0 = aMf=Mbdefg , b0 = bMdfg=Mdefg = b(MdMfMg)=(MdMefMg), et.In general, the tree ordering guarantees that no \double-primed" variables areneeded. Thus the formulas redue to v0 = v=Qu��v; v�u(1� u0) for eah vertex v.(d) For example, we have p1 = a, : : : , p7 = g, �1 = a0, : : : , �7 = g0 in (). Thevalues of the �'s, whih depend on the ordering �, are uniquely de�ned by the givenequations; and we haveMG(p1; : : : ; pm) = (1��1) : : : (1��m) in any ase. [W. Pegden,Random Strutures & Algorithms 41 (2012), 546{556.℄348. There is at least one singularity at z = �ei� for some �. If 0 < r < �, the powerseries f(z) =P1n=0 f (n)(rei�)(z�rei�)n=n! has radius of onvergene ��r. If z = � isn'ta singularity, the radius of onvergene for � = 0 would exeed ��r. But jf (n)(rei�)j =jP1m=0mnan(rei�)m�nj � f (n)(r). [Mathematishe Annalen 44 (1894), 41{42.℄349. Typial generating funtions are g0000001 = 1; g0110110 = z(g0100110 + g0101110 +g0110110+g0111110)=4 (in Case 1) or g0110110 = z(g0000110+g0010110+g0100110+g0110110)=4(in Case 2). These systems of 128 linear equations have solutions whose denominatorsinvolve one or more of the polynomials 4�z, 2�z, 16�12z+z2 , 4�3z, 64�80z+24z2�z3,8�8z+z2 in Case 1 (see exerise 320); the denominators in Case 2 are powers of 4�z.Setting g(z) =Px gx(z)=128 leads to g(z) = 1=((2 � z)(8� 8z + z2)) in Case 1,with mean 7 and variane 42; g(z) = (1088�400z+42z2� z3)=(4� z)6 in Case 2, withmean 1139=729 � 1:56 and variane 1139726=7292 � 2:14.[The upper bound E1+ � � �+E6 is ahieved by the distribution of Case 1, beauseit mathes the extreme distribution (148) of the path graph P6. Inidentally, if Case 1is generalized from n = 7 to arbitrary n, the mean is n(n � 1)=6 and the variane is(n+ 3)(n + 2)n(n � 1)=90.℄350. (a) The generating funtion for N is Qnk=1(1 � �k)=(1 � �kz); so the mean andvariane, in general, are Pnk=1 �k=(1 � �k) and Pnk=1 �k=(1 � �k)2. In partiular, themeans are (i) n; (ii) n=(2n � 1); (iii) n=(2n � 1); (iv) H2n �Hn + 12n = ln 2 +O(1=n);(v) 12 ( 1n+1 + 12n � 12n+1 ) = 12n + O(1=n2). The variane in ase (i) is 2; otherwise it'sasymptotially the same as the mean, times 1 +O(1=n).



September 23, 2015

254 ANSWERS TO EXERCISES 7.2.2.2 omplete bipartite graphMoserTardosAlonSpenertraesFibonai numbersonseutive oneshain rule
(b) In this ase the mean and variane are �=(1 � �) and �=(1 � �)2, where� = Pr(Am) = 1� (1� �1) : : : (1� �n). This value � is (i) 1� 2�n; (ii) 1� (1� 12n )n =1� e�1=2 + O(1=n); (iii) 1� (1� 2�n)n = n=2n + O(n2=4n); (iv) 1/2; (v) 1=(2n + 2).Hene the respetive means are (i) 2n�1; (ii) e1=2�1+O(1=n); (iii) n=2n+O(n2=4n);(iv) 1; (v) 1=(2n + 1). And the varianes are (i) 4n � 2n; (ii) e � e1=2 + O(1=n);(iii) n=2n +O(n2=4n); (iv) 2; (v) 1=(2n + 1) + 1=(2n + 1)2.() Sine G is Kn;1, exerises 336 and 343 imply that (�1; : : : ; �n; �) 2 R(G) ifand only if � < 12 . This ondition holds in ases (ii), (iii), and (v).351. (Solution by Moser and Tardos.) We require i ��� j if there's a setting of thevariables suh that Ai is false and Aj is true, provided that some hange to the variablesof �j might make Ai true. And vie versa with i$ j.(The Loal Lemma an be proved also for direted lopsidependeny graphs; seeNoga Alon and Joel H. Spener, The Probabilisti Method (2008), x5.1. But the theoryof traes, whih we use to analyze Algorithm M, is based on undireted graphs, and noalgorithmi extension to the direted ase is presently known.)352. Answer 344(e), withMG = �(i[J),MGni = �(J), proves thatMGni=MG � 1��i.353. (a) There are n+1 sorted strings in Case 1, namely 0k1n�k for 0 � k � n. Thereare Fn+2 solutions in Case 2 (see, for example, exerise 7.2.1.1{91).(b) At least 2nMG(1=4), where G is the path Pn�1. By exerise 320 we haveMG(1=4) = fn�1(1=4) = (n+ 1)=2n; so Case 1 mathes the lower bound.() There are no lopsidependenies. Hene the relevant G is the empty graph onm = n�1 verties;MG(1=4) = (3=4)n�1 by exerise 336; and indeed, Fn+2 � 3n�122�n.354. Di�erentiate (151) and set z  1.355. If A = Aj is an isolated vertex of G, then 1 � pjz is a fator of the polynomialM�G(z) in (149), hene 1 + Æ � 1=pj ; and Ej = pj=(1 � pj) � 1=Æ. OtherwiseMG(p1; : : : ; pj�1; pj(1 + Æ); pj+1; : : : ; pm) = M�G(1) � ÆpjM�GnA�(1) > M�G(1 + Æ) = 0;so Ej = pjM�GnA�(1)=M�G(1) > 1=Æ.356. (a) We prove the hint by indution on jSj. It's obvious when S = ;; otherwiselet X = S \Si2Uj Uj and Y = S nX. We havePr(Ai j AS) = Pr(Ai \AX \AY )Pr(AX \AY ) � Pr(Ai \ AY )Pr(AX \AY ) � Pr(Ai) Pr(AY )Pr(AX \AY ) = Pr(Ai)Pr(AX jAY )by (133). Suppose i belongs to the liques Uj0 , : : : , Ujr where j = j0. Let X0 = ;and Xk = (S \ Ujk ) n Xk�1, Yk = Y [ X1 [ � � � [ Xk�1 for 1 � k � r. We havePr(Al jAYk )��ljk for all l 2 Xk, sine jYkj < jSj when Xk 6= ;; hene Pr(AXk j AYk) �(1 + �ijk � �jk ). Thus Pr(AX jAY ) = Pr(AX1 jAY1) Pr(AX2 jAY2) : : : Pr(AXr jAYr) �Qk 6=j;i2Uk(1 + �ik ��k), by the hain rule (exerise MPR-14); the hint follows.Finally let Wk = U1 [ � � � [ Uk for 1 � k � t. The hint implies thatPr(A1 \ � � � \Am) = Pr(AW1) Pr(AW2 j AW1 ) : : : Pr(AWt j AWt�1)� (1��1)(1��2) : : : (1��t) > 0:(b) The extreme events B1, : : : , Bm of Theorem S satisfy the hint of (a). ThusPr(Bi j Tk=2Uj Bk) � �ij for all i 2 Uj ; hene qi = Pr(Bi j Tk 6=iBk) � �ij=(1+�ij��j).Furthermore Ei = qi=(1� qi) in (152), beause qi = piMGni�=MGni.
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() Let U1, : : : , Ut be the edges of G, with �ik = �i when Uk = fi; jg. Then�k = �i+�j < 1, and the suÆient ondition in (a) is that Pr(Ai) � �iQj 6=k;i���j(1��j)whenever i���k. (But notie that Theorem M does not hold for suh larger pi.)[K. Kolipaka, M. Szegedy, and Y. Xu, LNCS 7408 (2012), 603{614.℄357. If r > 0, we have x = r=(1�p), y = r=(1�q). But r = 0 is possible only on the axesof Fig. 51: Either (p; q) = (0; 1), x = 0, 0 < y � 1, or (p; q) = (1; 0), 0 < x � 1, y = 1.358. Suppose x � y (hene p � q and x > 0). Then p � r if and only if 1� y � y.359. Instead of omputing �l by formula (154), represent it as two numbers (�+l ; �0l),where �+l is the produt of the nonzero fators and �0l is the number of zero fators.Then the quantity ��l needed in (156) is �+�l [�0�l =0℄; and the quantity �l=(1� �C!l) is�+l [�0l =1℄ if �C!l = 1, otherwise it's �+l [�0l =0℄=(1� �C!l). A similar method an beused to separate out the zero fators of Ql2C l!C in (157).360. We may assume that �3 = 0. Sine �l = 1 implies that �C!l = �l!C = 0, wehave �C!1 = �C!�2 = �C!3 = �C!�4 = �1!C = 2!C = �3!C = 4!C = 0 forall C. Consequently, as in (159), all but three of the values �C!l are zero; let x, y, zdenote the others. Also let ��1 = a, �2 = b, �4 = , ��3 = d. Then ��1 = (1�a)(1�x),�2 = (1�b)(1�y), �4 = (1�)(1�z), and ��3 = 1 � d. A �xed point is obtained ifx = d(b+ d(1�b) + ad2(1�b)(1�))=(1� d3(1�a)(1�b)(1�)), et. If d is 0 or 1 thenx = y = z = d. [Are there any other �xed points, say with �1 6= 1?℄361. The �'s and 's will also be either 0 or 1, and we exlude the ase �l = ��l = 0; thuseah variable v is either 1, 0, or �, depending on whether (�v; ��v) is (0; 1), (1; 0), or (1; 1).Any assignment of 1, 0, or � to the variables is permissible, provided that everylause has at least one literal that's true or two that are �. (Suh partial assignmentsare alled \overing," and they're usually possible even with unsatis�able lauses; seeexerise 364.) All survey messages �0C!l = �C!l are zero exept when lause C has las its only non-false literal. The reinforement message �l an be either 0 or 1, exeptthat it must be 1 if l is true (�l = 0) and all messages �C!l are 0.If we also want �0l = �l, we take � = 1 in (158), and �l = 1� �l.362. Create a linked list L, ontaining all literals that are to be fored true, inludingall literals that are in 1-lauses of the original problem. Do the following steps while Lis nonempty: Remove a literal l from L; remove all lauses that ontain l; and remove�l from all the lauses that remain. If any of those lauses has thereby been reduedto a single literal, (l0), hek to see if l0 or �l0 is already present in L. If �l0 is present,a ontradition has arisen; we must either terminate unsuessfully or restart step S8with inreased  . But if �l0 and l0 are both absent, put l0 into L.363. (a) True; indeed, this is an important invariant property of Algorithm C.(b) W (001) = 1, W (���) = p1p2p3, otherwise W (x) = 0.() Statements (i) and (iii) are true, but not (ii); onsider x = 10�, x0 = 00�, andthe lause 123.(d) All eight subsets of f1; �2; �3g are stable exept f�2; �3g, beause x1 isonstrained in 100. The other seven are partially ordered as shown. (Thisdiagram illustrates L7, the smallest lattie that is lower semimodular but not modular.)(e) x2x3 = 00 01 0� 10 11 1� �0 �1 ��x1 = 0 0 q1q2 0 q1q3 q1q2q3 q1q2p3 0 q1p2q3 q1p2p3x1 = 1 q2q3 q1q2q3 q1q2p3 q1q2q3 q1q2q3 q1q2p3 q1p2q3 q1p2q3 q1p2p3x1 = � 0 p1q2q3 p1q2p3 p1q2q3 p1q2q3 p1q2p3 p1p2q3 p1p2q3 p1p2p3
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(f) One solution is f�1�23�4�5; �14; �25; �34�5; �3�45g. (For these lauses the partial assign-ment f3g is stable, but it is \unreahable" below f1; 2; 3; 4; 5g.)(g) If L = L0 n l and L0 2 L but L =2 L, introdue the lause (xl _Wk2L0 �xk).(h) True, beause L0 = L n l0 and L00 = L n l00, where jl0j and jl00j are unon-strained with respet to L. A variable that's unonstrained with respet to L is alsounonstrained with respet to any subset of L.(i) Suppose L0 = L0(0) � � � � � L0(s) = f1; : : : ; ng and L00 = L00(0) � � � � � L00(t) =f1; : : : ; ng. Then L0(s�i) \ L00(t�j) is stable for 0 � i � s and 0 � j � t, by indutionon i+ j using (h).(j) It suÆes to onsider the ase L = f1; : : : ; ng. Suppose the unonstrainedvariables are x1, x2, x3. Then, by indution, the sum is q1q2q3 + p1 + p2 + p3 �(p1p2 + p1p3 + p2p3) + p1p2p3 = 1, using \inlusion and exlusion" to ompensate forterms that are ounted more than one. A similar argument works with any numberof unonstrained variables.Notes: See F. Ardila and E. Maneva, Disrete Mathematis 309 (2009), 3083{3091. The sum in (j) is � 1 when eah pk+qk � 1 for 1 � k � n, beause it is monotone.Beause of (i), the stable sets below L form a lower semimodular lattie, withL0 ^ L00 = L0 \ L00 and L0 _ L00 =\fL000 j L000 � L0 [ L00 and L000 v Lg:E. Maneva and A. Sinlair noted in Theoretial Comp. Si. 407 (2008), 359{369 that arandom satis�ability problem is satis�able with probability � EPW (X), the expetedtotal weight of partial assignments having the given distribution, beause of identity (j);this led them to sharper bounds than had previously been known.364. (a) True if and only if all lauses have length 2 or more.(b) 001 and ��� are overing; these are the partial assignments of nonzero weight,when q1 = � � � = qn = 0 in the previous exerise. Only 001 is a ore.() ��� is the only overing and the only ore; W (0101) =W (0111) = q3.(d) In fat, every stable partial assignment L0 has a unique overing assignment Lwith L v L0, namely L = TfL00 j L00 v L0, obtained by suessively removingunonstrained literals (in any order)g.(e) If L0 and L00 are adjaent we have L0 \ L00 v L0 and L0 \ L00 v L00.(f) Not neessarily. For example, the lauses f�1�234, �12�34, �123�4, 1�2�34, 1�23�4, 12�3�4gde�ne S2(x1; x2; x3; x4); there are two lusters but only an empty ore.[A. Braunstein and R. Zehina introdued the notion of overing assignments inJ. Statistial Mehanis (June 2004), P06007:1{18.℄365. If L is any of the six solutions in (8), and if q is odd, then qL�d is a overing assign-ment for 0 � d < q and 8q�d � n < 9q�d. (For example, if L = f�1; �2; 3; 4; �5; �6; 7; 8g thepartial assignment 3L� 1 = f2; 5; 8; 11; 14; 17; 20; 23g works for n 2 [23 : : 25℄.) Thus alln > 63 are \overed." [Do all nonempty overings of waerden (3; 3;n) have this form?℄366. Eliminating variable 1 (x1) by resolution yields the erp rule �x1  (x2 _ �x3) ^(x3 _ x4), and new lauses f2�34; 2�3�4; 234; �234g. Then eliminating 2 (x2) yields x2  (x3 _ x4) ^ (�x3 _ x4) and new lauses f34; �34g. Now 4 (x4) is pure; so x4  1, andF 0 = ; is satis�able. (Going bakwards in the erp rules will then make x4  1, x2  1,x1  0, regardless of x3.)367. (We an hoose whihever of the two assignments is most onvenient, for exampleby piking the shortest, sine either one is a valid erp rule.) Any solution will eithersatisfy all the lauses on the right side of �x or all the lauses on the right side of x, orboth. For if a solution falsi�es both Ci n x and C0j n �x, it falsi�es Ci �C0j .
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In either ase the value of x will satisfy all of the lauses C1, : : : , Ca, C01, : : : , C0b.368. If (l) is a lause, subsumption removes all other lauses that ontain l. Thenresolution (with p = 1) will remove �l from all q of its lauses, and (l) itself.369. Let Ci = (l_�i) and C0j = (�l_�j). Eah omitted lause Ci �C0j = (�i_�j), where1 < i � p and r < j � q, is redundant, beause it is a onsequene of the non-omittedlauses (�i _ �l1), : : : , (�i _ �lr), (l1 _ � � � _ lr _ �j) via hyperresolution. [This tehniqueis alled \substitution," beause we essentially replae jlj by its de�nition.℄370. (a _ b) ^ (a _ �b _ �) ^ (�a _ b _ ) = (a _ �) ^ (b _ ). (See the disussion following7.1.1{(27). In general, advaned preproessors use the theory of DNF minimization, inits dual form, to �nd irredundant minimum forms for CNF. Suh tehniques are notimplemented, however, in the examples of preproessing onsidered in this setion.)371. One senario starts by eliminating variable 1, replaing eight lauses by eight newones: 23�4�7, �2�347, 23�5�9, �2�359, 3�45�7, �34�57, 4�57�9, �45�79. Then 8 is eliminated, replainganother eight by eight: 2�45�6, �24�56, 25�6�7, �2�567, 25�7�9, �2�579, 46�7�9, �4�679. Then omeself-subsumptions: 23�4�7 7! 23�7 (via 234), 3�45�7 7! 35�7 (345), 357 7! 35 (35�7); and35 subsumes 345, 35�7. Further self-subsumptions yield 23�5�9 7! 23�9, �2�359 7! �2�39,�2�579 7! �279, �24�56 7! �246, 246 7! 46; and 46 subsumes 456, 46�7�9, �246. Similarly,�2�567 7! �267, �45�79 7! �459, �2�347 7! �2�37, �34�57 7! �3�57, �3�5�7 7! �3�5; and �3�5 subsumes �3�4�5,�3�57. Then 2�45�6 7! 2�4�6, �2�4�6 7! �4�6; and �4�6 subsumes �4�5�6, 2�4�6, �4�679. Also 25�6�7 7! 2�6�7,4�57�9 7! 4�5�9, 25�7�9 7! 2�7�9.Round 2 of variable elimination �rst gets rid of 4, replaing six lauses by justfour using exerise 369: 23�6, �2�36, 569, �5�6�9. Then variable 3 goes away; ten lausesbeome eight, again via exerise 369: 2�5�6, �256, 2�5�7, �257, 2�5�9, �259, 5�6�9, �569. And theten lauses that now ontain 2 or �2 resolve into just four: 56�7�9, 5�6�79, �567�9, �5�679.After eliminating 7 and 9, only four lauses remain, namely 56, 5�6, �56, �5�6; andthey quikly produe a ontradition.372. (This problem is surprisingly diÆult.) Are the lauses f�1�5, �1�6, �2�5, �2�6, �3�7, �3�8,�4�7, �4�8, 123, 124, 134, 234, 567, 568, 578, 678g as \small" as possible?373. Using the notation of (102), elimination of x1m, x2m, : : : , xmm produes newlauses M 0imk for 1 � i; k < m as well as Mm(m�1). Then elimination of xm(m�1)gives (Mi(m�1)_Mm(m�2)) for 1 � i < m. This lause self-subsumes toMi(m�1), usingM 0im1, : : : ,M 0im(m�2). AndMi(m�1) subsumes eahM 0imk, so we've reduedm tom�1.374. As in (57), variables are numbered 1 to n, and literals from 2 to 2n + 1. But wewill now number the lauses from 2n+ 2 to m+ 2n+ 1. The literals of lauses will bestored in ells, somewhat as in Algorithm A, but with additional links as in the exatover algorithms of Setion 7.2.2.1: Eah ell p ontains not only a literal L(p), a lausenumber C(p), and forward/bakward pointers F(p) and B(p) to other ells with thesame literal, but also left/right pointers S(p) and D(p) to other ells in the same lause.(Think \sinister" and \dexter.") Cells 0 and 1 are reserved for speial use; ell l, for2 � l < 2n + 2, serves as the head of the doubly linked list of ells that ontain theliteral l; ell , for 2n+2 �  < m+2n+2, serves as the head of the doubly linked listof ells that ontain the elements of lause ; and ell p, for m+2n+2 � p < M , eitheris available for future use or holds literal and lause data for a urrently ative lause.Free ells are aessed via a global pointer AVAIL. To get a new p( AVAIL whenAVAIL 6= 0, we set p AVAIL, AVAIL S(AVAIL); but if AVAIL = 0, we set p M andM  M +1 (assuming that M never gets too large). To free one or more ells from p0to p00 that are linked together via left links, we set S(p0) AVAIL and AVAIL p00.
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The number of ative lauses ontaining literal l, TALLY(l), an therefore beomputed as follows: Set t 0, p F(l); while not lit (p), set t t+1 and p F(p);set TALLY(l) t; here `lit (p)' stands for `p < 2n+2'. The number of literals in lause ,SIZE(), an be omputed by a similar loop, using `ls (p)' to stand for `p < m+2n+2':Set t  0, p  S(); while not ls (p), set t  t + 1 and p  S(p); set SIZE()  t.After initialization, the TALLY and SIZE statistis an be updated dynamially as loalhanges are made. (TALLY(l) and SIZE() an be maintained in L(l) and C().)To failitate resolution, the literals of eah lause are required to inrease fromleft to right; in other words, we must have L(p) < L(q) whenever p = S(q) andq = D(p), unless ls (p) or ls (q). But the lauses within literal lists need not appearin any partiular order. We might even have C(F(p)) > C(q) but C(F(p0)) < C(q0),when C(p) = C(p0) and C(q) = C(q0).To failitate subsumption, eah literal l is assigned a 64-bit signature SIG(l) =(1�U1) j (1� U2), where U1 and U2 are independently random 6-bit numbers. Theneah lause  is assigned a signature that is the bitwise OR of the signatures of itsliterals: Set t  0, p  S(); while not ls (p), set t  t j SIG(L(p)) and p  S(p);set SIG() t. (See the disussion of Bloom's superimposed oding in Setion 6.5.)(a) To resolve  with 0, where  ontains l and 0 ontains �l, we essentially wantto do a list merge. Set p  1, q  S(), u  L(q), q0  S(0), u0  L(q0), anddo the following while u + u0 > 0: If u = u0, opy(u) and bump(q; q0); if u = �u0 = l,bump(q; q0); if u = �u0 6= l, terminate unsuessfully; otherwise if u > u0, opy(u)and bump(q); otherwise opy(u0) and bump(q0). Here `opy(u)' means `set p0  p,p( AVAIL, S(p0) p, L(p) u'; `bump(q)' means `set q  S(q); if ls (q) set u 0,otherwise set u L(q)'; `bump(q0)' is similar, but it uses q0 and u0; and `bump(q; q0)'means `bump(q) and bump(q0)'. Unsuessful termination ours when lauses  and0 resolve to a tautology; we set p  0, after �rst returning ells p through S(1) tofree storage if p 6= 1. Suessful termination with u = u0 = 0 means that the resolvedlause onsists of the literals in ells from p through S(1), linked only via S pointers.(b) Find a literal l with minimum TALLY(l). Set p F(l), and do the followingwhile not lit (p): Set 0  C(p); if 0 6=  and �SIG(0)& SIG() = 0 and SIZE(0) �SIZE(), do a detailed subsumption test; then set p F(p). The detailed test beginswith q  S(), u  L(q), q0  S(0), u0  L(q0), and does the following steps whileu0 � u > 0: bump(q0) while u0 > u; then bump(q; q0) if u0 = u. When the loopterminates,  subsumes 0 if and only if u � u0.() Use (b) but with (SIG() & �SIG(l)) in plae of SIG(). Also modify thedetailed test, by inserting `if u = l then u �l' just after eah ourrene of `u L(q)'.[The algorithm in (b) was introdued by A. Biere, LNCS 3542 (2005), 59{70, x4.2.\False hits," in whih the detailed test is performed but no atual (self-)subsumptionis deteted, tend to our less than 1% of the time in pratie.℄375. Let eah literal l have another �eld STAMP(l), initially zero; and let s be a global\time stamp" that is initially zero. To make the test, set s  s + 1 and �  0; thenset STAMP(u)  s and �  � j SIG(u) for all u suh that (�l�u) is a lause. If � 6= 0,set �  � j SIG(l) and run through all lauses  that ontain l, doing the following: IfSIG() & �� = 0, and if eah of 's literals u 6= l has STAMP(u) = s, exit with C1 = and r = SIZE() � 1. If C1 has thereby been found, set s s + 1 and STAMP(�u) sfor all u 6= l in . Then a lause (�l _ �j) impliitly has j � r in the notation of exerise369 if and only if �j is a single literal u with STAMP(u) = s.Given a variable x, test the ondition �rst for l = x; if that fails, try l = �x.
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376. Highest priority is given to the ommon operations of unit onditioning and pureliteral elimination, whih are \low-hanging fruit." Give eah variable x two new �elds,STATE(x) and LINK(x). A \to-do stak," ontaining all suh easy pikings, begins atTODO and follows LINKs until reahing �. Variable x is on this stak only if STATE(x) isnonzero; the nonzero states are alled FF (fored false), FT (fored true), EQ (eliminatedquietly), and ER (eliminated by resolution).Whenever a unit lause (l) is deteted, with STATE(jlj) = 0, we set STATE(jlj) (l & 1? FF: FT), LINK(jlj)  TODO, and TODO  jlj. But if STATE(jlj) = (l & 1? FT: FF),we terminate, beause the lauses are unsatis�able.Whenever a literal with TALLY(l) = 0 is deteted, we do the same thing ifSTATE(jlj) = 0. But if STATE(jlj) = (l & 1? FT: FF), we simply set STATE(jlj)  EQinstead of terminating.To lear the to-do stak, we do the following while TODO 6= �: Set x TODO andTODO LINK(x); if STATE(x) = EQ, do nothing (no erp rule is needed to eliminate x);otherwise set l (STATE(x) = FT?x: �x), output the erp rule l 1, and use the doublylinked lists to delete all lauses ontaining l and to delete �l from all lauses. (Thosedeletions update TALLY and SIZE �elds, so they often ontribute new entries to the to-do stak. Notie that if lause  loses a literal, we must reompute SIG(). If lause disappears, we set SIZE() 0, and never use  again.)Subsumption and strengthening are next in line. We give eah lause  a new �eldLINK(), whih is nonzero if and only if  appears on the \exploitation stak." Thatstak begins at EXP and follows LINKs until reahing the nonzero sentinel value �0. Alllauses are initially plaed on the exploitation stak. Afterwards, whenever a literal �l isdeleted from a lause , either during unit onditioning or self-subsumption, we test ifLINK() = 0; if so, we put  bak on the stak by setting LINK() EXP and EXP .To lear the subsumption stak, we �rst lear the to-do stak. Then, while EXP 6=�0, we set   EXP, EXP  LINK(), and do the following if SIZE() 6= 0: Removelauses subsumed by ; lear the to-do stak; and if SIZE() is still nonzero, strengthenlauses that  an improve, lear the to-do stak, and set TIME() T (see below).All of this takes plae before we even think about the elimination of variables. Butrounds of variable elimination form the \outer level" of omputation. Eah variable xhas yet another �eld, STABLE(x), whih is nonzero if and only if we need not attempt toeliminate x. This �eld is initially zero, but set nonzero when STATE(x) EQ or whenan erp rule for x or �x is output. It is reset to zero whenever a variable is later \touhed,"namely when x or �x appears in a deleted or self-subsumed lause. (In partiular, everyvariable that appears in a new lause produed by resolution will be touhed, beauseit will appear in at least one of the lauses that were replaed by new ones.)If a round has failed to eliminate any variables, or if it has eliminated them all,we're done. But otherwise there's still work to do, beause the new lauses an oftenbe subsumed or strengthened. (Indeed, some of them might atually be dupliates.)Hene two more �elds are introdued: TIME(l) for eah literal and TIME() for eahlause, initially zero. Let T be the number of the urrent elimination round. Weset TIME(l)  T for all literals l in all lauses that are replaed by resolution, andTIME() T is also set appropriately as mentioned above.Introdue yet another �eld, EXTRA(), initially zero. It is reset to zero wheneverTIME()  T , and set to 1 whenever  is replaed by a new lause. For every literall suh that STATE(jlj) = 0 and TIME(l) = T at the end of round T , set EXTRA()  EXTRA() + 4 for all lauses  that ontain l, and EXTRA()  EXTRA() j 2 for alllauses  that ontain �l. Then run through all lauses  for whih SIZE() > 0 and
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TIME() < T . If SIZE() = EXTRA()� 2, remove lauses subsumed by  and lear theexploitation stak. Also, if EXTRA() & 3 6= 0, we may be able to use  to strengthenother lauses|unless EXTRA() & 1 = 0 and EXTRA() � 2 < SIZE() � 1. Self-subsumption using l need not be attempted when EXTRA()&1 = 0 unless TIME(�l) = Tand EXTRA()� 2 = SIZE() � [TIME(l)=T ℄. Finally, reset EXTRA() to zero (even ifTIME() = T ). [See Niklas E�en and Armin Biere, LNCS 3569 (2005), 61{75.℄377. Eah vertex v of G orresponds to variables v1, v2, v3 in F ; eah edge u��� vorresponds to lauses (�u1 _ v2), (�u2 _ v3), (�u3 _ �v1), (u2 _ �v1), (u3 _ �v2), (�u1 _ �v3). Thelongest paths in the dependeny digraph for F have the form t1 ! u2 ! v3 ! �w1 ort1 ! �u3 ! �v2 ! �w1, where t���u���v���w is a walk in G.[A similar method redues the question of �nding an oriented yle of length r in agiven digraph to the question of �nding a failed literal in some dependeny digraph. Theyle detetion problem has a long history; see N. Alon, R. Yuster, and U. Zwik, Algo-rithmia 17 (1997), 209{223. So any surprisingly fast algorithm to deide whether ornot failed literals exist|that is, faster than n2!=(!+1) whenm = O(n) and matrix mul-tipliation takes O(n!)|would lead to surprisingly fast algorithms for other problems.℄378. The erp rule l l_ (�l1 ^ � � � ^�lq) will hange any solution of F nC into a solutionof F . [See M. J�arvisalo, A. Biere, and M. Heule, LNCS 6015 (2010), 129{144.℄(In pratie it's sometimes possible to remove tens of thousands of bloked lauses.For example, all of the exlusion lauses (17) in the oloring problem are bloked, asare many of the lauses that arise in fault testing. Yet the author has yet to seea single example where bloked lause elimination is atually helpful in ombinationwith transformations 1{4, whih are already quite powerful by themselves.)379. (Solution by O. Kullmann.) In general, any set F of lauses an be replaed byanother set F 0, whenever there's a variable x suh that the elimination of x from Fyields exatly the same lauses as the elimination of x from F 0. In this ase the elimi-nation of a has this property. The erp rule a a_(�b^�^d) is neessary and suÆient.380. (a) Reverse self-subsumption weakens it to (a_b__d), then to (a_b__d_e),whih is subsumed by (a_d_e). [In general one an show that reverse self-subsumptionfrom C leads to a subsumed lause if and only if C is erti�able from the other lauses.℄(b) Again we weaken to (a _ b _  _ d _ e); but now we �nd this bloked by .() No erp rule is needed in (a), but we need    _ (�a ^ �b) in (b). [Heule,J�arvisalo, and Biere, LNCS 6397 (2010), 357{371, all this \asymmetri elimination."℄381. By symmetry, we'll remove the �nal lause. (Without it, the given lauses statethat x1 � x2 � � � � � xn; with it, they state that all variables are equal.) Assume moregenerally that, for 1 � j < n, every lause other than (�xj _ xj+1) that ontains �xjalso ontains either xn or �xi for some i < j. For 1 � j < n � 1 we an then weaken(x1 _ � � � _ xj _ �xn) to (x1 _ � � � _ xj+1 _ �xn). Finally, (x1 _ � � � _ xn�1 _ �xn) an beeliminated beause it is bloked by xn�1.Although we've eliminated only one lause, n � 1 erp rules are atually neededto undo the proess: x1  x1 _ xn; x2  x2 _ (�x1 ^ xn); x3  x3 _ (�x1 ^ �x2 ^ xn); : : : ;xn�1  xn�1_(�x1^� � �^�xn�2^xn). (Those rules, applied in reverse order, an howeverbe simpli�ed to xj  xj _ xn for 1 � j < n, beause x1 � � � � � xn in any solution.)[See Heule, J�arvisalo, Biere, EasyChair Pro. in Computing 13 (2013), 41{46.℄382. See M. J. H. Heule, M. J�arvisalo, and A. Biere, LNCS 6695 (2011), 201{215.383. (a) In a learning step, let �0 = � and 	0 = 	[C. In a forgetting step, let �0 = �and 	 = 	0 [ C. In a hardening step, let �0 = � [ C and 	 = 	0 [ C. In a softening
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7.2.2.2 ANSWERS TO EXERCISES 261 invariantJ�arvisaloHeuleBiereunit onditioningresolution erti�ableBloked lausesRAT, see resolution erti�able lausesstep, let � = �0 [C and 	0 = 	 [ C. In all four ases it is easy to verify that (sat(�)() sat(� [ 	)) implies (sat(�) () sat(�0) () sat(�0 [ 	0)), where sat(G) means\G is satis�able," beause sat(G[G0) =) sat(G). Thus the assertions are invariant.(b) Eah erp rule allows us to go one step bakward, until reahing F .() The �rst (softening) step is �ne, beause both � = (x) and � n (x) = 1 aresatis�able, and beause the erp rule unonditionally makes x true. But the seond(learning) step is awed, beause sat(� [ 	) does not imply sat(� [ 	 [ C) when�[	 = (x) and C = (�x). (This example explains why the riterion for learning is notsimply `sat(�) =) sat(� [ C)' as it essentially is for softening.)(d) Yes, beause C is also erti�able for � [	.(e) Yes, after softening it. No erp rule is needed, beause � n C ` C.(f) A soft lause an be disarded whether or not it is subsumed. To disard ahard lause that is subsumed by a soft lause, �rst harden the soft one. To disard ahard C that is subsumed by a hard C0, weaken C and then disard it. (The weakeningstep is learly permissible, and no erp rule is needed.)(g) If C ontains �x and C0 ontains x and C n �x � C0 n x, we an learn the softlause C �C0 = C0 n x, then use it to subsume C0 as in (f).(h) Forget all soft lauses that ontain x or �x. Then let C1, : : : , Cp be the hardlauses ontaining x, and C01, : : : , C0q those ontaining �x. Learn all the (soft) lausesCi �C0j , and harden them, noting that they don't involve x. Weaken eah Ci, with erprule x x_Ci, and forget it; also weaken and forget eah C0j , with erp rule x x^C0j .(One an show that either of the erp rules in (161) would also suÆe.)(i) Whenever �[	 is satis�able, so is �[	[f(x_z); (y_z); (�x_ �y_ �z)g, beausewe an always set z  �x _ �y.[Referene: M. J�arvisalo, M. Heule, and A. Biere, LNCS 7364 (2012), 355{370.Notie that, by exerise 368, parts (f) and (h) justify the use of unit onditioning.℄384. Whenever we have a solution to � n C that falsi�es C, we will show that � issatis�ed by making l true; hene softening C is permissible, with erp rule l l _ C.To prove that laim, notie that a problem ould arise only in a hard lause C0that ontains �l. But if all other literals of C0 are false in the given solution, then allliterals of C �C0 are false, ontraditing the assumption that (� n C) ^ C �C0 `1 �.(Suh lauses C are \resolution erti�able" with respet to �nC. Bloked lausesare a very speial ase. Similarly, we an safely learn any lause that is resolutionerti�able with respet to � [	.)385. (a) True, beause C ^ l `1 �.(b) �1 is implied, not erti�able; �12 is erti�able, not absorbed; �123 is absorbed.(; d) If C is any lause and l is any literal, then F ^ C `1 l implies F 0 ^ C `1 l,beause unit propagation in F arries over to unit propagation in F 0.386. (a) The trail ontained exatly sore(F;C; l) literals when deision �l was made atlevel d. The lause learned from the ensuing onit auses at least one new literal tobe implied at level d0 < d.(b) The sore an't derease when F grows.() Eah l 2 C needs at most n helpful rounds to make sore(F;C; l) =1.(d) Suppose, for example, F = (a_ �d)^ (a_ b_ e_ l)^ (�a_ )^ (�b)^ (_ d_ �e_ l)and C = (a _ b _  _ d _ l). The helpful sequenes of deisions are (�a; �; �l), (�; �d; �l),( �d; �a; �; �l), ( �d; �; �l), and they our with probabilities 110 16 14 , 110 16 14 , 110 18 16 14 , 110 18 14 .
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262 ANSWERS TO EXERCISES 7.2.2.2 geometri distributionPipatsrisawatDarwiheAtseriasFihteThurleyisolated vertiesauxiliary variablesomplete graphomplete k-partite graphylegraph embeddingdistane d(u; v) in a graphindued graphshortest path
In general if a deision is to be made and j elements of C are not yet in the trail,the probability that a suitable deision will be made at random is at leastf(n; j) = min� j�12n f(n�1; j�1); j�22(n�1)f(n�2; j�2); : : : ;12(n�j+2)f(n�j+1; 1); 12(n�j+1)� = (j�1)!2jnj :(e) The waiting time to absorb eah lause Ci is a geometri distribution whosemean is � 4njCij, repeated at most jCijn times.Referenes: K. Pipatsrisawat and A. Darwihe, Artif. Intell. 175 (2011), 512{525;A. Atserias, J. K. Fihte, and M. Thurley, J. Artif. Intell. Researh 40 (2011), 353{373.387. We may assume that G and G0 have no isolated verties. Letting variable vv0mean that v orresponds to v0, we need the lauses (uv0 _vv0) for u < v and (vu0 _vv0)for u0 < v0. Also, for eah u < v with u��� v in G, we introdue auxiliary variablesuu0vv0 for eah edge u0 ��� v0 in G0, with lauses (uu0vv0 _ uu0) ^ (uu0vv0 _ vv0) ^(Wfuu0vv0 j u0���v0 in G0g). The variables vv0 and uu0vv0 an be restrited to aseswhere degree(u) � degree(u0) and degree(v) � degree(v0).388. (a) Can the omplete graph Kk be embedded in G? (b) Can G be embedded inthe omplete k-partite graph Kn;:::;n, where G has n verties? () Can the yle Cn beembedded in G?389. This is a graph embedding problem, with G0 the 4� 4 (king [ knight) graph andwith G de�ned by edges T��� H, H��� E, : : : , N��� G. The adjaent Ms an be avoidedby hanging `PROGRAMMING' to either `PROGRAMXING' or `PROGRAXMING'.Algorithm C needs less than 10 megamems to �nd the �rst solution below.Furthermore, if the blank spae an also be moved, the algorithm will rather quiklyalso �nd solutions with just �ve knight moves (the minimum), or 17 of them (the max):U P C FM M O  I T R AN G E H M M I NA P O GH R  FU T E C H N U FE M O IG T  PA R M C390. Let d(u; v) be the distane between verties u and v. Then d(v; v) = 0 andd(u; v) � j + 1 () d(u; v) � j or d(u;w) � j for some w 2 N(v) = fw j w���vg. (�)In parts (a), (d), we introdue variables vj for eah vertex v and 0 � j � k. In part ()we do this for 0 � j < n. But parts (b), (e), (f) use just n variables, fv j v 2 V g.(a) Clauses (s0) ^Wv2V ns(�v0) ^Wv2V (�vj+1_ vj _Ww���v wj) are satis�ed only ifvj � [d(s; v)� j ℄; hene the additional lause (tk) is also satis�ed only if d(s; t) � k.Conversely, if d(s; t) � k, all lauses are satis�ed by setting vj  [d(s; v)� j ℄.(b) There's a path from s to t if and only if there's a subset H � V suh thats 2 H, t 2 H, and every other vertex of the indued graph G jH has degree 0 or 2.[The verties on a shortest path from s to t yield one suh H. Conversely, given H, wean �nd verties vj 2 H suh that s = v0���v1���� � ����vk = t.℄We an represent that riterion via lauses on the binary variables v = [v 2H ℄by asserting (s) ^ (t), together with lauses to ensure that �(s) = �(t) = 1, and that�(v) 2 f0; 2g for all v 2 H nfs; tg, where �(v) =Pw2N(v) w is the degree of v in G jH.The number of suh lauses for eah v is at most 6jN(v)j, beause we an append �v
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to eah lause of (18) and (19) when r = 2, and jN(v)j additional lauses will rule out�(v) < 2. Altogether there are O(m) lauses, beause Pv2V jN(v)j = 2m.[Similar but simpler alternatives, suh as (i) to require �(v) 2 f0; 2g for all v 2V nfs; tg, or (ii) to require �(v) � 2 for all v 2 Hnfs; tg, do not work: Counterexamplesare (i) s t and (ii) s t. Another solution, more umbersome, assoiates a Booleanvariable with eah edge of G.℄() Let s be any vertex; use (a), plus (vn�1) for all v 2 V n s.(d) Clauses (s0)^Wk�1j=0 Wv2VWw2N(v)(�vk_wk+1) are satis�ed only if we have vj �[d(s; v)� j ℄; hene the additional lause (�tk) annot also be satis�ed when d(s; t) � k.Conversely, if d(s; t) > k we an set vj  [d(s; v)� j ℄.(e) (s) ^ (Wv2VWw2N(v)(�v _ w)) ^ (�t).(f) Letting s be any vertex, use (s) ^ (Wv2VWw2N(v)(�v _ w)) ^ (Wv2V ns �v).[Similar onstrutions work with digraphs and strong onnetivity. Parts (d){(f)of this exerise were suggested by Marijn Heule. Notie that parts (a) and (){(f)onstrut renamed Horn lauses, whih work very eÆiently (see exerise 444).℄391. (a) Let d � 1 = (ql�1 : : : q0)2. To ensure that (xl�1 : : : x0)2 < d we need thelauses (�xi_Wf�xj j j > i; qj = 1g) whenever qi = 0. The same holds for y.To enfore x 6= y, introdue the lause (al�1 _ � � � _ a0) in auxiliary variablesal�1 : : : a0, together with (�aj _ xj _ yj) ^ (�aj _ �xj _ �yj) for 0 � j < l (see (172)).(b) Now x 6= y is enfored via lauses of length 2l, whih state that we don't havex = y = k for 0 � k < d. For example, the appropriate lause when l = 3 and k = 5 is(�x2 _ �y2 _ x1 _ y1 _ �x0 _ �y0).() Use the lauses of (b) for 0 � k < 2d � 2l, plus lauses of length 2l � 2for d � k < 2l stating that we don't have (xl�1 : : : x1)2 = (yl�1 : : : y1)2 = k. (Theenodings in (b) and () are idential when d = 2l.)[See A. Van Gelder, Disrete Applied Mathematis 156 (2008), 230{243.℄392. (a) [Puzzle (ii) was introdued by Sam Loyd in the Boston Herald, 13 November1904; page 27 of his Cylopedia (1914) states that he'd reated a puzzle like (i) at age 9!Puzzle (iv) is by H. E. Dudeney, Strand 42 (1911), 108, slightly modi�ed. Puzzle (iii)is from the Grabarhuks' Big, Big, Big Book of Brainteasers (2011), #196; puzzle (v)was designed by Serhiy A. Grabarhuk in 2015.℄A A A A AA B B B BA A A A AC C C C AA A A A A A A A A D D D DA D D D D E E DA A A A A A E DC C C C C A E DC A A A C A E DC A B A A A E BC A B B B E E BC A A A B B B B

A A A B B B B BA C A A A C C BA C C C A C B BA A D C C C B EF A D D D E B EF A A A D E B EF D D D D E B EF F F F F E E E
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E E E E E A A A A A A A A A A A A AE D D D E E C C C C C C C C C C C AE D B D C E C B B B B B B B B B C AE D B D C E C B F F F F F F F B C AE D B D C E C B F D D D D D F B C AE D B B C E C B F D E E E D F B C AE D F B C C C B F D E A E D F B C AE D F B B B B B F D E A C B F B C AE D F F F F F F F D E A C B B B C AE D D D D D D D D D E A C C C C C AE E E E E E E E E E E A A A A A A A(i) (ii) (iii) (iv) (v)(b) [Puzzle (vi) is an instane of the odd-even transposition sort, exerise 5.3.4{37. Eight order-reversing onnetions would be impossible with only eight olumns,instead of the nine in (vii), beause the permutation has too many inversions.℄A B B D D F F H HB A D B F D H F GC D A F B H D G FD C F A H B G D EE F C H A G B E DF E H C G A E B CG H E G C E A C BH G G E E C C A A
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() Let dj =Pji=1(jTij � 1) and d = dt. We introdue variables vi for 1 � i � d,and the following lauses for 1 � j � t and dj�1 < i � dj : (�vi0_ �vi) for 1 � i0 � dj�1;the lauses of answer 390(b) on variables vi, where s is the (i � dj�1)th element of Tjand t is the last element. These lauses ensure that the sets Vj = fv j vdj�1+1_� � �_vdj gare disjoint, and that Vj ontains a onneted omponent Sj � Tj .We also assert (�vi) for 1 � i � d, whenever Tj is a singleton set fvg.[For the more general \Steiner tree paking" problem, see M. Gr�otshel, A. Mar-tin, and R. Weismantel, Math. Programming 78 (1997), 265{281.℄393. A onstrution somewhat like that of answer 392() an be used with�ve di�erent 8 � 8 graphs, one for the moves of eah white-blak pair Sj .But we need to keep trak of the edges used, not verties, in order toprohibit edges that ross eah other. Additional lauses will rule that out. bZ0Z0Z0ZZ0Z0Z0a00Z0Z0Z0lZ0m0Z0Z00Z0Z0Z0sZ0L0ZNZ00Z0Z0Z0SZ0Z0A0ZB394. Call these lauses langford 000(n). [Steven Prestwih desribed a similar methodin Trends in Constraint Programming (Wiley, 2007), 269{274.℄ Typial results are:variables lauses Algorithm D Algorithm L Algorithm Clangford 000(9) 206 1157 131M� 18M� 22M� (UNSAT)langford 000(13) 403 2935 1425G� 44G� 483G� (UNSAT)langford 000(16) 584 4859 713K� 42M� 343K� (SAT)langford 000(64) 7352 120035 (huge) (big) 71M� (SAT)395. The olor of eah vertex v gets binary axiom lauses (�vj+1_vj) for 1 � j < d�1, asin (164). And for eah edge u���v in the graph, we want d lauses (�uj�1_uj_�vj�1_vj)for 1 � j � d, omitting �u0 and �v0 when j = 1, ud and vd when j = d.[The surprising usefulness of order enoding in graph oloring was �rst notied byN. Tamura, A. Taga, S. Kitagawa, and M. Banbara in Constraints 14 (2009), 254{272.℄396. First we have (�xj+1_xj) and (x̂j+1_x̂j) for 1 � j < d. Then we have \hanneling"lauses to ensure that j � x < j + 1 () j� � x� < j� + 1 for 0 � j < d:(�xj _ xj+1 _ x̂j�) ^ (�xj _ xj+1 _ x̂j�+1) ^ (x̂j� _ x̂j�+1 _ xj) ^ (x̂j� _ x̂j�+1 _ �xj+1):(These lauses should be either shortened or omitted in boundary ases, beause x0 andx̂0 are always true, while xd and x̂d are always false. We obtain 6d�8 lauses for eah x.)With suh lauses for every vertex of a graph, together with lauses based onadjaent verties and liques, we obtain enodings for n-oloring the n�n queen graphthat involve 2(n3 � n2) variables and 53n4 + 4n3 +O(n2) lauses, ompared to n3 � n2variables and 53n4 � n3 + O(n2) lauses with single liques and (162) alone. Typialrunning times with Algorithm C and single liques are 323K�, 13:1M�, 706G� forn = 7, 8, 9; with double lique-ing they beome 252K�, 1:97M�, 39:8 G�, respetively.The double lique hints turn out to be mysteriously ine�etive when � is the stan-dard organ-pipe permutation (0�; 1�; : : : ; (d�1)�) = (0; 2; 4; : : : ; 5; 3; 1) instead of itsinverse. Random hoies of � when n = 8 yielded signi�ant improvement almost halfthe time, in the author's experiments; but they had negligible e�et in 1/3 of the ases.Notie that the example � for d = 4 yields x1 = �x0, x3 = x3, x̂1 = �x2, x̂3 = x1.Hene the diret enoding is essentially present as part of this redundant representation,and the hints (�u3_�v3)^(u1_v1)_(û3_ v̂3)^(û1_ v̂1) for 2-liques fu; vg are equivalentto (16). But the hints (u2 _ v2 _w2) ^ (�u2 _ �v2 _ �w2) ^ (û2 _ v̂2 _ ŵ2) ^ (û2 _ v̂2 _ ŵ2)that apply when fu; v; wg is a triangle give additional logial power.
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397. There are (p� 2)d binary lauses (�yi+1j _ yij) for 1 � i < p� 1, together with the(2p� 2)d lauses (�xji _ xj+1i _ yij) ^ (�xji�1 _ xj+1i�1 _ �yij) for 1 � i < p, all for 0 � j < d.The hint lauses (xp�10 _ � � � _ xp�1p�1) ^ (�xd�p+10 _ � � � _ �xd�p+1p�1 ) are also valid.(This setup orresponds to putting p pigeons into d holes, so we an usuallyassume that p � d. If p � 4 it is better to use �p2�d lauses as in exerise 395. Notiethat we obtain an interesting representation of permutations when p = d. In that asey is the inverse permutation; hene (2d�2)p additional lauses orresponding to yj = i=) xi = j are also valid, as well as two hint lauses for y.)A related idea, but with diret enoding of the x's, was presented by I. Gentand P. Nightingale in Proeedings of the International Workshop on Modelling andReformulating Constraint Satisfation Problems 3 (2004), 95{110.398. We ould onstrut (3p� 4)d binary lauses that involve yij , as in exerise 397.But it's better just to have (3p�6)d lauses for the at-most-one onstraints x0k+x1k+� � � + x(p�1)k � 1, 0 � k < d.399. (a) d2�t prelusion lauses (binary); or 2d support lauses (total length 2(d+t)).(b) If unit propagation derives �vj from (�ui _ �vj), we knew ui; hene (17) gives �ui0for all i0 6= i, and �vj follows from the support lause that ontains it.() If unit propagation derives �vj from its support lause, we knew �ui for all i 6= j;hene (15) gives uj , and �vj follows from (16). Or if unit propagation derives ui from thatsupport lause, we knew vj and �ui0 for all i0 =2 fi; jg; hene �uj from (16), ui from (15).(d) A trivial example has no legal pairs; then unit propagation never gets startedfrom binary prelusions, but the (unit) support lauses dedue all. A more realistiexample has d = 3 and all pairs legal exept (1; 1) and (1; 2), say; then we have(15) ^ (17) ^ (�u1 _ �v1) ^ (�u1 _ �v2) ^ (�v3) 6`1 �u1 but (15) ^ (17) ^ (�u1 _ v3) ^ (�v3) `1 �u1.[Prelusion was introdued by S. W. Golomb and L. D. Baumert, JACM 12(1965), 521{523. The support enoding was introdued by I. P. Gent, European Conf.on Arti�ial Intelligene 15 (2002), 121{125, based on work of S. Kasif, Arti�ialIntelligene 45 (1990), 275{286.℄400. This problem has n variables q1, : : : , qn with n values eah; thus there are n2Boolean values, with qij = [qi= j ℄ = [there's a queen in row i and olumn j℄. Theonstraint between qi and qj is that qi =2 fqj ; qj + i� j; qj � i+ jg; so it turns out thatthere are n at-least-one lauses, plus (n3�n2)=2 at-most-one lauses, plus either n3�n2support lauses or n3�n2+�n3� prelusion lauses. In this problem eah support lausehas at least n � 2 literals, so the support enoding is muh larger.Sine the problem is easily satis�able, it makes sense to try WalkSAT. Whenn = 20, AlgorithmW typially �nds a solution from the prelusion lauses after makingfewer than 500 ips; its running time is about 500K�, inluding about 200K� just toread the input. With the support lauses, however, it needs about 10 times as manyips and onsumes about 20 times as many mems, before sueeding.Algorithm L is signi�antly worse: It onsumes 50M� with prelusion lauses,11G� with support lauses. Algorithm C is the winner, with about 400K� (prelusion)versus 600K� (support).Of ourse n = 20 is pretty tame; let's onsider n = 100 queens, when there are10,000 variables and more than a million lauses. Algorithm L is out of the piture;in the author's experiments, it showed no indiation of being even lose to a solutionafter 20 T�! But Algorithm W solves that problem in 50M�, via prelusion, aftermaking only about 5000 ips. Algorithm C wins again, polishing it o� in 29M�. With
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the support lauses, nearly 100 million literals need to be input, and Algorithm W ishopelessly ineÆient; but Algorithm C is able to �nish after about 200M�.The prelusion lauses atually allow us to omit the at-most-one lauses in thisproblem, beause two queens in the same row will be ruled out anyway. This trikimproves the run time when n = 100 to 35M� for Algorithm W.We an also append support lauses for the olumns as well as the rows. This idearoughly halves the searh spae, but it gives no improvement beause twie as manylauses must be handled. Bottom line: Support lauses don't support n queens well.(However, if we seek all solutions to the n queens problem instead of stoppingwith the �rst one, using a straightforward extension of Algorithm D (see exerise 122),the support lauses proved to be de�nitely better in the author's experiments.)401. (a) yj = x2j�1. (b) zj = x3j�1. In general w = b(x+ a)=b () wj = xbj�a.402. (a) Vbd=2j=1 (�x2j�1 _ x2j); (b) Vdd=2ej=1 (�x2j�2 _ x2j�1); omit �x0 and xd.403. (a)Vd�1j=1 (�xj_�yj_zj); (b)Vd�1j=1 ((�xj_zj)^(�yj_zj)); ()Vd�1j=1 ((xj_�zj)^(yj_�zj));(d) Vd�1j=1 (xj _ yj _ �zj).404. (a) Vd�1j=0(�xj_xj+1_�yj+1�a_yj+a). (As usual, omit literals with supersripts � 0or � d. If a > 1 this enoding is unsymmetrial, with one lause for eah value of x.)(b) Vd�aj=0 ((p _ �xj _ yj+a) ^ (�p _ xj+a _ �yj)); p is the auxiliary variable.405. (a) If a < 0 we an replae ax by (�a)�x and  by  + a � ad, where �x is givenby (165). A similar redution applies if b < 0. Cases with a, b, or  = 0 are trivial.(b) We have 13x + 8�y � 63 () not 13x + 8�y � 64 () not (P0 or : : : orPd�1) () not P0 and : : : and not Pd�1, where Pj = `x � j and �y � d(64 � 13j)=8e'.This approah yields V7j=0(�xj _ y8�d(64�13j)=8e), whih simpli�es to (�x1 _ y1) ^ (�x2 _y3) ^ (�x3 _ y4) ^ (�x4 _ y6) ^ (�x5). (Notie that we ould have de�ned Pj = `�y � jand x � d(64 � 8j)=13e' instead, thereby obtaining the less eÆient enoding (�x5) ^(y7 _ �x5)^ (y6 _ �x4)^ (y5 _ �x4)^ (y4 _ �x3)^ (y3 _ �x2)^ (y2 _ �x2)^ (y1 _ �x1); it's betterto disriminate on the variable with the larger oeÆient.)() Similarly, 13�x+8y � 90 gives (x5_ �y7)^ (x4_ �y5)^ (x3_ �y4)^ (x2_ �y2)^ (x1).(The (x; y) pairs legal for both (b) and () are (1; 1), (2; 3), (3; 4), (4; 6).)(d) Vmin(d�1;d(+1)=ae)j=max(0;d(+1�b(d�1))=ae)(�xj _ �yd(+1�aj)=be), when a � b > 0 and  � 0.406. (a) (Vbpa+1j=d(a+1)=(d�1)e(�xj _ �yd(a+1)=je)) ^ (Vdpa+1 e�1j=d(a+1)=(d�1)e(�xd(a+1)=je _ �yj)).(b) (Vbpa�1+1j=l+1 (xj _ yb(a�1)=(j�1)+1)) ^ (Vdpa�1 ej=l+1 (xb(a�1)=(j�1)+1 _ yj)) ^(xl) ^ (yl), where l = b(a� 1)=(d � 1)+ 1. [Both formulas belong to 2SAT.℄407. (a) We always have bx=2+dx=2e = x, bx=2+by=2 � x+y2 � bx=2+by=2+1,and dx=2e+dy=2e�1 � x+y2 � dx=2e+dy=2e. (Similar reasoning proves the orretnessof Bather's odd-even merge network; see Eq. 5.3.4{(3).)(b) Axiom lauses like (164) needn't be introdued for u and v, or even for z; sothey aren't ounted here, although they ould be added if desired. Let ad = d2 � 1 bethe number of lauses in the original method; then the new method has fewer lauseswhen add=2e + abd=2+1 + 3(d � 2) < ad, namely when d � 7. (The new methodfor d = 7 involves 45 lauses, not 48; but it introdues 10 new auxiliary variables.)Asymptotially, we an handle d = 2t + 1 with 3t2t + O(2t) = 3d lg d + O(d) lausesand d lg d+O(d) auxiliary variables.() x+ y � z () (d� 1�x)+ (d� 1� y) � (2d� 2� z); so we an use the samemethod, but omplemented (namely with xj 7! �xd�j , yj 7! �yd�j , zj 7! �z2d�1�j).
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7.2.2.2 ANSWERS TO EXERCISES 267 TamuraTagaKitagawaBanbaraAs��nNieuwenhuisOliverasRodr��guez-CarbonellShmoysSteinWeinTamuraTagaKitagawaBanbarasymmetry breakingKnuthGu�eretPrins
[See N. Tamura, A. Taga, S. Kitagawa, and M. Banbara, Constraints 14 (2009),254{272; R. As��n, R. Nieuwenhuis, A. Oliveras, and E. Rodr��guez-Carbonell, Con-straints 16 (2011), 195{221.℄408. (a) No; makespan 11 is best, ahievable as follows (or via left-right reetion):M1:M2:M3: J1 J3J2 J1J3 J3J2 J1 M1:M2:M3: J1J3 J2 J1J3J3 J2J1(b) If j is the last job proessed by mahine i, that mahine must �nish at time�Pnk=1 wik +Pmk=1 wkj �wij , beause j uses some other mahine whenever i is idle.[See D. B. Shmoys, C. Stein, and J. Wein, SICOMP 23 (1994), 631.℄() Clearly 0 � sij � t� wij . And if ij 6= i0j0 but i = i0 or j = j0, we must haveeither sij + wij � si0j0 or si0j0 + wi0j0 � sij whenever wijwi0j0 6= 0.(d) When wij > 0, introdue Boolean variables skij for 1 � k � t � wij , withthe axiom lauses (�sk+1ij _ skij) for 1 � k < t� wij . Then inlude the following lausesfor all relevant i, j, i0, and j0 as in (): For 0 � k � t + 1 � wij � wi0j0 , assert(�piji0j0 _ �skij _ sk+wiji0j0 ) if ij < i0j0 or (pi0j0ij _ �skij _ sk+wiji0j0 ) if ij > i0j0, omitting �s0ij inthe �rst of these ternary lauses and omitting st+1�wi0j0i0j0 in the last.[This method, introdued by N. Tamura, A. Taga, S. Kitagawa, and M. Banbarain Constraints 14 (2009), 254{272, was able to solve several open shop shedulingproblems in 2008 that had resisted attaks by all other approahes.℄Sine the left-right reetion of any valid shedule is also valid, we an also savea fator of two by arbitrarily hoosing one of the p variables and asserting (piji0j0).(e) Any shedule for W and T yields a shedule for bW=k and dT=ke, if weexamine time slots 0, k, 2k, : : : . [With this observation we an narrow down thesearh for an optimum makespan by �rst working with simpler problems; the numberof variables and lauses for bW=k and T=k is about 1=k times the number for Wand T , and the running time also tends to obey this ratio. For example, the authorsolved a nontrivial 8�8 problem by �rst working with bW=8 and getting the respetiveresults (U;S;U) for t = (128; 130; 129), where `U' means \unsatis�able" and `S' means\satis�able"; running times were about (75; 10; 1250) megamems. Then with bW=4 itwas (S;U;U) with t = (262; 260; 261) and runtimes (425; 275; 325); with bW=2 it was(U; S;U) with t = (526; 528; 527) and runtimes (975; 200; 900). Finally with the full Wit was (U; S; S) with t = (1058; 1060; 1059) and runtimes (2050; 775; 300), establishing1059 as the optimum makespan while doing most of the work on small subproblems.℄Notes: Further savings are possible by noting that any lauses learned whileproving that t is satis�able are valid also when t is dereased. DiÆult random problemsan be generated by using the following method suggested by C. Gu�eret and C. Prinsin Annals of Operations Researh 92 (1999), 165{183: Start with work times wij thatare as near equal as possible, having onstant row and olumn sums s. Then hooserandom rows i 6= i0 and random olumns j 6= j0, and transfer Æ units of weight bysetting wij  wij�Æ, wi0j  wi0j+Æ, wij0  wij0 +Æ, wi0j0  wi0j0 �Æ, where Æ � wijand Æ � wi0j0 ; this operation learly preserves the row and olumn sums. Choose Æ atrandom between p �minfwij ; wi0j0g and minfwij ; wi0j0g, where p is a parameter. The�nal weights are obtained after making r suh transfers. Gu�eret and Prins suggestedhoosing r = n3, and p = :95 for n � 6; but other hoies give useful benhmarks too.
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268 ANSWERS TO EXERCISES 7.2.2.2 subset sum problemKarpNP-ompleteGonzalezSahnihalf addersfull addersTseytin enoding, halfpure literalsorder enodingWarnersMixed-radixE�enS�orenssonTanjoTamuraBanbarapreproessor
409. (a) If S � f1; : : : ; rg, let �S = Pj2S aj . We an assume that job n runs onmahines 1, 2, 3 in that order. So the minimum makespan is 2w2n + x, where x is thesmallest �S that is � d(a1 + � � � + ar)=2e. (The problem of �nding suh an S is wellknown to be NP-hard [R. M. Karp, Complexity of Computer Computations (New York:Plenum, 1972), 97{100℄; hene the open shop sheduling problem is NP-omplete.)(b) Makespan w2n + w4n is ahievable if and only if �S = (a1 + � � � + ar)=2 forsome S. Otherwise we an ahieve makespan w2n + w4n + 1 by running jobs 1, : : : , nin order on mahine 1 and letting s3(n�1) = 0, s4n = w2n; also s2j = w2n + w4n, ifmahine 1 is running job j at time w2n. The other jobs are easily sheduled.() b3n=2 � 2 time slots are learly neessary and suÆient. (If all row andolumn sums of W are equal to s, an the minimum makespan be � 32s?)(d) The \tight" makespan s is always ahievable: By renumbering the jobs wean assume that aj � bj for 1 � j � k, aj � bj for k < j � n, b1 = maxfb1; : : : ; bkg,an = maxfak+1; : : : ; ang. Then if bn � a1, mahine 1 an run jobs (1; : : : ; n) in orderwhile mahine 2 runs (n; 1; : : : ; n� 1); otherwise (2; : : : ; n; 1) and (1; : : : n) suÆe.If a1 + � � � + an 6= b1 + � � � + bn, we an inrease an or bn to make them equal.Then we an add a \dummy" job with an+1 = bn+1 = maxfa1 + b1; : : : ; an + bng .� s,and obtain an optimum shedule in O(n) steps as explained above.Results (a), (b), (d) are due to T. Gonzalez and S. Sahni, who introdued andnamed the open shop sheduling problem in JACM 23 (1976), 665{679. Part () is asubsequent observation and open problem due to Gonzalez (unpublished).410. Using half adders and full adders as we did in (23) allows us to introdue interme-diate variables wj suh that (x2x1x0)2+(x2x1x000)2+(x2x1x0000)2+(�y2�y1�y0000)2 �(w7w6 : : : w0)2, and then to require ( �w7)^( �w6). In slow motion, we suessively ompute(0z0)2 � x0 + x1, (1z1)2 � x0 + x1 + �y0, (2z2)2 � 0 + z1, (3z3)2 � x1 + x2 + �y1,(4z4)2 � 1+ 2 + z3, (5z5)2 � x2+ �y2 + 3, (6z6)2 � 4 + z5, (7z7)2 � 5 + 6; thenw7w6 : : : w0 = 7z7z6z4z2z0x1x0. In slower motion, eah step (izi)2 � u+ v expandsto zi � u� v, i � u^ v; eah step (izi)2 � t+u+ v expands to si � t�u, pi � t^ u,zi � v � s, qi � v ^ s, i � pi _ qi. And at the lause level, t � u ^ v () (t _ �u _ �v);t � u_v () (t_ �u)^ (t_ �v); t � u�v () (t_ �u_v)^ (t_u_ �v). [Only about half of(24) is needed when inequalities replae equalities. Exerise 42 o�ers improvements.℄We end up with 44 binary and ternary lauses; 10 of them an be omitted, beausez0, z2, z4, z6, and z7 are pure literals, and the lause for 7 an be omitted if we simplyrequire 5 = 6 = 0. But the order enoding of exerise 405 is learly muh better. Thelog enoding beomes attrative only with larger integers, as in the following exerise.[See J. P. Warners, Information Proessing Letters 68 (1998), 63{69.℄411. Use m+ n new variables to represent an auxiliary number w = (wm+n : : : w1)2.Form lauses as in exerise 41 for the produt xy = w; but retain only about half ofthe lauses, as in answer 410. The resulting 9mn � 5m � 10n lauses are satis�ableif w = xy; and we have w � xy whenever they are satis�able. Now add 3m + 3n � 2further lauses as in (169) to ensure that z � w. The ase z � xy is similar.412. Mixed-radix representations are also of interest in this onnetion. See, forexample, N. E�en and N. S�orensson, J. Satis�ability, Bool. Modeling and Comp. 2(2006), 1{26; T. Tanjo, N. Tamura, and M. Banbara, LNCS 7317 (2012), 456{462.413. Eliminating �rst an�1, then an�2, et., yields 2n�1 lauses. (The analogous resultfor x1 : : : xn < y1 : : : yn is 2n+ 2n�1+1. A preproessor will probably eliminate an�1.)



September 23, 2015

7.2.2.2 ANSWERS TO EXERCISES 269 (pure) literalBiereBrummayerblokedsubsumed lausesbloked lausepure literalfailed literal tests414. Construt lauses for 1 � k � n that represent `ak�1 implies xk < yk + ak':��ak�1 _ d�1_j=1(�xjk _ yjk)� ^ ��ak�1 _ ak _ d�1_j=0(�xjk _ yj+1k )�; omitting �x0k and ydk;also omit �a0. For the relation x1 : : : xn � y1 : : : yn we an omit the d lauses thatontain the (pure) literal an. But for x1 : : : xn < y1 : : : yn, we want an = 0; so we omitan and the d� 1 lauses (�an�1 _ �xjn _ yjn).415. There's only one, namelyV�1;:::;�n2f�1;1g(�1x1_�1y1_� � �_�nxn_�nyn). Proof:Some lause must ontain only positive literals, beause f(0; : : : ; 0) = 0. This lausemust be (x1 _ y1 _ � � � _ xn _ yn); otherwise it would be false in ases where f is true.A similar argument shows that every lause (�1x1 _ �1y1 _ � � � _�nxn _ �nyn) must bepresent. And no lause for f an ontain both xj and �yj , or both �xj and yj .416. The other lauses are Vmi=1((ui _ �vi _ �a0)^ (�ui _ vi _ �a0)) and (a0 _ a1 _ � � � _ an).[See A. Biere and R. Brummayer, Proeedings, International Conferene on FormalMethods in Computer Aided Design 8 (IEEE, 2008), 4 pages [FMCAD 08℄.℄417. The four lauses (�s_ �t _ u) ^ (�s _ t _ v) ^ (s _ �t _ �u) ^ (s _ t _ �v) ensure that s istrue if and only if t?u: v is true. But we need only the �rst two of these, as in (174),when translating a branhing program, beause the other two are bloked in the initialstep. Removing them makes the other two bloked on the seond step, et.418. A suitable branhing program for hn when n = 3, beginning at I11, is I11 =(�1? 21: 22), I21 = (�2? 31: 32), I22 = (�2? 32: 33), I31 = (�3? 0: 42), I32 = (�3? 42: 43), I33 =(�3? 43: 1), I42 = (�1? 0: 1), I43 = (�2? 0: 1). It leads via (174) to the following lauses forrow i, 1 � i � m: (ri;1;1); (�ri;k;j_ xik_ ri;k+1;j) ^ (�ri;k;j_ �xik_ ri;k+1;j+1), for 1 � j �k � n; (�ri;n+1;1) ^ (ri;n+1;n+1) and (�ri;n+1;j+1_ xij) for 1 � j < n. Also the followinglauses for olumn j, 1 � j � n: (i;1;1); (�j;k;i_xkj_ j;k+1;i)^ (�j;k;i_ �xkj_ j;k+1;i+1),for 1 � i � k � m; (�j;m+1;1) ^ (j;m+1;m+1) and (�j;m+1;i+1_ xij) for 1 � i < m.419. (a) There are exatly n�2 solutions: xij = [j =1℄[i 6=m�1℄+[j=2℄[i=m�1℄+[j = k℄[i=m�1℄, for 2 < k � n.(b) There are exatly m�2 solutions: �xij = [j > 1℄[i=m�1℄+[j=1℄[i=m�2℄+[j =1℄[i= k℄, for 1 � k < m�2 or k = m.420. Start via (24) with (�x1 _ x2 _ s) ^ (x1 _ �x2 _ s) ^ (x1 _ x2 _ �s) ^ (�x1 _ �x2 _ �s);(x1 _ �) ^ (x2 _ �) ^ (�x1 _ �x2 _ ); (�s _ x3 _ t) ^ (s _ �x3 _ t) ^ (s _ x3 _ �t) ^ (�s _ �x3 _ �t);(s_ �0)^ (x3_ �0)^ (�s_ �x3_ 0); (�)^ (�0). Propagate (�) and (�0), obtaining (�x1 _ �x2)^(�s _ �x3); remove subsumed lauses (�x1 _ �x2 _ �s), (�s _ �x3 _ �t); remove bloked lause(s _ x3 _ �t); remove lauses ontaining the pure literal t; rename s to a1.421. Start via (173) with (�a5_ x1_ a4)^ (�a5_ �x1_ a3)^ (�a4_ �x2_ a2)^ (�a3_ x2_ a2)^(�a3_ �x2) ^ (�a2_ �x3) ^ (a5). Propagate (a5).422. (a) x1 implies �x2, then a1, then �x3; x2 implies �x1, then a1, then �x3.(b) x1 implies a3, then �x2, then a2, then �x3; x2 implies �a3, then �x1, a4, a2, �x3.423. No; onsider x1? (x2? x3: x4): (x2? x4: x3) with L = (�x3) ^ (�x4). [But a foringenoding an always be onstruted, via the extra lauses de�ned in exerise 436.Notie that, in the presene of failed literal tests, weak foring orresponds to foring.℄424. The lause �1�3�4 is redundant (in the presene of �1�2�3 and 2�3�4); it annot be omitted,beause f�2�3; 2�3; 12g 6`1 �3. The lause 2�3�4 is also redundant (in the presene of �1�3�4 and12); it an be omitted, beause f�1�4; 34; 1g `1 �4, f�1�3; 34; 1g `1 �3, and f�1�2; �1; 12g `1 2.
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270 ANSWERS TO EXERCISES 7.2.2.2 unit propagationhonestysymmetri Boolean funtionsprime lausesBussWilliamsGwynneKullmann425. If x is in the ore, F `1 x, beause Algorithm 7.1.1C does unit propagation. Oth-erwise F is satis�ed when all ore variables are true and all nonore variables are false.426. (a) True. Suppose the lauses involving am are (am_ �i) for 1 � i � p and(�am_ �j) for 1 � j � q; then G ontains the pq lauses (�i _ �j) instead. If F jL `1 lwe want to prove that G jL `1 l. This is lear if unit propagation from F jL doesn'tinvolve am. Otherwise, if F j L `1 am, unit propagation has falsi�ed some �i; everysubsequent propagation step from F j L that uses (�am_ �j) an use (�i _ �j) in apropagation step from G jL. A similar argument applies when F jL `1 �am.(Inidentally, variable elimination also preserves \honesty.")(b) False. Let F = (x1_ x2_ a1) ^ (x1_ x2_ �a1), L = �x1 or �x2.427. Suppose n = 3m, and let f be the symmetri funtion [�x<m or �x>2m℄. Theprime lauses of f are the N = � nm;m;m� � 3n+3=2=(2�n) ORs of m positive literalsand m negative literals. There are N 0 = � nm�1;m;m+1� = mm+1N ways to speify thatxi1 = � � � = xim = 1 and xim+1 = � � � = xi2m�1 = 0; and this partial assignmentimplies that xj = 1 for j =2 fi1; : : : ; i2m�1g. Therefore at least one of the m+1 lauses(�xi1 _ � � � _ �xim _ xim+1 _ � � � _ xi2m�1 _ xj) must be present in any set of prime lausesthat fores f . By symmetry, any suh set must inlude at least N 0=m prime lauses.On the other hand, f is haraterized by O(n2) foring lauses (see answer 436).428. (a) (y_ zj1_ � � � _ zjd) for 1 � j � n; (�xij_ �zik_ �zjk) for 1 � i < j � n, 1 � k � d.(b) Imagine a iruit with 2N(N + 1) gates glt, one for eah literal l of Gnd andfor eah 0 � t � N , meaning that literal l is known to be true after t rounds of unitpropagation, if we start with given values of the xij variables only. Thus we set gl0  1if l = xij and xij is true, or if l = �xij and xij is false; otherwise gl0  0. Andgl(t+1)  glt __fg�l1t ^ � � � ^ g�lkt j (l _ l1 _ � � � _ lk) 2 Gndg; for 1 � t < N:Given values of the xij , the literal y is implied if and only if the graph has no d-oloring;and at most N rounds make progress. Thus there's a monotone hain for gyN = �fnd.[This exerise was suggested by S. Buss and R. Williams in 2014, based on asimilar onstrution by M. Gwynne and O. Kullmann.℄429. Let �k be the sum of the assigned x's in leaves desended from node k. Unitpropagation will fore bkj  1 for 1 � j � �k, moving from leaves toward the root.Then it will fore bkj  0 for j = �k + 1, moving downwards from the root, beauser = �2 +�3 and beause (21) starts this proess when k = 2 or 3.430. Imagine boundary onditions as in answer 26, and assume that xj1 , : : : , xjrhave been assigned 1, where j1 < � � � < jr. Unit propagation fores skjk+1�k  1 for1 � k � r; then it fores skjk�k  0 for r � k � 1. So unassigned x's are fored to zero.431. Equivalently x1+� � �+xm+�y1+� � �+�yn � n; so we an use (18){(19) or (20){(21).432. The lauses of answer 404(b) an be shown to be foring. But not those of 404(a)when a > 1; for example, if a = 2 and we assume �x2, unit propagation doesn't yield y2.433. Yes. Imagine, for example, the partial assignment x = 1���10��1, y = 10�00�1��.Then y3 must be 1; otherwise we'd have 10010001 � x � y � 100001111. In this situ-ation unit propagation from the lauses that orrespond to 1 � ha101i, a1 � ha2�x20i,a2 � ha3�x3y3i, a3 � ha4�x40i, a4 � ha500i fores a1 = 1, a2 = 1, a4 = 0, a3 = 0, y3 = 1.In general if a given partial assignment is onsistent with x � y, we must havex# � y", where x# and y" are obtained from x and y by hanging all unassignedvariables to 0 and 1, respetively. If that partial assignment fores some yj to a
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7.2.2.2 ANSWERS TO EXERCISES 271 n.f.: not falsi�edBahuspartiular value, the value must be 1; and we must in fat have x# > y0", wherey0 is like y but with yj = 0 instead of yj = �. If xj 6= 1, unit propagation will forea1 = � � � = aj�1 = 1, ak = � � � = aj = 0, yj = 1, for some k � j.Similar remarks apply when xi is fored, beause x � y () �y � �x.434. (a) Clearly pk is equivalent to �x1 ^ � � � ^ �xk, qk is equivalent to �xk ^ � � � ^ �xn, andrk implies that a run of exatly l 1s begins at xk.(b) When l = 1, if xk = 1 unit propagation will imply �pj for j � k and �qj forj � k, hene �rj for j 6= k; then rk is fored, making xj = 0 for all j 6= k. Conversely,xj = 0 fores �rj ; if this holds for all j 6= k, then rk is fored, making xk = 1.But when l = 2 and n = 3, the lauses fail to fore x2 = 1 by unit propagation.They also fail to fore x1 = 0 when we have l = 2, n = 4, and x3 = 1.435. The following onstrution with O(nl) lauses is satisfatory when l is small:Begin with the lauses for pk and qk (but not rk) in exerise 434(a); inlude also(�xk _ pk�l) for l < k � n, and (�xk _ qk+l) for 1 � k � n� l. Append (�pk�l _ �qk+l _ xk)for 1 � k � n, omitting �pj for j < 1 and omitting �qj for j > n. Finally, append(xk _ �xk+1 _ xk+d) for 0 � k < n and 1 < d < l; (�)omitting xj when j < 1 or j > n.To redue to O(n log l) lauses, suppose 2e+1 < l � 2e+2, where e � 0. Thelauses (�) an be replaed by (�xk _ �y(e)k _ �z(e)k ) for 1 � k � n, if �xk�d implies y(e)kfor 1 � d � bl=2 and �xk+d implies z(e)k for 1 � d � dl=2e. And to ahieve the latter,we introdue lauses (�y(t)k _ y(t+1)k ), (�y(t)k�2t _ y(t+1)k ), (�z(t)k _ z(t+1)k ), (�z(t)k+2t _ z(t+1)k ),(xk�1 _ y(0)k ), (xk+2e�1�bl=2 _ y(0)k ), (xk+1 _ z(0)k ), (xk�2e+1+dl=2e_ z(0)k ), for 1 � k � nand 0 � t < e, always omitting xj or �yj or �zj when j < 1 or j > n.436. Let the variables qk for 0 � k � n and q 2 Q represent the sequene of states, andlet tkaq represent a transition when 1 � k � n and when T ontains a triple of the form(q0; a; q). The lauses, F , are the following, for 1 � k � n: (i) (�tkaq_ xak) ^ (�tkaq_ qk),where x0k denotes �xk and x1k denotes xk; (ii) (�qk�1_Wftkaq0 j (q; a; q0) 2 Tg), for q 2 Q;(iii) (�qk _ Wftkaq j (q0; a; q) 2 Tg); (iv) (�xak _ Wftkaq j (q0; a; q) 2 Tg); (v) (�tkaq0 _Wfqk�1 j (q; a; q0) 2 Tg); together with (vi) (�q0) for q 2 Q n I and (�qn) for q 2 Q nO.It is lear that if F `1 �xak, no string x1 : : : xn 2 L an have xk = a. Conversely,assume that F 6`1 �xak, and in partiular that F 6`1 �. To prove the foring property, wewant to show that some string of L has xk = a. It will be onvenient to say that aliteral l is `n.f.' (not falsi�ed) if F 6`1 �l; thus xak is assumed to be n.f.By (iv), there's a (q0; a; q) 2 T suh that tkaq is n.f. Hene qk is n.f., by (i). Ifk = n we have q 2 O by (vi); otherwise some t(k+1)bq0 is n.f., by (ii), hene xbk+1 is n.f.Moreover, (v) tells us that there's (q00; a; q) 2 T with q00k�1 n.f. If k = 1 we have q00 2 I;otherwise some t(k�1)q00 is n.f., by (iii), and xk�1 is n.f. Continuing this line of reason-ing yields x1 : : : xn 2 L with xk = a (and with xk+1 = b if k < n, xk�1 =  if k > 1).The same proof holds even if we add unit lauses to F that assign values to oneor more of the x's. Hene F is foring. [See F. Bahus, LNCS 4741 (2007), 133{147.℄The language L2 of exerise 434 yields 17n+4 lauses: F = V1�k�n((�tk00_ �xk)^(�tk00_ 0k)^ (�tk11_ xk)^ (�tk11_ 1k)^ (�tk12_ xk)^ (�tk12_ 2k)^ (�tk02_ �xk)^ (�tk02_ 2k)^(�0k�1_ tk00 _ tk11)^ (�1k�1_ tk12)^ (�2k�1_ tk02)^ (xk_ tk00 _ tk02)^ (�xk_ tk11 _ tk12)^(�tk00_ 0k�1) ^ (�tk11_ 0k�1) ^ (�tk12_ 1k�1) ^ (�tk02_ 2k�1)) ^ (�10) ^ (�20) ^ (�0n) ^ (�1n).(Unit propagation will immediately assign values to 10 of the 8n+3 variables, therebysatisfying 22 of these lauses, when n � 3. For example, �t112, �tn11, �0n�1 are fored.)
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272 ANSWERS TO EXERCISES 7.2.2.2 preproessingeliminateautomatonunit propagationQuimperWalshBailleuxBoufkhadRoussel
The lauses produed by this general-purpose onstrution an often be signi�-antly simpli�ed by preproessing to eliminate auxiliary variables. (See exerise 426.)437. Eah variable xk now beomes a set of jAj variables xka for a 2 A, with lauseslike (15) and (17) to ensure that exatly one value is assigned. The same onstrution isthen valid, with the same proof, if we simply replae `xak' by `xka' throughout. (Notiethat unit propagation will often derive partial information suh as �xka, meaning thatxk 6= a, although the preise value of xk may not be known.)438. Let l�j = l1 + � � � + lj . Exerise 436 does the job via the following automaton:Q = f0; 1; : : : ; l�t + t � 1g, I = f0g, O = fl�t + t � 1g; T = f(l�j + j; 0; l�j + j) j0 � j < tg [ f(l�j + j + k; 1; l�j + j + k + 1) j 0 � j < t; 0 � k < lj+1g [f(l�j + j � 1; 0; l�j + j � [j = t℄) j 1 � j � tg.439. We obviously want the lauses (�xj _ �xj+1) for 1 � j < n; and we an use, say,(18) and (19) with r = t, to fore 0s whenever the number of 1s reahes t. The diÆultpart is to fore 1s from partial patterns of 0s; for example, if n = 9 and t = 4, we anonlude that x4 = x6 = 1 as soon as we know that x3 = x7 = 0.An interesting modi�ation of (18) and (19) turns out to work beautifully, namelywith the lauses (�tkj _ tkj+1) for 1 � j < 2t � 1 and 1 � k � n � 2t + 1, together with(x2j+k�1_�tk2j�1_tk+12j�1) for 1 � j � t and 0 � k � n�2t+1, omitting �t 02j�1 and tn�2t+22j�1 .440. It's onvenient to introdue �n+12 �jN j variables Pik for all P 2 N and for 1 � i �k � n, as well as �n+13 �jN j2 variables QRijk for Q;R 2 N and for 1 � i < j � k � n,although almost all of them will be eliminated by unit propagation. The lauses are:(i) (QRijk _ Qi(j�1)) ^ (QRijk _ Rjk); (ii) (P kk _ Wfxak j P ! a 2 Ug); (iii) (P ik _WfQRijk j i < j � k; P ! QR 2 Wg), if i < k; (iv) (�xak _ WfPkk j P ! a 2 Ug);(v) (P ik _WfPRi(k+1)l j k < l � n;R 2 Ng _WfQRhik j 1 � h < i; Q 2 Ng), if i > 1or k < n; (vi) (QRijk _WfPik j P ! QR 2Wg); (vii) (P 1n) for P 2 N n S.The foring property is proved by extending the argument in answer 436: Assumethat xak is n.f.; then some Pkk with P ! a is also n.f. Whenever Pik is n.f. with i > 1or k < n, some PRi(k+1)l or QRhik is n.f.; hene some \larger" P 0il or P 0hk is also n.f.And if P1n is n.f., we have P 2 S.Furthermore we an go \downward": Whenever Pik is n.f. with i < k, there'sQRijk suh that Qi(j�1) and Rjk are n.f.; on the other hand if Pkk is n.f., there's a 2 Asuh that xak is n.f. Our assumption that xak is n.f. has therefore shown the existeneof x1 : : : xn 2 L with xk = a.[See C.-G. Quimper and T. Walsh, LNCS 4741 (2007), 590{604℄.441. See O. Bailleux, Y. Boufkhad, and O. Roussel, LNCS 5584 (2009), 181{194.442. (a) F jL�q = F j l1 j : : : j lq�1 j�lq ontains � if and only if F j l1 j : : : j lq�1 ontains �or the unit lause (lq).(b) If F 6`1 l and F j�l `1 �, the failed literal elimination tehnique will redue Fto F j l and ontinue looking for further redutions. Thus we have F `2 l if and only ifunit propagation plus failed literal elimination will dedue either � or l.() Use indution on k; both statements are obvious when k = 0. Suppose wehave F `k+1 �l via l1, : : : , lp = �l, with F j L�q `k � for 1 � q � p. If p > 1 we haveF j l jL�q `k � for 1 � q < p; it follows that F j l `k+1 lp�1 and F j l `k+1 �lp�1. If p = 1we have F j l `k �. Hene F j l `k+1 � in both ases.Now we want to prove that F j l `k+1 � and F `k+2 �, given F `k+1 l0 andF `k+1 �l0. If F j L�q `k � for 1 � q � p, with lp = l0, we know that F j L�q `k+1 �.Furthermore we an assume that F 6`k+1 �l; hene l 6= �lq for 1 � q � p, and l 6= lp. If
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l = lq for some q < p, then F j l jL�r `k � for 1 � r < q and F jL�r `k � for q < r � p;otherwise F j l j L�q `k � for 1 � q � p. In both ases F j l `k+1 l0 and F `k+2 l0.Essentially the same proof shows that F j l `k+1 �l0 and F `k+2 �l0.(d) True, by the last relation in part ().(e) If all lauses of F have more than k literals, Lk(F ) is empty; hene L0(R0) =L1(R0) = L2(R0) = ;. But Lk(R0) = f�1; 2; 4g for k � 3; for example, R0 `3 �1 beauseR0 j1 `2 �, beause R0 j1 `2 3 and R0 j1 `2 �3.(f) Unit propagation an be done in O(N) steps if N is the total length of alllauses; this handles the ase k = 1.For k � 2, proedure Pk(F ) alls Pk�1(F j x1), Pk�1(F j �x1), Pk�1(F j x2), et.,until either �nding Pk�1(F j�l) = f�g or trying both literals for eah variable of F . Inthe latter ase, Pk returns F . In the former ase, if Pk�1(F j l) is also f�g, Pk returnsf�g; otherwise it returns Pk(F j l). The set Lk ontains all literals for whih we'veredued F to F j l, unless Pk(F ) = f�g. (In the latter ase, every literal is in Lk.)To justify this proedure we must verify that the order of testing literals doesn'tmatter. If F j�l `k � and F j�l0 `k �, we have F j l j�l0 `k � and F j l0 j�l `k � by (); henePk(F j l) = Pk(F j l j l0) = Pk(F j l0 j l) = Pk(F j l0).[See O. Kullmann, Annals of Math. and Arti�ial Intell. 40 (2004), 303{352.℄443. (a) If F jL ` � then F jL ` l for all literals l; so if F 2 PCk we have F jL `k land F jL `k �l and F jL `k �, proving that PCk � UCk.Suppose F 2 UCk and F jL ` l. Then F jL j �l ` �, and we have F j L j �l `k �.Consequently F jL `k+1 l, proving that UCk � PCk+1.The satis�able lause sets ;, f1g, f1; �12g, f12; �12g, f12; �12; 1�2; �1�23g, f123; �123;1�23; �1�23g, f123; �123; 1�23; �1�23; 12�3; �12�3; 1�2�3; �1�2�34g, : : : , show that PCk 6= UCk 6= PCk+1.(b) F 2 PC0 if and only if F = ; or � 2 F . (This an be proved by indution onthe number of variables in F , beause � =2 F implies that F has no unit lauses.)() If F has only one lause, it is in UC0. More interesting examples are f1�2; �12g;f1234; �1�2�3�4g; f123�4; 12�34; 1�234; �1234g; f12; �1�2; 34�5; �3�45g; et. In general, F is in UC0if and only if it ontains all of its prime lauses.(d) True, by indution on n: If F jL ` l then F jL j�l ` �, and F jL j�l has � n� 1variables; so F jL j�l 2 PCn�1 � UCn�1. Hene we have F jL j�l `n�1 � and F jL `n l.(e) False, by the examples in ().(f) R0 2 UC2 n PC2. For example, we have R0 j1 `2 2 and R0 j1 `2 �2.[See M. Gwynne and O. Kullmann, arXiv:1406.7398 [s.CC℄ (2014), 67 pages.℄444. (a) Complementing a variable doesn't a�et the algorithm's behavior, so we anassume that F onsists of unrenamed Horn lauses. Then all lauses of F will be Hornlauses of length � 2 whenever step E2 is reahed. Suh lauses are always satis�able,by setting all remaining variables false; so step E3 annot �nd both F `1 l and F `1 �l.(b) For example, f12; �23; 1�2�3; �123g.() Every unsatis�able F reognized by SLUR must be in UC1. Conversely, ifF 2 UC1, we an prove that F is satis�able and in UC1 whenever step E2 is reahed.[Essentially the same argument proves that a generalized algorithm, whih uses`k instead of `1 in steps E1 and E3, always lassi�es F if and only if F 2 UCk. SeeM. Gwynne and O. Kullmann, Journal of Automated Reasoning 52 (2014), 31{65.℄(d) If step E3 interleaves unit propagation on F j l with unit propagation onF j �l, stopping when either branh is omplete and � was not deteted in the other,the running time is proportional to the number of ells used to store F , using datastrutures like those of Algorithm L. (This is an unpublished idea of Klaus Truemper.)
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274 ANSWERS TO EXERCISES 7.2.2.2 ShlipfAnnexsteinFranoSwaminathanforing4-ylequadlexiographi row/olumn symmetrySteiner triple systemHorsleysymmetri solutionsprojetive plane
[SLUR is due to J. S. Shlipf, F. S. Annexstein, J. V. Frano, and R. P. Swami-nathan, Information Proessing Letters 54 (1995), 133{137.℄445. (a) Sine the lexiographi onstraints (169) are foring, a suint erti�ate is(�x1m, �x2m, : : : , �x(m�1)m, �x2(m�1), �x3(m�1), : : : , �x(m�1)(m�1), �x3(m�2), �x4(m�2), : : : ,�x(m�1)(m�2), : : : , �x(m�1)2, ;). The �rst m� 1 steps an be replaed by `x0m'.(b) (�x(m�1)1, �x(m�2)2, : : : , �x1(m�1), ;).() (x01, x12, : : : , x(m�2)(m�1), ;).446. Z(m;n)� 1, beause a 4-yle orresponds to a quad.447. For general m and n we an add the m3n3=3! onstraints (�xij _�xi0j _ �xi0j0 _ �xi00j0 _ �xi00j00 _ �xij00) to (184), for 1 � i < i0 < i00 � mand distint fj; j0; j00g � f1; : : : ; ng. The 19-edge graph illustrated here works whenm = n = 8; and Algorithm C �nds girth � 8 unsatis�able with 20 edges, after only400 megamems of alulation (using lexiographi row/olumn symmetry).448. Eah pair of points an our together in at most one line. If the lines ontainrespetively l1, : : : , ln points, we therefore have �l12 �+ � � �+�ln2 � � �m2 � = 3n. A Steinertriple system ahieves equality, with l1 = � � � = ln = 3. Sine �l�12 �+ �l0+12 � < �l2�+ �l02�when l � l0 + 2, we an't have l1 + � � �+ ln > 3n. Thus Z(m; n) = 3n + 1.[If m is even and �m2 � = 3n, we an't over all the pairs with triples, beause nopoint an be in more than (m�2)=2 triples. Daniel Horsley has shown that Z(m;n) =3n + b1�m=14 in suh ases; see (a paper in preparation).℄449. It's wise to try �rst for symmetri solutions with xij = xji, roughly halving thenumber of variables; then the matries below are found quikly. Suh solutions areimpossible when n = 9, 12, 13 (and also when n = 15 and 16 if we insist on �ve1s in the top row). The ase n = 13 orresponds to the projetive plane of order 3;indeed, a projetive plane of order q is equivalent to a maximum quad-free matrix withm = n = q2 + q + 1 and Z(n; n) = (q + 1)n

1111000000000010001110000000100000011100001000000000111001000100001001010010010001000100001010001000100101000010001000100110000010000010010100011000101000000101000101000001001100000100001000010011
111100000000000100011100000000100000011100000100000000011110010010010010000010001001001000010000000100101001010001000011001001010000100001000100110000000110000101000000101000010001000100101000100000100010000010000000110001001

1111000000000000100011100000000010000001111000001000000000011100010010010001000001000100100010100100000001000101001010001000010000100101000000010010001001001000001000000011001000011000001010010001010001010000000100110000011000000100001001000000001010010001450. To prove the hint, add the unary lause (�x15) to the others; this problem is rapidlyfound to be unsatis�able, hene no line has more than 4 points. On the other hand, aline with fewer than 3 points is impossible beause Z(9; 10) = 32. The same argumentsshow that every point belongs to either 3 or 4 lines. Thus exatly four lines ontainfour points, and exatly four points lie on suh lines.If p 2 l and l is a 4-point line, every other line ontaining p must ontain 2 ofthe remaining 6 points. And the four 4-point lines ontain at least 4 � 4 � �42� = 10points altogether. Hene, pigeonwise, we see that eah of the four 4-point lines ontainsexatly one of the four 4-line points.Now we may all the 4-line points fa; b; ; dg, and the 4-point lines fA;B;C;Dg.The other points may be alled fab; a; ad; b; bd; dg, with A = fa; ab; a; adg, B =fb; ab; b; bdg, C = f; a; b; dg, D = fd; ad; bd; dg. The other lines an be alledfAB;AC;AD;BC;BD;CDg; and we have AB = fa; b; dg, AC = fa; ; adg, et.
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451. One of the olors an be plaed uniquely, by the previous exerise. So we're leftwith the simple problem of two-oloring the remaining 66 squares and avoiding both0-quads and 1-quads. That problem is unsatis�able with Pxij odd. The author thenonstruted a 33 + 33 + 33 solution by hand, using the fat that eah olor lass mustbe unable to use the deleted square. [See M. Beresin, E. Levine, andJ. Winn, The College Mathematis Journal 20 (1989), 106{114 and theover; J. L. Lewis, J. Rereational Math. 28 (1997), 266{273.℄452. Any suh solution must have exatly 81 ells of eah olor, beauseR. Nowakowski proved in 1978 that Z(18; 18) = 82. The solution exhibitedhere was found by B. Steinbah and C. Postho� [Multiple-Valued Logi andSoft Computing 21 (2013), 609{625℄, exploiting 90Æ rotational symmetry.453. (a) If R�f1; : : : ;mg and C �f1; : : : ; ng, let V (R;C)= fui j i2Rg[fvj j j 2Cg. IfX is deomposable, there's no path from a vertex in V (R;C) to a vertex not in V (R;C);hene the graph isn't onneted. Conversely, if the graph isn't onneted, let V (R;C) beone of its onneted omponents. Then 0 < jRj+jCj < m+n, and we've deomposedX.(b) False in general, unless every row and olumn of X 0 ontains a positiveelement. Otherwise, learly true by the de�nition of lexiographi order.() True: A diret sum is ertainly deomposable. Conversely, let X be deom-posable via R and C. We may assume that 1 2 R or 1 2 C; otherwise we ould replaeR by f1; : : : ;mg n R and C by f1; : : : ; ng n C. Let i � 1 and j � 1 be minimal suhthat i =2 R and j =2 C. Then xi0j = 0 for 1 � i0 < i and xij0 = 0 for 1 � j0 < j.The lexiographi onstraints now fore xi0j0 = 0 for 1 � i0 < i, j0 � j; also for i0 � i,1 � j0 < j. Consequently X = X 0 � X 00, where X 0 is (i � 1) � (j � 1) and X 00 is(m + 1 � i) � (n + 1 � j). (Degenerate ases where i = 1 or j = 1 or i = m + 1 orj = n+1 need to be onsidered, but they work �ne. This result allows us to \read o�"the blok deomposition of a lexiographially ordered matrix.)Referene: A. Mader and O. Mutzbauer, Ars Combinatoria 61 (2001), 81{95.454. We have f(x) � f(x�) � f(x�� ) � � � � � f(x�k) � � � � ; eventually x�k = x.455. (a) Yes, beause C only auses 1001 and 1101 to be nonsolutions. (b) No, beauseF might have been satis�ed only by 0011. () Yes as in (a), although (187) might nolonger be an endomorphism of F ^C as it was in that ase. (d) Yes; if 0110 is a solution,so are 0101 and 1010. [Of ourse this exerise is highly arti�ial: We're unlikely to knowthat a weird mapping suh as (187) is an endomorphism of F unless we know a lotmore about the set of solutions.℄456. Only (1 + 2 � 7)(1 + 2)(1 + 8) = 405, out of 65536 possibilities (about 0.06%).457. We have min0�k�16(kk1616�k) = 661610 � 51:3 � 1016. For general n, the mini-mum ours when k = 2n=e+O(1); and it is 22n(n�x) where x = 1=(e ln 2)+O(2�n) < 1.458. The operation of assigning values to eah variable of an autarky, so that all lausesontaining those variables are satis�ed, while leaving all other variables unhanged, isan endomorphism. (For example, onsider the operation that makes a pure literal true.)459. sweep(Xij) = 0 when i = 0 or j = 0. And for 1 � i � m and 1 � j � n we havesweep(Xij) = max(xij + sweep(X(i�1)(j�1)); sweep(X(i�1)j); sweep(Xi(j�1))).[Let the 1s in the matrix be xi1j1 , : : : , xirjr , with 1 � i1 � � � � � ir � m and withjq+1 < jq when iq+1 = iq . Rihard Stanley has observed (unpublished) that sweep(X)is the number of rows that our when the Robinson{Shensted{Knuth algorithm isused to insert the sequene n� j1, : : : , n � jr into an initially empty tableau.℄
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276 ANSWERS TO EXERCISES 7.2.2.2 Durfee squaredisjoint shortest pathsunit propagation460. We introdue auxiliary variables stij that will beome true if sweep(Xij) > t.They are impliitly true when t < 0, false when t = k. The lauses are as follows, for1 � i � m, 1 � j � n, and 0 � t � min(i � 1; j � 1; k): (�st(i�1)j _ stij), if i > 1 andt < k; (�sti(j�1) _ stij), if j > 1 and t < k; and (�xij_ �st�1(i�1)(j�1) _ stij). Omit �st�10(j�1) and�st�1(i�1)0 and �s0(i�1)(j�1) and �skij from that last lause, if present.461. Wm�1i=1 Wn�1j=1 (xij_ �(i�1)j_ ij) ^Wmi=1Wn�1j=1 (�(i�1)j_ �xij _ xi(j+1)), omitting �0j .These lauses take are of �1; interhange i$ j, m$ n for �2.462. Let eXij denote the last m+ 1� i rows and the last n+ 1� j olumns of X; andlet tij = sweep(X(i�1)(j�1))+sweep( eX(i+1)(j+1)). For �1 we must prove 1+ ti(j+1) � k,given that 1 + tij � k. It's true beause sweep(X(i�1)j) = sweep(X(i�1)(j�1)) whenolumn j begins with i�1 zeros, and we have sweep( eX(i+1)(j+2)) � sweep( eX(i+1)(j+1)).LetX 0 = X�3 have the assoiated sweep sums t0ij . We must prove that t0ij � k and1+t0(i+1)(j+1) � k, if 1+tij � k, 1+ti(j+1) � k, 1+t(i+1)j � k, and t(i+1)(j+1) � k. Thekey point is that sweep(X 0ij) = max(sweep(X(i�1)j); sweep(Xi(j�1))), sine x0ij = 0.Also sweep( eX 0(i+1)(j+1)) = 1 + sweep( eX(i+2)(j+1)).(Notie that �1 and �2 might atually derease the sweep, but �3 preserves it.)463. If row i + 1 is entirely zero but row i isn't, �2 will apply. Therefore the all-zerorows our at the top. And by �1, the �rst nonzero row has all its 1s at the right.Suppose rows 1 through i have r1, : : : , ri 1s, all at the right, with ri > 0.Then r1 � � � � � ri, by �2. If i < n we an inrease i to i + 1, sine we an't havex(i+1)j > x(i+1)(j+1) when j � n�ri, by �1; and we an't have it when j > n�ri, by �3.Thus all the 1s are lustered at the right and the bottom, like the diagram of apartition but rotated 180Æ; and the sweep is the size of its \Durfee square" (see Fig. 48in Setion 7.2.1.4). Hene the maximum number of 1s, given sweep k, is k(m+ n� k).464. By answer 462, �1 an be strengthened to � 01, whih sets xi(j+1)  1 but leavesxij = 1. Similarly, �2 an be strengthened to � 02. These endomorphisms preserve thesweep but inrease the weight, so they an't apply to a matrix of maximumweight. [Onean prove, in fat, that max-weight binary matries of sweep k are preisely equivalentto k disjoint shortest paths from the leftmost ells in row m to the rightmost ells inrow 1. Hene every integer matrix of sweep k is the sum of k matries of sweep 1.℄465. If not, there's a yle x0 ! x1 ! � � � ! xp = x0 of length p > 1, where xi�uvi 7!xi+1. Let uv be the largest of fuv1; : : : ; uvp�1g. Then none of the other � 's in the ylean hange the status of edge uv. But that edge must hange status at least twie.466. Notie �rst that v11 must be true, if m � 2. Otherwise h11, v21, h22, v32, : : :would suessively be fored by unit propagation, until reahing a ontradition at theedge of the board. And v31 must also be true, ifm � 4, by a similar argument. Thus theentire �rst olumn must be �lled with vertials, exept the bottom row when m is odd.Then we an show that the remainder of row 1 is �lled with horizontals, exeptfor the rightmost olumn when n is even. And so on.The unique solution when m and n are both even uses vij if and only if i + j iseven and max(i;m � i) � j � n=2, or i + j is odd and vi(n+1�j) is used. When m isodd, add a row of horizontals below the (m� 1)� n solution. When n is odd, removethe rightmost olumn of vertials in the m� (n+ 1) solution.467. The 8 � 7 overing is obtained by reetion of the 7 � 8 overing(shown here) about its southwest-to-northeast diagonal. Both solutionsare unique.
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7.2.2.2 ANSWERS TO EXERCISES 277 even-length yletruth tableorbitsyle468. (a) Typial running times with Algorithm C for sizes 6 � 6, 8 � 8, : : : , 16 � 16are somewhat improved: 39K�, 368K�, 4:3M�, 48M�, 626M�, 8G�.(b) Now they're even better, but still growing exponentially: 30K�, 289K�,2:3M�, 22M�, 276M�, 1:7G�.469. For instane (v11), (v31), (v51), (h12), (h14), (v22), (v42), (h23), (v33), �.470. There an't be a yle x0 ! x1 ! � � � ! xp = x0 of length p > 1, beause thelargest vertex whose mate is hanged always gets smaller and smaller mates.471. We must pair 2n with 1, then 2n � 1 with 2, : : : , then n + 1 with n.472. We an number the verties from 1 to mn in suh a way that every4-yle swithes as desired. For example, we an make (i; j) < (i; j + 1)() (i; j) < (i+ 1; j) () (i; j) mod 4 2 f(0; 0), (0; 1), (1; 1), (1; 2), (2; 2),(2; 3), (3; 3), (3; 0)g. One suh numbering in the 4� 4 ase is shown here. 16 1514 1312 11109 87654 321473. For every even-length yle v0���v1���� � ����v2r�1���v0 with v0 = maxvi andv1 > v2r�1, assert (v0v1 _ v1v2 _ v2v3 _ � � � _ v2r�1v0).474. (a) (2n) � (2n� 2) � : : : � 2 = 2nn!. (b) (17�3)(�1�73)(25�2�5)(4�4)(6)(�6).() Using 0, 1, : : : , f for the 4-tuples 0000, 0001, : : : , 1111, we must havef(0) = f(9) = f(5), f(2) = f(b) = f(7); f(4) = f(8) = f(d); and f(6) = f(a) = f(f);in other words, the truth table of f must have the form abdeageagfehg , wherea; b; ; d; e; f; g; h 2 f0; 1g. So there are 28 f 's.(d) Change `=' to 6̀=' in (). There are no suh truth tables, beause (191)ontains odd yles; all yles of an antisymmetry must have even length.(e) The 128 binary 7-tuples are partitioned into sixteen \orbits" fx; x�; x�2; : : : g,with eight of size 12 and eight of size 4. For example, one of the 4s is f0011010; 0010110;0111110; 0110010g; one of the 12s is f0000000; 0011101; : : : ; 1111000g. Hene there are216 funtions with this symmetry, and 216 others with this antisymmetry.475. (a) 2n+1n!. (There are 2n+1n!=a, if f has a automorphisms+antiautomorphisms.)(b) (x�z)(�xz), beause (surprisingly) (x _ y) ^ (x� z) = (�z _ y) ^ (�z � �x).() In general if � is any permutation having a yle of length l, and if p is aprime divisor of l, some power of � will have a yle of length p. (Repeatedly raise �to the qth power for all primes q 6= p, until all yle lengths are powers of p. Then, ifthe longest remaining yle has length pe, ompute the pe�1st power.)(d) Suppose f(x1; x2; x3) has the symmetry (x1�x2x3)(�x1x2�x3). Then f(0; 0; 0) =f(1; 1; 0) = f(0; 1; 1), f(1; 1; 1) = f(0; 0; 1) = f(1; 0; 0), so (x1�x2)(�x1x2) is a symmetry.(e) A similar argument shows that (ux)(vw)(�u�x)(�v �w) is a symmetry.(f) If � is an antisymmetry of f , then �2 is a symmetry. If f has a nontrivialsymmetry, it has a symmetry of prime order p, by (). And if p 6= 2, it has one oforder 2, by (d) and (e), unless n > 5.(g) Let f(x1; : : : ; x6) = 1 only when x1 : : : x6 2 f001000; 001001; 001011; 010000;010010; 010110; 100000; 100100; 100101g. (Another interesting example, for n = 7, hasf = 1 () x1 : : : x7 is a yli shift of 0000001, 0001101, or 0011101; 21 symmetries.)476. We want lauses that speify r-step hains in n variables, having a single out-put xn+r. For 0 < t < t0 < 2n, introdue new variables �tt0 = x(n+r)t � x(n+r)t0 .(See (24).) Then for eah signed involution �, not the identity, we want a lause thatsays \� is not a symmetry of f ," namely (Wf�tt0 j t < t0 and t0 = t�g). (Here t isonsidered to be the same as its binary representation (t1 : : : tn)2, as in exerise 477.)Also, if � has no �xed points|this is true if and only if � takes xi 7! �xi for atleast one i|we have further things to do: In ase (b), we want a lause that says \�
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278 ANSWERS TO EXERCISES 7.2.2.2 normal hainpreproessorolexiographi orderauthorfull-adderis not an antisymmetry," namely (Wf�tt0 j t < t0 and t0 = t�g). But in ase (a), weneed further variables aj for 1 � j � T , where T is the number of signed involutionsthat are �xedpoint-free. We append the lause (a1 _ � � � _ aT ), and also (�aj _�tt0) forall t < t0 suh that t0 = t� when � orresponds to index j. Those lauses say, \there'sat least one signed involution that is an antisymmetry."There are no solutions when n � 3. Answers for (a) are (((x1�x2)_x3)^x4)�x1and ((((�x1 � x2) ^ x3) � x4) ^ x5) � x1; in both ases the signed involution (1�1)(2�2)is obviously an antisymmetry. Answers for (b) are ((x1 � x2) _ x3) ^ (x4 _ x1) and(((x1 ^ x2)� x3) ^ x4)� (x5 _ x1). [Is there a simple formula that works for all n?℄477. Use the following variables for 1 � h � m, n < i � n + r, and 0 < t < 2n: xit =(tth bit of truth table for xi); ghi = [gh=xi ℄; sijk = [xi=xj Æi xk ℄, for 1 � j < k < i;fipq = Æi(p; q) for 0 � p; q � 1, p+ q > 0. (We don't need fi00, beause every operationin a normal hain takes (0; 0) 7! 0.) The main lauses for truth table omputations are(�sijk _ (xit�a)_ (xjt� b)_ (xkt� )_ (fib��a)); for 0 � a; b;  � 1 and 1 � j < k < i.Simpli�ations arise in speial ases: For example, if b =  = 0, the lause is omittedif a = 0, and the term fi00 is omitted if a = 1. Furthermore if t = (t1 : : : tn)2, and ifj � n, the (nonexistent) variable xjt atually has the known value tj ; again we omiteither the whole lause or the term (xjt� b), depending on b and t. For example, thereusually are eight main lauses that involve sijk; but there's only one that involves si12when t < 2n�2, namely (�si12 _ �xi1), beause the truth tables for x1 and x2 begin with2n�2 0s. (All suh simpli�ations would be done by a preproessor if we had de�nedadditional variables fi00 and xjt, and �xed their values with unit lauses.)There also are more mundane lauses, namely (�ghi _ �xit) or (�ghi _ xit) aordingas gh(t1; : : : ; tn) = 0 or 1, to �x the outputs; also (Wn+ri=n+1 ghi) and (Wi�1k=1Wk�1j=1 sijk),to ensure that eah output appears in the hain and that eah step has two operands.Additional lauses are optional, but they greatly shrink the spae of possibilities:(Wmk=1 gki_Wn+ri0=i+1Wi�1j=1 si0ji_Wn+ri0=i+1Wi0�1j=i+1 si0ij) ensures that step i is used at leastone; (�sijk_ �si0ji) and (�sijk_ �si0ki) for i < i0 � n + r avoid reapplying an operand.Finally, we an rule out trivial binary operations with the lauses (fi01_fi10_fi11),(fi01_ �fi10_ �fi11), ( �fi01_fi10_ �fi11). (But beware: These lauses, for n < i � n+r, willmake it impossible to ompute the trivial funtion g1 = 0 in fewer than three steps!)Further lauses suh as (�sijk _ fi01 _ �xit_xjt) are true, but unhelpful in pratie.478. We an insist that the (j; k) pairs in steps n+1, : : : , n+r appear in olexiographiorder; for example, a hain step like x8 = x4 � x5 need never follow x7 = x2 ^ x6. Thelauses, for n < i < n+r, are (�sijk_�s(i+1)j0k0) if 1 � j0 < j < k = k0 < i or if 1 � j < kand 1 � j0 < k0 < k < i. (If (j; k) = (j0; k0), we ould insist further that fi01fi10fi11 islexiographially less than f(i+1)01f(i+1)10f(i+1)11. But the author didn't go that far.)Furthermore, if p<q and if eah output funtion is unhanged when xp is swappedwith xq, we an insist that xp is used before xq as an operand. Those lauses are(�sijq _Wn<i0<iW1�j0<k0<i0 [j0= p or k0= p℄ si0j0k0) whenever j 6= p.For example, when answer 477 is applied to the full-adder problem, it yields Mrlauses in Nr variables, where (M4;M5) = (942; 1662) and (N4; N5) = (82; 115). Thesymmetry-breaking strategy above, with (p; q) = (1; 2) and (2; 3), raises the number oflauses to M 0r, where (M 04;M 05) = (1025; 1860). Algorithm C reported `unsat' after(1015; 291) kilomems using (M4;M 04) lauses; `sat' after (250; 268) kilomems using(M5;M 05). With larger problems, suh symmetry breakers give signi�ant speedupwhen proving unsatis�ability, but they're often a handiap in satis�able instanes.
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7.2.2.2 ANSWERS TO EXERCISES 279 sideways sumauthorfootprint heuristinormal funtion479. (a) Using the notation of the previous answer, we have (M8;M 08; N8) = (14439;17273; 384) and (M9;M 09; N9) = (19719; 24233; 471). The running times for the `sat'ases with M9 and M 09 lauses were respetively (16; 645; 1259) and (66; 341; 1789)megamems|these stats are the (min;median;max) of nine runs with di�erent randomseeds. The `unsat' ases withM8 andM 08 were dramatially di�erent: (655631; 861577;952218) and (8858; 10908; 13171). Thus s(4) = 9 in 7.1.2{(28) is optimum.(b) But s(5) = 12 is not optimum, despite the beauty of 7.1.2{(29)! The M11 =76321 lauses in N11 = 957 variables are `sat' in 680 G�, yielding an amazing hain:x6 = x1 � x2;x7 = x1 � x3;x8 = x4 � x5;x9 = x3 � x6; x10 = x6 _ x7;x11 = x4 � x9;x12 = x9 � x10;z0 = x13 = x5 � x11; x14 = �x8 ^ x11;z1 = x15 = x10 � x14;z2 = x16 = x12 ^ �x15:And (M 010; N10) = (68859; 815) turns out to be `unsat' in 1773 gigamems; this an beredued to 309 gigamems by appending the unit lause (g3(15)), sine C(S4;5) = 10.Hene we an evaluate x1+ � � �+x7 in only 5+11+2+1 = 19 steps, by omputing(u1u0)2 = x5+x6+x7, (v2v1z0)2 = x1+x2+x3+x4+u0, (w2z1)2 = u1+v1, z2 = v2�w2.() The solver �nds an elegant 8-step solution for (M8; N8) = (6068; 276) in 6M�:x4 = x1 _ x2;x5 = x1 � x2; x6 = x3 � x4;S0 = x7 = x3 _ x4; x8 = x3 � x5;S3 = x9 = �x6 ^ x8; S1 = x10 = x6 ^ x8;S2 = x11 = x7 � x8:The orresponding (M 07; N7) = (5016; 217) problem is `unsat' in 97M�.(d) The total ost of evaluating the S's independently is 3 + 7 + 6 + 7 + 3 = 26,using the optimum omputations of Fig. 9 in Setion 7.1.2. Therefore the author wassurprised to disover a 9-step hain for S1, S2, and S3, using the footprint heuristi:x5 = x1 � x2;x6 = x1 � x3;x7 = x3 � x4; x8 = x5 � x7;x9 = x6 _ x7;x10 = x2 � x9; S3 = x11 = �x8 ^ x9;S2 = x12 = x8 ^ �x10;S1 = x13 = x8 ^ x10:This hain an solve problem (d) in 13 steps; but SAT tehnology does it in 12(!):x5 = x1 � x2;x6 = x1 � x3;x7 = x3 � x4;x8 = x5 � x7; x9 = x6 _ x7;x10 = x2 � x9;x11 = x5 _ x9;S3 = x12 = x8 ^ �x10; S1 = x13 = x8 ^ x10;S4 = x14 = x1 ^ �x11;S0 = x15 = x4 _ x11;S2 = x16 = �x8 ^ x11:The nonexistene of an 11-step solution an be proved via Algorithm C by a longomputation (11034 gigamems), during whih 99,999,379 lauses are learned(!).(e) This solution (found in 342 G�) mathes the lower bound in exerise 7.1.2{80:x7 = x1 � x2;x8 = x3 � x4;x9 = x1 � x5;x10 = x6 � x8; x11 = x4 � x10;x12 = x5 � x10;x13 = x8 _ x11;x14 = x7 � x12; x15 = �x9 ^ x12;x16 = x13 � x15;x17 = x14 ^ x16:(f) This solution (found in 7471 G�) also mathes that lower bound:x7 = x1 ^ x2;x8 = x1 � x2;x9 = x3 � x4;x10 = x5 ^ x6; x11 = x5 � x6;x12 = x4 � x11;x13 = x9 � x11;x14 = x9 _ x12; x15 = x8 � x13;x16 = x10 � x14;x17 = x7 � x16;x18 = x15 _ x17:Here x18 is the normal funtion S0;4 = S1;2;3;5;6. We beat exerise 7.1.2{28 by one step.(g) A solution in t(3) = 12 steps is found almost instantaneously (120 megamems);but 11 steps are too few (`unsat' in 301 gigamems).
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280 ANSWERS TO EXERCISES 7.2.2.2 don't-aresKojevnikovKulikovYaroslavtsevBieremodi�ed full adderfull adder, modi�eddon't-aresDemenkovKojevnikovKulikovYaroslavtsevSinz
480. (a) Let x1x2x3x4 = xlxrylyr. The truth tables for zl and zr are 0011010010001000and 01��1�00�011�011, where the �s (\don't-ares") are handled by simply omittingthe orresponding lauses (�ghi _ �xit) in answer 477.Less than 1 gigamem of omputation proves that a six-step iruit is `unsat'.Here's a seven-stepper, found in just 30 M�: x5 = x2� x3, x6 = x3 _x4, x8 = x1� x6,x7 = x1 _ x5, x9 = x6 � x7, zl = x10 = x7 ^ x8, zr = x11 = x3 � x9. (See exerise7.1.2{60 for a six-step solution that is based on a di�erent enoding.)(b) Now we have the truth tables zl = 00110100010010000100100010000011,zr = 01��1�001�00�0111�00�011�01101��, if x4x5 = ylyr. One of many 9-stepsolutions is found in 6.9 gigamems: x6 = x1�x2, x7 = x2�x5, x8 = x4�x6, x9 = �x4^x7,x10 = x1�x9, x11 = x8_x9, x12 = x3�x10, zr = x13 = x3�x11, zl = x14 = x11 ^ �x12.The orresponding lauses for only 8 steps are proved `unsat' after 190 G� ofwork. (Inidentally, the enoding of exerise 7.1.2{60 does not have a 9-step solution.)() Let n be the minimum ost of omputing the representation zlzr of (x1 +� � �+xn) mod 3. Then (1; 2; 3; 4) = (0; 2; 5; 7), and n�3 � n+9. Hene n � 3n�4for all n � 2. [This result is due to A. Kojevnikov, A. S. Kulikov, and G. Yaroslavtsev,whose paper in LNCS 5584 (2009), 32{44, also inspired exerises 477{480.℄Conjeture: For n � 3 and 0 � a � 2, the minimum ost of evaluating the (single)funtion [(x1 + � � �+ xn) mod 3= a℄ is 3n�5� [(n+ a) mod 3=0℄. (It's true for n � 5.Here's a 12-step omputation when n = 6 and a = 0, found in 2014 by Armin Biere:x7 = x1 � x2, x8 = x3 � x4, x9 = x1 � x5, x10 = x3 � x5, x11 = x2 � x6, x12 = x8� x9,x13 = x8 _ x10, x14 = x7 � x13, x15 = �x12 ^ x13, x16 = �x11 ^ x14, x17 = x11 � x15,S0;3;6 = x18 = x16 _ x17. The ase n = 6 and a 6= 0, whih lies tantalizingly lose tothe limits of today's solvers, is still unknown. What is C(S1;4(x1; : : : ; x6))?)481. (a) Sine z�z0 = hx1x2x3i and z0 = x1�x2�x3, this iruit is alled a \modi�edfull adder." It osts one less than a normal full adder, sine z0 = (x1 � x2) � x3 andz = (x1�x2)_ (x1�x3). (And it's the speial ase u = 0 of the more general situationin exerise 7.1.2{28.) Part (b) desribes a \modi�ed double full adder."(b) The funtion z2 has 20 don't-ares, so there are many eight-step solutions(although 7 are impossible); for example, x6 = x1�x5, x7 = x2�x5, z3 = x8 = x3�x6,x9 = x4 � x6, x10 = x1 _ x7, x11 = �x3 ^ x9, z2 = x12 = x6 � x11, z1 = x13 = x10 � x11.() Letting y2k�1y2k = [[x2k�1x2k℄℄, it suÆes to show that the binary represen-tation of �n = �[[y1y2℄℄ + � � � + �[[y2n�1y2n℄℄ + y2n+1 an be omputed in at most 8nsteps. Four steps are enough when n = 1. Otherwise, letting 0 = y2n+1, we anompute z's bits with �[[y4k�3y4k�2℄℄ + �[[y4k�1y4k℄℄ + k�1 = 2�[[z2k�1z2k℄℄ + k for1 � k � bn=2. Then �n = 2(�[[z1z2℄℄ + � � � + �[[zn�1zn℄℄) + n=2 if n is even, �n =2(�[[z1z2℄℄+� � �+�[[zn�2zn�1℄℄+zn)+0 if n is odd, where �[[y2n�1y2n℄℄+bn=2 = 2zn+0,at a ost of 4n in both ases. The remaining sum osts at most 8bn=2 by indution.[See E. Demenkov, A. Kojevnikov, A. S. Kulikov, and G. Yaroslavtsev, InformationProessing Letters 110 (2010), 264{267.℄482. (a) Pkj=1(2yj � 1) is odd when k is odd, and it's �1 when k = 1.(b) Adapting Sinz's ardinality lauses as in exerises 29 and 30, we only need theauxiliary variables aj = sj�1j , bj = sjj , and j = sj+1j , beause sj+2j = 0 and sjj+2 = 1.The lauses are then (�bj_aj+1)^(�j_bj+1)^(bj_�j)^(aj+1_�bj+1), for 1 � j < t=2�1;and (�y2j�2 _ aj) ^ (�y2j�1 _ �aj _ bj) ^ (�y2j _ �bj _ j) ^ (�y2j+1 _ �j) ^ (y2j�2 _ �j�1) ^(y2j�1 _ j�1 _ �bj) ^ (y2j _ bj _ �aj+1) ^ (y2j+1 _ aj+1) for 1 � j < t=2, omitting �a1, 0,and the two lauses that ontain y0.
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7.2.2.2 ANSWERS TO EXERCISES 281 auxiliary variablesbreak symmetryKonevLisitsaErd}osdiret enodingorder enodingRamaniMarkovSakallahAloulWalkSATomparison of running timesmonotone Boolean funtionadjaeny matrixprime impliantsEndomorphismsquenhing
() Use the onstrution in (b) with yj = xjd for 1 � d � n=3 and independentauxiliary variables aj;d, bj;d, j;d. Also, assuming that n � 720, break symmetry byasserting the unit lause (x720). (That's muh better than simply asserting (x1).)This problem was shown to be satis�able if and only if n < 1161 by B. Konevand A. Lisitsa [Arti�ial Intelligene 224 (2015), 103{118℄, thereby establishing thease C = 2 of a well-known onjeture by Paul Erd}os [Mihigan Math. J. 4 (1957),291{300, Problem 9℄. Algorithm C an prove unsatis�ability for n = 1161 in less than600 gigamems, using the parameters of exerise 512.483. Using a diret enoding as in (15), with vjk meaning that vj has olor k, we angenerate the lauses (�vjk) for 1 � j < k � d and (�vj(k+1)_Wj�1i=k vik) for 2 � k < j � n.A similar but slightly simpler sheme works with the order enoding, when vjk meansthat vj has olor > k. [See Ramani, Markov, Sakallah, and Aloul, Journal of Arti�ialIntelligene Researh 26 (2006), 289{322. The verties might be ordered in suh a waythat degree(v1) � � � � � degree(vn), for example.℄Those book graphs an be olored optimally with (11, 11, 13, 11, 10) olors, re-spetively. Suh olorings are found with less than a megamem of work by AlgorithmWor Algorithm C, without any symmetry breaking; Algorithm L also �nds them, but aftermore than an order of magnitude more e�ort. The symmetry breaking lauses atuallywill retard this searh, espeially in the ase of homer. On the other hand when we askfor only (10, 10, 12, 10, 9) olors those lauses are extremely helpful: The runtime foranna and david dereases from about 350G� to only about 200K� with Algorithm C!For huk and jean the redution is roughly 333G� ! 833M� and 14G� ! 4:3M�;for homer, dozens or more of T� go down to about 11G�. (Algorithm L is hopelesslyslow on these unsatis�able oloring problems, even with symmetry broken.)484. (a) A type (iii) move will work if and only if v1���v4, v2���v4, v2���v3.(b) For 0 � t < n � 1 we have the lause (Wn�t�1k=1 qt;k _Wn�t�3l=1 st;l), as well asthe following for 1 � i < j < n � t, 1 � k < n � t, 1 � l < n � t� 2: (�qt;k _ xt;k;k+1);(�qt;k_�xt+1;i;j_xt;i0;j0 ); (�st;l_xt;l;l+3); (�st;k_�xt+1;i;j_xt;i00;j00); here i0 = i+[i�k ℄, j0 =j+[j � k℄, and fi00; j00g are the min and max of fi+[i� l+ 3℄+3[i= l℄; j+[j � l+ 3℄+3[j = l℄g. Finally there's a unit lause (�x0;i;j) for all 1 � i < j � n with vi /���vj .(These lauses essentially ompute [G is quenhable℄, whih is a monotone Bool-ean funtion of the �n2� elements above the diagonal in the adjaeny matrix of G. Theprime impliants of this funtion orrespond to ertain spanning trees, of whih thereare respetively 1, 1, 2, 6, 28, 164, 1137, : : : when n = 1, 2, 3, 4, 5, 6, 7, : : : .)485. Let t0 = t + 1. Instanes of ommutativity are: (qt;k; qt0;k0) $ (qt;k0+1; qt0;k) ifk < k0; (st;l; st0;l0 ) $ (st;l0+1; st0;l) if l + 2 < l0; (qt;k; st0;l0) $ (st;l0+1; qt0;l) if k < l0;(st;l; qt0;k0) $ (qt;k0+1; st0;l) if l + 2 < k0; (st;l; st0;l) $ (qt;l+3; st0;l). These an bebroken by appending the lauses (�qt;k0+1 _ �qt0;k), (�st;l0+1 _ �st0;l), : : : , (�qt;l+3 _ �st0;l).Endomorphisms are also present in the two ases (qt;k; qt0;k)$ (qt;k+1; qt0;k) and(st;k+1; qt0;k) $ (qt;k+1; st0;k), provided that both pairs of transitions are legal. Theseare exploited by the lauses (�qt;k+1 _ �qt0;k _ �xt;k;k+1) and (�qt;k+1 _ �st0;k _ �xt;k+1;k+4).486. This game is a speial ase of graph quenhing, so we an use the previoustwo exerises. Algorithm C �nds a solution after about 1.2 gigamems, without thesymmetry-breaking lauses; this time goes down to roughly 85 megamems when thoselauses are added. Similarly, the orresponding 17-ard problem after A|�J| is foundto be unsatis�able, after 15 G� without and 400 M� with. (A|�� 10| fails too.)Those SAT problems have respetively (1242, 20392, 60905), (1242, 22614, 65590),(1057, 15994, 47740), (1057, 17804, 51571) ombinations of (variables, lauses, ells),
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and they are not handled easily by Algorithms A, B, D, or L. In one solution bothq0;11 and s0;7 are true, thus providing two ways to win(!), when followed by q1;15, s2;13,q3;12, s4;10, s5;7, q6;7, s7;5, q8;5, s9;4, q10;5, s11;3, q12;3, s13;1, s14;1, q15;1, q16;1.Notes: This mildly additive game is an interesting way to waste time in aseyou ever get lost with a pak of ards on a desert island. If you sueed in reduing theoriginal 18 piles to a single pile, you an ontinue by dealing 17 more ards and tryingto redue the new 18 piles. And if you sueed also at that, you have 17 more ardsfor a third try, sine 52 = 18 + 17 + 17. Three onseutive wins is a Grand Slam.In a study of ten thousand random deals, just 4432 turned out to be winnable.Computer times (with symmetry breaking) varied wildly, from 1014 K� to 37 G� inthe satis�able ases (median 220 M�) and from 46 K� to 36 G� in the others (median848 M�). The most diÆult winnable and unwinnable deals in this set were respetively9� 7| 3| K} 7� 3~ 2} 8| 6~ J} 8� 2~ 6� 4} 5� 4~10} Q� andA~ Q~ 2} 9} 7| 7} 8~ K| 3}10| 3| 3� Q� 8| 2| K� 6} 5| :Students in Stanford's graduate problem seminar investigated this game in 1989[see K. A. Ross and D. E. Knuth, Report STAN-CS-89-1269 (Stanford Univ., 1989),Problem 1℄. Ross posed an interesting question, still unsolved: Is there a sequene of(say) nine \poison ards," suh that all games starting with those ards are lost?The lassi game Idle Year is also known by many other names, inluding Tower ofBabel, Tower of London, Aordion, Methuselah, and Skip Two. Albert H. Moreheadand Geo�rey Mott-Smith, in The Complete Book of Solitaire and Patiene Games(1949), 61, suggested that moves shouldn't be too greedy.487. Every queen in a set of eight must attak at least 14 vaant ells. Thus j�Sj getsits minimum value 8� 14 = 112 when the queens oupy the top row. Solutions to the8 queens problem, when queens are independent, all have j�Sj � 176. The maximumj�Sj is 184, ahieved symmetrially for example in Fig. A{9(a). (This problem isnot at all suitable for SAT solvers, beause the graph has 728 edges. The best wayto proeed is to run through all �648 � possibilities with the revolving door Gray ode(Algorithm 7.2.1.3R), beause inremental hanges to j�Sj are easy to ompute whena queen is deleted or inserted. The total time by that method is only 601 gigamems.)The maximum of j�outSj is obviously 64 � 8 = 56. The minimum, whih orre-sponds to Turton's question, is 45; it an be ahieved symmetrially as in Fig. A{9(b),leaving 64 � 8 � 45 = 11 ells unattaked (shown as blak queens). In this ase SATsolvers win: The revolving door method needs 953 gigamems, but SAT methods showthe impossibility of 44 after only 2.2 G� of work. With symmetry redution as in thefollowing exerise, this goes down to 900 M� although there are 789 variables and 4234lauses. [Bernd Shwarzkopf, in Die Shwalbe 76 (August 1982), 531, omputed allsolutions of minimum j�outSj, given jSj, for n � n boards with n � 8. Extensions ofTurton's problem to larger n have been surveyed by B. Lemaire and P. Vitushinskiyin two artiles, written in 2011 and aessible from www.ffjm.org. Optimum solutionsfor n > 16 are onjetured but not yet known.℄All sets S of eight queens trivially have j�inSj = 8.488. Let variables wij and bij represent the presene of white or blak queens onell (i; j), with lauses ( �wij _�bi0j0 ) when (i; j) = (i0; j0) or (i; j)���(i0; j0). Also, if eaharmy is to have at least r queens, add lauses based on (20) and (21) to ensure thatPwij � r and P bij � r. Optionally, add lauses based on Theorem E to ensure thatk of the w variables for the top row are lexiographially greater than or equal to the
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Q QQ QQ QQ Q(a)

QQQQ QQQ Q qqqqq qqqq qq(b)
QQQQQQ QQQQ qqqqqqqqqq()

Q Q Q QQ Q Q QQ Q Q Q qq q q qqqq q q qq(d)
QQQQQQQQQQQQQQ qqqqqqqqqqqqqq(e)

QQQQQQQQQQQQQQQQQ qqqqqqqqqq qqqqqqqq(f)Fig. A{9. Optimum queen plaements of various kinds.orresponding k variables in �fteen symmetrial variants. (For instane, if k = 3, wemight require w11w12w13 � b1nb2nb3n, thus partially breaking the symmetries.)The maximum army sizes for 1 � n � 11 are found to be 0, 0, 1, 2, 4, 5, 7, 9, 12,14, and 17, respetively. A onstrution with 21 armies is known for n = 12, but 22 hasnot yet been proved impossible. [B. M. Smith, K. E. Petrie, and I. P. Gent obtainedsimilar results using CSP methods in LNCS 3011 (2004), 271{286.℄ An extra blakqueen an atually be inluded in the ases n = 2, 3, 4, 6, 8, 10, and 11. Solutionsappear in Fig. A{9; the onstrution shown in Fig. A{9(d) generalizes to armies of2q(q + 1) queens whenever n = 4q + 1, while those in parts (), (e), (f) belong toanother family of onstrutions that ahieve the higher asymptoti density 964n2.When n = 8 and r = 9, Algorithm C typially �nds a solution in about 10megamems (k = 0), or about 30 megamems (k = 3); but with r = 10 it typiallyproves unsatis�ability in about 1800 M� (k = 0) or 850 M� (k = 3) or 550 M�(k = 4) or 600 M� (k = 5). Thus the symmetry breaking onstraints are helpfulfor unsatis�ability in this ase, but not for the easier satis�ability problem. On theother hand, the extra onstraints do turn out to be helpful for both the satis�ableand unsatis�able variants when n is larger. The \sweet spot" turns out to be k = 6when n = 10 and n = 11; unsatis�ability was proved in those ases, with r = 15 andr = 18, after about 185 G� and 3500 G�, respetively. [See Martin Gardner, MathHorizons 7, 2 (November 1999), 2{16, for generalizations to oexisting armies of sizesr and s. F. R. K. Chung and R. L. Graham onjeture that the maximum value of s,if r = 3q2 + 3q + 1, is asymptotially n2 � (6q + 3)n+O(1).℄489. T0 = 1, T1 = 2, Tn = 2Tn�1 + (2n� 2)Tn�2 (see Eq. 5.1.4{(40)). The generatingfuntion Pn Tnzn=n! and the asymptoti value are given in exerise 5.1.4{31.490. Yes. For example, using the signed permutation �413�2, we're allowed to assumethat some solution satis�es �x4x1x3�x2 � �x04x01x03�x02 for every endomorphism|beausethe solution with lexiographially smallest �x4x1x3�x2 has this property. Notie thatthe signed permutation �1�2 : : : �n onverts `�' to `�'.491. Let � be the permutation (1 2 3 4 �1 �2 �3 �4). Then �4 = (1 �1)(2 �2)(3 �3)(4 �4); and byTheorem E we need only searh for solutions that satisfy x1x2x3x4 � �x1�x2�x3�x4. We'retherefore allowed to append the lause (�x1) without a�eting satis�ability.(We atually are allowed to assert that x1 = x2 = x4 = 0, beause 0000 and 0010are the lex-leaders of the two 8-yles when � is a written as a permutation of states.)In general if an automorphism � is a permutation of literals having a yle thatontains both v and �v, for some variable v, we an simplify the problem by assigninga �xed value to v and then by restriting onsideration to automorphisms that don'thange v. (See the disussion of Sims tables in Setion 7.2.1.2.)492. Suppose x1 : : : xn satis�es all lauses of F ; we want to prove that (x1 : : : xn)� =x01 : : : x0n also satis�es them all. And that's easy: If (l1_ � � � _ lk) is a lause, we have
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l01 = l1� , : : : , l0n = ln� ; and we know that (l1� _ � � � _ lk� ) is true beause it's subsumedby a lause of F . [See S. Szeider, Disrete Applied Math. 130 (2003), 351{365.℄493. Using the global ordering p1 : : : p9 = 543219876 and Corollary E, we an addlauses to assert that x5 = 0 and x4x3x2x1 � x6x7x8x9. A ontradition quikly fol-lows, even if we stipulate only the weaker relation x4 � x6, beause that fores x6 = 1.494. Exerise 504(b) shows that (uv)(�u�v) is a symmetry of the underlying Booleanfuntion, although not neessarily of the lauses F . [This observation is due to Aloul,Ramani, Markov, and Sakallah in the ited paper.℄ The other symmetries allow us toassert (i) (�xi _ xj) ^ (�xj _ �xk), (ii) (�xi _ �xj) ^ (�xj _ �xk), (iii) (�xi _ �xj) ^ (�xj _ xk).495. Suppose, for example, that m = 3 and n = 4. The variables an then be alled11, 12, 13, 14, 21, : : : , 34; and we an give them the global ordering 11, 12, 21, 13, 22,31, 14, 23, 32, 24, 33, 34. To assert that 21 22 23 24 � 31 32 33 34, we use the involutionthat swaps rows 2 and 3; this involution is (21 31)(22 32)(23 33)(24 34) when expressedin form (192) with signs suppressed. Similarly we an assert that 12 22 13 � 13 23 33beause of the involution (12 13)(22 23)(32 33) that swaps olumns 2 and 3. The sameargument works for any adjaent rows or olumns. And we an replae `�' by `�', byomplementing all variables.For generalm and n, onsider any global ordering for whih xij preedes or equalsxi0j0 when 1 � i � i0 � m and 1 � j � j0 � n. The operation of swapping adjaentrows makes the global lexiographi order inrease if and only if it makes the upperrow inrease lexiographially; and the same holds for olumns.[See Ilya Shlyakhter, Disrete Applied Mathematis 155 (2007), 1539{1548.℄496. No; that reasoning would \prove" that m pigeons annot �t into m holes. Thefallay is that his orderings on rows and olumns aren't simultaneously onsistent witha single global ordering, as in the previous exerise.497. A BDD with 71,719 nodes makes it easy to alulate the total, 818,230,288,201,as well as the generating funtion 1 + z + 3z2 + 8z3 + 25z4 + � � � + 21472125415z24 +31108610146z25 + � � �+ 10268721131z39 + 6152836518z40 + � � �+ 24z60 + 8z61 + 3z62 +z63+z64. (The relatively small oeÆients of z39 and z40 help aount for the fat that� was hosen in (185){(186); problems with sparse solutions tend to favor �.)[P�olya's theorem in Setion 7.2.3 shows that exatly 14,685,630,688 inequivalentmatries exist; ompare this to 264 � 1:8447 � 1019 without any symmetry redution.℄498. Consider the global ordering x01, x11, : : : , xm1; x12, x22, : : : , xm2, x02; x23, x33,: : : , xm3, x03, x13; : : : ; x(m�1)m, xmm, x0m, : : : , x(m�2)m. There's a olumn symmetrythat �xes all elements preeding x(j�1)j and takes x(j�1)j 7! x(j�1)k.499. No. The unusual global ordering in answer 498 is not onsistent with ordinarylexiographi row or olumn ordering. [Nor an the analogous lauses (xii_ �xij) for1 � i � m and i < j � n be appended to (185) and (186). No quad-free matrix form = n = 4 and r = 9 satis�es all those onstraints simultaneously.℄500. If F0 has a solution, then it has a solution for whih l is true. But (F0 [ F1) j lmight be unsolvable. (For example, let F0 = (�x1_ x2) ^ (�x2 _ x1), whih has thesymmetry �1�2; so we an take S = (�x1), l = �x1. Combine that with F1 = (x1).)501. Let xij denote a queen in ell (i; j), for 1 � i � m and 1 � j � n. Alsolet rij = [xi1 + � � �+ xij � 1℄ and r0ij = [xi1 + � � � + xi(j+1)� 2℄, for 1 � i � m and1 � j < n. Using (18) and (19) we an easily onstrut about 8mn lauses thatde�ne the r's in terms of the x's and also ensure that xi1 + � � � + xin � 2. Thusr0i(n�1) = [xi1 + � � �+ xin=2℄; all this ondition ri.
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Similar onditions j , ad, and bd are readily established for olumn j, and for thediagonals with i+j = d+1 or i�j = d�n, for 1 � i � m, 1 � j � n, and 1 � d < m+n.Then ondition (ii) orresponds to the mn lauses (xij _ ri _ j _ ai+j�1 _ bi�j+n).Finally we have lauses from (20) and (21) to ensure that Pxij � r.When m = n, the lower bound r � n � [nmod 4=3℄ has been established byA. S. Cooper, O. Pikhurko, J. R. Shmitt, and G. S. Warrington [AMM 121 (2014),213{221℄, who also used baktraking to show that r � 12 on an 11 � 11 board. SATmethods, with symmetry breaking, yield that result muh more quikly (after about 9teramems of omputation); but this problem, like the tomography problem of Fig. 36,is best solved by integer programming tehniques when m and n are large.If we all the upper left orner white, solutions with m = n = r�1 and all queenson white squares appear to exist for all n > 2, and they are found almost instantly.However, no general pattern is apparent. In fat, when n is odd it appears possible toinsist that the queens all appear in odd-numbered rows and in odd-numbered olumns.Here are examples of optimum plaements on smallish boards. The solutions for8� 9, 8� 10, 8� 13, 10� 10, and 12� 12 also work for sizes 8� 8, 9� 10, 8� 12, 9� 9,and 11 � 11, respetively.QQ QQ QQ QQ Q Q QQQQ QQQQ Q Q Q QQ QQ QQ QQ Q Q QQ QQ QQ QQ QQ Q Q QQ QQ QQ QQ Q Q QQQQ QQ QQQQ QThis plaement of ten queens on a 10 � 10 board an be desribed by the \magisequene" (a1; : : : ; a5) = (1, 3, 7, 5, 9), beause the queens appear in positions (ai; ai+1)and (ai+1; ai) for 1 � i < n=2 as well as in (a1; a1) and (an=2; an=2). The magisequenes (1, 3, 9, 13, 15, 5, 11, 7, 17) and (9, 3, 1, 19, 5, 11, 15, 25, 7, 21, 23, 13, 17)likewise desribe optimum plaements for n = 18 and 26. No other magi sequenesare known; none exist when n = 34.502. For eah j, onstrut independent ardinality onstraints for the relation x(j)1 +� � � + x(j)n � rj , using say (20) and (21), where x(j)k = (sjk? �xk: xk).503. The Hamming distane d(x; y) = �(x � y) between binary vetors of length nsatis�es d(x; y) + d(�x; y) = n. Thus there is no x with d(x; sj) � rj + 1 for all j if andonly if there is no x with d(�x; sj) � n � 1 � rj for all j. [See M. Karpovsky, IEEETransations IT-27 (1981), 462{472.℄504. (a) Assume that n � 4. For strings of length 2n we have d(z; w) + d(z; �w) = 2n;hene d(z;w) � n and d(z; �w) � n if and only if d(z; w) = d(z; �w) = n. Every stringz with z2k�1 6= z2k for 1 � k � n satis�es d(z;wj) = n for 1 � j � n. Conversely, ifd(z; wj) = d(z; wk) = n and 1 � j < k � n, then z2j�1 + z2j = z2k�1 + z2k. Thus ifz2j�1 = z2j for some j we have z = 00 : : : 0 or 11 : : : 1, ontraditing d(z; w1) = n.(b) For eah string x̂ = �x1x1�x2x2 : : : �xnxn that satis�es part (a) we have d(x̂; y) =2�l1 + 2�l2 + 2�l3 + n � 3, whih is � n+ 1 if and only if (l1_ l2_ l3) is satis�ed.() Let sj = wj and rj = n for 1 � j � 2n; let s2n+k = yk and r2n+k = n + 1for 1 � k � m, where yk is the string in (b) for the kth lause of F . This systemhas a losest string x̂ = �x1x1�x2x2 : : : �xnxn if and only if x1 : : : xn satis�es every lause.[A similar onstrution in whih all strings have length 2n + 1 and all rj are equalto n + 1 is obtained if we append the bit [n< j� 2n℄ to eah sj . See M. Franes andA. Litman, Theory of Computing Systems 30 (1997), 113{119.℄
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286 ANSWERS TO EXERCISES 7.2.2.2 mutilatedLooking aheadParamILSpidouble lookaheadauthor(d) Boilerplate 11000000, 00110000, 00001100, 00000011, 00111111, 11001111,11110011, 00000011, at distane � 4; for the lauses, 01011000, 00010110, 01000101,10010001, 10100100, 00101001, 10001010, and possibly 01100010, at distane � 5.505. (For k = 0, 1, : : : , n � 1 one an set j to a uniform integer in [0 : : k℄ andINX[k + 1℄ j; also if j = k set VAR[k℄ k + 1, otherwise i VAR[j℄, VAR[k℄ i,INX[i℄  k, VAR[j℄  k + 1.) With nine random seeds, typial runtimes for D3 are(1241, 873, 206, 15, 748, 1641, 1079, 485, 3321)M�. They're muh less variable for theunsatis�able K0, namely (1327, 1349, 1334, 1330, 1349, 1322, 1336, 1330, 1317)M�;and even for the satis�able W2: (172, 192, 171, 174, 194, 172, 172, 170, 171)M�.506. (a) Almost true: That sum is the total number of lauses of length � 2, beauseevery suh lause of length k ontributes 1=�k2� to the weights of �k2� edges.(b) Eah of the 122 � 2 = 142 ells of the mutilated 12 � 12 board ontributesone positive lause (v1 _ � � � _ vk) and �k2� negative lauses (�vi _ �vj), when that ell anbe overed by k potential dominoes fv1; : : : ; vkg. So the weight between u and v is 2,4/3, or 7/6 when dominoes u and v overlap in a ell that an be overed in 2, 3, or 4ways. Exatly 6 ells an be overed in just 2 ways (and exatly 102 in 4 ways).(The largest edge weights in all of Fig. 52 are 37/6, between 20 pairs of vertiesin K6. At the other extreme, 95106 of the 213064 edges in X3 have the tiny weight1/8646, and 200904 of them have weight at most twie that muh.)507. Consider, for example, the lauses (u _ �t), (v _ �t), (�u _ �v _ t), (u _ �t0), (v _ �t0),(�u_ �v_ t0) from (24). Looking ahead from t = 1 yields the windfall (�t_ t0), and lookingahead from t0 = 1 yields (�t0 _ t). Heneforth Algorithm L knows that t equals t0.508. Aording to (194), the purging parameters were �p = 1000 and Æp = 500; thuswe have learned approximately 1000k + 500�k2� lauses when doing the kth purgingphase. After 1000L lauses this works out to be � (p16L+ 9� 3)=2 phases, whih is� 34:5 when L = 323. (And the atual number was indeed 34.)509. One remedy for over�tting is to selet training examples at random. In this asesuh randomness is already inherent, beause of the di�erent seeds used while training.510. (a) From Fig. 53 or Fig. 54 or Table 7 we know that T1 < T2 < L6 in the medianrankings; thus T2 obsures L6 and T1.(b) Similarly, L8 <M3 < Q2 < X6 < F2 < X4 < X5; X6 obsures L8 and X4.() X7 obsures K0, K2, and (indiretly) A2, beause K2 obsures K0 and A2.511. (a) Nine random runs �nished in only (4:9; 5:0; 5:1; 5:1; 5:2; 5:2; 5:3; 5:4; 5:5)M�(!).(b) Nine random runs now eah were aborted after a teramem of trials. (No theo-retial explanation for this disrepany, or for the wildness of P4 in Fig. 54, is known.)() (0:2; : : : ; 0:5; : : : ; 3:2)M� without; (0:3; : : : ; 0:5; : : : ; 0:7)M� with.512. A training run with ParamILS in 2015 suggested the parameters� = 0:7; � = 0:998; % = 0:99995; �p = 100000; Æp = 2000;� = 10; w = 1; p = 0; P = 0:05;  = 0:166667; (�)whih produe the exellent results in Fig. A{10.513. After training on rand (3; 1062; 250; 314159), ParamILS hoose the values � = 3:5and � = 20:0 in (195), together with distintly di�erent values that favor doublelookahead, namely � = :9995, Y = 32. [The untuned values � = 3:3, � = :9985,� = 25:0, and Y = 8 had been used by the author when preparing exerise 173.℄
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 Runningtime
fromerdosparam
eters(�)!

 Running time from default parameters (194) !400500 600 700800
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1000 1000
1100

11001160 1160 1161 5T�1T�:1T�10G�1G�:1G�10M�1M� 1 T�:1 T�10 G�1 G�:1 G�10 M�1 M�Fig. A{10. Running times for Algorithm C, with and without speial parameter tuning.514. ParamILS suggests p = :85 and N = 5000n; that gives a median time � 690M�.(But those parameters give horri�ally bad results on most other problems.)515. Use variables Sijk meaning that ell (i; j) in the solution holds k, and Zij meaningthat ell (i; j) is blank in the puzzle. The 729 S variables are onstrained by 4� 81 �(1 + �92�) = 11;988 lauses like (13). From ondition (i), we need only 41 variables Zij .Condition (ii) alls for 15 lauses suh as (Z11_� � �_Z19), (Z11_� � �_Z51_Z49_� � �_Z19),(Z15 _ � � � _ Z55), (Z44 _ Z45 _ Z46 _ Z54 _ Z55), when equal Z's are identi�ed via (i).Condition (iii), similarly, alls for 28 lauses suh as ( �Z11_ �Z12_ �Z13), ( �Z11_ �Z21_ �Z31),( �Z45 _ �Z55). Condition (vi) is enfored by 34,992 lauses epitomized by ( �S111 _ �Z11 _�S122 _ �Z12 _ �S412 _ �Z41 _ �S421 _ �Z42).For onditions (iv) and (v), we introdue auxiliary variables Vijk = Sijk ^ �Zij ,meaning that k is visible in (i; j); Rik = Vi1k _ � � � _ Vi9k, meaning that k is visiblein row i; Cjk = V1jk _ � � � _ V9jk, meaning that k is visible in olumn j. Also Bbk =Whi;ji=b Vijk, meaning that k is visible in box b; here hi; ji = 1+3b(i�1)=3+b(j�1)=3.Then Pijk = Zij ^ �Rik ^ �Cjk ^ �Bhi;jik means that k is a possible way to �ll ell (i; j)without onit. These 1701 auxiliary variables are de�ned with 8262 lauses.Condition (iv) is enfored by nine 9-ary lauses for eah i and j, stating that wemustn't have exatly one of fPij1; : : : ; Pij9g true. Condition (v) is similar, enfored bythree sets of 81 � 9 lauses of length 9; for example, one of those lauses is(P417 _ P427 _ P437 _ P517 _ �P527 _ P537 _ P617 _ P627 _ P637):
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288 ANSWERS TO EXERCISES 7.2.2.2 symmetry breakingKroeningdaning linksImpagliazzoPaturiexponential time hypothesisCalabrodensity of lauses(\We aren't obviously fored to put 7 into box 4 by using ell (5; 2).")Finally, some of the symmetry is usefully broken by asserting the unary lausesS1kk^ �Z11^Z12. The grand total is 58,212 lauses with 351,432 ells, on 2,471 variables.(This problem was suggested by Daniel Kroening. There are zillions of solutions,and about one in every �ve or six appears to be ompletable uniquely to the settingof the S variables. Thus we an obtain as many \hard sudoku" puzzles as we like, byadding additional unary lauses suh as S553^ �Z17 more or less at random, then weedingout ambiguous ases via daning links. The lauses are readily handled by AlgorithmsL or C, but they're often too diÆult for Algorithm D. That algorithm did, however,�nd the uniquely ompletable solution (a) below after only 9.3 gigamems of work.)If we beef up ondition (iii), insisting now that no box ontains a row or olumnwith more than one blank, ondition (vi) beomes superuous. We get solutions suhas (b) below, remarkable for having no fored moves in spite of 58 visible lues, yetuniquely ompletable. That puzzle is, however, quite easy; only 2, 4, 7 are unplaed.1....6.8.5.87214.6.6.38.2.184...3..5..5.6.8..6..8...423.6.48.2.4.76321.8.8.5....4(a)
1.3.56.8959738.61.68.1.93.5956.318.7.315.896.2.896.1538.96.5.31.65.1329831.89.5.6(b)

1.3.5.7...5.79...17....125...1..5.76..5.7.1..47.1..5...185....75...87.1...7.1.8.5()
1.3.56.8968.3.91.5.9518.63.3.896..51.195.836.56..319.8.56.9381.8.16.5.9393.81.5.6(d)We might also try to strengthen onditions (iv) and (v) by requiring at least three waysto make eah hoie, not just two. Then we get solutions like () above. Unfortunately,however, that one is ompletable in 1237 ways! Even if we also strengthen ondition (iii)as in (b), we get solutions like (d), whih an be ompleted in 12 ways. No uniquelyompletable sudoku puzzles are known to have suh ubiquitous threefold ambiguity.516. This onjeture an be expressed in several equivalent forms. R. Impagliazzo andR. Paturi [JCSS 62 (2001), 367{375℄ de�ned sk = inff lg � j there exists an algorithmto solve kSAT in �n stepsg, and stated the exponential time hypothesis: s3 > 0. Theyalso de�ned s1 = limk!1 sk, and proved that sk � (1 � d=k)s1 for some positiveonstant d. They onjetured that s1 = 1; this is the strong exponential timehypothesis. An alternative formulation [C. Calabro, R. Impagliazzo, and R. Paturi,IEEE Conf. on Computational Complexity 21 (2006), 252{260℄ was found later: \If� < 2, there is a onstant � suh that no randomized algorithm an solve every SATproblem with � �n lauses in fewer than �n steps, where n is the number of variables."517. (a) If there are n variables, introdue �2n2 � new variables ll0 = l0l, one for eahpair of literals fl; l0g, with the equations ll0 + l�l0 + �l = 1. Similarly, introdue �2n3 �variables ll0l00, via ll0l00 + ll0�l00 + l�l0+�l = 1. Then the ordinary ternary lause l_ l0 _ l00is true if and only if we have ll0l00 + ll0�l00 + l�l0l00 + l�l0�l00 + �ll0l00 + �ll0�l 00 + �l�l 0l00 = 1.(b) Remove lauses of length > 3 by using the fat that l1 + � � � + lk = 1 if andonly if l1 + � � �+ lj + t = 1 and lj+1 + � � �+ lk + �t = 1, where t is a new variable. Also,if a, b, , and d are new variables with a+ b+ d = a+ + �d = 1, beef up short lausesusing l+ l0 = 1 () l+ l0 + a = 1 and l = 1 () �l+ b+  = 1.
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7.2.2.2 ANSWERS TO EXERCISES 289 ShaeferBen-DorHaleviMallahCPLEXGUROBIXeon omputerlangfordper minuteJabbourLonlaSa��sSalhiexlusion lausesat-most-one
[Thomas J. Shaefer proved the NP-ompleteness of 1-in-3 SAT as a speial aseof onsiderably more general results, in STOC 10 (1978), 216{226.℄518. (a) A = (x y yy x yy y x), where x = �11 00 , y = 1�1 11 .(b) Twie in the n variable rows and n variable olumns; one in the 3m outputrows and 3m input olumns; never in the 3m input rows and 3m output olumns.() By (a), eah way to hoose 2s in di�erent rows and olumns ontributes zeroto the permanent unless, in every lause, the subset of hosen inputs is nonempty andmathes the hosen outputs. In the latter ase it ontributes 16m2n. [See A. Ben-Dorand S. Halevi, Israel Symp. Theory of Computing Systems 2 (IEEE, 1993), 108{117.℄519. The unsatis�able problem orresponding to D1 and D2 has median running time2099M� (losing to both fator �fo and fator lifo). The satis�able one orrespondingto D3 and D4 is unstable (as in Fig. 54), with median 903M� (winning over both).520. (Solution by Sven Mallah, 2015, using solvers X and Y, where X was CPLEX 12.6and Y was GUROBI 6, both used with emphasis on mixed-integer-program feasibility,onstant objetive funtion, and solution limit 1.) With a time uto� of 30 minutes on asingle-threaded Xeon omputer, neither X nor Y ould solve any of the 46 problems A1,A2, C1, C2, C3, C4, C5, C6, C8, D1, D2, E1, E2, F1, F2, G1, G2, G5, G6, G7, G8, K7,K8, M5, M7, M8, O1, O2, P0, P1, P2, Q7, S3, S4, T5, T6, T7, T8, W2, W4, X1, X3,X5, X6, X7, X8. (In partiular, this list inludes P0, S4, and X1, whih are extremelyeasy for Algorithm C.) On the other hand both X and Y solved the langford problemsL3 and L4|whih were the toughest for Algorithm C| in less than a seond.Algorithm C performs about 20G� per minute on a omparable Xeon. In theseexperiments it signi�antly outperformed the geometri methods exept on problemsK0, K1, K2, L3, L4, and P4 (and some easy ases suh as B2).Of ourse we must keep in mind that the partiular lauses in Table 6 aren'tneessarily the best ways to solve the orresponding ombinatorial problems with anIP solver, just as they aren't neessarily the best enodings for a SAT solver. We areomparing here only blak-box lause-solving speeds.521. A variety of simple shemes has been surveyed by S. Jabbour, J. Lonla, L. Sa��s,and Y. Salhi, arXiv:1402.1956 [s.AI℄ (2014), 13 pages.522. For yles of length T we an introdue 27T variables xyzt for 1 � x; y; z � 3 and0 � t < T , signifying that vertex (x; y; z) oupies slot t in the path. Binary exlusionlauses :xyzt_:x0y0z0t0 , when xyz = x0y0z0 and t 6= t0 or when xyz 6= x0y0z0 and t = t0,ensure that no vertex appears twie in the path, and that no two verties oupy thesame slot. A valid path is spei�ed via the adjaeny lauses:xyzt _ _fx0y0z0(t+1) mod T j 1 � x0; y0; z0 � 3 and jx0 � xj+ jy0 � yj+ jz0 � zj = 1g:We represent the shadows by introduing 36 variables a!b�, ba!�, a!�b, b�a!, �a!b, �ba!for 1 � a � 2 and 1 � b � 3; here a!�b (for example) means that the shadow of(x; z) oordinates has a transition between (a; b) and (a+1; b). These variables appearin ternary lauses suh as (:xyzt _ :(x+1)yzt0 _ x!�z) ^ (:xyzt _ :(x+1)yzt0 _ x!y�)whenever x < 3 and t0 � t� 1 (modulo T ). To exlude loops we append lauses like:1!1� _ :2!1� _ :31!� _ :32!� _ :2!3� _ :22!� _ :1!2� _ :11!�;this one exludes the loop in the example illustration. There are 39 suh loop-defeatinglauses, one for eah of the 13 simple yles in eah shadow.
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290 ANSWERS TO EXERCISES 7.2.2.2 break symmetryunary lausesbipartiteexlusionsat-most-oneRikardWinklerdelta sequeneWinklerbreak symmetryreeted ternary odespanning treesvan Deventerhollow mazesMysteriansauthorTseytingraph-based axiomsparity-related lauses4-regulargirth4SATMarkstr�omomparison of run timesendomorphismsbroke symmetrySpene3D mathing

Finally we an break symmetry by asserting the unary lauses 121T�1, 1110, 1121without loss of generality, after verifying that no solution an avoid all eight orners.Clearly T must be an even number, beause the graph is bipartite; also T < 27.If the method of exerise 12 is used for the exlusions, we obtain a total of 6264 lauses,822 variables, and 17439 ells when T = 16; there are 9456 lauses, 1242 variables, and26199 ells when T = 24. These lauses are too diÆult for Algorithm D. But Algo-rithm L resolves them almost instantaneously for any given T ; they turn out to be satis-�able if and only if T = 24, and in that ase there are two essentially di�erent solutions.One of these yles, due to John Rikard (who introdued this problem at CambridgeUniversity, ira 1990), is beautifully symmetri, and it is illustrated on the over ofPeter Winkler's bookMathematial Mind-Benders (2007). It an be represented by thedelta sequene (322�3133�1�2112�3�2�23�1�3�312�1�1�2), where `k' and `�k' hange oordinate k by+1 or �1. The other is unsymmetri and represented by (3321�21�3�3�1221�2323�1�1�31�2�1�3�2).523. (Solution by Peter Winkler.) With oordinates (x; y; z) for 1 � x � m, 1 � y � n,1 � z � 2, any yle with loopless shadows must ontain at least two steps (x; y; 1)���(x; y; 2) and (x0; y0; 1) ��� (x0; y0; 2). We an assume that x < x0 and that x0 � x isminimum. The m� 2 shadow ontains (x; 1)��� (x; 2) and (x0; 1)��� (x0; 2), togetherwith (say) the path (x; 1)���� � ����(x0; 1), but without the edge (x00; 2)���(x00+1; 2) forsome x00 with x � x00 < x0. The unique shortest path from (x; y) to (x0; y0) in the m�nshadow ontains some edge (x00; y00)��� (x00+1; y00); hene (x00; y00; 1)��� (x00+1; y00; 1)must our twie in the yle.524. This problem involves lauses very muh like those for a yli path, but simpler;we have T = 27 and no \wrap-around" onditions. With typially 1413 variables, 10410lauses, and 28701 ells, Algorithm L shines again, needing only a gigamem or two tohandle eah of several ases that break symmetry based on starting and ending points.There are four essentially di�erent solutions, eah of whih an be assumed to startat 111; one ends at 333, another at 133, another at 113, and the other at 223. Usingthe delta sequene notation above, they are: 332�3�32331�3�3�233�2�3�31332�3�3233 (whih isreeted ternary ode); 31�3133�1�1211�3�3�13�1�3231�3133�1�1; 32�3231�3�23�2�3132�3233�2�2�122�1�2�2;1122�1�1�213�1211�2�2�1�131122�1�1�21.[Suh paths, and more generally spanning trees that have loopless shadows, wereinvented in 1983 by Oskar van Deventer, who alled them \hollow mazes"; see TheMathemagiian and Pied Puzzler (1999), 213{218. His Mysterians puzzle is based onan amazing Hamiltonian path on P5 P5 P5 that has loopless shadows.℄525. The author's best solution, as of July 2015, had 100 variables, 400 lauses, and1200 literals (ells); it was derived from Tseytin's examples of exerise 245, applied to amore-or-less random 4-regular graph of girth 6 on 50 verties. Tseytin's onstrution,with one odd vertex and 49 even ones, yields 400 lauses of 4SAT, whih are quitehallenging indeed. It an be simpli�ed to a 3SAT problem by insisting further thatevery even vertex must have degree exatly 2 in the subgraph spei�ed by true edges.(See K. Markstr�om, J. Satis�ability, Boolean Modeling and Comp. 2 (2006), 221{227).That simpli�ed problem still turned out to be fairly hallenging: It was provedunsatis�able by Algorithm L in 3.3 T� and by Algorithm C in 1.9 T�. (But by applyingthe endomorphisms of exerise 473, whih broke symmetry by adding 142 lauses oflength 6, the running time went down to just 263 M� and 949 M�, respetively.)Another lass of small-yet-diÆult problems is worth mentioning, although itdoesn't �t the spei�ations of this exerise [see I. Spene, ACM J. Experimental Algo-rithmis 20 (2015), 1.4:1{1.4:14℄: Every instane of 3D mathing whose representation
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7.2.2.2 ANSWERS TO EXERCISES 291 exat over problem5SATompetitiondaning linksas an exat over problem has 5n rows and 3n olumns, with �ve 1s in eah olumn andthree 1s in eah row, an be represented as a SAT problem in 3n variables, 10n binarylauses, and 2n quinary lauses, hene only 30n total literals. This 5SAT problem hasthe same number of literals as the 3SAT problem disussed above, when n = 40; yet itis onsiderably more diÆult if the mathing problem is unsatis�able. (On the otherhand, the problem of this kind that defeated all the SAT solvers in the 2014 ompetitionorresponds to a mathing problem that is solved almost instantaneously by the daninglinks method: Algorithm 7.2.2.1D needs less than 60 M� to prove it unsatis�able.)526. We prove by indution on jF j that it's possible to leave at most w(F ) lausesunsatis�ed, where w(F ) =PC2F 2�jCj: If all lauses of the multiset F are empty wehave w(F ) = jF j, and the result holds. Otherwise suppose the variable x appears in F .Let l = x if w(fC j x 2 C 2 Fg) � w(fC j �x 2 C 2 Fg); otherwise l = �x. A simplealulation shows that w(F j l) � w(F ). [JCSS 9 (1974), 256{278, Theorem 3.℄999. : : :
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GOLDSMITHINDEX AND GLOSSARYThe republi of letters is at present divided into three lasses.One writer, for instane, exels at a plan or a title-page,another works away the body of the book,and a third is a dab at an index.| OLIVER GOLDSMITH, in The Bee (1759)When an index entry refers to a page ontaining a relevant exerise, see also the answer tothat exerise for further information. An answer page is not indexed here unless it refers to atopi not inluded in the statement of the exerise.�S (boundary set), 58, 154, 180, 188.0{1 matries, 106{109, 151, 176{177, 181,see also Grid patterns.1SAT, 49, 148.2-olorability of hypergraphs, 185.2SAT, 49, 51{54, 77{78, 80, 101, 144,147, 149, 157, 159, 266.3-regular graphs, 147, 154, 231.3CNF, 3, 148.3D MATCHING problem, 134, 225, 290{291.3D visualizations, 116{118.3SAT, 3{4, 47{51, 59, 60, 78{80, 93{94, 131,135, 146, 148{151, 153, 182{184, 231.4-yles, 109{110, 178, 225, 274.4-regular graphs, 290.4SAT, 49, 51, 150, 290.5SAT, 51, 58, 224, 291.6SAT, 51.7SAT, 51, 151.8 queens problem, 25, 282.90Æ-rotational symmetry, 138, 202, 275.100 test ases, 113{124, 127, 182, 184.; (the empty set), 185.� (the empty lause), 3, 27, 185, 291.� (the empty string), 3, 85.� (the tolerane for onvergene), 93{94." (o�set in heuristi sores), 126, 213.�x (1s ount), see Sideways sum.� (irle ratio), see Pi.� (damping fator for variable ativity),67, 125{127, 155, 286.� (damping fator for reinforement), 93{94.% (damping fator for lause ativity),74, 125{127, 286.� parameter, 125{127, 235, 286.�(a; b) funtion, 147.� (golden ratio), 146, 147, 160, 251. (agility threshold), 76{77, 124{127,240, 286. (on�dene level), 93, 255.a.s.: almost surely, 149, 153.AAAI: Amerian Assoiation for Arti�ialIntelligene (founded in 1979);

Assoiation for the Advanement ofArti�ial Intelligene (sine 2007), 67.Absorbed lauses, 168.Aordion solitaire, 282.Ahlioptas, Dimitris (Aqliìpta,Dhm trh), 221.ACT(), 74, 125.ACT(k), 66{68, 75, 125, 132.Ative path, 13.Ative ring, 32.Ativity sores, 67, 74{76, 125, 132,155, 239.Ayli orientation, 161.Adams, Douglas Noel (42), 126.Adaptive ontrol, 46, 126.Addition, enoding of, 100{101, 114; seealso Full adders, Half adders.Adjaeny matrix, 281.Adjaent pairs of letters, avoiding, 248.AGILITY, 76, 158, 240.Agility level, 76, 124, 158.Agility threshold ( ), 76{77, 124{127,240, 286.Ahmed, Tanbir (t;nbIr a;hemd), 5, 147.Alava, Mikko Juhani, 80.Aldous, David John, 219.Algorithm L0, 39, 147.Alie, 20{24, 139{141.All-di�erent onstraint, 171.All solutions, 143, 266.Alon, Noga (OEL� DBEP), 174, 254, 260.Aloul, Fadi Ahmed (¾Ø¿n¬¿m �Ì� Ý�n³),112, 281, 284.Analysis of algorithms, 146{152,158{160, 164.Anestors, 43.AND operation, 9, 10, 13.bitwise (x & y), 28, 29, 31, 37, 38, 66, 68,76, 81, 196, 209{211, 220, 241.Andr�e, Pasal, 131.Anisimov, Anatoly Vasilievih (Anisimov,Anatoli� Vasil~eviq), 249.Annexstein, Fred Saul, 274.Anti-maximal-element lauses, 56, 62, 97,115, 153, 155, 157, 167.293
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294 INDEX AND GLOSSARYAntisymmetry, 178.Appier dit Hanzelet, Jean, 57.April Fool, 7.Ardila Mantilla, Federio, 256.Arithmeti progressions, 4, 114.avoiding, 135.Armies of queens, 180.As��n Ah�a, Roberto Javier, 267.Asserting lause, see Foring lause.Assoiative blok design, 4.Assoiative law, 227.Asymmetri Boolean funtions, 178.Asymmetri elimination, 260.Asymmetri tautology, see Certi�ablelauses.Asymptoti methods, 53{54, 147{151,164, 210, 226, 230, 283.At-least-one onstraint, 171, 265.At-most-one onstraint, 6, 97{99, 103,104, 120, 134, 149, 170, 171, 238,265, 266, 289.ATPG: Automati test pattern generation,see Fault testing.Atserias, Albert Per��, 262.Audemard, Gilles, 72.Aurifeuille, L�eon Fran�ois Antoine,fators, 14.Autarkies, 44, 71, 146, 152, 177, 214,215, 217.testing for, 146, 214.Autarky priniple, 44.Automati test pattern generation, seeFault testing.Automaton, 272.Automorphisms, 108, 111, 180, 197,236, 277.Autosifting, 220.Auxiliary variables, 6, 8, 15, 17, 60, 97, 101,104, 105, 109, 135, 136, 148, 170{174,186, 262, 268, 276{279, 280{281, 287.AVAIL stak, 257.Averages, 120.Avoiding submatries, 106{107.Awkward trees, 227.Axiom lauses, 54, 59, 100, 264, 266.Bahus, Fahiem, 73, 271.Bakjumping, 64, 68, 74, 132, 233, 236, 239.Baktrak trees, see Searh trees.Baktraking, 4, 27{34, 38{39, 64, 105,128, 129, 132, 151, 176, 190, 204,219, 231, 236.Bailleux, Olivier, 8, 26, 135, 137, 143,174, 272.Baker, Andrew Baer, 98.Balas, Egon, 206.Baldassi, Carlo, 93.Ball, Walter William Rouse, 180.Ballot numbers, 78.

Balls and urns, 221.Banbara, Mutsunori ( ), 264,267, 268.Bartley, William Warren, III, 129.Basket weavers, 141.Bather, Kenneth Edward, 266.Baumert, Leonard Daniel, 265.Bayardo, Roberto Xavier, Jr., 132.Bayes, Thomas, networks, 95.BCP: Boolean onstraint propagation,see Unit propagation.BDD: A redued, ordered binary deisiondiagram, 17{18, 102, 103, 132, 137, 148,174, 181, 188, 193, 194, 197, 202, 220.BDD base, 219.Belief propagation, 95.Ben-Dor, Amir (XEC-OA XIN�), 289.Ben-Sasson, Eli (OEYY -OA IL�), 57{58,153, 231.Benhmark tests, 35, 131{133, 139,147, 190, 206.100 test ases, 113{124, 127, 182, 184.Bender, Edward Anton, 250.Beresin, May, 275.Berghammer, Rudolf, 204.BerkMin solver, 132.Berlekamp, Elwyn Ralph, 17.Berman, Piotr, 224.Bernhart, Frank Rei�, 188.Bernoulli, Jaques (= Jakob = James),distribution, multivariate, 89.Bethe, Hans Albreht, 95.Better reasons, 157.Bias messages, 92.Biased random bits, 12, 241.Biere, Armin, v, 66, 76, 96, 129, 132, 166,188, 258, 260, 261, 269, 280.Big lauses, 145.BIMP tables, 36{41, 43, 45, 124, 144, 235.Binary addition, 114.Binary lauses, 3, 6, 36, 124, 133, 155{156.Binary onstraints, 171.Binary deoder, 179.Binary impliation graph, see Dependenydigraph, 41.Binary matries, 106{109, 151, 176{177,181, see also Grid patterns.Binary multipliation, 8.Binary number system, 9, 98.Binary reurrene relations, 189.Binary relations, 56.Binary searh, 187.Binary strings, 181.Binary tensor ontingeny problem,142, 151.Binomial oeÆients, 149.Binomial onvolutions, 250.Bipartite graphs, 58, 177, 290.Bipartite mathing, 150.
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INDEX AND GLOSSARY 295Bipartite struture, 90.Birthday paradox, 49.Bishops, 141.Bitmaps, 17, 139.Bitwise operations, 11, 12, 81, 158, 161,241, 246, 258{259.Blak and blue priniple, 146, 216.Blak and white priniple, 146.Blake, Arhie, 130.blit, 234, 236.Blok deomposition, 275.Blok designs, 106.Blok diagonal matries, 177.Bloked lauses, 102, 215, 260, 261, 269.binary, 146.elimination of, 167.Bloked self-subsumption, 167.Bloking digraph, 215.Bloks in Life, 197, 200.Bloom, Burton Howard, oding, 258.Bloom, Thomas Frederik, 185.Bob, 20{24, 115, 139{141.B�ohm, Max Joahim, 131.Bollob�as, B�ela, 54, 220.Bonaina, Maria Paola, 129.book graphs, 126, 179.Boole, George, 129.Boolean hains, 9, 11, 12, 102, 114, 173.optimum, 178{179.Boolean formulas, 1.Boolean funtions, 14{16.expressible in kCNF, 220.synthesis of, 178{179.Boppana, Ravi Babu, 174.Borgs, Christian, 54.Bottom-up algorithms, 252.Boufkhad, Yaine (��³Øp ÑÛ�nÚ), 8, 26, 131,135, 137, 143, 174, 272.Boundary sets, 58, 154, 180, 188.Boundary variables, 230.Bounded model heking, 16{24, 132,137{141, 157, 179{180.Branhing heuristis, 105, 144, see alsoDeision literals.Branhing programs, 102, 173, 174.Branhless omputation, 242.Braunstein, Alfredo, 90, 91, 256.Breadth-�rst searh, 37, 43, 68, 130, 235.Break ount, 79.Breaking symmetries, vii, 5, 19, 105{114,138, 176{181, 187, 188, 190{192, 238,267, 281{283, 285, 288{290.in graph oloring, 99{100, 114, 171,179, 187.Broadasting, 170.Broadword omputations, 11, 12, 158,161, 246, 258.Brown, Cynthia Ann Bloher, 30, 32,131, 151, 226.

Brown, Thomas Craig, 185.Brummayer, Robert Daniel, 269.Brunetti, Sara, 206.Bryant, Randal Everitt, v, 7, 187.BST(l), 211.BSTAMP ounter, 211.Bukingham, David John, 197, 200.Buddy system, 36, 144, 235.Bugrara, Khaled Mohamed(Ò�mǑ¯Øpm �Ì�Ë �¿n�), 226.Bugs, 16, 69, 77, 133, 240.Bulnes-Rozas, Juan Bautista, 215.Bumped proess, 21.Bundala, Daniel, 196.Burney, Charles, viii.Burns, James Edward, 204.Buro, Mihael, 131.Buss, Samuel Rudolph, v, 153, 270.Bystanders, see Easy lauses.C-SAT solver, 131.Cahe memories, 24.Calabro, Chris, 288.Candidate variables, 40{44, 131, 214.Canonial forms, 138, 248.Cardinality onstraints, 7{8, 26, 104, 106,113, 114, 121, 135, 143, 187, 188,193, 194, 196, 204, 285.for intervals, 100, 190, 280.Carlier, Jaques, 131.Carlitz, Leonard, 162.Carriers in Life, 197, 200.Carroll, Lewis (= Dodgson, CharlesLutwidge), 129{130.Carry bits, 9, 12, 101, 192, 193.Cartier, Pierre Emile, 83, 86, 163.Case analysis, 27, 130.CDCL (onit driven lause learning)solvers, 62{71, 103, 121, 132{133, 155.ombined with lookahead solvers, 129.ompared to lookahead solvers, 98{100,118{121, 182, 290.Cells of memory, 28, 122{124.Cellular automata, 17, 202.Certi�able lauses, 168, 260.Certi�ates of unsatis�ability, 69{71,157, 169, 176, 178.Cha� solver, 67, 132.Chain rule for onditional probability, 254.Chains, see Boolean hains, Resolutionhains, s-hains.Channel assignment, 136.Channeling lauses, 264.Charateristi polynomial of a matrix,163, 218.Chavas, Jo�el, 91.Chayes, Jennifer Tour, 54.Chebyshev (= Tshebyshe�), PafnutiiLvovih (Qebyxev�, Pafnut��
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302 INDEX AND GLOSSARYLevels of values, 62{66, 156, 233.Levesque, Hetor Joseph, 50.Levine, Eugene, 275.Lewis, Jerome Luther, 275.Lex-leader: The lexiographially smallestelement, 111, 283.Lexiographi order, 4, 25, 26, 30, 101, 105,107, 109, 111{113, 115, 197, 282{283.enoded in lauses, 101, 173, 174.Lexiographi row/olumn symmetry,106{107, 177, 181, 274.Lexiographially smallest (or largest)solution, 25{26, 111{113, 142,157, 282, 283.Lexiographially smallest traes, 84,161, 162, 250.Leyton-Brown, Kevin Eri, 125, 133.Li, Chu Min ( ), 131.Li, Wei ( ), 149.Lieb, Elliott Hershel, 251.Life, Game of, 17{20, 97, 114, 137{139,143, 167.Light speed in Life, 139.Line graph of a graph, 147, 249.Linear equations, 26, 231.Linear extensions, see Topologial sorting.Linear inequalities, 184.enoding of, 100{101, 172, 173.Linear programming relaxation, 26.Lines, abstrated, 106.Links, daning, 5, 121, 134, 208, 288.Lisitsa, Alexei Petrovih (L�s�a, Al�kse�P�trov�q), 281.List oloring of graphs, 135, 151.List merging, 231, 258.Literal blok distane, 72, 74, 158.Literals, 2, 111.ushing, 76.internal representation, 28, 37, 66,208, 209, 242, 257.Litman, Ami (ONHIL INR), 285.Livelok, 22{23.Llunell, Albert Oliveras i, 267.LNCS: Leture Notes in Computer Siene,inaugurated in 1973.Loal Lemma, 81{90, 133, 151, 160{165.Log enodings, 98, 114{115, 173.Logemann, George Wahl, 31{32, 130, 298.Longest simple path, 23, 203.Lonla, Jerry, 289.Look-bak, see Bakjumping.Lookahead autarky lauses, see Blakand blue priniple.Lookahead forest, 42{44, 145{147, 168.Lookahead solvers, 38{46, 55, 97, 129,131, 176.ombined with CDCL solvers, 129.ompared to CDCL solvers, 98{100,118{121, 182, 290.

Loopless shadows, 184.Lopsidependeny graphs, 82, 83, 160,164, 165, 185, 224.Lov�asz, L�aszl�o, 81, 82, 185, 191.Loveland, Donald William, 32, 130, 298.Lower semimodular latties, 255{256.Loyd, Samuel, 263.Luby, Mihael George, 80, 159.Luks, Eugene Mihael, 113.M�: Megamems = millions of memoryaesses, 69, 98.Maaren, Hans van, 37, 46.MaColl (= MColl), Hugh, 227.MaMahon, Pery Alexander, MasterTheorem, 250, 251.Mader, Adolf, 275.Madigan, Conor Franis, 132.Magi, 193.Magi sequenes, 285.Magneti tape, 32.Makespan, 172{173.Mallah, Sven, 289.Malik, Sharad (frd mElk), 132.Maneva, Elitza Nikolaeva (Maneva, EliaNikolaeva), 166, 256.Mapping three items into two-bit odes, 179.marh solver, 40, 216.Marek, Vitor Wiktor, 216.Markov (= Marko�), Andrei Andreevih(Markov, Andre� Andreeviq), theelder, inequality, 158, 241.Markov, Igor Leonidovih (Markov, �gorLeon�doviq), 112, 281, 284.Markstr�om, Klas Jonas, 290.Marques da Silva (= Marques-Silva),Jo~ao Paulo, 132.Marriage theorem, 224.Martin, Alexander, 264.Mathing polynomial of a graph, 249.Mathings in a graph: Sets of disjointedges, 150, 230, 249.perfet, 109{110, 177.Mathews, Edwin Lee (41), 67.Matrix multipliation, 260.Mauro, David Whittlesey, 192.Maximal elements, 56, 62, 97, 115,153, 157, 167.Maximal planar graphs, 186.Maximum independent sets, 87, 136,187, 188.Maximum number of 1s, 106{109,135, 136, 177.MAXSAT lower bound, 184.\Maybe" state, 20.Mazurkiewiz, Antoni Wies law, 83.MColl (= MaColl), Hugh, 227.MGregor, William Charles, 7, 188.graphs, 7{8, 114{115, 134, 135, 188.Mean running time, 120.
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INDEX AND GLOSSARY 303Median operation, 9, 136, 179.Median running times, 99, 120{124, 127.Megamem (M�): One million memoryaesses, 201.M�ejean, Henri-Mihel, 226.Mellin, Robert Hjalmar, transforms, 151.Mem (�): One 64-bit memory aess, 34.MEM array, 66, 68, 124, 156.Memo ahe, 60, 233.Memoization tehnique, 233.Memoryless property, 244.Menagerie, 116{117.Merge networks, 266.Merging lists, 231, 258.Mertens, Stephan, 51.Message passing, 90{95, 165{166.Method I, 61.Method IA, 61, 154.Method of Trees, 129.Methuselah solitaire, 282.Methuselahs in Life, 19.M�ezard, Mar Jean Marel, 51, 90, 91, 95.Midpoint inequalities, 266.Mijnders, Sid, 213.Mills, Burton Everett, 130.Minesweeper, 142{143.Minimally unsatis�able lauses, 150, 153.Minimum overs, 193.MiniSAT, 67.Minterms, 179.Mithell, David Geo�rey, 50.Miters, 121, 182.Mitshe, Dieter Wilhelm, 51.Mixed metaphors, 76.Mixed-radix number systems, 268.MMIX omputer, ii, 158.Mobile Life paths, 18{19, 138{139.ipops, 138.M�obius, Augustus Ferdinand, funtions, 86.series, 86, 160, 162{163, 165, 247, 249.Mod 3 addition, 114, 179.Mod 3 parity, 179.Mod 4 parity, 179.Model heking, 16{17, 137{141, 179{180.Model RB, 149.Modi�ed full adders, 114, 280.Modular latties, 255.mone (�1), 242.Monien, Burkhard, 215.Monkey wrenh priniple, 113, 181.Monotone funtions, 163.Boolean, 137, 281.Monotoni lauses, 5, 133, 157.Monotoni paths, 108, 276.Montanari, Andrea, 95.Monus operation (x .�y = maxf0; x�yg),92, 247, 268.Moore, Edward Forrest, 202.Morehead, Albert Hodges, 282.

Morel, Henri, 226.Moser, Robin Alexander, 82, 254.Moskewiz, Matthew Walter, 132.Mossel, Elhanan (LQEN OPGL�), 166.Mott-Smith, Geo�rey Arthur, 282.Move odes, 29{31, 34, 144, 145, 155, 210.MPR: Mathematial Preliminaries Redux, v.Mueller, Rolf Karl, 60, 130.M�uller, Mike, 196.Multiommodity ows, 170.Multigraphs, 231.Multilinear funtion, 86.Multipliation of binary numbers, 8{9,12{14, 114, 136, 173.Multipliation of traes, 85, 161.Multisets, 3, 214, 224, 250.Multivalued graph olorings, 99.Mutilated hessboard, 110, 114,177{178, 286.Mutual exlusion protools, 20{24,115, 139{141.Mutzbauer, Otto, 275.Mux operation (u? v: w), 81, 102,152, 173, 219.Mysterians, 290.n-ube, 79, 136, 148, 184.n.f.: not falsi�ed, 271.n queens problem, 25, 115, 171, 282.NAND operation, 60.Napier, John, Laird of Merhiston, 9, 173.Near truth, 37{39.Neessary assignments, 45, 146.Negated auxiliary variables, 105.Negative k-lauses, 157.Negative literals, 2, 132, 153.Nesting phase of lookahead, 40, 42{43,145{147.Newbie variables, 41.Newton, Isaa, method for root�nding,216{217.Niborski, Rodolfo, 190.Niemel�a, Ilkka Niilo Fredrik, 105.Nieuwenhuis, Robert Lukas Mario, 267.Nightingale, Peter William, 265.No-player game, 17.Nodes of a searh tree, 34{35, 69, 124.Noels, Alain, 202.Noisy data, 181.Nonattaking queens, 25, 115, 171, 282.Nonaveraging sets, 114, 135.Nonhromati retangles, 176{177.Nonhronologial baktraking, seeBakjumping.Nonommutative variables, 162.Nononstrutive proofs, 57, 58, 81, 202.Nondeterministi �nite-state automata, 175.Nondeterministi polynomial time, 131.Nondeterministi proesses, 20, 141, 182.Noninterseting paths, 170.
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304 INDEX AND GLOSSARYNonnegative oeÆients, 164.Nonprimary olumns, 186.Nonterminal symbols, 175.Normal hains, 278.Normal funtions, 279.Not-all-equal SAT, 185.Notational onventions, vi.�S (boundary set), 58, 154, 180, 188.C0 � C00 (resolvent), 54, 152.C � C0 (subsumption), 61, 152.F j l (F given l), 27, 96, 291.F jL (F given L), 27, 103, 157.F ` C (F implies C), 59, 152, 153.F `1 �, 70, 157, 175.F `1 l, 103{104, 176.F `k �,F `k l, 175{176.G � H (diret sum), 162, 177.jlj (a literal's variable), 2.�v (v or �v), 2.hxyzi (median), 9.x& y (bitwise AND), 28, 29, 31, 37, 38, 66,68, 76, 81, 196, 209{211, 220, 241.x j y (bitwise OR), 43, 196, 241, 258{259.x � y (bitwise XOR), 28, 137, 196,208, 220, 241.x .�y (monus), 92, 247, 268.x? y: z (if-then-else), 81, 102, 152,173, 219.w(�), 57.w(� ` �), 57.k� ` Ck, 57.�(C), 59, 153.Novikov, Yakov Andreevih (Novikov,�kov Andreeviq), 70, 132.Nowakowski, Rihard Joseph, 107, 275.NP-omplete problems, 1, 3, 27, 87,130{131, 134, 142, 151, 181{183, 207,268, see also CoNP-omplete problems.NT (near truth), 37{39.Null lause (�), 3, 27, 185, 291.Null list, representation of, 33, 210.Null partial assignment, 166.Null set (;), 185.Null string (�), 85.Nullary lause (�), 3, 27, 185, 291.Number theory, 14, 137, 192.Ourrene threshold of a graph, 160.Odd permutations, 218.Odd-even merge network, 266.Odd-even transposition sort, 263.Oliveras i Llunell, Albert, 267.On-the-y subsumptions, 124, 156.One-in-three satis�ability, 183.One-per-lause satis�ability, 183.Open shop sheduling problems, 115,172{173.OR operation, 9, 10, 13, 258.bitwise (x j y), 43, 196, 241, 258{259.

Orbits of a permutation group, 108, 277.Order enoding, 98{101, 114, 120, 170{173,190, 268, 281.Order of a permutation, 111.Organ-pipe permutations, 171.Oriented yle detetion, 260.Oriented trees, 108.Orphan patterns in Life, 139.Orponen, Olli Pekka, 80.Osillators in Life, 19, 138{139.Output states, 175.OVAL array, 74, 125, 237, 240.Over�tting, 182.Overow in arithmeti, 67, 240.Oxuso�, Laurent, 215.} (tautology, the always-true lause), 3, 58,60, 152, 180, 215, 226{228, 258.P = NP, 1.Palindromes, 136.Panagiotou, Konstantinos (Panagi¸tou,Konstant�no), 221.Papadimitriou, Christos Harilaos(Papadhmhtr�ou, Qr�sto Qaril�ou),77, 240, 241.Parallel multipliation iruits, 12{14, 137.Parallel proesses, 20, 24, 121, 128{129.Parameters, tuning of, 80{81, 93{94,124{128.ParamILS, 125, 286{287.Parity-related lauses, 153{154, 172,178, 231{232, 290.Partial assignments, 30, 61, 62, 165, 176.Partial baktraking, 208.Partial latin square onstrution, 151.Partial orderings, 56, 85, 115, 248.of dimension � 2, 213.Partiipants, 41, 44, 145.Path detetion, 169.Path graphs Pn, 84, 160, 253.Patiene, see Solitaire games.Paturi, Ramamohan ( g��eî�o�Z ÑV�Ý), 288.Paul, Jerome Larson, 5.Paull, Marvin Cohen, 148.PCk, 176, 178.Pearl, Judea (LXT DCEDI), 95.Pegden, Wesley Alden, v, 164, 253.Peierls, Rudolf Ernst, 95.Peres, Yuval (QXT LAEI), 221.P�erez Gim�enez, Xavier, 51.Perfet mathings in a graph, 109{110, 177.Permanent of a matrix, 183, 251.Permutation polynomial of a set, 163.Permutation posets, 213.Permutations, 105, 265.signed, see Signed permutations.weighted, 163.Permuting variables and/or omplementingthem, see Signed permutations.
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INDEX AND GLOSSARY 305Peterson, Gary Lynn, 23, 115, 140, 204.Petrie, Karen Elizabeth Je�erson, 283.Phase saving, 67, 75.Phase transitions, 50{52, 149{150.Phi (�), 146, 147, 160, 251.Phoenix in Life, 198, 207.Pi (�), as soure of \random" data, 12,46, 108, 115, 147, 184, 193, 286;see also Pi funtion.Pi funtion, 102, 174.Piees, in trae theory, 84{87.Pigeonhole priniple, 57.lauses for, 57{59, 105{106, 113, 153,176, 181, 186, 265.Pikhurko, Oleg Bohdan (P�hurko, OlegBogdanoviq), 285.Pile sums, 151.Pinusians, 133.Pipatsrisawat, Thammanit (= Knot)(¾Ô¾Ñ²¹ìÈ�ÕÊÇÑÊ´́, ¸��Á¹Ôµ́ (= ¹Íµ)), 67, 262.Pixel images, 200; see also Grid patterns.Plaisted, David Alan, 102.Planning, 132.Playing ards, 114, 180, 282.Points, abstrated, 106.Poison ards, 282.Poisson, Sim�eon Denis, probability, 225.Polarities, 3, 67, 76, 207, 237.P�olya, Gy�orgy (= George), theorem, 284.Polynomials in trae theory, 85.Population in Life, 19.Portfolio solvers, 133.Posets, see Partial orderings.Positive autarkies, 146.Positive j-lauses, 157.Positive literals, 2, 132, 146.Postho�, Christian, 275.Postorder, 42{43, 214.Postproessor, 96.Prelusion lauses, 99, 171, 186.Preorder, 42{43, 214.Preproessing of lauses, 95{97, 103,166{168, 182, 268, 272, 278.Preseletion phase of lookahead, 40{42, 147.Prestwih, Steven David, 264.Primary variables, 104, 105.Prime lauses, 174, 270, 273.Prime impliants, 281.Pringsheim, Alfred Israel, 88, 164.Prins, Jan Fokko, 267.Probabilisti method, 81.Probability of satis�ability, 47{54.prod (m; n), 12{14, 114, 137.Prodution rules, 175.Pro�le of a searh tree, 151.Progress, display of, 30, 145, 155.Progress saving, 67, see Phase saving.Projetion of a path, 184.Projetive plane, 274.

Propagation, kth order, 175{176, 273.Propagation ompleteness (UC1), 176.Proper anestors, 164.Proto truth, 37, 42.Prover{Delayer game, 55{56, 152{153.PSATO solver, 159.Pseudo-Boolean onstraints, see Thresholdfuntions.PT (proto truth), 37, 42.Pudl�ak, Pavel, 55.Puget, Jean-Fran�ois, 113.Purdom, Paul Walton, Jr., 30, 32,131, 151, 226.Pure yles, 140.Pure literals, 29, 31, 32, 34, 44, 60, 130,135, 146, 152, 208, 215, 227, 256,259, 268, 269, 275.Purging unhelpful lauses, 68, 71{75, 124,132, 157, 158, 168, 182, 184, 235.threshold for, 74, 125, 127.Putnam, Hilary, 9, 32, 130, 298.Pyramids in trae theory, 87, 162.q.s.: quite surely, 149, 153, 169.QDD: A quasi-BDD, 188.Quad-free matries, 106{107, 113,176{177, 274, 284.Quanti�ed formulas, 60, 154.Queen graphs, 25, 99{100, 114{115,120, 171, 180, 181.Quenhable graphs, 179{180, 281.Quik, Jonathan Horatio, 181.Quilt patterns, 198.Quimper, Claude-Guy, 272.Quine, Willard Van Orman, 129, 130.R(G) (Loal Lemma bounds), 82, 87{90,160, 163{165.Radio olorings, 136.Radix-d representation, 173.Rado, Rihard, 191.Ramakrishnan, Kajamalai Gopalaswamy, 16.raman graphs, 231.Ramani, Arathi (Bmg� ���), 112,281, 284.Ramanujan Iyengar, Srinivasa (ÿ��W��W�WÈ{h I�axWm), graphs, 154;see also raman graphs.Ramos, Antonio, 75.Ramsey, Frank Plumpton, theorem, 81.rand , 39{40, 46, 50, 115, 147, 182.Random bits, biased, 12, 241.Random hoies, 12.Random deision variables, 125{127,155, 286.Random graphs, 81.Random permutations, 233.
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306 INDEX AND GLOSSARYRandom satis�ability problems, 47{54,91, 151.2SAT, 51{54, 149.3SAT, 39{40, 46{51, 59{60, 80, 93{94,147{149, 153, 242.kSAT, 49{51, 146, 148.Random walks, 77{81, 125, 243.Random words, 149.Randomized methods, 77, 129, 182, 210.RANGE sores, 74, 125{127, 158, 239.RAT, see Resolution erti�able lauses.Rauzy, Antoine Bertrand, 131, 215.Reahability in a graph, 169.Ready list, 32.Real roots of polynomials, 163, 249.Real truth, 37{39.Reasons, 62, 72, 157, 165, 233.Rebooting, 22.Rekhow, Robert Allen, 61.Reurrene relations, 151, 177, 189, 215, 243.Reursive proedures, 27, 130, 172, 186, 233.Reyling of lauses, 66, 124.Redution of lauses, 27, 143; see alsoSimpli�ation of lauses.Redundant lauses, 257.Redundant literals, 65, 155{156, 232, 234.Redundant representations, 171.Reed, Brue Alan, 52.Reeted ternary ode, 290.Reetion symmetries, 112, 138, 156.Refutation hains, 57, 227.Refutation trees, 152.Refutations, 54{60, 70, 110, 152; see alsoCerti�ates of unsatis�ability.Regular expressions, 174{175.Regular resolution, 55, 152, 231.Reinforement messages, 91{93.Reliability polynomials, 83.Relutant doubling, 77, 80{81, 159{160.Relutant Fibonai sequene, 160.Renamed Horn lauses, 176, 263.Repeated lauses, 49.Replaement priniple, 96.Representation of Boolean funtions, 104,see Enoding into lauses.Representing three states with two bits, 179.Resaled ativity sores, 67.Resende, see Guilherme De CarvalhoResende.Resizing of data strutures, 210.Resolution erti�able lauses, 261.Resolution hains, 57{59, 152, 153, 227.Resolution of lauses, 54{65, 70, 101, 129,130, 144, 167, 185, 215, 224, 256.implementation of, 167.Resolution refutations, 54{60, 70, 110, 152;see also Certi�ates of unsatis�ability.extended, 60, 71, 133, 154, 168, 215.regular, 55, 152, 231.

treelike, 55{56, 152{153.Resolvable lauses, 164.Resolvent (C0 � C00), 54, 130, 152.Restarting, 80{81, 95, 125, 132.and ushing literals, 68, 75{77, 124, 132,157, 158, 169, 234, 246.Restrited growth strings, 179.Restrited pigeonhole priniple, 58.Reusing the trail, 75.Reverse unit propagation, 71.Revolving door Gray ode, 282.Reynaud, G�erard, 226.Rihards, Keith, 1.Rikard, John, 290.Right division of traes, 85, 161.Right fator of a trae, 161.Riis, S�ren M�ller, 110.Ripo�, Robert Iosifovih (Ripov, RobertIosifoviq), 7.Rivest, Ronald Linn, lauses, 4, 55,70, 134, 144, 182.Roberts, Fred Stephen, 136.Robertson, Aaron Jon, 185.Robinson, Gilbert de Beauregard, 275.Robinson, John Alan, 59, 96, 227.Rodr��guez Carbonell, Enri, 267.Rokiki, Tomas Gerhard, 200.Rooij, Iris van, 207.Rook paths, 206.Rookwise onneted ells, 170.Ross, Kenneth Andrew, 282.Rotational symmetry, 138, 202, 275.Rotors in Life, 138.Roussel, Olivier Mihel Joseph, 132, 272.Routing, disjoint, 170.Row sums, 151.Roy, Amitabha (aimt;& r;Y), 113.RT (real truth), 37{39, 43.Ruler doubling, 160.Ruler of Fibonais, 246.Running times, 89{90.omparison of, 34{35, 39, 69, 97{100,105{107, 110, 112, 118{128, 182, 184,218, 237, 264, 281, 290.mean versus median, 120.worst ase, 144, 146, 154.Runs of 1s, 26, 143, 175.s-hains, 52{53, 149.s-snares, 53, 149.S1(y1; : : : ; yp), 6.Sk(m; n), 50{54.Sk;n, 49{51, 148, 149.S�r(x1; : : : ; xn) and S�r(x1; : : : ; xn), 8,see Cardinality onstraints.Saddle point method, 226.Sahni, Sartaj Kumar (srtAj k� mArsAhnF), 268.Sa��s, Lakhdar (ÓayÓ laØ�ar, �Ún�Ǒ �¿), 236, 289.
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INDEX AND GLOSSARY 307Sakallah, Karem Ahmad (?m¶n� �Ì�Ê�n»), 112, 132, 281, 284.Salhi, Yakoub (Þ�¿n� oØ¸¬Ú), 289.Sampling with and without replaement,49{50, 132, 226.Samson, Edward Walter, 60, 130.SAT: The satis�ability problem, 3.SAT solvers, 1, 131{133.SATexamples.tgz, 118.Satis�able formulas, 1.variability in performane, 35, 120{121,128, 287.Satis�ability, 1{184.history, 32, 59{60, 105, 129{133.thresholds for, 50{54, 91, 148{149, 221.Satis�ability-preserving transformations,107{113.Satisfying assignments, 1, 30, 143{144,166, 214, 219.SATzilla solver, 132{133.Shaefer, Thomas Jerome, 289.Shensted, Craige Eugene (= Ea Ea), 275.Shlipf, John Stewart, 274.Shmitt, John Roger, 285.Shoen�eld, Jon Ellis, 192.Sh�oning, Uwe, 78.Shrag, Robert Carl, 132.Shroeppel, Rihard Crabtree, 197.Shwarzkopf, Bernd, 282.Sott, Alexander David, 224, 251, 252.Sott, Allan Edward Jolioeur, 207.Sott, Sidney Harbron, 191.Soville, Rihard Arthur, 162.Searh trees, 28{29, 32{34, 124, 152.expeted size, 151{152.optimum, 144.Seond moment priniple, 54, 221, 222.Seitz, Simo Sakari, 80.Self-subsumption, 96, 167, 168, 257.Selman, Bart, 50, 79, 132.Semimodular latties, 255{256.Sentinel values, 259.Sequential onsisteny, 24.Sequential lists, 36{37, 144.Sequents, 59.Serial orrelation oeÆients, 143.Set partitions, 220.SGB, see Stanford GraphBase.Shadows of paths, 184.Shandy, Tristram, iii.Sharp thresholds, 51{52, 149.Shearer, James Bergheim, 82, 87, 160.Sheeran, Mary, 203.Shlyakhter, Ilya Alexander (Xl�hter,Il~� Aleksandroviq), 284.Shmoys, David Bernard, 267.Shortest paths, 262.Shortz, William Frederi, v.

SIAM: The Soiety for Industrial andApplied Mathematis, 204.Sideways sum (�x): Sum of binary digits,114, 143, 179, 195, 279.seond order (�(2)x), 143.Sifting, 219, 220.Siftup in a heap, 234.Signature of a lause, 72, 158.Signature of a literal, 258.Signed mappings, 180{181.Signed permutations, 4, 111, 178.involutions, 112{113, 180, 277{278.Silva, see Marques da Silva.Silver, Stephen Andrew, 138, 200.Simmons, Gustavus James, 192.Simon, Laurent Dominique, 72, 132.Simple yles and paths, 23{24, 140.simplex graphs, 136.Simpli�ation of lauses, 65, 155, 232; seealso Preproessing of lauses.Sims, Charles CoÆn, tables, 283.Simultaneous read/write, 141.Simultaneous write/write, 141.Sinlair, Alistair, 80, 159, 256.Singh, Satnam, 203.Single lookahead unit resolution, 105, 176.Single-stuk-at faults, 10{14, 114, 136{137.Sink: A vertex with no suessor, 87, 214.omponents, 108{110.Sinz, Carsten Mihael, v, 8, 117, 118,135, 174, 189, 280.Skip Two solitaire, 282.Slak, in trae theory, 88, 251.Slisenko (= Slissenko), Anatol Olesievith(Slisenko, Anatol~ Oles~eviq), 59.SLS: Stohasti loal searh, 77.SLUR algorithm, 105, 176.Sly, Allan Murray, 51.Smile, 207.Smith, Barbara Mary, 283.Snake dane, 138.Snakes, 52{54, 149.Snares, 52{54, 149.Snark graphs, 69, 147, 153, 157.Snevily, Hunter Saint Clair, 5.Sorates, son of Sophronisus ofAlopee (Swkr�th Swfrwn�skou>Alwpek¨jen), 129.Soft lauses, 168.Sokal, Alan David, 251, 252.Solitaire games, 180, 282.Solutions, number of, 48, 219.Somenzi, Fabio, 236.S�orensson, Niklas Kristofer, v, 67,155, 203, 268.Sorting networks, 115, 137, 203, 263, 266.Soure: A vertex with no predeessor,87, 252.Spaeships in Life, 139, 201.
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308 INDEX AND GLOSSARYSpanning trees, 281, 290.Sparse enoding, see Diret enoding.Spekenmeyer, Ewald, 131, 215.Spene, Ivor Thomas Arthur, 290.Spener, Joel Harold, 81, 82, 254.Spiral order, 206.Stable Life on�gurations, 19, 197.Stable partial assignments, 165{166.Staks, 37{39, 43.Staking the piees, 84{85.St�almark, Gunnar Martin Natanael, 56,132, 153, 203, 232, 238.Stamm-Wilbrandt, Hermann, 131.STAMP(l), 258.Stamping of data, 37{38, 64, 66, 145,155, 211, 236, 258{260.Standard deviation, 48, 240.Stanford GraphBase, ii, 12, 13, 126,179, 214, 231.Stanford University, 282.Stanley, Rihard Peter, 275.Star�sh graphs, 249.Starvation, 22{24, 115, 140, 141.Statistial mehanis, 90.Stators in Life, 138.Stege, Ulrike, 207.Stein, Cli�ord Seth, 267.Steinbah, Heinz Bernd, 275.Steiner, Jaob, tree paking, 264.triple systems, 106, 274.Sterne, Laurene, iii.Stikel, Mark Edward, 132.Stiking values, 67, see Phase saving.Still Life, 19, 138, 200.Stirling, James, approximation, 221, 240.subset numbers, 149, 220, 226.Stohasti loal searh, 77.Stopping time, 48{50, 148.Strahler, Arthur Newell, numbers, 152.Strengthening a lause, 96, 156, 259{260.St�r��brn�a, Jitka, 224.Strihman, Ofer (ONKIXHY XTER), 203.Stritly distint literals, 2{3, 52, 165.Strings generalized to traes, 83.Strong omponents: Strongly onnetedomponents, 41{42, 52{53, 108,131, 215, 221, 263.Strong exponential time hypothesis, 183.Strong produt of graphs, 134.Strongly balaned sequenes, 179.Stuk-at faults, single, 10{14, 114, 136{137.St�utzle, Thomas G�unter, 125.Subadditive law, 59.Sububes, 148.Subforests, 42.Subinterval onstraints, 190.Submatries, 106{109, 177.Subset sum problem, 268.Substitution, 257.
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